


Cause and Effect Business 
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Among the most important questions that businesses ask are some very sim-
ple ones: If I decide to do something, will it work? And if so, how large are 
the effects? To answer these predictive questions, and later base decisions on 
them, we need to establish causal relationships. 

Establishing and measuring causality can be diffcult. This book explains the 
most useful techniques for discerning causality and illustrates the principles 
with numerous examples from business. It discusses randomized experi-
ments (aka A/B testing) and techniques such as propensity score matching, 
synthetic controls, double differences, and instrumental variables. There 
is a chapter on the powerful AI approach of Directed Acyclic Graphs (aka 
Bayesian Networks), another on structural equation models, and one on 
time-series techniques, including Granger causality. 

At the heart of the book are four chapters on uplift modeling, where the goal 
is to help frms determine how best to deploy their resources for marketing 
or other interventions. We start by modeling uplift, discuss the test-and-learn 
process, and provide an overview of the prescriptive analytics of uplift. 

The book is written in an accessible style and will be of interest to data ana-
lysts and strategists in business, to students and instructors of business and 
analytics who have a solid foundation in statistics, and to data scientists who 
recognize the need to take seriously the need for causality as an essential 
input into effective decision-making. 



CHAPMAN & HALL/CRC Series on Statistics in Business 
and Economics

The Chapman & Hall/CRC Series on Statistics in Business and Economics is 
a comprehensive collection of cutting-edge books dedicated to advancing the 
understanding and application of statistical methodologies in the realms of 
business and economics.

Empirical Research in Accounting
Tools and Methods
Ian D. Gow and Tongqing Ding

Game Theory for Applied Econometricians
Data Analytics with R
Chritopher P. Adams

Bayesian Econometric Modelling for Big Data
Hang Qian

Cause and Effect Business Analytics and Data Science
Dominque Haughton, Jonathan Haughton, and Victor S. Y. Lo

Risk and Predictive Analytics in Business with R
Ozgur M. Araz and David L. Olson

For more information about this series, please visit: https://www.routledge. 
com/Chapman-and-HallCRC-Series-on-Statistics-in-Business-and-
Economics/book-series/CHSBE

https://www.routledge.com/Chapman-and-HallCRC-Series-on-Statistics-in-Business-and-Economics/book-series/CHSBE
https://www.routledge.com/Chapman-and-HallCRC-Series-on-Statistics-in-Business-and-Economics/book-series/CHSBE
https://www.routledge.com/Chapman-and-HallCRC-Series-on-Statistics-in-Business-and-Economics/book-series/CHSBE


 

Cause and Effect 
Business Analytics 
and Data Science 

Dominique Haughton, 
Jonathan Haughton, 

and Victor S.Y. Lo 

https://www.crcpress.com


 

Reasonable efforts have been made to publish reliable data and information, but the author and 
publisher cannot assume responsibility for the validity of all materials or the consequences of 
their use. The authors and publishers have attempted to trace the copyright holders of all mate-
rial reproduced in this publication and apologize to copyright holders if permission to publish 
in this form has not been obtained. If any copyright material has not been acknowledged please 
write and let us know so we may rectify in any future reprint. 

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, repro-
duced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now 
known or hereafter invented, including photocopying, microflming, and recording, or in any 
information storage or retrieval system, without written permission from the publishers. 

For permission to photocopy or use material electronically from this work, access www.copy-
right.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, 
MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbooksper-
missions@tandf.co.uk 

Trademark notice: Product or corporate names may be trademarks or registered trademarks 
and are used only for identifcation and explanation without intent to infringe. 

ISBN: 978-1-482-21647-9 (hbk) 
ISBN: 978-1-041-07411-3 (pbk) 
ISBN: 978-0-429-17258-8 (ebk) 

DOI: 10.1201/9780429172588 

Typeset in Palatino 
by KnowledgeWorks Global Ltd. 

Front cover image: filip robert/Shutterstock

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431
and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Dominique Haughton, Jonathan Haughton, and Victor S.Y. Lo

mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9780429172588
https://www.copyright.com
https://www.copyright.com


 
 

  

   

   

  
 

   

  
 

   

   
 

   
 

  

   

   

 

Contents 

About the Authors ............................................................................................... vii 
Acknowledgments .................................................................................................ix 

1. Introduction to Cause-and-Effect Business Analytics............................ 1 

2. Review of Common Data Mining Techniques....................................... 20 

3. Causality.........................................................................................................46 

4. Causality: Synthetic Control, Regression Discontinuity, 
and Instrumental Variables........................................................................ 73 

5. Directed Acyclic Graphs .............................................................................99 

6. Uplift Analytics I: Mining for the Truly Responsive 
Customers and Prospects .......................................................................... 119 

7. Uplift Analytics II: Test and Learn for Uplift....................................... 154 

8. Uplift Analytics III: Model-Driven Decision-Making 
and Treatment Optimization Using Prescriptive Analytics.............. 210 

9. Uplift Analytics IV: Advanced Modeling Techniques 
for Randomized and Non-Randomized Experiments ........................ 252 

10. Causality in Times Series Data................................................................ 290 

11. Structural Equation Models ..................................................................... 307 

12. Discussion and Summary......................................................................... 325 

Index ..................................................................................................................... 341 

v 



https://taylorandfrancis.com


 

About the Authors 

Dominique Haughton (PhD MIT 1983) is a Professor Emerita of Mathematical 
Sciences and Global Studies at Bentley University near Boston, and an 
Affliated Researcher at Université Paris 1 (Pantheon-Sorbonne, SAMM) 
and at Université Toulouse 1 (TSE-R). Her widely published work concen-
trates on how to best leverage modern analytics techniques to address ques-
tions of business or societal interest. She is an alumna of the Ecole Normale 
Supérieure and a Fellow of the American Statistical Association. 

Jonathan Haughton earned his PhD in economics from Harvard University 
in 1983. He has published widely in the areas of economic development, taxa-
tion, the environment, and the analysis and measurement of poverty. Now 
emeritus, he chaired the economics department at Suffolk University, Boston, 
and he has taught or worked as a consultant in over 20 countries on fve 
continents. 

Victor S.Y. Lo is an executive with over three decades of consulting and cor-
porate experience employing data-driven solutions in a wide variety of busi-
ness areas, including Marketing, Risk Management, Financial Econometrics, 
Insurance, Product Development, Transportation, Healthcare, Operations 
Management, and Human Resources, and is a pioneer of uplift modeling. 
He is currently SVP, Data Science and AI at Fidelity Investments, and has 
led data science and analytics teams in various organizations. Victor earned 
a master’s degree in Operational Research and a PhD in Statistics and was a 
Postdoctoral Fellow in Management Science. 

vii 



https://taylorandfrancis.com


Acknowledgments 

We would like to thank David Grubbs and his editorial team from CRC 
Press/Taylor & Francis for initiating the process for the book and for endless 
support, patience, and encouragement over the past decade. Thanks are also 
due to Mayank Sharma and the team at KnowledgeWorks Global for their 
expert editing. 

We received very helpful reviews of drafts of our chapters from Alison 
Kelly, Jongbyung Jun, and Le (Sarah) Tang, all of from Suffolk University; 
and from Mingfei Li of Bentley University. 

Dominique would like to thank Bentley University for its support over the 
years. And Jonathan is very grateful for support, including a sabbatical, from 
Suffolk University, which helped move the work forward. 

First and foremost, Victor would like to thank the Lord Almighty for pro-
viding the opportunity, inspiration, and protection over the past many years 
during the writing of this book. He also would like to express his gratitude to 
his family for their gracious support over the countless number of weekends 
and their encouragement throughout this project. Last but not least, he would 
like to thank Jane Zheng and Karl Rexer for their valuable suggestions. 

ix 



https://taylorandfrancis.com


 

 

 
 
 
 
 
 

1 
Introduction to Cause-and-Effect 
Business Analytics 

“In God we trust, all others bring data” 

W. Edwards Deming

This book discusses two major related topics: Methods of causal analysis 
applied to business problems and uplift analytics. It is written to be acces-
sible to anyone with a basic foundation in analytics, economics, statistics, 
marketing, and similar felds. It is likely to be useful for students in mas-
ter’s programs in related felds and for practitioners of analytics who want to 
expand their knowledge and skills. 

The emphasis is on the concepts and on the essentials of important tech-
niques. This should get the reader started, but mastery of any given tech-
nique will require further reading, digging, practice, and experimentation. 
We aim to provide the right path and the initial steps, but we have not writ-
ten a programming cookbook, as we believe that readers should have little 
trouble fnding the appropriate routines in Stata, SAS, Statistical Package for 
the Social Sciences (SPSS), R, Python, or in specialized software, once they 
know broadly what to look for. 

The rest of this chapter discusses the importance of causality in think-
ing about business and suggests how readers may want to pick their way 
through the chapters in order to proft most fully from the book. 

1.1 The Trend toward Business Analytics and Data Science 

In this age of Big Data, the ability to draw valuable insights and optimize 
decisions based on massive data is seen as a competitive advantage in 
business. As a result, there is tremendous demand for employing Artifcial 
Intelligence (AI), Machine Learning, Data Science, or Advanced Analytics, 
resulting in several documented success stories in multiple industries 
ranging from technology to fnancial services to insurance to healthcare 
to retail. 

DOI: 10.1201/9780429172588-1 1 
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2  Cause and Effect Business Analytics and Data Science 

Taylor (2024) reports that the quantity of data created, captured, copied, 
and consumed worldwide rose from 2 zettabytes in 2000 to an estimated 
149 zettabytes in 2024. This explosion of data has created a situation where 
the opportunities for analytics are only limited by our imagination and 
capacity. In today’s terminology, there are multiple terms that are closely 
related, including Data Analytics, Business Analytics, Data Science, Data 
Mining, Machine Learning, and AI. In particular, AI, a feld that was born 
in the 1950s and has strong renewed popularity today, loosely means mim-
icking human behavior with computers; see Jordan (2019). As a subset of AI, 
Machine Learning is a class of techniques that learns from data, unlike the 
older generation form of AI, where human expertise is required to hard-
code specifc rules into the system. While AI and Machine Learning speak 
to the techniques and tools, Data Science is a broader term and a multi-
disciplinary feld (see Meng 2019) that integrates Computer Programming 
or Computer Science (including extracting data from any forms, data pro-
cessing, and transformations), Mathematics and Statistics, subject matter 
expertise (e.g., marketing knowledge is required for analyzing marketing 
data, and knowledge of risk is needed for risk analytics), and soft skills 
(e.g., consulting, communication, and presentation). In Figure 1.1, data sci-
entists or analysts who possess all the skills in the overlapping portion of 
the Venn Diagram are sometimes known as unicorns that are not easy to 
fnd (Lo 2019a). 

In this book, we choose the term “Business Analytics” to represent our 
content, but the other terms or felds mentioned above are sometimes 

FIGURE 1.1 
Venn Diagram of data science. (Lo 2019a.) 



 

 

 
 

 

3 Introduction to Cause-and-Effect Business Analytics 

FIGURE 1.2 
Three types of analytics. 

synonymous in the industry. By defnition, “Business” Analytics is an appli-
cation of “Analytics” for business purposes. The feld of Analytics (also 
known as Data Analytics) can be classifed into the following three types 
(Figure 1.2): 

1. Descriptive Analytics: It describes what happens with data analy-
sis or reports, often including summary statistics and data visual-
ization (e.g., scatterplots, pie charts, histograms, box plots, and line 
charts), and is highly associated with Business Intelligence. Often, 
data are presented in the form of dashboards, which may be updated 
frequently. Multidimensional tables and graphs are sometimes 
included to provide in-depth analysis of data. For example, report-
ing the weather condition yesterday is a form of descriptive analyt-
ics, as are efforts to measure worldwide income or consumption. 
Good descriptive analytics is not straightforward and requires clear 
protocols, attention to detail, and imagination in how best to present 
potentially enormous quantities of data in ways that an audience can 
understand usefully. 

2. Predictive Analytics: It predicts what will happen, such as eco-
nomic growth over the coming year, future customer behavior, or 
probabilities of certain events happening in the future. For exam-
ple, weather forecasting itself is a form of predictive analytics. 



 
 
 
 
 
 
 

 

 
 

 

 

 

 

4  Cause and Effect Business Analytics and Data Science 

Predictive Analytics (or Predictive Modeling) is typically based 
on some form of Statistical Analysis (or Statistical Modeling) 
and/or Machine Learning (in particular, Supervised Learning). 
Predictive analytics is also at the heart of policy analysis, where 
one is trying to answer questions such as what would happen if 
the tax on gasoline were doubled or if the minimum wages were 
raised. Causal reasoning is central to answer policy questions 
such as these. 

3. Prescriptive Analytics: It gives some knowledge about the future, 
considers potential alternative decisions, and then determines the 
best decision. For example, if you know there is a good chance of 
heavy snow tomorrow (through predictive analytics), you may eval-
uate the potential risk of studying or working from home versus 
going to school or work and then determine the right decision to 
achieve your goal while considering the risk. This feld is tradition-
ally a large subset of Operations Research, Management Science, 
or Industrial Engineering, and is also linked to a subset of modern 
Machine Learning methods (e.g., Reinforcement Learning). Some 
make a distinction between positive economics, which seeks to 
answer the “what if” questions, and normative economics, which 
tackles the question of “what should be done.” 

The three types of analytics are closely related instead of being indepen-
dent from each other. Learning about what happened in the past (descriptive 
analytics) is often a prerequisite to predicting the future (predictive analytics). 
Knowing something about the future (predictive analytics), even with a 
high degree of uncertainty, enables us to evaluate alternative choices and 
select the right decision quantitatively (Lo 2019b). 

These three types of analytics have been around for several decades. What 
drives the rise of analytics are: 

1. Big Data: Data increases not only in volume but also in many dif-
ferent forms including structured and unstructured data (e.g., text, 
voice, and image). 

2. Increased Machine Power: Computational power has increased 
and continues to increase tremendously over time, with the latest 
advances in graphics processing unit (GPU) machines and cloud 
computing. 

3. Better Algorithms: Increased sophistication and fexibility of algo-
rithms have been observed over the past decade for processing and 
analyzing data, including massively parallel processing (MPP), deep 
learning, reinforcement learning, causal inference, and uplift model-
ing. The latter two are the focus of this book and will be introduced 
in Sections 1.2 and 1.3. 



 

 
 

 
 

 

  

 

 

5 Introduction to Cause-and-Effect Business Analytics 

1.2 Introduction to Causality in Business 

In the previous section, we described the three types of analytics. In order to 
perform prescriptive analytics, some form of predictive analytics is usually 
required. In fact, “causality” is the link between predictive analytics and pre-
scriptive analytics (see Figure 1.2), in that we need to establish a causal rela-
tionship if we are to be able to make successful changes; this is equivalent to 
being in a position to apply Pearl’s “do-operator,” which we discuss further in 
Chapter 3. Let us illustrate the link between predictive and prescriptive ana-
lytics with a classical business problem – how to set the price of your product. 

Suppose you are selling premium bubble tea in a small local tea shop. 
Assume you have some idea about the relationship between the quantity 
of daily sales and unit price, which is approximately: D = 500 − 50 P, where 
D =  daily sales and P = unit price (bounded between 0 and 10). This is a clas-
sical demand curve, as shown in Figure 1.3; by convention, economists put 
the price on the vertical axis and the quantity demanded on the horizontal 
axis (left panel), while marketers tend to put the quantity on the vertical axis 
(right panel). This demand curve shows, for instance, that for every dollar 
increase in price, you expect to sell 50 fewer cups daily. Since you aim at 
maximizing daily proft, you would like to determine the optimal P such 
that the proft function is maximized. You know the cost of making bubble 
tea is $2 per cup. Therefore, your objective function is maximizing the proft 

( )  P P  50 2  We function f P = D P( − 2)  (= 500 − 50 )( − 2) or = − P + 600P − 1000. 
can solve this through standard differential calculus. By differentiating the 
function f P( ) with respect to P and setting it to zero, we have P* = $6. Since 
the second derivative of the proft function is negative, that is, f P < 0,˛̨ ( )  
P* = $6 is the optimal price to achieve the maximum proft, which will be 
f 6 = 200 =( )  ˝ 4 $800. Any other prices will result in a lower daily proft. In 

FIGURE 1.3 
Sales as a function of unit price. 



 

 

 

 

 

 
 

 

6  Cause and Effect Business Analytics and Data Science 

this exercise, establishing the sales function of price is a form of predic-
tive analytics, while determining the optimal price belongs to the third 
type of analytics: Prescriptive analytics. While the prescriptive analytics 
(optimization) process is straightforward, the key is how to come up with 
the quantity of sales as a function of price: D = 500 − 50 P.  In particular, the 
coeffcient 50 refects the sensitivity of the quantity demanded to price, and it 
is the key piece of information needed to determine the optimal price.1 How 
can we know it is 50? This is a large portion of what this book will cover. 

Let us take a visit to various data-gathering methods that may help deter-
mine the price sensitivity. 

1. Survey Data: In this approach, also known as market research or 
primary data collection, researchers or analysts directly go to the 
feld and gather self-reporting data from survey respondents. For 
causality, we can ask survey respondents why something causes 
something, for example, what caused them to do what they did. In 
our example, we could use a contingent valuation survey – asking 
prospective consumers how much they would want to buy at differ-
ent prices – which is one of the most widely used tools in cost-beneft 
analysis, particularly when trying to put a value on non-marketed 
goods and services (such as the value of a public park or of clean air). 
Market researchers have also come up with techniques such as con-
joint analysis and best-worst scaling to estimate such relationships. 
While conjoint analysis and related techniques are quite established 
(e.g., Green and Srinivasan 1990), they are based on self-reporting 
data, and it does take some cost and effort to conduct a well-designed 
survey. The question arises of whether we could simply observe it 
with “real” data instead of doing a survey. 

2. Experimental Data: The gold standard of answering causality is 
through randomized experiments, frequently known as randomized 
controlled trials (RCTs), or as A/B testing in the marketing, analytics, 
and data science literatures. To do that, for our example, one would 
systematically test various price points in a randomized setting and 
observe the sales level at each price. It takes some effort to conduct 
such an experiment. This is usually the best method if it is feasible, 
although in reality it typically falls well short of the ideal, for the 
reasons discussed in Chapter 3. 

3. Observational Data: If a randomized experiment is not practically 
feasible or we just want to obtain an answer faster, could we simply 
utilize available historical data? It is possible if historical data has 
price variability. In fact, a signifcant portion of this book (Chapters 
3–5 and 9–12) discusses how to infer causality from observational 
data. In our example, let us assume that you are only able to gather 
a few data points from some past time periods (days), and the data 
are plotted in Figures 1.4a and 1.4b with a linear regression line ft 
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FIGURE 1.4 
Observational data and its ftted regression line: (a) Economists and (b) marketers. (c) Proft as 
a function of unit price. Each dot is actual proft = actual sales * (unit price – 2), and the curve is 
based on the ftted sales, that is, proft function = ftted sales * (unit price – 2). 
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FIGURE 1.5 
Back-door path: Potential confounding in determining price sensitivity. 

to the data. If we take the regression line (predictive analytics) as an 
input to optimization (prescriptive analytics), we can plot the proft 
as a function of price in Figure 1.4c. Applying standard differential 
calculus, the optimal price based on this data would be $6.09 with 
an estimated daily proft of $831, based on the ftted sales function 
from Figure 1.4a (or Figure 1.4b). If the data were from a randomized 
experiment (i.e., the price points were randomly assigned to different 
time periods), this should be a reasonable analysis. However, since 
the data is observational rather than experimental, it is possible that 
there are other “confounders” that affect both the treatment (price) 
and outcome (sales), (see Figure 1.5). 

A confounder is defned as a variable that predicts or drives both the treat-
ment and outcome. In this case, it would be driving both the unit price and 
sales. Since we need to assess the causal effect of unit price change on sales, 
our interest is in quantifying the direct (horizontal) link between price and 
sales. However, the presence of confounders implies that a “back-door path” 
exists between price and sales (via the confounders-to-price and confound-
ers-to-sales links), leading to a biased estimation of the causal treatment 
effect. We treat this issue in more detail in Chapter 4. 

In the bubble tea sales example, suppose your manager tells you that some 
of the data points collected were not a good representation of the usual situ-
ation. For example, in Figure 1.4b, the data point ($3, 410) was actually from 
the opening day of the shop with plenty of promotion running on and before 
that day (e.g., banner and email marketing), and because it was the frst day 
of business, we also started with a very low price of $3 as part of the promo-
tion. The opening day special promotion may have both lowered the price 
and increased the sales. As a result, the opening day can be a strong con-
founder that drives both the treatment (price) and outcome (sales). Likewise, 
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you have just discovered that the data point ($8, 145) was from a major holi-
day – with so many shops closed, yours was one of a few shops that were in 
business, and as a result, you raised the price, and the sales level was still 
relatively high (when compared to the ftted regression line). In this case, the 
holiday is a confounder that had a positive effect on both the unit price and 
sales. A simple solution is to remove both data points and reft the regression 
line, resulting in the sales function in Figure 1.6a (or Figure 1.6b) with a much 
smaller price sensitivity, followed by the profit function in Figure 1.6c. 

FIGURE 1.6a 
Observational data and its ftted regression line (excluding two special days): Economists. 

FIGURE 1.6b 
Observational data and its ftted regression line (excluding two special days): Marketers. 



 

   

  

 

 

 

 
 

 

 

10  Cause and Effect Business Analytics and Data Science 

FIGURE 1.6c 
Proft as a function of unit price, using the ftted sales function from Figure 1.6a (excluding two 
special days). Each dot is actual proft = actual sales * (unit price – 2), and the curve is based on 
the ftted sales, that is, proft function = ftted sales * (unit price – 2). 

By applying differential calculus again, we obtain the optimal price which is 
$6.93. Substituting this price to the proft function, we have the daily optimal 
proft = f (6.93) = (391.5 – 33 * 6.93) * (6.93 – 2) = $802.65.2 

While the above is an illustration of specifc confounding situations, there 
are many other possible confounders, such as: 

1. Competitor Pricing: If there is a major coffee shop nearby, coffee 
may serve as a substitute for bubble tea for some customers. As a 
result, any pricing change of this coffee shop may drive your sales 
and your price of bubble tea. 

2. Product Innovation: On certain days, you may have tried different 
favors of bubble tea, which may have impacted both the demand 
and price. 

3. Coupon Strategy: If some selected customers receive a coupon as 
part of a promotion, it would simultaneously drive price and sales. 

4. Underlying Market Trend: With time series data, it is possible that 
there is an underlying trend (inertia) that pushes both the unit price 
and sales over time, confounding the actual causal relationship 
between them. 

The above illustrates the importance of handling causality, using price as 
an example. We can also consider other “treatments” or interventions, such 
as promotion, product, and place. 

1. Promotion is a key marketing function, and for large corporations, 
there can be many types of promotion happening at the same time 
– for example, TV advertising, online promotion, email market-
ing, out-of-home (billboard), radio, and beyond. It is important to 
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understand the impact of each of these (through predictive analyt-
ics and causal inference) and then optimally allocate budget based 
on their return on investment (via prescriptive analytics). Without 
proper causal business analytics, managers running each of these 
promotional channels could claim the same revenue gained, and the 
sum of their claims would be far higher than the actual overall rev-
enue. We develop an example along these lines in Chapter 3. 

2. Since each product may have a variety of product features, knowing 
which ones would drive the desirable customer outcome and rev-
enue enables us to optimally assign features for each product. For 
instance, to design a laptop computer, there are multiple features the 
business and consumers will consider, for example, size, color, sound 
quality, keyboard quality, CPU, and RAM. The business may opti-
mize the features that are most important to the consumers, which 
would require some form of causal business analytics to assess the 
impact of various features on consumer purchases. 

3. Place involves where to open a store and how to decorate it, which 
all involve causal questions requiring causal business analytics to 
estimate the impact (of opening a store in a particular location or 
decorating a store with a specifc theme or color). 

Methodologies for measuring causal effects are not from one academic feld 
but several academic felds, ranging from Economics and Econometrics (Lee 
2005, 2016, Angrist and Pischke 2009, 2014, and Gertler et al. 2016), Statistics 
(Rosenbaum 2002, 2010, Rubin 2006, Weisberg 2010, and Imbens and Rubin 
2015), Computer Science and Artifcial Intelligence (Pearl 2000, Scutari and 
Denis 2015, Pearl et al. 2016, Peters et al. 2017, and Pearl and Mackenzie 2018), 
Epidemiology (Vanderweele 2015 and Hernan and Robins 2020), Sociology 
(Morgan and Winship 2015), Psychology (Glymour 2001 and Sloman 2005), 
Political Science (Dunning 2016), to Philosophy (Spirtes et al. 2000, Cartwright 
2007, and Cartwright and Hardie 2012). While the books from these felds 
cover a variety of related methodologies from different academic disciplines, 
they are not specialized in business applications, which is the focus of our 
book. Chapters 3–5 and 10–12 provide a wide variety of methodologies to 
help answer these causality questions in business. 

1.3 From Population Causality to Individual 
Causality: Uplift Modeling 

The previous section introduced causal measurement at the population or 
group level, which enables the selection of the best treatment for part or all 
of the overall population. Researchers and practitioners have not stopped at 
estimating the overall treatment effect for the population or a group (or for 
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the “average” person). With the advances of Machine Learning and predic-
tive analytics, along with randomized experiments and causal inference, 
researchers have taken a further step to estimate treatment effects at the 
individual level. This increasingly popular subfeld known as uplift mod-
eling was separately created in the late 1990s and early 2000s by research-
ers and practitioners such as Radcliffe and Surrey (1999) and Lo (2002) with 
the objective of fnding individuals who are truly positively infuenced by a 
treatment or intervention through Machine Learning and predictive model-
ing by uncovering heterogeneous treatment effects in available data. This 
technique enables us to potentially identify the “persuadables” and thus 
optimize target selection in order to maximize treatment impact; see Siegel 
(2011, 2013b). Motivated by the trend of personalization in many industries, 
this subfeld has gained tremendous attention in recent years with seem-
ingly unlimited applications such as personalized marketing (original usage 
of uplift), personalized medicine, political elections, personalized insurance, 
and healthcare programs, with growing numbers of publications and pre-
sentations from both industry practitioners and academics across the globe. 
Independently, researchers from Economics, Epidemiology, and Statistics 
have considered similar or related methodologies applied to Social Sciences 
and Medical Sciences, for example, Athey and Imbens (2015), Yong (2015), 
and Zink et al. (2015). 

The most prominent application of uplift modeling so far is perhaps in 
political elections. In the 2012 Obama re-election campaign, the campaign 
team had a limited budget to spend on targeting voters. Their analytics team 
designed an intelligent approach – instead of communicating with those 
who would almost surely vote for Obama or his opponent (as it would be 
ineffective to market to these two groups), they applied uplift modeling to 
uncover the swing voters who are most “persuadable” by marketing com-
munication, enabling their campaign to maximize overall impact, as docu-
mented in Stedman (2013) and Siegel (2013a). This success has led to wider 
applications of uplift modeling in political elections. As in marketing and 
sales campaigns, where traditional predictive modeling focuses on predict-
ing the outcome, uplift modeling estimates the effectiveness of the treatment 
or intervention at the individual level, allowing one to focus resources on the 
subjects that are likely to be positively impacted by the treatment. 

Figure 1.7 provides a classifcation framework for uplift modeling and 
causal inference. The vertical axis extends from association only (what may 
be correlated) to causal measurement (which are causing which), while the 
horizontal axis moves from population (or group or subpopulation) level 
summary statistics to personalized level modeling. We will describe the four 
quadrants of Figure 1.7 in the following: 

a. Reporting/Summary Statistics – This is a subset of Descriptive 
Analytics in Figure 1.2, where the past data (sales reports, fnancial 
reports, and summaries of other historical data) are summarized 
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FIGURE 1.7 
Framework for causal and association analysis. 

visually or statistically to describe what happened in the population 
(or subpopulation) as a whole. 

b. Causal Inference – As described in Section 1.2, this type of analyt-
ics extends beyond association or correlation-based summary statis-
tics and provides insight into the causal link between a treatment or 
intervention and an outcome for the overall population (or a group). 
The estimate is known as the Average Treatment Effect (ATE) in aca-
demia or simply “lift” in business. 

c. Response Modeling or Propensity Modeling – Using historical cus-
tomer data at the individual level, the traditional usage of analytics 
is to apply predictive modeling, also known as supervised learning, 
to target customers who are likely to take a desirable action regard-
less of whether or not they receive an intervention or treatment, as 
documented in marketing analytics textbooks such as Jackson and 
Wang (1996) and Roberts and Berger (1999). Such a model is known 
as a Response Model or Propensity Model, which almost guarantees, 
by design, that the model targets are better than random targets in 
terms of response rate by design. It improves effciency by increasing 
the proportion of responders within the treatment group. It extends 
Reporting/Summary Statistics from the population or group level 
to the individual level, leading to targeting at a personalized level. 

d. Uplift Modeling – While response or propensity modeling aims at 
predicting the outcome, uplift modeling is about predicting the lift 
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between treatment (contacted) and control (uncontacted)3 at the indi-
vidual level. It requires an application of predictive modeling in a 
nontraditional way, using both the treatment and control data from 
historical campaigns. It is also an extension of causal inference from 
the population level to the individual (personalized) level. To illus-
trate with a common marketing example, in a customer cross-sell 
campaign where the goal is to sell additional products to existing 
customers, a response or propensity model is developed to differen-
tiate between those who responded (purchased) and those who did 
not respond (no purchase) to a historical campaign, and then apply-
ing such a model to a future campaign. Measuring the effectiveness 
of the treatment requires an A/B test or a randomized experiment. 
The experiment would have two separate target groups: (1) Model 
targets (say, using the top 30% of those who are likely to purchase 
as determined by the traditional model, also known as the top three 
model deciles) and (2) random targets (for comparison and potential 
model refnement). In each of the two target groups, customers would 
be randomly split into treatment (receiving the marketing campaign) 
and control (not receiving the campaign) groups, so any difference 
in measurement results can be attributable to the treatment (cam-
paign). Since the traditional predictive model is designed to focus on 
customers who are likely to buy the product, success over random 
targets is expected. However, those customers who are likely to buy 
(as determined by the top three model deciles here) may respond 
naturally, regardless of whether they receive the campaign, resulting 
in no lift over control. Table 1.1 shows an illustrative example. While 
there is a difference between the model group and the random 
group, that is, the top three model deciles have a higher purchase 
rate than the random targets, there is no difference in purchase rate 
between the treatment and control groups within each target group; 
as a result, the campaign generates no lift. This happens because the 
objective of the traditional predictive model is to predict the likeli-
hood of purchase rather than estimating and optimizing lift over 
control; that is, what is modeled does not match what is measured. Uplift 
modeling is thus needed to estimate lift over control, enabling the 

TABLE 1.1 

Example of Possible Campaign Result from Traditional 
Predictive Modeling 

Model Targets (Top Three Random Targets 
Deciles) (%) (%) 

Treatment 2.5 1.0 
Control 2.5 1.0 
Lift 0.0 0.0 



 

 

 

 

15 Introduction to Cause-and-Effect Business Analytics 

business to select those who are likely to generate higher lift values, 
as in the 2012 Obama re-election. Chapters 6–9 described uplift mod-
eling in detail. In the example above, a randomized experiment was 
available so we could properly estimate the lift and develop an uplift 
model. In the scenario where randomized experiments are not fea-
sible, an integration of causal inference on observational data with 
uplift modeling will be required, and this approach is introduced in 
Chapter 9. 

Chapter 2 of this book describes the traditional predictive modeling 
approach before we dive into causal inference and uplift modeling in subse-
quent chapters. 

1.4 Organization of This Book 

This book discusses two major topics, Causal Business Analytics and Uplift 
Analytics, with a range of methodologies illustrated with practical business 
problems and data. The frst topic is about applying proper causal analytics 
methodologies, known as causal inference in academia, in the business set-
ting. As mentioned in Section 1.2, there are many textbooks on causal infer-
ence from various academic felds, but there has not been one seen so far that 
touches on practical business applications with a wide range of methodolo-
gies. The second topic is the emerging feld of uplift analytics – given its rela-
tively emerging state, there are very few books on this topic. Our coverage on 
uplift is broad: From experimental design for uplift to model measurement, 
predictive modeling for uplift, and prescriptive uplift analytics (treatment 
optimization). 

A suggested fow of reading the book chapters is outlined in Figure 1.8. 
Chapter 2 serves as a review of common statistical, econometric, and 
Machine Learning techniques, on which subsequent chapters on causal busi-
ness analytics and uplift modeling are built. Readers who are familiar with 
these common techniques can skip to other chapters. Chapter 3 introduces 
causal business analytics (causal inference in business) with more standard 
methodologies such as randomized experiments (also known as A/B test-
ing), potential outcomes approach, and propensity score matching. Chapter 4 
describes additional causal inference techniques that are widely used in eco-
nomics and sociology, including synthetic controls, double differences, and 
instrumental variables, but they can also be utilized in business. Chapter 5 
discusses a powerful AI-based approach known as Directed Acyclic Graphs 
or Bayesian Networks that can be employed to discover and quantify causal 
relationships between variables, with or without prior knowledge of the 
likely causal pathways. 
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FIGURE 1.8 
Suggested fow of book chapters. 

Uplift analytics is discussed in Chapters 6–9. Chapter 6 introduces the con-
cept of uplift analytics along with a simple modeling approach. Chapter 7 
discusses the Test and Learn process for uplift, including sample size determi-
nation, experimental design, and measurement metrics. Chapter 8 provides 
an overview of prescriptive analytics for uplift, employing mathematical 



   

  

  
  

   
 
 

 

17 Introduction to Cause-and-Effect Business Analytics 

techniques to optimally match individuals to treatments. The discussion 
includes techniques for handling the uncertainty of model estimates, based 
on methods from Operations Research, Finance, and Risk Management. 
Chapter 9 discusses selected advanced topics in uplift analytics, includ-
ing some of the latest uplift modeling techniques, developing models on 
observational data (without randomized experiments) by combining causal 
inference with uplift modeling, and integrating direct response data with 
experimental data for uplift modeling. 

Chapter 10 takes us back to causal business analytics, where data are 
in the form of time series, with methodologies from Marketing Science, 
Econometrics, and Time Series Analysis. Chapter 10 discusses various 
advanced topics for analyzing time series and related data. Chapter 11 intro-
duces Structural Equation Modeling (SEM), originally from Psychology and 
Psychometrics, which can be employed to handle business problems. We 
conclude the book with a discussion and summary in Chapter 12. Practical 
business problems and data are used for illustration throughout the book. 

Notes 

1. Economists typically measure sensitivity using the own-price elasticity of 
˜lnS demand, which is defned as ˜lnP  and has the virtue of being unit-free. 

2. Using the previous ftted sales function from Figure 1.5a, where confounders 
are included, the price would be $6.09 and the daily proft would be f (6.09) = 
(391.5 – 33*6.09) * (6.09 – 2) = $779.27, resulting in a reduction of $23.38 in daily 
proft. 

3. For simplicity, we assume that the control group receives no treatment, that 
is, remains uncontacted. In practice, the control group may receive an older 
treatment (e.g., a legacy intervention method) in marketing or a “placebo” in 
clinical trials. 
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2 
Review of Common Data Mining Techniques 

2.1 Introduction 

One might think that data mining or data reduction techniques should have 
no place in a book that emphasizes causality. After all, data mining mainly 
seems to ask large amounts of data to simply come up with patterns – rec-
ognizing faces, seeking anomalies in business accounts, or identifying an 
individual’s spending patterns. 

Sometimes this is indeed enough, especially in applications of unsuper-
vised learning. Recognizing common elements in photos so they may be 
compiled into albums is useful but does not need to address cause and effect. 

However, in many cases, we want to harness the tools of data mining in 
the interest of identifying or not rejecting potential causal pathways. We 
supervise learning for this purpose. For instance, we may want to know why 
some people switch vendors for phone service. The interesting question here 
is what the company could do to keep its customers from moving, thereby 
reducing “churn.” It is not enough simply to fnd the correlates of churn; 
we need to identify which variables (under our control) can reasonably be 
thought to affect churn and measure the direction, strength, and form of 
these infuences. 

In this chapter, we examine several of the main techniques that help us 
better address causality. They do not show or prove causality – that may not 
be truly possible – but they can often test whether our prior assumptions of 
causality are plausible; and where causal effects seem to be working, they 
can often help quantify them. 

We start with the most widely used and familiar technique, linear regres-
sion, because this is where almost all analysis begins; readers familiar with 
the subject may want to skim this section. We then turn to the problem of clas-
sifying observations – for instance, identifying the determinants of whether 
someone will buy a car. Often this is done with logistic regression, but sev-
eral other techniques have become popular, including classifcation and 
regression trees (CART), random forests, gradient-boosted trees, neural nets, 
and support vector machines (SVMs). These techniques may also be used to 
create lift tables, which are discussed in greater detail in Chapters 6–9. 
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None of these techniques can prove causality; instead, they refect back to 
us the causal assumptions we make, whether implicitly or explicitly. Almost 
all causal analysis requires us to begin with some serious thought, often for-
malized in the form of analytical modeling, and later chapters address this 
more fully. Nonetheless, it is sometimes possible to rule out causal effects, 
and this can be useful. 

To illustrate the techniques and ideas in this chapter, we draw heavily on 
models of employee earnings and employee attrition. In the regression con-
text, we will examine what variables plausibly “explain” earnings. And then 
we will look at classifcation techniques, where the key question is: What could 
the company do to reduce employee attrition, to keep employees on board? 

In both cases, we need to have a model in mind. For example, we may believe 
that employees who are better paid, get stock options, or do more overtime are 
more willing to stay. The data also allow us to look at the proximate drivers of 
earnings at the frm, which will prove to be useful in our discussions below. 

Where do these ideas – theories or models – come from? They arise from 
our own personal experience with employment, from talking to experts, and 
from reviewing the academic literature. But we rarely, if ever, start with a 
blank canvas, which is fortunate because the model helps us organize the 
data and guides our choice of techniques. 

The data for the employee earnings and attrition example simulate the 
results of a survey of 1,470 individuals at a U.S. company. The dataset was 
created for training purposes by data scientists at IBM, and we have modi-
fed it somewhat.1 While the results look plausible, they should not be used 
to infer anything new about the “real” world. Table 2.1 summarizes the infor-
mation. These are the data we have to work with, and they constrain our 
ability to answer all the questions of interest, but this is realistic, as we almost 
never have information on everything that we would like. From Table 2.1, we 
see that the employees are, on average, 37 years old, earn $6,503 per month, 
and have worked for 11 years. 

2.2 Linear Regression 

An important question for any Human Resources Department is whether 
there is gender discrimination in the workplace. 

A natural place to start is to ask whether men earn more than women, 
after controlling for other relevant factors. In our dataset, the mean monthly 
income for men was $6,687, and it was $6,381 for women. Starting with the 
null hypothesis that both men and women are paid the same, a t-test shows 
that there is a fairly low probability (11%) of obtaining these results – the 
p-value is 0.11 – if the null hypothesis is true. There is thus a strong sugges-
tion that there really is a difference between the incomes of men and women. 
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TABLE 2.1 

Summary Statistics for Employee Data 

Variable Total or % 

Monthly income (USD) 6,503 
Age 36.9 
Gender (% female) 60.0 
Total years worked 11.3 
Years worked at current company 7.0 

Educational level (%) 
No college 11.6 
Some college 19.2 
Bachelor’s degree 38.9 
Master’s degree 27.1 
Doctorate 3.3 

Job classifcation (%) 
Level 1 (low) 36.9 
Level 2 36.3 
Level 3 14.8 
Level 4 7.2 
Level 5 (high) 4.7 

Educational background 
Human resources 1.8 
Life sciences 41.2 
Marketing 10.8 
Medical 31.6 
Technical degree 5.6 
Other 9.0 

Note: Based on modifed data from the Kaggle attrition 
dataset, used here for illustrative purposes. 

The issue is, what? For instance, older and more-experienced employees 
typically earn more, and if they are disproportionately male, then men will 
(on average) be earning more than women, but not necessarily because of gen-
der. Again, if male employees are overrepresented in roles such as research 
scientist that require high educational skills, we risk confounding high pay 
(for being a research scientist) with high pay (for being male). 

Regression, including linear regression, can help us disentangle these 
effects. Let Yi be a measure of the variable of interest for individual i (the left-
hand-side variable, or “target” or “dependent” or “outcome” variable), and 
X1i , …, Xki be a set of “explanatory” variables (also known as control vari-
ables, independent variables, or regressors). Then we may hypothesize that: 

Y ˜ ˜ X + + ˜ X + ° i = 0 + 1 1i k ki  i (2.1) 

This says that Yi results from a linear combination of Xi variables. The 
weights are the coeffcients (˜0 … ˜k ), and these may be estimated (giving 
˜̂0 … ˜̂ 

k ) if we have the appropriate dataset. The ˜ i represents an error term 
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since we do not expect the linear relation in Eqn. 2.1 to be exact. Every statisti-
cal package allows one to estimate equations like this easily and effciently. 

To illustrate, suppose Yi represents monthly income, X1 is a binary 
(“dummy”) variable that represents gender, set to 1 for females and 0 for 
males; and the other X  variables control for age, education, and experience. 
Based on our dataset (discussed above), the estimated values of the coeff-
cients of these, and some other variables, are shown in column (1) of Table 2.2. 
For gender, the value is 16.1, which might be taken to indicate that women 
earn $16 per month more than men, holding other things constant. However, 
this estimate is not statistically signifcantly different from zero; we know 
this from the p-value, given in column (2), which shows a very high probabil-
ity (0.81) that the estimated coeffcient is consistent with the null hypothesis 
of no effect (i.e., of a coeffcient of zero). Based on this model, we do not fnd 
evidence of a gender effect on wages. 

In this case, the direction of potential causality is clear, since gender maps 
to income and not income to gender, although even here, if high incomes dis-
proportionately attract high-performing women, the observed relationship 
could go in the other direction. 

The measurement of any effect is contingent on the rest of the model being 
appropriate: For instance, have we included all the relevant controls, are they 
measured correctly, is the linear form appropriate, and is the sample unbiased? 
The adjusted R2 here is 0.926, so this model is “explaining” most of the variation 
in monthly incomes. Indeed, there may be too many variables in this model: 
As working people age, they also get more experience, so it is almost certainly 
inappropriate to include variables for both age and experience as regressors. 

In his classic model, Jacob Mincer (1974) argues that the appropriate form 
of an earnings function would use the log of monthly earnings as the depen-
dent variable, with measures of education and experience on the right-hand 
side. It should also allow for some curvature related to experience. The idea 
is that as workers gain experience, their earnings frst rise quickly and then 
more slowly, perhaps even peaking and declining before they retire. One 
way to model this is to include both years of experience and the square of 
experience as right-hand variables. 

Estimates of a Mincerian model of wages are shown in column (2) of 
Table 2.2. The gender variable now appears to be negative but again is not 
statistically signifcant. Holding other variables constant, experience is asso-
ciated with higher earnings for the frst 12.5 years, after which the effect of 
further experience fattens and declines.2 

A popular, if more mechanical, approach to developing an estimating 
model is to use stepwise regression, either forward (where one adds vari-
ables one by one if they meet certain thresholds of statistical signifcance) 
or backward (where one removes variables one by one if they do not meet 
certain thresholds). We apply a backward stepwise procedure to the Micerian 
model, removing variables if they are not statistically signifcant at the 20% 
level or better, and show the results in column (3) of Table 2.2. It is a more par-
simonious model than the one in the middle columns and fts equally well. 
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TABLE 2.2 

Regression Estimates for Income Model 

(1) (2) (3) 
Linear Model Mincer Model Mincer, Stepwise 

Monthly Ln (Monthly Ln (Monthly 
Dependent Variable Income Income) Income) 

Variable Coeff. p-value Coeff p-value Coeff p-value 

Gender (F = 1, M = 0) 16.1 0.814 −0.001 0.992 −0.0004 0.972 
Age 43.1 0.172 
Age squared −612.0 0.124 

Total years worked 81.4 <0.001 0.025 <0.001 0.024 <0.001 
Years worked, squared −1.7 0.003 −0.001 <0.001 −0.0006 0.000 
Years worked at −12.9 0.076 −0.0002 0.862 
current co. 

Educational level 
No college (ref.) 
Some college −267.2 0.036 −0.035 0.133 −0.040 0.018 
Bachelor’s degree −228.2 0.046 −0.029 0.172 −0.033 0.015 
Master’s degree -46.3 0.706 −0.008 0.730 
Doctorate −187.8 0.380 −0.002 0.968 

Job classifcation 
Level 1 (low) (ref.) 
Level 2 2500.7 0.000 0.616 0.000 0.619 <0.001 
Level 3 6732.2 0.000 1.186 0.000 1.188 <0.001 
Level 4 12387.6 0.000 1.656 0.000 1.657 <0.001 
Level 5 (high) 16066.6 0.000 1.877 0.000 1.879 <0.001 

Educational 
background 

Human resources 
(ref.) 

Life sciences −128.0 0.613 0.0004 0.993 
Marketing −119.1 0.658 0.020 0.682 
Medical −76.3 0.764 0.007 0.876 
Technical degree −132.2 0.627 −0.004 0.943 
Other −182.4 0.523 0.002 0.976 

Intercept 1990.5 0.001 7.797 0.000 7.806 <0.001 

Adjusted R-squared 0.926 0.873 0.874 

Note: Based on modifed data from the Kaggle attrition dataset, used here for illustrative 
purposes. 
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Increasingly, the preferred method of mechanical variable selection, also 
referred to as feature selection, is to use a Lasso (least absolute shrinkage and 
selection operator), which is a method for regularizing the regression coef-
fcients and dropping unhelpful variables, thereby making the model easier 
to interpret as well as more accurate at prediction (Tibshirani 1996). There 
are several generalizations of the basic Lasso. A particularly useful one is 
the elastic net, which is applicable in cases where the number of variables 
exceeds the number of observations so that the number of variables has to be 
seriously trimmed (Zou and Hastie 2005). 

While it is often the case that most of the control variables are continuous 
(such as age), this need not be the case. For instance, in our example, jobs 
are classifed into fve levels, from lowest-skilled (1) to highest-skilled (5). 
To include such information in the regression, frst pick one job level as 
the reference point, and then include separate dummy variables for each 
of the other categories. The model whose results are shown in Column (1) of 
Table 2.2 shows that those whose jobs are classifed at level 5 can expect to 
make $16,067 more per month than someone at job level 1, or about 6.5 times 
as much, according to the log-linear models.3 

2.2.1 Judging the Model 

Regression is the traditional workhorse of modeling. But how do we know 
whether the model that we have estimated is reasonable? This is as much an 
art as a science, but there are a number of things to check. We frst need to ask 
whether the underlying logic is solid, a topic to which we turn in Chapter 3. 

Some argue that if a model forecasts well, then it is a good model (Friedman 
1953). This is unsatisfactory at both a philosophical and a pragmatic level. 
To see why, consider the following model: Proposition 1 is that all dogs are 
cats. Proposition 2 is that all cats bark. And so we conclude logically that all 
dogs bark. While the prediction is quite good (except for our husky, who only 
howled), the theory is decidedly odd. Note too that we cannot infer anything 
about the veracity of the assumptions based merely on the outcome. 

Pragmatically, a model built on sand will, in due course, fail to perform. It 
will lack external validity, which means that it will be diffcult to apply it to sit-
uations that are similar, but not identical, to the ones for which it was designed. 

If a model is a priori reasonable, we typically look at the goodness of ft, 
measured by the coeffcient of determination, R2, which measures the pro-
portion of the variation (around the mean) of the dependent variable that is 
“explained” by the regression. The value of R2 varies from 0 (no relationship) 
to 1 (perfect ft), but there is no absolute standard for what constitutes a good 
ft. When more variables are added to the right-hand side of a regression 
model, R2 will necessarily rise, but this may be at the expense of greater com-
plexity, even confusion. One fx is to report the adjusted R2, which takes into 
account the number of variables in the model and will only rise if a newly 
added variable is at least moderately statistically signifcant (with a p-value 
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of about 0.34 or lower); or to use an information criterion such as the Bayesian 
Information Criterion (BIC) or Akaike Information Criterion (AIC). An over-
exuberant search for a good ft – hunting for R, or chasing R – can lead to 
models that may have shaky foundations and poor external validity. 

Given our prior beliefs, we then need to see whether the estimated coef-
fcients are of the “right sign” and statistically signifcant. The estimated 
coeffcients (˜̂s) are random variables: If we had randomly taken a different 
sample of data, we would have come up with slightly different values for the 
˜̂s. So the ˜̂s have a distribution, which will be normal (i.e., Gaussian) if the 
sample size is suffciently large, and has a standard error (i.e., an estimated 
standard deviation). It also raises the possibility that we have an estimate 
of ˜̂ that is only nonzero by chance. If the associated p-value is small, then 
there is a strong indication that the coeffcient is indeed not zero – or put 
another way, legitimately belongs in the equation or model. Many analysts 
use a p-value cutoff of 0.1 or 0.05 when assessing statistical signifcance, but 
these thresholds are, of course, somewhat arbitrary. 

Even if an estimated coeffcient appears to be statistically signifcant, it 
may have the “wrong” sign. For instance, we would be surprised if employ-
ees with more education regularly had lower incomes than those with less 
education. Sometimes these surprises stand up to scrutiny, and there is a 
plausible explanation, but often they are a symptom of a problem with the 
model, or perhaps the data. 

2.2.2 Regression Diagnostics 

When regression is used for inference – to test hypotheses – then there are 
a number of diagnostic checks that are called for. There is a huge literature 
on the subject, so we only review the issues briefy as a form of refresher; a 
more complete treatment may be found in any econometrics textbook (e.g., 
Wooldridge 2020, Cameron and Trivedi 2022) or in some more specialized 
monographs (Haughton and Haughton 2011). 

2.2.2.1 Multicollinearity 

When two (or more) right-hand-side variables are correlated, we have mul-
ticollinearity. If, for instance, X1 and X2 more together too closely, then it is 
diffcult to separate the effects of X1 and X2 on the outcome (Y) variable, and 
the coeffcient estimates will be imprecise. For instance, in the Mincer model 
estimated above, educational levels and job classifcations are likely closely 
related, making it hard to disentangle the effects of one from the other. The 
problem becomes more serious when there are scores of independent vari-
ables to choose from, as it may not be clear which variables to pick. 

One solution is to use more data, in the hope of seeing more movement 
in X1 that is independent of X2, but this is rarely realistic. A simple matrix 
of correlation coeffcients of the Xi variables allows one to see whether 
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multicollinearity risks being a problem. If it does not affect the variables on 
which we are focusing, or if we are simply interested in making predictions, 
then the multicollinearity need not be fatal. If it does, one may choose the X 
variable that is more correlated with the outcome variable to enter into the 
model and leave out the other one. 

2.2.2.2 Heteroskedasticity 

If a graph of the regression residuals – that is, yi − ŷi – against the dependent 
variable (yi) shows a nonrandom pattern, then we have heteroskedasticity. 
The Breusch-Pagan test is a popular measure for detecting heteroskedastic-
ity (Wooldridge 2020), which is common, indeed almost standard, in cross-
sectional data. While the presence of heteroskedasticity does not alter the 
coeffcient estimates, it gives inaccurate standard errors and tests of statisti-
cal signifcance. 

A common solution with economic and fnancial data such as income or 
spending, where the underlying distribution tends to be highly skewed to the 
right, is to use the log of these variables in the model, as done in the Mincer 
model of earnings reported in Table 2.2. Another solution is to use a robust 
estimator such as White’s estimator, which is easily done in most statistical 
packages. 

2.2.2.3 Outliers 

It is not unusual to see a small number of exceptionally high or low values of 
the Y or X variables. These are outliers and are often identifed using box and 
whisker plots. A single outlier can have a strong infuence on the estimated 
regression coeffcients, especially in a small dataset. This may be measured 
by the “difference in fts” (dfts), which is the difference between the pre-
dicted values of yi based on regressions with or without the i-th observation. 
Some observations also have high leverage, meaning they are particularly 
important drivers of the coeffcient estimates. 

In some cases, researchers simply drop the outlier observations, or obser-
vations at the tails, such as the top or bottom 5%, giving a trimmed (or trun-
cated) estimate. Others replace the identifed outliers with the mean value 
of the variable or censor (Winsorize) the data by bringing (say) the bottom 
and top values to the 5th and 95th percentiles. Trimmed and Winsorized 
estimates are more robust to outliers, but in the process, there is a loss of 
potentially valuable information. Some stock indexes censor extreme values 
of individual component stocks. 

2.2.2.4 Measurement Error 

In some contexts, such as survey data, outliers are often viewed as a form of 
measurement error. But nothing is measured with perfect accuracy, so some 
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degree of measurement error is inevitable. When the outcome (Y) variable is 
measured inaccurately, with a random additive error, this reduces the ft of 
the regression but does not bias the estimates of the coeffcients. When the X 
variables are measured with error, they become noisy and less informative, 
which biases the estimated coeffcients toward zero. There is no easy way to 
address measurement errors, but careful data cleaning and collection do help. 

2.2.2.5 Omitted Variable Bias 

Even the best-formulated model will have omissions; variables that one 
would ideally like to include but are either unobservable (such as a person’s 
inherent “ability”) or unobserved (such as a person’s weight if data on weight 
were not collected). The problem arises when an omitted variable such as 
ability is correlated with an included variable such as years of education, in 
an earnings equation, for example. The effect of education on earnings will 
then be overstated because it is, in effect, channeling the effects of both abil-
ity and education. 

When panel data are available, for instance, showing the education and 
earnings of a cohort of individuals over time, it may be possible to control for 
time-invariant unobservables such as ability. Some researchers use stepwise 
methods to add or subtract variables from a regression model, but this does 
not address the problem of unobservables, and it is an imperfect substitute 
for working through the elements of the right model. 

2.2.2.6 Simultaneity 

In estimating a regression model, we implicitly suppose that changes in the X 
variable cause changes in Y. For instance, consider a classical demand curve 
in economics, where 

Q = f P, P , income tastes ( other ,  ) 

Here, Q is the quantity bought, P is the price of the good, and Pother is a 
vector of prices of other goods. To estimate a demand curve, it would be 
tempting to estimate 

Q = +a b P + error 

perhaps with other right-hand variables as well. But the problem is that while 
a higher price is expected to reduce the quantity bought (Q), causality may 
run in the other direction, where a high demand (Q) – such as everyone want-
ing to take Uber on a rainy evening – may lead to a higher price. 

We have a lot more to say about handling causality in subsequent chapters, 
but it is worth noting that the problem is widespread. In some cases, we can 
tease out the causal effects and analytically or statistically address the issue 
of simultaneity. We begin the task in Chapter 3. 
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2.3 Classification: Logistic Regression 

When a company sends out offers for a new credit card, or a new phone 
provider, or asks for money for a worthy cause, people respond either posi-
tively (yes, 1) or negatively (no, 0). We would like to be able to predict, and 
even explain, why some people take up the offer and others do not, based on 
information that we already have, such as age, location, credit score, gender, 
and so on. 

If we have a causal model in mind – developed perhaps with the help of the 
graphical methods we discuss in Chapter 3 – then we may be able to estimate 
the effects of the input variables on the outcome of interest. At issue is how 
best to do this. 

Consider an example where we have a phone provider that is hoping to 
recruit clients in a developing country. We have information on a sample of 
514 individuals who were offered a new service, 19.5% of whom accepted the 
offer. We also have a set of input variables that we believe infuence the out-
come. Summary statistics for this (partly hypothetical) example are shown 
in Table 2.3. 

Each point in Figure 2.1 represents a person who either accepted the offer 
of a new service provider (shown as 1 on the vertical axis) or did not (0 on the 
vertical axis), graphed against household income. Note how the observations 
cluster at the top and bottom of the graph. 

To measure the effects of household income on the outcome, we could sim-
ply estimate a linear regression. The simple case generates the straight line 
shown in Figure 2.1, and the coeffcient estimates for a more complete linear 
model are reported in column (1) of Table 2.4. 

TABLE 2.3 

Summary Statistics for Example of Uptake of New Phone 
Service 

Variable Mean 

Outcome Accepts a new phone provider 19.5 

Inputs Region: North 31.3 
Region: South 10.7 
Region: East 28.2 
Region: West 29.8 
Gender of household head (% male) 87.2 
Age (years) 47.2 
Education (years) 2.3 
Family size 6.0 
Household income 52.4 

Note: Sample size: 514 individuals. Data adapted by authors for 
illustrative purposes. 



 
 

 
  

 
 
 

 

 
 
 
 

  
 

30 Cause and Effect Business Analytics and Data Science 

FIGURE 2.1 
Income versus household decision to enroll in phone service. 

TABLE 2.4 

Comparing Linear with Logistic Regression 

Coeffcients: Coeffcients: Marginal Effects: 
Linear Logistic Logistic 

Regression Regression Regression 

(1) (2) (3) 

Dependent variable: household 
chooses new phone provider 

Region (North is reference) 
South 0.070 0.449 0.072 
East −0.042 −0.311 −0.042 
West −0.117 −1.097 −0.123 

Gender (female is reference) 
Male −0.060 −0.456 −0.060 

Continuous variables 
Age of head (years) 0.001 0.010 0.001 
Education of head (years) 0.030 0.189 0.023 
Size of household −0.013 −0.091 −0.011 
Household income 0.0021 0.0128 0.0016 

Intercept 0.135 −2.021 

R-squared 0.193 0.194 

Note: Adjusted R-squared in column (1) and pseudo R-squared in column (2). Data adapted 
by authors for illustrative purposes. 
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A problem with this approach is that the linear regression line clearly does 
not ft the data well. It also could predict a probability of accepting the offer 
of more than 1, which makes no sense! Note that the marginal effect of addi-
tional income, in this simple case, is 0.0021, meaning that if income rises by 
one unit, the probability of accepting the offer of a new phone service will 
rise by 0.0021 (or 0.21 percentage points). 

A more satisfactory approach would be to estimate a logistic regression. 
The idea is to transform the estimating equation so the outcome variable 
is confned to the interval (0,1). The estimating equation for linear regres-
sion is 

Y = ˜ °+ or E Y  = ˜X ( )  X , 

where Y  is the binary outcome variable, X  represents a series of “explana-
tory” variables, ˜ is a vector of coeffcients, and ˜  is the error term. By way 
of contrast, the estimating equation for logistic regression, which models the 
probability that the outcome variable takes on the value (which is the same as 
the expected value of the binary outcome Y), looks like this: 

( = 1) = eX˙ 

or E Y( ) = 1
.P Y  X˙ − X˙1+ e 1+ e 

If X˜ is large, Y ˜ 1, but if X˜ is small, Y ˜ 0. Mechanically, it is easy to 
estimate. In Stata, for instance, the regression command is 

reg Y X 

while the logistic regression command is 

logit Y  X 

The line produced by the logistic regression in our example, where Y  is 
“change phone provider” and X  is household income, is given by the dashed 
line in Figure 2.1. 

The estimates of the raw coeffcients for the logistic regression are shown 
in the middle column of Table 2.4. These estimates are not of much interest in 
themselves. Usually, we are more interested in the marginal effects, or what 
happens to E Y( ) when we change X  (i.e., E Y /˛˛ ( )  X). In linear regression, 
this is just the slope, given by the coeffcient, but with the logistic curve, the 
slopes vary – frst low (fat), then higher, and then lower again, as we move 
from left to right in Figure 2.1. 

One solution is to calculate the marginal effects at the average values, using 
the margins command in Stata (or R), as done in the right-hand column in 
Table 2.4. If we need more detail, we could request the margins at multiple 
points – for instance, at household income levels of 30 (margin = 0.0014), 
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150 (margin = 0.0026), and 300 (margin = 0.0020), and compare these with 
the ordinary least squares regression margin of 0.0021. In our example, the 
marginal effects from the logistic regression are close to those generated by 
the linear regression, but this is not always the case. 

Logistic regression is one of the workhorses of analytics, but it has limita-
tions. It does not easily handle interactions – for example, when the infuence 
of education also depends on the age of the individual – and non-linearities, 
and is constrained by its parametric form. For greater fexibility, we may 
want to use some form of classifcation or regression tree, which is the topic 
to which we now turn. 

2.4 Classification: Trees 

An alternative way to approach the question of how “independent” variables 
infuence an outcome is to build a tree, either singly or with the help of ran-
dom forests or gradient boosting. 

To see how trees work, we start with a simple example, using the data 
shown in Table 2.5. Each column shows information about an individual. Of 
the 20 people in this sample, 12 left the frm; 12 had been working overtime; 
and 11 had been receiving stock options. We would like to know whether 
overtime work and stock options infuence the decision to leave the frm. A 
simple linear regression gives: 

Leave = 0.55 + 0.40overtime − 0.36stock option R2 = 0.27 

If the equation worked perfectly, it would correctly predict who would 
leave and who would not, but in this case, 6 of the 20 cases are not predicted 
correctly using a cutoff of 0.6. A logistic model, which may be more appropri-
ate in this case, also misclassifes 6 of the 20 cases. 

TABLE 2.5 

Hypothetical Data for a Simple Employee Attrition Model 

Individual 1 2 3 4 5 6 7 8 9 10 
Leave frm (Y = 1) 0 0 0 0 0 0 0 0 1 1 

Overtime (Y = 1) 0 0 0 0 0 1 1 1 0 0 

Stock option (Y = 1) 1 0 1 0 1 1 1 1 0 1 

Individual 11 12 13 14 15 16 17 18 19 20 
Leave frm (Y = 1) 1 1 1 1 1 1 1 1 1 1 

Overtime (Y = 1) 0 1 1 1 1 1 1 1 1 1 

Stock option (Y = 1) 0 0 0 0 0 0 1 1 1 1 
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2.4.1 Classification and Regression Trees 

We might be able to do better by building a classifcation tree. We start with 
an initial node – the tree trunk – and then proceed to classify the observa-
tions into separate branches (or bins). The idea is to try to create bins for 
identifable subsets of the data that have similar outcomes: If all the observa-
tions in a bin have the same outcome – for instance, they are all leavers – then 
that bin is “pure,” while a bin that consists of equal numbers of leavers and 
stayers would be completely “impure” and tell us nothing about what drives 
the decision to leave.4 

We may illustrate the idea with our simple dataset. Eight of the 20 employ-
ees left, so the Gini impurity measure is 0.48. But now let us split the sample 
into those who do overtime and those who do not. Of the 12 who do overtime, 
9 quit, and the impurity measure is 0.38. At the other side of the split, only 
3 of the 8 who did not do overtime left the frm, for an impurity measure of 
0.47. The average impurity value for the new model is 0.413 (instead of 0.48), 
and so the classifcation has helped us see a pattern in the data: It appears 
that doing overtime is associated with a greater propensity to quit one’s job. 
If we predict that those who do overtime will quit and those who do not do 
overtime will stay, then our predictions will be correct 70% of the time, as 
with the regression model. This basic tree is shown in Figure 2.2. 

One could also split the sample based on whether employees have stock 
options or not. Here too, the split reduces impurity, and having stock options 
is associated with a lower probability of quitting. 

If there are enough independent variables, the splitting process of binary 
recursive partitioning can continue almost indefnitely, generating a tree 
with a lot of branches and low impurity. Such a tree would almost certainly 
overft the data and predict poorly when applied to a different dataset. The 
standard solution is to estimate the tree based on a training sample, say two-
thirds of the data, and then to use the test (or “holdout”) sample to prune the 

FIGURE 2.2 
Classifcation model for basic example. 
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tree in such a way as to generate the lowest Gini (or mean square error, in the 
continuous case) when the model is applied to the testing sample. 

CART trees are particularly helpful as pre-processors: They can help show 
which variables are most relevant because they use a stepwise process to add 
and then prune nodes. They also show the extent to which interactions and 
non-linearities are important, and they can handle missing values so that less 
information is lost than in regression models. On the other hand, trees can be 
diffcult to interpret, can easily sprawl, and are sensitive to the assumptions 
made about how to handle pruning and the choice of training and validation 
samples. 

To illustrate a more complex tree, we return to the example on employee 
attrition that was introduced early in this chapter. The trees generated by 
SAS and Minitab’s Salford Predictive Modeler (2023) give essentially the 
same results; the SAS version is shown in Figure 2.3. The sample is frst 
split according to whether an employee does overtime; very few (10.4%) of 
those who did not do overtime left the company. Among those who did 
overtime, the likelihood of quitting was far higher for those who had a 
monthly income below $2,475 (69.6%) compared to those who made more 
than that (22.8%). This latter group splits further by job role – sales executive 
versus research scientist – and the sales executives are then divided into 
those who have relatively few stock options (59.7% quit) and those who have 
more (20.0% quit). 

This is a typical tree. It is good at pointing to non-linear and interactive 
effects, but it only uses four variables to make the splits shown in Figure 2.3; 
if there were many more variables of interest, the tree would quickly become 
unmanageably large. 

2.4.2 Random Forests 

While a single decision tree – whether for classifcation or regression – is 
straightforward to understand, it may not be very accurate. The building 
of a tree might get stuck on a single path or fail to recognize the full com-
plexity of interactions and non-linearities. It turns out that greater accuracy 
may be achieved by growing a random forest. The idea is to build lots of 
trees independently and then to aggregate the results in a sort of “collective 
intelligence.” 

Start with the dataset, with information on the outcome variable of inter-
est, and a set of independent variables. Then draw a random sample (with 
replacement) of observations from the dataset, and also randomly choose 
a subset of the independent variables. Build a tree, using the non-chosen 
observations for validation. Repeat many times. Then use the information 
on this forest of decision trees for prediction: Use the new information on 
the independent variables to predict the outcome (e.g., leave the frm or stay) 
for each tree. If a majority of trees predict that you will leave, then this is the 
result; otherwise, the forest predicts that you will stay. 
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FIGURE 2.3 
Descriptive statistics and predictive models of employee attrition. 

Random forests are straightforward to run, and the main decisions to 
make, other than the choice of variables, are how many iterations to run – 
usually in the hundreds – how many variables to use when building each 
tree, and how many nodes to allow. A drawback of the random forest method 
is that it is diffcult to interpret – the calculations occur in what seems to be 
a black box – but the results tend to ft well and to be robust (see for instance 
Verme 2023). 
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2.4.3 Gradient Boosted Trees 

A single decision tree that relates an outcome (such as whether someone 
quits their job) to independent variables creates a step function, which inevi-
tably will not ft the data perfectly. The idea behind gradient boosting is that 
after ftting a frst tree, it then fts another tree to the residuals of the frst 
tree, and so on until there is little further improvement in the ft of the over-
all model, in effect boosting the eventual ft. The technique owes a lot to 
Friedman (1999), and Salford Systems (now Minitab 2023) has implemented a 
version of the technique that it calls TreeNet. 

In order to avoid the risk of overftting, the number of trees involved in the 
approximation is controlled by cross-validation or evaluation of the approxi-
mation on a test sample. 

There is some evidence that in some circumstances, gradient boosting out-
performs random forests in predicting outcomes. As with random forests, 
gradient-boosted tree models are, like many machine learning techniques, 
diffcult to interpret and hence to explain or evaluate. 

2.4.4 Neural Nets 

Regression analysis is very powerful, but it can be constraining. Consider the 
following (overly) simple model of the determinants of monthly earnings: 

Lmthearn = b + b1 hrs overtime + b yrs experience 0 2 

b years3  in current role b4 gender F 1= ).+ + ( 

When we estimate this equation, we are assuming that the relationships 
are linear, and the right-hand variables do not interact to infuence earn-
ings. This parameterization is not always adequate, but often we do not 
have a clearer idea of what the appropriate functional relationship should 
look like. 

One solution is to model the relationship as a neural net. A basic neural net 
has: 

a. An input layer, with information on the (assumed) causal variables – 
here, the hours of overtime, and so on; 

b. One or more hidden layers, each with a series of nodes, as explained 
below; and 

c. An output layer, with the variables that we want to “explain.” 

The idea is that information from the input layer feeds into the hidden lay-
ers, causing the nodes there to “fre” – like neurons in the brain responding 
to a signal – and these frings then affect the output variables. Schematically, 
this may be set out as in Figure 2.4, which refects our example and assumes 
one hidden layer with three nodes. 
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FIGURE 2.4 
Schema of neural net model of income. (As for Table 2.1.) 

The estimation of a neural network begins by normalizing the observed 
input and output variables to the closed interval [0,1]. Every relationship in 
the neural net, shown by lines in Figure 2.4, is represented by a weight. So, 
for instance, the value of NA (i.e., the value that is input into Node A) is a 
weighted average of the values of the input nodes. Thus 

N = w0 + w X1 + w XA 2 + w X3 + w XA 4 ,A A 1A 2 3 A 4 

or, in our example, 

NA = −3.84 − 1.45X1 + 1.75X2 − 1.76X3 − 0.21X4 . 

Within the hidden nodes, the incoming “net” is “squashed” using an acti-
vation (or transfer) function that is often a sigmoid function of the form 

1 
z = .− NAA 1 + e 

Other transfer functions are possible; a “rectifer” or ReLU of the form 
f x = max 0, X ) is reputed to work well, for instance. The sigmoid non-
linear processing magnifes changes in the net if they are close to the mean 
but dampens them if they are relative outliers. The zA is typically referred to 
as a neuron or artifcial neuron. 

( )  ( 
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In the fnal step, the output variable – here the log of earnings per month – is 
a weighted function of the zi’s that emerge from the sigmoid transformations 
in the nodes of the hidden layer. 

A linear regression is a special case of a neural net, where there is no hid-
den layer, so the weights linking the input variables with the output variable 
are just the regression coeffcients. When there are multiple hidden layers, we 
refer to it as a deep learning model. 

The challenge in estimating a neural net is to fnd the best possible set 
of weights. Because the system is highly non-linear, there is no closed-form 
solution, and the weights have to be found using a search process. This is 
largely done by using back propagation (Nielsen 2015), which helps the net-
work “learn” under supervision. Begin with an initial, essentially arbitrary, 
set of weights, and use these to predict the output variable (ŷ). Compute the 
sum of squared prediction errors given by SSE = ˝i obs (yi − ŷi )2

, which we 
now want to minimize. Vary the weights one by one to determine the direc-
tion they need to move in order to reduce the SSE and iterate until the SSE is 
close to a minimum. 

It is easy to overft a neural net, so it has become common practice to use 
a cross-validation procedure. One approach is to designate part – a third, 
for instance – of the data as a validation sample and build the model on the 
remaining training sample. At each iteration, apply the revised set of weights 
to the validation sample, and stop the iterations once the SSE of the valida-
tion sample begins to rise. The process can be helped along by the judicious 
choice of a learning rate and by taking momentum into account. Larose and 
Larose (2014, Chapter 12) work through a lucid example of the process. 

It is instructive to compare the results of estimating a neural net (with sig-
moid transfer function, using the brain command in Stata) with those from 
a regression. Figure 2.4 sets out simple neural net model of the determinants 
of monthly earnings, showing the optimal weights. These have limited inter-
est in their own right but can be applied in order to predict the values of 
the dependent variable. We can also measure the effect on the output vari-
able by setting the input variables to zero – one by one – in order to gener-
ate “marginal” effects that, once un-normalized, are analogous to regression 
coeffcients. Table 2.6 shows these marginal effects, the coeffcients from a 
regression, and measures of R2 (for the regression) and its parallel from the 
neural net. 

The neural net fts better, in the sense that it has a higher R2, as is to be 
expected given its greater fexibility of functional form, although the differ-
ence in this case is not very great. The regression coeffcients and marginal 
effects are quite similar, which suggests that the linear regression may be a 
reasonable approximation here. The stronger parametric assumptions of the 
regression model also allow us to test the hypothesis of a gender effect more 
easily – the p-value is 0.66 – so gender, in this case, does not have a statisti-
cally signifcant effect on wages, although the test is, of course, conditional on 
the assumptions we have made about the functional form of the regression. 
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TABLE 2.6 

Comparison of Results of Neural Net and Regression Models of the Determinants 
of the Log of Monthly Earnings 

Neural Net Regression 
Mean “Margins” Coeffcients p-Values 

Did overtime? (Y = 1, N = 0) 0.28 0.011 0.003 0.91 
Years of work experience 11.3 0.073 0.060 0.00 
Years in current role 4.2 0.015 0.015 0.00 
Gender (M = 0, F = 1) 0.4 0.015 0.010 0.66 

R2 0.59 0.55 

Source: As for Table 2.1. 

We have presented the neural net as a statistical estimator since this is how 
it is most likely to be used and interpreted in the business context. Computer 
scientists tend to focus on a neural net as an algorithm, while mathemati-
cians view it as a universal approximator: Hornik et al. (1989) show that it 
can approximate any theoretical function provided suffciently many hidden 
units are available. Two important features of neural nets are worth men-
tioning: They are feedforward, meaning that effects fow from input notes 
to hidden nodes to output nodes without any feedback effects, and they rep-
resent a completely connected network in that there are no (a priori) blank 
relationships. 

For many users, the biggest problem with neural networks is that they are 
black boxes – inputs go in, outputs come out, and the intermediate steps lack 
transparency. This is especially true of deep learning, where there may be 
multiple hidden layers with many nodes. While the lack of relational clar-
ity may be unsatisfying, it may also represent a useful improvement over 
restrictive functional forms. As with regression, neural networks do not 
show causality, and serious thought needs to go into defning the appropriate 
inputs and outputs – an issue we tackle in other chapters. On the other hand, 
neural networks are not as easy as regressions to use to reject relationships 
and so may be less helpful in helping us trim noncausal links. 

2.4.5 Other Models 

These are not the only techniques that have been used to try to classify out-
comes or make predictions. SVMs are widely used in classifying images and 
in the sciences. The idea is to fnd a hyperplane (e.g., a line in two-dimen-
sional space) that separates two groups of points defned by the two values 
of our target variable (such as leave/stay). 

In many cases, the points will not be well linearly separated, and fnding 
a suitable hyperplane without transforming the data will prove near impos-
sible. The graphs below, due to Kim (Everything You Wanted to Know about 
the Kernel Trick, 2013), illustrate the problem and its solution. 
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FIGURE 2.5 
Illustrations of ftting a support vector machine. 

The two groups in the right-hand-side panel can be separated by a circle, 
but not by a line, whereas transforming the data by the transformation 
T (x x1, 2 ) = ˙̂ 1, 2 , 1

2 + x2
2 ˇ̆ allows for a separating plane in the three-dimen-x x x 

sional space, as shown on the left in Figure 2.5. The art of building SVM 
models involves fnding clever transformations, typically into higher-
dimensional spaces, that make the two groups linearly separable, or 
nearly so. 

There is keen interest in stacking, which is a form of model averaging: 
Random forests average over many trees, but the idea may be generalized, 
and results from quite different methods can, in principle, be aggregated, 
yielding predictions that may be more robust (Ahrens et al. 2023). 

2.4.6 Which Model to Use? 

Given two or more binary classifcation models (or diagnostic tests) – for 
instance, linear or logistic regression, neural nets, random forests, or gra-
dient-boosted trees – the issue arises of which model is best, in the sense of 
being most useful for our purposes. Here we discuss some approaches that 
help address the issue. 

The most traditional approach, largely used to choose between competing 
linear regression models, is to compare values of adjusted R2, although the 
danger here is that analysts will simply tweak their models in their hunting 
for R2. It is also fairly common to apply an information criterion such as the 
BIC or AIC, which favors ft (as measured by the log of the likelihood func-
tion), with a penalty for models that have too many variables, or in other 
words, are not parsimonious. 
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This approach works less well with highly non-linear models or with clas-
sifcation models. A popular alternative is to measure and compare the area 
under the receiver operating characteristic (ROC) curve; in business contexts, 
a common alternative may be to construct lift tables. We now discuss both of 
these techniques. 

2.4.7 AUC 

Consider the following issue: We want to predict who is most likely to quit. 
Using data from past experience, we model this binary outcome – quit or not 
– using a logistic regression, a neural net, and random forests. Which model 
should we use? 

The problem is that while the underlying variable to be predicted is binary, 
our models generate a continuous variable that measures the probability that 
someone will quit. It is possible that one model does well at identifying just a 
handful of very likely quitters, while another is better at correctly identifying 
a wider group of potential leavers. 

Table 2.7 shows the number of sample observations in four possible states. 
A model either identifes someone as a quitter (or sick), in which case you 
“test positive,” or as a non-quitter (“test negative”). In reality, in the sample, 
you are identifed as an actual quitter (or sick) or a stayer. 

The number of quitters (or sick people) is A + B. A fraction, A/(A + B), is 
correctly identifed by the model as quitter (or being sick). This is a measure 
of sensitivity, or of the power of the test. Its complement, B/(A + B), is the false 
negative rate; it shows the proportion of quitters (or sick) who are incorrectly 
identifed by the model as stayers (or well) and is the Type II error. 

Similarly, D/(C + D) is a measure of specifcity and gives the proportion 
of non-quitters (or healthy people) who were correctly identifed as staying 
with the frm (or being healthy). Its complement, C/(C + D), gives the propor-
tion of false positives – that is, the proportion of non-quitters (healthy people) 
who were predicted by the model to be quitters (sick people), measuring the 
Type I error. The accuracy of the model is given by (A + D)/(A + B + C + D), or 
the proportion of cases that are classifed correctly. 

TABLE 2.7 

Comparing Actual with Predicted Classifcations 

Test Is 

Positive Negative 
(Quit/Sick) (Stay/Well) 

You actually: 
Quit/Are sick A B 
Stay/Are well C D 
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A perfect test would have a sensitivity of 1 (so no false negatives) and zero 
false positives (i.e., a specifcity of 1). This test, or model, would exactly 
identify who will quit and who will not. In practice, this is never achieved: 
As we tighten the conditions required for identifying positives, the power 
of the test (sensitivity) falls and specifcity rises – the more cautious we are 
about identifying someone as a quitter, the more likely we are to correctly 
identify non-quitters as staying. 

The tradeoff between sensitivity and specifcity is captured by the ROC 
curve, which shows sensitivity on the vertical axis and (1-specifcity) on the 
horizontal axis. A perfect test would put us at point A in Figure 2.6. A com-
pletely noisy test would have us on the diagonal. The curve for an informa-
tive model (or test) will typically be curved, as shown by the dashed curve. 
At a point such as B, we use a rigorous cutoff to determine whether someone 
is a quitter (or sick); at a point like C, the cutoff is less rigorous, and we get 
more false positives but fewer false negatives. 

The solid curve in Figure 2.6 shows the ROC curve for a different model. 
As shown, it is a consistently better model because it is closer to the perfect 
model (point A). The ROCs may intersect, in which case it is harder to choose 
between them. One solution is to measure the area under the ROC, known as 
the “area under the curve” (AUC). For a perfect test, the AUC would be 1; for 
a random test, it would be 0.5, so a higher value of the AUC is typically seen 
as indicating a better model. In this context, the Gini coeffcient is given by 

Gini 2 AUC −= ×  1. 

FIGURE 2.6 
ROC curves for linear and log models. 
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FIGURE 2.7 
ROC curves for four different models. 

In our attrition example, we estimate linear, log, and neural net models, 
construct ROC curves, and compute the AUC for each. The results are shown 
in Figure 2.7, which shows that the neural net has the highest AUC and so is, 
by this measure, the best model. 

The problem with the AUC is that it may not focus on the part of the curve 
that matters to us. For instance, we may want to fnd the model that best iden-
tifes the 10% of customers most likely to respond to an offer, in which case 
we want the model to perform well at the upper end of responses but do not 
care about how well it works elsewhere. Hand (2009) argues that the measure 
is incoherent and should not be used. 

A good way to address this is to compute lift tables. A fuller treatment of 
lift tables is given in Chapters 6–9, but the essential steps are as follows: 

1. Randomly divide the sample data into a training sample – typi-
cally 50–70% of the total – and a test sample with the remaining 
observations. 

2. Estimate the model using the training sample. 
3. Apply the model to the test sample, getting predicted values for the 

outcome variable. Sort these predicted values into bins, typically 
deciles (tenths) or semi-deciles. Then graph the number of actual 
positive outcomes for these deciles. 
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FIGURE 2.8 
Lift table for four classifcation models. 

A good model will be successful at separating the positive responses into 
the top bins. The model can then be used to predict, or at least identify, good 
prospects. Figure 2.8 illustrates the lift tables for our four models. If the goal 
is to identify those who are most likely to quit, the random forest performs 
best, as is often the case. However, neural net and logistic regression models 
do an adequate job in the top decile, but not elsewhere, and the linear model 
performs relatively well if the focus is on the top three deciles. 

In short, there is not necessarily a single model that always works best – in 
part because the defnition of “best” can be ambiguous, and in part because 
it may depend on the specifc models and data in question. 

Notes 

1. https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset/ 
downloads/ibm-hr-analytics-employee-attrition-performance.zip/1 

2. When experience rises by 1 from 12 to 13 years, experience squared rises by 
25, from 144 to 169. The change in the log of earnings is then 0.025 × 1 – 0.001 × 
25 = 0. 

3. In the Mincer model in column (3) of Table 2.2, ln(income) = K + 1.877 jjo5. 
Someone in a level one job would have ln(Y1) = K, while someone in a 
level fve job would have ln(Y5) = K + 1.877. This means that ln(Y5) – ln(Y1) = 
ln(Y5/Y1) = 1.877; therefore, Y5/Y1 = e1.873 = 6.51. The raw numbers bear this out, 
with a mean monthly income for type-one jobs of $2,787 and for type-fve jobs 
of $19,192. 

https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset/downloads/ibm-hr-analytics-employee-attrition-performance.zip/1
https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset/downloads/ibm-hr-analytics-employee-attrition-performance.zip/1
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2 24. Impurity is often measured by the Gini impurity measure, defned as 1 − p+ − p− 
where p+ and p− are the probabilities of achieving the target outcome for the 
right and left child nodes, respectively. In a bin with 8 black balls and 2 white 
balls, this would be 1 – 0.64 – 0.04 = 0.32. The maximum value is 0.5 (with 5 each 
of white and black balls), and the minimum value is 0 (with no black or no white 
balls). 
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3 
Causality 

3.1 Introduction 

Among the most important questions that businesses ask are some very sim-
ple ones: If I decide to do something, will it work? And if so, how large are 
the effects? 

The important idea here is that we want to evaluate the impact of an inter-
vention or treatment. This situation arises all the time. For instance: 

• A business is wondering whether to expand its loyalty program and 
wants to know whether it would enhance profts; 

• A retailer would like to know whether a sales campaign that empha-
sizes the eco-friendly nature of their clothing would boost sales; 
where it should advertise; whether it should open new outlets; or 
what new clothing features might tempt customers; 

• An airline is trying to work out what prices to charge on fights from 
Chicago to Denver in order to maximize revenue; 

• A bank is wondering whether greater investment in technical 
training would be worthwhile, as measured by higher worker 
productivity; 

• A university is debating whether a reduction in tuition will attract 
signifcantly more students; 

• A mobile phone operator in Latin America is considering whether to 
introduce a mobile banking facility; 

• A car manufacturer is trying to determine whether it should intro-
duce a hybrid pickup. 

In every case, we have one or more courses of action (“treatments”), and we 
want to determine whether they lead to useful results. We want to determine 
causality. 

An important distinction needs to be made here between observing and 
intervening. We may observe that customers with loyalty cards are more likely 
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to spend on our product than the average customer. Formally, we may write 
this conditional probability as: 

P S|L > P S( )( ) 
which reads as “the probability of spending (S), given that one has a loyalty 
card (L), is greater than the probability of spending given that one may or 
may not have a loyalty card.” One might be tempted to conclude that loyalty 
cards cause customers to be more likely to spend, but this would be pre-
mature. Here we have only observed more frequent spending among those 
who have loyalty cards, but perhaps they were given loyalty cards because 
they spend more often, which would reverse the direction of causality. What 
really interests us is whether 

P S|do L  P S .( ( )) > ( )  

Here we introduce Judea Pearl’s “do operator” (Pearl 1995), where we inter-
vene to change the number of loyalty cards instead of allowing L to be set 
in the normal way (Hitchcock 2010, Section 3.6). If we increase L (i.e., “do” L), 
and sales rise as a result, we can reasonably claim that distributing more loy-
alty cards does cause people to be more likely to spend on our product. This 
is a probabilistic causation, in the sense that “causes change the probabilities 
of their effects” (Hitchcock 2010, Introduction): Intervening typically does 
not guarantee that there will be an effect, but it raises the likelihood of it. 

It is not straightforward to identify causation with a reasonable degree 
of plausibility, but one can often succeed with the help of the concepts and 
techniques set out in this chapter and the next. We begin by stressing the 
importance of specifying an appropriate counterfactual, which allows us to 
measure treatment effects. Randomized controlled trials (RCTs) (aka experi-
mental design) make this possible in a straightforward way, but this gold 
standard is rarely achievable. Quasi-experimental designs, including regres-
sion adjustment, inverse probability weighting (IPW), and covariate and pro-
pensity-score matching, are widely used and often very effective. 

3.2 The Counterfactual 

Identifying the impact of a treatment is not straightforward because it 
requires that we compare what actually occurred with a hypothetical coun-
terfactual situation, namely what would have occurred in the presence or 
absence of the treatment. This is often referred to as the “potential outcomes” 
approach because it seeks to compare two potential outcomes (with or with-
out treatment). 
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It is easy to go astray. Suppose your sales division introduces an advertis-
ing campaign for electric cars, just in the Northeast of the United States, and 
presents the following information: 

Number of electric cars sold per million population 

Pre-campaign (2024) Post-campaign (2025) 

Northeast US 400 500 

The 25% increase in sales is impressive, but we cannot assume that it was 
due to the advertising campaign unless we can rule out all other potential 
infuences: Perhaps incomes were rising, tastes changing, or tax incentives 
were due to expire at the end of 2025. 

We are now given some additional information about sales in the rest of 
the United States, where there was no advertising campaign: 

Number of electric cars sold per million population 

Pre-campaign (2024) Post-campaign (2025) 

Rest of the US 200 300 

It is now clear that the penetration of electric cars in the Northeast, relative 
to the rest of the country, has fallen from 2.0 (= 400/200) to 1.67. Has the adver-
tising campaign in the Northeast actually been harmful? Again, we cannot 
tell unless we can successfully construct a counterfactual that measures the 
number of cars that would have been sold in the Northeast in the absence of 
the advertising campaign. 

More formally, let the outcome of interest (sales, test scores, customer reten-
tion, etc.) be Yi for individual or household i from a sample of size n. The out-
come may be written as Yi

T under (actual or hypothetical) treatment, and in 
the non-treated (control or comparison) case, we have Yi

C. For an individual 
who has been “treated” – for instance, subject to a marketing intervention, 
sent to training, and so on – we have Ti = 1, otherwise Ti = 0. 

The gain, if any, from treatment is then given by 

Gi = Yi
T − Yi

C (3.1) 

and this is the causal effect we want to measure. The “Fundamental Problem 
of Causal Inference” (Holland 1986) is that for any individual, we either 
observe Yi

T (if they were treated) or Yi
C (if they did not get the treatment), but 

never both. Because of this missing information, we can never measure the 
impact of an intervention on a particular individual. 
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However, our usual interest is in measuring the average impact of a treat-
ment or intervention. A popular measure is the average treatment effect on 
the treated (ATT), given by the expected gain 

ATT T CG = E Y  − Y )|T = 1˙( i i i ˇ . (3.2) ˆ ˘ 

The focus here is on those who receive the treatment, so in this case, we 
measure the gain conditional on Ti = 1 (i.e., among those in the treated group). 

T CHere, we observe E Y T( |  1), but the counterfactual E Y T  1)i = ( |  i =  has to be 
constructed: It measures the outcome that this group would have experi-
enced if they had not in fact been treated. In our earlier example, it would 
measure the sales of electric cars in the Northeast of the United States if there 
had not been an advertising campaign there. In effect, we have a missing data 
problem and need to impute the missing counterfactual, typically with the 
help of an “auxiliary model” (Drukker 2016, p. 10). 

Other measures of impact are possible and often used in practice. The aver-
age treatment effect (ATE) on the untreated or controls (ATC) is given by 

i i 

ATC T CG = E Y  − Y |T = 0˙ ˇ . (3.3) ˆ( i i ) i ˘ 

Here we observe Yi
C but not Yi

T. This would be used, for instance, to mea-
sure the effect of the electric car advertising campaign in the rest of the 
United States (where the campaign did not actually occur) if the campaign 
did happen. The overall ATE is a weighted average of these effects, so 

ATE T C ATT ATCG = E G  = E Y  − Y ) = Pr(T = 1 .  + Pr(T = 0 .( )i ( i i ) G ) G . (3.4) 

It is tempting to measure the impact of our hypothetical advertising cam-
paign by comparing before and after results. Using our notation and taking 
post- (denoted by Ti = 1 in this example) minus pre- (Ti = 0) as the estimator, 
this single difference is given by 

T C= ( | = 1 − E Y( i |T = 0D E Y Ti i ) i ) 
T C C C| = 1 − E Y T| = 1 E Y  T = 1 E Y T  0 (3.5) = ˙E Y  T ˇ ˙ | − | = ˇ( i i ) ( i i )˘ + ˆ ( i i ) ( i i )˘ˆ 

= GATT + B 

where B is a measure of bias. Only if B = 0 will the single difference, D, give a 
viable measure of impact. The bias measures the difference in outcomes that 
we would observe, between those who were treated (Ti = 1) and those who 
were not (Ti = 0), in the absence of any treatment. 

In our example, there is a time dimension: Before the campaign, purchases 
Cwere 400 per million population, given by ( i | = 0 .E Y Ti )  Now suppose that 

the advertising campaign essentially reached those whose spending on 
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electric cars would have risen anyway – young professionals, for instance – 
and that their spending would have risen to 460 cars per million population 

Ceven without the advertising campaign; this means that ( i | i = 460.E Y T  1) = 
GATT In this case, the bias, B, is 60, and the impact of the campaign ( ) is 40 

(= D – B = 100 – 60 = 40). 
This is a common trap. It is easy to compare sales or other variables before 

and after an intervention, or with or without a treatment (such as a bank 
loan), but such comparisons rarely measure the causal impact. The above 
example uses post- and pre-campaign for treated (Ti = 1) and untreated (Ti = 0) 
respectively, but the same problem arises when treated and untreated are 
two groups of individuals that are not similar to each other (e.g., advertising 
for people in the Northeast versus no advertising for people in the Southeast). 

The solution is to get rid of the bias somehow. The key to doing this is to 
ensure that the assignment of the treatment T, perhaps after conditioning on 
variables such as age or gender, is independent of the value of the outcomes. 
Formally, this may be written as 

(Y Y, i ) ˛ | ii
T C T Xi 

which reads as “the values of potential outcomes for the treated and compari-
son groups are independent of who is treated, at least conditional on the vari-
ables (“covariates”) Xi.” This is the crucial assumption of unconfoundedness, 
sometimes referred to as the conditional independence assumption, or the 
assumption of ignorable treatment assignment, or the approach of selection 
on observables. The challenge, then, is that of making the case that uncon-
foundedness applies; otherwise, it is impossible to identify causal effects. 

3.3 Experimental Design 

Perhaps the most satisfactory way to avoid sample bias is to assign treatment 
randomly. With pure randomization, there should be, on average, no differ-
ence in outcomes if there were no treatment (i.e., in Yi

C ), between those who 
receive the treatment and those who do not. In other words, 

C = − E YC|T = 0 = B = 0.E Y T| 1( i i ) ( i i ) 
Now we may use the single difference, D, to measure the impact; the only 

remaining explanation for differences in outcome between the treated and 
non-treated must be the treatment itself. In other words, with randomization, 
the two groups Ti = 1 and Ti = 0 are completely matched on all characteris-
tics, both observed and unobserved, provided the sample is large enough. 
Randomized experiments are often referred to as Randomized Controlled 
Trials (RCTs). 
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As a practical matter, in this case of pure randomization, the impact is 
often measured using a linear regression of the form 

Y a b= + .Ti + ˜ i.i

Here, Ti = 1 if the person is treated, and 0 otherwise, and ̃ i is an error term, 
with (by construction) zero mean. If the sample is large, or the errors may be 
assumed to be normally distributed, we may test whether the estimated coef-
fcient on the treatment term (b̂) is statistically signifcantly different from 
zero. 

This case, where there is random assignment and the treatment is binary, 
is often referred to as A/B testing, especially in commercial applications. 
If we have several treatments to test, we would need to conduct an A/B/n 
testing (where more than two treatments are compared) or undertake multi-
variate testing (see Chapter 7.2.5 for further detail). While we have assumed 
up to now that the outcome Yi is a continuous variable, such as spending, the 
same principles apply if the outcome is binary – for instance, if the result 
is whether an individual signs up for a new credit card or chooses to stay 
with the frm. In this case, the relevant regression would typically be logit 
or probit. Some examples of how A/B testing works in practice are given in 
Box 3.1. 

BOX 3.1 A/B TESTING IN PRACTICE 

Web pages provide an ideal environment for A/B testing because it is 
easy to change a page for a randomly determined fraction of viewers. 
As businesses develop a culture of experimentation, they can succes-
sively refne their offerings. In most cases, the goal is to increase the 
number of viewers who subscribe to an offer. Here are some examples 
where A/B testing was used to identify improvements (culled from 
Optimizely 2020). 

The 2012 Obama presidential campaign offered an opportunity for 
donors to win a dinner with the President. The Obama Digital Team 
found, with experimentation, that adding a photo of the President 
boosted the number of donations, related to this offer, by 7%. 

A few years ago, the BBC ran an experiment on iPlayer – its Internet 
streaming service – in which, at the end of an episode, it automatically 
played the next episode. This increased the number of people watching 
the next episode by 50%. 

Hotwire, which is owned by Expedia, provides car and hotel book-
ings using phones and other apps. The company runs over a hundred 
experiments annually, mainly aimed at improving the “conversion 
rate,” which is the percentage of viewers who actually book through 
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Hotwire. In one example, they redesigned the look of the mobile car-
rental app to include an image and a clearer navigation button, signif-
cantly boosting conversions. 

Brooks Running sells shoes online and has a free-return policy that is 
expensive to operate. It experimented with a pop-up message for shop-
pers with multiple shoes of different sizes in their cart, offering help with 
choosing the right size. This modest change reduced returns by 80%. 

HP is promoting its Instant Ink service, which can notify the com-
pany when toner in a printer is running low, prompting an automatic 
shipment that seeks to ensure that the user will never actually run out. 
The key challenge is getting customers to enroll. After some experi-
mentation, the greatest yield was associated with an offer of a free trial 
and presenting the service as a “printer feature.” 

3.3.1 Stratified Randomization 

Simple random sampling is rare because it is usually ineffcient. For instance, 
if we are trying to measure the impact of a cosmetics campaign geared 
toward women, it might not make sense to sample men. But we may be inter-
ested in whether women in different age groups respond differently to the 
campaign – for instance, those aged 20–30 or 30–40. These constitute strata or 
blocks, and it is still essential that within these strata, individuals be chosen 
at random for the intervention. This is known as stratifed randomization or 
randomized block design. Often, we deliberately over-sample some strata in 
order to have enough observations on people in that block; by using sample 
weights, we can adjust for over- or under-sampling at the analysis stage. 

Formally, we now have conditional exogeneity of program placement. It is still 
possible to estimate the impact of the treatment by estimating a regression 
model if we are willing to assume that the control variables (i.e., the Xi) oper-
ate linearly. Suppose, for the nT who receive treatment, 

T T T TYi = ˜ + Xi ° + vi , i = 1,…, nT (3.6) 

and for the nC who are not treated (i.e., the control group) 

C C C CYi = ˜ + Xi ° + vi , i = 1,…, .nC (3.7) 

The data from these two groups can be pooled to create Yi, which is the 
observed potential outcome, and is given by 

Y = TYT + (1 − T YC . (3.8) i i i i ) i 

where, as usual, Ti = 1 if the individual is treated and 0 otherwise 
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Using the pooled data for the n (= nT + nC) observations, we may estimate a 
“switching” regression of the form 

C T C C T CY = ˜ + (˜ − ˜ ) i + ° + Xi (° − ° )T + ˛ i , i = 1, ,  n, (3.9) i T Xi i … 

T C Cand the error term is given by ˜ = T v  − v + v . The error term picks up i i ( i i ) i 

any “latent” (unobserved or omitted) infuences on the continuous outcome 
variable Yi. If the errors are uncorrelated with who gets treatment (Ti) or the 
other control variables (Xi), Eqn. (3.9) may be estimated simply using ordi-
nary least squares. The treatment effect for observation i is given by 

ATE T C T CPr(T = 1)E Y  − Y |T = 1) + Pr  T = 0)E Y  − Y Ti = 0)Gi = ( i i i ( ( i i | 

T C T C T C T CE Yi − Yi ) = (˜ − ˜ ) + Xi (° − ° ) + E v( i − vi )= ( 
Averaging this over all observations gives the ATE, which is 

ATE T C T CG = (˜ − ˜ ) + X (° − ° ). (3.10) 

If we further assume (heroically) that ˜T = ˜ C, this simplifes to the com-
ATE T Cmon impact model, so G = ˜ − ˜ . 

Stratifed randomization underlies uplift modeling (Chapters 6 to 9), which 
begins by measuring the causal treatment effect, relates this to characteris-
tics of the individual, such as age, gender, or education, and then uses these 
results to identify and target good prospects for a treatment. 

3.3.2 Randomization: The Gold Standard? 

Randomization is often considered to be the gold standard for scientifc exper-
imentation. The Nobel Memorial Prize in Economic Sciences in 2019 went to 
three researchers (Abhijit Banerjee, Esther Dufo, and Michael Kremer) who 
have popularized the application of RCTs to identify the impact of treatments 
in developing countries such as deworming, microcredit, sexuality educa-
tion, and incentives for teachers to turn up for work. In 2020, the vaccines for 
protecting against COVID-19 frst had to be tested using RCTs before they 
were considered safe enough for public use. 

Randomization can be diffcult in practice and is, at times, unethi-
cal. Haughton and Kelly (2014) wanted to assess whether a fipped hybrid 
approach to teaching basic statistics would generate better outcomes, as 
measured by test scores. The most powerful approach would have been to 
randomly assign students to hybrid and non-hybrid classes. But this would 
not have been practical because students have to design their schedules to 
ft with other classes. It would also have been considered unacceptable to 
force students to enroll in sections of classes that they did not want to take. 
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Likewise, a study of the effects of smoking that assigned subjects to smoke or 
not would clearly be unworkable and unethical. 

Even when random assignment is possible, there may be selective uptake 
and nonrandom attrition. Consider the case of a pollster who wants to test 
attitudes among registered voters toward a political candidate for state gover-
nor. The list of voters may not be accurate; some voters may not have (known) 
phone numbers; most individuals do not respond to opinion survey calls 
– 94% of those sampled for the Pew Research Center Surveys, for instance 
(Kennedy and Hartig 2019); and those who do respond may not go to vote. 
These are only problematic because at each stage there are likely to be biases. 
For instance, those without phones may be poor or jealous about guarding 
their privacy; those who respond to a call may be older or lonelier; and those 
who vote may be more educated. The extent of the biases is unknown, so the 
results of the poll, which began as a random sample, may be unusable. In 
fall 2020, for instance, most polls overestimated the number of votes that Joe 
Biden was expected to receive and underestimated the number of votes that 
went to Donald Trump (Keeter 2021). 

RCTs have other problems. They may be expensive; it may be diffcult to 
get a large-enough sample; there may be leakage (e.g., if a TV advertising 
campaign aimed at New York gets seen by many from elsewhere); and often 
there are important questions, such as how a frm should react in times of 
recession, that they cannot address. 

3.4 Quasi-experimental Methods 

When randomized experiments are not feasible, what can be done? To repeat, 
the problem that has to be addressed is that of selection bias. 

For instance, suppose we have developed a new variety of soybeans and 
would like to test market it on a small scale to farmers in several counties in 
the Midwest of the United States. The sales team has identifed some promis-
ing areas for the test, but this is likely to lead to a nonrandom program place-
ment, which will affect our results in hard-to-predict ways (due to unobserved 
area heterogeneity). When the product is introduced, there is likely to be self-
selection into program participation, so more dynamic or better-informed 
individuals are the frst to sign up. This unobserved individual heterogeneity 
makes it diffcult to assess the effects of a stronger push to market soybeans 
because other farmers may not be so quick to come forward. 

Selection bias need not be fatal, and there are a number of approaches 
to at least attenuating its effects, including regression adjustment and 
matching, which are discussed in this chapter, and discontinuity design, 
synthetic samples, and instrumental variables, which are the subjects of 
Chapter 4. 
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3.4.1 Regression Adjustment 

It is sometimes possible to identify the impact of a treatment by estimat-
ing a straightforward common impact regression equation that controls for 
enough assumed other infuences on the outcome. To illustrate this, consider 
the (hypothetical) numbers shown in Table 3.1: A frm wants to know whether 
handing out discount coupons boosts sales and has collected information on 
consumer purchases, whether they were handed a coupon, and gender. A 
simple comparison shows that the average spending of those with coupons 
was $39.5, compared to $42.3 for those without coupons, a difference of $2.8. 
Alternatively, a common-impact regression gives 

purchases = 42.3 − 2.8 (gets a coupon) 
p-value = −0.88 

The coeffcient on the treatment variable is −2.8 (although it is also not sta-
tistically signifcant). The coupon campaign looks like a failure. 

But is it? The problem here is that the coupons do not seem to have been 
handed out randomly: two-thirds of those receiving coupons were men, 
while only half of those who did not receive coupons were men. The path 
diagram in Figure 3.1 shows the causal links: Gender affects both treatments 
(i.e., who gets a coupon) and purchases (as women spend more than men). To 
identify the effect of coupons on spending, one has to “block” the “backdoor” 

TABLE 3.1 

Hypothetical Data on Sales, Gender, and Coupons 

Receives 
Observation Number Coupon? Male? Purchases ($) 

1 Yes No 84 
2 Yes No 72 
3 Yes Yes 0 
4 Yes Yes 10 
5 Yes Yes 45 
6 Yes Yes 26 
7 No No 60 
8 No No 77 
9 No No 67 

10 No Yes 0 
11 No Yes 30 
12 No Yes 20 

Mean 40.9 
Mean, with coupon 39.5 
Mean, without coupon 42.3 
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FIGURE 3.1 
Path diagram of infuences on spending. 

path whereby receiving a coupon is associated with gender and, through it, 
on spending. A simple way to do this is by including gender as a variable in 
the common-impact equation. This gives 

purchases = 69.5 − 54.4(male) + 6.2( gets a coupon) 
p-value = 0.48 

This puts the coupon campaign in a different light, and while the p-value 
is still large, if this sample were eight times larger, the coeffcient (6.2) would 
be considered highly statistically signifcant. 

In this example, we were able to control for observable effects (gender), and 
we were able to use a linear model. Things are rarely so simple. Often the 
basis for our selection bias is unobservable, refecting hidden (latent) infu-
ences such as individual motivation or tastes. Sometimes, it is possible to 
remove the effects of time-invariant observables using panel data, as dis-
cussed below. 

One of the most diffcult decisions that needs to be made in situations such 
as this is what variables to include as controls. A helpful way to keep one’s 
ideas clear in this context is with the help of path diagrams. In the words of 
Morgan and Winship (2015, p. 91), such graphs “offer a disciplined framework 
for expressing causal assumptions for entire systems of causal relationships.” 

Consider Figure 3.2, where we want to measure the effect of treatment T 
(coupons) on outcome Y (spending). The problem is that one who gets treat-
ment is affected by confounder C (here, gender), which in turn affects a set of 

FIGURE 3.2 
Path diagrams. (T is the treatment, Y is the outcome of interest, and C, X, S, and Z are other 
variables) 
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observable variables (such as “love of fashion,” denoted here by X) that infu-
ence spending. In the left panel of Figure 3.2, the direct treatment effect of T 
on Y is confounded by C. For instance, if gender = female, there may be fewer 
coupons (low T) but more fashion lovers (high X) and spending on fashion 
(high Y). So we will tend to observe low values of T along with high values of 
Y, and this gets in the way of (“confounds”) identifying the direct effect of T 
on Y. The trick is to block the backdoor associations between T and Y. In the 
left panel of Figure 3.2, we have 

T ̃ Y  The causal effect we want to measure 
T ° ˜ ˜C X Y The confounding“backdoor”effect. 

The solution is to include C (or X, but not necessarily both) in the regression 
equation. 

The situation in the right-hand panel of Figure 3.2 is similar, except that 
receiving a coupon (the treatment) makes it more likely that the person will 
visit a store (variable Z), which in turn boosts sales. In this case, Z is a descen-
dent of T, but variable Z should not be included in the regression because it 
risks taking from T some of the infuence that is rightly attributable to it.1 

If, in addition, there is a variable S (e.g., how tall the individual is) that 
infuences who gets a coupon – they catch the eye of the agents handing out 
the coupons – but does not infuence anything else, then it is a parent of T and 
should not be included in the regression. That would reduce the variation in 
T, which would make it harder to pick up the causal effects. In this case, S is 
essentially an instrumental variable (IV); as a general rule, it is inappropriate 
to control for IVs or mediator variables in causal inference. 

The use of diagrams such as these can be helpful in trying to identify 
causality and whether it can even be identifed. It also makes it clear that 
one should not simply dump all variables into a treatment regression in the 
hope that one is controlling for all possible confounders: Sometimes that will 
make it harder to measure causal effects. Morgan and Winship (2015, p. 117) 
have an extended discussion of these issues. 

3.4.2 Other Treatment Effects 

Suppose the Dean of the College of Arts and Sciences observes that students 
enrolled in the honors program are more likely to stay after their frst year 
and to earn a higher grade point average (GPA) than those who are not. She 
would like to know whether this association is accidental or causal: If being 
in the honors program boosts retention, perhaps the honors program should 
be expanded, or at least promoted more vigorously. 

There is clearly a selection bias here, because honors students are presum-
ably academically stronger, on average, than non-honors students, so a sim-
ple comparison of retention rates (or GPA) between the two groups will not 
tell us much. 
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Some hypothetical information on 20 students is provided in Table 3.2. In 
this example, 75% of the honors students stayed for the next academic year 
(retain = 1) compared to 50% of non-honors students. Honors students had a 
higher college GPA (3.13 versus 2.40) and entered with higher selective apti-
tude test (SAT) scores (1,374 versus 1,234). 

One visual representation of these data is given in Figure 3.3, where one 
of the outcomes of interest (GPA) is shown on the vertical axis and the SAT 
scores on the horizontal axis. Black dots refer to honors students, hollow cir-
cles to those who are not in the honors program. The black dots are concen-
trated in the upper right of the diagram, as we would expect. 

Do honors students perform better than non-honors students, as measured 
by GPA? We see how students actually perform in Figure 3.3, but only with 
the help of an “auxiliary” model can we estimate their potential outcomes in 
the alternative (counterfactual) state. There are a number of ways to measure 
these treatment effects. 

TABLE 3.2 

Data on Student Retention and Performance 

College Recruit SAT Propensity 
ID Retain GPA Honors Male Score Score Score 

14 0 1.44 0 1 5 960 0.036 
13 1 2.47 0 1 6 1010 0.068 
20 0 1.76 0 0 6 1060 0.142 
12 0 2.01 0 1 7 1180 0.168 
19 1 2.23 0 0 6 1140 0.173 

3 1 3.21 1 1 7 1200 0.177 
18 0 2.77 0 0 7 1220 0.309 

8 1 3.13 1 0 7 1230 0.316 
11 1 2.71 0 1 8 1320 0.340 
10 0 2.13 0 1 8 1340 0.354 

7 1 3.10 1 0 7 1290 0.355 
17 1 2.72 0 0 7 1330 0.382 

2 0 3.17 1 1 9 1450 0.561 
6 0 3.02 1 0 8 1410 0.570 
9 1 3.06 0 1 9 1470 0.576 

16 0 3.00 0 0 8 1430 0.584 
15 1 2.45 0 0 9 1350 0.653 

5 1 2.88 1 0 9 1400 0.685 
1 1 3.43 1 1 10 1510 0.721 
4 1 3.11 1 0 10 1500 0.832 

Retain = 1 if the student stays another year; GPA is grade point average, on a scale of 1 through 
5; Honors = 1 if the student is in the honors program; Male = 1 for male, otherwise female; Recruit 
Score is assigned by admissions offcers on a scale of 1 (poor prospect) through 10. The propen-
sity score is discussed below. 
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FIGURE 3.3 
GPA and SAT scores for a sample of students. (Honors students are marked by black dots, and 
non-honors students by hollow circles.) 

3.4.3 Regression Adjustment (Again) 

The idea here is to estimate one equation that predicts performance for the 
treated (here, honors students) and another for the non-treated. Assuming 
linearity, these are shown in Figure 3.3 as the solid-black and dashed lines, 
respectively. Now, for each observation, fnd the difference between the 
potential outcome in the honors program ( ˆ i| i = 1), from the solid line, Y T  
and the potential outcome if not in the honors program ( ˆ i | i = 0) Y T  from the 
dashed line. The average of these differences gives the ATE. 

Equivalently, we may estimate the switching equation (Eqn. 3.9) directly, 
using the small invented dataset from Table 3.2, and this gives the estimates 
shown in Table 3.3. To measure the ATE, we apply Eqn. (3.10), which gives 

G = 3.349 + 0.292 (  Male) + 0.0435 (  Recruit score) − 0.0025 (  SAT) 

Computing this for each observation, and averaging over all observations, 
gives 

GATE = 0.616 

while averaging just over the honors (“treated”) students yields 

GATT = 0.418. 
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TABLE 3.3 

Estimates of Regression Adjustment “Switching” Equation for GPA 

Coeffcient Standard Error Memo: Mean Value 

Outcome variable: GPA 2.69 
Right-hand variables: 

In honors program (treatment) 3.349 2.269 0.40 
Male (Y = 1) −0.075 0.191 0.45 
Recruitment score at admission −0.046 0.201 7.65 
SAT score at admission 0.0026 0.0015 1,290 

Honors × Male 0.292 0.307 0.15 

Honors × Recruitment score 0.0435 0.349 3.35 

Honors × SAT score −0.0025 0.0034 549.5 
Intercept −0.442 0.815 

Memo items 
Adjusted R2 0.664 
Number of observations 20 

Note: Based on data in Table 3.2. The estimation equation is of the form shown in Eqn. (3.9). 

The method is fexible. For instance, if we limit our sample to those students 
who entered with at least 1,200 SAT score and re-run the switching regres-

GATE sion and the ensuing computations, we fnd that in this case = 0.436 and 
GATT = 0.425. 

3.4.4 Propensity Scores 

Before going further, we need to introduce the notion of the propensity score. 
This is the estimated probability that a person will be treated. In a simple 
random sample, this would be the same for everyone, since every person 
would have the same probability of being chosen (although this probability 
does not need to be 0.5). However, in a quasi-experimental setting, the prob-
ability that someone will be treated may vary widely and systematically. 

A propensity score results from an assignment model, which seeks to 
determine who is treated and who is not. A common and straightforward 
approach is to estimate a logit (or probit) regression, where the dependent 
variable is binary (1 if treated, 0 otherwise), and the right-hand variables are 
those believed to infuence the probability of treatment – for instance, age, 
gender, location, and so on. Then the propensity score is the predicted value 
of the dependent variable: p̂i = ( i = XiP T  1| ). 

In Table 3.4, we show the estimates of a logit “propensity score equation” 
using the data on university retention presented in Table 3.2. In this case, 
“treatment” consists of being enrolled in the honors program, and we assume 
that this is driven by the student’s gender, SAT score, and recruitment score 
(as determined by the university’s admissions offce). The predicted prob-
abilities of being in the honors program – the propensity scores – are then 
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TABLE 3.4 

Estimates of Logit Propensity Score Equation for Participation in Honors Program 

Coeffcient Standard Error Memo: Mean Value 

Outcome variable: 0.40 
In honors program (Y = 1) 

Right-hand variables: 

Male (Y = 1) −0.678 1.111 0.45 
Recruitment score at admission 0.527 1.068 7.65 
SAT score at admission 0.0029 0.0096 1,290 
Intercept −8.061 6.339 

Memo items 
Pseudo R2 0.177 
Number of observations 20 

Note: Based on data in Table 3.2. 

calculated for each observation using this estimated equation and are shown 
in the fnal column of Table 3.2. Although a student is either in the honors 
program (honors = 1) or non-honors (honors = 0), the probabilities range from 
0 to 1, as would be expected. As usual, the estimated propensity scores are 
only as sound as the underlying model. In this small model, we keep pre-
dictors that are not statistically signifcant, but many researchers reduce the 
predictors (or features) through regular signifcance testing. 

The estimation of propensity scores is an area of active research. Diamond 
(2005) uses a robust logit, which reduces the infuence of outliers. Imbens 
(2004) favors non-parametric binary response models, which can better han-
dle non-linearities. Maciel (2020) reviews a number of approaches, including 
the use of Random Forests, Gradient Boosting, Support Vector Machines, and 
Neural Networks, which we summarize in Chapter 2. 

3.4.5 Matching Methods 

Let us return for a moment to the data on the honors program that are set 
out in Table 3.2 and Figure 3.3. As noted above, honors students have, on 
average, higher SAT scores and higher GPAs than non-honors students. But 
enrollment in the honors program has a random element, so some non-honors 
students have comparable characteristics to some non-honors students, and 
vice versa. This opens up the possibility that we could match some honors 
students with otherwise comparable non-honors students, and then, after 
preparing the data in this way, use a model on the matched data to measure 
whether retention is higher in one group. Presumably, any differences in the 
outcome – here retention – could mainly be attributed to the one obvious dif-
ference between the groups, which is participation in the honors program. 
King and Nielsen (2019) express the idea well: Matching “amounts to a search 
for a data set that might have resulted from a randomized experiment but is 
hidden in an observational data set” (p. 1). 
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Consider the raw (hypothetical) data set out in Table 3.2. Of the eight stu-
dents in the honors program, six (75%) stayed on after the frst year, com-
pared to six of the 12 students (50%) of the non-honors students. But, in trying 
to match each honors student with an otherwise identical non-honors stu-
dent, we note that there are no exact matches, in that no two students have 
the same gender and recruitment score and SAT. So any matching or pairing 
of students will necessarily be inexact. 

There are, in fact, a number of ways to do this (imprecise) matching, 
which we describe and discuss in the following subsections. Perhaps the 
most widely used approach is propensity score matching, so we begin 
there before moving on to a number of methods that are becoming more 
popular. 

3.4.5.1 Propensity Score Matching 

A popular solution to the matching problem is to use propensity scores. In 
our example, the propensity score is the estimated probability that a stu-
dent will be in the honors program. If we use nearest-neighbor matching, 
we would match students using the propensity scores, essentially by pair-
ing each student in the honors program with the non-honors student with 
the closest propensity score, and vice versa. So, for instance, referring to the 
propensity scores in Table 3.2, student 5 (honors, propensity score of 0.685) is 
matched with student 16 (non-honors, score of 0.584); and in turn, student 16 
is matched with student 9 (honors, score of 0.576). For each pair of students, 
we calculate the difference in the outcome variable (retention), and the aver-
age of these differences is a measure of the ATE. In this particular example, 
the ATE is 0.200, which tells us that the retention rate is increased by 0.200 
as a result of enrollment in the honors program. This is a causal conclusion. 

Rosenbaum and Rubin (1983) prove that unconfoundedness is preserved 
when using the propensity score. Formally, this means that 

T C T Cy y, ˛ | ˝ y yT x  , ˛ T p xi( )( i i ) i i ( i i ) i 

where p x( )i  is the propensity score. This means that matching on the pro-
pensity score should allow us to control for bias and so get to the underlying 
causal effects. 

There are many possible favors of propensity score matching, which is 
both a strength and a weakness. On the one hand, it holds the promise of 
fexibility; on the other, researchers inevitably end up trying out different 
variants of propensity score matching, typically reporting only the more suc-
cessful results, and thereby overstating its effectiveness. 

Perhaps the commonest approach is to use nearest-neighbor matching, 
where (for the ATT) each treated case is matched with the m closest non-
treated case. In the example above, we used m = 1, which is the most popular 
choice. 
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One alternative is to use caliper matching, which compares each treated 
case with all the non-treated cases whose propensity scores are within a 
given (modest) distance of the treated case, often set at quarter of a standard 
deviation of the propensity score. Some researchers use kernel or Gaussian 
matching, techniques that compare each treated case with all the non-treated 
cases but put greater weight on observations whose propensity scores are 
close to that of the treated case. Dehejia and Wahba (2002) argue that the 
choice of matching method is less important than the careful estimation of 
the underlying propensity scores. 

Propensity score matching only works effectively if comparisons (between 
the treated and comparison cases) are confned to the region of common sup-
port. Consider Figure 3.4, where we have graphed the distribution of propen-
sity scores for the treated (the right-hand distribution) and the comparison 
group. For treated cases with propensity scores between A and B (or 0.1–0.7 
in this illustration), there is overlap, so we can fnd examples of non-treated 
cases with similar propensity scores. But this is not the case above B, where 
there are no good comparators, or below A, where there are no treated cases. 
Cases in the region of common support are those with propensity scores 
between A and B; all cases with propensity scores outside this range should 
be discarded. Ho et al. (2006) emphasize the importance of this trimming or 
“preprocessing” of the data. Diamond (2005, p. 9) notes that the discarded 
cases “cannot support causal inferences about missing potential outcomes.” 

This trimming comes at a cost: It limits the applicability of the results (their 
“external validity”), which now only hold in the range of propensity scores 
between A and B, and not universally. 

FIGURE 3.4 
Illustration of the region of common support. 
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When matching treated cases with their comparators, the two sets of data 
should be “balanced.” This means that they should have comparable dis-
tributional characteristics for the dimensions that can be measured. For 
instance, the treated and non-treated with, say, a propensity score of between 
0.6 and 0.7 should have similar proportions of old people, women, health 
workers, and the like. In theory, propensity score matching ensures balance, 
but in reality, it may not occur. Thus, we may end up comparing a treated 
individual with a propensity score of 0.65 who is a 70-year-old retired man 
with a non-treated individual, also with a propensity score of 0.65, who is a 
30-year-old female lawyer. This would be a surprising way to match suppos-
edly “otherwise similar” individuals. It is important to check for balance; 
where it is lacking, the usual advice is to re-specify the propensity score 
model, which can often be helpful. 

In an article, King and Nielsen (2019) argue that propensity scores should 
not be used for matching. They show that the more balanced the initial data 
are, the greater the danger that propensity score matching will “degrade 
inferences” (p. 2), a phenomenon they refer to as the propensity score para-
dox. Their other argument is that researchers are likely to report the results 
from versions of propensity score matching that refect, perhaps uncon-
sciously, their own biases, so the model chosen itself depends on the data 
(“model dependence”); in their words, “human choice turns model depen-
dence into bias” (p. 5). This weakens the ability of propensity score matching 
to deliver unbiased judgments. 

There are a number of other, increasingly popular, methods for inferring 
causality via matching, starting with IPW. 

3.4.6 Inverse Probability Weighting (IPW) 

An elegant method for measuring the treatment effect is to estimate a regres-
sion of the form 

Y ˜ °Ti (3.11)i = +  

where Yi is the outcome of interest (e.g., GPA), and Ti is the treatment, for 
instance, being in the honors program (see Hernán and Robins 2006). 
However, the twist here is that this needs to be a weighted regression, where 
the weights are the inverse probabilities from the propensity scores. More 
specifcally, we have: 

˙ 
ˇ
ˆ
ˇ
ˇ̆ 

= 

1 
ˆ 

1 
1 

p 

( − 

for  treated case 
1 

wi 

p̂1 ) for  non treated case− 

Then the estimated coeffcient ˜̂ in Eqn. (3.11) gives the ATE. 



 

 

 

 
 

 

    
 

 

Causality 65 

In effect, this estimator puts higher weights on rare occurrences. This is 
analogous to the use of survey weights, where more weight is put on obser-
vations that are less likely to have been sampled because they are standing 
in for larger numbers of unsampled items. To measure the ATT, the weights 
needed are: 

˙ 1  for treated cases 
ˇ 

wi = ˆ p̂i  for non − treated cases ˇ (1 − p̂i )˘ 

and for the ATC, we have: 

(˙ 1 − p̂i ) for treated cases p̂ˇ
ˆ 
ˇ
˘ 

=wi i 

1  for non treated cases − 

When the propensity scores are either very low or very high, the weights 
can become rather large, and this method becomes less robust. 

One solution to the problem of extreme weights is to trim them. For 
instance, we may cap (“windsorize”) the weights at the 5th and 95th percen-
tiles. There is no generally recognized standard for the cut-off percentiles 
(Crump et al. 2009; Morgan and Winship 2015), so the procedure used will 
be decidedly ad hoc. However, Lee et al. (2011), using a logistic-regression-
based propensity score model, fnd that the trimming does lead to more 
robust results. 

The other potential problem with the “original” weights shown here is 
that they are known to increase the sample size artifcially, which is likely to 
affect the standard errors of the estimators. Hernán and Robins (2025) make 
the case for using “stabilized” weights, which ensure the weighted sample is 
the same size as the original sample while leaving the coeffcients unchanged 

i p p ˆ )(see Chapter 9, Eqn. 9.5). This is achieved by replacing p̂  with ˆ i/ , and (1 − pi 

with (1 − p̂i)/(1 − p), where p  is the average propensity (or the predicted value 
of a logistic regression with only a constant term). So, for example, the stabi-
lized weights for the ATE would be given by: 

˙ p   for treated cases ˇ
ˇ p̂i 

wi = ˆ (1 − p)ˇ  for non − treated cases 
ˇ (1 − p̂i )˘ 
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There is a growing literature advocating for stabilized, rather than ordi-
nary, weights. 

As with propensity score matching, the inverse probability weighted 
regression should only be estimated using those observations that are in the 
region of common support. 

3.4.7 Doubly-robust Methods 

It is possible to combine the regression adjustment and the IPW approaches 
in a rather natural manner: Estimate the regression adjustment equations 
using the inverse probability weights. 

Another possible extension is the augmented inverse probability weighting 
approach (Glynn and Quinn 2010), which estimates Eqn. (3.11) but includes a 
number of additional variables, such as those used in the regression adjust-
ment model. 

It is also possible to combine matching and regression methods. Matching 
could be used frst to trim (or take a “strategic subsample” from) the data, 
and then regression techniques could be applied to the dataset that should 
now look more like a dataset from a natural experiment. 

All of these are examples of “doubly-robust” methods. The idea is that 
they hold greater promise of yielding good results, even if one of the sets of 
assumptions underlying (for instance) regression adjustment or IPW does 
not entirely hold. For instance, regression adjustment requires that the treat-
ment be independent of the error in Eqn. (3.9), the causal effect does not 
vary with the other regressors, and the estimated equation is fully fexible 
(Morgan and Winship 2015, p. 205). The IPW also requires the assumption 
of ignorable treatment and overlap between the treated and non-treated 
samples. 

3.4.7.1 Covariate (“Nearest Neighbor”) Matching 

There are also ways to match someone who is treated with someone similar 
who is not, but without using propensity scores. A basic form of nearest-
neighbor matching proceeds as follows: 

a. Normalize all the relevant variables (“covariates”), such as age, SAT 
score, and so on, so they have zero means and standard deviations 
of 1, using 

Xi − X 
ui = , 

si 

where Xi is the variable, X  is its mean, and si is the standard devia-
tion of the Xi. 
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b. For every pair of treated and untreated (comparison) individuals, 
with vectors of normalized variables Ui

T and Ui
C, defne the distance 

between them as 

T C T CUi
T −Ui

N (U −U )˙ V U  −U )
V 

˝ ( 
where V is a weight matrix. If V is the identity matrix, we have a 
standard Euclidean distance, which gives equal weights to each vari-
able when comparing two individuals. Note that there can be a lot of 
pairs for which this calculation must be done. 

c. Match each treated case with the closest non-treated case and fnd 
the average difference in outcome to get the Average Treatment 
Effect on the Treated (ATT); or match every treated case with the 
closest non-treated case, and vice versa, to obtain the average treat-
ment effect (ATE). 

In practice, the most common choice of weight matrix V is the inverse of 
the variance-covariance matrix of UT and UC, which gives the Mahalanobis 
distance. This method is non-parametric and fexible but converges relatively 
slowly to the true measure. In our example, this measure shows that enroll-
ment in the honors program raised retention by 0.294 (see Table 3.6). 

There are many possible variations. For instance, one can insist that some 
variables be matched exactly: Maybe men can only be matched with men 
and women with women. Or an iterative method may be employed, such as 
the genetic matching proposed by Diamond and Sekhon (2013), wherein the 
weight matrix V is adjusted to achieve the best possible balance – although 
Morgan and Winship (2015) dismiss this as “error-prone sausage making” 
(p. 167). In this context, balance is obtained when the average value of covari-
ates, such as age or SAT score, does not differ between the treated group and 
the sample with which they are matched (see Table 3.2). 

3.4.7.2 Coarsened Exact Matching 

Suppose we want to match subjects from one dataset (the treated, perhaps) 
with those from another (the non-treated). Let us also suppose that we only 
have very simple data, such as information on the gender of the head of 
household and whether the head is over 65 years old or not. The exact match-
ing is straightforward: Match old males from dataset 1 with old males from 
dataset 2, young females with young females, and so on. 

In reality, the data we work with are rarely so simple. Suppose we have 
everyone’s age, and not just whether they are old or young. Now we might 
try to match 51-year-old men in dataset 1 with men of the same age in dataset 
2, and so on. However, if the datasets are relatively small, there may be a lot 
of non-matches: Perhaps dataset 2 has men who are 50 or 52 but none who are 
51. When matches cannot be made, we potentially lose information. 
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Gary King and his coauthors (Iacus et al. 2008; Blackwell et al. 2009) pro-
pose that, in such cases, the variables be “coarsened” – in effect assigning 
them to a limited number of bins – before being exactly matched. In our 
example, this might mean classifying people’s ages into ten-year intervals 
(e.g., 40–49, 50–59), which then raises the probability of “exact” matches. The 
coarsening might be done using an algorithm, in the same manner as is often 
done when constructing histograms, or rest on the researcher’s judgment. 

Not every treated case will be matched with a non-treated comparison case, 
and the non-matched cases will be dropped. It is helpful to think of this as a 
way to preprocess the data, thereby confning the observation to a region of 
common support or overlap: The outcomes of the remaining matched cases 
could then simply be compared or be subject to a regression-adjustment or 
other model. An advantage of coarsened exact matching (CEM) over propen-
sity score matching (PSM; discussed above) is that CEM seeks to balance the 
data in advance, while PSM needs to check for balance after matching and, if 
necessary, go back to adjusting the propensity score model until the balance 
is achieved. 

To illustrate how CEM might work, consider the data on retention from 
Table 3.2. First, we create a limited number of bins; for instance, gender 
crossed with SAT scores, where the SAT scores are assigned to three equal-
width classes. The treatment consists of being enrolled in an honors pro-
gram, so we may assign the observations to bins as shown in Table 3.5. 

The non-honors students whose SAT scores fall in the range 960–1142 do 
not overlap with any honors students and so cannot usefully serve as com-
parators (or, equivalently, we assign them a weight of 0). Each honors student 
is assigned a weight of 1 since we want to estimate the ATT effect. There are 
two female honors students with SAT scores in the range 1143–1325, and 
they will be compared with the one non-honors student in that bin. Since 
this non-honors student has to serve in two comparisons, she is assigned a 
weight of 2. There is one male honors student in the same SAT category and 
two non-honors males, so the latter comparators are each assigned a weight 
of 0.5. 

TABLE 3.5 

Classifcation of Observations into “Coarsened” Bins 

Female Male 

SAT 960- 1143- 1326- 960- 1143- 1326-

Observations: 
In honors program 
Not in honors program 

0 
2 

2 
1 

3 
3 

0 
2 

1 
2 

2 
2 

Weights: 
In honors program 
Not in honors program 0 

1 
2 

1 
1 0 

1 
0.5 

1 
1 
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We may then use these weights in a treatment regression. In our example, 
our estimates give: 

GPA = 2.657 + 0.434 Honors R2 = 0.43. 

So, we may conclude that being in the honors program boosts one’s GPA 
by 0.434 points. However, this result is sensitive to the decisions made in 
the coarsening process. If the number of bins is different, or the cutoffs are 
different, then the result will be different too. This approach is at least as 
susceptible to manipulation by the researcher as the other approaches to 
matching. 

3.4.7.3 Which Matching? 

How important is the choice of method in measuring the impact of a treat-
ment? For each of the methods discussed above, we have used the data 
shown in Table 3.2 to estimate the effect of being in an honors program on 
(i) GPA and (ii) retention (i.e., the probability of staying at the university for 
another year). 

The results are gathered together in Table 3.6, and although they are based 
on a small hypothetical example, they suggest that different methods can 
yield quite different results. For example, the measured impact on retention 
for students in an honors program (the ATT) is zero using propensity score 
matching, but 0.11 if one applies the regression adjustment method and 0.25 
based on CEM. 

If our linear regression adjustment model of causality is plausible and com-
plete, then the results in Table 3.6 show that being in the honors program 
boosts retention by 36 percentage points and raises GPA by 0.62. If the dif-
ferences are averaged over just the honors students, then we get a measure 
of the Average Treatment Effects on the Treated (ATT), which in this case are 
somewhat smaller than the ATE effects. 

An important implication is that the choice of method matters. This 
leaves researchers and practitioners with a lot of discretion, so the answers 
they provide will refect the methodological choices they make. There is 
no royal road to “the truth,” but recent practice has moved away from pro-
pensity score matching. The abundance of methodological choices does 
require us to caution, once again, against simply reporting the results of 
the method that seems to give the “most sensible” results, because this 
results in potentially serious bias, thereby weakening our ability to infer 
causality. 

The techniques described in this chapter are widely used, especially in 
the social sciences, but do not exhaust the possibilities. In the next chapter, 
we consider discontinuity designs, the creation of synthetic controls, and the 
important method of instrumental variables. 
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TABLE 3.6 

Measures of Impact of Being in an Honors Program (Treatment Effects) on 
Retention and GPA 

Outcome Variable and Method ATE p-Value ATT p-Value 

Retention 
Regression methods 

Regression adjustment, linear 0.361 0.08 0.106 0.64 
Regression adjustment, logit 0.195 0.27 0.114 0.60 
Common impact version, linear 0.176 0.53 
Common impact version, logit 0.165 0.46 

Inverse probability weighting 
With original weights 0.269 0.22 0.126 0.57 
With stabilized weights 0.269 0.24 0.126 0.58 

Doubly robust: 
IPW on regression adjustment 0.348 0.07 0.074 0.73 
IPW, reg. adj., logit 0.188 0.28 0.094 0.65 
Augmented IPW 0.358 0.08 n.a. n.a. 

Matching 
Nearest neighbor/Mahalanobis 0.294 0.31 0.036 0.89 
Propensity score matching 0.200 0.25 0.000 1.00 

GPA 
Regression adjustment 0.616 0.418 
RA if SAT ≥ 1,200 0.436 0.425 
Coarsened exact matching 0.474 0.003 

Note: Based on the (hypothetical) data displayed in Table 3.1. Twenty observations in all cases 
except for the fnal row, where there are 15 observations. Since “retention” is a binary 
variable, linear models (which are widely used) are generally more approximate than 
logit models. Logit model effects are the marginal effects at the mean values of the 
covariates. 

Most of the matching methods considered here, including covariate 
matching, can be estimated in Stata using the teffects command. CEM may 
be done with the cem command. 

Note 

1. Z is also known as a mediator variable, as it lies between the treatment vari-
able T and the outcome variable Y. There is another subfeld of causal inference 
known as mediator analysis that seeks to understand the direct and indirect 
effects of T on Y and is beyond the scope of this book; see Vanderweele (2015) 
for details of this topic. 
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4 
Causality: Synthetic Control, 
Regression Discontinuity, and 
Instrumental Variables 

4.1 Introduction 

In Chapter 3, we discussed a number of techniques for estimating causal 
effects. But there is more to be said on the subject, and in this chapter, we 
begin with a discussion of double differencing and follow up with an expla-
nation of the methods of synthetic controls, regression discontinuity, and 
instrumental variables. 

A good starting point is to return to a modifed version of the example, 
from Chapter 3, of sales of electric cars. We imagine there was an advertising 
campaign in the Northeast of the United States in 2020, but not in the rest of 
the United States, and we would like to know whether the campaign was 
effective. The data are summarized in Table 4.1. 

Based on these numbers, a single difference shows a rise of sales in the 
Northeast of 160, but as we discussed in Chapter 3, from this information 
alone we cannot conclude that the campaign was a success; perhaps sales 
would have risen anyway. 

TABLE 4.1 

Sales of Electric Cars per Million Population 

2019 2020 Difference 

Northeastern US 400 560 +160 
Rest of the US 200 300 +100 

Difference +200 +260 +60 

Note: The numbers are invented by the authors for illustrative 
purposes. 

DOI: 10.1201/9780429172588-4 73 

https://doi.org/10.1201/9780429172588-4


 

 

 

  

  

74 Cause and Effect Business Analytics and Data Science 

4.2 Double Differencing 

A common way to address the problem is by using a double difference (aka dif-
ference in difference). We note that sales of cars rose by 160 in the Northeast 
and by 100 in the Rest of the United States. The rise was larger by 60 in the 
Northeast, and we could reasonably attribute this to the advertising cam-
paign in the Northeast. This conclusion crucially depends on the parallel 
trends assumption, which is the idea that in the absence of the advertising 
campaign, the trend in sales in the Northeast, and in the Rest of the United 
States would have been the same. 

The idea is captured graphically in Figure 4.1. The vertical axis (Y) shows 
sales; the lower solid line shows the evolution of sales in the Rest of the United 
States between 2019 and 2020, and the upper solid line shows the trajectory 
of sales in the Northeast. The dashed line shows the counterfactual, based on 
the assumption of parallel trends. The difference between point A and point 
B, here 60, represents the double-difference estimate and is our measure of 
the impact of the advertising campaign. 

It helps to formalize the presentation somewhat. We want to measure the 
average treatment effect on the treated (ATT), which is given by 

ATT = ˛̋ it
T − Y Tit

C | = 1 (4.1) E Y  i ˙̂ 

FIGURE 4.1 
E-car sales in 2019 per million people for the Northeast of the United States (top solid line) and 
the rest of the United States (bottom solid line). Dotted line is a counterfactual (if there were no 
advertising campaigns). (Data from Table 4.1.) 
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In words, this is the expected value for the treated (Ti = 1) of the outcome in 
time t when they are treated (Yit

T) compared to the outcome that would have 
been observed had they not been treated (Yit

C). The latter term is unobservable. 
If we assume parallel trends, we are supposing that 

C C C CE ̂̇ (Yit − Yi t−1 )|Ti = 1˘̌ = E ̂̇ (Yit − Yi t−1 )|Ti = 0ˇ (4.2) ˘ 

This says that, in the absence of the advertising campaign, sales would 
have risen by the same amount in the treated area (left-hand side) as in the 
reference area (right-hand side). Substituting Eqn. (4.2) into Eqn. (4.1) gives 

˙ T C ˇ ˙ C C ˇATT = ( it − Y 1 ) T = 1˘ − E Y( − Y − ) T = 0 (4.3) E Y  i  t− | i  it i t  1 | iˆ ˆ ˘ 

This is the double-difference estimator. In our example, it gives 

ATT = [560 − 400] − [300 − 200] = 60. (4.4) 

With data on many units, this is typically estimated using an ordinary 
least squares (OLS) regression of the form 

Yit = ˜0 + ˜1 Timei + ˜2  Treatment i + ˜3 Timei × Treatment i + ° i (4.5) 

in the canonical case where there are just two time periods and a treatment 
that applies only in the second period and to only some of the units. Then the 
estimate of ˜3 gives the impact. 

Equation (4.5) is often generalized to the case of more than two time peri-
ods, in which case we get the two-way fxed effects (TWFE or 2FE) model: 

Yit = ˜t + ° i + ˛Tit + ˝ it (4.6) 

This has become “the default method for estimating causal effects from 
panel data” (Imai and Kim 2020), and we summarize a celebrated example 
related to the impact of minimum wages in Box 4.1. However, the use of 
Eqn. (4.6), when there are multiple time periods, is problematic. Consider 
Figure 4.2, which traces the effects of staggered treatments – perhaps an 
early and ongoing advertising campaign in the Northeast (top solid line), 
a later one in the Midwest (middle solid line), and no campaign elsewhere 
(bottom solid line). We also show a slowing trend in the second interval. The 
parallel trends assumption needs to apply to all groupings of observations 
(Northeast, Midwest, rest of United States), and the appropriate measure of 
impact applies double differences relative to the untreated baseline, shown 
on the graph as the differences between the solid lines and their dotted coun-
terfactuals. Unfortunately, Eqn. (4.6) does not calculate this, although recent 
work by Callaway and Sant’Anna (2021b) and Wooldridge (2021) suggests 
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FIGURE 4.2 
E-car sales in 2019 per million people for the Northeast of the United States (top solid line), the 
Midwest of the United States (middle solid line), and the rest of the United States (bottom solid 
line). Dotted lines are counterfactuals if there were no advertising campaigns. (Illustrative data 
created by authors.) 

some work-arounds. Where interventions are not staggered – that is, they 
come and go – it is especially hard to measure impact consistently. This is an 
active area of research. 

It is important to note that the parallel trends assumption is sensitive to the 
units used. Suppose we were to express the numbers in Table 4.1 in log form, 
as shown in Table 4.2. 

The (log) growth rate of sales is 33.6% in the Northeast and 40.5% in the rest 
of the United States. Now the parallel trends assumption is that the growth 
rate (i.e., the change in the log value) would have been the same for the treated 
and non-treated groups in the absence of the advertising campaign. In this 
case, we may conclude that the advertising campaign in the Northeast may 

TABLE 4.2 

Log of Sales of Electric Cars per Million Population 

2019 2020 Difference 

Northeastern US 5.991 6.328 +0.336 
Rest of the US 5.298 5.704 +0.405 

Difference +0.693 +0.624 −0.069 

Note: The numbers are invented by the authors for illustrative pur-
poses and are derived from Table 4.1. 
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BOX 4.1 EXAMPLE 

A celebrated application of double differencing in economics is the 
study by Card and Krueger (1994) of the effects of raising the mini-
mum wage on employment in the fast-food industry in New Jersey and 
Pennsylvania. In April 1992, New Jersey raised its minimum wage by 
18%, from $4.25 to $5.05 per hour, but there was no change in the mini-
mum wage in neighboring Pennsylvania. Traditional economic theory 
predicts that the increase in the minimum wage in New Jersey would 
reduce employment there relative to Pennsylvania. 

Card and Krueger collected information on employment in standard 
fast-food outlets (Burger King, KFC, Roy Rogers, and Wendy’s) in New 
Jersey and Eastern Pennsylvania in February 1992 (pre-treatment) and 
November 1992. The number of full-time equivalent employees per out-
let is shown in Table 4.3. 

The results were completely unexpected: Outlets in New Jersey 
increased the average number of full-time equivalent employees by 2.75 
(13%) relative to Pennsylvania, as the double-difference calculation shows 
in Table 4.3. The explanation for this result is not entirely clear but may 
refect the noncompetitive nature of the market for low-skilled work-
ers or that the higher minimum wage in New Jersey put more purchas-
ing power in the hands of fast-food clients. Card and Krueger’s study, 
which was done with great care, led to a furry of subsequent work. The 
applicability of the fndings in other contexts (“external validity”) may 
be limited: Nobody is seriously suggesting, for instance, that a tripling 
of the minimum wage would lead to more employment! However, it is a 
good illustration of how meticulous empirical work can force us to think 
more deeply about how a market or economy actually behaves. 

TABLE 4.3 

Full-time Equivalent Employment per Fast-Food Establishment 

February 1992 November 1992 Difference 

Eastern Pennsylvania 23.33 21.17 −2.16 
New Jersey 20.44 21.03 +0.59 

Difference +2.89 +0.14 +2.75 

Source: Based on information from 410 restaurants (Card and Krueger 1994). 

actually have hurt the growth of sales: The ATT double-difference estimate 
is −0.069, signifying that the growth of sales in the Northeast was 6.9 percent-
age points lower than in the rest of the United States. 

The parallel trends assumption, whether absolute or in logs, is not testable. 
The implication is that our measure of causal impact is, once again, depen-
dent on the reasonableness of our underlying model. 
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Stata has two commands that allow the computation of double differ-
ences, namely didregress for repeated cross-sectional data, and xtdidregress 
for panel data (Stata 2021). Callaway and Sant’Anna (2021a) have created a 
Difference-In-Difference (DID) package for R that has an updated treatment 
of the case where there are multiple time periods. 

The double-difference model can often be improved by matching observa-
tions. The choice of the untreated reference group is also important and is the 
key element in the synthetic control method, to which we now turn. 

4.3 Synthetic Control 

In 2008, when the United States was in the grip of a deep recession, sales of 
vehicles fell sharply – by 18% compared to 2007 – threatening the solvency 
of some of the major automakers. Under the Troubled Asset Relief Program 
(TARP), the Federal government lent over $80 billion to the industry, mainly 
to General Motors and Chrysler. A loan of $12.5 billion was extended to 
Chrysler in January 2009 on the condition that the company make a number 
of managerial and strategic changes. 

Fremeth et al. (2016) ask a simple question: What impact did the govern-
ment support have on the sales of vehicles made by Chrysler? 

Figure 4.3 shows the evolution of sales of Chrysler vehicles. The frst ver-
tical line shows January 2009, when the loan was made, and the second 

FIGURE 4.3 
Monthly sales of Chrysler vehicles in the United States, 2005–2012. (Fremeth et al. 2016.) 
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indicates May 2011, when it was repaid and Chrysler became free to manage 
its own affairs once again. From the time series alone, it is diffcult to assess 
the impact of the Federal loan on Chrysler sales, because it was possible that 
Chrysler sales were just mirroring industry experience. 

Until relatively recently, a question like this would have been addressed 
using a straightforward comparative case study approach. Ford did not take 
any TARP funds, so one could, for example, compare the trajectories of Ford 
and Chrysler before and after the bailout to see if there was evidence of 
divergence in their paths after January 2009. This would be the DID approach 
discussed in Section 4.2. 

In a widely cited study, Card (1990) compared the evolution of wages and 
unemployment in Miami, before and right after the infux of 125,000 Cubans 
associated with the 1980 Mariel boatlift, with the experience of four other cit-
ies that he deemed similar to Miami, namely Atlanta, Los Angeles, Houston, 
and Tampa-St. Petersburg. He found, somewhat unexpectedly, that the 
infow of Cubans did not lower wages or raise unemployment, relative to the 
experience of the comparator cities. This is certainly a reasonable approach 
to the problem, but the choice of comparator cities was essentially ad hoc. 
Could one do better? 

The traditional weakness of comparative case studies is the improvised 
nature of the choice of comparators (as well as the parallel trends assump-
tion). This has now been addressed by the method of synthetic control, hailed 
by Athey and Imbens (2017, p. 9) as “arguably the most important innovation 
in the policy evaluation literature in the last 15 years.” The method is now 
widely used in the social sciences and by business analysts. The key innova-
tion is that the synthetic control method provides a systematic way to iden-
tify the relevant comparators. 

The synthetic control technique is useful when one wishes to estimate 
the impact of an intervention on an outcome, and potentially only one, or a 
few, items are targeted by the intervention. A classic example is the study by 
Hsiao et al. (2012) of the impact of the 1997 change of sovereignty in Hong 
Kong (from Britain to the People’s Republic of China); they concluded that 
the change of sovereignty had essentially no impact on the growth rate of 
Hong Kong’s GDP. 

The idea is to compare the outcome over time of the item targeted by the 
intervention (the treated item) with the outcome of a control group not tar-
geted by the intervention. The synthetic control thus complements the DID 
design and potentially improves on any comparative interrupted time series 
design (see Bernal et al. 2019). The synthetic control approach attempts to 
remove the arbitrariness in the choice of a control group by proposing a 
“synthetic” control item equal to a weighted average of a set of control items. 
The weights, which are typically positive or zero, are selected in such a way 
as to best approximate the characteristics of the targeted item prior to the 
intervention. 
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More rigorously, to apply synthetic controls, we need panel data with 
information for the “focal” unit (e.g., Chrysler) and some potential compara-
tor units (the “donor pool”) over T time periods. At some time T0, there is a 
“treatment” or shock or intervention that affects the focal unit but not the 
donor pool. At a minimum, the variables must include an outcome measure 
Yit (such as vehicle sales), but typically there will be a number of other pre-
dictor variables (“covariates”). In the Chrysler example, these might include 
such variables as the price of autos, miles per gallon, number of company 
employees, and so on. 

Following Abadie (2021), let the focal unit be indexed by 1, and the units in 
the donor pool be indexed from 2 through J + 1. The superscript T refers to an 
intervention (“treatment”) and C to the case of no intervention (“controls” or 
“comparators”). Then the treatment effect on the treated is given by 

it
T 

1 
C
t > 0 . (4.7) ATT = Y − Y , t T  

We actually observe the potential outcome Y1 
T
t  but not the counterfactual 

Y1 
C
t . 
The key idea in synthetic controls is to replace the unobserved Y1 

C
t  with 

one or more untreated units that look similar to the treated unit as of time 
T0. In the Chrysler example, this could be just the sales of Ford vehicles, or a 
weighted average of sales by several automakers (Ford, Toyota, Subaru, and 
so on). The synthetic control comparator is given by a weighted average of 
outcomes from the donor pool: 

J+1 

ˆ C 
1 w YY t = ˜ j jt . (4.8) 

j=2 

A straightforward regression of, say, Chrysler vehicle sales on the vehicle 
sales of all the other automakers would generate a set of coeffcients that 
could serve as weights – indeed this is often done – but some of the weights 
would likely be negative, which implies some extrapolation. So, it is typical to 
constrain the vector of weights, W, to be between 0 and 1 (0 ̃  wj ˜ 1), and for 
them to sum to 1 if they are well-scaled, so ̃  wj = 1. The weights are obtained 
by minimizing the weighted squared prediction error: 

˜ 
k 

(v X  − X W )2 (4.9) m 1m 0m 

m=1 

Here, X1m is the value of the m-th predictor or outcome for the focal unit, 
X0m is a vector of predictors and/or outcomes for the j units in the donor pool, 
and the vm is the weight on the attributes (i.e., covariates and/or outcomes). 
As a practical matter, this process tends to yield a sparse set of weights that 
are transparent to use, as we illustrate below. 
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The central improvement of using synthetic controls is that it gives us a 
satisfactory method for choosing the weights. Instead of comparing unem-
ployment in Miami with four handpicked (and hence potentially biased) 
comparators, Card could now use a more formal method to identify, from a 
larger donor pool, what weighted average of unemployment in other cities 
best replicated the experience of Miami prior to the Mariel boatlift. It turns 
out that Peri and Yasenov (2019) did exactly this and found similar results, 
based on their synthetic control analysis, to Card’s more informal approach. 

Abadie and Gardeazabal (2003), who frst developed the synthetic control 
method, argue that the weights should be chosen such that the resulting syn-
thetic control “best resembles the pre-intervention values, for the treated unit, 
of predictors of the outcome variable,” but some authors instead try to match 
on the outcome variables prior to the intervention. All that is then needed is to 
examine the post-intervention outcome of this synthetic control and compare 
it with that of the focal unit. 

4.3.1 Chrysler Example 

Many of these ideas will be clearer if we examine the study by Fremeth et al. 
(2016), who wanted to estimate whether the government bailout and control 
of Chrysler, after the 2008 fnancial crisis, had an impact on sales of Chrysler 
vehicles. They got monthly data on vehicle sales (from Ward’s Automotive 
Reports) and other variables from January 2005 through December 2012 for 
each of the 19 major automobile companies selling in the United States. The 
treatment period ran from January 2009, when the government loan was 
disbursed, through May 2011, when Chrysler fnished repaying the loan. 
General Motors was excluded from the donor pool of potential comparators 
because it too received a government bailout loan, and Jaguar Land Rover 
was excluded because of missing data. The donor pool thus consisted of 16 
companies. 

The results of a synthetic control analysis are typically shown visually, 
as in Figure 4.4. The solid line shows the 12-month moving average of 
Chrysler sales by month both prior to and during the government inter-
vention. The dashed line tracks the sales of the synthetic control (based 
on the moving-average data) and is based on applying the weights esti-
mated based on outcome data (using Stata code created by Fremeth et al. 
2016) that are reported in Table 4.4. Prior to January 2009, the two series 
were relatively close, but during the period of the government loan, and 
associated government restrictions on Chrysler’s actions, the two series 
diverged. This is even easier to see in Figure 4.5, which simply graphs the 
difference between the two series shown in Figure 4.4. The reduction in 
Chrysler sales, compared to what would have been expected had the com-
pany’s sales tracked the synthetic control, is striking. One interpretation is 
that government involvement lowered the company’s sales by about 40,000 
vehicles per month. 
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FIGURE 4.4 
Sales volume for Chrysler and for Synthetic Chrysler. 

TABLE 4.4 

Weights Estimated in Synthetic Control Model of Impact of Government Bailout 
on Chrysler 

Company Weight Company Weight Company Weight 

BMW 0 Isuzu 0.068 Saab 0 
Daimler 0.022 Jaguar Land Rover ** Subaru 0 
Ford 0.664 Mazda 0 Suzuki 0 
General Motors * Mitsubishi 0 Toyota 0.077 
Honda 0 Nissan 0.169 Volkswagen-Audi 0 
Hyundai-Kia 0 Porsche 0 Volvo 0 

Source: Fremeth et al. (2016). 
Notes: 
* GM was excluded because it was also subject to government intervention. 
** JLR was excluded because some data were missing. 

This is not the end of the story, however. Perhaps a number of other 
companies experienced similar patterns, post-January 2009, to that seen 
by Chrysler, in which case the Chrysler case would not be exceptional. A 
clever way to address this, in a way that is somewhat similar to testing for 
signifcance, is to apply an “across-unit” placebo test: Estimate a synthetic 
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FIGURE 4.5 
Difference between Chrysler and Synthetic Chrysler. 

control model for each of the other car companies that did not have bail-
outs, and use those models to measure the gap between each company’s 
sales and its corresponding synthetic control. This is done in Figure 4.6, 
where each line represents a different car company. It is clear that Chrysler 
is an outlier; the probability that it would end up at the bottom of the graph 
is less than 10% (given that there are time series for 17 companies), if the 
effect were random, so we can be pretty confdent that the bailout did have 
an effect on Chrysler. 

If there are enough time periods prior to the intervention, it is often pos-
sible to use an “in-time” placebo test. Let us imagine, hypothetically, that 
there was an intervention in, say, January 2005 instead of January 2009. 
Construct a synthetic control model for Chrysler using the January 2005 
date: If, subsequently, the sales of Chrysler cars closely track the synthetic 
control, and the placebo intervention had no discernible effect (which is 
what Fremeth et al. 2016 found), then we have greater confdence that the 
deviation of Chrysler sales after the real intervention of January 2009 was 
not accidental. 

There are other useful checks on the robustness of the results. For instance, 
the synthetic control for Chrysler may be sensitive to the weights, as shown in 
Table 4.4, that are used. A leave-one-out test would recalculate the synthetic 
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FIGURE 4.6 
Placebo tests, among untreated units. 

control after leaving out one of the weights (e.g., Daimler, Ford) in turn and 
examining whether each of the resulting series still shows Chrysler’s sales 
deviating from the synthetic measure. One could also base the analysis on 
data on outcomes and covariates that run through, for instance, 2007 rather 
than 2008, in case the latter data are contaminated by being too close to the 
intervention of January 2009. Fremeth et al. (2016) provide further details. 

Mechanically, synthetic controls can be implemented using the synth 
commands in Stata or R. Cunningham (2021) works through some useful 
examples. 

The synthetic control method works well if the donor pool has untreated 
units that are otherwise suffciently similar to the treated unit. It follows that 
the approach will not be successful if the treated unit is unusual or extreme 
in some dimension. It is important that there be a stable structure of weights 
so that the synthetic controls serve as good predictors (under normal cir-
cumstances). If either the focal unit or controls in the donor pool have been 
affected by shocks in the pre-treatment period, this makes it harder to estab-
lish a stable underlying relationship. We also need to assume that the treat-
ment of the focal unit – for instance, Chrysler – does not have spillover effects 
on the control units. There is no formal way to test this, but the case needs to 
be made that spillovers can be ignored. 
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4.4 Regression Discontinuity 

The median annual wage of a 40-year-old U.S. worker with an undergraduate 
degree in economics was $90,000 in 2018, compared to $66,000 for any major 
other than economics (Bleemer and Mehta 2022). Is it reasonable to claim that 
the choice of an economics major causes one to earn at least $20,000 more? 

The problem with the simple comparison of salaries is that the individ-
uals who pick economics may be different in some fundamental, and per-
haps unobservable, way from those who opt for other majors. Perhaps only 
unusual people select themselves into economics, in which case the salary 
difference might refect the atypical nature of economists, or perhaps an eco-
nomics major really does lead to higher salaries, for instance, by imparting 
technical skills or attitudinal changes. 

A recent study by Bleemer and Mehta (2022) tries to isolate the effect of 
the choice of economics major by making use of a discontinuity. In 2008, the 
University of California Santa Cruz, a large public university, introduced a 
requirement that anyone wishing to major in economics had to get a grade 
point average (GPA) of at least 2.8 on the two economics principles courses 
(microeconomics and macroeconomics). Most of those with a GPA of 2.8 or 
higher chose to major in economics, while those with a lower GPA did not have 
that choice. It is reasonable to assume that students who had a GPA of, say, 2.75 
were not very different from those with a GPA of 2.85, except that only the lat-
ter could major in economics. By exploiting this discontinuity and using some 
additional tools (including regression) that we consider below, Bleemer and 
Mehta found that those who just made the cutoff and majored in economics 
had early-career salaries that were $22,000 higher than those who just failed 
to make the cutoff, and half of this differential was because economics majors 
gravitated toward higher-paying industries. This use of discontinuity creates 
a natural experiment and provides a plausible strategy for identifying a causal 
effect. Because it offers a clear identifcation strategy, the technique of regres-
sion discontinuity design has become very popular in the last decade. 

The starting point of any regression discontinuity design is, naturally, the 
jump or discontinuity. Such cases are surprisingly common. For instance, in 
the United States, people become eligible for Medicare at the age of 65; young 
people can drink when they reach the age of 21; postulants are admitted 
to university if they have at least some threshold GPA; and candidates are 
elected to offce if they get at least one more vote than anyone else. Many 
government programs have eligibility criteria, which represent discontinui-
ties that may often be exploited in order to measure the causal impact of 
these programs. 

To develop the ideas, we begin with a simulated example and then con-
sider some real-world cases, including a study of whether companies per-
form better if their corporate compensation policy has a long-run, rather than 
short-run, orientation. 
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Consider the case of a university that automatically tracks students into an 
honors program if they have a GPA of at least 3.33 (a B+ in most places) on a 
scale that runs from 0 to 4. If the policy is strictly enforced, we have a sharp 
discontinuity. We would like to know whether the honors program has any 
causal impact on subsequent academic performance. In this case, GPA is the 
running variable, and we assume that the outcome of interest is the fnal exam 
score (Y), which is on a scale of 0–100. We simulated 1,000 observations of 
GPA based on a normal distribution (censored at 4), and in the baseline case 
assumed that the fnal exam score is unrelated to whether a student is in 
the honors program.1 The association between the exam score and GPA is 
shown in Figure 4.7, where the cutoff of a GPA of 3.33 is marked. Rather than 
showing all thousand underlying data points, the dots in Figure 4.7 are the 
average values of the exam score for bins that have equal numbers of obser-
vations. The regression lines in Figure 4.7 are ftted to the underlying data 
using quadratics, separately on each side of the vertical discontinuity. While 
the two lines do not meet exactly at the discontinuity, they are very close, so 
a frst visual inspection suggests that there is no measurable effect. In other 
words, the honors program does not appear to boost the fnal exam scores 
relative to what we would have expected based on anyone’s GPA. This is not 
surprising, because we constructed the data this way. 

FIGURE 4.7 
Relationship of fnal exam score to GPA and participation in the honors program. (Note: Honors 
program participation requires a GPA of 3.33 or higher. Based on simulated data (see text) that 
assumes that participation has no impact on exam scores.) 
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FIGURE 4.8 
Relationship of fnal exam score to GPA and participation in the honors program. (Note: Honors 
program participation requires a GPA of 3.33 or higher. Based on simulated data (see text) that 
assumes that participation raises exam scores.) 

Now let us assume that the honors program raises fnal exam scores by 
seven percentage points.2 We simulated a dataset that only differs from the 
base case in this respect. The data are summarized visually in Figure 4.8, and 
it is clear that there seems to be a jump in exam scores for those who are in 
the honors program relative to those who are not. 

These graphs are useful, but they are only the starting point in our analy-
sis. We are interested in how outcomes vary close to the discontinuity. Often, 
we may think of the points near the cutoff as being essentially randomly scat-
tered a bit above or a bit below the line, with the position being determined 
substantially by chance – a lucky guess on an exam question, an inconsis-
tency in grading, and the like. For this group, it is as if they were randomly 
assigned to treatment or not. So, one method of measuring the impact of the 
treatment is to compare the average outcomes of those just below the cutoff 
with those just above it, using only the observations that fall within modest 
bandwidths h− and h+ on each side of the cutoff. One problem with this is that 
there may be a trend in outcomes around the cutoff, in which case it would be 
better to ft a regression line below and another above the cutoff, using only 
the observations near the cutoff. The gap between the lines, if any, would 
measure the impact. This is the local linear (or sometimes quadratic) approxi-
mation favored by many researchers (Gelman and Imbens 2019). 
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FIGURE 4.9 
Relationship of fnal exam score to GPA and participation in the honors program. (Note: Honors 
program participation requires a GPA of 3.33 or higher. Based on simulated data (see text) that 
assumes that participation raises exam scores. Dots represent observations; thick black lines 
show linear regression lines based on observations in the vicinity of the cutoff point.) 

The situation is illustrated in Figure 4.9, which shows all one thousand 
points from our simulated dataset in which the honors program boosts 
scores. The solid black lines are linear regression lines, estimated using the 
data points found within 0.168 units below and then above the GPA cutoff of 
3.33. There are a number of ways to measure the bandwidth, here 0.168, and 
the results of regression discontinuity studies are somewhat sensitive to the 
choice of bandwidth. 

To measure the impact of joining the honors program, we measure the dis-
tance between the intercepts of the regression lines at the cutoff. Here, the 
estimated difference is 7.22, and the associated p-value is 0.05, indicating a 
statistically signifcant difference from zero; we designed the simulation to 
have a difference of 7 points. 

This measure is a Local Average Treatment Effect (LATE), and strictly 
speaking, it only applies at the cutoff. In practice, such measures tend to 
have good internal validity because the identifcation strategy is usually 
clear and robust, but there may be limited applicability to other situations 
(“external validity”). The measure of impact relies on successful extrapola-
tion; in contrast to matching methods, there is no area of common support 
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in sharp regression discontinuity analysis, although the situation is a bit 
different in the case of a fuzzy regression discontinuity, discussed further 
below. 

More formally, let Yi
C be the outcome (such as exam score) if individual i is 

not treated, and Yi
T be the outcome if they are treated. We would like to mea-

sure Yi
T − Yi

C, but since an individual is either treated or not, we cannot observe 
this directly: This is the Fundamental Problem of Causal Inference that we 
discussed in Chapter 3. Let the treatment (Ti) be associated with the running 
(or “forcing” or “treatment-determining”) variable Xi so Ti = 1{Xi ˝ c}, where 
c is the cutoff value, or point of discontinuity. Then 

L E = lim  [ | = x] − lim [ i| = x]. (4.10) AT E Y Xi i E Y Xi 
x c˙ ˆx c  

The terms may be obtained by estimating regressions, the frst above the 
cutoff and the second below it. These regressions may include additional 
covariates, denoted by the vector Zi, although in practice this is unlikely to 
alter the estimates substantially (Imbens and Lemieux 2008). Researchers 
frequently ft high-order polynomial regressions, but Gelman and Imbens 
(2019) warn against this practice and make a strong case for using a linear, 
or at most a quadratic, approximation. One reason is that the estimate of the 
LATE requires extrapolation to the point of the cutoff, which works best if the 
estimated equations are fairly robust. 

Some researchers graph these functions by rescaling the running variable 
so that it takes on a value of zero at the discontinuity. The conclusion remains 
the same, but this emphasizes the change at point zero. In Box 4.2, we pro-
vide short illustrations of some further examples of regression discontinuity 
studies. 

BOX 4.2 EXAMPLES 

Many applications of regression discontinuity have been in the context 
of education, and the earliest use of the method was by Thistlethwaite 
and Campbell in 1960. They sought to measure whether awarding 
students’ certifcates of merit had an impact on student attitudes or 
career plans and compared students who just got an award with those 
who just missed the cutoff. They found that the public recognition of 
academic achievement had no observable effect on attitudes or career 
plans. 

An interesting business-related example comes from Flammer and 
Bansal (2017). They ask an important question: If a corporation designs 
its compensation package to give executives an incentive to take a long-
run view (the treatment), does this add to the value of the frm? 
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Proposals for long-term executive compensation generally need to be 
approved at a company’s annual general meeting (AGM), and the clever 
idea here is to compare companies where long-term executive compen-
sation proposals were barely approved at the AGM with companies 
where such proposals just barely failed. The key to this example is that 
shareholder proposals for long-term executive compensation that pass 
by a small margin can be considered as a close-to-random assignment 
to a long-term orientation treatment for a company. 

Based on data for S&P 1500 companies and some additional widely 
held U.S. companies for the period 1997–2011, Flammer and Bansal 
identify a total of 808 long-term executive compensation proposals, of 
which 65 were found to have passed within 5% of the majority thresh-
old (of 50% of the votes) and 152 within 10% of the majority threshold. 
The outcome of interest (Y ) is the rate of abnormal returns on the day of 
the shareholder meeting. 

They then estimate 

.̃ Pass + P v  , ° ) + P v  , ° r ) + ˛ (4.11) Yit = it l ( it  l r ( it  it , 

where Yit is the outcome variable for company i on the day of the pro-
posal vote, Passit is a dummy variable equal to 1 if a long-run compensa-
tion proposal passed, and the other two terms are polynomial functions 
that include the vote shares as well as other covariates, one for frms 
where the proposal did not pass (Pl (.)) and the other for proposals that 
did pass (Pr (.)). The estimated value of ̃ , given by ̃ ˆ, measures the effect 
of the compensation plan on the value of the frm and is the difference 
in the intercept of the two functions at the cutoff point. 

Equation (4.11) may be used with or without the polynomial terms. If 
the sample is restricted to close calls, say proposals that pass within 5% 
of the majority threshold, the polynomial terms might be omitted (so we 
simply compare averages on each side of the cutoff) or linear functions 
used. Flammer and Bansal argue that including the polynomial terms, 
and using all 808 data points, allows for a more effcient estimate of the 
effect of passing the proposal, but not all researchers would agree. 

4.4.1 Extensions and Further Considerations 

We note that the Regression Discontinuity technique relies on the idea that 
the only jump is the discontinuity under consideration. For this to be reason-
able, it is important that the discontinuity not coincide with other jumps. 
More formally, we require continuity in the running variable, outcome, and 
covariates (if any) at the cutoff in the absence of treatment. Continuity is not 
assured a priori: For instance, many people retire at 65, but other relevant 
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series jump at the same time, such as Medicare or senior discounts. These 
risks confound our efforts to measure the impact of retirement on such out-
comes as the pattern of household spending. 

It is good practice to check for continuity. A popular technique is to graph 
the distribution of the running variable to see whether there are any jumps 
near the cutoff, and to graph covariates against the running variable, again 
looking for any possible jumps. It is not possible to check the continuity of the 
outcome variable because, by construction, we expect a jump at the cutoff. 
But it may be useful to do a placebo test: Pick one or more cutoffs that are 
not at the point of interest and do a regression discontinuity analysis. There 
should be no effect, but if there is, then the model may be in doubt. 

The discussion so far has assumed a sharp discontinuity, so at the cutoff, 
the probability of treatment suddenly went from 0 to 1 and is not subject to 
manipulation. In reality, many discontinuities are fuzzy, so the probability 
of treatment jumps by less. For instance, at the age of 65, the probability of 
being retired might rise from 30% to 70%. This means that close to the cutoff 
there may be treated as well as non-treated individuals, as Figure 4.10 shows. 
The techniques needed to measure the impact of treatment (retirement) on, 
for instance, household consumption spending will be somewhat different. 
The most common approach is frst to regress treatment (i.e., retirement) on 
an exogenous variable such as age – either in a linear or logistic regression 
– and then use the predicted probability of treatment on the right-hand side 
of a consumption regression. This two-stage least squares (TSLS) approach is 
tantamount to treating age as an instrument for retirement, and retirement 
is closer to an “intention to treat” rather than a defnitive treatment per se. 

FIGURE 4.10 
Sharp versus Fuzzy discontinuity. (The black line shows the probability of treatment under 
a sharp discontinuity design, while the dashed line traces the probability of treatment if the 
discontinuity is “fuzzy”.) 
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We return to the technique of instrumental variables later in this chapter. A 
useful way to think of this is that we are trying to measure ˜

˜ 
Y
P , which is the 

response of the outcome variable to a change in the probability. When the 
discontinuity is sharp, ˜ = 1, given by the distance AD in Figure 4.10. This P 
is no longer the case with a fuzzy discontinuity, where ˜P is given by the 
distance BC. The probability of retirement may depend on variables, often 
unobserved and potentially subject to manipulation, other than a person’s 
age. By isolating the change in the probability of retiring that is attribut-
able to age, we purge the probability of retirement of infuences that can be 
altered by the individual and can then identify the effects of exogenously 
driven retirement on the outcome of interest. 

There are variations on the theme. A regression kink design looks not for a 
jump but for a kink in the outcome response function at some cutoff. David 
Card et al. (2015) used such a design to estimate the effect of unemployment 
benefts on the duration of unemployment in Austria. 

4.4.1.1 Implementation 

Regression discontinuity analyses may be performed easily enough in Stata 
and R, thanks to the efforts of Calonico et al. (2017). In Stata, the rdplot com-
mand generates graphs such as those in Figures 4.11 and 4.12; the rdbwselect 
command provides fexibility in determining the optimal bandwidths (on 
each side of the cutoff) for local regressions; and the rdrobust command for-
mally measures, and tests the signifcance of, the LATE. There are equivalent 
commands in Python. The relevant packages for R and Python may be found 
at https://rdpackages.github.io/. 

4.5 Instrumental Variables 

Imagine that you run a bank and decide to offer credit cards to some of your 
customers. You would like people to use your credit card for their spending 
(Yi), thereby generating fee revenue for the bank. To measure the impact of 
your credit card campaign, you offer credit cards to a random sample of your 
clients – this is the treatment (Ri) equal to 1 for those who get the offer and 0 
otherwise. Spending is also infuenced by other “control” variables, such as 
the client’s age or income (the variables Aji ) as well as random effects that we 
cannot or do not measure (˜ i). 

The directed acyclic graph (DAG) for this case is shown in Figure 4.11. 
Assuming the effects to be linear, we may construct a regression of the form. 

Yi = +° ˛0Ri + ˜˛ j Aji + ˝ i (4.12) 
j 

https://rdpackages.github.io/
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FIGURE 4.11 
The directed acyclic graph (DAG) for the effect of offer of treatment (R) on outcome (Y). (Note: 
ε is an unobserved “error” variable, hence the dotted arrow. Other observable infuences on Y 
are represented by A.) 

which may be estimated easily enough. The effect of the credit card cam-
paign on spending is given by the estimated value of ˜0. 

Unfortunately, the problem is never this simple, because not everyone 
accepts the offer of a credit card, so we have a randomized trial with non-
compliance. If Ri is defned as an offer of a credit card, then ˜ 

0  measures the 
effect of the intention to treat. This may not be what we need. It combines two 
distinct effects – the proportion of people who opt for a card and the spend-
ing behavior of those who accept a card. Often, we are interested in analyz-
ing these effects separately so that we may seek ways to (i) increase uptake 
and (ii) increase spending, given uptake. 

In this case, we might be tempted to measure the treatment as whether or 
not the client accepts a new credit card (Ti) rather than just whether they were 
offered one. Then we might want to estimate 

Yi = +° ˛0Ti + ˜˛ j Aji + ˝ i (4.13) 
j 

The diffculty here is that those who accept a credit card are unlikely to 
be typical. Perhaps they are more needy, enjoy spending, or are unusual in 
ways that we cannot easily measure. So, if we compare those who accept 
a card with either those who did not accept a card or those who were not 
offered a card, we do not have a quasi-random assignment of treatment. 
The unobserved characteristics of the acceptors may make them more 
prone to spending and more likely to accept the credit card offer. In this 
case, our measure of the effect of treatment ˜ 

0  from Eqn. (4.13) may be 
biased: The treatment (Ti ) may be picking up the effects of other variables 
that simultaneously raise the probability of accepting a credit card and 
spending. 

The problem may be clarifed with the help of the DAG in Figure 4.12. The 
unobserved characteristics (U ) affect the treatment (T), and outcome (Y), so 
some of the observed infuence of the treatment – getting a credit card – on 
the outcome is attributable to the effect of the unobserved U ; here U  is a 
confounder. 

The solution is to fnd an instrumental variable (Z) that causes variation in 
T but has no direct effect on Y , meaning it only affects Y  via its effect on T. 
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FIGURE 4.12 
The directed acyclic graph (DAG) for the effect of treatment (T) on outcome (Y) with an unob-
served confounder (U). 

Then we construct a new version of treatment, call it T̂, that represents varia-
tion in treatment that is purged of the infuence of the unobservables that are 
correlated with Y . 

The situation is illustrated in the DAGs in Figure 4.13. On the left-hand 
side, we see how the instrumental variable affects treatment and hence Y . By 
creating a variable T̂ that varies with Z, but not with U , we get the right-hand 
DAG, and it now becomes possible to get an unbiased measure of the infu-
ence of treatment on outcome. 

In our example, the offer of treatment (T) would potentially be a suitable 
instrument because acceptance of a new credit card is unlikely unless pre-
ceded by an offer of one. 

Mechanically, the commonest technique is to use TSLS. First, regress the 
treatment on the instrumental variable(s) and other exogenous controls in a 
frst-stage equation of the form: 

= + Z + c̃ A + e (4.14) Ti a b i j ji i 

j 

From this, get the predicted values of Ti (i.e., Ti ), and use these instead of 
Ti in Eqn. (4.13). These predicted values will no longer be infuenced by the 
unobserved U s. In practice, most software packages allow one to estimate 

FIGURE 4.13 
The directed acyclic graph (DAG) for the effect of treatment (T) on outcome (Y) with an instru-
ment (Z). 
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TSLS with a single command, such as ivregress in Stata, and extract the effect 
of treatment in ˜ 

0 . Other estimation methods are also possible. 
Instrumental variables estimation is widely used by economists (e.g., 

Boonperm et al. 2013), but it does not always work well. The main challenge is 
fnding a suitable instrumental variable (or variables). A good instrument (Z) 
needs to be strongly correlated with the treatment indicator (T) – instrument 
relevance – while at the same time being uncorrelated to the error term in 
Eqn. (4.2) – instrument exogeneity, or the “exclusion restriction.” It is possible 
to test for instrument relevance, using Eqn. (4.14), but the case for instrument 
exogeneity has to be made using logic, theory, or common sense. Murray 
(2005, p. 18), in his review of IV estimation, notes that 

all instruments arrive on the scene with a dark cloud of invalidity hang-
ing overhead … [and] the credibility of IV estimates rests on the argu-
ments offered for the instruments. 

4.5.1 Simulation Example 

To give a sense of how IV estimation works, consider the following example 
that is simulated with 1,000 observations. Suppose that a consumer’s credit 
card spending (Y) depends on whether they accept another credit card (the 
treatment T), their income (A), an unobservable factor (U ), and further ran-
dom elements (uY), as follows: 

= + 1.5 T +2 U +4 + YY 3 A u  (4.15) 

All variables are normalized, and U , A, and uY are drawn from standard 
normal distributions. The true infuence of treatment – which is set to 1 if 
the consumer has accepted another credit card and to zero otherwise – on 
spending is 1.5. Let us further suppose that acceptance of another credit card 
is infuenced by income, the unobserved factor, and some exogenous outside 
infuence (Z), giving 

T = 1  if  0.05 + 0.1 U + 0.8 +Z uu > 0 
(4.16) 

T = 0  otherwise 

We are not able to estimate Eqn. (4.16) because U  is unobservable. If we 
omit U , our regression estimate (from Eqn. 4.15) gives 

Y = 2.00 + 3.50 T + 3.85 A 
(4.17) 

p < .001  p < .001  p < .001 

The estimate of the treatment effect, at 3.5, is too large – it should be 1.5 – 
because it is picking up not just the effect of T but of U  (working via T). 
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An estimate of the frst-stage (“participation”) Eqn. (4.16) gives 

T̂ = 0.52 + 0.21 Z − 0.001 A (4.18) 
p < .001  p < .001  p < .95 

Using the predicted values (T̂) from this equation in the second-stage Eqn. 
(4.15) gives 

Y = 2.07 + 1.46 T̂ + 3.87 A (4.19) 
p < .001  p < .001  p < .001 

The coeffcient here on T̂, at 1.46, is very close to the theoretical value of 
1.5 established in the simulation. The t-statistic on the coeffcient of T in Eqn. 
(4.17) is 28.1, compared to 3.6 in Eqn. (4.19). Ignoring the endogeneity issue 
may give estimates that are precisely wrong, while IV estimates are approxi-
mately right. 

Despite the diffculty in identifying compelling instruments, IV is popular 
because it is frequently the only identifcation technique available. We have 
used the approach to help measure the impact of microcredit in Thailand: 
Borrowers may be different from non-borrowers, but the Thailand Village 
Fund makes a fxed amount of credit available per village. In smaller villages, 
the probability of a loan (T) is higher, so village size can serve as an instru-
ment for microcredit borrowing (Haughton and Khandker 2009). We have 
also looked at the impact of different scripts in a fundraising telemarketing 
campaign. Not everyone picks up the phone, but calling someone is an instru-
ment that helps drive whether one picks up the phone, while not infuencing 
whether they donate, given that they pick up the phone (Lo and Li 2021). 

If we assume that everyone responds to treatment (such as a credit card 
offer) in the same way, we have the homogeneous response case, and the 
results may plausibly be generalized to the wider population, giving the 
results external validity. However, it is often the case that we have heteroge-
neous responses to treatment – women may respond differently compared to 
men, for instance – in which case we only have a LATE on the outcome, and 
there may be low external validity. 

Consider again the campaign to offer credit cards. Using the terminology 
of Angrist et al. (1996), some people may sign up for a credit card even with-
out the offer (“always takers”), some may never accept another credit card 
(“never takers”), a few might give up credit cards when they get another offer 
(“defers”), and the remaining subpopulation responds to the offer (“compli-
ers”). When responses are heterogeneous and a number of assumptions are 
met (Imbens 2014), the IV estimates only measure the effect of treatment on 
the compliers. This might be a special group, not necessarily representative 
of the population as a whole, and it may be diffcult to identify, in which 
case the scope of application of the measure of impact is hard to determine 
(Imbens 2014). 
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The feld of practical causal inference is rapidly expanding. The techniques 
discussed in Chapters 3 and 4 provide an introduction to the feld and should 
be enough to allow the user to get started with the estimation of causal effects. 

Notes 

1. We assumed GPA ~ N (3, 0.4) , and Y = 40 + 10 × + ( )GPA N  0,10 . 
2. Here Y = 40 7 T 10  GPA + ( )+ × +  × N 0,10 , where T is the “treatment,” here induc-

tion into the honors program. 
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5 
Directed Acyclic Graphs 

At the heart of all business decision-making is a desire to know whether A 
causes B. Does an ad campaign boost sales? Does green packaging increase 
customer loyalty? Do pay raises boost worker productivity? 

Sometimes we may be able to infer causality by running an experiment – for 
instance, by piloting green packaging in just one area and tracking the out-
comes relative to other areas. We examine randomized trials in more detail 
in Chapter 3, but in practice, we may not have the opportunity, resources, or 
time to conduct complete experiments. Most of the time we have to make do 
with imperfect data. 

It turns out that under certain circumstances, it is actually possible to “dis-
cover causal structures in raw statistical data” (Conrady and Jouffe 2013, 
p. 17), but as we will see, this is not always easy to do, requires special tech-
niques, and sometimes fails. One of the foremost exponents of this approach 
is Judea Pearl, who won the Turing Prize in 2011 “for fundamental contribu-
tions to artifcial intelligence through the development of a calculus for prob-
abilistic and causal reasoning” (http://amturing.acm.org/award_winners/ 
pearl_2658896.cfm), and whose book Causality (Pearl 2000) remains perhaps 
the most important in the feld, along with a more concise survey (Pearl 2009) 
and the more accessible The Book of Why (Pearl and Mackenzie 2020). The 
approach uses a mixture of logic and statistical correlations to infer (where 
possible) the directions of causality among a set of variables. 

Practically, this approach is implemented through the estimation of directed 
acyclic graphs (DAGs), also referred to as Bayesian Networks, a term coined by 
Pearl. Causal networks are Bayesian Networks that require the relationships 
to be causal. 

In this chapter, we frst show how causality can sometimes be inferred from 
data; explain the logic behind, and main components of, DAGs; discuss the 
software and algorithms needed to estimate DAGs in practice; and develop an 
extended example related to marketing mix that serves to illustrate the appli-
cation of these and related techniques to an important practical problem. 

5.1 Can Causality Be Inferred from Data? 

Suppose we have extensive survey data that show a clear relationship between 
variables A and B: For instance, how thin a person is (A) may be related to 
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FIGURE 5.1 
Graphs of three variables (A, B, and C) with varying causal structures. (Based on Bryant et al. 
2009, Figure 2.) 

the quantity of diet soda that they drink (B). We would like to know whether 
they drink diet soda because they are thin or are thin because they drink diet 
soda. If this is the only information we have, then it is not practically possible 
to infer the direction of causality. 

Surprisingly enough, if we have some additional information, we may be 
able to say something about causality. Suppose, for instance, we have infor-
mation about the age of individuals (variable C). We now set out the possible 
relationships between A, B, and C in the path diagrams shown in Figure 5.1 
(which draws on Bryant et al. 2009). Here, the symbol A ̃  B represents a 
directed “edge” indicating that either A causes B, or they share a common 
latent cause, or both; and the edge A −− B means that either variable causes 
the other, or they share a common latent cause, or both. 

In our example, we know that there is some relationship between A (thin-
ness) and B (diet soda consumption): Formally, A and B are not independent 
(i.e., A B˜ ). However, we do not yet know anything about the causal relation-
ship between the two. 

Given our information on variable C – age in our example – there are now 
four possible cases of interest: 

1. The frst possibility is that A and C are independent, but B and C are 
not (i.e., ˜  and A C ). This is the situation shown in the top left 
panel of Figure 5.1. In this case, we cannot reject the possibility that 
A causes B. This is the only logical possibility; if C caused B and B 
caused A, then C and A would not be independent; and if B caused 
A and C, then A and C would not be independent. 

In our example, if age (C) is unrelated to how thin someone is (A), 
but young people are more likely to drink diet soda (B), then we infer 

˜B C
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˜A 

that thin people drink diet soda, but drinking diet soda does not 
affect how thin you are. If diet soda kept you slender, and is drunk 
mainly by the young, then there would be an association between 
age and how thin you are, but we have ruled this out. 

2. A second possibility, shown in the top right panel of Figure 5.1, is that 
C is independent of B but not of A (i.e., C and B C). If A caused ˜ 
B and is not independent of C, then B would not be independent of C; 
yet we are told it is. So we infer that A cannot cause B in this case, and 
we reject the null hypothesis that A causes B. In our example, this 
is the case where young people are thinner but are not more likely 
to drink diet soda. Here we conclude that diet soda keeps you slim. 

3. The next possibility (bottom left panel of Figure 5.1) is that C is inde-
pendent of both A and B (i.e., A ˜ ˜C and B C). We have assumed 
that there is some relationship between A and B, but the information 
on C is of no help in determining the direction of causality. 

4. Finally, C may not be independent of either A or B (i.e., A ̃  C and 
B C˜ ), as shown in the bottom right panel of Figure 5.1. We cannot 
reject the possibility that A causes B, but it is also possible that B 
causes A, or that neither causes the other, but both are simply buf-
feted by a common cause (such as C, in this case). 

Bryant et al. (2009) illustrate the logic of this situation with a nice example. 
It is well known that greater alcohol consumption is associated with higher 
road fatalities, but is the alcohol causing the deaths, or are the deaths induc-
ing people to drink away their sorrows? 

Using nationwide time series data for the United States from 1947 through 
1993, they fnd that, as expected, there is indeed a correlation between road 
deaths and alcohol consumption per head in the population at large. After 
fltering the data to remove the effects of non-stationarity (Bryant et al. 2009, 
pp. 370–371), they get a correlation coeffcient of 0.341, which we mark with an 
asterisk because it is statistically signifcant: Thus ρ(death, alcohol) = 0.341*. 
However, without further information, we cannot be sure of the direction of 
causality in this relationship. 

They also have information on the average speed on highways and are able 
to estimate the following correlation coeffcients: 

ρ(death, speed) = 0.386* 
ρ(alcohol, speed) = 0.136. 

Following our earlier logic, there is only one way to organize this informa-
tion, which is as shown in Figure 5.2. 

In other words, it is alcohol that causes road deaths, and not deaths that 
lead to more drinking. We now have made a clear causal inference. Geiger 
et al. (1990) further discusse how to identify independencies in DAGs. 



 

    

 

102 Cause and Effect Business Analytics and Data Science 

FIGURE 5.2 
DAG identifying the causes of road deaths. (Based on Bryant et al. (2009). 

The introduction of additional information in order to help make sense of 
causality is somewhat analogous to the use, in regression analysis, of instru-
mental variables to identify the impact of one variable on another, a method 
that we discussed in more detail in Chapter 4. 

5.2 Using DAGs to Infer Causality 

Six months ago your company launched a campaign to sell more backpacks. 
Prior to the campaign, 2% of your customers bought backpacks. Now, six 
months after the campaign, 2.2% of customers are buying backpacks, and 
the marketing department is trumpeting its achievement, arguing that the 
campaign has worked. We assume here that a randomized control group 
is not available for a “Gold Standard” causal measurement. You are almost 
persuaded until your data analyst points out that purchases of backpacks 
among male customers fell from 4% to 3.5% and among female customers 
from 1% to 0.7%. Perhaps the campaign was a failure. At a minimum, you 
want to understand more about what effects were caused by the campaign. 

A DAG can often be created in order to make sense of this situation (which 
is an illustration of Simpson’s Paradox). The process of building a DAG begins 
with the construction of a path diagram, which summarizes the qualitative 
links between variables. As before, variables are shown in nodes, but now 
they are either joined by a directed arc (A ˜ B) that specifes an assumed 
causal direction, or there is no arc, in which case there is, by assumption, no 
direct causal connection between A and B. 

DAGs are built up of sets of just three basic components, as shown in 
Figure 5.3: Indirect connections, common causes, and colliders. Let us intro-
duce each in turn: 

a. An indirect connection is given by A ˜ ˜ BC . 
Here, A causes B, but only via its effect on C. Variables A and B 

are unconditionally dependent, but if C is pre-set, the path between 
A and B is “blocked,” and A and B are now conditionally indepen-
dent, meaning that they are independent, given C. Formally, we have 
A ˜ B and A ˜ | .B C  
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˜A 

FIGURE 5.3 
The three basic component graphs of DAGs. 

b. A common cause occurs when we have A ˜ ° B. C 
In this case, variable C causes both A and B. Again, A and B are 

unconditionally dependent, but if C is pre-set, any further variation 
in A is independent of that of B. Here too A ̃  B and A ˜ | .B C  

c. The third building block of DAGs is a collider, where A ˜ C ° B. 
This interesting situation shows that both A and B cause C, and 

A and B are unconditionally independent. However, for any given 
value of the collider C, A and B are (conditionally) dependent. 
Formally, we say that A and B are d-connected given C, and we write 
this as A ˜ B and B|C. 

We are now ready to return to the backpack advertising campaign. The 
issue here is that gender appears to interact with “treatment” (i.e., with the 
campaign). We may depict this situation with a graph, indeed with a DAG, 
because the graph does not show cyclic behavior. This is shown in Figure 5.4 
and illustrates all three of the basic components of a DAG: There is an indirect 
connection between gender and the sales of backpacks (G ˜ ˜ S); gender C 
is a common cause of the sales campaign and the outcome (S ˜ ° C); and G 
gender and the campaign collide to produce the result on the outcome of 
backpack sales (G ˜ ° C).S 

Our interest is in measuring the effect of the ad campaign (C) on sales (S) in 
order to identify the extent to which the campaign caused a change in sales. 
But there are noncausal paths, including G ˜ C that need to be “blocked” so 
that we can concentrate just on the C ˜ S link, without any contamination. 

Often we use regression to try to measure the strength of the effects. If we 
assume that the effects of the ad campaign (C) on backpack sales (S) are lin-
ear, we might control for gender and estimate 

E( )S = ˜0 + ˜1G + ˜2C (5.1) 

where we expect that β2 will isolate the effect of the ad campaign. 

FIGURE 5.4 
DAG of backpack example. 
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In passing, we note that this only measures the direct or proximate causal 
effect; in more complicated models, there may also be indirect effects that 
need to be taken into account. For instance, if our interest is in the effect of 
gender on backpack sales (in addition to the campaign effect on sales), there 
are two effects to take into account: A direct effect G −°  S and an indirect 
effect G ̃ ˜ S. To measure both of these effects, we do not want to condi-C 
tion on C, so in this case we would need to estimate 

E Z = ˜ + ˜ 1G. (5.2) ( )  0 

Put another way, the coeffcient on G in Eqn. 5.1 does not measure the total 
causal effect of G on S. In epidemiology, this is known as The Table 2 Fallacy 
(Westreich and Greenland 2013). In general, if we need to measure multiple 
causal effects, we need several regression models (see also Baron and Kenny 
1986 on measuring direct versus indirect effects). 

A broader implication of this discussion is that regression coeffcients have 
no causal meaning without an explicitly stated causal structure (Conrady 
and Jouffe 2013, p. 22). 

5.3 When Can DAGs Be Created? 

The identifcation of causal effects, even with the help of a DAG, can be frag-
ile. Following Conrady and Jouffre (p. 342), suppose that there is an unob-
served variable U that infuences both the treatment and the outcome. We 
would want to include this in our regression equation (if the effects may 
be assumed to be linear, or some variation thereon), but are unable to do 
this since we do not observe U. Now we cannot measure the causal effect of 
treatment on the result in an unbiased way. This may also be thought of as a 
case of omitted variable bias, which would only be unimportant if the omit-
ted variables were orthogonal to the other right-hand-side variables in the 
regression – which (by assumption) is not true here and is rare in practice. 

More generally, when can we use DAGs with a reasonable degree of hope 
that they might illuminate the direction of causality? It turns out that three 
major conditions need to hold (Spirtes et al. 2000). 

The most important of these is that the set of variables be causally suffcient. 
This means that there are no omitted variables that cause any two of the 
variables included in the model that we have built. Taken literally, this would 
imply that we can never infer causality because it is impossible to be sure that 
we have taken every possible infuence into account. No wonder Democritus 
despaired of fnding any causal laws! In practice, the analyst needs to be able 
to make a persuasive case that nothing that is likely to be important has been 
left out of the model. 
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The second condition is that the joint distribution of all the variables in 
the set satisfes a causal Markov condition. That means that one only needs to 
condition on parents (i.e., parent variables in the DAG) and not on grandpar-
ents, uncles, aunts, or siblings to fully capture the probability distribution for 
any variable. There may be a chain of causes, but they all work their effects 
through the proximate determinants of the values of a variable. 

The third assumption is that of faithfulness, which means that for any 
pair X, Y, X and Y are dependent if and only if there is an edge (i.e., a link) 
between X and Y. 

There is no need to be paralyzed because we do not have a perfect mecha-
nism for inferring causality. The logic of DAGs is powerful and can often be 
very helpful as we work to identify those variables that we can actually use 
in order to have effects on outcomes. 

5.4 Estimating DAGs 

How can we measure causal effects in practice? Clearly, we have to assume 
that our model is complete, in the sense that we have information on all rel-
evant variables, and there are no relevant omitted variables. This still does 
not guarantee that we will be able to identify causality, but it opens the 
possibility. 

The estimation of DAGs requires the use of specialized software and may 
be attempted using one of a large number of possible algorithms. There are 
a number of software packages that can then be employed, the main ones 
being TETRAD, GeNIE, bnlearn in R, and BayesiaLab. 

In order to construct a DAG, all one needs is multiple observations – from 
a data survey, for instance – for some variables. The software then seeks to 
identify the relationships among these variables. 

The best-established solution mechanism is the Partial Correlation (PC) 
algorithm, due to Scheines et al. (1994). It frst appeared as part of the Tetrad 
project and is maintained by the philosophy department at Carnegie Mellon 
University (2025). It is included as an option in other software packages such 
as GeNIE and bnlearn. The PC algorithm is one of a class of constraint-based 
algorithms that also include the greedy search (GS) algorithm. These con-
struct an undirected network and then identify colliders and other directed 
links. 

The frst step is to lay out all the variables (nodes or vertices) and create 
edges joining every node to every other node in an undirected graph. Then 
edges are removed from pairs of variables that are unconditionally inde-
pendent or are independent after conditioning on a subset of the remaining 
variables. The tests for independence are based on correlation tests for con-
tinuous data and contingency table tests for categorical data.1 Tetrad allows 
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one to build DAGs provided all the variables of interest are continuous, or are 
categorical, but does not allow one to mix the two. 

The second step is to orient the remaining links between variables, start-
ing with colliders. If X and Y are linked, and Y and Z are linked, but X and 
Z are independent (unconditionally, or conditionally on the variables other 
than Y), then we may conclude that X→Y←Z. For the cases where X→Y, Y 
and Z are linked, but ˜Y Z and X and Z are not correlated (conditional on 
Y), we may infer that we have an indirect connection of the form X→Y→Z. 
Further details are given in the Tetrad manual (Carnegie Mellon University 
2025); a discussion of the choice of algorithm, in the context of Tetrad and 
other statistical packages that create DAGs, may be found in Haughton et al. 
(2006). Statistical packages that construct DAGs typically allow the user to 
impose some a priori known links. If the entire DAG is known a priori, its 
estimation reduces to the estimation of a structural equation model (SEM; 
see Chapter 11). 

There are many other possible algorithms that can be used, and they often 
generate somewhat different DAGs. Score-based algorithms search among 
all possible DAGs for the one that fts best, measured typically using the min-
imum description length (MDL), which is an implementation of the BIC cri-
terion. This turns out to be a diffcult optimization problem, in part because 
equivalences may create many local optima. More recent approaches include 
efforts based on sparsest permutations (Raskutti and Uhler 2014). Larranaga 
et al. (1996) have tried to use genetic algorithms, and Larranaga et al. (2013) 
have written a survey of the subsequent literature. The hunt for good algo-
rithms remains an active research feld. Bessler and Loper (2001) estimate an 
interesting model of the causes of economic development. 

5.4.1 DAGs and Theory: Publishing Productivity 

Some advocates of DAGs and other “discovery algorithms” argue that these 
may largely substitute for theory and that common sense, coupled with 
attention to the underlying statistical assumptions, suffces in much of the 
social sciences (Spirtes et al. 2000). In an interesting example, Spirtes and his 
collaborators examine a study by Rodgers and Maranto (1989) that seeks to 
explain the determinants of publishing productivity, as measured by the rate 
at which publications are cited. The data come from 162 responses to a survey 
of academic psychologists who obtained doctoral degrees between 1966 and 
1976, and the variables include measures of “ability” (based on undergradu-
ate performance), the quality of the graduate program (GPQ), the number of 
early publications, the quality of the frst job (QFJ), gender, and publication 
rate. 

There are several possible theories that seek to explain publishing produc-
tivity. A standard human capital model has the ability (ABILITY) to infu-
ence both the GPQ and QFJ, through these channels driving the publication 
rate (PROD), as shown in the top left panel of Figure 5.5. A version of the 
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FIGURE 5.5 
Graphs showing causes of research productivity in psychology. (Note: Top left panel shows 
human capital model; top right panel shows “screening” model; bottom left panel shows 
Rodgers and Maranto (1989) graph; bottom right panel has DAG from Spirtes et al. (2000). GPQ 
is quality of graduate program attended; QFJ is quality of frst job; PREPRO is pre-doctoral 
publications; PUBS measures publication rate; and CITES measures citation rate.) 

“screening” hypothesis supposes that individuals with ability need to signal 
their capability by attending a high-quality graduate program, and this in 
turn propels them into a high-quality frst job, which provides the setting for 
scholarly productivity, as shown in the top right panel of Figure 5.5. There 
are a number of other possible models, and after reviewing the literature and 
trying several models, Rodgers and Maranto eventually settle on the path-
ways shown in the bottom left panel of Figure 5.5. 

Using the same data, Spirtes et al. (2000) use TETRAD to create a very simi-
lar graph – shown in the bottom right panel of Figure 5.5 – using a process 
that they say “takes a few minutes.” Their conclusion is provocative: “Any 
claim that social scientifc theory – other than common sense – is required to 
fnd the essentials of the Rodgers and Maranto model is clearly false” (p. 102). 

The challenge posed here goes well beyond the specifcs of this particular 
case – it is odd, for instance, that in this example “ability” has no apparent 
direct effect on PUBS – to the issue of how to divide time and effort between 
theory and numbers, and even to the nature of what constitutes useful 
knowledge. 
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5.5 Case Study: Marketing Mix 

A central problem for marketers is how to allocate a promotional budget 
across different media – whether to print ads, social media, TV spots, free 
samples, coupons, and so on. The standard approach is to vary the alloca-
tion of promotional spending from area to area and then use this variation 
to identify the contribution of the different activities to the objective (such as 
sales or proft). The identifcation is typically done using time series regres-
sion techniques, along the lines outlined in Chapter 2 and Chapter 6. 

Consider the case of a pharmaceutical company that wishes to increase the 
number of prescriptions that are to be written for a relatively new antibiotic 
drug. The company’s strategy is to try to market directly to physicians, using 
a variety of methods including personal visits (“calls”), other interventions 
with physicians (“contacts”), advertising in medical journals, and the provi-
sion of free drug samples. However, it is not known which of these strate-
gies has the highest payoff, as measured by the number of new prescriptions 
written in the period following the promotional activities. 

To illustrate how one might proceed, we construct a synthetic dataset 
based on the real-world case reported by Lim et al. (2008). They have monthly 
data on the number of new prescriptions (new_Rx), and 11 other variables, 
collected over a period of 71 months from a promotional campaign for a new 
antibiotic. The original data are not available, so we have created a simulated 
dataset based on the correlation matrix and summary statistics. The essential 
information on the variables, including their defnitions, is shown in Table 5.1. 

TABLE 5.1 

Summary Data on Variables Related to a Marketing Campaign for a New Antibiotic 

Variable Mean Std. Dev. Description 

new_Rx (nrx) 1,080,544 512,580 Number of new prescriptions dispensed 
Calls (cal) 38,965 17,163 Visits by pharma reps to physicians 
contacts_n (con) 54,114 21,607 Contacts with physicians for a given 

product 
contacts_totcost (coc) 4,357,318 1,740,648 Cost related to contacts with physicians 
contacts_unitcost (cpc) 87.9 10.7 Cost related to contacts, per contact 
minutes_withphys (min) 182,602 72,862 Time spent with physicians 
ads_n (ads) 14.1 6.6 Number of distinct ads 
ads_pages (adp) 39.2 20.2 Number of ad pages 
ads_totcost (jas) 217,927 112,178 Cost of ads in medical journals 
samples_n (sam) 1,094,355 627,397 Samples provided to physicians 
samples_units (eus) 3,556,611 1,743,432 Samples provided to physicians, 

weighted by sample size 
samples_retailval (rvs) 8,582,260 3,820,827 Retail value of samples provided to 

physicians 

Note: Observations cover 71 months. Each variable refers to the quantity per month. 
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TABLE 5.2 

Regression Results for Basic Regression Model of New Prescriptions 

Variable Coeffcient p-value Coeffcient p-value 

Calls (cal) 
contacts_n (con) 
contacts_totcost (coc) 
Contacts_unitcost*(cpc) 
minutes_withphys (min) 
ads_n* (ads) 
ads_pages* (adp) 
ads_totcost (jas) 
samples_n (sam) 
samples_units (eus) 
samples_retailval (rvs) 

12.4 
−31.3 

0.19 
−11.3 

1.23 
34.0 
2.71 

−1.56 
0.48 

−0.14 
0.08 

0.47 
0.04 
0.12 
0.02 
0.46 
0.02 
0.61 
0.01 
0.05 
0.08 
0.00 

33.0 

−1.21 
0.23 

0.07 

0.00 

0.01 
0.01 

0.00 

R squared 0.93 0.92 

Note: * coeffcients are per thousand units. Dependent variable is new_Rx (number of new 
prescriptions written). Descriptions of variables are shown in Table 5.1. 

A naïve approach to measuring the effect of the available variables on the 
outcomes would be to estimate a linear regression, where new_Rx is the 
dependent variable and the other 11 variables are the regressors (note that 
the data were not differenced or otherwise transformed). This substitutes 
data for thought, so it should not be surprising that the results – shown in 
Table 5.2 – are hard to interpret. For example, higher spending on journal ads 
is associated with fewer new prescriptions, other things being equal, which 
seems odd. The high degree of multicollinearity among the right-hand-side 
variables contributes to the lack of statistical signifcance: Four of the vari-
ables are not statistically signifcant at the 10% level (i.e., they have p-values 
greater than 0.1). 

At this point, some researchers might use a stepwise or lasso procedure to 
trim the variables (features) in the model. The results of a forward stepwise 
regression, which included only variables that are signifcant at the 10% level 
or better, are shown in the right-hand columns of Table 5.2. The apparently 
good news is that the ft is almost as high as for the larger equation, while the 
model is more parsimonious. The problem here is that the use of stepwise 
regression may be incorrect (see Chapter 2), and in the current example does 
not eliminate the surprising negative correlation between spending on jour-
nal advertising and the number of new prescriptions, which undermines the 
credibility of the model. 

An alternative, and tempting, route is to reduce the number of variables to 
just a few factors (see Chapter 11). In Table 5.3, we show the varimax-rotated 
factor loadings that apply to the 11 variables; the underlying variables fairly 
naturally fall into two groups, a frst factor that refects the infuence of 
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TABLE 5.3 

Factor Loadings and Coeffcients for Marketing Mix Model 

Factor Loading Coeffcients 

Factor 1 Factor 2 Factor 1 Factor 2 

Variable 
new_Rx (nrx) 
Calls (cal) 
contacts_n (con) 
contacts_totcost (coc) 
contacts_unitcost* (cpc) 
minutes_withphys (min) 
ads_n* (ads) 
ads_pages* (adp) 
ads_totcost (jas) 
samples_n (sam) 
samples_units (eus) 
samples_retailval (rvs) 

0.940 
0.945 
0.918 

−0.769 
0.941 

0.886 
0.845 
0.887 

0.910 
0.936 
0.954 
0.402 
0.416 

0.149 
0.151 
0.144 

−0.135 
0.151 

−0.014 
−0.028 
−0.051 

0.129 
0.120 
0.132 

−0.105 
−0.109 
−0.094 

0.162 

−0.117 
0.375 
0.406 
0.446 

−0.034 
−0.015 
−0.051 

Note: Only factor loadings greater than 0.4 are shown here. These are rotated factor loadings 
(using the varimax method). 

contacts and samples, and a second factor that might be labeled “journal 
advertising.” The coeffcients applicable to the variables, which then pro-
duce the factors, are shown on the right-hand side of Table 5.3. We can now 
regress the number of new prescriptions on these two factors, as shown in 
Table 5.4. The overall ft is still good, but we have lost some information 
along the way and have certainly lost sight of the causal connections. 

A more defensible approach is to try to build a DAG, and the result of this 
effort is shown in Figure 5.6. This particular graph was built using a modi-
fed PC algorithm called PC Pattern, using the Tetrad IV package. There is a 
node for each of the 13 variables, including the number of new prescriptions, 
which is the variable of most interest to us. The values attached to each node 
are simply the mean values and are the same as in Table 5.1. 

TABLE 5.4 

Regression Estimates for Two-Factor Marketing Mix Model 

Coeffcients p-Values 

Variable 
Factor 1 (“contacts and samples”) 0.916 0.00 
Factor 2 (“journal advertising”) 0.200 0.00 

R squared 0.88 

Note: Coeffcients are standardized. 
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FIGURE 5.6 
DAG for marketing mix model. 

The DAG has a series of directed links (“edges”) that indicate the direction 
of causality (as inferred from the data). The numbers on each of the edges 
measure the effect of each parent node on its child and are the coeffcients 
from linear regressions of the value of the child on the values of its parents. 
So, for instance, when the number of contacts (con) rises by one, the retail 
value of prescriptions (rvs) goes up by $87.6. 

In this example, only one variable has a direct effect on the number of new 
prescriptions written, and that is the retail value of samples provided to phy-
sicians. Seven variables have an indirect effect in that they frst infuence the 
value of samples and, through this indirect route, change the number of new 
prescriptions written. 
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Indeed only four “primary” variables infuence the number of new pre-
scriptions, and these are the ancestors that do not themselves have any par-
ents. In our example, these are cpc, min, coc, and eus. A regression of nrx 
on these variables would measure the impact of these causes, and one could 
then apply linear programming to optimize the way in which a limited mar-
ket budget should be spent, given the goal of selling more of the drug. 

The variables that measure the extent of advertising in medical journals 
are shown in the model as being the result of additional prescriptions, not 
a cause. It is possible that the more was prescribed, the more advertising in 
journals was expanded. 

Our results are specifc to the situation being studied here and do not have 
“external validity” in the sense of being immediately applicable to other con-
texts. Every situation calls for its own careful analysis. But as studies of this 
nature are repeated, practitioners will gradually build up a better sense of 
where the lines of causality run, and hence what does and does not work 
when one is trying to market a new product. 

5.6 Estimating DAGs: Practical Considerations 

In estimating DAGs, one frst has to choose which software package to use. 
The main choices are one of the free packages (Tetrad, GeNIe, bnlearn in R) 
or a commercial product such as BayesiaLab. All offer a variety of solution 
algorithms, but they differ substantially in the quality of the graphics and in 
the user interfaces and options available. 

The choice of appropriate solution algorithm can be daunting. Figure 5.7, 
from Tetrad, shows a box with data in the center of a wheel, with spokes 
pointing to 17 distinct possible algorithms, fve of which are variants of the 
PC algorithm discussed above. 

Figure 5.8 shows the result of applying Tetrad’s PC algorithm to data related 
to churn. The data come from the customer database of a wireless provider, 
which was interested in determining which variables infuence churn (mea-
sured as a binary variable that is set to one if the customer switches to another 
provider). Many of the variables are perceptual, while others measure sociode-
mographic characteristics such as income or household size, or variables 
related to the quality of service. Rather surprisingly, the likelihood of switch-
ing to another provider (“lswitchinglik”) is only infuenced by the customer’s 
satisfaction with the service (“lsatisfaction”), and there are no clear infuences 
on what drives satisfaction. This does not point the way toward clear solutions 
aimed at reducing churn but may be a useful reality check nonetheless. 

Figure 5.9 shows the result of the same exercise, again using the PC algo-
rithm, but using GeNIe rather than Tetrad. The result is substantively the 
same. One link could not be directed by the algorithm (between the number 
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FIGURE 5.7 
The spectrum of DAG solution algorithms in Tetrad. 

FIGURE 5.8 
Tetrad PC algorithm applied to churn data. 
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FIGURE 5.9 
GeNIe PC algorithm applied to churn data. 
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of cell phones in the household and spending on wireless service) and had 
to be determined manually. One nice feature of GeNIe is that it is straight-
forward for the analyst to impose a direction of causality. For instance, age 
might infuence spending, but spending cannot change your age (which 
is clearly exogenous), so it makes sense to specify this before the software 
is asked to search for causal links. This and some other sensible restrictions 
have been imposed prior to constructing the DAG shown in Figure 5.9. This 
graph is somewhat more helpful than the Tetrad version: Not only does sat-
isfaction affect the amount of churn, but so does the likelihood of the house-
hold acquiring more cell phones (“lmorecellslik”). Here too the perceptual 
variables appear to have no effect on churn. 

The Blearn package in R (Scutari 2010) offers a very wide range of algo-
rithms, including the grow-shrink (GS) constraint-based method, hill-
climbing approaches, and hybrids of the two.2 

The BayesiaLab approach to constructing DAGs begins by discretizing all 
variables before applying any algorithms. It then relies on score-based algo-
rithms published by its authors (Conrady and Jouffe 2013). The package is 
marketed to business analysts (and academics who talk to businesspeople). 
One particular strength is that it has an implementation of Pearl’s “do” opera-
tor, which allows one to observe what happens when a variable is not only 
observed but also changed (by the business, for instance). This allows one 
to see the effects of an intervention, such as spending more money on a par-
ticular marketing mode. Figure 5.10 shows the BayesiaLab tabu algorithm, 

FIGURE 5.10 
The BayesiaLab tabu order algorithm applied to the churn data. 



 

116 Cause and Effect Business Analytics and Data Science 

FIGURE 5.11 
The BayesiaLab EQ algorithm applied to the perception variables (on features of a wireless 
service) in the churn data. 

applied to the churn problem, while Figure 5.11 shows the EQ algorithm. 
As with the other implementations of DAGs to this problem, the perception 
variables are linked with one another and with a few of the demographic 
variables, but satisfaction is still the only variable that appears to infuence 
the likelihood of churning. 

5.7 Conclusion 

The use of DAGs is still relatively rare among business analytics or health-
care analytics professionals; perhaps they are less well known, and perhaps 
because standard regression techniques can be applied so quickly and eas-
ily. This is unfortunate, because DAGs are relatively straightforward to con-
struct and interpret, and as long as the number of variables is not too large, 
can be very useful in helping to identify causal paths. 
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As with all techniques, there is some art involved in getting DAGs to 
“speak,” and they cannot be used in a purely mechanical way. But at a mini-
mum they can offer a check against received wisdom: In the marketing 
example presented in Section 5.4, the DAG-based analysis helped make it 
clearer that print advertising likely followed, rather than led, the growth rate 
of new prescriptions. This may call for the marketing department to change 
the way it spends its budget. 

Not all business problems are amenable to DAGs, and nor are DAGs always 
needed. In the next four chapters, we examine the role of uplift analytics, 
which explores the ways in which individual data on sales (experimental 
or observational) may be used to determine how best to target spending on 
such items as advertising or how best to change the type of product that the 
frm offers. 

Notes 

1. This typically assumes that the data, possibly transformed, are multivariate 
normal. 

2. The Blearn package includes the following algorithms: 

Constraint-based structure learning algorithms: Grow-Shrink (GS); Incremental 
Association Markov Blanket (IAMB); Fast Incremental Association (Fast-
IAMB); Interleaved Incremental Association (Inter-IAMB). 

Score-based structure learning algorithms: Hill Climbing (HC); Tabu Search 
(Tabu). 

Hybrid structure learning algorithms: Max-Min Hill Climbing (MMHC); 
General 2-Phase Restricted Maximization (RSMAX2). 

Local discovery algorithms: Chow-Liu; ARACNE; Max-Min Parents & Children 
(MMPC); Semi-Interleaved Hiton-PC. 

Bayesian network classifers: Naive Bayes; Tree-Augmented naive Bayes (TAN). 

References 

Baron, R. M., and D. A. Kenny. 1986. “The Moderator-Mediator Variable Distinction 
in Social Psychological Research – Conceptual, Strategic, and Statistical 
Considerations”. Journal of Personality and Social Psychology, 51(6): 1173–1182. 

Bessler, D. A., and N. Loper. 2001. “Economic Development: Evidence from Directed 
Acyclic Graphs”. The Manchester School, 69: 457–476. 

Bryant, Henry, David Bessler, and Michael Haigh. 2009. “Disproving Causal 
Relationships Using Observational Data”. Oxford Bulletin of Economics and 
Statistics, 71(3): 357–374. 



 

 

  

 

 
 

118 Cause and Effect Business Analytics and Data Science 

Conrady, Stefan, and Lionel Jouffe. 2013. Introduction to Bayesian Networks & BayesiaLab. 
Laval, France: Bayesia S.A.S. 

Geiger, D., T. Verma, and J. Pearl. 1990. “Identifying Independencies in Bayesian 
Networks”. Networks, 20: 507–534. 

Haughton, D., A. Kamis, and P. Scholten. 2006. “A Review of Three Directed Acyclic 
Graphs Software Packages: MIM, Tetrad, and WinMine”. The American 
Statistician, 60(3): 272–286. 

Larranaga, P., C. M. H. Kuijpers, R. H. Murga, and Y. Yurramendi. 1996. “Learning 
Bayesian Network Sructures by Searching for the Best Ordering with Genetic 
Algorithm”. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems 
and Humans, 26(4): 487–493. 

Larrañaga, Pedro, Hossein Karshenas, Concha Bielza, and Roberto Santana. 2013. 
“A Review on Evolutionary Algorithms in Bayesian Network Learning and 
Inference Tasks”. Information Sciences, 223: 109–125. 

Lim, Chee, Wooi Lim, and Toru Kirikoshi. 2008. “Understanding the Effects of 
Pharmaceutical Promotion: A Neural Network Approach Guided by Genetic 
Algorithm-Partial Least Squares”. Health Care Management Science, 11(4): 
359–372. 

Pearl, Judea. 2000. Causality: Models, Reasoning, and Inference. Cambridge, England: 
Cambridge University Press. 

Pearl, Judea. 2009. “Causal Inference in Statistics: An Overview”. Statistics Surveys, 
3: 96–146. 

Raskutti, G., and C. Uhler 2014. “Learning Directed Acyclic Graphs Based on Sparsest 
Permutations”. https://doi.org/10.48550/arXiv.1307.0366 

Rodgers, Robert, and Cheryl Maranto. 1989. “Causal Models of Publishing 
Productivity in Psychology”. Journal of Applied Psychology, 74(4): 636–649. 

Scheines, R., P. Spirtes, C. Glymour, and C. Meek. 1994. TETRAD II: Tools for Discovery. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Scutari, Marco. 2010. “Learning Bayesian Networks with the Blearn R Package”. 
Journal of Statistical Software, VV(II): 1–22. 

Spirtes, Peter, Clark Glymour, and Richard Scheines. 2000. Causation, Prediction, and 
Search, 2nd edition. Cambridge, MA: MIT Press. 

Carnegie Mellon Univeersity. 2025. Tetrad. http://www.phil.cmu.edu/projects/tetrad/ 
tetrad4.html. 

Westreich, Daniel, and Sander Greenland. 2013. “The Table 2 Fallacy: Presenting 
and Interpreting Confounder and Modifer Coeffcients”. American Journal of 
Epidemiology, 177(4): 292–298. 

Pearl, Judea, and Dana Mackenzie. 2020. The Book of Why. New York NY: Basic Books.

https://doi.org/10.48550/arXiv.1307.0366
http://www.phil.cmu.edu/projects/tetrad/tetrad4.html
http://www.phil.cmu.edu/projects/tetrad/tetrad4.html


 

 

6 
Uplift Analytics I: Mining for the Truly 
Responsive Customers and Prospects 

6.1 Introduction to Target Marketing 

The previous two chapters discussed causal measurement at the population 
or group level. This chapter introduces uplift modeling, also known as true-
lift or net lift modeling, a key technique for target marketing and other appli-
cations of personalization. 

A long time ago, when one of the authors introduced uplift/true-lift mod-
eling at a data mining conference, a prominent data mining expert who had 
written multiple popular technical books was in the audience, and he openly 
rejected the idea and believed the traditional modeling approach would 
work just fne. About a decade later, the same expert spoke at another confer-
ence. To our surprise, this expert was actually “converted.” He not only men-
tioned uplift modeling but also described it as an important emerging feld 
and acknowledged the contribution of our work. In fact, over the past several 
years, many academic scholars and industrial practitioners have increasingly 
been involved in this emerging feld. To our knowledge, however, very few 
books been written to date on the technical aspects of uplift modeling. Thus, 
the frst purpose of this and the subsequent chapter is to introduce the tech-
nical details in a readable fashion. Siegel (2013b) provides a general nontech-
nical description of this approach, but not the technical aspects. 

Uplift modeling is essentially the same as measuring the causal treatment 
effect at the individual (customer) level, relating such effect to individual 
attributes such as age and income, and then applying estimated individual-
level effects to other individuals for target marketing. Before discussing 
uplift, it is important to defne target marketing. Business analytics (or data 
mining or data science) has been widely applied to marketing since the 1980s. 
Many corporations collect large amounts of customer data in order to under-
stand their needs, predict their future behavior, and optimize future contacts. 
Such target marketing methods are part of a more general concept in mar-
keting called Customer Relationship Management (CRM), where customer 
contact data are collected and analyzed to optimize future contacts in order 
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to improve acquisition, development, and retention. CRM, and its predeces-
sor Database Marketing, are key areas where analytic methods are utilized 
to understand customers so that companies can provide the best offers and 
messages to the right customers through the right channels (see, for instance, 
Jackson and Wang 1996, Roberts and Berger 1999, and Maex and Brown 2012). 

Section 6.2 describes the traditional predictive modeling approach for 
target marketing, and you may skip this section if you are familiar with it. 
Section 6.3 describes the concept of uplift/true-lift modeling in detail. If you 
already have some knowledge of the uplift concept and understand why it is 
important, you may jump to Section 6.5 directly. 

6.2 Traditional Predictive Modeling for Target Marketing 

Consider email marketing where the goal is to get more individuals (custom-
ers or prospects) to respond (e.g., click or buy). If there is a historical market-
ing campaign data set that has both a treatment group (where the individuals 
received a marketing message in an email) and a control group* (to which 
no marketing email was mailed) and assuming the treatment and control 
groups were randomly split so they look alike in terms of their individual 
characteristics, i.e., it is a randomized experiment, could we learn about who 
are likely to respond based on historical data so as to beneft future mar-
keting efforts? To maximize return on investment in marketing campaigns, 
predictive modeling through statistical or machine learning techniques has 
been routinely applied to uncover the characteristics of customers or pros-
pects who are likely to respond. The model, which is based on data from a 
previous campaign, can then be used to identify likely responders to simi-
lar future campaigns. This improves effciency by increasing the proportion 
of responders within the contacted group. Such an approach has been used 
very widely since the late 1980s. In addition to typical customer analytics in 
for-proft organizations, it can be applied to non-proft organizations in ana-
lyzing donor data to identify appropriate donors to contact (see Examples 6.1 
and 6.2 in a later section of this chapter). 

Note that our discussion focuses on predictive modeling or supervised 
learning methods for marketing. Customer segmentation through cluster 
analysis is another widely used method; it is an unsupervised learning tech-
nique for customer grouping, typically for more strategic objectives rather 
than maximizing response rates directly, and is beyond the scope of this 
book (see Chapter 2 for a short discussion of clustering). 

* The control group may also receive a “business-as-usual” (BAU) email as opposed to a newer 
or more creative design for the treatment group email. 
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FIGURE 6.1 
Response modeling process. 

A typical application of predictive modeling is developing response mod-
els to identify likely campaign responders. As summarized in Figure 6.1, a 
previous campaign provides data on the “dependent” or “target” variable 
(responded or not), which is merged with individual characteristics, includ-
ing behavioral and demographic variables, to form an analyzable data set. 
A response model is then developed to predict the response rate given the 
individual characteristics. The model is then used to score the population to 
predict response rates for all individuals. Finally, the best list of individuals 
will be targeted in the next campaign in order to maximize effectiveness and 
minimize expense. 

More generally, response modeling can be applied in the following key ini-
tiatives in marketing (see Peppers and Rogers 1997 and Peppers et al. 1999): 

1. Acquisition: Which prospects are most likely to buy your product 
and become a customer? Acquiring customers may be the most excit-
ing but is often diffcult, especially for certain industries (e.g., getting 
someone to buy a movie for online viewing is easier than selling 
an SUV). Acquisition is sometimes decomposed into two steps: (a) 
Converting a pure prospect to a lead and (b) converting a lead to a 
customer. 

2. Development: Which customers are most likely to purchase 
additional products (cross-selling) or to increase monetary value 
(up-selling)? 

3. Retention: Which customers are most retainable? This can be rela-
tionship or value retention: Relationship retention is to minimize 
complete attrition (e.g., closing an account), while value retention is 
to minimize the chance of buying less or reducing value. 

Standard response modeling typically addresses a binary question: 
Among the treated population, who responded and who did not? Commonly 
used techniques include the most classical statistical methods, such as logis-
tic regression and discriminant analysis, and more recent machine-learning 
and advanced-nonlinear techniques, such as decision trees (CART, CHAID, 
C4.5, TreeNet/MART), MARS, neural networks, and support vector machines 
(many of these were reviewed in Chapter 2). The objective of this approach 
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FIGURE 6.2 
A successful standard response model concentrates treatment responders in the top model 
deciles. (Illustrative example created by the authors.) 

is to concentrate treatment responders in the top deciles, as ranked by model 
scores. Figure 6.2 illustrates how a successful model would expect to have 
higher response rates in the top deciles, so the top decile has the highest 
score values. More specifcally, the standard approach aims to differentiate 
between the responders and nonresponders in the treated group while ignor-
ing behavior in the control group. These models are then used to identify 
future likely responders in order to improve the success of future marketing 
campaigns. Typically, the frst few deciles, say top 2 or 3 deciles, are used for 
targeting. The reason is that the marketing budget is limited and marketers 
would want the highest probability of success from its targeting effort. Using 
Figure 6.2 as an example, the average response rate is 2.9%, and if marketers 
want to focus on the top 3 deciles with a cumulative response rate (average of 
deciles 1–3) of 8%, the modeling or data mining “lift over random” would be 
8%/2.9% = 2.8, i.e., the top 3 deciles have a response rate 2.8 times of that of 
random, which is typically considered pretty good. (Another way is to target 
those deciles that have response rates higher than random, and in Figure 6.2, 
they happen to be the frst 3 deciles as well.) 

The standard approach is fawed. Scientifc measurement practice in mar-
keting typically measures “lift over control” by comparing the results to a 
control group (where treatment is NOT given, e.g., no-mail control group in 
the case of direct mails) to causally address whether a campaign is success-
ful. In contrast, the standard response model does not address how the suc-
cess or failure of a treatment is measured, as the objective is to maximize “lift 
over random” rather than “lift over control.” Response measurement and 



 

 

  

123 Uplift Analytics I 

response modeling should instead share the same measure of success, so the 
most appropriate modeling strategy should also maximize the treatment lift 
over control. In this chapter and the next three chapters of this book where 
individual targeting using uplift analytics is the focus, “lift” is defned as lift 
over control, i.e., treatment response rate minus control response rate, and 
“uplift” refers to a set of methods to “up” or maximize lift over control. 

6.3 Uplift Modeling: What and Why? 

In this section, we describe the concept of uplift modeling in detail. In case 
you already have some familiarity with the uplift concept and would love to 
get to the math right away, you may skip to Section 6.5. 

Once upon a time – and this is based on a real story – a team of sophisticated 
PhD-level modelers in a large organization developed marketing response 
models using the traditional approach (including advanced methods such 
as decision trees). As in the approach described above in Section 6.2, data 
from previous marketing campaigns were used to uncover the characteris-
tics of individuals who were likely to respond. The models developed were 
then applied to new campaigns designed by the marketing group, which 
initiated and sponsored the whole effort. This marketing team had highly 
experienced marketing MBAs who understood customer needs through past 
experience, market research, and behavioral analysis. 

In addition to the modeling team and the marketing team, there was also 
a separate measurement team of quantitative MBA-type business analysts 
who were responsible for measuring the success of such a model against a 
random control group. Specifcally, the model-based selected targets (from 
the top two model deciles) were randomly split into treatment and control 
groups. Then the success of a modeled campaign was assessed by the differ-
ence in response rate between the modeled treatment and the modeled con-
trol groups. Table 6.1 provides an (imagined) example. In this table, “Model” 
is the group of customers identifed as “good” (e.g., likely responders) by the 

TABLE 6.1 

Campaign Measurement of Model Effectiveness: Example 

Treatment 
(E.g., Mail) 

Control Increment 
(E.g., No Mail) (Treatment Minus Control) 

Model 1.0 
% Response Rate 
1.0 0.0 

Random 0.3 0.3 0.0 
Model minus random 0.7 0.7 0.0 
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model; in our example, these customers are in the top two deciles, as pre-
dicted by the model. “Random” refers to customers who may be targeted 
randomly. “Treatment” is the group that received a treatment (an offer) 
through direct mail, email, web, or a live channel, and “Control” refers to 
groups to which no treatment is offered. 

Do the numbers in Table 6.1 indicate that this campaign was successful? 
The measurement group said “no,” as it focused on lift over control (which 
was 0%); yet the modeling group said the model no doubt had a great lift 
(over random), which was 1% – 0.3% = 0.7%. Moreover, the modeling group 
believed it was the marketing group’s responsibility to generate lift over con-
trol, but on this, the marketing group did not agree, as they expected the 
modeling group would produce a model to help generate value. The mea-
surement group suggested that perhaps the models were not designed in the 
best way, but the modeling group cited existing literature and industry “best 
practice” at the time to support their work. The marketing group, being the 
sponsor of the campaign and all the related work, was frustrated but was not 
sure what to do. The three teams were pointing fngers at each other, and the 
debate went on endlessly. 

Rather than joining the debate, the newly appointed modeling manager 
believed it was the model that was not designed correctly or appropriately. 
He realized that the approach taken was not meant to maximize lift over con-
trol, but rather only lift over random, so he proposed a new way of modeling, 
which is now called uplift or true-lift modeling (from Radcliffe and Surry 
1999 and Lo 2002). 

Why was “lift over control” the right measurement instead of “lift over 
random”? We explained in Chapter 3 of this book that the gold standard of 
causal measurement is through randomization. In other words, a random 
split between treatment and control can ensure homogeneity of individual 
characteristics between the treatment and control groups, so any observed 
difference in measurement between the two groups can be attributed to the 
marketing campaign itself. When the campaign uses a model, the “lift over 
control” measurement truly assesses whether the model works in generat-
ing responses in campaign selection. The modeled control group represents 
the counterfactual that shows what would happen to the modeled treatment 
group if its members had not received the treatment. 

Traditional response models are designed to identify likely responders and 
often target customers who will take the desirable action anyway, whether 
they receive the marketing interaction or not. Lo (2002) proposed the true-lift 
method to fnd the customers whose decisions will be positively infuenced by 
marketing interaction. The methodology is easy to implement and can be 
used in conjunction with commonly used supervised learning algorithms. It 
is also known as uplift modeling by Radcliffe and Surry (1999) and net lift by 
Lund (2012) and Kubiak (2012). The early articles sparked interest in this new 
feld, leading to numerous discussion sessions in recent data mining and ana-
lytics conferences. The data mining usage report by Rexer (2012) mentions 
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that uplift/true-lift modeling is more popular among corporate practitioners 
and consultants than in academic or government agencies. Rexer (2012) and 
Rexer et al (2016) also report the growing usage of uplift modeling, followed 
by expanded academic and industry focus on this topic in conferences and 
journals. Since the term “uplift” appears to be more appealing and popular, 
we will call this approach uplift modeling in this book, which includes all 
techniques that are designed to generate lift over control. 

Uplift modeling applies to experiments in which a randomly selected con-
trol group is withheld, as described in Lo (2002, 2009), Radcliffe (2007a), and 
Radcliffe and Surry (2011). In marketing, this type of experiment is often used 
for direct mail, email, and outbound phone “treatments” in which a target 
prospect is invited to make a product inquiry or purchase (the “response”). 
Control prospects are randomly selected from the same population to receive 
either no invitation or a typical business-as-usual “champion” invitation 
(for champion-challenger comparisons). In medical experiments, a parallel 
approach would be giving the treatment group a trial medication in order to 
measure its effectiveness relative to a placebo or standard care in the control 
group (see Cai et al. 2011). Siegel (2011) and Chapter 7 of Siegel (2013b) provide 
further nontechnical introductions to this feld. The 2012 presidential cam-
paign also utilized similar techniques for targeting campaign contributors 
and voters, signifcantly affecting the election results, according to Scherer 
(2012), Samuelson (2013), and Siegel (2013a). The presentation by Potter (2013) 
also describes their uplift approach (aka persuasion modeling) in the presi-
dential campaign. 

The business benefts of true-lift modeling are rooted in its ability to iden-
tify four types of targets and the most effcient use of marketing budgets for 
each type. This is shown schematically in Figure 6.3, where we may identify: 

• Sure Things, who will purchase the product whether they are con-
tacted or not. The marketing budget applied to these contacts is 
wasted because it has no effect on their action. 

FIGURE 6.3 
Four types of targets. (Radcliffe 2007b, Siegel 2011, and Kane et al. 2014.) 
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• Lost Causes, who will not purchase the product, whether they are 
contacted or not. The marketing budget applied to these contacts is 
wasted because it has no effect on their action. 

• Do-Not-Disturbs, who have a negative reaction to the market-
ing contact. Perversely, they will purchase if not contacted but will 
not purchase if contacted. The marketing budget applied to these 
contacts is not only wasted but it also has a negative impact on the 
results. For example, populations targeted for retention efforts by 
standard response models could result in withdrawing from current 
products or services. 

• Persuadables, who have a positive reaction to the marketing contact. 
They purchase only if contacted (or sometimes they purchase more 
or earlier, but only if contacted). They are the only effcient targets. 
Modeling techniques discussed in this chapter and Chapter 8 will 
focus on fnding the likely persuadables. 

The purpose of campaign-specifc response modeling is, of course, to iden-
tify the customers (or prospects) who are most likely to respond, where a 
response can be accepting an offer or increasing revenue or sales. 

After a model has been used for a campaign, analysts may measure the 
model’s effectiveness. Table 6.2, which is a generalized version of Table 6.1, 
shows a typical example: A, B, C, and D are the observed response rates of 
a campaign. Alternatively, these values could represent average sales or rev-
enue generated, and so they can be continuous or proportions. If A is sta-
tistically signifcantly larger than C, it means that the model is in the right 
direction of targeting customers who are likely to respond, but it is not suf-
fcient to determine whether the model is effective. For that, we also need to 
ask what would have happened if the customers had not received the treat-
ment, and that is the role of the control group. 

Consider the difference between “Treatment” and “Control.” Assuming 
the effects are statistically signifcant, if A > C and B > D, but A = B, it means 
that while the model is able to pick the likely responders, it does not add 
any “value” to the campaign. That is because A = B implies that the custom-
ers in the model-treatment cell (who received a mail or other solicitation) 

TABLE 6.2 

Campaign Measurement of Model Effectiveness: Generalization 

Treatment 
(E.g., Mail) 

Control 
(E.g., No Mail) 

Increment 
(Treatment Minus Control) 

Model A 
Response Rate 
B A − B 

Random C D C − D 
Model minus random A − C B − D (A − B) − (C − D) 
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responded in the same way as those in the model-control cell (who did not 
receive the treatment). To claim that the model “works” (i.e., “Model” is better 
than “Random”), we not only require that A − B > 0 but also A − B > C − D. 
As a result, the appropriate measure of the campaign gain (in response rate, 
revenue, or sales) due to the treatment is the double difference [(A − B) − 
(C − D)]. Hence, the quantitative business objective of a model, measured by 
its effectiveness for campaigns, is to maximize [(A − B) − (C − D)] rather than 
the (A − C) that is used in the traditional approach. 

The ideal response model pushes treatment responders into the top deciles 
and control responders into the bottom deciles, as illustrated in Figure 6.4, 
where the dark bars represent the treatment responders and the light bards 
represent the control responders. A standard treatment-only response model 
may often concentrate the control responders in each decile at the same rate 
as treatment responders, and the model is not expected to generate any lift 
in the top deciles. This happens most often when the lift of the overall cam-
paign is very small compared to the baseline response. We defne the true-lift 
“Signal-to-Noise” (S/N) ratio as lift divided by control response rate, which 
measures the incremental contribution from the treatment (signal) relative to 
the control response rate (noise). For example, if the control response is 5.00% 
and the treatment response is 5.01%, S/N = 0.01/5 = 0.002, then most of the 
treatment responders are very similar to baseline (natural) responders. As a 
result, there is very little lift signal from the data, so baseline response will 
dominate the standard model. 

The diffculty with lift as a model’s objective is that observations cannot be 
classifed as “lift” responses versus baseline responses versus nonresponses. 
Any treatment responder could be either a baseline responder (i.e., someone 

FIGURE 6.4 
Illustration of an ideal uplift model. 
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FIGURE 6.5 
A conceptual 2 × 2 table. 

who would have responded anyway) or a lift responder (i.e., someone who 
responded purely because of the treatment). The objective is to take the data 
we know, such as who responded and who did not, plus who were treated 
and who were not, to get to the information we want to know: Who are the lift 
responders, in other words, those who responded because of the campaign. 

Based on our initial experiment, we have the information shown in the left 
panel of Figure 6.5, and we may distinguish the following groups: 

• Control Responders (CR) are Sure Things, or Do-Not-Disturbs, in 
unknown proportion; they responded without a treatment but might 
not respond if treated. We want to avoid treating them in the future 
to save the cost of unnecessary and possibly deleterious treatment. 

• Control Nonresponders (CN) are Lost Causes or Persuadables in 
unknown proportions. We want to fnd the Persuadables in this 
group to treat them in the future. 

• Treatment Responders (TR) are Sure Things or Persuadables, 
also in unknown proportions. We want to continue treating the 
Persuadables in this group but avoid wasting the cost of treatment 
on the Sure Things. 

• Treatment Nonresponders (TN) are Lost Causes or Do-Not-
Disturbs in unknown proportions; they did not respond in spite of 
being treated. Some of them might have responded if they had not 
been treated (the Do-Not-Disturbs). We want to avoid treating them 
in the future since the cost of treatment is wasted on them and might 
even have a negative impact. 



   

 

 

 

 

129 Uplift Analytics I 

The underlying objective of uplift modeling is to fgure out the identities of 
the Sure Things, Do-Not-Disturbs, Lost Causes, and Persuadables from the 
known identities of Control Responders, Control Nonresponders, Treatment 
Responders, and Treatment Nonresponders. 

6.4 When Is the Traditional Response Modeling 
Approach Sufficient? 

In response to a presentation on uplift modeling at an analytics conference, 
an industrial practitioner did not agree there was a need for uplift model-
ing, since their traditional approach of fnding responsive customers (using 
only the treatment group) performed very well (in terms of lift over control). 
Armed with years of successful experience from a team of world-class mod-
elers, the practitioner was highly confdent that the traditional approach was 
fne, and the uplift/true-lift approach would not be necessary. The presenter 
then realized that this practitioner was affliated with a large credit card 
company and agreed that uplift would likely not be useful for the credit card 
industry, as the control response rate (given by B and D in Table 6.2) would 
be close to zero, at least in the United States, so the lift would be close to the 
treatment response rate (A − C in Table 6.2). In other words, potential cus-
tomers very rarely apply for a credit card by themselves but rather respond 
to a credit card invitation in the mail. This section discusses under what 
scenarios the traditional approach is suffcient. 

Since uplift modeling seeks to maximize the treatment response rate minus 
the control response rate, while the traditional response modeling approach 
is to maximize only the treatment response rate, the two approaches would 
be identical if the control response rate is close to zero. When there are very 
few control responders, so customers would not buy the product by them-
selves without being pushed, uplift modeling would not be necessary. This 
situation can arise in the following scenarios: 

1. Certain mature products have a very low response rate without ini-
tiation of marketers – for example, credit cards in the United States – 
possibly due to strong competition, and product maturity (e.g., most 
individuals have a credit card already in the United States). 

2. Brand-new products, where the response would be close to none with-
out marketing, since consumers are not yet familiar with the product. 

3. Products that are only sold by invitation, such as acceptance of an 
email invitation to a webinar. 

4. Unsought products due to low frequency or fear, such as funeral ser-
vices or certain health screening services, where most consumers do 
not actively seek consumption without targeted promotion. 



 

 

 

130 Cause and Effect Business Analytics and Data Science 

6.5 Uplift Model Development Methods 

This section provides more technical details on how to implement uplift 
modeling. We discuss three simple methods in this chapter – a “baseline” 
model and two true uplift models – followed by some advanced methods in 
the next chapter. 

6.5.1 Method 0: The Baseline Model 

The standard “traditional” approach is set out in Figure 6.6. First, treatment 
data from a previous campaign are used for model development. With the 
traditional supervised learning methodology, a holdout (“validation”) sample 
is set aside for model validation. The response model is developed and esti-
mated using the training dataset and is then used to predict the response to 
treatment (“scored”) using the validation sample. The responses are ordered 
from highest to lowest and assigned to deciles. The observed response rate 
for each of these deciles is then graphed to create a traditional lift table, as in 
Figure 6.2. 

In the uplift modeling approach, however, both treatment and control data 
from the previous campaign are used, as illustrated in Figure 6.7. The com-
bined treatment and control data are split into training and validation sam-
ples. As in the traditional approach, the model developed using the training 
data is then scored in the holdout sample, sorted into deciles, and graphed to 
show the observed response rates for each of these deciles. Alternative mod-
els may be developed through this process, and the same holdout sample can 
be used for model comparison. 

The diffcult bit here is that there is more than one way to develop appro-
priate models using the training sample of treatment and control data, so 

FIGURE 6.6 
Traditional approach: Baseline treatment only response model. 
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FIGURE 6.7 
Uplift modeling approach: Both treatment and control groups are used. 

we now describe two approaches to uplift modeling in more detail.1 Let R 
be the binary response variable, set equal to 1 if the client responded and 0 
otherwise; T is a binary treatment variable (= 1 for treatment and 0 for con-
trol); and x is a set of observable individual characteristics such as age and 
income. 

6.5.2 Method 1: Two Model Approach 

This is the most straightforward approach and consists of developing treat-
ment and control response models separately. The necessary steps are as 
follows: 

1. Estimate the probability of response among the treated population, 
p R  T x  . This is the ( |  , ) as a function of individual characteristics, x 
same as a standard response model. If logistic regression is used, the 
standard stepwise or a lasso procedure can be used to select vari-
ables. In many practical applications where there are a large num-
ber of potential predictors, other pre-modeling variable-selection 
methods can be adopted, such as graphical methods and correlation 
analysis. Other statistical or machine-learning procedures, such as 
decision trees and neural networks (see Chapter 2), are also common 
techniques for predicting probability of response. 

2. Estimate the probability of response among the untreated (control) 
population, p R  C x( | , ), using a procedure similar to 1 above. 
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3. For each individual in the treatment and control groups, calculate 
the estimated scores using the two models above. The lift score com-
bines the two model scores to estimate lift: 

( )x = ( | , )  p R  C x  lift p R  T x  − ( | , )  

This is a familiar approach for modelers, except that two models are devel-
oped: First, a standard supervised learning technique to predict response 
among the treatment population; then the same method to predict response 
among the control population. The lift score is the difference between the 
two models – the expected response, or response probability if treated, 
minus the expected response if not treated – and is shown as the shaded area 
in Figure 6.8. The most popular method is to use a standard logistic regres-
sion, in which nonlinear and interaction terms may be included if desired, 
but other common methods such as decision trees, support vector machines, 
neural networks, or Naïve Bayes algorithms may also be applied. 

Compared to the standard response model approach, the drawbacks of the 
two-model method are: 

• It is twice the work because two models have to be created rather 
than one (though they may be straightforward to develop). 

• The models aim to estimate gross response, not lift. Therefore, vari-
able reduction for each model is geared toward response and may 
not capture some of the variables that are correlated with lift. 

FIGURE 6.8 
In Method 1, the lift is the difference between probability of response given treatment P R  T( | ) 
minus probability of response given NO treatment P R  C( | ). 
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• The scales of the two models may not be compatible, causing the lift 
estimate to be noisy or meaningless – see Swait and Louviere (1993) 
for detail. 

• Taking the difference between two models as the score will capture 
all the errors of both models. If the S/N ratio of the lift is low, then 
the model scores may be all noise and therefore meaningless. 

6.5.3 Method 2: A Single-Model Approach with a Treatment Dummy 

Lo (2002) proposes to model the treatment and control groups together in a 
single model, capturing lift through terms that interact with the treatment 
variable. This method was also mentioned by Potter (2013) as the chosen 
approach for a recent presidential election. In this method, the model popu-
lation includes both the treatment and control observations, and as before, 
the dependent variable is a binary measure of response. But here the inde-
pendent variables comprise two sets: frst are the variables that capture base-
line response for both treatment and control populations (the “main” effects), 
while the second set captures lift response by interacting the control vari-
ables with a dummy variable that is set to 1 for treatment and takes on values 
of 0 for all control observations. 

Formally, the probability of response, Pi, is a function of the treatment 
dummy variable, Ti, and a vector of independent variables or predictors, 
Xi: 

exp(˜ °+ �Xi + ˛ Ti + ˝ �X Ti i )Pi = 
1 exp+ (˜ °+ �Xi + ˛ Ti + ˝ �X Ti i ) 

where α, β, γ, and δ are parameters to be estimated. Therefore, 

Pi treatment  − Pi control = P T  1 iP T( i = −)  ( i = 0)i 

exp(˜ °  ̨+ + �Xi + ˝ �Xi )= 
1 exp ˜ °  ̨ X ˝ X )+ ( + + � i + � i 

exp(˜ ° X+ ˇ i )= (6.1) 
+ (˜ °+ ˇXi1 exp ) 

The fnal prediction of true lift is then equal to the difference of two scores, 
given by 

Prob response if Treated  − Prob response if not Treated ( ) ( ) 
= score with treatment dummy set −to1 score with treatment dummy set  to 0  
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Since this model is ft to the data only once, one is guaranteed that the two 
scores will be on the same scale. 

The process is summarized in detail as follows: 

1. Include the response and covariate data, {Yi, Xi} from both the 
treatment and control groups in the analysis data set and assign a 
dummy variable Ti to 1 for the treatment group and 0 for the control 
group. 

2. Randomly divide the data set into training and holdout samples; 
3. Further divide the training sample into two sub-samples by Ti, that 

is, one is treatment and the other is control. 
4. Multiply all independent variables, Xi , by Ti to form the interaction 

effects, Xi*Ti. 
5. Fit a stepwise logistic model using Yi as the dependent variable and 

Xi, Ti, and Xi*Ti as independent variables. 

Method 2 is not without its own disadvantages. Including the interaction 
terms, there may be a large number of variables, and multicollinearity is 
likely. When the correlation between a baseline and its interaction variable 
is very high (say, over 95%), some judgment call may be needed to select one 
of them for model development. As with Method 1, taking the difference 
between two model scores may compound errors. 

Method 2 proposed for marketing is actually similar to measuring het-
erogeneous treatment effects (also known as effect modifcation) in felds 
such as epidemiology and social sciences where interaction effects are 
used for analysis. The subtle difference is that Method 2 focuses on pre-
dicting individual level lift for future targeting while those other felds 
typically study group-level differences (e.g., Greenland et al. 2008; Brand 
and Xie 2010). 

Note that both Methods 1 and 2 can be easily applied with other super-
vised-learning techniques such as MARS, neural network, and decision trees 
(e.g., Haughton and Oulabi 1997). 

6.6 Uplift Model Evaluation Methods 

In addition to the model development method, Lo (2002) has proposed a pro-
cedure for validation using a holdout sample. Because treatment and control 
groups are both involved, and the objective is to measure the “lift over con-
trol,” this procedure is different from validating a standard supervised learn-
ing model, such as the standard logistic regression approach, where only 
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the treatment group is used. Given that such a procedure is used by other 
industrial practitioners, we adopt the same validation procedure, which may 
be summarized as follows: 

1. For every individual in the holdout sample (regardless of whether 
they were originally in the treatment or control group), compute the 
predicted values of response probabilities for both the treatment and 
control by assigning Ti = 1 or 0, respectively, and then create the pre-
dicted uplift score by taking the difference between the two esti-
mated probabilities, as in Eqn. 6.1. 

2. Rank the entire holdout sample by this score and derive the 
score-driven semideciles (i.e., 5% intervals) to provide suffcient 
granularity. 

3. In each semidecile, calculate the observed response rates in the 
treatment group and control group respectively, and then take 
the observed difference (this is the actual or observed lift in each 
decile). 

4. Plot the observed difference between treatment and control by decile 
to validate the model and graphically assess the model. 

5. Compute relevant metrics to support model evaluation; this is dis-
cussed more fully below. 

Step 4 is a simple graphical method proposed by Lo (2002). Step 5 builds 
on suggestions made by Kane et al. (2014), who used three metrics, obtained 
from holdout samples, related to how the models would likely perform in 
the next iteration of the marketing campaign. These metrics are (1) a “Gini” 
coeffcient, (2) a “Gini top 15%,” and (3) a “Gini repeatability metric” (or R2 of 
the lift chart). Each calls for some further explanation. 

The Gini coeffcient gives an estimate of the overall model ft. It measures 
the area between the gains curve – this measures the cumulative percent 
of responders and is the top curve in Figure 6.9 – and the population curve, 
shown by the straight line that gives the cumulative percent of population, 
sorted by decreasing size of uplift. For standard response models, the gains 
curve always rises. For lift models, however, the gains curve can rise (for 
positive lift) and fall (for negative lift, i.e., suppressed response). The Gini 
coeffcient computation is described in Appendix 6.2. 

The Gini top 15% is another useful measure. For a campaign with an unlim-
ited budget, the target population would include all candidates up to the 
point where the gains curve begins to fall (and uplift goes from positive to 
negative). However, many campaigns have limited budgets, in which case 
the gains for the initial deciles (say, deciles 1 and 2) are more important than 
the gains for the higher deciles. For this evaluation, we chose the Gini area 
for the top 15% of scorers as an example, since many campaigns target just 
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FIGURE 6.9 
Gains chart for uplift/true-lift models. 

the top 1 or 2 deciles in practice; this is shown as the dark-shaded area to the 
left of Figure 6.9. One can use similar metrics such as Gini top 30% as a metric 
if the next campaign expects to target the top 3 deciles (30%) instead of the 
top 15%. The computational formula of Gini Top 15% is in Appendix 6.2. 

Our fnal measure of model performance is the Gini repeatability metric. Lift 
models can be unstable, so the third metric is a simple measure of the model’s 
overall stability, given by the R-squared (R2) of a straight line ft to the lift 
chart on the holdout sample. Ideally, a model would have a very high lift at 
the top semideciles and no positive lift afterwards, but is practically unrealis-
tic to achieve. More realistically, a model with a relatively smoothly declining 
lift pattern from the top semidecile to the bottom would be considered good; 
however, most uplift models have a much more ragged ft on the holdout 
sample, e.g., the top few semideciles can fip from positive to negative lift 
values. This metric should be considered secondarily to Gini and Gini top 
15%, because the lift could sometimes be curved or non-linear in a desirable 
way. R2 evaluation should include a visual assessment of the lift chart for 
desirable non-linear results. Figure 6.10 shows a hypothetical lift table with a 
perfect ft, while Figure 6.11 shows a much more realistic lift chart where the 
trend line fts more loosely. Note also that this metric becomes meaningful 
if the regression slope is positive (which would mean the lift has a tendency 
to go up in supposedly worse deciles), or equivalently, the Gini coeffcient is 
negative. 
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FIGURE 6.10 
Lift chart on holdout sample (ideal case). 

FIGURE 6.11 
Lift chart on holdout sample (realistic case). 
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6.7 Illustrated Examples 

We will now illustrate the above procedures of model development and vali-
dation, and associated metrics, with two examples: A simulated data set, and 
a real data set. 

Example 6.1: Nonproft Organization Donation Analysis – A Simulated 
Example 

Our frst example is about ACE (disguised name), a nonproft school serv-
ing mostly low-income students in a city; although the data are simulated, the 
example is based on a real case. The school mostly relies on donations from 
individuals and organizations. The workforce includes permanent staff, part-
time staff, and many volunteers. Their fundraising effort requires staff and 
volunteers to make personal calls, or in-person visits, to potential donors. 
Due to limited resources, they need to prioritize their fundraising treatment 
effort. Concretely, the school needs to come up with a targeted list of donors 
to contact through outbound calls or in-person visits. A donor database with 
multiple years of data is available for analysis. The response is defned as 
a monetary donation in the last year (“donated”). The treatment is a contact 
(call or visit). The potential predictors are obtained from history prior to the 
last year. We have an 80-20% split between treatment (those who received a 
contact) and control (those who did not). The whole data set is also randomly 
split into training (n = 300 K) and holdout (n = 200 K) samples. The potential 
variables that drive donations, and that are available in the dataset, include: 

• Age of donor; 
• Frequency, defned as the number of times (years) a donation was 

made in the past; 
• Spent, which is the average amount donated in the past; 
• Recency, which measures the number of years that have elapsed 

since the last donation (so 1 = made a donation last year, 2 = last 
donation was made two years ago, etc.); 

• Income, given by estimated annual income; 
• Wealth, measured by estimated wealth. 

Summary statistics of the response variable (donated) are shown in 
Table 6.3 using the training sample. The lift over control response rate is 
19.3% – 6.3% = 13%, and the S/N is 13%/6.3% = 207%. We now apply our two 
uplift methods to these data. 

As noted above, with the Two-Model Approach (Method 1), we ft separate 
logistic models to the treatment and control data (using proc logistic 
in SAS), with stepwise inclusion of variables. For the Treatment Dummy 
Approach (Method 2), we again use proc logistic in SAS, but with a single 
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TABLE 6.3 

Summary Statistics of Simulated Example 

Response No Response Total 

Treatment: Number 46,327 193,696 240,023 
Row % 19.30 80.70 
Column % 92.47 77.51 

Control: Number 3,774 56,203 59,977 
Row % 6.29 93.71 
Column % 7.53 22.49 

Total 50,101 249,899 300,000 
Row % 16.7 83.3 100.0 

equation that includes a treatment dummy (whether or not they received 
a contact) as well as all treatment interaction variables (treatment dummy 
times each variable outlined above). 

The standard stepwise regression with 5% level is used for both meth-
ods. One can try other signifcance levels or other standard variable selec-
tion methods, such as forward selection or backward elimination, for testing 
alternative models. The estimation results are summarized in Table 6.4. Note 
that the Treatment Only model is simply the standard baseline model that 

TABLE 6.4 

Model Results from Methods 1 and 2 for the Simulated Example 

Dummy Var. 
Treatment Only Control Only Model 

Variable Estimate p-Value Estimate p-Value Estimate p-Value Actual 

Intercept −8.0693 <0.0001 −10.0986 <0.0001 <0.0001 −10 
Age 0.0068 <0.0001 n.s. n.s. 0.001 
Frequency 0.7057 <0.0001 0.6861 <0.0001 0.7041 <0.0001 0.7 
Spent 0.0010 <0.0001 0.0010 <0.0001 0.0010 <0.0001 0.001 
Recency −0.0409 <0.0001 n.s. −0.0411 <0.0001 −0.07 
Income n.s. n.s. n.s. 0 
Wealth n.s. n.s. n.s. 0 
Treatment (main n/a n/a 1.9662 <0.0001 2 
effect) 

Treatment × age n/a n/a 0.0067 <0.0001 0.005 

Treatment × freq n/a n/a n.s. 

Treatment × spent n/a n/a n.s. 

Treatment × recency n/a n/a n.s. 0.03 

Treatment × income n/a n/a n.s. 

Treatment × wealth n/a n/a n.s. 

Note: n.s. is not statistically signifcant (at 1% level or better), and n/a means not applicable. 
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most modelers would use without the knowledge of uplift modeling. The 
Two Model Approach (Model 1) requires one to develop two models – the 
Treatment Only and Control Only, respectively, and then take the difference 
between the two model scores. The Treatment Dummy Approach (Model 2), 
which relies on the treatment dummy and interaction effects, is in the third 
column of fgures in Table 6.4; note that only one interaction effect is picked up. 

So how good are the two models? The last column of Table 6.4 has the 
actual values used to simulate the data – a big advantage of running a simu-
lation exercise is that we know the actual model and can compare the esti-
mated models to the actual. To understand how to read this, for example, the 
age effect without treatment (i.e., control) is 0.001, while the age effect with 
treatment is 0.001 + 0.005 = 0.006, while Method 1 (the Two Model Approach) 
results in an age effect of 0 in control and 0.00675 in treatment, and Method 
2 fnds an age effect of 0 in control and 0.00672 in treatment. So both models 
result in estimates very close to the actual values for the age effect. Another 
example is the main effect of treatment, which has an actual value of 2 and a 
model estimate of –8.069 – (–10.099) = 2.030 from Method 1 and an estimate 
of 1.956 according to Method 2. So once again, both models result in the main 
treatment effects very close to the actual value. We now evaluate the models 
using the holdout sample. 

Figure 6.12 shows the lift chart by semi-decile (1 = semi-decile with the 
highest lift, 20 = lowest). The baseline model uses data from the treatment 
sample only, and it has a peak shifted to the second semi-decile, clearly not 
showing a desired decreasing pattern.2 Both Methods 1 and 2 produce a 
smooth decreasing pattern by semi-decile and, in this sense, outperform the 
baseline model. 

There is hardly any performance difference between Methods 1 and 2 in 
this example. Using Gini, or Gini Top 15%, which measure the predictive 
accuracy, it is clear from Table 6.5 that Methods 1 and 2 are better than the 

FIGURE 6.12 
Lift graph of the simulated example. 
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TABLE 6.5 

Holdout Sample Model Validation Statistics for the Simulated Example 

Gini Gini 15% Gini Repeatability R2 

Baseline 5.6420 0.5412 0.731 
Method 1 (Two Model Approach) 6.0384 0.7779 0.783 
Method 2 (Treatment Dummy Approach) 6.0353 0.7766 0.784 

standard (“baseline”) approach. In terms of Gini repeatability (R2), which 
measures the linearity of the lift graph, Methods 1 and 2 are also better than 
the baseline model and very similar to each other. Note that the Gini repeat-
ability (R2) is generated from a linear regression applied to the lift charts in 
Figure 6.13. 

FIGURE 6.13 
Lift charts from the baseline method and methods 1 and 2. (a) Baseline method (standard treat-
ment only response model); (b) Method 1: Two model approach; and (c) Method 2: Treatment 
dummy approach. (Continued) 
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FIGURE 6.13 (Continued) 

Example 6.2: An Email Marketing Example 

Kevin Hillstrom of MineThatData has posted an excellent example of uplift 
data on his blog.3 The data have been analyzed by Radcliffe (2008), Kane et al. 
(2014), Lo and Pachamanova (2015), Pachamanova et al. (2020), and Lo and 
Pachamanova (2023). This email marketing campaign for men’s and women’s 
clothing contains 64,000 customers who last purchased within the past 12 
months: 

• 1/3 of the sample were randomly chosen to receive emails featuring 
men’s merchandise; 

• 1/3 of the sample were randomly chosen to receive emails featuring 
women’s merchandise; 

• 1/3 of the sample were randomly chosen not to receive emails; this is 
the no-email control group. 

Additionally, the data are randomly split into training and holdout sam-
ples in the proportions of 70% to 30%. 

To illustrate the techniques introduced in the last section, we focus on the 
campaign featuring women’s merchandise using “visit” (i.e., whether or not 
the customer visited the website) as our response variable. As a result, we 
have a 50-50% breakdown between treatment (those who received emails) 
and control (those who did not). The potential drivers available include: 

• Recency, as measured by months since last purchase; 
• History, which measures the total number of dollars spent in the 

last year; 
• Men’s is a binary variable set to 1 if men’s merchandise was pur-

chased in the last year and to 0 otherwise. We create a similar vari-
able called women’s. 
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• We also construct a variable called bothgenders set to 1 if both men’s 
and women’s are equal to 1 and to 0 otherwise. 

• Zip_rural_fag is coded to 1 if the area is rural and to 0 otherwise 
(i.e., if the area is urban). 

• Newbie is a binary variable set to 1 if the customer was new within 
the past 12 months and to 0 otherwise. 

• Two variables are used to indicate whether a customer used the Web, 
or a phone, or both, to purchase merchandise in the past year: We 
set channel_phone_fag = 1 if the phone was used and 0 otherwise, 
and channel_multi_fag = 1 if both Web and phone were used but 
is 0 otherwise. 

• Squared terms are also created for the continuous recency and his-
tory variables. 

Summary statistics of the response variable (visit) are shown in Table 6.6 
for the training sample. The lift over control response rate is 15.3% – 10.7% = 
4.6%, and the S/N is 4.6%/10.7% = 43%. 

Once again we ft separate logistic models to the treatment and control data 
(for the Two-Model Approach) and use a single equation that includes a treat-
ment dummy and interaction terms (for the Treatment Dummy method). As 
before, we apply forward stepwise regression with an inclusion threshold 
of 5% signifcance. Only the coeffcient estimations that are statistically sig-
nifcant are reported in Table 6.7. While Table 6.7 shows which variables are 
important, it is not meaningful for targeting, and in order to validate the 
model, we need to apply the scoring equations to the holdout sample; the lift 
charts are shown in Figure 6.14. 

In Figures 6.14a–c, all three models show a general trend of declining lift 
by semi-decile. While this is quite commonly seen in regular supervised 
learning, it cannot be taken for granted for uplift modeling. In particu-
lar, the baseline model in Figure 6.14a shows that the frst semi-decile is 

TABLE 6.6 

Summary Statistics of Marketing Data 

Response No Response Total 

Treatment: Number 2,292 12,691 14,983 
Row % 15.3 84.7 
Column % 58.8 48.7 

Control: Number 1,605 13,375 14,980 
Row % 10.7 89.3 
Column % 41.2 51.3 

Total 3,897 26,066 29,963 
Row % 13.0 87.0 100.0 
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TABLE 6.7 

Model Results from Methods 1 and 2 for the Marketing Example 

Dummy Var. 
Treatment Only Control Only Model 

Variable Estimate p-Value Estimate p-Value Estimate p-Value 

Intercept −1.91 <0.001 −1.61 <0.001 −1.62 <0.001 
Recency −0.10 <0.0001 −0.07 <0.001 −0.07 <0.001 
Recency squared 0.00 <0.0001 n.s. n.s. 
History 0.00 <0.001 0.00 <0.001 0.00 <0.001 
Men’s 0.38 <0.001 n.s. n.s. 
Women’s 0.91 <0.001 n.s. n.s. 
Both genders n.s. 0.51 <0.001 0.43 <0.001 
Rural (=1) 0.25 <0.001 0.56 <0.001 0.55 <0.001 
Newbie −0.45 <0.001 −0.77 <0.001 −0.78 <0.001 
Used phone? (Y=1) −0.24 <0.001 −0.38 <0.001 −0.30 <0.001 
Used Web+phone? (Y=1) −0.20 0.01 n.s. n.s. 

Treatment (main effect) n/a n/a n.s. 
Treatment × recencysq n/a n/a 0.00 0.00 

Treatment × historysq n/a n/a 0.00 0.02 

Treatment × women’s n/a n/a 0.53 <0.001 
Treatment × Rural n/a n/a −0.30 0.00 

Treatment × newbie n/a n/a 0.33 <0.001 
Treatment × Web+phone n/a n/a −0.24 0.00 

Note: n.s. is not statistically signifcant (at 1% level or better), and n/a means not applicable. 

FIGURE 6.14 
Lift charts from the baseline method and Methods 1 and 2. (a. Baseline method (standard treat-
ment only response model); b. Method 1: Two model approach; c. Method 2: Treatment dummy 
approach; and d. Lift chart of all the three methods.)  (Continued) 
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FIGURE 6.14 (Continued) 
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TABLE 6.8 

Holdout Sample Model Validation Statistics for the Marketing Example 

Gini Gini 15% Gini Repeatability R2 

Baseline 1.8556 −0.0240 0.2071 
Method 1 (Two Model Approach) 2.0074 0.0786 0.2941 
Method 2 (Treatment Dummy Approach) 2.4392 0.0431 0.2945 

particularly low in lift, but it has some value in predicting lift at the next 
several semi-deciles (2–9), although the differentiation within these semi-
deciles seems minimal. Note that Figure 6.14c shows that Method 2 has a 
deeper negative slope (a stronger declining trend) but does not perform 
very well in the frst few semi-deciles, which often is the business focus. 
When putting all three methods together in Figure 6.14d, it is not visually 
clear which method is the best, other than that the baseline method appears 
slightly worse than others in the 1st semi-decile, and Method 2 has a higher 
peak at the 6th semi-decile. When we turn to the model validation statistics 
in Table 6.8, all three metrics show consistently that Methods 1 and 2 out-
perform the baseline approach in these data; this is especially true of the 
Gini 15% measure, which is negative in the baseline case, meaning it is not 
useful at all. 

6.8 Concluding Remarks 

We are now in a position to summarize the contribution of uplift model-
ing. Just like any supervised learning approach, it has two parts: Model 
development and model validation. Without careful model validation (as 
recommended in this chapter), one would not even know if the baseline 
model can do a decent job at all. Whether the baseline model does well 
is very data-specifc. In an extreme situation such as credit card acquisi-
tion, where the natural (control) response rate is nearly zero (at least in the 
United States), the baseline treatment-only model may be all one needs 
to identify promising new customers. In general, however, the baseline 
model’s objective only meets half of the real objective because it is not 
meant to maximize uplift. The two model development methods for uplift 
in this chapter have the right objective, and whether they are better than 
the baseline can be easily tested empirically. In reality, the authors have 
seen situations where the uplift model beats the baseline model and, less 
commonly, cases where the baseline model beats the uplift model. In either 
case, having a validation test can help the modeler select the most appro-
priate model. 
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We will revisit uplift modeling techniques in Chapter 8 and apply them to 
more complex situations. Since the best modeling technique is often data spe-
cifc as in the traditional supervised learning world (e.g., Wolpert 1995, 2001), 
having more alternative methods would give us a better chance of fnding a 
good model for targeting “persuadables.” 

Additionally, we include a technical counterfactual explanation behind 
uplift modeling in Appendix 6.1 and some guidelines on variable selection 
for uplift modeling in Appendix 6.3. 

Appendix 6.1: Counterfactual Framework for 
Uplift/True-lift Modeling 

A customer can only be assigned to either treatment (T = 1) or control (T = 
0) at a specifc time, but not to both. This makes it necessary to construct a 
counterfactual, and this appendix provides a theoretical explanation for why 
Uplift/True-lift modeling can do this. 

Consider a counterfactual or potential outcome framework where a cus-
tomer can be assigned to treatment or control, as set out in Figure A6.1. If she 
is indeed assigned to treatment, she could choose to respond or not. Similarly, 
if she is assigned to the control group, she could also respond or not. While 
she cannot be assigned to both treatment and control at the same time, the 
question is this: If she receives treatment, can we use others (assumed to look 
like her) to represent her potential outcome if she had been assigned to the 
control group? The answer is yes if she and the others are “exchangeable” on 
all relevant pre-treatment characteristics or variables, x. 

FIGURE A6.1 
Counterfactual framework. 
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More formally, let Y ( )1  and Y(0) be the potential outcomes under treatment 
and control, respectively, for a particular customer. Then the treatment effect 
is simply Y ( )1 − Y ( )0 , and its expected value is E(Y ( )1 − Y ( )0 ). To measure 
the expected value, given a set of characteristics x, we need to be able to com-
pute E(Y ( )1 − Y ( )0 |x). To measure the average treatment value of the treated, 
we need to compute E Y( 1( ) − Y ( )0 |T = 1, x). This gives the treatment effect 
among the treated group with characteristics x. While no one can receive 
both treatment and control at the same time, we may “borrow” information 
from others with the same characteristics provided that they are “exchange-
able.” The exchangeability (or ignorability) condition is a necessary condi-
tion for measuring the causal effect of treatment and is formally expressed 
as (Y ( )1 ,Y ( )  | ; in other words, neither the treatment potential out-0  )  T x  
come nor the control potential outcome depends on the treatment assign-
ment mechanism given x, as explained by Rosenbaum and Rubin (1983) and 
Morgan and Winship (2007). Ignorability, or exchangeability, is satisfed with 
randomized experiments, but not as a general rule with non-randomized 
experiments or observational studies. We have: 

E(Y ( )1 − Y ( )0 |T = 1, x) 
= ( ( ) T = 1, x) − E Y( ( )0 |T = 1, x)E Y  1 |  

= ( ( ) T = 1, x) − E Y( ( )0 |T = 0, x) , with the exchangeability orE Y  1 |  
ignorability condition 

( | = 1,  x) − E Y T = 0, x)= E Y T ( | , 

using the consistency assumption that the observed outcome under a treat-
ment condition is the same as the potential outcome under the same treat-
ment condition. 

Hence, we can model the treatment effect given a common set of characteristics, 
using data for both treatment and control groups. While this chapter focuses on 
binary outcomes (i.e., Y = 1 or 0), so the expected value is the same as the 
response probability, the previous statement applies to both continuous and 
discrete outcomes. 

Appendix 6.2: Computations of Gini and Gini Top 15% 

Assume we rank the holdout sample by semidecile, i.e., 20 groups with 5% in 
each group. Defne the average lift at group j as: 

lift( )j = P(R T  j) − P(R C  j| ,  | ,  ) , 
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where P R( | ,T j) and (  | , ) represent the response probabilities in semi-P R C j  
decile subgroup j in the treatment and control groups, respectively, and can 
be estimated by the relative frequencies of response in the holdout sample. 
Then, 

Gini coefficient  ˜ 
20 

( % − cum sam( ))= cum lift g( )  % g , 
g=1 

where, 

cum%lift g( ) = cumulative % lift up to semidecile group g 

˜ g 
lift( )j ntj

j=1 = ,
˜20 

lift( )j ntj
j=1 

cum sam( )g = cumulative % sample up to semidecile group % g 

ntj ntj˜ g ˜ g 

j=1 j=1 = = ,
˜20 ntntj

j=1 

ntj = treatment sample size in semidecile j in the holdout sample, 
nt = total treatment sample size in the holdout sample. 

In the common Gini formula for regular supervised learning, there is a 
denominator representing the maximum possible value of the numerator, 
i.e., the gap between the best possible model (horizontal line at 100%) and 
the diagonal random line, which can be approximated by (1 − 0.05) + (1 − 0.1) 
+ … + (1 − 0.95) + (1 − 1) = 9.5. However, for uplift modeling, the maximum 
value is data dependent and much more complicated and can be greater 
than the traditional maximum value. Hence, we choose not to use a con-
stant denominator as model comparisons within the same data set remain 
valid. 

Similarly, Top 15% Gini is simply focused on the top 15%, or the top 3 semi-
deciles, of the Gini coeffcient formula: 

3 

˜( %lift g  − cum sam( )).Top 15% Gini  = cum ( )  % g 
g=1 
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Appendix 6.3: Variable Selection for Uplift/True-lift Modeling 

The uplift/true-lift modeling methodologies introduced in this chapter are 
relatively straightforward. A natural question is how to pre-select variables 
prior to model development. This appendix provides some alternative ideas. 

1. No pre-selection: If the number of variables is not enormous, one can 
feed all available variables into the modeling procedure and allow 
the modeling procedure to pick up the important ones, through the 
standard stepwise procedure, forward selection, backward elimina-
tion, or the more recent Lasso method. 

2. Union of the treatment and control lists of variables: Standard vari-
able selection procedures, e.g., picking variables that are more corre-
lated with the dependent variable, running a decision tree model to 
pre-select important variables, or performing a principal component 
analysis or some form of variable clustering to fnd groupings of 
variables can all be applied separately to treatment and control sam-
ples, respectively. The combined (union) of the two selected lists of 
variables can be used as an input to uplift/true-lift modeling. 

3. One variable at a time using exploratory analysis: The above two 
methods are not designed to fnd heterogeneous treatment effects 
directly, i.e., the interaction effects in an uplift/true-lift model. The 
most classical way to display a picture of heterogeneous treatment 
effect is by graphing a plot of the dependent variable against an inde-
pendent variable (continuous, binned continuous, or categorical) by 
treatment and control. If the two lines are parallel, it means the inde-
pendent variable is related to the dependent variable consistently for 
treatment and control groups, meaning there is no heterogeneous 
treatment effect for the given independent variable. If the two lines 
are not parallel, it shows a potential heterogeneous treatment effect, 
which can be used as a variable selection tool (see Zink et al. 2015, 
for example). However, if there is a long list of variables, graphical 
methods like this may not be practical to go through. 

4. One variable at a time by ftting a simple model: A more automated 
variation of method 3 above is to detect whether the treatment and 
control lines are parallel statistically, using a simple model. One can 
ft a model with just the main treatment effect, the given indepen-
dent variable, and their interaction (product term). Statistical signif-
cance of the interaction term shows there may be a heterogeneous 
treatment effect. After automatically detecting the variables that 
show a heterogeneous treatment effect, one can then plot the line (as 
in method 3) for the selected list of variables to gain visual insights 
on the pattern. 
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5. Use one model as an input to another: As in standard supervised 
learning, one may choose a relatively simple uplift/true-lift mod-
eling algorithm to pre-select a set of variables and use them as an 
input to a more sophisticated modeling algorithm. For instance, one 
may use an uplift decision tree method (available from Quadstone, 
JMP, R, or KNIME) for variable selection and use the most important 
variables as an input to another algorithm. One may also use another 
method such as the one described in Section 8.2 (from Kane et al. 
2014) for variable selection. 

Notes 

1. Appendix 6.1 provides the theoretical framework to explain why true-lift mod-
eling can work in reality, where a customer is assigned to either treatment or 
control group at a given time but not both. 

2. In practice, the baseline model’s peak in the lift chart can appear almost any-
where, depending on the data. 

3. Data is available at http://blog.minethatdata.com/2008/03/minethatdata-e-mail-
analytics-and-data.html in Excel format. 
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7 
Uplift Analytics II: Test and Learn for Uplift 

7.1 Introduction 

The previous chapter introduced the concept of uplift/true-lift, two model 
development methods, and the model evaluation procedure. Since uplift 
analytics cannot be achieved without data, and its power can be enhanced 
with a well-designed experiment, we will discuss a broader topic in this 
chapter – how to test and learn using experimental design in the context of 
uplift analytics. 

We introduce the approach in Section 7.2, with a discussion of the gen-
eral strategy and process in Sections 7.2.1 and 7.2.2, sample size determina-
tion in Section 7.2.3, A/B testing in Section 7.2.4, and Multivariate Testing or 
Experimental Design in Section 7.2.5. As elsewhere in this book, we focus 
on the practical and methodological aspects rather than a purely theoreti-
cal discussion. Additionally, we discuss several measurement and modeling 
metrics for Test and Learn in Section 7.3, followed by opportunities for con-
tinuous improvement in Section 7.4. 

7.2 Test and Learn for Uplift Analytics 

7.2.1 Test and Learn Strategy 

In this section, we describe a highly important business strategy that is not 
frequently mentioned in academic literature but is frequently employed 
and discussed by marketers – Test and Learn – to come up with a set of 
value propositions and to refne them in order to meet business goals. It 
is an information-driven strategy to drive marketing decisions and to maxi-
mize the return on investment. The strategy consists of market (survey) 
research, competitive analysis, and in-market testing (where the latter is 
also known as database marketing or sometimes customer relationship 
management). 
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FIGURE 7.1 
Test and learn strategy. 

Figure 7.1 describes the process of the Test and Learn Strategy, explained 
below: 

1. Customer Voice: The frst step is to collect customer inputs from 
market research through qualitative focus groups and quantitative 
surveys. The goal is to come up with a solid list of value propositions 
to start with (such as new products, features, messages, etc.). Some 
corporations employ advanced quantitative market research meth-
ods such as conjoint analysis and discrete choice analysis to scientif-
cally derive a list of value propositions, and such methods typically 
employ advanced experimental designs, similar to those described 
in Section 7.2.5. Others rely on usability testing or user-experience 
testing of value propositions, recruiting test participants to provide 
feedback in a lab environment. 

2. Industry Voice: The next step is to understand what is going on in 
the industry. The tools include competitive analysis to uncover the 
strengths and weaknesses of your competitors versus yours (e.g., 
the BCG matrix and GE/McKinsey matrix) and market analysis to 
identify the opportunities in various market segments as well as the 
trends in the industry. Practical tools that are commonly employed in 
this area include the SWOT (Strengths, Weaknesses, Opportunities, 
and Threats) analysis; see, for example, Rao and Steckel (1998), 
Luecke (2005), and Campbell et al. (2014). 

3. Business Opportunities and Goals: Customer Voice and Industry 
Voice can provide solid inputs to uncover opportunities or customer 
needs in market segments that can be met by your products, which 
can lead to certain business goals. This step also translates to what 
exactly you are trying to achieve. 
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4. Value Propositions: Based on the above steps, a business can list a set 
of potential value propositions to meet customer needs. In other words, 
this is the step to come up with a prioritized list of things to be tested. 
We should also review what has been done in the past and what we 
have already learned from past experience. The list of potential value 
propositions developed becomes the “treatments” for testing. 

5. Test: Conduct actual in-market tests (as opposed to customer sur-
veys) to test value propositions through randomized experiments 
(treatment and control). At this stage, some Call-To-Action (CTA) 
metrics should be established for goal measurement. 

6. Measure: Measure the results of the in-market tests through statistical 
measurement related to the CTA metrics. Multiple metrics can be used 
for measurement, from inquiry rates to purchase rates to Lifetime 
Value; see Section 7.3 for a discussion of measurement metrics. 

7. Learn: Apply Uplift modeling to refne targets for the next campaign. 
When multiple treatments are available, optimization methods can 
be employed to fnd the right treatment for the right customer (to be 
described in Chapter 8). 

The Test and Learn procedures in steps 5–7 are explained in detail in 
Section 7.2.2. 

To illustrate the above process with an example, suppose you manage a 
credit card business line. Steps 1 and 2 help you identify the opportunities: Is 
the product already popular in certain areas (country/state/province)? If not, 
would customers be receptive to your product? Step 3 allows you to identify 
your goals – acquisition, retention, or cross-selling/up-selling – and Step 4 
identifes what value propositions may work; for instance, should we be test-
ing different colors (black/blue/green/silver/gold/titanium/diamond), dif-
ferent co-branding strategies (are you partnering with VISA/MasterCard/ 
Amex or another brand, and how to name your co-branded product), vari-
ous pricing points (introductory rates (aka teaser rates) and long-term annual 
percentage rates), and different benefts (frequent fyer, rebate, etc.) for some 
selected market segments (would you want to cover higher-risk groups, are 
you more interested in younger customers, etc.)? Steps 5–7 test your value 
propositions and help you refne them in in-marketing tests. Additionally, 
risk consideration should also be included in this analysis – for example, a 
higher price (interest rate) may be required for a higher-risk group, a dia-
mond card may be best for a more affuent lower-risk group, and so on. 

7.2.2 Test and Learn (Database Marketing Campaign) 
Process for In-Market Testing 

This section describes the core Test and Learn campaign process, which is the 
in-market testing or the Test-Measure-Learn portion of Figure 7.1. The process 



 

 
 

 

 

 

157 Uplift Analytics II 

FIGURE 7.2 
Test and learn database marketing campaign process. 

comprises various components, from campaign design to response modeling 
to campaign optimization, as set out in Figure 7.2. 

The various components of the campaign process are explained below: 

1. Design: Designing a campaign requires selecting targets (whether 
randomly, by business rules, segmentations, or predictive models) 
and splitting them into treatment and control randomly so that each 
individual in the treatment group has the same probability of being 
selected and similarly for individuals in the control group. One has 
to handle issues such as sampling and sample size determination (to 
be explained in Section 7.2.3). A/B testing and advanced experimen-
tal design methods are quite commonly employed (to be introduced 
in Sections 7.2.4 and 7.2.5). 

2. Execute: This involves physically selecting a list of targets and dis-
tributing them to the contact channel (e.g., direct mail, email, tele-
marketing, online, in-person visits). 

3. Measure: The objective here is statistically to measure the campaign 
results in a way that is meaningful to your business and so to deter-
mine whether the campaign has generated any success, that is, lift 
over control. Marketers are often not only interested in the overall 
campaign success but also whether it has worked by customer seg-
ment or subgroup. Additionally, there are many possible measure-
ment metrics; see Section 7.3 for a discussion of various metrics. 

4. Model: Develop uplift models to identify characteristics of individu-
als who responded due to the treatment. Details of uplift modeling 
are described in Chapter 6 and also in Chapter 9. 

5. Optimize: Apply the developed model to select appropriate targets 
for the next campaign. Sophisticated campaigns may include more 
than one treatment, resulting in an opportunity to optimize treat-
ment at the individual level (to be discussed in Chapter 8). 

The simplest and perhaps most well-known Test and Learn process is A/B 
Testing, where two treatments (treatment versus control or treatment A ver-
sus B) are compared in a test. For example, A/B Testing is frequently used 
in online advertising, where two methods of promotion are compared in a 
randomized test (see, e.g., Kohavi et al. 2012). Measuring whether A or B is 



 

 

 

  
 

 

 

 
  

 

 

 

 

  

  

158 Cause and Effect Business Analytics and Data Science 

a better treatment is the fundamental step. Modeling (Uplift Modeling) will 
take it to the next level to determine the right treatment for the right targets. 
A/B Testing compares only two treatments at a time, and if more treatments 
are available, the winner of each comparison can compete with other treat-
ments, and so on in a sequential fashion (see, e.g., Goward 2013, McFarland 
2013, or Siroker and Koomen 2013 in the marketing context). More discussion 
on A/B Testing is presented in Section 7.2.4, and advanced methods of test-
ing multiple treatments simultaneously will be discussed in Section 7.2.5. 

7.2.3 Sampling and Sample Size Determination 

In order to develop uplift models, we need to have random treatment and ran-
dom control groups, and ideally, they are a random sample or a good repre-
sentative sample of the larger relevant population. The most commonly used 
sampling schemes in business are simple random sampling and stratifed 
random sampling (see classical texts such as Scheaffer et al. 1990, or Cochran 
1977, for details). Both are straightforward to implement using common cam-
paign software packages or statistical software. Stratifed random sampling 
is helpful in guaranteeing enough subsamples for each subpopulation and is 
particularly useful when the subpopulations are relatively small. In the fol-
lowing Subsections 7.2.3.1 and 7.2.3.2, we mainly focus on sample size deter-
mination in the context of uplift analytics. On a similar topic, Section 7.2.4 
discusses randomization between treatment and control. 

7.2.3.1 Standard Sample Size Determination 

We revisit the standard method for sample size determination for two pro-
portions in this subsection. Assume we have two population proportions 
p1  and p2 (for two target groups 1 versus 2, or for treatment versus control), 
and the pair of hypotheses1 are: H0: p1 = p2 and H1: p1 > p2. Our goal here 
is to determine the appropriate sample sizes for the two groups, n1  and n2, 
such that the Type I and Type II errors (and their probabilities of occurrence, 
˜  and ° , respectively) are well balanced; see Table 7.1 for their defnitions 
and further discussion in Chapter 2. 

TABLE 7.1 

Defnitions of Type I and Type II Errors (and Their Probabilities of 
Occurrence, ̃  and °)  in Hypothesis Testing 

Do Not Reject H0 Reject H0 

If H0 is true 

If H0 is not true 

Correct decision (1 − ̃  ) 

Type II error (˜) 
[false positive] 

Type I error (̃ ) 
[false negative] 

Correct decision (1 − ˜) 
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It can be shown that, given the values of ˜  and °,  the sample sizes 
n1 and n2, would satisfy: 

(p − p2 )2 
p (1 − p1 ) p (1 − p2 )1 1 2 

2 = + , (7.1) 
(zˆ + zˇ ) 1 2n n 

−1 −1where z˜  and z° are ̇ (1 − ˜ ) and ˙ (1 − ° ) , respectively, representing the 
standard normal critical values associated with the Type I and Type II errors. 
For example, if ̃  = 0.05, z˜ = 1.645, and if ˜ = 0.20, z˜ = 0.842. 

If n1 = n2 = n,  then with some algebraic manipulation of Eqn. (7.1), the mini-
mum sample size would follow the standard formula: 

(z� + z� )2 ˆ̌p1 (1 − p1 ) + p2 (1 − p2 )�̆n = 2 (7.2a) 
(p1 − p )2 

Alternatively, if n1 is given, we can determine the minimum sample size for 
the second group, again from Eqn. (7.1): 

p2 (1 − p2 )
n2 = 2 (7.2b) 

(p1 − p ) p1 (1 − p1 )2 −
(zˆ + zˇ )2 n1 

The derivation of Eqns. (7.1), (7.2a), and (7.2b) can be found in most stan-
dard statistics books and will be omitted here. Equation (7.2a) is easy to apply 
provided that some reasonable estimates of the two population proportions, 
p1 and p2 , are available. It is also implemented in standard sample-size tools 
such as nQueryAdvisor. To estimate the proportions, if historical data are 
not available, the usual practice is to use sensitivity analysis with a reason-
able range of values to arrive at a range of minimum sample sizes and select 
the largest sample size from the range. See Mathews (2010) for determining 
sample sizes in a variety of situations. 

7.2.3.2 Sample Size Determination for Uplift Analytics 

For Uplift/True-lift analytics, we need to address the difference between 
treatment and control. Additionally, we may want to know if there is a dif-
ference in lift (treatment minus control) by some demographic group. As in 
Section 7.2.3.1, let’s suppose we have two population groups (e.g., older and 
younger age groups, male and female, or higher versus lower income groups) 
and a treatment and control split within each group, which means we have 
four groups to handle. We now generalize the formulas in Section 7.2.3.1 to 
handle a four-group proportion comparison. 
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Our objective is to determine appropriate sample sizes that allow us to 
statistically test whether the (treatment minus control) lift in group 1 is equal 
to or better than the lift in group 2, which leads to the following pair of 
hypotheses: 

H p − p1 = p t − p2 and  : 1t − > p2t − p:  H p  p0 1t c 2 c 1 1c 2c 

where p p p,  , and p1t ,  1c 2t 2c are response rates in group 1’s treatment sub-
group, group 1’s control subgroup, group 2’s treatment subgroup, and group 
2’s control subgroup, respectively. Rejection of H0 would indicate that the 
demographic split between the two groups is effective in differentiating 
between higher and lower lift. For simpler notation, we can rewrite the above 
hypotheses as: 

H : ˜ = ˜p and  H : ˜p0 p1 2 1 1 > ˜p2 , 

where ˜  denotes the lift (incremental difference) between treatment and 
control. It can be shown (in Appendix 7.1) that: 

= H1 is true Power Probability of detecting a difference given that 

ˆ − ˆp2ˇ ( p1 )� 
= 1 P− (Type II Error) = 1− ˙� z� − � (7.3) 

˘ I � 

where (˜ − ˜p ) is estimated by its sample estimate, (˜ˆ − ˜pp1 2 p1 ˆ2 ). 

Define J p1t (1 − p ) + ˆ1c 1− p R  p) 1 + t (1 − 2 ) t + ˆ 1− p2c ) R R, (7.4) = ˆ p R  p  2ˆ ˆ1t p ( 1c ˆ2 ˆ t 2c ( ˆ t 

where the following ratios chosen by the analyst are input parameters to the 
sample design: 

n n n1t 2t 1tR1 = , R2 = , and Rt = (7.5). 
n1c n2c n2t 

In Eqn. (7.5), R1 is the ratio of treatment to control in Group 1, R2 is the ratio 
of treatment to control in Group 2, and Rt is the ratio of Group 1 to Group 2 
among those in treatment. 

Then 1t ,  1c ,  2t , and n2cn n n  can be obtained as follows: 

J z( ˙ + zˆ )2 

n1t = ,
(˛ −1 ˛ 2 )2p p 

n n n n1t 1t 2t 1t n1c = , n2t = , and n2c = = , (7.6) 
R1 Rt R2 R Rt 2 
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where J is defned in Eqn. (7.4), and R1, R2, and Rt are defned in Eqn. (7.5). 
Appendix 7.1 proves the sample size determination formulas in Eqns. (7.3) 
and (7.6). Although Eqns. (7.3) and (7.6) may look a bit tedious to use, they 
are implemented in an Excel spreadsheet for easy computation, as illustrated 
below. 

Example 7.1a Minimum Sample Sizes for Two Groups (with Treatment 
minus Control Lift) 

To prepare for an upcoming marketing program, you are asked to pro-
vide the minimum sample size to test the response rate resulting from 
contacting two target groups (1 and 2) versus their corresponding no-
contact control groups. That is, we would like to test the following pair 
of hypotheses: 

H p − p = p − p  and H p − p > p − p,0:  1t 1c 2t 2c 1: 1t 1c 2t 2c 

Or equivalently, H0: ˜ = p2 and H p1 ˜p1 ˜ 1: ˜ > p2, where again ˜  denotes the 
incremental difference (lift) between treatment and control. Your hypothesis 
is that target group 1 may have a higher response rate than group 2. 

You have found that historically, the response rate for target group 2 
without contacting customers (i.e., control response rate) is about 0.5%. 
While there was insuffcient historical data on response rate with a con-
tact (i.e., treatment response rate), you are willing to assume that with a 
contact the response rate will increase by about 30%, that is, from 0.5% to 
0.65%, a 0.15% absolute increase. For the better target group (group 1), you 
have found that the response rate is about 20% higher than group 2’s. Also, 
target group 1 is about half the size of target group 2 in the population, 
so you may choose to sample them with the same ratio. Additionally, you 
will need to have some idea about the signifcance level (̃ ) and the power 
desired, and let’s assume you are fne with ˜ = 0.15 and power ≥ 0.75. So 
you enter these input numbers into a spreadsheet that has Eqn. (7.6) imple-
mented; see Table 7.2a.2 

The shaded cells in the INPUT BOX in Table 7.2a are to gather user 
inputs. The shaded area in the OUTPUT BOX provides the output, which 
are the minimum sample sizes for target groups 1 and 2, by treatment and 
control. Suppose that after examining the numbers, you feel the quanti-
ties may be too high. You are now thinking that a 20% higher treatment 
response rate over control may be too low. Or if indeed the difference 
is that small, you may fnd it acceptable if statistical signifcance is not 
detected. So you try a 50% higher treatment response rate over control 
in Table 7.2b; that is, what are the sample sizes required so that H0 can 
be rejected with a 50% higher treatment response rate over control (and 
target group 1’s response rate remains 20% higher than target group 2’s)? 
As expected, the minimum sample sizes required are now lower and may 
be considered reasonable. 
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TABLE 7.2a 

Sample Size Determination Example: With a 20% Increase in Treatment Response 
Rate Over Control 

Sample Size Requirement for Comparing Two Pairs of Treatment and Control Groups 
Find Sizes Given Power – One-Tailed Test 

0.7800% 
0.6000% 

INPUT BOX group 1 (the est. treatment rate 
better one) est. control rate 

group 2 est. treatment rate 
est. control rate 

Stat limits signifcance level (alpha) 
Power 

Ratios ratio of treatment to control 
for group 1 

ratio of treatment to control 
for group 2 

ratio of group 1 treatment 
to group 2 treatment 

OUTPUT BOX computations critical value of alpha 
critical value of beta 
expected 4-way difference 
product of ps and qs 
(Intermediate calculation) 

0.6500% 
0.5000% 

1.036 
0.674 

0.03% 
0.0194195 

size required group 1 treatment 631,622 
group 1 control 631,622 
group 2 treatment 1,263,244 
group 2 control 1,263,244 

After proposing these quantities to your marketing partners, you are 
now told that the quantities are reasonable, but they would be happier if 
you could lower the quantities slightly to 200 K for each of target group 1’s 
treatment and control and 400 K for each of target group 2’s treatment and 
control. Now your task is to check the power associated with these numbers, 
which is a reverse calculation as before, and Eqn. (7.3) would come in handy. 
Similar to Eqn. (7.6), Eqn. (7.3) is also implemented in the same spreadsheet, 
and the result with these sample sizes is in Table 7.2c, which shows a power 
of 69.3%, a slight decrease from the original 75% in Table 7.2b that you feel is 
acceptable. 

Recall that Eqn. (7.6) specifes the requirement to ensure the sample sizes 
are suffciently large for H0: ˜ = ˜  and H1: ˜ >p 2, which concerns p1 p2 1 ˜p 
the lift of two groups. In fact, Eqn. (7.6) can be adapted to the situation for 
Uplift Modeling. Before we build an uplift model, we would typically like 
to see that the top decile3 exhibits a higher lift than the overall average lift. 
Our objective now is to determine appropriate sample sizes such that the 

0.15 
0.75 

1 

1 

0.5 
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TABLE 7.2b 

Sample Size Determination Example: With a 50% Increase in Treatment Response 
Rate Over Control 

Sample Size Requirement for comparing Two Pairs of Treatment and Control Groups 
Find Sizes Given Power – One-Tailed Test 

INPUT BOX group 1 (the est. treatment rate 0.9000% 
better one) est. control rate 0.6000% 

group 2 est. treatment rate 0.7500% 
est. control rate 0.5000% 

Stat limits signifcance level (alpha) 0.15 
Power 0.75 

Ratios ratio of treatment to control 1 
for group 1 

ratio of treatment to control 1 
for group 2 

ratio of group 1 treatment 0.5 
to group 2 treatment 

OUTPUT BOX computations critical value of alpha 1.036 
critical value of beta 0.674 
expected 4-way difference 0.05% 
product of ps and qs 0.0210924 
(Intermediate calculation) 

size required group 1 treatment 246,971 
group 1 control 246,971 
group 2 treatment 493,943 
group 2 control 493,943 

TABLE 7.2c 

Sample Size Determination Example: Determine Power Given Sample Sizes 

Find Power Given Sizes – One-Tailed Test (i.e., Testing If One Group Is Better Than the 
Other) 

INPUT BOX group 1 (the est. treatment rate est. control 0.9000% 
better one) rate treatment size control size 0.6000% 

200,000 
200,000 

group 2 est. treatment rate 0.7500% 
est. control rate 0.5000% 
treatment size 400,000 
control size 400,000 
signifcance level (alpha) 0.15 

OUPUT BOX computations critical value of alpha 1.036 
expected 4-way difference 0.05% 
4-way s.d. 0.000324749 

Result power 69.3% 
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data will allow us to statistically detect the difference in lift between the top 
decile and the overall average: 

H0: ˜ =p ˜p p11  and H1: ˜ > ˜p, where in this case ˜p1 represents the lift 
in the top decile and ˜p is the overall average lift across the entire 
sample. This pair of hypotheses is equivalent to the following pair: 

H0 : ˜ =p1 ˜p2  and H1: ˜ >p1 ˜p2 , where again ˜p1 represents the lift 
in the top decile and ˜p2 now represents the lift in the rest of the 
deciles (i.e., deciles 2–10). 

Assuming the treatment size, nt is given, our aim is to fnd the appropriate 
value of the control size, nc. Appendix 7.1 shows that: 

p̂1c (1− p̂1c ) p̂2c (1 − p̂2c )+ 
0.1 0.9nc = 2 (7.7). 

ˇ ˆ −p1 ˆp2 � 1 � p̂1t (1 − p̂1t ) p̂2t (1 − p̂2t ) � 
� − � + ��̆ z + z � nt � 0.1 0.9 ��� 

In Eqn. (7.7), the user inputs include estimates of treatment and control 
response rates in the top decile and the rest of the deciles. 

In addition to making sure the top decile can be statistically tested to be 
stronger than the overall sample in terms of response rate, one may also want 
to make sure that the top decile itself has enough sample size to detect statisti-
cal signifcance between treatment and control (within the top decile). The pair 
of hypotheses in this case is: H0: p1t = p1c and H1: p1t > p1c ,  where p1t  and p1c 

are treatment and control response rates in the top decile. Again, assuming 
the overall treatment size, nt is given, this can be accomplished by applying 
Eqn. (7.2b) to the top decile: 

p1c (1 − p1c )n1c = 2 . (7.8a) 
(p − p ) 

2 − 
p (1 − p )1t 1c 1t 1t 

(zˆ + zˇ ) 10nt 

Equivalently, the overall minimum control size, which by defnition of 
decile is 10 times the size of the top decile, becomes: 

10 p1c (1 − p1c )nc = 10n1c = 2 . (7.8b) 
(p1t − p1c 

2 
) − 

p1t (1 − p1t ) 
(zˆ + zˇ ) 10nt 

If both Eqns. (7.7) and (7.8b) need to be satisfed, the minimum overall con-
trol sample size will be the greater of the two values determined by Eqns. 
(7.7) and (7.8b). 
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Example 7.1b (Continuation of Example 7.1a) 

In Example 7.1a, we have determined the sample sizes required for target 
groups 1 and 2 by treatment and control in order to detect that target group 1 
is better than target group 2 in terms of lift (treatment over control response 
rate). Suppose target group 2 is close to random targeting, and the plan with 
this group is that after campaign response data are back, you would like 
to use group 2’s data to develop an uplift model to improve future target-
ing. The question is now: What is the control size required in group 2 to 
make sure that (1) the top decile of an uplift model has enough sample size to 
detect statistical signifcance between treatment and control response rates, 
and (2) the top decile response rate can be statistically detected to be stron-
ger than the overall sample’s response rate? These two questions, which are 
associated with two pairs of hypotheses, can be answered by Eqns. (7.8b) 
and (7.7), respectively. As in the previous example, these equations have been 
implemented in a spreadsheet for ease of computations. Table 7.3 shows the 
spreadsheet where the INPUT BOX gathers the overall (baseline) treatment 
and control rates as well as the assumed ratio of top decile response rate to 

TABLE 7.3 

Determining Sample Size That Can Meet Two Lift Criteria 

True Lift/Uplift Modeling Requirement for Marketing Programs 

INPUT BOX overall treatment rate 0.750% estimated value 
overall control rate 0.500% estimated value 
overall treatment size 400,000 normally known 
ratio of top decile response rate to 3 estimated value 
random 

alpha 0.05 
power 0.75 
critical value of alpha 1.645 
critical value of beta 0.674 

OUTPUT BOX 1: est treatment rate in top decile 2.250% 
Top decile lift > 0 est control rate in top decile 1.500% 

numerator 0.01478 
denominator 9.9068E-06 
overall control size required 14,914 

OUTPUT BOX 2: est treatment rate in bottom 0.583% 
Top decile lift > 9 deciles 
bottom 9 deciles est control rate in bottom 9 deciles 0.389% 
lift 4-way difference (lift in top – lift 0.556% 

in bottom 9) 
numerator 0.15205 
denominator 5.172E-06 
overall control size required 29,402 
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random. The OUTPUT BOX 1 and 2 provide the minimum control size for 
the two goals above in the shaded areas. In this example, they both happen 
to be relatively mild compared to the size requirement in Example 7.1a. In 
practice, one may want to try different sets of input values to make sure that 
the sample size will be suffcient for a range of possible inputs. 

The above methods are technically only applicable for a single treatment 
and a single control case. For more general situations where there are many 
treatment groups, the above are still valid when we consider all treatments 
collectively as one treatment group. We will discuss estimability4 for indi-
vidual treatment effects using simulation later in Subsection 7.2.5.2.2. 

7.2.4 A/B Testing and A/B/n Testing for Campaign Design 

7.2.4.1 Randomization and A/B Testing 

All experimental design methods rely on randomization, that is, randomly 
assigning experimental units to treatment and control groups or several 
treatment groups. Randomization can be done with simple random number 
generation on a computer (see Chapter 3 for an introduction). The biggest 
advantage of randomization for causal measurement is that it ensures that 
the characteristics between the treatment and control groups are the same 
prior to the design, that is, balanced in both observable and unobservable 
covariates. 

The most popular method associated with experimental design in mod-
ern-day business is A/B Testing, where only two options are compared – 
treatment versus control, challenger versus champion, or simply A versus B. 
When more than two options are compared, it is called A/B/n Testing. 

Consider a retail company selling shoes that can be promoted with two dif-
ferent messages (treatment versus control) on their website, where: 

• Control (current way) emphasizes their durability and all-weather 
features, and 

• Treatment (new idea) focuses on their multi-functional features for 
both business and leisure. 

One can also package other differences in the two options. For example, 
the current price in the control group may range from $89.99 to $109.99; the 
treatment price can be lowered to $79.99–$99.99. Obviously, compounding 
multiple factors in only two groups would not allow us to separate the price 
effect from the promotional message. So A/B testing (or A/B/n testing for 
more than two attribute levels) only allows us to test one attribute at a time 
(or a combined set of attributes without the ability of separating their effects). 
For testing three attributes or more, more sophisticated designs are required, 
and we will cover this more advanced topic (Multivariate Testing or MVT) 
in Section 7.2.5. 
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7.2.4.2 Randomized Block Design 

A classical method that is highly practical but may be less known in busi-
ness applications is Randomized Block Design (also known as Stratifed 
Randomization), where treatment and control (or A versus B) are randomly 
assigned to individuals (experimental subjects) within each block (or stratum 
or group). Instead of assigning treatment and control to the entire study pop-
ulation completely randomly, random assignment of treatment and control 
under the Randomized Block Design is done at the block level – for instance, 
separately for men and women. These blocks are preselected by experimental 
designers with the prior knowledge that the block factor has a high impact on 
the outcomes. With very large samples, it is more likely that individuals or 
experimental units assigned to treatment and control share similar character-
istics. However, in smaller samples, it is possible that the treatment and control 
groups have differences in characteristics; thus, the measurement can be con-
founded by their differences. The Randomized Block Design would then be an 
effective technique to minimize the potential differences due to confounding.5 

Consider a retail chain that is interested in knowing whether blue color (treat-
ment) should be used to replace the current yellow color (control) as the theme 
color used in stores (e.g., for walls and employee uniforms). In this case, our 
experimental units are stores as opposed to people. Suppose there are 1,000 
stores that are unevenly distributed across the 50 states of the United States. 
The study is to select 20 stores in the pilot to test whether blue is better than 
yellow, which will lead to the ultimate decision of possibly changing the theme 
color for the entire chain. In this example, we will have 10 stores assigned to 
treatment (blue) and 10 stores assigned to control (yellow). One method is the 
traditional way of completely random assignment. With only 10 stores ran-
domly assigned to treatment, it is possible that many of them are concentrated 
in certain parts of the country (e.g., too many of them on the West Coast), and 
similarly the 10 stores assigned to control could be concentrated in another part 
of the country. Thus, the treatment and control stores can be confounded with 
geography (e.g., West Coast versus East Coast). Using the Randomized Block 
Design, we would frst divide the country geographically, say by region, and 
then randomly assign the stores to treatment and control within each region. 
Table 7.4 shows a possible assignment with 5 stores to be tested in each region. 

TABLE 7.4 

Example of Randomized Block Design by Geographic Region 

Random Assignment of Stores to 
Block Geographic Region6 Treatment and Control within Region 

1 Northeast Blue, Yellow, Blue, Yellow, Blue 
2 Midwest Blue, Yellow, Blue, Blue, Yellow 
3 South Blue, Yellow, Yellow, Blue, Yellow 
4 West Yellow, Blue, Blue, Yellow, Yellow 



 
 
 
 

 
 
 

 

   

168 Cause and Effect Business Analytics and Data Science 

Blocks can also be based on more than one variable. For instance, in the same 
example, in the situation where not all stores can be tested at the same time, 
and the total testing period has to be spread across three months, one may 
include month as an additional variable for blocking (because of possible 
seasonal effects on sales), so each block represents the combination of a spe-
cifc geographic region and a particular month. There would be 3 months × 
4 regions = 12 blocks in total. Obviously, this can get further complicated if 
more variables are involved.7 Again, this method is very useful when the total 
sample size is relatively small but is less important if one has a huge sample.8 

7.2.5 Multivariate Testing/Experimental Design for Campaign Design 

The design of a marketing campaign is the key starting point of a campaign 
process. However, it often does not receive enough attention in data science, 
data mining, and the machine learning literature, where the focus is often 
on supervised and unsupervised learning techniques on observational data 
(also sometimes known as “found data”) or relatively simple experimental 
data. It is known that a poorly designed campaign could make learning 
infeasible, while a scientifcally designed one can not only make learning 
feasible but also maximize learning opportunities. Experimental design has 
been discussed in statistics and the clinical trial literature for decades, for 
example, Box et al. (1978), Kirk (1982), Fleiss (1986), Montgomery (1991), Clarke 
and Kempson (1997), Box (2006), and Friedman et al. (2010). For introductions 
to experimental design in the business literature, see Almquist and Wyner 
(2001), Davenport (2009), and Manzi (2012). 

The design process includes activities such as sample size determination 
techniques, which have been covered in Section 7.2.3. We focus on cell design 
structure – testing various offers along with age, income, or other demo-
graphic-liked variables – in this section. 

Classical designs often test one attribute (also called factor or variable) at a 
time, as discussed in Subsection 7.2.4.1. For example, in a smartphone email 
campaign, they may test a few price levels of the phone. After launching the 
campaign and waiting for a week or two of measurement period, analysis can 
tell which price level is associated with the highest sales level. Then another 
email campaign can be launched to test monthly fees, and a third campaign 
can test the mail content, and so on. The idea is to test only a SINGLE attri-
bute at a time. While this traditional method is simple to process, it tends to 
take a longer time (and would be even longer for direct mail campaigns) to 
realize the ultimate best combination, and, in fact, technically one can never 
know what the best combination is because only the best level from the frst 
test (for the frst attribute) will be incorporated in the second test (for the 
second attribute), etc. A more effcient way is to structure the cell design such 
that all these attributes are testable in one campaign. Such design is called 
MVT in the business literature; see, for example, Holland (2005). We describe 
the methodology below. 
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Since at least the 1990s, large banks have done many experimental in-mar-
ket tests for fnancial products such as credit cards, mortgage refnancing, 
home equity lines of credit, and home equity loans. Many offers that regular 
households receive in their mailboxes are part of large-scale experiments by 
banks seeking to fne-tune their offers. The fnancial services frm Capital 
One was founded by two former management consultants with a strong 
mindset of experimentation (see Paige 2001, Brunner and Kirchoff 2012, and 
Manzi 2012). More recently, technology frms such as Google and Amazon 
are known to routinely carry out experiments. The following are two realis-
tic examples from two different industries. 

Example 7.2 Retailer Coupon Campaign Design 

Many large retailers are experts in coupon strategies and some primar-
ily rely on couponing for their consumer business. Suppose a large retailer 
selling mainly clothes would like to test a marketing campaign, as set out in 
Table 7.5. There are three attributes (also called factors or variables) and two 
attribute levels for each attribute. The total number of combinations is 2 × 2 × 
2 = 23 = 8, and all the 8 possible combinations are listed in Table 7.6. Such a 
design with all possible combinations is called the Full Factorial Design. 

TABLE 7.5 

Retailer Coupon Campaign Design: Attributes and Attribute 
Levels 

Attribute Attribute Level 

Coupon Discount 20% (0), 30% (1) 
Frequency Once a month (0), Twice a month (1) 
Mail Design Postcard (0), Letter (1) 

Note: Numbers in parentheses are coded levels. 

TABLE 7.6 

Full Factorial Design of Retailer Coupon 
Campaign 

Cell Discount Frequency Design 

1 0 0 0 
2 0 0 1 
3 0 1 0 
4 0 1 1 

5 1 0 0 
6 1 0 1 
7 1 1 0 
8 1 1 1 
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To use the design in Table 7.6, the analysts at the Retailer will need to ran-
domly assign the target customers into 8 cells, with each cell receiving one 
of the 8 possible combinations in the mail. The design is straightforward, but 
when the number of attributes is larger, such design can get very large. Let’s 
consider another realistic example in the credit card industry. 

Example 7.3 Credit Card Marketing Campaign Design 

A large bank selling a credit card would like to determine the best com-
bination of treatments for each prospect, and the treatment attributes and 
attribute levels are summarized in Table 7.7 (note that channel is also incor-
porated as an attribute in this example). To accomplish this goal, the bank 
plans to conduct an in-market experiment trying lots of combinations on 
millions of prospects (noncustomers). The number of all possible combina-
tions in this example with four 4-level attributes and two 2-level attributes = 
44 × 22 = 1,024. This means, in order to test all possible combinations, we 
would need 1,024 cells. This would require the bank to divide the targets 
into 1,024 groups, with each group (cell) receiving a unique treatment com-
bination. For example, the frst cell may be APR = 4.95, Credit Limit = $2,500, 
Color = Green, Rebate = None, Brand = SmartCard, and Channel = Direct 
mail; the second is the same except that Channel = Email, and so on. While 
such a test is theoretically feasible, most marketers would consider it admin-
istratively too diffcult because one would have to have lots of card designs 
and then randomly put millions of prospects into 1,024 cells. Such design 
with all possible combinations is called the Full Factorial Design. 

This full factorial design is conceptually simple and mathematically 
straightforward to handle (simply multiply the numbers of levels of all attri-
butes together). In practice, however, when the number of attributes is large 
or even moderate like in this example, the total number of possible com-
binations can be large, which makes it operationally diffcult or infeasible. 
An alternative is to use a Fractional Factorial Design. By defnition, the full 
factorial refers to the design that includes all possible combinations, while a 
fractional factorial design includes only a subset of the full factorial design 
(see Almquist and Wyner 2001 for an introduction). 

TABLE 7.7 

Credit Card Campaign Design: Attributes and Attribute Levels 

Attribute Attribute Level 

Annual Percentage Rate (APR) 4.9% (0), 6.9% (1), 9.9% (2), 11.9% (3) 
Credit limit $2,500 (0), $5,000 (1), $8,000 (2), $12,000 (3) 
Color Green (0), Platinum (1), Gold (2), Diamond (3) 
Rebate None (0), 0.5% (1), 1% (2), 1.5% (3) 
Brand SmartCard (0), SuperAdvantage (1) 
Channel Direct mail (0), Email (1) 

Note: Numbers in parentheses are coded levels. 
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There are two types of fractional factorial design: 

1. Orthogonal design, where all attributes are made orthogonal 
(uncorrelated) with each other, and 

2. Optimal design, a more fexible method that can handle complex 
business requirements, where some criterion related to the covari-
ance matrix of parameter estimates is optimized (see Kuhfeld 1997, 
2010) for the applications of SAS PROC FACTEX and PROC OPTEX 
in market research; Kuhfeld’s market research applications are appli-
cable to database marketing). 

We discuss both designs in the next section. This example will be contin-
ued in Subsections 7.2.5.2 and 7.2.5.3. Before going into the technicalities of 
the design, we need to introduce some fundamental terminology below. 

7.2.5.1 Main and Interaction Effects 

We frst introduce the concepts of main and interaction effects, which are 
essential features of any experimental design, starting with an example. 

Example 7.4 Airline Premium Membership Experiment 

Consider an airline premium membership, which provides premium club 
services at many airports. The current membership charges an annual fee of 
$99 and allows customers to have a quicker check-in time, with an average 
time reduction of 5 minutes. The airline is interested in testing whether cus-
tomers are willing to pay more for a shorter check-in time, with two levels of 
annual fee and two levels of check-in time reduction. The full factorial design 
involves 2 × 2 = 4 cells, with customers randomly selected into each of the 
test cells for promotion (see Table 7.8a). The “control” group, or the current 
base case in this example, is cell 2 (higher fee and lower time reduction). The 
metric of interest is customer acceptance (buy or not), with test results sum-
marized in Table 7.8b. 

TABLE 7.8a 

Design of a Simple Airline Membership Experiment for Two 
Factors 

Cell/Run Annual Fee Reduce Average Check-in Time by 

1 $99 (+) 15 min (+) 
2 (base case) $99 (+) 5 min (−) 
3 $69 (−) 15 min (+) 
4 $69 (−) 5 min (−) 

Note: +/− indicates the high/low level of each of the two 2-level attributes. 
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TABLE 7.8b 

Test Results of the Airline Membership Experiment: Response (Acceptance) Rate by 
Fee and Reduction in Time 

Annual Fee = $69 Annual Fee = $99 

Reduce average check-in time by 5 minutes 3% (Cell 4) 2% (base case, Cell 2) 
Reduce average check-in time by 15 minutes 5.2% (Cell 3) 4% (Cell 1) 

Table 7.8b shows that both a reduced annual fee and an increase in aver-
age time reduction would increase the response rate from the base case. 
However, the time reduction has a stronger effect than a reduced fee, which 
implies that if only one factor can be changed, a time reduction would lead 
to a higher customer acceptance. It is also clear that when both factors are 
improved, that is, lower fee AND further time reduction, the response rate 
is the highest (5.2%). The data in Table 7.8b are plotted in Figure 7.3, which 
clearly shows the benefts of both fee (the lower the better) and time reduction 
(the more the better). The fee effect and the time reduction effect can be calcu-
lated by taking the difference in average response rates (see Table 7.9 for the 
computations). Note that the almost parallel lines in Figure 7.3 indicate that 

FIGURE 7.3 
Response rate by fee and time reduction. 

TABLE 7.9 

Attribute Effect Computation of the Airline Membership Example 

4% + 2% 5.2% + 3%
Fee Effect = − = −1.1% 

2 2 

5.2% + 4% 3% + 2%
Time Reduction Effect = − = 2.1% 

2 2 
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TABLE 7.10 

New Test Results of the Airline Membership Experiment: Response (Acceptance) 
Rate by Fee and Reduction in Time 

Annual Fee = $69 Annual Fee = $99 

Reduce average check-in time by 5 minutes 3% (y4) 2% (y3) 
Reduce average check-in time by 15 minutes 6% (y2) 3% (y1) 

the fee effect does not depend much on the level of time reduction, and also 
the time reduction effect does not depend much on the level of fee. In other 
words, there is no or little interaction effect between fee and time reduction. 

Let us consider the same example, but the data are now different, as shown 
in Table 7.10 and its graphical representation in Figure 7.4. 

Figure 7.4 shows that the two lines are not parallel, which means the effect 
of the fee depends on the time reduction level; that is, when the time reduc-
tion is low (5 min, dotted line), the effect of fee is relatively low (3% versus 
2%, a 1% difference), but when the time reduction is high (15 min, solid line), 
the effect of fee is stronger (6% versus 3%, a 3% difference). Similarly, the 
effect of time reduction also depends on the level of fee. Such dependence of 
one factor’s effect on another factor is called the interaction effect, which is 
defned as the difference between a factor’s effects at two different levels of 
the other factor, and its calculation is shown in Table 7.11. Table 7.12 displays 
all the possible combinations (also called runs or cells) for this example, with 
the +/− signs indicating the high/low level of each of the two-level attributes 
that correspond to the signs in the effect equations in Table 7.11. For example, 
for the main effect of time reduction in Table 7.11, y1 and y2 have a positive 
sign while y3  and y4 have a negative sign, which also shows up in the same 

FIGURE 7.4 
Response rate by fee and time reduction (from Table 7.10). 
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TABLE 7.11 

Attribute Effect Computation of the Airline Membership Example (from Table 7.10) 

y1 +y3 y2 +y4 3% + 2% 6% + 3%
Fee Effect = − = − = −2% 

2 2 2 2 

y1 +y2 y3 +y4 3% + 6% 2% + 3%
Time Reduction Effect = − = − = 2% 

2 2 2 2 

(y1 − y3 ) − (y2 − y4 ) (y1 − y2 ) − (y3 − y4 ) (3% − 6%) − (2% − 3%)
Interaction Effect = = = = −1% 

2 2 2 

TABLE 7.12 

Full Factorial Design, Including Interaction, for the Airline 
Membership Example 

Interaction: 
Run Time Reduction Fee Time Reduction × Fee Outcome 

1 + + + y1 

2 + − − y2 

3 − + − y3 

4 − − + y4 

way in Table 7.12. Note that the signs for the interaction column are exactly 
the product of the time reduction and the fee columns using the common 
multiplication rule (i.e., − × − = +, + × + = +, and + × − = −). The full factorial 
design (in this case, only 4 runs or cells) supports estimation of all main and 
interaction effects as demonstrated in Table 7.11. This can be verifed by the 
signs in Table 7.12, where all three columns (main and interaction) are differ-
ent and uncorrelated.9 

To illustrate using a slightly more sophisticated case: If the airline is now 
interested in testing one more 2-level factor, namely, the style of the member-
ship card: Gold versus Diamond, we will have three factors in total. With 
a 3-factor full factorial design, we have 2 × 2 × 2 = 23 = 8 runs. Table 7.13 
displays the signs of all the main and interaction effects (two-way and three-
way). Again, because this is a full factorial design that covers all possible 
combinations, all the main and interaction effects are estimable as all sign 
columns are different and uncorrelated with each other. 

7.2.5.2 Generating Orthogonal Fractional Factorial Design 

Full factorial designs can be made orthogonal,10 which means that all main 
and interaction effects are uncorrelated with each other (by defnition of 
orthogonality). However, only carefully constructed fractional factorial 
designs are orthogonal. 
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TABLE 7.13 

A 3-Factor Full Factorial Design for the Airline Membership Example 

Main Effects Two-way Interactions 
Three-way 
Interaction 

Run 
Time 

Reduction Fee Card 

Time 
Reduction × 

Fee 

Time 
Reduction × 

Card 
Fee × 
Card 

Time Reduction × 
Fee × Card 

1 + + + + + + + 
2 + + − + − − − 
3 + − + − + − − 
4 + − − − − + + 
5 − + + − − + − 
6 − + − − + − + 
7 − − + + − − + 
8 − − − + + + − 

Let us answer this question frst – why do people want an orthogonal 
design? Because of the advantages listed below: 

1. Estimability is completely guaranteed. An orthogonal design 
guarantees that all main effects and selected desirable inter-
action effects are estimable, which may be the most important 
advantage. 

2. There is no multicollinearity problem. A classical issue that arises 
when running a predictive model on correlated variables is that 
the estimated effects may not necessarily represent the true causal 
effects (see Chapter 5). Having a full factorial design enables orthog-
onality of the variables so all parameters can be “cleanly estimated” 
without interference of other variables. In other words, adding or 
dropping a variable will not affect the estimated parameter values 
of other variables. 

3. Minimum variance (i.e., maximum precision). Mathematically, it 
can be proven that having an orthogonal design will achieve the 
minimum variance of the estimated parameters (or, equivalently, 
maximum precision). Consider linear models, E Y = X˜( )  , where X 
is now the design matrix (with columns representing the intercept 
[1’s] and independent variables from the design) and ˜ is a vector 
of parameters associated with the intercept and the independent 
variables. With an orthogonal design, the variance of the estimated 

ˆ 2 −1 2parameters can be shown as11: Var ˜ = ° (X Xˆ ) = ° I  (where( )  
˜ is the standard deviation of the error term) because X X˜ = I . As 
a result, the variance of the estimated parameters is minimized. 
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In general, nonlinear models (including logistic regression), how-
ever, the variance form is less straightforward but can still be written 

ˆ 2 −1 1as in the following form: Var ˜ = (X WX + O( )( ) ° ) n ,ˆ where W can 

be interpreted as a set of weights and n is the total sample size. Some 
numerical evidence suggests that orthogonal designs work reason-
ably well even for nonlinear models; see Kuhfeld et al. (1994). 

So how are we going to generate a fractional factorial design? There are 
generally three ways: 

1. By Hand: This is only feasible for the simplest designs. We will illus-
trate this in the next Subsection 7.2.5.2.1 in order to introduce the 
general concept. 

2. By a Computer: This is now the most practical and common method, 
as experimental designs are available in many common software 
packages, including SAS, JMP, and R. We discuss this further in 
Subsection 7.2.5.2.2. 

3. By Tables: There are canned tables available for selected designs as 
in, for instance, Box et al. (1978) or Montgomery (1991).12 These are 
rarely used anymore. 

Although experimenters typically use computer algorithms for most frac-
tional factorial designs, it is still instructive to illustrate how simple designs 
can be generated manually. 

7.2.5.2.1 Generation by Hand and the Concept of Resolution 

Although experimenters typically would use computer algorithms for most 
fractional factorial designs, it is still instructive to illustrate how simple 
designs can be generated manually. 

Example 7.4 Airline Premium Membership Experiment – Continued 

Example 7.4 above generates a full factorial design in Table 7.13, with 3 
factors leading to 8 (= 23) total combinations. If we want to create a frac-
tional factorial design by taking half of the 8 combinations, that is, reduc-
ing 23 to 23 – 1 = 4 combinations, we can simply discard 4 combinations 
and only keep 4 of them. The question is: Which 4 combinations should 
we keep? 

Let’s say we are mostly interested in the frst two factors: Time Reduction 
and Fee, and we want to construct a “full” factorial design using just the frst 
two factors frst; this would take us back to Table 7.12. Fractional factorial 
design is typically generated by sacrifcing some interaction effects, so in this 
example, we can generate a fractional design by aliasing the interaction effect 
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of Time Reduction and Fee with the main effect of the third attribute, Card. 
The procedure goes as follows: 

Step 1: Choose two attributes and write down the full 22 factorial as the 
initial design for the two attributes, for example, Table 7.12. 

Step 2: Create aliasing relationships. For a 23-1 design, we can equate 
the levels of the third attribute to either the positive interaction of 
the frst two attributes or the negative interaction of the frst two 
attributes, that is,, set Card = Time Reduction × Fee or Card = −Time 
Reduction × Fee, see Table 7.14. 

Note that the frst half of Table 7.14 has a clear alias, which, by construction, 
is Card = Time Reduction × Fee, which means we cannot tell the difference 
between the main effect of Card or the interaction effect of the other two 
attributes in this design. One can also verify the following additional alias-
ing relationships (also known as design generators): 

= ×Fee Time Reduction Card, and 

Time Reduction = Fee Card.× 

TABLE 7.14 

A 3-Factor Full Factorial Design = Sum of Two ½ (Fractional) 
Factorial Designs 

First Half of the Full Factorial Design (Corresponding to Runs 1, 4, 6, 7 in 
Table 7.13) 

Card = 
Run Time Reduction Fee Time Reduction × Fee 

1 + + + 
2 + − − 
3 − + − 
4 − − + 

Second Half of the Full Factorial Design (Corresponding to Runs 2, 3, 5, 
8 of Table 7.13) 

Card = 
Run Time Reduction Fee − Time Reduction × Fee 

1 + + − 
2 + − + 
3 − + + 
4 − − − 
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This indicates that all two-way interactions are aliased (completely con-
founded) with a main effect. What it means is that while the main effects 
are estimable, the two-way interactions are not, and also the main effects 
and two-way interactions are confounded with each other. In other 
words, if the interaction effects are all close to zero (or negligible), all the 
main effects can be estimated correctly. In fact, if we consider the identity 
I column, defined as + for all runs, we can use this defining relation as a 
design generator: I = Time Reduction × Fee × Card. Then one can multi-
ply both the left and right by Card to achieve: Card = Time Reduction × 
Fee, because Card × Card = I, since any attribute level multiplied by 
itself becomes + (for + × + = + and − × − = +). Likewise, we also have Fee 
= Time Reduction × Card, if we multiply both left and right by Fee, and 
Time Reduction = Fee × Card, if we multiply both left and right by Time 
Reduction. This way finds all possible aliases associated with the first 
half of Table 7.14. 

Similarly, in the second half of Table 7.14, we have Card = − Time Reduction × 
Fee by construction, as well as the following additional aliasing relationships: 

Fee  = −Time Reduction Card,× and 

Time Reduction = −Fee Card.× 

The corresponding defning relation is: I = −Time Reduction × Fee × Card, 
which will lead to all three aliasing relationships. This means all two-way 
interactions are (negatively) aliased with a main effect. 

7.2.5.2.1.1 Rule of Resolution 
To assess the quality of a fractional factorial design, statisticians use a term 
called Resolution, R. We should understand the Rule of Resolution because it 
is a common term used in tables and computer software (in both user input 
and computer output). 

The rule goes as follows: To check if a p-factor effect is aliased with a 
q-factor effect of a resolution R design (e.g., a 1-factor effect is simply a main 
effect and a 2-factor effect is a two-way interaction): 

• If p + q < R, the p-factor and q-factor effects are not aliased; 
• If p + q ≥ R, the p-factor and q-factor effects can be aliased. 

Let’s take a look at some examples. The previous example in Table 7.14 is 
a Resolution III design (either we take the frst half or the second half of 
the original 23 full factorial design) because all main effects are NOT aliased 
with any other main effect (1 + 1 < 3), but all two-way interaction effects are 
aliased with a main effect (2 + 1 = 3), and the two-way interactions may also 
be aliased with each other (2 + 2 > 3). As a result, it is a Resolution III design 

3 1and can be denoted as 2III 
− . 
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Let’s consider a Resolution IV design, which means, according to the above 
rule of Resolution: 

• All main effects are estimable as no main effect is aliased with any 
other main effect (because 1 + 1 < 4). 

• No main effect is aliased with any two-way interaction (because 1 + 
2 < 4). 

• Two-way interactions can be aliased with each other (because 2 + 
2 = 4). 

• Main effects can be aliased with three-way interactions (because 
1 + 3 = 4). 

The above example for three attributes is relatively simple, and, in reality, 
there can be many more attributes, sometimes with constraints, which is why 
generating fractional factorial designs with a computer program is a more 
common method, which will be described below. 

7.2.5.2.2 Generation by a Computer Program 

As mentioned, a computer program is typically required for relatively large 
designs. To illustrate the capability in SAS/QC,13 we revisit the Credit Card 
Campaign Design in Example 7.3. The problem with the design in Table 7.7 
is that a full factorial design of this credit card marketing example would 
result in 44 × 22 = 1,024 cells. A fractional factorial design requires a tradeoff 
between size (i.e., number of runs or cells) and the number of interaction 
effects that can be taken into account. Quite often, it is reasonable to assume 
that some high-order interaction effects are negligible. If one is interested in 
only the main effects, all possible two-way interaction effects, and quadratic 
effects on continuous variables (equivalently, assuming all three-way inter-
action effects or above are negligible), the following program14 using SAS 
PROC FACTEX results in 256 runs15,16: 

/* Efficient way: code four-level vars as two binary vars */ 
/* All two-way interaction effects as well as quadratic 
effects are estimable */ 
proc factex; 
factors apr1 apr2 limit1 limit2 color1 color2 rebate1 rebate2 
brand chan; 
size design=minimum; 
model est=(apr1|apr2 limit1|limit2 color1|color2 
rebate1|rebate2 brand chan 
apr1|apr2|limit1|limit2 apr1|apr2|color1|color2 
apr1|apr2|rebate1|rebate2 
apr1|apr2|brand apr1|apr2|chan 
limit1|limit2|color1|color2 limit1|limit2|rebate1|rebate2 
limit1|limit2|brand 
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limit1|limit2|chan 
color1|color2|rebate1|rebate2 color1|color2|brand 
color1|color2|chan 
rebate1|rebate2|brand rebate1|rebate2|chan 
brand|chan 
); 
examine design aliasing; 
output out=twoway

 [apr1 apr2]=apr nvals=(0 1 2 3)
 [limit1 limit2]=limit nvals=(0 1 2 3)
 [color1 color2]=color nvals=(0 1 2 3)
 [rebate1 rebate2]=rebate nvals=(0 1 2 3)
 brand nvals=(0 1)
 chan nvals=(0 1); 

run; 

proc print data=twoway; 
run; 

/* Completely balanced for EACH variable */ 
proc freq data=twoway; 
table apr limit color rebate brand chan; 
run; 

/* Also balanced at the multivariate level */ 
proc freq data=twoway; 
table apr*limit*color*rebate*brand*chan/list; 
run; 

Table 7.15a summarizes part of the aliasing structure from the PROC 
FACTEX output, indicating that some high-order interaction effects are 
aliased (or confounded) with other interaction effects. The frst equation 
shows what are aliased with the identity column (denoted as 0 as opposed 
to I in SAS), that is, a defning relation. The truncated design is shown in 
Table 7.15b for the frst 50 runs. The PROC FREQs (frequency distributions) 
in the above program are used to check and confrm that the attributes are 
balanced (i.e., all levels of each attribute are equally represented), as expected 
from an orthogonal design. 

Depending on the experience of applying fractional factorial design, some 
companies may feel fne with 256 combinations, while others may feel it is 
still too large. It is exactly the situation where optimal design can come to 
rescue if there is a need to reduce the combinations. 

Optimal design aims at optimizing certain statistical criteria such that 
the variances of estimated parameters are as small as possible (subject to 
constraints) or, in other words, the estimated parameters are as “precise” as 
possible. Since the variance-covariance matrix of estimated parameters in a 

ˆ 2 −1
linear model is17: Var ˜ = (X X( ) ° ˆ ) , it is reasonable to have a design such 
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TABLE 7.15a 

Aliasing Structure of an Orthogonal Fractional Factorial 
Design Example, Truncated 

Aliasing Structure 

0 = apr1*limit1*color1*brand*chan 
apr1 = limit1*color1*brand*chan 
apr2 = limit2*color2*rebate1*rebate2*chan 
limit1 = apr1*color1*brand*chan 
limit2 = apr2*color2*rebate1*rebate2*chan 
color1 = apr1*limit1*brand*chan 
color2 = apr2*limit2*rebate1*rebate2*chan 
rebate1 = apr2*limit2*color2*rebate2*chan 
rebate2 = apr2*limit2*color2*rebate1*chan 
brand = apr1*limit1*color1*chan 
chan = apr1*limit1*color1*brand = apr2*limit2*color2*rebate1*rebate2 
apr1*apr2 = apr2*limit1*color1*brand*chan 
apr1*limit1 = color1*brand*chan 
apr1*limit2 = limit1*limit2*color1*brand*chan 
apr1*color1 = limit1*brand*chan 
apr1*color2 = limit1*color1*color2*brand*chan 
apr1*rebate1 = limit1*color1*rebate1*brand*chan 
apr1*rebate2 = limit1*color1*rebate2*brand*chan 
apr1*brand = limit1*color1*chan 
apr1*chan = limit1*color1*brand 

TABLE 7.15b 

An Orthogonal Fractional Factorial Design Example, Truncated 

Run brand chan apr Limit color rebate 

1 1 0 0 0 0 0 
2 0 1 0 0 0 2 
3 0 1 0 0 0 1 
4 1 0 0 0 0 3 
5 0 1 0 0 2 0 
6 1 0 0 0 2 2 
7 1 0 0 0 2 1 
8 0 1 0 0 2 3 
9 0 0 0 0 1 0 

10 1 1 0 0 1 2 
11 1 1 0 0 1 1 
12 0 0 0 0 1 3 
13 1 1 0 0 3 0 
14 0 0 0 0 3 2 

(Continued) 
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TABLE 7.15b (Continued) 

Run brand chan apr Limit color rebate 

15 0 0 0 0 3 1 
16 1 1 0 0 3 3 
17 0 1 0 2 0 0 
18 1 0 0 2 0 2 
19 1 0 0 2 0 1 
20 0 1 0 2 0 3 
21 1 0 0 2 2 0 
22 0 1 0 2 2 2 
23 0 1 0 2 2 1 
24 1 0 0 2 2 3 
25 1 1 0 2 1 0 
26 0 0 0 2 1 2 
27 0 0 0 2 1 1 
28 1 1 0 2 1 3 
29 0 0 0 2 3 0 
30 1 1 0 2 3 2 
31 1 1 0 2 3 1 
32 0 0 0 2 3 3 
33 0 0 0 1 0 0 
34 1 1 0 1 0 2 
35 1 1 0 1 0 1 
36 0 0 0 1 0 3 
37 1 1 0 1 2 0 
38 0 0 0 1 2 2 
39 0 0 0 1 2 1 
40 1 1 0 1 2 3 
41 1 0 0 1 1 0 
42 0 1 0 1 1 2 
43 0 1 0 1 1 1 
44 1 0 0 1 1 3 
45 0 1 0 1 3 0 
46 1 0 0 1 3 2 
47 1 0 0 1 3 1 
48 0 1 0 1 3 3 
49 1 1 0 3 0 0 
50 0 0 0 3 0 2 

Note: See Table 7.7 for attribute level defnitions. 

that (X X˛ )−1
 is small or X X˜  is large. (Note that the inverse of Var ( )˜̂  is known 

as the Fisher Information Matrix, which, by defnition of “information,” is 
the larger the better.) That said, since X X˜  is a matrix, not a scalar, how do we 
determine a matrix is large? A common way is to calculate its determinant: 
X X˜ . Maximizing X X˜  subject to a candidate set of design runs is called the 
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D-optimal design.18 To construct a D-optimal design, we frst need to provide 
a starting set of runs, known as the candidate set of design runs. A common 
way is to start with the full factorial design as the candidate set, or an orthog-
onal fractional factorial design, which is already smaller. Kuhfeld (1997, 2010) 
gives details of optimal design and its implementation using PROC OPTEX 
in SAS/QC. 

To continue with the credit card design example in Table 7.7, let’s start with 
Table 7.15b as the candidate set for the D-optimal design.19 Running the fol-
lowing program using PROC OPTEX20 in SAS/QC results in only 37 runs, a 
substantial reduction from the orthogonal design of 256 runs or the original 
full factorial design of 1,024 runs: 

proc optex data=twoway; 
class color brand chan; /* nominal variables */ 
model apr|limit|color|rebate|brand|chan@2 apr*apr limit*limit 
rebate*rebate; 
generate n=saturated method=m_fedorov; 
output out=optdesign; 
run; 

proc print data=optdesign; 
run; 

The output of this optimal design in Table 7.16a shows various effciency 
measures (the higher the better) – the best D-effciency design (with a 
D-effciency measure of 56.8%) in Design Number 1 is selected as the fnal 
design, which only has 37 runs as printed in Table 7.16b. 

Once a design is obtained, the next step is to check whether the required 
effects are truly estimable. The following SAS code first transforms the 
coded levels of continuous attributes from 0-3 to the actual values, fol-
lowed by centering to reduce correlations,21 and the creation of all two-
way interaction terms. Then, correlation analysis (PROC CORR) and a 
linear model procedure (PROC GLM) are used to make sure the correla-
tion coefficients are reasonable22 and the required effects are really esti-
mable. The beginning part of PROC GLM output is shown in Table 7.17, 

TABLE 7.16a 

Statistical Output of an Optimal Design Example (Truncated) 

Average Prediction 
Design Number D-Effciency A-Effciency G-Effciency Standard Error 

1 56.7902 18.9995 45.7578 1.3367 
2 55.9370 16.4208 45.8300 1.4018 
3 55.7041 13.9121 40.3855 1.4856 
4 55.6898 18.1791 47.2150 1.3757 
5 55.6537 17.8955 49.3404 1.3982 
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TABLE 7.16b 

An Optimal Design Example 

Run apr limit rebate color brand chan 

1 0 0 2 3 0 0 

2 0 0 3 3 1 1 

3 0 0 2 2 1 0 

4 0 0 3 2 0 1 

5 0 0 3 1 0 0 

6 0 0 1 0 0 1 

7 0 0 3 0 1 0 

8 0 1 0 2 1 1 

9 0 3 0 3 1 0 

10 0 3 2 3 0 1 

11 0 3 0 2 0 0 

12 0 3 0 1 0 1 

13 0 3 2 1 1 0 

14 0 3 0 0 1 1 

15 1 0 0 3 0 1 

16 1 0 0 1 1 0 

17 1 3 0 2 1 0 

18 1 3 3 0 0 1 

19 2 1 3 3 1 0 

20 2 2 0 1 0 0 

21 2 3 3 2 1 1 

22 2 3 2 1 0 1 

23 2 3 0 0 0 0 

24 3 0 0 3 1 0 

25 3 0 0 2 0 0 

26 3 0 2 2 1 1 

27 3 0 0 1 0 1 

28 3 0 0 0 1 1 

29 3 0 2 0 0 0 

30 3 1 3 1 1 1 

31 3 2 3 3 0 1 

32 3 2 2 2 0 0 

33 3 3 0 3 1 1 

34 3 3 1 3 0 0 

35 3 3 0 2 0 1 

36 3 3 3 1 0 0 

37 3 3 3 0 1 0 

Note: See Table 7.7 for attribute level defnitions. 
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TABLE 7.17 

PROC GLM Output(Beginning Part) for Checking 
Estimability of the D-Optimal Design (Lack of 
Equations Below Indicates No Effects Are Linked 
and All Parameters Are Estimable) 

General Form of Estimable Functions 

Effect Coeffcients 

aprn L1 
limitn L2 
color1 L3 
color2 L4 
color3 L5 
rebaten L6 
brand L7 
chan L8 
aprnsq L9 
limitnsq L10 
rebatensq L11 
aprnlimitn L12 
aprncolor1 L13 
aprncolor2 L14 
aprncolor3 L15 
aprnrebaten L16 
aprnbrand L17 
aprnchan L18 
limitncolor1 L19 
limitncolor2 L20 
limitncolor3 L21 
limitnrebaten L22 
limitnbrand L23 
limitnchan L24 
rebatencolor1 L25 
rebatencolor2 L26 
rebatencolor3 L27 
brandcolor1 L28 
brandcolor2 L29 
brandcolor3 L30 
chancolor1 L31 
chancolor2 L32 
chancolor3 L33 
rebatenbrand L34 
rebatenchan L35 
brandchan L36 
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which indicates that all effects are estimable (otherwise, one would see 
linear equations between some of the variables). 

data optdesign; set optdesign; 
cell=_n_; 
run; 

data try; 
set 
optdesign; 

y=rannor(-1); 

select (apr);
 when (0) aprn=4.9;
 when (1) aprn=6.9;
 when (2) aprn=9.9;
 otherwise aprn=11.9; 

end; 

/* limitn = actual limit/1000 */ 
select (limit);

 when (0) limitn=2.5;
 when (1) limitn=5;
 when (2) limitn=8;
 otherwise limitn=12; 

end; 

select (rebate);
 when (0) rebaten=0;
 when (1) rebaten=0.5;
 when (2) rebaten=1;
 otherwise rebaten=1.5; 

end; 

/* For color: color1=platinum, color2=gold, color3=diamond, 
base color = green */ 
select (color);

 when (0) do; color1=0; color2=0; color3=0; end;
 when (1) do; color1=1; color2=0; color3=0; end;
 when (2) do; color1=0; color2=1; color3=0; end;
 otherwise do; color1=0; color2=0; color3=1; end; 

end; 

/* Centering to reduce correlations */ 
aprn=aprn-mean(4.9,6.9,9.9,11.9); 
limitn=limitn-mean(2.5,5,8,12); 
rebaten=rebaten-mean(0,0.5,1,1.5); 
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/* Squared terms for testing quadratic effects */ 
aprnsq=aprn*aprn; 
limitnsq=limitn*limitn; 
rebatensq=rebaten*rebaten; 

/* Two-way interaction terms */ 
/* Consider all the following interaction terms: 
apr*limit apr*color apr*rebate apr*brand apr*chan 
limit*color limit*rebate limit*brand limit*chan 
color*rebate color*brand color*chan 
rebate*brand rebate*chan 
brand*chan */ 

aprnlimitn=aprn*limitn; 
aprncolor1=aprn*color1; aprncolor2=aprn*color2; 
aprncolor3=aprn*color3; 
aprnrebaten=aprn*rebaten; 
aprnbrand=aprn*brand; 
aprnchan=aprn*chan; 

limitncolor1=limitn*color1; limitncolor2=limitn*color2; 
limitncolor3=limitn*color3; 
limitnrebaten=limitn*rebaten; 
limitnbrand=limitn*brand; 
limitnchan=limitn*chan; 

rebatencolor1=rebaten*color1; rebatencolor2=rebaten*color2; 
rebatencolor3=rebaten*color3; 
brandcolor1=brand*color1; brandcolor2=brand*color2; 
brandcolor3=brand*color3; 
chancolor1=chan*color1; chancolor2=chan*color2; 
chancolor3=chan*color3; 

rebatenbrand=rebaten*brand; 
rebatenchan=rebaten*chan; 

brandchan=brand*chan; 

run; 

/* Checking correlations of all main and two-way interactions 
for: 
aprn limitn color rebaten brand chan; */ 
proc corr data=try; 
var 
aprn limitn color1-color3 rebaten brand chan 
aprnsq limitnsq rebatensq 
aprnlimitn aprncolor1-aprncolor3 aprnrebaten aprnbrand aprnchan 
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limitncolor1-limitncolor3 limitnrebaten limitnbrand limitnchan 
rebatencolor1-rebatencolor3 brandcolor1-brandcolor3 
chancolor1-chancolor3 
rebatenbrand rebatenchan 
brandchan 
; 
run; 

/* Using GLM to check that all required effects are estimable */ 
proc glm data=try; 
model y= 
aprn limitn color1-color3 rebaten brand chan 
aprnsq limitnsq rebatensq 
aprnlimitn aprncolor1-aprncolor3 aprnrebaten aprnbrand 
aprnchan 
limitncolor1-limitncolor3 limitnrebaten limitnbrand limitnchan 
rebatencolor1-rebatencolor3 brandcolor1-brandcolor3 
chancolor1-chancolor3 
rebatenbrand rebatenchan 
brandchan 
/ noint e solution; 
run; 

To further ensure estimability when a non-contact control group is 
included, we can mimic the process of model estimation assuming data are 
available, with the following steps: 

1. Combining the treatment group (with all the attribute combinations) 
with the control group; 

2. Adding demographic variables and replicating the design m times 
(m often in thousands or tens of thousands); 

3. Simulating the outcome response variable with an assumed theoreti-
cal model; 

4. Adding interaction terms between design and demographic vari-
ables; and fnally, 

5. Checking for estimability as well as statistical signifcance and val-
ues of estimated parameters in a statistical model using simulated 
data. 

Note that replicating the design m times in Step 2 essentially mimics the 
actual campaign where each cell/run has m replicates, while each replicate 
corresponds to an individual with certain demographic variables. Step 5 
allows us to check not only whether the parameters are estimable but also 
whether they are statistically signifcant. If Step 5 fails in capturing some 
key parameters, one can go back to Step 2 to increase m in order to increase 
the likelihood of capturing the key parameters signifcantly at a reason-
able level. Additionally, as a sensitivity analysis, one can also try different 
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sets of parameter values in Step 3, and then repeat Steps 4 and 5 to ensure 
estimability and statistical signifcance in a reasonable range of parameter 
values.23 

The following sample code illustrates these steps for this credit card mar-
keting example. 

/* Now, combine the treatment group and the no-contact control 
group */ 
data ch6.try2; set try; 
trt=1; /* treatment group */ 
run; 

data control; 
cell=38; 
trt=0; /* control group */ 
array all_design_var[*] 
aprn limitn color1-color3 rebaten brand chan 
aprnsq limitnsq rebatensq 
aprnlimitn aprncolor1-aprncolor3 aprnrebaten aprnbrand 
aprnchan 
limitncolor1-limitncolor3 limitnrebaten limitnbrand limitnchan 
rebatencolor1-rebatencolor3 brandcolor1-brandcolor3 
chancolor1-chancolor3 
rebatenbrand rebatenchan 
brandchan; 
do i=1 to dim(all_design_var); all_design_var[i]=0; end; 
run; 

data ch6.try3; 
set ch6.try2 control; 

seed=150; 
m=30000; /* number of replicates in treatment */ 
ctrl_size=100000; 

/* Make some assumptions on demographic variables, 
assuming m replicates for each cell plus control */ 
if trt=1 then do; 

do i=1 to m; 

age=45+13*rannor(seed); 
wealth=800+150*rannor(seed)+3*age; 
balance=400+150*rannor(seed)+wealth*0.3; 
hvalue=wealth*0.7+70*rannor(seed); 

if age<=18 then age=18; 
if balance<0 then balance=0; 
if hvalue<0 then hvalue=0; 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

190 Cause and Effect Business Analytics and Data Science 

lnodd=-10+(20*age+5*wealth+1.65*balance)/1000; 
lnodd=lnodd 

+0.0*(color=1) 
+0.08*(color=2) 
+0.12*(color=3) 
+0.03*aprn 
+0.02*rebaten 
+0.01*limitn 

+0.01*age 
+0.01*age*(color=3) 
+0.01*age*rebaten; 
prob=1/(1+exp(-lnodd)); 

res=ranbin(seed,1,prob); 
output; 
end; 

end; else do; 

do i=1 to ctrl_size; 

age=45+13*rannor(seed); 
wealth=800+150*rannor(seed)+3*age; 
balance=400+150*rannor(seed)+wealth*0.3; 
hvalue=wealth*0.7+70*rannor(seed); 

if age<=18 then age=18; 
if balance<0 then balance=0; 
if hvalue<0 then hvalue=0; 

lnodd=-10+(20*age+5*wealth+1.65*balance)/1000; 

prob=1/(1+exp(-lnodd)); 

res=ranbin(seed,1,prob); 
output; 
end; 

end; 

run; 

proc means data=ch6.try3; 
class trt; 
var res; 
run; 
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data ch6.try3; set ch6.try3; 
array demo_var[4] age wealth balance hvalue; 
array design_var[9] trt aprn limitn color1-color3 rebaten 
brand chan; 
array demo_design_int[4,9] 
agetrt ageaprn agelimitn agecolor1-agecolor3 agerebaten 
agebrand agechan 
wealthtrt wealthaprn wealthlimitn wealthcolor1-wealthcolor3 
wealthrebaten wealthbrand wealthchan 
balancetrt balanceaprn balancelimitn 
balancecolor1-balancecolor3 
balancerebaten balancebrand balancechan 
hvaluetrt hvalueaprn hvaluelimitn hvaluecolor1-hvaluecolor3 
hvaluerebaten hvaluebrand hvaluechan; 
do i=1 to dim(demo_var);

 do j=1 to dim(design_var);
 demo_design_int[i,j]=demo_var[i]*design_var[j];

 end; 
end; 
run; 

proc logistic data=ch6.try3 descending; 
model res= 
age wealth balance hvalue 

trt aprn limitn color1-color3 rebaten brand chan 
aprnsq limitnsq rebatensq 
aprnlimitn aprncolor1-aprncolor3 aprnrebaten aprnbrand 
aprnchan 
limitncolor1-limitncolor3 limitnrebaten limitnbrand limitnchan 
rebatencolor1-rebatencolor3 brandcolor1-brandcolor3 
chancolor1-chancolor3 
rebatenbrand rebatenchan 
brandchan 

agetrt ageaprn agelimitn agecolor1-agecolor3 agerebaten 
agebrand agechan 
wealthtrt wealthaprn wealthlimitn wealthcolor1-wealthcolor3 
wealthrebaten wealthbrand wealthchan 
balancetrt balanceaprn balancelimitn 
balancecolor1-balancecolor3 
balancerebaten balancebrand balancechan 
hvaluetrt hvalueaprn hvaluelimitn hvaluecolor1-hvaluecolor3 
hvaluerebaten hvaluebrand hvaluechan 
/selection=stepwise; 
run; 

quit; 
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Examination of the logistic regression output of the above code (not shown) 
indicates that most of the key parameters are statistically signifcant (and the 
estimated values are quite consistent with the actual values from the theo-
retical model). 

7.2.5.3 Handling Constraints in Optimal Factorial Design 

The previous section employs fractional factorial design to generate an 
orthogonal design. In practical situations, however, there are often busi-
ness constraints imposed. For example, you may not want to offer a product 
that has the highest quality with the lowest price, or marketers may really 
want to test a new product with certain attribute combinations that may not 
exist in your current fractional factorial design. The typical way to handle 
this situation is to frst try incorporating these constraints into the design 
and then test the design if the required effects are still estimable. If not 
estimable, one can return to running another optimal design with these 
constraints explicitly incorporated. We resume Example 7.3 below with a 
realistic scenario. 

Example 7.3 Credit Card Marketing Campaign Design – Handling 
Constraints 

Two constraints are imposed by your colleagues: 

1. Suppose you are told by the Finance Department that the follow-
ing combination of attributes should not exist because it is not fnan-
cially sustainable: APR = 4.9% (level 0), credit limit = $12,000 (level 
3), and rebate = 1.5% (level 3), that is, the lowest price and the highest 
credit limit and rebate levels. After examining the current design 
in Table 7.16, you are happy to report that such a scenario does not 
exist, so you feel you are all set. Your Chief Financial Offcer (CFO), 
however, is also concerned about the next low-price and high-quality 
scenario, APR at 6.9% (level 1), along with the highest credit limit and 
rebate levels. This scenario does exist at Run 18 in Table 7.16 and thus 
needs to be removed. 

2. The Chief Marketing Offcer (CMO) wants you to test what would 
happen when the Diamond card (Color at level 3) goes with the high-
est APR (11.9%, level 3), the highest credit limit ($12,000, level 3), the 
highest rebate (1.5%, level 3), the SuperAdvantage brand (level 1 of 
brand), and the email channel (level 1 of channel). Such a scenario 
does not exist in the current design, and you are interested in the 
estimability of the design if that scenario is added. 

Your natural action now is to replace the current Run 18, which your 
CFO does not like, with the scenario from the CMO. The new design is in 
Table 7.18, where the changed run is shaded. 
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TABLE 7.18 

Current Design with Run 18 Replaced by the CMO Scenario 

Run apr limit rebate color brand chan 

1 0 0 2 3 0 0 

2 0 0 3 3 1 1 

3 0 0 2 2 1 0 

4 0 0 3 2 0 1 

5 0 0 3 1 0 0 

6 0 0 1 0 0 1 

7 0 0 3 0 1 0 

8 0 1 0 2 1 1 

9 0 3 0 3 1 0 

10 0 3 2 3 0 1 

11 0 3 0 2 0 0 

12 0 3 0 1 0 1 

13 0 3 2 1 1 0 

14 0 3 0 0 1 1 

15 1 0 0 3 0 1 

16 1 0 0 1 1 0 

17 1 3 0 2 1 0 

18 3 3 3 3 1 1 

19 2 1 3 3 1 0 

20 2 2 0 1 0 0 

21 2 3 3 2 1 1 

22 2 3 2 1 0 1 

23 2 3 0 0 0 0 

24 3 0 0 3 1 0 

25 3 0 0 2 0 0 

26 3 0 2 2 1 1 

27 3 0 0 1 0 1 

28 3 0 0 0 1 1 

29 3 0 2 0 0 0 

30 3 1 3 1 1 1 

31 3 2 3 3 0 1 

32 3 2 2 2 0 0 

33 3 3 0 3 1 1 

34 3 3 1 3 0 0 

35 3 3 0 2 0 1 

36 3 3 3 1 0 0 

37 3 3 3 0 1 0 
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Re-running correlation analysis and PROC GLM with this modifed design 
in Table 7.18 shows that the required effects are all still estimable and the 
correlation coeffcients do not seem to have much change (not shown). As 
a result, the design in Table 7.18 is reported and can be used for actual cam-
paign execution. 

In case this manually constrained design is considered not as good (in the 
sense of variables being linked in the PROC GLM output or much higher cor-
relation coeffcients), one can remove the unwanted scenarios and add the 
desired one to the candidate set and re-run the optimal design procedure 
(PROC OPTEX) and then make sure the desired scenario does show up (if not, 
one can always add it as an additional scenario to the optimal design). The 
fnal design has to be checked using correlation analysis and PROC GLM. For 
our example, if we had a doubt on the latest design, the following code could 
be used to re-run the optimal design with the constraints incorporated. The 
statistical output is then shown in Table 7.19a (where the CMO desired scenario 
is in Run 32) with the output design in Table 7.19b. Note that the D-effciency 
measure is only marginally reduced from 56.8% with the original design in 
Table 7.16a to 56.0% with the constraints incorporated in Table 7.19a. 

/* Generate an optimal design with the constraints explictly 
handled */ 

/* twoway is the original orthogonal design generated by PROC 
FACTEX */ 
/* twoway_constr has the constraints incorporated */ 
data twoway_constr; 
set twoway; 
/* Delete the scenario CFO does not like */ 
if apr in (0,1) and limit=3 and rebate=3 then delete; 
/* Check if the CMO scenario exists */ 
if apr=3 and limit=3 and rebate=3 and color=3 and brand=1 and 
chan=1 then

 CMO_scenario=1; 
else CMO_scenario=0; 
run; 

TABLE 7.19a 

Statistical Output of an Optimal Design with Constraints Incorporated 

Average Prediction 
Design Number D-Effciency A-Effciency G-Effciency Standard Error 

1 56.0460 22.3305 46.3830 1.3351 
2 56.0460 22.3305 46.3830 1.3351 
3 55.6233 16.8085 43.1266 1.3927 
4 55.5979 18.4516 39.8424 1.3701 
5 55.4959 18.0044 45.5846 1.3894 
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TABLE 7.19b 

An Optimal Design with Constraints Incorporated 

Run apr limit rebate color brand chan 

1 0 0 3 3 1 1 

2 0 0 2 2 1 0 

3 0 0 3 2 0 1 

4 0 0 2 1 1 1 

5 0 0 3 1 0 0 

6 0 0 3 0 1 0 

7 0 1 0 3 0 1 

8 0 1 3 1 1 0 

9 0 2 3 3 0 0 

10 0 3 0 3 1 0 

11 0 3 0 2 0 0 

12 0 3 2 2 1 1 

13 0 3 0 1 0 1 

14 0 3 0 0 1 1 

15 0 3 2 0 0 0 

16 1 0 0 2 1 1 

17 1 1 0 1 0 0 

18 1 2 3 1 0 1 

19 2 0 0 0 0 1 

20 2 1 3 2 0 0 

21 2 3 0 3 0 1 

22 3 0 0 3 1 0 

23 3 0 2 3 0 1 

24 3 0 0 2 0 0 

25 3 0 0 1 0 1 

26 3 0 2 1 1 0 

27 3 0 0 0 1 1 

28 3 1 1 2 0 1 

29 3 1 3 0 0 1 

30 3 2 3 2 1 1 

31 3 2 0 0 0 0 

32 3 3 3 3 1 1 

33 3 3 1 2 1 0 

34 3 3 3 2 0 1 

35 3 3 1 1 1 1 

36 3 3 3 1 0 0 

37 3 3 3 0 1 0 
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/* Verify that the CMO scenario does exist */ 
proc freq data=twoway_constr; 
tables CMO_scenario; 
run; 

proc optex data=twoway_constr; 
class color brand chan; /* nominal variables */ 
model apr|limit|color|rebate|brand|chan@2 apr*apr limit*limit 
rebate*rebate; 
generate n=saturated method=m_fedorov; 
output out=optdesign_constr; 
run; 

/* The CMO scenario is confirmed to be in Run 32 */ 
proc print data=optdesign_constr; 
run; 

7.2.5.4 Putting Them Together: End-to-End Computer-Based 
Experimental Design Process 

Having described the various components of experimental design in previous 
subsections, it is useful to put them together in a fow diagram in Figure 7.5 
as a general guideline. 

FIGURE 7.5 
Flow diagram for the end-to-end experimental design process. 
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Let’s describe the various steps shown in Figure 7.5: 

Step 1: Identifying Estimable Effects – Identify all attributes in the 
design and all effects to be estimable such as main effects, two-way 
interactions, squared terms, etc. It is hard to know in advance which 
two-way or three-way interactions would be signifcant, but if there 
is a good business reason for attribute linkage (e.g., price and qual-
ity), and there is at least a slight expectation that certain interaction 
effects may exist, you would rather make them estimable in the 
design. 

Step 2: Sizing the Full Factorial Design – Calculate the total number of 
combinations (runs or cells) in a Full Factorial Design as your bench-
mark. Unless there are only a few attributes, or your company can 
accommodate a design with a large number of cells, you will often 
need to create a fractional factorial design. 

Step 3: Generating an Orthogonal Fractional Factorial Design – 
Generate a fractional factorial design in a software such as SAS 
PROC FACTEX. If the numbers of levels for different attributes are 
not the same, consider using binary variables for 4- or 8-level attri-
butes, as in Example 7.3 Part II in Subsection 7.2.5.2.2. One can also 
combine some levels for attributes that have a number of levels not a 
multiple of two – for example, for a 3-level attribute, one can combine 
levels 0 and 1 as level 1 from a 4-level attribute that has levels 0, 1, 2, 
and 3. Examine the alias of the design. If the total number of runs is 
satisfactory and there is no special business constraint (i.e., no sce-
nario is absolutely wanted or unwanted), jump to Step 6; otherwise, 
proceed to Step 4. 

Step 4: Generating an Optimal Design – Use the orthogonal design 
from Step 3 as the candidate set to generate an optimal design 
(alternatively, one may use the full factorial design as the candidate 
set). Enter all required effects to be estimable in the design. If more 
than one design is available for the same set of desired effects, 
statistical measures such as D-optimality and A-optimality can be 
used to help determine the best design. See Subsection 7.2.5.2.2 for 
details. 

Step 5: Handling Constraints – If there are any business constraints, 
we can remove the unwanted scenarios and add the desired sce-
narios to the current design. When necessary, incorporate the con-
straints in a candidate set and rerun optimal design. See Subsection 
7.2.5.3 for an example. 

Step 6: Variable Transformation – It is often advisable to center the 
continuous (quantitative) variables to reduce correlations. Required 
interaction terms also need to be created explicitly in this step, as 
mentioned in Subsection 7.2.5.2.2. 
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Step 7: Checking for Estimability – Compute the correlation matrix 
of all required variables (main, squared, and interaction terms) and 
check for any unusually high correlation coeffcients. Run a linear 
model (PROC GLM) to make sure no variable is linked to another 
variable in the design. One may also combine the treatment group 
with a control group and conduct a simulation to include some 
demographic variables to make sure the fnal model, including all 
required design variables (and their interactions) as well as their 
interaction effects with demographic variables, is estimable. If 
there is any issue from this step, go back to Step 6 to check whether 
there is any coding error in transforming variables or to Step 4 to 
see if all desired effects are clearly captured in the design. Report 
the fnal design when it is acceptable. See also Subsection 7.2.5.2.2 
for details. 

7.3 Measurement Metrics for Test and Learn 

This section discusses various measurement metrics for Test and Learn. 
While this section is not very technical, it is an important topic for anyone 
who is thinking about which metrics to measure and model. 

To start with metrics, we will review a concept that the feld of Advertising 
and Marketing has long considered, known as the AIDA model: 

Awareness  ˜ Interest  ˜ Desire  ˜ Action. 

AIDA is a four-step process to drive the ultimate action; see Rawal (2013) 
and Li and Yu (2013).24 For marketing, while the fnal desirable action may 
be a sale (or retention), there are many intermediate metrics we may want to 
measure in order to track the path to success step-by-step and to understand 
which stages of the process will require special attention. 

In traditional advertising, one measure of the cost of achieving awareness 
is advertising impression, which is defned as CPM, or Cost per Thousand 
targets exposed, that is, the cost to deliver an ad to a thousand people 
(Sissors and Baron 2002). While CPM measures the effciency of “reach,” it 
is not a measure of customer responses. In this section and this chapter as 
a whole, we focus on customer responses for Test and Learn measurement 
and modeling. 

We now have many relevant metrics related to the four stages of the AIDA 
model. From the marketing or general business point of view, there is typi-
cally a CTA for each treatment or intervention. The CTA can be visiting a site 
for education, calling a customer rep for inquiry, buying a product, spending 
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more, etc. Here is a list of the most important metrics25 for various stages of 
the marketing funnel: 

1. Email Open Rate: The frst metric in email marketing is to have 
the target customers open your email. Most marketers would not 
consider this much of a success, but at least that is the starting point 
of the marketing funnel. This corresponds to the “Interest” of the 
AIDA model. Like all metrics on this list, there is a distinction 
between baseline measurement (natural response rate) and lift mea-
surement (treatment minus control response rate), where the latter 
can be referred to as incremental email open rate or lift in email 
open rate. 

2. Inquiry or Visit Rate: A similar metric to opening an email is the 
inquiry or visit rate that can apply to all marketing channels – phone, 
store visit, web, etc. – and is considered a necessary frst milestone of 
marketing. This metric is related to the “Interest” and “Desire” parts 
of the AIDA model. 

3. Click-through Rate: Click-through is one of the most common met-
rics, whether it is a click on a link in an email, a click on a link on a 
page served, or a click on a web banner ad. This may be exploring 
a product, reading a white paper, or signing up for a webinar. It is a 
metric that marketers desire and is almost second best to the actual 
sale. This metric can be considered the “Desire” or “Action” of the 
AIDA model and is a common metric not only for measurement but 
also for predictive modeling. 

4. Purchase Rate or Conversion Rate: This is often the ultimate met-
ric business would like to see for measurement and is certainly 
considered the “Action” stage of the AIDA model. It is also a key 
metric for predictive modeling. At the segment or entire campaign 
level, this metric can also be transformed into Cost per Conversion, 
which is defned as marketing expense divided by the number 
of sales, as the baseline metric (cost per all kinds of conversion, 
whether it is due to a treatment or not). With respect to the lift met-
ric, one would measure Cost per Incremental Conversion, where 
Incremental Conversion (or lift in conversion) is (sample treatment 
conversion rate – sample control conversion rate) × treatment sam-
ple size.26 

5. Amount Spent: While a purchase is good, there are differences 
between high-amount and low-amount sales. Measuring and model-
ing the amount spent is another common business activity. Similarly, 
one can translate sales amount to revenue as a common fnancial 
metric or Cost per Revenue as an effciency measure. As in #4, one 
can measure Cost per Incremental Revenue using the revenue lift 
metric as the denominator. 
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6. Retention Rate: While purchase is relevant to acquiring new cus-
tomers or cross-selling additional products to existing customers, 
retaining customers is another key marketing metric. Depending on 
your product or service, retention can be a binary metric (retained 
or not) or a continuous metric (value retention, e.g., usage of a credit 
card or balance of a bank account). 

7. Net Revenue: While having a high sales amount or revenue is good, 
it is more important to check if it exceeds the marketing expense, 
whether for the entire marketing campaign, a specifc segment, or 
a particular customer. Subtracting the marketing expense from the 
revenue is the net revenue metric that is commonly reported and 
analyzed. 

8. Return on Investment (ROI): This is simply Net Revenue (revenue 
minus marketing expense, also known as Return), divided by mar-
keting expense, which can be measured for the entire campaign, a 
specifc segment, or a particular individual. Again, like other met-
rics, one can compute the baseline ROI, but it is often more useful 
to compute Incremental ROI (or Lift in ROI), where the latter is the 
lift in return (return caused by a treatment) divided by the expense 
associated with the treatment. The Incremental ROI is also known as 
Marketing ROI; see Lenskold (2003) for some examples. 

9. Lifetime Value (LTV): While net revenue measures the immediate 
return of a marketing campaign, LTV (sometimes known as Long 
Term Value or Customer Lifetime Value, CLV) measures the sum of 
expected immediate and future values from a customer through the 
Expected Net Present Value (NPV) formula, typically discounted 
by estimated future attrition rate (in addition to the usual NPV dis-
count rate). A general LTV formula is, with time t being discrete (say, 
year): 

Return i ( )t S t( )  Revenuei t − Expense ( )) i 
ˇ ˇ ( )  i t S t( )iLTV = ˜ = ˜( 

,i t t(1+ r) (1+ r)
t=0 t=0 

(7.9) 

where r is the discount rate or hurdle rate in a typical NPV calcula-
tion, representing a discount of future values, 

S t( ) = Probability of surviving at least to time (year) ti 

t−1 

= (1− A ( )1 )(1− A ( )2 )  (…. 1  − A t( − 1)) = ˜(1 − A k( )) ,i i i i 

k=1 

A k( ) = Attrition rate of individual i in year k, assuming Si ( )0 = 1.i 
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In practice, the upper time limit of Eqn. (7.9) is a fnite value < ̃ , as the value 
inside the summation approaches zero when t gets very large. Additionally, 
in industries where some kind of risk is considered, the LTV can be further 
discounted by risk.27 

While LTV is quite commonly used as a decision metric to establish how 
much a company should spend on a customer (or a segment) or to help 
determine the long-term effects of marketing treatments, it is typically not 
a metric for predictive modeling (as it is not observable and requires many 
assumptions). Rather, it takes model scores as an input to LTV calculations, 
as seen in Eqn. (7.9), where the revenue component Revenue  i ( )t and survival 
probability S t( ) are typically predicted by models. See Roberts and Berger i 

(1999) for computations and applications, as well as Rosset et al. (2003), Fader 
et al. (2005), and Ansari et al. (2008) for alternative methods of computations 
and applications. While LTV is a good long-term metric for an individual 
customer or a segment, for treatment prioritization there is a concept called 
Incremental LTV where the value is driven by a specifc treatment, similar to 
Incremental ROI or Marketing ROI discussed above. The incremental LTV 
calculation can be accomplished by replacing Revenuei ( )t  by lift in revenue 
for a revenue-generating campaign or by replacing S t( ) by lift in survival i 

probability for a retention campaign. 
While measurement can include many or all these metrics, as many of them 

are relatively straightforward to calculate, usually only a couple of them are 
used for predictive modeling or uplift modeling, given the high time and 
resource requirement for modeling. Typically, metrics closer to the ultimate 
goal or action, such as purchase, retention, and amount spent, are used for 
modeling. When data quantities are insuffcient, one would use metrics closer 
to desire or awareness for modeling, for example, click-through and inquiry. 
Metrics such as ROI and LTV are typically used for decision-making, such as 
prioritization of customers for service or prioritization of treatments for cus-
tomers. As a quick guideline, Table 7.20 summarizes these metrics and their 
typical usage for measurement, predictive modeling, or as derived metrics 
for decision-making. 

7.4 Opportunities for Continuous Improvement 

While some previous sections focus on the mechanics of experimental 
design, this section discusses the opportunities to keep improving experi-
ments, which ultimately improves response rates. 

After the campaign with the chosen design is executed, response data are 
collected, models are developed, and attribute combinations that appear to 
have achieved the best outcome (highest response, highest revenue, etc.) are 
identifed,28 one would naturally want to repeat the best attribute combination 
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TABLE 7.20 

List of Metrics and Their Usage 

Potential Derived 
for Metric for 

Standard Predictive Decision-
Baseline Metric Lift Metric Measurement Modeling Making 

Email Open Rate Incremental (or Lift in) ✓ ✓ 
Email Open Rate 

Inquiry or Visit Rate Incremental (or Lift in) ✓ ✓ 
Inquiry or Visit Rate 

Click-through Rate Incremental (or Lift in) ✓ ✓ 
Click-through Rate 

Purchase (or Incremental (or Lift in) ✓ ✓ 
Conversion) Rate Purchase (or 

Conversion) Rate 
Amount Spent Incremental (or Lift in) ✓ ✓ 

Amount Spent 
Retention Rate Incremental (or Lift in) ✓ ✓ 

Retention Rate 
Net Revenue Lift in Net Revenue ✓ 
Return On Marketing (or ✓ 
Investment (ROI) Incremental) ROI 

Lifetime Value (LTV) Incremental LTV ✓ 

in the next campaign in order to maximize return on investment. Should we 
stop here and simply use this or these attribute combination(s) in the long 
future without any change? Of course, there is always room for improvement, 
and below we have some suggestions about improvement opportunities: 

1. Same Set of Attributes (Response Surface Methodology): In situa-
tions where the best attribute combination(s) land in a “corner solu-
tion” (e.g., lowest APR level, highest rebate, highest credit limit), one 
may wonder if extending the possible levels further would result 
in an even better outcome. Likewise, even if the best attribute level 
so far is somewhere in the middle of the possible levels, one may 
wonder if it is indeed the “optimal” level (e.g., if the best APR level 
in terms of generating incremental revenue is 6.9%, one may want 
to know if 5.9%, 6.5%, 7.5%, or 7.9% would be even better). In these 
cases, we may want to “keep testing” until a more “globally opti-
mal solution” is obtained. A common method in industrial experi-
ments (industrial product design, quality control, etc.) known as the 
Response Surface Methodology (RSM) aims at iteratively searching 
for better, and ultimately optimal, levels with the same set of attri-
butes (by searching in the direction of steepest ascent). While RSM 
is a common method in industrial experiments, it is less known in 



 

 

 
 

  

   

         

  

   

 

203 Uplift Analytics II 

marketing or related business settings but is certainly an opportu-
nity. We do not cover RSM in this chapter (for it would take a whole 
chapter by itself), but interested readers can refer to Box et al. (1978), 
Montgomery (1991), Box (2006), Khuri and Mukhopadhyay (2010), or 
Goos and Jones (2011). 

2. New Attributes: In the spirit of Kaizen (ongoing improvement) and 
sustainable competitive advantage, one would try to be creative 
to dream up other possible attributes that can help improve the 
response outcome. It is thus natural to test new and potentially use-
ful attributes in an ongoing fashion. 

3. Fundamental Shift: Changes in Customer Behavior or Other 
Conditions (Economic, Geographic, Demographic, etc.) can lead to 
a shift in the response function. For example, in the ever-changing 
technology world, whether one is selling software or hardware, the 
competitive landscape, underlying technology, as well as consumer 
needs and interests can easily and quickly evolve over time. One 
may need to consider updating the design attributes and predictive 
models in response to the market change. 

Appendix 7.1: Derivation of the Power Calculation and 
Sample Size Determination for Four Group Comparison 
in Eqns. (7.6) and (7.7) 

Assume that the decision rule is ˜ −p̂1 ˜p̂2 > a, for some constant a, where ^ 
denotes the sample estimate. 

ˆ ˆ( ) ˜ P( p1 ˙ >2 | 0 )P Type I error  = =  ˙ − p a H  

˝ − ˝p2 − 0 a �ˇ ( p̂1 ˆ )˛ P > |H0 , (A7.1) � �˘ I I � 

where 

p̂1t (1 − p̂1t ) p̂1c (1 − p̂1c ) p̂2t (1 − p̂2t ) p̂2c (1 − p̂2c )I = + + + , (A7.2) 
n n n n1t 1c 2t 2c 

which approximates the standard deviation of p̂1 ˜ˆ2˜ − p using sample 
response rates. 

a
Denote by z˜ , the critical value associated with ̃ . 

I 
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Similarly, 

( ) = =˜ P(˙ −p̂1 ˙ ˇp̂2 | )P Type II error  a H1 

˘p p 1 p − ° 1 − °˙ (° −ˆ1 °ˆ2) (− ° −p ° 2 ) a ( p p2 )˜ P ˝ H1 � . (A7.3) ˇ̂ I I � 

a − °( p1 − °p2) Now, denote by z˛ , the critical value associated with ˜. 
I 

Combining (A7.1) and (A7.3), we have: 

(˛ −p1 ˛p2 )−z˝ = z˙ − (A7.4) 
I 

Therefore, 

Power 1  P(Type II Error)= −  

− ˆp − ˆˇ a ( 1 p2 )� 
= 1 − ˙� �˘ I � 

ˇ (ˆ − ˆ1 pp 2) � 
= 1 − ˙�z� − � from (  A7.4) , which is Eqn. (7.3) ,

˘ I � 

where (˜ − ˜p ) is estimated by its sample estimate, (˜ˆ − ˜pp1 2 p1 ˆ 2 ). 
Again, from Eqn. (A7.4), 

z˙ 
2 2  ˛ −  2 ) .2 (A7.5) ( + zˆ ) I = ( p1 ˛p 

For convenience, we define the following ratios, which are the input 
parameters to the sample design: 

n n n1t 2t 1tR1 = , R2 = , and Rt = . 
n1c n2c n2t 

Re-expressing Eqn. (A7.2) in terms of the ratios defned above: 

ˆ − p ( − p̂ ˆ − p Rˆ ( − R R  Jp1t (1 ˆ1t ) + p̂1c 1 1c )R1 + p2t (1 2t ) t + p̂2c 1 p̂2c ) t 2I2 = = , 
n n1t 1t 

(A7.6) 
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where J is defned as the numerator of I2 , which can be easily calculated once 
the ratios (input parameters) are specifed. Substitute Eqn. (A7.6) into (A7.5), 
we can obtain n1t as follows: 

J z( ˇ + z˘ )2 

n1t = ,
(˙ −p1 ˙p2 )2 

and we can also obtain the other sample sizes through the input ratio 
parameters: 

n n n n1t 1t 2t 1t n1c = , n2t = , and n2c = = ,
R1 Rt R2 R Rt 2 

which are the same as Eqn. (7.6). 
Next, we apply the above set of Eqn. (7.6) to determining the control size 

such that the top decile can be statistically signifcantly better than that of 
the overall sample (if such a difference exists). In this case, ˜p1 represents 
the lift in the top decile and ˜p2 represents the lift in the rest of the deciles 
(i.e., deciles 2–10). Since the top decile is 10% of the overall sample, from Eqn. 
(A7.5), we now have: 

ˆ ˛ −p ˛p � 2 
p̂1t (1 − p̂1t ) p̂1c (1 − p̂1c ) p̂2t (1− p̂2t ) p̂2c (1 − p̂2c )1 2 = + + + .˘ �ˇ z� + z� � 0.1nt 0.1nc 0.9nt 0.9nc 

Expressing nc in terms of nt and the other components, we have: 

p̂1c (1 − p̂1c ) p̂2c (1− p̂2c )+ 
0.1 0.9nc = 2 which is Eqn. (7.7). 

ˇ ˆ −p1 ˆp2 � 1 p1t (1 − p1t ) p2t (1− p2t )� ˆ ˆ ˆ ˆ � 
� � − � + �
˘ z + z � nt �� 0.1 0.9 �� 

Notes 

1. It is quite common that the analyst or marketer has a hypothesis that the pro-
portion (response rate) of one group may be greater than that of another, and 
thus a one-sided test is more common. A two-sided test will only require a 
simple adjustment in (7.1) and (7.2): Replacing z˜  with z˜/2. 

2. An implementation of the formula in Excel is available from the authors. 
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3. If one is interested in detecting the lift difference between the top 3 deciles 
and the rest of the sample, a simple adjustment to (7.7), (7.8a), and (7.8b) is 
required. 

4. In the situation of uplift modeling, to ensure each and every desired parameter 
is estimated is not straightforward, as it is necessary to have some understand-
ing of what the parameters may be (for main and interaction effects), along with 
other requirements; see Mathews (2010) and Hsieh et al. (1998) for some situ-
ations. A practical method is to use Monte Carlo simulations as described in 
Subsection 7.2.5.2.2. 

5. If explicitly controlling for the confounder in the Randomized Block Design is 
not feasible, a typical method is to control for the confounder in the analysis 
phase that includes the confounder as an independent variable in addition to 
the treatment variable in a regression model, also known as regression adjust-
ment or analysis of covariance (ANCOVA). Another alternative is to apply pro-
pensity score matching as described in Chapters 3 and 8. Having confounders 
eliminated in the design phase is better than doing it in the analysis phase (due 
to potential model misspecifcation in analysis). 

6. See census regions and divisions of the United States: 
http://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf. 

7. The Latin Square Design is an alternative for more sophisticated situations with 
multiple blocking factors; see Montgomery (1991) or Box et al. (1978). 

8. Another advantage that is more discussed in classical experimental design 
books is the improvement of signifcance testing for treatment effects due to 
smaller variability within block and within treatment, compared to variability 
only within treatment; see, for example, Montgomery (1991) and Ledolter and 
Swersey (2007). 

9. One can imagine having a +1 and –1 for the + and – signs, then the sum of prod-
ucts of any two variables (i.e., time reduction × fee, time reduction × interaction, 
and fee × interaction) is equal to zero. This corresponds to having zero correla-
tion or complete orthogonality between them. 

10. Full factorial designs can be “made” orthogonal with the appropriate way of 
coding the independent variables (using contrast coding with 1s and –1s). Often 
we choose some way of coding that is more convenient for interpretation (e.g., 
dummy coding with 1s and 0s), but the design would not be completely orthog-
onal (but remains approximately orthogonal). 

11. Technically, X here is the design matrix with all the replicates – in other 
words, it is a stack up of multiple replicates of the original design matrix, or 

˛ ˆX0 

X0 

… 
X0 

˙ 
˙ 
˙̋ 

˘ 
˘ 
˘̌ 

X = , where X0 is the original design matrix without replicates. Then, it 

ˆ
2 

−1 can be shown that Var ˜ = 0 ̂  0 ) , where m = number of replicates. This( )  ° 
m 

(X X  

makes intuitive sense as the variance of estimated parameters goes down if 
number of replicates increases. 

12. See also http://www.itl.nist.gov/div898/handbook/pri/section3/pri3347.htm 
for easy access to several fractional factorial designs. 

13. Other software for experimental design include JMP and the R package 
RcmdrPlugin.DoE. 

http://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf
http://www.itl.nist.gov/div898/handbook/pri/section3/pri3347.htm
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14. While this book is not meant to be a programming “cookbook,” the programs 
listed in this section are unique enough that the authors feel it would be help-
ful to include them in the text. Please refer to this book’s website for the entire 
program which includes the step-by-step design process. 

15. This program uses two binary attributes to represent a four-level attribute (e.g., 
apr1 and apr2 together represent APR), which is an effcient way when working 
with some actual binary attributes (brand and channel). An alternative way 
which treats the four-level attributes as having four NOMINAL levels in PROC 
FACTEX (along with the same estimability criterion for main and two-way 
interaction effects) would end up with the full factorial design of 1,024 runs, i.e., 
no reduction in size at all, due to more runs required for nominal attributes that 
are actually continuous. 

16. The model statement in PROC FACTEX allows users to directly specify which 
effects to be estimable, a convenient feature. Alternatively, one can specify 
the Resolution of the design in the model statement, see Rule of Resolution in 
Subsection 7.2.5.2.1. 

17. Footnote 9 also applies here as there are replicates of runs in practice. 
18. An alternative method, maximizing the trace of X X˜  (i.e., summing the diag-

onal elements of the matrix, essentially minimizing the sum of variances of 
all parameter estimates and ignoring the covariances) is called the A-optimal 
design. Details of alternative designs can be found in the online SAS/QC man-
ual under PROC OPTEX or Kuhfeld (1997, 2010). 

19. Alternatively, generating the full factorial design as a candidate set can be eas-
ily accomplished using PROC PLAN in SAS. 

20. The default optimization method in PROC OPTEX is called the Fedorov algo-
rithm. An alternative method in the same SAS procedure is the sequential 
algorithm. 

21. This centering step is not necessary but is generally a good practice for reduc-
ing reduce correlations. For instance, a variable and its squared term are typi-
cally highly correlated, and centering the variable would signifcantly reduce 
the magnitude of such correlation. 

22. The highest correlation coeffcient (which involves two-way interactions) in 
this example is 0.74, and most other correlation coeffcients are much lower. 
Correlation coeffcients close to 1.0 or −1.0 would indicate problems. 

23. Code that illustrates these steps for the credit card marketing example is avail-
able from the authors. 

24. See also http://marketing-made-simple.com/articles/purchase-funnel.htm for 
the purchase funnel concept. 

25. The list here is not meant to include all possible metrics; see, for example, Sterne 
(2002) for other web metrics. 

26. This way renormalizes the number of control conversions such that the lift in 
conversion measures the incremental gain in conversion due to treatment in the 
treatment group (i.e., Average Treatment effect on the Treated, or ATT). 

27. For example, in the mortgage or auto loan business, the risk components include 
default rate and prepayment, which can be combined with other components in 
the LTV computation. 

28. In addition to identifying the best attribute combination (e.g., color = diamond, 
APR = 6.9%, etc.) for the entire sample, one can also identify the best attribute 
combination for each demographic group; see Chapter 7 for treatment optimi-
zation discussion. 

http://marketing-made-simple.com/articles/purchase-funnel.htm
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8 
Uplift Analytics III: Model-Driven 
Decision-Making and Treatment 
Optimization Using Prescriptive Analytics 

8.1 Introduction 

While most of this book discusses methods for measurement and prediction, 
this chapter answers the question: “if you have some idea about what will 
happen, whether solid or not, what should you do to make the future better?” 
in the context of uplift analytics, of course. 

The methods discussed in Chapter 6 are useful for handling the most typ-
ical or simplest situation when there is only a SINGLE treatment. That is, 
there is only a single product (with a single feature) available to promote. 
To choose the right targets with a single treatment is straightforward. This 
chapter discusses solutions to situations where there is more than one treat-
ment. Additionally, there is often a budget or quantity constraint due to lim-
ited resources. Otherwise, one could simply assign the treatment with the 
highest predicted lift value to each individual as long as the predicted lift 
value is positive. The constrained optimization, with realistic constraints, 
while not very hard to write down mathematically, is typically diffcult to 
solve because of its huge size (large number of individuals). Fortunately, heu-
ristics (approximation methods) are available for solving this kind of large 
optimization problem and are discussed in this chapter. 

Another issue discussed in this chapter is how to handle uncertainty. 
Most common optimization methods, such as linear programming (LP), 
are designed to solve deterministic problems; that is, all parameters in the 
optimization model are assumed to be known with complete certainty. In 
our case, the lift values are all estimated, sometimes with a high degree of 
uncertainty; directly using the estimated lift values does require someone to 
take a “leap of faith.” However, instead of completely trusting the estimated 
lift values, can we improve our selection or optimization problem if we have 
some idea about the uncertainty or range of the lift values? The answer is 
yes, but it requires a different set of methods, which are discussed later in 
this chapter. 
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211 Uplift Analytics III 

The mathematical and computational methods covered in this chapter were 
mostly founded in the felds of Operations Research, Management Science, 
and Industrial Engineering (or Prescriptive Analytics as a latest term), and 
they are quite different from those in the rest of the book where data mining, 
statistics, and econometrics are utilized. All key algorithms described in this 
chapter are practical and are ready to use with standard software for practi-
tioners and students. 

8.2 Single Treatment and Multiple Treatment 
Optimization 

Before we introduce optimization with multiple treatments, it is helpful to 
frst discuss the simpler single treatment case. 

8.2.1 Single Treatment Optimization 

This section considers the simplest case where there is only a single treat-
ment (versus control). The goal is to fnd targets such that overall lift is 
maximized subject to a quantity constraint. Such optimization is equiva-
lent to a selection problem where the goal is to select the right targets. 
Formally, it means to select a set of individuals S with the following objec-
tive function: 

Maximize: # Incremental Responders = ˜˛pi (8.1a) 
˝i S  

subject to the following constraint: ˜ , where ˜pNo. of elements in S U  i is the 
lift value for individual i (i.e., treatment response rate minus control response 
rate), and U is the upper limit for the number of individuals selected with our 
budget. The actual (future) value of ˜pi is unknown (a random variable), and 
we may consider using its expected value, E(˛pi ), which can be learned from 
past data and is the mean (average) difference between the sample treatment 
response rate and sample control response rate.1 The objective function then 
becomes: 

Maximize: Expected # Incremental Responders = ˜E p(˙ i ) (8.1b) 
ˆi S  

The expectation E(˛pi ) is unknown and can be estimated by its individual-
level model-based estimate (i.e., model score) denoted by ˜p̂i. 
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The objective function in Eqn. (8.1b) is simply the expected (or average) 
total number of incremental responders from those selected in set S and can 
be written in a more common mathematical form: 

n 

Maximize ˜ (° )xi (8.2) E pi 

i=1 

subject to: 

n 

˜x U° ,i 

i=1 

… n.xi = 0 or 1,  i = 1, ,  

Again, E(˛pi ) is replaced by its estimate, ˜p̂i. In Eqn. (8.2), the decision vari-
able xi represents the decision of whether individual i should be selected 
(= 1) or not (= 0), n represents the size of the target population, and U again 
represents the maximum number of targets we can reach with our budget. 

The optimization model (8.2) can be easily solved by selecting the U indi-
viduals with the highest values of ˜ °ˆ ip s, which is exactly the model imple-
mentation procedure outlined in Chapter 6. In a slightly more general 
situation where the contact cost for some individuals is higher than others, 
we have: 

n 

Maximize ˜°p xi i  (8.3) ˆ 
i=1 

subject to: 

n 

c̃ xi i  ° Budget, and xi =0  or 1, i = …1, , ,n 
i=1 

where ci  is the contact cost for individual i. 
The differential cost in the constraint of model (8.3) is needed when the 

business needs to contact the highest value customers with a more personal 
touch, such as outbound telemarketing, but the rest with a lower cost touch, 
such as direct mail or email. Alternatively, higher-value customers may have 
a different “service package,” so the direct mail creative material for them 
may be different. Another example is simply that individuals in different 
geographic regions require different costs of contact. So the question is how 
to solve Eqn. (8.3). 

Model (8.3) is set up as a linear integer programming problem, and it can 
be solved using formal integer programming techniques such as branch and 
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bound (see Papadimitriou and Steiglitz 1998 or Taha 2010). However, because 
of the specifc simple form of model (8.3), there are reasonably good and 
simple heuristics available. Model (8.3) is actually called the 0-1 knapsack 
problem, which has been well studied in the feld of Operations Research. 
As described in Chapter 9 of Williams (2003), the knapsack situation arises 
when a hiker tries to fll her knapsack to maximize total value (the objective 
function). Each item i has its own value (represented by ˜pi in our case, or its 
estimate ˜p̂i) and a weight (ci ), and there is a weight limit U. The simplest 
solution is a greedy algorithm proposed by Dantzig (1957), the father of lin-
ear programming, and also described in Pisinger (1995). We will rephrase the 
algorithm with our terminology as follows: 

Algorithm 8.1 (Adapted from Dantzig 1957) 

˜p̂i1. Calculate the ratio of value to cost for each individual: ; 
ci 

2. Sort the ratios from highest to lowest and list all individuals in that 
order; 

3. Keep selecting those individuals from the top of the list as long as 
the budget constraint is still met; 

4. Stop the selection when the budget constraint is violated. 

Notice that the key step is calculating the ratio in step 1. It should be men-
tioned that the objective function (or its components ˜ °ˆ ip s) and the cost are 
not on the same scale. If we can translate the sample lift values ˜p̂i  to an 
economic value such as revenue (by multiplying ˜p̂i by marginal revenue 
per response), then such revenue and cost are both expressed in a monetary 
value, so we can sort by the “incremental value over cost,” resulting in a 
slightly different greedy algorithm as follows: 

Algorithm 8.2 

1. Translate the predicted lift for each individual to economic value: 
r p˜ˆ , where ri is the revenue value associated with the response for i i 

individual i; 
2. Calculate the “incremental value over cost,” i˜ −ˆ i cr p  i ; 
3. Sort the incremental values from highest to lowest and list all indi-

viduals in that order; 
4. Keep selecting those individuals from the top of the list as long as 

the incremental value over cost is positive and the budget constraint 
is still met; 

5. Stop the selection when the budget constraint is violated or the 
incremental value cost turns negative. 
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Note that Algorithms 8.1 and 8.2 are heuristics and do not guarantee they 
will fnd the global optimum. Nevertheless, these heuristics tend to at least 
fnd “reasonably” good solutions. These algorithms use model estimates of 
˜pi , which are likely far from exact. In practice, a better alternative is to use 
the holdout sample data to estimate ̃ pi at the decile or semi-decile level. Even 
though individuals within the same decile or semi-decile can no longer be 
differentiated from each other, the decile/semi-decile level lift estimates are 
recommended for the following reasons: 

1. These group-level lift values “borrow strength” from others in the 
same group using the sample means at the group level. 

2. Using performance metrics from the holdout sample mitigates the 
well-known “re-substitution” error that may occur when training 
and evaluation are done with the same sample. Since it is common to 
use holdout sample performance for assessing and reporting model 
accuracy, which leads to expected success in the future, it would be 
natural to use holdout sample performance for decision-making or 
optimization. 

We will come back to this point when discussing multiple treatments in 
the next section. 

Algorithm 8.3 

1. Revisit the model evaluation step. Obtain the decile or semi-decile 
level average lift as the predicted lift values for optimization. 

2. Replace ˜p̂i with the decile/semi-decile level predicted lift values 
(i.e., average lift at group level), and proceed to Step 1 of Algorithm 
8.1 or 8.2. 

There are other more advanced algorithms to solve Eqn. (8.3), such as 
Dynamic Programming, that are beyond our scope; see Pisinger (1995), 
Papadimitriou and Steiglitz (1998), or Dasgupta et al. (2006). 

8.2.2 Multiple Treatment Optimization 

8.2.2.1 Four Targeting Situations and Introduction to Multiple 
Treatment Optimization 

The single treatment optimization situation in Section 8.2.1 served as the 
simplest case and segues into the more general situation where there is more 
than one treatment.2 This situation arises quite frequently in marketing cam-
paigns where multiple treatments are available, and we need to know not 
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FIGURE 8.1 
From targeting to optimization. 

only which treatment is the best overall but also the best treatment for each 
individual. Figure 8.1 describes various situations: 

1. Random Targeting (or No Targeting): Without any information or 
any strategy about whom to target, one can resort to “random target-
ing,” that is, no targeting. Selecting a random group of individuals 
has the advantage of learning about them and doing a better job next 
time. 

2. Target Selection: Most marketing campaigns have some targets, for 
example, focusing on a few customer segments, using data- or rule-
based targeting, or predictive models. Uplift modeling is among the 
most advanced techniques for target selection. 

3. One-Size-Fits-All: Using A/B testing, one can pick the best of two 
treatments. One can use multiple iterations of A/B testing to fnd the 
champion among multiple treatments. Alternatively, one can con-
duct an experimental design (also known as multivariate testing) to 
simultaneously test multiple treatments (see Chapter 7 for details). 
These techniques allow you to pick the single best treatment for the 
overall population. Measurement done at a pre-defned segment or 
group level (e.g., age group, state/region) can allow one to fnd the 
single best treatment for the group. Still, it is “One-Size-Fits-All” for 
a given group or the whole population. 
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4. Optimal Treatment for Each Individual: This is the most granular 
level of optimization – it aims at fnding the best treatment for each 
individual. By treatment, we include “no treatment” as a possible 
alternative. This is our focus for the rest of the chapter. 

8.2.2.2 Optimization Models for Multiple Treatments 

We now consider the methodology for Situation 4 in Figure 8.1: Optimal 
Treatment for Each Individual. We assume that for each of the n individuals, 
we have m treatments plus the option of not assigning any treatment. Our 
aim is to optimally determine treatment assignment at the individual level 
so as to maximize the total number of incremental responders, that is, those 
who would respond due to a treatment. Note that the treatment assignment 
optimization can result in individuals who are not assigned any treatment. 
The optimization model can be formulated as the following linear binary 
integer program (from Lo and Pachamanova 2015): 

n m 

Maximize ˜˜ °p xˆ ij ij (8.4) 
i=1 j=1 

subject to: 

n m 

˜ c̃ x  ° B, Budget Constraint ij ij 

i=1 j=1 

m 

˜xij ° 1, for i = 1,…, ,n 
j=1 

No more than 1 treatment is assigned to each individual, and 

ij … … .x = 0 or 1,  i = 1, ,  n; j = 1, ,  m 

where ˜p̂ij = estimated lift value for individual i and treatment j, xij (decision 
variable) = 1 if treatment j is assigned to individual i and 0 otherwise, and 
cij = cost of promoting treatment j to individual i. 

Quite often, we may also have an operational constraint on the quantity for 
each treatment: 

n 

˜xij ° U j ,  for j = 1, ,… m. 
i=1 

which gives the upper limit on the number of individuals receiving each 
treatment. Again, the original unknown expected value E(˜pij ) is estimated 
by its estimate ˜p̂ij in the objective function of model (8.4). 
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If the group “those who are not assigned any treatment” is also explicitly 
represented in the decision variables, the optimization model (8.4) has the 
following equivalent form (with an additional decision variable xi0): 

n m n 

˜˜ ij p x  (8.5) ˆ ˆMaximize  p xij +˜ i0 i0 

i=1 j=1 i=1 

subject to: 

n m 

˜ c̃ x  ° B,ij ij 

i=1 j=1 

m 

˜xij = 1, for i = 1,…, n (8.5.1), 
j=0 

and xij = 0 or 1,  i = … n j  = 0, 1,…, .1, ,  ;  m 
In Eqn. (8.5), p̂ij = estimated probability of individual i responding to treat-

ment j, pi0 = estimated response probability of individual i when no treat-
ment is used (estimated by the control group response probability), and the 
decision variable xi0 = 1 if no treatment is assigned to individual i and 0 oth-
erwise. Note that: ˜ =  −p̂ij p̂ij p̂i0 for all i and j. In reality, all these response 
probabilities are estimated. 

To see why Eqn. (8.5) is equivalent to Eqn. (8.4), we start with the objective 
function of model (8.5): 

n m n n m n 

ˆ ˆ ˆ ˆ ˆ˜˜ ˜ p x  = ˜˜ ( p p )x +˜p x  + ˆ +  p xij ij i0 i0 ij i0 ij i0 i0 

i=1 j=1 i=1 i=1 j=1 i=1 

n m n m n 

ˆ ˆ ˆ= ˜˜˛p x  +˜˜ p x  +˜ p xij ij i0 ij i0 i0 

i=1 j=1 i=1 j=1 i=1 

n m n 

˜˜˙p x  +˜ p ( 8.5.1))= ˆ ij ij ˆ i0 , using constraint  ( 
i=1 j=1 i=1 

which is the same as the objective function in Eqn. (8.4) plus a constant that 
does not depend on the decision variables. Hence, Eqns. (8.4) and (8.5) are 
equivalent. Additional constraints can also be added to model (8.4) or (8.5), 
for example, limited quantities available for certain treatments. 

Model (8.4) or (8.5) is a binary (or zero-one) integer programming prob-
lem and is well-known to be challenging to solve. Unlike LP problems, 
there is no effcient general algorithm available due to its NP-completeness 
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nature (which is a formal way of saying they are really hard to solve and 
can take a very long time3). Nevertheless, there are common integer pro-
gramming algorithms such as Brand-and-Bound and Cutting Plane that 
may take an exponential number of iterations; see Bertsimas and Tsitsiklis 
(1997), Papadimitriou and Steiglitz (1998), or Taha (2010). General software 
such as CPLEX ILOG and SAS/OR can handle Eqn. (8.4) or (8.5) for relatively 
small n and m. However, when n is large, and even for a moderate size m, the 
problem can become very large. To have some appreciation of the problem 
size, imagine that we have n = 10 million individuals and m = 5 treatments 
only, so we will have 50 million binary decision variables for model (8.4), 
which translates to 250,000,000 possible combinations of decisions to attempt (if 
one is to use complete enumeration, aka brute force). With the importance of 
such problems in marketing and related applications, specialized commer-
cial marketing optimization software packages are available to handle this 
type of large integer programming problem, such as MarketSwitch and SAS 
Marketing Optimization. Because of their customized nature, ability to inte-
grate with campaign management tools, and their proprietary mathematical 
algorithms, these software packages tend to be more expensive than general 
optimization software or data mining software. 

An alternative to solving Eqn. (8.4) or (8.5) is to use heuristics such as frst 
grouping individuals into clusters (using cluster analysis, for example, based 
on certain individual characteristics) and solving the LP problem at the clus-
ter level (as well as individual-level optimization in each cluster); see Storey 
and Cohen (2002) for general marketing optimization (not specifc to uplift 
problems). General heuristics or approximation algorithms such as simulated 
annealing, genetic algorithms, and tabu search can also be considered; see 
Goldberg (1989), Bertsimas and Tsitsiklis (1997), or Michalewicz and Fogel 
(2002). 

In practice, instead of using individual-level model estimates for ˜pij, we 
recommend using the holdout sample estimates that are less biased, for rea-
sons given in Section 8.2.1 for the single-treatment case. However, unlike the 
deciling method for the single-treatment situation in Algorithm 8.3, since 
each treatment has its own set of deciles, we cannot compare the lift estimate 
for decile 1 of treatment 1 to the lift estimate for decile 1 of treatment 2 in 
order to pick the better treatment, as the two decile 1s are not the same group 
of individuals. To address this issue, we employ cluster analysis to group 
individuals in the algorithm described below (see Chapter 2 for an introduc-
tion to cluster analysis). 

Algorithm 8.4 (For Multiple Treatment Optimization) (Adapted from Lo 
and Pachamanova (2015)) 

1. In the holdout sample, compute the estimates of E(˜pij ), ˜p̂ij , for all 
individuals i and treatments j in the data. 
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2. Perform a cluster analysis of the m model-based lift scores, 
, ,  ˜ im … n, to obtain C clusters of individuals. Some (˜p̂i1 … p̂ ), i =  1, ,  

attention should be paid to the tradeoff between sample size and 
granularity. 

3. For each cluster c = 1, …, C in the holdout sample, calculate the clus-
ter-level lift score for each treatment, (˜p̂c1 … ˜p̂cm ), using the sam-, ,  
ple mean difference in response rate between each treatment and the 
control group within each cluster. 

4. If more than one cluster solution is available (because of differ-
ent clustering algorithms and/or different uplift models), one may 
choose the cluster solution such that the cluster-level lift scores are 
as far away from the overall sample lift scores as possible; that is, 
choose a cluster solution such that the following Euclidean distance 
is the greatest in order to support optimization: 

C m 

Squared distance to the overall sample mean = nc ˙p̂cj − ˙p̂ j )2
,˜ ˜( 

c=1 j=1 

(8.6) 

where ˜p̂1, ,… ˜p̂m are the overall sample lift scores for treatments 
1, …, m, respectively (averaging over all individuals in the entire 
holdout sample), and nc is the sample size of cluster c. 

5. Apply the chosen cluster solution to the new data for the future cam-
paign and report the size of each cluster, Nc . 

6. Solve the following LP problem for the future campaign assignment: 

C m 

˜˜ °p xcj (8.7) Maximize  ˆ cj 

c=1 j=1 

Subject to: 

C m 

˜ c̃ xj cj ° Budget, Budget Constraint 
c=1 j=1 

m 

˜xcj ° Nc , for c =  1, ,… C, Cluster Size Constraint, and 
j=1 

xcj ˜ 0, c = 1, …, ;C j = 1, … m, ,  

where xcj now denotes the number of individuals in cluster c to receive 
treatment j, and as in model (8.5), cj = cost of treatment j for each indi-
vidual (assuming the cost is not individual or cluster-specifc). 
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Again, we may also have an operational constraint on the quantity for each 
treatment: 

C 

˜ cj j , … m.x ° U for j = 1, ,  
c=1 

where we have an upper limit on the number of individuals receiving each 
treatment. Unlike model (8.4), the decision variables xcj in model (8.7) are no 
longer binary but are simply non-negative real numbers, that is, continuous 
or quantitative values that can be rounded up to approximate integer values. 
Model (8.7) can typically be solved by simple LP software, including Excel 
Solver. 

Algorithm 8.4 provides an optimal solution at the cluster level, that is, 
optimizing the treatment allocation to each cluster (including no allocation 
to some clusters, which is also part of an optimal solution). So exactly who 
should receive each treatment at the individual level for a given cluster? If the 
cluster size for a given cluster in the target population is larger than the quan-
tity recommended by the optimization algorithm, one recommendation is to 
simply choose the targeted individuals at random. This approach, while sim-
ple, has the advantage of having a natural randomized control group (those 
who are not selected but similar to those selected for the next campaign), a 
key for measurement and further refnement. After all, the individual-level 
model-based lift scores should be relatively homogenous within each cluster 
(through cluster analysis in Step 2 of Algorithm 8.4). Additionally, we may 
not have good model-based estimates to differentiate between individuals 
within a given cluster. Alternatively, if we really have to “optimize” at the 
individual level for a given cluster, we can prioritize the selection by indi-
vidual-level model-based lift value score, even though those individual-level 
estimates may not be very accurate (i.e., choose those with the highest indi-
vidual-level estimates).4 

8.3 Joint Men’s and Women’s Merchandise 
Optimization Example (Using Excel Solver) 

Example 8.1 (Extension of Example 6.2), adapted from Lo and Pachamanova 
(2015) 

This data set has two email treatment groups for men’s and women’s 
merchandise, respectively, plus a no-mail control group. In this example, 
we apply the Two Model Approach and Treatment Dummy Approach from 
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Lo (2002), that is, Methods 1 and 2 from Chapter 6, to maximize overall 
visits. Using the Two Model Approach (Method 1), we can calculate the lift 
score for men’s merchandise and the lift score for women’s merchandise as 
inputs to cluster analysis (clustering on two variables), and similarly for the 
Treatment Dummy Approach (Method 2).5 Following Algorithm 8.4: 

1. We frst calculate the individual model scores for all individuals 
using each method (Methods 1 and 2). 

2. Perform clustering using k-means with 10 clusters (one may choose 
other clustering algorithms such as hierarchical or EM-based) 
under each method. Figure 8.2 illustrates the women’s treatment 
lift score (vertical) and men’s treatment lift score (horizontal) using 
Method 1 (the original clusters 1 and 3 are merged into cluster 1 
because of small sizes, a common issue with clustering). It is clear 
that the two treatment lift scores are related, although not strongly 
linearly. 

3. Cluster-level means and computations for the squared distance to 
the overall lift means are in Table 8.1. 

FIGURE 8.2 
Lift score for women’s merchandise by lift score for men’s by cluster. 
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TABLE 8.1 

Lift in Response by Treatment by Cluster and Calculation of the Squared Distance 
to Overall Means 

Obs. Lift in Obs. Lift in Squared 
Response: Response: Distance to 

Obs Cluster Size Men’s Women’s Sqr dist1 Sqr dist2 Overall Mean 

1 Overall 18985 0.07408 0.043863 
2 1 418 0.15871 0.022388 0.007162 0.000461 
3 2 565 0.06521 −0.005547 7.87E-05 0.002441 
4 4 6022 0.06577 0.062776 6.91E-05 0.000358 
5 5 1237 0.12903 0.06177 0.00302 0.000321 
6 6 894 0.06717 0.076013 4.77E-05 0.001034 
7 7 2924 0.0519 0.021328 0.000492 0.000508 
8 8 2807 0.08684 0.025362 0.000163 0.000342 
9 9 410 0.22491 0.023865 0.02275 0.0004 

10 10 3708 0.05717 0.042621 0.000286 1.54E-06 
Sum 19.5151 7.662298 27.18 

4. Between Methods 1 and 2, Method 1 has the highest squared dis-
tance to the overall sample mean and thus is chosen as the cluster 
solution for the next steps. The bubble chart in Figure 8.3 shows the 
two-dimensional distance of each cluster (denoted by black bubbles) 
to the overall sample mean (large gray bubble), where the size of each 
bubble is proportional to cluster sample size. 

FIGURE 8.3 
Bubble chart for observed lift by cluster. (Cluster-level means (black bubbles) versus overall 
sample mean (large gray bubble); bubble size is proportional to sample size.) 
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5. We can now apply the chosen cluster solution to future data for opti-
mization. For this illustrative example, we assume the future data is 
10 times the holdout sample, and the cluster distribution is the same 
as in the holdout sample. 

6. The last step is to solve the LP problem in model (8.7). The results are 
shown in Table 8.2. Note that cluster sizes (Nc) in the second column 
are used in the cluster size constraint. The third and fourth columns 
are simply taken from the holdout sample’s observed (sample mean) 
lift values by cluster and are used in the objective function calcula-
tions. The cost per treatment contact is assumed to be $1.0 each for 
both men’s and women’s merchandise, and the total budget is set at 
$60,000. The decision variables are set up such that the estimated 
total number of visits is maximized (shaded cell). The optimal solu-
tion, solved by the “Simplex LP” option in Excel Solver, is: 
• 4,180 men’s mailings to cluster 1 (again, the original clusters 1 

and 3 are merged as cluster 1), 
• 2,340 men’s mailings to cluster 4, 
• 12,370 men’s mailings to cluster 5, 
• 8,940 to women’s mailings to cluster 6, 
• 28,070 men’s mailings to cluster 8, and 
• 4,100 men’s mailings to cluster 9. 

The optimal results here are clearly governed by the observed lift values 
as well as the cluster sizes. This example will be extended to consider other 
situations in subsequent parts of this chapter. 

TABLE 8.2 

Linear Programming Computations Using Excel Solver 

Obs. Lift Obs. Lift Decision Decision Total 
Cluster in in Cost per var on var on Number 
Size in Response: Response: Treatment Number Number of of Treated 

Cluster New Data Men’s Women’s ($) of Men’s Women’s by Cluster 

1 4,180 0.1587 0.0224 1 4,180 – 4,180 
2 5,650 0.0652 −0.0055 1 – – – 
4 60,220 0.0658 0.0628 1 2,340 – 2,340 
5 12,370 0.1290 0.0618 1 12,370 – 12,370 
6 8,940 0.0672 0.0760 1 – 8,940 8,940 
7 29,240 0.0519 0.0213 1 – – – 
8 28,070 0.0868 0.0254 1 28,070 – 28,070 
9 4,100 0.2249 0.0239 1 4,100 – 4,100 

10 37,080 0.0572 0.0426 1 – – – 
Total 189,850 obj value 5,773 680 6,453 

cost $51,060 $8,940 $60,000 
Budget $60,000 
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8.4 Random Errors and Bootstrapping 

Recall that the optimization methods in Algorithms 8.1, 8.2, and model 
8.4 assume that the model scores are exactly correct for single treatment or 
multiple treatment problems. Algorithms 8.3 and 8.4, however, mitigate the 
inaccuracy of the individual-level model scores by using decile/semi-decile/ 
cluster-level performance in the holdout sample. As explained in Section 
8.2.1, this approach of using the grouped data in the holdout sample has the 
advantages of using group-level mean lift values (lower variance) and taking 
data from the holdout sample (lower re-substitution bias). 

Are the group-level holdout sample lift values “accurate” enough? While 
they are better than using individual-level model scores, they still have some 
degree of uncertainty for the following reasons: 

1. Random Errors: While sample lift values may be good representa-
tions of the true mean lift values (when group sizes are suffciently 
large), there is no guarantee that a new sample (even following the 
same distribution) would result in the same set of lift values, due to 
randomness from sampling. 

2. Population Difference: If the future target population is changed 
from the current population (because of demographic or regional 
differences, for example), one may make some appropriate adjust-
ments – see Section 8.5 for the “data shift” problem. 

3. Systematic Change: This can be driven by many factors, such as 
changes in the economy and customer behavioral changes, and is 
particularly important for products that are highly driven by the 
economy or market trends (the latter applies to many technology 
products such as tablet PCs and 3D TVs). Typical ways to handle this 
problem include updating models frequently enough to address the 
latest changes and including those factors (such as economic vari-
ables) in the model so that a change in the economy can change the 
model scores. 

This section and the next address the frst issue – random errors. Following 
Lo and Pachamanova (2015), a natural choice for mitigating random errors 
is through resampling, also known as bootstrapping. In other words, it 
assumes there are very many possible samples (resamples drawn from the 
original samples with replacement) so that we can calculate the lift values 
for each sample. Using results from many different samples, we then obtain 
a distribution of lift values, and, as a result, many useful statistics, such as 
standard deviations and percentiles, can be calculated (for each group/clus-
ter) to assess the uncertainty. This section discusses how this is done; see 
Efron and Tibshirani (1993) or Davison and Hinkley (1997) for a full descrip-
tion of bootstrapping. 
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Algorithm 8.5 (Bootstrapped Holdout Sample Performance) (Adapted from 
Lo and Pachamanova (2015)) 

Assume a cluster solution is obtained using Algorithm 8.4. 

1. Randomly draw a bootstrapped sample (resample) of the holdout 
sample with replacement. In SAS, this can be achieved using proc 
surveyselect. 

ˆ , ,  p̂2. Calculate the lift values ˜pc1 1( ) … ˜ cm( )1  by cluster using the boot-
strapped sample, where the additional subscript (1) indicates that 
values are from bootstrap sample 1. 

3. Repeat steps 1–2 until B bootstrapped samples and their cluster-
level lift values, (˜p̂ … ˜p̂ 1 ), …,  (˜p 1( ) , ,… ˜p̂ cm B ), are all 
obtained. 

c1 1( ) , ,  cm( )  ˆ c B  ( )  

4. Since we now have B lift values for each treatment and each cluster, 
we can compute their summary statistics, such as percentiles, medi-
ans, and standard deviations, as well as covariances or correlations 
to assess their uncertainty and dependency. For example, the qth 
percentile of ˜pcj can be determined by the inverse of the empirical 

−1distribution of ˜p̂cj evaluated at q, which can be denoted by F̂ ̋
p̂cj ( )q . 

The bootstrapped standard deviation for each treatment score is esti-
mated by:6 

B˜ (˝p̂cj b( ) − ˝p̂cj )
 b=1SD(˝pcj ) = ,

B − 1 

where ˜p̂cj is the average of the B bootstrapped estimates 
˜p̂cj( )1 , ,… ˜p̂cj( )B . Moreover, the covariance between two treatment 
scores (for treatments k and l) within the same cluster c is esti-
mated by: 

B˜ (˝p̂ck( )b − ˝p̂ck )(˝p̂cl( )b − ˝p̂cl )
 (˝ ,  ˝pcl ) b=1Cov pck = . 

B − 1 

Similarly, the covariance between two treatment scores (for treat-
ments k and l) from two different clusters c and c˜ can be estimated 
by: 

B 
˝p̂ck b − ˝p̂ ˝p̂ ˇ ( ) − ˝p̂ )˜ ( ( )  ck )( c l b c lˇ

 b=1Cov p(˝ ck , ˝pc lˇ ) = . 
B − 1 
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Example 8.2: Continuation of Example 8.1 in Section 8.3 

Applying the bootstrapping process in Algorithm 8.5 to the previous 
example with B = 60 bootstrap samples, we have obtained the results in 
Figures 8.4 and 8.5 and Tables 8.3 and 8.4. First, Figure 8.4 shows the box 
plot of the distributions of men’s and women’s lift values by cluster (see the 
legend of Figure 8.4 for interpretation), indicating that some clusters have 
a wider dispersion of lift values than others. In Table 8.3, cluster-level lift 

FIGURE 8.4 
Distribution of men’s and women’s lift by cluster using bootstrapping. (Continued) 
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FIGURE 8.4 (Continued) 

value percentiles are shown along with the bootstrapped standard devia-
tions, which indicate that the uncertainty measured by standard deviation is 
not uniform across clusters. The correlation matrix of the cluster-level men’s 
lift values and cluster-level women’s lift values is shown in Table 8.4 along 
with a subset of scatter plots shown in Figure 8.5. Notice that the correlations 
across clusters are generally small for most combinations. 

8.5 Optimization under Uncertainty 

All algorithms in Sections 8.2 and 8.3 are optimization methods designed to 
solve deterministic problems; that is, all input parameters in the optimization 
model are assumed to be known with total certainty. In our context, the lift 
values (even at the cluster level) are estimated and can have a high degree of 
uncertainty. Rather than taking a “leap of faith” on the estimates, are there 
ways to handle uncertainty? 

The most obvious method from classical deterministic optimization text-
books is to conduct a sensitivity analysis (e.g., Ravindran et al. 1987 and 
Taha 2010), which means the analyst would try different values of the 
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FIGURE 8.5 
Scatter plots of men’s and women’s lift scores by cluster. (Truncated plots: Only clusters 1, 2, 4, 
5, and 6 are shown.) 

TABLE 8.3 

Bootstrapped Results of Lift Values by Cluster 

Men’s Women’s Men’s Women’s Men’s Women’s Bootstrap Bootstrap 
5th 5th 50th 50th 95th 95th SD for SD for 

Cluster Percentile Percentile Percentile Percentile Percentile Percentile Men’s Women’s 

1 0.1105 −0.0298 0.1491 0.0229 0.2341 0.0840 0.0376 0.0357 

2 −0.0111 −0.0575 0.0813 −0.0050 0.1351 0.0774 0.0452 0.0401 

4 0.0489 0.0471 0.0671 0.0640 0.0848 0.0879 0.0099 0.0122 

5 0.0791 0.0128 0.1233 0.0623 0.1746 0.1083 0.0301 0.0291 

6 0.0386 0.0440 0.0703 0.0791 0.1003 0.1140 0.0186 0.0213 

7 0.0255 −0.0045 0.0479 0.0209 0.0753 0.0480 0.0149 0.0162 

8 0.0611 0.0002 0.0865 0.0256 0.1145 0.0535 0.0159 0.0158 

9 0.1231 −0.0543 0.2231 0.0281 0.2912 0.0955 0.0459 0.0457 

10 0.0438 0.0281 0.0579 0.0436 0.0787 0.0633 0.0101 0.0111 
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TABLE 8.4 

Correlation Matrix of Men’s and Women’s Lift Values by Cluster (Men1 = Men’s Lift Values for Cluster 1, etc.) 

Men1 Women1 Men2 Women2 Men4 Women4 Men5 Women5 Men6 Women6 Men7 Women7 Men8 Women8 Men9 Women9 Men10 Women10 

Men1 1.000 

Women1 0.498 1.000 

Men2 −0.156 −0.108 1.000 

Women2 −0.058 0.006 0.591 1.000 

Men4 −0.100 −0.187 −0.026 0.133 1.000 

Women4 −0.039 0.158 −0.021 −0.037 0.316 1.000 

Men5 −0.176 −0.133 −0.029 −0.036 −0.037 0.048 1.000 

Women5 −0.373 −0.178 0.011 0.037 −0.068 −0.052 0.499 1.000 

Men6 0.249 0.170 −0.022 0.003 −0.067 0.109 −0.222 −0.069 1.000 

Women6 0.127 0.233 0.014 0.109 −0.044 −0.113 −0.034 −0.139 0.467 1.000 

Men7 0.194 0.073 −0.008 0.058 −0.008 −0.028 0.262 −0.004 0.022 −0.027 1.000 

Women7 0.083 −0.027 0.182 0.132 −0.024 0.106 0.101 0.024 −0.202 −0.226 0.561 1.000 

Men8 0.054 0.004 −0.029 −0.022 −0.226 −0.277 −0.304 −0.131 0.242 0.012 −0.065 0.029 1.000 

Women8 0.148 0.236 −0.030 −0.124 −0.218 −0.296 −0.161 −0.023 0.040 -0.037 −0.157 −0.208 0.538 1.000 

Men9 −0.095 −0.125 0.075 0.125 0.090 −0.044 0.133 −0.089 −0.139 0.049 −0.159 −0.110 −0.156 −0.089 1.000 

Women9 0.008 0.040 −0.009 −0.025 0.239 0.051 −0.158 −0.143 −0.039 −0.058 −0.156 −0.131 −0.099 −0.144 0.264 1.000 

Men10 0.073 −0.002 −0.050 −0.111 −0.197 −0.009 −0.064 −0.277 0.023 0.018 −0.069 −0.050 0.088 0.025 0.120 0.201 1.000 

Women10 0.129 0.187 −0.193 −0.154 0.011 −0.116 −0.066 −0.266 0.130 0.099 −0.062 −0.110 0.170 0.342 0.225 0.110 0.326 1.000 
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uncertain parameters as an input to optimization and see if the resulting 
solutions would change. In standard sensitivity analysis in LP, one can also 
determine the range of input parameters such that the resulting solutions 
remain the same. As pointed out by relevant literature such as Wallace 
(2000), Higle and Wallace (2003), and King and Wallace (2012), such sensi-
tivity analysis, or “what-if” analysis, is a post-optimality investigation of 
how a change in the data may affect the solution and is not a direct way 
to handle uncertainty.7 Sensitivity analysis can only determine different 
solutions that are optimal for different values of uncertain parameters and 
cannot determine a single solution that addresses the variability of param-
eters. In addition to its theoretical weakness, in our context of treatment 
optimization in uplift analytics, running a sensitivity analysis will face two 
practical challenges: 

1. What alternative values would the analyst use for sensitivity anal-
ysis? One can make some simple assumptions or apply statistical 
methods such as parametric confdence intervals or bootstrap-
ping (e.g., Section 8.4) to assess the potential range of uncertainty. 
However, that could mean repeatedly running optimization for 
very many possible scenarios, especially when the number of clus-
ters or the number of treatments is not small. In our relatively sim-
ple example in Example 8.1, we have 9 clusters and 2 treatments, 
resulting in 18 lift values, and each can have a high degree of uncer-
tainty with a correlation structure among them (as investigated in 
Example 8.2), resulting in a huge optimization task to run all pos-
sible scenarios. 

2. Once we have many solutions for many possible scenarios, which one 
should we ultimately select as the fnal solution? This is not a simple 
answer if there are many different solutions. One may consider the 
“worst case” scenario (which will be discussed in Subsection 8.5.2 
under Robust Optimization). In this case, the analyst would actually 
not need to consider so many possible scenarios in the frst place. 
Another way is to look for a common optimization solution (if avail-
able) under several scenarios, that is, searching for a solution that 
is relatively insensitive to many possible scenarios, which would 
require some effort and “luck” (and what if such insensitive solution 
does not exist?). 

As a result, applying sensitivity analysis may appear simple but is not a 
very practical way to address many possible scenarios, especially when sys-
tematic and scientifc methods are actually available to solve stochastic opti-
mization directly. 

This section will focus on various optimization methods to handle uncer-
tainty. As discussed before, we will address the uncertainty due to random 
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errors from the lift value estimates. The bootstrapping or resampling meth-
odology from Section 8.4 will be used as a key input. 

We will frst discuss the earliest and also the most well-known optimi-
zation method for handling uncertainty, Mean-Variance Optimization, fol-
lowed by more recent techniques including robust optimization (RO) and 
stochastic programming (SP). All these methods can be found in the optimi-
zation literature and advanced textbooks on optimization. We will provide a 
practical description and tailor our discussion to treatment optimization for 
uplift analytics. 

8.5.1 Mean-Variance Optimization (MVO) – Excel 
Solver Using Bootstrap Results 

Over 60 years have passed since Markowitz (1952) introduced his work on 
MVO, also known as the Mean-Variance Criterion, as part of the Modern 
Portfolio Theory that won the Nobel Memorial Prize in Economic Sciences in 
1990. MVO is now widely known and is a popular method in fnance as well 
as other felds; see, for example, Cornuejols and Tutuncu (2007), Fabozzi et al. 
(2007), and Zenios (2007). 

The main idea of MVO is to balance return and risk, where risk is mea-
sured by standard deviation (aka volatility). The objective is to maximize 
the overall mean portfolio return (i.e., a weighted average of asset returns, 
with weights or asset allocations to be determined by optimization) with 
the risk (measured by standard deviation of the portfolio return) not 
higher than a specifc level. An alternative objective is the opposite: To 
minimize the overall portfolio variance with the mean portfolio return 
at least higher than a certain level. Since variance is a quadratic function 
of portfolio weights, the resulting optimization problem is no longer lin-
ear but is a quadratic program, which is still relatively straightforward to 
solve. 

The goal of MVO is to optimally assign weights to assets for asset allo-
cation, and it can be applied to other contexts such as optimizing proj-
ects, treatments, products, customers, employees, etc. In our situation, 
the subject of interest is treatment by individual customer or treatment 
by cluster (of individuals). Considering m treatments and C clusters of 
individuals as your “assets” as in model (8.7), we aim at determining 
the optimal quantity for each treatment and each cluster. Following the 
framework of MVO, we constrain the variance of the objective function 
(where the objective function is the estimated number of overall incre-
mental responders): 

˙ C m ˘ C m 

Maximize E  ˜˜ ̋ p xcj � = ˜˜ (˝ cj )ˇ cj E p xcj (8.8) 
ˇ �ˆ c=1 j=1 � c=1 j=1 
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subject to: 

˛ ˆC m 

˜˜˙
˙̋ 

° �˘
˘̌ 

Var  v, Maximum Uncertainty (or Risk) Constraint,p xcj cj 

c=1 j=1 

C m 

˜ c̃ xj cj ° B, Budget Constraint, 
c=1 j=1 

m 

˜ cj c … C, Cluster Size Constraint, andx ° N , for c = 1, ,  
j=1 

cj 1, … mx ˜ 0, c = 1, …, ;C j = , ,  

where as before xcj is the decision variable for a number of treatments of type 
j assigned to cluster c, and cj = cost of treatment j for each individual. 

Again, the expected (mean) values inside the objective function of model 
(8.8) above can be estimated by the holdout sample lift values, ˜p̂cj . The vari-
ance component in model (8.8) is slightly more complicated because of all the 
possible pairwise covariances: 

˛ ˆC m 

˜˜˙
˙̋ 

° ˘
˘̌ 

Var  p xcj cj 

c=1 j=1 

C m 

˜˜ ( cj ) cj ˜˜˜˜ cj c jˇ ˇ  ( cj c jˇ ˇ )= Var ˙p x 2 + 2 x x Cov ˙p , ˙p 
=1 j=1 c cˇ>c j ˇ>c j j  

= x x˜ ,˛ (8.9) 

where x = (x11, …, x1m , ……, xC1, …, xCm )˛ and ̃ = variance-covariance matrix 
of (˜p , ,… ˜p1m , … , pC , … ˜ Cm11 … ˜  1 , p )˛. One advantage of expressing Eqn. 
(8.9) in a matrix form is to facilitate numerical computations using matri-
ces (see Example 8.3a below where Excel is used). The variances and covari-
ances inside Eqn. (8.9) can be estimated by bootstrapping in Algorithm 8.5 of 
Section 8.4. 

By changing the value of v in model (8.8), we can trace out the “effcient 
frontier” by obtaining different optimal solutions based on tradeoffs between 
the mean and variance, where the “effcient frontier” is defned as the set of 
solutions that have the highest possible mean return given a risk level or the 
lowest possible standard deviation given a mean return, an idea that will be 
made clearer in the numerical example below. The bootstrapping procedure 
in Algorithm (8.5) can be employed to estimate the variances and covariances 
in Eqn. (8.9). 
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According to the theory of MVO, an alternative formulation8 to model (8.8) 
is minimizing the overall variance subject to a minimum constraint for the 
expected value: 

˛ ˆC m 

˜˜˙
˙̋ 

° ˘
˘̌ 

Minimize Var  (8.10) p xcj cj 

c=1 j=1 

subject to: 

E p˝ cj x ˙ e, Minimum Mean Value Constraint,˜ 
C 

˜ 
m 

( ) cj 

c=1 j=1 

C m 

˜ c̃ xj cj ° B, Budget Constraint, 
c=1 j=1 

m 

˜ cj c … C, Cluster Size Constraint, andx ° N , for c =  1, ,  
j=1 

xcj ˜ 0, c = 1, …, ;C j = 1, …, .m 

The effcient frontier using model (8.10) can be obtained by changing 
the value of e. Note that, strictly speaking, MVO is generally not regarded 
a “true” stochastic optimization method as the “asset expected returns,” 
which are equivalent to E(˜pcj ) are assumed known with certainty (estimated 
by holdout sample lift values ˜p̂cj in practice). Nevertheless, it does handle 
uncertainty by explicitly incorporating the variance in optimization. 

Example 8.3a (MVO version of Example 8.1 using results from Example 
8.2), adapted from Lo and Pachamanova (2015) 

Recall that in Example 8.1, we solved a joint men’s and women’s merchan-
dise optimization using the lift values estimated from the holdout sample. 
Since we simply plugged the estimated values into a deterministic LP model, 
we ignored uncertainty. From Example 8.2, we learned that the standard 
deviations of the men’s and women’s lift values are quite different across 
clusters (Table 8.3), and we also calculated the correlation matrix in Table 8.4. 
We now apply these numerical bootstrapped results from Tables 8.3 and 8.4 
to model (8.10). 

We frst calculate the total variance in Excel as a function of variances and 
covariances using Eqn. (8.9).9 We then again employ Excel Solver to minimize 
the total variance by adding a constraint for the minimum mean value (frst 
constraint of model (8.10)). Since this is a nonlinear (quadratic) programming 
model as opposed to an LP model, the “GRG Nonlinear” option in Solver 
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TABLE 8.5 

MVO Illustration – Minimizing Variance with the Minimum Mean Value Set at 
4,000 

Total 
Decision Number 

Cluster Obs. Lift Obs. Lift Decision var on of 
Size in in in Cost per var on Number Treated 

Holdout Response: Response: Treatment Number of by 
Cluster Sample Men’s Women’s ($) of Men’s Women’s Cluster 

Overall 18985 0.07408 0.043863 
1 418 0.1587 0.0224 1 3,146 1,034 4,180 
2 565 0.0652 −0.0055 1 – – – 
4 6,022 0.0658 0.0628 1 713 3,254 3,967 
5 1,237 0.1290 0.0618 1 1,232 7,991 9,223 
6 894 0.0672 0.0760 1 7,477 1,463 8,940 
7 2,924 0.0519 0.0213 1 9,453 278 9,731 
8 2,807 0.0868 0.0254 1 2,069 559 2,628 
9 410 0.2249 0.0239 1 4,100 – 4,100 

10 3,708 0.0572 0.0426 1 190 7,907 8,097 
Total 18,985 obj value 2,811 1,189 4,000 

cost $28,380 $22,487 $50,867 
Budget $60,000 

is selected instead of “Simplex LP.” Table 8.5 shows the results for a special 
case where the minimum mean value is set at 4,000 (recall that the optimal 
solution to the corresponding deterministic optimization model from Table 
8.2 in Example 8.1 has a mean value of 6,453). If we focus on the two decision 
variable columns in Table 8.5 and compare them to those in Table 8.2, the 
assignment appears to be more diversifed with generally smaller quantities 
in each cell. 

Figure 8.6 summarizes several possible optimal solutions – obtained by 
minimizing the overall variance with a changing minimum mean value, 
resulting in a mean-standard deviation “effcient frontier.” For example, at the 
upper right of Figure 8.6, the squared point at (standard deviation, mean) = 
(1018, 6453) is the original solution from Example 8.1. We then set the mini-
mum mean incremental responders at various values, solve the associated 
quadratic programming model to minimize the variance, and plot these dif-
ferent solutions10 in Figure 8.6. The one closest to the original solution near 
the upper right has the minimum mean value set at 6,400 with a resulting 
standard deviation of 939. At the lower left, we set the minimum mean value 
at 1,000 and obtained an optimal solution with a standard deviation of 67. 
Which solution to ultimately select for an actual application depends on the 
user’s balancing art of risk (standard deviation) and expected return of the 
objective function. 
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FIGURE 8.6 
Mean and standard deviation solution tradeoff – “Effcient Frontier”. 

8.5.2 Robust Optimization (RO) 

RO aims at fnding the best solution when the parameters in an optimization 
problem are not fxed but are allowed to vary in pre-specifed uncertainty 
sets. In practice, the RO approach often reduces to solving the optimization 
problem when the uncertainties take on “worst-case values.” In a maximiza-
tion problem, it will be maximizing the objective function under some kind 
of worst-case scenario for the coeffcients in the problem. 

RO itself is a vast area of research, and there are multiple ways to formulate 
the problem as well as different choices for uncertainty sets; see Tutuncu and 
Koenig (2004), Fabozzi et al. (2007), or Bertsimas et al. (2011). We will only 
illustrate with a simple and practical method here. 

The simplest example is when the input parameters in the optimization 
problem are allowed to take values within interval uncertainty sets, that 
is, when we specify an upper and lower bound for each parameter. Recall 
model (8.7) from Algorithm (8.4), if we can establish a lower bound for each 
lift value, ˜pcj l( ) where the subscript ( )l denotes the lower bound, we can then 
simply replace the lift values with their associated lower bounds (“worst 
case”) while keeping everything else the same, resulting in a standard deter-
ministic LP model: 

C m 

Maximize ˜˜ °p xcj( )l cj (8.11) 
c=1 j=1 
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subject to: 

C m 

˜ c̃ xj cj ° B, Budget Constraint, 
c=1 j=1 

m 

˜ … C, Cluster Size Constraint, andxcj ° Nc , for c =  1, ,  
j=1 

xcj ˜ 0, c = 1, …, ;C j = 1, …, .m 

How do we fnd the lower bounds ˜pcj l( )? The simplest method is to use a 
parametric lower bound based on the usual one-sided confdence interval, 
which assumes asymptotic normality for the sample estimator of the cluster-
level lift value. Specifcally, we frst estimate the standard deviation of the 
sample lift value for cluster c and treatment j from the holdout sample: 

ˆ
 ˆ 

pcj (1− p̂cj ) p̂c0 (1 − p̂c0 )SD(˛pcj ) = + , (8.12a) 
ncj nc0 

where p̂cj is the sample response rate for cluster c and treatment j, and p̂c0 is 
the sample response rate for cluster c in the control group, and ncj and nc0 are 
their associated sample sizes. 

Then, the parametric lower bound is given by: 

ˆ  ˆ˝pcj l( ) = ˝ −pcj ˜SD(˝pcj ). (8.12b) 

For example, if we are to approximate the 5th percentile using this para-
metric lower bound, −˜ can be set to ˛−1 (0.05) = −1.645, or ˜ = 1.645, assum-
ing ˜p̂cj is (asymptotically) normally distributed. Similarly, if we would like 
to be more conservative, using the 1st percentile as the lower bound to pres-
ent the “worst case,” ˜ can be set to −˝−1 (0.01) = 2.326. 

A generally better approach is to employ the bootstrapping procedure in 
Algorithm 8.5 of Section 8.4, as it is nonparametric or distribution-free; that 
is, no normality assumption is required. We will illustrate both the paramet-
ric and nonparametric lower bounds below with an example. 

Example 8.3b (Continuation of Example 8.3a) 

Replacing the estimated lift values in columns 3 and 4 of Table 8.2 by the 
5th percentiles from columns 2 and 3 in Table 8.3, we have a lower bound, or 
the “worst case,” for each lift value (for each treatment at the cluster level). 
Repeating the process outlined in Example 8.1 with the 5th percentiles, 
we solve a new problem using Excel Solver (“Simplex LP” is selected as it 
becomes a standard LP model). 

Tables 8.6a and 8.6b report the new LP solutions using the parametric and 
nonparametric (bootstrapped) lower bounds, respectively. The standard 
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TABLE 8.6a 

Linear Programming Computations Using Cluster-level “Worst” Lift Values: Using 
Parametric Lower Bounds 

Total 
Decision Number 

Cluster 5th Decision var on of 
Size in SD of SD of 5th Percentile Cost per var on Number Treated 

New Men’s Women’s Percentile of Treatment Number of by 
Cluster Data Lift Lift of Men’s Women’s ($) of Men’s Women’s Cluster 

1 4,180 0.041 0.034 0.09073 −0.03386 1 4,180 – 4,180 

2 5,650 0.041 0.038 −0.00144 -0.06767 1 – – – 

4 60,220 0.011 0.011 0.04790 0.04521 1 11,280 – 11,280 

5 12,370 0.029 0.027 0.08154 0.01754 1 12,370 – 12,370 

6 8,940 0.022 0.023 0.03109 0.03887 1 – – – 

7 29,240 0.016 0.015 0.02632 −0.00296 1 – – – 

8 28,070 0.017 0.016 0.05868 −0.00057 1 28,070 – 28,070 

9 4,100 0.055 0.048 0.13404 −0.05485 1 4,100 – 4,100 

10 37,080 0.012 0.011 0.03800 0.02419 1 – – – 

Total 189,850 obj value 4,125 – 4,125 

Cost $60,000 $ $60,000 

Budget $60,000 

TABLE 8.6b 

Linear Programming Computations Using Cluster-level “Worst” Lift Values: Using 
Bootstrapping 

Total 
Decision Number 

Cluster 5th Decision var on of 
Size in 5th Percentile Cost per var on Number Treated 

New Percentile of Treatment Number of by 
Cluster Data of Men’s Women’s ($) of Men’s Women’s Cluster 

1 4,180 0.11048 −0.02982 1 4,180 – 4,180 
2 5,650 −0.01111 −0.05751 1 – – – 
4 60,220 0.04894 0.047102 1 11,280 – 11,280 
5 12,370 0.07908 0.012833 1 12,370 – 12,370 
6 8,940 0.03861 0.044034 1 – – – 
7 29,240 0.02547 −0.00449 1 – – – 
8 28,070 0.0611 0.000176 1 28,070 – 28,070 
9 4,100 0.12311 −0.05429 1 4,100 – 4,100 

10 37,080 0.04383 0.028138 1 – – – 
Total 189,850 obj value 4,212 4,212 

cost $60,000 $ $60,000 
Budget $60,000 
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deviations in Table 8.6a are computed using the parametric formula in Eqn. 
(8.12a). Note that in this example the 5th percentiles (of both men’s and wom-
en’s lift values) are relatively close in Tables 8.6a and 8.6b, which means the 
parametric lower bounds are a good approximation, at least in this example. 
As a result, Tables 8.6a and 8.6b result in the same solution for the decision 
variables (the optimal objective values are slightly different because they are 
based on different [but similar] estimates of lower bounds). Comparing this 
new solution to the original deterministic solution in Table 8.2, cluster 6 is no 
longer assigned any treatment, and cluster 4 now has a higher quantity. This 
should not be a surprise because cluster 6’s 5th percentiles (both men’s and 
women’s) are relatively small compared to cluster 4’s, while previously in Table 
8.2 cluster 6’s lift values are slightly higher than the corresponding values in 
cluster 4 in Table 8.2. Another observation is that the objective function value 
(mean value of total incremental responders) is now down to 4,212 (in Table 
8.6b, or 4,215 in Table 8.6a) but it is based on the 5th percentiles of lift values. 
If we keep this solution and replace the 5th percentiles with the original lift 
values at the cluster level to compute the objective function value, we obtain 
6,361 as the mean value, which is only marginally (1.1%) lower than the origi-
nal number (6,453) reported in Table 8.2. As a result, if uncertainty is taken 
into account in this way, the new solution seems a reasonable way to diversify. 

Comparing the MVO solution in Table 8.5 to the RO solutions in Tables 
8.6a and 8.6b, we see that the MVO solution is more diverse in the sense of 
assigning quantities to more clusters, which is not a surprise given the goal 
of minimum variance in MVO versus the goal of maximizing a lower bound 
(a conservative solution) in RO. 

8.5.3 Stochastic Programming (SP) 

Stochastic Programming (SP) directly addresses any uncertainty through 
probability distributions as opposed to employing a pessimistic scenario 
as in RO or managing variances as in MVO. Because of its combination of 
a wide range of applications and strong and established theories, SP itself 
is a key subfeld of optimization theory and Operations Research and has 
been around for many decades – one of the earliest contributions is from 
Dantzig (1955). For further study, see Wallace and Ziemba (2005), Cornuejols 
and Tutuncu (2007), Zenios (2007), or King and Wallace (2012) for practical 
introductions and applications, and Birge and Louveaux (1997) or Shapiro et 
al. (2014) for the more mathematically inclined. We will discuss techniques 
from SP that are most relevant and practical to uplift optimization.11 

Considering again model (8.7) in Section 8.2.2, one may impose an additional 
probability constraint to “guarantee” that a given result is achieved with a 
certain probability (known as chance constraint optimization, a branch of SP): 

C m 

ˆMaximize ˜˜ °p x  (8.13) cj cj 

c=1 j=1 
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subject to: 

˝ ˇC m 

˜˜ b,  Probability Constraint (0 ˛ ˛b 1),ˆ
ˆ̇ 

° ˛ a ˛�
�̆ 

P pcjxcj 

c=1 j=1 

C m 

˜ c̃ xj cj ° Budget, Budget Constraint, 
c=1 j=1 

m 

˜xcj ° Nc , for c = … C,  1, ,  Cluster Size Constraint, and 
j=1 

cj ˜ 0, c =  1, ,  ;  = mx … C j  1, …, .  

Alternatively, rather than maximizing the estimated (mean) number of 
incremental responders, one may be interested in maximizing the probabil-
ity of achieving a given number of incremental responders: 

˝ ˇC m 

˜˜ˆ
ˆ̇ 

° cj ˛ z0 �
�̆ 

Maximize P (8.14) pcjx 
c=1 j=1 

subject to (as before): 

C m 

˜ c̃ xj cj ° Budget, Budget Constraint, 
c=1 j=1 

m 

˜xcj ° Nc , for c = 1, …, C,  Cluster Size Constraint, and 
j=1 

cj ˜ 0, c =  1, ,  ;  = mx … C j  1, …, .  

Furthermore, one may even change the objective function to another prob-
ability-related function, such as an αth percentile (also known as Value-at-
Risk or VaR12), for a small value of α: 

C m 

Maximize the °  th percentile of ˜˜ ̨ p x  , (8.15) cj cj 

c=1 j=1 

while keeping the same set of constraints in Eqn. (8.14). 



 

 
 

 
 

    
 

 

 

 

240 Cause and Effect Business Analytics and Data Science 

On the surface, model (8.15) looks similar to the Robust Optimization (RO) 
model (8.11). In fact, they are different because model (8.11) ignores the depen-
dency structure (correlations) among the lift values ˜pcj . For example, if two 
of the lift values are very negatively correlated, the chance that both of them 
will achieve their respective lower bound (say, 5th percentile) is very low. As 
a result, model (8.11) is more conservative than model (8.15) as the latter takes 
into account the dependency structure of the lift values. 

Note that, unlike LP problems for deterministic optimization or even 
quadratic programming problems for MVO, models, Eqns. (8.13)–(8.15) may 
not satisfy the convexity property (see Appendix 8.1) and thus cannot guar-
antee global optima. Nevertheless, good heuristics are available to solve 
them, attempting to achieve some “good enough” solutions even though 
global optima are not guaranteed. See Appendix 8.2 for A Brief Introduction 
to Simulation Optimization, a relatively simple technique employed in 
Example 8.3c. 

Example 8.3c (Continuation of Example 8.3b) 

We now include a probability constraint in the original model in Table 8.1. 
Using Oracle’s Crystal Ball (CB),13 we frst input the distributions for all men’s 
and women’s lift values, each following the bootstrap sample’s marginal dis-
tribution (called “Custom Distribution” in the CB software). We then enter 
the entire correlation matrix of the bootstrapped lift values from Table 8.4 
into the “Defned Correlations” area. 

Knowing that the optimal solution in Example 8.1 results in 6,453 expected 
incremental responders (using the sample mean lift values), we now would 
want to have some guarantee that the actual number of incremental respond-
ers would be at least a given reasonably high quantity. Applying model (8.13), 
the following probability constraint is included to have an 80% probability 
that at least 5,500 incremental responders are achieved: 

P(no. of incremental responders ˛ 5, 500) ˛ 0.80, 

˝ ˇC 2 

˜˜ˆ
ˆ̇ 

° ˛  5, 500 ˛�
�̆ 

i.e., P 0.80,pcjxcj 

c=1 j=1 

where C = number of clusters, while keeping the same objective and other 
constraints in Example 8.1. 

See EPM Information Development Team (2009) for details on how to use 
the CB software. The solution14 with the above additional probability con-
straint is shown in Table 8.7,15 which is only slightly different from the orig-
inal deterministic solution in Table 8.2 (highlighted columns indicate that 
those values have gone through random number generations in CB). The top 
panel of Figure 8.7 shows the histogram of the simulated optimal objective 
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TABLE 8.7 

Probability Constrained Optimization – Summary of Results 

Total 
Decision Number 

Cluster Obs. Lift Obs. Lift Decision var on of 
Size in in in Cost per var on Number Treated 

New Response: Response: Treatment Number of by 
Cluster Data Men’s Women’s ($) of Men’s Women’s Cluster 

1 4,180 0.1587 0.0224 1 4,180 – 4,180 
2 5,650 0.0652 −0.0055 1 2,340 – 2,340 
4 60,220 0.0658 0.0628 1 – – – 
5 12,370 0.1290 0.0618 1 12,370 – 12,370 
6 8,940 0.0672 0.0760 1 – 8,940 8,940 
7 29,240 0.0519 0.0213 1 – – – 
8 28,070 0.0868 0.0254 1 28,070 – 28,070 
9 4,100 0.2249 0.0239 1 4,100 – 4,100 

10 37,080 0.0572 0.0426 1 – – – 
Total 189,850 obj value 5,772 680 6,451 

cost $51,060 $8,940 $60,000 
Budget $60,000 

function value (no. of incremental responders) and its ftted curve using a 
lognormal distribution (best ft).16 The estimated probability (based on sam-
ple proportions) of achieving 5,500 is 96.81% at the bottom below the histo-
gram and is refected by the darker portion of the histogram. The lower panel 
of Figure 8.7 shows the simulation history of the solution, showing that after 
about 300 simulations, the algorithm converges to the fnal solution (there is 
no infeasible solution shown in the graph even though the legend includes 
an infeasible solution line). 

Instead of including a probability constraint, we now use a probability in 
the objective function in the form of model (8.14): 

Maximize P(no. of incremental responders ˛ 6, 000) , 

˝ ˇC 2 

˜˜ˆ
ˆ̇ 

° cj ˛ 6, 000 �
�̆ 

i.e., Maximize P pcjx , 
c=1 j=1 

while again keeping all constraints in Example 8.1. Note that the value 6,000 
inside the probability objective is relatively large given that the optimal objec-
tive function value of the original deterministic model is 6,453 from Table 8.2. 
The new solution with this probability objective function is summarized in 
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FIGURE 8.7 
Probability constrained optimization – Distribution of no. of incremental responders. 

Table 8.8, which is not very different from the solution in Table 8.2, other 
than cluster 2 is also assigned with a small quantity and thus is slightly more 
diverse. The top panel of Figure 8.8 shows the estimated probability distribu-
tion of the number of incremental responders obtained from this optimiza-
tion. Since 6,000 is used in the probability objective function, one would be 
interested in the probability of achieving at least 6,000, which is 76.82% as 
listed at the bottom of the histogram and also refected by the darker por-
tion of the histogram in Figure 8.8. The bottom panel of Figure 8.8 shows the 
simulation history, which shows that it slowly and gradually converges to the 
fnal solution (76.82% probability). 
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TABLE 8.8 

Probability as Objective Function – Summary of Results 

Total 
Decision Number 

Cluster Obs. Lift Obs. Lift Decision var on of 
Size in in in Cost per var on Number Treated 

New Response: Response: Treatment Number of by 
Cluster Data Men’s Women’s ($) of Men’s Women’s Cluster 

1 4,180 0.1587 0.0224 1 4,180 – 4,180 
2 5,650 0.0652 −0.0055 1 305 – 305 
4 60,220 0.0658 0.0628 1 1,573 462 2,035 
5 12,370 0.1290 0.0618 1 12,370 – 12,370 
6 8,940 0.0672 0.0760 1 – 8,940 8,940 
7 29,240 0.0519 0.0213 1 – – – 
8 28,070 0.0868 0.0254 1 28,070 – 28,070 
9 4,100 0.2249 0.0239 1 4,100 – 4,100 

10 37,080 0.0572 0.0426 1 – – – 
Total 189,850 obj value 5,743 709 6,451 

cost $50,598 $9,402 $60,000 
Budget $60,000 

FIGURE 8.8 
Probability as objective function – Distribution of no. of incremental responders. (Continued) 
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FIGURE 8.8 (Continued) 

Last but not least, we follow model (8.15) to maximize the “worst” case 
scenario, represented by the 5th percentile: 

C 2 

Maximize the 5th percentile of ˜˜ °p x  ,cj cj 

c=1 j=1 

while again keeping the same constraints in Example 8.1. The resulting solu-
tion in Table 8.9 shows that it appears slightly more diverse than the original 

TABLE 8.9 

Maximizing 5th Percentile – Summary of Results 

Decision Total of 
Cluster Obs. Lift Obs. Lift Decision var on Treated 
Size in in in Cost per var on Number Women’s 

New Response: Response: Treatment Number of by 
Cluster Data Men’s Women’s ($) of Men’s Women’s Cluster 

1 4,180 0.1587 0.0224 1 4,180 – 4,180 
2 5,650 0.0652 −0.0055 1 200 – 200 
4 60,220 0.0658 0.0628 1 4,274 – 4,274 
5 12,370 0.1290 0.0618 1 12,370 – 12,370 
6 8,940 0.0672 0.0760 1 – 6,806 6,806 
7 29,240 0.0519 0.0213 1 – – – 
8 28,070 0.0868 0.0254 1 28,070 – 28,070 
9 4,100 0.2249 0.0239 1 4,100 – 4,100 

10 37,080 0.0572 0.0426 1 – – – 
Total 189,850 obj value 5,913 517 6,431 

cost $53,194 $6,806 $60,000 
Budget $60,000 
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FIGURE 8.9 
Maximizing 5th percentile – Distribution of no. of incremental responders. 

deterministic solution in Table 8.2 (because cluster 2 is also assigned). The 
top panel of Figure 8.9 shows the estimated probability distribution of the 
objective function value, with the simulation history shown in the lower 
panel of Figure 8.9. 

8.6 Concluding Remarks 

Chapter 6 discusses the basics of uplift modeling, where the objective is to 
construct a useful predictive model for predicting lift values. The goal is to 
select the right individual targets for a future campaign using an uplift model. 
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This chapter discusses mathematical and computational algorithms for treat-
ment optimization in an uplift analytics setting. These algorithms serve dif-
ferent purposes in various situations. When there is only a single treatment 
used in the previous marketing campaign and also the same single treat-
ment will be considered for a future campaign, model (8.3), Algorithm 8.1, or 
Algorithm 8.2 can be applied to select the right targets for treatment. Under 
a more general situation where multiple treatments are involved, a binary 
integer programming model (model (8.4)) can be employed to select the right 
individual targets for the right treatment. Due to its tremendous computa-
tional complexity and the diffculty in accurately estimating individual-level 
lift values, Algorithm 8.4 is proposed as a practical way to solve a much sim-
pler optimization problem. The key to Algorithm 8.4 is using holdout sample 
lift estimates at the cluster level as an input to optimization. 

Even though holdout sample data are used, Algorithm 8.4 is still based 
on statistical estimation, and as a result, the estimates are not known with 
complete certainty. While it is quite common to use statistical estimates as 
an input to deterministic optimization with the assumption that the esti-
mates are completely correct, there are mathematically advanced yet practi-
cal ways to handle uncertainty in optimization. The degree of uncertainty 
can be assessed using the bootstrapping method described in Algorithm 8.5. 
Section 8.5 describes multiple methods to address optimization under uncer-
tainty, including MVO, a simple version of RO, and SP – the latter is achieved 
by addressing uncertainty directly through probabilities using specifc algo-
rithms such as Simulation Optimization. These methods for optimization 
under uncertainty are practical to employ, especially with relatively small 
problems. Whether or not the analyst chooses to use them depends on how 
important he/she thinks it is to handle uncertainty due to statistical estima-
tion. More sophisticated methods are introduced in Lo et al. (2017). 

Last but not least, the methods introduced in this chapter may serve only 
as starting points to consider, and there can be other issues that arise in prac-
tice to make things a little different (and more interesting), such as additional 
constraints and sensitivity analysis of controllable parameters (e.g., budget). 

Appendix 8.1: A Few Words on Convexity 

The optimization problems in this chapter cannot guarantee global optima 
unless they belong to a class of “convex minimization” problems (or, equiva-
lently, “concave maximization” problems). The convexity concept applies to 
problems with continuous decision variables only and thus does not apply 
to problems with binary decision variables. A convex minimization prob-
lem requires that the objective function is a convex function (e.g., U-shaped) 
and the constraints are convex inequalities. For linear constraints, they are 
always convex (and also concave). We now focus on the objective function. 
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The simplest case of optimization is from single-variable calculus, where 
we want to minimize a (smooth) nonlinear function of a single variable, 
f x( ), without any constraints. To solve this problem, we take the frst deriva-
tive and set it to zero: f x( ) = ∗. Then we ˛ 0 and then determine the root, x 
determine if x ∗ is a local minimum by checking whether the second deriva-

∗tive evaluated at x , f x˛̨ ( )˙ ˝ 0 (one may imagine a U-shaped curve). If the 
latter inequality is satisfed, we know this x ∗ is a local minimum. And if 

˛̨ ( ) ˝ 0 for all x, which means f x  is a convex fu c on, then x ∗ is also a globalf x  ( )  n ti 
minimum of f x( ). 

The conditions for multiple variables are similar. Again, if our goal is to 
fnd the values of a vector (x1, ,… xm )˝ such that f x( … xm ) is minimized 1, ,  
(assuming again it is a smooth function), from standard calculus or opera-
tions research textbooks (e.g., Ravindran et al. 1987), we equate the frst 

ˆ ˙ f ˜ f ° ˙
partial derivative vector to zero, ˛f x( ) = ˘ , …, = 0, in order to 

ˇ ˙x1 ˜xm ˛̋ 

determine the root, x ∗ = (x1 
˙ … xm 

˙ )˝. To check whether x ∗ is a local minimum, , ,  
we would check whether the second partial derivative (also known as the 
Hessian matrix) evaluated at x ∗ is positive defnite (matrix version of “greater 

2 ˆ ˙ f
than zero”): ˛2 f x( )˙ ˝ 0,where the i j, th element of ˛ f x( ) = 

2 

. To 
˙x xi j  ˆ=x x  

guarantee it is also the global minimum, one would check whether f ( )x  is a 
convex function, that is, ̨ 2 f x( ) ˝ 0 (positive semi-defnite) for all values of x, 
that is, u 2 ( )  ˙ 0 for any values of u (one may imagine a bowl-shaped ˛ ˝ f x u  
surface in a three-dimensional space with m = 2). 

Let’s get back to our context of uplift treatment optimization; suppose 
we would like to minimize the overall variance as in model (8.10). It can be 
proved that the objective function, which is a quadratic function of decision 
variables, is positive semi-defnite, and hence it is guaranteed that model 
(8.10) has a global minimum.17 However, for the probability objective func-
tions in Example 8.3c, there is no guarantee that the local optima are global. 
The general practical advice is to start with various initial solutions to arrive 
at (potentially) different fnal solutions and then pick the one that has the 
best objective function value. 

Appendix 8.2: A Brief Introduction to Simulation 
Optimization 

Stochastic Programming (SP) has a wide range of applications in any feld 
that requires optimization under uncertainty. One of the key existing algo-
rithms available is Simulation Optimization, a computationally intensive 
method that combines Monte Carlo simulation and optimization, as the 
name suggests. 
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Simulation Optimization iterates between two steps: 

1. The Optimization Step: It suggests a possibly improved solution 
given the results of previous iterations. It is typically based on a 
heuristic search algorithm as the optimizer, taking outputs from the 
Simulation step. In CB, the user has to indicate the number of simula-
tions for this step under “Optimization Control.” 

2. The Simulation Step: It evaluates a given solution using Monte 
Carlo Simulation. The strength of simulation allows this algorithm 
to evaluate almost any situation with a given solution suggested by 
the optimization step (in Example 8.3c, bootstrapping is employed 
for simulation). In CB, the user has to specify the number of random 
trials for this step. 

The above two steps feed each other until a certain termination criterion is 
satisfed. For further information, see Better et al. (2008) or EPM Information 
Development Team (2009). 

Notes 

1. Formally, ˛ =  ˛ +p E pi uncertainty (noise) with mean zero.i ( )  
2. Technically, the single treatment case includes a control group, so some litera-

ture refers to this simplest situation as a “two-treatment” case. 
3. NP-completeness and its related terms are key concepts in Computer Science 

and Operations Research for measuring the complexity of algorithms. They 
are beyond the scope of this book; see Cook (2012), Cormen (2013), or Fortnow 
(2013) for an introduction or Bertsimas and Tsitsiklis (1997), Papadimitriou and 
Steiglitz (1998), or Dasgupta et al. (2006) for a formal discussion. 

4. Specifcally, in this approach, if the cluster-level solution from Algorithm 8.4 
recommends only a single treatment for a given cluster, we can prioritize tar-
gets using Algorithm 8.1 or 8.2 at the cluster level. However, if the cluster-level 
solution involves more than one treatment for a given cluster, one may solve 
a binary integer program similar to model (8.4), except that the problem size 
is much smaller as we are solving for each cluster as opposed to the entire 
population. 

5. Additionally, the Four Quadrant Method described in Section 9.2 of Chapter 9 
can also be used for multiple treatments, as outlined in Section 8.2.1. 

6. While standard deviations can be estimated using the usual parametric for-
mula (see Eqn. (8.12a)), estimating covariances will require methods such as 
bootstrapping. 

7. A common appropriate situation where sensitivity analysis makes sense is on 
controllable parameters. For example, one may be interested in assessing the 
impact of an additional budget or a lower budget on the optimal solution. 
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8. Lo and Pachamanova (2015) outlined another alternative for the MVO formula-
tion using both the mean and variance in the objective function. 

9. The multifunction in Excel is used here for the matrix computation of Eqn. (8.9); 
see Jackson and Staunton (2003) for an illustration. 

10. The deterministic solution obtained from Example 8.1 is used as the starting 
solution for each preset minimum mean value. 

11. We only discuss a subset of Stochastic Programming (SP) that can be practically 
applied to uplift optimization. For example, one branch of SP called scenario 
optimization requires fnding a common solution to all possible simulated 
scenarios (see Wallace and Ziemba (2005), Zenios (2007), or King and Wallace 
(2012)) and is particularly suitable for multistage optimization problems. 
Scenario optimization is not discussed here due to its complexity for the uplift 
situation and the fact that most uplift problems are of a single stage. 

12. See, for example, Jorion (2006) for details of VaR and other risk measures such 
as Conditional Value-at-Risk, CVaR. 

13. Stochastic optimization in CB is based on a heuristic method called Simulation 
Optimization; see Appendix 8.2 for a brief introduction, or EPM Information 
Development Team (2009) or Better et al. (2008) for further details. Other Excel 
add-on software such as @Risk and Frontline Systems also have a Simulation 
Optimization capability. In all solutions in Example 8.3c, the following setting 
is used: No. of simulations = 1,000 and no. of trials = 1,000. 

14. All solutions to stochastic optimization in Example 8.3c use the optimal solu-
tion from Table 8.2 in Example 8.1 as the initial solution. 

15. The bootstrapped results from Example 8.2 are used in “Custom” Distribution 
(i.e., discrete uniform distribution with equal probability for each bootstrapped 
observation) in Crystal Ball for each uncertain (random) variable. Additionally, 
the correlations from Table 8.4 are taken as an input so the random number gen-
eration mechanism will simulate values in a multivariate fashion – by default 
in Crystal Ball, a common dependence structure called Gaussian copula is 
used for multivariate simulation; see, for example, Trivedi and Zimmer (2005) 
or Meissner (2014). 

16. Crystal Ball selects the lognormal distribution as the best-ft distribution in 
Figure 8.7. Similarly, Crystal Ball chooses the best-ft distributions for other 
solutions in Figures 8.8 and 8.9. 

17. Strictly speaking, only population variance-covariance matrices are guaranteed 
to be semi-positive defnite, but the same is not necessarily true for all sample 
variance-covariance matrices. 
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9 
Uplift Analytics IV: Advanced Modeling 
Techniques for Randomized and 
Non-Randomized Experiments 

9.1 Introduction 

This chapter discusses advanced topics on Uplift/True-lift modeling. 
Chapter 6 introduced two fundamental modeling methods that are straight-
forward to apply. Section 9.2 of this chapter considers more advanced 
modeling techniques that may seem less straightforward but are still very 
practical to use. 

Additionally, the causal inference discussion in Chapters 3–5 introduced 
methodologies for measuring causality in observational or non-randomized/ 
non-experimental data. Chapters 6–8 are concerned with measuring or esti-
mating causal effect (or targeting) at the individual level in randomized 
experiments and optimizing treatment assignment. By randomized experi-
ments, we mean there is a random split between treatment and control 
groups so that any difference between them can be attributable to the treat-
ment. Section 9.4 combines the methodologies of these previous chapters 
to address the intersection of the two issues: (1) Measuring causal effect 
or targeting at the individual level and (2) in non-randomized experiments or 
observational data. 

In some business situations, randomized experiments are available and 
easy to execute, such as direct marketing (paper mail, email, or online). 
However, there are situations where randomized experiments are not fea-
sible. As previously mentioned, uplift analytics (in randomized experiments) 
is still an emerging area, and uplift analytics in non-randomized experi-
ments has received limited attention in the literature. Section 9.4 provides 
some methodological details to address this issue. 

Section 9.5 discusses the presence of “direct response,” which means 
we know directly whether individual customers actually respond or not 
(through click-through or coupon scans, for example) and how to integrate 
uplift modeling with direct response modeling through a state-of-the-art 
approach. 
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9.2 Advanced Uplift/True-lift Modeling Techniques 

Chapter 6 describes two simple methods for uplift modeling. This section 
introduces a more advanced method, proposed by Kane et al. (2014). Consider 
Table 9.1, where all individuals in the sample data are classifed into a 2 × 2 
table. Response or not is an action taken by the individuals while the treat-
ment/control split is determined by the campaign designer. 

Defne our estimation objective (i.e., lift) as a function of covariates x, 
giving: 

( ) = ( | , )  − P R C x( |  , ), where R =Z x  P R T x   event of response 

Here Z x( ) is the response probability difference (i.e., lift) between the treat-
ment and control groups, given a set of characteristics x. As in Chapter 6, our 
objective is to fnd a set of individuals such that their sum of lift values is 
maximized. Using Bayes’ rule from probability theory, Appendix 9.1 shows 
that the above lift function Z x( ) can be re-expressed as: 

1 ˆ P T( R x| ) P C( N x| ) P T( N x) ( R x| )| P C  � 
Z x( ) = ˘ + − − � . (9.1) 

2 P C  P C˘ P T( )  ( )  P T( )  ( ) �ˇ � 

In Eqn. (9.1), the numerators ( | ,  ( N x| ,  ( N x| ,  and P(P TR x) P C  ) P T  ) CR x| ) 
are probabilities that an individual is a treatment responder, a control non-
responder, a treatment non-responder, or a control responder, respectively. 
Hence, we call this the Four Quadrant Method or KLZ (named after Kane 
et al. 2014). These probabilities can be predicted by a model with four cat-
egorical outcomes using statistical and data mining techniques such as a 
multinomial logit model, CART/CHAID/C4.5 (decision tree algorithms), 
random forest, boosted tree (MART also known as TreeNet), or neural net-
work. The key requirement is to be able to estimate probabilities associ-
ated with multiple categorical outcomes. The denominators in Eqn. (9.1), 
P T  and P C  are simply the treatment and control probabilities or propor-
tions, respectively, that is, percentages of individuals assigned to treatment 
and control, which are known quantities as they are determined by the 
campaign designer. 

Equation (9.1) is essentially a modifed (or corrected) version of Lai (2006) 
who proposed the following scoring equation: 

( )  ( )  

P TR x| + P CN x| − P TN x − P CR x ,( ) ( ) ( | ) ( | ) 
which can be simply expressed as: 

P T( R or C  |  ) − P T  r CR x)N x  ( N o  | (9.2). 
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TABLE 9.1 

Treatment by Response 2 × 2 Table 

Response No Response 

Treatment Treatment Responders (TR) Treatment Non-responders (TN) 
Control Control Responders (CR) Control Non-responders (CN) 

Note that Eqn. (9.2) contrasts the two sets of diagonal elements in Table 9.1. 
At frst glance, this may look a little strange. The logic can be explained 
intuitively as follows, with reference to Table 9.1: 

• In the treatment group, Event TR represents those who respond in 
the treatment group, so they are who we like. 

• Event TN indicates those who do not respond in the treatment group, 
certainly not who we like. 

• In the control group, Event CR indicates those who respond in the 
control group, so this group responds anyway regardless of the treat-
ment and can be considered who we do not like. 

• Event CN has those who do not respond in the control group – 
whether or not they would respond if they received a treatment 
is not known but at least there is a chance to persuade them to 
respond with a treatment, so they can be considered who we 
like. 

Another way to explain this is to note that, as described in Section 6.3 
of Chapter 6, Persuadables (positive lift) are hidden within the Treatment 
Responders and Control Non-responders (P(TR)+P(CN)), while Do-Not-
Disturbs (negative lift) are hidden within the Treatment non-Responders 
and Control Responders (P(TN)+P(CR)). This method tries to maximize the 
probability of being a Persuadable and minimize the probability of being 
a Do-Not-Disturb within the highest-scoring observations. Nevertheless, 
Kane et al. (2014) and Appendix 9.1 show that Eqn. (9.2) is only mathemati-
cally correct if P T( ) = P C  = 0.5, that is, treatment and control groups are ( )  
of the same size. In many practical cases, the treatment group is larger or 
much larger than the control group, as marketers tend to maximize the 
overall campaign value whenever possible, with their assumption (or hope) 
that the campaign will really deliver a positive lift. Kane et al. (2014) show 
that Eqns. (9.1) and (9.2) can result in highly correlated score values for a 
relatively wide range of P T( ). Similar methods have also been indepen-
dently proposed by Tian et al. (2014) and Weisberg and Pontes (2015) for the 
case of P T( ) = P C  = 0.5. An example of the KLZ technique is set out in the ( )  
Example 9.1 box. 
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Example 9.1 (Continuation of Example 6.2) 

Recall that Example 6.2 from Chapter 6 describes a case from online retail 
data where the goal in the example is to develop an uplift model for web 
visits. To apply the KLZ discussed in this section to Example 6.2, we frst ft 
a multinomial logit model for the four outcomes in Table 9.2 using Control 
Non-responders (CN) as the base case (reference category). Then the pre-
dicted lift is calculated by Eqn. (9.1) with the predicted probabilities for the 
four outcomes. The lift chart is displayed in Figure 9.1a, which shows that 
the KLZ method performs the best in the top semi-decile, with a general 
downward slope similar to other lines. Given the zig-zag pattern, it is some-
times easier to use the gains chart in Figure 9.1b, which shows the cumulative 
percentage of incremental responders captured. Figure 9.1b shows that the 
KLZ appears to be leading in the top 20%+ targets. Table 9.2 summarizes the 
numerical performance using the three performance metrics introduced in 
Chapter 6, again showing the clear leading performance of the KLZ in the 
top 15% but cannot beat the Treatment Dummy Approach with the overall 
Gini curve. 

TABLE 9.2 

Performance Evaluation of Alternative Uplift Models 

Gini Gini 15% 
Gini Repeatability 

(R2) 

Baseline 1.8556 −0.0240 0.2071 
Two Model Approach 
Treatment Dummy (Lo (2002)) 
Four Quadrant Method (KLZ (2014)) 

2.0074 
2.4392 
2.3703 

0.0786 
0.0431 
0.2288 

0.2941 
0.2945 
0.3290 

FIGURE 9.1a 
Lift chart for various uplift models. 
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FIGURE 9.1b 
Gains chart for various uplift models. 

9.2.1 Extension of the Four Quadrant Methods to Multiple 
Treatment and Continuous Response Variable Cases 

To extend from the binary treatment case (one treatment, one control) to the 
case of multiple treatments plus a control group is straightforward for the 
Two Model Approach (simply ft one model for each treatment group; see 
the Separate Model Approach in Lo and Pachamanova 2015) and the Treatment 
Dummy method (one dummy variable for each treatment along with their 
interaction effects). For the KLZ, it is also relatively straightforward. Consider 
comparing each treatment group to the control; one can arrive at a similar 2 × 
2 table as in Table 9.1, except that the treatment in this table would represent 
only one of the treatments. Then Eqn. (9.1) follows for EACH treatment group 
compared to the control group. As a result, Eqn. (9.1) will result in a model 
score for each treatment group and for each individual. Such treatment-spe-
cifc scores can be computed for individual-level treatment optimization as 
discussed in Chapter 7. 

What if the response variable is continuous instead? The two methods out-
lined in Chapter 6 can be readily used by using an OLS-type regression (for 
continuous response variables) instead of a logistic regression (for binary 
response variables). However, the KLZ outlined in this section would not be 
applicable. A transformation method for continuous response variables R has 
been proposed by Weisberg and Pontes (2015) for the case of P T( ) = P C = 0.5 ( )  
for all individuals: 

˙ 
� ˇ 2(R R) if i is in treatment, i − 

Ri = ˆ (9.3) 
ˇ −2( i − ) if i is in control, R R 
˘ 

° i  in treatment  Ri ° i in control Ri+ 
n nwhere R = T C , and nT  and nC are sample sizes of the 

2 
treatment and control groups, respectively. The transformation in Eqn. (9.3) 
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works because the expected value of the transformed response variable is the 
average treatment effect (ATE), conditional on covariates: 

˝| = 0.5˝2 E R T| = 1, x − E R − 0.5 ̋ 2 | = 0, x − E RE R x  E R T  ( i i ) ( ( i i i ) ( )) ( ( i i i ) ( )) 
= E R T( i| i = 1, xi ) − ( i| i = 0, xi )E R T . 

Another transformation for continuous response variables is proposed by 
Athey and Imbens (2015), for the general situation where ( )  P C  (but P T  ˛ ( )  
still is a constant for all individuals): 

T P T− ( )Ri 
˙ = Ri 

i . (9.4) 
P T( )(1 − P T( )) 

Similar to Eqn. (9.3), the expected value of Eqn. (9.4) can be shown to 
be the same as the ATE, given covariates (also known as Conditional 
Average Treatment Effect, or CATE). With the transformation Eqn. (9.4), 
one can simply ft regular OLS-type regression models or any supervised 
learning models for continuous response variables to directly predict the 
lift as a function of covariates, similar to the KLZ for binary outcomes in 
Eqn. (9.1). 

9.3 Situations Where Randomized Experiments 
Are Not Available 

Several years ago, one of the authors was glad to accept a project for selecting 
targets for outbound telemarketing. This was considered a great opportu-
nity as the impact or lift from outbound telemarketing, where a well-trained 
professional customer rep makes a phone call to a customer or potential 
customer, is usually much higher than that from direct mail, email, or an 
online message. However, when we learned that the customer reps previ-
ously “cherry-picked” customers so those who were contacted were different 
from those who were not contacted, the team hesitated to do that work as all 
the Uplift/True-lift modeling techniques (as introduced in Chapters 5 and 6) 
require a random split between treatment and control – in this situation, can 
the team still learn something from the existing data? In the business world, 
we do not say NO when there are opportunities to learn from “imperfect” 
data. Let us consider more examples below. 

1. Telemarketing: To expand on the above example, outbound telemar-
keting or in-person customer visits, which theoretically can be done 
in a randomized experimental fashion, are often “cherry-picked” 
due to the much higher cost of contact. This means those with a 
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higher potential (greater monetary value or likelihood of respond-
ing) are often chosen as the targets, so there may not be a proper 
control group set up (although this is still desirable). 

2. Product Educational Workshop: You would like to conduct an edu-
cational workshop or seminar on your product (say, a new kitchen 
product in a department store or a new car model in a car dealer), 
and in such a case you may send invitations to certain potential cus-
tomers (random or targeted) and hope some of them will show up. 
However, those who see the workshop sign on the street or receive 
a referral invitation from their friends and family may also show 
up, and we cannot block them out by telling them, “You are in the 
control group.” 

3. Retail Chain Design: The unit of analysis is not necessarily an indi-
vidual. For example, a retail chain is interested in measuring the 
effectiveness of a certain treatment (e.g., change of uniforms, store 
colors, and local marketing strategies) on sales. We would like to 
learn whether the treatment is effective overall (across the country) at 
the store group level and at the individual store level. Incorporating 
store-level variables in uplift modeling, we can understand what 
characteristics are associated with a higher sales level, and thus we 
can apply appropriate treatment to more stores. While some con-
trol over the similarity of treatment and control stores is possible, 
such analysis design may not guarantee a completely random split 
between treatment and control. 

4. Car Safety Program: A car insurance frm or a government agency 
may be interested in testing the effectiveness of a car safety program 
on the behavior of young drivers. However, randomization is not 
feasible because of the “opt-in” option. Not only it is of interest to 
measure the overall effectiveness but also it is key to see whether the 
program is more effective for certain types of drivers, for example, 
by age, geography, education, and profession. 

5. Preclinical Analysis: In biomedicine, a drug (treatment) needs to be 
proven to be successful in a randomized clinical trial. However, in 
a preclinical stage, especially in epidemiology (see Rothman et al. 
2008) and genomics, observational data are commonly collected 
to understand the predictors of certain diseases, which may infer 
causes and appropriate treatments (e.g., a healthy diet, regular exer-
cise, or cleaner air, which is mostly self-selected and cannot be easily 
randomly assigned). 

6. Talent Development: For an application in human resources, obser-
vational data are available to understand treatments for talent 
development, such as the impact of an extensive training program 
on employee performance, where other available variables may 
include education, tenure, years of relevant experience, salary, and 



 

 

 

259 Uplift Analytics IV 

geography. Due to the high cost of the program per employee, not 
everyone has received the training, so there is no randomized exper-
iment. And also because of the high cost, it would be important to 
understand who would beneft most from such a program. 

7. Pre-experimental Marketing and Sales Programs: In industries 
where randomized experimental data are not yet common but his-
torical observational data are available, including various market-
ing and sales treatments for different customers at different points 
of time, it would be natural to learn as much as we could through 
causal inference and uplift modeling based on big data (which some-
times include time series data for each individual, leading to panel 
data) or small data before a randomized experiment is available to 
further confrm the results. For example, a pharmaceutical com-
pany is interested in physician targeting and they have not done any 
experimental tests yet. Nevertheless, they have observational data 
that list what marketing and sales efforts were used for each physi-
cian in their database as well as the response outcome. One can uti-
lize such observational data without waiting to collect experimental 
data. In fact, it is quite common that one can use such data to narrow 
down the list of potentially effective treatments and then run them 
in an experimental treatment/control setting later for confrmation 
and refnement. 

Measuring the overall effect (or segment-level effect) in these situations 
can possibly be achieved using the methodologies in Chapters 3 and 4. This 
chapter is about targeting them at the individual level, that is, uplift model-
ing, and we describe how to handle this in a non-randomized experiment or 
observational data setting below. 

9.4 Uplift Modeling for Observational Data 

We assume the terms “observational data” and “non-randomized experi-
ments” are interchangeable and both indicate that it was not possible to have 
a random split of treatment and control. As a result, the treatment and con-
trol groups may not look alike. We also assume that we have some known 
factors that determine the difference between the treatment and control 
groups. For example, in the outbound telemarketing example discussed 
above, the professional customer reps “cherry-picked” the best targets for 
contacts. One can ask the reps what criteria they used – did they use recency 
(how recently the customers purchased a product), frequency (how many 
times they bought from or interacted with us), monetary infows (how much 
money they spent), or some other knowledge to indicate their potential value 
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FIGURE 9.2 
Conceptual causal diagram with confounders. 

(e.g., income, where they live). While every rep may have used slightly dif-
ferent criteria, we should still be able to gather some ideas from them about 
which variables they generally used. Such knowledge can be very valuable 
for us in the techniques to be described below. 

Consider Figure 9.1, where we would like to build an uplift model for 
improving sales efforts. However, previous sales data are observational, and 
past sales efforts may have depended on confounders such as age, income, 
and geography. For instance, past sales efforts may have focused more on 
older customers with higher incomes. As a result, the effect of sales effort can 
pass indirectly to the outcome variable through the confounders, as shown 
on the upper path in Figure 9.2 from treatment to confounder to outcome, 
a process known as a “back-door” in the causal inference literature (see 
Chapter 3 for further discussion). 

First let us consider how we generally handle this in measuring the popula-
tion (or overall) effect of treatment (causal inference as described in Chapter 
3). There are two general ways to block (or control for) the confounders in 
order to isolate the treatment effect: (1) By blocking the link between the con-
founders and the outcome variable (through an outcome regression model), 
or (2) by blocking the link between the confounders and the treatment/ 
control assignment (through propensity score matching), or a combination of 
the two by blocking both links, which is a doubly-robust estimation method. 
In the uplift context, we are interested in the individual-level impact, which 
requires us to focus on measuring not only the main effect of treatment but 
also the heterogeneous treatment effects (also known as effect modifers in 
epidemiology literature) on outcome. 

Figure 9.3 reveals the confounder blocking process in the uplift con-
text. The interaction between treatment and confounder (or a set of con-
founders) allows us to model the individual-level treatment effect. In 
order to isolate the direct main effect of treatment on the outcome and the 
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FIGURE 9.3 
Conceptual causal diagram to block the confounder set. 

heterogeneous (interaction) effect on the outcome, our goal is to block the 
following links: 

1. Between the confounder and the interaction; 
2. Between the confounder and the treatment variable; and 
3. Between the confounder and the outcome. 

Blocking the frst two links can be achieved by propensity score (PS) 
matching, while the last link can be blocked by making the confounder 
present in an outcome regression model, essentially controlling for the 
confounder. This is similar to the doubly-robust estimation method or the 
Marginal Structural Model with effect modifcation (see Section 12.5 of Hernan 
and Robins 2016 for reference). We set out the detailed methodologies in the 
following subsections. 

9.4.1 Modified Two Model Approach and Treatment 
Dummy Approach Using Propensity Score 

Recall that Chapter 6 describes two approaches to uplift modeling: Two 
Model Approach (Method 1) and Treatment Dummy Approach (Method 2). 
For non-randomized experiments, treatment and control groups are not nec-
essarily comparable, but if selection to treatment or control depends on a set 
of observable variables, a PS approach can be employed to make the treatment 
and control groups more comparable (see Chapter 3). In the uplift context 
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here, the Inverse Probability Weighting (IPW) method, a popular method 
under the PS approach, can be easily used for adjustment (e.g., Chapter 7 in 
Morgan and Winship 20141). 

Using the IPW method, the weights2 are constructed as follows: 

˙ P T( )ˇ  if i is in treatment,
P T( i = 1| )iˇ x 

W = (9.5)i ˆ 
1 − P T( )ˇ if i is in control.ˇ 1− P T( i = 1|xi)˘ 

The denominators of the weight in Eqn. (9.5) are simply the PS (that an indi-
vidual belongs to the treatment or control group) given covariates, and can 
be estimated through logistic regression (or any binary classifcation model 
that can generate probability estimates). The numerators3 denote the uncon-
ditional (overall) sample proportions of treatment and control. IPW creates 
a pseudo-population in which the arrow from confounders to the treatment 
variable is removed; see Figure 9.3. Equation (9.5) shows the ratio of the 
unconditional treatment (or control) proportion to the conditional treatment 
(or control) proportion. Intuitively, treated individuals who are highly likely 
to be in the treatment group, say, P T( i = 1|xi ) = 0.9 while P T( ) = 0.5, would be 
overrepresented in the treatment group, and thus we would want to have a 
lower weight. On the other hand, those treated individuals with a low likeli-
hood to be in the treatment group, say, P T( i = 1|xi ) = 0.1, would be underrep-
resented in the treatment group, and we would like their representation to be 
higher, leading to a higher weight. 

The weight formula in Eqn. (9.5) is used to measure the ATE of the whole 
population. It is not uncommon that we may be interested in the treatment 
effect on the treated group or control group only. For example, in an obser-
vational study that has treatment and control groups that are not randomly 
split, we might like to infer from the treatment data what would happen to 
the control group (those not yet treated) if they receive a treatment. In this 
case, we would make the treatment group look like the control group in 
terms of their composition (individual characteristics). This is the case for 
measuring the Average Treatment effect on the Controls (ATC), with the fol-
lowing weight formula: 

˙ (1− P T( i = 1|xi ))/(1 − P T( ))
ˇ  if i is in treatment, 

i ( TC) = ˆ P T  1| /P T (9.5a)W A  ( = xi ) ( )i 
ˇ 
ˇ 1 if i is in control.˘ 

Similarly, if one is interested in what would happen to the treated group 
if they were NOT treated, one would make the control group look like the 
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treatment group in terms of its composition. This is the case for measuring the 
Average Treatment effect on the Treated (ATT), with another weight formula: 

˙  1 if i is in treatment, 
ˇ 

i ( ˆ
ˇ 

i xi / ( )  (9.5b) W ATT ) = P T( = 1| ) P T
 if i is in control. ˇ (1− P T( i = 1|xi ))/(1 − P T( ))ˇ̆

Applied to the uplift context where the aim is to estimate treatment effect 
given certain individual characteristics,4 the IPW method is similar to mea-
suring “Effect Modifcation” (i.e., heterogeneous treatment effect) in the 
Epidemiology literature.5 While IPW is straightforward to apply, it has a 
potential issue with too large or too small weights (due to the reciprocal of PS 
or one minus PS).6 As a remedy to avoid over- or under-stated weights, two 
steps are commonly recommended in the literature: 

1. Overlap Analysis: Check the max/min of the PS for treatment and 
control groups, respectively, and also plot their distributions (using 
boxplot or histogram/kernel density function) to examine the over-
lap of PSs for treatment and control groups. Discard those data points 
that do not fall in the overlap (or “region of common support”) of the 
two groups; see, for example, Sturmer et al. (2014). 

2. Windsorization of Weight: This is also known as Trimming in the 
PS literature. Essentially, extreme weight outliers are replaced by 
more reasonable values. For instance, we may cap (“windsorize”) the 
weights at 95th and 5th percentiles. While this is quite commonly 
mentioned in the literature and has been shown to be benefcial to 
logistic regression-based PS models (Lee et al. 2011), there is no con-
sistent recommendation on the exact cutoff percentiles; see Crump 
et al. (2009) and Morgan and Winship (2014). Sensitivity analysis 
using various cutoffs can be used. 

The weighting scheme in Eqn. (9.5) can be easily applied to the Treatment 
Dummy Method and the Two Model Approach for balancing treatment and 
control compositions. What about the KLZ? It is not that much harder, but it 
requires some explanation, as in the following subsection. 

9.4.2 Modified Four Quadrant Method (Modified KLZ) 

Recall from Eqn. (9.1) that the lift function for each individual can be expressed 
as a linear combination of four probabilities: 

1 ˆ P T( R x| ) P C( N x| ) P T( N x) ( R x| )| P C  � 
Z x( ) = ˘ + − − � . (9.1) 

2 P C  P C˘ P T( )  ( )  P T( )  ( ) �ˇ � 
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Equation (9.1) is valid only for randomized experiments where P T( ) , or 
( ) = − P T( ), is a known constant driven by campaign design. For exam-P C  1 

ple, by design, we may have a randomized experiment with 80% treatment 
and 20% control. This implies that, given a target group, the probability of 
assigning treatment is 0.8 for each and every individual. Such a randomiza-
tion process has a known and identical probability of treatment for every-
one. In non-randomized experiments (or observational data), however, 
P T( ) or P C( ) is no longer a constant as some individuals have received 
treatment with a higher or lower probability depending on certain charac-
teristics (e.g., through self-selection bias). Our methodology introduced here 
is simply to replace P T( )  or P C  with ( |  or P(C x , which means the ( )  P T x)  | ) 
treatment assignment probability is now a function of some predictors (or 
covariates): 

P T( | ) P C  | ) P T  | ) P C( R x) �1 ˆ R x  ( N x  ( N x  |
Z x( ) = ˘ + − − � (9.6). 

2 ˘ P T x| P C x || P T x P C x|ˇ ( ) ( ) ( ) ( ) �� 

Equation (9.6) is a simple extension of Eqn. (9.1). Hence, Eqn. (9.6) can be 
recognized as the Modifed KLZ or the Modifed KLZ (modifed for non-
experimental data). Here, P T  x( | ) is simply the PS that can be estimated using 
a logistic regression or any type of method that can predict a binary out-
come.7 However, in our case, having a separate model for P T  x( | ) is optional, 
because we can simply sum up the appropriate components in the numera-
tors, as follows: 

P T( x) ( | ) + P TN x)| = P TR x  ( | (9.7a) 

and 

P C x(  ) = − (  )| .  (9.7b) | 1 P T x  

Then one can easily compute the predicted lift values using Eqn. (9.6) along 
with Eqns. (9.7a) and (9.7b). 

The above description only applies to binary response variables. What 
about continuous response variables for observational data? A transforma-
tion for continuous response variables for observational data is proposed by 
Athey and Imbens (2015): 

˙ i − ( | )
Ri = Ri 

T P T xi , (9.8) 
| )( P T x| i ))P T x( i 1− ( 

where P T x( |  i ) is simply the PS that can be estimated. Note that Eqn. (9.8) is a 
natural extension of Eqn. (9.4) for observational data, where predictors (or 
covariates) are included.8 
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9.4.3 Example for Uplift Modeling for Observational Data 

Example 9.2 (Continuation of Example 6.1) 

Recall from Example 6.1 in Section 6.7.1 that the response variable, Donated, 
is driven by a set of variables. Assume again that we have the same set of 
covariates as in Example 6.1. Further, we assume the treatment assignment 
is a logistic function of spent (average amount donated in the past) and fre-
quency (number of times a donation was made in the past) in the simulation. 

Following the methodologies outlined earlier in Section 9.4: 

1. We frst ft a logistic regression to recover the relationship between 
treatment assignment and confounders (spent and frequency in this 
case), using the whole data set. 

2. The training data is scored to determine the PS for each observation. 
3. We next apply Eqn. (9.5) to construct a set of weights using the IPW 

method based on the calculated PS from the previous step. 
4. We then follow the overlap analysis and windsorization steps out-

lined in Section 9.4.1 to process the weights. 
5. Next, this set of weights is used in conjunction with various uplift 

modeling methods to ft the training data. 
6. Finally, the holdout sample is used to evaluate the various uplift 

modeling methods mentioned in Sections 9.4.1 and 9.4.2 (Two Model 
Approach, Treatment Dummy Method, and Modifed KLZ), where 
the holdout sample, like the training sample, also has to be weighted 
using the IPW method to compute unbiased lift estimates. 

Following Eqn. (9.5), the following SAS statement is applied to construct 
the weights: 

= 1 then wei = 0  8033 = 0 1967 1 −if trt  .  /ps; else wei .  /(  ps); 

We summarize the distribution of PS for the treatment and control groups 
in Table 9.3, Figures 9.4a and 9.4b. Since the two distributions almost com-
pletely overlap (with similar minimums and maximums), no data points are 
discarded. As mentioned in Section 9.4.1, high variability of PS has been a 

TABLE 9.3 

Summary Statistics of Propensity Score 

Analysis Variable: ps 

trt N Mean Std Dev Minimum Maximum 

0 59008 0.707418 0.146591 0.268396 0.99723 
1 240992 0.826781 0.124055 0.268396 0.999999 
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FIGURE 9.4a 
Box plot of propensity score for treatment (trt = 1) and control (trt = 0). 

FIGURE 9.4b 
Frequency distribution of propensity score for treatment (trt = 1) and control (trt = 0). 
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discussion point in the literature, so a windsorization step is performed to 
cap (“windsorize”) the data at 95th and 5th percentiles, which are 1.51 and 
0.5 in this example, essentially limiting the weights to be no more than 50% 
higher or lower for each observation. 

With the weights constructed, we can now apply various uplift modeling 
methods using the weights.9 The results are summarized in Figures 9.5a,b and 
Table 9.4, showing that, in this illustrative example, the three uplift models 

FIGURE 9.5a 
Lift chart for uplift modeling for observational data example. 

FIGURE 9.5b 
Gains chart for uplift modeling for observational data example. 
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TABLE 9.4 

Summary of Model Performance 

Gini 
Repeatability (R2) 

Gini Gini 15% Gini 5% (%) 

Baseline 5.4611 0.5714 0.0635 78.21 
Two Model approach 4.7428 0.5464 0.0943 78.63 
Treatment Dummy (Lo (2002)) 4.7556 0.5459 0.0924 78.66 
Modifed Four-Quadrant Method 4.8431 0.5445 0.0897 80.49 
(KLZ (2014)) 

are very close to each other in performance and are all better than the base-
line (treatment only) model for the frst 5% but are not better when the whole 
sample is considered. It should be mentioned that in Table 9.4, because we 
are dealing with non-randomized treatment and control data, the Gini coef-
fcient and the Top 15% Gini coeffcient need to incorporate the set of weights 
derived from the PSs; see Appendix 9.2 for the computational formulas. 

9.5 Direct Response Modeling and Integration 
of Direct Response and Uplift Modeling 

We have been discussing uplift modeling since Chapter 6. This set of tech-
niques for uplift handles the situation where we do NOT know exactly who 
responds to the treatment, that is, we can only infer by collecting lots of data 
and using the difference between the treatment and control response rates. 
In a nutshell, this requires us to analyze treatment and control data at the 
aggregate level, group level, or sub-sub-subgroup level (through predictive 
modeling), so granular that it is almost at the individual level. However, what 
if we actually know who EXACTLY responded to the treatment? That would 
be a much simpler situation, and would only need us to develop a regular 
supervised learning mod to predict direct response (or sales) as a function of 
covariates without worrying about the control group. Is it really that simple? 
Let us consider two cases where direct response data are available. 

1. Retailer Couponing: Imagine a common situation for retailers (or 
restaurants) that often use coupons or some form of promotional 
codes to attract customers. A typical way is to include a coupon 
on a postcard. If the customer decides to use it for a purchase, the 
postcard will be scanned and the “direct response” will actually be 
captured. Hence, the direct response data can tell EXACTLY who 
has responded to the coupon. However, those without a coupon (in 
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the control group) may also purchase something from the retailer. 
Additionally, some in the treatment group (those who received the 
postcard with the coupon) may purchase WITHOUT using the cou-
pon – they may have forgotten to use it despite receiving the treat-
ment, or they may not have seen the postcard at all.10 So it does sound 
like there is still an uplift modeling opportunity. Should we simply 
build a direct response model or an uplift model? Why not both? 

2. Email Click-through: Another example is an email marketing cam-
paign to sell a retail product online. Those who receive the email 
with a specifc URL link (or a QR code) are in the treatment group. 
Customers in the treatment group may click the link (“click-through”) 
to purchase a product. But some customers who received the email 
may also purchase the product from the general website instead of 
clicking the link in the email. Similarly, those who did not receive 
the email (in the control group) can purchase the product from the 
general website. This is similar to the retailer example with coupons. 
That is, one can develop a direct response model for click-through as 
a function of covariates, and one may also develop an uplift model 
using the treatment and control data. Which one should we do? Why 
not both? 

9.5.1 Uplift on Response Probability 

Consider only the blue boxes in Figure 9.6. We frst split the customer data 
into treatment and control groups. Within treatment (T), some directly 

cresponded (D) and some did not (D ). For those who directly responded (D), 
cthey already responded (R). For those who did not directly respond (D ), for 

example, those who did not use the coupon, some may have made a purchase 
anyway (R) and others may not (N). Similarly, in the control group (C), some 
may have made a purchase (a response, R) and others may not (N). 

We are now expressing the tree diagram in Figure 9.5 mathematically. 
Using our notation for the lift function of covariates: 

Z x( ) = ( | ,  ) − ( | ,  , where RP R T x  P R C x) =  event of response. 

cP R T D x P D T x( , ) + ( P D T x  − | , ,= | ,  ) ( | , | , , )(1 − ( | , )) P R C x( )P R T D x  

following the direct and no direct branches under Treatment (T) in Figure 
9.6, where D = direct response and Dc = no direct response, and applying the 
standard rules of conditional probability 

= ( | ,  ) + P R T D( | , , x) 1( − P D T x( | ,  )) − ( | ,  ) , (9.9) P D T x  c P R C x 

since ( | ,  , 1, that is, response (purchase) probability is 100% if the P R T D x) = 
coupon is actually used.11 
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FIGURE 9.6 
Tree diagram of direct response and response data. 

Equation (9.8) has the following probabilities to be modeled: 

1. P D T x( | ,  ) = Direct response probability as a function of covariates 
for the treatment group – this can be developed using regular super-
vised learning for binary outcomes (note that direct response is only 
available in the treatment group in this model), 

2. ( | ,  ) =P R T Dc , x  Treatment response probability among those who 
did not use the coupon, as a function of covariates (i.e., the directly 
responded individuals would need to be excluded from modeling for 
this probability), and 

3. P R| ,C x) = Control response probability as another function of 
covariates. 

( 

Note that the probabilities in (2) and (3) above can be handled by any uplift 
modeling technique that provides separate estimates from the treatment and 
control response models, respectively, that is, the Two Model Approach or 
the Treatment Dummy Approach but not the Four Quadrant Model12 (as the 
decomposition in Eqn. (9.1) does not capture direct response). 

Equation (9.9) can also be rearranged as: 

| ,  ) ˙ − ( | , , )ˇ ˙ | ,  , ) − ( | , )ˇ (9.10) = P D T x( 1 P R T D  x  P R T D x( P R C x  .ˆ 
c 

˘ + ˆ 
c 

˘ 



 
 

   

 

 

 

 

 
 

 

     

 

271 Uplift Analytics IV 

In Eqn. (9.10), the component in the frst pair of parentheses is the differ-
ence in response probability between a direct responder (which is always 1.0) 
and someone in the treatment group who did not use a coupon. The first 

ccomponent, ( | ,  1 − ( | , , )ˆP D T x) ˝ P R T D  x , is always ˜ 0. The second compo-˙ ˇ 
nent, ˝P R T D( | ,  , x) − ( | , )ˆ , measures the difference in response prob-c P R C x ˙ ˇ 
ability between the treatment group (without using the coupon to directly 
respond) and the control group. The second component may not necessar-
ily be ˜ 0. Note that Eqns. (9.9) and (9.10) are derived from the fundamental 
theory of conditional probability and do not require any statistical model 
assumptions. Modeling the various probability components in those equa-
tions as functions of covariates, however, does require empirical data and 
statistical/data mining models. 

Example 9.3: Integration of Direct Response Model and Uplift Model 

In this simulated example, a clothing retailer is interested in maximiz-
ing the response (buying) rate of their products through mailing coupons 
to the right customers. The retailer stores historical data of each customer as 
follows: 

• Recency: number of months ago for its most recent purchase (0, 1, 2, 
…, 12) 

• Frequency: number of times purchases were made in the past year 
(0, 1, …) 

• Spent: average spent amount on past purchases 
• Demographics: age, income 

In our simulations, the direct response using coupons is a function of 
recency, while the response rate (if coupon is not used) is a function of age 
and frequency. Using Eqn. (9.8), we need to estimate: 

• Direct Response Model: Model 1: P D T x( | ,  ), Direct response prob-
ability as a function of covariates (where recency is the only covari-
ate used in the actual theoretical model), developed using regular 
logistic regression; 

c• Uplift Model: Model 2: | ,  , ) and Model 3: P R| ,C x) ,P R( T D  x ( 
response probabilities in the treatment group (when direct response 
is not used) and control groups, respectively, both as a function of 
age, amount spent, and frequency in the actual models; estimated 
using a Treatment Dummy variable approach (from Chapter 6 or Lo 
2002). 

The estimated results13 are reported in Table 9.5 (only signifcant coeff-
cients at 5% level are kept, and Models 2 and 3 are estimated together using 
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TABLE 9.5 

Estimated Direct Response and Uplift Models 

Baseline Model 1 Model 2 Model 3 Uplift Uplift 
P(D|T,x) P(R|T,Dc,x) P(R|C,x) P(R|T,x) P(K|C,x) 

Treatment Direct Treatment Control Treatment Control 
Only Baseline Response Response Response Response Response 

Intercept −1.9697 −1.6077 −15.9304 −15.9304 −1.9707 −15.7035 
age 0.0468 0.1494 0.0897 0.0468 0.0882 
income 
frequency 0.0322 0.1003 0.1003 0.0326 0.0326 
spent 0.000352 0.000994 0.000994 0.000349 0.000999 
wealth 0.000823 0.000823 
recency −0.239 −0.3946 −0.239 
log(age) 
log(income) −0.9036 −0.9036 
log(spent) 
log(wealth) 

the Treatment Dummy variable approach). Note that in this example, the sig-
nifcant drivers in the direct response model (Model 1) and the uplift model 
(Models 2 and 3) are quite different, which is a sign that the integrated model 
(uplift + direct response) should improve over either one alone. It is expected 
that the more different the drivers are in the two models, the more power-
ful the integrated model would become compared to having only either the 
direct response model or the uplift model. 

For comparison, we ft a baseline model using treatment data only (whether 
they had a direct response or not), that is, predicting ( | ,P R T x). Additionally, 
we ft a “standard” uplift model using the Treatment Dummy Approach 
(again from Chapter 6 or Lo 2002), without using direct response data, to 
predict treatment and control response rates, respectively, ( | ,P R T x) and 
P R| ,C x). And we also evaluate the performance of a direct response-only 
model (i.e., Model 1 only, P D T x( | ,  )). The lift chart in Figure 9.7 shows that 
the direct response model does not differentiate well in this example (as it 
is driven by only one variable by simulation design). All the other models 
are better, and the integrated model (direct response + uplift) clearly outper-
forms all, at least in the top semi-decile. The Gini metrics in Table 9.6 confrm 
the performance comparison.14 

(

9.5.2 Uplift on Sales Revenue 

Let’s revisit Figure 9.6, this time including the green boxes (Sales, S). 
Whenever a purchase (response) is made, we can collect the sales revenue, S. 
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FIGURE 9.7 
Lift charts for direct response only, uplift, and integrated direct response and uplift methods. 

TABLE 9.6 

Performance Metrics for Comparison between Direct Response Model, Uplift 
Model, and Integrated Model for Response Lift 

Gini Gini 15% Gini Repeatability (R2) (%) 

Baseline (Treatment Only) 3.1199 0.4612 68.0 
Direct Response Model 0.8909 0.0593 88.2 
Uplift Model 3.2694 0.5151 65.2 
Integrated Model 3.5165 0.5553 65.7 

In addition to modeling the purchase response probabilities (R, a binary Y/N 
variable), we are now also interested in modeling sales revenue (S, a continu-
ous variable in $value). Equations (9.9) and (9.10) can be generalized to model 
sales revenue, S: 

Z x( ) = E S T x( | ,  ) − ( | ,  , where S E S C x) = sales revenue. 

= ( | ,  , ) ( | , ) + ( | , c , )(1 − ( | , )) − ( )E S T D x P D T x  E S T D x  P D T x  E S|C x, (9.11a) 

using the standard conditional expectation formula 

= E S T D x P D T x( | ,  , ) ( | , ) + E S T D R x P R T D x( | , c , , ) (  | , c , )(1 − ( | ,  ))P D T x  
(9.11b) 

− ( | ,  , ) ( | , )E S C R x P R C x 
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where D = direct response, and Dc = no direct response, and R = response 
(in the control group); or 

( | ,  ) ˙ | ,  , ) − E S T D x( | , , )ˇ ˙ ( | ,  , ) − ( | , ) . (9.12a) = P D T x  E S T D x( E S T D  x  E S C x ˇˆ 
c 

˘ + ˆ 
c 

˘ 
c c= ( | ,  ˙ ( , ( | , , , ) (  ˇP D T x) E S T D x| ,  − | , , )) E S T D R x P R T D xˆ ˘ 

c c+ ( | ,  , ,  ) (  | ,  , ) − ( | , ,  ) (  | ,  )ˇ . (9.12b) ˙E S T D  R x P R T D  x  E S C R x P R C x  ˆ ˘ 

Equation (9.12a) is the sum of two components: 

1. The difference in expected sales due to direct response (over non-
direct response), discounted by the direct response probability, 
and 

2. The difference in expected sales between treatment (among the non-
direct responders) and control. 

In Eqns. (9.11b) and (9.12b), one will need to estimate the following models 
as functions of covariates: 

1. P D T x( | ,  ) = Direct response probability in the treatment group, 
2. E(S T| ,  D x, ) = Expected sales of the direct responders in the treat-

ment group, 
c3. P R( | ,T D , x) = Response probability of those who did not respond 

directly in the treatment group, 
c4. E(S T D R x| ,  , ,  ) = Expected sales of the indirect responders (those 

who did not respond directly) in the treatment group, 
5. ( | ,  )P R C x  = Response probability of the control group (i.e., probabil-

ity of natural response), and 
6. E(S C| ,  R x, ) = Expected sales of the control responders. 

Even though the above process involves six models, it is a relatively straight-
forward extension of those models from Eqns. (9.9) and (9.10). It is also quite 
possible that the two expected sales models in (4) and (6) are similar or iden-
tical, that is, for those who did not respond directly, it is possible that their 
expected sales are the same if they decide to purchase. We can, of course, let 
the data speak, that is, testing whether some of the sales models are the same. 

Example 9.3 (continued) 

Continuing with our last clothing retailer example in Section 9.5.1, let’s say 
we are now interested in maximizing sales revenue. In our simulation, we 
assume log(sales) is a function of log(income) and log(spent), where spent = 
average spent amount of past purchases. 
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For model estimation, in addition to the probability models, Models 1 for 
direct response and Models 2 and 3 for uplift, as outlined in the example of 
the previous section, we have the following log(sales) models: 

• Model 4: Expected log(sales) of the direct responders, E(S T| ,  D x, ), 
where S = log(sales), and log(age), log(income), and log(spent) are its 
predictors in the actual theoretical model for simulation, 

• Model 5: Expected log(sales) of the indirect responders (those who 
cdid not respond directly) in the treatment group, E(S T D R x| ,  , ,  ), 

which is a function of log(income) and log(spent) in the actual model, 
and 

• Model 6: Expected log(sales) of the control responders, E(S C| ,  R x, ), 
also a function of log(income) and log(spent) in the actual model. 

The estimated models15 are summarized in Table 9.7. Note that Model 4 has 
a higher intercept than that of Models 5 and 6 because the direct responders 
purchased more in this data. As in the previous section, the baseline model, 
which predicts E(S T| ,  R x, ) using the treatment responders only, and the 
“pure”uplift model, which requires predictions of ( | ,  ,  ) and E S C R x( | ,  , )E S T R x  
are included for comparison. 

The results are summarized in Figure 9.8 and Table 9.7. Lift in sales is 
defned as Average Sales in Treatment minus Average Sales in Control. As 
Eqn. (8.11b) or (8.12b) indicates, the model system includes a combination 
of response probability models and sales models (conditional on response) 

TABLE 9.7 

Estimated Log(Sales) Models 

Baseline Model 4 Model 5 Model 6 Uplift Uplift 
E(S|T, R,x) E(S|T, D,x) E(S|T, Dc,R,x) E(S|C,R,x) E(S|T,R,x) E(S|C,R,x) 

Expected Expected Expected Expected Expected Expected 
Insale of Insale of Insale of the lnsale of lnsale of lnsale of 

Treatment Direct Indirect the Control Treatment Control 

Intercept 0.312 4.76349 2.89786 2.89786 4.10314 −1.2974 
age 0.02507 −0.00189 
income −0.00368 0.00161 
frequency 0.01775 −0.01727 
spent 0.00024534 −0.00023731 
wealth 0.00032151 0.00040808 
recency −0.19996 −0.01327 −0.00955 −0.12989 
log(age) 1.04325 1.04325 
log(income) −0.37153 
log(spent) 0.11467 0.12614 0.12614 0.25961 0.25961 
log(wealth) 0.02859 −0.21083 −0.21083 
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FIGURE 9.8 
Lift chart for various models. 

TABLE 9.8 

Performance Metrics of Various Log(Sales) Models 

Gini Gini 15% Gini Repeatability (R2) (%) 

Baseline (Treatment Only) 1.3274 0.1395 89.9 
Direct Response Model 1.8164 0.1583 94.8 
Uplift Model 1.2829 0.1215 93.5 
Integrated Model 1.9491 0.1741 96.0 

to estimate the overall sales. Similar to other uplift modeling examples, the 
baseline model is the estimated probability from the treatment-only response 
model multiplied by the exponential of the log(sales) model using all treat-
ment responders.16 Similar to the example in the previous section that was 
focused on response rate, the integrated model appears to be better than oth-
ers (baseline, direct response, and “pure” uplift model), as also confrmed by 
the Gini metrics in Table 9.8. 

9.6 Concluding Remarks and Opportunities for Improvement 

This chapter introduced a more recently developed uplift modeling tech-
nique, the KLZ, in Section 9.2, which has been empirically shown to be 
very useful, at least in limited data sets. Sections 9.3 and 9.4 discuss a more 
general situation when randomized experiments are not available, and 
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methodologies for uplift modeling on observational data, utilizing a com-
bination of PS matching17 and uplift modeling, can be applied. Section 9.5 
introduces an integrated modeling method in the situation where direct 
response data are available, along with randomized treatment and control 
response data. The methodologies described in this chapter should be con-
sidered mostly state-of-the-art. 

Even though this chapter concludes the uplift modeling methodologies, 
there are many opportunities to further improve the techniques introduced 
in this chapter and Chapter 6: 

1. Advanced Statistical and Machine Learning Methods for 
Supervised Learning: Although uplift modeling is a little different 
from regular supervised learning as it aims at modeling the differ-
ence between treatment and control response rates, it can still beneft 
from advanced techniques developed for regular supervised learn-
ing. For example, lasso and elastic net can possibly improve variable 
selection in the KLZ (Section 9.2), Modifed KLZ (Section 9.4.2), or the 
Two Model Approach and the Treatment Dummy Method (Sections 
6.5), whether we are working with experimental data (Chapter 6 and 
Section 8.2) or observational data (Sections 9.3 and 9.4). Likewise, 
these methods (Two Model Approach, Treatment Dummy, or KLZ) 
could possibly be improved with advanced techniques that can bet-
ter capture nonlinear relationships and interaction effects such as 
random forests (e.g., Guelman et al. 2014), boosted tree (MART), and 
neural network (see, e.g., Hastie et al. 2013). Similarly, for uplift mod-
eling on observational data, the PS model (Section 9.4) has a binary 
dependent variable (treatment or control) that is commonly handled 
by logistic regression but could be improved with more advanced 
modeling techniques for detecting and capturing nonlinearities and 
interaction effects (Westreich et al. 2010). 

2. Model Ensemble: Similar to applying more advanced modeling 
techniques, the performance of all the methods described in this 
chapter could be empirically improved with model ensemble meth-
ods by averaging out available models. A commonly used method 
for improving any supervised learning is Bootstrap Aggregate or 
Bagging, using bootstrapping and averaging to arrive at a lower 
expected mean squared error (through lower variability with mostly 
unchanged bias; see, for example, Hastie et al. 2013). Other model 
ensemble methods for uplift modeling have also been considered in 
the literature, for example, by Grimmer et al. (2016). 

3. There are software tools available for uplifting modeling which 
include a variety of techniques for comparison analysis, as sum-
marized in Table 9.9. Some software are applicable to experimental 
(RCT) data only, and others can be employed for both experimental 
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TABLE 9.9 

Summary of Available Software for Uplift Modeling 

Open Source or Uplift on RCT or Observational 
Commercial Uplift on RCT Data Data 

Open Source: R • Uplift (Gruelman 2015) – tree, RF 
• Tools4uplift (2019) – two-model, 

interaction 
• quint (2020) – tree, based on effect 

size 
• mr_uplift (2020) – multiple 

treatments, neural net 
Open Source: • Pylift (Wayfair 2019) – 
Python transformed outcome 

• scikit uplift (2022) – single model, 
two-model, transformed outcome 

Commercial • JMP Pro: Uplift Model – tree 
Software • SAS Enterprise Miner: 

Incremental Response Model – 
two-model, interaction 

• grf (Athey et al. 2019; 
Tibshirani et al. 2023) – 
transformed outcome, tree, RF, 
PSM-IPW 

• rlearner (2020) – meta learner, 
PSM-IPW 

• CausalLift (2019) – two-model, 
PSM-IPW 

• CausalML (Uber 2025) – tree, 
RF, meta learners, PSM-IPW 

• EconML (Microsoft 2025) – RF, 
meta learners, PSM-IPW 

or observational data, where propensity score matching (PSM)-
inversely proportional weighting (IPW) is often applied to the latter. 
In particular, grf (generalized random forest) in R provides a random 
forest equivalent for uplift modeling and may be favored by academic 
researchers for publications given the strong theoretical support (see 
Athey et al. 2019; Tibshirani et al. 2023). In commercial applications, 
CausalML developed by Uber and EconML developed by Microsoft 
Research (both in Python) appear to be attractive choices by business 
practitioners, especially given its coverage of techniques including 
tree-based methods such as random forest version for uplift as well 
as various “meta-learners” briefy described as follows (see Kunzel 
et al. 2019; CausalML 2023; EconML 2023; Facure 2023; Molak 2023, 
for further description): 
a. S-learner: A single (S) model capturing treatment effect as a 

dummy variable using machine learning, essentially the same as 
the Treatment Dummy variable approach in Lo (2002) with fex-
ibility on the choice of predictive modeling techniques. 

b. T-learner: Developing two (T) separate models for treatment and 
control groups, respectively, which is the same as the Two Model 
approach previously discussed (e.g., Lo and Pachamanova 2015), 
and machine learning techniques can be used. 

c. X-learner: Similar to T-learner, X (Cross) learner estimates two 
separate machine learning models for treatment and control 
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groups and uses them to predict the “counterfactual” estimates 
(i.e., estimated control response rates for the treatment group 
and estimated treatment response rates for the control group). 
Next, this approach proceeds to take the difference between the 
actual response and its counterfactual (estimated) rate for each 
individual and then estimate two separate models using the dif-
ference as the outcome variable for the treatment and control 
groups, respectively. Finally, the two estimates are combined in a 
weighted average for the X-learner model score. 

d. R-learner: This method employs cross validation with a specifc 
loss function to be minimized after adjusting for an outcome 
model and a propensity score model, see Nie and Wagner (2021) 
for details. 

e. Doubly Robust (DR) learner: This methodology estimates both 
the propensity score and the outcome model and is effective if at 
least one of them is correct. This approach is an extension of the 
DR method for estimating average treatment effect and is par-
ticularly useful when the data are observational (i.e., non-experi-
mental), see Kennedy (2023) for details. 

Appendix 9.1: Proof of the Four Quadrant Method – 
Modifying the Lai Method with Addition of 
Probability Weights 

Consider the 2 × 2 table in Figure 9.1. Defne our estimation objective (i.e., lift) 
as a function of covariates x: 

Z x  ( ) ( | ,  )( ) ˛ P R T x| ,  − P R C x , where R = event of response. Z x( ) is the 
response probability difference (lift) between the treatment and control 
groups given a set of characteristics, x. It can be re-expressed as follows. 

Z x  = ( | ,  ) − (1− ( | , )) , where N =( )  P R T x  P N C x  no response 

( | ,  ) + P N C x) − 1= P R T x  ( | ,  

( R x) N x| )P T | P C(= + − 1, by Bayesˆrule 
| P C x P T x( ) ( | ) 

P T( | ) P C( N x| )R x  
= + − 1, (A9.1) 

P T( )  P C( )  
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due to randomization of treatment and control, that is, assignment of treat-
ment/control is random and does not depend on x. Note that Eqn. (A9.1) indi-
cates that P T( | ) R x  and P C( N x|  ) have positive contributions to the lift. 

Similarly, if we look at Z x( ) in another way, 

Z x  = − P N T x( , (( )  (1 | )) − P R|C x, ) 
P TN x| P C |( ) ( R x)= 1 − − , (A9.2) 

P T( )  P C( )  

where Eqn. (A9.2) indicates that P T( N x  and P CR x  have negative contri-| ) ( | ) 
butions to the lift. 

Note that Eqns. (A9.1) and (A9.2) are the same equations except that we 
are expressing them differently. Adding Eqns. (A9.1) and (A9.2) together, we 
have: 

P T( | ) P C( | P T  | ) P C( R xR x  N x) ( N x  | )
2Z x( ) = + − − , or 

P T( )  P C( )  P T( )  P C( )  

( )  ( R x − | ) P T (P CN x) (  |P C (P T | ) (P TN x ) + ( )  ( | − P CR x)) 
(A9.3) 

P T  P C  ( ) ( )

Quite often, marketing programs have a larger sample in the treatment 
group than the control group; that is, ( )  P T , as marketers often aim at P C  < ( )  
gaining more revenue by contacting more individuals. It can be easily shown 
that Lai (2006)’s method is a special situation where P T( ) = P C  = 0.5, which ( )  
is not mathematically correct in general cases. However, Lai (2006) also pro-
posed using a weight based on empirical fndings, but, in fact, there is a sim-
ple mathematical equation as shown in Eqn. (A9.3). Note that although this 
method has the same mathematical objective as Methods A1 and A2, that is, 
maximizing ( |  ) − P R C  empirically, because of the different estimation P R T  ( | ), 
methods, it results in different estimates. 

Appendix 9.2: Computations of Weighted Gini 
Coefficient and Weighted Top 15% Gini for 
Non-Randomized Data 

This appendix is a generalization of Appendix 6.1, that is, extending the ran-
domized data to the non-randomized data situation, where weights are avail-
able for adjustment. As in Appendix 6.1, assume we rank the holdout sample 
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by semi-decile, that is, 20 groups with 5% in each group. Defne the average 
lift at group j as: 

lift ( )j = P(R T  j ( | ,| ,  ) − P R C  j) , 

where P R( | ,T j) and (  | , ) represent the response probabilities in semi-P R C j  
decile subgroup j in the treatment and control groups, respectively, and can be 
estimated by the relative frequencies of response in the holdout sample. Then, 

20 

Weighted Gini coefficient  = ˜(cum%lift( )g − cum%sam(g)), 
g=1 

where 

cum%lift( )g = cumulative % lift up to semi − decile group g 

lift(1,…, g)˜ g ˜ wtji lift(1,…, g)˜ g 
wtj

j=1 i j=1 = = ,20 20 
lift˜ ˜ wtji l fti ˜ wtj

j=1 i j=1 

where 

lift = −overall weighted lift (of all 20 semi deciles) 

20 20 
wtji  ytj wcji ycj˜ (˜ ) ˜ (˜ )j=1 i j=1 i = − ,20 20˜ ˜ wtji ˜ ˜ wcji 

j=1 i j=1 i 

and 
lift(1,…, g) = weighted lift from semi-deciles 1, …, g, (where g = 1,…, 20) 

g g˜ (˜ wtji  ) ytj ˜ (˜ wcji ) ycj
j=1 i j=1 i = g − g 

wtji wcji ˜ ˜ ˜ ˜j=1 i j=1 i 

w y w ytj tj cj cj
j=1 j=1˜ g ˜ g 

= g − g , 
w wtj cj

j=1 j=1˜ ˜ 
And wtji = weight associated with the treatment group, semi-decile j, and 

individual i in the holdout sample; and similarly, wcji = weight associated 
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with the control group, semi-decile j, and individual i in the holdout sam-
ple. Additionally, wtj = °  i wtji and wcj = °  i wcji, representing the total weight 
at semi-decile j for the treatment group and control group, respectively. 
Further, 

= − gcum%sam(g) cumulative % sample up to semi decile group 

w wtji tj
j=1 i j=1˜ g ˜ ˜ g 

= =  .20 20 
w wtji tj

j=1 i j=1˜ ˜ ˜ 
Similarly, the Weighted Top 15% Gini is simply focused on the top 15%, or 

the top 3 semi-deciles, of the Weighted Gini coeffcient formula: 

= ˜ 
3

( % ( )  − cum pop gWeighted Top 15% Gini   cum lift g  % ( )). 
g=1 

Appendix 9.3: Proof of Propensity Score Weighting 
for Non-Randomized Data 

Defne Y1  and Y0 as the potential outcomes for treatment and control 
(untreated), respectively. In reality, only one of these two is observed for an 
individual. One can use the IPW method to compute ATE for the whole pop-
ulation, Average Treatment Effect on Treated (ATT) or Average Treatment 
Effect on Control (ATC). We will use ATC below for illustration. 

The ATC is defned as: 

= ( | = 0) − ( 0| = )ATC E Y1 T E Y T  0 

where the frst component on the right is defned as the mean potential out-
come of treated in the control group and the second component is the mean 
potential outcome of untreated (control) in the control group. The second 
component can be estimated from the observed control group data using the 
sample mean, but the frst component will require some adjustment. 

To compute the frst component, we prove the IPW (Inversely Probability 
Weighting) method below: 

( 1| = 0)E Y T  
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= E EX Y (Y T| = 0, ,x)1  where the frst expectation is w.r.t. covariates X and the 
second is w.r.t. outcome Y 

= yp y T( 1| = 0, x p x T) (  | = 0) dy dx˜˜ 
( | = 1, x) | = 0) d x, because T ˛ ,  ) x that is, by the yp y T  p x T  1 = ˝˝ 1 ( yd (Y Y0 | ,  

conditional ignorability (or exchangeability) condition 

p x T| = 0( )
yp y T = x p x T  1)= ( 1|  1,  ) (  | = dy dx,˜˜ p x T( | = 1) 

the beginning step to change the domain18 from T = 0 to T = 1 

P T( = 0| ) ( )x p x 

P T( = 0)
yp y T| = 1,  ) ( | = ) dydx,  by Bayes’ Theorem = 1 x p x T  1˜˜ ( 

P T( = 1| ) ( )x p x 

P T( = 1) 

P T( = 0|x) 
P T( = 0)= yp y T( | = 1,  x p x T) (  | = 1) dy dx,˜˜ P T( = 1|x) 
P T( = 1) 

by the consistency assumption and canceling a common term 

= yp x y T( , |  = 1)w ˙ x dy dx1 0  ( )˜˜ 
P T( = 0|x) 
P T( = 0) 1− PS x( ) P T( = 1)where w ˙ ( )x = = , representing the weight 1 0  P T( = 1|x) PS x( )  P T( = 0) 
P T( = 1) 

function to map from treatment to control, and PS x( ) = propensity score as a 
function of covariates, x. 

Note that the last integral form of E(Y T| = 0) is simply the weighted 
expected value of Y in the treatment group and can be estimated by the fol-
lowing sample average in the treatment group: 

1 

˜ w y
ˆ 

˜ 
k Ṫ 

k k

( 1 0) = ,E Y T| = 
wk 

˙k T  
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1 − PSk ( )x P T( = 1)where wk = , k T , and PSk x = estimated propensity 


 
˙  ( )

PSk ( )x P T( = 0) 
score for individual k. Note that ˜ ° k  can be shown to approximate (or k T w 
asymptotically converge to) nT, the original sample size of the treatment group, 
and the weight wk  can be numerically normalized to satisfy ˜k T̋ w° k = nT , by 

n
defning wk̃ = wk 

T  . This weight is the same as the formula in Eqn. (9.5a) 
˛ ˝ wll T  

for measuring ATC. 
The above weighting scheme can be easily extended to multiple treatments 

with a control group (i.e., moving each treatment group to the control group 
using a weight). 

In the context of uplift modeling for non-randomized experiments, we aim 
at estimating the individual-level treatment effect, and the above proof can 
be extended to condition on covariates, x, for this purpose. In other words, 
the outer expectation (integral) EX would be taken off for the uplift situation. 
The key is that the weight would be the same as estimating the population-
level ATC. 

Appendix 9.4: Different Training Sample 
and Usage Population 

All the examples described in Section 9.3 can be considered to have selection 
bias (in social sciences, economics, or statistics), which implies that the treat-
ment and control are not homogeneous with each other. In a similar but dif-
ferent situation, where the training sample (including treatment and control) 
is different from the usage population, it is called a data shift problem in the 
machine learning literature and is a relatively new subfeld (e.g., Shimodaira 
2000, Bickel and Scheffer 2007, Bickel 2009, Bickel et al. 2009, and Sugiyama 
and Kawanabe 2012). 

Let’s suppose a training sample is available for Uplift modeling. If treat-
ment and control are similar, methodologies in Chapter 6 or Section 9.2 can 
be applied; otherwise, methods introduced in Section 9.4 can be employed. 
What if we know the training sample is not identical to the usage popula-
tion? For example, the training sample has more of the younger age group 
or more of the higher income prospects, but we are interested in applying 
the model to a broader population. Obviously, if there is very little over-
lap between the training sample and the broader population, it will not 
be a good idea to “extrapolate” the model out too far. However, in many 
cases, there are still quite a lot of overlaps, and the question is how to adjust 
our methodologies, assuming we have some information about the usage 
population. 
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The solution from the data shift literature states that all we need is to apply 
a weight in the model estimation of the training sample you have, even 
though the training sample is known to be different from the future applied 
sample. The weight has the following form: 

Wi 

˘P applied 
− 1 ,

1 
�|P training  P applied x �i )( 

˙ 
ˇ̂)

( )
( = (A9.4a) 

which can be arranged as: 

P applied( )/ 1( − P(applied))
Wi = , (A9.4b) 

P applied x| / 1 − P applied x|( ) ( ( i )) 
where P applied( ) and  ( ) are the probabilities that a data point is P  training 
drawn from applied or training set (imagine that the applied and training 

P applied data are mixed together randomly), respectively, and (
( )

)  can be esti-P training 

mated by Sample size of applied data 
Sample size of training data . Likewise, ( | ) is the probability that a P applied xi 

data point is drawn from the applied set given covariates or predictors xi, and 
can be estimated by supervised learning techniques for binary dependent 
variables such as logistic regression. 

Note that Eqn. (A9.4b) resembles Eqn. (9.5). Both the data shift problem 
and the selection bias problem in Section 9.4 can be solved by some adjust-
ment using a set of weights, as the two problems are methodologically quite 
similar. For the data shift problem, once the weight from Eqn. (A9.4b) is esti-
mated, the uplift model can be estimated along with the estimated weight, 
similar to the PS matching adjustment method in Section 9.4. 

Notes 

1. The reason for choosing the IPW method as opposed to other common methods 
of propensity score matching, such as principal stratifcation (also known as 
sub-classifcation), is that the weight can be readily used in an outcome regres-
sion for uplift modeling. However, principal stratifcation is essentially weight-
ing at the stratum (group) level as opposed to the individual level. Therefore, 
to use principal stratifcation, one simply needs to use stratum-specifc propor-
tions of treatment and control as the denominators of (8.5); see Section 17.8 of 
Imbens and Rubin (2015) for details of the stratum-level weighting description 
and Lunceford and Davidian (2004) for comparisons between the two methods. 
Abrevaya et al. (2015) and Athey and Imbens (2015) also propose to use the IPW 
method for computing Conditional Average Treatment Effect (CATE), which is 
equivalent to uplift modeling on observational data. 
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2. The weight in Eqn. (9.5) is essentially measuring the Average Treatment Effect 
(ATE) on the whole population rather than Average Treatment Effect on Treated 
(ATT) or Average Treatment Effect on Control (ATC). Alternatively, unlike mea-
suring effect on the population, uplift modeling may search for individual (or 
subgroup) causal effects for untreated individuals; that is, what would be the 
effect if an untreated individual were treated? As a result, applying weight for 
ATT or ATC is more appropriate in some situations; see Appendix 9.3 for a 
mathematical proof for the case of calculating ATC. 

3. This is called the stabilized weights as opposed to unstabilized weights where 
numerators equal 1. The stabilized weights have a potential advantage of 
reduced variability; see Section 12.4 of Hernan and Robins (2016). They also 
make the pseudo-sample the same size as the original sample; see Hernan and 
Robins (2005) for details. The P T( ) and 1 − P T( ) constant components in (9.5), 
(9.5a), and (9.5b) all serve a stabilizing purpose. 

4. Since we are interested in the treatment effect conditional on some character-
istics rather than the overall effect, instead of Average Treatment Effect (ATE), 
Average Treatment effect on Control (ATC), and Average Treatment effect 
on Treated (ATT), we can technically call them Conditional ATE (or CATE), 
Conditional ATC, and Conditional ATT, respectively. 

5. See, for example, Section 12.5 of Hernan and Robins (2016), where Marginal 
Structural Model along with effect modifcation is estimated. See also 
VanderWeele (2009) for the distinction between “interaction” (between two 
treatments) and effect modifcation (interaction between treatment and covari-
ates) in Epidemiology. 

6. See, for example, Freedman and Berk (2008) and Posner and Ash (2012) for 
potential issues with this approach. 

7. Although logistic regression is the most commonly used method for propensity 
score estimation, one can use other methods such as decision trees, random 
forests, neural networks, etc. 

8. While this Section (9.4) is about applying propensity score matching for obser-
vational data, there is a parallel method discussed in the machine learning lit-
erature where the training data and the data where the developed model is 
applied to are not the same. Such method is briefy discussed in Appendix 9.4. 

9. Proc logistic in SAS is used for all the uplift modeling methods in this example, 
using the weights constructed. The academic literature stated that the standard 
errors of coeffcients can be biased when the weights are used, resulting in 
potentially biased p-values. To incorporate the weights properly for variance 
estimation, one may use proc surveylogistic which has a practical disadvantage 
of not being able to perform stepwise procedure automatically, at least in the 
current version of SAS (9.4). We tried proc surveylogistic for some models, and 
the results are only minimally different from proc logistic. 

10. Some readers may recall such experience of forgetting to use a coupon while 
making purchases at a store. 

11. In the click-through case, if someone clicked but did not proceed with a pur-
chase, this component would not be 1 and become another probability to be 
determined. 

12. Equation (8.1) estimates the lift directly and does not provide separate estimates 
for treatment and control response rates, although one could possibly extract 
the treatment and control response rate components from (8.1). 
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13. Since variables including age, income, spent, and wealth are estimated along 
with their respective log variables, we monitor the output of the stepwise 
regression to reduce collinearity using this rule: When the raw variable and its 
log counterpart both show up as main effects, only the one with a lower p-value 
is selected. Similarly for the interaction effects with the treatment dummy. 

14. In Table 9.6, while the direct response model has the lowest performance in 
terms of the Gini metrics, it has a higher R2, due to a more linear relationship 
between lift and semi-decile numbers, as seen in Figure 9.6. As explained in 
Chapter 6, the Gini metrics are more important metrics for comparison. 

15. Similar to the example in the previous section, variables including age, income, 
spent, and wealth are estimated along with their respective log variables, 
and collinearity is reduced with this rule: When the raw variable and its log 
counterpart both show up as main effects, only the one with a lower p-value is 
selected. Similarly for the interaction effects with the treatment dummy. 

16. Since S represents log(sales), the estimated value of sales is simply an exponen-
tial function of the model estimate of E S( |…). 

17. A similar method for adjusting training sample when the usage population is 
different is briefy discussed in Appendix 9.4. 

18. Such a change of probability measure is known as the Radon-Nikodym derivative 
in probability theory literature; see Billingsley (1995). 
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10 
Causality in Times Series Data 

10.1 Introduction 

Time series data, which track variables hourly, daily, weekly, monthly, quar-
terly, or annually, are ubiquitous. Firms track sales, purchases, profts, pay-
roll, employment, and numerous other series, often displaying the results in 
stylish dashboards and graphs. 

Managers want to extract usable lessons from these data. For instance, data 
on advertising in different channels (TV, print, social media, etc.) may be 
correlated with sales of the company’s services, but the frm would like to 
know what mix of media will maximize the return to their advertising bud-
get: Media Mix Modeling (MMM) models like this are widely used. Another 
company may be considering raising the price of one of its products but frst 
wants to estimate the effect that such a change would have on sales. This can 
only be done if there is a plausible causal story behind the data. 

In this chapter, we frst work through a straightforward example where 
a frm wants to measure the effect of changes in prices. We then introduce 
the idea of “Granger causality,” and evaluate the extent to which such an 
approach is, or is not, causal. There are good recent academic reviews of cau-
sality in time series in Runge et al. (2023) and Palshikar et al. (2023). 

10.2 Raise the Price? 

Your company, Federal Oil, produces and sells gasoline, currently charging 
$3.51 per gallon, and would like to estimate the effects of raising this price. 
The company’s analyst has data going back to 2005 on its sales, regional Gross 
Domestic Product and population, a price index, and the prices of gasoline 
and diesel fuel (which latter is produced by a rival frm). The numbers are 
shown in Table 10.1 (and are from a real, but somewhat different, setting). 

The basic idea is to relate consumption to price, but some adjustments 
to the dataset are called for, and this is quite typical. It is likely that an 
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TABLE 10.1 

Data for Gasoline Demand Modeling 

Year Qgas GDP CPI Pop Pgas Pdiesel Qgaspc RealPgas RealPdiesel RealGDP/cap 

2005 111.3 30.1 14.6 8.2 0.18 0.10 13.6 4.10 2.35 83.3 
2006 94.3 36.8 16.7 8.5 0.23 0.13 11.1 4.61 2.51 85.9 
2007 108.2 42.7 19.7 8.8 0.31 0.16 12.3 5.15 2.74 81.6 
2008 93.0 48.8 25.7 9.0 0.50 0.24 10.3 6.39 3.06 69.9 
2009 77.3 61.7 33.9 9.3 0.61 0.28 8.3 5.92 2.74 64.8 
2010 76.5 75.6 40.5 9.4 0.65 0.30 8.1 5.28 2.42 65.7 
2011 70.9 84.8 44.4 9.7 0.72 0.34 7.3 5.38 2.57 65.1 
2012 72.7 94.7 49.1 10.0 0.76 0.37 7.3 5.15 2.51 64.0 
2013 75.3 110.2 56.3 10.1 0.76 0.37 7.5 4.49 2.19 64.2 
2014 73.4 137.2 64.7 10.4 0.95 0.47 7.1 4.86 2.39 67.7 
2015 69.1 171.8 82.1 10.6 1.35 0.68 6.5 5.43 2.73 65.2 
2016 72.5 200.3 89.5 10.9 1.34 0.67 6.6 4.97 2.49 67.9 
2017 75.8 230.2 100.0 11.2 1.44 0.73 6.8 4.76 2.41 68.1 
2018 67.4 245.7 108.5 11.5 1.65 0.89 5.9 5.04 2.73 65.2 
2019 74.0 279.7 124.4 12.1 1.68 0.99 6.1 4.46 2.63 61.6 
2020 82.7 322.5 136.8 12.4 1.69 1.14 6.7 4.09 2.76 62.9 
2021 87.3 456.6 190.1 12.8 2.16 1.32 6.8 3.76 2.31 62.3 
2022 95.9 682.0 276.0 13.1 3.07 2.40 7.3 3.69 2.88 62.3 
2023 103.5 820.2 331.1 13.5 3.51 2.89 7.7 3.51 2.89 60.9 

Note: Qgas: quantity of gasoline sold; GDP: Gross Domestic Product; CPI: Consumer price 
index; Pop: Population; Pgas: Price of gasoline; Pdiesel: Price of diesel fuel; Qgaspc: 
Quantity of gasoline per capita; RealPgas: Real price of gasoline (i.e., price of gasoline in 
prices of 2023); RealPdiesel: Real price of diesel; RealGDP/cap: Real GDP per capita. 

appropriate outcome variable would be sales of gasoline per capita. More 
importantly, prices and GDP should all be adjusted for infation – we bring 
them to the prices of 2023 – to give “real” prices and GDP per capita. When 
time series stretch over at least some months, defation such as this is likely 
to be necessary. 

It is often helpful to graph the key series before proceeding to further 
modeling. In our example, the relevant series are shown in Figure 10.1. The 
top panels show the real prices of gasoline (on the left) and diesel fuel (on 
the right); the bottom left panel shows real GDP per capita (which dropped 
sharply early in the period in question), and the bottom right panel shows 
the sales of gasoline per capita. We want to know what would happen to the 
quantity (and value) of sales were we to change the real price of gasoline. 

A priori, we believe that the quantity of gasoline bought will be infuenced 
by the level of real GDP per capita, the price of gasoline itself – higher price, 
lower quantity sold, as per the “law” of demand – and also the price of diesel 
fuel, which represents the cost of a close substitute for gasoline (because driv-
ers could switch to diesel-powered cars, given enough time). Most practical 
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FIGURE 10.1 
Visual representation of key time series in gasoline demand example. 

models are more elaborate than this one, but all require some thought about 
the direction in which we believe causality moves. 

The results of several regression models are shown in Table 10.2. Column (2) 
shows the estimated coeffcients of a simple linear model (“Ordinary least 
squares”). It may be written as follows: 

qgaspercap = −13.095 − 0.119rpgas + 1.556rpdie + 0.261rGDPpercap (10.1) 

The table shows an adjusted R2 of 0.74, which is quite a close ft. The coef-
fcients have the expected signs: If this is indeed measuring a demand curve, 
we expect a higher price of gasoline to be associated with a lower quantity 
sold, while a higher price of diesel fuel will have a positive effect, as consumers 
switch to buying gasoline. Column (3) shows the p-values, where a low value 
– typically taken to be 0.1 or lower – shows that the estimated coeffcient is sta-
tistically signifcantly different from zero, and so is measuring something real. 

A lower row of Table 10.2 shows the Durbin-Watson statistic. This is a test 
to determine whether there might be autocorrelation in the residuals of the 
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TABLE 10.2 

Estimation Results, Gasoline Demand Model 

Linear Linear with Time Logs 

Mean Coeff. p-Value Coeff. p-Value Coeff. p-Value 

(1) (2) (3) (4) (5) (6) (7) 

Dependent variable 
Quantity of gasoline per 
capita 

Independent variables 
Real price of gasoline ($/gal) 
Real price of diesel ($/gal) 
Real GDP per capita ($, ‘000) 
Year 
Intercept 
Adjusted R-squared 
Durbin Watson/Durbin 
Dickey-Fuller (approx 
p-value) 

8.07 

2.90 
1.57 

68.80 

−0.119 
1.556 
0.261 

−13.095 
0.74 
1.28 
0.01 

0.75 
0.22 

<0.01 

0.01 

−1.790 
3.480 
0.062 

−0.399 
806.458 

0.90 
2.44 

<0.01 

<0.01 
<0.01 

0.18 

<0.01 
<0.01 

−0.097 
0.446 
2.029 

−6.761 
0.68 
0.92 
0.14 

0.64 
0.25 

<0.01 

<0.01 

Autocorrelation 
adjustment 

Partial 
adjustment 

Error 
Correction 

Prais-Winsten Logs, lagged y Δlogs, lagged y 

Coeff. p-Value Coeff. p-Value Coeff. p-Value 

(8) (9) (10) (11) (12) (13) 

Dependent variable 
Quantity of gasoline per 
capita 

Independent variables 
Lagged qty of gasoline per 
capita 

Real price of gasoline ($/gal) 
Real price of diesel ($/gal) 
Real GDP per capita ($, ‘000) 
Year 

−0.348 
0.152 
1.086 

0.27 
0.62 
0.03 

0.718 

−0.263 
0.081 
0.416 

<0.01 

0.07 
0.74 
0.24 

−0.033 

−0.792 
0.390 

−0.094 

0.87 

0.03 
0.12 
0.83 

AR(1) term (rho) 
Error correction term (e from 
Step 1) 

Intercept 
Adjusted R-squared 
Durbin Watson/Durbin 
Dickey-Fuller (approx 
p-value) 

0.808 

−2.080 
0.88 
2.18 
0.34 

0.31 −-0.864 
0.86 
1.78 

<0.01 

0.52 

0.18 

−0.684 

−0.012 
0.43 

0.05 

0.09 
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series. In the simplest case of an independent variable X and an outcome 
variable Y, subscripted for time, we have 

Yt ˜ °Xt + t= +  ˛ (10.2) 

Here, ̃  and ˜ are the true parameters (which can only be estimated), and 
˜  is the residual that is not “explained” by the model, usually assumed to 
be randomly distributed with zero mean. In time series data, the residu-
als are often serially correlated, so that a large positive random shock last 
period is more likely to be followed by another positive shock this year (if we 
have positive autocorrelation), in which case shocks may persist over time. 
Formally, we may represent frst-order autocorrelation as 

˜t = °˜t−1 + vt (10.3) 

where ˜ is the autocorrelation coeffcient, and vt is random noise. If there is 
autocorrelation in the residuals ˜t in Eqn. (10.1), then tests of the estimated 
coeffcients will be too confdent, or (equivalently) the p-values will be too 
low. A Durbin-Watson statistic well below 2 (as we have in column (2)) 
indicates positive autocorrelation, while a value well above 2 refects nega-
tive autocorrelation (Gujarati and Porter 2009). 

The presence of autocorrelation is evidence that we have not specifed our 
model correctly: We may have omitted important variables, or be using the 
wrong functional form. One common fx is to add a time trend, with the 
results shown in columns (4) and (5) of Table 10.2. In our example, the equa-
tion fts better, but now we appear to have negative autocorrelation. The time 
trend may also be picking up some of the effects on gasoline sales that would 
more rightfully be attributable to movements in real GDP per capita, yielding 
a model that risks being less useful for policy purposes. 

Economists often estimate equations such as this one in log-log form. It is 
still a linear regression, but now the variables are in log form. One reason for 
doing this is that the estimated coeffcients now give elasticities, which are 
unit-free measures of how a percentage change in an “explanatory” variable 
is associated with a percentage change in the outcome variable. For instance, 
in Column (6) in Table 10.2, the own-price elasticity of demand for gasoline is 
given by −0.097, which means that if the price were to rise by (say) 10%, the 
quantity demanded would fall by approximately 0.97%. This is convenient 
because now the frm has an easy way to estimate the effects of changes in 
the price of gasoline on the quantity it sells. 

There is strong positive autocorrelation in the equation whose estimates 
are shown in Column (6), as shown in the Durbin-Watson statistic of 0.92. 
Some manipulation gives 

Yt − ˜Yt−1 = ° (1 − ˜) + ̨ (Xt − ˜Xt−1 ) + vt (10.4) 
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Once we have a value for ˜, we can calculate Yt − ˜Yt−1 and Xt − ˜Xt−1 and 
apply ordinary least squares to get our estimate of ˜. The results, based on 
the Prais-Winston technique (Johnston 1972), are shown in Columns 8 and 9 
of Table 10.2. The ft is good, and the estimated coeffcients are reasonable, 
and there is no autocorrelation in the residuals. This is a viable model. 

A recurrent issue in time-series analyses is that shocks, even if random, 
may affect the outcome variable over a longer period than the one used in the 
model. For instance, a hurricane might reduce the demand for gasoline this 
year, but also next year, especially if consumers take time to adjust. There may 
also be a slow response to changes in, for instance, the price of gasoline: In 
the short run, a higher price will prompt consumers to drive less, but in the 
long run they may replace large cars with small ones or move closer to work. 

To refect such lags, it may be useful to estimate a partial adjustment model. 
Formally, we may write 

* yt = yt−1 + k (yt − yt−1 ). (10.5) 

This says that the observed level of the variable (yt ) is equal to the level 
of the variable in the previous period (yt−1) and an adjustment factor that is 
k times the gap between the desired level of the variable (yt 

*) and its previ-
ous value. If k = 1, the adjustment is complete in the time period, and the 
observed value of y is equal to its desired level. A low value for k implies that 
the consumer moves slowly from their previous level of y to their desired 
level. The need to allow for partial adjustments is likely to be greater when 
the time period is shorter (e.g., weeks rather than months). 

We assume that the independent variables drive the desired outcome, 
which is the outcome we would like to achieve if we could do so without any 
adjustment costs. In the simple case, this gives 

yt 
* = +˜ °Xt + ˛t (10.6) 

which, with some rearrangement, gives 

yt = k˜ + (1 − k)yt−1 + k°Xt + ˛t . (10.7) 

This can be estimated directly, with the key change being the inclusion of 
the lag of the outcome variable on the right-hand side. The results are shown 
in columns (10) and (11) of Table 10.2. The equation fts well enough, and 
Durbin’s h-statistic is 1.78, close enough to 2 to suggest that autocorrelation is 
not a problem. The estimated value of k is 0.282 (= 1 − 0.718), which implies 
that about 28% of the adjustment of quantity demand to changes in prices or 
income takes place within a year – a relatively slow reaction. The coeffcients 
in column (10) give short-run elasticities – for instance, −0.263 for the own-
price elasticity of demand – but the long-run elasticities are found by divid-
ing these by k. Thus, the long-term elasticity of demand for gasoline in this 
case would be −0.93 (= −0.263/0.282). 
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10.3 Stationarity 

Up to this point, we have implicitly assumed that the time series with which 
we are working are stationary, meaning that they do not show any clear trend 
over time, or more precisely, their mean and variance do not change over time. 
If two or more series are not stationary, they may seem to be closely related 
because they are drifting together (or apart) over time, even though there may 
not be a relationship between them. This can easily lead to spurious correla-
tions and to incorrect inferences about possible causal relationships. 

In passing, we might note that while spurious correlations are not confned 
to time series, this is where they are most common. For instance, over the 
period 1960 to 2019, the correlation between the number of beaver colonies 
in Ohio and real GDP per capita in Ireland was 0.88. It is impossible to think 
of a causal link between these two measures, or even a common cause (“con-
founder”), and neither follows a consistent trajectory over time. Clearly, cor-
relation is not causality, and in this case, it is not even a hint! 

A common solution to nonstationarity is to purge the series of the time 
trend, typically by taking differences (“integrating of degree 1”) (Enders 
2010). Now, instead of regressing yt  on xt, we would regress yt − yt−1 on 
xt − xt−1. When this is done for Ohio beavers and Irish real GDP per capita, 
any correlation disappears! 

In this context, it is helpful to test whether time series are stationary. This is 
often done using the augmented Dickey-Fuller test, although other tests are 
sometimes applied (Enders 2010). The simplest version of the test consists of 
estimating an equation of the form 

˛Xt = ˜0 +˜1t +˜2Xt−1 + ° t . (10.8) 

If the estimated value of ˜2 is signifcantly negative, then one rejects the 
hypothesis of a “unit root,” meaning that it is reasonable to suppose that the 
series Xt is stationary. Testing for stationarity for the four variables in our 
example, plus the consumer price index, gives the results shown in Table 10.3. It 
appears that the price of gasoline and the real GDP per capita are not stationary 

TABLE 10.3 

Results of Dickey-Fuller Tests for Stationarity 

Variable (in Logs) Test Statistic (˜2) Approx p-Value Stationary? 

Quantity of gasoline sold 
Real price of gasoline 
Real price of diesel 
Real GDP per capita 
Consumer price index 

−2.914 
−0.828 
−3.267 
−2.090 

5.570 

0.04 
0.81 
0.02 
0.25 
1.00 

Yes 
No 
Yes 
No 
No 
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but instead show some systematic movement over time, as does (of course!) the 
consumer price index. 

A subset of our variables are nonstationary, which suggests that it may be use-
ful to estimate an Engle-Granger error correction model. There are two steps: 

Step 1: Estimate a linear equation in levels (as in Eqn. (10.1)). If the equa-
tion is statistically signifcant and the residuals are stationary, we 
have a cointegrating vector, which gives the long-run relationship 
between the variables (and in our case, the long-run elasticities). 

Step 2: Estimate the relationship in its differenced form, and include the 
lagged residuals from Step 1 (and typically the lagged value of the 
dependent variable). In its simplest form, it will look like: 

( ) = + ˛b ln ( ) c ln (X ) + d e  (10.9) ˛ ln Yt a Yt−1 + ˛  t−1 t. 

The equation should also include the variables that are stationary, since 
they may have a short-run effect on the outcome variable, even if they cannot 
have a permanent effect on it. The estimate of the coeffcient d measures how 
quickly the outcome variable adjusts toward its long-run level. 

The results of this estimation, for our example, are shown in column (12) 
in Table 10.2. The error correction coeffcient is -0.68, so if we are off the long-
run demand curve, gasoline consumption will adjust back to its long-run 
level, with about two-thirds of the adjustment taking place in the frst year. 

In following these procedures, we are assuming a direction of causality, 
and we consider that the model is complete. This is where judgment comes in, 
and a model, or at least a clear structure, is needed. In Figure 10.2, we have 
created a path diagram with nodes and edges in an effort to capture the rel-
evant relationships. We have focused on the relationship between the price 
of gasoline and the quantity of gasoline sold. It is likely that the price of 
crude oil infuences both the price of gasoline and the price of diesel fuel 
since crude oil constitutes the great bulk of the cost of producing gasoline 

FIGURE 10.2 
Path diagram for Gasoline Sales Model. (T is the treatment, Y the outcome of interest, and C, X, 
S, and Z are other variables.) 
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and diesel fuel. To block this backdoor effect, we needed to include the price 
of diesel fuel in the regression; otherwise, the measured effect of the price of 
gasoline on sales of gasoline would pick up some of the effects of the price 
of diesel fuel as well, and we want to change one without the other – that is, 
to “do” a change in the price of gasoline. 

Of course, our model is likely to be too simple. Other variables may affect 
the quantity of gasoline purchased, such as the price of cars, technical changes 
(like the development of electric vehicles), or other shocks such as a hurricane. 
If these are completely unrelated to the price of gasoline, then we may still be 
able to identify the effects of gasoline prices on sales, but complete indepen-
dence is rare. We discussed Bayesian Networks more fully in Chapter 5. 

There is also the serious problem of endogeneity. While it is logical that a 
higher price of gasoline can be expected to reduce the quantity demanded, it 
may also be true that an exogenous increase in demand for gasoline would 
provide an opportunity or need for suppliers to raise the price – in effect 
reversing the assumed direction of causality and moving us up the supply 
curve. There is a large literature on the conditions needed in order to suc-
cessfully identify demand and supply curves, especially in broad or partly 
noncompetitive markets (MacKay and Miller 2024). 

10.4 Granger Causality 

Consider a variable, such as the price of gold, for which we have data over 
time. We would like to know whether the price of oil helps drive (“cause”) the 
price of gold. This might happen, for instance, if a higher oil price is a signal 
of uncertainty, which in turn pushes investors to hold gold. Nimble asset 
managers would be interested in knowing about such a link because they 
might then respond to a higher price of oil by buying gold. 

Following the seminal paper by Clive Granger (1969), we start by model-
ing the price of gold (yt) as being largely driven by its prior values. A linear 
autoregressive form would give 

n 

yt = a0 + ˜ai ty −i + ° t (10.10) 
i=1 

where we allow n lagged values of the price to infuence the current price, 
and ˜t is a random error with zero mean. 

Now expand the model in Eqn. (10.10) to include lagged values of the price 
of oil (xt), as follows: 

n n 

yt = a0 + ˜a y − + b̃i t  + ° i t i x −1 t (10.11) 
i=1 i=1 
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If at least some of the xt−1 terms are statistically signifcantly different from 
zero, then this equation will ft the data better than Eqn. (10.10), and we reject 
the null hypothesis that the price of oil does not “Granger-cause” the price 
of gold. 

The intuition here is that if past values of x contain information that 
improves the prediction of y, then we may think of x as in some sense “caus-
ing” y. The use of lagged values is important here because of the assumption 
that “cause cannot come after an effect.” 

This model picks up the effect of precedence, but this is not necessarily the 
same as causality in a meaningful sense. Some writers prefer to think of it 
as “predictive causality” when lagged values of x help predict y; more com-
monly, we say that in this case, x “Granger causes” y. 

We are typically interested not only in whether x Granger causes y but 
also whether y Granger causes x. If both are present, we have bidirectional 
Granger causality. In the case of two variables, we have a two-dimensional 
vector autoregressive (VAR) model (Enders 2010), which would look like 
this: 

n n 

y = a + a y + b x +° t 0 ˜ i t i− ˜ i t−i t (10.12a) 
i=1 i=1 

n n 

xt = a0 +˜ a yi t i− +˜ b xi t−i +° t (10.12b) 
i=1 i=1 

It is possible to add additional variables, but the models and testing quickly 
become more complicated. There are various types of VAR: A recursive VAR 
allows for some concurrent variables on the right-hand side, which can pick 
up the effect of shocks, for instance. A structural VAR includes restrictions 
on the parameters of the model – for instance, we allow rainfall to affect the 
wheat crop, but not the reverse – which can help sharpen our estimates of 
Granger causality and may sometimes be essential for identifability. 

Several steps are needed in order to test for Granger causality, even once 
we have identifed the variables of interest and assembled the time series. 
We illustrate the process using daily data on the US dollar prices of gold 
and oil, from 13 January 2015 through 1 November 2024. Days for which 
we have data on both prices are counted consecutively, giving us 2,441 
observations. 

Step 1: Graph. It is usually helpful to graph time series before work-
ing with them. Figure 10.3 shows the prices of gold (top panel) and 
oil (bottom panel). The price of gold appears to be trending upward 
over time – perhaps not surprisingly, because no adjustment has 
been made for infation here – while any trend in the price of oil is 
harder to discern. 
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FIGURE 10.3 
Price of gold (USD/oz) and oil (USD/barrel), daily, 13 January 2015 through 1 November 2024. 
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TABLE 10.4 

Results of Dickey-Fuller Tests for Stationarity 

Variable Test Statistic (˜2) Approx p-value Stationary? 

Price of gold 1.243 0.996 No 
Change in price of gold −38.261 <0.001 Yes 
Ln(price of gold) 0.620 0.998 No 
Change in Ln(price of gold) −38.052 <0.001 Yes 

Price of oil −2.486 0.119 No 
Change in price of oil −40.116 <0.001 Yes 
Ln(price of oil) −4.860 <0.001 Yes 
Change in Ln(price of oil) −45.826 <0.001 Yes 

Step 2: Stationarity. We now need to check that the series are stationary 
because otherwise we again have the problem of spurious correla-
tion. This may be done using a test such as the Augmented Dickey-
Fuller test (as discussed above) or the Andrews-Ploberger test (if we 
think there are structural breaks in the time series). The results in 
Table 10.4 show that the price series are not stationary, but their dif-
ferences are. The differences in logs, which may be interpreted as 
growth rates, are also stationary. 

Step 3: Lag Length. In our example, we used lags of one and two peri-
ods, but this is somewhat arbitrary. Frequently, researchers frst esti-
mate the VAR using different lags and choose the model (i.e., the 
number of lags) that strikes a balance between having a close ft and 
having a parsimonious number of variables. In our case, the Akaike 
Information Criterion (AIC) suggests four lags, while the Schwartz/ 
Bayesian Information Criterion (BIC) indicates no lags. For now, we 
stay with two lags, in part to illustrate the procedures that follow. 
Ozcicek and McMillin (1999) have an extended discussion of the 
issue, including allowing for asymmetric lags. 

Step 4: Estimate the VAR Model. The results, for our example, are set 
out in Table 10.5, using differences in logs (i.e., percentage changes). 
In the top panel, we see that the price of oil Granger causes the price 
of gold: A higher price of oil is associated with a higher price of gold 
in the next period and a lower price in the period (i.e., day) after that: 
In both of these cases, the p-value is less than 0.05. It seems that the 
price of gold Granger causes the price of oil, with a lag of two work-
ing days. 

Step 5: Test for Granger Causality. For this, we want to know whether 
the inclusion of lagged values of the other variable (e.g., the price 
of oil, in the equation where the price of gold is the outcome vari-
able) adds to the ft of the equation. The results are summarized in 
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TABLE 10.5 

Vector Autoregression Model 

Coeffcient p-Value 

D_lpgold equation lpgold(−1) −0.00009 0.996 

lpgold(−2) −0.02219 0.272 

lpoil(−1) 0.01571 0.004 

lpoil(−2) −0.01276 0.020 

Intercept 0.00033 0.068 
D_lpoil equation lpgold(−1) 0.10254 0.171 

lpgold(−2) −0.17885 0.017 

lpoil(−1) −0.03605 0.075 

lpoil(−2) 0.00537 0.791 
Intercept 0.00020 0.770 

TABLE 10.6 

Tests of Granger Causality 

Equation Potential Granger Cause p-value, Chi-Square Test 

D.lpgold equation D.lpoil 0.001 
D.lpoil equation D.lpgold 0.022 

Table 10.6. In both cases, we reject the null hypothesis of no causality 
(because the p-values of the Chi-Square statistics are small), which is 
evidence of bidirectional Granger causality. 

Step 6: Graph Impulse Response Functions. This is an optional, but 
useful, last step. Given the dynamic nature of a VAR model, a change 
imposed on one variable will have effects over time, both on its own 
values, and on the values of the other variables in the model, and 
these in turn may feed back to affect future values of the origi-
nal variable. These effects may be shown by graphing an impulse 
response function (IRF). The top panels of Figure 10.4 show the effect 
of a unit change in the price of gold on the price of oil, with the 
left panel showing the response in each period and the right panel 
showing the cumulative response. The gray area shows the 95% con-
fdence zone. A higher price of oil Granger causes a rise in the price 
of gold one period (day) later, followed by an offsetting drop the next 
day. The cumulative effect is small. There is a similar effect from a 
change in the price of gold on the price of oil, with only short-run 
effects, and no long-run cumulative change. 

It might have been more appropriate to start rather than fnish with 
Figure 10.5! It is a time-series path diagram, which includes a time dimen-
sion. The black lines show the directions in which Granger causality fowed 
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FIGURE 10.4 
Impulse response functions for VAR model of prices of gold and oil.  (Note: Line shows impulse-
response function; shaded area show 95% confdence interval.) 

FIGURE 10.5 
Time Series directed acyclic graph. (The most recent relationships between nodes and their par-
ents are shown in black arrows; the gray arrows mirror these relationships in earlier periods.) 

in our model, and the gray lines repeat the pattern for earlier periods. There 
are more possible edges (i.e., arrows), but some have been ruled out in the 
process of estimating the VAR. 

10.5 Problems with Granger Causality 

The tests for Granger causality are only compelling if several underlying con-
ditions hold. The series under consideration needs to be continuous, so the 
technique does not apply to, for instance, binary variables. The relationship 
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between a variable and its lagged values must be linear. The time periods 
need to be discrete; the number of lags should ideally be known; the series 
must be stationary; there should be no measurement errors; and the VAR 
should be complete, in the sense of including all relevant variables. 

These conditions are stringent, and so it is no surprise that they rarely, if 
ever, hold. This explains the assertion by Shojaie and Fox (2022), in their review 
of Granger causality, that “while limited and not generally informative about 
causal effects, the notion of Granger causality can lead to useful insights about 
interactions among random variables observed over time” (p. 5). 

10.6 Business and Finance Applications 

While there have been many applications of such techniques in macroeco-
nomics, for instance, to try to determine whether consumption Granger 
causes GDP, or the reverse (e.g., Wen 2007), applications to business are less 
common, but by no means unheard of. For instance, Banerjee and Siddhanta 
(2015) try to tease out the “causal” relations between spending on market-
ing and proft for frms in the personal care industry in India, using quar-
terly data from 2001:Q2 through 2011:Q1. In plain English, they want to know 
whether spending on marketing works to raise proft. While it might seem 
self-evident that causality runs from marketing expenditure to proft, it is 
also possible that higher proft enables more spending on marketing, in 
which case (Granger) causality might fow in the other direction. 

Banerjee and Siddhanta frst check for stationarity and fnd that the two 
series – ln(proft) and ln(spending on marketing) – are nonstationary, but the 
differenced series are stationary. They then use the AIC criterion to deter-
mine the best lag length for the VAR, which they fnd to be nine quarters. 
This is relevant because marketing spending may have a lagged effect on 
profts – indeed, spending more on marketing now may reduce profts in the 
short-run, but boost them in a year or two. 

Their next step is to check whether the two series are co-integrated, which 
will be the case if the residuals of a levels regression that includes the two 
(and lags) are stationary. It turns out that they are, so the errors from the coin-
tegrating equation need to be included in the VAR, which is now, technically, 
a Vector Error-Correction (VEC) model. Their fnal step is to test for Granger 
causality. They fnd that they cannot reject the null hypothesis that profts 
do not drive marketing spending, but they do reject the null hypothesis that 
marketing spending does not drive proft. In other words, marketing spend-
ing Granger causes proft (with a lag of one-and-a-half to two years), but not 
vice versa. 

Another example is to understand the advertising patterns of competi-
tive frms. For example, in a consulting engagement for the telecom industry 
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using weekly advertising spend data, we have studied whether a corpora-
tion’s advertising spend is followed by its major competitor’s or vice versa. 
If it is the former, for example, such insight enables the corporation to adjust 
or “optimize” advertising spend more holistically by taking into account its 
competitor’s reaction. 

10.7 Media Mix Modeling 

More generally, time-series data are widely used in MMM. The idea is to 
quantify the impact of measures such as marketing spend for different media 
on performance indicators such as sales or profts. The standard technique is 
regression, which is “used to infer causation from observational data” (Sun 
et al. 2017), although as we have seen, regression can only measure associa-
tion, not causality. 

Media mix models typically use weekly or monthly data over a period that 
rarely exceeds fve years; older data may refect a different market structure. 
This makes for small datasets unless there is regional information, in which 
case the analysis can be pursued at a subnational level, and benefts from a 
larger sample, which in turn may give greater precision. Even so, such mod-
els are often overft, as analysts are under pressure to fnd strong fts (“hunt-
ing for R”) and high statistical signifcance (“p-hacking”). 

A common weakness of media mix models is that they lack information on 
campaign spending by their competitors. Haughton et al. (2014) show how 
it is sometimes possible to infer information about whether competitors are 
spending on a marketing campaign by applying a Hidden Markov Chain. In 
their study of marketing a drug to physicians, Haughton et al. (2014) frst use 
a regression approach and then formulate a directed acyclic graph (DAG), as 
discussed in Chapter 5. But they also note that their data do not incorporate 
autocorrelation effects, which are at the heart of trying to identify Granger 
causality. 
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11 
Structural Equation Models 

11.1 Introduction 

Your marketing staff tell you that most of the customers who buy upscale 
handbags are “fashion conscious” and “materialistic.” This certainly sounds 
plausible, but you would like to test whether they are right and quantify the 
strength of such effects. But before you can do that, you need to defne what 
is meant by “fashion conscious” and “materialistic,” because these are latent 
variables that are not directly measurable. 

Structural Equation Modeling (SEM) provides a way to address problems 
such as this. It typically consists of two parts – a measurement (“outer”) 
model that allows one to construct the latent variables, and a causal struc-
tural (“inner”) model that defnes and quantifes the links among the latent 
variables, and between the latent variables and an outcome of interest (such 
as sales of handbags). 

At its most fundamental, SEM is a way of thinking that forces us to be 
rigorous about how variables relate to one another and the direction of cau-
sality. It also relies on a system of notation in the form of path diagrams, 
which we lay out in this chapter. And it brings structure to our models in 
ways that we explain more completely below. Sometimes it is useful to think 
of SEM models as a subset of Structural Causal Models (SCMs), which use 
Directed Acyclic Graphs (DAGs) to help think through the paths of causality, 
as discussed more fully in Chapter 5. 

The SEM approach is widely used in academic studies of marketing – there 
is a good review of practice by Hair et al. (2012) – where it has become “quasi-
standard” (p. 414). Hair et al. (2021) refer to it as a second-generation tech-
nique, in contrast to frst-generation techniques such as multiple or logistic 
regression. 

SEM is also popular in operations research (see Sarstedt et al. 2014) and in 
the study of issues related to managing human resources (such as job satis-
faction) and is one of the key methodological tools employed by social scien-
tists, especially in sociology and psychology. Its roots are to be found mainly 
in the work of Wold (1982) and his student Jöreskog (1978). Until recently, 
it has been less widely used in the business world, where descriptive and 
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exploratory methods are far more common and where the rigor required in 
constructing a good SEM can be intimidating. 

A few years ago, this prompted someone to ask, in a Web Chat Room: 
“Does anyone ever use structural equation modeling in the business world?” 
In response, Joseph Lurchman of Fors Marsh Group wrote: 

The company I work for has many clients that want to understand the 
problems they’re having as much as they’re interested in getting an 
answer to them. Data mining algorithms … provide good answers, but 
are borderline useless for presenting to clients who aren’t interested in 
the technical aspects of their problems. By contrast, we have used SEM 
for many clients interested in getting more invested in understanding 
their customers/clients/markets. 

(Lurchman 2013). 

11.2 Basic Concepts 

It is helpful to think of Structural Equation Models (SEMs) as coming in two 
varieties: Confrmatory and exploratory. Confrmatory SEM, often referred 
to as correlation-based SEM (CB-SEM), sets up a strong model structure and 
tests it using data. This is the more traditional form of SEM, and we con-
sider it frst. More recently, a form of exploratory SEM, partial least squares 
SEM (PLS-SEM), has become popular; the model here has less structure, the 
assumptions are less restrictive, and while it does not allow for model testing 
in the same way, it is relatively easier to apply. There has been an explosion 
of interest in SEMs over the past two decades, helped by the development 
of software that makes the techniques accessible to most researchers – short 
comments on the most popular programs are given in Appendix 11.1 – and 
by persuasive books (e.g., Bollen 1989) and hundreds of academic articles 
(e.g., Buckler 2009, Bollen and Pearl 2013). 

We now develop the key ideas of SEMs. In Chapter 2, we discussed linear 
regression, where the variable y is associated with variables X1 and X2 

as follows: 

yi = ˜0 + ° 1X1i + ° 2 X2i + ˛ i (11.1) 

With observations on the y and X  variables we can estimate the coeffcients 
˜0 , ° 1, and ˜2 (giving the estimates ̃ ˆ 0 , °̂1 , and °̂2). Here ˜ i is an unobserved 
error term for observation i, which stands in for measurement error and any 
variables that are not included – perhaps because they cannot be measured – 
but may matter. 
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We usually assume that y is the outcome (“dependent” or “target”) vari-
able, and the Xk are “independent” variables (also known as covariates or 
features) that infuence y. When we do this, we are assuming a direction of 
causality, and if our estimated coeffcients ˜̂1  and ˜̂2 are statistically signif-
cantly different from zero, then our causal assumption is not contradicted. 
On the other hand, if, say, ˜̂1 were statistically indistinguishable from zero, 
this would be evidence against (part of) our causal assumptions. The estimate 
of this regression model cannot establish causality, but it can help contradict 
our initially imposed structure, and this brings an element of falsifability 
into the analysis (Popper 1959). 

A nice way to show this is with a path diagram, which in the regression case 
looks like the one in Figure 11.1. 

The convention here is that observed (“manifest”) variables are placed in 
boxes, while unobserved (“latent”) variables, including in this case the error 
term, are shown in circles or ovals. The arrows show the assumed direction 
of causality and represent much of the structure that we impose on the data. 
The numbers shown next to the arrows (called “path coeffcients”) measure 
the linear association between the variables. Thus, the model in Figure 11.1 
may be written as 

yi = ˜0 + 0.04X1i − 0.61X2i + ° i . 

Path diagrams impose discipline and force us to think through the pattern 
of causality and the structure of relationships between variables. A strong 
causal assumption would, for instance, consist of setting a path coeffcient to 
zero, which is tantamount to saying that the variable has no place in the 
model. A weak causal assumption might, for instance, force a coeffcient to be 
positive. 

To see the importance of structure, imagine a model where we have infor-
mation on three variables (call them Y1 , Y2 , and Y3), but no prior idea of how 
they are related. Our path diagram is then the one shown in Figure 11.2. 

Here we have “error” terms associated with each variable. We have also 
added curved lines; when they are present, they indicate that we are allowing 

FIGURE 11.1 
Path diagram representation of a regression model. 
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FIGURE 11.2 
Path diagram for three variables and no structure. 

correlations among the variables. The model in Figure 11.2 has no structure 
and may be written as: 

Y = ˜ + ° Y + ° Y + ˛1 1 12 2  13 3  1 

Y = ˜ + ° Y + ° Y + ˛2 2 21 1  23 3  2 

Y = ˜ + ° Y + ° Y + ˛3 3 31 1 32 2  3 

cov(˜ ˜i j ) ˝ ˙0,  i j, .  

This model is not identifable – we cannot estimate the coeffcients uniquely – 
and so we need to impose some structure in order to progress. Often, we do 
this without thinking it through, but SEM forces us to be more rigorous. 

Figure 11.3 shows a path diagram for a more-structured model, represent-
ing a causal chain. 

Perhaps Y1 measures the quality of a product, Y2 measures customer 
satisfaction with the product, and Y3 gives the value of repeat sales. Instead 
of using the path diagram, we might equally well write the model as: 

Y1 = ˜1 + ° 1 

Y2 = ˜2 + ° 21Y1 + ˛2 

FIGURE 11.3 
Path diagram of a causal chain. 
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Y3 = ˜3 + ° 32Y2 + ˛3 

cov(˜ ˜i j  0,  , .) = ˙ i j  

In this case we are making strong causal assumptions that 
˜12 = ˜13 = ˜23 = ˜31 = 0, and the error covariances are zero. Our weak causal 
assumptions are that ˜21 ° 0 and ˜32 ° 0, and these are testable. 

11.2.1 Latent Variables 

SEM becomes more interesting when we begin to model latent variables. 
Suppose we believe that our employees will be more productive if they have 
greater job satisfaction (denoted by Z1) and stronger work incentives (Z2). The 
problem here is that none of these broad variables – job satisfaction, work 
incentives, or job performance – can be measured simply and directly. They 
are thus latent variables. But they are, in turn, related to underlying measur-
able (“manifest”) variables. 

For instance, to measure job satisfaction, imagine that we have surveyed 
our staff and asked a set of questions like these: 

On a scale of 1 (not at all) to 5 (very much): 

Is your work fulflling? 1 2 3 4 5 
Do you enjoy your work? 1 2 3 4 5 
Is it a pleasure to come to work every morning? 1 2 3 4 5 

These three questions, with responses on a fve-point Likert scale, may be 
thought of as measuring different dimensions of job satisfaction. Denote the 
responses to these questions by X X , and X1 ,  2 3. Then we may graph this as: 

Note the direction of the causal paths here: Job satisfaction leads to the 
responses to the questions. It is not the answers to the questions that cause 
job satisfaction; instead, they measure it. That is why the model in Figure 11.4 

FIGURE 11.4 
Path diagram with latent variables. 
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is a measurement model, and it is an integral part of almost every SEM. In the 
terminology of SEMs, Z1 is a refective latent variable. Formally, 

˜ + ˜ Z1 + ° , i = 1, 2, 3, E( )° =  0, cov Z  ° ) = 0,Xi = 0i 1i i i ( 1 i 

and the challenge is to fnd the °˜s that link the latent Z1 to the observable 
X s˜ . This is discussed in more detail below. 

Schematically, our SEM may be represented as in Figure 11.5, simpli-
fed only inasmuch as it excludes error terms and correlations among vari-
ables. The structural (inner) model is shown in the middle and consists 
of hypothesized causal relations among the latent variables. Here Z1 and 
Z2 are exogenous latent variables, but Z3 is an endogenous latent variable 
because it is determined within the structural model. Note too that the 
model is recursive, fowing in a single direction; there must be a (hypoth-
esized) causal chain, without any feedback loops. Broadly, we have for the 
structural model: 

Z = ° +˜° Z + v i,  = 1, 2, 3, E v( ) =  0. i i0 ij j i i 

j 

The outer model in Figure 11.5 is concerned with the determinants of the 
latent variables. Here Z1 (job satisfaction) is a refective measurement (or Mode 
A) model. For purposes of illustration, we have defned Z2 (work incentives) 

FIGURE 11.5 
Typical basic structural equation model for job performance. (Note: The model for “job satis-
faction” is the same as in Figure 11.4. For simplicity, the error terms have been omitted here. 
Created by authors, inspired by Figure 1 in Sarstedt et al. 2014.) 
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to be a formative latent variable, giving a Mode B model. Here the arrows go 
from the manifest variables (X4 , X5, X6) to Z2. The idea here is that a higher 
salary is not a refection of work incentives; it is a work incentive, and indeed 
the work incentives variable (Z2) is formed by its components. Formally: 

Z2 = ˜20  + ˜24  X4 + ˜25 X5 + ˜26  X6 + ° , E( )° = 0, cov(°, Xi ) = 0. 

Here too there is the challenge of fnding the appropriate coeffcients 
(the ˜°s), but this is not so much a measurement model as a defnitional 
model. Usually, CB-SEM models cannot easily accommodate formative latent 
variables, but PLS-SEM can. 

To give a better feel for how the measurement models in an SEM may be 
estimated – for instance, to create the weights that we need to put on the 
paths from X X  , and X1 ,  2 3 to Z1 – it is helpful to take a short detour to discuss 
factor analysis. While the algorithms that estimate SEMs will generate these 
path coeffcients, the procedure is very close to that used by factor analysis, 
and an understanding of how factor analysis works helps us to appreciate the 
mechanisms behind SEMs. 

11.3 A Short Detour: Factor Analysis 

Consider a teacher who, at the end of every semester, asks every student to 
complete a course evaluation questionnaire covering perhaps 20 questions 
related to their experience with the course and teacher. Typical questions 
include the following. 

On a scale of 1 (not at all) to 5 (very much): 

The teacher: 
Was well organized 1 2 3 4 5 
Arrived in class on time 1 2 3 4 5 
Explained things clearly 1 2 3 4 5 
Showed enthusiasm for the subject 1 2 3 4 5 
Was knowledgeable about the subject 1 2 3 4 5 

Some of the questions are largely redundant – the answers are essentially 
the same as the answers to other questions – while a few of the questions are 
informative on their own. Therefore, it might be helpful to reduce the many 
answers to just a few factors. 

A popular data reduction technique is exploratory factor analysis, which 
seeks to create a small number of factors – that is, unobserved latent 
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TABLE 11.1 

Factor Loadings for Student Course Evaluation Example 

Question Factor 1 Loadings Factor 2 Loadings 

Organized 
Arrives on time 

0.82 
0.76 

0.22 
0.03 

Explained things clearly 
Enthusiastic 

0.13 
0.09 

0.92 
0.68 

Knowledgeable 

Possible label 

0.14 

“Organized” 

0.97 

“Competence” 

variables – that still contain almost all the information but are perhaps 
easier to comprehend. There are a number of techniques for creating fac-
tors – any good textbook will give the details – but the essential idea is that 
highly correlated variables should be grouped together. The result is a set 
of factors that are most commonly (in the principal component approach 
to factor extraction) defned as weighted averages of the underlying mani-
fest (i.e., observed) variables; the weights of each variable on the factors are 
the factor loadings, equivalent to path coeffcients in the path diagram in a 
refexive model. 

For example, exploration of the course evaluation data may give two fac-
tors, with the loadings shown in Table 11.1. Factor 1 mainly refects the two 
variables that show that the teacher is well organized, so we might label it 
“organized.” And the weights on factor 2 are related to the teacher’s mastery 
of the material, so we might label it “competence.” 

Exploratory factor analysis is a data compression exercise, but it lacks 
all structure, so there are no a priori restrictions about which factors may 
represent which indicators. The method of principal components is by far 
the most common extraction method for exploratory factor analysis, and a 
rotation of factors is often performed, most commonly a Varimax rotation 
that ensures as much as possible that indicators “load” onto (have a high 
correlation with) at most one latent factor, to facilitate the interpretation 
and naming of the factors. 

Exploratory factor analysis often has its uses, but it does not allow one to 
test anything, only to describe and summarize. A related technique, confr-
matory factor analysis, is closer in spirit to CB-SEM. Instead of letting the data 
determine the number of factors and the variables that load on the factors, 
the analyst specifes these and then uses the data to “confrm” whether these 
are appropriate choices. 

For instance, in our example, we might believe that enthusiasm should load 
on factor 1 but not factor 2. We can try this and test whether this improves 
or worsens the ability of the factors to summarize the data. CB-SEM models 
are confrmatory. The measurement model components may be thought of as 
refecting a confrmatory factor analysis. 
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11.4 Back to SEMs 

As noted above, most SEM models have a measurement model and a struc-
tural model. The latter sets out, and measures, the causal relations among the 
latent variables. To illustrate, let us go back to our frst example, where we 
postulate that “fashion-conscious” and “materialistic” consumers will have a 
greater propensity to buy high-end handbags. Following MacLean and Gray 
(1998), there are three latent variables here, which are related as shown in 
Figure 11.6. 

The “structural” part of SEM largely resides in the causal relations we 
attach to these latent variables. But each latent variable needs its measure-
ment model: Perhaps “fashion-conscious” is measured based on the results 
of an attitude survey that includes questions such as: 

Indicate how much you agree with these statements (1 = strongly disagree, 
5 = strongly agree) 

X1 Fashion is an important means of self-expression 1 2 3 4 5 

X2 I like high-class items 1 2 3 4 5 

X3 I’m usually the frst among my friends to learn about 1 2 3 4 5 
a new brand or product 

Meanwhile, “materialistic” could be gauged by questions such as these: 

Indicate how much you agree with these statements (1 = strongly disagree, 
5 = strongly agree) 

X4 I am extravagant about my clothes and food 1 2 3 4 5 

X5 I’m the type to buy something I want immediately 1 2 3 4 5 
even if I have to borrow money 

FIGURE 11.6 
Relationships between latent variables in the fashion consumer example. (Graph by authors, 
based on study by MacLean and Gray 1998.) 
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The propensity to buy a handbag might be measured by a composite of 
questions like these: 

Indicate how much you agree with these statements (1 = strongly disagree, 
5 = strongly agree) 

Y1 The chances of me buying something today are high 1 2 3 4 5 

Y2 I’m not really interested in buying anything today 1 2 3 4 5 

Then our model becomes as shown in Figure 11.7. 
By the standards of SEMs, this is still a very straightforward model – 

MacLean and Gray develop it somewhat further (see their Figure 7) – but it 
captures the spirit of a typical CB-SEM exercise. 

Given the model structure, the links between the variables can be quanti-
fed (if the model has suffcient structure to be identifed), and one usually 
can test whether the model performs well, relative to a model with more or 
fewer causal relations. The traditional CB-SEM allows for hypothesis test-
ing – that is, it is confrmatory – because it assumes that the variables are 
multivariate normal (Gaussian), and the relations between the variables are 
taken to be linear. The CB-SEM can usually be constructed using maxi-
mum likelihood methods just with information on the covariance matrix 
of the indicator variables, which is why this method is often referred to as 
the “covariance approach” to SEM. We set out a fuller example in the next 

FIGURE 11.7 
Basic CB-SEM model of fashion consumer example. (Note: Xi  and Yi are manifest (measured, 
observable) variables; “Fashion-conscious” and “Materialistic” are exogenous latent variables, 
and “High propensity to buy high-end handbags” is an endogenous latent variable. The ei 

and ̃ i are normally distributed errors.) 
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section. Jannoo et al. (2014) argue, based on Monte Carlo simulations, that 
CB-SEM can perform well using non-normal data, provided the sample is 
large enough. 

We would like to emphasize that for all CB-SEMs, a model is needed. 
It could be specifed a priori, based on theory, or developed based on the 
preliminary construction of a DAG from data – see Chapter 5 for details – 
or by using a combination of these two approaches. But in a process that 
parallels factor analysis, it is also possible to estimate a more “exploratory” 
SEM, which is generally done using the partial least squares algorithm 
(see, e.g., Tenenhaus et al. 2005). We return to this issue below, after frst 
giving another illustration of a CB-SEM, also developed in a marketing 
context. 

11.5 The Covariance Approach: An Example 

In order to illustrate more completely the covariance approach to the estima-
tion of SEMs, we draw on an example by Vij and Farooq (2014) in which the 
authors investigate the impact of Knowledge Orientation (KSO) on perfor-
mance for different manufacturing and service organizations in the National 
Capital Region, India. This example is typical of a very large number of such 
models used in several areas of business studies, notably marketing and 
information systems. 

The data were obtained from 240 questionnaires returned by managerial-
level employees. Variables (on a scale of 1–5) are listed in Table 11.2. The 
authors identifed and validated via a confrmatory factor analysis four fac-
tors to represent KSO: Idea Sharing Propensity (ISP), Good Organizational 
Climate (GOC), Top Management Support (TMS), and Knowledge Sharing 
Culture (KSC). In the same fashion, three factors found to represent perfor-
mance are Satisfaction relative to Major Competitor (PER_SAT), Proftability 
relative to Major Competitor (PER_PRO), and Innovativeness Relative to 
Major Competitor (PER_INN). The authors propose and then validate an 
SEM, shown for large organizations (with more than 250 employees) in 
Figure 11.8; as usual, the manifest variables are shown in boxes and the 
latent variables (including the ei error terms) in ovals. The numbers show 
the path coeffcients, which measure the linear association between the vari-
ables. The model extracts a single constructed KSO from its four factors and 
a single constructed Performance Relative to Major Competitor (PER_COM) 
from its three factors and then examines the relationship between KSO and 
PER_COM. 

This study fnds that KSO has a positive impact on performance and that 
this impact depends on the size of the organization. Indeed, the signifcant 
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TABLE 11.2 

Variables for the KSO Example 

Code Questionnaire Statement (1. Strongly Disagree – 5. Strongly Agree) 

S1 A climate of openness and trust permeates my organization. 
S2 In our organization, everyone speaks up if they have an opinion or 

idea to offer. 
S3 We do not share ideas with other people of similar interest, especially 

when they are based in different departments. 
S4 Knowledge-sharing behavior is built into the performance appraisal 

system in my organization. 
S5 Our company culture welcomes debates and stimulates discussions. 
S6 In our organization, we are rewarded for sharing knowledge with our 

colleagues. 
S7 There is no restriction on employees if they want to talk to anyone in 

the organization, including top management. 
S8 In my organization, relatively more-committed employees are more 

willing to share their learning and experiences with others. 
S9 Top managers provide most of the necessary help and resources to 

enable employees to share knowledge. 
S10 My organization’s culture encourages and facilitates knowledge 

sharing. 
S11 Top managers do not support and encourage employees to share their 

knowledge with colleagues. 
Code Compared to the major competitor in your industry, in the last three 

years, how has your business performed on the following 
parameters? 

CC1 Sales Growth 
CC2 Return on Investment 
CC3 Market Share 
CC4 Service Quality 
CC5 Customer Satisfaction 
CC6 Employee Satisfaction 
CC7 Employee Turnover 
CC8 Product Innovation 
CC9 Process Innovation 
CC10 Product Quality 

Source: Vij and Farooq 2014. 

standardized coeffcient for KSO to PER_COM is 0.742 for large organiza-
tions (more than 250 employees). For smaller organizations, this coeffcient is 
0.678. In such cases, the size of the organization is said to be a moderator for 
the relationship between KSO and PER_COM. In statistical terms, we might 
say that size interacts with KSO in its relationship with PER_COM. On the 
other hand, the relationship between KSO and PER_COM does not depend 
on industry (manufacturing versus services). 
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FIGURE 11.8 
Covariance-based structural equations model of KSO (knowledge sharing orientation and 
performance). (From Vij and Farooq 2014, Figure 2.) 
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11.6 The Partial Least Squares Approach 

The traditional approach to SEM is often referred to as covariance-based 
SEM (CB-SEM) because the model can be optimized and solved based just 
on the covariances among the manifest variables, provided one is willing to 
assume that the underlying variables are normally distributed. This in turn 
allows one to test theories and to use standard tools of statistical inference, 
since “the objective in using [CB-]-SEM is to determine whether the a priori 
model is valid, rather than to ‘fnd’ a suitable model” (Shah and Goldstein 
2005, p. 149). The downside is that normality may be an unrealistic assump-
tion, the system may not solve satisfactorily, and relatively large samples are 
usually needed. 

An alternative approach is to relax the assumption of normality. On the 
surface, the model looks just the same, but underneath it is quite different. A 
new solution algorithm is needed because the optimization associated with 
CB-SEM is no longer possible. In most cases, the relationships in the struc-
tural (inner) model are now estimated using ordinary least squares, which is 
why this approach is called partial least squares SEM (PLS-SEM). This fex-
ibility allows one to estimate more complex models, but it comes at a cost: 
PLS-SEM models may be used for prediction and exploration, but not for 
testing whether a theory holds or not, or for judging causal effects. 

Hair et al. (2021) argue that the strength of PL-SEM is that its “statistical 
properties provide very robust model estimations with data that have nor-
mal as well as extremely non-normal distributional properties” (p. 14). 

PLS-SEM models have become popular in management, especially since 
about 2000 (see Sarstedt et al. 2014, Figure 2). Table 11.3 shows that PLS-SEM 
models have, on average, more latent variables and almost twice as many 

TABLE 11.3 

Comparison of Model Size, CB-SEM versus PLS-SEM, in Operations Research and 
Market Research 

CB-SEM PLS-SEM 

Per Model 

Number of indicators (manifest variables) 16.3 29.6 
Number of latent variables 4.7 7.9 
Number of observations 246 211 
Number of parameters 37.5 

Number of relationships in the inner model 10.6 

Note: CB-SEM is covariance-based SEM. Results are from Shah and Goldstein (2005) and refer 
to 75 SEMs in operations research articles published in four top disciplinary journals 
between 1984 and 2003. PLS-SEM is partial least squares SEM. Results are from Hair et al. 
(2012), and refer to 311 models in 204 articles appearing in 24 top journals in market 
research between 1981 and 2010. 
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measured (manifest) variables as conventional CB-SEM models. For instance, 
Eberl (2010) uses a PLS-SEM model to untangle the effect of corporate reputa-
tion (separated into “competence” and “likeability”) on customer satisfaction 
and hence loyalty. 

When would a PLS-SEM be preferred over a CB-SEM? Sarstedt et al. 
(2014, Table 1) provide a useful summary; briefy, a PLS-SEM may be more 
useful if: 

• The data are non-normal; 
• The goal is exploration or prediction rather than model testing; 
• There are more indicators (i.e., manifest variables), more latent vari-

ables, and greater model complexity; 
• Some of the latent variables are formative rather than refective; 
• There are fewer observations. 

Where CB-SEM only needs information on covariances to be able to fnd 
an optimal solution, PLS-SEM uses a more elaborate algorithm, which can 
require substantial computing power. Garson (2016) provides a clear descrip-
tion of the typical solution algorithm for PLS-SEM: Standardize all indica-
tor (manifest) variables to mean zero and standard deviation one, note that 
latent variables are linear combinations of the indicator variables (the outer 
weights), and constrain the (inner) path coeffcients among the latent vari-
ables to vary from −1 to +1. Now iterate through the following four steps until 
not much change occurs in the outer weights: 

1. Defne latent variables with initially equal weights on indicator 
variables; 

2. Assign initial weights to inner paths so as to maximize the R-squared 
of the regression determining each endogenous latent variable; 

3. Use these inner path weights to compute latent variable scores; 
4. Adjust the outer weights connecting the latent variable scores to 

their indicator variables as follows: 
a. Refective latent variables: Use the covariance between the esti-

mated latent variable and each indicator; 
b. Formative latent variables: Regress the estimated construct on its 

indicators and use the coeffcients. 

While this algorithm will typically yield a model, it is a relatively ad hoc 
procedure, there is no global optimum, and little is known about the sampling 
distribution of the weights (i.e., path coeffcients) generated (Wikipedia). 

Hair et al. (2021) argue that PLS-SEM models are “particularly appealing 
for research in felds that aim to derive recommendations for practice … 
[including] recommendations in managerial implication sections in business 
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research journals.” However, PLS-SEM models cannot handle non-recursive 
models – that is, models that have causal loops or circular relationships – and 
do not yield a generally accepted measure of model goodness of ft, making 
them diffcult to evaluate. 

11.7 Conclusion 

As with many other techniques that we address in this book, it is not possible 
to prove the existence of causality in SEMs, but the data can often indicate 
that causality is not present. This is true of covariance-based SEMs too, but 
not of partial-least-squares SEMs, which can be used for exploration and pre-
diction but not for model testing. 

SEM is not easy. Hair et al. (2012, Table 5) set out a list of 36 best prac-
tices that they recommend researchers use when conducting and reporting 
SEMs; Shah and Goldstein have a similar list, as do Sarstedt et al. But when 
one wants insight rather than “black box” numbers, and when the rela-
tions between variables are somewhat complex, then the trouble required to 
develop an SEM may be well worth the effort. 

Appendix 11.1: SEM Software 

Here is a list of the main software packages that are used for SEM. No one 
package is best for all applications, and many researchers work with multiple 
packages. 

Package Comments Link 

LISREL “Linear structural relations.” 
The original CB-SEM software. 
Requires facility with matrix 
manipulation. 

MPlus Praised for its good support from 
its developers, Linda and Bengt 
Menthén. 

R The lavaan (“latent variable 
analysis”) and OpenMx packages 
are popular. SEMinR is a recent 
well-documented package. 

https://ssilive.com/ 

https://www.statmodel.com/ 
glance.shtml 

http://lavaan.ugent.be/ 
http://www.openmx-square.org/ 
https://cran.r-project.org/web/ 
packages/seminr/vignettes/ 
SEMinR.html 

(Continued) 

https://ssilive.com/
https://www.statmodel.com/glance.shtml
https://www.statmodel.com/glance.shtml
http://lavaan.ugent.be/
http://www.openmx-square.org/
https://cran.r-project.org/web/packages/seminr/vignettes/SEMinR.html
https://cran.r-project.org/web/packages/seminr/vignettes/SEMinR.html
https://cran.r-project.org/web/packages/seminr/vignettes/SEMinR.html
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Package Comments Link 

SAS: CALIS The SAS implementation of 
structural equation modeling. 
SAS is widely used by business, 
but it is also expensive. 

SmartPLS Specializes in partial least squares 
estimation and exploratory SEM. 

SPSS: AMOS Part of IBM’s SPSS package. 
Widely used, and relatively easy 
to learn. 

Stata: sem The sem command is powerful 
and fexible, and is part of a 
statistical package widely used by 
researchers. 

ΩNYX A free stand-alone SEM package. 

https://support.sas.com/ 
documentation/cdl/en/ 
statug/63033/HTML/default/ 
viewer.htm#calis_toc.htm 

https://www.smartpls.com/ 

https://www.ibm.com/us-en/ 
marketplace/ 
structural-equation-modeling-sem 

https://www.stata.com/features/ 
structural-equation-modeling/ 
(see Stata 2013). 

http://onyx.brandmaier.de/ 
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12 
Discussion and Summary 

12.1 General Discussion 

This fnal chapter provides some discussion and a summary of our book. 
This book covers a variety of techniques for analyzing cause-and-effect 
relationships at the population or group level. We also provide coverage for 
uplift analytics or individual/heterogeneous treatment effects from experi-
mental design to model development, treatment optimization, and handling 
model uncertainty (see Kane et al. 2014). Compared to uplift modeling, causal 
inference is a more mature feld with different techniques originating from 
statistics, economics, and computer science/artifcial intelligence (see, for 
instance, Hernan and Robins 2005, 2016, Morgan and Winship 2014, Imbens 
and Rubin 2015). We offer some guidelines for the choice of causal inference 
techniques in Section 12.2. Section 12.3 provides an overview of business and 
other applications of the techniques covered in this book, followed by emerg-
ing research opportunities in Section 12.4. 

12.2 Guidelines of Causal Inference Methodologies 

This book has described several causal inference techniques, including when 
randomized experiments (i.e., randomized control trials or A/B testing) are 
not available. These techniques are appropriate for different kinds of data 
with different assumptions. To put them together, we summarize the tech-
niques in Figure 12.1. 

12.2.1 Description of the Causal Inference Flowchart 

At the top node, we ask whether we have a randomized experiment. If we 
do, things will be much easier as we can do experimental design on the left 
branch. Going down the top left rectangular box, if we only have a single 
treatment variable, for example, price, then from (box 1) we see that it will 
be an A/B test (if there are only two levels or treatment versus control) or 
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FIGURE 12.1 
Flowchart of causal inference techniques. 

A/B/n test if there are multiple levels (e.g., low, medium, high; placebo, low 
dose, high dose; or treatment 1, treatment 2, control). If we have multiple 
treatment variables (e.g., interest rate, annual fee, beneft features for credit 
cards; each treatment variable can take on multiple levels), we have (in box 2) 
Multivariate Testing (MVT) design that can be supported by full factorial or 
fractional factorial design. 

The branch starting at the upper right is where we start with causal 
inference techniques on observational data. The frst question underneath 
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is whether we have a strong causal hypothesis, that is, whether we know 
some treatment may be causing some outcome. For instance, we might like 
to evaluate the medical treatment effect on health or the effect of a pricing 
change on demand. If this hypothesis is clearly known, we go left to answer 
the “effects of causes” (EoC) question. Otherwise, we go right to answer both 
“causes of effects” (CoE) and “effects of causes” (EoC). 

First, let us go down the left path to answer the EoC question. We ask 
whether or not we know the treatment/control assignment mechanism, 
that is, whether or not we know how the treatment and control groups were 
assigned (we already know they were not randomly split). For example, does a 
higher academic score lead to a clear school acceptance? If so, the small neigh-
borhoods around the academic score cutoff may serve as treatment (if higher 
than the cutoff) and control (if lower) groups, as they should be otherwise 
similar, which allows us to use (as per box 3) the Regression Discontinuity 
Design (RDD). If the treatment/control assignment is determined by time 
only, it is reduced to the Interrupted Time Series (ITS). If the treatment/con-
trol assignment mechanism is not clearly known, then we next ask whether 
an instrumental variable (IV) is known and available. Recall that a satisfac-
tory IV only impacts the outcome indirectly through the treatment variable 
but does not directly affect the outcome. If such variable is available, we will 
use (see box 4) the IV technique to obtain the Local Average Treatment Effect 
(LATE). If an IV is not available, we check if pre/post (before/after treatment 
happened) data series are available, that is, sequential data over time for the 
outcome and treatment variables, sometimes along with covariates as well. 
If yes, we check if panel data are available (i.e., both cross-sectional and time 
series data). 

For example, in an advertising campaign, some geographics received higher 
ad spend while others did not, and we have the outcome (sales), treatment 
(ad spend), and other variables (say, socioeconomic conditions and demo-
graphics) over time, resulting in a panel data scenario, which can be handled 
by econometric or statistical techniques such as mixed effects modeling (see 
box 5). If we do not have panel data, that is, we only have pre and post (say, 
before and after a policy treatment) as well as treatment and control (say, 
some states received the treatment and others did not), then we ask if there 
are multiple control groups available (e.g., multiple states used as a potential 
control group compared to the treated state), in which case we can consider 
Synthetic Control (box 6), which takes a weighted average of multiple states 
to mimic the treated state. Otherwise, from box 7, we can use Difference-
in-Difference (DID), or DID along with a propensity score approach (if con-
founders are available). Note that DID relies on the assumption of parallel 
outcome trends in treatment and control groups over time. 

If time series data are not available (and neither treatment/control assign-
ment nor IVs are available), which is a common situation, we can apply 
the general propensity score approach (box 8) or regression adjustment 
(box 9). Regression adjustment is a traditional method that is subject to model 
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specifcation error, while the propensity score approach, or its variant, dou-
bly-robust estimation (which combines regression adjustment and propen-
sity score), is highly recommended in general. That said, the propensity score 
approach needs to focus on one treatment variable at a time, while regression 
adjustment can handle multiple treatment variables easily. Note that exact 
1:1 matching can sometimes be feasible when the dataset is large enough to 
locate a control subject matchable to each treated subject in each subgroup 
defned by multiple variables. 

We now return to the decision box in the upper right. If a causal hypothesis 
is not available, we ask if the causal structure is known; that is, even though 
we are not sure which one is the treatment (or exposure) variable and which 
is the outcome, do we at least have some ideas how various variables are con-
nected to each other? For example, in the business setting, we may want to 
know which (non-randomly assigned) customer interactions might lead to 
cross-sale of any products, but we do not have a hypothesis on which ones 
may cause which, and there can be many intermediate (mediator) variables 
such as opening an email, clicking the website, or researching a product, 
as well as some potential behavioral and demographic variables that may 
impact all other variables. If the causal structure is known, we then go right 
and draw the causal diagram, directed acyclic graph (DAG), or Bayesian 
Network. If the causal structure is unknown, we may apply a structure 
learning algorithm to estimate the DAG, with or without prior knowledge. 
Either way, it will be followed by the fnal step of estimating the relationships 
in (see box 10) using a structural equation model (SEM). 

12.3 Overview of Application Areas 

While this book focuses on business analytics applications of causal infer-
ence and uplift modeling, the techniques discussed can be applied in other 
felds. We will discuss some of them as follows. 

12.3.1 Economic and Social Science Analysis 

Economics has a long history of empirical work, most of it geared 
toward measuring causal relations. By 2010, 72% of the articles in the 
top scholarly journals in economics were empirical, up from 38% in 1983 
(Hamermesh 2013). 

While the workhorse of applied economics continues to be regression in 
one form or another, economists have been early adopters, or even devel-
opers, of many of the techniques discussed in this book. Athey and Imbens 
(2017) have written an excellent summary of the ways in which economists 
approach causality in policy evaluation. They emphasize the importance 
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of justifying the identifying assumptions that help one to measure causal-
ity in applied work in economics and argue that machine learning may 
help by reducing the need to defend the choice of potentially restrictive 
parametric estimators. 

Here we summarize a few examples to give a favor of how economists 
apply the statistical techniques that are relevant for measuring causality. The 
frst example comes from labor economics. In 1980, over 125,000 people left 
Cuba for the United States as part of the Mariel Boatlift. About half of them 
settled in Miami, and an important question is whether this infux depressed 
wages in that area. David Card compared the evolution of wages in Miami, 
prior to and after the boatlift, with the evolution of wages in other apparently 
comparable cities, including Atlanta and Houston, where few Cubans settled 
(Card 1990). This was an early informal version of synthetic control, and Peri 
and Yasenov (2019) re-ran Card’s analysis with a formal synthetic control 
design. Both studies found that the infow of Cuban migrants had little to no 
effect on wages (in Miami). 

The importance of a good education to economic mobility has long been 
recognized. But do charter schools, which are supported by public money, 
but have greater operating fexibility than traditional public schools, lead 
to improved educational outcomes? A simple comparison of charter and 
non-charter schools will not resolve the issue, in part because most charter 
schools are designed to serve children from low-income backgrounds, whose 
educational performance tends to be lower than that of their more-affuent 
peers. Abdulkadiroğlu et al. (2011) took advantage of the random assignment 
of children to charter schools in Boston to determine that charter schools 
there had a measurable positive effect on student outcomes such as grades 
and graduation rates. 

Randomized feld experiments have been widely used in labor econom-
ics. In a classic study, whose methods have been widely copied, Bertrand 
and Mullainathan (2004) sent job applications to employers in the United 
States that were identical in every respect except that one version had a 
black-sounding name while the other had a white-sounding name. The latter 
were signifcantly more likely to receive a call for an interview, which pro-
vides clear evidence of racially biased labor market bias. Similar techniques 
have been used to measure the extent of racial discrimination in the hous-
ing market in the United States, providing clear evidence of its persistence 
(Langowski et al. 2020). 

Randomized controlled trials (RCTs) have been widely used to measure 
the impact of focused interventions in less-developed countries. Using RCTs, 
Michael Kremer and his colleagues found that cheap and simple deworm-
ing interventions in Kenya had large positive effects on educational out-
comes, effects that appear to be robust (Hamory et al. 2021). Banerjee et al. 
(2015) found that microfnance in an urban setting in India had very limited 
impacts, again using an RCT. Banerjee et al. (2010) applied a similar approach 
to evaluating educational programs in India. 
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Discontinuity designs have been helpful in a number of contexts (Imbens 
and Lemieux 2008). For example, Bleemer and Mehta (2022) compared stu-
dents who just qualifed to major in economics at the University of California 
Santa Cruz with those who just failed to make the cut (a GPA of 2.8 in basic 
economics courses). These economics majors earned about $22,000 more 
annually in early-career wages than those that did not quite make it, which 
provides clear evidence of the monetary value of majoring in economics. 

University graduates earn more than non-graduates, but it is not clear a 
priori to what extent this is because those who go to university are more 
capable or because the university education adds value. Fan et al. (2018) used 
an RDD to estimate the return on a four-year degree in a Florida public uni-
versity, fnding a substantial net gain. 

In the educational context, Fredriksson et al. (2013) took advantage of 
discontinuities to measure the effect of class size on educational and eco-
nomic performance. There is a clear correlation between small class size and 
subsequent performance, but this might be due to a common cause such as 
wealthy communities affording small classes while separately boosting per-
formance. In Sweden, the law requires many classes to have no more than 25 
pupils. Some schools, with cohorts greater than 25, are then required to cre-
ate additional classes. Cohort size is essentially random, so this creates a nat-
ural experiment based on observational data. The study found that smaller 
classes do have statistically signifcant positive lasting effects. 

Matching techniques are widely used in economic studies. To take just one 
example, Habimana et al. (2021) match households in Rwanda that receive 
unconditional cash transfers with households that have the same profle but 
do not receive transfers. They use an inverse probability-weighted regression 
adjustment estimator and fnd that transfers have a small positive effect on 
household consumption and a large effect on the amount of food derived 
from home production (which falls). 

Geographic variation can be a useful source of exogenous differences. Raj 
Chetty and his collaborators fnd sharp variations in mobility across census 
tracts in the United States and are able to use this information to hone in on 
the drivers of mobility, including (most recently) variations in “social capital” 
(defned as an individual’s Facebook connections with people in other socio-
economic groups), for which they have 21 billion observations on friendships 
(Chetty et al. 2022). Chay and Greenstone (2003) use geographic variations in 
the effects of recession on pollution to identify the causal impact of pollution 
on infant mortality, applying double differences to panel data. 

Discontinuities across US states are commonly used to identify causal 
effects. Li et al. (2014) use changes in gasoline taxes in some midwestern 
states to measure the responsiveness of gasoline demand to prices. Given 
the important economic role of gasoline prices, this subject has received a 
lot of attention. For instance, Haughton and Sarkar (1996) arrived at similar 
results using a panel of data from US states for 1970–1991, with state-level 
fxed effects. 
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A widely cited and controversial study by Card and Krueger (1994) found 
that an increase in the minimum wage in New Jersey in April 1992 – the dis-
continuity – was associated with no reduction in, and perhaps higher levels 
of, employment, compared to neighboring parts of Pennsylvania (where the 
minimum wage did not change). 

There is a huge literature on IVs, well summarized by Imbens (2014). A 
classic problem is identifying how price affects the quantity demanded. 
Observed market prices are driven by both demand and supply, and exoge-
nous variation in supply is needed in order to trace out points on the demand 
curve. Hammarlund et al. (2022) use information on wind speed to instru-
ment the supply of Norway lobster and estimate own-price elasticities of 
demand that are substantially larger (absolutely) than more-naïve regression 
methods. 

12.3.2 Healthcare 

Healthcare and biomedical applications have been dependent on causal-
ity for a very long time, as there is a strong need to scientifcally under-
stand the causes of diseases and the effectiveness of medical treatments 
and health recommendations. Experimental techniques such as RCTs and 
adaptive clinical trials are widely used; see Akobeng (2005) and Chow 
and Chang (2008) for reviews of these approaches in biomedical applica-
tions. For instance, the clinical trials of COVID-19 vaccine candidates are a 
highly critical application of adaptive designs using interim analyses and 
early stopping criteria, as reported in Pfzer (2020), Polack et al. (2020), and 
Moderna (2020). While randomized experiments are the key methodology 
for measuring treatment effectiveness before a medicine or vaccine is made 
available for the public, observational studies may be used to understand 
cause-and-effect relationships using “real-world data” after the medicine 
or vaccine becomes available in the market. For example, Barda et al. (2021) 
analyzed a large-scale observational dataset in Israel to conclude that a 
COVID-19 vaccine booster shot is effective, and Dickerman et al. (2021) 
applied observational data analysis to compare the effectiveness of the 
Pfzer and Moderna vaccines among U.S. veterans. 

In addition to analyzing treatment effectiveness for the overall popu-
lation (or groups of patients), uplift modeling can also be employed to 
“optimize” treatment at the individual level, which is under the feld of 
Personalized (or Precision) Medicine, with the overall objective of maxi-
mizing population health through individual treatment effectiveness; 
see Hamburg and Collins (2010) and Yong (2015). For example, when the 
number of vaccines is limited in a nation, health offcials may decide who 
should receive vaccination frst in order to achieve the maximum protec-
tion for the entire population. 

Another growing area of analytics application in healthcare is Digital 
Health. For example, wearable devices not only report patient vitals but can 
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also be used as a platform for recommendations to patients, where decisions 
include which messages to be displayed (and when) for each patient in order 
to achieve positive outcomes such as minimizing emergency department 
visits and medical costs. Measuring and optimizing these messages can be 
supported by RCT or causal inference on observational data. More advanced 
methods include optimizing sequential recommendations in response to 
past patient responses and outcomes via reinforcement learning (RL); see 
Menictas et al. (2019) and Carpenter et al. (2020). 

12.3.3 Political Elections 

Analytics have been commonly used for political elections for some time, 
including the usage of randomized experiments for fnding the best mes-
sages and images in presidential elections; see, for example, Siroker (2010). 
Such an approach can be helpful in fnding the best treatment for the 
population. Another example is the groundbreaking application of uplift 
modeling (also known as persuasion modeling in this context) for the 2012 
U.S. presidential campaign, which targeted voters who were most persuad-
able. Instead of fnding voters who had already made up their minds, the 
model was built on a pre-election survey to predict who would be most 
likely to switch their vote from one candidate to another, followed by out-
reach efforts to focus on those voters; see Porter (2013) and Siegel (2013) 
for a description. Many political campaigns have followed similar kinds of 
methodologies since then. 

12.4 Emerging Research and Research Opportunities 

The general feld of causal inference for estimating average treatment effect 
for a population has been around for decades, with the potential outcomes 
notation begun in the 1970s, though it could even go back to the 1920s (see 
Pearl 2010), but formal and practical techniques such as Propensity Score 
Matching started only in the early 1980s. The Structural Causal Model 
(SCM) approach based on DAGs and Bayesian Networks started in the 1990s 
(see Pearl 2010). And methods such as RDD and Synthetic Control are even 
more recent, as are machine learning techniques (Athey and Imbens 2015). 
Researchers continue to develop new methods in this area, and we will 
discuss some of the latest methodologies below. 

Additionally, methodologies for uplift modeling, which aim to estimate 
the heterogeneous treatment effect or conditional average treatment effect 
(CATE), mostly started in the 2000s, and many were developed much later 
(Lo 2002). 
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12.4.1 Survey Research Methods-Based Cause-and-Effects Analysis 

While this book is focused on analyzing observational and experimental 
data, there is a series of techniques based on quantitative survey research. 
When observational or experimental data are available, it is generally pref-
erable to use those for measurement and modeling as they represent actual 
behavior. However, there are situations when those data are unavailable or 
not easily available. For instance, when learning about the causal effects of 
complex physical items such as the size of an airplane or high-speed train 
on consumer choice or market share, it would be much easier to gather data 
from potential customers in a survey than to vary the size or shape of trans-
portation just for measurement. These techniques are based on statistical 
experimental designs for varying scenarios (e.g., in transportation, these can 
be different levels of price, sizes of seats, and travel schedules) to assess the 
preferences of survey respondents. Statistical (or machine learning) models 
can then be developed using the survey respondent preference data to infer 
cause-and-effect relationships. The techniques include the classical conjoint 
analysis to discrete choice analysis1 and the more recent Best-Worst Scaling 
(also known as maximum difference scaling or maxdiff); see Ben-Akiva and 
Lerman (1985), Louviere et al. (2015), and Paczkowski (2019), as well as con-
tingent valuation (Mitchell and Carson 1989). Similar to the techniques intro-
duced in this book, these methodologies can be deployed to measure overall 
treatment effects and conditional treatment effects (specifc to demograph-
ics, for example). Such a survey-based approach can also be used to narrow 
down the treatment options before running in-market experiments, as dis-
cussed in Section 6.2.1 of Chapter 6. 

12.4.2 Advanced Experimentation (and Optimization) Methods 

Chapters 2 and 6 introduced more traditional randomized experiments 
where the target population is randomly split between treatment and con-
trol.2 MVT methods such as factorial design and fractional factorial design 
are covered in Chapter 6 for measuring the effects of multiple treatments and 
their combinations. In addition to these techniques, there are other advanced 
experimental methods that are beyond the scope of this book, such as adap-
tive clinical trial, multi-arm bandit (MAB), and RL. Adaptive clinical trial 
design allows the analyst to check for statistical signifcance of treatment 
effect multiple times (known as interim analyses) before the end of the entire 
trial, potentially shortening the study time and reducing efforts, which 
is especially important for clinical studies and some expensive business 
experiments such as business-to-business programs. However, having mul-
tiple lookups would infate the type I error, so statistical methodologies are 
required to control the overall type I error (known as family-wise error rate 
or FWER) so we will not have an unusually high false positive result. Such 
methodology is commonly used for testing medical treatments, including 
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many COVID-19 vaccines (e.g., Polack et al. 2020). While it is mainly used in 
biomedicine, it has been proposed by Legare et al. (2023) for business applica-
tions. Similarly, MAB is another sequential design method that can lead to a 
shorter study period. MAB is designed to fnd the “best” treatment as fast as 
possible and is not based on statistical signifcance (Villar et al. 2015). MAB 
is also used to enable RL (now an increasingly popular method in machine 
learning and artifcial intelligence) for optimizing the sequence of treatments 
or interventions so as to maximize a longer-term outcome and is based on 
approximate dynamic programming from the feld of Operations Research. 
See Theocharous et al. (2015), Arulkumaran et al. (2017), and Carpenter et al. 
(2020) for applications of RL in biomedicine, video games, and online market-
ing, respectively. 

12.4.3 Incorporation of Behavioral Economics and 
Psychology – for Behavioral Intervention 

This book is dedicated to utilizing experimental and observational data for 
testing treatments or interventions mostly for infuencing human behavior. 
Psychologists and behavioral economists3 have long been applying empiri-
cal analyses to draw conclusions on human behavior, with tremendous 
knowledge accumulated over the past few decades, rather than assuming 
traditional rational choice theories for prediction from classical econom-
ics. For example, applying “choice architecture” can enable organizations 
to frame the choice environment in order to infuence human decisions 
such as product or service selection. Another example is that, according 
to Prospect Theory, humans generally react much more strongly to losses 
than to gains of equal magnitude. These empirical fndings can help signif-
icantly reduce the number of possible treatments to save time and efforts. 
See Cartwright (2018), Hallsworth and Kirkman (2020), and Thaler and 
Sunstein (2021) for applications. 

12.4.4 Multi-Criterion Decision-Making or Advanced Decision-Making 

Chapters 6–9 of this book introduce various techniques for fnding indi-
viduals with the best treatment effects, also known as lift at the individual 
level. This is mainly driven by a business objective, which can be revenue, 
cost, customer satisfaction, customer needs, and so on. In practice, organi-
zations often have multiple business goals that can confict with each other. 
For instance, business may look for a balance between customer preference 
and business value or employee needs and corporate needs. In the con-
text of marketing analytics, as an example, one may balance the expected 
number of incremental responders with a measure of estimation risk such 
as the probability of achieving (or variability of) a number of incremen-
tal responders (Lo and Pachamanova 2015, Pachamanova et al. 2020). This 
multi-objective problem can be handled by treating one as an objective and 
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another as a constraint, or through techniques such as goal programming, 
TOPSIS, and two-sided matching algorithms.4 See Roth and Sotomayor 
(1990), Antunes et al. (2016), Kaliszewski et al. (2016), and Rahim et al. (2018) 
for further reviews. 

12.4.5 Model Explainability and Fairness 

As predictive models through AI, machine learning, and statistics grow, 
there has been increasing attention from academics, governments, industry, 
and consulting frms to model explainability and fairness. There are a variety 
of techniques to help explain models (e.g., SHAP, LIME, partial dependency 
plot, and explainable boosted tree) and to evaluate model fairness through 
different metrics (e.g., Equal Opportunity by comparing the true positive 
rates of two groups, or Statistical Parity by checking the independence of 
a sensitive attribute and the predicted value); see Rothman (2020), Barocas 
et al. (2021, Ch. 3), and Mehrabi et al. (2022). Researchers have also considered 
employing causal inference to help explain the causal effect of an attribute 
on the predicted value (e.g., is someone declined a mortgage because of race?) 
or to understand the counterfactual fairness through learning the effect of 
a hypothetical change to a personal attribute (e.g., gender, race) on the pre-
dicted value (e.g., would the insurance premium be higher or lower if the 
race were different?). This is an emerging area, as there can be challenges 
or debates around how a hypothetical attribute change could propagate 
through downstream attributes on the causal pathway (e.g., for car insur-
ance premiums, would a hypothetical gender change also lead to potential 
changes in size and color of their vehicle? And for university applications, 
would a hypothetical change in race also alter other factors such as family 
income and availability of resources?). There are discussions of these issues 
in Kusner et al. (2017), Loftus et al. (2018), Zhang and Bareinboim (2018), and 
Barocas et al. (2021, Ch. 5). 

12.4.6 Integration of Experimental and Observational 
Studies and Multiple Studies 

To assess cause-and-effect relationships at the population or individual 
level, the data sets assumed for all techniques in this book are either experi-
mental (through RCT) or observational. What if both experimental and 
observational data are available? And even for experimental data that may 
sound perfect in assessing causality, the training data may not be fully rep-
resentative of the target population (because of different geographies, dif-
ferent time periods, or simply different groups of people), in the sense that 
the distributions of variables in the training data and the target population 
may not be the same. Pearl and Mackenzie (2018, Ch. 10) outline the concept 
of data fusion for handling scenarios like these, with more details described 
in Bareinboim and Pearl (2016) and Hunermund and Bareinboim (2021). 
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Unlike the more typical methodologies from transfer learning, domain 
adaptation, or data shift, which are mostly based on weighting the train-
ing data to look like the target population, their methodology is based on 
applying a DAG to carefully codify the data dependencies and all sources of 
bias, such as selection bias, before making appropriate data adjustment and 
integration. 

Notes 

1. Daniel McFadden was awarded the Nobel Prize in Economics in 2000 for his 
development of discrete choice analysis. 

2. Abhijit Banerjee, Esther Dufo, and Michael Kremer were recipients of the Nobel 
Prize in Economics in 2019 for their applications of randomized experiments to 
alleviate global poverty. 

3. Daniel Kahneman and Richard Thaler were awarded the Nobel Prize in 
Economics in 2002 and 2017, respectively, for their contributions to behavioral 
economics. 

4. Alvin Roth received the Nobel Prize in Economics in 2012 for his contributions 
to and applications of two-sided matching. 
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Causal inference, 13 
in academia, 15 
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Degree of plausibility, 47 
Degree of uncertainty, 210 
Descriptive analytics, 3 
Deterministic optimization, 227, 246 
Dickey-Fuller tests, 296, 296 

for stationarity, 301 
DIDREGRESS for repeated cross-

sectional data, 78 
Difference-in-Difference (DID), 327 
Directed acyclic graphs (DAG), 15, 92, 

93–94, 99, 102–103, 305, 307, 328, 
336 

causality, inferred from data, 99–104 
collider, 103 
component graphs, 103 
creation of, 104–105 
d-connected, 103 
estimation, 105–106 

practical considerations, 112–116 
publishing productivity, 106–107 

marketing mix, 108–112, 111 
solution algorithms in Tetrad, 113 
statistical packages, 106 

Direct response model, 271 
Discontinuity designs, 330 
Discovery algorithms, 106 
Discriminant analysis, 121 
D-optimal design, 183 
Double differencing, 74–78 
Doubly-robust estimation, 66, 328 

coarsened exact matching, 67–69 
covariate (“nearest neighbor”) 

matching, 66–67 
matching, 69–70 

Doubly robust (DR) learner, 279 



 

 
 

 
 

 

  

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

344 Index 
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regression diagnostics, 26 
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Obama re-election campaign, 2012, 
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Omitted variable bias, 28 
Optimization algorithm, 220 
Optimization model, 212, 215 
Optimization under uncertainty 

mean-variance optimization (MVO), 
231–235 

robust optimization (RO), 235–238 
stochastic programming (SP), 

238–245 
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Outliers, 27 
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Parameterization, 36 
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Performance evaluation of alternative 
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Propensity score matching (PSM), 47, 
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Propensity score weighting for non-
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Publishing productivity, 106–107 
Purchase rate or conversion rate, 199 
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Quasi-experimental designs, 47 
Quasi-experimental methods, 54 

doubly-robust methods, 66–70 
inverse probability weighting (IPW), 
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matching methods, 61–64 
other treatment effects, 57–59 
propensity scores, 60–61 
regression adjustment, 55–57, 59–60 
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Random errors and bootstrapping, 
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measurement error, 27–28 
multicollinearity, 26–27 
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