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Preface 

This book is written primarily as a text for a one-semester Data Science and 

Analytics course: Foundations of Data Science. We hope the book will also 

introduce this area to people who are not students but have some mathematical 

knowledge and a willingness to learn more. The reader is assumed proficient in 

handling numbers in various formats, including fractions, decimals, percentages, 

and surds. They should also have a knowledge of introductory algebra, such as 

manipulating simple algebraic expressions, solving simple equations, and graphing 

elementary functions, along with a basic understanding of geometry including 

angles, trigonometry, and Pythagoras’ theorem. This book introduces the reader to 

the fundamental mathematical and statistical expertise required to understand the 

principles of many algorithms used in Data Science. 

As with all mathematical textbooks, the worked examples are very important, 

and the exercises for you, the reader, are even more important. You cannot really 

understand mathematics without seeing and doing examples yourself. By doing 

examples, you have to keep looking back to find relevant equations, pieces of text, 

or worked examples that will allow you to complete the example. This is the way 

you learn mathematics. 

A note on numerical answers in this book. You may not get exactly the same 

answer as we have. We have often used Python to do our calculations and it will 

probably be working with more decimal places than you might be using, so do 

not worry if your answers are slightly different. As a rule of thumb to get a result 

correct to two decimal places you need to work with at least three decimal places. 

Brief solutions to all exercises are given at the end of the book. Fuller solutions can 

be found by following this link: sn.pub/5m5zwx. 

Chapter 1 presents the general procedures of Data Science, summarises three 

case studies used throughout the book, and introduces data types. 

Chapter 2 provides the knowledge of basic set theory and functions to set up the 

foundation for later chapters. 

Chapter 3 covers the linear algebra knowledge (vectors and matrices) used in the 

subsequent chapters.
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Chapter 4 focuses on two widely used algorithms in Data Science, Principal 

Component Analysis (PCA) and Singular Value Decomposition, and shows how 

these two algorithms work. 

Chapters 5 and 6 introduce the basic knowledge of calculus (differentiation and 

integration) and the main optimisation ideas for finding the minimum value of an 

objective function. 

Chapters 7, 8, and 9 reveal principles behind three methods: Principal Com-

ponent Analysis, Simple Linear Regression, and training simple artificial Neural 

Networks using knowledge built up in the proceeding chapters. 

Chapters 10, 11, and 12 introduce basic knowledge of probability and statistics. 

These topics underpin lots of scientific disciplines that deal with vast amounts of 

data, by considering the probability distributions associated with the data and our 

confidence in our analysis. In particular, it builds the foundations to extend the 

material on the linear regression algorithm of Chap. 8. 

Chapter 13 revisits the linear regression model of Chap. 8 under a probability and 

statistical framework. Specifically, the chapter presents the method of Maximum 

Likelihood Estimation. 

Chapter 14 discusses some important issues surrounding data analysis which 

motivates the introduction of two final algorithms that can improve model gener-

alisation, namely Ridge Regression and early stopping. 

The overall structure of the book can be divided as follows: 

Part 1 Introduction: Chapter 1 

Part 2 Mathematical Knowledge (I): Chapters 2–6 

Part 3 Algorithms (I): Chapters 7–9 

Part 4 Mathematical Knowledge (II): Chapters 10–12 

Part 5 Algorithms (II): Chapter 13 

Part 6 Conclusion: Chapter 14 

By the end of this textbook, you have met many mathematical concepts and 

techniques in linear algebra, calculus, probability and statistics. Also, several Data 

Science algorithms, with and without enhancements, have been introduced and 

illustrated. These include Principal Component Analysis, Singular Value Decom-

position, Linear Regression in two and more dimensions, Simple Neural Networks, 

Maximum Likelihood Estimation, Logistic Regression, and Ridge Regression. 

For any comments and questions, please send an email to mathsfds2025@gmail. 

com. 

Hertfordshire, UK Yi Sun 

January 2025 Rod Adams 

http://mathsfds2025@gmail.com
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Chapter 1 

Introduction 

The total amount of data created, captured, copied, and 

consumed globally is forecast to increase rapidly, reaching 149 

zettabytes in 2024. Over the next 5 years up to 2028, global data 

creation is projected to grow to more than 394 zettabytes. 

Statista Research Department [1] 

What is a Zettabyte? A zettabyte is a value of 10 to the power of 21, or if we 

write it down to show all digits of it, we have 1,000,000,000,000,000,000,000 

bytes. According to the figure reported by the Department of Economic and Social 

Affairs, United Nations, the global population was projected to reach 8 billion, 

8,000,000,000, on 15 November 2022. Imagine if everyone, including newborn 

babies, takes an equal number of bytes, then this would mean each of us can have 

125 billion bytes, that is, 125GB (1GB = 109 . bytes). If the file size for 1 hour of 

4K video is roughly 20GB, each of us will have a 6.25.-hour video to watch. 

We live in the age of data. We access data every day: messages we send 

via our mobile phones, news we hear on the radio, movies we see on TV, and 

account statements we receive from the bank. These are all data—a collection of 

information. 

Data Science is an interdisciplinary field that uses principles and methods from 

mathematics, statistics, computer science, and domain knowledge to tackle data. 

It involves data engineering, which builds up the pipeline to collect and use the 

data; data analytics, which analyses data to answer questions and draw conclusions; 

machine learning, which gives computers the ability to learn from data without 

explicit instructions; and more. Therefore, Data Science is usually used as a broad 

term that includes collecting and pre-processing the data, understanding the data by 

extracting useful information, and creating algorithms and predictive models. 
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2 1 Introduction

1.1 The Procedures of Data Science 

Quite often, people working in a problem domain raise questions and ask for help 

from data scientists. Solutions to questions are not necessarily apparent to data 

scientists due to a lack of domain knowledge and the complexity of real-world 

applications. Data scientists must communicate with clients efficiently to understand 

the essence of the problem and the challenges they face. A good data scientist 

can quickly grasp what their clients want by listening to them, learning from the 

background information, and explaining ideas to their clients using a layperson’s 

terms. 

Once the two parties agree on the problems they are going to work on, further 

discussions about the data that can be used to solve the problem are needed, 

including the volume of the available data and the features (also called attributes 

of the data) that can characterise the data. Rather than saving data in a CSV file 

or a relational database, more and more data are stored in cloud data warehouses. 

Data scientists need to know how to export raw data from data sources, such as web 

pages, emails, and SQL servers. 

After obtaining the raw data, data scientists need to do data exploration in order 

to understand the relationships among the data better. They may convert the data to a 

table format where each row represents an observation and each column represents 

a feature. They then often need to consider whether all those features are significant 

or related to the task they will be dealing with. They may apply feature selection or 

feature extraction methods to the data. There are many algorithms to deal with this 

task involving mathematics knowledge. For example, in Chap. 4, we will introduce 

the principal component analysis method that can be used for data visualisation. The 

same method can be employed to perform feature extraction too. When doing data 

exploration, the data scientist also needs to know at least some basic statistics to 

understand, for example, what boxplots and histogram plots tell about the data. 

Once the data is thoroughly investigated, data scientists are ready to apply 

existing computational algorithms to the data and/or to create a new algorithm to 

tackle the problem. This is the stage of modelling. It aims to produce a trained 

model with the existing data that can either reveal the natural structure in the 

dataset or make the most accurate predictions for any unseen data. The data scientist 

also needs to consider what the most suitable performance metrics to use are. The 

knowledge of optimisation, differentiation, probability, and statistics is very helpful 

in understanding the principles behind algorithms at this stage. 

A further application of some domain knowledge may be used to improve per-

formance. Finally, data scientists need to visualise results using suitable statistical 

figures and graphs. 

We have just gone through the procedures of general Data Science [2], including 

the following key steps: 

• Identifying the questions we want to answer. 

• Collecting the data.
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• Exploring the data to understand the natural structure and relationship among the 

data. 

• Modelling the data. 

• Presenting and explaining the results. 

It is essential to understand that the whole procedure works like a spinning wheel 

rather than flowing in a linearly top-down mode. For example, when modelling the 

data, if the data scientist realises that more features are needed, they can go back to 

the second step to collect more data attributes. Alternatively, they may remove some 

features and redo the modelling. 

1.2 Supervised Learning and Unsupervised Learning 

This book focuses on the fundamental knowledge of mathematics, probability, and 

statistics, which are needed for exploring data, modelling data, and presenting 

results. To start with, we introduce two main techniques for analysing data: 

supervised learning and unsupervised learning. 

1.2.1 Supervised Learning 

In supervised learning, we have a training set of data and a test set of data. The 

training set will be used to train a predictive model. The test set will determine how 

well the trained model performs on this new unseen data. The training procedure is 

also called learning. The type of data used here contains a set of input values and 

a set of output (or target) values. Supervised learning aims to infer a function that 

maps the relation between the input values and the output values in the training set. 

The computer can then use this function to estimate the test data’s output when given 

unseen test data, which has its own input values. Depending on the output value 

types, there are two categories for supervised learning. These are classification and 

regression. If the target value is discrete or categorical, we say it is a classification 

problem; if the target value is continuous, we say it is regression. 

Classification aims to find decision boundaries to distinguish patterns from 

different classes given in the input data. The computer then uses these decision 

boundaries to predict the class label for new unseen data by seeing which side of the 

decision boundary the data lies in. On the other hand, regression aims to estimate a 

curve, a line, or a function learned from training examples so that when given unseen 

data, the computer can substitute the feature values into the function to estimate the 

target value.
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Fig. 1.1 An example of 

supervised 

learning—classification 
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Example 1.1 Figure 1.1 shows an example of supervised learning. The left 

panel shows the training set, including five data points. There are two classes: 

Class A, represented by circles, and Class B, represented by plus signs. The 

learning process is to find a decision boundary between these two classes. In 

this case, a straight line can be drawn between the two classes of data that 

will act as a decision boundary. A neural network may be the technique to 

use to find the best line or decision boundary. Neural networks are covered 

in Chap. 9. In the right panel, the computer is given a new unseen test point 

denoted as a cross sign in black. It should be able to estimate the test data’s 

class label using the decision boundary learned from the training set. This is a 

classification problem. 

Example 1.2 Assume we have a heart disease training dataset. It includes 

500 patient records with 14 patient attributes and 1 target value. This target 

value refers to the presence of heart disease in the patient. It is a binary value: 

0 means no presence; 1 means there is presence. The 14 attributes may include 

age, gender, smoker or non-smoker, the measured serum cholesterol, and so 

on. Thus, we have 500 rows, each representing a patient, and 14 columns, 

each being a feature, plus a column indicating the corresponding target value. 

The aim is to find the relation between those 14 attributes and the target from 

500 patient records so that when a new patient record with those 14 features 

is given, the computer can predict whether the patient has heart disease by 

applying the estimated function. In this example, the target values are discrete, 

a binary value, so this is a classification problem.
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Example 1.3 Suppose an estate agent wants to predict house prices for 

Hertfordshire. He has 3000 house sale records with 9 features: the income 

of the householder of the house, the interest rates, the age of the house, the 

number of bedrooms in the house, the type of house, the population of the 

local area, the price that the house sold at last time, the postcode of the place, 

and the garage type. A model is trained to find a relation between these nine 

features and house prices. This is a regression problem, since house prices are 

continuous. 

The aim is to use the trained model to predict the price for any house not 

included in those 3000 houses. 

1.2.2 Unsupervised Learning 

Unsupervised learning is different. Rather than finding a decision boundary or a 

regression function, it is used to find any natural structure inherent in the dataset. 

This natural structure may include clusters (data that group together) and outliers 

among the data (ones that differ considerably from the bulk of the data). It works by 

using data attribute information without considering data label information or target 

values, whether or not such information exists. 

Example 1.4 Suppose we have 15 data points with two different attributes, 

as shown in Table 1.1. It is not easy to see if there are any natural clusters 

among the data, or, if there are any, how many clusters exist, even though this 

is a small dataset with only two dimensions. 

However, the question can be answered easily if we can visualise the 

data as shown in Fig. 1.2. Data visualisation is a common application of 

unsupervised learning. It helps us to understand the underlying distribution 

of the data. In this example, we know there are four clusters in the data.
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Table 1.1 A small dataset 

including 15 data points with 

2  attribute  s

1.1 2 

11 1 

10 1 

10.5 2 

9 1 

1 1 

9 10 

1 9 

2.1 2.2 

8.9 9.2 

2 9 

1 8 

2 1 

10 9.5 

1.5 10 

Fig. 1.2 An example of 

unsupervised learning: the 

scatter plot of data shown in 

Table 1.1 
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Exercise 

1.1 Incorporation of certain chemicals into a drug delivery vehicle may lead 

to the enhancement of drug release and a more rapid clinical response. Such 

chemicals have been labelled as drug delivery enhancers. Their enhanced 

ability is measured as an enhancement ratio. You need to develop learning 

algorithms to address each of the following two problems. 

1. You have some chemical compounds. You want to predict the enhancement 

ratio value for each of these chemicals. 

(continued)
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2. You have some chemical compounds. You want to decide for each 

chemical if it is a potential drug delivery enhancer. 

Should you treat these as classification or as regression problems? 

a. Treat both as classification problems. 

b. Treat both as regression problems. 

c. Treat Problem 1 as a classification problem and Problem 2 as a 

regression problem. 

d. Treat Problem 1 as a regression problem and Problem 2 as a classifica-

tion problem. 

Next, we will introduce three case studies. Each of them applies an algorithm, 

which will be developed in detail and illustrated using worked examples in 

Chaps. 7, 8, and 9, respectively. These case studies illustrate some typical problems. 

The mathematics is introduced so you can see how the mathematics naturally arises 

when you are characterising and solving the problems. You are not expected to 

understand all the mathematics yet, but it allows you to see why we need a book 

like this to deal with Data Science. 

1.3 Case Studies 

1.3.1 Case Study 1: Potential Enhancement Ratio Prediction 

Using Linear Regression 

Suppose a pharmaceutical researcher wants to study the relationship between the 

molecular weight and the enhancement ratio of chemicals to identify compounds 

with potential as transdermal enhancers based on the value of the enhancement 

ratio.1 

The researcher has the molecular weight (MW) and enhancement ratio value 

for three chemicals, as shown in the first three rows in Table 1.2. He wants 

to apply a computational method to the three chemicals to find the relationship 

between those two attributes. He then wants to use the learned relationship to 

estimate the enhancement ratio value of the fourth chemical in Table 1.2.  This  is  a  

supervised learning problem. We call MW the input to the computational model and

1 Transdermal enhancers are chemicals incorporated into drug delivery vehicles leading to 

enhancement of drug release through the uppermost layer of the skin, the stratum corneum, thus 

resulting in a more rapid clinical response. To find potential transdermal enhancers, researchers 

need to measure the enhancer ratio of each tested chemical by doing experiments in the lab, which 

are time-consuming and expensive [3]. 
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Table 1.2 A small dataset of 

compounds with molecular 

weight values shown against 

their corresponding 

enhancement ratio values 

Chemicals index MW Enhancement ratio 

1 295 10 

2 305 30 

3 300 20 

4 301 ? 

the enhancement ratio. the target. The first three chemicals are training examples, 

including the input and the target. The fourth chemical is test data, for which the 

researcher knows the input and wants to estimate its target value. The researcher 

considers estimating a linear line that fits the training examples best. As we know 

from secondary maths, a linear function passing through the origin is given by 

.y = ax, (1.1) 

where x is the input, a is the slope of the line, and y is the output. Readers who 

have forgotten it may view Sect. 2.3.2.1 of Chap. 2. In this case study, the line 

needs to be estimated using the first three compounds in Table 1.2, with MW as 

the input x and enhancement ratio. as the output y. Other physio-chemical features 

may be used together with MW to estimate the enhancement ratio (in practice, there 

would usually be several more features). That is, the researcher may have more than 

one physio-chemical feature as the input. Therefore, we rewrite Eq. (1.1)  in  a  more  

general way as follows:

.y = aX. (1.2) 

A careful reader will notice that we have used the bold font in Eq. (1.2). That is 

because we use bold capital letters to denote a matrix and bold little case letters 

to denote a vector. The basic knowledge of vectors and matrices is introduced in 

Chap. 3. 

Now the question is how to find a., the gradient or slope, in Eq. (1.2). One way to 

do it is to use the least-squares regression method, which is a simple but widely used 

technique in Data Science. The least-squares regression method aims to estimate 

a. by minimising differences between the estimates of training examples and their 

actual target values. It is an optimisation problem. 

For now, all you need to know is that 

.a = (XT X)−1XT y. (1.3) 

Equation (1.3)  show  s a. is calculated via the matrix and vector multiplication 

involving the inverse (denoted as −1
.) and transformation (denoted as T .) of a matrix. 

The explanation of how we get Eq. (1.3) is presented in Chap. 8. 

To apply Eq. (1.3), the researcher needs to collect the data into the matrix X. and 

vector y.. Usually, data scientists normalise or re-scale feature values first. This is
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important when there are many features with different ranges, especially those with 

a large magnitude. 

From Table 1.2,  we  ha  ve

. raw_X =

⎡

⎣

295

305

300

⎤

⎦ and y =

⎡

⎣

10

30

20

⎤

⎦ ,

where the first three molecular weight values in Table 1.2 have been assigned to 

the input raw_X., and their corresponding enhancement ratio values are assigned to 

the output y..  Both raw_X. and y. are called column vectors. If there had been more 

features than just the molecular weight, raw_X.would have had more columns, one 

for each feature. It would then have been a proper matrix. The mean value of raw_X. 

is 300. Let us subtract the mean value from raw_X. and add a new column with 1′s .. 

We obtain the following: 

. X =

⎡

⎣

1 −5

1 5

1 0

⎤

⎦ .

X. is now a matrix with three-row vectors and two-column vectors in it. The reason 

we add 1′s . into X. and the idea behind the least-squares regression algorithm will be 

introduced in Chap. 8. 

Once the line is fitted to the data, that is, vector a. in Eq. (1.2) is estimated, 

the pharmaceutical researcher can substitute the known MW value of the fourth 

chemical compound to Eq. (1.2) to obtain its estimated y value for the enhancement 

ratio. To assess the model performance, he can compare the estimated value with the 

lab-measured value for this chemical. If he does this, the fourth chemical compound 

is called test data.

As a practitioner, the pharmaceutical researcher only needs to collect X. and y., 

substitute them to Eq. (1.3) to estimate a. first, and then to obtain the estimation of 

enhancement ratio by substituting a. and the value of a new input into Eq. (1.2). 

The knowledge he needs will be taught in Chaps. 2 and 3. If he is lucky, the data 

scientist may have pre-calculated a. for him using data that he has supplied to the 

data scientist. However, as data scientists, we do not stop there. We go further. We 

want to know how a. is obtained and how the least-squares technique works, since 

these will help us understand how to adjust a model when necessary. To do that, 

knowledge of calculus, shown in Chaps. 5 and 6, is needed. 

In addition, rather than obtaining a single estimated enhancement ratio value 

for a chemical compound, can we determine a range, with a certain confidence 

level, for the estimate? We may answer this question using probabilistic models. 

For instance, we can apply the maximum likelihood method covered in Chap. 13 

to estimate model parameters and model predictions of a simple linear regression 

model and derive confidence intervals using statistical principles like standard error
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calculation. It is built up on the knowledge of probability and statistics, which is 

introduced in Chaps. 10, 11, and 12. 

In this case study, a. can be obtained by applying Eq. (1.3) for the three chemicals 

shown in Table 1.2. If the researcher can collect more chemicals or three different 

chemicals, he may get different a. values. Which estimated a. is the most suitable one 

to use? We will discuss the related issues and model selection in Chap. 14. 

Remark 1.1 The maximum likelihood method mentioned in Case Study 1 deals 

with a regression problem. It can also be applied to classification problems. For 

a classification task, it can provide the probability that a pattern belongs to each 

class. The class with the highest probability would be the estimated class for that 

pattern. �. 

1.3.2 Case Study 2: Data Visualisation Using Principal 

Component Analysis 

Usually, before training a computational model on a dataset, we want to investigate 

the underlying distribution of the data, the relationships among data attributes, and 

the correlation between each data attribute and the data targets. This investigation 

is called data exploration. One of the data exploration methods is data visualisation. 

For example, a scatter plot of an attribute against another attribute may be used to 

observe relationships among data points and to detect whether there are clusters in 

the data. 

Let us use the Iris dataset. The dataset contains 3 classes of 50 data items each, 

where each class refers to a type of Iris plant [4], namely, Setosa, Versicolour, and 

Virginica, respectively. The dataset includes four features: sepal length, sepal width, 

petal length, and petal width in centimetres. Figure 1.3 shows scatter plots of one 

feature against another. Plots along the main diagonal are histogram plots of the data 

in the corresponding feature, since otherwise, they would just be a comparison of a 

feature with itself. Each scatter plot shows the correlation between the two features 

involved. It also displays clustering information: the class Setosa (represented by 

circles) is separated from the other two classes in all scatter plots, and there is 

some overlap between classes Versicolour (represented by squares) and Virginica 

(represented by triangles). 

Are there any visualisation methods that consider all features in one single plot 

panel? The answer is yes, and the classical principal component analysis (PCA) 

is one of these methods. It is a widely used method for data visualisation and 

data dimensionality reduction. PCA is an unsupervised learning method. Figure 1.4 

shows a PCA plot of the Iris data in the coordinate system constructed by the 

first two principal components. It is also a scatter plot, and it presents similar 

clustering information. Looking at the figure, readers who do not know the principal 

component analysis method may ask the following questions:
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Fig. 1.3 Scatter plots of the Iris dataset, with circles representing the class Setosa, squares 

representing the class Versicolour, and triangles representing the class Virginica 

Fig. 1.4 A PCA visualisation 

plot of the Iris dataset, where 

the first two principal 

components capture about 

95.8% of the total variance in 

the data
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• What are those principal components (PCs)? 

• What is the relationship between those PCs and the original four features in the 

dataset? 

• Why is it necessary to report the variance percentage value (shown in the figure 

caption)? 

• How is the variance percentage value calculated? 

• How is the position of each data item in the coordinate plane determined? 

It is not easy to see what the PCA has done with this dataset. Now let us see another, 

simpler, example, which we refer to as a toy dataset. It is a much smaller dataset X., 

including just five data points and just two features, and is shown in the following 

matrix: 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 5

2 2

3 3

4 4

5 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The average value of each column vector is the same, 3. We remove the average 

value of each column. That is, we subtract the mean value from each element in the 

matrix, and we get the following matrix: 

. newX =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2 2

−1 −1

0 0

1 1

2 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The left panel of Fig. 1.5 shows the five data points in the x − y . Cartesian 

coordinate system after removing the average value. The first column of newX. is 

the vector x1 . which is plotted on the horizontal (or x-axis), and the second column 

is x2 . and is plotted on the vertical (or y-axis). The right panel of the figure shows 

projections of those data points in the PCA coordinate system, with the first principal 

component (PC1) plotted horizontally and the second principal component (PC2) 

plotted vertically. The PCA projection plot seems to result from the axes in the 

original Cartesian coordinate system having been rotated, so that the largest distance 

among the data is displayed along the horizontal axis. 

For now, all readers need to know are: 

1. The PCA has been performed on the data using the features only, excluding the 

target value. The class label information (or the target value) shown in the Iris 

dataset is used only for colouring classes in the plot. 

2. The projection, that is, the position of each data along each PC axis, is determined 

by a linear combination of the original features. As will be shown later in Chap. 7,
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Fig. 1.5 The example of the toy dataset. The left panel shows the scatter plot of the data in the 

original x − y . Cartesian coordinate system; the right panel shows the scatter plot of the data 

projected onto the PCA space, where PC1 denotes the first principal component axis, and PC2 

denotes the second principal component axis 

for the Iris dataset, this linear combination is: 

. projection = c1 × sepal.length + c2 × sepal.width + c3 × petal.length

+ c4 × petal.width,

where c1, c2, c3 ., and c4 . are coefficients that need to be determined when doing the 

PCA analysis. The four attribute (or feature) values are normalised values, that is, 

each attribute has had its mean value subtracted and usually has been divided by its 

standard deviation (this is not necessary for this toy dataset since the two standard 

deviations are the same). 

Remark 1.2 Normalisation is an important pre-processing step when analysing 

data to make all attributes have the same magnitude. This is useful when doing 

a distance-based calculation, since it avoids those attributes with large magnitudes 

dominating the distance. Normalisation may change the range of the data, but it does 

not change the data’s structure and trend. An example can be seen in Fig. 1.6, where 

the original data with two attributes is shown in the left panel, and the normalised 

data having a zero mean and unit variance for each attribute is shown in the right 

panel. �. 

Chapter 4 describes how PCA is carried out after introducing the relevant linear 

algebra knowledge in Chaps. 3 and 4. Readers should be able to fully understand 

the idea behind PCA used in Chap. 7 after learning further knowledge regarding the 

relevant aspects of calculus in Chaps. 5 and 6.
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Fig. 1.6 A comparison of the data structure without data normalisation (left panel) and with data 

normalisation (right panel) 

Fig. 1.7 An illustration of a 

simple two-layer 

feed-forward neural network 

1.3.3 Case Study 3: A Simple Two-Layer Neural Network 

Inspired by the biological information processing mechanism of the brain, the neural 

network (NN) with artificial neurons was first proposed in the 1940s. Since then, 

many different types of NN have been developed. Especially after 2010, with the 

growth of computing power, the increased requirements of processing a massive 

amount of data, and the need to achieve better solutions to optimisation problems, 

the deep neural network (DNN) has rapidly developed to deal with different types 

of data such as time series data, text, and images. Even with the development of 

DNN, the basic building blocks of DNN are still similar to the traditional NN; they 

all have activation functions and layers. 

There are many different sorts of neural networks, each doing a different job 

and having different complexity and depth. However, the basic element of a neural 

network is the neuron, or unit, which has n inputs, and usually, each input has a 

weight w associated with it. This is illustrated in Fig. 1.7. The input of this neuron, 

or unit, is then the weighted sum of the input values and the weights. From the
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figure, we see that this weighted sum is: 

. x1w1 + x2w2 + · · · + xnwn =

∑

i

xiwi = x · w.

This uses the scalar product of vectors that will be introduced in Chap. 3. Figure 1.7 

could be a node that collects the inputs, so the xi . are the input values, or any other 

unit, where the xi . are the outputs from previous units. 

A neural network is usually arranged in layers, going from the input layer, which 

takes in the input values, to the output layer, which gives the output(s). Any units 

in layers in between are called hidden units. A network with inputs, a hidden layer, 

and an output layer is referred to as a two-layer neural network. The input layer is 

not usually counted as a layer, since it just contains the inputs and does not have 

adjustable weights. The input values are said to be fed-forward to give the output 

values of the network. 

Having taken a weighted sum of its inputs, each neural unit performs some 

activation function on its input to transform the input to create an output value. 

Sample activation functions are the threshold, a linear function, a logistic sigmoid 

function, and a hyperbolic tangent. The same happens at each layer until output 

values(s) are produced. The output values are then compared to some target values, 

and the difference is called the error. 

In this book, we are going to concentrate on networks where the weights are 

trained by gradient descent using some form of propagation of the error back 

through the network. Hence, we are only interested in the last three of the above 

activation functions, since they are differentiable, and hence, we can use gradient 

descent learning to train the network. Figure 1.8 illustrates the different sorts of 

activation functions introduced here. The concept of differentiable and gradient will 

be introduced in Chaps. 5 and 6. 

The case study in this section illustrates artificial neural networks using a simple 

example of a two-layer neural network (NN) with only two hidden units in its middle 

layer. Of course, such simple neural networks have many limitations on what they 

can represent. However, we use this example to illustrate an activation function in 

0 x 

y 

0 x 

y 

1 

0 x 

y 
1

-1 

Fig. 1.8 Activation functions: (a) linear, (b) logistic sigmoid, (c) hyperbolic tangent



16 1 Introduction

Fig. 1.9 An illustration of a feed-forward simple two-layer neural network 

operation and how information is propagated through the layers and how the error 

is fed back to update the weights. 

Figure 1.9 shows the architecture of a two-layer neural network used in this 

example, where we consider that each input (training) example x. has only two 

attributes, or features, x1 . and x2 .. Squares in Fig. 1.9 represent two input features, 

forming the neural network’s input layer. Suppose each input example has two 

targets, denoted as t1 . and t2 .. y1 . and y2 . are the outputs or predictions of the neural 

network for the given x., and they form the output layer of the neural network. The 

two-layer in the name means there are two layers of adaptive weights. The nodes 

in between two weight layers are called hidden units. Each input in the input layer 

is connected to hidden units via weights of the first layer. Each hidden unit is a 

linear combination of the input attributes. Usually, an activation function, which is 

most often a non-linear function and can transform the total input, is applied to each 

hidden unit to simulate the complexity of the brain. 

We follow the notations used in [5] for weights. That is, we denote each weight 

as w
(l)
j i ., where (l). denotes the lth layer, j the j th hidden unit in the corresponding 

layer, and i the ith node of the immediate layer to the left. For example,w
(1)
21 .denotes 

the weight going from the first input feature x1 . to hidden unit 2 in the first layer. The 

training of this neural network aims to adjust weight values to reduce the error, that 

is, the difference between the targets and the predictions or outputs. We show how 

to use and train this simple neural network in Chap. 9. 

Remark 1.3 The simple two-layer neural network shown in Case Study 3 can 

be used in a supervised learning task. It can be used for both regression and 

classification problems. �. 

We have focused on approaches that can be applied to understand the data and 

make predictions for unseen data. As we can see, these approaches need mathemat-

ical and statistical knowledge almost everywhere. In the following chapters, we will 

equip our readers with the essential skills for data analysis. 

However, before we start, let us have a look at data types. You may have noticed 

that data are in a format as shown in Tables 1.1 or 1.2. However, how do we deal 

with data in free forms, such as audio signals, email, and survey comments with 

some numerical scores? In the final section of this chapter, we will briefly discuss 

data types.
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1.4 Types of Data 

Looking into the types of data is one of the most important steps you need to take to 

perform Data Science. It will help you to understand the data and choose the correct 

class of algorithms that can be used to analyse the data. 

1.4.1 Organised (Structured) and Unorganised (Unstructured) 

Data 

When given a dataset, the first question you need to ask yourself is whether it is 

structured data or unstructured data. Structured data is usually organised using a 

table method; unstructured data exists as a free entity and does not follow any 

standard format. Most data analysis algorithms are built with structured data in 

mind. 

Let us have a look at an organised/structured data example. Table 1.3 shows 15 

sample rows of the Iris dataset mentioned in Case Study 2 in Sect. 1.3.2 of this 

chapter. As you can see, the data is sorted into a row and column structure. Each 

row represents a single observation; each column represents either a feature or class 

information. This data set has four attributes or features. They are all continuous 

Table 1.3 Examples of data items from the Iris dataset, illustrating feature values and correspond-

ing class labels 

sepal.length sepal.width petal.length petal.width Variety 

5.1 3.5 1.4 0.2 Setosa 

4.9 3 1.4 0.2 Setosa 

4.7 3.2 1.3 0.2 Setosa 

4.6 3.1 1.5 0.2 Setosa 

5 3.6 1.4 0.2 Setosa 

.

.

.. 

7 3.2 4.7 1.4 Versicolor 

6.4 3.2 4.5 1.5 Versicolor 

6.9 3.1 4.9 1.5 Versicolor 

5.5 2.3 4 1.3 Versicolor 

6.5 2.8 4.6 1.5 Versicolor 

.

.

.. 

6.7 3 5.2 2.3 Virginica 

6.3 2.5 5 1.9 Virginica 

6.5 3 5.2 2 Virginica 

6.2 3.4 5.4 2.3 Virginica 

5.9 3 5.1 1.8 Virginica
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values. The last column, with a head denoted as variety, gives the class label 

information for each plant, indicating which category the plant belongs to. 

Examples of unstructured data include genetic sequences and molecular structure 

graphs. These are unstructured data, since we cannot form features of the sequence 

using a row-column format without taking a further look. Feedback left for a product 

review on Amazon and messages on Twitter are also unstructured free text. Images 

are another type of unstructured data. To read the information saved in an image, we 

need to open the file with an image viewer. 

Exercise 

1.2 Is the following data structured or unstructured? 

(1) Speech signals, 

(2) Emails, 

(3) Medical X-ray, 

(4) Student ID numbers. 

Remark 1.4 Most real-world data are unstructured data. To apply most data 

analysis algorithms, we must first convert unstructured data to structured data using 

pre-processing techniques. 

For example, consider speech signals. People may decompose each signal into a 

set of signals with different frequencies, and then values related to the amplitude of 

frequencies can be used as signal features. How to decompose the signal is not our 

focus here. However, it is essential to know that converting data from unstructured 

to structured is a crucial step in data analysis. 

As another example, let us consider text data. We have many options to transform 

the free text into a structured format. We could apply new features that describe the 

data. For instance, we can define a set of words or phrases first and then count the 

particular words or the specific phrases appearing in each file. This way, we can use 

the features defined here to convert them into structured data. Of course, we may 

also have a topic as a class label for each text file. Then, we can put all of them into 

one big table: each row representing one text, such as a tweet, columns showing 

the counts of specific words or phrases, and one column indicating the class label 

information. �. 

1.4.2 Quantitative and Qualitative 

Another classification of data is quantitative and qualitative. Quantitative data can 

be described using numbers, including discrete and continuous data. Discrete data 

has limited values, while continuous data can take on any value between two values.
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For example, the number of PC labs in a university is discrete, since it is a whole 

integer value. In contrast, the average number of hours a student sleeps daily is a 

continuous value, such as 5 or 7.5 hours, or any value in between. 

Qualitative data is also called categorical data and is non-numerical in nature. 

However, qualitative data may appear as a number, though they cannot be used 

meaningfully in the computation. For example, Level 4, Level 5, Level 6, and 

Level 7 denote modules running for the first year, the second year, the third year of 

undergraduate courses, and the postgraduate course, respectively. It does not make 

sense if you do an addition between a Level 6 module and a Level 7 module. 

Remark 1.5 To tell if a number is quantitative or qualitative, ask yourself whether 

it still makes sense after adding them together. �. 

Exercise 

1.3 Is the following data qualitative or quantitative? 

(1) Book title, 

(2) Welcome to Year 1, 

(3) Maximum daily temperature, 

(4) Car registration number. 

1.4.3 The Four Levels of Measurement 

A more detailed classification of data types is the four levels of measurement. These 

include the nominal level, the ordinal level, the interval level, and the ratio level. 

This detailed classification allows us to recognise what mathematical operations 

can be applied for each level. 

1.4.3.1 The Nominal Level 

At the nominal level, the data is described by name or category, for example, hair 

colour, gender, and house types, such as terrace houses, semi-detached houses, and 

bungalows. At this level, possible mathematical operations to the data include set 

membership and equality. For example, suppose a colour set has three colours: 

green, yellow, and red. If a student’s hair colour is black, then the colour black is 

not a member of that colour set. We will introduce the knowledge of sets in Chap. 2.
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1.4.3.2 The Ordinal Level 

The ordinal level gives us a rank order. For example, the customer rating of a product 

or a book and the award someone receives after completing a maths competition. 

Possible mathematical operations that can be applied at this level are ordering and 

comparison, whilst we cannot do addition and other computations. 

Exercise 

1.4 A group of students is asked the following questions. Is the answer 

collected from each of the following nominal or ordinal? 

(1) Are you an international student? 

(2) What is your gender: male, female, prefer not to say, other? 

(3) How many countries have you visited? 

(4) What is your preferred contact method: email or telephone? 

(5) What is your usual lunchtime: 11 a.m.–12 p.m., 12 p.m.–1 p.m., 1 p.m.– 

2 p.m., or later than 2 p.m.? 

1.4.3.3 The Interval Level 

Data measured at the interval level is like the ordinal level, placing numerical values 

in order. Unlike the ordinal level, however, the interval level has a known and equal 

distance between each value. For instance, consider the Celsius temperature. The 

difference between 10 and 30 degrees is a measurable 20 degrees, as is the difference 

between 40 and 60 degrees. However, the interval level data does not have a natural 

zero. For example, if we consider the Celsius temperature at zero degrees, then 

Celsius zero does not mean the absence of temperature. 

More complicated mathematical operations are allowed at the interval level. 

Compared with the ordinal level, we can do addition and subtraction at this level 

besides ordering and comparison. 

1.4.3.4 The Ratio Level 

The ratio level allows us to multiply and divide too. Data has a clear definition of 

zero at this level. For example, students’ marks for assessments in numerical values 

are at the ratio level. We can have zero marks in the final score, and it makes sense 

to say 90 out of 100 marks is twice as much as 45. 

Remark 1.6 Let us consider two continuous number lines: one for the interval level 

and the other for the ratio level. Data indicate positions along each line. There is no 

actual zero position along the interval level line. In other words, the zero position
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is arbitrary along the line. For example, zero degrees Celsius and zero degrees 

Fahrenheit are different temperatures. Zero degrees Celsius is the freezing point 

of water, while zero degrees Fahrenheit is colder than that, and the freezing point of 

water in the Fahrenheit scale is 32 degrees Fahrenheit. On the contrary, zero grams 

and zero pounds mean the same thing along the ratio level line. There are no values 

less than zero on the ratio level line. �. 

Example 1.5 Calculating the increase or decrease in percentage terms is not 

useful at the interval level. Suppose the temperature increases from 10 degrees 

Celsius to 15 degrees Celsius. The increase in percentage terms is 15−10
10

=

50%.. If we convert the temperatures to Fahrenheit, we have (10 ×
9
5
) + 32 =

50. and (15 ×
9
5
) + 32 = 59., respectively. The increase in percentage terms 

is 59−50
50

= 18%.. It does not make sense to say 15 degrees Celsius is 50%. 

warmer than 10 degrees Celsius, while we get only 18%.warmer in Fahrenheit. 

Example 1.6 Calculating the increase or decrease in percentage terms is 

valid at the ratio level. Suppose weight increases from 10 grams to 15 grams. 

The increase in percentage terms is 15−10
10

= 50%.. If we convert the unit to 

pounds, we have 10 × 0.0022 = 0.022. pounds and 15 × 0.0022 = 0.033. 

pounds, respectively. The increase in percentage terms is 0.033−0.022
0.022

= 50%.. 

It does make sense to say 15 grams is 50%. heavier than 10 grams, since we 

also get 50%. heavier in pounds. 

Remark 1.7 Quantitative data includes the interval level and ratio level, while 

qualitative data includes the nominal level and the ordinal level. �. 

Understanding the data type and its measurement level will help us to select 

models or statistical procedures to analyse the data. For example, for continuous 

or ordinal data with a large number of categories, say the number of categories 

greater than 4, we may use regression models, including ordinary linear regression 

and neural networks and the Gaussian normal distribution to analyse the data. For 

nominal or ordinal data (usually with a small number of categories, say 2, 3, or 

4), we can use the Chi-square statistical test to examine whether the observed 

values follow the assumed theoretical distribution, or we can use logistic regression 

to make predictions on unseen data. Chapter 8 explains how linear regression 

works; Chap. 9 introduces the principle behind the traditional neural networks. Data 

following a univariate Gaussian distribution and multivariate Gaussian distributions 

are described separately in Chaps. 10 and 11. The primary statistical analysis 

techniques and the Chi-square test are presented in Chap. 12. More linear regression 

and the logistic regression model will be explained in Chap. 13.
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Exercise 

1.5 Identify the level of measurement for the following: 

(1) Military title: Lieutenant, Captain, Major. 

(2) Categorisation of property: Flats, Detached, Semi-detached, Terraced, 

End-of Terrace, Cottage, Bungalows. 

(3) A list of temperatures in degrees Celsius for last week. 

(4) Heights of a group of Year 6 students. 

(5) Calendar years. 

(6) Temperature in Kelvin scale.



Chapter 2 

Sets and Functions 

Basic set theory and functions are the foundation of later chapters. Although we 

assume that readers are familiar with the rudiments of basic set theory and basic 

notions of functions, let us refresh our memory and define notations in this chapter. 

We focus on functions with one variable in this chapter. 

2.1 Sets 

In this section, we will introduce set membership, how to find the cardinality of a 

set, and how to represent sets using a Venn diagram. In addition, we will discuss 

four basic normal set operations: set union, set intersection, set subtraction, and set 

complement. Moreover, we will show how to write sets in comprehension and define 

what a binary relation is. 

2.1.1 Sets and Subsets 

Definition 2.1 (Sets) A set is a collection of objects. The objects are known as the 

elements of the set or its members. 

For small sets, we can define a set by writing out the names of all the elements of 

the set, separating them by commas, and enclosing the whole list in curly brackets. 

For example: {apple, pear, orange, melon}. An empty set with no elements can be 

represented by {} or ∅.. Sets have the following two properties: 

• Sets are not ordered. For example, {a, b, c} is a representation of the same set as 

{c,  a,  b  }.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 

Y. Sun, R. Adams, A Mathematical Introduction to Data Science, 

https://doi.org/10.1007/978-981-96-5639-4_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5639-4protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2
https://doi.org/10.1007/978-981-96-5639-4_2


24 2 Sets and Functions

• There are no repeats. For example, {a, b, c, b} is a representation of the same set 

as  {a,  b,  c  }.

Two sets are equal if they have the same members. The equal sign, =., can be 

used when two sets are equal. For example, {1, 2} = {2, 1}.. The not equal sign, �=., 

can be used when two sets are not equal. 

Definition 2.2 (Cardinality) The Cardinality of a finite set is the number of 

elements in the set. 

It is denoted using the symbol #., or with a vertical bar on each side of the name of 

the set. For example: 

• #{1, 2, 3} =  3.. 

• |{3, 3, 7, 2, 1}| = 4.. 

2.1.1.1 Infinite Sets 

Sets can be infinite as well as finite. For example, three infinite sets that we will use 

are: 

• N.: the set of natural numbers. In this book, it includes 0, that is, it includes all 

non-negative numbers, {0, 1, 2, . . .}.. 
• Z.: the set of integers, {. . . ,−3,−2,−1, 0, 1, 2, . . .}.. 
• R.: the set of real numbers, that is, any decimal number. 

2.1.1.2 Intervals 

A set that contains all the real numbers between two given numbers is called an 

interval. For instance, all the real numbers between 2 and 3, including both numbers, 

are a closed interval and denoted: [2, 3].. If we do not include both the endpoints, 
then it is an open interval and denoted: (2, 3). or ]2, 3[.. Of course, we can include 
one endpoint and not the other, giving mixed intervals, that is, [2, 3). and (2, 3].. 

2.1.1.3 Set Membership 

The symbol ∈. denotes is a member of a set. For example, 

. apple ∈ {apple, pear, orange,melon}

is a true statement, since apple is a member of the given set, while strawberry ∈
{apple, pear, orange,melon}. is a false statement, since strawberry is not a 

member of the given set. �∈. denotes is not a member of a  set.  S  o strawberry �∈
{apple, pear, orange,melon}. is a true statement.
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Example 2.1 

If the real number x ∈ [2, 3]. then 2 ≤ x ≤ 3.. 

If the real number x ∈ (2, 3). then 2 < x < 3.. 

If the real number x ∈ (2, 3]. then 2 < x ≤ 3.. 

If the real number x ∈ [2, 3). then 2 ≤ x < 3.. 

Definition 2.3 (Subsets) The set A is a subset of the set B if and only if either the 

set A is empty or every element of A is also an element of B. A ⊆ B . means A  is  a  

subset of B.

Definition 2.4 (Proper Subset) The set A is a proper subset of the set B if and 

only if A is a subset of B but not equal to B. A ⊂ B . means A is a proper subset 

of B. 

Note that both ⊂. and ⊆. can be used with a line through them to denote their 

opposite. For example, {1, 2, 3, 4} �⊂ {1, 2, 4}.. 

Exercises 

2.1 What is the value (True or False) of each of the following statements? 

(1) {4, 8,−1} = {4, 8, 4, −1,− 1}.. 
(2) {x, y, z, z}. = {z, y, x}.. 
(3) {} = {0}.. 
(4) #{x, y, z, z} = 4.. 

(5) {} ⊂ {1, 2, 4 }.. 
(6) [1, 2] = [1, 2 ).. 
(7) (1, 2) ⊂ [1, 2 ].. 

2.2 Write down the value of each of the following. 

(1) #{a, b, c, d, e, f }.. 
(2) #{}.. 
(3) #{{}}.. 

Definition 2.5 (Power Sets) The power set of a set S is the set containing all 

possible subsets of S. The cardinality of the power set of a set S is 2#S ..
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Example 2.2 Given A = {3, 4, 5}.with a cardinality of 3, the power set of A 

is 

. {{}, {3}, {4}, {5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5}},

and its cardinality is 23 = 8.. 

Exercise 

2.3 Do the following: 

(1) Write down the power set of {−1, 1}.. What is its cardinality? 

(2) Write down the power set of {0, 1, 2, 3}.. What is its cardinality? 

(3) What is the cardinality of the power set of {a, b, c, d, e, f, g, h}.? 

2.1.2 Venn Diagrams 

Venn diagrams are a way of describing sets and how they are related to one another 

in pictures. Each set is represented as a circle within a universe and contains values 

written inside the circle’s boundary. The overlapping part of the two circles shows 

elements shared by both sets. 

Example 2.3 Suppose universe = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}., 
Set A = {13, 14, 16, 17, 19}., and Set B = {12, 13, 15, 16}.. Figure shows 

the relationship between

2.1 

Set A. and Set B.. 

Another example is the classification of numbers using sets considered in 

Sect. 2.1.1.1.  In  Fi  g. 2.2, Z. and N. are represented as circles within the universe R.. 

2.1.3 Basic Set Operations 

Definition 2.6 (Set Union) Two sets may be joined together to form a new set 

containing all of the elements in one or the other or both of them. This operation is 

known as set union and is denoted using the symbol ∪..
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Fig. 2.1 An example of a Venn diagram used to visualise the relationships and intersections 

among two data sets 

Fig. 2.2 A Venn diagram showing the relationships among Z. (integers), N. (natural numbers), and 

R. (real numbers) 

Example 2.4 The union of two sets A and B in Fig. is 2.1 A ∪ B =
{12, 13, 14, 15, 16, 17, 19}., whose elements are highlighted using under-

scores in Fig. . 2.3

Definition 2.7 (Set Intersection) Two sets may be joined together to form a new 

set containing only the elements in both of them. This operation is known as set 

intersection and is denoted using the symbol ∩.. 

Example 2.5 The intersection of two sets A and B in Fig. 2.1 is A ∩ B =
{13, 16}., whose elements are highlighted using underscores in Fig. .2.4
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Fig. 2.3 A Venn diagram illustrating the union of sets A∪B ., representing all elements that belong 

to A, B, or both, highlighted using underscores 

Fig. 2.4 A Venn diagram illustrating the intersection of sets A ∩ B ., representing comments 

elements that belong to both A and B, highlighted using underscores

Definition 2.8 (Set Subtraction or Difference) Two sets may be joined together 

to form a new set containing only the elements in the first but not the second. This 

operation is known as set subtraction and is denoted using the symbol \.. 

Example 2.6 The set formed by subtracting set B from set A in Fig. is 2.1 

A\B = {14, 17, 19}., whose elements are highlighted using underscores in 

Fig. .2.5
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Fig. 2.5 A Venn diagram illustrating the set difference A\B ., representing elements that belong to 

A, but not to B, highlighted with underscores 

Definition 2.9 (Set Complement) The complement of a set A is the set of all 

elements in the universe but not in A .A.denotes the set formed from the complement 

of set A. 

Example 2.7 The complement of set A in Fig. is 2.1 A =
{11, 12, 15, 18, 20}., whose elements are highlighted using underscores 

in Fig. 2.6. 

Fig. 2.6 A Venn diagram illustrating the complement of set A, A., representing elements that do 

not belong to the set A, highlighted with underscores
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Fig. 2.7 The Venn diagram referenced in Exercise 2.4, representing the sets and their relationships 

Exercise 

2.4 Given a Venn diagram shown in Fig. 2.7, find the following: 

(1) A ∪ B .. 

(2) C ∩ B .. 

(3) A ∪ B .. 

(4) A\(B ∩ C).. 

(5) A ∪ B ∪ C .. 

(6) A ∩ B ∩ C .. 

(7) (A ∪ B)\ C .. 

(8) (A ∪ B)\ C .. 

2.1.4 Sets Written in Comprehension 

So far, we have written sets in extension. That is to list all of the values in the set 

separated by commas within a pair of curly brackets. There is another way to write 

sets. That is to give a typical element and a condition for its inclusion in the set. It 

is called sets written in comprehension.
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Example 2.8 Suppose we have S = {x ∈ N|x < 5},.where the curly brackets 
tell us that this is a set. Inside the brackets, there are two sections. The left of 

the vertical bar gives us the signature of the values in the set. A signature tells 

us which universe the value named by x is drawn from. In this example, it 

is drawn from the universe of values N.. The right of the vertical bar states 

the condition that each member of the set must satisfy. If we write this set in 

extension, we have S = {0, 1, 2, 3, 4}.. The vertical bar |. (sometimes written 

as a colon:) is usually read as such that. So, set S can be described as the set 

of all numbers x in N. such that x < 5.. 

The condition in a set comprehension expression is a truth-valued expression. All 

values that make this expression true are members of the set. All values that make 

the expression false are not members of the set (they are in its complement). 

2.1.4.1 Using Logic 

We can define more complex conditions using operations from logic: 

• AND is represented by the symbol ∧.. 

• OR is represented by the symbol ∨.. 

• NOT is represented by the symbol ¬.. 

Example 2.9 Let Z = {x ∈ N|x > 10 ∧ x < 16}.. If we write set Z in 

extension, we have Z = {11, 12, 13, 14, 15}.. 

Exercise 

2.5 Write each of the following sets in an extension. 

(1) A = {y ∈ N|¬(y > 10)}.. 
(2) B = {x ∈ N|(x < 12) ∧ (x ≥ 6)}.. 
(3) C = {z ∈ N|(z < 8) ∧ (z < 5)}.. 
(4) D = {y ∈ N|(y < 8) ∨ (y < 5)}.. 
(5) E = {x ∈ N|¬(x ≥ 12) ∧ (x > 3)}..
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2.2 Binary Relations 

Definition 2.10 (Cartesian Product Sets) Given two sets A and B, the set that 

contains all ordered pairs (x, y). such that x belongs to A and y belongs to B is 

called the Cartesian Product. It is denoted as A × B ., which can be expressed as 

follows: 

. A × B = {(x, y)|x ∈ A ∧ y ∈ B}.

A and B may be subsets of different universes. If either A or B is an empty set, then

∅ × B = A × ∅ = ∅..  If A �= B . and both A and B are not the empty set, then A × B . 

is not equivalent to B × A. because the inside of each pair is ordered. 

Example 2.10 If A = {a, b}. and B = {0, 1, 2}., then 

. A × B = {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)};

. B × A = {(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)}.

Remark 2.1 Although the inside of each pair in a Cartesian product set is ordered, 

it should be remembered that the actual set, like all sets, is not ordered. 

So if A = {a, b}. and B = {1}., then: 

. A × B = {(a, 1), (b, 1)} = {(b, 1), (a, 1)} �= {(1, a), (1, b)} = B × A.

�. 

Exercise 

2.6 Find the value (True or False) of each of the following: 

(1) (2, 8) ∈ {(8, 1), (2, 10), (1, 10), (8, 2)}.. 
(2) (3, 7) ∈ {(1, 3), (3, 7), (7, 3), (1, 7)}.. 
(3) {(1, 4), (0, 2), (10, 9)} = {(4, 1), (2, 0), (9, 10)}.. 
(4) {(1, 4), (0, 2), (10, 9)} = {(10, 9), (0, 2), (1, 4)}.. 

2.7 Write each of the following Cartesian products as a single set in 

extension: 

(1) {2, 3, 5} × {0, 1 }.. 
(2) {0, 1} × ∅..
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We can form the Cartesian product of any number n ∈ N. of sets and whose 

elements will be n-tuples. For example, we can use it to model customer accounts 

in the following way: 

. A × B × C = {(a, b, c)|a ∈ A ∧ b ∈ B ∧ c ∈ C},

where A represents customer account numbers, B customer names, and C customer 

addresses. 

2.2.1 Binary Relations

Definition 2.11 (Relation) Given two sets A and B, a relation from A to B is a 

subset of the Cartesian Product A × B .. 

Any subset of the set A × B . can be considered as a relation. That could be the 

empty set, the entire set, A × B ., or anything in between. 

Definition 2.12 (Binary Relation) A binary relation relates values from one uni-

verse to the values of another. The from-universe is called the source; the to-universe 

is called the target. 

2.2.1.1 Kinds of Relation 

Figure 2.8 shows four types of relation. In each panel, the left rectangle shows the 

source universe, and the right shows the target universe. The oval in the source 

includes input values of a relation, called the domain of the relation, while the oval 

in the target includes output values of a relation, called the range of the relation. 

Panel (a) shows a one-to-one relation, where each value in the domain has only 

one corresponding value in the range. 

Panel (b) presents a many-to-one relation, where two (can be more) values in the 

domain have the same value in the range. 

Panel (c) displays a one-to-many relation, where one value in the domain has two 

(can be more) different values in the range. 

Panel (d) represents a many-to-many relation, where a value in the domain may 

have more than one output in the range, and a value in the range may have more 

than one corresponding value in the domain. 

Remark 2.2 Note that not all points are necessarily in the ovals in Fig. 2.8, since 

a relation is any subset of the whole Cartesian product, source × target .. Hence, 

the domain is a subset of the source, and the range is a subset of the target. That is, 

domain ⊆ source. and range ⊆ target .. Note the illustrated relations in Fig. 2.8 

also do not include every possible pair from the domain to the range. Again, this is
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Fig. 2.8 An illustration of four kinds of relations: (a) one-to-one, (b) many-to-one, (c) one-to-

many, and (d) many-to-many 

because the relation is a subset of the whole Cartesian product, so the relation does 

not have to contain all pairs. �. 

2.3 Functions 

Many-to-one and one-to-one relations are very common in computing and have a 

special status, and they are called functions. 

Figure 2.9 presents examples of relations, some of which are functions and others 

are not. The left column represents the input values (possible domain), while the 

right column represents the possible output values. 

Panels (a) and (b) are two functions, since all the elements in the domain have 

just one corresponding image, or output, in the target universe and so construct the 

range of actual values in the target. Values in the right column do not all have a value 

in the domain with their image in the target universe. 

Panel (c) illustrates a case of a relation that is not a function. Every element 

in the possible domain should have an image in the range by applying the given 

function. But 3 in green does not have a related value in the range. Panel (d) is 

another example of a relation that is not a function, since 3 has two images in the 

range, b and d, indicating a one-to-many r elation.

So, in summary, a function has to have an image for every value in the domain, 

and it has to have just one image. The set of images in the target universe is called 

the range.
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Fig. 2.9 An illustration 

depicting various relations, 

distinguishing between those 

that are functions and those 

that are not 

Exercise 

2.8 Given the domain as {0, 1, 2}., are the following relations also functions 
(assume the target universe includes {0, 1, 2, 3, 4, 5, 6, 7, 8}).: 

(1) {(0, 1), (2, 2), (1, 3 )}.? 
(2) {(0, 2), (1, 3) }.? 
(3) {(0, 7), (1, 5), (2, 6), (0, 6)}.? 
(4) {(1, 4), (0, 4), (2, 4 )}.? 

Definition 2.13 (Function) Let x represent the elements of the domain (denoted 

as D), y represent the elements of the range (denoted as W ), and f symbolise the 

function, then we have y = f (x).. It can be written as follows: 

.W = {y|y = f (x) ∧ x ∈ D}.
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f  (  x). is also called the image of x with respect to the function f . The domain 

variable x is called the independent variable, while the range variable y is called 

the dependent variable.

Example 2.11 Given W = {y|y = x3 ∧ x ∈ [−3, 3]}., we know that f (x) =
x3 ., the domain is −3 ≤ x ≤ 3., and the corresponding range is −27 ≤ x ≤ 27.. 

2.3.1 Graph of a Function 

The plot of pairs (x, f (x)). in a coordinate system is the graph of f (x).. 

Example 2.12 Figure is a pictorial representation of the function 2.10 {y|y =
x3 ∧ x ∈ [−3, 3]}.. 

Fig. 2.10 An example of the 

graph of a function
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2.3.2 Common Functions with One Variable 

2.3.2.1 Linear Function 

A linear function with one independent variable has the following form: 

. y = f (x) = a0 + a1x,

where a0 . is the intercept on the vertical axis in the graph (the constant term) and a1 . 

is the slope of the line in the graph (the coefficient). If a1 = 0., then y = a0 ., that is, 

the line is horizontal. If a0 = 0., the line will pass through the origin. If a0 �= 0. and 

a1 �= 0., there are two cases with a1 > 0. and a1 < 0., respectively. 

Example 2.13 Figure shows two linear functions,2.11 y = 5 − 2x . and y =
5 + 2x .. Both functions have the same intercept, but one has a negative slope 

(solid line), and the other has a positive slope (dashed line). 

2.3.2.2 Polynomial Function 

These are functions built out of non-negative integer powers of the independent 

variable. 

Fig. 2.11 Two linear 

functions with the same 

intercept: a dashed line with a 

positive slope and a solid line 

with a negative slope
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Fig. 2.12 Examples of two simple polynomial functions 

Example 2.14 Figure illustrates two simple polynomial functions. Panel 

(a) shows

2.12 

f (x) = x2
. and panel (b) depicts f (x) = x3

., both defined for 

x ∈ [−5, 5].. 

To have a more complicated polynomial function, we can start with the building 

blocks, such as 1, x, x2, x3
., and so on, and we can multiply these basic functions 

by numbers and then add a finite number of them together. For example, f (x) =
7x2 + 4x3 − 2.. 

2.3.2.3 Exponential Function 

The exponential function is defined as f (x) = ax
., where the base a > 0. and a �= 1.. 

The domain of the function is (−∞, ∞).; the range of the function is (0,∞)..  The  

graph of the function always passes (0, 1). since a0 = 1.. 

Example 2.15 Figure shows two exponential functions with a domain 

of

2.13 

[−5, 5].. Panel (a) displays f (x) = 2x
.with a base equal to 2, and panel (b) 

presents f (x) = 2−x = ( 1
2
)x .with a base of 1

2
.. 

There is a horizontal asymptote at y = 0.. The curve does not touch the x-axis, 

no matter what it looks like on the graph. In fact, the graph of f (x) = 2x
. is just the 

reflection of f (x) = 2−x
. in the y-axis. A common base is a = e = 2.71828.,  using  

the irrational number e, giving the function f (x) = ex
..
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Fig. 2.13 Examples of two simple exponential functions 

Exponential functions are important in the Data Science field. When we intro-

duce probability distributions in Chap. 10, we will see that a Gaussian distribution 

of a random variable is, in fact, a member of the exponential function family. In 

addition, there are many applications using a type of function that is a combination 

of exponential functions, for example, ex−e−x

2
. and ex+e−x

2
.. These are special 

functions: hyperbolic functions. Readers are referred to [6] to find more details. 

2.3.2.4 Logarithmic Function 

A logarithmic function is denoted as f (x) = loga x ., where a is a constant and

a > 0.,  but a �= 1.. The domain of a logarithmic function is (0,∞).. The graph of ax
. 

is symmetric to the graph of loga x . about the line of y = x . (see Fig. 2.14). If the 

base a = e = 2.71828., then we denote loga x = loge x . as ln x .. 

The logarithmic function is also important in the Data Science field. We will 

discuss a cost function or error function defined in a log. probability format in 

Chap. 13. 

2.3.2.5 Trigonometric Functions 

The variable x in these functions is generally expressed in radians (π . radi-

ans = 180◦
.). Figure 2.15 shows sin x . and cos x ., respectively, in the domain 

[−8radians, 8radians].. The relations between sin x . and cos x . can be summarised 

as: 

. sin x = cos(
π

2
− x), (2.1)
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Fig. 2.14 The graphs of ex
. 

and ln x . are symmetrical 

about the line of y = x .
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Fig. 2.15 Panel (a)  shows  the sin x . function, while panel (b)  shows  the cos x . function 

. cos x = sin(
π

2
− x), (2.2) 

. sin2 x + cos2 x = 1. (2.3) 

Equations (2.1), (2.2), and (2.3) are trigonometric identities involving trigonometric 

functions. There are quite a lot of them, but it is not necessary to remember all the 

identities. However, it is important to know that these identities are useful when we 

need to simplify trigonometric functions, and sometimes, they can be used to solve 

certain types of integrals. We will introduce integrals in Chaps. 5 and 6.
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2.3.3 Properties of a Function 

Definition 2.14 (Bounded Functions) If there is a constant M such that f (x) ≤
M . for all x in an interval, then M is called an upper bound of the function. On the 

other hand, if there is a constant M such that f (x) ≥ M . for all x in an interval, 

then M is called a lower bound of the function. Usually, to indicate that a function 

is bounded both above and below by M , we write |f (x)| ≤ M ., where M is a non-

negative real value and |f (x)|.means the absolute value of f (x).. 

Example 2.16 f  (x)  = cos x . is bounded in the interval (−∞,∞). since for 

all x ∈ R., | cos x| ≤ 1. is valid. Here M = 1.. Of course, M can be any value 

not less than 1 in this e xample.

Example 2.17 Let us consider f (x) = 1
x
.. First, suppose x ∈ (0, 1)..  We  

notice that however big a value M takes, we can always find a small value 

approaching zero for x, so that 1
x
. is greater than M . Therefore, the function is 

unbounded, since there does not exist an M , so that | 1
x
| ≤ M . is valid in the 

interval (0, 1).. Next, suppose x ∈ (1, 3).. Then, the function is bounded. For 

example, taking M = 1., then | 1
x
| ≤ 1. is valid to all x in the interval (1, 3).. 

Example 2.18 Other bounded function examples are the sigmoid functions. 

One common sigmoid function, defined by f (x) = 1
1+e−x = ex

ex+1
.,  is  

bounded inside the interval (0, 1). (see Fig. , where the domain is defined 

as

2.16

[−7.8, 7.8].). 

Definition 2.15 (Monotonic Functions) Given a function f (x). in an interval, for 

any two points x1 . and x2 . in the interval, if we have: 

• x1 <  x  2 . and f (x1) ≤ f (x2)., then the function is monotonic increasing. If 

f (x1) < f (x2)., then the function is called strictly increasing. 

• x1 <  x  2 . and f (x1) ≥ f (x2)., then the function is monotonic decreasing. If 

f (x1) > f (x2)., then the function is called strictly decreasing.
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Fig. 2.16 A  plot  of  the

sigmoid function
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Example 2.19 f  (x)  = x2
. is monotonic increasing in the interval of [0,∞). 

and monotonic decreasing in (−∞, 0].. It is not monotonic in the domain of 

(−∞,∞). (see Fig. a). However,2.12 f (x) = x3
. is monotonic increasing in 

the domain of (−∞,∞). (see Fig. b). 2.12

Definition 2.16 (Odd and Even Functions) A function f (x). is called odd if 

f (−x) = −f (x). for all x in the domain. A function f (x). is called even if 

f (−x) = f (x). for all x in the domain.

An odd function is symmetrical about the origin of the coordinate system. An 

even function is symmetrical about the y-axis of the coordinate system. A function 

does not have to be even or odd. 

Example 2.20 f  (x)  = x3
. is an odd function, because f (−x) = (−x)3 =

−x3 = −f (x)., and it is symmetrical about the origin (see Fig. b). 2.12 f (x) =
x2

. is an even function, because f (−x) = (−x)2 = x2 = f (x)., and it is 

symmetrical about the y-axis (see Fig. a).2.12
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Exercise 

2.9 Is each of the following functions even, odd, or neither even nor odd? 

[Hint: some can be answered by looking at the figures given above.] 

(1) x5 − 2x3 + 3 x .. 

(2) x3 − 2x + 1.. 

(3) ex
.. 

(4) ln x .. 

(5) sin x .. 

(6) cos x .. 

(7) Sigmoid: 1
1+e−x .. 

(8) Hyperbolic Cosine: ex+e−x

2
.. 

(9) Hyperbolic Tangent: ex−e−x

ex+e−x .. 

Definition 2.17 (Period of a Function) Given a function f (x)., if there exists l �=
0., so that f (x + l) = f (x). is valid for any x value in the domain, then the function 

is a periodic function and l is called the period of the function.

Example 2.21 Functions sin x . and cos x . are periodic functions with a period 

of 2π . (see Fig. ). 2.15

Here are two more trigonometric identities: 

. sin(x + 2π) = sin x , (2.4) 

. cos(x + 2π) = cos x. (2.5) 

2.3.4 Inverse Functions 

Definition 2.18 (Inverse Functions) Suppose y = f (x).. If the relation between 

the domain and range values is one-to-one, then a new function f −1
. can be created 

by interchanging the domain and range of f . f −1
. is called the inverse function. It 

can be denoted as x = f −1(y).. However, it is usually convenient to rename the 

domain variable as x and the range variable as y, giving the notation y = f −1(x).. 

The inverse function is symmetric about the line y = x .with the original function.
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Example 2.22 Suppose y = x2
. with x ∈ (−∞,∞). and y ∈ [0,∞).. There 

is no inverse function here since, for instance, both 22 . and (−2)2 . are equal to 

4, and therefore the function is not one to one. This means the inverse relation 

is one to many and so not a function. 

If we limit the domain to be x ∈ [0,∞)., the inverse function is y =
√

x .. 

On the other hand, if we limit the domain to be x ∈ (−∞, 0].,  the  inverse  

function is y = −
√

x .. 

Example 2.23 The logarithmic function f (x) = ln x . is the inverse of the 

exponential function f (x) = ex
. (see Fig. ). 2.14

Example 2.24 Inverse trigonometric functions. 

By convention, we denote the inverse of sin x . as arcsin(x)., and the inverse 

of cos x . as arccos(x).. 

Trigonometric functions are periodic and so not one to one, hence to define 

an inverse function we have to restrict the domain of the original function so 

that it is one to one. This can be done by restricting the domain to [−π
2
,+π

2
]. 

for sin x . and restricting the domain to [0, π ]. for cos x .. The domain of x in 

these two inverse functions for real results is, therefore, [−1, 1].. 

2.3.4.1 How to Find the Inverse Function 

We can apply the following procedure to find the inverse function: 

• Step 1—set y = f (x).; 

• Step 2—make x the s ubject;

• Step 3—replace y with x to obtain f −1(x).. 

Example 2.25 Suppose f (x) = 6x − 3., then this function is one to one and 

so f −1(x). exists. Find f −1(x).. 

Solution 

• Step 1—set y = f (x)., that is y = 6x − 3.. 

(continued)
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Example 2.25 (continued) 

• Step 2—make x the subject, then we have x = y+3
6

.. 

• Step 3—replace y with x to obtain f −1(x)., then we have f −1(x) = x+3
6

.. 

Exercise 

2.10 Find the inverse function for each of the following functions. 

(1) f  (x)  = x3 + 10.; 

(2) f  (x)  = 3 s  in x .; 

(3) f  (x)  = 4 + ln(x + 1).; 

(4) f  (x)  = 
3x 

3x+1
.. 

2.3.5 Composition of Functions 

Definition 2.19 (Composite Functions) Let f and g be functions. f ◦ g . (read as 

f composite g) is called a composite function, denoted as f ◦ g = f (g(x))., where 

the range values of g(x). are the domain values of f . 

That is, to obtain the composition of functions f and g, f ◦ g ., we need to first 

apply the function g to x and then apply function f to g(x).. Similarly, to find the 

composition of functions f and g, g ◦ f ., we need to first apply the function f to x 

and then apply function g to f (x). 

Example 2.26 Let f (x) = 5x + 2. and g(x) = x2
..  Find f ◦ g .. 

Solution 

.f ◦ g = f (g(x)) = f (x2) = 5x2 + 2.
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Exercise 

2.11 Find g ◦ f . for the following given functions g and f .

(1) f  (x)  = 5x + 2. and g(x) = x2
.. 

(2) f  (x)  = 2x . and g(x) = sin x .. 

(3) f  (x)  = ex
. and g(x) = x2

.. 

(4) f  (x)  = ex
. and g(x) = ln x .. 

(5) f  (x)  = cos x . and g(x) = x3
.. 

Remark 2.3 The order in the composition of functions is important because, in 

general, f ◦ g(x). is not the same as g ◦ f (x).. 

Remark 2.4 Two functions cannot always be composited to obtain a new function. 

For example, let f (x) = arcsin x . and g(x) = 2 + x2
.. The composition of the 

functions f and g, f ◦ g(x)., does not exist, because the range value for any x in 

the domain (−∞,∞). of g(x). is a value equal or greater than 2, which cannot be an 

input to f (x) = arcsin x . (see Example 2.24 in Sect. 2.3.4 of this chapter). �. 

2.3.6 Functions of Two or More Variables 

Functions may have more than one independent variable. The domain of a function 

of two or more variables is a set of n-tuples, while the range is one-dimensional with 

an interval of numbers. 

Example 2.27 Let f (x, y) = x3 + 2
√

y . with two independent variables x 

and y, whose domain can be written as follo ws:

. {(x, y)| − ∞ < x < ∞ ∧ y ≥ 0}.

We conclude this chapter here. Readers interested in gaining a deeper funda-

mental understanding of sets and functions are encouraged to explore classical 

textbooks, such as Chapter 2 of [7].



Chapter 3 

Linear Algebra 

In this chapter, we introduce vectors and matrices. We show how to do the basic 

operations on them and why we need to use both vectors and matrices. In this book, 

we only consider vectors and matrices that consist of finite real numbers, and not, 

for instance, complex numbers. 

3.1 Vectors 

The input in most machine learning applications is an ordered list of numbers; for 

instance, as indicated in Case Study 3 in Chap. 1, most neural networks consist of 

one or more layers, and the initial input data goes to the set of first-layer units or 

neurons. This input could be: 

• an ordered list of features of the skin that may determine the ability of the skin 

to absorb medical drugs (such as Nicotine). 

• the list of pixel values from scanning a picture. 

In all cases, this list of ordered values is a vector, and knowledge of how to 

manipulate vectors is essential for a full understanding of the operation of machine 

learning techniques. 

Definition 3.1 (Vector) A vector is an ordered list of numbers and subscripts. Each 

subscript denotes the position of the value in the list. Such a list of values, denoted 

as x = (x1, x2, · · · , xd)., where d is the number of elements in the list, is called a 

linear array or vector .
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Example 3.1 Five students’ Maths grades are listed as follows: 

82, 90, 65, 78., 46. We can denote all the values in the list using only one 

symbol, for instance, x. with different subscripts, that is, x1, x2, x3, x4, x5 .. 

Sometimes a vector is written vertically. For example, 

. 

⎡

⎣

2

1

5

⎤

⎦ .

Note that we use both a pair of square brackets and round brackets to denote 

vectors and matrices in this book. 

3.1.1 Vectors in Physics 

Vectors can be represented by arrows having appropriate lengths and directions and 

emanating from some given reference point. In Fig. 3.1, the reference point is (0, 0)., 

and the ending point is the vector w = (4, 3)., whose magnitude is denoted as ||w||. 
and θ . is the angle from the positive horizontal axis to the vector measured in an 

anticlockwise direction. In Fig. 3.1, the vector has two elements or components and 

is referred to as a vector in R2 ., where R. is the field of real numbers. It is one of the 

infinite number of possible vectors in R2 .. In general, a vector has d elements over 

the field of real numbers in Rd
.. The field of real numbers means we can do addition 

and scalar multiplication of vectors as with all real numbers. 

Fig. 3.1 An illustration of a 

specified vector (4, 3).,  wher  e

‖w‖. denotes the length of the 
vector, and the arrow 

indicates its direction from 

the origin
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3.1.2 Vector Addition 

Considering two vectors in Rd
.: x = (x1, x2, · · · , xd). and w =

(w1, w2, · · · , wd)., their sum is given by 

.x + w = (x1 + w1, x2 + w2, · · · , xd + wd). (3.1) 

Example 3.2 Suppose we have two vectors: a = (2, 4). and b = (5, 1).. 

According to Eq. ( ),3.1 a + b = (2 + 5, 4 + 1) = (7, 5). and a − b =
(2 − 5, 4 − 1) = (−3, 3).. 

Figure shows 3.2 a. and b. in a plane. The reference point is (0, 0). for both 

vectors. For a., the ending point is (2, 4)..  Fo  r b., the ending point (5, 1)..  If  we  

draw a parallelogram with a. and b. as its two sides, then a + b. actually is the 

longer diagonal line; a− b., in fact, can be considered as a+ (−b)., that is the 

shorter diagonal line. 

3.1.3 Scalar-Vector Multiplication 

The scalar product of a vector with a real number k is given by:

.kx = (kx1, kx2, · · · , kxd), (3.2) 

Fig. 3.2 An example of vectors
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where k is any real number. When we multiply a vector with a scalar, we actually are 

compressing or stretching the vector. For instance, if k is 2, then we are doubling the 

length of the vector. We can also change the direction of the vector to the opposite 

direction by multiplying by a negative real number.

Exercise 

3.1 Compute the following: 

(1) 

⎡ 

⎣ 

2 

1 

5 

⎤ 

⎦ + 

⎡ 

⎣ 

3 

6

1

⎤

⎦ ,. and

⎡

⎣

2

1

5

⎤

⎦ −

⎡

⎣

3

6

1

⎤

⎦ .. 

(2) 2 × 

⎡ 

⎣ 

2 

1 

5 

⎤

⎦ ,. and − 2 ×

⎡

⎣

2

1

5

⎤

⎦ .. 

3.2 The Dot Product of Two Vectors 

3.2.1 Dot Product: Algebra Definition 

Definition 3.2 (Dot Product) Considering arbitrary vectors 

w = (w1, w2, · · · , wd). and x = (x1, x2, · · · , xd). in Rd
., 

the dot product (also referred to as an inner product) of w. and x. is denoted and 

defined by 

.w · x =< w, x >= w1 · x1 + w2 · x2 + · · · + wd · xd . (3.3) 

The use of w. and x. is not entirely a coincidence, since it is the type of calculation 

that occurs in machine learning, such as in a neural network. If x. is the input vector 

to a neural network, then each element is multiplied by a corresponding weight from 

a weight vector w., and then all are added together to get a net input. The dot product 

exactly represents this operation. 

Example 3.3 Suppose we have two vectors: a = (2, 4). and b = (5, 1).. 

According to Eq. ( ), we have3.3 a · b = 2 × 5 + 4 × 1 = 14..
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Exercise 

3.2 Compute the dot product for the following vectors: 

(1) m = (−2,−1 ). and n = (1, 3).. 

(2) u = (−2,−1, 3 ). and v = (1, 3,−2).. 

(3) s = (−2, 2 ). and t = (3, 3).. 

(4) a = (4, 3, 5 ). and b = (−4,−3, 5).. 

3.2.2 Norm 

Definition 3.3 (Norm) The norm or length of a vector w. in Rd
., denoted by 

‖w‖., is defined to be the non-negative square root of w · w.. That is, if w =
(w1, w2, · · · , wd)., then 

. ‖w‖ =
√
w · w =

√

w2
1 + w2

2 + · · · + w2
d . (3.4) 

Because a norm is the length of a vector, we can use it to measure the distance 

between two points. 

Example 3.4 Continue Example . 

In Fig. , the distance between two points P and Q is measured as the norm

of

3.3

3.2

a − b., where a. is
−→
OP . and b. is

−−→
OQ.. That is 

. ‖QP ‖ =
√

(2 − 5)2 + (4 − 1)2 = 3
√
2.

The distance between O and M is measured as the norm of
−−→
OM .. That is 

. ‖OM‖ =
√

(7 − 0)2 + (5 − 0)2 =
√
74.

Considering arbitrary vectors w = (w1, w2, · · · , wd). and x =
(x1, x2, · · · , xd). in Rd

., in general, the distance between these two vectors is 

defined as follows: 

.d(w, x) =
√

(w1 − x1)2 + (w2 − x2)2 + · · · + (wd − xd)2. (3.5)
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Fig. 3.3 An illustration of 

distances between two points 

Exercise 

3.3 Compute the distance between the following vectors: 

(1) w = (1, 10, 3, 2 ). and z = (5, 4,−1, 0).. 

(2) a = (4, 3, 5 ). and b = (−4,−3, 5).. 

3.2.3 Vector Magnitude and Direction in R2 . 

Suppose we have a vector u = (x1, y1). (see Fig. 3.4). Its magnitude is its norm, 

that is, ‖u‖ = √
u · u =

√

x2
1 + y2

1 .; its direction is given by θ = tan−1(
y1
x1

).. 

Each component of the vector can be obtained as follows: x1 = ‖u‖ cos(θ). and 

y1 = ‖u‖ sin(θ)., respectively. Note that we define θ . so that 0 ≤ θ < 2π .. 

Fig. 3.4 An illustration of a 

vector, with the point marking 

the vector’s endpoint
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Example 3.5 Suppose we have a vector: a = (2, 4),. then its magnitude is 

‖a‖ = √
a · a =

√
22 + 42 = 2

√
5.; and its direction is θ = tan−1( 4

2
). = 

1.1071. radians. 

In reverse, the components can be found from the magnitude and direction 

as x1 = 2
√
5 cos(1.1071) = 2. and y1 = 2

√
5 sin(1.1071) = 4.. 

Exercise 

3.4 Suppose we have two vectors: u = (2,−3). and v = (5, 4).. 

(1) Compute the direction of each vector. 

(2) Compute the length of each vector. 

(3) Compute the distance between u. and v.. 

3.2.4 Dot Product: Geometric Definition 

Definition 3.4 (Dot Product) Considering two vectors w. and x., their dot product 

can also be defined as follows: 

.w · x = ‖w‖ ‖x‖ cos θ. (3.6) 

where θ . is the angle between w. and x.. 

This definition of dot product can be proved to be equivalent to the previous one, 

Definition 3.2. A detailed explanation can be viewed in [8]. 

Remark 3.1 Definition 3.4 can be used to measure the similarity between two 

vectors in terms of the direction of the vectors. 

• When cos θ = 0., that is, two vectors are at right angles to each other, referred 

to as being orthogonal to each other, we have w · x = 0.. Intuitively, it says two 

vectors have zero similarity. 

• When cos θ = 1., that is, two vectors are pointing in the same direction, we have 

w · x = ‖w‖ ‖x‖.. This is the largest value one can get for w · x.. 
• When cos θ = −1., that is, two vectors are opposed to each other, we have w·x =

−‖w‖ ‖x‖.. This is the most negative value one can get for w · x.. 
�.
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Fig. 3.5 An illustration of 

two  vectors  in  Exam  ple 3.6 

Example 3.6 Calculate the dot product of the two vectors: a = (2, 4). and 

b = (5, 1). in Example using Eq. ( ). 3.63.3 

Solution ‖a‖ =
√
22 + 42 =

√ 

20. and ‖b‖ =
√
52 + 12 =

√
26.. 

Since the direction of a. is θa = tan−1( 4
2
). and the direction of b. is θb =

tan−1( 1
5
)., the angle between a. and b. is θ = θa − θb ≈ 0.9098. radians (see 

Fig. ). The3.5 cos. of 0.9098. radians is about 0.6139.. Thus, we have 

. ‖a‖ ‖b‖ cos θ =
√
20 ×

√
26 × 0.6139 ≈ 14.

This is the same answer as we got before in Example . 3.3

Exercise 

3.5 Compute the dot product for the following vectors using both Eqs. (3.3) 

and (3.6), and check that they are the same. 

(1) u = (2, 2 ). and v = (3, 3).. 

(2) u = (2, 2 ). and w = (−2, 2).. 

(3) u = (2, 2 ). and s = (−2,−2).. 

(4) u = (2, 2 ). and t = (0, 5)..
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3.2.5 Unit Vector 

Definition 3.5 (Unit Vector ) For any non-zero vector u. in Rd
., the vector û = u

‖u‖ . 

is a unit vector in the same direction as u.. The process of finding û. from u. is called 

normalising u.. 

Example 3.7 For a given vector u = (2, 3, 1)., its unit vector can be 

calculated as follows: 

. ̂u = u

‖u‖ = (2, 3, 1)√
22 + 32 + 12

= (
2√
14

,
3√
14

,
1√
14

).

Exercise 

3.6 Calculate the unit vector for each of the following vectors: 

(1) w = (2, 1 ).. 

(2) s = (3, 1 ).. 

(3) t = (3, 1,−1 ).. 

(4) v = (−1, 2, 4, 1 ).. 

3.3 Matrices 

Definition 3.6 (Matrix) A matrix is a rectangular arrangement of numbers made 

up of rows and columns. A matrix with m rows and n columns is called an m × n. 

matrix. Each element in a matrix ( M.) is identified by two indices: the first one 

indicates the specific row, and the second indicates the column. 

A matrix is usually labeled with a (bold) capital letter. For example, 

. M =
[

M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

]

.

M. is a rectangular matrix, and M1,2 . represents the element in the first row and the 

second column of M . A matrix with the same number of rows and columns is called 

a square matrix.
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Example 3.8 Five students’ Maths grades are listed as follows: 

. 82, 90, 65, 78, 46.

Their corresponding English grades are listed as follows: 

. 76, 78, 60, 50, 60.

The matrix looks like 

. M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

82 76

90 78

65 60

78 50

46 60

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where each column corresponds to the specific subject marks and each row 

represents one student’s marks for two subjects. 

Example 3.9 In terms of neural networks, if there are multiple input units, 

then each unit will have a weight vector w.. So, we will need a compact method 

to represent this collection of weights, and matrices represent just what is 

needed. Also, as we shall see in Sect. of Chap. , the multiplication of a 

vector and a matrix of these weights is just the operation we need to represent 

the complete operation of finding the inputs to the first layer of the neural 

network. 

99.2 

3.3.1 Matrix Addition 

The sum of two matrices M. and N., where M. and N. must be the same size, is the 

matrix obtained by adding corresponding elements from M. and N..
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Example 3.10 

. 

[

2 4

0 1

]

+
[

1 4

1 0

]

=
[

2 + 1 4 + 4

0 + 1 1 + 0

]

=
[

3 8

1 1

]

.

3.3.2 Scalar Multiplication 

The product of the matrix M. by a scalar k written k · M. or simply kM. is the matrix 

obtained by multiplying each element of M. by k. 

Example 3.11 

. 5 ×
[

1 2

3 5

]

=
[

5 × 1 5 × 2

5 × 3 5 × 5

]

=
[

5 10

15 25

]

.

Exercise 

3.7 Let 

. U =

⎡

⎣

−3 10

9 0.6

1 −5

⎤

⎦ , V =

⎡

⎣

−1 2

1 0

0 1

⎤

⎦ .

Find 

(1) . U + V.

(2) . 2U − 4V.

(3) . − 3U + 2V.
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Fig. 3.6 An illustration of 

matrix multiplication: 

C = AB. 

3.3.3 Matrix Multiplication 

The product of two matrices A. and B. is somewhat complicated. Each element of the 

resultant matrix (C = AB.) is the dot product of a row from the first matrix A. and 

a column from the second matrix B.. The first index of the element of the resultant 

matrix tells us which row we need to use from the first matrix A., and the second 

index tells us which column we need to use from the second matrix B.. Figure 3.6 

shows an example of C = AB., where A. has two rows and four columns and B. has 

four rows and three columns. c1,2 . is the dot product of the first row of A. and the 

second column of B.. 

Example 3.12 Suppose we have two matrices 

. 

[

2 3 0

1 4 5

]

and

⎡

⎣

1 2

7 3

0 5

⎤

⎦ ,

the following shows how we compute the matrix multiplication: 

.

[

2 3 0

1 4 5

]

⎡

⎣

1 2

7 3

0 5

⎤

⎦ =
[

2 × 1 + 3 × 7 + 0 × 0 2 × 2 + 3 × 3 + 0 × 5

1 × 1 + 4 × 7 + 5 × 0 1 × 2 + 4 × 3 + 5 × 5

]

=
[

23 13

29 39

]

.



3.3 Matrices 59

Fig. 3.7 This is an example 

where the two matrices 

cannot be multiplied 

Remark 3.2 Note that to calculate the multiplication of two matrices, the number 

of columns of the first matrix must equal the number of rows of the second matrix. 

In Fig. 3.7, the first matrix has two columns, while the second matrix has three rows. 

Since they are not equal, one cannot calculate the matrix multiplication of these two 

matrices. �. 

Remark 3.3 If two matrices can be multiplied, the final resultant matrix has the 

same number of rows as the first matrix and the same number of columns as the 

second matrix. �. 

Matrices and vectors can also be multiplied together, providing they have 

appropriate sizes. For instance, a matrix with two columns can be multiplied by a 

two-component vector written vertically (which can be thought of as a matrix with 

just one column). 

Example 3.13 If you want to multiply the matrix

[

8 7

9 6

]

.by the vector

[

3

−4

]

,. 

we get: 

. 

[

8 7

9 6

] [

3

−4

]

=
[

8 × 3 + 7 × (−4)

9 × 3 + 6 × (−4)

]

=
[

−4

3

]

.

Exercise 

3.8 Compute the following: 

(1)

[

10  3  2  

1  2  5

]

+
[

10  7  0  

16 6 9

]

.. 

(2) 3 × 

⎡ 

⎣ 

3  2  

0  1  

5 −1

⎤

⎦ .. 

(continued)
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(3)

[

9 −2 

2  6

] [

2 

1

]

.. 

(4)

[

10  3  2  

1  2  5

]

⎡ 

⎣ 

2  2  

1 8

2 5

⎤

⎦ .. 

3.3.3.1 Properties of Matrix Multiplication 

Let A,B., and C. are n × n.matrices. 

• Associative property of multiplication 

.(AB)C = A(BC). (3.7) 

Example 3.14 Suppose we have 

A =

⎡

⎣

2 2 0.6

1 0.1 8

3 2 10

⎤

⎦., B =

⎡

⎣

2 1 7

5 0 3

1 6 −2

⎤

⎦. and C =

⎡

⎣

3 2 −1

4 −2 10

7 0.5 5

⎤

⎦.. 

We can compute the following: 

. AB =

⎡

⎣

2 2 0.6

1 0.1 8

3 2 10

⎤

⎦

⎡

⎣

2 1 7

5 0 3

1 6 −2

⎤

⎦ =

⎡

⎣

14.6 5.6 18.8

10.5 49 −8.7

26 63 7

⎤

⎦ .

. (AB)C =

⎡

⎣

14.6 5.6 18.8

10.5 49 −8.7

26 63 7

⎤

⎦

⎡

⎣

3 2 −1

4 −2 10

7 0.5 5

⎤

⎦ =

⎡

⎣

197.8 27.4 135.4

166.6 −81.35 436

379 −70.5 639

⎤

⎦ .

Then we compute the following: 

. BC =

⎡

⎣

2 1 7

5 0 3

1 6 −2

⎤

⎦

⎡

⎣

3 2 −1

4 −2 10

7 0.5 5

⎤

⎦ =

⎡

⎣

59 5.5 43

36 11.5 10

13 −11 49

⎤

⎦ .

. A(BC) =

⎡

⎣

2 2 0.6

1 0.1 8

3 2 10

⎤

⎦

⎡

⎣

59 5.5 43

36 11.5 10

13 −11 49

⎤

⎦ =

⎡

⎣

197.8 27.4 135.4

166.6 −81.35 436

379 −70.5 639

⎤

⎦ .

That is, we have (AB)C = A(BC)..
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• Distributive properties 

.C(A + B) = CA + CB. (3.8) 

Example 3.15 Continue with matrices in Example .  We  ha  ve3.14

. A + B =

⎡

⎣

2 2 0.6

1 0.1 8

3 2 10

⎤

⎦ +

⎡

⎣

2 1 7

5 0 3

1 6 −2

⎤

⎦ =

⎡

⎣

4 3 7.6

6 0.1 11

4 8 8

⎤

⎦ .

. C(A + B) =

⎡

⎣

3 2 −1

4 −2 10

7 0.5 5

⎤

⎦

⎡

⎣

4 3 7.6

6 0.1 11

4 8 8

⎤

⎦ =

⎡

⎣

20 1.2 36.8

44 91.8 88.4

51 61.05 98.7

⎤

⎦ .

In addition, we can compute and get the following: 

. CA =

⎡

⎣

3 2 −1

4 −2 10

7 0.5 5

⎤

⎦

⎡

⎣

2 2 0.6

1 0.1 8

3 2 10

⎤

⎦ =

⎡

⎣

5 4.2 7.8

36 27.8 86.4

29.5 24.05 58.2

⎤

⎦ ,

. CB =

⎡

⎣

3 2 −1

4 −2 10

7 0.5 5

⎤

⎦

⎡

⎣

2 1 7

5 0 3

1 6 −2

⎤

⎦ =

⎡

⎣

15 −3 29

8 64 2

21.5 37 40.5

⎤

⎦ ,

and 

. CA + CB =

⎡

⎣

20 1.2 36.8

44 91.8 88.4

51 61.05 98.7

⎤

⎦ .

That is, we have C(A + B) = CA + CB.. 

.(A + B)C = AC + BC. (3.9)
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Example 3.16 Continue with matrices in Example again. We have 

calculated

3.14 

(A + B). in Example . So, we can compute 3.15

. (A + B)C =

⎡

⎣

4 3 7.6

6 0.1 11

4 8 8

⎤

⎦

⎡

⎣

3 2 −1

4 −2 10

7 0.5 5

⎤

⎦ =

⎡

⎣

77.2 5.8 64

95.4 17.3 50

100 −4 116

⎤

⎦ .

In addition, we can compute and get the following: 

. AC =

⎡

⎣

2 2 0.6

1 0.1 8

3 2 10

⎤

⎦

⎡

⎣

3 2 −1

4 −2 10

7 0.5 5

⎤

⎦ =

⎡

⎣

18.2 0.3 21

59.4 5.8 40

87 7 67

⎤

⎦ ,

. BC =

⎡

⎣

2 1 7

5 0 3

1 6 −2

⎤

⎦

⎡

⎣

3 2 −1

4 −2 10

7 0.5 5

⎤

⎦ =

⎡

⎣

59 5.5 43

36 11.5 10

13 −11 49

⎤

⎦ ,

and 

. AC + BC =

⎡

⎣

77.2 5.8 64

95.4 17.3 50

100 −4 116

⎤

⎦ .

That is, we have (A + B)C = AC + BC.. 

3.3.4 Matrices as Linear Transformations 

Now you know how to do matrix addition and matrix multiplication. But what is a 

matrix? Why do you need to use matrices? There are several different very useful 

properties of matrices. In this book, let us consider two of them. First, let us consider 

matrices that model linear transformations. We will consider linear transformations 

in just two dimensions. 

Suppose you want to rotate the triangle with vertices u =
[

1

3

]

., v =
[

2

3

]

. and 

w =
[

1

1

]

. through 90◦
. anticlockwise about the origin as shown in Fig. 3.8.
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Fig. 3.8 This is an example 

of matrices used to represent 

linear transformations 

As you can see in Fig. 3.8,

[

1

3

]

. has transformed to

[

−3

1

]

.,

[

2

3

]

. to

[

−3

2

]

. and 

[

1

1

]

. to

[

−1

1

]

.. It looks as if all three points follow the following rule: 

. 

[

x

y

]

is transformed to

[

−y

x

]

.

This can be expressed as a matrix equation: 

. 

[

x′

y′

]

=
[

0 −1

1 0

] [

x

y

]

,

where the matrix

[

0 −1

1 0

]

. represents a 90◦
. anticlockwise rotation about the origin. 

If we wish to have a more general rotation with any degree ( θ .) about the origin, we 

can use the following matrix: 

. 

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

.

Matrices can also represent other linear transformations, such as reflections.



64 3 Linear Algebra

Fig. 3.9 Vector u. is rotated 

by 45◦
. in the anticlockwise 

direction around the origin 

Example 3.17 Suppose there is a vector u =
[

10

0

]

.. You wish to rotate u. 

through 45◦
. in the anticlockwise direction around the origin. This is illustrated 

in Fig. , where the original vector is along the horizontal axis, and the new 

vector is located at

3.9

u′ =
[

7.1

7.1

]

. after the rotation. The new position keeping 

one decimal place is calculated as follows: 

. u′ =
[

cos(45◦) − sin(45◦)
sin(45◦) cos(45◦)

] [

10

0

]

=
[

7.1

7.1

]

.

3.3.5 Representations of Simultaneous Equations 

Let us look at the second useful property of matrices by considering the following 

example. Suppose we have two TV producers (A and B) that send different 

proportions of TVs they produce to three warehouses (1, 2, and 3), as shown in 

Fig. 3.10. 

We can model this as a matrix shown as follows: 

.U =
[

0.5 0.5 0.0

0.3 0.3 0.4

]

,
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Fig. 3.10 Two TV producers 

(A and B) that send different 

proportions of TVs they 

produce to three warehouses 

(1,  2,  an  d 3)

Fig. 3.11 The three 

warehouses then forward TVs 

in different proportions to 

four shops (W,X, Y, and Z .) 

where each row represents one of the two producers, each column represents one of 

the three warehouses, and each element in the matrix is the proportion of the TVs 

each producer sends to the specific warehouse. 

The three warehouses then forward TVs in different proportions to four shops 

(W,X, Y, and Z .), as shown in Fig. 3.11. Similarly, we can model this as a matrix 

as well: 

. V =

⎡

⎣

0.3 0.7 0.0 0.0

0.0 0.4 0.6 0.0

0.0 0.0 0.5 0.5

⎤

⎦ .

Notice that the number of columns in the first matrix, U., is equal to the number of 

rows in the second one, V., so that they can be multiplied together. This allows us to 

calculate the proportions of the TVs that would be sent to the shops in the simplified 

situation where the two producers send TVs directly to the shops. The following
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shows the product of these two matrices: 

. UV =
[

0.5 0.5 0.0

0.3 0.3 0.4

]

⎡

⎣

0.3 0.7 0.0 0.0

0.0 0.4 0.6 0.0

0.0 0.0 0.5 0.5

⎤

⎦ =
[

0.15 0.55 0.30 0.00

0.09 0.33 0.38 0.20

]

.

3.3.6 Multiplying a Matrix by Itself 

Definition 3.7 (Square Matrix) A square matrix is a matrix with the same number 

of rows as columns. 

An n × n. square matrix is called a square matrix of order n. For example, 

. A =
[

1 5

2 4

]

is a square matrix of order 2,

and 

. B =

⎡

⎣

10 1 2

8 3 5

6 0 1

⎤

⎦ is a square matrix of order 3.

3.3.6.1 Multiplying a Matrix by Itself 

Only square matrices can be multiplied by themselves, since the number of columns 

of the first matrix must equal the number of rows of the second matrix. Let A be a 

square matrix

[

1 5

2 4

]

..  We  ha  ve

. A2 = AA =
[

1 5

2 4

] [

1 5

2 4

]

=
[

11 25

10 26

]

,

. A3 = AAA =
[

1 5

2 4

] [

1 5

2 4

] [

1 5

2 4

]

=
[

61 155

62 154

]

,

.

....
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3.3.7 Diagonal and Trace 

Suppose we have 

. A =

⎡

⎢

⎣

a11 · · · a1n
...

. . .
...

an1 · · · ann

⎤

⎥

⎦
.

Definition 3.8 (Diagonal) The diagonal of a matrix consists of the elements with 

the same subscripts, that is, a11, a22, · · · , ann.. 

Example 3.18 Taking the matrix A. defined in Sect. , its diagonal ele-

ments are 1 and 4. 

3.3.6

Definition 3.9 (Trace) The trace of a square matrix A., denoted as tr(A).,  is  the  sum  

of the diagonal elements, that is, tr(A) = a11 + a22 + · · · + ann .. 

Example 3.19 Again, considering the matrix A. in Sect. , its trace,3.3.6 tr(A)., 

is 1 + 4 = 5.. 

Exercise 

3.9 Given 

. A =

⎡

⎣

1 5 0

2 4 10

−1 2 3

⎤

⎦ and B =

⎡

⎣

10 1 2

8 3 5

6 0 1

⎤

⎦ ,

compute: 

(1) tr(A).. 

(2) tr(B)..
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3.3.8 Diagonal Matrices 

Definition 3.10 (Diagonal Matrix) A diagonal matrix is a matrix in which the 

entries outside the main diagonal are all zeros. 

Let us have a look at the following two examples. 

. A =

⎡

⎣

1 0 0 0

0 3 0 0

0 0 9 0

⎤

⎦ and B =

⎡

⎣

1 0 0

0 3 0

0 0 9

⎤

⎦ .

A. is called a rectangular diagonal matrix, where the number of rows is not equal to 

the number of columns. B. is called a symmetric diagonal matrix, which is a square 

matrix. 

3.3.9 Determinants 

Definition 3.11 (Determinant) Each n-square matrix A = [aij ]., where i =
1, · · · , n. and j = 1, · · · , n., is assigned a special scalar called the determinant 

of A., denoted by det(A). or |A|. or 

. 

a11 · · · a1n
...

. . .
...

an1 · · · ann

.

Note that an n×n. array of scalars enclosed by straight lines called a determinant 

of order n, is not a matrix but denotes the determinant of A.. A general way to 

calculate the determinant of order n can be learned from [8]. This book covers how 

to compute determinants of order 1, 2, and 3 only. 

3.3.9.1 Determinants of Order 1, 2, and 3 

• Determinant of order 1 

The determinant of order 1 is defined as follows: 

. |a11| = a11.

That is, the determinant of a 1 × 1.matrix is that number itself.
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• Determinant of order 2 

The determinant of order 2 is defined as the product of elements along the main 

diagonal minus the product of elements along the reverse diagonal. That is 

.
a11 a12

a21 a22
= a11a22 − a12a21. (3.10) 

Example 3.20 Suppose M =
[

3 −1

4 11

]

.. Compute the determinant of M.. 

Solution 

. 
3 −1

4 11
= 3 × 11 − (−1) × 4 = 37.

Exercise 

3.10 Compute the determinant of the following matrices. 

(1) N =
[

13 1 

−4  2

]

.. 

(2) U =
[

1  1  

5  2  

]

.. 

(3) V =
[

10 4 

5  2

]

.. 

• Determinant of order 3 

Considering a 3 × 3. matrix A =

⎡

⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦., its determinant is defined as 

follows: 

. det(A) = |A| =
a11 a12 a13

a21 a22 a23

a31 a32 a33

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31

− a11a23a32 − a12a21a33. (3.11)



70 3 Linear Algebra

Fig. 3.12 An illustration of 

the calculation of the 

determinant of order 3 

Looking at Eq. (3.11), we can see six terms on the right-hand side of the equation. 

Each of these terms is a product of three elements. It may be easier to see which 

three elements from Fig. 3.12. Here, we copy the matrix first and add the first 

two columns after the third column. Then, we draw the main diagonal line for 

every three columns, and similarly, we can draw the reverse diagonal line. The 

first three terms in the equation are the products along the main diagonals, and 

the last three are the products along the reverse diagonals. We add up the first 

three products and subtract the last three products. 

Example 3.21 Suppose X =

⎡

⎣

3 −1 10

4 2 0.5

2.5 −2 6

⎤

⎦.. Compute the determinant of X.. 

Solution 

. det(A) = 3 × 2 × 6 + (−1) × 0.5 × 2.5 + 10 × 4 × (−2) − 10 × 2 × 2.5

− 3 × 0.5 × (−2) − (−1) × 4 × 6

= −68.25.

Exercise 

3.11 Compute the determinant of the following matrices. 

(1) W = 

⎡ 

⎣ 

3  1  0.5 

−4  2  10  

3  0  .2 6

⎤

⎦ .. 

(2) X = 

⎡ 

⎣ 

1  1  0  

5  2  3  

− 4 10 0.1

⎤

⎦ ..
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3.3.9.2 What Is the Determinant for? 

As you will see soon, the determinant can help us find the inverse of a matrix. In 

addition, it can tell us information about the matrix that is useful in solving systems 

of linear equations. 

3.3.10 Identity and Inverse Matrices 

3.3.10.1 Identity Matrices 

Definition 3.12 (Identity Matrix) Square matrices with all zeroes except 1s on the 

main diagonal are identity matrices. 

For example, 

. I2 =
[

1 0

0 1

]

, I3 =

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦ , and I4 =

⎡

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎦

,

where  we  u  se I. to denote each identity matrix and a value as the subscript denotes 

the size of the matrix. 

Multiplying a matrix A. by an identity matrix I. equals the original matrix A.. That 

is, 

. AI = IA = A.

3.3.10.2 Inverse Matrices 

Given a matrix A., can we find an inverse matrix A−1
. such that AA−1 = A−1A = I.? 

Sometimes we can, but only square matrices can have inverses, and not all square 

matrices do. Finding inverses is complicated, so we shall only consider inverses for 

2 × 2.matrices in this book. 

Given a 2× 2.matrixM =
[

a b

c d

]

., the determinant of this matrix is calculated as 

follows: 

. det(M) = ad − bc.
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If the determinant is not zero, then the inverse exists, and it can be calculated by 

swapping the elements on the main diagonal, changing the signs of the elements on 

the reverse diagonal, and then dividing by the determinant, as shown: 

. M−1 = 1

det(M)

[

d −b

−c a

]

= 1

ad − bc

[

d −b

−c a

]

.

Example 3.22 If A =
[

1 5

2 4

]

., then its determinant is 4 − 10 = −6..  So  the  

inverse matrix is

. A−1 = 1

−6

[

4 −5

−2 1

]

.

You can now confirm that AA−1 = A−1A = I.. 

Exercise 

3.12 Compute the inverse for the following matrices when it exists. 

(1) A =
[

−4 −3 

2  6

]

.. 

(2) B =
[

2  1  

10 5 

]

.. 

(3) C =
[

13 1 

−4  2

]

.. 

(4) I =
[

1  0  

0  1  

]

.. 

3.3.11 Matrix Transposition 

In some circumstances, you need to flip a matrix around its main diagonal, that is, 

to exchange rows for columns. 

Definition 3.13 (Matrix Transposition) The transpose of a matrix A., written as 

AT
., is formed by swapping the rows and columns. 

If A. is m × n., then AT
. is n × m..
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Example 3.23 Suppose a matrix of size 3 by 2 is A =

⎡

⎣

1 4

2 5

3 6

⎤

⎦., then its 

transpose is a matrix of size 2 by 3, that is, AT =
[

1 2 3

4 5 6

]

.. 

Exercise 

3.13 Find the transpose of each of the following matrices: 

(1) A = 

⎡ 

⎣ 

1  2  10  

4  5  −1 

7 0 −3

⎤

⎦.. 

(2) B =
[

−1  4  −13 

0  5  8

]

.. 

(3) C = 

⎡ 

⎢

⎢

⎣ 

10 

−2 

23 

−1 

⎤ 

⎥

⎥

⎦

.. 

(4) D =
[

1, 0, −0.7, 10
]

.. 

Remark 3.4 If AT = A., then A. must be square, and it is called a symmetric 

matrix. I. is a symmetric matrix. �. 

3.3.11.1 Properties 

Let A., B., and C. are matrices . It can be shown that: 

(1) (AT )T = A.. 

(2) (A + B)T = AT + BT
.. 

(3) (AB)T = BT A T .. 

(4) (ABC)T = CT BT AT
.. 

(5) If A. is a square matrix, then det(A) = det(AT )..
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Example 3.24 We will illustrate the second and third of properties shown in 

Sect. using 2 by 2 matrices. 

Suppose

3.3.11.1 

A =
[

a b

c d

]

., and B =
[

e f

g h

]

.. 

Then, A + B =
[

a + e b + f

c + g d + h

]

., and its transpose is (A + B)T =
[

a + e c + g

b + f d + h

]

.. 

Also, AT + BT =
[

a c

b d

]

+
[

e g

f h

]

=
[

a + e c + g

b + f d + h

]

.. 

Thus, we observe that (A + B)T = AT + BT
.. 

Next, AB =
[

ae + bg af + bh

ce + dg cf + dh

]

., and (AB)T =
[

ae + bg ce + dg

af + bh cf + dh

]

.. 

Also, BT AT =
[

e g

f h

] [

a c

b d

]

=
[

ae + bg ce + dg

af + bh cf + dh

]

.. 

Thus, we observe that (AB)T = BT AT
.. 

In the case of vectors, the transpose of a vector just turns a column (vertical) 

vector into a row (horizontal) vector and a row vector into a column one. 

Example 3.25 If a =

⎡

⎣

1

2

3

⎤

⎦., then aT = (1, 2, 3).. 

In this case, the dot product a · a = aT a = 14.. 

Remark 3.5 In practice, the standard vector is assumed to be a column vector. So 

technically, a row vector is always the transpose of a vector, that is aT
., where a. is a 

column vector. �. 

Example 3.26 Suppose A. is a matrix of size m × n., B. and C. are matrices of 

n × n.. Prove A(B + C)AT = ABAT + ACAT
.. 

Solution Applying Eqs. ( ) and ( ), we have 3.93.8

.A(B + C)AT = (AB + AC)AT

= ABAT + ACAT .
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Example 3.27 Suppose the inverse of A. exists. Prove 

.(A−1)T = (AT )−1. (3.12) 

We need to show that (A−1)T . acts like the inverse of AT
.. We will make 

use of the third property of transposition, namely, (AB)T = BT AT
..  First  :

. AT (A−1)T = (A−1A)T = IT = I.

Then: 

. (A−1)T AT = (AA−1)T = IT = I.

So multiplying AT
. on either side by (A−1)T . gives the identity matrix I..  This  

proves that (A−1)T = (AT )−1
.. 

3.3.12 Case Study 1 (Continued) 

In Sect. 1.3.1 of Chap. 1,  we  have X =

⎡

⎣

1 −5

1 5

1 0

⎤

⎦. and y =

⎡

⎣

10

30

20

⎤

⎦., and we need to 

compute the coefficients of the least-squares regression method using the following 

equation: 

. a = (XT X)−1XT y.

To compute a., we need to obtain the transpose of X. and the inverse of XT X. first 

and then substitute them to the equation as shown as follows: 

• Swap rows and columns of X. to obtain the transpose of X.: 

. XT =
[

1 1 1

−5 5 0

]

.

• Compute the matrix multiplication of XT X.: 

.XT X =
[

1 1 1

−5 5 0

]

⎡

⎣

1 −5

1 5

1 0

⎤

⎦ =
[

3 0

0 50

]

.
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• Compute the inverse of XT X.: 

Since the determinant of XT X. is 150, the inverse of XT X. exists and equals: 

. (XT X)−1 = 1

150

[

50 0

0 3

]

.

• Substitute (XT X)−1
., XT

., and y. into the equation of a., and obtain the following: 

. a = 1

150

[

50 0

0 3

] [

1 1 1

−5 5 0

]

⎡

⎣

10

30

20

⎤

⎦

= 1

150

[

50 50 50

−15 15 0

]

⎡

⎣

10

30

20

⎤

⎦

= 1

150

[

3000

300

]

=
[

20

2

]

.

Hence, we get the vector a.with intercept 20 and gradient 2. 

3.3.13 Orthogonal Matrix 

Orthogonal has been mentioned when we introduce the concept of the dot product 

in Sect. 3.2.4, where it states that two vectors are orthogonal to each other when 

their dot product equals zero. 

Definition 3.14 (Orthonormal Vectors) Suppose we have m−.vectors x1, x2, · · · ,

xm .. These vectors are orthonormal if 

• each vector has unit norm, that is ‖xi‖ = 1, i = 1, 2, · · · , m.. 

• they are mutually orthogonal, that is xi · xj = 0.,  if i 	= j, i, j = 1, 2, · · · , m.. 

Example 3.28 Given the following three vectors, 

. x1 =

⎡

⎣

0

0

1

⎤

⎦ , x2 = 1√
2

⎡

⎣

−1

1

0

⎤

⎦ , x3 = 1√
2

⎡

⎣

1

1

0

⎤

⎦ ,

the norm of each of these vectors is equal to 1, and they are mutually 

orthogonal to each other. That is, their dot products are all equal to zero. A 

(continued)
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Example 3.28 (continued) 

matrix, denoted as A., including these three columns, is an orthogonal matrix 

as shown as follows: 

. A =

⎡

⎢

⎣

0 −1√
2

1√
2

0 1√
2

1√
2

1 0 0

⎤

⎥

⎦
.

Note that since xi · xi = 1. for i = 1, 2, 3. and xi · xj = 0. for i 	= j, i, j =
1, 2, 3. then AT A = AAT = I., as you can check for yourself. 

Exercise 

3.14 Let mT
1 =

[

2√
5
, 0, − 1√

5

]

, mT
2 =

[

− 1√
5
, 0, − 2√

5

]

., and mT
3 =

[

0, 1, 0
]

..Are these three vectors orthogonal to each other? 

Definition 3.15 (Orthogonal Matrix) A square matrix A. with orthonormal 

columns is called orthogonal. This is equivalent to the following definition: 

. AT A = AAT = I,

where I. is the identity matrix. 

Remark 3.6 Since AA−1 = I. if A−1
. exists (see Sect. 3.3.10.2), and AAT = I. (see 

Definition 3.15), we obtain AT = A−1
., when A. is a square matrix. �. 

Remark 3.7 Orthogonal vectors (matrix) are useful to build up a new coordinate 

system. �. 

Exercise 

3.15 For the following matrices, 

• Q =
[

1√
10 

3√
10 

− 
3√
10 

1√
10 

]

. and 

• Q =
[

4√
5 

3√
5 

− 
3√
5 

4√
5

]

,. 

(continued)
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compute: 

(1) QT 
.. 

(2) Q−1
.. 

(3) Is Q. an orthogonal matrix? 

3.4 Linear Combination 

3.4.1 Vector Spaces 

To motivate this section, let us just start by considering vectors in R2 .. Without going 

into all the details, it is fairly obvious that: 

• For any two vectors x,w ∈ R2 . then their sum x+w. is also ∈ R2 . [called Closure]. 
• There is a “zero vector” 0 = (0, 0)T ∈ R2 . that, when added to any vector, does 

not change it [called Identity]. 

• For any vector, there is a vector called its inverse, that is: for v ∈ R2 . then −v. is 

∈ R2 . so that v + (−v) = 0.. 

The operation of vector addition is associative and communative; that is, it does not 

matter what order you add them to; you always get the same result. 

Also, in terms of scalar multiplication: 

• Multiplying any vector v ∈ R2 . by a scalar gives a result which is also ∈ R2 . 
[Closure again]. 

• Multiplying any vector by the scalar 1 leaves it unchanged [Identity again]. 

• Multiplying a vector by one scalar then another gives the same result as 

multiplying the scalars together first, that is, k(jx) = (kj)x. [Associative again]. 

• Distributivity: k(x + w) = kx + kw. and (k + j)x = kx + jx.. 

A bit more thought says that the same applies to R3 . and in fact to any Rn.. 

To generalise these ideas, we can define a Vector Space: 

Definition 3.16 (Vector Spaces) Let V be a non-empty set with two operations:

• vector addition: this assigns to any x,w ∈ V . a  sum x + w ∈ V .. So, vector 

addition is closed. Vector addition is also associative and communicative and has 

an identity and inverse. 

• scalar multiplication: this assigns to any x ∈ V ., a product kx ∈ V ., where 

k is a scalar. So, scalar multiplication is closed. Scalar multiplication is also 

Associative and Distributive and has an Identity .

Lots of structures are vector spaces. For example, R2 ., R3 ., Rn
., matrix space, poly-

nomials and function space, and many more are all vector spaces. The advantage of
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defining an abstract vector space is that once you have proved something for vector 

spaces in general, then it applies to all the particular vector spaces. 

Definition 3.17 (Subspaces) Suppose W is a subset of a vector space V . Then W 

is a subspace of V if the following tw o conditions hold:

• the zero vector belongs to W . 

• for x,w ∈ W . 

1. the sum x + w ∈ W .. 

2. the multiple kx ∈ W ., where k is a scalar .

Example 3.29 Consider the vector space R3 ..  Let  W consist of all vectors 

whose elements are equal in R3 ., such as (4, 4, 4).. That is W is the line through 

the origin O and the point (1, 1, 1).. Clearly O = (0, 0, 0). belongs to W , since 

all entries in O are equal. Further, suppose we have two arbitrary vectors in 

W , x = [a, a, a]. and y = [b, b, b].. Then, for any real value scalar, k,  we  ha  ve
x + y = [a + b, a + b, a + b] ∈ W . and kx = (ka, ka, ka) ∈ W..Thus, W is a 

subspace of R3 .. 

Example 3.30 Suppose S =
{[

x1

x2

]

∈ R2|x1 ≥ 0

}

..  Is  S a subspace of R2
.? 

Let us check the conditions. 

• S contains the zero vector

[

0

0

]

.. 

• Suppose u =
[

a

b

]

. and v =
[

c

d

]

. are two vectors in S.  We  ha  ve

. 

[

a

b

]

+
[

c

d

]

=
[

a + c

b + d

]

.

Since a ≥ 0. and c ≥ 0.,  we  have a + c ≥ 0.. Therefore, the sum of u+ v. 

is a vector of S. 

• However, when multiplying any vector, u.,  in  S,  by − 1., the direction of 

the resultant vector, v = −u., is opposite to u.. The vector v. is not in the 

area covered by S anymore. In Fig. , the vector3.13 (2, 1). is an element 

of S, since x1 = 2 > 0.. After multiplying by − 1., the resultant vector, 

(−2,−1)., is not an element of S since the value of x1 = −2 < 0..  So  S is 

not a subspace of R2
..
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Fig. 3.13 An example of a vector space (with the shaded region representing x1 ≥ 0.) that is not a 

subspace of R2 ., as explained in Example 3.30 

Exercise 

3.16 

(1) Suppose S1 =
{

⎡

⎣

x1

x2

0

⎤

⎦ ∈ R3
}

..  I  s S1 . a subspace of R
3
.? 

(2) Suppose S2 =
{

⎡

⎣

x1

0

0

⎤

⎦ ∈ R3
}

..  I  s S2 . a subspace of R
3
.? 

(3) Suppose S3 =
{ [

x1

0

]

∈ R2
}

..  I  s S3 . a subspace of R
2
.? 

3.4.2 Linear Combinations and Span 

Definition 3.18 (Linear Combination) v. is a linear combination of a set of vectors 

u1,u2, · · · ,ud . if there is a solution to the vector equation 

.v = x1u1 + x2u2 + · · · + xdud , (3.13) 

where x1, x2, · · · , xd . are unknown scalars.
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Fig. 3.14 An illustration of a 

linear combination of two 

vectors, as explained in 

Example 3.31 

Example 3.31 See Fig. . We can express3.14 v =
[

4

5

]

. in R2 . as a linear 

combination of the vectors u1 =
[

2

1

]

. and u2

[

0

2

]

. with x1 = 2. and x2 = 1.5., 

that is, 

. v = 2u1 + 1.5u2.

v. is the longer diagonal of the parallelogram constructed by 2u1 . and 1.5u2 .. 

3.4.2.1 Solving Simultaneous Equations to Find Linear Coefficients 

Suppose we want to express vT = (4,−2, 2). in R3 . as a linear combination of the 

vectors uT
1 = (1, 2, 1)., uT

2 = (2, 1, 2)., and uT
3 = (−1, 1, 1).. We seek scalars x1 ., x2 ., 

and x3 ., such that v = x1u1 + x2u2 + x3u3 ., that is, 

.

⎡

⎣

4

−2

2

⎤

⎦ = x1

⎡

⎣

1

2

1

⎤

⎦ + x2

⎡

⎣

2

1

2

⎤

⎦ + x3

⎡

⎣

−1

1

1

⎤

⎦ .
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Since there are three unknown variables, we need to solve three equations: 

. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1 + 2x2 − x3 = 4

2x1 + x2 + x3 = −2

x1 + 2x2 + x3 = 2

.

We can solve simultaneous equations by elimination and substitution. The solution 

is x1 = −5
3

, x2 = 7
3
, . and x3 = −1., so we can express v. as follows: 

. v = −5

3
u1 + 7

3
u2 − u3.

3.4.2.2 Span 

The next question is: if given a set of vectors, how big is the space of the set of all 

linear combinations of the vectors? This is called the span of the set of vectors. 

Example 3.32 Describe the space formed by the span(u)., where u =
[

1

1

]

.. 

Solution Any linear combination of

[

1

1

]

. is x1u. which is:

[

x1

x1

]

., where x1 ∈

R.. Therefore, span(u). scales up or scales down along one line, where the two 

elements in the vector are equal to each other. So the span is a line. 

Example 3.33 Describe the space formed by the span(u, v)., where u =
[

1

1

]

., 

and v =
[

−2

−2

]

.. 

Solution Any linear combination of

[

1

1

]

. and

[

−2

−2

]

. is x1u + x2v. which is: 

x1

[

1

1

]

+ x2

[

−2

−2

]

=
[

x1 − 2x2

x1 − 2x2

]

., where x1, x2 ∈ R.. Therefore, span(u, v). 

scales up or scales down along one line, where both elements in the vector are 

equal to x1 − 2x2 .. Again, the span is a line.
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Example 3.34 Describe the space formed by the span

( [

1

1

]

,

[

0

2

] )

.. 

Solution Any linear combination of

[

1

1

]

. and

[

0

2

]

. is: x1

[

1

1

]

+ x2

[

0

2

]

=
[

x1

x1 + 2x2

]

., where x1, x2 ∈ R.. Therefore, span

( [

1

1

]

,

[

0

2

] )

= R2 ., that is, 
any vector including two elements with arbitrary real numbers. So the span is 

the  whole  of R2.. 

Definition 3.19 (Spanning Sets) Let V be a vector space. Vectors u1,u2, · · · ,ud . 

are said to form a spanning set of V if every v ∈ V . is a linear combination of 

the vectors u1,u2, · · · ,ud .. That is, the spanning set of u1,u2, · · · ,ud . is the whole 

of V . 

In Example 3.34, u =
[

1

1

]

., and v =
[

0

2

]

∈ R2 . form a spanning set for R2 ..  Of  

course, there are many vectors in R2 . that would form a spanning set for R2 ..  The  

simplest example might be the two vectors: u =
[

1

0

]

. and v =
[

0

1

]

.. 

3.5 Linear Dependence and Independence 

3.5.1 Linear Dependence and Independence 

Intuitively, vectors are linearly dependent if one of them “depends” on the others; 

that is, it is a linear combination of the others. Vectors are linearly independent 

if none of them depends on the others; that is, there cannot exist any linear 

combination of some of the vectors that add up to another one. 

Definition 3.20 (Linear Dependence and Independence) Consider the vector 

equation 

.x1u1 + x2u2 + · · · + xdud = 0, (3.14) 

where u1,u2 . and ud . are vectors with n elements, and x1, x2, · · · , xd . are scalars. The 

vectors u1,u2, · · · ,ud . are called linearly independent if x1 = 0, x2 = 0, · · · ,. 

xd = 0. is the only solution to Eq. (3.14) The vectors u1,u2, · · · ,ud . are linearly 

dependent if not all x1, x2, · · · , xd . are zeros.
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Remark 3.8 When u1,u2, · · · ,ud . are linearly independent, 

• x1 = 0,  x2 = 0, · · · , xd = 0. is the only solution to Eq. (3.14). On the other 

hand, when u1,u2, · · · ,ud . are linearly dependent, x1 = 0, x2 = 0, · · · , xd = 0. 

is not the only solution. 

• Any of these vectors cannot be expressed as a linear combination of other 

elements. That is to say, for example, one cannot rewrite Eq. (3.14)  a  s u1 =
− x2

x1
u2 − · · · − xd

x1
ud . since x1 = 0.. On the other hand, if all the xi . are not 

zero, then Eq. (3.14) can be rearranged to express one of the vectors in terms of a 

linear combination of the others, so that they are linearly dependent. For example, 

suppose x2 	= 0., then we can write that u2 = − x1
x2
u1 − x3

x2
u3 − · · · − xd

x2
ud ., that 

is, u2 . is a linear combination of the others. 

• Two vectors u. and w. are linearly dependent if and only if one is a multiple of the 

other. For example, suppose we have u = (1,−3). and w = (3,−9).. u. and w. are 

linearly dependent since w = 3u.. �. 

Example 3.35 Let us consider a 3-dimensional Cartesian coordinate system 

with X, Y , and Z axes. We have three vectors: the first one is

⎡

⎣

1

0

0

⎤

⎦., the second 

one

⎡

⎣

0

1

0

⎤

⎦., and the third one

⎡

⎣

0

0

1

⎤

⎦.. They are the unit vector along X, Y , and Z 

axis lines. Now the question is: Can we find a solution for a, b, and c, so that 

the following linear system is va lid?

. a

⎡

⎣

1

0

0

⎤

⎦ + b

⎡

⎣

0

1

0

⎤

⎦ + c

⎡

⎣

0

0

1

⎤

⎦ =

⎡

⎣

0

0

0

⎤

⎦ .

The only solution to the above simultaneous equations is a = b = c = 0.. 

Therefore,

⎡

⎣

1

0

0

⎤

⎦.,

⎡

⎣

0

1

0

⎤

⎦. and

⎡

⎣

0

0

1

⎤

⎦. are linearly independent.
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Example 3.36 Suppose we have three vectors:

⎡

⎣

1

1

0

⎤

⎦.,

⎡

⎣

1

3

2

⎤

⎦. and

⎡

⎣

4

9

5

⎤

⎦., and 

consider the following: 

. a

⎡

⎣

1

1

0

⎤

⎦ + b

⎡

⎣

1

3

2

⎤

⎦ + c

⎡

⎣

4

9

5

⎤

⎦ =

⎡

⎣

0

0

0

⎤

⎦ ,

which can be written as follows: 

. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a + b + 4c = 0

a + 3b + 9c = 0

2b + 5c = 0

.

If we subtract the first equation from the second equation, we obtain 2b +
5c = 0., which is identical to the third one. The solution to these simultaneous 

equations must satisfy 2b + 5c = 0.. That is, there are many solutions. For 

example, a = 3, b = 5, c = −2. or a = −6, b = −10, c = 4.. In fact, when 

a = b = c = 0., the linear system is also valid. However, this is not the only 

solution. Therefore,

⎡

⎣

1

1

0

⎤

⎦.,

⎡

⎣

1

3

2

⎤

⎦. and

⎡

⎣

4

9

5

⎤

⎦. are linearly dependent. 

Exercise 

3.17 Determine whether or not the following vectors are linearly depen-

dent: 

(1)

[

2 

0

]

. and

[

4

1

]

.. 

(2) 

⎡ 

⎣ 

1 

0 

2 

⎤

⎦.,

⎡

⎣

2

1

0

⎤

⎦., and

⎡

⎣

−1

1

−2

⎤

⎦.. 

(3)

[

2 

3

]

. and

[

5

7.5

]

..
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Fig. 3.15 An example of two 

vectors linearly independent 

of each other but not 

perpendicular, as shown in 

Example 3.37 

Remark 3.9 Orthogonal vectors are a special case of linear independence. 

But being linearly independent does not mean the vectors are orthogonal to each 

other. �. 

Example 3.37 Vectors

[

2

2

]

. and

[

3

−1

]

. are not perpendicular, since the dot 

product of them is 4 and not equal to zero. That they are not perpendicular 

can also be seen in Fig. . However, the only solution to the following: 3.15

. x1

[

2

2

]

+ x2

[

3

−1

]

=
[

0

0

]

,

which can be written as simultaneous equations as follows: 

. 

{

2x1 + 3x2 = 0

2x1 − x2 = 0

is x1 = 0. and x2 = 0.. Therefore, vectors

[

2

2

]

. and

[

3

−1

]

. are linearly 

independent of each other.
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3.5.2 Basis of a Vector Space 

We now revisit spanning sets for vector spaces. We saw at the end of Sect. 3.4.2.2 

of this chapter an example of two vectors that represented a spanning set for R2 ..  We  

now define the basis for a vector space.

Definition 3.21 (Basis) A  set  S of vectors u1,u2, · · · ,ud . is a basis of a vector 

space V if it has the following two p roperties:

• S is linearly independent;

• S spans V .

This definition says that a basis is a spanning set, and any element in this set 

cannot be expressed as a linear combination of other elements. In other words, they 

are linearly independent. Intuitively, the basis is the smallest set of vectors that will 

generate the whole vector space. 

In R2 ., we need two non-parallel vectors. In R3 ., we need three vectors not in the 

same plane. In fact, there is a standard basis for R2 ., namely, the easiest:

[

1

0

]

. and 

[

0

1

]

.. Similarly in R3 .,  the  standard basis is

⎡

⎣

1

0

0

⎤

⎦.,

⎡

⎣

0

1

0

⎤

⎦., and

⎡

⎣

0

0

1

⎤

⎦.. 

Remark 3.10 Case Study 2 

In Sect. 1.3.2 of Chap. 1, we see that the PCA projection plot seems to result from 

the axes in the original Cartesian coordinate system being rotated. In fact, principal 

component analysis computes the orthonormal basis, each data projection being 

a vector that lies in a vector space spanned by this basis. Each element of this 

orthonormal basis can capture the most crucial information, the variance in the given 

dataset. We will discuss this further in Chap. 4. �. 

3.6 Connection to Matrices 

3.6.1 Determinants and Singular Matrices 

A set of n vectors of length n is linearly independent if the matrix with these vectors 

as columns has a non-zero determinant. For instance, the determinant of

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦. is 

1. As said in Sect. 3.3.10.2, such matrices have an inverse. (In this case, the inverse 

is the same matrix.) 

On the other hand, the set of n vectors of length n is linearly dependent if the 

determinant is zero.
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We already know that vectors in the following matrix are linearly dependent: 

. 

⎡

⎣

1 1 4

1 3 9

0 2 5

⎤

⎦ ,

since it was shown in Example 3.36 of Sect. 3.5.1. And the determinant of it is: 

. det

(

⎡

⎣

1 1 4

1 3 9

0 2 5

⎤

⎦

)

= 0.

Definition 3.22 (Singular) A square matrix with linearly dependent columns is 

known as singular. 

Since such matrices have a zero determinant, they do not have inverses. So, 

singular matrices do not have inverses. 

Remark 3.11 So why is studying singularity and determinants important in Data 

Science? This is because many algorithms used in Data Science assume that all 

features of the data are linearly independent. �. 

3.6.2 Rank 

Definition 3.23 (Rank) The maximal number of linearly independent columns of 

a matrix is called its rank. 

Example 3.38 The rank of the matrix, including three vectors shown in 

Example of Sect. , is in fact: 3.5.13.36 

. rank

(

⎡

⎣

1 1 4

1 3 9

0 2 5

⎤

⎦

)

= 2.

This can be shown by taking any two columns ui . and uj . and solving the 

equation xiui + xjuj = 0.. The only solution is always xi = xj = 0.. So, any 

two columns are linearly independent, and so the rank is 2..
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To find the rank of a general matrix, one can use Gaussian Elimination, which 

is beyond the content covered in this book. Readers who want to learn more about 

it can refer to [8]. Note that the rank denoted as r must be less than or equal to 

the smallest of the two dimensions of the matrix, that is, r ≤ min(m, n). for matrix 

Mm×n .. 

Exercise 

3.18 Let A =

⎡

⎣

2 1 4

3 2 1

5 3 5

⎤

⎦.. 

(1) Find det(A).. 

(2) Are the columns of A. linearly independent? 

(3) Does A. have an inverse? 

(4) What is the rank of A?.



Chapter 4 

Matrix Decomposition 

Matrix decomposition is also called matrix factorisation. Unfortunately, many 

matrix operations cannot be solved efficiently. However, in the same way, that 

integers can be decomposed into prime factors to make calculations simpler, and 

we can use matrix decomposition to reduce a matrix into parts that make it 

easier to calculate more complex matrix operations. Such parts are, for instance, 

diagonal matrices and triangular matrices (which only have values in the main 

diagonal and either the top right half or bottom left half of the matrix). There 

are many types of matrix decomposition, and in this chapter, you will learn two 

different matrix decomposition methods: eigendecomposition and singular value 

decomposition. In addition, you will learn an application of eigendecomposition— 

principal component analysis. 

4.1 Eigendecomposition 

We first define eigenvectors and their corresponding eigenvalues of a square matrix 

A. 

Definition 4.1 (Eigendecomposition) Let A ∈ Rn×n
. be a square matrix. Then λ ∈

R. is an eigenvalue of A. and u. (the non-zero column vector) is the corresponding 

eigenvector of A. if 

.Au = λu. (4.1) 

Remark 4.1 Looking at Eq. (4.1), the left-hand side is a matrix multiplication 

and represents a linear transformation of u.; the right-hand side is just a scalar 

multiplication. A scalar multiplication is just an elongation or shrinking of a vector 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 

Y. Sun, R. Adams, A Mathematical Introduction to Data Science, 

https://doi.org/10.1007/978-981-96-5639-4_4

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5639-4protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4
https://doi.org/10.1007/978-981-96-5639-4_4


92 4 Matrix Decomposition

along its own line. So after the linear transformation, the vector u. is still along 

the original line, either in the same or opposite direction (when λ. takes a negative 

value); the length of the vector is changed if the absolute value of the scalar λ. does 

not equal 1. �. 

The equation Au = λu. has non-zero solutions for the vector u. if and only if the 

matrix A − λI. has a zero determinant, that is, det(A − λI) = 0.. 

To see why it needs det(A − λI) = 0., let us rewrite Eq. (4.1) as follows: 

.Au = λu ⇔ Au − λu = 0 ⇔ Au − λIu = 0 ⇔ (A − λI)u = 0. (4.2) 

Looking at (A−λI)u = 0., then (A−λI). is just a matrix formed by subtracting two 

matrices. Now suppose the matrix (A−λI). is invertible. This means det(A−λI). is 

non-zero and (A − λI)−1
. exists. 

Then if we multiply (A − λI)−1
. on both sides of (A − λI)u = 0., we obtain 

(A − λI)−1(A − λI)u = (A − λI)−10 ⇒ Iu = 0 ⇒ u = 0.. 

This contradicts Definition 4.1, which says u. is non-zero. Therefore, we cannot 

assume (A − λI). is invertible, which means det(A − λI) = 0.. 

Remark 4.2 det(A − λI ). is called the characteristic polynomial of A..  It  is  a  

polynomial of degree n in λ. and has n roots. det(A − λI) = 0. is called 

the characteristic equation of A.. Sometimes finding the roots of the charac-

teristic equation is just referred to as finding the roots of the characteristic 

polynomial. �. 

4.1.1 Computing Eigenvalues and Eigenvectors 

Suppose A. is an n-square matrix. The following shows the procedure to compute 

eigenvalues and eigenvectors: 

• Step 1: Find the characteristic polynomial of A.. 

• Step 2: Find the roots of the characteristic equation of A. to obtain the eigenvalues 

of A.. 

• Step 3: Repeat the following two steps for each eigenvalue λ.: 

1. Form the matrixM = A − λI.. 

2. Find the solution of Mu = 0.. 

These non-zero vectors u. are linearly independent eigenvectors of A.. Each of them 

has its corresponding eigenvalue λ..
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Example 4.1 Find eigenvalues and eigenvectors of the following 2×2.matrix 

. A =
[

4 2

3 −1

]

.

Solution 

• Step 1: Find the characteristic polynomial of A. 

. A − λI =
[

4 − λ 2

3 −1 − λ

]

.

. |A − λI| = (4 − λ)(−1 − λ) − 6 = λ2 − 3λ − 10.

• Step 2: Find the roots of the characteristic equation of A. to obtain the 

eigenvalues of A.. 

. Set λ2 − 3λ − 10 = 0.

. (λ − 5)(λ + 2) = 0.

The roots λ1 = 5. and λ2 = −2. are the eigenvalues of A.. 

• Step 3 (1): Form the matrix M = A − λI. for λ1 = 5.. 

. M =
[

4 − 5 2

3 −1 − 5

]

=
[

−1 2

3 −6

]

.

• Step 3 (2): Find the solution of Mu = 0.. 

. Mu =
[

−1 2

3 −6

] [

u1

u2

]

=
[

0

0

]

.

. 

{

−u1 + 2u2 = 0

3u1 − 6u2 = 0
→ u1 − 2u2 = 0.

The system has only one free variable. Any non-zero solution of this one 

variable is an eigenvector of λ1 = 5.. For example, u =
[

6

3

]

.. Another way 

to do it is to find a unit eigenvector. From u1 − 2u2 = 0.,  we  have u1 =

(continued)
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Example 4.1 (continued) 

2u2 .. According to the definition of a unit vector, we have 

√

u21 + u22 =
√

(2u2)2 + u22 =
√

5u22 = 1.. Possible solutions are u =

[

2√
5
1√
5

]

.,  o  r u =
[

− 2√
5

− 1√
5

]

.. Note these two vectors are just in opposite directions. 

• Repeat Steps 3 (1) and 3 (2) for λ2 = −2.. 

. M =
[

4 − (−2) 2

3 −1 − (−2)

]

=
[

6 2

3 1

]

.

. Mu =
[

6 2

3 1

] [

u1

u2

]

=
[

0

0

]

.

. 

{

6u1 + 2u2 = 0

3u1 + u2 = 0
→ 3u1 + u2 = 0.

Again the system has only one free variable, and any non-zero solution 

of this variable is an eigenvector of λ2 = −2.. For example, u =
[

1

−3

]

., 

whose unit vector is u =

[

1√
10

− 3√
10

]

.;  or u =
[

−1

3

]

., whose unit vector is 

u =

[

− 1√
10

3√
10

]

.. 

Example 4.2 Find eigenvalues and eigenvectors of the following 3×3.matrix 

. A =

⎡

⎣

3 2 2

2 3 2

2 2 3

⎤

⎦ .

(continued)
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Example 4.2 (continued) 

Solution 

• Step 1: Find the characteristic polynomial of A. 

. A − λI =

⎡

⎣

3 − λ 2 2

2 3 − λ 2

2 2 3 − λ

⎤

⎦ .

Applying the method described in Sect. of Chap. , we can produce 

Fig. .  From  Fi  g. , we can obtain the following: 4.14.1

33.3.9 

. |A−λI| = (3−λ)3+2×23−3×(2×2×(3−λ)) = −λ3+9λ2−15λ+7.

• Step 2: Find the roots of the characteristic equation of A. to obtain the 

eigenvalues of A.. 

. Set − λ3 + 9λ2 − 15λ + 7 = 0.

. (λ − 1)(λ − 1)(λ − 7) = 0.

The roots λ1 = λ2 = 1. and λ3 = 7. are the eigenvalues of A.. 

• Step 3 (1): Form the matrix M = A − λI. for λ1 = λ2 = 1.. 

. M =

⎡

⎣

3 − 1 2 2

2 3 − 1 2

2 2 3 − 1

⎤

⎦ =

⎡

⎣

2 2 2

2 2 2

2 2 2

⎤

⎦ .

• Step 3 (2): Find the solution of Mu = 0.. 

. Mu =

⎡

⎣

2 2 2

2 2 2

2 2 2

⎤

⎦

⎡

⎣

u1

u2

u3

⎤

⎦ =

⎡

⎣

0

0

0

⎤

⎦ → u1 + u2 + u3 = 0.

Any non-zero solution is an eigenvector of λ = 1.. For example, u =
⎡

⎣

1

−1

0

⎤

⎦., whose unit vector is u =

⎡

⎢

⎣

1√
2

−1√
2

0

⎤

⎥

⎦
.. 

(continued)
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Example 4.2 (continued) 

• Repeat Steps 3 (1) and 3 (2) for λ3 = 7.. 

. M =

⎡

⎣

3 − 7 2 2

2 3 − 7 2

2 2 3 − 7

⎤

⎦ =

⎡

⎣

−4 2 2

2 −4 2

2 2 −4

⎤

⎦ .

. Mu =

⎡

⎣

−4 2 2

2 −4 2

2 2 −4

⎤

⎦

⎡

⎣

u1

u2

u3

⎤

⎦ =

⎡

⎣

0

0

0

⎤

⎦ .

. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−4u1 + 2u2 + 2u3 = 0

2u1 − 4u2 + 2u3 = 0

2u1 + 2u2 − 4u3 = 0

→ u1 = u2 = u3.

Any non-zero solution is an eigenvector of λ3 = 7.. For example, u =

⎡

⎣

1

1

1

⎤

⎦., 

whose unit vector is u =

⎡

⎢

⎢

⎣

1√
3
1√
3
1√
3

⎤

⎥

⎥

⎦

.. 

Remark 4.3 In many applications of eigendecomposition, eigenvectors are unit 

vectors, which means that their length or magnitude is equal to 1. �. 

Fig. 4.1 An illustration of 

calculating the determinant of 

A − λI. in Example 4.2
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Exercises 

4.1 Compute the eigenvalues and eigenvectors for the following matrices. 

(1) A =
[

3  1  

3  5  

]

.. 

(2) B =
[

2  1  

4  5  

]

.. 

(3) C =
[

−4 −3 

2  3  

]

.. 

(4) D =
[

1 −3 

2  6  

]

.. 

(5) E = 

⎡ 

⎣

−1  2  2  

2  2  2  

−3  6  −6

⎤

⎦ .. 

4.2 Can you find eigenvalues and eigenvectors for the matrix F =
[

0 2

−2 0

]

.? 

4.1.2 Diagonalisation 

Finally, we can decompose a matrix A. into simpler parts. If n × n. matrix A. has n 

eigenvectors u1,u2, · · · ,un .with associated eigenvalues λ1, λ2, · · · , λn ., then A. can 

be written in a diagonalised form 

.A = UDU−1, (4.3) 

where U = [u1,u2, · · · ,un]., and D. are a diagonal matrix with λ1, λ2, · · · , λn . as 

the main diagonal elements. 

If A. can be expressed this way, it is said to be diagonalisable. Since it is not 

always possible to find eigenvectors and eigenvalues for a matrix, then not all 

matrices are diagonalisable. 

Remark 4.4 Since each ui . is a column vector, then U = [u1,u2, · · · ,un]. is just 
a normal matrix with each of its columns equal to one of the ui . in turn. It is just 

another way of describing a matrix. �. 

To prove that A. can be diagonalised in the way described in Eq. (4.3), first we 

multiply U. from right on both sides of Eq. (4.3) and then multiply U−1
. from left on 

both sides, we have 

.D = U−1AU. (4.4)
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Now we have to show that U−1AU. is the diagonal matrix with λ1, λ2, · · · , λn . on 

the main diagonal. 

Proof First note that U−1ui . is the ith column of U−1U.. That is U−1ui . is the ith 

column of the identity matrix I.with a size of n×n. since U−1U = I.. Also remember 

that U = [u1,u2, · · · ,un]. and that from the definition of eigenvectors that Aui =
λui .. Then: 

.

U−1AU = U−1A[u1,u2, · · · ,un]

= U−1[Au1,Au2, · · · ,Aun]

= U−1[λ1u1, λ2u2, · · · , λnun]

= [λ1U−1u1, λ2U
−1u2, · · · , λnU

−1un]

=

⎡

⎢

⎢

⎢

⎣

λ1 0 . . . 0

0 λ2 . . . 0
...

...
...

0 0 . . . λn

⎤

⎥

⎥

⎥

⎦

.

(4.5) 

⊓⊔

Example 4.3 Let us revisit Example . After performing the eigendecom-

position, one possible solution for

4.1

U = [u1,u2]. is U =

[

2√
5

1√
10

1√
5

−3√
10

]

..  The  

determinant of U. equals to −7√
50

. and U−1 = 1
−7√
50

[ −3√
10

−1√
10

−1√
5

2√
5

]

.. Substituting 

U−1
., A., and U. into Eq. ( ), we have 4.4

. D =
1
−7√
50

[ −3√
10

−1√
10

−1√
5

2√
5

]

[

4 2

3 −1

]

[

2√
5

1√
10

1√
5

−3√
10

]

=
[

5 0

0 −2

]

,

where the two elements along the main diagonal are the eigenvalues of A.. 

Remark 4.5 If the n×n.matrix A. is symmetric, then it is diagonalisable. Moreover, 

its eigenvectors corresponding to different eigenvalues are orthogonal to each other, 

which is a special case of linear independence. Hence, U. in Eq. (4.3) is an orthogonal 

matrix. �.
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Exercise 

4.3 Diagonalisation. Find a matrix U., so that D = U−1AU. is diagonal. 

(1) A =
[

3  1  

3  5  

]

. (The first matrix in Exercise 4.1). 

(2) A =
[

3  2  

2  6  

]

.. Since A. is symmetric, check whether U. is orthogonal. 

4.2 Principal Component Analysis 

Principal Component Analysis (PCA) is widely used in many Data Science appli-

cations. It extracts important information from the data. This important information 

relates to the total variation contained in the data. One can use PCA to compress the 

size of the dataset by keeping only the information relating to the most variance in 

the data. One can also use PCA to visualise the structure of the data. 

4.2.1 Mathematics Behind PCA 

First, we need to define some concepts from Statistics. In each case, we will give 

the definitions in their general form but give an example in terms of a small number 

that might be easier to visualise. 

Suppose X. is a data matrix including n data observations with d dimensions 

(or variables, features, or attributes). Each element of X. is denoted as xi,j ., where 

i = 1, . . . , n. and j = 1, . . . , d .. For example, we could have 6 data points with 3 

features (dimensions), for instance, height, width, and depth. 

• Define the sample mean for each dimension 

.x̄j =
1

n

n
∑

i=1

xi,j . (4.6) 

In our example 

. x̄j =
1

6

6
∑

i=1

xi,j .

So x̄1 .would be the mean height.
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• Define the sample standard deviation for each dimension 

.s(xj ) =

√

∑n
i=1(xi,j − x̄j )2

n − 1
. (4.7) 

The sample standard deviation can be considered as an average distance from the 

centre of the data within a specific dimension. 

In our example, 

. s(x1) =

√

∑6
i=1(xi,1 − x̄1)2

6 − 1
.

is the average distance in the data to the mean height. 

The squared standard deviation is called variance: 

.var(xj ) = (s(xj ))
2. (4.8) 

• The degree to which a pair of variables is linearly related is referred to as the 

correlation between the two variables. Here we define the sample covariance, 

which measures the correlation between two dimensions (the hth dimension and 

kth dimension) in the data. 

.cov(xh, xk) =
∑n

i=1(xi,h − x̄h)(xi,k − x̄k)

n − 1
. (4.9) 

The sign of a covariance value can tell us whether two features are positively 

correlated or negatively correlated. 

In our example, the correlation between the 2nd (width) and 3rd (depth) over 

all six data points is: 

. cov(x2, x3) =
∑6

i=1(xi,2 − x̄2)(xi,3 − x̄3)

6 − 1
.

• A particular correlation coefficient is the Pearson correlation coefficient: r 

.r =
cov(xh, xk)√

var(xh)var(xk)
. (4.10) 

Pearson correlation coefficient has a value between − 1. and 1. It usually 

evaluates the linear relationship between two continuous variables. If we want 

to check the strength of the correlation between two features, then we need to 

consider the absolute value of the Pearson correlation coefficient.
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• The covariance matrix is a d × d . square matrix, � . given by: 

. � =

⎡

⎢

⎢

⎢

⎣

cov(x1, x1) cov(x1, x2) · · · cov(x1, xd)

cov(x2, x1) cov(x2, x2) · · · cov(x2, xd)
...

... · · ·
...

cov(xd , x1) cov(xd , x2) · · · cov(xd , xd)

⎤

⎥

⎥

⎥

⎦

.

For example, for our data, the covariance matrix is a 3 × 3.matrix: 

. � =

⎡

⎣

cov(x1, x1) cov(x1, x2) cov(x1, x3)

cov(x2, x1) cov(x2, x2) cov(x2, x3)

cov(x3, x1) cov(xd , x2) cov(x3, x3)

⎤

⎦ .

The covariance matrix is symmetrical, where cov(xh, xk) = cov(xk, xh).. 

Each element of the main diagonal is the variance of a specific dimension. 

For our data, for example, cov(x1, x2) = cov(x2, x1). since the correlation 

between height and width is the same as the correlation between width and 

height. 

Also, on the main diagonal, the first number is 

. cov(x1, x1) =
∑6

i=1(xi,1 − x̄1)(xi,1 − x̄1)

6 − 1
=

∑6
i=1(xi,1 − x̄1)

2

6 − 1
.

This is the variance var(x1). of the heights. 

• The covariance matrix is symmetric, so we can do eigendecomposition on the 

covariance matrix, since there exist ui . eigenvectors of � . such that 

. �ui = λiui .

Recall that if the matrix is symmetric, then eigenvectors corresponding to 

different eigenvalues must be orthogonal to each other. 

4.2.2 The Definition of PCA 

The d principal components of data X. (n× d .)  are  the  d eigenvectors u1,u2, . . . ,ud . 

corresponding to the d ordered eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd . of the covariance 

of X., � .. 

Remember that there are d dimensions (or features) of each data item. Suppose 

there are just three dimensions, like height, width, and depth. These can be plotted 

in a three-dimensional space using height as the x-axis, width as the y-axis, and 

depth as the z-axis. What we are doing with PCA is replacing these three mutually 

perpendicular axes with three different mutually perpendicular ones. The first of
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Fig. 4.2 An illustration of 

projecting the data onto u1 . 

these new axes, u1 ., will be the direction of the most variance in the data, the second 

axis, u2 ., will have the next most variance and so on. 

So the first principal component of the data X. is the vector u1 ., such that the 

projection of the data onto u1 ., that is, Xu1 ., has the largest variance, subject to 

the normalising constraint uT
1 u1 = 1.. This normalising constraint means that the 

principal component is a unit eigenvector, and its variance can be measured by the 

corresponding eigenvalue. 

The second principal component is always orthogonal to the first component, 

and the third principal component is orthogonal to both the first two, etc. Up to d 

principal components can be found by this method. Projections of the data on each 

principal component are obtained as linear combinations of the original variables, 

that is, Xui .. 

Remark 4.6 When calculating Xu1 ., each data vector xi . in the matrix X. forms a 

dot product with u1 ..  Also uT
1 u1 = 1., that is the vector u1 . is a unit vector of length 

1. So using the second definition of dot product, the geometric definition, we get 

xi ·u1 = ‖xi‖ cos θ ., where θ . is the angle between them. Looking at Fig. 4.2, which as 

a two-dimensional representation only has u1 . and u2 ., we see that cos θ =
−→
OA/

−→
OB . 

and so
−→
OA =

−→
OB cos θ = ‖xi‖ cos θ .. This can be seen as laying the length of xi . 

onto the vector u1 ., and this is what is meant by projecting the data onto u1 .. �. 

4.2.3 PCA in Practice 

The following procedure shows how to perform PCA in a real-world setting: 

1. Pre-process the given dataset with n data points and d attributes: For example, 

normalise the data, so that they have zero means and unit standard deviations. 

We use X. to denote the normalised data matrix with a size of n by d .

2. Calculate the covariance matrix. The size of the covariance matrix is d by d.
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3. Compute the eigenvectors ui . and eigenvalues λi . of the covariance matrix. The 

size of the eigenvector matrix is d by d, where each column vector is an 

eigenvector. The number of eigenvalues is d .

4. Select k principal components, where k ≤ d .. If we are trying to illustrate the 

data then we usually just pick k = 2., since it is easy to plot and visualise. 

Usually these are the first two principle components, since we want to visualise 

the greatest variance. If we are trying to compress the data, we may use any value 

k < d . and again pick the first k components so as to retain the most va riation.

5. Derive the new dataset. That is, project the normalised data onto the selected 

k principal components. This step involves a very basic operation: matrix 

multiplication.

. projected_data = normalised_data × selected_principal_components.

For example, the projections along the first principal component are given by: 

. projected_data = Xn×dud×1 = u11x,1 + u21x,2 + · · · + ud1x,d ,

where u11, u21, . . .. and ud1 . are elements of u1 . and x,1, x,2, . . . ,. and x,d . denote 

the individual attributes of the data, that is the column vectors of the data in the 

matrix X.. It can be further written as follows: 

. projected_data = u11

⎡

⎢

⎣

x11
...

xn1

⎤

⎥

⎦
+ u21

⎡

⎢

⎣

x12
...

xn2

⎤

⎥

⎦
+ · · · + ud1

⎡

⎢

⎣

x1d
...

xnd

⎤

⎥

⎦
.

As can be seen, the projection of each data point on the first principal component 

is a weighted sum of all attributes or features, where the weights are elements in 

the corresponding eigenvector. In general, projections of data points on a specific 

principal component are a linear combination of all attributes or features of the 

dataset. 

Since PCA is a method to extract the total variation information of the data, it is 

important to report how much selected principal components have captured this 

information. We have: 

• Total variation in the original data is tr(�).. 

• Total variation of principal components is
∑

λi .. 

• When performing a PCA, the variation information of � . is kept in λ′s .,  so  we  

ha ve

. 

∑

λi = tr(�).

• λi
∑

λj 
. is the amount of information contained in the ith principal component.
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• (λ1+λ2+...+λk)
∑

λj 
. is proportion information in first k principal components;

• We can use PCA to do feature extraction. That is to select the first k principal 

components. When doing feature extraction, we want (λ1+λ2+...+λk)
∑

λj
. large but 

also want k small. 

4.2.4 Case Study 2: Continued (1) 

Consider a small data set X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 5

2 2

3 3

4 4

5 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.. 

This data has five data points, each with dimension 2, so n is 5 and d is 2.

• Pre-process the given dataset. In this example, we remove the mean value from 

each dimension. Since x̄1 = 1+2+3+4+5
5

= 3. and x̄2 = 5+2+3+4+1
5

= 3.,  the  

datasets having zero means are shown as follows: newX =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2 2

−1 −1

0 0

1 1

2 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.. 

Here the variance of both columns is the same (and is 2.5.). In this case, since 

the variance is the same, there is no need to normalise by dividing by the standard 

deviation. This would not be the case with realistic examples. More will be said 

about this in Chap. 7, Sect. 7.4.3. 

• Calculate the covariance matrix using Eqs. (4.7), (4.8), and (4.9). We have: 

. var(newx1) = (s(newx1))
2

=
(

√

(−2)2 + (−1)2 + 0 + 12 + 22

5 − 1

)2

= 2.5,

.var(newx2) = (s(newx2))
2

=
(

√

(2)2 + (−1)2 + 0 + 12 + (−2)2

5 − 1

)2

= 2.5,
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and 

. cov(newx1, newx2) = cov(newx2, newx1)

=
∑5

i=1(xi,1 − 0)(xi,2 − 0)

5 − 1

=
(−2)×(2)+(−1) × (−1) + 0×0 + 1 × 1 + 2 × (−2)

4

= −1.5.

The covariance matrix is � =
[

2.5 −1.5

−1.5 2.5

]

.. Since the data is two-

dimensional, the size of the covariance matrix is 2 by 2. 

• Compute the eigenvectors and eigenvalues of the covariance matrix. We obtain 

the following: 

– λ1 = 4;uT 

1 = [  
1√
2 

−1√ 

2
].. 

– λ2 = 1;uT 

2 = [  
1√
2 

1√ 

2
].. 

The sum of eigenvalues 4 + 1 = 5. equals the sum of elements along the 

covariance matrix 2.5 + 2.5 = 5.. Readers are encouraged to check the results 

by following the steps shown in Sect. 4.1.1 of this chapter. 

• Select principal components. We shall use both the first principal component and 

the second principal component to visualise the data in this example. The first 

principal component is uT
1 = [ 1√

2

−1√
2
]. having the largest eigenvalue of 4. The 

first principal component captures λ1
λ1+λ2

= 4
4+1

= 80%. of the total variation in 

the dataset. 

• Derive the new dataset using XU., where U. is the matrix formed with columns 

equal to the two eigenvectors u1 . and u2 .. 

Doing this for each data point, in turn, we can see where each point is moved 

to in the PCA space. So taking the first data point [−2, 2]. on the first principal 
component, we have 

. projected_data_pc1 = [−2, 2] ×

[

1√
2

− 1√
2

]

= −2 ×
1

√
2

+ 2 × −
1

√
2

= −
4

√
2
.

To project the data point [−2, 2]. on the second principal component, we have 

.projected_data_pc2 = [−2, 2] ×

[

1√
2
1√
2

]

= −2 ×
1

√
2

+ 2 ×
1

√
2

= 0.
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Therefore, the projection of data point [−2, 2]. in the PCA space is [− 4√
2
, 0].. 

Projections of the other four data points can be calculated in the same way. The 

final PCA plot is shown in Fig. 1.5 of Chap. 1. This PCA plot has captured all 

variation information in the original dataset. 

This example is unrealistic, since it only has two dimensions. It was picked, so 

that all the stages could be calculated by hand and the working can be explained. In 

the next section, we illustrate a realistic data set. 

4.2.5 A Principal Component Analysis on the Sparrow Dataset 

In this example, we demonstrate PCA on a female sparrows dataset. The data 

includes 49 sparrows with five body measurements which are total length, alar 

extent, length of beak and head, length of humerus and length of keel of sternum. 

After a severe storm, about half of the 49 birds died. The researcher wanted to know 

whether they could find any support for Charles Darwin’s theory of natural selection 

[9]. 

First, we normalise the data, so that each feature has a zero mean and a unit 

standard deviation. We then obtain the covariance matrix of the normalised data, 

equivalent to the correlation-coefficient matrix, which is shown as follows: 

. � =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1.0000 0.7350 0.6618 0.6453 0.6051

0.7350 1.0000 0.6737 0.7685 0.5290

0.6618 0.6737 1.0000 0.7632 0.5263

0.6453 0.7685 0.7632 1.0000 0.6066

0.6051 0.5290 0.5263 0.6066 1.0000

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

As can be seen, tr(�) = 5.0000.. After doing the eigendecomposition, we have the 

following eigenvalues: 

• λ1 = 3.6160,  λ2 = 0.5315,  λ3 = 0.3864,  λ4 = 0.3016, λ5 = 0.1645., 

•
∑

λi = 5.0000., 

and eigenvectors are shown in Table 4.1. 

Table 4.1 Eigenvectors and 

eigenvalues of the covariance 

matrix of the sparrow dataset 

u1 . u2 . u3 . u4 . u5 . 

0.4518 −0.0507 −0.6905 0.4204 0.3739 

0.4617 0.2996 −0.3405 −0.5479 −0.5301 

0.4505 0.3246 0.4545 0.6063 −0.3428 

0.4707 0.1847 0.4109 −0.3883 0.6517 

0.3977 −0.8765 0.1785 −0.0689 −0.1924 

λi . 3.6160 0.5315 0.3864 0.3016 0.1645
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Fig. 4.3 A PCA visualisation 

plot of the sparrow dataset, 

where the first two principal 

components capture about 

82.95% of the total variance 

in the data 

Figure 4.3 shows the first principal component plotted against the second 

principal component. The difference along the first principal component (denoted 

as PC1) axis between the rightmost point and the leftmost point is about 8, and the 

difference along the second principal component (denoted as PC2) axis between the 

highest point and the lowest point is greater than 4 but much less than the 8 along 

the PC1 axis. In fact, from Table 4.1, it can be seen that the variance along PC1 

is 3.616., and the variance along PC2  is 0.5315.. The first two principal components 

have captured (3.6160 + 0.5315)/5.0 = 82.95%. of the total variation among the 

data. 

PCA is often used to help visualise the most important aspects of multiple 

dimensional data, since multiple dimensional data is not visualisable in itself. It can 

often show relationships that are not obvious in the original data. For the sparrow 

dataset, we can see that the two classes cannot be linearly separated in the PCA 

space. However, it does illustrate that there are some outliers in the non-survival 

class. 

Projections (denoted as proj_pc1.) along PC1 are calculated using the following 

equation: 

. proj_pc1 = Xu1

= [x1, x2, x3, x4, x5]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.4518

0.4617

0.4505

0.4707

0.3977

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(4.11) 

= 0.4518x1 + 0.4617x2 + 0.4504x3 + 0.4707x4 + 0. 3977x5.

where x1, x2, · · · , x5 . are the five columns of X..
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Projections (denoted as proj_pc2.) along PC2 are calculated using the following 

equation: 

. proj_pc2 = Xu2

= [x1, x2, x3, x4, x5]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.0507

0.2996

0.3246

0.1847

−0.8765

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(4.12) 

= −0.0507x1 + 0.2.996x2 + 0.3246x3 + 0.1847x4 − 0.8765 x5.

where x1, x2, · · · , x5 . are the five columns of X.. 

Researchers can trace back to the original data based on the PCA projection plot 

to look into more details. For instance, the lowest point in Fig. 4.3 clearly looks like 

an outlier. So we can look at proj_pc1. being positive with a value just above zero 

and proj_pc2. being negative and less than − 2.5.. In fact, this specific sparrow 

has a total length of 162 millimeters (mm), an alar extent of 239 mm,  a  length of 

beak and head of 30.3. mm,  a  length of humers of 18.0. mm, and a length of keel of 

stermum of 23.1. mm. After removing the mean and converting each feature to the 

unit standard deviation, we have x1 ≈ 1.11., x2 ≈ −0.46., x3 ≈ −1.47., x4 ≈ −0.84., 

and x5 ≈ 2.32.. It tells us that this sparrow’s total length and length of keel of 

stermum are greater than their corresponding mean feature values, while the other 

three features are less than the corresponding mean feature values. Researchers may 

further work out why this sparrow is an outlier by comparing its body structural 

information with other sparrows’ body structural information. 

Exercise 

4.4 Do a principal component analysis on the following small dataset Y. 

involving five data points: Y =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3 3

0 0

−3 −3

−1 1

1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.. 

(1) Compute the mean value of each variable. 

(2) Compute the standard deviation of each variable. 

(3) Compute the covariance between two variables. 

(4) Write down the covariance matrix. 

(5) Find the eigenvalues and eigenvectors of the covariance matrix. 

(6) Find the percentage of variance captured by each principal component. 

(7) Compute the projection for the first data point [3, 3]. in the PCA space.
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4.3 Singular Value Decomposition 

Singular value decomposition (SVD) is one of the most known and widely used 

matrix decomposition methods. SVD can be used as a method for dealing with large, 

high-dimensional data and finding important dimensions in the data. 

Definition 4.2 (Singular Value Decomposition) Let M. be the real n × d . matrix 

that we want to decompose. The SVD theorem states: 

.Mn×d = Un×nSn×dV
T
d×d , (4.13) 

where 

• U. is a column-orthonormal matrix; the columns of the U. matrix are called the 

left-singular vectors of M.; 

• S. is 

– a n × d . diagnonal matrix; 

– the diagonal values in the S. matrix are known as the singular values of the 

original matrix M.; 

– the singular values are stored in descending order along the main diagonal in 

S.; 

– the number of non-zero values in S. is equal to the rank of matrix M.. 

• V. is a column-orthonormal matrix; the columns of V. are called the right-singular 

vectors of M.. 

The SVD described in Eq. (4.13) is called a full SVD. Some of the non-zero singular 

values may be significant, while others may be very small and not significant. 

The singular value decomposition can also be done as follows: 

.Mn×d = Un×kSk×kV
T
k×d , (4.14) 

where k ≤ min(n, d).. This is often called compact SVD, or economy SVD. 

If k = r ., where r is the rank of M., then Mn×d = Un×kSk×kV
T
k×d .; otherwise, 

if k < r ., then Mn×d ≈ Un×kSk×kV
T
k×d . which is useful in data compression as we 

will see later (Sect. 4.3.6 of this chapter). 

Note that the SVD of a matrix is not a unique solution. 

4.3.1 Intuitive Interpretations 

Let M =
[

0 −2

2 0

]

., and △pqr . denotes a triangle constructed with
−→
op =

[

1

3

]

., 
−→
oq =

[

2

3

]

., and
−→
or =

[

1

1

]

. (see the red triangle in Fig. 4.4a).
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Fig. 4.4 An illustration of how SVD works. (a) The original triangle, △pqr ., is shown in red, 

and its transformed version, after the linear transformation defined by matrix M., is shown in blue. 

(b) The triangle is shown in black after the linear transformation defined by matrix VT
..  (c)  The  

triangle is shown in green after the linear transformation defined by matrix SVT
..  (d) The triangle 

is shown in blue after the linear transformation defined by matrix USVT
.. This is the same as the 

transformation defined by M. shown in (a) 

After doing SVD on M. (Sect. 4.3.3 of this chapter shows a possible method to 

perform SVD), we have U =

[

− 1√
2

1√
2

1√
2

1√
2

]

., S =
[

2 0

0 2

]

., and VT =

[

1√
2

1√
2

1√
2

− 1√
2

]

.. 

As mentioned in Sect. 3.3.4 of Chap. 3, a vector can be linearly transformed 

through matrix multiplication. Figure 4.4a shows the triangle △pqr . in red and the 

triangle (in blue) after the linear transformation given by matrix M., which is the 

result of M. multiplying each edge of △pqr .. As can be seen, the triangle has been 

rotated and made bigger. Panel (b) displays, in black, the resultant triangle after 

rotating the triangle △pqr . via a linear transformation given by matrix VT
., that is, 

VT
. multiplies each edge of △pqr .. As can be seen, the size of the triangle remains 

the same. The black triangle is then stretched after another linear transformation 

given by S.; that is, S. multiplies each edge of the black triangle, as shown in panel 

(c) in green. This time there is no rotation involved. In panel (d), a further rotation 

has happened, and the final triangle is shown in blue, which is the result after U. 

is multiplied by the green triangle. The size of the blue triangle is the same as
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the green one. The blue triangles in panels (a) and (d) are the same. This shows 

that the linear transformation represented by multiplying by M. can be decomposed 

into three simpler, linear transformations represented by multiplying by matrix VT
., 

matrix S., and matrix U. in that order. 

4.3.2 Properties of the SVD 

IfM = USVT
., where the size of S. is n × d ., then 

1. UT U = I.. This can be obtained by Definition 4.2, since UT
. has rows which are 

orthonormal and U. has columns which are the same orthonormal vectors and 

matrix multiplication multiplies rows from the first matrix by columns of the 

second. 

2. VT V = I.. This can be obtained by Definition 4.2 for the same reason. 

3. MT = VST UT
.. This can be obtained by applying the fourth property of 

Sect. 3.3.11.1 of Chap. 3. 

4. US(:,  i)  = MV(:, i)., where (:, i). is the ith column of each matrix. This can be 

obtained by multiplying the right-hand side of both sides of Eq. (4.13)  b  y V. and 

considering each column separately. 

4.3.3 Find a Singular Value Decomposition of a Matrix 

Let M. be a matrix. One can find a singular value decomposition on M. by following 

the procedure shown as follows: 

1. Compute A = MT M.. 

2. Find the eigenvalues and eigenvectors of A.: 

a. sort the eigenvalues in descending order; 

b. the square roots of the eigenvalues are the singular values; 

c. the corresponding unit eigenvectors are the right-singular vectors V. of M.. 

3. Find the left-singular vectors U. one column at a time by using the property US(:
, i) = MV(:, i).. 

Alternatively, one can do the singular value decomposition on M. starting with 

the calculation of A = MMT
.. In this way, the unit eigenvectors obtained from the 

eigendecomposition are the left-singular vectors of M.. To find the right-singular 

vectors V., one can use UT M = SVT
., which can be obtained by multiplying the 

left-hand side of both sides of Eq. (4.13) of this chapter by UT
.. We can then find VT

. 

one row at a time.
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4.3.4 Case Study 2: Continued (2) 

Find a singular value decomposition of 

. newX =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2 2

−1 −1

0 0

1 1

2 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Note that newX. is a 5×2.matrix, so n = 5. and d = 2.. We are actually going to find 

the compact or economy version of SVD, using Eq. (4.14) of this chapter, where 

k = d = 2., where 2 is the rank of newX.. 

Solution (Note we have the particular matrix newX. instead of M. as used in the 

theory): 

1. Compute newXT newX.. 

. A = newXT newX =
[

10 −6

−6 10

]

.

2. Do the eigendecomposition on A. by following the procedure introduced in 

Sect. 4.1.1 of this chapter, and we obtain λ1 = 16., λ2 = 4., and two possible 

corresponding eigenvectors are v1 =

[

− 1√
2

1√
2

]

. and v2 =

[

1√
2
1√
2

]

., respectively. 

a. Sort the eigenvalues in descending order. 

b. The square roots of the eigenvalues are the singular values. In this case, they 

are s1 =
√
16 = 4. and s2 =

√
4 = 2., and they are elements along the main 

diagonal of the singular-value matrix: 

. S =
[

4 0

0 2

]

.

. 

c. The corresponding unit eigenvectors are the right-singular vectors of M.. Then 

V. is the matrix with these two eigenvectors as columns, that is 

.V =

[

− 1√
2

1√
2

1√
2

1√
2

]

.
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3. Find the left-singular vectors U. by using the property US(:, i) = newXV(:, i).; 
that is, we find U. one column at a time: 

. u1 =
1

s1
newXv1 =

1

4

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2 2

−1 −1

0 0

1 1

2 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

− 1√
2

1√
2

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1√
2

0

0

0

− 1√
2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

. u2 =
1

s2
newXv2 =

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2 2

−1 −1

0 0

1 1

2 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

1√
2
1√
2

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

− 1√
2

0
1√
2

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Thus 

. U = [u1,u2] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1√
2

0

0 − 1√
2

0 0

0 1√
2

− 1√
2

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

To conclude, we have found a singular value decomposition of newX.: 

. newX =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2 2

−1 −1

0 0

1 1

2 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1√
2

0

0 − 1√
2

0 0

0 1√
2

− 1√
2

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

4 0

0 2

]

[

− 1√
2

1√
2

1√
2

1√
2

]T

.

Remark 4.7 If, instead of finding the compact or economy SVD, we had found the 

full SVD, then S.would  be a 5 × 2.matrix: 

.S =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

4 0

0 2

0 0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,
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and U.would be a 5×5.matrix. But since the last three rows of S. are all zeros, the last 

three columns of U.are irrelevant. Hence, finding the compact or economy SVD with 

k = d = r = 2., where r = 2. is the rank of newX., finds all the relevant information 

of the full SVD, since we can only get 2 non-zero singular values anyway. �. 

Exercise 

4.5 Find a singular value decomposition for k = d = r = 2. of 

. Y =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3 3

0 0

−3 −3

−1 1

1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

4.3.5 An Example of the Interpretation of SVD on a Small 

Dataset 

Results of SVD can provide insights to explain concepts included in a dataset. 

Suppose four children have ranked five books written by Louis Sachar and Philip 

Pullman, respectively. The ranking is shown in Table 4.2, where the maximum score 

is 5: 

We have the ranking matrix shown as follows: 

. M =

⎡

⎢

⎢

⎣

5 5 4 0 0

4 4 3 0 0

0 0 0 5 5

0 0 0 3 3

⎤

⎥

⎥

⎦

,

Table 4.2 The rankings of five books reviewed by four children 

Louis Sacha Philip Pullman 

Holes Small steps Fuzzy mud Serpentine Northern lights 

Mary 5 5 4 0 0 

Jack 4 4 3 0 0 

Tim 0 0 0 5 5 

Ann 0 0 0 3 3
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where each row shows rankings for all five books by one child and each column 

shows rankings for one specific book reviewed by all four children. We perform an 

SVD using Eq. (4.14) of this chapter and set k = 2. (note that the rank of M. is 3). 

Keeping two decimal places for each value, we have 

.M ≈ USVT =

⎡

⎢

⎢

⎣

0.79 0

0.62 0

0 0.86

0 0.51

⎤

⎥

⎥

⎦

[

10.3 0

0 8.2

] [

0.62 0.62 0.48 0 0

0 0 0 0.71 0.71

]

. (4.15) 

In this example, the concepts are two authors. The U. matrix connects children 

to the author they like, where the first column corresponds to Louis Sachar and 

the second column corresponds to Philip Pullman. For example, Jack likes Louis 

Sachar’s books and has not ranked Philip Pullman’s books. Scores corresponding to 

Jack in the U. matrix are in the second row with values of 0.62. and 0, respectively. 

Scores corresponding to Mary are 0.79. and 0, respectively, shown in the first row 

of U.. Mary has not ranked Philip Pullman’s books either. The score from Mary to 

Louis Sachar is higher than the one from Jack to Louis Sachar, because Mary has 

given a higher rank to each of those three books written by Louis Sachar than Jack 

has. 

The matrix S. tells us the strength of concepts in the dataset. 10.3. is the strength 

of Louis Sachar, while 8.2. is the strength of Philip Pullman. The information about 

Louis Sachar is stronger, because there is more information in the dataset about 

books written by Louis Sachar. 

Finally, the V. matrix connects books to authors. The first three books in the 

first row are written by Louis Sachar, and the last two books in the second row 

are written by Philip Pullman. Interestingly, one cannot compare values in the V. 

across two authors. For example, it does not make sense to compare 0.62. to 0.71.. 

However, one may compare values within each specific author. For instance, 0.62. 

is bigger than 0.48., and it suggests that both Holes and Small Steps have a better 

ranking than Fuzzy Mud overall for Louis Sachar in this small review dataset. 

Now let us swap the first two rows of M. and keep values in N. as shown as 

follows: 

.N =

⎡

⎢

⎢

⎣

4 4 3 0 0

5 5 4 0 0

0 0 0 5 5

0 0 0 3 3

⎤

⎥

⎥

⎦

.
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After performing an SVD on N.,  we  ha  ve

. N ≈ USVT =

⎡

⎢

⎢

⎣

−0.62 0

−0.79 0

0 0.86

0 0.51

⎤

⎥

⎥

⎦

[

10.3 0

0 8.2

] [

−0.62 −0.62 −0.48 0 0

0 0 0 0.71 0.71

]

.

Comparing with the SVD output in the mathematical expression (4.15), one can 

see that S. is the same, and the absolute values of the two VT
. matrices are equal. 

However, the first two rows of the U. matrix have been swapped, and the signs of 

values in these two rows have been changed. 

Furthermore, let us swap the first column and the last column of M. and keep 

values in Z. as shown as follows: 

. Z =

⎡

⎢

⎢

⎣

0 5 4 0 5

0 4 3 0 4

5 0 0 5 0

3 0 0 3 0

⎤

⎥

⎥

⎦

.

After performing an SVD on Z.,  we  ha  ve

. Z ≈ USVT =

⎡

⎢

⎢

⎣

0.79 0

0.62 0

0 −0.86

0 −0.51

⎤

⎥

⎥

⎦

[

10.3 0

0 8.2

] [

0 0.62 0.48 0 0.62

−0.71 0 0 −0.71 0

]

.

Comparing with the SVD output in the mathematical expression (4.15), one can see 

that S. is the same, and the absolute values of the two U. matrices are equal. But the 

two VT
.matrices are different. The absolute values seem the same; however, the first 

column and the last column have been swapped, and the signs of some values have 

been changed. 

Remark 4.8 U. is a matrix that holds important information about rows of a given 

data matrix; VT
. is a matrix that holds important information about columns of the 

given data matrix. �. 

4.3.5.1 One More Property of SVD 

If Mn×d = Un×nSn×dV
T
d×d ., then si = ||Mvi ||., where si . is the ith value along the 

main diagonal of S., and vi . is the ith column of V..
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For example, if we calculate Mv1 ., where v1 . as shown in the mathematical 

expression (4.15,  we  ha  ve

. Mv1 =

⎡

⎢

⎢

⎣

5 5 4 0 0

4 4 3 0 0

0 0 0 5 5

0 0 0 3 3

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.62

0.62

0.48

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

8.12

6.4

0

0

⎤

⎥

⎥

⎦

.

The norm ofMv1 . is
√
8.122 + 6.42 ≈ 10.3., which is approximately equal to the first 

element of S. in the mathematical expression (4.15). The approximation is caused 

by the fact that we have kept only two decimal places in (4.15). As mentioned 

previously, s1 . is the strength of the first author in the data matrix. Mv1 . shows each 

child’s overall rating to the first author. It is an average of all five books weighted 

by the first row in VT
.. Therefore, ||Mv1||.may be considered as a score over all four 

children, weighted by the first row of VT
., which connects books to Louis Sachar. 

4.3.6 An Example of Image Compression Using SVD 

Let us do image compression using SVD on a cat image1 as shown in Fig. 4.5.  The  

size of the image n×d . is 668×640.. That is, the image has n = 668. row and d = 640. 

column pixels. An image can be treated as a matrix of pixels with corresponding 

colour values and can be decomposed using SVD with a smaller number of singular 

values that retain only the essential information that comprises the image which 

results in a smaller image file size. 

Figure 4.6 shows the sorted singular values after performing a full SVD on the 

cat image. As can be seen, singular values decrease dramatically from the first one 

to the 50th and converge to about 0 after the 100th singular value. 

We can compress the image by using a smaller number (k) of singular values on 

the right-hand side of Eq. (4.14) in this chapter to reconstruct the image. Figure 4.7 

shows three compressed images with the number of singular values equal to 50, 20, 

and 5, respectively. 

The quality of a compressed image can be measured using the following equation 

(assuming the size of the original image is n × d ..): 

.
s21 + · · · + s2k

s21 + · · · + s2d

× 100%, (4.16) 

that is, the sum of the squares of the retained singular values divides by the sum 

of the squares of all of the singular values. In this example, the image quality is

1 This image was sourced from Pexels: https://www.pexels.com/search/cats/. 

https://www.pexels.com/search/cats/
https://www.pexels.com/search/cats/
https://www.pexels.com/search/cats/
https://www.pexels.com/search/cats/
https://www.pexels.com/search/cats/
https://www.pexels.com/search/cats/
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Fig. 4.5 The 

black-and-white version of 

the original colour image of a 

cat 

Fig. 4.6 A plot of singular 

values sorted in descending 

order 

99.37%., 98.73%., and 95.57%. for k = 50, 20, and 5., respectively, calculated from 

Python programming. The compressed image with k = 5. is not good, as can be seen 

in Fig. 4.7, although a percentage value of 95.57. seems a lot. 

The compression ratio of an image can be calculated using the following 

equation: 

.
n × d

k × (n + 1 + d)
. (4.17)
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Fig. 4.7 The original image of a cat and its reconstructions using different numbers of singular 

values 

The top line is the size of the original matrix = n × d .. The bottom line is the sum of 

three small matrices after SVD, namely, n × k + k × k + k × d .. However, since the 

singular values are kept in the main diagonal of S., one can just save the top k values 

along the main diagonal rather than the whole k × k . matrix. Hence the bottom line 

is n × k + k × 1 + k × d = k × (n + 1 + d).. 

Remark 4.9 When performing an image compression task, one needs to consider 

both the image quality and the compression ratio. That is to have a compression ratio 

as large as possible while keeping the compressed image as good as the original 

one. �. 

Example 4.4 Compute the compression ratio of the cat image for k = 50. 

(the second image in the first row of Fig. ). 4.7

Solution Compression ratio = 
668×640 

50×(668+1+640) 
≈ 6. 53..
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Exercise 

4.6 Compute the compression ratio in Example 4.4 with k = 20.. 

4.4 The Relationship Between PCA and SVD 

IfM = USVT
., then columns of V. are principal directions (or axes). Singular values 

are related to the eigenvalues of the covariance matrix via the following equation, 

where n is the number of data points:

.λi = s2i /(n − 1), (4.18) 

Now let us compare results obtained in Sects. 4.2.4 and 4.3.4 of this chapter. 

As can be seen, the two columns of V. in the SVD calculation are equal to the two 

eigenvectors in the PCA calculation. If we substitute s1 = 4.and s2 = 2. to Eq. (4.18), 

we have 42

5−1
= 4. and 22

5−1
= 1., respectively, which are eigenvalues of PCA in Case 

Study 2 (Sect. 4.2.4). 

Exercise 

4.7 Exercises 4.4 and 4.5 work on the same data matrix using PCA and 

SVD, respectively. Apply Eq. (4.18) to results obtained from Exercise 4.5, 

and compare these eigenvalues with what you have obtained in Exercise 4.4.



Chapter 5 

Calculus 

This chapter introduces calculus. Calculus deals with the way in which quantities 

grow or change in relationship with each other. This chapter includes finding the 

derivative of a function, finding an integral, and some applications of derivatives, 

such as finding the local minimum and maximum of a function. Many readers will 

have covered this material before; this chapter will, therefore, represent a reminder 

for such readers. Doing the many exercises will help with that revision. For others, 

the many examples and exercises will aid in the learning process. 

5.1 Limits of Functions 

The principles behind both differentiation and integration in calculus are based on 

the concept of limits. So, before introducing the derivative of a function, we need to 

have an understanding of limits. 

The limiting value of something is the value you get as you approach it ever and 

ever closer. To find the limiting value of a function of x at a point x0 ., if such exists, 

you need to look at the value of the function as you approach ever closer to the point. 

If the limiting value of the function A exists, then we need to show that the function 

gets  closer  to  A as x approaches x0 .. This is formalised in the following definition. 

Definition 5.1 (Limits) Let f (x). be a function defined at all values of x with the 

possible exception of x = x0 .. If for any positive number ǫ . (however small), there 

exists a positive number δ . so that whenever 0 < |x − x0| < δ ., the function f (x). 

satisfies |f (x)−A| < ǫ ..  We  say  A is the limit of f (x). as x approaches x0 . (x → x0 .) 

and denote it as 

. lim
x→x0

f (x) = A.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 

Y. Sun, R. Adams, A Mathematical Introduction to Data Science, 
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Fig. 5.1 An example of a 

function, f (x) = x2−4
x−2

.,  that  

is undefined at x = 2. 

(indicated by the hollow 

circle) but well-behaved 

nearby 

Table 5.1 As x → 1.,  we  

have f (x) = 2x → 2.. 
x 0 0.9 0.99 0.999 0.9999 

f(x) 0 1.8 1.98 1.998 1.9998 

Why do we need the concept of limits? Some functions are not defined at a point 

but are well-behaved nearby. For example, see Fig. 5.1, where function f (x) = x2−4
x−2

. 

is undefined at x = 2., since this value makes the bottom line zero, and so f (x). is 

undefined. However, as can be seen, as x → 2.,  we  have f (x) = 4.. This means 

when x is near 2 but not equal to it, the values of f (x). are near 4. That is, 

. lim
x→2

f (x) = 4.

How near can it be? The answer is that it can be as near as we want it to be. For 

example, if f (x) = 2x ., then as x → 1.,  we  have f (x) → 2., as shown in Table 5.1. 

5.1.1 Left- and Right-Hand Limits 

Let us consider f (x) = |x−3|
x−3

.. The function is undefined at x = 3. (see Fig. 5.2). 

Suppose we imagine that x is moving. Then, it can approach 3 either from the right 

or from the left. We indicate these by writing x → 3+
. and x → 3−

., respectively. In 

this example, as x → 3−
.,  we  have f (x) = −1.. On the other hand, as x → 3+

.,  we  

have f (x) = 1.. We can write these as 

. lim
x→3−

f (x) = −1, and lim
x→3+

f (x) = 1.

We say that 

. lim
x→x−

0

f (x) = A1, if f (x) → A1 as x → x−
0 ,
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Fig. 5.2 An illustration of the limits of the function f (x) = |x−3|
x−3

. as x → 3., approaching from 

the right (dotted circle) and from the left (solid circle) 

and 

. lim
x→x+

0

f (x) = A2, if f (x) → A2 as x → x+
0 .

If A1 = A2 = A., then 

. lim
x→x−

0

f (x) = lim
x→x+

0

f (x) = A,

that is, it does not matter which side x approaches x0 . from, then the limit of the 

function exists and we say that 

. lim
x→x0

f (x) = A.

This can be seen in the example above, f (x) = x2−4
x−2

., where the value f (x) = 4. 

is obtained if you approach 2 from either side. 

5.1.2 Theorems on Limits 

Suppose g(x). and h(x). are two functions. If 

. lim
x→x0

g(x) = A and lim
x→x0

h(x) = B,
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then 

• 

. lim
x→x0

(g(x) ± h(x)) = A ± B = lim
x→x0

g(x) ± lim
x→x0

h(x).

• 

. lim
x→x0

(g(x)h(x)) = AB = lim
x→x0

g(x) lim
x→x0

h(x).

• 

. lim
x→x0

g(x)

h(x)
=

A

B
=

limx→x0 g(x)

limx→x0 h(x)
, if B �= 0.

Sometimes it happens that as x → x0 ., the limit of either g(x). or h(x)., or both 

does not exist. Finding the limits of such functions is beyond the scope of this book. 

Readers may want to view details from [6]. 

Example 5.1 Find the limit for the following function as x → 1.: 

. 3x − 1.

Solution 

. lim
x→1

(3x − 1) = lim
x→1

3x − lim
x→1

1 = 3 lim
x→1

x − lim
x→1

1 = 3 × 1 − 1 = 2.

Example 5.2 Find the limit for the following function as x → 2.: 

. (x3)(x2).

Solution 

. lim
x→2

((x3)(x2)) = lim
x→2

x3 lim
x→2

x2 = ( lim
x→2

x)3( lim
x→2

x)2 = 23 × 22 = 8× 4= 32.

(continued)
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Example 5.2 (continued) 

Note that 

. (x3)(x2) = x5,

and 

. lim
x→2

(x5) = ( lim
x→2

x)5 = 25 = 32,

which gives us confidence that the rule is correct. 

Example 5.3 Find the limit for the following function as x → 1.: 

. 
x3 − 1

x2 − 4x + 2
.

Solution 

. lim
x→1

x3 − 1

x2 − 4x + 2
=

limx→1(x
3 − 1)

limx→1(x2 − 4x + 2)

=
limx→1 x3 − limx→1 1

limx→1 x2 − 4 limx→1 x + limx→1 2

=
(limx→1 x)3 − 1

(limx→1 x)2 − 4 × limx→1 x + 2

=
13 − 1

12 − 4 × 1 + 2

= 0.

It can be seen that one can substitute the value of x0 . into a rational function to 

find the limit of the function. However, if a rational function’s denominator equals 

zero or approaches ∞. after substituting, it needs to be treated differently. Let us 

consider the following two examples.
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Example 5.4 Find the limit for the following function as x → 3.: 

. 
x − 3

x2 − 9
.

Solution When x → 3., both limits of the numerator and the denominator 

are zeros, so we cannot take the limit of the numerator and denominator 

separately. Instead, we can cancel the common factor x−3. from the numerator 

and the denominator. Therefore, 

. lim
x→3

x − 3

x2 − 9
= lim

x→3

x − 3

(x − 3)(x + 3)
= lim

x→3

1

x + 3
=

limx→3 1

limx→3(x + 3)
=

1

6
.

Example 5.5 Find the limit for the following function as x → ∞.: 

. 
2x3 + 3x2 + 1

6x3 + 4x2 − 2
.

Solution When x → ∞., both the numerator and the denominator approach 

∞.. Therefore, we cannot apply theorems of limits directly. Instead, let us 

divide the numerator and the denominator by x3
. first, then we can find the 

limit: 

. lim
x→∞

2x3 + 3x2 + 1

6x3 + 4x2 − 2
= lim

x→∞

2 + 3
x

+ 1
x3

6 + 4
x

− 2
x3

=
1

3
.

Exercise 

5.1 Find the following limits. 

(1) 

. lim
x→2

(x2 − 3),

(2) 

. lim
x→∞

(

1 +
1

x

)(

3 −
1

x3

)

,

(continued)
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(3) 

. lim
x→2

x − 2
√

x + 2
,

(4) 

. lim
x→ 1

2

8x3 − 1

6x2 − 5x + 1
,

(5) 

. lim
x→0

4x3 − 2x2 + x

3x2 + 2x
.

5.1.3 Continuity 

Let f (x). be defined for all values of x, near x = x0 . as well as x = x0 ..  The  

function f (x). is called continuous at x = x0 .,  if limx→x0 f (x) = f (x0).. Consider 

the following: 

. f (x) =

{

x3, x �= 1

0, x = 1
and lim

x→1
f (x) = 1.

f (x). is not continuous at x = 1. since f (1) = 0. and limx→1 f (x) = 1 �= f (1).. 

5.2 Derivatives 

We can apply the concept of limit in many applications. 

For example, the position of an object with uniform motion (constant velocity) 

along the x-axis at time t is x = f (t).. Its velocity is the ratio of the distance it 

travels to the time it takes, which is the same at all points. However, if the motion is 

not uniform, its velocity is different at different time intervals. For any time interval,
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Fig. 5.3 An illustration of the slope of a secant line, represented by the dashed line 

denoting the starting time point as t0 ., when the object is at point x0 ., the velocity can 

be found by calculating the following: 

.
x − x0

t − t0
=

f (t) − f (t0)

t − t0
, (5.1) 

which is the average velocity within the time interval. If t → t0 . and the limit of 

Eq. (5.1) exists, then 

. lim
t→t0

f (t) − f (t0)

t − t0

is the velocity of the object at the instant in time t = t0 .. 

Let us consider another example. The slope of the line joining two points on a 

curve, called a secant line, as shown in Fig. 5.3, can be calculated as follows: 

.slope =
change in f (x)

change in x
=

f (x2) − f (x1)

x2 − x1
. (5.2) 

If x1 → x2 . and the limit of Eq. (5.2) exists, then 

. lim
x1→x2

f (x2) − f (x1)

x2 − x1

is the slope of the line just touching the curve, called the tangent, at the point 

(x2, f (x2))..
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In the above two examples, we tried to calculate the limit of the rate of change 

of a function: the change of the dependent variable related to the change of the 

independent variable, which can be written in general as follows: 

. lim
�x→0

f (x0 + �x) − f (x0)

�x
, (5.3) 

where �x . and f (x0 +�x)−f (x0). are the increase of the independent variable and 

the dependent variable of the function y = f (x)., respectively. This limit is called 

the derivative of the function f (x). at x0 .. 

Definition 5.2 (Derivative and Differential) The ratio defined in Eq. (5.3)  is  

called the derivative of the function y = f (x).at its domain value x0 .. If the derivative 

can be formed at each point of a subdomain of f , then f is said to be differentiable 

at a general point x on that subdomain, and a new function f ′
. has been constructed, 

denoted as f ′(x)., 
dy
dx

.,  or
df (x)

dx
.. That is, 

. f ′(x) =
dy

dx
=

df (x)

dx
= lim

�x→0

f (x + �x) − f (x)

�x
.

It is also convenient to define the differential, particularly in applications where 

a linear approximation to a function is required. The differential, dy, or principal 

part of the change in a function with respect to changes in the independent variable, 

is defined as: 

. dy = f ′(x)dx,

which is the differential of y or f (x).. 

Remark 5.1 Note that in general dy �= �y ., where �y = f (x + �x) − f (x).. 
dy
dx

. 

is not actually a fraction at all. It is the limit of the fraction 
�y
�x

. as �x → 0.. �. 

Example 5.6 Let f (x) = 6x + 5., and use the derivative definition to find 

f ′(x). at any point x. 

Solution 

. f (x + �x) = 6(x + �x) + 5 = 6x + 6�x + 5

. f (x + �x) − f (x) = 6�x

. lim
�x→0

6�x

�x
= 6.

(continued)
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Example 5.6 (continued) 

Since we know from Sect. of Chap. that2 2.3.2.1 y = f (x) = 6x + 5. is a 

straight line and that its gradient is 6 everywhere, then the result that f ′(x) =
6., as found here, is correct. 

Example 5.7 Let f (x) = |x|.. Compute f ′(x). at x = 0. using the definition 

of derivative. 

Solution 

. lim
�x→0

f (0 + �x) − f (0)

�x
= lim

�x→0

|�x| − 0

�x
= lim

�x→0

|�x|
�x

.

. If �x < 0, lim
�x→0−

f (0 + �x) − f (0)

�x
= −1;

. if �x > 0, lim
�x→0+

f (0 + �x) − f (0)

�x
= 1.

. Since lim
�x→0−

f (0 + �x) − f (0)

�x
�= lim

�x→0+

f (0 + �x) − f (0)

�x
,

the derivative of f (x) = |x|. at x = 0. does not exist. There is no one unique 

tangent for f (x) = |x|. at x = 0.. For example, some are shown as dotted lines 

in Fig. . 5.4

Fig. 5.4 An illustration of 

f (x) = |x|.. Dotted lines are 
three examples of possible 

tangents passing through 

x = 0.
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Exercise 

5.2 From the definition of the derivative, find whether f ′(x). exists at x = 0.. 

If it exists, calculate f ′(x = 0).. Also, calculate f ′(x). at a general point x. 

(1) f  (x)  = x2
.. 

(2) f  (x)  = x2 + x .. 

5.2.1 Derivatives of Some Elementary Functions 

This is not a Mathematics textbook, so we just list the derivatives of some of 

the most common functions. In the following, we assume each function is a 

differentiable function of x or θ ., where θ . is measured in radians. c and a denote 

constants.

.
d

dx
c = 0 (5.4) 

.
d

dx
axc = caxc−1 (5.5) 

.
d

dθ
sin θ = cos θ (5.6) 

.
d

dθ
cos θ = − sin θ (5.7) 

.
d

dx
eax = aeax (5.8) 

.
d

dx
ln x =

1

x
(5.9) 

Readers may read [6] to find derivatives for more trigonometrical and hyperbolic 

functions. 

5.2.2 Rules for Differentiation 

Again, we just list these rules. If f (x)., g(x)., and h(x). are differentiable functions, 

then the following differentiation rules are valid.
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• Addition Rule 

. 
d

dx
(g(x) + h(x)) =

d

dx
g(x) +

d

dx
h(x).

• 

. 
d

dx
(g(x) − h(x)) =

d

dx
g(x) −

d

dx
h(x).

• 

. 
d

dx
Cg(x) = C

d

dx
g(x),

where C is any constant.

• Product Rule 

. 
d

dx
(g(x)h(x)) = g(x)

d

dx
h(x) + h(x)

d

dx
g(x).

• Quotient Rule 

. 
d

dx

g(x)

h(x)
=

h(x) d
dx

g(x) − g(x) d
dx

h(x)

(h(x))2
.

• If y = g(x)., and x = g−1(y)., then 
dy
dx

. and dx
dy

. are related by 

. 
dy

dx
=

1
dx
dy

.

That is, the derivative of an inverse function is the reciprocal of the derivative of 

the function. 

• Chain Rule 

In calculus, the chain rule is a formula for computing the derivative of the 

composition of two or more functions. For two functions: If y = f (u). and 

u = g(x)., then 

. 
dy

dx
=

dy

du

du

dx
.

This generalises to three or more functions, for instance: If y = f (z), z =
g(w). and w = h(x)., then 

.
dy

dx
=

dy

dz

dz

dw

dw

dx
.
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Example 5.8 Let f (x) = x2
..  Find f ′(x).. 

Solution Applying Eq. ( ), we have: 5.5

. f ′(x) = 2x2−1 = 2x.

Example 5.9 Let h(x) = 3x2 + 5x ..  Find d
dx

h(x).. 

Solution Applying the addition rule and Eq. ( ), we have: 5.5

. 
d

dx
h(x) =

d

dx
(3x2) +

d

dx
5x = 6x + 5.

Example 5.10 Let h(x) = x(3x + 5)..  Find h′(x).. 

Solution Consider f (x) = x . and g(x) = 3x + 5. and applying the product 

rule, Eq. ( ) and the addition rule, we have: 5.5

. h′(x) = f (x)
d

dx
g(x) + g(x)

d

dx
f (x)

= x × 3 + (3x + 5) × 1

= 6x + 5.

Since h(x) = x(3x + 5) = 3x2 + 5x ., this is the same as Example and 

has the same solution. This gives us confidence that the product rule is correct. 

5.9 

Example 5.11 Let h(x) = ex cos x ..  Find d
dx

h(x).. 

Solution Consider f (x) = ex
. and g(x) = cos x ., then applying the product 

rule and Eqs. ( ), with independent variable x rather than5.7 θ ., and ( ), we 

have: 

5.8

.
d

dx
h(x) = f (x)

d

dx
g(x) + g(x)

d

dx
f (x)

(continued)
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Example 5.11 (continued) 

= ex × (− sin x) + cos x × ex 

= e 
x(cos x − sin x).

Example 5.12 Let h(x) = tan x = sin x
cos x

..  Find d
dx

h(x).. 

Solution Consider f (x) = sin x . and g(x) = cos x ., then applying the 

quotient rule and Eqs. ( ) and ( ), we have: 5.75.6

. 
d

dx
h(x) =

g(x) d
dx

f (x) − f (x) d
dx

g(x)

(g(x))2

=
cos x × cos x − sin x × (− sin x)

cos2 x

=
cos2 x + sin2 x

cos2 x

=
1

cos2 x

= sec2 x.

Example 5.13 Let σ(x). be a sigmoid function, defined as: σ(x) = 1
1+e−x .. 

Find d
dx

σ(x).. 

Solution Applying the quotient rule, we have: 

. 
d

dx
σ(x) =

(1 + e−x) × 0 − 1 × (−e−x)

(1 + e−x)2

=
e−x

(1 + e−x)2

=
1

1 + e−x
×

(1 + e−x) − 1

1 + e−x

= σ(x)(1 − σ(x)).

(continued)
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Example 5.13 (continued) 

Note that in line one of the above, we have applied (1) the derivative of a 

constant is zero; and (2) Eq. ( ). Figure shows a sigmoid function and its 

derivative in the domain of

5.5 5.8

[−10, 10].. The function itself is bounded between 
0 and 1, and its derivative is symmetrical about the vertical axis of x = 0.. 

Values of the derivative are convergent to 0 as x approaches either ∞. or −∞.. 

Example 5.14 Let y = ln x . and x = ey
..  Find

dy
dx

. and dx
dy

.. 

Solution Using Eqs. ( ) and ( ), we have:5.85.9
dy
dx

= 1
x
. and dx

dy
= ey =

x .. Since the functions y = ln x . and x = ey
. are inverse functions (see 

Example in Sect. of Chap. ), we have shown that 22.3.4 2.23 

. 
dy

dx
=

1
dx
dy

.

Example 5.15 Let y = sin−1 x ., and y ∈ [−π
2
, π
2
]..  Find dy

dx
.. 

Solution We can apply the rule of calculating the derivative for an inverse 

function in this case. Since x = sin y . and dx
dy

= d
dy

sin y = cos y .,  we  hav  e:

. 
dy

dx
=

1

cos y
=

1
√

1 − (sin y)2
=

1
√
1 − x2

.

Fig. 5.5 An illustration of a 

sigmoid function (solid line) 

and its derivative (dash-dotted 

line)
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Example 5.16 Let f (x) = ln(cos x)..  Find
dy
dx

.. 

Solution Let y = ln z. and z = cos x .. Applying the chain rule, we have 
dy
dz

= 1
z
., dz

dx
= − sin x ., and 

. 
dy

dx
=

dy

dz

dz

dx
=

1

z
× (− sin x) = −

sin x

cos x
= − tan x.

Example 5.17 Find the derivative of f (x) = max(0, x).. 

Solution If x ≤ 0., the function value is 0. The derivative of any constant 

value is 0. If x > 0., the function value is the value of x. The derivative of x 

is 1. Figure shows the function (the left panel) and its derivative (the right 

panel) in the domain of

5.6 

[−5, 5].. This function is widely used as an activation 
function in neural networks, and its name is the Rectified Linear Unit, or 

ReLU for short. Technically, the derivative is undefined when the input is 0. In 

practice, if we assume that the derivative is zero here, there are no problems. 

Many real-world applications using neural networks have empirically proved 

that models with ReLU as the activation function are easier to train and can 

have a better performance. 

Fig. 5.6 An illustration of a ReLU function (on the left) and its derivative (on the right)
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Exercises 

5.3 Find d
dx

f (x). of the following functions. 

(1) f  (x)  = x + 6.. 

(2) f  (x)  = x6.. 

(3) f  (x)  = 10 ex .. 

(4) f  (x)  = 5 ln(x).. 

(5) f  (x)  = ln(x) sin x.. 

(6) f  (x)  = 
ex 

cos x
.. 

(7) f  (x)  = e10x+1.. 

(8) f  (x)  = 4(ex )2 + 5.. 

(9) f  (x)  = e3x sin 5x.. 

(10) f  (x)  = 
ln(8x) 

e (x
2)

.. 

5.2.3 The Second Derivative 

In general, the derivative y′
. or f ′(x). of a function y = f (x). in an interval is still 

a function of x. For example, see the derivative in Figs. 5.5 and 5.6, respectively. If 

f ′(x). is also differentiable in the interval, we call the derivative of y′ = f ′(x). the 

second-order derivative of y = f (x)., denoted as y′′
., f ′′(x).,  or

d2y

dx2
.. That is, 

. y′′ = (y′)′ or
d2y

dx2
=

d

dx

dy

dx
.

Similarly, the nth derivative of f (x). if it exists, is denoted as y(n)
., f (n)(x).,  or

dny
dxn .. 

This book considers the first and the second derivative of a function only. 

Example 5.18 Find the second derivative of the following function: 

. y = 5x + 8.

Solution 

.y′ = 5, y′′ = (y′)′ = 0.
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Example 5.19 Find the second derivative of the following function: 

. y = sin(ωx).

Solution 

. y′ = ω cos(ωx), y′′ = (ω cos(ωx))′ = −ω2 sin(ωx) = −ω2y.

Exercise 

5.4 Find the second derivative of the following functions. 

(1) y = x3 ln x.. 

(2) y = ae− αx,. express the answer in terms of y. 

(3) y = ae−αx + beαx,. express the answer in terms of y. 

5.3 Finding Local Maxima and Minima Using Derivatives 

There is a close relationship between the function monotony and the sign of its 

derivative. Suppose function y = f (x). is continuous in the interval of [a, b]. and is 
differentiable in (a, b).. Recall that the derivative of a function at a specific point can 

be considered as the slope of the tangent line of the function passing through that 

point. If f ′(x) > 0. for all x ∈ (a, b)., then y = f (x).monotonically increases in the 

interval of [a, b]. (Fig. 5.7a). On the other hand, if f ′(x) < 0. for all x ∈ (a, b)., then 

y = f (x).monotonically decreases in the interval of [a, b]. (Fig. 5.7b). 
We can use the relationship between the function monotony and the sign of its 

derivative to find extreme points, the local maxima and minima, of a function. Look-

ing at Fig. 5.8, we see function f (x). has four local minima, f (x1), f (x4), f (x6)., 

and f (x8)., respectively, and three local maxima, f (x2), f (x5)., and f (x7)., respec-

tively, in the interval of [a, b].. Among them, the local maximum value f (x2). is 

smaller than the local minimum value f (x6).. In fact, f (x1). is the overall minimum, 

and f (x7). is the overall maximum of the function in the interval of [a, b].. We can 

also see that all tangents at either local minima or local maxima are horizontal. 

However, when a tangent is horizontal, the corresponding function value is not 

necessarily a local minimum or a local maximum, such as the point (x3, f (x3)).. 

(x3, f (x3)). is called a point of inflection. Any point (x, f (x)). at which f ′(x) = 0. 

is called a critical point.
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Fig. 5.7 An illustration of the relationship between the sign of the derivative and the monotonicity 

of a function, where the solid line represents the function and the dashed line represents the tangent 

line 

Fig. 5.8 An illustration of local maxima and minima of a function 

Now let us have a look at Fig. 5.9. The top panel shows a diagram of a function, 

the middle shows the first derivative of the function, and the bottom shows the 

second derivative. We can see that the local minimum point of the function has a 

zero first derivative and a positive second derivative; the local maximum point of 

the function has a zero first derivative and a negative second derivative. 

The general idea to find local maxima and minima of a function y = f (x). using 

derivatives is: 

• Step 1: to find critical values x using the condition f ′(x) = 0.. 

• Step 2: to determine the exact nature of the function at a critical point (x, f (x))., 

f ′′(x). needs to be calculated.
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Fig. 5.9 An illustration of 

the relationship between local 

maxima or minima and their 

corresponding first and 

second derivatives 

– If f ′′(x) > 0., the critical point is a local minimum point. 

– If f ′′(x) < 0., the critical point is a local maximum point. 

– If f ′′(x) = 0., it needs further investigation. 

Example 5.20 Find the local minima and maxima of function f (x) = (x2 −
1)3 − 1.. 

Solution 

• Find critical values using the condition f ′(x) = 0.. 

– First, find f ′(x). by applying the chain rule (see Sect. of this 

chapter). Set

5.2.2 

u = (x2 − 1)., then we have: 

. 
df (x)

dx
=

df (u)

du

du

dx
= 3u22x = 6x(x2 − 1)2.

(continued)
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Example 5.20 (continued) 

– Set 6x(x2 − 1)2 = 0.,  we  have: x1 = −1., x2 = 0., and x3 = 1.. 

Substitute these values to the function, we obtain three critical points: 

(−1,−1)., (0,−2)., and (1,−1).. 

• Calculate f ′′(x)., that is, calculate the derivative of (6x(x2−1)2).. Consider 

g(x) = 6x . and h(x) = (x2 − 1)2 ., and apply the product rule to 
d
dx

(g(x)h(x)). and the chain rule to h(x)., then we have: 

. f ′′(x) = 6(x2 − 1)2 + 6x · 2(x2 − 1) · 2x

= 30x4 − 36x2 + 6

= 6(5x2 − 1)(x2 − 1).

• Substitute x1 = −1., x2 = 0., and x3 = 1. into f ′′(x) = 6(5x2 − 1)(x2 − 1)., 

separately. 

– Since f ′′(0) = 6 > 0., f (x). has the minimum value at x = 0., which is 

f (0) = −2.. 

– Since f ′′(−1) = 0. and f ′′(1) = 0., each critical point needs further 

investigation. When taking a close value from the left side of − 1.,  for  

example, − 1.01.,  we  have f ′(−1.01) < 0.; taking a close value from 

the right side of − 1., for example, − 0.9.,  we  have f ′(−0.9) < 0.. Since 

there is no sign change to f ′(x)., then we conclude there is no maximum 

or minimum at x = −1.. Similarly, there is no maximum or minimum at 

x = 1.. Both points are, in fact, points of inflection with zero gradients. 

Remark 5.2 A point of inflection is a point where the gradient line at a point is 

above the curve on one side and below the curve on the other side of the point. Or 

where the curve changes from being concave downward to being concave upward 

or vice versa. At these points f ′′(x) = 0..  If f ′(x) = 0. as well, then we have 

a point of inflection with a zero gradient like point (x3, f (x3)). on Fig. 5.8. Other 

points of inflection are like the point where f ′′(x) = 0. but f ′(x) �= 0. on Fig. 5.9. 

This is where the middle vertical dash-dotted line goes down from the middle of the 

upward-sloping part of the graph in the top part of the figure to the bottom part of 

the figure, where it shows that f ′′(x) = 0. (in fact the gradient itself, f ′(x). has a 

maximum at that point as seen in the middle part of the Fig. 5.9). �.
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Exercise 

5.5 Find any local maximums and minimums of the following functions. 

(1) f  (x)  = x3 − 3x2 − 24x + 3.. 

(2) f  (x)  = 4x3 − 3x2 + 1.. 

(3) f  (x)  = 24x − 2x3.. 

(4) f  (x)  = 4x2 − 
1
x
.. 

(5) f  (x)  = x4 − 4x3 − 2x2 + 12x + 4.. 

(6) for x ∈ [0, 2π ] :. f (x) = ex(cos x + sin x).. 

(7) f  (x)  = xe−x .. 

(8) f  (x)  = x2e−x .. 

5.4 Integrals 

Earlier, we introduced how to find the derivative of a differentiable function. In this 

section, we will discuss the inverse operation of finding derivatives. That is, given 

a function f (x)., and we will see how we can find a differentiable function F(x). so 

that the derivative of F(x). equals f (x).. First, we consider the area under a curve by 

summing up (integrating) small areas. This again will draw on the concept of limits. 

Consider the area of the region A shown in F ig. 5.10. That is the area under f (x). 

bounded in the interval of [a, b].. Suppose we divide the interval into n sub-intervals 

by inserting arbitrarily n − 1. points x1, x2, . . . , xn−1 ., and the length of each 

subinterval is: 

. �x1 = a − x1,�x2 = x2 − x1, . . . ,�xn = b − xn−1.

Fig. 5.10 An illustration of 

the definite integral of f (x). 

over the interval [a, b]., 
represented as the shaded 

area under the curve
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Randomly choose a point in each subinterval ξi (xi−1 ≤ ξi ≤ xi)., where i =
1, . . . , n, x0 = a . and xn = b., and take the product of the function value at ξi . and 

the length of its corresponding subinterval �xi .. This product represents the area 

of a rectangle of height f (ξi). and width �xi . and will be an approximation to the 

area under the curve in that subinterval �xi .. Then, the sum of these products can be 

written as: 

.S =
n

∑

i=1

f (ξi)�xi . (5.10) 

Definition 5.3 (Definite Integrals) Let the number of subintervals n increase so 

that the lengths �xi → 0.. Denote λ = max{�x1,�x2, · · · ,�xn}.. If the sum of 

Eq. (5.10) approaches a limit that does not depend on how we divide the interval, 

then we denote this limit by the following: 

.

∫ b

a

f (x)dx = lim
λ→0

n
∑

i=1

f (ξi)�xi . (5.11) 

This is called the definite integral of f (x). between a and b. Finding the summation 

is known as integration. f (x). is called the integrand; a and b are the limits of 

integration or the endpoints of integration; dx tells us x is the variable of integration.

Geometrically, the integral that is the limit of the sum (Eq. 5.10) represents the 

total area of all rectangles (defined by subintervals) under a bounded function. For 

example,
∫ 4
0 xdx = 8.. This can be viewed in Fig. 5.11. The line represents the 

function of f (x) = x .. The area in the interval of [0, 4]. under the line of f (x) = x . 

is a triangle, whose area is computed as 1
2

× 4 × 4 = 8.. 

5.4.1 First Fundamental Theorem of Calculus 

For f continuous on [a, b]., define a function F by the follo wing:

.F(x) =
∫ x

a

f (t)dt for x in [a, b], (5.12) 

then F is differentiable on (a, b). and F ′(x) = f (x).. That is, differentiating F gives 

us back the original function f (x).. We call F(x). an antiderivative of f (x)..
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Fig. 5.11 An illustration of the definite integral under a line of f (x) = x . in the interval of [0, 4] 

Example 5.21 Suppose f (x) = x5
.. It means F ′(x) = d

dx
F(x) = f (x) =

x5
.. Can you think of some functions whose derivatives are x5

.? 

Consider d
dx

c = 0. and d
dx

axc = caxc−1
. (Eqs. and ). Some possible 

functions can be

5.55.4 

F(x) = x6

6
., F(x) = x6

6
+ 100., and F(x) = x6

6
+ 34.5..  In  

fact, any function of x of the form F(x) = x6

6
+ C for some constant C . is an 

antiderivative of f (x) = x5
.. 

Remark 5.3 Not all functions f (x). have antiderivatives F(x). in terms of ele-

mentary functions (polynomials, exponentials, logarithms, trigonometric functions, 

etc.), but the definite integral, understood as the limit of a summation, can still 

exist. �. 

5.4.2 Indefinite Integrals 

The family of all antiderivatives of f (x)., denoted as
∫

f (x)dx ., are called indefinite 

integrals. 

Remark 5.4 A definite integral, written as
∫ b

a
f (x)., is a number. An indefinite 

integral, written as
∫

f (x)dx ., is a family of functions. It is a family of functions, 

because the constant C can take any value. �.
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5.4.3 Second Fundamental Theorem of Calculus 

If f is continuous on [a, b]. and F is any of the family of antiderivative of f with 

respect to x, then

.

∫ b

x=a

f (x)dx = F(b) − F(a). (5.13) 

Remark 5.5 Care should be taken when finding an area using the equation 

.

∫ b

x=a

f (x)dx = F(b) − F(a). (5.14) 

When f (x). is below the axis for all of the interval [a, b]., then F(b) − F(a). is 

negative, so if the function f (x). is both above and below the axis in the interval 

[a, b]., then F(b) − F(a). is the difference between the upper area and the lower 

area. This could be zero if the areas are identical. �. 

5.4.4 Integrals of Some Elementary Functions 

We use a, c, and C to denote constants in the following set of formulas. These can 

all be checked by differentiating the right-hand side to get back to the left-hand side.

.

∫

adx = ax + C, (5.15) 

.

∫

axcdx =
axc+1

c + 1
+ C, (c �= −1), (5.16) 

.

∫

a

x
dx = a ln |x| + C, (5.17) 

.

∫

ceaxdx =
ceax

a
+ C, (5.18) 

.

∫

caxdx =
cax

ln a
+ C, (5.19)
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.

∫

a cos xdx = a sin x + C, (5.20) 

.

∫

a sin xdx = −a cos x + C. (5.21) 

Readers may find integral formula for more elementary functions in [6]. 

Example 5.22 Find the following integral: 

. 

∫

6x2dx.

Solution Applying Eq. ( ), we have: 5.16

. 

∫

6x2dx =
6x3

3
+ C = 2x3 + C.

Example 5.23 Find the following integral: 

. 

∫

dx

x 3
√

x
.

Solution Applying Eq. ( ), we have: 5.16

. 

∫

dx

x 3
√

x
=

∫

x− 4
3 dx =

x− 4
3+1

− 4
3

+ 1
+ C = −3x− 1

3 + C. = −
3
3
√

x
+ C.

Exercise 

5.6 Calculate the following integrals. 

(1)
∫

e2x dx ,. 

(2)
∫

−8x3dx,. 

(3)
∫

6 
x 
dx .. 

(4)
∫

3e−x dx ,. 

(5)
∫

5 sin  xdx,.



5.4 Integrals 147

5.4.5 Two Properties of Integrals 

If f (x). and g(x). are integrable in [a, b]., then 

.

∫ b

a

(f (x) + g(x))dx =
∫ b

a

f (x)dx +
∫ b

a

g(x)dx, (5.22) 

.

∫ b

a

cf (x)dx = c

∫ b

a

f (x)dx, c is a constant. (5.23) 

Similarly, for indefinite integrals, the following two properties are valid: 

.

∫

(f (x) + g(x))dx =
∫

f (x)dx +
∫

g(x)dx, (5.24) 

.

∫

cf (x)dx = c

∫

f (x)dx, c is a constant. (5.25) 

Example 5.24 Find the following integral: 

. 

∫

(x − 1)3

x2
dx.

Solution 

. 

∫

(x − 1)3

x2
dx =

∫

x3 − 3x2 + 3x − 1

x2
dx

=
∫

xdx − 3

∫

dx + 3

∫

dx

x
−

∫

dx

x2

=
x2

2
− 3x + 3 ln |x| +

1

x
+ C.

Example 5.25 Find the following integral: 

. 

∫

10xexdx.

(continued)
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Example 5.25 (continued) 

Solution 

. 

∫

10xexdx =
∫

(10e)x =
(10e)x

ln(10e)
+ C =

10xex

ln 10 + 1
+ C.

Exercise 

5.7 Calculate the following integrals. 

(1)
∫

(4 sin  x + ex )d x,. 

(2)
∫

π 

3 

θ=0(θ + cos θ)  dθ ., 

(3)
∫

ex+e−x 

2
dx . 

5.5 Further Integration Techniques 

In many real-world applications, we need to integrate more complex functions. The 

methods shown in the previous two sections are not enough. We will introduce two 

more new techniques in this subsection. More examples can be found in [6]. 

5.5.1 Integration by Substitution 

This method transforms an integral over one variable x to an integral over a different 

variable u by making a substitution. That is:

. 

∫ x2

x1

f (x)dx =
∫ u2

u1

g(u)du.

The idea behind this integration method is that by making a substitution, you 

produce a new integral that is simpler to evaluate. This can often be achieved 

by substituting for the “most difficult part” of the integral, or recognising that 

the integrand is of the form that you would get having differentiated a composite 

function using the chain rule. 

The following shows the procedure when applying the substitution method to an 

integral
∫ x2
x1

f (x)dx .: 

• Step 1: Think of a substitution u = h(x). that will make the integral simpler. 

• Step 2: Differentiate the substitution u = h(x)., and write dx in terms of du.
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• Step 3: For a definite integral, we must also determine the new limits of integra-

tion. 

• Step 4: Make the following substitutions into the original integral: 

– Replace x with the equation from Step 1 .

– Replace dx with the equation from Step 2 .

– Replace limits x1 . and x2 .with the new limits from Step 3. 

• Step 5: Do the new integral in terms of u. 

• Step 6: Write the answer in terms of x. 

Example 5.26 Perform the following integral: 

. 

∫

(2x + 5)4dx.

Solution This integral could be done by expanding out the bracket, but it will 

give a more convenient solution if we replace the “difficult bit” in the bracket. 

So set u = 2x + 5.. 

Differentiate the equation u = 2x + 5., and obtain du
dx

= 2. or equivalently 

dx = du
2

.. 

Substituting dx = du
2

. and u = 2x + 5. into the original integral gives 

. 

∫

(2x + 5)4dx =
∫

u4
du

2
=

∫

u4

2
du =

u5

2(5)
+ C =

(2x + 5)5

10
+ C.

Example 5.27 Perform the following integral: 

. 

∫

x3
√

x4 + 3 dx.

Solution The key to this substitution is recognising that this is the sort of 

result that you could get by using the chain rule of differentiation. The 

“difficult bit” in the bracket, when differentiated, gives the other part of the 

integrand (apart from a constant). That is, d(x4+3)
dx

= 4x3
..  So  set u = x4 + 3.. 

(continued)
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Example 5.27 (continued) 

Differentiate the equation u = x4 + 3., and obtain dx = du

4x3
.. 

Substituting dx = du

4x3
. and u = x4 + 3. into the original integral gives: 

. 

∫

x3
√

x4 + 3dx =
∫

x3
√

u
du

4x3

=
∫

√
u

4
du

=
u

1
2+1

4( 1
2

+ 1)
+ C

=
u

3
2

6
+ C

=
(x4 + 3)

3
2

6
+ C.

Example 5.28 Evaluate: 

. 

∫ π
2

0

cos5 x sin xdx.

Solution Again, − sin x . is what you get when differentiating cos x .,  so  the  

chain rule is implicated. Hence, we set u = cos x .. 

Differentiate the equation u = cos x ., and obtain dx = − du
sin x

.. 

When x = 0., u = 1.; when x = π
2
., u = 0.. 

Substituting dx = − du
sin x

., u = cos x . and new limits into the original 

integral gives: 

.

∫ π
2

0

cos5 x sin xdx = −
∫ 0

1

u5du =
∫ 1

0

u5du =
u6

6

∣

∣

∣

∣

1

0

=
1

6
.
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Example 5.29 Perform the following integral: 

. 

∫

x + 2
√

x + 3
dx.

Solution Here there is no obvious chain rule, but the denominator is the 

“difficult bit”. So try u =
√

x + 3.. 

Hence u2 = x + 3. and x = u2 − 3. and obtain dx = 2udu.. 

Substituting dx = 2udu. and u =
√

x + 3. into the original integral gives: 

. 

∫

x + 2
√

x + 3
dx =

∫

u2 − 1

u
2udu

=
∫

(2u2 − 2)du

=
2u3

3
− 2u + C

=
2

3
(x + 3)

3
2 − 2(x + 3)

1
2 + C.

You can check the result is correct by differentiating the answer! Note that 

the substitution of u = x + 3. also works as you can check. 

Exercise 

5.8 Calculate the following integrals. 

(1)
∫

x
√

(2 − x2)dx .. 

(2)
∫

dx 

(x−1)2 
.. 

(3)
∫

π 

8 

0 sin(4x)dx .. 

(4)
∫

x2 

(1+x3)2 
dx.. 

(5)
∫ 1 
0 

x 

(1+x)3 
dx .. 

(6)
∫

π 

2 
π 

6 

cos x 

sin3 x
dx.. 

(7)
∫

x 

1+x2 
dx .. 

(8)
∫

xex2 dx..
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5.5.2 Integration by Parts 

The formula of integration by parts can be derived from the product rule for 

differentiation (see Sect. 5.2.2 of this chapter). Suppose u and v are functions of 

x and differentiable:

. 
d

dx
(uv) = u

dv

dx
+ v

du

dx
.

Integrating the above equation with respect to x, we get: 

. uv =
∫

u
dv

dx
dx +

∫

v
du

dx
dx.

Rearranging this gives us the integration by parts formula: 

.

∫

u
dv

dx
dx = uv −

∫

v
du

dx
dx. (5.26) 

The key to this method of integration is to treat the integral as a product. One 

part of the product is represented by dv
dx

. on the left-hand side of Eq. (5.26) and is 

integrated to give v on the right-hand side. This part needs to be something that you 

can, therefore, integrate. The other part of the integral is represented by u and is 

differentiated, giving du
dx

. on the right-hand side. In this way, only part of the original 

integral is integrated, and hopefully, the new integral is made simpler. 

Example 5.30 Perform the following integral: 

. 

∫

x sin xdx.

Solution The integrand is a product, both of which can be integrated sepa-

rately. But if u is taken as x, then the new integrand will contain the differential 

of x, which is just 1, and so will be simpler. Hence consider u = x . and 
dv
dx

= sin x .. Then we have du
dx

= 1. and v = − cos x .. Applying the integration 

by parts formula (Eq. )  gives:5.26 

.

∫

x sin xdx = x(− cos x) −
∫

(− cos x)1dx

= −x cos x +
∫

cosxdx

= −x cos x + sin x + C.
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Example 5.31 Perform the following integral: 

. 

∫

x ln xdx.

Solution The only part we can integrate is the x,  so  we  set u = ln x . and 
dv
dx

= x .. Then we have du
dx

= 1
x
. and v = 1

2
x2

.. Applying the integration by 

parts formula (Eq. )  gives  :5.26

. 

∫

x ln xdx = ln x ×
1

2
x2 −

∫

1

2
x2 1

x
dx =

1

2
x2 ln x

−
∫

1

2
xdx =

1

2
x2 ln x −

1

4
x2 + C.

Example 5.32 Evaluate: 

. 

∫ π
2

0

x2 cos xdx.

Solution Again, both parts of the integrand can be integrated, but using u 

as x2
. will lead to a simpler integral. So set u = x2

. and dv
dx

= cos x .. Then 
du
dx

= 2x . and v = sin x .. Applying the integration by parts formula (Eq. ) 

gives: 

5.26

. 

∫ π
2

0

x2 cos xdx = (x2 sin x)

∣

∣

∣

∣

π
2

0

− 2

∫ π
2

0

x sin xdx.

Now, the new integral can again be evaluated using integration by parts. But, 

in fact, we have just done it (Example ). So we get: 5.30

.(x2 sin x)

∣

∣

∣

∣

π
2

0

− 2(−x cos x + sin x)

∣

∣

∣

∣

π
2

0

=
π2

4
− 2.
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Exercise 

5.9 Calculate the following integrals. 

(1)
∫

xex dx .. 

(2)
∫

x2 sin xdx.. 

(3)
∫

x3 ln xdx.. 

(4)
∫ 2 
1 ln xdx,. Hint: treat ln x . as 1 ln x.. 

(5)
∫

x sin 4xd x.. 

(6)
∫

2x ln 5xd x.. 

(7)
∫

sin2 xdx.. Hint: treat sin2 x . as sin x sin x . in the integration by parts 

and then use cos2 x = 1 − sin2 x . and rearrange!



Chapter 6 

Advanced Calculus 

This chapter takes the study of calculus forward into more advanced topics involving 

multiple variable functions. In general, most functions that are found in the machine 

learning field are ones with many variables rather than just one. Quite often, we 

are trying to maximise some value or minimise some error function, so the ability 

to differentiate such functions and find their maxima and minima will be essential. 

This leads us to the methods of partial differentiation that enable us to find gradients 

in different planes as described in Sect. 6.1. We also briefly look at multiple integrals 

that will be needed when we look at probability distributions of multiple continuous 

random variables in Chap. 11. 

6.1 Partial Derivatives 

6.1.1 The First Partial Derivatives 

In functions with two or more variables, the partial derivative is the derivative with 

respect to one of those variables, keeping all other variables constant. For example, 

consider a function f (x, y).with two variables (such as f (x, y) = x2 + 2xy + y3
.). 

Partial derivatives of f (x, y). with respect to x and y are denoted by
∂f
∂x

. and 
∂f
∂y

., 

respectively. 

Let �x = dx . and �y = dy . be increments given to x and y of f (x, y)., 

respectively. �f . is then the subsequent incremental change of the function f .  By  

Eq. (5.3) (in Sect. 5.2 of Chap. 5), if the corresponding limits exist, we have 

. 
∂f

∂x
= lim

�x→0

f (x + �x, y) − f (x, y)

�x
,
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and 

. 
∂f

∂y
= lim

�y→0

f (x, y + �y) − f (x, y)

�y
.

When evaluating these partial derivatives at a particular point (x0, y0)., they can 

be denoted as
∂f
∂x

∣

∣

∣x=x0
y=y0

. and
∂f
∂y

∣

∣

∣x=x0
y=y0

., respectively. 

Again, we can define the differential as we did for ordinary differentiation. The 

following expression 

.df =
∂f

∂x
dx +

∂f

∂y
dy (6.1) 

is called the total differential of f , or the principal part of the change in the function 

f with respect to changes in the independent v ariables.

Remark 6.1 Note that in general, df �= �f ..  If �x = dx . and �y = dy . are small, 

then df is a close approximation of �f .. �. 

Thought of visually or graphically, a function of two variables is a surface in three 

dimensions. Assume z = f (x, y).. Then, 
∂f
∂x

. keeps y constant, and so is a gradient 

(see Sect. 6.1.4 of this chapter) on the curve where the surface meets a plane parallel 

to the x − z. plane. Similarly, 
∂f
∂y

. keeps x constant, and so is a gradient on the curve 

where the surface meets a plane parallel to the y −z. plane. The same considerations 

apply to more variables, but the graph is no longer possible to visualise. 

Example 6.1 Suppose f (x, y) = x2 + 2xy + y3
.. Find the partial derivatives 

at the point of (2, 1).. 

Solution Consider y as a constant:

. 
∂f

∂x
= 2x + 2y.

Consider x as a constant,

. 
∂f

∂y
= 2x + 3y2.

Substitute the point of (2, 1). into the two partial derivative results, then we 

have 

. 
∂f

∂x

∣

∣

∣x=2
y=1

= 2 × 2 + 2 × 1 = 6,

(continued)
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Example 6.1 (continued) 

and 

. 
∂f

∂y

∣

∣

∣x=2
y=1

= 2 × 2 + 3 × 12 = 7.

Example 6.2 A cylinder is being made that is 30 cm radius and 60 cm high. 

The tolerances in construction are that the radius is ± 0.05%. and the height 

is ± 0.01%.. Find the approximate maximum error in volume to the nearest 

integer and hence find the percentage error that this represents. 

Solution Radius error: ± 0.05%. of 30 cm is ± 0.015. cm. 

Height error: ± 0.01%. of 60 cm is ± 0.006. cm. 

Set the cylinder’s radius, height, and volume as r , h, and V .  We  ha  ve

. V = πr2h.

Let �r ., �h., and �V . denote increments of r , h, and V . Applying Eq. ( ), it 

gives us the following: 

6.1

. �V ≈ dV =
∂V

∂r
dr +

∂V

∂h
dh = 2πrh�r + πr2�h.

To get an estimate of the maximum error, both �r . and �h. should be positive 

(or negative). 

Substitute r = 30., h = 60., �r = 0.015., and �h = 0.006., and then we 

have 

. �V ≈ 2π × 30 × 60 × 0.015 + π × 302 × 0.006 = 187(cm3).

The actual volume should be: 

. V = πr2h = π × 302 × 60 = 169, 646(cm3).

So the error represents 

.187 ÷ 169, 646 × 100% = 0.11%.
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Exercises 

6.1 Find the following partial derivatives: 

(1) At the point (3,−1). for the function f (x, y) = x3y + 5x2y2 + 2xy3
. 

(2) At the point (1, π
2
). for the function f (x, y) = x2 sin y − 3x cos y . 

(3) At the point (0, 2). for the function f (x, y) = y3e2x + y2e3x + ye4x .. 

6.2 A triangle is being stamped out of a sheet of metal. Its height is 5 cm, and 

its base is 10 cm. The tolerances in this process are that the height is ± 0.2%. 

and the base is ± 0.1%.. Find the approximate maximum error in the area to 

three decimal places and hence the percentage error that this represents. 

6.1.2 The Second Partial Derivatives 

The second partial derivatives are the partial derivatives of the first derivative 

function. For example, let us consider a function f (x, y). with two variables. If its 

first derivatives 
∂f
∂x

. and 
∂f
∂y

. are continuous and the partial derivatives of 
∂f
∂x

. and 
∂f
∂y

. 

all exist, then the second derivatives of f (x, y). can be denoted as follows: 

• 
∂2f 

∂x 2
.—the partial derivative of 

∂f
∂x

.with respect to x 

• 
∂2f 

∂y∂ x
.—the partial derivative of 

∂f
∂x

.with respect to y 

• 
∂2f 

∂y 2
.—the partial derivative of 

∂f
∂y

.with respect to y 

• 
∂2f 

∂x∂ y
.—the partial derivative of 

∂f
∂y

.with respect to x 

Remark 6.2 For most well-behaved functions (ones where the two second partial 

derivatives involved are continuous), we have
∂2f
∂y∂x

. =
∂2f
∂x∂y

.. �. 

Example 6.3 Find the second partial derivatives of the function f (x, y) =
x3 + 6xy + 3y3

.. 

Solution Consider y as a constant:
∂f
∂x

= 3x2 + 6y.. 

Consider x as a constant,
∂f
∂y

= 6x + 9y2.. 

Consider y as a constant in
∂f
∂x

.:
∂2f

∂x2
= 6x.. 

Consider y as a constant in
∂f
∂y

.:
∂2f
∂x∂y

= 6.. 

Consider x as a constant in
∂f
∂x

.:
∂2f
∂y∂x

= 6.. 

Consider x as a constant in
∂f
∂y

.:
∂2f

∂y2
= 18y..
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Exercise 

6.3 Find the first and second partial derivatives of the following functions: 

(1) f (x, y) = 3x4y + 6x3y2 − 4x2y3 + xy4.. 

(2) f (x, y) = x2 sin y + 6x3 cos y.. 

(3) f (x, y) = e(x2+ y2).. 

(4) f (x, y) = (x3 + y3)ln(y3 + x3).. 

(5) f (x, y) = 
x3+3 y

x
.. 

6.1.3 Differentiation of Composite Functions with Two 

Variables 

Let us consider function z = f (u, v).with two variables u and v, where both u and v 

are functions with one variable t , that is u = ϕ(t). and v = ψ(t).. If both u and v are 

differentiable functions of t , the function z is continuous, and the partial derivatives 

exist with respect to u and v, and then the differentiation of the composite function 

can be computed as follows:

.
dz

dt
=

∂z

∂u

du

dt
+

∂z

∂v

dv

dt
. (6.2) 

t is often time and expresses the dependence of each of u and v on the passing 

of time. Note that we can find dz
dt

. as full differentiation since, in reality, z can be 

expressed as a function of t .

Example 6.4 Suppose z = sin u cos v ., where u = et
. and v = ln t ..  Find dz

dt
.. 

Solution 

. 
dz

dt
=

∂z

∂u

du

dt
+

∂z

∂v

dv

dt

= cos u cos v(et ) +
sinu(− sin v)

t

= cos(et ) cos(ln t)(et ) −
sin(et ) sin(ln t)

t
.

The same result would be found if you substituted t for u and v first, but the 

differentiation is more complicated.
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Similarly, consider both u and v as functions of two variables, s and t .  If  the  

partial derivatives of functions u = ϕ(s, t). and v = ψ(s, t). exist with respect to 

s and t , and function z = f (u, v). is continuous, and the partial derivatives exist 

with respect to u and v, then the differentiation of the composite function can be 

computed as follo ws:

.
∂z

∂s
=

∂z

∂u

∂u

∂s
+

∂z

∂v

∂v

∂s
, (6.3) 

.
∂z

∂t
=

∂z

∂u

∂u

∂t
+

∂z

∂v

∂v

∂t
. (6.4) 

Example 6.5 Suppose z = eu cos v ., where u = st . and v = s + t ..  Find ∂z
∂s

. 

and ∂z
∂t

.. 

Solution 

. 
∂z

∂s
=

∂z

∂u

∂u

∂s
+

∂z

∂v

∂v

∂s

= eu cos v · t − eu sin v

= est (t cos(s + t) − sin(s + t)).

This is the same result that you would get if you first substituted s and t for u 

and v into the formula for z and then found the partial derivative ∂z
∂s

.. Usually, 

though, having lots of simple functions to differentiate is easier than having a 

complicated composite function: 

. 
∂z

∂t
=

∂z

∂u

∂u

∂t
+

∂z

∂v

∂v

∂t

= eu cos v · s − eu sin v

= est (s cos(s + t) − sin(s + t)).

Again, the same result would be found by substituting s and t for u and v as

before.
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Exercise 

6.4 Differentiation of composite functions: 

(1) z = eu ln v ., where u = sin t . and v = cos t ..  Find dz
dt

.. 

(2) z = (1 + u2) sin v ., where u = s2 + t2 . and v = st2 ..  Find ∂z
∂s

. and ∂z
∂t

.. 

6.1.4 Gradient 

Armed with the definitions of partial derivatives in coordinate directions, we can 

define a vector representing the total gradient in the full space concerned. 

Suppose a function f is differentiable in a region. The gradient of the function, 

denoted by gradf ., is a vector function where each element is a partial derivative 

with respect to one of the variables. For example, the gradient of f (x, y, z). can be 

written as the following vector: 

. (gradf )T =
[

∂f (x, y, z)

∂x
,

∂f (x, y, z)

∂y
,

∂f (x, y, z)

∂z

]

.

Since the gradient is a vector, it can provide information on the magnitude and 

direction of the vector. Suppose the gradient of a function f (x, y). is given by the 

vector 

.(gradf )T =
[

∂f (x, y)

∂x
,

∂f (x, y)

∂y

]

, (6.5) 

then the magnitude is calculated as follows: 

. |gradf | =

√

(

∂f (x, y)

∂x

)2

+
(

∂f (x, y)

∂y

)2

.

If
∂f (x,y)

∂x
�= 0., then the tangent of the angle θ . from the x−.axis to the gradient is 

given by 

. tan θ =
∂f (x,y)

∂y

∂f (x,y)
∂x

.
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Fig. 6.1 A geometric description of the gradient vector for the function f (x, y) = 4x2 + y2
. used 

in Example 6.6 

Example 6.6 Suppose f (x, y) = 4x2 + y2
.. Figure a shows function 

values as heights above a grid in the

6.1

x − y . plane. Applying Eq. ( )  fo  r6.5

f (x, y).,  we  have (gradf )T = [8x, 2y].. Figure b shows the contour lines 

of the function for constant levels (heights, function values) over the interval 

6.1

[−5, 5]. for x and y, respectively. For example, the innermost oval line 

contains all the pairs of points (x, y). that have the same function value of 

1. The gradient at a general point is given by [8x, 2y].. Each gradient vector 
is perpendicular to the corresponding tangent line. Three particular gradient 

vectors are plotted at the points ( 1
2
, 0), (0, 1),. and (1, 1)., respectively. The 

first two are shown as solid-line arrows perpendicular to the tangents of 

f (x, y) = 1., and the third as a dashed-line arrow perpendicular to the tangent 

of f (x, y) = 5.. 

Remark 6.3 The gradient vector points in the direction of the maximum rate of 

increase of the function. Or it points in the opposite direction of the maximum rate 

of decrease of the function. Readers interested in this may want to learn more about 

directional derivatives and the gradient in Section 2.E of [11]. �.
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Exercise 

6.5 Find the gradient vectors at the points indicated for: 

(1) f (x, y) = x3y3
. at points (1, 1)., (2, 1)., (1, 2). 

(2) f (x, y) = x2 sin y + y2 cos x ., at points (0, 1)., (1, 0).,(π
2
, π
2
)., (π

4
, π
4
). 

6.1.5 Jacobian Matrix 

If f (x, y). and g(x, y). are differentiable in a region, the Jacobian matrix of f and g 

with respect to x and y can be defined by

. J =

[

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

.

Similarly, if f (x, y, z)., g(x, y, z)., and h(x, y, z). are differentiable in a region, 

the Jacobian matrix of f , g, and h with respect to x, y, and z can be defined by

. J =

⎡

⎢

⎣

∂f
∂x

∂f
∂y

∂f
∂z

∂g
∂x

∂g
∂y

∂g
∂z

∂h
∂x

∂h
∂y

∂h
∂z

⎤

⎥

⎦
.

Extensions are easily made. That is, each row of the Jacobian matrix includes partial 

derivatives of a specific function with respect to all variables. A Jacobian matrix can 

be either a rectangular matrix or a square matrix. Essentially, the Jacobian matrix 

collects all the information about first derivatives together in one place and is useful 

for translating between coordinate systems (see Sect. 6.3.1 of this chapter) and tells 

us about the local behaviour of a function in terms of its gradient. 

Example 6.7 If f1(x, y) = ex cos y . and f2(x, y) = ex sin y ., determine the 

Jacobian matrix. 

(continued)
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Example 6.7 (continued) 

Solution Note that the question can also be written in vector form by 

collecting the component functions together as define function F : R2 → R
2
. 

given by F(x, y) = (f1(x, y), f2(x, y)).. 

. J =

[

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]

=
[

ex cos y −ex sin y

ex sin y ex cos y

]

.

Note that the determinant of J is e2x cos2 y + e2x sin2 y = e2x .. 

Example 6.8 Determine the Jacobian matrix of the function F : R3 → R
2
. 

given by F(x, y, z) = (4xy + 3xz3, 3xyz2).. 

Solution Set f1(x, y, z) = 4xy + 3xz3 . and f2(x, y, z) = 3xyz2 .: 

. J =

[

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

]

=
[

4y + 3z3 4x 9xz2

3yz2 3xz2 6xyz

]

.

Exercise 

6.6 Determine the Jacobian matrix for the following: 

(1) f1(x, y) = x2 sin y . and f2(x, y) = y3 sin x.. 

(2) F : R2 → R
2
. given by F(r, θ) = (r cos θ, r sin θ).. 

(3) F : R3 → R
3
. given by F(r, θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ).. 

6.1.6 Hessian Matrix 

A Hessian matrix of a function is a square matrix of the second partial derivatives 

of the function. It collects together all the information about the second derivatives 

and tells us about the curvature of a function at a point. For a two-variable function 

f (x, y)., its Hessian matrix is defined by the following: 

.Hf (x, y) =
[

H11(x, y) H12(x, y)

H21(x, y) H22(x, y)

]

=

⎡

⎣

∂2f

∂x2
∂2f
∂x∂y

∂2f
∂y∂x

∂2f

∂y2

⎤

⎦ .
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Extensions are easily made to a function with more than two variables. Each row 

of a Hessian matrix includes partial derivatives of the first derivative with respect 

to a specific variable. For example, the Hessian matrix of a three-variable function 

f (x, y, z). is defined by the following: 

. Hf (x, y, z) =

⎡

⎣

H11(x, y, z) H12(x, y, z) H13(x, y, z)

H21(x, y, z) H22(x, y, z) H23(x, y, z)

H31(x, y, z) H32(x, y, z) H33(x, y, z)

⎤

⎦ =

⎡

⎢

⎢

⎣

∂2f

∂x2
∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f

∂y2
∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f

∂z2

⎤

⎥

⎥

⎦

,

where the first column includes partial derivatives of the first derivative 
∂f
∂x

.,  the  

second column comprises partial derivatives of
∂f
∂y

., and the third column includes 

partial derivatives of 
∂f
∂z

.. 

Example 6.9 Find the Hessian matrix of the function f (x, y) = x2y +2xy3
.. 

Solution 

. Hf (x, y)=
[

H11(x, y) H12(x, y)

H21(x, y) H22(x, y)

]

=

⎡

⎣

∂2f

∂x2
∂2f
∂x∂y

∂2f
∂y∂x

∂2f

∂y2

⎤

⎦=
[

2y 2x + 6y2

2x + 6y2 12xy

]

.

Exercises 

6.7 Find the Hessian matrix of the following functions: 

(1) f (x, y) = ex y2 + eyx2
.. 

(2) f (x, y, z) = x3y2z − 2xyz3 .. 

6.8 Which of the following statements about the Jacobian matrix and the 

Hessian matrix is correct? 

(1) The Hessian matrix is always non-square, while the Jacobian matrix is 

always square. 

(2) The Jacobian matrix describes the rate of change of each output variable 

with respect to the input variables. In contrast, the Hessian matrix helps 

to understand the curvature of the function at a specific point. 

(3) The Hessian matrix is always a diagonal matrix for any multivariable 

function. 

(4) The Jacobian matrix is the matrix of second-order partial derivatives of a 

function.
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6.2 Applications of Partial Derivatives 

We now come to discuss issues regarding the maxima and minima of multiple 

variable functions, as indicated earlier. 

6.2.1 Local Maxima and Minima 

Section 5.3 of Chap. 5 shows how to find the critical points for a function of one 

variable. This section describes how to find maxima and minima for a function with 

two variables, f (x, y).. As before, these are local maxima and minima. 

Necessary condition—suppose f (x, y). has a relative extreme value at the point 

(x0, y0). and the partial derivatives of f (x, y). at (x0, y0). exist. Thus, we have 

. 
∂f

∂x

∣

∣

∣x=x0
y=y0

= 0, and
∂f

∂y

∣

∣

∣x=x0
y=y0

= 0.

Sufficient condition—suppose the first partial derivatives and the second partial 

derivatives of f (x, y). at (x0, y0). exist, and
∂f
∂x

∣

∣

∣x=x0
y=y0

= 0,
∂f
∂x

∣

∣

∣x=x0
y=y0

= 0.. 

Set A = ∂2f

∂x2

∣

∣

∣x=x0
y=y0

, B = ∂2f
∂x∂y

∣

∣

∣x=x0
y=y0

., and C = ∂2f

∂y2

∣

∣

∣x=x0
y=y0

.. 

Then, the Hessian matrixHf (x, y). isHf (x, y) =
[

A B

B C

]

.. 

Then, 

• The function has a local maximum value at (x0, y0). if AC − B2 > 0. (i.e., 

det(Hf (x, y)) > 0.) and A < 0.. 

• The function has a local minimum value at (x0, y0). if AC − B2 > 0. (i.e., 

det(Hf (x, y)) > 0.) and A > 0.. 

• The function does not have an extreme value at (x0, y0). if AC − B2 < 0. (i.e., 

det(Hf (x, y)) < 0.); 

• More investigation is needed if AC − B2 = 0. (i.e., det(Hf (x, y)) = 0.). 

Remark 6.4 IfAC−B2 > 0. andA < 0., then necessarilyC < 0., and if AC−B2 >

0. and A > 0., then necessarily C > 0.. So the above conditions for local maximums 

and minimums could have been written equivalently using C < 0. for a maximum 

and C > 0. for a minimum. �.
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The general procedure of finding local maxima and minima of a function of 

two variables f (x, y). is 

• Step 1: Find critical values (x, y). by solving simultaneous equations: 

. 
∂f (x, y)

∂x
= 0 and

∂f (x, y)

∂y
= 0.

• Step 2: Write the mathematical expression of A,B,. and C for the given f unction.

• Step 3: Evaluate A,B,. and C using each pair of critical va lues.

• Step 4: Check the sign of AC − B2
. and decide whether the function has a rela-

tive extreme at the corresponding pair of critical values in terms of sufficient 

conditions. 

Example 6.10 Find the critical points of the following function: 

. f (x, y) = x3 − y3 + 3x2 + 3y2 − 9x.

State whether the critical points are local maxima or minima. 

Solution 

• Step 1: Find critical values by solving simultaneous equations obtained 

from the first partial derivatives: 

. 

{

∂f (x,y)
∂x

= 3x2 + 6x − 9 = 0
∂f (x,y)

∂y
= −3y2 + 6y = 0

⇒

{

(x + 3)(x − 1) = 0

y(y − 2) = 0
⇒

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1 = −3

x2 = 1

y1 = 0

y2 = 2.

Therefore, the function has four critical points at (−3, 0)., (−3, 2)., (1, 0)., 

and (1, 2).. 

• Step 2: Write the mathematical expression of A, B, and C for the given 

function:

. A =
∂2f (x, y)

∂x2
= 6x + 6, B =

∂2f (x, y)

∂x∂y
= 0,

C =
∂2f (x, y)

∂y2
= −6y + 6.

(continued)
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Example 6.10 (continued) 

• Step 3: Evaluate A,B,. and C using each pair of critical va lues:

– At point (−3, 0)., A = −12, B = 0, and C = 6.. 

– At point (−3, 2)., A = −12, B = 0, and C = −6.. 

– At point (1, 0)., A = 12, B = 0, and C = 6.. 

– At point (1, 2)., A = 12, B = 0, and C = −6.. 

• Step 4: Check the sign of AC − B2
., and decide whether the function has 

a relative extreme at the corresponding pair of critical values in terms of 

sufficient conditions: 

– At point (−3, 0)., AC − B2 = (−12) × 6 − 0 < 0.. 

Therefore, the function does not have an extreme value at (−3, 0).. 

– At point (−3, 2)., AC − B2 = (−12) × (−6) − 0 > 0,. and A < 0.. 

Therefore, f (x, y). has a local maximum value of 31 at (−3, 2).. 

– At point (1, 0)., AC − B2 = 12 × 6 − 0 > 0,. and A > 0.. 

Therefore, f (x, y). has a local minimum value of − 5. at (1, 0).. 

– At point (1, 2)., AC − B2 = 12 × (−6) − 0 < 0.. 

Therefore, the function does not have an extreme value at (1, 2).. 

Example 6.11 Find the critical points of the following function: 

. f (x, y) = 2x2 + 3y2 + 3xy + 3x + y.

State whether the critical points are local maxima or minima. 

Solution 

• Step 1: Find critical values by solving simultaneous equations obtained 

from the first partial derivatives: 
∂f (x,y)

∂x
= 4x + 3y + 3 = 0,

∂f (x,y)
∂y

= 6y + 3x + 1 = 0.. 

Multiply the first equation by 2 and subtracting the second gives 

5x + 5 = 0., that is, x = −1.. Substituting back in either equation gives 

y = 1
3
.. 

So the function has only one critical point at (−1, 1
3
).. 

• Step 2: Write the mathematical expression of A, B, and C for the given 

function:

. A =
∂2f (x, y)

∂x2
= 4, B =

∂2f (x, y)

∂x∂y
= 3, C =

∂2f (x, y)

∂y2
= 6.

(continued)
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Example 6.11 (continued) 

• Step 3: Evaluate A,B,. and C for the critical value. 

Nothing to do here.

• Step 4: Check the sign of AC − B2
., and decide whether the function has a 

relative extreme at the critical value in terms of sufficient conditions. 

At point (−1, 1
3
)., AC − B2 = 15 > 0,. and A > 0.. 

Therefore, f (x, y). has a local minimum value of −4
3

. at (−1, 1
3
).. 

Exercise 

6.9 Find the critical points of the following functions and state whether the 

critical points are local maxima or minima: 

(1) f (x, y) = 2x3 + 2y3 − 3x2 + 3y2 − 12x − 12y.. 

(2) f (x, y) = 6 − x3 − 4xy − 2y2 − x.. 

(3) f (x, y) = x2 + y2 + (x + y + 1)2.. 

(4) f (x, y) = 2x3 + 2y3 + 3y2 − 9x2 − 36y + 4.. 

6.2.2 Method of Lagrange Multipliers for Maxima and Minima 

So far, we have discussed how to find the local maxima and minima of a 

function with one or two variables. The only condition we have considered is 

that these functions are defined within their domain. However, in many real-world 

applications, it is possible to meet problems with other constraints, such as all the 

solutions have to be on a plane or line. Converting a constraint problem to a non-

constrained problem is not always easy. 

In this section, we introduce the method of Lagrange multipliers for local 

maxima and minima created to deal with such constraint problems. This method was 

proposed by Joseph-Louis Lagrange, an Italian mathematician and astronomer, later 

naturalised French. Lagrange found that the relative extreme of a function under a 

constraint is obtained when the gradient of the original function is parallel to the 

gradient of the constraint condition function. 

Suppose we wanted to find the local maxima and minima of a function z =
f (x, y). where x and y need to satisfy the constraint g(x, y) = 0.. The Lagrange 

multiplier method operates using the following steps: 

• First, it constructs a new function, that is, 

.F(x, y) = f (x, y) + λg(x, y),
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where λ. is a constant. This function F(x, y). 1 is called the Lagrangian. 

• Then, it calculates the first partial derivative of the function F(x, y).with respect 

to x and y and sets them to zero. Together with the constraint, these form a set of 

simultaneous equations giv en by

. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂f (x,y)
∂x

+ λ
∂g(x,y)

∂x
= 0,

∂f (x,y)
∂y

+ λ
∂g(x,y)

∂y
= 0,

g(x, y) = 0.

The solutions of (x, y). from these simultaneous equations are the points at which 

the function may have a relative extreme. 

This method can be extended to functions with more than two variables and with 

more than one constraint condition. 

Example 6.12 Minimise the function f (x, y) = 4x2 + y2
., subject to the 

constraint g(x, y) = x + y − 2 = 0.. 

Figure shows the function and the constraint condition function. As 

it shows, the plane of the constraint condition function intersects the function 

not at the bottom of the surface. Therefore, the minimum value of the function 

is not at the bottom of the surface anymore; rather, it is at the lowest point 

where the plane intersects the surface. 

6.2 

Solution 

• First, construct a new function, that is, 

. F(x, y) = f (x, y) + λg(x, y) = 4x2 + y2 + λ(x + y − 2).

• Then, calculate the first partial derivative of the function F(x, y). with 

respect to x and y and set them both to zero. Together with the constraint, 

these form a set of simultaneous equations giv en by

. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂f (x,y)
∂x

+ λ
∂g(x,y)

∂x
= 8x + λ = 0,

∂f (x,y)
∂y

+ λ
∂g(x,y)

∂y
= 2y + λ = 0,

g(x, y) = x + y − 2 = 0.

⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = 0.4

y = 1.6

λ = −3.2.

Substitute x = 0.4. and y = 1.6. into the function, and then we have f (x =
0.4, y = 1.6) = 4×0.42+1.62 = 3.2.. The relative extreme of the function 

(continued)

1 Or sometimes written as F(x, y) = f (x, y) − λg(x, y).. The sign in front of λ. is arbitrary. What 

matters is that we need to be consistent throughout the derivation for a specific task. 
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Example 6.12 (continued) 

is 3.2. obtained at the point (0.4, 1.6). subject to the constraint g(x, y) =
x + y − 2.. 

• From Fig. , this is clearly a minimum, and Fig. shows  this  as  wel  l.

Figure shows the contour lines of the function. The second innermost 

contour line tells us that all the points along this ellipse give a function 

value of 

6.3 

6.3 6.2

3.2.. The dash-dotted line is the constraint condition. As can be 

seen, the dash-dotted line is a tangent of the contour line with a function 

value of 3.2., and it touches this contour line at the point (x = 0.4, y =
1.6).. The arrow shows the gradient direction at this point. It points in the 

opposite direction of the maximum rate of decrease of the function and is 

perpendicular to the tangent. 

The gradient of f , gradf = [8x, 2y]., at the point (x = 0.4, y = 1.6). 

can be calculated as gradf = [8 × 0.4, 2 × 1.6] = [3.2, 3.2].. 

Fig. 6.2 The visualisation of the graph of the function f (x, y) = 4x2 + y2
. together with the 

constraint g(x, y) = x + y − 2 = 0., examined in Example 6.12
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Fig. 6.3 Example 6.12:  the  

contour lines and the gradient 

at the extreme for the 

function f (x, y) = 4x2 + y2
., 

and the constraint 

g(x, y) = x + y − 2 = 0. 

Example 6.13 Maximise the function f (x, y) = xy ., subject to the constraint 

g(x, y) = 2x + y − 1 = 0.. 

Solution 

• First, construct a new function, that is, 

. F(x, y) = f (x, y) + λg(x, y) = xy + λ(2x + y − 1).

• Then, calculate the first partial derivative of the function F(x, y). with 

respect to x and y and set them both to zero. Together with the constraint, 

these form a set of simultaneous equations given by

. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂f (x,y)
∂x

+ λ
∂g(x,y)

∂x
= y + 2λ = 0,

∂f (x,y)
∂y

+ λ
∂g(x,y)

∂y
= x + λ = 0,

g(x, y) = 2x + y − 1 = 0.

⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = 1
4

y = 1
2

λ = − 1
4
.

Substitute x = 1
4
. and y = 1

2
. into the function, and then we have f (x =

1
4
, y = 1

2
) = 1

8
= 0.125.. The relative extreme of the function is 1

8
. obtained 

at the point ( 1
4
, 1
2
). subject to the constraint g(x, y) = 2x + y − 1.. 

(continued)
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Example 6.13 (continued) 

• To check if it is a local maximum, try points just either side of (0.25, 0.5). 

on the line 2x + y − 1 = 0. 

f (0.249, 0.502) = 0.124998 < 0.125 = 1
8
. and 

f (0.251, 0.498) = 0.124998 < 0.125 = 1
8
., so it is a local maximum. 

Remark 6.5 To see whether the function has an extreme at the critical values and 

which sort of extreme it is, we often need to make a judgment in terms of the nature 

of the problem we are solving. �. 

Exercise 

6.10 Applying the Lagrange multiplier method to the following functions: 

(1) Minimise the function f (x, y) = x2 + y2 + 1. subject to the constraint 

g(x, y) = x − y + 1 = 0.. 

(2) Minimise the function f (x, y) = x3 + y3
. subject to the constraint 

g(x, y) = x + y − 1 = 0.. 

6.2.3 Gradient Descent Algorithm 

This section introduces how to find a minimum value of a function by using the 

gradient descent algorithm. Earlier, we have seen in Fig. 5.7 in Chap. 5 that if a 

function monotonically decreases, then the sign of its first derivative is negative; 

otherwise, it is positive. 

The general idea of a gradient descent algorithm is to update the values of 

variables of a function iteratively to minimise the function. This is used extensively 

in neural networks. Figure 6.4 displays two functions: one on the left in black has a 

minimum value at x = x0 ., and the other one on the right in brown has a maximum 

value at x = x1 .. Let us have a look at the one with a minimum value first. When its 

x value is on the left-hand side of x0 ., x needs to move along the positive direction of 

the x-axis to reach x0 .. The moving direction is opposite to the sign of its derivative, 

which is negative. When its x value is on the right-hand side of x0 ., x needs to move 

along the negative direction of the x-axis to reach x0 .. Again, the moving direction 

is opposite to the sign of its derivative, which is positive. Therefore, the gradient 

descent algorithm works as follows: 

• Step 1: Initialise a value for x, denoted as xold
.; calculate the function value using 

xold
..
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Fig. 6.4 An illustration of the relationship between the signs of gradients and the extreme values 

• Step 2: Update x value by moving x along the x-axis with the direction opposite 

to the corresponding derivative sign. That is,

.xnew = xold − ǫ
d

dx
f (x)

∣

∣

∣

x=xold
, (6.6) 

where ǫ . is the learning rate, a positive scalar determining the size of the step x 

moves, and the derivative of the function is evaluated using xold
.. 

• Step 3: Calculate the function value using xnew
.. 

• Step 4: Assign xold = xnew.. 

• Step 5: Repeat Steps 2−4.until the function reaches its minimum or the iterations 

satisfy some pre-set criterion. 

This can be easily extended to functions with more than one variable. For 

example, for a function with two variables f (x, y)., one can update variable values 

as follows: 

.xnew = xold − ǫ
∂f (x, y)

∂x

∣

∣

∣x=xold

y=yold

, and ynew = yold − ǫ
∂f (x, y)

∂y

∣

∣

∣x=xold

y=yold

. (6.7) 

Similarly, the gradient ascent algorithm updates the values of variables and the 

function by moving x in the direction matching the sign of the corresponding 

derivative (see the function on the right in Fig. 6.4). For a function with two variables 

f (x, y)., one can update variable values as follows: 

.xnew = xold + ǫ
∂f (x, y)

∂x

∣

∣

∣x=xold

y=yold

, and ynew = yold + ǫ
∂f (x, y)

∂y

∣

∣

∣x=xold

y=yold

. (6.8) 

Remark 6.6 When applying a gradient-based algorithm, the initial value of a 

variable should be chosen carefully. In addition, the step size ǫ . should be small to
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avoid going past the local minimum or the maximum. However, very small values 

will take longer to calculate. �. 

Example 6.14 Let f (x1, x2) = 4x2
1 + x2

2 .. Perform one iteration of the 

gradient descent algorithm. The initial values are xold
1 = 3., and xold

2 = 2.. 

Set the learning rate to ǫ = 0.001.. 

Solution 

• Substitute xold
1 = 3., and xold

2 = 2. to f (x1, x2) = 4x2
1 + x2

2 ., and we have 

4 × 32 + 22 = 40.. 

• Compute partial derivatives of the function: 

. 
∂f

∂x1
= 8x1,

∂f

∂x2
= 2x2.

• Update values for x1 . and x2 .: substitute initial values to Eq. ( ), and we 

have 

6.7

. xnew
1 = xold

1 − ǫ
∂f

∂x1

∣

∣

∣x1=xold
1

x2=xold
2

= 3 − 0.001 × (8 × 3) = 2.976,

. xnew
2 = xold

2 − ǫ
∂f

∂x2

∣

∣

∣x1=xold
1

x2=xold
2

= 2 − 0.001 × (2 × 2) = 1.996.

Substitute x1 = 2.976., and x2 = 1.996. into f (x1, x2) = 4x2
1 + x2

2 ., which 

gives 4×2.9762+1.9962 = 39.41..Note that this is smaller than the initial 

value of 40, so we are moving (slowly) toward the minimum. (If we had set 

the learning rate, ǫ .,  to 0.01., we would get x1 = 2.76. and x2 = 1.96.,  givin  g

f (x1, x2) = f (2.76, 1.96) = 34.31., which is a faster descent—though it 

runs the risk of jumping right past the minimum.) 

• Assign xold
1 = 2.976. and xold

2 = 1.996., to complete the first iteration. 

Remark 6.7 The gradient descent algorithm is really a process that requires a 

computer that is programmed specifically to do this task. Indeed, work in neural 

networks invariably does access a computer to do all the hard iterative calculations. 

So, we will not attempt further iterations and examples in this book. Hopefully, the 

basic idea of the iterative method is clear. �.
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Exercise 

6.11 Which of the following statements is correct? 

(1) The gradient descent algorithm follows the direction of the gradient to 

maximise a function, whereas the gradient ascent algorithm follows the 

gradient to minimise a function. 

(2) Gradient descent and gradient ascent algorithms are used for uncon-

strained optimisation, while Lagrange multipliers are used for constrained 

optimisation problems. 

(3) Gradient descent is used to maximise functions, while Lagrange multipli-

ers are used to minimise functions. 

(4) Lagrange multipliers iteratively adjust the variables to minimise or 

maximise the objective function. 

6.3 Double Integrals 

In this book, we consider double integrals as an example of multiple definite 

integrals. 

A definite integral of a function of one variable gives the area “under” the curve 

between two x value limits of integration, which define the “bottom” boundary of 

the area. In the same way, a double definite integral of a function of two variables 

gives the volume “under” the surface, where the limits of integration define the 

area, or region, on the x − y . plane that gives the “bottom” boundary of the volume. 

Intuitively integrating by one variable gives the area, and integrating these “areas” 

in the other direction gives the volume. 

The easiest cases are where the bounding region in the x −y . plane is a rectangle. 

We start with a really easy one. 

Example 6.15 Find 

. 

∫ 1

x=0

∫ 2

y=0

6dxdy.

Solution The boundary of the region is the rectangle from x = 0. to x = 1. 

and from y = 0. to y = 2.. The “top” of the volume is the surface f (x, y) = 6.. 

(continued)
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Example 6.15 (continued) 

Integrating over y first and then x, 

. 

∫ 1

x=0

∫ 2

y=0

6dxdy =
∫ 1

x=0

( ∫ 2

y=0

6dy

)

dx

. =
∫ 1

x=0

[

6y

]
∣

∣

∣

∣

2

y=0

dx =
∫ 1

x=0

12dx =
[

12x

]
∣

∣

∣

∣

1

x=0

= 12.

In fact, f (x, y) = 6. is a horizontal plane at height 6. So, the volume is a 

cuboid with base 1 by 2 and height 6. This has volume 12, so the integration 

has “worked”. 

Not surprisingly, you get the same result if you integrate in the other order: 

. 

∫ 2

y=0

∫ 1

x=0

6dxdy =
∫ 2

y=0

( ∫ 1

x=0

6dx

)

dy

. =
∫ 2

y=0

[

6x

]
∣

∣

∣

∣

1

x=0

dy =
∫ 2

y=0

6dx =
[

6y

]
∣

∣

∣

∣

2

y=0

= 12.

It is generally true for rectangular regions that you can integrate in either order 

since it is the same volume, and it does not matter which “areas” are summed in 

the second integration. However, it is sometimes easier to define and integrate the 

region in the x − y . plane in one direction first rather than the other, especially when 

we have non-rectangular regions. 

However, we will do another, more complicated, rectangular region example 

first. For these examples when integrating over one variable, we treat the other 

independent variable as a constant. 

Example 6.16 Find 

. 

∫ 2

x=1

∫ 2

y=0

x + ydxdy.

Solution The boundary of the region is another rectangle from x = 1. to 

x = 2. and from y = 0. to y = 2.. The “top” face of the volume is now the 

(continued)
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Example 6.16 (continued) 

surface f (x, y) = x + y .: 

. 

∫ 2

x=1

∫ 2

y=0

x + ydxdy =
∫ 2

x=1

( ∫ 2

y=0

x + ydy

)

dx .

Since we are integrating over y first, we treat x as a constant. So w e continue:

. 

∫ 2

x=1

[

xy +
y2

2

]
∣

∣

∣

∣

2

y=0

dx =
∫ 2

x=1

2x + 2dx =
[

x2 + 2x

]
∣

∣

∣

∣

2

x=1

= 5.

Again, you can check if you get the same result if you integrate over x and y 

in the other order.

Exercise 

6.12 Calculate the following integrals that also have rectangular regions: 

(1)
∫ 2 
x=0

∫ 1 
y=0 xydxdy.. 

(2)
∫ 1 
x=−1

∫ 2 
y=−2 2x

2 + 3y2 + 1dxdy .. 

(3)
∫ 2 
x=0

∫

π 

2 

y=0 x cos ydxdy .. 

More generally, regions over which the integration takes place are not rectangles. 

Sometimes, one or more of the boundaries is a curve or a sloping line. Then, one 

of the limits is expressed in terms of a variable since it is bounded by a curve or 

sloping line. So, we need to look at the limits (or endpoints) of integration. If there 

is an integration variable in the limits of integration, we must perform the integral 

with the variable limit first. As before, when integrating over one variable, we treat 

the other independent variable as a constant. 

For our first example, we will integrate over the region that is a triangle bounded 

by the x-axis, the line x = 1., and the line y = x . (see Fig. 6.5). If we integrate over 

y first, then the “areas” are between the x-axis, that is, y = 0. and the line y = x .. 

So, the top y limit is x. We then integrate over x from x = 0. to x = 1..
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Fig. 6.5 This figure shows 

the region (shaded) used in 

Example 6.17, over which the 

double integration is 

performed to form the base of 

the volume 

Example 6.17 Perform the following integral: 

. 

∫ 1

x=0

∫ x

y=0

1 + x2 + y2dxdy.

Solution The volume defined is that of a triangular-based shape bounded at 

the “top” by the surface f (x, y) = 1 + x2 + y2
.. We must integrate over y 

first since the upper limit of the integral over y is a variable limit (x).. When 

integrating over y, we treat the independent variable x as a constant:

. 

∫ 1

x=0

∫ x

y=0

1 + x2 + y2dxdy =
∫ 1

x=0

( ∫ x

y=0

1 + x2 + y2dy

)

dx

=
∫ 1

x=0

[

y + x2y +
y3

3

]
∣

∣

∣

∣

x

y=0

dx

. =
∫ 1

x=0

x+x3+
x3

3
−0dx =

∫ 1

x=0

x+
4x3

3
dx =

[

x2

2
+

x4

3

]
∣

∣

∣

∣

1

x=0

=
1

2
+
1

3
=

5

6
.

Integrating over this particular region can be thought of another way. We could 

integrate over x first. This gives “areas” from the line y = x . to the line x = 1.. 

So, the x limits are y and 1. We then integrate y from y = 0. to y = 1..  This  

gives the inte gral:

. 

∫ 1

y=0

∫ 1

x=y

1 + x2 + y2dxdy.

Now, you have to integrate over x first. We set this as an exercise (see below).
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It should be noted again that sometimes, it is easier to define the region in the 

x−y . plane in one direction first rather than the other when we have non-rectangular 

regions, so the order of integration cannot be reversed easily by changing the limits. 

Example 6.18 Perform the following integral: 

. 

∫ 2

x=1

∫ 2x

y=0

xydxdy.

Solution This is an integration over the region bounded by the x-axis, the 

lines x = 1. and x = 2., and the line y = 2x .. It is a trapezium. The “top” 

boundary of the volume is the surface f (x, y) = xy .. 

We must integrate over y first since the upper limit of the integral over 

y is a variable limit (x).. When integrating over y, we treat the independent 

variable x as a constant:

. 

∫ 2

x=1

∫ 2x

y=0

xydxdy =
∫ 2

x=1

( ∫ 2x

y=0

xydy

)

dx =
∫ 2

x=1

[

xy2

2

]
∣

∣

∣

∣

2x

y=0

dx

. =
∫ 2

x=1

[2x3 − 0]dx =
∫ 2

x=1

2x3dx =
[

x4

2

]
∣

∣

∣

∣

2

x=1

=
1

2
(24 − 14) =

15

2
.

Now, consider a boundary for our integration region to be a semicircle above the 

x-axis, centred at the origin of radius 1. This circle has equation x2 + y2 = 1..  We  

can form limits of an integral as y goes from y = 0. to y =
√
1 − x2 ., and then x 

goes from − 1. to 1. This gives us the next example, where the “top” boundary of 

the volume is the surface: f (x, y) = x2y .. 

Example 6.19 Perform the following integral: 

. 

∫ 1

x=−1

∫

√
1−x2

y=0

x2ydxdy.

Solution 

. 

∫ 1

x=−1

∫

√
1−x2

y=0

x2ydxdy =
∫ 1

x=−1

(∫

√
1−x2

y=0

x2ydy

)

dx

(continued)
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Example 6.19 (continued) 

=
∫ 1 

x=−1

[

x2y2 

2

]
∣

∣

∣

∣

√
1−x2 

y=0 

dx 

. =
∫ 1

x=−1

x2(1 − x2)

2
dx =

∫ 1

x=−1

x2 − x4

2
dx =

[

x3

6
−

x5

10

]
∣

∣

∣

∣

1

x=−1

=
2

15
.

Exercise 

6.13 Calculate the following integrals: 

(1)
∫ y 

x=0

∫ 1 
y=0 xydxdy .. 

(2)
∫ 1 
y=0

∫ 1 
x=y 

1 + x2 + y2dxdy.. 

(3)
∫ 2 
x=1

∫ 2x 

y=0 2x
2y + 3xy2dxdy.. 

(4)
∫ 1 
x=0

∫ 1−x2 

y=0 3x2y2dxdy.. 

6.3.1 Integration of Double Integrals Using Polar Coordinates 

Some double integrals can be expressed in a simpler form if we can transform the 

area from rectangular Cartesian coordinates (x, y). to polar coordinates (r, θ)..  As  

we saw in Example 6.19 above, the limits for integration in some examples can 

be really complicated when expressed in Cartesian coordinates (e.g., y =
√
1 − x2 .) 

and potentially lead to some difficult integrals. However, the region in Example 6.19, 

which is a half-disc centred on the origin of unit radius, can be easily expressed in 

polar coordinates. It is 

. 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π.

So, the limits of integration would be simple. 

To convert to polar coordinates, we need the following relationships between 

Cartesian and polar coordinates: 

.

{

x = r cos θ,

y = r sin θ.
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We also need to replace the dxdy.  In  brief,  dxdy essentially represents a small 

area in the plane, denoted as dA. The Jacobian matrix J describes the change

in coordinates from (x, y). to (r, θ)., that is, dA = dxdy = |J |drdθ ., where the 

determinant of the Jacobian matrix represents the scaling factor by which areas are 

scaled during the transformation. 

The Jacobian matrix for this transformation is 

. J =
[

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]

=
[

cos θ − r sin θ

sin θ r cos θ

]

.

The determinant of this Jacobian matrix is r . Therefore, the area element in 

polar coordinates is rdrdθ ., which accounts for the fact that the segments of a circle 

increase in size as you move further from the centre. 

So, the transformation formula is shown as follows: 

.

∫∫

D

f (x, y) dx dy =
∫∫

D

f (r cos θ, r sin θ)r dr dθ. (6.9) 

Let us redo Example 6.19 from the previous section by converting to polar 

coordinates in Example 6.20. 

Example 6.20 Converting Example to polar coordinates, 6.19 

. 

∫ 1

x=−1

∫

√
1−x2

y=0

x2ydxdy becomes

∫ π

θ=0

∫ 1

r=0

(r cos θ)2(r sin θ)rdrdθ.

Solution 

. 

∫ π

θ=0

∫ 1

r=0

(r cos θ)2(r sin θ)rdrdθ =
∫ π

θ=0

( ∫ 1

r=0

r4 cos2 θ sin θdr

)

dθ

. =
∫ π

θ=0

[

r5

5

]∣

∣

∣

∣

1

r=0

cos2 θ sin θdθ =
1

5

∫ π

θ=0

cos2 θ sin θdθ

=
1

5

[

− cos3 θ

3

]
∣

∣

∣

∣

π

θ=0

=
2

15
.

When integrating with respect to θ ., we have used integration by substitution 

with u = cos θ ., so that du = − sin θdθ .. We have obtained the same answer 

as before for this example.
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Now, to do an example that is impossible without converting to polar coordinates. 

Example 6.21 Perform the following integral: 

. 

∫∫

D

e−x2−y2 dx dy,

where D is a closed circular area with the origin as the centre and a as the

radius.

Solution If not expressed in polar coordinates, the integral would be 

. 

∫ a

x=−a

∫

√
a2−x2

y=−
√

a2−x2
e−x2−y2 dx dy.

This is impossible to integrate non-numerically, so we express D in the polar 

coordinate system as follo ws:

. 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.

Applying Eq. ( ), we have 6.9

. 

∫∫

D

e−x2−y2 dx dy =
∫∫

D

e−r2r dr dθ

=
∫ 2π

θ=0

[ ∫ a

r=0

e−r2r dr

]

dθ

=
∫ 2π

θ=0

[

−
1

2
e−r2

]a

r=0

dθ

=
1

2
(1 − e−a2)

∫ 2π

θ=0

dθ

= π(1 − e−a2).

In the first equation line of the above, we have used the general equation of 

a circle centred at (0, 0)., that is, x2 + y2 = r2 .. In the second line, we have 

applied integration by substitution. That is, we set u = r2 ., and then we have 

du = 2rdr ..
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Exercise 

6.14 Convert the following to polar coordinates and hence evaluate the 

following: 

(1)
∫∫

D 
ex2+y2 dxdy ,. where D is a closed circle area with the origin as the 

centre and 2 as the radius.

(2)
∫∫

D 
xydxdy ,.where D is the area in the first quadrant between the circles 

with radius 1 and 3 centred at the origin, that is, a quarter of a ring around 

the o rigin.

(3)
∫∫

D 
sin(x2 + y2)dxdy,.where  D  is  a  closed  circle  area  with  the  origin  as

centre and one as the radius.



Chapter 7 

Algorithms 1: Principal Component 

Analysis 

This chapter and the next two chapters, (8 and 9), represent the culmination of a 

lot of mathematics theory, specifically linear algebra and calculus. The material has 

been divided into three chapters to indicate the separate nature of each topic since 

each chapter revisits and completes one of the case studies introduced in Chap. 1. 

Hence, these three chapters aim to show how we can apply the knowledge 

introduced in previous chapters to formulate three widely used algorithms in the 

Data Science field: principal component analysis, simple linear regression, and 

simple two-layer neural networks trained by gradient descent. 

This chapter deals with principal component analysis. In Chap. 4,  we  have  

described the basic idea of principal component analysis (PCA). This chapter will 

further help us understand the relationship between eigenvalues produced in the 

PCA analysis and variances among the data projected in the PCA space. 

7.1 Revisit Principal Component Analysis

In Sect. 4.2 of Chap. 4, you learned how to find the principal components for a set of 

data points. The aim was to find the directions with the most variance in the data. If 

all you want to do is to find principal components for data, then the work in Chap. 4 

is all you need, and this new section in this chapter is unnecessary for you. However, 

this is a book giving the maths behind the algorithms, so we will now explain why 

defining principal components as eigenvectors of the covariance matrix of data X., 

called � ., gives the directions of most variance. To do this, we need to find the 

maximum value of the variance with various constraints, such as the direction being 

a unit vector. Finding maximum values with a constraint means we will appeal to 

the Lagrange multipliers method for maxima and minima as given in Sect. 6.2.2 

of Chap. 6. Before going through the details, we need further knowledge regarding 

vectors, matrices, and their differentiation, as given in the next subsection. 
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7.2 Preliminary Knowledge 

Apart from the basic maths knowledge introduced in Sect. 3.3.11.1 of Chap. 3 

and Sect. 4.2.1 of Chap. 4, we need a bit more to deal with the reasons that 

using eigenvectors and eigenvalues for principal component analysis does what we 

require. After giving each result, we will illustrate that they are true with one or 

more examples. 

Suppose X. is a n × d .matrix and u. is a d × 1. vector. 

• The variance of Xu. is given by 

.var(Xu) = uT cov(X)u. (7.1) 

If we denote the matrix cov(X). as � ., then we have 

.var(Xu) = uT �u. (7.2) 

This result looks at the variance of a matrix multiplied by a vector. This is important 

since it is about projecting the data onto a vector—see Sect. 4.2.2 of Chap. 4. 

Example 7.1 Let X. be a 5 × 2.matrix of data and u. a 2 × 1. vector given by 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3 2

4 3

2 1

2 2

4 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and u =
[

2

1

]

, so Xu is

⎡

⎢

⎢

⎢

⎢

⎢

⎣

8

11

5

6

10

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

We will show that var(Xu). is the same as uT cov(X)u. for this example. 

Xu. is a set of numbers and has a mean of 8 and a variance of 6.5..  S  o

var(Xu) = 6.5.. 

Now for our data, the mean of the first column is 3, and the mean of the 

second column is 2. Remember that the covariance of two sets of numbers has 

been defined in Sect. of Chap. . For example, for our data, 44.2.1 

. cov(x1, x2) =
∑5

i=1(xi,1 − x̄1)(xi,2 − x̄2)

5 − 1

= 0 + 1 × 1 + (−1) × (−1) + 0 + 0

4

= 2

4
.

(continued)
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Example 7.1 (continued) 

So, the covariance matrix is a 2 × 2.matrix: 

. � = cov(X) =
[

cov(x1, x1) cov(x1, x2)

cov(x2, x1) cov(x2, x2)

]

= 1

4

[

4 2

2 2

]

.

Hence, uT cov(X)u. is 

. 
1

4

[

2 1
]

[

4 2

2 2

] [

2

1

]

= 1

4

[

10 6
]

[

2

1

]

= 6.5.

So, both are 6.5.. Hence, we have demonstrated that var(Xu) =
uT cov(X)u = uT �u. as required. 

Example 7.2 Let us try a more complicated example. So, let X. be a 6 × 3. 

matrix of data and u. a 3 × 1. vector given by 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 3 4

1 0 1

4 3 2

1 2 2

2 2 1

2 2 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and u =

⎡

⎣

2

3

1

⎤

⎦ ,

then Xu. is

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

17

3

19

10

11

12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.with a mean of 12 and a variance of 32. So, var(Xu) = 32.. 

Now for our data, the mean of all three columns is 2. The covariance matrix 

is a 3 × 3.matrix: 

. � = cov(X) =

⎡

⎣

cov(x1, x1) cov(x1, x2) cov(x1, x3)

cov(x2, x1) cov(x2, x2) cov(x2, x3)

cov(x3, x1) cov(x3, x2) cov(x3, x3)

⎤

⎦ = 1

5

⎡

⎣

6 4 1

4 6 4

1 4 6

⎤

⎦ .

(continued)
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Example 7.2 (continued) 

So, uT cov(X)u. is 

. 
1

5

[

2 3 1
]

⎡

⎣

6 4 1

4 6 4

1 4 6

⎤

⎦

⎡

⎣

2

3

1

⎤

⎦ = 1

5

[

25 30 20
]

⎡

⎣

2

3

1

⎤

⎦ = 32.

Hence, var(Xu) = uT cov(X)u = uT �u. as required since both are 32. 

Exercise 

7.1 Show that var(Xu) = uT cov(X)u = uT �u. for 

(1) 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3 4

4 2

2 3

2 2

4 4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and u =
[

1

−1

]

.

(2) 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 5 4

4 2 3

2 2 2

3 2 5

5 4 2

2 3 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and u =

⎡

⎣

2

3

1

⎤

⎦ .

Now, suppose A. is a d × d . symmetric matrix, x. is a d × 1. vector with xT =
(x1, x2, · · · , xd)., and α . is a scalar. 

• Let the scalar α . be defined by 

.α = xT Ax,
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where A. does not depend on x., and then in general, we have 

.
∂α

∂x
= (A + AT )x. (7.3) 

Since A. is also symmetric, then AT = A. so that 

.
∂α

∂x
= 2Ax. (7.4) 

The product xT Ax. is just a scalar value (i.e., not a vector or matrix), which is an 

equation in x1, x2, · · · , xd .. So, ∂α
∂x

. is the gradient of the function as a vector as in 

Sect. 6.1.4 of Chap. 6. Hence, 

. 
∂α

∂x
= gradα =

[

∂α

∂x1
,

∂α

∂x2
, · · · ,

∂α

∂xd

]T

.

Of course, we are only interested in symmetric matrices since cov(X). is always 

symmetric. However, let us start with a non-symmetric example (see Example 7.3). 

Example 7.3 Let d = 2., xT = (x1, x2)., and A =
[

a b

c d

]

.. 

Then, α = xT Ax =
[

ax1 + cx2 bx1 + dx2
]

[

x1

x2

]

= ax2
1 + cx1x2 + bx1x2 +

dx2
2 .. 

So, α . is a scalar function of x1 . and x2 .. Hence, 

. 
∂α

∂x
=

[

∂α
∂x1
∂α
∂x2

]

=
[

2ax1 + cx2 + bx2

cx1 + bx1 + 2dx2

]

.

Also, 

. (A + AT )x =
[

2a b + c

b + c 2d

] [

x1

x2

]

=
[

2ax1 + cx2 + bx2

cx1 + bx1 + 2dx2

]

.

So, ∂α
∂x

. is the same as (A + AT )x. and the result is as required. 

Now, let us see a symmetric example (see Example 7.4).
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Example 7.4 Let A =
[

a b

b d

]

.. So, A. is the same as in Example except 

that

7.3 

c = b.. 

Then, looking at the result in Example and putting7.3 c = b.,  we  ha  ve

. α = xT Ax = ax2
1 + 2bx1x2 + dx2

2 ,

and so 

. 
∂α

∂x
=

[

∂α
∂x1
∂α
∂x2

]

=
[

2ax1 + 2bx2

2bx1 + 2dx2

]

= 2

[

a b

b d

] [

x1

x2

]

= 2Ax.

Hence, ∂α
∂x

= 2Ax. as required. 

Exercise 

7.2 Let d = 3., xT = (x1, x2, x3)., and A =

⎡

⎣

a b c

b d e

c e f

⎤

⎦ ,.which is symmetric. 

If α = xT Ax., show that ∂α
∂x

= 2Ax.. 

Now, suppose x. and a. are d × 1. vectors and β . and γ . are scalars. 

• Let the scalar β . be defined by 

. β = xT x,

then we have: 

.
∂β

∂x
= 2x. (7.5) 

• Let the scalar γ . be defined by 

. γ = xT a = aT x,

then we have: 

.
∂γ

∂x
= a. (7.6)
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Example 7.5 Let d = 2.. So, we have xT = (x1, x2). and aT = (a1, a2).. 

Then, β = xT x =
[

x1 x2
]

[

x1

x2

]

= x2
1 + x2

2 ., 

and so
∂β
∂x

=
[

∂β
∂x1
∂β
∂x2

]

=
[

2x1

2x2

]

= 2x.. 

Also γ = xT a = aT x = x1a1 + x2a2 ., 

and so
∂γ
∂x

=
[

∂γ
∂x1
∂γ
∂x2

]

=
[

a1

a2

]

= a.. 

Exercise 

7.3 When d = 3., xT = (x1, x2, x3). and aT = (a1, a2, a3)..  If β = xT x. and 

γ = xT a., show that
∂β
∂x

= 2x. and
∂γ
∂x

= a.. 

7.3 Problem Setting 

Recall that in Sect. 4.2.2 of Chap. 4, we have claimed that if the first principal 

component of the data X. is the eigenvector u1 . of the covariance matrix of data 

X., then the projection of the data onto u1 . is such that: 

• Xu1 . has the largest variance, 

• where this is subject to the normalising constraint uT
1 u1 = 1.. 

We can re-express these using mathematical equations and prove that the direction 

of the first principal component of the data is the direction with the largest 

eigenvalue: 

• First, the variance of Xu1 . can be written as var(Xu1)., which is equal to uT
1 �u1 . 

according to Eqs. (7.1) and (7.2), where � = cov(X). is a symmetric matrix. 

Hence, uT
1 �u1 . is the objective function we wish to maximise. 

• We want to maximise the objective function subject to the constraint that uT
1 u1 =

1.. Hence, this is an optimisation problem with constraints. 

Applying the Lagrange multiplier method (see Sect. 6.2.2 of Chap. 6), the new 

objective function is shown as follows: 

.F1 = uT
1 �u1 − λ1(u

T
1 u1 − 1), (7.7)
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where λ1 . is a Lagrange multiplier. The task has been converted to maximising F1 . 

with respect to both u1 . and λ1 .. 

Similarly, we can set up an objective function for all other principal components. 

For example, for the second principal component ( u2 .), we need to maximise 

var(Xu2) = uT
2 �u2 . subject to certain constraints. However, this time, we have not 

only uT
2 u2 = 1. but also uT

2 u1 = 0., since we are looking for a coordinate system, 

where axes are perpendicular to each other. Again, applying the Lagrange multiplier 

method, the new objective function is shown as follows: 

.F2 = uT
2 �u2 − λ2(u

T
2 u2 − 1) − ρuT

2 u1, (7.8) 

where λ2 . and ρ . are Lagrange multipliers. 

We now have two objective functions, F1 . and F2 ., that we can maximise to get 

the first and second largest variances. 

7.4 The Formulation of Principal Component Analysis 

Let us maximise each of the functions in turn. 

7.4.1 The First Principal Component 

To find the maximum of F1 ., we calculate the partial derivative
∂F1
∂u1

. from Eq. (7.7): 

.
∂F1

∂u1
= 2�u1 − 2λ1u1, (7.9) 

where we have applied Eqs. (7.4) and (7.5). 

Setting the partial derivative (7.9) to zero gives us the following: 

. 2�u1 − 2λ1u1 = 0.

That is, 

.�u1 = λ1u1. (7.10) 

As can be seen, Eq. (7.10) coincides with the definition of eigendecomposition 

(see Definition 4.1 of Chap. 4) since � . is a square matrix. This tells us that the 

solution for the first principal component u1 ., an eigenvector satisfying Eq. (7.10), 

points to the direction of maximum variance. Hence, the direction of the first 

principal component of the data is the direction with the largest variance, as claimed. 

So how big is this variance?
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Since var(Xu1) = uT
1 �u1 ., if we substitute �u1 = λ1u1 . to the variance of Xu1 . 

and consider the constraint condition of uT
1 u1 = 1., we can obtain 

. var(Xu1) = uT
1 �u1 = uT

1 λ1u1 = λ1u
T
1 u1 = λ1.

This says that the variance of data projections along the first principal component 

equals the eigenvalue λ1 . of the first principal component. Since the direction of the 

first principal component u1 . captures the largest variation in the data projections, 

which is proved to be λ1 ., we can say that the first principal component has the 

largest variance among all principal components. 

7.4.2 The Second Principal Component 

We now consider the second principal component and calculate the partial derivative 
∂F2
∂u2

. from Eq. (7.8). By applying Eqs. (7.4), (7.5) and (7.6), we have 

.
∂F2

∂u2
= 2�u2 − 2λ2u2 − ρu1. (7.11) 

Setting the partial derivative (7.11) to zero gives us the following: 

.2�u2 − 2λ2u2 − ρu1 = 0. (7.12) 

Multiplying uT
1 . from the left side on both sides of Eq. (7.12), we have 

. uT
1 2�u2 − uT

1 2λ2u2 − uT
1 ρu1 = 0.

If we take scalars, including Lagrange multipliers in front of vectors, we obtain 

.2uT
1 �u2 − 2λ2u

T
1 u2 − ρuT

1 u1 = 0. (7.13) 

Since uT
1 u2 = 0. and uT

1 u1 = 1., from the equation above, we have 

.ρ = 2uT
1 �u2. (7.14) 

We will now show that, in fact, ρ = 0.. First, multiplying uT
2 . from the left side on 

both sides of Eq. (7.10), it gives us the following: 

.uT
2 �u1 = uT

2 λ1u1 = λ1u
T
2 u1 = 0. (7.15) 

However, from the matrix transpose rule (see Sect. 3.3.11.1 of Chap. 3), we have 

(uT
2 �u1)

T = uT
1 �u2 .. Note that the covariance matrix � . is symmetrical, and the
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transpose of a symmetrical matrix is itself. Therefore, we also now have uT
1 �u2 = 0. 

since from Eq. (7.15) uT
2 �u1 = 0.. Together with Eq. (7.14), we obtain ρ = 0.. 

Further, substituting ρ = 0. into Eq. (7.12), gives us 

.2�u2 − 2λ2u2 = 0 → �u2 = λ2u2. (7.16) 

Hence, we have shown that the solution for the second principal component u2 ., 

given by Eq. (7.16), gives us the direction of the second most maximum variance. 

Furthermore, since var(Xu2) = uT
2 �u2 ., if we substitute �u2 = λ2u2 . to the 

variance of Xu2 . and consider the constraint condition of u
T
2 u2 = 1., we can obtain 

. var(Xu2) = uT
2 �u2 = uT

2 λ2u2 = λ2u
T
2 u2 = λ2.

It says that the variance of data projections along the second principal component 

equals the eigenvalue of the second principal component (see Eq. (7.16)). 

7.4.3 Data Normalisation 

Let us complete Examples 7.1 and 7.2 given earlier in Sect. 7.2 of this chapter. We 

will find the principal components three times in Example 7.1 to illustrate some 

important facts about the process. 

Example 7.6 Example continued—part 1 

First, we take the data as given and found in Example .  We  ha  ve7.1

7.1 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3 2

4 3

2 1

2 2

4 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

and the covariance matrix is 

. � = cov(X) = 1

4

[

4 2

2 2

]

=
[

1 1
2

1
2

1
2

]

,

where the total variance in the two features (columns) is 1.5., 1 for the first 

column and 1
2
. for the second column. 

(continued)
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Example 7.6 (continued) 

To find the direction of maximum variance, we have proved that it is 

in the direction u1 . of the first eigenvector when using principal component 

analysis on cov(X). and has the value given by the largest eigenvalue, namely, 

the eigenvalue λ1 .. Similarly, the second most maximum variance is in the 

direction u2 . of the second eigenvector and has the value given by the second 

largest eigenvalue, λ2 ., found using principal component analysis on cov(X).. 

So, we need to carry out a principal component analysis. 

The characteristic polynomial of � . is found via the following: 

. � − λI =
[

1 − λ 1
2

1
2

1
2

− λ

]

,

. |� − λI| = (1 − λ)(
1

2
− λ) − 1

4
= 1

4
(4λ2 − 6λ + 1).

The eigenvalues are obtained by solving 

. 4λ2 − 6λ + 1 = 0,

which gives λ1 = 1
4
(3 +

√
5). and λ2 = 1

4
(3 −

√
5). as the eigenvalues of � .. 

So, the largest eigenvalue is 1
4
(3+

√
5) = 1.31., capturing about 87.3%. of the 

total variation (which is 1.5.), and the second largest is 1
4
(3 −

√
5) = 0.19., 

capturing about 12.7%. of the total variation. 

Find u1 . by using λ1 = 1
4
(3 +

√
5). in � − λI. and solving (� − λI)u = 0.: 

. 
1

4

[

1 −
√
5 2

2 −1 −
√
5

] [

u1

u2

]

=
[

0

0

]

.

That is, : 

. 

{

(1 −
√
5)u1 + 2u2 = 0

2u1 − (1 +
√
5)u2 = 0.

The solution to the above simultaneous equations is u1 = 1+
√
5. and u2 = 2.. 

So, the direction of maximum variance is the first eigenvector u1 =
[

1 +
√
5

2

]

., which has unit vector û1 =
[

0.85

0.53

]

., at approximately 32 degrees 

to the x-axis. 

(continued)
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Example 7.6 (continued) 

A similar calculation for λ2 = 1
4
(3−

√
5). gives u1 = 1−

√
5. and u2 = 2.. 

So, the direction with the second largest variance is the second eigenvector 

u2 =
[

1 −
√
5

2

]

., which has unit vector û2 =
[

−0.53

0.85

]

.. 

The original data with the two principal component directions u1 . and u2 . are 

shown in Fig. a, and the data as projected onto the two principal component 

directions are shown in Fig. b. 7.1

7.1

Example 7.7 Example continued—part 2 

Next, we will take the dataset 

7.1 

X. and make it zero mean. That is, each column 

has a zero mean. This is done by subtracting the mean of the column from 

each item, giving 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0

1 1

−1 −1

−1 0

1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Now, if we calculate the covariance matrix, we get 

. � = cov(X) = 1

4

[

4 2

2 2

]

.

This is the same covariance matrix as shown in Example , which is not 

surprising since covariance is calculated by taking each item and subtracting 

the mean. 

Hence, the solution to this is identical to the previous calculation. It is 

usual to subtract the mean because it gives smaller numbers and has axes at 

the centre of the picture. It is conventional to do this and will be expected, so 

it is always done. 

The original data that has been made zero mean with the two principal 

component directions 

7.1

u1 . and u2 . are shown in Fig. a, and the data as 

projected onto the two principal component directions are shown in Fig. b.7.2

7.2
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Fig. 7.1 The left panel illustrates the original data along with the two principal component 

directions, u1 . and u2 .; the right displays the data projected onto these two principal component 

directions 

Fig. 7.2 The left panel illustrates the original, zero-mean, data along with the two principal 

component directions, u1 . and u2 .; the right panel displays the data projected onto these two 

principal component directions 

Example 7.8 Example 7.1 continued—part 3 

Now, we also normalise each column by dividing by the standard deviation 

of each column. This means that the total variance of each column will be 1. 

(continued)
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Example 7.8 (continued) 

This gives the following form to the data: 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0

1
√
2

−1 −
√
2

−1 0

1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Calculating the covariance matrix, we get 

. � = cov(X) =
[

1 1√
2

1√
2

1

]

,

where the total variance in the two features is 2. 

The characteristic polynomial of � . is obtained via the following: 

. � − λI =
[

1 − λ 1√
2

1√
2

1 − λ

]

,

. |� − λI| = (1 − λ)(1 − λ) − 1

2
= 1

2
(2λ2 − 4λ + 1).

The eigenvalues are obtained by solving 

. 2λ2 − 4λ + 1 = 0,

which gives the largest eigenvalue as λ1 = 2+
√
2

2
= 1.71., capturing about 

85.4%. of the total variation, and second largest eigenvalue as λ2 = 2−
√
2

2
=

0.29., capturing about 14.6%. of the total variation. 

Finally, we use λ1 . to find the direction of the maximum variance, u1 .,  by  

solving

. 

[

− 1√
2

1√
2

1√
2

− 1√
2

]

[

u1

u2

]

=
[

0

0

]

.

That is, 

. 

⎧

⎨

⎩

− 1√
2
u1 + 1√

2
u2 = 0

1√
2
u1 − 1√

2
u2 = 0.

(continued)
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Example 7.8 (continued) 

The solution to the above simultaneous equations is u1 = u2 .. Therefore, 

any non-zero vector satisfying the condition u1 = u2 . is a solution to the 

eigenvector. For instance, u1 = 1. and u2 = 1.. So, the direction of maximum 

variance is the first eigenvector u1 =
[

1

1

]

., which has unit vector û1 =
[

1√
2
1√
2

]

., 

which is at 45 degrees to the x-axis. 

A similar calculation for λ2 . gives u1 = −u2 .. Again, any non-zero vector 

satisfying the condition u1 = −u2. is a solution to the eigenvector. For 

instance, u1 = −1. and u2 = 1.. So, the direction with the second largest 

variance is the second eigenvector u2 =
[

−1

1

]

., which has unit vector û2 =
[

− 1√
2

1√
2

]

.. 

These values and directions are different from the original ones and show 

that normalisation does have an effect. In this case, it has increased the 

importance of the second feature of X. so that the first eigenvector is rotated 

round to 45 degrees from the x-axis from 32 degrees as before. The original 

data that has been made zero mean and normalised with the two principal 

component directions u1 . and u2 . are shown in Fig. a, and the data as 

projected onto the two principal component directions are shown in Fig. b. 7.3

7.3

Fig. 7.3 The left panel illustrates the original, zero-mean, normalised, data along with the two 

principal component directions, u1 . and u2 .; the right panel displays the data projected onto these 

two principal component directions
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Example 7.9 Example continued 

Again starting with the raw data, we have found that for our data, 

7.2 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 3 4

1 0 1

4 3 2

1 2 2

2 2 1

2 2 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

the covariance matrix is 

. � = cov(X) = 1

5

⎡

⎣

6 4 1

4 6 4

1 4 6

⎤

⎦ .

Now, to find the eigenvalues and eigenvectors for this matrix involves solving 

a cubic equation and solving three simultaneous equations. As in all realistic 

exercises, this is done with the aid of suitable programs on a computer. So, for 

the sake of completeness, this has been done and gives the three eigenvalues 

in descending order: 

. λ1 = 2.44, λ2 = 1, λ3 = 0.16.

And it gives the three unit eigenvectors corresponding to these eigenvalues as 

. u1 =

⎡

⎣

0.52

0.67

0.52

⎤

⎦ u2 =

⎡

⎣

−0.71

0

0.71

⎤

⎦u3 =

⎡

⎣

0.48

−0.74

0.48

⎤

⎦ .

So, u1 . is the direction of most variance, u2 . is the direction of the second most 

variance, and u3 . is the direction of least variance. 

If we were to plot the data projected onto the first and second principal 

components, then we would capture 2.44+1 = 3.44. out of the total of 2.44+
1 + 0.16 = 3.6. variance, that is, 95.6%. of the total. 

Now, we convert each column to have a zero mean and a unit variance. 

After making each column zero mean, each column has a variance of 6
5

�= 1.. 

So, we divide each element by the standard deviation, which is 
√
6√
5
., and the 

(continued)
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Example 7.9 (continued) 

data becomes 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
√
5√
6

2
√
5√
6

−
√
5√
6

− 2
√
5√
6

−
√
5√
6

2
√
5√
6

√
5√
6

0

−
√
5√
6

0 0

0 0 −
√
5√
6

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and the covariance matrix is 

. � = cov(X) =

⎡

⎣

1 2
3

1
6

2
3
1 2

3
1
6

2
3
1

⎤

⎦ .

So again, solving using a computer, we get 

. λ1 = 2.03, λ2 = 0.83, λ3 = 0.14.

And it gives the three unit eigenvectors corresponding to these eigenvalues as 

. u1 =

⎡

⎣

0.52

0.67

0.52

⎤

⎦ u2 =

⎡

⎣

−0.71

0

0.71

⎤

⎦u3 =

⎡

⎣

−0.48

0.74

−0.48

⎤

⎦ .

Figure shows the normalised data and the eigenvectors in the data space. 

Figure presents the directions of the principal components (eigenvectors) 

in the PCA space. Both figures show 

7.5 

7.4 

u1 . in red, u2 . in green, and u3 . in blue. 

Notice that the three eigenvectors, the three principal components, are the 

same as previously. This is because the original data was chosen so that each 

column had the same variance. Therefore, dividing by the standard deviation 

meant dividing all the values by the same amount. Not surprisingly, this had 

no effect on the principal component directions. The eigenvalues, or variances, 

are different but are all, in fact, the original ones divided by the variance 

(which was 6
5

= 1.2.). For real problems, having the same variance to start 

with will not be the case! So, dividing by the standard deviation is important. 

(continued)
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Example 7.9 (continued) 

Again, if we were to plot the data projected onto the first and second 

principal components, then we would capture 2.03 + 0.83 = 2.86. out of the 

total of 2.03 + 0.83 + 0.14 = 3. variance, that is, 95.3%. of the total. 

Figure shows projections of the normalised data in the PCA space, from 

left to right, displaying PC1 against PC2, PC2 against PC3, and PC1 against 

PC3, respectively. We can see that the largest range among projections along 

each principal component axis decreases from PC1 to PC3. 

7.6 

Fig. 7.4 The normalised data 

and the three eigenvector 

directions ( u1 . in red, u2 . in 

green, and u3 . in blue) in the 

data space 

Fig. 7.5 The PCA space 

represented by the 

eigenvectors ( u1 . in red, u2 . in 

green, and u3 . in blue)
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Fig. 7.6 Projections of the normalised data in the PCA space: (from left to right) PC1 versus PC2, 

PC2 versus PC3, and PC1 versus PC3 

Remark 7.1 As mentioned in Example 7.8, one can find more than one non-zero 

eigenvector for a corresponding eigenvalue. That is, there may be more than one 

solution for the required unit vector or principal component as long as the condition 

solved from the simultaneous equations is satisfied. For example, for a condition 

u1 = u2 ., the principal component may be û1 =
[

1√
2
1√
2

]

.,  or û1 =
[

− 1√
2

− 1√
2

]

..  Both  

vectors lie on the same line but point in opposite directions. It does not affect 

visualising the structure in the data when projecting the same data in these two 

directions, though one visualisation plot may seem to be a flip of the other one. �. 

Remark 7.2 As mentioned in Example 7.7, it is expected that you should centre 

the data by making each feature have a zero mean. It centres the picture and which 

makes it easier to interpret. It is also expected that you should normalise the data 

by making each feature (column) have a standard deviation, or variance, of 1, 

as mentioned in Example 7.8. This is so that one feature does not dominate the 

calculation just because it has much larger values. As we have demonstrated here 

for really simple data, these two tasks are often not really needed, but do not get 

mislead—for real data, they are important tasks to perform. �. 

Exercise 

7.4 Find the principal components for the following data with and without 

normalisation (having both zero means and unit standard deviations): 

(1) 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3 4

4 2

2 3

2 2

4 4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(continued)
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(2) 

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 2

1 2

4 3

1 0

2 3

2 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(3) If you are feeling brave, try this larger one. In fact, it is not too difficult 

since f  our  of the nine values in the covariance matrix are zero, and the 

ones on the main diagonal are all the same. This makes getting the first 

eigenvalue easy, and the other two are found by factorising a quadratic 

equation. Hence, it is possible to do i t by hand.

. X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 5 4

4 2 3

2 2 2

3 2 5

5 4 2

2 3 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

7.5 Case Study 2 from Chap. 1: Continued 

We are now ready to answer those five questions asked in Sect. 1.3.2 of Chap. 1. 

1. What are those principal components (PC) axes? 

Principal component axes are the eigenvectors computed via eigendecomposition 

on the data covariance matrix. 

2. What is the relationship between those PCs and the original four features in the 

dataset? 

Recall in Sect. 4.2.3 of Chap. 4 that we can obtain positions of data projections 

along the first PC axis using the following equation: 

. projected_data = Xn×dud×1 = u11x,1 + u21x,2 + · · · + ud1x,d ,

where x,i . is the ith column of Xn×d ..A more general expression to each principal 

component is 

.pc = Xui = u1ix,1 + u2ix,2 + · · · + udix,d , where i = 1, · · · , d.



7.5 Case Study 2 from Chap. 1: Continued 205 

It shows that each PC is a linear combination of all d features, weighted by 

the element in the corresponding eigenvector. Note that the number of elements 

of each eigenvector (d) is determined by the number of features included in the 

data covariance matrix, that is, the number of columns in Xn×d ., which is also d. 

3. Why is it necessary to report the variance percentage value? 

Now, we know that the principle behind the PCA analysis is to find the direction 

that can capture the most significant variance among the data projections in the 

PCA space. When doing feature extraction using PCA, reporting how much 

percentage of the total variance has been captured by each PC will help us to 

decide on how many features to use. Note that each feature extracted via PCA is 

a linear combination of all the original features. When visualising the data using 

PCA, reporting how much percentage of the total variance has been captured, 

especially by the first two PCs, will give us a sense of whether this linear data 

visualisation method is a suitable way to visualise the data. 

4. How is the variance percentage value calculated? 

This has been shown in Sect. 4.2.3 of Chap. 4: the amount of information 

contained in the ith principal component is calculated as λi
∑

λj
.. However, it 

should be clear now why the eigenvalue is used when calculating the variance 

percentage. 

5. How is the position of each data in the coordinate plane determined? 

This is similar to point (2). In practice, first, we remove the mean value from 

each feature in the dataset. Then, we substitute the corresponding data values 

and eigenvector elements into the following equation to obtain the coordinate 

value in the principal component space: 

.projected_data = u1x1 + u2x2 + · · · + udxd .



Chapter 8 

Algorithms 2: Linear Regression 

This is the second of three chapters that aim to show how we can apply the 

knowledge introduced in previous chapters to formulate three widely used algo-

rithms in the Data Science field. This chapter applies the least-squares technique 

for formulating a simple linear algorithm. This algorithm aims to find a linear 

relationship between variables that will enable us to estimate the new value of 

one variable, called the dependent variable, given new values for one or more 

independent variables. 

8.1 Simple Linear Regression Algorithm 

Linear regression is a technique that statisticians use to describe the relationship 

between a dependent variable, also called a regressor, and one or more independent 

variables, also called predictors. Figure 8.1 shows the first three chemicals (rep-

resented by crosses) displayed in Table 1.2 of Chap. 1. In this example, we want 

to estimate enhancement ratios in terms of the molecular weights of chemicals. 

The molecular weight is an independent variable, and the enhancement ratio is the 

dependent variable. The linear regression algorithm aims to fit a linear line among 

the data. However, many straight lines can be fit, for example, the three dashed lines 

shown in Fig. 8.1. Which one shall we use? Since we want to use the linear line to 

estimate values for the dependent variable, we need to find the one that can provide 

the estimations as accurately as possible. 

Let us start with a simple form with only one independent variable, illustrated in 

Fig. 8.2. Since we are in two dimensions, then this is a simple straight line, and it 

can be mathematically expressed as follows: 

.fa(x) = a0 + a1x, (8.1) 
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https://doi.org/10.1007/978-981-96-5639-4_8

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5639-4protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8
https://doi.org/10.1007/978-981-96-5639-4_8


208 8 Algorithms 2: Linear Regression

Fig. 8.1 Three possible 

linear regression lines 

illustrating the relationship 

between molecular weights 

and enhancement ratios. The 

three cross markers represent 

the available chemical 

compounds 

Fig. 8.2 An illustration of a 

linear regression line 

where a0 . is the intercept, a1 . is the slope of the line, and x is the variable for which 

we have observations, the independent variable. It is similar to the one shown in 

Sect. 2.3.2.1 of Chap. 2. However, here we use a subscript letter a. to indicate that 

a = {a0, a1}. is the parameter set we need to estimate. 

8.2 Least-Squares Estimation 

How can we find suitable values for a0 . and a1 . in Eq. (8.1) from the given data? 

Ideally, we want to select values for a0 . and a1 ., such as the line can pass through 

all the given data points. However, it is impossible in most real-world applications 

since data points do not exist on the same line. Therefore, all we can do is to choose 

values for a0 .and a1 . such that the differences between estimations from the fitted line 

f (x). and actual measurements are as small as possible. This is another optimisation
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problem. That is, we want to minimise the sum of differences over all the given data 

with respect to a0 . and a1 .. 

Now, the question is how we construct the objective function involving the 

sum of differences. The differences will be expressed in terms of how far the 

observation of the dependent variable is from what the straight line calculates for 

that corresponding value of the independent variable. Suppose there are N data 

points (xi, yi), i = 1, . . . , N ., where x is the independent variable and y is the 

dependent variable. For any data point (xi, yi)., the actual value of the dependent 

variable is yi ., and the value given by the line, the estimated value of yi ., is given by 

a0+a1xi .. The possible objective functions will be in terms of sums of the differences 

between these two values, that is, the sums of yi − (a0 + a1xi). in some form. Three 

possible objective functions are 

.Q1(a0, a1) =
1

N

N
∑

i=1

(yi − (a0 + a1xi)), (8.2) 

.Q2(a0, a1) =
1

N

N
∑

i=1

|yi − (a0 + a1xi)|, (8.3) 

and 

.Q(a0, a1) =
1

N

N
∑

i=1

(yi − (a0 + a1xi))
2. (8.4) 

The problem with Q1 is that the differences or errors are signed values, and positive 

values can cancel with negative values when adding up all errors. The problem 

with Q2 is that the absolute value function is not differentiable (recall Example 5.7 

in Chap. 5). Thus, it is not convenient for further analysis. The problem with Q 

is that differences are not weighted equally. That is, large differences are given 

more weight than smaller differences. There are problems with all the above three 

objective functions. However, Q is not so bad compared with the other two as 

differences cannot be cancelled and it is differentiable. Therefore, we minimise Q 

with respect to a0 . and a1 . to find the line that best fits the data. This is called the 

least-squares method. By convention, Q is divided by 2 as shown as follo ws:

.Q(a0, a1) =
1

2N

N
∑

i=1

(yi − (a0 + a1xi))
2. (8.5)
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8.2.1 Deriving the Estimates Using the Least-Squares 

Objective Function 

Finding the estimates of the parameters of the regression models means we need 

to minimise Eq. (8.5). We set the partial derivatives of Q with respect to a0 . and a1 . 

equal to zero: 

.
∂Q

∂a1
=

N
∑

i=1

(yi − (a0 + a1xi))(−xi) = 0, (8.6) 

.
∂Q

∂a0
=

N
∑

i=1

(yi − (a0 + a1xi))(−1) = 0. (8.7) 

Note that to calculate the above partial derivatives, we have applied the addition and 

chain rules for differentiation shown in Sect. 5.2.2 of Chap. 5. This does not look 

very easy due to the use of the 
∑

. sign. However, it just means many terms like the 

first term, (y1 − (a0 +a1x1))
2
.. Each can be differentiated by using the chain rule for 

the squared part, giving two parts u2 . and u = y1−(a0+a1x1).. After differentiating, 

all the parts would then be just summed up again. In fact, in the next part of the text, 

remember that it is just lots of terms conveniently summed together. 

To obtain their mathematical expressions, we can rewrite Eqs. (8.6) and (8.7), 

respectively, as follows: 

. 

( N
∑

i=1

x2
i

)

a1 +

( N
∑

i=1

xi

)

a0 =

N
∑

i=1

xiyi,

. 

( N
∑

i=1

xi

)

a1 +

( N
∑

i=1

1

)

a0 =

N
∑

i=1

yi .

Further, we can write the above two equations in a matrix equation as was implied 

in Sect. 3.3.5 of Chap. 3: 

.

[∑N
i=1 x2

i

∑N
i=1 xi

∑N
i=1 xi

∑N
i=1 1

] [

a1

a0

]

=

[∑N
i=1 xiyi

∑N
i=1 yi

]

. (8.8) 

Now, to solve simultaneous equations of the form Aa = x., where A. is a matrix, 

and a. and x. are vectors, we need to multiply the left-hand side of both sides of the 

equation by the inverse matrix to A., namely, A−1
.,  giving a = A−1x..
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So, to obtain estimates for a0 . and a1 ., we need to compute the inverse of 

. 

[∑N
i=1 x2

i

∑N
i=1 xi

∑N
i=1 xi

∑N
i=1 1

]

.

To do so, we need to determine whether its inverse exists. Let us denote this matrix 

as A., and the mean of x as x̄ ., which is x̄ = 1
N

∑N
i=1 xi .. 

To show that the inverse exists, we must show that the determinant of A. is non-

zero. A standard way to do this is to show that the determinant is the square of 

something or the sum of lots of squares where none, or not all, of the square terms 

could be zero. This works because all the non-zero square terms are positive, so they 

cannot cancel with any negative terms to give an overall total of zero. This is what 

we will do in the following calculation. 

Note that in this calculation, we use another mathematical trick: adding and 

subtracting the same thing in an expression so that we can reorganise the expression 

into a convenient form. We will do this in the fourth line of the following (Eq. 8.9) 

by adding and subtracting x̄2
.. 

The determinant of A. is computed as follows: 

.

detA =

N
∑

i=1

x2
i ·

N
∑

i=1

1 −

N
∑

i=1

xi ·

N
∑

i=1

xi

= N

N
∑

i=1

x2
i − (Nx̄)2

= N2

(

1

N

N
∑

i=1

x2
i − x̄2

)

= N2

(

1

N

N
∑

i=1

x2
i − 2x̄2 + x̄2

)

= N2

(

1

N

N
∑

i=1

x2
i − 2x̄

1

N

N
∑

i=1

xi +
1

N

N
∑

i=1

x̄2

)

= N

N
∑

i=1

(xi − x̄)2.

(8.9) 

We have applied x̄ = 1
N

∑N
i=1 xi . and x̄2 = 1

N
Nx̄2 = 1

N

∑N
i=1 x̄2

. in the second last 

line  in  Eq  . (8.9). 

Equation (8.9) shows that as long as all xi . are not equal, which would make 

xi = x̄ . for all i, the determinant of A.will not be zero and the inverse of A. exists.
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Let us do that again with N = 2. and expand so that we do not have the awkward 

looking 
∑

. signs. 

If N = 2., then A =

[

x2
1 + x2

2 x1 + x2

x1 + x2 2

]

. and x̄ = 1
2
(x1 + x2).. 

. detA = 2(x2
1 + x2

2) − (x1 + x2)
2

= 2(x2
1 + x2

2) − (2x̄)2

= 2[(x2
1 + x2

2) − 2(x̄)2]

= 2[(x2
1 + x2

2) − 4(x̄)2 + 2(x̄)2]

= 2[(x2
1 + x2

2) − 4x̄
1

2
(x1 + x2) + ((x̄)2 + (x̄)2)]

= 2[[x2
1 − 2x1x̄ + (x̄)2] + [x2

2 − 2x2x̄ + (x̄)2]]

= 2[(x1 − x̄)2 + (x2 − x̄)2]

as required. 

Since the inverse exists, we can calculate a0 . and a1 . from Eq. (8.8). That is, we 

can multiply the inverse of the matrix from the left side on both sides of Eq. (8.8). 

We have 

. 

[

a1

a0

]

=

[∑N
i=1 x2

i

∑N
i=1 xi

∑N
i=1 xi

∑N
i=1 1

]−1 [∑N
i=1 xiyi

∑N
i=1 yi

]

.

After calculating the inverse of A., we have the following: 

. 

[

a1

a0

]

=
1

N
∑N

i=1(xi − x̄)2

[ ∑N
i=1 1 −

∑N
i=1 xi

−
∑N

i=1 xi

∑N
i=1 x2

i

] [∑N
i=1 xiyi

∑N
i=1 yi

]

.

Therefore, 

.a1 =
1

N
∑N

i=1(xi − x̄)2

[

N

N
∑

i=1

xiyi −

N
∑

i=1

xi

N
∑

i=1

yi

]

, (8.10) 

and 

.a0 =
1

N
∑N

i=1(xi − x̄)2

[ N
∑

i=1

x2
i

N
∑

i=1

yi −

N
∑

i=1

xi

N
∑

i=1

xiyi

]

. (8.11)
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Remark 8.1 Alternatively, a1 . and a0 . can be rewritten in a more concise way as 

follows: 

.a1 =

∑N
i=1(xi − x̄)(yi − ȳ)
∑N

i=1(xi − x̄)2
, (8.12) 

and 

.a0 = ȳ − a1x̄ , (8.13) 

where x̄ . and ȳ . are the mean value of x and y, respectively. 

We have mainly ignored proofs in this book. However, readers are encouraged to 

do the two proofs that the values of a1 . in Eqs. (8.10) and (8.12) are the same and that 

the values of a0 . in Eqs. (8.11) and (8.13) are the same as an exercise by themselves. 

The tricks that may be used in the proof include x̄ = 1
N

∑

xi ., Nx̄ =
∑

xi ., and 
∑

x̄ =
∑

xi .. You will find it easier to do the proof for just the N = 2. case. �. 

To illustrate how these formulae work and give you some examples to try, we now 

do some examples and exercises for really small values of N . It should be noted that 

for any realistic values of N , this would be calculated using a computer program, as 

was the case for real principal component analysis problems in the previous chapter. 

The values that satisfy the two simultaneous equations, (8.10) and (8.11), or (8.12) 

and (8.13), are the least-squares estimates for a1 . and a0 . and are denoted as â1 . and 

â0 ., respectively. 

Example 8.1 Find the regression line when we have just two points, so N =

2., where the two points are (2, 2). and (4, 3).. 

Solution The average of the independent variable is x̄ = 2+4
2

= 3., and the 

average of the dependent variable is ȳ = 2+3
2

= 2.5.. 

Using Eq. ( ), we get 8.10

. ̂a1 =
1

2(1 + 1)
(2 × (4 + 12) − 6 × 5) =

1

2
.

Using Eq. ( ), we get 8.11

. ̂a0 =
1

2(1 + 1)
(20 × 5 − 6 × (4 + 12)) = 1.

(continued)
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Example 8.1 (continued) 

Alternately, 

using Eq. ( ), we get 8.12

. ̂a1 =
(−1)(− 1

2
) + (1)( 1

2
)

(−1)2 + (1)2
=

1

2
.

Using Eq. ( we get 8.13), 

. ̂a0 =
5

2
−

1

2
× 3 = 1.

So either way, we get the same answers, that is, â1 = 1
2
. and â0 = 1.. 

Of course, with just two different points, you get a unique line that goes 

through both points. This is illustrated in Fig. 8.3. 

Example 8.2 Find the regression line with three points, so that N = 3..  The  

points are (1, 2)., (2, 4)., and (3, 3).. 

Solution The average of the independent variable is x̄ = 6
3

= 2., and the 

average of the dependent variable is ȳ = 9
3

= 3.. 

Again, do it using both sets of equations to show that you get the same 

answer: 

Using Eq. ( ), we get 8.10

. ̂a1 =
1

3(1 + 0 + 1)
(3 × (2 + 8 + 9) − 6 × 9) =

3

6
=

1

2
.

Using Eq. ( ), we get 8.11

. ̂a0 =
1

3(1 + 0 + 1)
(14 × 9 − 6 × (2 + 8 + 9)) =

12

6
= 2.

Alternately, 

using Eq. ( ), we get 8.12

. ̂a1 =
(−1)(−1) + (0)(1) + (1)(0)

(−1)2 + 0 + (1)2
=

1

2
.

(continued)
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Example 8.2 (continued) 

Using Eq. ( ), we get 8.13

. ̂a0 = 3 −
1

2
× 2 = 2.

So either way, we get the same answers, that is, â1 = 1
2
. and â0 = 2.. 

This is illustrated in Fig. . 8.4

Fig. 8.3 The regression line 

for Example 8.1 

Fig. 8.4 The regression line 

for Example 8.2.
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Exercise 

8.1 Find the regression line for the following: 

(1) N = 2.. Points (2, 3). and (3, 5).. 

(2) N = 3.. Points (1, 3)., (2, 2)., and (3, 4).. 

(3) N = 3.. Points (1, 4)., (2, 2)., and (3, 1.5).. 

(4) N = 3.. Points (1, 1)., (3, 4)., and (5, 4).. 

8.3 Linear Regression with Multiple Variables 

So far, we have considered using just one independent variable to estimate the 

dependent variable relationship. We now consider having d independent variables. 

With one independent variable and one dependent variable, we are working in two 

dimensions, and the linear regression line is just a straight line in two dimensions, 

namely, f (x) = a0 + a1x .. With two independent variables, our regression “line” is 

a plane in three dimensions, namely, f (x) = a0 + a1x1 + a2x2 .. This generalises for 

d independent variables to

. fa(x) = a0 + a1x1 + a2x2 + · · · + adxd =

d
∑

j=0

ajxj .

Note that we define x0 . as 1 to give a convenient summation. 

So, for each of the N points xi = (xi1, xi2, · · · , xid)., this gives the linear 

regression model as follows: 

.fa(xi) = a0 + a1xi1 + a2xi2 + · · · + adxid =

d
∑

j=0

ajxij . (8.14) 

The objective function is then given by the following: 

.Q =

N
∑

i=1

(yi −

d
∑

j=0

ajxij )
2. (8.15) 

So, for d = 1.,  we  ha  ve

.Q =

N
∑

i=1

(yi − (a0 + a1xi1))
2,
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which is the same as previously, apart from the 1
2N

. factor, which is a constant, and 

so does not affect things. 

And for d = 2.,  we  ha  ve

. Q =

N
∑

i=1

(yi − (a0 + a1xi1 + a2xi2))
2.

This is just the sum of the squares of the differences between the real value yi . and 

the corresponding point on the plane, as expected. 

If we write the data as a matrix X. of size of N × (d + 1)., where x0 . is a column 

vector including N ones, x0 =

⎡

⎢

⎢

⎢

⎣

1

1
...

1

⎤

⎥

⎥

⎥

⎦

N×1

. and a =

⎡

⎢

⎢

⎢

⎣

a0

a1
...

ad

⎤

⎥

⎥

⎥

⎦

., then Eq. (8.14) can be 

rewritten as fa(xi) = Xa., and Eq. (8.15) can be rewritten as 

. Q = (y − Xa)T (y − Xa).

Example 8.3 To illustrate the above, consider d = 1. and N = 2.. This has 

points (x11, y1). and (x21, y2).. Then, X., a., and y. are 

. X =

[

1 x11

1 x21

]

, a =

[

a0

a1

]

, y =

[

y1

y2

]

.

So, Xa. is

[

a0 + a1x11

a0 + a1x21

]

., where each row is fa(xi).. 

Hence, we have 

. (y − Xa) =

[

y1 − (a0 + a1x11)

y2 − (a0 + a1x21)

]

,

and 

. (y − Xa)T =
[

y1 − (a0 + a1x11), y2 − (a0 + a1x21)
]

,

respectively. 

(continued)
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Example 8.3 (continued) 

Therefore, (y − Xa)T (y − Xa). is 

. (y1 − (a0 + a1x11))
2 + (y2 − (a0 + a1x21))

2 =

2
∑

i=1

(yi − (a0 + a1xi1))
2.

So, (y − Xa)T (y − Xa) =
∑2

i=1(yi − (a0 + a1xi1))
2 = Q. as required. 

To obtain a formula for a., we need to find the partial derivative of Q with respect 

to a.. That is, 

.

∂Q

∂a
=

∂(y − Xa)T (y − Xa)

∂a

=
∂(yT − aT XT )(y − Xa)

∂a

=
∂(yT y − aT XT y − yT Xa + aT XT Xa)

∂a

=
∂(yT y − 2aT XT y + aT XT Xa)

∂a

= −2XT y + 2XT Xa

= −2XT (y − Xa).

(8.16) 

From the third line to the fourth line in Eq. (8.16), we have used the property that 

the transpose of a scalar is still the scalar itself, that is, the product of aT XT y. 

is a scalar (by checking the size of each factor (see Sect. 3.3.3 of Chap. 3), and 

aT XT y = (aT XT y)T = yT Xa.. Going from the fourth line to the fifth line, we have 

differentiated using the two results, Eqs. (7.6) and (7.4), from Chap. 7. 

Setting the partial derivative to zero, that is, XT (y − Xa) = 0., we obtain 

. XT Xa = XT y.

If the inverse of XT X. exists, then multiplying the inverse from the left side of both 

sides of the above equation gives 

.a = (XT X)−1XT y. (8.17) 

Equation (8.17) is called the normal equation. Applying the normal equation is the 

method to solve for a. analytically.
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Example 8.4 Let us illustrate the partial differentiation result by returning to 

our Example . We have already shown that8.3 

. Q = (y − Xa)T (y − Xa) = (y1 − (a0 + a1x11))
2 + (y2 − (a0 + a1x21))

2,

which is a scalar. We can use the formula for gradient shown in Sect. of 

Chap. So, 6. 

6.1.4 

. 
∂Q

∂a
=

[

∂Q
∂a0
∂Q
∂a1

]

=

[

−2(y1 − (a0 + a1x11)) − 2(y2 − (a0 + a1x21))

−2(y1 − (a0 + a1x11))x11 − 2(y2 − (a0 + a1x21))x21

]

.

This has again used the chain rule to substitute for the squared bits in brackets. 

If we now substitute X., a., and y. into Eq. ( ) for computing 8.16 ∂Q
∂a

., we can see 

that 

. − 2XT (y − Xa) = −2

[

1 1

x11 x21

] [

y1 − (a0 + a1x11)

y2 − (a0 + a1x21)

]

.

Multiplying out the matrices, we get 

. 

[

−2(y1 − (a0 + a1x11)) − 2(y2 − (a0 + a1x21))

−2(y1 − (a0 + a1x11))x11 − 2(y2 − (a0 + a1x21))x21

]

,

which is the result we got for ∂Q
∂a

. before as required. 

Before we look at the real way to find these solutions using a gradient descent 

algorithm and a computer program, let us look at a couple of simple examples that 

can be done by hand to illustrate this result. We will start by re-doing Example 8.2. 

Example 8.5 Example revisited 

Remember, this example had

8.2 

N = 3. and was for d = 1. since we just had one 

independent variable. The points were (1, 2)., (2, 4)., and (3, 3).. 

We are going to use the new formula for finding a., namely, 

. a = (XT X)−1XT y.

(continued)
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Example 8.5 (continued) 

Solution First, X =

⎡

⎣

1 1

1 2

1 3

⎤

⎦. and y =

⎡

⎣

2

4

3

⎤

⎦., and we wish to find a =

[

a0

a1

]

.. 

So, XT X =

[

1 1 1

1 2 3

]

⎡

⎣

1 1

1 2

1 3

⎤

⎦ =

[

3 6

6 14

]

. and (XT X)−1 = 1
6

[

14 −6

−6 3

]

.. 

Also XT y =

[

1 1 1

1 2 3

]

⎡

⎣

2

4

3

⎤

⎦ =

[

9

19

]

.. 

So, a =

[

a0

a1

]

= 1
6

[

14 −6

−6 3

] [

9

19

]

=

[

2
1
2

]

.. 

Hence, a0 = 2. and a1 = 1
2
. as before. 

Example 8.6 We will now do a d = 2. example, which is an example with 

two independent variables, x1 . and x2 ., and one dependent variable y. We will 

do one with N = 3.. The points are listed in Table . Apply Eq. ( ) to find 8.178.1

a.. 

Solution First, X =

⎡

⎣

1 1 2

1 2 1

1 2 2

⎤

⎦. and y =

⎡

⎣

1

2

−2

⎤

⎦., and we wish to find a =

⎡

⎣

a0

a1

a2

⎤

⎦.. 

So, 

. XT X =

⎡

⎣

1 1 1

1 2 2

2 1 2

⎤

⎦

⎡

⎣

1 1 2

1 2 1

1 2 2

⎤

⎦ =

⎡

⎣

3 5 5

5 9 8

5 8 9

⎤

⎦ ,

and 

. (XT X)−1 =

⎡

⎣

17 −5 −5

−5 2 1

−5 1 2

⎤

⎦ .

(You can check that last part by showing that XT X(XT X)−1 = I..) 

(continued)
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Example 8.6 (continued) 

Also XT y =

⎡

⎣

1 1 1

1 2 2

2 1 2

⎤

⎦

⎡

⎣

1

2

−2

⎤

⎦ =

⎡

⎣

1

1

0

⎤

⎦.. 

So, a =

⎡

⎣

a0

a1

a2

⎤

⎦ =

⎡

⎣

17 −5 −5

−5 2 1

−5 1 2

⎤

⎦

⎡

⎣

1

1

0

⎤

⎦ =

⎡

⎣

12

−3

−4

⎤

⎦.. 

Hence, a0 = 12., a1 = −3., and a2 = −4.. 

Exercise 

8.2 These are the same as the last two examples in Exercise 8.1. You should 

now calculate the answer using the new method of this section and check you 

get the same answer: 

(1) d = 1., N = 3.. Points (1, 4)., (2, 2)., and (3, 1.5).. 

(2) d = 1., N = 3.. Points (1, 1)., (3, 4)., and (5, 4).. 

8.4 Numerical Computation: Case Study 1 from 

Chap. 1—Continued 

The normal equation provides a nice way to find the parameters of linear regression 

models. Recall XT X. is a (d + 1) × (d + 1).matrix. When d is large, computing the 

inverse ofXT X.can be very slow. IfXT X. is non-invertible, we cannot use the normal 

equation. Alternatively, we can apply the gradient descent algorithm described in 

Sect. 6.2.3 of Chap. 6 to obtain estimates. 

Table 8.1 Three data points 

with two independent 

variables, x1 . and x2 ., and one 

dependent variable, y 

x1 . x2 . y 

1 2 1 

2 1 2 

2 2 -2
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Table 8.2 The original data and the scaled data 

MW: raw_X . Enhancement ratio: y scaledX = raw_X−min
max−min

. 

295 10 0 

305 30 1 

300 20 0.5 

Table 8.3 The initial values 

a0 . a1 . scaledX . y ypred = a0 + a1 × scaledX. error = 1
2
(y − ypred)2 . 

5 1 0 10 5 12.5 

1 30 6 288 

0.5 20 5.5 105.125 

Total error: 405.625. 

In Sect. 1.3.1 of Chap. 1,  we  ha  ve

. raw_X =

⎡

⎣

295

305

300

⎤

⎦ and y =

⎡

⎣

10

30

20

⎤

⎦ .

We will use this example, where d = 1. and N = 3., to show how the gradient 

descent algorithm can be used to estimate a0 . and a1 . of the linear regression model. 

We keep four decimal places when it is not divisible. 

• Step 1: Data normalisation/scaling. We scale raw_X . using raw_X−min
max−min

., where 

min and max denote the minimum and maximum values of raw_X .. We keep 

the values of the target variable y unchanged. Note that there are many different 

normalisation methods. In this example, we simply rescale data between 0 and 1 

(Table 8.2). 

• Step 2: To fit a line ypred = a0 + a1 × scaledX., we initialise random values for 

a0 . and a1 . and calculate the error given by
1
2
(y − ypred)2 . for each data point. 

This error is the same as Q given in Eq. (8.15) when d = 1.. For example, we 

start with the random initial values of a0 = 5. and a1 = 1. (Table 8.3). 

• Step 3: Calculate the partial derivative with respect to a1 . and a0 ., respectively. 

The error for each data point is given by 

. error =
1

2
(y − ypred)2 =

1

2
(y − (a0 + a1 × scaledX))2.

From Eqs. (8.6) and (8.7), we have the following: 

.
∂error

∂a1
= −(y − (a0 + a1 × scaledX)) × scaledX = −(y − ypred) × scaledX,
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Table 8.4 Results of the 

partial derivative with respect 

to a1 . and a0 . 

a0 . a1 . scaledX . y ypred . error ∂error
∂a0

.
∂error

∂a1
. 

5 1 0 10 5 12.5 −.5 0 

1 30 6 288 −.24 −.24 

0.5 20 5.5 105.125 −.14.5 −.7.25 

Total: 405.625. −.43.5 −.31.25 

Table 8.5 Results after the first iteration 

a0 . a1 . scaledX . y ypred . error ∂error
∂a0

.
∂error

∂a1
. 

5.435 1.3125 0 10 5.435 10.4196 −.4.565 0 

1 30 6.7475 270.3394 −.23.2525 −.23.2525 

0.5 20 6.0913 96.7267 −.13.9088 −.6.9544 

Total: 377.486. −.41.7263 −.30.2069 

and 

. 
∂error

∂a0
= −(y − (a0 + a1 × scaledX)) = −(y − ypred).

Results are shown in the last two columns of Table 8.4. 

• Step 4: Set the learning rate, for example, ǫ = 0.01.. Update the estimates by 

applying Eq. (6.7) in Chap. 6 with the corresponding total partial derivatives as 

follows: 

. anew
0 = 5 − 0.01 × (−43.5) = 5.435,

and 

. anew
1 = 1 − 0.01 × (−31.25) = 1.3125.

• Step 5: Use the updated value for a0 . and a1 . for computing predictions. Then, 

calculate new total errors and total partial derivatives. 

We can see that the total error has decreased from 405.625. in Table 8.4 to 

377.485. in Table 8.5 after the first iteration using the gradient descent algorithm. 

As we know, the gradient descent algorithm is an iterative procedure. We have 

shown the first iteration in this example. In practice, more iterations are needed 

so that the total errors can be minimised and converge to a value as small as 

possible. 

Of course, this example is here to illustrate how the gradient descent algorithm 

works. But because it is a really simple example with d = 1. and N = 3., we can 

find a0 . and a1 . directly using Eqs. (8.13) and (8.12)  on  scaledX and y to get a0 = 10. 

and a1 = 20.. The gradient descent values can be seen to be heading in the right 

direction!
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Remark 8.2 Data normalisation is an important step in data pre-processing. In 

this example, we have scaled original molecular weights using the minimum and 

maximum values among the available molecular weight values. We have not scaled 

y, the target values. If we scale the target values, the estimated values from the 

fitted regression line need to be transformed back to the original target value space. 

For example, if the scaling is done simply by removing the mean value of targets, 

then the mean value must be added to the estimated value to obtain the final 

prediction. �. 

Exercise 

8.3 Do the first iteration of the gradient descent algorithm for the following 

example: 

• d = 1., N = 3.. Points (1, 1)., (3, 4)., and (5, 4).. Start with estimates for a0 . 

and a1 . using a0 = 1. and a1 = 1.. Suppose the learning rate is 0.01.. 

Since the numbers are small, do not bother to scale the values of x (it makes 

the calculation easier too). Note that it is the same example as the last exercise 

in Exercise 8.2—so you know the real answer! 

8.5 Some Useful Results 

These are properties and formulae that apply once you have found the “regression 

line” of best fit and indicate how good your results are. 

8.5.1 Residuals 

A residual is defined as ei = yi − ỹi ., where ỹi . is the estimate of the ith of the N 

points. We have the following useful properties:

• The sum of the residuals is zero. 

• The sum of observed target values equals the sum of the estimated values. 

If the regression line is found by calculation, then these properties are correct. We 

may not find the exact solution for iterative procedures, but one that is close enough 

that these two properties are very close to being correct. They give an indication of 

how close you have come to the exact solution.
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Example 8.7 Example revisited. 

Here, we just had two points and found the unique answer, giving a line that 

goes through both points. So, the residuals are both zero, and the observed 

target and the estimated values are the same. Thus, both properties are correct. 

8.1 

Example 8.8 Example revisited. 

Here, we had three points,

8.2 

(1, 2)., (2, 4)., and (3, 3)., and found that a0 = 1
2
. and 

a1 = 2.. 

The estimated points on the line y = 2 + 1
2
x . are the following: 

For x = 1., ỹ1 = 5
2
.;  for x = 2., ỹ2 = 3.; and for x = 3., ỹ3 = 7

2
.. 

The sum of the residuals is therefore (2 − 5
2
) + (4 − 3) + (3 − 7

2
) = 0.. 

The sum of targets is 2+4+3 = 9., and the sum of estimates is 5
2
+3+ 7

2
= 9. 

as required. 

8.5.2 The Coefficient of Determination 

The coefficient of determination, denoted as R2
., is defined as follows: 

. R2 = 1 −

∑N
i (yi − ỹi)

2

∑N
i (yi − ȳ)2

,

where ỹi . is the estimate of the ith of the N points and ȳ . is the mean value of the 

dependent variable. 

The closer the value of R2
. is to 1, the better the fit. We have ignored the 

proof; however, the coefficient of determination can be interpreted as the square of 

Pearson’s correlation coefficient (see Sect. 4.2.1 in Chap. 4) between the observed 

target values yi . and the estimated values ỹi .. 

Example 8.9 Let us do Examples and again. 

For Example :  all  of8.1

8.2 8.1 

yi = ỹ .,  so R2 = 1.. 

For Example :8.2 ȳ = 3. and 

.R2 = 1 −
(− 1

2
)2 + (1)2 + (− 1

2
)2

(1)2 + (1)2 + 0
=

1

4
.
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Exercise 

8.4 These data points are the same as Exercise 8.2. In each case, find 

(a) the sum of the residuals, (b) the sum of the targets, (c) the sum of the 

estimates, and (d) R2
.: 

(1) d = 1., N = 3.. Points (1, 4)., (2, 2)., and (3, 1.5).. 

(2) d = 1., N = 3.. Points (1, 1)., (3, 4)., and (5, 4)..



Chapter 9 

Algorithms 3: Neural Networks 

This is the third of three chapters that aim to show how we can apply the knowledge 

introduced in previous chapters to formulate three widely used algorithms in 

the Data Science field. This chapter considers neural networks. Neural networks 

are a huge topic, and there are many textbooks dedicated to describing all the 

different types and giving the details of how they work. There are unsupervised 

and supervised neural networks dedicated to different tasks. We are only going to 

consider one type of supervised neural network: the single-layered and multilayered 

perceptrons trained using back-propagation of errors. Knowledge of this type of 

network is a good entry point to lots of other networks. This chapter introduces the 

basic idea of input data being passed through the network in a forward direction 

and the error being propagated backwards through the network with the network 

weights being updated using a gradient descent algorithm of the type described in 

Sect. 6.2.3 of Chap. 6. 

9.1 Training a Neural Network by Gradient Descent 

We are leading up to describing the training of a two-layer neural network (NN) 

using a gradient descent algorithm. This algorithm uses the gradient of the error 

between the outputs of the neural network and the desired target values. It then 

adjusts the weights in a neural network by considering the error relative to each 

weight by looking backwards through the neural network in a method known 

as back-propagation. This is Case Study 3 in Chap. 1. We will do this by first 

illustrating the principles on a simple one-layer network. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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9.2 A Simple One-Layer Neural Network 

This section explains the training principle behind artificial neural networks using a 

simple example of a one-layer neural network with just two inputs and two outputs. 

It is a very limited network but will illustrate how the inputs are fed forwards and 

the errors fed backwards. 

Figure 9.1 shows the architecture of the one-layer neural network used in this 

example, where we consider only one input (training) example x., which has two 

attributes or features x1 . and x2 .. Squares in Fig. 9.1 represent the two input features, 

forming the neural network’s input layer. Suppose each input example has two 

targets, denoted as t1 . and t2 .. y1 . and y2 . are the outputs or predictions of the neural 

network for the given x.. We follow the notations used in [5] for weights. That is, we 

denote each weight as wj i ., where j is the j th output unit and i is the ith node of the 

input layer. For example, w21 . denotes the weight going from the first input feature 

x1 . to output unit 2 in the output layer. The training of this neural network aims to 

adjust weight values to reduce the error, that is, the difference between the targets 

and predictions. 

In general, the input values are fed to the output nodes as a weighted sum formed 

as a dot product of the input vector x. and the weight vector w., that is, x·w.. Expressed 

in full for our two-node example, we get 

. a1 = w11x1 + w12x2,

and 

. a2 = w21x1 + w22x2.

The output node can transform this to give an output by using an activation function, 

denoted as g, which for these two units can be written as follows: 

. y1 = g(a1),

and 

. y2 = g(a2).

Fig. 9.1 A simple one-layer 

neural network
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We are going to consider a linear activation function and then a logistic sigmoid 

activation function for g. 

Remark 9.1 We can represent the complete operation of finding the inputs to the 

first layer of the simple neural network by using the multiplication operation of an 

input vector and a matrix of weights. 

Let w1 =

[

w11

w12

]

., w2 =

[

w21

w22

]

., and W =

[

wT
1

wT
2

]

.. Then, we have 

. 

[

a1

a2

]

=

[

wT
1

wT
2

] [

x1

x2

]

.

�. 

9.2.1 Linear Activation Function 

Figure 9.2 illustrates a linear activation function with y = g(x) = x .. Note that this 

activation function is differentiable and g′(x) = 1.. 

Applying this linear activation function to our simple one-layer neural network 

example, we have y1 = g(a1) = a1 . and y2 = g(a2) = a2 .. With targets t1 . and t2 .,  we  

get the error (E)  a  s

.E =
1

2

2
∑

j=1

(tj − yj )
2 =

1

2

2
∑

j=1

(tj − aj )
2 =

1

2

2
∑

j=1

(

tj −

( 2
∑

i=1

wj ixi

))2

. (9.1) 

This error is associated with just one training example, the simplest training method 

to explain. So, we are going to update the weights for each input training example. 

Fig. 9.2 Linear activation 

function
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More will be said about this in Sect. 9.5.2. Expanding the equation for E out, we 

hav e

. E =
1

2

((

t1 − (w11x1 + w12x2)

)2

+

(

t2 − (w21x1 + w22x2)

)2)

.

We will update the weights by back-propagation of the error. The basic idea is to 

apply the gradient descent algorithm (see Sect. 6.2.3 of Chap. 6). That is, 

.wj i ← wj i − ǫ
∂E

∂wj i

. (9.2) 

So, we need to differentiate Eq. (9.1). Looking at the formula for E, we can see 

it contains two terms, so E = 1
2
(E1 + E2).. Each term needs the use of the 

differentiation of composite functions. Looking at the first term, we have E1 = u2 ., 

where u = t1 − (w11x1 + w12x2).. Let us differentiate with respect to w11 .: 

. 
∂E1

∂w11
=

∂E1

∂u

∂u

∂w11
= 2u(−x1) = −2(t1 − (w11x1 + w12x2))x1 = −2(t1 − y1)x1.

When we work out ∂E2
∂w11

., we get 0 since E2 . has no w11 . in it, and all other variables 

are treated as constants when differentiating with respect to w11 .. 

So, adding the two results together and dividing by two, we get 

. 
∂E

∂w11
= −(t1 − y1)x1.

Repeating this for the other weights, we get 

. 
∂E

∂w12
= −(t1 − y1)x2,

. 
∂E

∂w21
= −(t2 − y2)x1,

and 

. 
∂E

∂w22
= −(t2 − y2)x2.

Or in general: 

.
∂E

∂wj i

= −(tj − yj )xi . (9.3)
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Armed with this result, we can then update the weights using Eq. (9.2)  as  the  

following Example illustrates.

Example 9.1 We will show how the gradient descent algorithm updates 

weights for a really simple example and just one iteration. Assume the initial 

input vector is x1 = x2 = 1., and the target vector is t1 = 0.5. and t2 = 0.. 

Also assume that w11 = w12 = 0.5., w21 = w22 = 0.25., and finally ǫ = 0.1.. 

Then, 

. y1 = a1 = w11x1 + w12x2 = 1,

and 

. y2 = a2 = w21x1 + w22x2 = 0.5.

So, 

. E =
1

2
((t1 − y1)

2 + (t2 − y2)
2) =

1

4
= 0.25.

Also, 

. 
∂E

∂w11
= −(t1 − y1)x1 = 0.5,

. 
∂E

∂w12
= −(t1 − y1)x2 = 0.5,

. 
∂E

∂w21
= −(t2 − y2)x1 = 0.5,

and 

. 
∂E

∂w22
= −(t2 − y2)x2 = 0.5.

Using Eq. ( ), we get the new values for the weights as 9.2

. w11 = 0.5 − (0.1)(0.5) = 0.45,

. w12 = 0.5 − (0.1)(0.5) = 0.45,

. w21 = 0.25 − (0.1)(0.5) = 0.2,

(continued)
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Example 9.1 (continued) 

and 

. w22 = 0.25 − (0.1)(0.5) = 0.2.

So after one iteration, the weights have changed. The new y1 = 0.9. and 

the new y2 = 0.4.. The new error is 

. E =
1

2
((0.5 − 0.9)2 + (0 − 0.4)2) = 0.16.

Hence, the error was reduced after one iteration. 

Remark 9.2 Of course, realistically, applying the gradient descent algorithm 

requires many iterations to reduce the error to zero and would be done using 

an appropriate computer program. 

�. 

Exercise 

9.1 Here is one for you to try. You will probably need a calculator! Do one 

iteration for this one-layer neural network with a linear activation function. 

The initial input vector is x1 = 1. and x2 = 0.; the target is t1 = 0.25. and 

t2 = 0.5.. 

Initially, w11 = w12 = 0.5., w21 = w22 = 0.25. and finally ǫ = 0.1.. 

9.2.2 Logistic Sigmoid Activation Function 

Figure 9.3 illustrates a logistic sigmoid activation function with y = g(x) = σ(x) =
1

1+e−x .. Note that this activation function is differentiable. 

Applying the sigmoid activation function to our simple one-layer neural network 

example, we have y1 = g(a1). and y2 = g(a2)., where g(aj ) = σ(aj ) = 1

1+e
−aj

. and 

j = 1, 2.. With targets t1 . and t2 ., we get the error as 

. E =
1

2

2
∑

j=1

(tj − yj )
2 =

1

2

2
∑

j=1

(tj − g(aj ))
2 =

1

2

2
∑

j=1

(

tj − g

( 2
∑

i=1

wj ixi

))2

.

(9.4)
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Fig. 9.3 Logistic sigmoid 

activation function 

Again, we are updating the weights for each input training example. Expanding the 

equation for E out, we hav e

. E =
1

2

((

t1 − g(w11x1 + w12x2)

)2

+

(

t2 − g(w21x1 + w22x2)

)2)

.

We need to differentiate Eq. (9.4) to update the weights using Eq. (9.2). The only 

difference between Eqs. (9.4) and (9.1) is the addition of the function g(aj ).. So, 

when we come to differentiate E after dealing with the square term using u,  as  

before, we need to find
dg
daj

= g′(aj ). before we can get inside the composite 

function g and differentiate the expression for aj . in terms of weights and input 

values. 

Hence, if we consider E = 1
2
(E1 + E2)., then in terms of composite functions, 

we have E1 = u2 ., where u = t1 − g(a1). and a1 = w11x1 + w12x2 .. 

Now to differentiate with respect to w12 ., we can use 

. 
∂E1

∂w12
=

∂E1

∂u

∂u

∂a1

∂a1

∂w12
,

where ∂u
∂a1

= −
∂g(a1)
∂a1

= −g′(a1).. Again differentiating E2 . gives 0 since E2 . does 

not contain w12 .. So, 

. 
∂E

∂w12
= u(−g′(a1))x2 = −(t1−g(w11x1+w12x2))g

′(a1)x2 = −(t1−y1)g
′(a1)x2.

In general, we get the following: 

.

∂E

∂wj i

= u(−g′(aj ))xi

= −(tj − g(wj1x1 + wj2x2))g
′(aj )xi

= −(tj − yj )g
′(aj )xi .

(9.5)
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Luckily, we already have found the derivative of the sigmoid function from 

Example 5.13 of Sect. 5.2.2 of Chap. 5, and we know that g′(x) = σ(x)(1− σ(x)).. 

So, g′(aj ) = σ(aj )(1 − σ(aj )).. In particular, we have 

. g′(a1) = σ(a1)(1 − σ(a1)),

and 

. g′(a2) = σ(a2)(1 − σ(a2)).

So finally, 

. 
∂E

∂w12
= −(t1 − y1)g

′(a1)x2 = −(t1 − y1)σ (a1)(1 − σ(a1))x2,

and in general, 

. 
∂E

∂wj i

= −(tj − yj )g
′(aj )xi = −(tj − yj )σ (aj )(1 − σ(aj ))xi .

If we collect all the parts relating to j together and define

.δj = (tj − yj )σ (aj )(1 − σ(aj )), (9.6) 

then we can express the final result as 

.
∂E

∂wj i

= −δjxi . (9.7) 

Readers will see why it is useful to define δj . in this way in Sect. 9.4. 

Remark 9.3 After defining Eq. (9.5), we have put in the logistic sigmoid for g(x).. 

However, other functions can be used to give different algorithms. The hyperbolic 

tangent activation function could be slotted in where now g(x) = ex−e−x

ex+e−x ..  In  fact,  if  

we put in g(x) = x ., that is, the linear activation function, then since g′(x) = 1.,  we  

get all the same results as in the previous section on the linear activation function, 

namely, Eq. (9.3). 

�.
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Example 9.2 To illustrate the logistic sigmoid activation function, g(x) =

σ(x) = 1
1+e−x ., we will do one iteration as we did in Example .  In  fact,  if  

we take the same start values and targets as Example ,  we  ha  ve9.1

9.1

x1 = x2 = 1., t1 = 0.5., and t2 = 0.. 

w11 = w12 = 0.5., w21 = w22 = 0.25., and ǫ = 0.1.. 

We keep three decimal places in the following calculation. 

First, since 

. a1 = w11x1 + w12x2 = 1,

and 

. a2 = w21x1 + w22x2 = 0.5,

we have 

. y1 = σ(1) = 0.731,

and 

. y2 = σ(0.5) = 0.622.

So, 

. E =
1

2
((t1 − y1)

2 + (t2 − y2)
2) = 0.220,

Then, using Eq. ( ), 9.6

. δ1 = (t1 − y1)σ (a1)(1 − σ(a1)) = (−0.231) × 0.731 × 0.269 = −0.045,

and 

. δ2 = (t2 − y2)σ (a2)(1 − σ(a2)) = (−0.622) × 0.622 × 0.378 = −0.146.

Also, using Eq. ( ), 9.7

. 
∂E

∂w11
= −δ1x1 = 0.045 × 1 = 0.045,

. 
∂E

∂w12
= −δ1x2 = 0.045 × 1 = 0.045,

(continued)
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Example 9.2 (continued) 

. 
∂E

∂w21
= −δ2x1 = 0.146 × 1 = 0.146,

and 

. 
∂E

∂w22
= −δ2x2 = 0.146 × 1 = 0.146.

Finally, we update the weights using Eq. ( ) to obtain 9.2

. w11 = 0.5 − (0.1 × 0.045) = 0.496,

. w12 = 0.5 − (0.1 × 0.045) = 0.496,

. w21 = 0.25 − (0.1 × 0.146) = 0.235,

and 

. w22 = 0.25 − (0.1 × 0.146) = 0.235.

So after one iteration, we have new weights and will get a new value for an 

error of E = 0.215.. 

Exercise 

9.2 Here is a harder one for you to try. You will definitely need a calculator! 

Do one iteration for this one-layer neural network with a logistic sigmoid 

activation function: 

The initial input vector is x1 = 1. and x2 = 0.; the target is t1 = 0.25. and 

t2 = 0.5.. 

Initially, w11 = w12 = 0.5. and w21 = w22 = 0.25.. Finally, ǫ = 0.1.. 

These are the same values as in Exercise 9.1, but now you have the 

complication of a logistic sigmoid activation function.
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9.3 A Simple Two-Layer Neural Network: Case Study 3 from 

Chap. 1 

We have now set the scene for dealing with Case Study 3 from Chap. 1,  a  simple  

example of a two-layer neural network with two hidden units only in each layer. This 

is a simple two-layer neural network but represents the classic back-propagation 

model. The mathematics behind the two-layer neural network follows the same 

pattern as the one-layer neural network. However, it is complicated by having two 

layers and needing to back-propagate the error to the first-level weights to update

them.

Figure 9.4 shows the architecture of a two-layer neural network used in this 

example, where we consider one input (training) example x., which has two attributes 

or features x1 . and x2 . only. This figure is identical to Fig. 1.9 in Chap. 1.  For  the  

reader’s convenience, it is repeated here. Notations in Fig. 9.4 are the same as those 

in Fig. 9.1. The two layers mean there are two layers of adaptive weights. The nodes 

in between two weight layers are called hidden units. We follow notations used 

in [5] for weights, where now we have to distinguish between weights in the two 

layers. That is, we denote each weight as w
(l)
j i ., where (l). denotes the lth layer, j the 

j th hidden unit in the corresponding layer or the j th output, and i the ith node of 

the immediate layer to the left. For example, w
(1)
21 . denotes the weight going from 

the first input feature, x1 ., to hidden unit 2 in the first layer; and w
(2)
12 . denotes the 

weight going from the second hidden unit to the output unit 1 in the second layer. 

z
(1)
j .denotes the output of the j th node in the hidden layer. The training of this neural 

network again aims to adjust weight values to reduce the error, that is, the difference 

between the targets and predictions. 

9.3.1 The Feed-Forward Propagation 

Each input in the input layer is connected to hidden units via weights of the first 

layer. Each hidden unit is a linear combination of the input attributes that are 

Fig. 9.4 An illustration of the feed-forward of a simple two-layer neural network
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transformed by an activation function. The linear combinations of the two input 

attributes can be written as follows: 

. a
(1)
1 = w

(1)
11 x1 + w

(1)
12 x2,

and 

. a
(1)
2 = w

(1)
21 x1 + w

(1)
22 x2.

The transformations by a non-linear activation function, denoted as g1 ., for these two 

hidden units can be written as follows: 

. z
(1)
1 = g1(a

(1)
1 ),

and 

. z
(1)
2 = g1(a

(1)
2 ).

As can be seen, z
(1)
j . is the output of a composite function, where the output of a 

linear function, a
(1)
j ., is the input of a non-linear activation function g1(·).. Here, we 

use g1 . as the first activation function in case we want to use different activation 

functions in the different layers. 

Similarly, for nodes in the output layer, we have 

. a
(2)
1 = w

(2)
11 z

(1)
1 + w

(2)
12 z

(1)
2 ,

so 

. y1 = g2(a
(2)
1 ) = g2(w

(2)
11 z

(1)
1 + w

(2)
12 z

(1)
2 ),

and 

. a
(2)
2 = w

(2)
21 z

(1)
1 + w

(2)
22 z

(1)
2 ,

so 

.y2 = g2(a
(2)
2 ) = g2(w

(2)
21 z

(1)
1 + w

(2)
22 z

(1)
2 ).
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So, in general, the outputs can be written as 

.

yk = g2

( 2
∑

j=1

w
(2)
kj z

(1)
j

)

= g2

( 2
∑

j=1

w
(2)
kj g1

(

a
(1)
j

))

= g2

( 2
∑

j=1

w
(2)
kj g1

( 2
∑

i=1

w
(1)
j i xi

))

,

(9.8) 

where k is the index of the nodes in the second, output, layer, j is the index of the 

hidden unit of the first layer, and i is the index of the inputs.

In the feed-forward process, the input information is passed as a forward flow 

through the network. Note that the activation function used in different layers for 

different hidden units can be the same or different. 

9.3.2 The Error Back-Propagation 

The weights in any feed-forward network are updated by applying the back-

propagation algorithm. The basic idea is to apply the gradient descent algorithm 

(see Sect. 6.2.3 of Chap. 6). In general, this is written as 

. w(l)
nm ← w(l)

nm − ǫ
∂E

∂w
(l)
nm

,

where E denotes the error, that is, the difference between the target values and the 

neural network outputs, l is the index of the layer, and m and n represent the layers 

to the left and right, r espectively.

We update weights layer by layer in the direction from the output layer to the 

input layer, which is opposite to the feed-forward propagation. So, in particular, we 

use 

.w
(2)
kj ← w

(2)
kj − ǫ

∂E

∂w
(2)
kj

, (9.9) 

to update the weights from the hidden layer to the output layer. And we use 

.w
(1)
j i ← w

(1)
j i − ǫ

∂E

∂w
(1)
j i

, (9.10) 

to update the weights from the input to the hidden layer.
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9.3.2.1 Updating Weights of the Second Layer 

Considering Fig. 9.4, let us again suppose the error measure is given again by 1
2
((t1−

y1)
2+(t2−y2)

2).. We update the weights of the second layer, that is, for the weights 

connecting the hidden nodes to the outputs first. 

We compute the error as follows: 

.

E =
1

2

2
∑

k=1

(tk − yk)
2 =

1

2

2
∑

k=1

(

tk − g2(a
(2)
k )

)2

=
1

2

2
∑

k=1

(

tk − g2

( 2
∑

j=1

w
(2)
kj z

(1)
j

))2

,

(9.11) 

where k in the first summation indicates the index of targets and j in the last 

summation is the index of hidden units. Again, we will update the weights after 

each input training example.

If you look at Eq. (9.11) and compare it to Eq. (9.4) used in Sect. 9.2.2, you will 

see that they are virtually identical. The differences are the naming of indices in the 

summations, having superscripts that represent the layer, having g2 . instead of g, and 

having a z
(1)
j . here instead of the xi . previously. Then, when we compute the partial 

derivative of E with respect to the second-layer weights using the chain rule, we get 

a result virtually identical to Eq. (9.5) in Sect. 9.2.2. That is, we get 

.
∂E

∂w
(2)
kj

= −(tk − yk)g
′
2(a

(2)
k )z

(1)
j . (9.12) 

Note that the sum sign has disappeared in Eq. (9.12), as before, because we are 

specifying particular values for k and j when calculating the partial derivative. In 

this case, we treat other weights and other hidden layer units as constants when 

differentiating with respect to w
(2)
kj .. For instance, if k = 1. and j = 2., we get 

. 
∂E

∂w
(2)
12

= −(t1 − y1)g
′
2(a

(2)
1 )z

(1)
2 .

The above equation containing just z
(1)
2 . is because there is only one occurrence of 

the particular weight, w
(2)
12 .,  in  Eq  . (9.11) and that is multiplied by z

(1)
2 .. This result is 

again similar to the result we obtained in Sect. 9.2.2. 

We can now collect all the terms containing k together in Eq. (9.12) and define 

.δ
(2)
k = (tk − yk)g

′
2(a

(2)
k ), (9.13)
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and then Eq. (9.12) can be rewritten as follows: 

.
∂E

∂w
(2)
kj

= −δ
(2)
k z

(1)
j . (9.14) 

Readers will see why it is useful to define δ
(l)
k . in Sect. 9.4. 

Suppose the output units have linear activation functions, that is, g2(a) = a ., then 

the derivative of these activation functions is 1. This gives us δ
(2)
k = tk − yk . and 

∂E

∂w
(2)
kj

= −(tk − yk)z
(1)
j .. 

Therefore, we can use Eq. (9.9) and update w
(2)
11 . as follows: 

. w
(2)
11 ← w

(2)
11 + ǫ(t1 − y1)z

(1)
1 .

Similarly, we have 

. w
(2)
12 ← w

(2)
12 + ǫ(t1 − y1)z

(1)
2 ,

. w
(2)
21 ← w

(2)
21 + ǫ(t2 − y2)z

(1)
1 ,

and 

. w
(2)
22 ← w

(2)
22 + ǫ(t2 − y2)z

(1)
2 .

This completes the updating of the weights in the second layer. 

9.3.2.2 Updating Weights of the First Layer 

Now let us consider updating the weights of the first layer, that is, the weights 

connecting the inputs to the hidden units. To do it, we rewrite Eq. (9.11) by first 

replacing z
(1)
j . with g1(a

(1)
j ). and then replacing each a

(1)
j . with its summation of 

products of first layer weights and the input values xi . as follows: 

.

E =
1

2

2
∑

k=1

(

tk − g2

( 2
∑

j=1

w
(2)
kj g1(a

(1)
j )

))2

=
1

2

2
∑

k=1

(

tk − g2

( 2
∑

j=1

w
(2)
kj g1

( 2
∑

i=1

w
(1)
j i xi

)))2

.

(9.15)



242 9 Algorithms 3: Neural Networks

Updating weights of the first layer is to updatew
(1)
j i . shown in Eq. (9.15). To compute 

the partial derivative of E with respect to w
(1)
j i ., we apply the chain rule through 

several composite functions until we get deep inside the functions to the actual 

weight we are differentiating with respect to, for example, w
(1)
21 .. We obtain the 

following: 

.

∂E

∂w
(1)
j i

= −

2
∑

k=1

(tk − yk)g
′
2(a

(2)
k )w

(2)
kj g′

1(a
(1)
j )xi

= −

2
∑

k=1

δ
(2)
k w

(2)
kj g′

1(a
(1)
j )xi .

(9.16) 

Here, we have used the value of δ
(2)
k . previously given in Eq. (9.13). Note that the 

sum signs over j and i have disappeared since we are specifying particular values 

for them when computing the partial derivatives, as before, and all other weights 

are treated as constants. There is, however, still a sum of two terms as shown by 

the summation over k. This is because each w
(1)
j i . appears twice in the error function 

E. We can see this by looking at Fig. 9.4 and considering, for instance, w
(1)
21 ..  This  

weight contributes part of the value of z
(1)
2 ..  But z

(1)
2 . is propagated to both the two 

output nodes and so contributes to both y1 . and y2 ., that is, to both yk .’s. Hence, we 

get w
(1)
21 . appearing twice in the final value of E, once for each value of k. 

If we collect all the parts of the expression for ∂E

∂w
(1)
j i

. in Eq. (9.16) that don’t 

contain i and define

.δ
(1)
j = g′

1(a
(1)
j )

2
∑

k=1

w
(2)
kj δ

(2)
k , (9.17) 

as we did before when defining δ
(2)
k .,  then  Eq  . (9.16) can be simply rewritten as 

follows: 

.
∂E

∂w
(1)
j i

= −δ
(1)
j xi . (9.18) 

We compute δ
(1)
1 . and δ

(1)
2 . as follows: 

.δ
(1)
1 = g′

1(a
(1)
1 )(w

(2)
11 δ

(2)
1 + w

(2)
21 δ

(2)
2 ), (9.19) 

.δ
(1)
2 = g′

1(a
(1)
2 )(w

(2)
12 δ

(2)
1 + w

(2)
22 δ

(2)
2 ), (9.20)
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respectively. Using Eqs. (9.10) and (9.18), noting that we are subtracting the 

negative differential, then we can update the first layer weights using 

.w
(1)
j i ← w

(1)
j i + ǫδ

(1)
j xi . (9.21) 

As an example, suppose the activation function g1 . of hidden units is the sigmoid 

activation function, and g2 . of output units is the linear function as before. We can 

then derive the update method for w
(1)
11 . by substituting 

. g′
1(a

(1)
1 ) = σ(a

(1)
1 )(1 − σ(a

(1)
1 )),

. δ
(2)
1 = t1 − y1,

and 

. δ
(2)
2 = t2 − y2

into δ
(1)
1 . giving the update for w

(1)
11 . as follows: 

. w
(1)
11 ← w

(1)
11 +ǫδ

(1)
1 x1 = w

(1)
11 +ǫσ (a

(1)
1 )(1−σ(a

(1)
1 ))(w

(2)
11 (t1−y1)+w

(2)
21 (t2−y2))x1.

The other weights are dealt with similarly. 

Example 9.3 Again, we will do one iteration of a very simple example. 

Assume the initial input vector is x1 = x2 = 1. and thatw
(1)
11 = w

(1)
12 = 0.5. and 

w
(1)
21 = w

(1)
22 = 0.25.. Also assume w

(2)
11 = w

(2)
12 = 0.25., w

(2)
21 = w

(2)
22 = 0.5., 

and the target is t1 = t2 = 0.5.. As in the text, we will have g1 . as a sigmoid 

function g1(x) = σ(x) = 1
1+e−x . and g2 . as a linear function g2(x) = x ..  We  

also use ǫ = 0.1. again. 

Feeding the input values forwards through the network, we have 

. a
(1)
1 = w

(1)
11 x1 + w

(1)
12 x2 = 1,

and 

. a
(1)
2 = w

(1)
21 x1 + w

(1)
22 x2 = 0.5.

So, 

. z
(1)
1 = σ(a

(1)
1 ) = 0.731,

(continued)
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Example 9.3 (continued) 

and 

. z
(1)
2 = σ(a

(1)
2 ) = 0.622.

Continuing through to the next layer, we get 

. a
(2)
1 = w

(2)
11 z

(1)
1 + w

(2)
12 z

(1)
2 = 0.338,

. y1 = a
(2)
1 = 0.338,

. a
(2)
2 = w

(2)
21 z

(1)
1 + w

(2)
22 z

(1)
2 = 0.677,

and 

. y2 = a
(2)
2 = 0.677.

This gives 

. E =
1

2

2
∑

k=1

(tk − yk)
2 = 0.0288.

Now to feed back on the error gradient, we update weights in the second 

layer first. We use Eq. ( ) to calculate the values of9.13 δ
(2)
k .. This is quite 

straightforward since the activation function here is linear, and so 

. g′
2(a

(2)
k ) = 1.

So, 

. δ
(2)
1 = t1 − y1 = 0.162,

and 

. δ
(2)
2 = t2 − y2 = −0.177.

Then, using Eqs. ( ) and ( ), we can calculate new values for the weights. 

Note that Eq. ( ) says we subtract the 9.9

9.99.14

ǫ . term, but ( ) says that the gradient 9.14

(continued)
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Example 9.3 (continued) 

is negative, so we end up adding the update term to the old weight: 

. w
(2)
11 = 0.25 + (0.1 × 0.162 × 0.731) = 0.262,

. w
(2)
12 = 0.25 + (0.1 × 0.162 × 0.622) = 0.260,

. w
(2)
21 = 0.5 + (0.1 × −0.177 × 0.731) = 0.487,

. w
(2)
22 = 0.5 + (0.1 × −0.177 × 0.622) = 0.489.

Now going back to the first layer, we have a sigmoid activation function. To 

calculate δ
(1)
j ., we need g′

1(a
(1)
j ).: 

. g′
1(a

(1)
1 ) = σ(a

(1)
1 )(1 − σ(a

(1)
1 )) = σ(1)(1 − σ(1)) = 0.197,

and 

. g′
1(a

(1)
2 ) = σ(a

(1)
2 )(1 − σ(a

(1)
2 )) = σ(0.5)(1 − σ(0.5)) = 0.235.

Hence, using Eqs. ( ) and ( ), we obtain 9.209.19

. δ
(1)
1 = (0.197)((0.25)(0.162) + (0.5)(−0.177)) = −0.00946,

and 

. δ
(1)
2 = (0.235)((0.25)(0.162) + (0.5)(−0.177)) = −0.0113.

Finally, if we take Eq. ( ), we can calculate new values for the weights: 9.21

. w
(1)
11 = 0.5 + (0.1 × −0.00946 × 1) = 0.499,

. w
(1)
12 = 0.5 + (0.1 × −0.00946 × 1) = 0.499,

. w
(1)
21 = 0.25 + (0.1 × −0.0113 × 1) = 0.249,

and 

. w
(1)
22 = 0.25 + (0.1 × −0.0113 × 1) = 0.249.

(continued)
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Example 9.3 (continued) 

So that has updated all the weights using back-propagation of errors. We will 

finally compute the new error. Now, we have 

. a
(1)
1 = 0.998 and a

(1)
2 = 0.498.

So, 

. z
(1)
1 = σ(a

(1)
1 ) = 0.731 and z

(1)
2 = σ(a

(1)
2 ) = 0.622.

Continuing through to the next layer, we get 

. a
(2)
1 = 0.353 and a

(2)
2 = 0.660.

So, 

. y1 = a
(2)
1 = 0.353 and y2 = a

(2)
2 = 0.660.

This gives 

. E =
1

2

2
∑

k=1

(tk − yk)
2 = 0.0236

Hence, after one iteration, y1 . is closer to t1 . and y2 . is closer to t2 ., and the error 

E has reduced.

Remark 9.4 This sort of calculation would definitely be done using an appropriate 

computer program. It is dreadfully boring to do by hand! It was only done here so 

that you can check the use of the methods. It should also be noted that ǫ . would 

normally be a smaller number than used in all these examples. 

�. 

Exercise 

9.3 Here is a two-layer neural network for you to try. This is easier than 

Example 9.3 since both layers use a linear activation function. This means that 

both g1(x) = x . and g2(x) = x .. Also, we have g′
1(a

(1)
j ) = 1. and g′

2(a
(2)
k ) = 1.. 

However, you will still definitely need a calculator! 

(continued)
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Do one iteration for this two-layer neural network with both layers having 

a linear activation function: 

The initial input vector is x1 = 1. and x2 = 0.; the target is t1 = 0.25. and 

t2 = 0.5.. 

Initially, w
(1)
11 = w

(1)
12 = 0.5. and w

(1)
21 = w

(1)
22 = 0.25..  Als  o w

(2)
11 = w

(2)
12 =

0.25., w
(2)
21 = w

(2)
22 = 0.5. and finally ǫ = 0.1.. 

This exercise, using linear activation functions, is partly relevant as you will 

see when you meet the rectified linear activation function in Sect. 9.6. 

9.4 The Delta Rule 

We may consider δ
(l)
k . as a quantity measuring the error passing through each node in 

different layers. Equation (9.17) says that the error of each node is a weighted linear 

combination of errors from the layer on the immediate right. That is, δ
(1)
j . is a linear 

sum of δ
(2)
k .. This is the principle of the back-propagation algorithm. In general, we 

have the Delta rule as follows: 

.δ
(l−1)
j = g′(a

(l−1)
j )

∑

k

w
(l)
kj δ

(l)
k , (9.22) 

where g′(a
(l−1)
j ). is the derivative of the relevant activation function. 

Figure 9.5 shows that the errors are propagated left from the output layer. That 

is, the weighted errors of tk −yk . are saved in δ
(2)
k . using Eq. (9.13), which are further 

propagated left to the hidden units and saved as δ
(1)
j . using Eq. (9.17). Therefore, 

the training of the neural network is iterative. In each iteration, weights are updated 

from right to left. Then, new errors are calculated using these updated weight values 

as the input is propagated from left to right. 

Fig. 9.5 An illustration of the back-propagation algorithm of a simple two-layer neural network
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9.5 Implementation Details 

9.5.1 Bias 

Usually, an extra node with a value of 1 is considered in both the input layer and 

the hidden layers. The weight connecting from this extra node is called the bias (or 

threshold), which is denoted as w0 .. We have not considered the bias in these simple 

examples. 

To illustrate its use, consider the input to the first unit in a network with an n unit 

input vector. This would now be

. w10 + x1w11 + x2w12 + · · · + xnw1n,

where w10 . is the bias, instead of 

. x1w11 + x2w12 + · · · + xnw1n.

without bias. So, the output of an activation function would now be 

. g(w10 + x1w11 + x2w12 + · · · + xnw1n),

instead of 

. g(x1w11 + x2w12 + · · · + xnw1n).

The net effect of the bias is to move the activation function sideways. As an 

illustration, let x = x1w11 + x2w12 + · · · + xnw1n . and w10 = 1. or w10 = −1., and 

also suppose g(x). is the logistic activation function. Figure 9.6 illustrates this in two  

dimensions and present the three corresponding function curves with bias w10 . equal 

to − 1., 0 and 1 . It shows that involving a constant (1 or − 1. in the figure) allows us 

to shift the function horizontally, left or right, along the x-axis. This means that with 

a bias, the most variable part of the curve (i.e., the part with the most slope) can be 

Fig. 9.6 An illustration of 

shifting a sigmoid function 

left or right along the x-axis
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anywhere on the x-axis rather than always at x = 0.. Also, with different biases on 

each unit, this allows each unit to exploit different parts of the activation function 

curve. 

9.5.2 Stochastic Gradient Descent and Batch 

9.5.2.1 Stochastic Gradient Descent 

The stochastic gradient descent (SGD) calculates the error between the target and 

the prediction for each training example and then updates the weights immediately. 

This is the method we have illustrated in our discussion and all the examples. If 

we have N training examples, usually the SGD method updates weights N times at

least.

9.5.2.2 Batch 

Here, each weight is updated only once after calculating errors over all the training 

examples. So, we need to sum all the errors before updating any of the weights. This 

requires storing the sum of the errors as each training example is used, but it runs 

more quickly. 

9.6 Deep Neural Networks 

We have only dealt with one- and two-layer networks, but deeper networks are 

more useful, and recently, much deeper neural networks have become extremely 

fashionable. Here, we briefly mention a couple of factors that have made such really 

deep networks possible. 

Improvements in computer technology, especially that of the graphics processing 

unit (GPU), mean that potentially deeper neural networks could be used without 

them taking forever to train, especially when they are used to analyse the vast 

amounts of data that are standard now. Deeper networks increase the ability of the 

network to learn more complicated relationships between inputs and outputs, so they 

have become increasingly more desirable. The use of such networks is often called 

deep learning. 

Secondly, a purely linear activation function effectively can only deal with linear 

relationships, so it is desirable to have a non-linear activation function. However, 

the common non-linear functions of the logistic sigmoid or the hyperbolic tangent 

saturate at larger input values. So, they do not discriminate well or train well in 

these regions. They are most adaptive in the middle where the curve is sloping since 

at either end, they are effectively flat, as can be seen at either end of the curves in
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Fig. 9.7 ReLU activation 

function 

Fig. 9.6. So, these non-linear functions have negligible gradient once you get a little 

way away from the centre, and this means they have a limited ability to discriminate 

at these points. Together with the fact that in a multilayer network, these small errors 

are back-propagated a long way means the network does not train well in lots of 

circumstances. This problem is known as the vanishing gradient problem. 

A different approach is needed, and recently the use of a relatively linear 

function, or piecewise linear function, has been tried and found to be exceptionally 

good at training and, as a bonus, is really quick to calculate. The main function used 

is illustrated in Fig. 9.7. It is in two linear parts; for x ≤ 0., it is zero; for x > 0., 

it is the linear function y = x .. It can be written as y = max{0, x}.. This function 

is non-linear since it acts differently with positive and negative values of x.  Also,  

using biases, as described in Sect. 9.5.1, means that different units can use different 

parts of the activation function. 

This relatively linear function, as shown in Fig. 9.7, is clearly not differentiable 

at x = 0., but, conveniently, it is continuous. 

So, if the gradient at the point x = 0. is defined to be zero, then this function has 

a gradient at all points and has been found to work extremely well despite its native 

non-differentiability. This function is called a rectified linear activation function, 

and a unit with it as its activation function is called a rectified linear activation unit 

(ReLU). This sort of unit has become increasingly prevalent recently. 

There are lots of other techniques that aid such deep neural networks to work 

effectively, especially in image processing, but these are outside the scope of this 

book.



Chapter 10 

Probability 

This chapter introduces the concept of probability, a way to deduce what is likely 

to happen when an experiment is performed. Probability is a value between zero 

and one. People also use other terms for probability: chance, percentage, likelihood, 

odds, or proportion. Usually, there are four ways to calculate the probability of an 

event, which are the following: 

• The classical approach. This is a mathematical approach using counting rules. It 

is used on random processes with certain assumptions.

• The relative frequency approach. This is based on collecting data and finding the 

percentage of time that an event (E) occurred on that data.

• The subjective approach.

• The logical approach. 

This book uses the first two approaches. 

This chapter and the following two chapters develop enhancements to the basic 

algorithms developed so far, especially that of Chap. 8 on simple linear regression. 

Chapter 13 will complete this task by introducing the method of maximum 

likelihood. 

The techniques in these three chapters also deal with statistical analysis and 

probabilistic measures of confidence associated with any scientific discipline that 

involves vast amounts of noisy real data. 
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10.1 Preliminary Knowledge: Combinatorial Analysis 

10.1.1 Factorial Notation 

The notation n!., read “n factorial”, denotes the product of the positive integers from 

1 to  n (without repetition), inclusiv e:

.n! = n × (n − 1) × · · · × 2 × 1. (10.1) 

Note that for completion, 1!. and 0!. are defined as 

. 1! = 1,

and 

. 0! = 1.

So, 

. n! = n × (n − 1)!.

10.1.2 Binomial Coefficients 

The symbol 
(

n
r

)

., read “en-see-are”, is defined by 

.

(

n

r

)

=
n!

r!(n − r)!
, (10.2) 

where r and n are positive integers with r ≤ n.. 

Since 

. 
n!

(n − r)!
=

n(n − 1) · · · (n − (r − 1))(n − r)(n − (r + 1)) · · · 3 · 2 · 1

(n − r)(n − (r + 1)) · · · 3 · 2 · 1

= n(n − 1) · · · (n − (r − 1)),

we have 

.
n!

r!(n − r)!
=

n(n − 1) · · · (n − (r − 1))

r(r − 1) · · · 3 · 2 · 1
.
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Table 10.1 Pascal’s Triangle n = 0. 1 

n = 1. 1 1 

n = 2. 1 2 1 

n = 3. 1 3 3 1 

n = 4. 1 4 6 4 1 

n = 5. 1 5 10 10 5 1 

The numbers
(

n
r

)

. are called the binomial coefficients since they appear as the 

coefficients in the expansion of (a + b)n .. That is, 

. (a + b)n =
n

∑

r=0

(

n

r

)

an−rbr .

Remark 10.1 Expanding (a + b)2
., we get 1a2 + 2ab + 1b2

., so the binomial 

coefficients are 1, 2, and 1. These are equal to 
(

2
0

)

., 
(

2
1

)

., and 
(

2
2

)

., respectively. 

Similarly, when expanding (a + b)3
., we get the binomial coefficients 1, 3, 3, and 

1, being 
(

3
0

)

., 
(

3
1

)

., 
(

3
2

)

., and 
(

3
3

)

., respectively. 

This pattern of binomial coefficients can be extended, and we get a structure 

known as Pascal’s triangle for the coefficients. This gives a quick way to calculate 

the coefficients. All rows start with the number 1. We can add each consecutive pair 

of elements of each row and write their sum in the gap between them, but on the line 

below, to get the elements in the next row. See Table 10.1 for a diagram of Pascal’s 

triangle. 

�. 

10.1.3 Permutation and Combination 

10.1.3.1 Permutations of n Items Without Repetitions

There are n ways of picking the first item; then there are n − 1. ways of picking 

the second item since we cannot have repetitions, and so on. Hence, there are n!. 
permutations of n objects. 

Example 10.1 There are 3! = 3 · 2 · 1 = 6. permutations of the three letters 

s, t . and u, namely, stu, sut, tsu, tus, ust ., and uts. 

In permutations, the order of the items matters. So, in Example 10.1 stu is 

different from sut , and so on. Think of a password or key to unlock a phone,
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the order of the letters or digits is significant, and each permutation is a different 

password or key. 

10.1.3.2 Permutations of k Items Out of n Wi thout Repetition

The number of permutations of n objects taken k at a time where the order matters 

is denoted as P(n, k). and is computed as 

. P(n, k) =
n!

(n − k)!
= n(n − 1) · · · (n − (k − 1)).

Example 10.2 There are five numbers, 3, 4, 5, 6, and 7. The number of two 

digit numbers we can form by taking any two numbers from these five is 

. P(5, 2) =
5!

(5 − 2)!
= 5 × (5 − 1) = 20,

which are 34, 35, 36, 37, 43, 45, 46, 47, 53, 54, 56, 57, 63, 64, 65, 67, 73, 74, 

75, and 76. 

Again, the order matters, so 34 is different from 43. Again, for a password, 

picking 8 out of 26 letters without repetition would give different passwords for each 

order. These are permutations. In this case, there are 26!
(26−8)! . different passwords: a 

large number. 

10.1.3.3 Combinations of k Items Out of n Wi thout Repetitions

The number of combinations of n objects taken k at a time is denoted as C(n, k). 

and is computed as 

.C(n, k) =
n!

k!(n − k)!
. (10.3) 

Here, the order does not count. Think of mixing colour lights—red and green give 

yellow, as do green and red. Combinations are just collections of items, and there are 

many more permutations than combinations since items in a different order would 

be a new permutation but not a new combination. Hence, when the order does not 

matter, or where the items are not picked in order, these are combinations. When 

doing an exercise, the first question to ask is whether changing the order gives
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a different answer. If the answer is yes, you want permutations; if no, then it is 

combinations. 

Remark 10.2 Looking at Eqs. (10.3) and (10.2), we can see that using binomial 

coefficients is another notation for combinations. Thus, 

. C(n, k) =
(

n

k

)

=
n!

k!(n − k)!
.

�. 

Example 10.3 Continue Example . Compute the number of combina-

tions of two numbers if we take any two from those five numbers. 

10.2

Solution The number of combinations is calculated as 

. C(5, 2) =
5!

2!(5 − 2)!
=

5 × 4! × 3!
2!3!

= 10.

When counting the combinations, the order does not matter. For example, 43 

and 34 are the same combinations. 

Example 10.4 Compute the number of combinations of the letters s, t, u., and 

v taken three at a time.

Solution The number of combinations is calculated as 

. C(4, 3) =
4!

3!(4 − 3)!
=

4 × 3!
3!1!

= 4.

Four combinations are stu, stv, suv ., and tuv. The following combinations 

are equal: stu, sut, tsu, tus, ust ., and uts, since they are the combinations of 

three letters, s, t, u., and the order does not matter. 

Exercises 

10.1 (a) Given the letters in the word Wales, how many different five letter 

strings of letters, without any repetitions, can you make? (b) Given the letters 

in the word Scotland, how many different eight letter strings of letters, without 

any repetitions, can you make? 

(continued)
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10.2 Mary wants to take a photo with her four friends, and they all stand in 

one row. If Mary must stand in the middle, how many different photos can 

they take? 

10.3 How many different passwords can you make by using f  our  digits from 

the ten  digits on your mobile phone screen, where you are not allowed to 

repeat any digits?

10.4 There are six numbers, 0, 3, 6, 7, 8, and 9. How many different five-digit 

numbers can be made where 0 cannot be the first digit? 

10.5 How many different fruit salads can you make using four different fruits 

from the list: apple, orange, pear, banana, grapefruit, pineapple, and grapes? 

10.6 There are 12 dots in a plane. No three dots are in the same line. How 

many triangles can be made? 

10.2 Probability 

10.2.1 Axiomatic Probability Theory 

The probability of some event E occurring is the likelihood of that event happening. 

Initial illustrations usually consider flipping a coin (or coins) or rolling a die (or 

several dice). This is because there are an easily calculated set of possible outcomes. 

For a coin, there are just two possible faces, and for a die, we can only get one of six 

faces (ignoring landing on an edge or corner or disappearing under the sideboard— 

these are unstable or silly outcomes!). This makes it easy to calculate the likelihood 

of a particular number being thrown on a die or a particular side of a coin coming 

up. This can be codified into an axiomatic theory as follo ws.

Let (�,�, P ). denote a probability space, where

• �. is the set of all possible outcomes, known as the sample space. 

Example 10.5 A fair six-sided die is rolled. The number of dots on each side 

is from one to six. We use � = {1, 2, 3, 4, 5, 6}. to denote all possible numbers 

of dots on the top of the side after a roll.
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• � . is a collection of subsets of �., and each subset is called an event. 

Example 10.6 An event (E) could show an odd number when the fair six-

sided die lands. That is, E = {1, 3, 5},. and E ⊂ �..

• P is a probability measure defined as a real-valued function of the elements of � . 

satisfying the following axioms of probability: 

– Axiom 1: 0 ≤ P(A) ≤ 1. for all A ∈ �.. 

– Axiom 2: P(�) = 1.. 

– Axiom 3: If two events A and B are mutually exclusive, that is, no elements 

in common, then the probability of either A or B occurring is the probability 

of A occurring plus the probability of B occurring:

. P(A ∪ B) = P(A) + P(B).

Note: set union is defined in Sect. 2.1.3 of Chap. 2 

If E is an event, P(E). is the probability of the occurrence of the event, that is, 

.P(E) =
The number of elements in event E

The size of the sample space
. (10.4) 

Note that the maximum probability of any event is one. 

Example 10.7 Let us roll a fair six-sided die. The number of dots on each 

side is from one to six. Let A be the event showing an even number when it 

lands, B showing either three or five dots, and C showing a prime number. 

Calculate the following probabilities:

• P(A ∪ B)..

• P(A ∩ C).. 

Set union and set intersection are defined in Sect. of Chap. . 22.1.3 

Solution Since 

. � = {1, 2, 3, 4, 5, 6}, A = {2, 4, 6}, B = {3, 5}, and C = {2, 3, 5},

(continued)
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Example 10.7 (continued) 

we have 

. A ∪ B = {2, 3, 4, 5, 6},

and 

. A ∩ C = {2}.

Therefore, 

. P(A ∪ B) =
#(A ∪ B)

#�
=

5

6
,

and 

. P(A ∩ C) =
#(A ∩ C)

#�
=

1

6
.

Recall that #. denotes the cardinality of a finite set (see Sect. of Chap. ). 22.1.1 

Example 10.8 Suppose we roll two fair six-sided dice. What is the probabil-

ity of getting two even numbers? Now, roll three fair six-sided dice. What is 

the probability of getting three even numbers? 

Solution All possible outcomes are listed in Table , where elements in 

the event of getting two even numbers are shown in red. The sample space 

size is 36 since there are 36 possibilities, as shown in Table , and the 

number of elements in the event of getting two even numbers is 9. Therefore, 

10.2

10.2

P(getting two even numbers) = 9
36

= 0.25., or  25%.. 

It gets harder to count the events once we get to three dice. So let us look 

at the method again for two dice and then extend it to three. With two dice, 

there are six ways the first dice could fall and six for the second. So, there are 

6 × 6 = 36. different possible dice rolls. Similarly, to get two even numbers, 

there are just three possible dice rolls (one of {2, 4, 6}.) for the first dice and 

three for the second dice. So, there are 3 × 3 = 9. ways to get two even 

numbers. So, as before, we get 9
36

= 0.25. as the probability. 

For three dice, we can see that there are 6 × 6 × 6 = 216. possible dice 

rolls. To get three even numbers again, there are 3 × 3 × 3 = 27. ways to do 

that. So, the probability is 27
216

= 1
8

= 0.125., or  12.5%..
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Table 10.2 Results of rolling 

two fair six-sided dice: 

elements getting two even 

numbers are shown in red 

1 2 3 4 5 6 

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

4 (4,1) (4,2) (4,3) (4, 4) (4,5) (4,6) 

5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

Example 10.9 Suppose we roll a fair six-sided die twice. What is the 

probability of getting two different numbers? And then, if you roll it again, 

what is the probability of getting three different numbers? 

Solution We are using the principle that we need to find the number of 

elements in the event and divide by the total number of all the possibilities (see 

Eq. ( )). When rolling twice, you can get10.4 6 × 6 = 36. different outcomes 

(as shown in Table ). 

To get two different numbers, the first number can be any digit, but the 

second can be only one of f  ive  different numbers. So, there are

10.2

6 × 5 = 30. 

different possibilities. In Table , this is all the outcomes apart from those 

on the main diagonal. Therefore, P (getting two different numbers)

10.2

= 30
36

=
5
6
., or  83.3%.. 

Now, doing the same for three rolls, we have 6×6×6 = 216. different rolls. 

But getting three different numbers requires six choices for the first roll, f  ive  

for the second, and f  our  for the third roll. This gives 6×5×4 = 120. elements 

in this event. Therefore, P (getting three different numbers) = 120
216

= 5
9
., or  

55.5%.. 

Note that getting three different numbers is, in fact, the number of 

permutations of picking three  out of six items without repetition. That is, 

it is P(n, k) = 6!
(6−3)! = 6!

3! = 720
6

= 120.. It is permutations rather than 

combinations because you are rolling the dice in order—so a 1 followed by a 

2 is different from a 2 followed by a 1. 

Exercises 

10.7 A coin is flipped three times in succession. What is the probability of 

getting exactly two heads? 

(continued)
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10.8 Suppose we roll a fair six-sided die four times. What is the probability 

of getting four different numbers? (You might like to try rolling five times 

with five different numbers and rolling six times with six different numbers) 

10.9 Telephone numbers include six digits from 0, 1, 2, · · · ., 8, and 9. What is 

the probability that all six digits are different if we randomly select a telephone 

number? 

10.3 Discrete Random Variables 

This section and the next define random variables. There are two types of random 

variables: discrete, dealt with in this section, and continuous, dealt with in the next 

section. A random variable is discrete if it can only take one of a countable set 

of values, for example, an integer value, such as the number of aces in a standard 

pack of cards or the number of people at a football match. A random variable is 

continuous if it can take an infinite number of different values, for example, a real 

number value. Most continuous random variables are measurements, for instance, a 

person’s weight or height. 

Any random variable is a map from the outcome space ( �.) to the real numbers. 

It is the result of some outcome of a random experiment. 

For example, let us consider throwing two fair dice. The sample space �. includes 

all those pairs ( ω .’s) of numbers listed in Table 10.2. Suppose we are interested in 

the total value obtained. Then, we can write X((1, 1)) = 2., X((2, 3)) = 5., and so 

on, for all ω .’s, where ω ∈ �. and X is the random variable, mapping each ω . to the 

sum of two dice values. 

If X is a random variable and x, x1 ., and x2 . are fixed real numbers, we may have 

the following events: 

. (X = x), (X ≤ x), (X > x) or (x1 < X ≤ x2).

These events have probabilities that are denoted by 

. P(X = x), P (X ≤ x), P (X > x) or P(x1 < X ≤ x2).

Definition 10.1 (Discrete Random Variables) A random variable X is called 

discrete if it only takes values in the integers or (possibly) some other countable 

set of real numbers.
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Example 10.10 The idea of so-called intelligence tests is to ask each individ-

ual to try to solve a certain number of questions. Each question can be solved 

either correctly or incorrectly. Usually, the number of correct answers is used 

as an empirical measure of individual intelligence. Such a number or score is 

a discrete random variable. 

The probability mass function, fX(xk)., is defined as the probability that X takes 

on a certain value xk .: 

.fX(xk) = P(X = xk). (10.5) 

The cumulative distribution function, FX(x)., is defined as the probability that the 

random variable, X, will take on a value that is lesser than or equal to a particular 

value, x. This is defined as follows: 

.FX(x) = P(X ≤ x) =
∑

xk≤x

fX(xk). (10.6) 

FX(x). is a staircase function. 

Example 10.11 Suppose we flip a fair coin three times. Let X be the number 

of heads in three tosses of the coin. Find the probability mass function and 

cumulative distribution function.

Solution The sample space is 

. � = {T T T ,HT T, T HT, T T H,HHT,HT H, T HH,HHH }.

x may be any fixed real numbers, though X may take values of 0, 1, 2,. 

and 3 only. So, X is a discrete random variable. From �., we can see that the 

probability of getting 0 heads is 1
8
. since it occurs once in the eight possible 

outcomes. Similarly, by counting the elements in �., we can see that the 

probability of getting one head is 3
8
., of getting two  heads is 3

8
., and of getting 

three  heads is 1
8
.. So, the probability mass function is a histogram as illustrated 

in Fig. . 

(continued)

10.1
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Example 10.11 (continued) 

Considering the cumulative distribution function as given in Eq. ( ), we 

can set up Table to present the cumulative distribution,10.3 

10.6

FX(x)., and we 

can illustrate the cumulative distribution as shown in Fig. Please note 

that the x-axis and y-axis scales are not consistent across Figs. and . 

This was done to better illustrate specific features in each figure. 

Table is built up as follows.10.3 

10.210.1 

10.2. 

FX(−1) = 0., since the number of 

elements where the number of heads observed is less than 0 is zero. FX(0) =
1
8
., since there is only one way of getting zero heads out of the eight possible 

flips. FX(1) = 4
8
. since there is one way of getting zero heads together with 

three  ways of getting one head out of the eight possible flips. The table 

shows the rest of the values, and once we get to x being greater than 3, then 

the number of elements with more than three heads is zero, so FX(4). remains 

at 1. 

Fig. 10.1 Probability mass 

function of X, where X 

represents the number of 

heads in three tosses of a fair 

coin

Table 10.3 The cumulative distribution function of X, where X represents the number of heads 

in three tosses of a fair coin

x Event (X ≤ x). FX(x). 

−1 ∅. 0 

0 {TTT} 1
8
. 

1 {TTT, HTT, THT, TTH} 4
8
. 

2 {TTT, HTT, THT, TTH, HHT, HTH, THH} 7
8
. 

3 {TTT, HTT, THT, TTH, HHT, HTH, THH, HHH} 1 

4 {TTT, HTT, THT, TTH, HHT, HTH, THH, HHH} 1



10.4 Continuous Random Variables 263

Fig. 10.2 The cumulative distribution function of X, where X represents the number of heads in 

three tosses of a fair coin

Exercises 

10.10 If you throw two fair dice, we can define a discrete random number 

X as the total value obtained by the two dice. So, X takes v alues from

X((1, 1)) = 2. up to X((6, 6)) = 12.. With the help of Table 10.2, draw up a  

table of the probabilities of getting a total value from 2 to 12 after throwing 

two fair dice. Sketch the probability mass function and the cumulative 

distribution function. 

10.11 Suppose we flip a fair coin four times. Let X be the number of heads 

in four tosses of the coin. Find the probability mass function and cumulative 

distribution f unction.

10.4 Continuous Random Variables 

Definition 10.2 (Continuous Random Variables) A random variable X is called 

continuous if it takes values from a real-valued interval, either open or closed. That 

is, it can take one of an infinite number of va lues.

Example 10.12 The average incandescent bulb light span is approximately 

1000 hours. The light span of incandescent bulbs can be considered as a 

continuous variable. This is because it has a lifespan that is not a whole 

number of hours, minutes, or seconds—the bulb could go at any point in time.
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Similar to a discrete random variable, we can define a probability density 

function and a cumulative distribution function for a continuous random variable. 

However, the sum of the possible values of such functions is now calculated using 

an integral since it is a continuous (or piecewise continuous) curve. 

So, if X is a continuous random variable, then there is a real-valued function,

fX ., called the probability density function of X, which is a curve, and it satisfies the 

following:

• fX . is piecewise continuous. That is, the function is continuous except at finitely 

many points.

• fX(x) ≥ 0.. That is, it does not go below the horizontal axis.

•
∫ ∞ 

−∞ 
fX(x)dx = 1.. That is, the total area under the curve is 1. 

Figure 10.3 shows a possible probability density function for the lifespan of a 

certain type of incandescent bulb produced from the same manufacturing plant. 

The area under the curve
∫ ∞
−∞ fX(x)dx . is the total probability of all lifespans and 

equals 1. 

The cumulative distribution function is again defined as the probability that the 

random variable, X, will take on a value that is less than or equal to a particular 

value, x. So, the cumulative distribution function (cdf), FX(x)., is a nondecreasing 

and continuous function and is defined as 

.FX(x) = P(X ≤ x) =
∫ x

−∞
fX(t)dt. (10.7) 

Referring again to Fig. 10.3, FX(a). is the cumulative probability of a lifespan less 

than or equal to a. This is represented as the shaded region in Fig. 10.3. 

Fig. 10.3 Probability density function representing the lifespan of a certain type of incandescent 

bulb produced by a specific manufacturing plant
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Based on Eq. (10.7), we have the following:

• P(a  <  X  ≤ b) = FX(b) − FX(a).. 

Recall that the second fundamental theorem of calculus (see Sect. 5.4.3 of 

Chap. 5) states that if f is continuous on [a, b]., and F is any antiderivative of f 

with respect to x, then
∫ b

a
fX(x)dx = FX(b) − FX(a).. For example, this could 

be the area under the curve illustrated in Fig. 10.3 between lifespan values of a 

and b.

• P(X  >  a)  = 1 − FX(a).. 

Proof Since P(X > a) = 1 − P(X ≤ a)., from Eq. (10.7), we have P(X ≤
a) = FX(a).. Therefore, P(X > a) = 1 − FX(a).. ⊓⊔

In Fig. 10.3, P(X > a). is the non-shaded region under the curve above the point 

a on the horizontal axis.

Example 10.13 Suppose the probability density function f (x). of X is given 

by the follo wing:

. f (x) =
{

cos(x)
W

, if |x| < π
2
;

0, otherwise.

1. Find the value of W . 

2. Find the cumulative distribution function FX(x).. 

3. • Find P(X ≤ 0)..

• Find P(X ≤ π
4
)..

• Find P(X > π
4
)..

• Find P(X > π
2
).. 

Solution 

1. We use the fact that
∫ ∞
−∞ fX(x)dx = 1. to find W . 

∫ ∞
−∞ fX(x)dx =

∫

π
2

− π
2

cos(x)
W

dx = sin(x)
W

∣

∣

∣

∣

π
2

− π
2

= 2
W

= 1,⇒ W = 2.. 

Figure illustrates the probability density function curve. 10.4 

2. Applying Eq. ( ), 10.7

. FX(x) =
∫ x

−∞
fX(t)dt,

we have the following:

• If x < −π
2
., FX(x) =

∫ x

−∞ 0dx = 0.. 

(continued)
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Example 10.13 (continued)

• If − π
2

≤ x < π
2
., FX(x) =

∫ x

− π
2

cos(x)
2

dx = 1
2

+ 1
2

sin(x)..

• If x ≥ π
2
., FX(x) = 1.. 

3. • P(X  ≤ 0 ).: Using the result for FX(x). given above with x = 0. gives 

P(X ≤ 0) = FX(0) = 1
2

+ 0 = 1
2
.. 

This makes sense since from the symmetry of the curve for the 

probability density function, as shown in Fig. , the cumulative 

probability up to

10.4

x = 0. is exactly half the area under the curve.

• P(X  ≤ 
π 

4
).: P(X ≤ π

4
) = FX(π

4
) = 1

2
+ 1

2×
√

2
= 0.8536..

• P(X  >  
π 

4 
) = 1 − P(X  ≤ 

π 

4 
) = 1 − 0.8536 = 0.1464..

• P(X  >  
π 

2 
) = 1 − P(X  ≤ 

π
2
) = 1 − 1 = 0., as expected. 

Remark 10.3 If X is a continuous random variable, then the probability of X 

taking a specific value C is zero, that is, P(X = C) = 0.. 

Proof Suppose �x . is a tiny increase of C. We have  

. P(C < x ≤ C + �x) = FX(C + �x) − FX(C) =
∫ C+�x

C

f (x)dx,

and 

. 0 ≤ P(X = C) ≤ P(C < X ≤ C + �x).

Fig. 10.4 The probability density function of X in Example 10.13
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Since FX(x). is continuous from the right, when �x . approaches zero, we have 

. lim
�x→0+

∫ C+�x

C

f (x)dx = 0.

That gives us the following: 

. 0 ≤ P(X = C) ≤ 0.

Therefore, we have P(X = C) = 0.. ⊓⊔

An event E = {X = C}. may happen even though P(X = C) = 0.. For example, 

the lifespan of incandescent bulbs is approximately from 800 hours to 1200 hours. 

The exact event E = {X = 900 hours}. may occur, but P(X = 900 hours) = 0.. 

That is, the probability of getting an exact value from an infinity of possible answers 

must be zero or else the sum of all the probabilities of all the exact values would 

add up to infinity and not 1 as is required. So, the probability of getting exactly 900 

hours is zero, though we might get 900 hours to the best of our ability to measure 

the time. 

�. 

Exercises 

10.12 The probability density function of the random variable X is 

. f (x) =
{

a(2x − x2), 0 < x < 2,

0, otherwise.
.

Compute the following: 

1. The value of a 

2. The cumulative distribution function FX(x).. 

3. P(X  ≤ 1 ). 

4. P(X  ≤ 
1 
2
). 

5. P(X  >  
1 
2
). 

10.13 The probability density function of the random variable X is 

. f (x) =
{

8x7, 0 < x < 1,

0, otherwise.
.

(continued)
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Compute the following: 

1. m so that P(X > m) = P(X < m). 

2. n so that P(X > n) = 0.05. 

10.5 Mean and Variance of Probability Distributions 

If we know the probability distribution of a random variable, we will know and 

be able to describe the properties of the random variable. However, obtaining an 

accurate probability distribution in real-world applications is hard. Moreover, we 

often only need to know some properties of a random variable but not all, such as the 

centre value, the value the random variable is most likely to take, and the correlation 

between two random variables. These properties can be parameters of probability 

distributions. This section introduces the two most important parameters: mean (or 

expected value) and variance. 

10.5.1 Mean 

Definition 10.3 (Mean) The mean (or expected value) of a random variable X, 

denoted by μX ., or  E(X)., is defined by 

.μX = E(X) =
{

∑

k xkfX(xk), X : discrete;
∫ ∞
−∞ xfX(x)dx, X : continuous.

(10.8) 

The expected value should be regarded as the average (mean) value. If you compare 

this with the definition of the sample mean given in Sect. 4.2.1 of Chap. 4, you can 

see that this is a weighted mean, weighted by the probability, as will be illustrated 

in Example 10.14. Note that we may also denote the expected value as μX = E[X]. 
in this book. 

Example 10.14 Three products are selected randomly from nine products, of 

which two are defective. The sample space consists of the distinct, equally 

likely, samples of size 3. Let X be the random variable that counts the number 

of defective items in a sample. The possible values of X are 0, 1, and 2. What 

is the expected value of defective products in a sample of size 3?

(continued)
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Example 10.14 (continued) 

Solution

• Let xi = 0, 1, 2. be the possible values of X.

• The number of ways of choosing xi . defectives from two defectives and 

choosing 3 − xi . non-defectives from seven non-defectives is
(

2
xi

)

. and 
(

7
3−xi

)

., respectively. (Remember that
(

n
r

)

. is a notation for the number of 

combinations of n object taken r at a time.)

• The total number of possible outcomes (i.e., the number of combinations 

of three products out of ) is
(

9
3

)

= 84..

• The probability of the value xi . of X is 

.pi =
(

2
xi

)(

7
3−xi

)

(

9
3

)
, (xi = 0, 1, 2).

• Applying Eq. ( ) for the discrete variable, we have 10.8

. E(X) = 0 ×
(

2
0

)(

7
3

)

84
+ 1 ×

(

2
1

)(

7
2

)

84
+ 2 ×

(

2
2

)(

7
1

)

84

. = 0 ×
1 × 35

84
+ 1 ×

2 × 21

84
+ 2 ×

1 × 7

84
=

2

3
.

Note that the three values above 84 in the last line above add up to the total 

of 84 combinations as expected. When each is divided by 84, these represent 

the probabilities of getting the three different outcomes. This means we have 

0 defective products occurring in 35 combinations, 1 defective product in 42 

combinations, and 2 defective products in 7 combinations. So, we have a list 

of numbers consisting of 35 0s, 42 1s, and 7 2s. Now, just think of these as 

a list of 84 numbers. The usual mean of such a list is to add up the numbers, 

that is, 35 × 0 + 42 × 1 + 7 × 2 = 56., and divide by the total numbers in the 

list, that is, 84. This division gives 2
3
.. 

This shows that this definition of mean corresponds with our previous 

definition given in Sect. of Chap. .44.2.1 
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Example 10.15 Let X be a random variable. Consider its distribution func-

tion on the interval [0, 1]. has the probability density function: 

. fX(x) =
{

0, if x < 0 or x > 1;
1, if 0 ≤ x ≤ 1.

Compute E(X).. 

Solution Applying Eq. (10.8) for the continuous variable, we have 

. E(X) =
∫ ∞

−∞
xfX(x)dx

=
∫ 0

−∞
x × 0dx +

∫ 1

0

x × 1dx +
∫ ∞

1

x × 0dx

= 0 +
1

2
x2

∣

∣

∣

∣

1

x=0

+ 0

=
1

2
.

If you look at the probability density function, you can see it is a square of 

height one and width one, as shown in Fig. . Not surprisingly, the mean 

value is in the middle of the x-values at

10.5

x = 1
2
.. 

Fig. 10.5 The probability 

density function shown in 

Example 10.15
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Table 10.4 Probability distributions of the random variables X1 . and X2 . 

X1 . 1 2 X2 . 1 2 

P 1
3
.

2
3
. P 1

2
.

1
2
. 

10.5.1.1 Properties of Mean 

To motivate the statement of these properties, we will do a simple example that 

illustrates them. 

Example 10.16 Table shows the probability distributions of two inde-

pendent random variables 

10.4 

X1 . and X2 .,a both of which only take the values 1 

and 2. Compute the following: 

1. E(X1). 

2. E(X2). 

3. E(aX1)., where a is a constant

4. E(a + X 1)., where a is a constant

5. E(X1 + X2 ). 

6. E(X1X2). 

Solution 

1. Applying Eq. ( ) for the discrete variable, we have 10.8

. E(X1) = 1 ×
1

3
+ 2 ×

2

3
=

5

3
.

2. Applying Eq. ( ) for the discrete variable, we have 10.8

. E(X2) = 1 ×
1

2
+ 2 ×

1

2
=

3

2
.

3. aX1 . takes the two values a and 2a with the probabilities as given in 

Table . So again applying Eq. ( ) for the discrete variable, we have 10.810.4

. E(aX1) = 1a ×
1

3
+ 2a ×

2

3
= a

5

3
= aE(X1).

4. a + X 1 . takes the two values a + 1. and a + 2. with the probabilities as given 

in Table . So again applying Eq. ( ) for the discrete variable, we 

have 

10.810.4

. E(a + X1) = (1 + a) ×
1

3
+ (2 + a) ×

2

3
=

5

3
+ a = E(X1) + a.

(continued)
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Example 10.16 (continued) 

5. X1 + X 2 . takes just the values that are the sum of the ones in X1 . and X2 ., 

namely, 2, 3, and 4. To get a 2, you must have a 1 in both X1 . and X2 ., so that 

has probability 1
3

× 1
2

= 1
6
.. To get a 4, both have to be 2, so the probability 

is 2
3
× 1

2
= 1

3
.. To get a 3, we can have X1 = 1. and X2 = 2. with probability 

1
3

× 1
2

= 1
6
. or have X1 = 2. and X2 = 1. with probability 2

3
× 1

2
= 1

3
.. So, 

the total probability of a 3 is 1
6

+ 1
3

= 1
2
.. 

We now have our probability distribution (2 with probability 1
6
., 3 with 

probability 1
2
., and 4 with probability 1

3
.) and note that the probabilities add 

up to 1 as required. 

Finally, we apply Eq. ( ) for the discrete variable: 10.8

. E(X1 + X2) = 2 ×
1

6
+ 3 ×

1

2
+ 4 ×

1

3
=

19

6
.

Note that this is the same as E(X1) + E(X2).. 

6. This is similar to the last one. Now, X1X2 . can take values of 1, 2, and 4. 

We get a probability distribution by the same method as before to get a 

probability of 1 is 1
6
., a probability of 2 is 1

2
., and a probability of 4 is 1

3
.. 

So, we apply Eq. ( ) for the discrete variable: 10.8

. E(X1X2) = 1 ×
1

6
+ 2 ×

1

2
+ 4 ×

1

3
=

5

2
.

Note that this is the same as E(X1)E(X2).. 

a Intuitively, two random variables X1 . and X2 . are independent if knowing the value of one 

of them does not change the probabilities for the other one. We will define independent 

random variables formally in Chap. .11

We can now generalise these results and state the properties that apply to both 

discrete and continuous random variables: 

(1) E(a) = a ., where a is a constant.

(2) E(aX) = aE( X)., where a is a constant.

(3) E(a + X) = E(X) + a ., where a is a constant.

(4) E(
∑n 

i=1 Xi) =
∑n 

i=1 E(Xi)., if E(Xi),. for i = 1, · · · , n. exists. 

(5) E(XY) = E(X)E(Y), where X and Y are two independent random variables.

Now that we have these properties, we can use them to do examples without going 

through all the working used in Example 10.16.
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Table 10.5 Probability distributions of the random variables X3 . and X4 . 

X3 . 1 2 3 X4 . 2 3 4 

P 1
3
.

1
2
.

1
6
. P 1

3
.

1
3
.

1
3
. 

Remark 10.4 Note that E(X2) = E(XX). is not, in general, the same as 

E(X)E(X). since X and X are not independent variables (indeed, they are the 

same). For example, using X1 . from Example 10.16, we see that the random variable 

X2
1 = X1X1 . can only take the values 1 and 4, since X1 . is either 1 or 2, and it has the 

same probability distribution as X1 .. That is, X2
1 . takes the value 1 with probability 1

3
. 

and the value 4 with probability 2
3
.. 

Hence, we have that E(X1). was 1× 1
3
+2× 2

3
= 5

3
., as we saw in Example 10.16. 

And therefore E(X2
1). is 1 × 1

3
+ 4 × 2

3
= 3.. 

So, in general, for a discrete random variable, we have 

. E(X2) =
∑

k

x2
kfX(xk).

By analogy, for a continuous random variable, we have 

. E(X2) =
∫ ∞

−∞
x2fX(x)dx.

We will find that these last two results are important in Sect. 10.5.2. In fact, if X is 

a continuous (or discrete) random variable with a probability density function (or 

probability mass function) f (x)., the expected value of any function g(X)., denoted 

as E(g(X))., can be computed. Readers can refer to the details provided in [10]. 

�. 

Example 10.17 Tables and show the probability distributions of the 

independent random variables 

10.5 10.4 

X1 ., X2 ., X3 ., and X4 .. Compute the following: 

1. E(X1 + X2 + X3 + X 4).. 

2. E(2X3 + 4). 

3. E(X3X4).. 

4. E(X1X3).. 

5. E(X2 
3).. 

(continued)
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Example 10.17 (continued) 

Solution 

1. We already have E(X1) = 5
3
. and E(X2) = 3

2
.. Applying Eq. ( ) for the  

discrete variables 

10.8

X3 . and X4 ., we have  

. E(X3) = 1 ×
1

3
+ 2 ×

1

2
+ 3 ×

1

6
=

11

6
.

. E(X4) = 2 ×
1

3
+ 3 ×

1

3
+ 4 ×

1

3
= 3.

Finally, using the fourth property of means, we have 

. E(X1 + X2 + X3 + X4) =
5

3
+

3

2
+

11

6
+ 3 = 8.

2. Using the second and third properties of means, we have 

. E(2X3 + 4) = 2 ×
11

6
+ 4 =

23

3
.

3. Using the fifth property of means, we have 

. E(X3X4) =
11

6
× 3 =

11

2
.

4. Using the fifth property of means, we have 

. E(X1X3) =
5

3
×

11

6
=

55

18
.

5. X2 
3 .has a probability distribution of 1, with probability 1

3
., 4 with probability 

1
2
., and 9 with probability 1

6
.. So, 

.E(X2
3) = 1 ×

1

3
+ 4 ×

1

2
+ 9 ×

1

6
=

23

6
.
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Table 10.6 The probability distribution of the random variable Z 

Z − 1. 0 1
2
. 1 2 

p 1
6
.

5
12

.
1

12
.

1
6
.

1
6
. 

Exercises 

10.14 Table 10.6 shows the probability distribution of the random variable 

Z. Compute the following: 

(1) E(Z).. 

(2) E(−Z + 2 ).. 

(3) E(Z2).. 

10.15 Using Tables 10.4, 10.5, and 10.6 and assuming the variables are 

independent, compute the following: 

(1) E(Z + X1 + X 3).. 

(2) E(ZX4).. 

(3) E(3Z − 5 ).. 

(4) E(X1Z).. 

(5) E(X2 + X4 + Z) .. 

10.16 Take any two numbers from 1, 2, 3, and 4. What is the mean value of 

the absolute difference between the two numbers? 

10.17 The probability density function of the random variable X is 

. f (x) =
{

8x7, 0 < x < 1,

0, otherwise.
.

Compute the following: 

(1) E(X).. 

(2) E(X2).. 

10.5.2 Variance 

Definition 10.4 (Variance) The variance of a random variable X, denoted by σ 2
X ., 

or V ar(X)., is defined by 

.σ 2
X = V ar(X) =

{

∑

k(xk − μX)2fX(xk), X : discrete;
∫ ∞
−∞(x − μX)2fX(x)dx, X : continuous.

(10.9)
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This definition is basically the same as that given in Sect. 4.2.1 of Chap. 4, but  

weighted by the probabilities, as was the case for the mean given in the previous 

section. 

Comparing the definition of variance with the definition of mean, E(X)., given in  

Eq. (10.8), we can see that an alternate definition is 

.σ 2
X = V ar(X) = E((X − E(X))2). (10.10) 

Using the properties of mean, we have the following: 

. V ar(X) = E((X − E(X))2)

= E(X2 − 2XE(X) + (E(X))2)

= E(X2) − 2E(X)E(X) + (E(X))2 (10.11)

= E(X2) − (E(X))2.

The variance measures the average difference of the actual values from the 

average. For example, the average light span of 500 incandescent bulbs is 1000 

hours. All these bulbs’ light spans may be between 950 and 1050 hours. It is also 

possible that half of them have a light span of about 1400 hours, and the other half 

of them have about 600 hours only. To assess the quality of these 500 incandescent 

bulbs, we need to measure not only the mean value of the light span but also its 

variance. If the variance value is small, the quality is stable. 

Example 10.18 If X1 . is again the discrete random variable with a probability 

distribution given by Table , find10.4 V ar(X1).. 

Solution E(X1) = 
5
3
. from before. Also, from before, X2

1 . just takes the values 

1 and 4 with probability 1
3
. and 2

3
. respectively. So, E(X2

1) = 1× 1
3
+4× 2

3
= 3.. 

Applying Eq. ( ), we have 10.11

. V ar(X1) = 3 −
(

5

3

)2

=
2

9
.

Alternatively, we could go back to the definition, namely, Eq. ( ) and 

use that. In this case, 

10.9

k = 2., x1 = 1., x2 = 2., μX1
= 5

3
., fX1

(x1) = 1
3
., and fX1

(x2) = 2
3
., giving  

. 

∑

k

(xk − μX1
)2fX1

(xk) =
(

1 −
5

3

)2

×
1

3
+

(

2 −
5

3

)2

×
2

3
=

2

9

(continued)
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Example 10.18 (continued) 

again. Obviously, the first method is the quickest. The long method was just 

used to illustrate that the two methods are equivalent. 

Example 10.19 What is V ar(X). if X is the outcome of a fair six-sided die 

with numbers from one to six?

Solution Since 

. E(X) = 1 ×
1

6
+ 2 ×

1

6
+ 3 ×

1

6
+ 4 ×

1

6
+ 5 ×

1

6
+ 6 ×

1

6
=

7

2
,

and 

. E(X2) = 12 ×
1

6
+ 22 ×

1

6
+ 32 ×

1

6
+ 42 ×

1

6
+ 52 ×

1

6
+ 62 ×

1

6
=

91

6
,

applying Eq. ( ), we have 10.11

. V ar(X) =
91

6
−

(

7

2

)2

=
35

12
.

Example 10.20 Let X be a random variable. It has the probability density 

function

. fX(x) =
{

1
b−a

, a ≤ x ≤ b;
0, otherwise.

Compute the following: 

1. E(X). 

2. V  ar(  X). 

Solution E(X) =
∫ +∞ 

−∞ 
x 

1 
b−a 

dx = 
x2 

2(b−a)

∣

∣

∣

∣

b 

a 

= b+a
2

.. 

Also E(X2) =
∫ +∞
−∞ x2 1

b−a
dx = 1

3
(b2 + ab + a2).. 

(continued)
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Example 10.20 (continued) 

Applying Eq. ( ), we have 10.11

. V ar(X) = E(X2) − (E(X))2

=
1

3
(b2 + ab + a2) −

(

a + b

2

)2

=
(b − a)2

12
.

Again, the long way round is to go back to the definition of variance for a 

continuous random variable (Eq. ) using the value of10.9 μX = E(X) = b+a
2

. 

we have just found: 

. V ar(X) =
∫ ∞

−∞
(x − μX)2fX(x)dx

=
∫ ∞

−∞

(

x −
b + a

2

)2
1

b − a
dx

=
1

b − a

1

3

(

x −
b + a

2

)3∣
∣

∣

∣

b

a

=
1

3(b − a)

((

b − a

2

)3

−
(

a − b

2

)3)

=
(b − a)2

12
,

as before. But the quicker method is the best. The long method was just used 

to illustrate that the two methods are equivalent. 

10.5.2.1 Properties of Variance 

Since V ar(X) = E(X2)−(E(X))2
. (Eq. 10.11), the following properties of variance 

are just consequences of the properties of the mean (see Sect. 10.5.1.1). 

(1) V  ar(X) = 0., if  X takes a constant v alue.

(2) V  ar(aX  + b) = a2V ar(X)., where a and b are constants.

(3) V  ar(X  + Y )  = V  ar(X) + V ar(Y )., if X and Y are two independent variables.
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Exercise 

10.18 Suppose the probability density function of X is given b y

. fX(x) =
{

2, 0 < x < 1
2
,

0, others.

Compute the following: 

(1) E(X2). and E(X4). 

(2) V  ar(2X 
2). 

(3) V  ar(2X2 + 5). 

10.6 Special Univariate Distributions 

In this section, we will look at some important and famous single-variable probabil-

ity distributions, first discrete ones and then continuous ones. 

10.6.1 Discrete Random Variables 

10.6.1.1 Discrete Uniform Distribution 

This distribution gives the same probability for each value of the random variable. 

So if the random variable X takes integer values from a to b, inclusive, then the 

probability mass function of the discrete uniform distribution is defined as follows:

.fX(x) =
{

1
n

a ≤ x ≤ b;
0, otherwise;

(10.12) 

where n = b − a + 1.. For example, if a = 3. and b = 9., then there are n = 7. values, 

each of 1
7
.. 

Figure 10.6 illustrates an example of a discrete uniform distribution in the range 

of [a, b].. 
When n = b − a + 1. is satisfied, the mean and variance of a discrete uniform 

distribution are given as follows: 

.μX = E(X) =
a + b

2
,
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Fig. 10.6 An illustration of a 

discrete uniform distribution 

and 

. σ 2
X = V ar(X) =

n2 − 1

12
.

For our example where a = 3. and b = 9., we get μX = 12
2

= 6., the middle 

number. Also, σ 2
X = 49−1

12
= 4.. You can check these results by using the original 

definitions in μX =
∑

k xkfX(xk). from Eq. (10.8), and σ 2
X =

∑

k(xk −μX)2fX(xk). 

from Eq. (10.9). 

However, if n = b − a + 1. is not valid for a discrete uniform distribution, 

the original definitions for computing the mean and variance should be used. For 

example, four numbers, 3, 5, 7, 9., between a = 3. and b = 9.. The mean value is still 

equal to 3+5+7+9
4

= 6., while (3−6)2

4
+ (5−6)2

4
+ (7−6)2

4
+ (9−6)2

4
= 5.. 

Exercise 

10.19 There are ten balls labelled from zero to nine, respectively, in a bag. 

Randomly take a ball from the pack, write down the number on it, and then 

put it back in the bag. After many runs, what is the approximate mean value 

of those numbers? 

10.6.1.2 Bernoulli Distribution 

If X is a random variable taking two values, x = 1.and x = 0.only, with a probability 

of p and 1 − p ., respectively, the probability mass function f of this distribution is
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defined as follows: 

.fX(x;p) =
{

p if x = 1

q = 1 − p if x = 0,
(10.13) 

then X has a Bernoulli distrib ution.

The key here is that the random variable can only take one of two values. Some 

event happens or does not happen. These are called Bernoulli trials and a set of 

Bernoulli trials gives the distribution. 

Equation (10.13) can also be expressed as follows: 

.fX(x;p) = px(1 − p)1−x, where x = 0 or 1. (10.14) 

The mean and variance of a Bernoulli distribution are given as follows: 

. μX = E(X) = p,

and 

. σ 2
X = V ar(X) = p(1 − p).

Again, you can check these results by using the original definitions from 

Eqs. (10.8) and (10.9) for the discrete random variable. 

Example 10.21 Figure shows a simulation result of generating 5000 

random numbers from a Bernoulli distribution with a success probability of 

10.7 

P(X = 1) = 0.2.. As can be seen from the figure, about 1000 numbers have a 

value of 1, and about 4000 numbers have a value of 0. The only two outcomes 

are a 1 with probability 0.2. and a 0 with probability 1 − 0.2 = 0.8.. 

10.6.1.3 Binomial Distribution 

Let us consider the example of tossing coins again. Suppose we have n independent 

coins with a probability p of heads-up. For fair coins, then p = 1
2
., but generally, 

the probabilities could be p for heads-up and, therefore, 1 − p . for tails. We flip 

them all simultaneously and check the number of heads-up coins. Alternatively, we 

can flip one coin n times and check the number of heads-ups in total. These two 

scenarios are equivalent because we assume these coins are independent. Both can 

be considered as n independent and identical Bernoulli trials or distributions (two 

outcomes: heads with probability p and tails with probability 1 − p .). The total
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Fig. 10.7 The simulation 

result of a Bernoulli 

distribution 

number of heads-ups can be modelled from a binomial distribution. For instance, if 

we tossed 100 fair coins, we might expect 50 to be heads-up. But we might want to 

know the probability of getting exactly 50 heads-ups (this is actually ≈ 0.080.). Or 

perhaps exactly 49 heads-ups ( ≈ 0.078.), 48 heads-ups ( ≈ 0.074.), and so on. This 

sort of question is given by considering a binomial distribution, where we want to 

know the probability of getting x events in n trials.

A random variable X is called a binomial random variable with parameters (n, p). 

if its probability mass function is given as follows: 

.pX(x) = P(X = x) =
n!

x!(n − x)!
px(1 − p)n−x . (10.15) 

Here, n is the number of independent trials, p is the probability of success on each 

trial, and x is the number of successes in t hose trials.

Note that the factors n!
x!(n−x)! . are 

(

n
x

)

., which are the binomial coefficients, which 

is why this is called a binomial distribution. A random variable having a binomial 

distribution can be denoted as X ∼ B(n, p).. 

Using this formula, if we want to get the probability of getting exactly 50 heads 

up out of 100 fair trials, we set n = 100., x = 50., and p = 1
2
.. So, 

. pX(50) = P(X = 50) =
100!

50!50!
(
1

2
)50(

1

2
)50 ≈ 0.080.

as we stated previously. 

The mean and variance of a binomial distribution can be obtained as follows: 

.μX = E(X) = E(X1 + · · · + Xn) = p + · · · + p = np,
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and 

. σ 2
X = V ar(X) = V ar(X1 + · · ·+Xn) = p(1 −p)+ · · ·+p(1 −p) = np(1 −p),

where X1, . . . , Xn . are the outcome of each of the n independent Bernoulli trials.

Example 10.22 We want to know the probability of having two heads-ups 

when flipping a fair coin three times using the Bernoulli distribution and the 

binomial distribution separately. Suppose p(heads-up) = 1
2
.. Let X be the 

random variable of seeing heads-up.

1. Solution—using Bernoulli distribution three times 

We know that the sample space is 

. � = {T T T ,HT T , T HT, T T H,HHT,HT H, T HH,HHH }

and there are three elements in the event that have two heads-ups, namely, 

HHT,HT H,. and T  H  H :

. P(X(HHT )) =
1

2
×

1

2
×

1

2
,

. P(X(HT H)) =
1

2
×

1

2
×

1

2
,

and 

. P(X(T HH)) =
1

2
×

1

2
×

1

2
.

Therefore, we have 

. P(X = 2 heads-ups) =
1

8
+

1

8
+

1

8
=

3

8
.

Note that there is one element in the sample space that has three heads-

ups, three with two heads-ups, three with one heads-up, and one with zero 

heads-up. The numbers 1, 3, 3, and 1 are where the binomial coefficients 

come from in the next solution. 

2. Solution—using binomial distribution 

Substituting n = 3. and x = 2. to Eq. ( ), we have 10.15

. pX(2) = P(X = 2) =
3!

2!(3 − 2)!

(

1

2

)2(

1 −
1

2

)3−2

=
3

8
,

(continued)
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Example 10.22 (continued) 

where the binomial coefficient returns the number of combinations of two 

heads-ups among three tosses and ( 1
2
)2(1− 1

2
)3−2 = 1

8
.gives the probability 

of one desired combination. 

Example 10.23 If we flip 20 biased coins simultaneously, what is the 

probability that we see 12 heads-ups? Note that the probability of heads-up 

of each coin is 0.6.. 

Solution Applying Eq. ( ), where10.15 n = 20., x = 12. and p = 0.6., we have  

. P(X = 12) =
20!

12!(20 − 12)!
0.612(1 − 0.6)20−12 ≈ 0.1797.

Exercise 

10.20 A module’s passing rate is 85%.. Find the probability that: 

(1) Exactly seven students out of ten pass the module. 

(2) Exactly eight students out of ten pass the module. 

(3) Exactly nine students out of ten pass the module. 

(4) Exactly ten students out of ten pass the module. 

10.6.1.4 Poisson Distribution 

The Poisson distribution is characterised by the number of events that happen within 

some interval. A random variable X is called a Poisson random variable with 

parameter λ. if its probability mass function is given as follows: 

.pX(x) = P(X = x events in an interval) = e−λ λx

x!
, x = 0, 1, · · · , (10.16) 

where λ > 0. is the average number of events per interval and e is Euler’s number

2.71828 . . ... 

The mean and variance of a Poisson distribution are given by 

.μX = E(X) = λ,
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and 

. σ 2
X = V ar(X) = λ.

The Poisson distribution is actually a limiting case of the binomial distribution as 

n → ∞.. Usually, with a large n and a small p, the Poisson distribution is a useful 

and very good approximation to the binomial distribution. So, it is used when n is 

large or unknown and p is small or unknown. If the mean value λ = np . is known, 

often in the form of a known average number of events in some interval, then we 

can use the Poisson distribution. λ. is the only parameter in the Poisson distribution, 

whereas the binomial distribution has two parameters (n and p ).

Example 10.24 Let us use a Poisson distribution to model the number of 

patients a doctor can see in one hour. Suppose a doctor was able to see three 

patients an hour on average. Find the probability that this doctor can see five 

patients in the next hour. 

Solution Applying Eq. ( ), where10.16 λ = 3. and x = 5., we have  

. P(X = 5) = e−3 35

5!
= 0.1008.

Exercises 

10.21 A doctor can see six patients an hour on average. Use a Poisson 

distribution to find: 

(1) The probability that the doctor can see five patients in the next hour. 

(2) The probability that the doctor can see six patients in the next hour. 

(3) The probability that the doctor can see seven patients in the next hour. 

(4) The probability that the doctor can see eight patients in the next hour. 

10.22 The number of calls a helpdesk receives per minute follows a Poisson 

distribution with λ = 4.. 

(1) What is the probability that the number of calls is exactly eight in one 

minute? 

(2) What is the probability that the number of calls is more than five per 

minute?
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10.6.2 Continuous Random Variables 

10.6.2.1 Continuous Uniform Distribution 

The discrete uniform distribution can be easily extended to a continuous case. A 

random variable X is called a continuous uniform variable in the range of [a, b]. if 
its probability density function is given by 

.fX(x) =
{

1
b−a

a ≤ x ≤ b;
0 otherwise.

(10.17) 

The value 1
b−a

. makes sure that the total area under the curve is 1 so that the total 

probability is 1. 

To find the cumulative distribution, we need to find the area under the curve up 

to some random point x. So, we compute the following: 

. FX(x) =
∫ x

a

1

b − a
dz =

z

b − a

∣

∣

∣

∣

x

a

=
x − a

b − a
.

Therefore, the cumulative distribution function FX(x). is given by 

.FX(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x < a;
x−a
b−a

, a ≤ x ≤ b;
1, x > b.

(10.18) 

Figure 10.8 shows the sketch of the probability density function and the cumulative 

distribution function for the continuous uniform distributions. The mean and 

Fig. 10.8 A sketch of the probability density function and the cumulative distribution function for 

the continuous uniform distribution
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variance of a continuous uniform distribution are given as follows (see worked 

Example 10.20): 

. μX = E(X) =
a + b

2
,

and 

. σ 2 = V ar(X) =
(b − a)2

12
.

Example 10.25 Buses arrive at five-minute intervals from 5 pm to 6 pm. A 

student arrives at the bus stop at a random time X, which follows a uniform 

distribution, between 5 pm and 5:20 pm. What is the probability that the 

student waits less than two minutes for a bus? 

Solution X is a random variable having a continuous uniform distribution, 

where a = 0. and b = 20(minutes).. 

Set E as the event the student waits less than two minutes to get on a bus. 

We hav e

. E = {3 < X < 5} + {8 < X < 10} + {13 < X < 15} + {18 < X < 20}.

So, 

. P(E) =
∫ 5

3

dz

20 − 0
+

∫ 10

8

dz

20 − 0
+

∫ 15

13

dz

20 − 0
+

∫ 20

18

dz

20 − 0

=
1

20 − 0
(2 + 2 + 2 + 2)

= 0.4.

. 

Exercise 

10.23 Buses arrive at nine-minute intervals from 5 pm to 6 pm. A student 

arrives at the bus stop at a random time X, which follows a uniform 

distribution, between 5:20 pm and 5:45 pm. What is the probability that the 

student waits less than three minutes for a bus?
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Fig. 10.9 Examples of 

Gaussian distributions 

10.6.2.2 Gaussian or Normal Distribution 

A random variable X is distributed normally with mean μ. and variance σ 2
. if its 

probability density function is given by 

.f (x|μ, σ 2) =
1

√
2πσ 2

e
− (x−μ)2

2σ2 . (10.19) 

The normal distribution is also called Gaussian distribution, denoted as X ∼
N(μ, σ 2).. Figure 10.9 shows four normal distributions, each with a different mean 

value and standard deviation. As we can see, normal distributions have a bell shape 

and are symmetrical in their mean values. The standard deviation controls the shape 

of each distribution: the smaller the standard deviation, the narrower the bell curve 

and the higher the probability density value at the mean point; on the other hand, 

the larger the standard deviation, the wider the curve and the lower the probability 

density value at the mean point. 

It is convenient to define a “standard” normal distribution with zero mean and a 

standard deviation of 1. As we will see later, this enables us to have just a single 

table of values to look up information, rather than one for each mean and standard 

deviation. All normal distributions can be standardised as shown below. 

Definition 10.5 (Standard Normal Distribution) The random variable Z with 

zero mean and unit standard deviation, that is, Z ∼ N(0, 1)., is called the standard 

normal distribution. That is, 

.f (z|0, 1) =
1

√
2π

e− z2

2 . (10.20)
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Fig. 10.10 The standard normal distribution: (a) 68%. of values are within 1 standard deviation of 

the mean; (b) 95%. of values are within about 2 (or more accurately 1.96) standard deviations of 

the mean 

A general normal distribution X ∼ N(μ, σ 2). can be standardised to a standard 

normal distribution by computing the z-score for x as follo ws:

.z =
x − μ

σ
. (10.21) 

A standard normal distribution has the following properties:

• About two-thirds (68%.) of the total observations lie within one standard devia-

tion on either side of the mean: one-third on one side and one-third on the other 

(see Panel (a) of Fig. 10.10).

• 95%. of the total observations are located within about two (or more accurately 

1.96) standard deviations on either side of the mean (see Panel (b) of Fig. 10.10). 

These properties are valid for all normal distributions. 

Exercises 

10.24 About what percentage of the observations in a normal distribution 

will have values greater than one standard deviation above the mean? 

10.25 The distribution of scores collected from a module in the past five 

years, including 1000 students, is approximately normal. The mean score is 

54, and the standard deviation is 4. If the passing score of the module is 50, 

approximately how many students failed the module? 

Again, to find the cumulative distribution, we need to find the area under the 

curve up to some random point z. The cumulative distribution function of Z
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satisfying Eq. (10.20) is therefore 

. FZ(z) = P(Z ≤ z) =
1

√
2π

∫ z

−∞
e

−ξ2

2 dξ .

This is the total cumulative probability of the random variable Z being less than z. 

(It is quite common to use ξ . as the integration variable in this work.) 

By convention, the cumulative distribution function of Z is denoted by 
.. So, 

we have 

.
(z) =
1

√
2π

∫ z

−∞
e

−ξ2

2 dξ . (10.22) 

The cumulative distribution function of a random variable X, where X ∼
N(μ, σ 2). and where X can be converted to Z via Z = X−μ

σ
., can be obtained as 

follows: 

. FX(x) =P(X ≤ x)

=P(σZ + μ ≤ x)

=P

(

Z ≤
x − μ

σ

)

.

That is, 

.FX(x) = 


(

x − μ

σ

)

= 
(z). (10.23) 




(

x−μ
σ

)

. has the standard normal distribution. The term
x−μ

σ
. is commonly 

referred to as the z-score. Figure 10.11 shows the standard normal probability 

density distribution and its corresponding cumulative distribution. The cumulative 

distribution gives us the area under that probability density function for the interval 

of negative infinity to a specific z-score. Obviously, if μ = 0. and σ = 1., then we 

already have a standard normal distribution and the conversion is unnecessary. 

The following lists some properties of 
.:

• limx→−∞ 
(x) = 0. and limx→∞ 
(x) = 1..

• 
(0) = 
1
2
., since half the probability is to the left of the mean.

• 
(−z) = 1 − 
( z)., since it is symmetric about the mean. 

In addition, since P(a < X ≤ b) = FX(b) − FX(a). (see Sect. 10.4 of this 

chapter), we have 

.P(x1 < X ≤ x2) = 


(

x2 − μ

σ

)

− 


(

x1 − μ

σ

)

. (10.24)
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Fig. 10.11 The standard normal distribution. The left panel shows the probability density 

distribution; the right panel presents its cumulative distribution 

Note that the integration in Eq. (10.22) cannot be evaluated analytically in a 

closed form. It requires numerical analysis approximation methods. However, since 

the normal distribution is one of the most widely used distributions, people have 

constructed a mathematical table for the standard normal distribution.1 

Reading a Normal Distribution Table A normal distribution table is usually 

composed of three parts:

• The heading of rows, which is the left column, contains the integer part and the 

first decimal place of the z-score.

• The heading of columns contains the second decimal place of the z-score.

• The values within the table are the probabilities, which are the area under the 

normal curve from the starting point to z. The starting point could be zero 

for cumulative from the mean, negative infinity for full cumulative, or positive 

infinity for complementary cumulative. (Different books have different tables 

with different starting points.) 

Example 10.26 Find the cumulative probability of z = 0.56.. That is, find 


(0.56).. 

Solution We find the row starting with 0.5. and then across the column to 0.06. 

in a standard normal distribution table. It gives us a probability of 0.2123. for 

a cumulative from the mean table (i.e., 0.2123. above halfway) or 0.7123. from 

a full cumulative table.

1 The example table we have used is at https://en.wikipedia.org/wiki/Standard_normal_table. 

https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
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Example 10.27 Suppose X ∼ N(3, 42).. Compute P(X < 10.84).. 

Solution Using Eq. ( ), 10.23

. FX(10.84) = 


(

10.84 − 3

4

)

= 
(1.96).

This gives z = 1.96.. Looking this up in a full cumulative table, we get 0.9750.. 

In fact, the value 1.96. on either side of the mean represents the distance from 

the mean that gives 95%. of the total (see Fig. ). Of the other10.10 5%. half is 

on the left, so the cumulative probability up to 1.96. is 95% + 2.5% = 97.5%. 

or 0.9750., which is the value we obtained. 

Exercises 

10.26 Suppose X ∼ N(2, 32).. Compute, using an appropriate table, the 

following: 

(1) P(X  <  8 )., P(X < 0.5)., and hence P(0.5 < X < 8). 

(2) P(−1 <  X  <  5). 

(3) The value of C so that P(X > C) = P(X ≤ C). 

10.27 The lifespan (in years) of refrigerators designed by manufacturer A 

follows a normal distribution with a mean value μ. of 16 years. If P(12 <

X ≤ 20) = 0.8., what is the largest standard deviation value σ .? 

The normal distribution is extremely widely used in both real-world applications 

and theoretical work in research. For example, the heights of adult men or adult 

women may be approximately normally distributed. Residual errors from a regres-

sion model may have a normal distribution, and this normality is an assumption 

when formulating the linear regression method within the probability framework 

(see Chap. 13). There are many more examples of its use.



Chapter 11 

Further Probability 

The previous chapter introduced probability, probability distributions for both 

discrete and continuous random variables, and properties of probability distributions 

like mean and variance. We then illustrated some common and important probability 

distributions, like the binomial distribution, the Poisson distribution, and the normal 

distribution. All of the introductory probability concerned material related to single 

random variables. 

In this chapter, we continue with some more advanced topics centering around 

multiple random variables and conditional probability, starting with an important 

theorem in probability called the central limit theorem. 

11.1 The Law of Large Numbers and the Central Limit 

Theorem 

In practice, people have observed that when the number of experiments approaches 

a large number, the probability of the occurrence of a specific event (E).will become 

stable. For instance, the number of head-ups obtained when flipping a fair coin will 

get nearer to half of the total as more flips are performed. In addition, people have 

also found that many observed random variables are the sum of other independent 

random variables, some of which may not be measurable. Research shows that when 

the number of independent random variables approaches infinity, the distribution of 

the random variable of the sum of these independent random variables approximates 

the normal distribution. 

This topic is usually associated with taking samples from a population and how 

the mean of the sample relates to the mean of the population. This section introduces 

the law of large numbers and the central limit theorem without giving any proof. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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11.1.1 The Law of Large Numbers 

Intuitively, the law of large numbers is obvious! It basically says that if you wish to 

know the value of a variable, like the average height of an adult, then you do not 

just look at one person; you need to look at lots of people, and the more you look, 

the better. 

Formally, we have the following. Let X1 ., . . .., Xn . be a sequence of independent, 

identically distributed random variables with E(Xi) = μ, i = 1, . . . , n., and define 

the sample mean as follows: 

. X̄n =
1

n

n
∑

i=1

(X1 + · · · + Xn).

Then, for any ǫ > 0., 

• The weak law of large numbers states that 

. lim
n→∞

P(|X̄n − μ| < ǫ) → 1. (11.1) 

It says that as n → ∞., the probability of the difference between the sample mean 

and the expected mean being less than any small value ǫ . approaches 1. 

• The strong law of large numbers states that 

.P( lim
n→∞

X̄n = μ) = 1. (11.2) 

It says that as n → ∞., we know almost for sure (P = 1.) that the sequence X̄n . 

converges to the expected mean. 

Remark 11.1 The weak law tells us how a sequence of probabilities converges. In 

other words, for any small value ǫ > 0., the probability of the difference between 

the sample mean X̄n . and the population mean μ. being less than ǫ . tends to 1. The 

strong law states that X̄n . approach μ. as n → ∞.with probability 1. 

The differences between the weak law of large numbers and the strong law of 

large numbers are subtle and not important for this book. 

In practice, we can apply the principle of the law of large numbers to find the 

approximated expected value of a distribution by repeating a procedure over and 

over and then computing the average result, which will be close to the expected 

value. 

For instance, if Xi . is the attendance at a football match, then Xi . is a discrete 

random number taking integer values from zero to the stadium size. If n is the 

number of matches in a month, then we have a sample size of, say, four (one match 

each week), and then the average attendance may be reasonably close to the real 

average attendance. But if we take n as the number of matches in a year, we will have 

a larger sample size, and the mean attendance will be closer to the real mean. �.
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Fig. 11.1 The result of a 

simulation to estimate the 

probability of obtaining 12 

heads in 20 coin flips, where 

the event occurred 1826 times 

out of 10,000 trials 

10.23 Example 11.1 Continue Example from the previous chapter Chap., 10. 

We can do a simulation via a computer program to estimate the probability 

of seeing 12 heads if we flip 20 coins simultaneously. Let E be the event 

where we observe the number of heads-up, X = 12.. We have used Python 

programming to implement the simulation in this example. In one trial, 20 

independent experiments can be run, each having a Bernoulli distribution with 

the probability of coming-up heads of each coin being 0.6.. The number of 

heads-up can be obtained in these 20 experiments; this is noted. We repeat this 

procedure with a large number of trials. Each time the trial of 20 experiments 

is performed and the number of heads-up is noted. Figure 11.1 shows the 

simulated result with 10,000. trials. That is, we have done the 20 experiments 

10,000. times, each time noting the number of heads obtained. Specifically, 

the number of our events, E, that is, 12 heads observed, in 10,000. repetitions, 

is 1826. Therefore, the probability that we see 12 heads if we flip 20 coins 

simultaneously is approximated as 0.1826. based on the law of large numbers. 

It is larger than 0.1797., the theoretical value computed in the example shown 

in Example 10.23. To make the estimation more accurate, we may increase 

the number of trials in the simulation. 

11.1.2 Central Limit Theorem 

So far, we have that if we take a sample of size n from a population with an unknown 

mean, then the mean of the sample is a reasonable estimate of the mean of the 

population, and this estimate gets better as n gets larger. The central limit theorem 

takes the analysis further and says that if we repeatedly find the mean of an n.-

sized sample, we expect to get as many below the population (real) mean as there
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are above. In fact, the distribution of sample means approaches a normal distribution 

around the population mean, irrespective of the sort of distribution we had in the first 

place. This can be seen by looking at Fig. 11.1.  As  n gets larger, the distribution gets 

closer to a normal distribution, and also, the standard deviation of the distribution 

gets smaller. That is, the values get tighter around the population mean.

Formally, we have the following. Let X1, . . . , Xn . be n independent random 

variables, each of which has mean μ. and standard deviation σ ..  Le  t Yn = (X1 +
· · ·+Xn)/n. be the average; thus, Yn . has mean μ. and standard deviation σ/

√
n..  If  n 

is large, then the cumulative distribution of Y is very nearly equal to the cumulative 

distribution of the Gaussian with mean μ. and standard deviation σ/
√

n.. That is, 

. lim
n→∞

Yn − μ

σ/
√

n
∼ N(0, 1), (11.3) 

or, 

. lim
n→∞

P

(

Yn − μ

σ/
√

n
≤ z

)

= �(z). (11.4) 

Example 11.2 In a doctor’s surgery over a long period, it is noted that the 

average length of a patient’s appointment is 10 minutes with a standard 

deviation of 5 minutes. So, patients are scheduled every 10 minutes for the 

2 1
2
. hours of each morning’s surgery time. Unfortunately, one morning there 

is an emergency appointment, so there are 16 patients to see rather than the 

normal 15. What is the chance that the doctor can finish on time? 

Solution Each patient is assumed to be independent and drawn from the 

distribution with a mean time of 10 minutes and a standard deviation of 5 

minutes. This means the variance is 52 = 25.. Let each of these 16 appointment 

lengths be denoted Xi . for 1 ≤ i ≤ 16.. For the total time taken, we have 

. Y16 = X1 + · · · + X16.

The mean for Y16 . is 10 × 16 = 160., using property (4). of means (see 

Sect. 10.5.1.1 of Chap. 10), and the variance of Y16 . is 16 × 25. using property 

(3). of variance (see Sect. 10.5.2.1 of Chap. 10), and so the standard deviation 

for Y16 . is 4 × 5 = 20.. 

From the central limit theorem, this means that the distribution of Y16 . is 

approximately a Gaussian with a mean of 160 and a standard deviation of 

20. 

(continued)
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Example 11.2 (continued) 

We want P(y ≤ 150). for the doctor to finish on time. So that we can 

use the tables of values for a normal distribution, we have to standardise the 

normal distribution using z-scores as in Eq. (10.21). This gives 

. P(y ≤ 150) = P

(

y − 160

20
≤

150 − 160

20

)

= P(z ≤ −
1

2
),

which using the central limit theorem, Eq. (10.23), and the table (refer to the 

information provided in the footnote of Sect. 10.6.2.2) gives us 

. P(z ≤ −
1

2
) = �(−

1

2
) = 0.3085.

A special case of the central limit theorem is the De Moivre-Laplace theorem. Let 

ηn . be a binomial random variable with parameters (n, p).. Then, De Moivre-Laplace 

theorem states: 

.P(a ≤ ηn ≤ b) ≈ �

(

b − np
√

np(1 − p)

)

− �

(

a − np
√

np(1 − p)

)

, (11.5) 

where np and np(1 − p). are the mean and variance of a binomial distribution 

(see Sect. 10.6.1.3 of Chap. 10). These values are needed to make the normal 

distribution into a standard normal distribution so we can use a table of values. 

See also Eq. (10.24) in Chap. 10, which is where the above equation comes from. 

Example 11.3 There are 100 computers running independently in a PC lab. 

The probability of the actual working time of each PC is 80%. of the total lab 

opening time each day. Compute the probability that there are between 70 and 

86 computers working at any lab opening time. 

Solution Suppose each computer has two statuses: working or not working. 

Since computers work independently, we consider 100 computers as 100 

Bernoulli trials. Repeated Bernoulli trials give us a binomial distribution— 

see Sect. 10.6.1.3 of Chap. 10. Suppose the number of working computers is 

ηn ∼ B(100, 0.8).. Since the mean of this binomial distribution is np = 80. 

and the standard deviation of this binomial distribution is
√

np(1 − p) = 4., 

(continued)
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Example 11.3 (continued) 

we can standardise the normal distribution using z-scores as in Eq. (10.21) 

and have 

. P(70 ≤ ηn ≤ 86) =P

(

70 − 80

4
≤

ηn − 80

4
≤

86 − 80

4

)

=P

(

− 2.5 ≤
ηn − 80

4
≤ 1.5

)

.

Applying Eq. (11.5), we have 

. P

(

− 2.5 ≤
ηn − 80

4
≤ 1.5

)

= �(1.5) − �(−2.5) = 0.9270.

Exercises 

11.1 For the doctor’s surgery introduced in Example 11.2: 

(1) Confirm that if the expected number of 15 patients turn up for a morning 

appointment, then the probability of the doctor finishing on time is 0.5.. 

(2) One of the doctors deals with only older patients, and it is found that 

these require an appointment with an average length of 15 minutes and 

a standard deviation of 10 minutes. Again, if an emergency patient turns 

up one morning so that there are 11 instead of the 10 expected patients to 

see, find the chance that the doctor can finish on time. 

(3) Now assume that the older patients still take an average of 15 minutes, but 

now the standard deviation is 5 minutes. Again, 11 instead of 10 patients 

arrive, finding the chance that the doctor can finish on time. 

11.2 Compute the probability of coming-up heads is greater than 60 times 

when flipping a fair coin 100 times. 

Remark 11.2 The law of large numbers (LLN) and the central limit theorem (CLT) 

are used for different purposes. LLN addresses the convergence of sample means to 

the population mean, while CLT concerns the convergence of sample means to a 

normal distribution. 

�.
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11.2 Multiple Random Variables 

In many real-world applications, it is not enough to compute the mean and variance 

of one random variable. Studying two or more random variables defined on the same 

sample space is important. For example, consider tossing one fair coin five times 

and repeat this experiment many times. We use X to denote the random variable of 

observing the number of coming-up heads in the first two tosses, and Y denotes the 

number of heads-up in the last three. Then, we can compute the joint p robability

of (X, Y ).. That is, we are interested in the probability distribution of both random 

variables, X and Y .

11.2.1 Joint Probability Distributions: Discrete Random 

Variables 

Let us start with two examples to bear in mind while reading this. 

First: We could roll a fair six-sided die and define X = 1. if an even number 

is thrown and X = 0. otherwise. We could also define Y = 1. if a square number 

is thrown (i.e., a one or a four) and Y = 0. otherwise. Here, we can look at joint 

probabilities such as the chance of throwing an even number and a square number, 

that is, both X = 1. and Y = 1.. 

Second: Consider an ordinary pack of cards and turn over a card to look at it. 

Define X = 1. if it is a red card and X = 0. if it is a black card. Also, define Y = 1. if 

it is a “high” card (defined to be an Ace, a King, a Queen, or a Jack) so that Y = 0. 

for all other cards (2, 3, 4, 5, 6, 7, 8, 9, 10). Here, we can consider the probability of 

it being black and a high card (X = 0. and Y = 1.), for instance. 

11.2.1.1 Joint Probability Mass Functions and Cumulative Distribution 

Functions 

Consider two discrete random variables, X and Y . The joint probability mass 

function, pXY (x, y)., can be given by 

.pXY (xi, yj ) = P(X = xi, Y = yj ), (11.6) 

where (xi, yj .) denotes pairs of values X and Y can take. In the case of the die 

roll, both X and Y can only take the values 0 and 1. So, pXY (xi, yj ). is a table of 

probabilities with the four combinations, which are 

.P(X = 0, Y = 0), P (X = 1, Y = 0), P (X = 0, Y = 1), and P(X = 1, Y = 1).
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Properties of pXY (xi, yj ). 

1. Each joint probability is between 0 and 1: 

. 0 ≤ pXY (xi, yj ) ≤ 1.

2. The sum of all the joint probabilities adds up to 1: 

. 

∑

xi

∑

yj

pXY (xi, yj ) = 1,

where the summation is taken over all possible pairs of (xi, yj ).. 

The joint cumulative distribution function of X and Y , denoted by FXY (x, y).,  is  

again the sum of all the probabilities, in this case for xi . up to x and for yj . up to y. 

The function is defined by 

.FXY (x, y) = P(X ≤ x, Y ≤ y) =
∑

xi≤x

∑

yj ≤y

pXY (xi, yj ). (11.7) 

11.2.1.2 Marginal Probability Distributions 

Consider two discrete random variables X and Y .  I  f

.P(X = xi) = pX(xi) =
∑

yj

P(X = xi, Y = yj ), (11.8) 

that is, the summation is taken over all possible values (xi, yj ).with xi . fixed. In this 

case, Eq. (11.8) is called the marginal probability mass function of X. So, you could 

find the sum of the probabilities for Y when X is fixed, for instance, at X = 0.. 

Similarly, the marginal probability mass function of Y is given b y

.P(Y = yj ) = pY (yj ) =
∑

xi

P(X = xi, Y = yj ). (11.9) 

Remark 11.3 Note that X and Y are independent random variables, if

.pXY (xi, yj ) = pX(xi)pY (yj ). (11.10) 

�. 

We can visualise the joint and marginal probability distributions through a table.
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Example 11.4 Flipping two fair coins. Let 

. X =
{

0, The first coin tails-up,

1, The first coin heads-up,

and 

. Y =
{

0, The second coin tails-up,

1, The second coin heads-up.

Compute the probability distribution of (X, Y ).. 

Solution Possible values of (X, Y ). are (0, 0)., (0, 1)., (1, 0). , and (1, 1).. 

Assume two flips are independent. 

Applying Eqs. (11.6) and (11.10), we can obtain p11, p12, p21,. and p22 .. 

For example, 

. p11 = P(X = 0, Y = 0) = P(X = 0)P (Y = 0) =
1

2
×

1

2
=

1

4
.

Therefore, the joint probability mass distribution of (X, Y ). is shown in 

Table 11.1. 

Table 11.2 shows the joint cumulative distribution function of (X, Y )..  The  

value in each cell is obtained by summing over values of the joint probability 

mass function (i.e., to apply Eq. (11.7)). For example, consider FXY (X =
0, Y = 1).: 

. FXY (X = 0, Y = 1) = P(X = 0, Y = 0)+P(X = 0, Y = 1) =
1

4
+
1

4
=

1

2
.

The marginal probability distribution of (X, Y ). is computed by applying 

Eq. (11.8)  or  Eq  . (11.9). For example, P(X = 0) = pX(X = 0) = (P (X =
0, Y = 0) + P(X = 0, Y = 1)) = 1

4
+ 1

4
= 1

2
.. Table 11.3 shows the marginal 

probability distribution of (X, Y ).. 

Table 11.1 The joint 

probability mass function of 

X and Y as given i n

Example 11.4 

X=0 X=1 

Y=0 1
4
.

1
4
. 

Y=1 1
4
.

1
4
.
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Table 11.2 The joint 

cumulative distribution 

function of X and Y as given 

in Example 11.4 

X=0 X=1 

Y=0 1
4
.

1
2
. 

Y=1 1
2
. 1 

Table 11.3 The marginal 

probability of X and Y (as 

given in Example 11.4)  are  

shown in the last row and the 

last column of the table

X=0 X=1 P(Y = yi). 

Y=0 1
4
.

1
4
.

1
2
. 

Y=1 1
4
.

1
4
.

1
2
. 

P(X = xi).
1
2
.

1
2
. – 

Example 11.5 Now, let us do the dice-throwing example where 

. X =
{

0, An odd number is thrown,

1, An even number is thrown,

and 

. Y =
{

0, A non-square number is thrown,

1, A square number is thrown.

Compute the joint probability distribution and the marginal probability distri-

bution for (X, Y ).. 

Solution Possible values of (X, Y ). are (0, 0)., (0, 1)., (1, 0)., and (1, 1).. 

Assume two throws are independent. 

Applying Eqs. (11.6) and (11.10), we can obtain p11, p12, p21,. and p22 .. 

For example, 

. p22 = P(X = 1, Y = 1) = P(X = 1)P (Y = 1) =
1

2
×

1

3
=

1

6
.

Therefore, the joint probability mass distribution of (X, Y ). is shown in 

Table 11.4. 

The marginal probability distribution of (X, Y ). is computed by applying 

Eq. (11.8). For example, P(X = 0) = pX(X = 0) = P(X = 0, Y =
0) + P(X = 0, Y = 1) = 1

3
+ 1

6
= 1

2
.. Table 11.4 also shows the marginal 

probability distribution of (X, Y )..
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Table 11.4 The joint probability mass function of X and Y (as given in Example 11.5)  with  the  

marginal probability of X and Y shown in the last row and the last column of the table

X=0 X=1 P(Y = yi). 

Y=0 1
3
.

1
3
.

2
3
. 

Y=1 1
6
.

1
6
.

1
3
. 

P(X = xi).
1
2
.

1
2
. – 

Table 11.5 An example of a 

joint probability mass 

function of X (games) and Y 

(weather) as given i n

Example 11.6 

X \.Y Sunny Cloudy Rainy 

Badminton 0 0 1
9
. 

Swimming 3
9
.

1
9
.

1
9
. 

Football 2
9
.

1
9
. 0 

Table 11.6 An example of a 

joint probability mass 

function of X (games) and Y 

(weather) as given i n

Example 11.6 

X \.Y Sunny Cloudy Rainy P(X = xi). 

Badminton 0 0 1
9
.

1
9
. 

Swimming 3
9
.

1
9
.

1
9
.

5
9
. 

Football 2
9
.

1
9
. 0 3

9
. 

P(Y = yi).
5
9
.

2
9
.

2
9
. – 

Example 11.6 Suppose we have two random variables. X denotes the game 

Jack wants to play; Y denotes the weather condition. Table 11.5 shows the 

joint probability mass distribution of (X, Y )., where the total probability of 

this table is equal to 1. The probability of Jack playing football when it is 

sunny is P(X = f ootball, Y = sunny) = 2
9
. as shown in the table. 

We need to apply Eq. (11.7) to obtain the cumulative distribution. However, 

X and Y are two categorical variables, and we cannot simply say Y =
Sunny < Y = Rainy.. Therefore, we can only set up the cumulative 

distribution table if given more information. 

Table 11.6 shows the marginal probability distribution. If we sum over a 

row in Table 11.5, we are looking at all pairs (xi, yj )., where Y can take on all 

three values with the value of X fixed. For example, the probability of Jack 

swimming is P(X = Swimming) = 3
9

+ 1
9

+ 1
9

= 5
9
.. Similarly, if we sum 

over a column, we consider all possible values of X, and then we obtain the 

marginal probability mass value of Y .
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Exercises 

11.3 Given the pack of cards example described earlier, that is, 

. X =
{

0, The card is black,

1, The card is red,

and 

. Y =
{

0, The card is a “low” card,

1, The card is a “high” card,

find the joint probability distribution of (X, Y) and the marginal probability 

distribution of (X, Y). 

11.4 There are five balls, three red and two green, in a bag. Take two balls one 

by one from the bag without putting them back. Define X and Y as follows:

. X =
{

0, The first one is green,

1, The first one is red,

and 

. Y =
{

0, The second one is green,

1, The second one is red.

Compute the joint probability distribution of (X, Y) and the marginal 

probability of (X, Y ).. 

11.5 There are ten balls, five red, three green, and two yellow, in a bag. Take 

a ball from the bag and put it back, and then take a second ball. Define X and 

Y as follows:

. X =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, The first one is yellow,

1, The first one is green,

2, The first one is red,

(continued)



11.2 Multiple Random Variables 305

and 

. Y =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, The second one is yellow,

1, The second one is green,

2, The second one is red.

Compute the joint probability distribution of (X, Y) and the marginal 

probability of (X, Y ).. 

11.2.2 Joint Probability Distributions: Continuous Random 

Variables 

This is similar to the previous section, except, since the random variables are 

continuous, we need to integrate rather than add up probabilities. Also, since we 

have two random variables, the probability density function is a surface “above” 

the two variables plotted horizontally. To find probabilities, we need to use double 

integration to find the volume “under” the surface as in Sect. 6.3 of Chap. 6. 

11.2.2.1 Joint Probability Mass Functions and Cumulative Distribution 

Functions 

Consider two continuous random variables X and Y . The joint probability density 

function, fXY (x, y)., can be given by 

.fXY (x, y) =
∂2FXY (x, y)

∂x∂y
, (11.11) 

where FXY (x, y). is the cumulative distribution function given by 

.FXY (x, y) =
∫ x

−∞

∫ y

−∞
fXY (η, ξ)dηdξ. (11.12) 

Properties of fXY (x, y). 

1. fXY (x, y) ≥ 0., probability is always positive. 

2.
∫ ∞ 

−∞
∫ ∞ 

−∞ 
fXY (x, y)dxdy = 1., the total probability is always 1. 

3. fXY (x, y ). is continuous for all values of (x, y)., or except for a finite set. 

4. P(X,  Y  ∈ D) =
∫∫

D 
f (x, y)dxdy..
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Example 11.7 Let us start with a really simple example: The joint probability 

density function of (X, Y ). is given by 

. fXY (x, y) =
{

1, 0 < x < 1, 0 < y < 1

0, otherwise.

This is a uniform distribution. The two random variables, x and y, go from 

0 to 1, and the probability density function is just a flat surface “above” at a 

constant “height” of 1. (See the equivalent distribution with one variable given 

in Sect. 10.6.2.1 and illustrated on the left in Fig. 10.8 in Chap. 10.). Here, it 

would be illustrated by a cube of size 1. Show that 
∫ ∞
−∞

∫ ∞
−∞ fXY (x, y)dxdy = 1.. 

Find: 

1. The cumulative distribution function FXY (x, y). 

2. P(0 ≤ X  <  
1 
2
, 0 ≤ Y < 1

2
). 

3. P(X  + Y  <  1). 

Solution
∫ ∞ 

−∞
∫ ∞ 

−∞ 
fXY (x, y)dxdy =

∫ 1 
0

∫ 1 
0 
1dxdy =

∫ 1 
0 

x

∣

∣

∣

∣

1 

0 

dy =

∫ 1 
0 
1dy = y

∣

∣

∣

∣

1

0

= 1.. 

1. Applying Eq. (11.12), when 0 < x < 1. and 0 < y < 1.,  we  ha  ve
∫ x

0

∫ y

0 1dηdξ =
∫ y

0 η

∣

∣

∣

∣

x

0

dξ =
∫ y

0 xdξ = xη

∣

∣

∣

∣

y

0

= xy.. 

Hence, we have 

. FXY (x, y) =
{

xy, 0 < x < 1, 0 < y < 1

0, otherwise .

2. P(0 ≤ X  <  
1 
2
, 0 ≤ Y  < 1

2
) =. 

∫

1
2

0

∫

1
2

0 1dxdy =
∫

1
2

0 x

∣

∣

∣

∣

1
2

0

dy =
∫

1
2

0
1
2
dy = 1

2
y

∣

∣

∣

∣

1
2

0

= 1
4
.. 

This answer makes sense if you think about it. With 0 < x < 1
2
. and 

0 < y < 1
2
., looking “down” on the cube, we are taking just a quarter of the 

horizontal area. So, since the probability density function is uniform, this 

gives a quarter of the volume, that is, a quarter of the total probability. 

3. P(X+Y  < 1)..This is more complicated since the limits of the integration 

involve the line x + y = 1.. Looking back at the examples in Sect. 6.3 of 

(continued)
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Example 11.7 (continued) 

Chap. 6, we can use the y limits of 0 to 1 − x . and the x limits of 0 to 1. 

This giv es

P(X + Y < 1) =. 

∫ 1
0

(

∫ 1−x

0 1dy

)

dx =
∫ 1
0 y

∣

∣

∣

∣

1−x

0

dx =
∫ 1
0 1 − xdx = x − 1

2
x2

∣

∣

∣

∣

1

0

= 1
2
.. 

This again makes sense, since the line x +y = 1. cuts the horizontal area in 

half, and so, since the probability density function is uniform, the volume 

and probability are also a half. 

Example 11.8 The joint probability density function of (X, Y ). is given by 

. fXY (x, y) =
{

Ce−(2x+3y), x > 0, y > 0

0, otherwise

where C is a constant. Find the follo wing:

1. The value of C. 

2. The cumulative distribution function FXY (x, y).. 

3. P(0 ≤ X  <  1, 0 ≤ Y < 2).. 

Solution 

1. Since
∫ ∞
−∞

∫ ∞
−∞ fXY (x, y)dxdy = 1.,  we  ha  ve

. 

∫ ∞

0

∫ ∞

0

Ce−(2x+3y)dxdy = C

∫ ∞

0

e−2xdx

∫ ∞

0

e−3ydy

= C × (−
1

2
)

×(−
1

3
)

∫ ∞

0

e−2xd(−2x)

∫ ∞

0

e−3yd(−3y)

=
C

6
e−2x

∣

∣

∣

∣

∞

0

e−3y

∣

∣

∣

∣

∞

0

=
C

6
= 1.

Therefore, C = 6.. 

(continued)
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Example 11.8 (continued) 

2. Applying Eq. (11.12), when x > 0. and y > 0.,  we  ha  ve

. 

∫ x

0

∫ y

0

6e−(2η+3ξ)dηdξ = e−2η

∣

∣

∣

∣

x

0

e−3ξ

∣

∣

∣

∣

y

0

= (e−2x − 1)(e−3y − 1).

Hence, we have 

. FXY (x, y) =
{

(e−2x − 1)(e−3y − 1), x > 0, y > 0

0, otherwise .

3. P(0 ≤ X  <  1, 0 ≤ Y  <  2) = 6
∫ 1 
0 

e−2x dx
∫ 2 
0 

e−3y dy = e−2x

∣

∣

∣

∣

1 

0 

e−3y

∣

∣

∣

∣

2 

0 

= 

(e−2 − 1)(e−6 − 1) ≈ 0.8625.. 

Exercise 

11.6 The joint probability density function of (X, Y ). is given by 

. fXY (x, y) =
{

A(x + y), 0 < x < 4, 0 < y < 4

0, otherwise

where A is a constant. Find the follo wing:

(1) The value of A. 

(2) The cumulative distribution function FXY (x, y).. 

(3) P(0 ≤ X  <  2, 0 ≤ Y < 2).. 

(4) P(X  + Y  <  4).. 

11.2.2.2 Marginal Probability Distributions 

Consider two continuous random variables X and Y . The marginal probability 

density function of X or Y is gi ven by

.fX(x) =
∫ ∞

−∞
fXY (x, y)dy, (11.13)
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or 

.fY (y) =
∫ ∞

−∞
fXY (x, y)dx, (11.14) 

respectively. This is like just adding up the values in a row or a column in the discrete 

case. 

Example 11.9 The joint probability distribution function of random variables 

X and Y is giv en by

. fXY (x, y) =
{

2e−(2x+y), x > 0, y > 0

0, otherwise.

Compute the marginal probability distribution of X. 

Solution Applying Eq. (11.13), the marginal probability distribution of X is 

. fX(x) = 2e−2x ×
∫ ∞

0

e−ydy

= −2e−2xe−y

∣

∣

∣

∣

∞

0

= 2e−2x .

Exercises 

11.7 The joint probability distribution function of random variables X and Y 

is giv en by

. fXY (x, y) =
{

1
x
e

−y
x e−x, x > 0, y > 0

0, otherwise.

Compute the marginal probability distribution of X. 

11.8 The joint probability density function of (X, Y ). is given by 

. fXY (x, y) =
{

Acos(x − y), 0 < x < π
2
, 0 < y < π

2

0, otherwise

(continued)
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where A is a constant. Find the follo wing:

(1) The value of A. 

(2) The cumulative distribution function FXY (x, y).. 

(3) P(0 ≤ X  <  
π 

4 
, 0 ≤ Y < π

4
).. 

(4) The marginal probability distribution of X. 

(5) The marginal probability distribution of Y . 

Remark 11.4 Note that X and Y are independent random variables, if

. FXY (x, y) = FX(x)FY (y),

or 

. fXY (x, y) = fX(x)fY (y).

�. 

11.2.2.3 Covariance 

Consider two jointly distributed continuous random variables X and Y . We can 

define the covariance via the expected value as follo ws:

.cov(X, Y ) = E
(

(X − E(X))(Y − E(Y ))
)

. (11.15) 

Remark 11.5 We can see that this definition fits the shape of the original sample 

covariance definition, which was in Sect. 4.2.1 of Chap. 4, namely, 

. cov(xh, xk) =
∑n

i=1(xi,h − x̄h)(xi,k − x̄k)

n − 1
.

As can be seen, it basically multiplies each value of one variable, with its mean 

subtracted, and with each value of the other variable, with its mean subtracted. 

It then sums all of these together and divides the result by a constant. The final 

summing is basically finding a mean again. Hence, the given definition is of the 

correct form. 

�.
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Equation (11.15) can be further expanded using properties of the expected value 

given in Sect. 10.5.1.1 of Chap. 10 as follows: 

. cov(X, Y ) = E
(

(X − E(X))(Y − E(Y ))
)

= E
(

XY − E(X)Y − XE(Y ) + E(X)E(Y )
)

(11.16)

= E(XY) − E(X)E(Y ) − E(X)E(Y ) + E(X)E(Y )

= E(XY) − E(X)E(Y ).

Hence, if cov(X, Y ) = 0., that is, if X and Y are uncorrelated, then we ha ve

E(XY) = E(X)E(Y ).. 

We have the two following properties of uncorrelated variables: 

• If X and Y are independent random variables, they are also uncorrelated. This 

can be proved as f ollows:

. E(XY) =
∫ ∫

xyfXY (x, y)dxdy

=
∫ ∫

xyfX(x)fY (y)dxdy

=
∫

xfX(x)

( ∫

yfY (y)dy

)

dx (11.17)

=
(∫

xfX(x)dx

)( ∫

yfY (y)dy

)

= E(X)E(Y ).

• However, if X and Y are uncorrelated, they can still be dependent as the following 

e xample illustrates.

Example 11.10 This relationship is usually illustrated by using variables that 

have clearly got zero mean, so that cov(X, Y ). is also zero. A common example 

is the following: 

Let X be uniformly distributed in the interval [−1, 1].. It clearly has a mean 

value at the centre, that is, E(X) = 0.. Now, define Y so that y = x2
. in the 

interval [−1, 1]. and zero elsewhere. This also obviously has a mean value 

at the centre, since it is evenly distributed either side of zero. So, E(Y) = 0. 

Now, E(XY) = E(X3)., which again has its mean value at the centre. So 

E(XY) = 0..  We  now  have cov(X, Y ) = E(XY) − E(X)E(Y ) = 0.. So, X 

and Y are uncorrelated.

(continued)
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Example 11.10 (continued) 

However, from the way that Y was defined, it is clearly dependent on X. 

So, X and Y are uncorrelated and also dependent.

We can now do an example of finding the covariance between two continuous 

random variables. We will start with the easy example described in Example 11.7. 

Example 11.11 Start with the example started in Example 11.7, namely, the 

joint probability distribution function of random variables X and Y giv en by

. fXY (x, y) =
{

1, 0 < x < 1, 0 < y < 1

0, otherwise.

Find the covariance of X and Y .

Solution To find the covariance, we will use Eq. (11.16). This requires 

finding E(X). and E(Y )., which means we need to know fX(x). and fY (y). 

as is seen from the definition of mean given in Eq. (10.8) in Sect. 10.5 of 

Chap. 10.  But fX(x). and fY (y). are just the marginal probability distributions 

of X and Y . To find fX(x).,  we  use  E  q. (11.13): 

fX(x) =
∫ ∞
0 1dy = y

∣

∣

∣

∣

1

0

= 1.. 

To find fY (y).,  we  use  E  q. (11.14): 

fY (y) =
∫ ∞
0

1dx = x

∣

∣

∣

∣

1

0

= 1.. 

We can now find E(X). and E(Y ). using Eq. (10.8): 

. E(X) =
∫ ∞

−∞
xfX(x)dx =

∫ 1

0

xdx =
x2

2

∣

∣

∣

∣

1

0

=
1

2

By a similar calculation, we find that 

. E(Y ) =
∫ ∞

−∞
yfY (y)dy =

∫ 1

0

ydy =
y2

2

∣

∣

∣

∣

1

0

=
1

2
.

Then, we find E(XY).: E(XY) =
∫ ∞
−∞

∫ ∞
−∞ xyfXY (x, y)dxdy =. 

∫ 1
0

∫ 1
0 xydxdy =

∫ 1
0 y x2

2

∣

∣

∣

∣

1

0

dy =
∫ 1
0

1
2
ydy = y2

4

∣

∣

∣

∣

1

0

= 1
4
.. 

Finally, cov(X, Y ) = E(XY) − E(X)E(Y ) = 1
4

− 1
2

× 1
2

= 0..
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Example 11.12 We will continue with the example started in Example 11.9, 

namely, the joint probability distribution function of random variables X and 

Y giv en by

. fXY (x, y) =
{

2e−(2x+y), x > 0, y > 0

0, otherwise.

Find the covariance of X and Y .

Solution To find the covariance, we will use Eq. (11.16). Again, this requires 

finding E(X). and E(Y )., which means we need to know fX(x). and fY (y). as is 

seen from the definition of mean given in Eq. (10.8) in Sect. 10.5 of Chap. 10. 

fX(x). and fY (y). are the marginal probability distributions of X and Y .  In  

fact, Example 11.9 already found fX(x)..  It  was fX(x) = 2e−2x
.. 

To find fY (y).,  we  use  E  q. (11.14): 

fY (y) = 2e−y ×
∫ ∞
0 e−2xdx = −e−ye−2x

∣

∣

∣

∣

∞

0

= e−y .. 

We can now find E(X). and E(Y ). using Eq. (10.8): 

. E(X) =
∫ ∞

−∞
xfX(x)dx = 2

∫ ∞

0

xe−2xdx

This integral is calculated using integration by parts (Sect. 5.5.2 of Chap. 5) 

with u = x . and dv
dx

= e−2x
.,  givin  g

. 2x
e−2x

−2

∣

∣

∣

∣

∞

0

− 2

∫ ∞

0

e−2x

−2
× 1dx = 0 +

e−2x

−2

∣

∣

∣

∣

∞

0

=
1

2
.

By a similar calculation, we find that 

. E(Y ) =
∫ ∞

−∞
yfY (y)dy =

∫ ∞

0

ye−ydy = 1.

Finally, we find E(XY).: 

.E(XY) =
∫ ∞

−∞

∫ ∞

−∞
xyfXY (x, y)dxdy

=
∫ ∞

0

∫ ∞

0

xy2e−(2x+y)dxdy

= 2

∫ ∞

0

ye−y

( ∫ ∞

0

xe−2xdx

)

dy

(continued)
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Example 11.12 (continued) 

= 
1 

2

∫ ∞ 

0 

ye−y dy 

= 
1

2
.

Both integrals use integration by parts again (and in fact are the same as the 

integrals calculated to find E(X). and E(Y ).). 

Finally, 

. cov(X, Y ) = E(XY) − E(X)E(Y ) =
1

2
−

1

2
× 1 = 0.

Exercises 

11.9 The joint probability distribution function of random variables X and Y 

is given by

. fXY (x, y) =
{

6e−(2x+3y), x > 0, y > 0

0, otherwise.

Find cov(X, Y ).. 

11.10 The joint probability distribution function of random variables X and 

Y is given by

. fXY (x, y) =

⎧

⎨

⎩

(x + y)

64
, 0 < x < 4, 0 < y < 4

0, otherwise

Find cov(X, Y ).. 

11.2.3 Multinomial Distribution 

A binomial distribution (see Sect. 10.6.1.3 of Chap. 10)  is  used  to  study  the  

probability distribution of multiple independent trials, each with two possible 

outcomes. The multinomial distribution gives the probability of an event over
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multiple trials when we have more than two possible outcomes for each trial. So, 

this is a generalisation of a binomial distribution. 

Consider n repeated and independent trials. Suppose each trial has k possible 

outcomes. Let Xi . be the discrete random variable taking values of xi ., which 

is the number of occurrences of outcome i, and i = 1, 2, · · · , k .. Then, we 

have x1, x2, · · · , xk ∈ [0, 1, · · · , n]., such that x1 + x2 + · · · + xk = n..  Le  t

p1, p2, · · · , pk ∈ [0, 1]. and
∑k

i=1 pi = 1.. 

For example, in a bag containing three types of fruit (apples, oranges, and pears), 

if you pick one out of the bag, there are just three outcomes (an apple, an orange, 

or a pear). If a trial consists of taking one fruit out without looking, noting its type, 

and replacing it, then the probabilities remain the same for each trial. Suppose you 

do ten trials. Then, x1 . is the number of times an apple is picked, x2 . is the number of 

times an orange is picked, and x3 . is the number of times a pear is picked. Obviously, 

each xi . is a number between 1 and 10 (you could pick an apple each time, in which 

case x1 . is ten and x2 . and x3 . are zeros). Whatever the types of fruit picked, the total 

must add up to ten, that is, x1 + x2 + x3 = 10.. The probabilities of picking each 

fruit, p1, p2, p3 ., depend on the numbers of each in the bag (this does not count any 

differences in feel between the three fruits!). 

The probability mass function for the multinomial distribution is given by 

.pX1X2···Xk
(x1, x2, · · · , xk) =

n!
x1!x2! · · · xk!

p
x1
1 p

x2
2 · · ·pxk

k . (11.18) 

This is just a generalisation of the equation for the binomial mass function given 

in Eq. (10.15) of Chap. 10. In that equation, there were just two outcomes with 

probability p and 1 − p ., where the first outcome happened x times, so the other 

happened n − x . times. Now, we have k different occurrences happening x1, · · · , xk . 

times, respectively, to replace the x and n − x .. 

The mean and variance of Xi . are given by 

.E(Xi) = npi, (11.19) 

and 

.V ar(Xi) = npi(1 − pi), (11.20) 

respectively.
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Example 11.13 Suppose that a fair die is rolled eight times. Find the 

probability that one, two, three, and four dots appear once each and five dots 

and six dots twice each. 

Solution Applying Eq. (11.18), we have 

. P(X1 = 1, X2 = 1, X3 = 1, X4 = 1, X5 = 2, X6 = 2)

=
8!

1!1!1!1!2!2!

(

1

6

)1(
1

6

)1(
1

6

)1(
1

6

)1(
1

6

)2(
1

6

)2

≈ 0.006.

Exercise 

11.11 There are 100 marbles of the same size but four different colours 

in a bag. The ratio of red, black, white, and yellow is 2:3:4:1. Jack takes 

six marbles from the bag without looking, replacing the marble each time. 

Compute the probability that he takes two red, one black, and three yellow. 

11.2.4 Multivariate Normal Distribution 

Let X1, . . . , Xd . be independent normally distributed with means μ1, . . . , μd . and 

variance σ 2
1 , . . . , σ 2

d .. Then, the joint density of X1, . . . , Xd . is 

.fX(x1, . . . , xd) =
1

(2π)
d
2

d
∏

i=1

(

1

σi

)

exp

(

−
1

2

d
∑

i

(xi − μi)
2

σ 2
i

)

, (11.21) 

where X. is a d-dimensional random vector [X1, . . . , Xd ].. 
Let us look at this for d = 2.: 

.fX(x1, x2) =
1

(2π)

1

σ1σ2
exp

(

−
1

2

(

(x1 − μ1)
2

σ 2
1

)

−
1

2

(

(x2 − μ2)
2

σ 2
2

))

=
1

(2π)

1

σ1σ2
e
− (x1−μ1)2

2σ2
1 × e

− (x2−μ2)2

2σ2
2

=
(

1
√
2π

1

σ1
e
− (x1−μ1)2

2σ2
1

)

×
(

1
√
2π

1

σ2
e
− (x2−μ2)2

2σ2
2

)

.
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If you look back at Eq. (10.19) in Chap. 10, you can see that this is just two normal 

distribution equations in two different dimensions multiplied together. 

Since Eq. (11.21) is an equation in vectors, it can also be expressed as follows: 

.fX(x) =
1

(2π)
d
2 |�0|

1
2

exp[−
1

2
(x − μ)T �

−1
0 (x − μ)], (11.22) 

where μ. is the mean vector and �0 . is a diagonal matrix: 

. 	0 =

⎡

⎢

⎢

⎢

⎣

σ 2
1 0 . . . 0

0 σ 2
2 . . . 0

...
...

. . .
...

0 0 . . . σ 2
d

⎤

⎥

⎥

⎥

⎦

.

Again you can check this by expanding out the d = 2. case, where 

. 	0 =
[

σ 2
1 0

0 σ 2
2

]

,

and 

. 	−1
0 =

1

σ 2
1 σ 2

2

×
[

σ 2
2 0

0 σ 2
1

]

.

In fact, �0 . in Eq. (11.22)  is  a  d-dimensional covariance matrix with no cross-

correlation between any of X1, . . . , Xd .. The multivariate normal distribution can 

be denoted as X ∼ N(μ,�0).. 

A more general formula for the joint density of a random vector X =
[X1, . . . , Xd ]. of size d, which is distributed according to a multivariate normal 

distribution and does have a cross-correlation between the X1, . . . , Xd ., is given as 

follows: 

.fX(x) =
1

(2π)
d
2 |�|

1
2

exp[−
1

2
(x − μ)T �−1(x − μ)], (11.23) 

where μ. is the mean vector and � . is a general covariance matrix. It can be denoted 

as X ∼ N(μ,�).. 

Figure 11.2 shows two contour plots of bivariate normal distributions with 

100 samples, each displayed as the plus signs. The left panel shows a bivariate 

distribution as 

.N

( [

2

4

]

,

[

1 0

0 1

] )

,
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Fig. 11.2 Examples of bivariate normal distribution. In the left panel, the two normal random 

variables are uncorrelated; in the right panel, the two normal random variables are positively 

correlated 

where the covariance between X1 . and X2 . is 0, that is, X1 . and X2 . are uncorrelated. 

The right panel shows a bivariate distribution as 

. N

( [

2

4

]

,

[

1 1.5

1.5 4

] )

,

where the covariance between X1 . and X2 . is 1.5.. As can be seen in the plot, it shows 

that as values of X1 . increase, values of X2 . also increase. That is, the two variables 

are positively correlated. 

Figure 11.3 shows another example of a two-dimensional multivariate normal 

distribution: 

. N

( [

0

0

]

,

[

0.49 0.4

0.4 1

] )

.

The left panel presents the probability density distribution. The right displays its 

corresponding cumulative distribution. 

Variables with a multivariate normal distribution with a mean vector μ. and a 

covariance matrix � . have the following properties: 

• Every single variable has a univariate normal distribution. 

• Any subset of the variables also has a multivariate normal distribution. 

• Any linear combination of the variables has a univariate normal distribution. 

• Any conditional distribution for a subset of the variables dependent on known 

values for another subset of variables is a multivariate distribution. 

We will discuss conditional probability in the following section.
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Fig. 11.3 An example of a two-dimensional multivariate normal distribution. The left panel 

presents the probability density distribution. The right displays its corresponding cumulative 

distribution 

11.3 Conditional Probability and Corresponding Rules 

11.3.1 Conditional Probability 

So far, we have discussed the probability of an event (E) occurring without any 

conditions. Sometimes, a specific event may happen under certain conditions. Let 

us consider the following example first. 

Example 11.14 100 people showed up for a new test for bowel cancer. 30 of 

them have bowel cancer. 40 people had a positive test result, of which 25 had 

bowel cancer. Calculate the following: 

• The probability of people having bowel cancer and testing positive. 

• The likelihood of people having bowel cancer or being tested positive. 

Solution Let us define event A, people have bowel cancer, and event B,  the  

test result of people was positive. Figure 11.4 shows the Venn diagram of this 

example. In this figure, A has 35 people, B has 40 people, and 25 people are 

in both A and B, denoted as A ∩ B . in the diagram. So, this means there are 

ten people in A but not in A ∩ B ., and 15 people in B but not in A ∩ B .. 

So, from the diagram, among the total 100 people, 25 people have bowel 

cancer and tested positive, that is, A ∩ B .. Thus, the probability of people who 

(continued)



320 11 Further Probability

Example 11.14 (continued) 

actually have bowel cancer and who tested positive is 

. P(A ∩ B) =
25

100
= 25%.

To calculate the probability of people having bowel cancer or being tested 

positive, we need to know the number of people in set A and B, that is, P(A∪
B).. But if we add A and B together, we get the overlapping area of A ∩ B . 

twice, so we need to subtract the overlapping area. We, therefore, have 35 +
40 − 25 = 50.. (Alternatively, we add the number in A but not in A ∩ B ., 

that is, A\(A ∩ B) = 10., plus the number in B but not in A ∩ B ., that is, 

B\(A ∩ B) = 15., and the number in A ∩ B . = 25. This gives 50, as before). 

Thus, the probability of people either having bowel cancer or being tested 

positive is 

. P(A ∪ B) =
50

100
= 50%.

Alternatively, we have, as a formula (see Sect. 11.3.3), 

. P(A ∪ B) = P(A) + P(B) − P(A ∩ B) =
35

100
+

40

100
−

25

100
= 50%.

11.3.1.1 Conditional Probability for Two Discrete Random Variables 

Conditional probability is the probability of some event happening given that some 

other event has already occurred. So, the probability is conditional on the other event 

having occurred. The probability that X = xi . given that Y = yj . is usually written 

as pX|Y (xi |yj ). or as p(X = xi |Y = yj ).. 

Fig. 11.4 The Venn diagram 

of Example 11.14. A 

represents having cancer, and 

B represents testing positive
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Definition 11.1 Suppose (X, Y ). are two discrete random variables with joint 

probability mass function pXY (xi, yi).. The conditional probability mass function 

of X given that Y = yj . is defined as 

.pX|Y (xi |yj ) =
pXY (xi ∩ yj )

pY (yj )
, where pY (yj ) > 0. (11.24) 

Note that 0 ≤ pX|Y (xi |yj ) ≤ 1. and
∑

xi
pX|Y (xi |yj ) = 1.. 

This definition makes sense since, whereas normally we are dividing by the whole 

population to get a probability, now we are restricted to just those events that occur 

when Y = yj .. So, we divide by just the relevant ones, that is, all the Y = yj .’s. 

Example 11.15 Continue Example 11.14. What percent of those who tested 

positive have cancer? 

Solution Here, we have the condition that we are only interested in those who 

tested positive. That is, we want the number who have cancer given that they 

have already tested positive. Let X = A. denote people having bowel cancer, 

and Y = B ., the test result of people being positive. So, in Fig. 11.4,  we  are  

interested in those people with cancer inside circle B, that is, p(A ∩ B). as a 

proportion of all of B. 

Applying Eq. (11.24), we have 

. p(A|B) =
p(A ∩ B)

p(B)
=

25%

40%
= 62.5%.

In Example 11.14, we were given all the numbers, but often we have to work 

them out first, as in the next example. 

Example 11.16 A bag contains six red balls and four green balls. A ball is 

taken out but not put back, and then a second ball is taken out. Calculate the 

probability of picking a red ball as the second ball, given that the first ball was 

green. 

Solution Let A be the probability that the second ball is red and B be the 

probability that the first ball is green. We are interested in p(A|B).. So, we 

need the probability of the first ball being green, P(B)., which is 4
10

= 2
5
.. 

(continued)
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Example 11.16 (continued) 

We now need P(A ∩ B).. This is the probability that it is both A and B. So, 

we need the probability that the first ball is green and then the second is red, 

which is 4
10

× 6
9

= 4
15

.. Hence, using Eq. (11.24), we have 

. p(A|B) =
p(A ∩ B)

p(B)
=

4
15
2
5

=
2

3
.

Note that this is not equal to the probability of getting a red ball second. Doing 

this includes the case of getting a red first and then a red second, which is 
6
10

× 5
9

= 1
3
. as well as the case of getting a green followed by a red, which is 

4
15

. from above. So, the probability of getting a red second is 1
3

+ 4
15

= 3
5
.. 

Remark 11.6 Note that 

.p(Ā|B) = 1 − p(A|B), (11.25) 

where Ā. is the complement of A. 

This can be seen by considering the following illustration. If you are a man, then 

the probability you have a beard could be 1
5
., so that the probability that you do not 

have a beard is 4
5
.. If you define A as the probability of having a beard and B as the 

probability of being a man, then p(A|B). is the probability that you have a beard 

given that you are a man, and this is 1
5
.. So, p(Ā|B). is the probability of not having 

a beard given that you are a man, which is 1 − p(A|B) = 1 − 1
5

= 4
5
.. 

�. 

Exercises 

11.12 The percentage of all adults in America who are women and will have 

an episode of depression by the age of 65 is 16.667%.. The percentage of 

all adults in America who are men and will have an episode of depression 

by the age of 65 is 10%.. What is the probability that a given woman will 

have an episode of depression by the age of 65 in America? What is the 

probability that a given man will have an episode of depression by the age 

of 65 in America? (You can assume that the probabilities of an adult being 

male or female are both 50%..) 

11.13 In a certain university, there are 1000 students, of which 540 are 

female. Of the female students, 300 take humanities subjects, and the rest take 

(continued)
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science subjects. Of the male students, 180 take humanities subjects, and the 

rest take science subjects. For a given female student, what is the probability 

that they do science? For a given science student, what is the probability of 

them being female? For a given male student, what is the probability that they 

do science? 

11.14 Suppose we flip a fair coin three times. What is the probability of 

coming up precisely two heads, given the first flip is a heads-up? 

11.15 Ann has two children. You learn that she has a daughter, Sarah. What 

is the probability that Sarah’s sibling is a brother? (You can assume that the 

probabilities of a child being male or female are both 50%..) 

11.3.1.2 Conditional Probability for Two Continuous Random Variables 

This again follows the discrete variable case. 

Definition 11.2 Suppose (X, Y ). are two continuous random variables with joint 

probability density function fXY (x, y).. The conditional probability density function 

of X given that Y = y . is defined as 

.fX|Y (x|y) =
fXY (x, y)

fY (y)
, where fY (y) > 0. (11.26) 

Note that fX|Y (x|y) ≥ 0. and
∫ ∞
−∞ fX|Y (x|y)dx = 1.. 

Example 11.17 Suppose X and Y are two continuous random variables, and 

their joint probability density function is given as follows:

. fXY (x, y) =
{

2xy, 0 < x < 1, 0 < y <
√
2

0, otherwise.

Find the conditional probability density function fX|Y (x|y).. 

Solution To apply Eq. (11.26), we need to compute fY (y). first: 

. fY (y) =
∫ 1

0

2xydx = y.

(continued)
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Example 11.17 (continued) 

Substituting fY (y) = y . and fXY (x, y) = 2xy . into Eq. (11.26), we have 

. fX|Y (x|y) =
2xy

y
= 2x

for 0 < x < 1. and 0 < y <
√
2.. 

Exercises 

11.16 Suppose X and Y are two continuous random variables and their joint 

probability density function is given as follows:

. fXY (x, y) =
{

1
2
, 0 < y ≤ x < 2

0, otherwise.

Find the conditional probability density function fY |X(y|x).. 

11.17 Suppose X and Y are two continuous random variables and their joint 

probability density function is given as follows:

. fXY (x, y) =
{

A sin x cos y, 0 < x, y < π
2

0, otherwise.

(1) Find the value of A. 

(2) Find the conditional probability density function fX|Y (x|y).. 

(3) Find the conditional probability density function fY |X(y|x).. 

11.3.2 Conditional Means and Conditional Variances 

11.3.2.1 Conditional Means and Conditional Variances for Two Discrete 

Random Variables 

If X and Y are two discrete random variables with joint probability mass function

pXY (xi, yi)., then the conditional mean of Y given X = xi . is defined by 

.E(Y |xi) =
∑

yi

yipY |X(yi |xi), (11.27)
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and the conditional variance of Y given X = xi . is defined by 

.V ar(Y |xi) =
∑

yi

(

yi − E(Y |xi)
)2

pY |X(yi |xi). (11.28) 

Note that these follow the same construction as those given in Eq. (10.8) for mean 

and Eq. (10.9) for variance in Chap. 10, except that in these, we are summing over 

yi . rather than xk . since the xi .’s are given and so effectively constant. 

11.3.2.2 Conditional Means and Conditional Variances for Two 

Continuous Random Variables 

If X and Y are two continuous random variables with joint probability density

function fXY (x, y)., then the conditional mean of Y given X = x . is defined by 

.E(Y |x) =
∫ ∞

−∞
yfY |X(y|x)dy, (11.29) 

and the conditional variance of Y given X = x . is defined by 

.V ar(Y |x) =
∫ ∞

−∞

(

y − E(Y |x)
)2

fY |X(y|x)dy. (11.30) 

The variance can also be written as 

.V ar(Y |x) = E(Y 2|x) − [E(Y |x)]2. (11.31) 

Again see Eq. (10.8) for mean and Eq. (10.9) for variance in Chap. 10. 

Example 11.18 Suppose X and Y are two continuous variables. The joint 

density function is giv en by

. fXY (x, y) =
{

24x2y, 0 < x < 1, 0 < y < 1
2

0, otherwise.

Find E(Y |x).. 

(continued)
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Example 11.18 (continued) 

Solution Since fX(x). is independent of y,  Eq.  (11.29) can be further written 

as follows: 

. E(Y |x) =
∫ ∞

−∞
y

fXY (x, y)dy

fX(x)
=

∫ ∞
−∞ yfXY (x, y)dy

fX(x)
.

First, find fX(x).: 

. fX(x) =
∫ ∞

−∞
fXY (x, y)dy =

∫ 1
2

0

24x2ydy = 12x2y2

∣

∣

∣

∣

1
2

0

= 3x2 for 0 < x < 1.

Therefore, we have 

. E(Y |x) =
1

3x2

∫ 1
2

0

24x2y2dy =
8

3
y3

∣

∣

∣

∣

1
2

0

=
1

3
.

Exercise 

11.18 Suppose X and Y are two continuous variables. The joint density 

function is giv en by

. fXY (x, y) =
{

12x3y2, 0 < x < 1, 0 < y < 1

0, otherwise.

Find V ar(Y |x). (Hint: apply Eq. (11.31)). 

11.3.3 Mutual Exclusivity 

Suppose A and B are two events. Then, they are mutually exclusive if they cannot 

co-occur, that is, A ∩ B = ∅., and P(A ∩ B) = 0.. Then, we have 

. P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = P(A) + P(B).

For example, the event of a student who passes or fails the same module is 

mutually exclusive.
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11.3.4 The Multiplication Rule 

The multiplication rule is defined by 

.P(A ∩ B) = P(A)P (B|A). (11.32) 

We can obtain this rule by rearranging the definition of conditional probability. For 

two events A and B, if they can occur at the same time, that is, the overlapping 

area in a Venn diagram, then the probability of this is given by the product of the 

probability of event A occurring and the probability of B occurring given that A 

happens. The general multiplication rule is a handy way to find the probability that 

two events, A and B, occur if we can easily calculate the conditional probability

P(B|A). and the probability of A. 

11.3.5 Independence 

Event B is considered independent of event A if P(B|A) = P(B).. It says that 

learning that event A happened provides us with no additional information about 

event B.  Using  E  q. (11.32), this relationship is more usually written equivalently as 

.P(A ∩ B) = P(A)P (B). (11.33) 

This is a nice result because we can find the probability of two events occurring 

without dealing with conditional probability calculations. The definition of inde-

pendence of two events can be extended to describe three or more events. 

Example 11.19 Flipping a fair coin three times. Let T1 ., T2 ., and T3 . be the 

events that the first, second, and third flips have tails-up. The probability that 

we see three flips coming up tails is computed as P(T1∩T2∩T3) = 1
2
× 1

2
× 1

2
=

1
8
,. assuming three flips are independent. 

Similarly, if X and Y are two continuous independent random variables, then

fX|Y (x|y) = fX(x)..
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Exercises 

11.19 Consider throwing two fair six-sided dice. Let A be the event that the 

first die is odd, B the event that the second die is odd, and C the event that 

the product of numbers on these two throws is odd. Determine whether these 

events are pairwise independent, that is, if (i) A and B are independent, (ii) A 

and C are independent, and (iii) B and C are independent.

11.20 A fair four-sided die has numbers 1, 2, 3, or 4 on its faces, respectively. 

Let A be the event that the face with an even number landed, that is,

A = {2, 4}.. List all possible solutions for event B such that A and B are 

independent. (Hint: start by listing all the real subsets of {1, 2, 3, 4}., including 
the full set {1, 2, 3, 4}., as possible solutions for event B and check each in 

turn.)

11.3.6 The Law of Total Probability 

Suppose B1, B2, · · · , Bn . is a partition of the sample space S, such that any two 

partitions are disjoint, that is, Bi ∩ Bj = ∅., and the union of all the B ′
is . is the entire 

sample space, that is, ∪i Bi = S .. Then, for any event A,  we  ha  ve

.P(A) =
n

∑

i

P(A ∩ Bi) =
n

∑

i

P(A|Bi)P (Bi). (11.34) 

This rule is used to find the probability of an event A when we do not know 

enough about A’s probability to calculate it directly. Instead, we take related ev ents

Bi . and use them to calculate the probability for A. 

Example 11.20 40%. of people watched the film The Lord of the Rings. 

Among them, 35%. have read the book before seeing the movie. Out of 60%. 

of people who do not watch the movie, only 3%. have read the book. What is 

the probability a random person has not read the book? 

Solution Consider event A being a random person who has not read the book,

B1 . the person who watched the movie, and B2 . not watched the movie. Since 

B1 . and B2 . together are mutually disjoint, and their union is all of the sample 

space (all the people), then we can use the law of total probability. The known 

probabilities are shown in Fig. 11.5. 

(continued)
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Example 11.20 (continued) 

Applying the law of total probability (Eq. (11.34)), we have 

. (1 − 0.35) × 0.4 + (1 − 0.03) × 0.6 = 0.842.

Example 11.21 A phone-making company has five pipelines of production. 

Each pipeline has a different rate of working and each has errors associated 

with it: the first produces 10%. of the phones with an error rate of 1%.,  the  

second produces 15%. of the phones with an error rate of 1.2%., the third 

produces 20%. of the phones with an error rate of 1.4%., the fourth produces 

25%. of the phones with an error rate of 1.6%., and the final one produces 30%. 

of the phones with an error rate of 2%.. What is the probability that a random 

phone is faulty? 

Solution Let B1, · · · , B5 . be the working rate in the five pipelines and A the 

probability of a phone being faulty. Since B1, · · · , B5 . together are mutually 

disjoint and their union is all of the sample space (all of the production), then 

we can use the law of total probability. 

Consider the first pipeline. We need P(A|B1)., and this says, “Given that 

we have the first pipeline, what is the probability of error?” and that is given 

as 1% = 0.01.. Also, we need P(B1)., which we also know as 10% = 0.1.. So, 

the first term in the sum to find P(A). is 0.01× 0.1 = 0.001.. We can work out 

the other four terms similarly. 

Hence, applying the law of total probability (Eq. (11.34)), we have P(A). 

as 

. 0.01×0.1+0.012×0.15+0.014×0.20+0.016×0.25+0.02×0.30 = 0.0156,

which gives a probability for P(A). of 1.56%.. 

Fig. 11.5 Tree diagram 

illustrating the partitions of 

the sample space and their 

associated probabilities in 

Example 11.20
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Exercises 

11.21 We have four bags containing red and black balls. The first contains 

six red and four black balls; the second contains seven red and eight black 

balls; the third contains six red and six black balls; and the fourth contains 16 

red and four black balls. A bag is selected randomly, and then a ball within 

it is selected at random. What is the probability that the ball is red? Compare 

this to the chances of picking a red ball if all the balls were just in one bag. 

11.22 There are five balls in a bag: two white and three red. Take the first ball 

out of the bag without replacing it, and then take out the second one. What is 

the probability that the second ball is white? 

11.4 Bayes’ Theorem 

Recall that the multiplication rule says the probability that events A and B both 

occur is the probability that A occurs multiplied by the probability that B happened, 

given that A already occurred. That is,

. P(A,B) = P(A ∩ B) = P(A)P (B|A).

Alternatively, we have 

. P(B,A) = P(B ∩ A) = P(B)P (A|B).

Since 

. P(A,B) = P(B,A),

we have 

. P(A)P (B|A) = P(B)P (A|B).

Bayes’ theorem is given by 

.P(A|B) =
P(A)P (B|A)

P (B)
, (11.35) 

where P(B) �= 0.. 

P(B). in Eq. (11.35) may need to be computed by applying the law of total 

probability, for example, P(B) = P(A)P (B|A) + P(Ā)P (B|Ā). and Ā. is the
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complement of A. This gives an alternate form for Bayes’ theorem as 

.P(A|B) =
P(A)P (B|A)

P (A)P (B|A) + P(Ā)P (B|Ā)
. (11.36) 

In even more generality, if we denote the data we have as D and the hypothesis 

about the given data as Hi ., Bayes’ theorem can be further written in a more general 

way as follows: 

.P(Hi |D) =
P(Hi)P (D|Hi)

P (D)
, (11.37) 

where: 

• P(D)  =
∑

i P(D  ∩ Hi) =
∑

i P(Hi)P (D|Hi). 

• P(Hi). defines the prior probability, that is, the probability of the hypothesis 

before the new data is observed 

• P(D|Hi).defines the likelihood, that is, the probability of the data under the given 

hypothesis 

• P(Hi |D). is called the posterior, that is, the probability of the hypothesis after the 

data is observed 

Example 11.22 Mrs. Wright runs a small company providing domestic 

cleaning services with two employees—Sarah and Ann. Each cleaner has 

a very similar workload. From past performances, 85%. of customers rank 

Sarah’s work with five stars (the highest rating) and only 50%. for Ann’s work. 

A new review with five stars comes to Mrs. Wright without mentioning the 

cleaner’s name. What is the probability that it is a review of Ann’s work? 

Solution Let us use D to denote a review with five stars, H1 . to denote 

the cleaning done by Ann and H2 . by Sarah. Since cleaners have a similar 

workload, we have P(H1) = P(H2) = 0.5.. To compute P(H1|D).,  we  

apply Eq. (11.37) and the first bullet point below the equation to obtain the 

following: 

. P(H1|D) =
0.5 × 0.5

0.5 × 0.5 + 0.85 × 0.5
=

0.25

0.675
≈ 37%.

Example 11.23 In the UK, men have a one in eight chance of having prostate 

cancer at some point in their life. There is a simple first test that can be done 

to determine if a man needs further testing; this is the PSA test. However, this 

(continued)
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Example 11.23 (continued) 

test is not very accurate. In fact, 3
4
. of the results are false positives; that is, it 

gives a positive result when the man does not have the condition. Also, there 

is a 1
7
. chance of a false negative, which gives a negative result when the man 

has the condition. What are the chances that a man has the condition given 

that he gets a positive test result? 

Solution Let A be the probability that you have the condition and B be the 

probability that you test positive. We require P(A|B)., namely, the probability 

you have the condition given that you test positive. 

We know that P(A) = 1
8
.; P(B|Ā) = 3

4
., namely, that the probability of 

testing positive given that you do not have the condition; and P(B̄|A) = 1
7
., 

namely, the probability that the test is negative given that you have the 

condition. 

To find P(A|B)., we will use Bayes’ theorem in the form given in 

Eq. (11.36) since we do not know P(B). directly, namely, 

. P(A|B) =
P(A)P (B|A)

P (A)P (B|A) + P(Ā)P (B|Ā)
.

Now P(Ā) = 7
8
., and using Eq. (11.25), we have P(B|A) = 6

7
.. Plugging these 

into the equation, we get 

. P(A|B) =
1
8

× 6
7

( 1
8

× 6
7
) + ( 7

8
× 3

4
)

≈ 0.14.

We can show this result using a diagram; see Fig. 11.6. Assuming we have 

1120 men (the number is chosen so that it divides nicely), then in the first 

split, we have 1120 × 1
8

= 140. men that have the condition and the rest, 

1120× 7
8

= 980., do not. In the top half, it splits again with 140× 1
7

= 20.who 

have the condition and test negative, and the rest, 140 − 20 = 120., testing 

positive. Similarly, in the bottom half, 980 × 3
4

= 735. test positive but do not 

have the condition, and the rest, 980 × 1
4

= 245., test negative. 

We want the number who test positive and have the condition compared to 

the total that tests positive. Namely, 120
120+735

≈ 0.14..
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Fig. 11.6 Illustration of the 

data presented in 

Example 11.23 

Exercises 

11.23 In Example 11.23, change the numbers to the following. UK men have 

a 1 in 12 chance of having prostate cancer at some point in their life. An 

improved PSA test has a false positive rate of 1
3
. and a false negative rate of 

1
20

.. Again, calculate the chances that a man has the condition given that he 

gets a positive test result. 

11.24 A type of product sold in a local shop is produced by factories A, B, 

and C. Among them, 5/10, 3/10, and 2/10 are from A, B, and C, respectively. 

The defective rate of these products is 1/10, 1/15, and 1/20, respectively. One 

of these products is drawn randomly from the shop. If it is non-defective, what 

is the probability that it is produced by factory A? 

11.25 Let A be the event that a positive test result shows up and B the event 

that the person has breast cancer. Based on previous clinical records, we ha ve

P(A|B) = 0.95. and P(Ā|B̄) = 0.98.. A census is taking place, and we know 

the probability of suffering from breast cancer among this population is 0.003.. 

Compute P(B|A).. 

11.26 You have four bags of multicoloured balls. Bag X has 50 balls, Bag Y 

has 60 balls, Bag Z has 60 balls, and Bag W has 30 balls. The probability of 

picking a red ball from bag X is 1
10

., from bag Y is 1
20

., from bag Z is 1
30

., and 

from bag W is 1
5
.. A bag is picked with the probability given by the relative 

number of balls in it and a ball is picked at random from this bag. If the ball 

is not red, what is the probability of it coming from Bag Z?



Chapter 12

Elements of Statistics

As we have seen in Chap. 10, probability deduces what is likely to happen when an

experiment is performed. The entire pool of subjects in an investigation is called a

population. It may be challenging to involve the whole population in the experiment.

Instead, random samples may be chosen so that every member of a population has an

equal chance of being selected as any other member. People use statistics obtained

from these samples to describe the entire population.

We introduce statistics in this chapter. First, we present descriptive statistics:

methods used to describe or summarise observations. Then we briefly bring in

elementary sampling theory. Especially, we introduce two more sampling distri-

butions: Student’s t.-distribution and the Chi-square distribution. Finally, we focus

on inferential statistics, that is, to infer by what mechanism the observation, the

outcome of an experiment, has been generated.

Because probability and statistics are related, there is quite a lot of overlap

between this chapter and both the two previous chapters. Some topics, such as

average and standard deviation, have been introduced even earlier in the book. In this

chapter, we collect all the relevant results together even if they have been introduced

before, and we make back references where appropriate.

12.1 Descriptive Statistics

Statistics is the most basic and important concept and tool to estimate characteri-

sations of the probability distribution of a population. There are lots of statistics,

like mean, variance, and interquartile range, all of which will be introduced here.

Some of these have been introduced before, but here we bring them all together.

Formally, suppose x1, x2, . . . , xn . is a sample of a random variable X. Then the

function g(x1, x2, . . . , xn). is called a statistic of the sample if there are no unknown

parameters in g.
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Example 12.1 Suppose X is a continuous random variable and X ∼
N(μ, σ 2).. Remember this means that X is a normal or Gaussian distribution

as defined in Sect. 10.6.2.2 of Chap. 10. If μ. is known but not σ 2
., then

∑n
i=1(xi − μ)2 . is a statistic, but

∑n
i xi

σ
. is not.

So a statistic is a numerical quantity calculated from a set of observations,1 and

statistics is the collection and analysis of such data.

12.1.1 Measures of Centre

The sample mean, median, and mode are three measures of central tendency.

12.1.1.1 The Arithmetic Mean

Sum up all the values and divide them by the number of data points.

Example 12.2 The set of five numbers 3, 5, 7, 8., and 10 has a mean of

.
3 + 5 + 7 + 8 + 10

5
= 6.6.

The general definition of expected value or mean can be viewed in Sect. 10.5.1

of Chap. 10.

12.1.1.2 Median

That is the number found at the dataset’s middle when the dataset is sorted into order.

When the number of data is even, we use the average of the two middle numbers as

the median.

1 Strictly speaking, a statistic is a function of random variables, while a numerical quantity is its

realisation based on a specific sample.
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Example 12.3

• The set of numbers 3, 5, 7, 8., and 10 has a median of 7.

• The set of numbers 3, 5, 6, 7, 8., and 10 has a median of 6+7
2

= 6.5..

12.1.1.3 Mode

That is the value that occurs most often in the dataset.

Example 12.4

• The set of numbers 2, 3, 3, 5, 7, 8, 8, 8, 8., and 11 has a mode of 8.

• The set of numbers 3, 5, 6, 7, 8., and 10 has no mode.

• The set of numbers 1, 3, 3, 3, 5, 7, 8, 8, 8., and 11 has two modes, 3

and 8, and is called bimodal.

The mode is most likely to be used when data concerns categories.

Example 12.5 Suppose we have a survey result of the sports students like the

most in Year 7 of a local school in the St Albans area, shown in Table 12.1.

Which form of average should we use for this type of data?

In this example, Football would be considered average, the modal average.

There would be no point in finding a mean number of students for each listed

sport or looking for a median value.

Remark 12.1 When we take many samples from the same population, their means

are likely to differ less than their medians or modes. That is, the mean is relatively

stable. The median is preferable if outliers (extremely high or low values) are

observed.

Table 12.1 A survey result

of the sport a student likes the

most in Year 7 of a local

school in the St Albans area

Sports that students like most Number of students

Swimming 60

Tennis 30

Football 70

Basketball 40
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Fig. 12.1 An illustration of

the mean, mode, and median

for a symmetrical distribution

Fig. 12.2 An illustration of the relationships between the mean, mode, and median for asymmet-

rical distributions

The mean, median, and mode are the same in a perfectly symmetrical distribution

(see Fig. 12.1). On the other hand, the effect of extreme values can distort the mean

and pull it far from the centre of the distribution. The left panel of Fig. 12.2 shows

a left-skewed (or negatively skewed) distribution. More values occur around the

distribution’s left tail, and its mean value is less than its median value, which is

less than the mode value. In contrast, the right panel presents a right-skewed (or

positively skewed) distribution, where more values occur around the distribution’s

right tail. Its mean value is greater than its median, which is greater than the mode

value.

�.
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Exercise

12.1 Find the mean, median, and mode of the following sets:

1. 1, 5, 8, 7, 6, 6, 6., and 11.

2. 0, 0, 3, 5, 5., and 10.

3. 1.5, 7.4, 3.7, 5.5, 5.5, 8.3, 2.1., and 6.8..

4. 5.8, 6.2, 5.7, 6.1, 6.0, 5.6, 6.0, 5.9., and 5.8..

5. 3, 9, 10, 7, 4, 12, 10, 11., and 6.

12.1.2 Measures of Variation

Variation measures how spread out the data we collect is. It is a helpful way to

identify if our data has many outliers.

12.1.2.1 Standard Deviation and Variance

Usually, people use standard deviation and variance to measure the variation. We

have introduced them in Sect. 4.2.1 of Chap. 4. For the convenience of readers, we

show the corresponding equations again as follows.

Suppose X. is a data matrix including n data observations with d dimensions

(variables, features, or attributes). Each element of X. is denoted as xi,j ., where i =
1, . . . , n. and j = 1, . . . , d .. The sample standard deviation for each dimension xj . is

defined as

.s(xj ) =

√

∑n
i=1(xi,j − x̄j )2

n − 1
,

where x̄j . is the sample mean of the j th dimension:

.x̄j =
1

n

n
∑

i=1

xi,j .

The squared sample standard deviation is called sample variance:

.var(xj ) = (s(xj ))
2.

Readers can view the general definition of variance in Sect. 10.5.2 of Chap. 10.
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Exercise

12.2 Find the standard deviation of the following:

(1) 1, 5, 8, 7, 6, 6, 6., and 11.

(2) 0, 0, 3, 5, 5., and 10.

(3) 1.5, 7.4, 3.7, 5.5, 5.5, 8.3, 2.1., and 6.8..

(Hint: You have already found the means for these three in the previous

exercise.)

(4) Find the standard deviation of each dimension for the following data:

.D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5.8 3 10.7

6.2 9 10.6

5.7 10 10.8

6.1 7 10.9

6.0 4 10.8

5.6 12 10.9

6.0 10 10.1

5.9 11 10.2

5.8 6 10.4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Hint: You have already found the means for the first two columns in the

previous exercise.

Remark 12.2 The standard deviation, divided by n − 1., calculates the sample

standard deviation. Readers may see a different version from other resources as

follows:

.σj =

√

∑n
i=1(xi,j − μj )2

n
,

which computes the population standard deviation. There are two differences

compared with the sample standard deviation equation. First, the mean value μj .

is the population mean, not the sample mean x̄j .. Second, the denominator under the

square root is n, not n − 1.. Statisticians found that the sample mean after taking a

large number of samples is smaller than the population mean. To compensate for

this difference, a smaller denominator n − 1. is used when computing the sample

standard deviation so that s(xj ). is as close to σj . as possible.

�.
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12.1.2.2 Covariance and Pearson Correlation Coefficient

In addition, we introduced the sample covariance measure and Pearson correlation

coefficient in Sect. 4.2.1 of Chap. 4, which is a quantitative measure that describes

the strength of association between two variables. Again for the convenience of

readers, we show the corresponding equations. The sample covariance is given by

.cov(xh, xk) =
∑n

i=1(xi,h − x̄h)(xi,k − x̄k)

n − 1
,

and Pearson correlation coefficient r is given by

.r =
cov(xh, xk)√

var(xh)var(xk)
.

Exercise

12.3 Find the covariance and Pearson correlation coefficient between:

(1) Column 1 and column 2 of matrix D. from Exercise 12.2 (4).

(2) Column 1 and column 3 of matrix D. from Exercise 12.2 (4).

(3) Column 2 and column 3 of matrix D. from Exercise 12.2 (4).

(4) Now for D. from Exercise 12.2 (4) form a new matrix where all the

columns are put in order separately, from the lowest value at the top

to the highest value at the bottom of each column. Repeat the previous

calculations of covariance and Pearson correlation coefficient for columns

1 and 2, 1 and 3, and 2 and 3 for the new matrix.

12.1.2.3 Coefficient of Variation

Another useful way to measure the variation is to use the coefficient of variation, a

ratio of the sample standard deviation to the mean, as shown as follows:

.coefficient of variation =
s

x̄
. (12.1)

We cannot compare standard deviations with different measurement units. However,

since the coefficient of variation is independent of measurement units, we can use

it to compare variations in different datasets with varying units of measurement.

A drawback of the coefficient of variation is that it fails to be useful when x̄ ., the

sample mean value, is close to zero.
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Example 12.6 A fridge manufacturer has two fridge models, M and N . The

mean lifetimes of the two models are x̄M = 20. years and x̄N = 15. years,

and standard deviations are sM = 3.5. years and sN = 3., respectively. Which

model has the greater relative dispersion?

Solution Applying Eq. (12.1) to models M and N , respectively, we have:

.coefficient of variation =
3.5

20
= 17.5% for model M

and

.coefficient of variation =
3

15
= 20% for model N.

Therefore, model N has a greater relative dispersion.

Exercise

12.4 Two class students attended a maths competition. The mean score of

class A is x̄A = 50. and its standard deviation is sA = 10., and the mean score

of class B is x̄B = 60. and its standard deviation is sB = 12.. Which class has

the greater relative dispersion?

12.1.3 The Range and the Interquartile

Definition 12.1 (Range) The range equals the highest value minus the lowest value

in a given real-valued dataset.

Definition 12.2 (Interquartile Range) The interquartile range (IQR) equals the

upper quartile, denoted as Q3 ., minus the lower quartile, denoted as Q1 .. The upper

quartile (Q3 .) is a number such that the integral of the probability density function

from − ∞. to this number (Q3 .) equals 0.75, and the lower quartile (Q1 .) is another

number such that the integral of the probability density function from − ∞. to

this number (Q1 .) equals 0.25. Figure 12.3 illustrates the positions of Q1 ., Q2 . (the

median), and Q3 . in a dataset, where values are sorted in ascending order.
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Fig. 12.3 The positions of quantiles within the dataset

Fig. 12.4 Boxplot

representing the distribution

of a dataset

12.1.3.1 Boxplot

A boxplot shows the quartiles of a dataset as a box, and its “whiskers” (lines

extending upwards and downwards from the box) show the extent of the rest of the

distribution, except for points that are determined to be “outliers” using a method

that is a function of the interquartile range.

Figure 12.4 illustrates a boxplot: Q1 . and Q3 . control the width of the box, which

equals the interquartile range (IQR); the solid line within the box, highlighted

with an overlaid dashed line, represents the median of the data; the bar on the top

indicates the maximum value; the bar at the bottom shows the minimum value; two

circle signs display the outliers. Outliers are data items outside 1.5. times the IQR

above the upper quartile and below the lower quartile, that is,

.outlier values ≤ Q1−1.5×IQR or outlier values ≥ Q3+1.5×IQR. (12.2)

Please note that there are different methods that can be used to compute quartiles.

We consider the median-based method only in this book.



344 12 Elements of Statistics

Exercise

12.5 Find the following manually:

(1) Mode

(2) Median

(3) IQR

(4) Outliers

for both of the following two datasets:

• 90, 86, 87, 88, 50, 66, 95, 87, 72, 78, 77, 87, 86, 62, 87, 110.

• 55, 72, 52, 45, 58, 55, 30, 52, 38, 55, 42, 65, 53, 55, 80, 48.

Note that Fig. 12.4 is generated from the first dataset.

12.2 Elementary Sampling Theory

12.2.1 Random Sampling with and Without Replacement

Random sampling is the process of collecting a representative sample from a

population. It means each member of the population has an equal chance of being

selected and is independent of other members selected in the sample.

Sampling where each member of the population is allowed to appear only once is

called random sampling without replacement. In contrast, if each member is allowed

to appear more than once, it is called random sampling with replacement.

Let us consider samples of the same size collected from the same population. We

can calculate the mean for each sample. The probability distribution of mean values

obtained from these samples is called a sampling distribution of means. Similarly,

we can get a sampling distribution of standard deviations or sampling distributions

of other statistics.

12.2.2 Sampling Distributions of Means

This topic is related to the material we introduced in Chap. 11 on the central limit

theorem. At that point, we talked about population means and the fact that the

distribution of sample means approximated a normal distribution. So here we are

talking about the sampling distribution of sample means, which again approximates

a normal distribution.

Let us denote the population mean and standard deviation by μ. and σ ., respec-

tively, and the sample mean and standard deviation by x̄ . and s, respectively.
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The key to this work is that: The sampling distribution of means is approximately

a normal distribution with mean μx̄ . and standard deviation σx̄ . for a large value of

the sample size n, n ≥ 30., irrespective of the population distribution as long as

the population size is at least twice the sample size and the mean and the standard

deviation of the population distribution are finite.

Based on the central limit theorem (see Sect. 11.1.2 of Chap. 11), the mean

and standard deviation of a sampling distribution of means can be calculated as

follows:

• If all samples of size n are drawn from an infinite population or if sampling is

with replacement, then we have

.μx̄ = μ, (12.3)

and

.σx̄ =
σ

√
n
. (12.4)

So the sampling distribution of means, x̄ ., has Gaussian distribution:

.N(μ, (
σ

√
n
)2).

• If all samples of size n are drawn from a finite population of size np . without

replacement (np > n.), then we have

.μx̄ = μ,

which is the same as Eq. (12.3). The formula for the standard deviation of all

sample means must be modified by including a finite population correction. That

is,

.σx̄ =
σ

√
n

√

np − n

np − 1
. (12.5)

So the sampling distribution of means, x̄ ., has Gaussian distribution:

.N

(

μ,
( σ

√
n

√

np − n

np − 1

)2
)

.
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Example 12.7 Randomly take samples from N ∼ (52, 6.32).. If the size of a

sample is 36, compute the probability of P(50.4 ≤ x̄ ≤ 53.2)..

Solution Consider all samples are drawn from the infinite population. Apply-

ing Eqs. (12.3) and (12.4) we have μx̄ = μ = 52., σx̄ = 6.3√
36

.. So that x̄ . has a

Gaussian distribution N(52, ( 6.3√
36

)2)..Now use Eq. (10.24) to get

.P(50.4 ≤ x̄ ≤ 53.2) = �(
53.2 − 52

6.3/
√
36

) − �(
50.4 − 52

6.3/
√
36

)

≈ �(1.14) − �(−1.52) = 0.8729 − 0.0643 = 0.8086.

Here we have used the values from a standard normal distribution table.a to

look up �(1.14). and �(−1.52)..

a The example table we have used is at https://en.wikipedia.org/wiki/Standard_normal_

table.

Example 12.8 Suppose that the heights of 2000 female students at a uni-

versity are normally distributed with a mean of 165 centimetres (cm) and a

standard deviation of 8 cm. If 100 samples of 15 students each are collected,

what is the expected mean and standard deviation of the resulting sampling

distribution of means if the sampling was done without replacement?

Solution Applying Eqs. (12.3) and (12.5), we have

.μx̄ = 165 cm,

and

.σx̄ =
8

√
15

√

2000 − 15

2000 − 1
≈ 2.06 cm.

Exercises

12.6 Randomly take a sample from N ∼ (60, 102).. If the size of the sample

is 100, compute the probability of P(|μ − x̄| < 0.3)..

(continued)

https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Standard_normal_table
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12.7 Marks in a certain exam at A level are distributed according to a normal

distribution with a mean of 57 and a standard deviation of 12. A random

sample of students of size 64 is taken, compute the probability that the sample

mean is within 1 of the population mean.

12.8 The mean weight and standard deviation of a set of four hundred marble

balls are 4.58 grams and 0.3 grams, respectively. A random sample of 50

marble balls is taken out one at a time, collected together, and weighed.

Compute the probability that this random sample of 50 has a total weight

of more than 230 grams.

12.2.3 Sampling Distributions of Proportions

We are now going to look at the sampling distribution of sample proportions. Here

we are looking at the proportion of heads-ups of a toss of a fair coin, the proportion

of defective items from a product line, or the proportion of people in a university

with a particular brand of phone. Here the event is a Bernoulli event: The coin is

heads-up or not, an item is defective or non-defective, and a person at a university

has that phone brand or not. So the distribution for multiple Bernoulli events is

binomial, and the formulae for mean and standard deviation are derived for that

distribution (see Sect. 10.6.1.3 of Chap. 10).

The key to this section is that, using the central limit theorem (see Sect. 11.1.2

of Chap. 11), the sampling distribution of sample proportions will follow a normal

distribution.

Suppose that a population is infinite and that the probability of an event occurring

is p and not occurring is 1 − p .. The number (x) of the event occurring in a sample

with a size of n can be modelled using a binomial distribution, where the mean is

μX = np . and the variance is σ 2
X = np(1− p). (from Sect. 10.6.1.3 of Chap. 10). So

the number x of defective items in a sample could be 6, for example. The proportion

of the event occurring x times in the sample is x
n
.. So if the sample size is 100, then

the proportion of defective items in the sample is x
n

= 6
100

..

Consider all possible samples of size n drawn from the same population and

denote the mean and standard deviation of the sampling distribution of proportions

by μp . and σp ., respectively; then we have

.μp = p, (12.6)

and

.σp =
√

p(1 − p)

n
. (12.7)
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which can be obtained by dividing the mean, np, and standard deviation,√
np(1 − p)., of the binomial distribution by the sample size n.

Again, for a large value of n, n ≥ 30., the sampling distribution of sample

proportions follows closely to a normal distribution.

Note that Eqs. (12.6) and (12.7) are also valid for sampling with replacement in

a finite population. For finite populations where sampling is without replacement,

we have

.μp = p,

and

.σp =
√

p(1 − p)

n

√

np − n

np − 1
, (12.8)

where np . is the size of the population and np > n..

Example 12.9 Find the probability that there will be 8
15

. or more heads-ups

in 150 tosses of a fair coin.

Solution Consider the 150 tosses of the coin to be a sample from an infinite

population of all possible tosses of the coin.

Applying Eqs. (12.6) and (12.7), we have

μp = 0.5. and σp =
√

0.5(1−0.5)
150

≈ 0.0408..

Using the normal approximation to the binomial, we convert 8
15

≈ 0.5333.

to the standard z-score = 0.5333−μp

σp
= 0.5333−0.5

0.0408
≈ 0.82. (see Eq. (10.21) in

Chap. 10) so that we can use the standard normal distribution table.

We require P(z > 0.82)., which is the probability given by the area under

the normal curve to the right of z-score = 0.82.. The value in the table (refer

to the information provided in the footnote of Sect. 10.6.2.2) is 0.7939, so the

probability to the right is 1 − 0.7939 = 0.2061..

Exercises

12.9 It has been found that 2%. of the products produced by manufacturer A

are defective. What is the probability that a sample of 400 products from the

manufacturer 3%. or less will be defective?

(continued)
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12.10 It is known that 25%. of the student population have a particular brand

of phone. What is the probability that in a sample of 80 students:

(1) At least 24%. of them have that brand of phone?

(2) No more than 30%. of them have that brand of phone?

12.2.4 Standard Errors

The standard deviation of a statistic’s sampling distribution is often called its

standard error. For example, Eq. (12.4) is x̄ .’s (with replacement) standard error,

and Eq. (12.7) is the proportion’s (with replacement) standard error.

12.2.5 Degrees of Freedom

The value of degrees of freedom is the maximum number of independent values

used to calculate the estimate that are free to vary. Suppose we want to use a sample

of size n to compute one estimate. The quantity n − 1. is the number of degrees of

freedom of an estimate, since the last one is fixed by the constraint of producing the

answer.

Example 12.10 Consider selecting five students (n = 5). to attend a maths

competition. The average score of these five students in the most recent maths

test must be 60. Theoretically, four students can be chosen randomly, with the

fifth student having to have a specific maths score so that the final average is

60. Therefore, the degrees of freedom is 5 − 1 = 4..

The formula for calculating the number of degrees of freedom is different if we

have a different number of samples or if the number of estimates is more than one.

For example, if we have two samples whose sizes are n1 . and n2 ., we want to estimate

the mean. Then the degrees of freedom is n1 + n2 − 2.. Another example can be

viewed in Sect. 12.3.3.2 of this chapter, where the degrees of freedom of a two-way

classification table is (the number of rows − 1) × (the number of columns − 1)..
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12.2.6 Two Specific Sampling Distributions

We have introduced some essential distributions in Chap. 10. We continue by intro-

ducing two more important and useful distributions in the following subsections:

Student’s t-distribution and the Chi-square (χ2
.) distribution, both widely used in

modelling sampling distributions.

12.2.6.1 Student’s t-Distribution

This is usually used when we have a small sample, n < 30., and also when the

underlying population’s standard deviation is unknown.

A random variable X is distributed normally with mean μ. and variance σ 2
., that

is, X ∼ N(μ, σ 2).. Suppose we take a sample (x1, . . . , xn). of size n. Let x̄ . be

the sample mean and s2 . be the sample variance. From the central limit theorem,

the random variable Z = x̄−μ

σ/
√

n
. has a standard normal distribution. The random

variable T , which has the sample standard deviation (a known quantity) rather than

the population standard deviation, is defined as follows:

.t =
x̄ − μ

s/
√

n
. (12.9)

This random variable has a distribution known as Student’s t-distribution with n−1.

degrees of freedom. This distribution is similar to a normal distribution but has wider

tails. As n increases, or equivalently, the number of degrees of freedom increases,

this distribution approaches a normal distribution.

This is illustrated in Fig. 12.5, which shows t distributions with different degrees

of freedom (ν .). As seen in the left panel, their density distributions all have a bell

shape similar to normal distributions and are symmetrical about the mean. Student’s

t.-distribution is mainly used for a small sample of less than 30, which is more likely

to generate values far away from its mean (to have wider tails). As shown in the

right panel, the cumulative probability approaches the value one faster as the value

of degrees of freedom increases.

Similar to the normal distribution, people have constructed a mathematical table

for the t . statistic. The value in the table gives the number of standard deviations

from the mean you need to capture a certain proportion of the data. For instance,

we already know that we capture 95%. of the data for a normal distribution if we

move 1.96 standard deviations on either side of the mean. (See the properties of

a standard normal distribution in Sect. 10.6.2.2 of Chap. 10.) There are different

versions of t-tables, but a common one is shown in the footnote.1 It has values such

as t.50, t.75, t.80 . as headings for the columns. Suppose we want the column with t.975 .

1 The example table we have used is at https://www.tdistributiontable.com/.

https://www.tdistributiontable.com/
https://www.tdistributiontable.com/
https://www.tdistributiontable.com/
https://www.tdistributiontable.com/
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Fig. 12.5 Student’s t.-distributions with varying degrees of freedom. The left panel shows the

density distributions and the right panel shows the cumulative probabilities

as the heading. This means that there are 2.5%(= 0.025). of the data to the right

of the distribution and, therefore, 5%(= 0.05). of the data not in the centre (see

second and third heading rows). If you look down the column, you will see that for

df = 10. (degrees of freedom = 10) row, the value is 2.228. This means that for

the t.-distribution, you need to go 2.228 standard deviations on either side to capture

95%. of the data. This is because there are more values in the tails (the tails are

wider), so you need to go further out from the mean. If you continue down the t.975 .

column, the values get closer to 1.96, and in fact, as you get to the ∞. value for df ,

you finally get 1.96.

Example 12.11 For Student’s t-distribution with 8 degrees of freedom, find

the value of t for which the probability on the right of t is 0.05..

Solution If the probability on the right is 0.05., then the probability to the left

of t is 1−0.05 = 0.95..Referring to the t statistics table, proceeding downward

under the column noted with df (degrees of freedom) until reaching entry 8,

and then proceeding right to the column headed t.95 ., one can see the result is

1.860.. That is the required value of t .
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Exercise

12.11 For Student’s t-distribution with 15 degrees of freedom, find the value

of t for which the probability on the right of t is (1) 0.05. and (2) 0.01..

12.2.6.2 The Chi-Square (χ2
.) Distribution

Suppose x1, . . . , xn . are independent and are drawn from a normal distribution with

standard deviation σ .. The sample mean is x̄ . and the standard deviation is s. We

define the Chi-square (χ2
.) statistic as follows:

.χ2 =
n

∑

i=1

(xi − x̄)2

σ 2
(12.10)

with n−1.degrees of freedom. Each term of the summation is a squared z-score-like

value. Therefore, all χ2
. values are equal to or greater than zero. From the definition

of standard deviation (Sect. 4.2.1 of Chap. 4), the Chi-square statistic can also be

written as

.χ2 =
n

∑

i=1

(xi − x̄)2

σ 2
=

(n − 1)s2

σ 2
. (12.11)

It can be seen that the χ2
. statistic is a ratio measuring the deviation of the sample

from the population.

If we consider many samples of size n drawn from the same normal population

and compute χ2
. for each of them, then a sampling distribution for χ2

. can be

obtained and is called the Chi-squared distribution with n − 1. degrees of freedom.

Figure 12.6 shows Chi-square distributions with different degrees of freedom (ν .).

The left panel shows that Chi-square probability density functions are positively

skewed for the lower values of the degrees of freedom. When ν = 1. and ν = 2.,

the curve starts high and then drops off. It shows a high probability that χ2
. is close

to zero. When ν = 3, 4,. or 5, the distribution has a much longer tail on the right

hand of the curve. As ν . further increases, the distribution looks more similar to a

normal distribution. The right panel shows that Chi-square cumulative distributions

approach one faster when the value of degrees of freedom decreases.

Intuitively, if ν = 1., then n = 2. and we are taking just two observations from

a normal distribution. Recall that a normal distribution has a bell shape with a

high probability for data being observed around the centre of the bell shape (see

Fig. 10.9). Therefore, when taking only two observations, they are both likely to

be close to the centre. So (xi − x̄)2 . will be small, and hence χ2
. is small. This is

why the ν = 1. curve is so skewed to low values. As ν . increases, you get more and
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Fig. 12.6 Chi-square distributions with varying degrees of freedom. The left panel shows the

density distributions, and the right panel shows the cumulative probabilities

more representative observations of the values from the original normal distribution,

so the distribution of values for χ2
. begins to look more and more like a normal

distribution, as is seen in Fig. 12.6.

The mean of a Chi-square distribution is its degrees of freedom, and the variance

is two times its degrees of freedom.

People have constructed a mathematical table for the Chi-square statistic.2 Each

row of the χ2
. table represents a particular value of the degrees of freedom and,

therefore, the sample size. For instance, if the sample size is eight, the number of

degrees of freedom is 7, so that is the row to use. The columns represent the area

you require under the relevant curve measured from the right, that is, the probability

of exceeding a value of χ2
., since the χ2

. values are on the horizontal axis. So, for

instance, if you wanted the probability of exceeding a certain value to be only 0.05

(so only 5%. of the values are above it), then you use the column headed .05. The

value in the table is the value of χ2
. that you must not exceed if you wish to have

95%.of the area to the left and only 5%. to the right. In the case of the ν = 7. example,

the value in the table is 14.07. If you look at the ν = 7. curve in Fig. 12.6, then it

looks reasonable that just 5%. of the area under the curve is above (to the right of)

14.07 and that 95%. is to the left of 14.07. If you continue to look along the 7 degrees

of freedom row going left, the values of χ2
. get smaller (you are going to the left on

the graph). So the next value in the table is 12.02., and for this value of χ2
. there is

2 The example table we have used is at https://www.statisticshowto.com/tables/chi-squared-table-

right-tail/.

https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.com/tables/chi-squared-table-right-tail/
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10%. of the area to the right, as it says at the top of the column. So the further you

go to the left, the lower the values of χ2
. you get and therefore the larger percentage

of the area under the curve there is to the right of that point. Hence, the values in the

χ2
. table are critical values of χ2

., effectively telling you how far to the right of the

area you are.

Example 12.12 For a Chi-square distribution with 4 degrees of freedom, find

the value of χ2
. for which the probability on the right of χ2

. is 0.05..

Solution If the probability on the right is 0.05., then the probability to

the left of χ2
. is 1 − 0.05 = 0.95.. Referring to the χ2

. statistics table,

proceeding downward under the column noted with df (degrees of freedom)

until reaching entry 4, and then proceeding right to the column headed .05.,

one can see the result is 9.48773. or 9.49.. That is the required value of χ2
..

Exercise

12.12 For a Chi-square distribution with 12 degrees of freedom, find the

value of χ2
. for which the probability on the right of χ2

. is (1) 0.05. and (2)

0.01..

12.3 Inference

People make inferences about entire populations based on certain samples of data.

There are two main types of inference: classical and Bayesian inferences. We focus

on classical inference in this book. Types of classical inference include:

• Point estimation computes a single number, an estimate of some parameter.

• Interval estimation provides a range of values in which the parameter is thought

to lie based on the observed data.

• Testing hypothesis is to test a hypothesis about whether a parameter value is to

be accepted or rejected based on the observed data.

12.3.1 Point Estimation

Point estimation uses sample data to calculate an unknown value for some parame-

ter. For example, estimate a population mean, variance, or other statistics.
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Example 12.13 Estimate the probability of heads-up for a coin. We have the

following observations from 10 tosses of the coin:

.H, T , T , T , T ,H, T ,H, T ,H,

where H denotes heads-up and T tails-up.

Solution Among 10 observations, four are heads-up. We use p to denote the

probability of having heads-ups. Let p̃ . denote the estimator of p. We have

.p̃ =
1 + 1 + 1 + 1

10
= 0.4.

To approach the actual probability, more experiments (tosses) need to be

done according to the law of large numbers (see Sect. 11.1.1 of Chap. 11).

p̃ = 0.4. represents our best estimate so far.

Exercise

12.13 The lifespan of a type of bulb follows X ∼ N(μ, σ 2).. Both μ. and σ .

are unknown. Randomly take five of this type of bulb and test their lifespan

(in hours):

.1400, 1520, 1368, 1600, 1544.

Estimate μ. and σ ..

More systematic methods of constructing estimators include the least-squares

technique and the maximum likelihood (ML) method. We have introduced the least-

squares technique in Sect. 8.2 of Chap. 8, which minimises the sum of the square of

the differences between the observations and their expected values. We will show

how ML works in Chap. 13.

12.3.2 Interval Estimation

A confidence interval is a range of values constructed using a sampling method

based on a point estimate. With this method, many intervals can be constructed

across repeated samples. The proportion of intervals constructed across many

samples containing the true parameter is called the confidence level. Therefore,
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a confidence interval is constructed using a method that will capture the true

parameter at the specified confidence level. Suppose the confidence level is at 68%..

If we repeat the sampling process 100 times from a population, we expect 68 of the

100 confidence intervals around the found sample parameter will contain the true

population parameter.

Calculating a confidence interval involves finding a point estimate and then

incorporating a margin of error to create a range:

.Confidence interval = Point estimate ± Margin of error. (12.12)

The margin of error is a value that represents the variability of the point estimate

and is based on our desired confidence level, the variance of the data, and how big

the sample is.

12.3.2.1 Confidence Intervals for Means

Let us consider estimating the population mean using sample means. As mentioned

in Sect. 12.2.2 of this chapter, the distribution of sample means for a large number

of samples approximates a normal distribution with a mean value around the

population mean (see Eq. (12.3)). For simplicity, we consider a standard normal

distribution, though it can be any normal distribution. Figure 12.7 shows the

Fig. 12.7 An illustration of the relationship between the population mean and sample means. Four

horizontal lines show the distance of 1 SD . on either side of the specific sample mean
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standard normal distribution of sample means with one standard deviation (SD)3

marked off on either side of the population mean (0). That is 68%. of all sample-

means fall within this range. We have illustrated four sample means: s1 ., s2 ., s3 . and

s4 .. For each sample mean we have shown the range of the distance for 1 standard

deviation each side as a horizontal bar below the horizontal axis. For s1 . and s2 ., the

range sample mean ±. 1 SD will include the real population mean, since both s1 .

and s2 . are within the range of 1 standard deviation of the real mean, as shown in

Fig. 12.7. However, s3 . and s4 . lie outside one standard deviation of the population

mean, so their range sample mean ±. 1 SD will not contain the population mean.

If a normal distribution is a good fit to the sampling distribution, then the margin

of error is usually estimated as

.Margin of error = Zc × SD, (12.13)

where Zc .was 1 in the example in the previous discussion. So the margin of error is

a certain number of standard deviations.

Remark 12.3 Suppose we want a 68%. confidence level, as we did above. We want

the probability, the area under the standard normal distribution curve between −Zc .

and Zc ., to be 68%.. We will check using a z-score table (the normal distribution

table), where the cumulative probability is the area under the standard normal curve

to the left of Z. We want approximately 16%. above and 16%. below the limits for an

interval containing 68%.. From the table, the cumulative probability for − Zc ≤ −1.

is 15.87%. (0.1587 in the table, being virtually as near to 0.16 as we can get). For

the upper bound, we want to get as near as possible to 16% + 68% = 84%., and the

cumulative probability for Zc ≤ 1. is 84.13%. (0.84134 in the table). So we obtain

Zc = 1. and the margin of error = 1 × SD. as we illustrated.

To construct a 95%. confidence interval for the true population mean, we use the

standard normal distribution. By checking the same z-score table, the probability

for − Zc ≤ −1.96. is 2.5%., and the probability for Zc ≤ 1.96. is 97.5%.. Since

97.5% − 2.5% = 95%., we have Zc = 1.96. and the Margin of error = 1.96 × SD..

In the example shown in Fig. 12.7, the 95% confidence interval s3±1.96 SD .will

include the population mean, which is not captured by the 68% confidence interval

s3 ± 1 SD .. Thus, we can make a wide estimate with a high confidence level or a

more accurate estimate with a low confidence level. The 95%. is probably the most

common value that is used.

�.

Consider the standard deviation of sample means as given by Eq. (12.4), we can

compute the confidence interval at a certain confidence level for the population mean

μ. when σ 2
. is known (if the sampling is either from an infinite population or with

3 More precisely, it should be the standard error since we consider the sampling distribution of a

statistic (see Sect. 12.2.4).
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replacement from a finite population) using the following equation:

.

[

x̄ − Zc

σ
√

n
, x̄ + Zc

σ
√

n

]

, (12.14)

where n is the sample size, x̄ . is the sample mean, σ . is the population standard

deviation and σ√
n
. is the sample standard deviation. Note that as n gets larger, that

is, the sample size gets larger, then the quantity Zc
σ√
n
. gets smaller. This makes the

bounds tighter to the population mean. So, if Zc . is chosen as 1.96, giving a 95%.

confidence interval, then a larger sample size gives a tighter 95%. interval.

Another way to construct a confidence interval is by using the left and right

critical values. That is, we construct these intervals between the left critical value cL .

and the right critical value cR . based on the observed statistic, sobs .. Under repeated

sampling, approximately (1 − α) × 100%. of such intervals will contain the true

population parameter (ptrue .):

.cL ≤ sobs ≤ cR, (12.15)

where both the left and right critical values can be obtained from the corresponding

probability distribution table. To get 95%. confidence, (1 − α). must be 0.95, so

α = 0.05.. This means we must have α
2

= 0.025. above (to the right) and below (to

the left) of the interval.

Figure 12.8 illustrates that an interval from the left critical value to the right

critical value represents the confidence interval at (1−α)× 100%. confidence level.

We can obtain Eq. (12.14) by applying Eq. (12.15). If we consider the distribution

of sample means and use the property that the left critical value is the negative of

the right critical value Zc . for the standard normal distribution, then by converting

an observed sample mean to its corresponding z-score, we have

. − Zc ≤
x̄ − μx̄

σ√
n

≤ Zc,

Fig. 12.8 An illustration of confidence intervals. The left panel shows a confidence interval for a

symmetrical distribution, while the right panel shows one for an asymmetrical distribution
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where μx̄ . equals to the true population mean (see Sect. 12.2.2 of this chapter).

Rearranging these inequalities, we get

.x̄ − Zc

σ
√

n
≤ μx̄ ≤ x̄ + Zc

σ
√

n
,

which is Eq. (12.14) for the bounds of the population mean.

If the sampling is without replacement from a population of finite size np .,

the standard error can be calculated using Eq. (12.5). However, it is usually

approximated by Eq. (12.4) when np >> n..

Example 12.14 A sample of size n = 225. produced the sample mean of

x̄ = 16.. Assuming the population standard deviation σ = 3., compute a 95%.

confidence interval for the population mean μ..

Solution We substitute n = 225., x̄ = 16., and σ = 3. in Eq. (12.14). Let us

go through the working to find the bounds, Zc ., again.

We require 95%. to be in the middle on either side of the mean. This means

we need 2.5%. to be at each end of the distribution or 0.025. of the total. Since

the normal distribution table gives the cumulative totals from the left, we need

to find the points with 2.5%., or 0.025. of the total on the left, and then 97.5%.,

or 0.975. of the total, which is nearly through to the right end.

So we look up 0.025. probability in the body of the table and find that it

occurs when we look up a bound of − 1.96.. Similarly, we look up 0.975. in

the table and get a bound of + 1.96.. So, as before, the probability is between

Z97.5% = 1.96. and Z2.5% = −1.96., and this will give us 95%. confidence

limits. The interval is

.

[

16 − 1.96 ×
3

√
225

, 16 + 1.96 ×
3

√
225

]

= [15.608, 16.392].

The interval [15.608, 16.392]. is the confidence interval at the 95%.confidence

level for μ..

Remark 12.4 Of course, if the standard deviation of the population is not known,

then the standard deviation of the sample can be used. In this case, we use the

values in the t-statistic table rather than the z-score table. For example, if we have

60 degrees of freedom (a sample size of 61) and want a 95%. confidence interval,

then in Eq. (12.14), we replace σ .by the sample standard deviation, s, andZc = 1.96.

with t = 2.00..

�.
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Remark 12.5 Note that when you construct a 95%. confidence interval for a

population mean from a sample mean, it is not true to say that there is a 95%.

probability that the true mean lies within this interval. This is because the true mean

is a fixed value, and it is either in or not in a confidence interval constructed for that

sample. The confidence level applies to the method used to construct the interval and

the sample from which it comes. Hence, the correct interpretation is that, if we were

to repeat the sampling process 100 times, then about 95 of the resulting constructed

intervals would contain the true mean [12].

�.

Exercise

12.14 Suppose that the heights of 2000 female students at a university

are normally distributed with a standard deviation of 8 cm. Compute a

95%. confidence interval and a 99%. confidence interval for estimating the

population mean (μ.) height of the university’s female students. The mean

height of a sample of 100 female students is 163cm.

12.3.2.2 Confidence Intervals for Proportions

We are now back to using the binomial distribution since we are considering

multiple examples of an event being true or not, that is, Bernoulli events. Consider

sampling from an infinite population or a finite population with replacement. We

can compute the confidence interval for the population proportion p at a certain

confidence level using the following equation:

.

[

p̄ − Zc

√

p̄(1 − p̄)

n
, p̄ + Zc

√

p̄(1 − p̄)

n

]

, (12.16)

where

√

p̄(1−p̄)
n

. is the standard deviation of the sampling distribution of proportions

(see Eq. 12.7) with p̄ . being the proportion from a sample and n the sample size.

For sampling from a finite population without replacement, the standard devi-

ation of the sampling distribution of proportions should be calculated using

Eq. (12.8).
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Example 12.15 1000 randomly selected students were asked whether they

preferred going swimming or doing athletics. The results show that 696

students prefer going swimming, and 304 prefer doing athletics. Compute a

99%. confidence interval for the population proportion p.

Solution Let p be the true fraction of preferring going swimming in the

population; p̄ = 696
1000

= 0.696. be the fraction in the sample. We substitute

n = 1000., p̄ = 0.696. in Eq. (12.16). This time we want 99%. confidence

intervals, so we want 0.5%. at either end. We therefore look up 0.005. and

1 − 0.005 = 0.995. in the body of the table. This gives the bounds Zc . as

− 2.58. and + 2.58.. The interval is

.

[

0.696 − 2.58 ×
√

0.696 × 0.304

1000
, 0.696 + 2.58 ×

√

0.696 × 0.304

1000

]

≈ [0.658, 0.734].

Exercise

12.15 A sample poll of 200 voters chosen randomly from all voters in a

city showed that 59%. of them favoured a particular candidate. Find the 95%.

confidence interval and the 99%. confidence interval for the proportion of the

voters in favour of this candidate.

12.3.2.3 Confidence Intervals for χ
2
.

By applying Eq. (12.15), we can define confidence limits for χ2
. by using a χ2

.

distribution table.

The χ2
. distribution table has values for χ2

.with the column heading representing

the area, α ., to the right of the value. So, you use the column headed 0.05 if you want

5%. above (to the right of) the value and, therefore, 95%. below (to the left of) it.

To get an interval of 95%., you need equal areas on either side. Hence, you use the

column for 0.025, giving 2.5%. to the right, and the column for 0.975, giving 97.5%.

to the right and 2.5%. to the left. This gives 2.5%. on either side of the interval (in

both tails of the distribution).
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Consider using a χ2
. distribution table for the areas α . to the right of the critical

value. Since α ≤ 1., then α
2

≤ 1− α
2
.. Thus, χ2

α
2

≥ χ2
1− α

2
., since χ2

.values get larger as

you progress across the table to the right. Substituting Eq. (12.11) into Eq. (12.15),

we have

.χ2
1− α

2
≤

(n − 1)s2

σ 2
≤ χ2

α
2
,

where χ2
α
2
. and χ2

1− α
2
. are critical values for which α

2
. of the area lies in each tail of

the χ2
. distribution.

Therefore, we can estimate the confidence interval of the population standard

deviation σ . in terms of an observed sample standard deviation by rearranging the

above inequalities giving the following equation:

.
(n − 1)s2

χ2
α
2

≤ σ 2 ≤
(n − 1)s2

χ2
1− α

2

. (12.17)

Example 12.16 A sample of size n = 30. produced the sample standard

deviation s = 12.5.. Compute a 90%. confidence interval for the population

standard deviation σ ..

Solution First, we need to find the critical values. The value of the degrees of

freedom is given by 30 − 1 = 29.. A 90%. level of confidence leaves 10%. of

the total area in the tails of the χ2
. distribution, with 5%. in each tail. We have

used a χ2
. distribution table showing the area to the right of the critical value:

.χ2
0.05 ≈ 42.557

and

.χ2
0.95 ≈ 17.708.

Substitute values to Eq. (12.17), we have

.
(30 − 1) × 12.52

42.557
≤ σ 2 ≤

(30 − 1) × 12.52

17.708
,

.106.47 ≤ σ 2 ≤ 255.89.

Therefore, the confidence interval for the population standard deviation

at the 90%. confidence level is approximately [
√
106.47,

√
255.89] ≈

[10.32, 16.00]..
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Exercise

12.16 A sample of size n = 25. produced the sample standard deviation s =
6.4.. Compute a 90%. confidence interval and a 95%. confidence interval for

the population standard deviation σ ..

12.3.2.4 Summary of Confidence Intervals

• Confidence intervals for means: involve calculating the confidence limits for the

population mean μ. given the sample mean x̄ .. The sample size n is needed and

should be ≥ 30.. You also need the standard deviation σ . for the population. The

values are looked up in a standard normal distribution table, or z-score table, for

whatever confidence level you require; this gives you the values of Zc . to use. The

limits are calculated using Eq. (12.14).

• Confidence intervals for proportions: involve calculating the confidence limits

for the population proportion p given the sample proportion p̄ .. The sample

size n is needed and should be ≥ 30. again. The values are again looked up in a

standard normal distribution table, or z-score table, for whatever confidence level

you require; this gives you the values of Zc . to use. The limits are calculated using

Eq. (12.16).

• Confidence interval for χ2
.: involves finding the confidence limits for the

population standard deviation σ . given the sample standard deviation s. The

sample size n is needed. This value gives you the degrees of freedom to look up

in a χ2
. table which gives you the values of χ2

α
2
. and χ2

1− α
2
. to use. The limits are

calculated using Eq. (12.17).

Exercises

12.17 A random sample of size n = 5000. of people that are 55 years old

and above in the UK found that 82%. had a smartphone. Compute a 95%.

confidence interval for the proportion of the whole population of the UK that

are 55 years old and above and that own a smartphone.

12.18 A random sample of size 20 of screw lengths that are supposed to be

5cm long had a standard deviation of 0.07.cm. Find a 90%. confidence interval

for the actual standard deviation.

12.19 A random sample of 2000 7-year-old boys in the UK had a mean

weight of 22.9.kg. Assuming that the population standard deviation is 3.2.kg,

compute a 99%. confidence interval for the population mean.
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12.3.3 Testing Hypothesis

This is an important section and is, in a sense, what we have been leading up to.

Hypothesis testing is used in lots of areas in science, social science, and business. A

hypothesis test is a statistical test used to ascertain whether we can assume a specific

condition is valid for the entire population, given a data sample. A hypothesis test

generally looks at two opposing hypotheses about a population: the null and the

alternative hypotheses.

• A null hypothesis is a statement being tested and is the default correct answer.

• An alternative hypothesis is a statement that is opposite to the null hypothesis.

Based on the sample data from a population, a hypothesis test determines whether

or not to reject the null hypothesis.

If we reject a hypothesis when it should be accepted, the error is called type I

error. On the other hand, if we accept a hypothesis when it should be rejected, the

error is called type II error. The only way to reduce both types of error is to increase

the sample size, which may or may not be possible.

Suppose that the sampling distribution of a statistic with a specific hypothesis is a

normal distribution with mean μx̄ . and standard deviation σx̄ .. The distribution of the

standardised variable is the standardised normal distribution. If the null hypothesis

is true, there is a 95%. probability that the z-score of the observed sample statistic

will lie within [−1.96, 1.96].. If we observe a sample statistic whose z-score lies

outside the [−1.96, 1.96]. range, we conclude that such an event could only happen

with a probability of only 0.05. or 5%. if the null hypothesis were true. Therefore, we

would be inclined to reject the null hypothesis.

In hypothesis testing, the test’s significance level is the maximum probability

with which we would be willing to risk a type I error. This significance level

is a predefined threshold chosen by the user, such as 0.05. For example, at a

significance level of 0.05 in a two-tailed test, the chance of getting a result outside

the [−1.96, 1.96]. range is only 5%. or less. Suppose the probability computed based

on the observed test statistic is less than the significance level. In that case, it is

reasonable to reject the null hypothesis since the result is unlikely to have happened

by chance under the null hypothesis.

This range, ± 1.96., is almost 2 standard deviations on either side of the mean in

a standard normal distribution and is commonly used for hypothesis tests at the 5%.

significance level in social sciences or with subject areas where only small sample

sizes are available. This can be referred to as a 2σ . result. In particle physics, a 5σ .

result is usually needed. For example, to reject the null hypothesis that the Higgs

boson did not exist and that the results found were just chance, a one-sided 5σ .

result was needed. This corresponds to approximately a 0.00003%. chance that the

observed data could happen by chance, with a significance level of 0.0000003. for a

one-sided test.

Remark 12.6 Distributions like the normal distribution and t.-distribution are

symmetrical and have two tails. If actions following the result from a statistical test
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are the same regardless of which tail is considered, then we can use two-tailed or

two-sided tests. We usually consider half of the significance level for each side when

given a significance level for such tests. One-tailed or one-sided tests may be used

when we may be interested in only extreme values to one side of the distribution, or

actions following the result from a statistical test are different if different tails are

considered. That is, the choice of a two-sided or one-sided test is determined by the

actual problem. Researchers should decide whether they want to use a one-tailed or

two-tailed test before collecting the data. If in doubt it is usual to do a two-tailed

test.

�.

The following shows the general procedure for conducting a hypothesis test:

• Specify the hypotheses:

H0 .: represents the null hypothesis. H1 .: represents the alternative hypothesis.

• Determine (1) which test to use, one-tailed or two-tailed with the significance

level, and (2) the sample size for the test sample.

• Collect the data.

• Decide whether to reject or fail to reject the null hypothesis.

– Compute the sample statistic. This step varies based on the test used, for

example, t-statistic or χ2
. statistic.

– Check the corresponding distribution table:

·. If the probability of the computed statistic occurring is less than the

significance level, then we reject the null hypothesis;

·. If the probability of the computed statistic occurring is greater than the

significance level, we fail to reject the null hypothesis.

In this chapter we consider two types of test: the t.-test and the Chi-squared test.

They are each illustrated by considering two kinds of test.

The t.-test is used to:

• Investigate the likely mean of a normally distributed population from a single

small sample

• Investigate whether two small samples come from the same underlying normally

distributed population

The Chi-squared test is used to:

• To compare an observed distribution from an expected, or desired, distribution

(one-way classification)

• To compare two distributions to test for any significant differences (two-way

classification)
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12.3.3.1 The t-Tests

The t−.tests are used for small samples, usually less than 30. We assume that

observations are independent, the population distribution should be normal, and the

population size should be at least ten times larger than the sample size.

• Means

To test the null hypothesis that a normal population has the mean μ0 ., that is,

H0 : μ = μ0 ., while H1 : μ �= μ0 ., we use the t statistic, that is, to apply

Eq. (12.9) to check if the observed sample mean is significantly different from

the population mean.

Example 12.17 A machine has produced mugs with a bottom thickness of

4 millimetres (mm). To determine whether the machine is in proper working

order, a sample of 15 mugs is chosen, for which the mean thickness is 4.2.mm

and the standard deviation is 0.2. mm. Test the hypothesis that the machine is

in proper working order using a significance level of 0.05..

Solution

– Step 1: Write the hypotheses as follows:

·. H0 : μ = 4 mm. and the machine is properly working.

·. H1 : μ �= 4 mm. and the machine is not properly working.

– Step 2: Which test should be used: a two-tailed or one-tailed test?

Since the thickness can be greater or less than the mean value and both are

treated as not working properly, we do a two-tailed test. The sample size is

n = 15. and the significance level is set to 0.05. in the question.

– Step 3: The sample information includes the sample mean x̄ = 4.2. and the

sample standard deviation s = 0.2..

– Step 4: Compute the t-statistic using Eq. (12.9) as follows:

.t =
4.2 − 4

0.2/
√
15

≈ 3.87.

We want a significance of 0.05. on a two-tailed test, so we need to look

in the t-table column with its third row saying 0.05. (the top row says

t.975 .). Two critical values for which 2.5%. of the area lies in each tail of

the t distribution with 15 − 1 = 14. degrees of freedom are found in the

column specified as −2.145. and 2.145. (the value in the table being 2.145.).

Since 3.87. is not covered in [−2.145, 2.145]., indicating the probability of

observing a t-statistic value like this is less than 5%., we reject H0 . at the

0.05. significance level.
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Exercises

12.20 The lifespan of a type of product should be at least 1000 hours.

Randomly take 16 products from this type and test their lifespans. The average

lifespan of this sample is 920 hours. It is known that the lifespan of this type of

product follows a normal distribution with a standard deviation of 100 hours.

Test the hypothesis that this product type is non-defective using a significance

level of 0.05..

12.21 A packet of washing powder is labelled as having 235 grams in it. In

order to adhere to EU packaging regulations, it must not be too far lower than

this. We do not care if it is higher. We randomly take 5 samples and note

the actual weights; they are 237, 230, 232, 234, and 232 grams. Determine

whether this test shows that the washing powder is likely to conform to the

regulations with a 0.05. significance level. [Hint: Use a one-tailed t.-test.]

12.22 A certain brand of phone is advertised as having a 23-hour video play

back capability. 12 phones are taken at random and tested to give the following

times: 20, 22, 23, 23, 28, 23, 20, 22, 22, 20, 20, and 21. Use a two-tailed t.-test

to determine if it satisfies this claim with a 0.1. significance level.

• Difference between means of two samples

Suppose that two random samples of sizes n1 . and n2 . are drawn from normal

populations whose standard deviations are equal, that is, σ1 = σ2 .. The sample

means are x̄1 . and x̄2 ., and the sample standard deviations are s1 . and s2 .,

respectively. To test the null hypothesis that the samples come from the same

population, that is, H0 : μ1 = μ2 and σ1 = σ2 ., we use the t score given by

.t =
x̄1 − x̄2

σ

√

1
n1

+ 1
n2

, (12.18)

where

.σ =

√

(n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

. (12.19)

The distribution of t is Student’s distribution with n1+n2−2.degrees of freedom.



368 12 Elements of Statistics

Example 12.18 The history GCSE scores of 16 students from Year 11

of a secondary school have a mean of 65 and a standard deviation of 7,

while the history GCSE scores of 15 students from Year 11 of another

secondary school have a mean of 60 and a standard deviation of 13. Is there a

significant difference between the history GCSE scores of the two groups at a

significance level of 0.05.?

Solution

– Step 1: Denote two schools’ mean scores of history GCSE scores as μ1 .

and μ2 ., separately. Write the hypotheses as follows:

·. H0 : μ1 = μ2 .,

·. H1 : μ1 �= μ2 ..

– Step 2: Which test should be used: a two-tailed or one-tailed test? Since

one school’s mean score can be higher or lower than the other school’s

mean value and both indicate that the two schools’ mean scores differ, we

do a two-tailed test. The significance level is set to 0.05., and the sample

means are x̄1 = 65. and x̄2 = 60. in the question.

– Step 3: Under the null hypothesis H0 ., applying Eq. (12.19), we have

.σ =

√

(16 − 1)72 + (15 − 1)132

16 + 15 − 2
≈ 10.3.

– Step 4: Compute the t-statistic by applying Eq. (12.18):

.t =
65 − 60

10.3

√

1
16

+ 1
15

≈ 1.35.

We want a significance of 0.05. on a two-tailed test, so we need to look in

the t-table column with its third row saying 0.05. (the top row says t.975 .).

So, two critical values for which 2.5%. of the area lies in each tail of the t

distribution with 16 + 15 − 2 = 29. degrees of freedom are − 2.045. and

2.045.. Since 1.35. is covered in [−2.045, 2.045]., indicating the probability

of observing a t-statistic value like this is at least 95%., we do not reject H0 .

at the 0.05. significance level.

Remark 12.7 Let us change the scenario a bit. One of the two schools has adopted

a new practice in teaching history and performs better in the GCSE exam than the

other. We are interested only in differences where the ‘new practice’ students’ mean

score is greater than the ‘normal’ teaching students’ mean score.
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In this case we use a one-tailed test. Instead of taking the 2.5% differences in

each tail, we take the whole 5% from one tail, the tail on the side where the ‘new

practice’ samples would outperform the ‘normal’ samples. In this case, it happens

to be the right-hand tail. Now we want a significance of 0.05. on a one-tailed test, so

we need to look in the t-table column with its second row saying 0.05. (the top row

says t.95 .).

�.

Exercise

12.23 The weight of 10 students from Year 1 of a primary school has a mean

of 18.5.kg and a standard deviation of 2kg, while the weight of 20 students

from Year 1 of another primary school has a mean of 17.5.kg and a standard

deviation of 3.5.kg. Is there a significant difference between the weight of the

two groups at a significance level of 0.01.?

12.24 The length of 8 newborn baby boys in one area of the UK has a mean

of 55cm and a standard deviation of 5cm, while the length of 12 newborn baby

boys in another area of the UK has a mean of 50cm and a standard deviation

of 4cm. Is there a significant difference between the lengths of the two sets of

babies at a significance level of 0.05.?

12.25 The weight of 10 newborn baby girls in one area of the UK has a mean

of 3.5.kg and a standard deviation of 0.5.kg, while the weight of 15 newborn

baby girls in another area of the UK has a mean of 3.2.kg and a standard

deviation of 0.3.kg. Is there a significant difference between the weight of the

two sets of babies at a significance level of 0.01.?

12.3.3.2 Chi-Square Tests

The Chi-square test can be used to determine how well a theoretical distribution, for

example, the normal and binomial distributions, fits an empirical distribution which

is obtained from the sample data. The key is to estimate the expected frequency.

Since the Chi-squared test is a ‘goodness of fit’ test, people usually use it as

a one-tailed test. Using it as a two-sided test means we are also concerned about

whether the fit may be far too good, which usually is not a problem in real-world

applications.

• One-way classification tables

The Chi-square test can test whether the observed frequencies differ significantly

from the expected frequencies. To do a Chi-square test, we may set up a table

like Table 12.2. It is called a one-way classification table, in which the observed

frequencies occupy a single row and n columns. The number of degrees of
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Table 12.2 Observed and

theoretical frequencies
Event E1 . E2 . · · · . En .

Observed frequency o1 . o2 . · · · . on .

Expected frequency e1 . e2 . · · · . en .

freedom is n − 1. for a one-way classification table. Based on the theoretical

work showing the relationships among the normal, binomial, and Chi-square

distributions [13], rather than using Eq. (12.11), people compute the χ2
. statistic

as follows:

.χ2 =
(o1 − e1)

2

e1
+

(o2 − e2)
2

e2
+· · ·+

(on − en)
2

en

=
n

∑

i=1

(oi − ei)
2

ei

, (12.20)

where oi . are the n observed frequencies and ei . are the n expected frequencies.

Remark 12.8 As a rule of thumb, to use the Chi-square test, the expected number

of counts in each cell should be at least 5.

�.

Example 12.19 We have a die with 10 faces. Suppose there is an equally

likely chance that the die can land on any face. The die has the following

numbers on its faces: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9., respectively. We throw the die

400 times. LetX be the number shown on the landed face. Table 12.3 showsX

values and the respective frequencies. Use the Chi-square test at a significance

level of 0.05. to test the hypothesis that the die is fair.

Solution

– Specify the hypotheses:

H0 .: The die is fair. H1 .: The die is not fair.

– We consider a one-tailed test since it evaluates the right-hand tail area,

indicating a significant disagreement between two distributions. The sam-

ple size is 400 and the significance level is set to 0.05 in the question.

– The observed data is shown in Table 12.3.

– Decide whether to reject or fail to reject the null hypothesis.

·. Compute the χ2
. statistic. First, we need to calculate the expected

frequencies. Under H0 . that the die is fair, we expect the frequency value

to be 400
10

= 40. for each face value. Therefore, we can set up Table 12.4.

(continued)
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Example 12.19 (continued)

From Table 12.4, we can compute χ2
. using Eq. (12.20) as follows:

χ2 = (37−40)2

40
+ (46−40)2

40
+ (41−40)2

40
+ (40−40)2

40
+ (40−40)2

40
+ (36−40)2

40
+

(39−40)2

40
+ (37−40)2

40
+ (38−40)2

40
+ (46−40)2

40
= 2.8..

·. Check the critical value from the corresponding distribution table based

on the significance level and the degrees of freedom.

The degree of freedom of this one-way classification is 10 − 1 = 9..

Therefore, χ2
0.05 = 16.919. obtained from a χ2

. table showing the area

to the right of the critical value. So for the value of χ2 = 16.919. the

area to the right is 5%.. For any larger value of χ2
., the area is less than

5%. because we are further to the right hand end of the curve. For any

smaller value, the area is larger than 5%., and we are further left on the

curve.

·. Compare the computed statistic to the critical value.

Our value of χ2
. is 2.8., and this is less than 16.919. and so further

left. This indicates that the area to the right of our observed statistic

value (2.8) is greater than 5%.. Remember, we are testing how close our

observed frequencies are from the expected frequencies, that is, we are

testing if the die appears to be fair. A larger value of χ2
. indicates that the

observed values are further from the expected values and, in this case,

the value of χ2 = 2.8. does not go past the significance level of 0.05..

We therefore conclude that the result is not significant at the 0.05. level.

Thus, we do not reject H0 . at the significance level of 5%., and we either

conclude that the die is fair or pending further tests.

Only if we had got a much higher value for χ2
., one above 16.919., would

we feel able to reject the null hypothesis. In this case, the chance of

getting such a result from a fair dice would have been less than 5%., and

so we could conclude that the die was unfair.

Table 12.3 The distribution of X used in Example 12.19

X 0 1 2 3 4 5 6 7 8 9

Frequency 37 46 41 40 40 36 39 37 38 46

Table 12.4 The observer and expected distribution of X used in Example 12.19

X 0 1 2 3 4 5 6 7 8 9

Observed frequency 37 46 41 40 40 36 39 37 38 46

Expected frequency 40 40 40 40 40 40 40 40 40 40
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Table 12.5 The theoretical distribution of Z in Exercise 12.26

zi . 1 2 3 4 5 6

pi .
11
36

.
9
36

.
7
36

.
5
36

.
3
36

.
1
36

.

Table 12.6 The distribution

of Z of 360 throws in

Exercise 12.26

zi . 1 2 3 4 5 6

Observed frequency 90 145 35 50 15 25

Expected frequency

Table 12.7 The actual distribution of chocolates X in Exercise 12.27

xi . 1 2 3 4 5 6 7 8

Observed frequency 24 34 25 35 36 26 36 24

Exercises

12.26 A pair of fair dice is thrown. Let Z be the smaller value of the two

numbers. The distribution of Z consists of its values with their respective

probabilities. This has been worked out for you and is given in Table 12.5.

Table 12.6 shows the observed frequencies of Z of 360 throws. Fill in their

expected frequencies.

Calculate the Chi-square (χ2
.) value. Does the observed distribution differ

significantly from the expected distribution, using a significance level of 0.05.?

12.27 A box of chocolates of a certain make has 8 types of chocolates:

hazelnuts, caramel, orange, fudge, almond, raspberry, coffee, and truffle.

These are labelled types 1, 2, · · · , 8., respectively. Each box contains 24

chocolates, and 10 boxes were selected, and the types counted to get a

distribution X as shown in Table 12.7.

It is expected that each type of chocolate has an equal chance of appearing

in a box. Calculate the Chi-square (χ2
.) value. Does the observed distribution

differ significantly from the expected distribution, using a significance level

of 0.05.?

12.28 A certain university has percentage targets for its overall degree

classification and a percentage distribution Z of actual results from a recent

year. Both the expected frequency and the observed frequency, Z, are shown

in Table 12.8.

Calculate the Chi-square (χ2
.) value. Does the observed distribution differ

significantly from the expected distribution, using a significance level of 0.05.?
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Table 12.8 The distribution

of observed and expected

grades at a university in

Exercise 12.28

zi . 1st 2i) 2ii) 3 Pass Fail

Observed frequency 20 25 29 14 11 1

Expected frequency 15 20 25 20 15 5

• Two-way classification tables

A two-way classification table, also called a contingency table, concerns two

variables. The observed frequencies occupy m rows (that is, m specified values

for one variable) and n columns (that is, n specified values for another variable).

As mentioned in Sect. 12.2.5 of this chapter, the number of degrees of freedom

of a two-way classification table is (m − 1) × (n − 1)..

The Chi-square test can test the association between the two variables in a two-

way table. The null hypothesis H0 . assumes no association between the two

variables in the rows and columns, while the alternative hypothesis H1 . states

that some association exists.

Example 12.20 Two groups, A and B, consist of 150 people, each with type

2 diabetes. The two groups are treated identically, except that group Amust do

supervised aerobic activities for two hours each week. After half a year, it is

found that in groups A and B, 120 and 100 people, respectively, put diabetes

into remission. Use the Chi-square test at a significance level of 0.05. to test

the hypothesis that the supervised aerobic activities help diabetes remission.

Solution

– Specify the hypotheses:

H0 .: There is no difference between the results of the two groups of

people—that is, doing the supervised aerobic activities has no effect.

In other words that the diabetes remission is independent of, or has no

association with, doing the supervised aerobic activities.

H1 .: Represents alternative hypothesis.

– We consider a one-tailed test. The sample size is 150+150 = 300., and the

significance level is set to 0.05 in the question.

– We set up Table 12.9 using the data in the question.

– Decide whether to reject or fail to reject the null hypothesis.

·. Compute the statistic. First, we need to calculate the expected frequen-

cies. Under H0 . that doing the supervised aerobic activities has no effect,

we expect (120+100)
2

= 110. people in each of the groups to put them into

diabetes remission and 30+50
2

= 40. in each group not to put them into

remission. We can set up Table 12.10.

We can compute χ2
. using Eq. (12.20) as follows:

χ2 = (120−110)2

110
+ (100−110)2

110
+ (30−40)2

40
+ (50−40)2

40
= 6.82..

(continued)
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Example 12.20 (continued)

·. Check the critical value from the corresponding distribution table based

on the significance level and the degrees of freedom.

The degrees of freedom of this two-way classification is (2− 1) × (2−
1) = 1.. Therefore, χ2

0.05 = 3.84. obtained from a χ2
. table showing the

area to the right of the critical value.

·. Comparing our computed statistics to the critical value.

Since χ2 = 6.82 > 3.84., showing that our value is further to the right

and indicating the area to the right of our observed statistic value (6.82.)

is less than 5%.. We therefore conclude that the result is significant at

the 0.05. level, that is, our value of χ2
. is too big. Thus, we reject H0 .;

that is, there is a difference between the two groups of people, and

we can conclude that doing supervised aerobic activities helps diabetes

remission.

Exercises

12.29 Two universities have percentage distributions of actual results from a

recent year. Both results are shown in Table 12.11.

The null hypothesis H0 . is that there is no difference between the two

universities in exam performance. A student chosen randomly has the same

probability of obtaining any grade from either university. Use the Chi-square

test at a significance level of 0.05. to test this hypothesis.

12.30 Two factories are making the same product and both produce a certain

number of defective items. The percentage of good and defective items is

given in Table 12.12.

The null hypothesis H0 . is that there is no difference between the two

factories. Use the Chi-square test at a significance level of 0.05. to test this

hypothesis.

Table 12.9 The observed

frequencies used in

Example 12.20 testing

diabetes and aerobic exercise

Remission No remission Total

Group A 120 30 150

Group B 100 50 150

Total 220 80 300

Table 12.10 The expected

frequencies used in

Example 12.20 testing

diabetes and aerobic exercise

Remission No remission Total

Group A 110 40 150

Group B 110 40 150

Total 220 80 300



12.3 Inference 375

Table 12.11 The distribution

of grades in two universities

in Exercise 12.29

1st 2i) 2ii) 3 Pass Fail

University 1 20 25 29 14 11 5

University 2 12 25 27 20 14 6

Table 12.12 The distribution

of defective products in two

factories in Exercise 12.30

Good Defective

Factory 1 95 5

Factory 2 87 13

Table 12.13 The observed

frequencies
Remission No remission Total

Group A 120 40 160

Group B 120 40 160

Total 240 80 320

Table 12.14 The observed

frequencies
Remission No remission Total

Group A 24 8 32

Group B 120 40 160

Total 144 48 192

In the examples and exercises in this section so far, both row totals were the same.

But what happens if the row totals are different?

First, consider a slightly silly and unrealistic example with data similar to that

in Example 12.20, as shown in Table 12.13. Here the data in groups A and B are

identical! Hence, doing supervised aerobic activities obviously has no effect, and so

we know we will not reject the hypothesis H0 . (H0 . was that doing the supervised

aerobic activities has no effect). In fact, if we tried to calculate the χ2
. statistic, we

would immediately find that the expected values are all the same as the actual values.

This is because the expected values are found in each case by dividing the column

sum in the observed frequencies table by two. All the terms in the χ2
. calculation

would be zero. The value from the χ2
. table would be the same as in Example 12.20,

so our χ2
.value of 0 is less than the 3.84. value in the χ2

. table, and we get the correct

conclusion that we do not reject the hypothesis H0 ..

Now suppose each of the values in Group A were 5 times smaller since Group A

was a small group. This is shown in Table 12.14.
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Table 12.15 The observed

frequencies in Example 12.21
Distinction Pass Fail Total

F 10 60 10 80

M 5 29 6 40

Total 15 89 16 120

The proportions of people in group A are the same as in Group B, so again, we

do not reject the hypothesis H0 ., that doing the supervised aerobic activities has no

effect. But if we blindly, and incorrectly, tried to calculate the χ2
. statistic using

the method used before involving column totals, that is, the expected values are
24+120

2
= 72. and 8+40

2
= 24., respectively, we would get a very large number for the

χ2
. statistic. In fact, we would get

.
(24 − 72)2

72
+

(120 − 72)2

72
+

(8 − 24)2

24
+

(40 − 24)2

24
≈ 91.3.

This is obviously totally wrong, and the problem is we have not considered the

different row sums.

The correct method to use to find the expected values for each cell is to use the

formula:

.expected value = ((row total) ∗ (column total))/(grand total). (12.21)

So, for instance, Group A remission cell would be 32×144
192

= 24., which is the same

as the observed value. Check the other cells all give the same expected value as the

observed value. Now we would again get all zeros in the χ2
. calculation, and all

would be well.

Remark 12.9 In fact, Eq. (12.21) reduces to the previous method if the row totals

are equal. That is because each row total is half the grand total, so row total
grand total

= 1
2
.

and hence expected value = column total
2

. as before.

�.

We will now do a proper example.

Example 12.21 The results for an MSc exam for 80 female students and

40 male students are shown in Table 12.15. Use the Chi-square test at a

significance level of 0.05. to test the hypothesis that the there is no difference

between the females and males in their performance.

(continued)
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Example 12.21 (continued)

Solution

– Specify the hypotheses:

H0 .: There is no difference between the females and males in their

performance.

H1 .: Represents alternative hypothesis.

– We consider a one-tailed test. The sample size is 80 + 40 = 120., and the

significance level is set to 0.05 in the question.

– Decide whether to reject or fail to reject the null hypothesis.

·. Compute the statistic. First, we need to calculate the expected frequen-

cies. Here, since the row sums are different, we use Eq. (12.21). These

are shown in Table 12.16. For instance, in the cell for females that pass,

we have that the expected value = 80×89
120

= 59.33..

We can compute χ2
. using Eq. (12.20) as follows:

χ2 = (10−10)2

10
+ (5−5)2

5
+ (60−59.33)2

59.33
+ (29−29.67)2

29.67
+ (10−10.67)2

10.67
+

(6−5.33)2

5.33
≈ 0.149..

·. Check the critical value from the corresponding distribution table based

on the significance level and the degrees of freedom.

The degrees of freedom of this two-way classification is (2− 1) × (3−
1) = 2.. Therefore, χ2

0.05 = 5.99. obtained from a χ2
. table showing the

area to the right of the critical value.

·. Comparing our computed statistics to the critical value.

Since χ2 = 0.149 < 5.99., indicating the area to the right of the

observed statistic value (0.149.) is greater than 5%., we conclude that

the result is not significant at the 0.05. level. Thus, we do not reject H0 .

at the 5%. level.

Table 12.16 The expected

frequencies in Example 12.21
Distinction Pass Fail Total

F 10 59.33 10.67 80

M 5 29.67 5.33 40

Total 15 89 16 120

Table 12.17 The observed

frequencies in Exercise 12.31
Distinction Pass Fail Total

F 9 64 7 80

M 6 26 8 40

Total 15 90 15 120
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Table 12.18 Observed

frequencies in Exercise 12.32
A B C D

Girls 20 50 60 15

Boys 25 60 50 15

Exercises

12.31 Do the same calculation as in Example 12.21 but with the new values

given in Table 12.17. That is, use the Chi-square test at a significance level of

0.05. to test the hypothesis that there is no difference between the females and

males in their performance.

12.32 Conduct a standard Chi-squared test using a significance level of 0.05..

Maths exam grades are compared between 150 boys and 145 girls in the

same year group in a secondary school (see Table 12.18). The null hypothesis

H0 . is that there is no difference between girls and boys in the maths exam

performance. A girl and boy chosen randomly have the same probability of

obtaining any grade. Use the Chi-square test at a significance level of 0.05. to

test this hypothesis.

Remark 12.10 The Chi-square test relies on the Chi-square distribution, which is

a continuous probability distribution. However, data in contingency tables consist

of discrete counts. This mismatch can cause inconsistencies between the observed

(discrete) test statistic and the theoretical (continuous) Chi-square distribution.

To address this, a continuity correction is sometimes applied to adjust the test

statistic and better approximate the continuous distribution, especially when the

degrees of freedom are equal to one or when sample sizes are small, such as when

the expected frequencies in some cells are less than 5.

For example, Yates’ continuity correction can be applied when the number of

degrees of freedom is one. Yates’ correction adjusts the test statistic as follows:

.χ2(correct) =
n

∑

i=1

(|oi − ei | − 0.5)2

ei

.

Please note that in this book, we use the original Chi-square test formula without

applying Yates’ continuity correction, even when the degrees of freedom equals 1.

�.



Chapter 13 

Algorithms 4: Maximum Likelihood 
Estimation and Its Application to 

Regression 

In this chapter, we first introduce the maximum likelihood estimation method. 

Then we show how it can be applied in enhancing the linear regression algorithm 

introduced in Chap. 8. Moreover, since the algorithm is now configured in a 

proper probability and statistical framework, we can set up confidence intervals for 

estimators using the methods presented in Chap. 12. Finally, we use the maximum 

likelihood estimation technique to introduce logistic regression, which is actually a 

classification algorithm. 

13.1 Maximum Likelihood Estimation 

Before we start to introduce the maximum likelihood estimation method, let us have 

a look at Example 13.1 first. 

Example 13.1 Suppose data are generated independently from an identical 

Gaussian distribution, but we do not know which Gaussian distribution it 

was. That is, we do not know the parameters μ. and σ . for the Gaussian 

distribution. Suppose that two of the data points are x1 = 0. and x2 = 1.. 

Different Gaussian distributions will give a different probability (density) for 

these two points being generated. That is, each Gaussian distribution will give 

a different likelihood for these two points being generated. We can illustrate 

this by considering two particular Gaussian distributions. So we want to know 

the probability of obtaining x1 = 0. and x2 = 1. from the distribution, that 

is, to compute p(x1 = 0, x2 = 1|μ, σ).. Let us consider the two Gaussian 

distributions: 

(continued) 
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Example 13.1 (continued) 

1. X ∼ N(2, 2 2).. 

2. X ∼ N(1, 1 2).. 

Figure 13.1 shows these two Gaussian distributions using solid and dash-

dotted lines, respectively, and presents the point x = 0.with  a  cross  and x = 1. 

with a square. 

We can apply Eq. (10.19) from Chap. 10 to compute the probability 

(density). 

If X ∼ N(2, 22).,  we  ha  ve

. p(x = 0|μ = 2, σ = 2) = 1√
2π × 22

e
− (0−2)2

2×22 ≈ 0.12,

and 

. p(x = 1|μ = 2, σ = 2) = 1√
2π × 22

e
− (1−2)2

2×22 ≈ 0.18.

It gives p(x1 = 0, x2 = 1|μ = 2, σ = 2) = 0.12 × 0.18 = 0.0216.. 

If X ∼ N(1, 1).,  we  ha  ve

. p(x = 0|μ = 1, σ = 1) = 1√
2π × 12

e
− (0−1)2

2×12 ≈ 0.24,

. p(x = 1|μ = 1, σ = 1) = 1√
2π × 12

e
− (1−1)2

2×12 ≈ 0.40.

It gives p(x1 = 0, x2 = 1|μ = 1, σ = 1) = 0.24 × 0.40 = 0.096.. 

Intersections of the horizontal dashed lines in Fig. 13.1 indicate the corre-

sponding p(x|μ, σ). values of a specified Gaussian distribution for each data 

observation. 

Therefore, the likelihood that we observe data x1 = 0.and x2 = 1.generated 

from the Gaussian distribution with a mean value of 1 and a standard deviation 

of 1 is higher than observing them from the Gaussian distribution with a mean 

of 2 and a standard deviation of 2. 

The above example shows that the likelihood of generating 0 and 1 can differ with 

different Gaussian distributions. The maximum likelihood (ML) method finds the 

estimate that gives the observed data the highest likelihood, the highest probability 

(density) that an event has occurred. That is, it finds the values of the parameters 

μ. and σ . that maximise the probability (density). As was shown in Chap. 5,



13.1 Maximum Likelihood Estimation 381

Fig. 13.1 Illustration for 

Example 13.1 
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finding maximums involves differentiation and, in particular, since there are usually 

multiple parameters, it involves partial differentiation as discussed in Chap. 6. 

Definition 13.1 (Maximum Likelihood Estimation) Suppose X is a random vari-

able with a probability density function f (x; θ1, · · · , θk)., where θ1, · · · , θk . are k 

unknown parameters. Let x1, · · · , xN . be observations of X. The joint probability of 

observations is given by 

. L(θ1, · · · , θk) =
N
∏

i=1

f (xi; θ1, · · · , θk).

This function is called the likelihood function and is a function of unknown 

parameters (θ1, · · · , θk .)  [14]. We wish to maximise it. So if there exists θ̂1, · · · , θ̂k . 

where the following equation holds: 

.L(θ̂1, · · · , θ̂k) = max
(θ1,··· ,θk)∈�

{L(θ1, · · · , θk)}, (13.1) 

then θ̂1, · · · , θ̂k . are the maximum likelihood estimation of θj ., where j = 1, . . . , k .. 

The notation used in f (x; θ1, · · · , θk). just reminds you that the values used after 

the semicolon are parameters of the particular probability density function being 

considered. So, for example, in the Gaussian distribution used in Example 13.1,  the  

probability density function would be written as f (x;μ, σ .). In Example 13.1 we 

just took the product of two values of x, namely, x1 = 0. and x2 = 1..  S  o

.L(μ, σ) =
2

∏

i=1

f (xi;μ, σ).
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Example 13.2 Suppose X is a random variable X ∼ N(μ, σ 2).. Show that 

μ̂ = 1
N

∑N
i xi . and (σ̂ )2 = 1

N

∑N
i (xi − μ)2 . using the maximum likelihood 

estimate method. 

Solution Since X ∼ N(μ, σ 2)., its probability density function (Eq. 10.19)  is  

given by

. f (x;μ, σ) = 1√
2πσ 2

e
− (x−μ)2

2σ2 .

The likelihood function over n observations is

. 

L(μ, σ) =
N
∏

i=1

f (xi;μ, σ)

=
N
∏

i=1

{ 1√
2πσ 2

e
− (xi−μ)2

2σ2

}

= 1

(
√
2πσ 2)N

e
− 1

2σ2

∑N
i=1(xi−μ)2

.

It is more convenient to maximise the logarithm of the likelihood function, 

that is, max(θ1,··· ,θk)∈�{lnL(θ1, · · · , θk)}.. When taking logarithms of both 

sides, things that are multiplied become added, and ln(eg(x)) = g(x). for any 

g(x).. Hence, we get the following: 

. 

lnL(μ, σ) = ln

(

1

(
√
2πσ 2)N

)

− 1

2σ 2

N
∑

i=1

(xi − μ)2

= −N ln(σ ) − N ln(
√

2π) − 1

2σ 2

N
∑

i=1

(xi − μ)2.

To find μ̂. and (σ̂ )2 . so that lnL(μ̂, σ̂ ). is maximised, we can do the partial 

derivatives with respect to each parameter and then set them to zero: 

. 

{

∂ lnL(μ,σ)
∂μ

= 1
σ 2

∑N
i=1(xi − μ) = 0

∂ lnL(μ,σ)
∂σ

= −N
σ

+ 1
σ 3

∑N
i=1(xi − μ)2 = 0.

Rearranging these, the solution is 

(continued)
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Example 13.2 (continued) 

. 

{

μ̂ = 1
N

∑N
i xi,

(σ̂ )2 = 1
N

∑N
i=1(xi − μ)2.

We can now apply the result from Example 13.2 to Example 13.1. 

Example 13.3 We now want to maximise the parameters of a Gaussian 

distribution (Gaussian probability density function) to get the most likely 

Gaussian distribution that contains just the two points x1 = 0. and x2 = 1., 

as in Example 13.1. From Example 13.2 we have 

. 

{

μ̂ = 1
N

∑N
i xi,

(σ̂ )2 = 1
N

∑N
i=1(xi − μ)2.

So for N = 2., x1 = 0. and x2 = 1., this gives μ̂ = 0.5. and (σ̂ )2 = 0.25. and so 

the standard deviation, σ̂ .,  is 0.5.. 

To show that this gives a higher probability than the previous Gaussian 

distributions used in Example 13.1, we will do the same calculations as we 

did in Example 13.1: 

. p(x = 0|μ = 0.5, σ = 0.5) = 1√
2π × 0.52

e
− (0−0.5)2

2×0.52 ≈ 0.48,

and 

. p(x = 1|μ = 0.5, σ = 0.5) = 1√
2π × 0.52

e
− (1−0.5)2

2×0.52 ≈ 0.48.

This gives p(x1 = 0, x2 = 1|μ = 0.5, σ = 0.5) = 0.48× 0.48 = 0.23.which 

is higher than both the values in Example 13.1. 

Intuitively, looking at Fig. 13.2, for the values we get for μ̂. and σ̂ . (the dotted 

curve), then a value for the mean of halfway between the two points x1 = 0. 

and x2 = 1. and a standard deviation of 0.5. seems right for the best fitting 

Gaussian.
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Fig. 13.2 Illustration for 

Example 13.3
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Exercise 

13.1 Suppose X is a random variable, and its probability density function i s

. f (x) =
{

λe−λx, x > 0

0, x < 0,

where λ > 0..  If x1, . . . , xn . are observations of X, find the maximum 

likelihood estimate of λ.. 

Now suppose we have just two points in our distribution, namely, x1 = 1. and 

x2 = 2.. 

(1) Suppose λ = 1., find p(x1 = 1, x2 = 2|λ = 1).. 

(2) Suppose λ = 2., find p(x1 = 1, x2 = 2|λ = 2).. 

(3) Now calculate the value you would get for λ.when you have the two points 

x1 = 1. and x2 = 2. using the maximum likelihood estimate of λ = λbest . 

you found in the first part of this Exercise. Using this value of λ. calculate 

p(x1 = 1, x2 = 2|λ = λbest ).. 

13.2 Revisiting Linear Regression 

13.2.1 Linear Regression with Maximum Likelihood 

Estimation 

Suppose Y is the dependent variable, and X is the independent variable. We use 

y and x to denote the sample values of these two variables separately. We want to 

understand the relationship between these two variables from the given data and to 

be able to predict y when a new sample value x is observed.
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Given a sample value x from X, there could be a set of different values found for 

y, and those values of y would form some sort of distribution. We can model this 

conditional distribution of y given the sample value of X. This distribution has some 

unknown parameters. For example, if we use a normal distribution (see Eq. 10.19 in 

Chap. 10) to model the given data, we need to estimate the mean μ. and the standard 

deviation σ . from the data. 

When introducing the least-squares method in Chap. 8, the regression line of y 

on x is written as

. fa(x) = a0 + a1x,

where x is the observed input value, and fa(x). gives the estimated value of y.  This  

equation is referred to as noise-free and gives a fixed value for y. However, we can 

include a noise or error element and can write the linear regression model as follo ws:

.y = a0 + a1x + ǫ, (13.2) 

where ǫ . is an unobserved error term. This model has two parts: the deterministic 

part, a0 + a1x ., and the stochastic part, ǫ .. There are three assumptions made for this 

model: 

1. For each observed x value, there is a normal distribution of Y from which the 

sample value y is drawn a t random.

2. The mean μ. of the normal distribution of Y to the corresponding x value lies on 

the straight line a0 + a1x .. 

3. The standard deviation σ . of each normal distribution of Y is a constant as x 

varies. That is, the noise is assumed to be the same at all points.

Figure 13.3 shows the normal distribution of Y about the regression line a0+a1x . 

for three selected values of x. 

Based on these assumptions, we have the probability density distribution of y 

given by

.f (y|x; a0, a1, σ
2) = 1√

2πσ 2
e

(y−(a0+a1x))2

2σ2 , (13.3) 

with the expected y value lying along the solid line shown in Fig. 13.3, that is, 

E(y) = a0 +a1x ., and the variance of y is σ 2
.. So the deterministic part of y is given 

by its mean lying on the line y = a0 + a1x ., and the stochastic part is the normally
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Fig. 13.3 A schematic diagram illustrating the three assumptions of the linear regression model 

distributed error ǫ .. In fact, we can see that given Eq. (13.2), Eq. (13.3) can be written 

as 

.f (ǫ|σ) = 1√
2πσ 2

e
ǫ2

2σ2 , (13.4) 

which says the unobserved error, ǫ ., has a Gaussian distribution with a zero mean 

and standard deviation of σ .. 

Example 13.4 Consider a simple linear regression model given by y = 2 +
1.5x + ǫ ., where ǫ ∼ N(μ = 0, σ 2 = 9).. What is the mean of y given t hat

x = 2., that is, what is E(y|x = 2).? 

Solution Substituting x = 2. into y = 2 + 1.5x + ǫ .,  we  ha  ve y = 2 +
1.5 × 2 + ǫ = 5 + ǫ . and E(y|x = 2) = E(5 + ǫ).. Applying the third 

property (3) in Sect. 10.5.1.1 of Chap. 10, that is, E(a + X) = E(X) +
a ,where a is a constant., we obtain E(y|x = 2) = 5 + E(ǫ) = 5,. since ǫ . 

has zero mean. 

This, of course, is the value of y found by substituting x = 2. into y = 2 +
1.5x ., using the second assumption above that says the mean value lies on the 

straight line a0 + a1x ., namely, the deterministic part of the model.
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Exercise 

13.2 Consider a simple linear regression model given by y = −4 + 3x + ǫ ., 

where ǫ ∼ N(μ = 0, σ 2 = 0.01).. 

(1) What is E(y|x = 1).? 

(2) What is the standard deviation (std) of y given that x = 1., that is, what is 

std(y|x = 1).? 

Suppose there are N data points (xi, yi). for i = 1, · · · , N ..  If  the y′
i .s  are  

independently normal distributed, that is, yi ∼ N(a0+a1xi, σ
2)., then the likelihood 

function is again formed by a product of probabilities: 

.

L(a0, a1, σ ) =
N
∏

i=1

p(yi |xi; a0, a1, σ )

=
N
∏

i=1

1√
2πσ 2

e
− (yi−(a0+a1xi ))

2

2σ2

= 1

(
√
2πσ 2)N

e
− 1

2σ2

∑N
i=1(yi−(a0+a1xi ))

2

.

(13.5) 

Equation (13.5) is the likelihood function for data that can be plotted in two 

dimensions, one independent variable X and one dependent variable Y . This can 

be extended by considering multiple independent variables. Here we consider d 

independent variables. This analysis closely follows the exposition given in Sect. 8.3 

of Chap. 8. The main difference between this and Chap. 8 is that Chap. 8 does 

not have any error or noise terms, and so has no reference to ǫ . or to σ 2
..  In  

fact, the result we now obtain for the coefficients of the line of best fit, or, since 

we are now in multiple dimensions, the coefficients of hyperplane of best fi t,

a = (a0, a1, . . . , ad)T ., will be the same as we got in Chap. 8 since it is the 

deterministic part of the model. 

Let the data be a matrix of the size of N × (d + 1)., X., where the first column is a 

column vector including N ones. Let xi .be the ith data item of a row vector including 

d + 1. elements, a. be a d + 1. column vector including d coefficients a1, . . . , ad . plus 

a0 ., and y. and ǫ . be column vectors including yi . and ǫi ., i = 1, . . . , N ., respectively. 

Then we have 

.y = Xa + ǫ. (13.6)
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The assumptions are ǫ ∼ N(0, σ 2)., and the error terms are uncorrelated. That is, 

.E[ǫiǫj |X] = 0. (13.7) 

Therefore, the likelihood function is 

.

L(a, σ 2) =
N
∏

i=1

p(yi |xi; a, σ 2)

=
N
∏

i=1

1√
2πσ 2

e
− (yi−xia)

T (yi−xia)

2σ2

= (2πσ 2)−N/2e
− 1

2σ2
(y−Xa)T (y−Xa)

.

(13.8) 

The logarithm of L(a, σ 2)., denoted as L(a, σ 2).,  i  s

.L(a, σ 2) = −N

2
ln(2π) − N

2
ln(σ 2) − 1

2σ 2
(y − Xa)T (y − Xa). (13.9) 

In order to find the maximum-likelihood estimations, we need to find the first-

order derivative of L.with respect to a. and σ 2
. as follows: 

.
∂L

∂a
= − 1

2σ 2
2(−X)T (y − Xa) = 1

σ 2
XT (y − Xa), (13.10) 

and 

.
∂L

∂σ
= −N

σ
+ 1

σ 3
(y − Xa)T (y − Xa). (13.11) 

The detailed derivative of
∂(y−Xa)T (y−Xa)

∂a
. can be viewed in Eq. (8.16) in Chap. 8. 

We set the derivatives of Eqs. (13.10) and (13.11) to zero to obtain a. and σ 2
., and 

the solution is the estimator 

. ̃a = (XT X)−1XT y,

the same as Eq. (8.17) in Chap. 8, and 

.σ̃ 2 = (y − Xa)T (y − Xa)

N
.
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Remember that a. is a d + 1. length vector since it contains a0 .. So, we can obtain an 

unbiased estimator for σ̃ 2
., by dividing (y − Xa)T (y − Xa). by N − (d + 1). instead 

of N , that is, 

.σ̃ 2 = (y − Xa)T (y − Xa)

N − (d + 1)
. (13.12) 

We have yet to introduce the concept of unbiased estimator. Readers may refer to 

[15]. 

We use the notation ã. and σ̃ 2
. to denote they are estimators to distinguish them 

from the true parameters a. and σ 2
.. 

Example 13.5 Suppose there are a set of data as shown in Table 13.1, where 

xi . are the values of an independent variable X, and yi . are the corresponding 

values of the dependent variable Y . Note that here d +1 = 2. since there is just 

one independent variable. This is picked to make the calculation easier. Also 

we only have three data points, so N = 3.. Realistic examples would have both 

d and N larger. 

Fit a linear regression model for the data using the maximum likelihood 

estimate method and round results to two decimal places.

Solution Let y =

⎡

⎣

1

1.8

4.2

⎤

⎦. and X. be the inputs including xi . and one column of 

1s corresponding to a0 ..  We  have XT =
[

1 1 1

1 2 4

]

.. 

Since 

. XT X =
[

1 1 1

1 2 4

]

⎡

⎣

1 1

1 2

1 4

⎤

⎦ =
[

3 7

7 21

]

,

then 

. (XT X)−1 ≈
[

1.5 −0.5

−0.5 0.214

]

.

Substituting (XT X)−1
., XT

., and y. into Eq. (8.17), we have 

. ̃a =
[

1.5 −0.5

−0.5 0.214

] [

1 1 1

1 2 4

]

⎡

⎣

1

1.8

4.2

⎤

⎦ ≈
[

−0.2

1.086

]

≈
[

−0.2

1.09

]

=
[

a0

a1

]

.

(continued)
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Example 13.5 (continued) 

Furthermore, substituting y., X., a., N = 3., and d = 1. into Eq. (13.12), we have 

. σ̃ 2 = 1

(3 − 2)

(

⎡

⎣

1

1.8

4.2

⎤

⎦−

⎡

⎣

1 1

1 2

1 4

⎤

⎦

[

−0.2

1.086

])T(
⎡

⎣

1

1.8

4.2

⎤

⎦−

⎡

⎣

1 1

1 2

1 4

⎤

⎦

[

−0.2

1.086

])

≈ 0.05.

Therefore, the fitted linear regression is 

. ỹ = −0.2 + 1.09x + ǫ,

where ǫ ∼ N(μ = 0, σ̃ 2 = 0.05).. 

The fitted linear regression line is shown in Fig. 13.4. 

Suppose now there is new data at x = 3.. Estimate its expected ỹ . value using 

the above fitted linear regression model, that is, to compute E(ỹ|x = 3, μ =
0, σ̃ 2 = 0.05).. 

Solution E(ỹ|x = 3;μ = 0, σ 2 = 0.05) = −0.2 + 1.086 × 3 ≈ 3.06.. 

Table 13.1 The data for 

Example 13.5 
xi . yi . 

1 1 

2 1.8 

4 4.2 

Fig. 13.4 Visualisation of 

the fitted linear regression 

line in Example 13.5
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To illustrate this a bit further, we will do another example using the same X 

values as in Example 13.5 and Table 13.1 but two different sets of Y values. This is 

just to save having to redo the calculation of XT X.! 

Example 13.6 The new values for the first set of data are shown in the 

left two columns of Table 13.2. Since the xi . values are the same as in 

Example 13.5, we get the same matrix for X. and the same matrix for 

(XT X)−1
., namely, 

. (XT X)−1 ≈
[

1.5 −0.5

−0.5 0.214

]

.

However, y. now is y =

⎡

⎣

1

3

3

⎤

⎦.. 

To find ã.we again use Eq. (8.17): 

. ̃a =
[

1.5 −0.5

−0.5 0.214

] [

1 1 1

1 2 4

]

⎡

⎣

1

3

3

⎤

⎦ ≈
[

1

0.566

]

≈
[

1

0.57

]

.

Finally, we again use Eq. (13.12) to find σ̃ 2
.: 

. σ̃ 2 = 1

(3 − 2)

(

⎡

⎣

1

3

3

⎤

⎦−

⎡

⎣

1 1

1 2

1 4

⎤

⎦

[

1

0.566

] )T (

⎡

⎣

1

3

3

⎤

⎦−

⎡

⎣

1 1

1 2

1 4

⎤

⎦

[

1

0.566

] )

≈ 1.14.

Therefore, the fitted linear regression is 

. ỹ = 1 + 0.57x + ǫ,

where ǫ ∼ N(μ = 0, σ̃ 2 = 1.14).. 

This fitted linear regression line is shown in Fig. 13.5. We can see by 

comparing Figs. 13.4 and 13.5 that the line is closer to the points in 

Fig. 13.4 and hence we need a smaller value for σ̃ 2
. in Example 13.5 than 

in Example 13.6. 

Finally, we will use the two right-hand columns in Table 13.2.  Agai  n X. is the 

same, but now y =

⎡

⎣

1

2

4

⎤

⎦ .. 

(continued)
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Example 13.6 (continued) 

Using the same method we get ã =
[

0

1

]

..However, when we come to find σ̃ 2
., 

we need to calculate (y − Xa).which is as follows: 

. 

(

⎡

⎣

1

2

4

⎤

⎦ −

⎡

⎣

1 1

1 2

1 4

⎤

⎦

[

0

1

])

=

⎡

⎣

0

0

0

⎤

⎦ .

Hence, σ̃ 2 = 0.. 

This is because these values of X and Y actually lie on a s traight line.

Finally, we will do an example with more data points. 

Table 13.2 The data for 

Example 13.6 
xi . yi . xi . yi . 

1 1 1 1 

2 3 2 2 

4 3 4 4 

Fig. 13.5 Visualisation of 

the fitted linear regression 

line in Example 13.6
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Example 13.7 Suppose there are a set of data as shown in Table 13.3, where 

xi . are the values of an independent variable X, and yi . are the corresponding 

values of the dependent variable Y . Again this data can be plotted in two 

dimensions since it has just one independent variable, so d + 1 = 2., but now 

we have five data points, that is N = 5.. 

Fit a linear regression model for the data using the maximum likelihood 

estimate method and round results to two decimal places. 

Solution 

Let y =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2.4

2

1.6

1

0.4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. and XT =
[

1 1 1 1 1

1 2 3 4 5

]

.. 

So 

. XT X =
[

5 15

15 55

]

,

and 

. (XT X)−1 =
[

1.1 −0.3

−0.3 0.1

]

.

Substituting (XT X)−1
., XT

., and y. into Eq. (8.17), we have 

. ̃a =
[

2.98

−0.5

]

.

Furthermore, substituting y., X., a., N = 5., and d = 1. into Eq. (13.12), we have 

. σ̃ 2 ≈ 1

(5 − 2)
× 0.028 ≈ 0.0093 ≈ 0.01.

Therefore, the fitted linear regression is 

. ỹ = 2.98 − 0.5x + ǫ,

where ǫ ∼ N(μ = 0, σ̃ 2 = 0.01).. 

Suppose now there is new data at x = 3.5.. Estimate its expected ỹ . value using 

the above fitted linear regression model, that is, to compute E(ỹ|x = 3.5, μ =
0, σ̃ 2 = 0.01).. 

Solution 

E(ỹ|x = 3.5;μ = 0, σ 2 = 0.01) = 2.98 − 0.5 × 3.5 = 1.23..
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Exercise 

13.3 Given the two sets of data as shown in Table 13.4, where xi . are the 

values of an independent variable X and yi . are the corresponding values of 

the dependent variable Y , fit a linear regression model for each dataset using 

the maximum likelihood estimate method and round results to two decimal 

places. 

13.4 Given the data as shown in Table 13.5, where xi . are the values of an 

independent variable X and yi . are the corresponding values of the dependent 

variable Y , fit a linear regression model for each set of data using the 

maximum likelihood estimate method and round results to two decimal 

places, except σ̃ 2
., which should be given to 3 decimal places. 

13.2.2 Sampling Distribution of the Linear Regression 

Estimators 

We now know how to estimate values for ã., the mean value or the hyperplane (line 

in 2-dimensional space) of best fit, and σ̃ 2
., the variance, and to get an estimated 

value for a new data point. The question now is: How accurate are those estimates? 

Table 13.3 The data for 

Example 13.7 
xi . yi . 

1 2.4 

2 2 

3 1.6 

4 1 

5 0.4 

Table 13.4 The data for 

Exercise 13.3 
xi . yi . xi . yi . 

1 7 1 7 

3 4 3 5 

4 1 4 0 

Table 13.5 The data for 

Exercise 13.4 
xi . yi . 

1 0.6 

2 1 

3 1.6 

4 2
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That is the topic of this section—finding confidence limits for these estimates with 

a specified level of confidence. 

Values of estimators ã.and σ̃ 2
.obtained from Eqs. (8.17) and (13.12), respectively, 

may change when the observations of y. and X. change. Just like sampling distri-

butions of means or sampling distributions of proportions (covered in Sects. 12.2.2 

and 12.2.3 of Chap. 12), the ã.and σ̃ 2
.of linear regression models have their sampling 

distributions, which approximate a normal distribution. 

To get to the equations for the sampling distributions of ã. and σ̃ 2
. and derive 

confidence limits, we need some fairly detailed preliminary mathematical results. 

These mathematical results are separated out and collected in the next subsec-

tion. They are needed to justify the equations on the sampling distributions that 

will be covered in the subsections afterwards, namely, Sects. 13.2.2.2, 13.2.2.3, 

and 13.2.2.4. All of this is leading up to the key results on confidence limits of 

the sampling distributions, namely, Eqs. (13.19), (13.20), and (13.24). 

13.2.2.1 Preliminary Knowledge 

• Expectation and Variance of Random Vectors 

If X1, X2, . . . , Xt . are random variables, then the vector x = (X1, X2, . . . , Xt )
T

. 

is a vector of random variables. 

Definition 13.2 The expected value of a vector of random variables is defined 

as the vector of the expected values of the component parts. That is, 

. E[x] =
(

E[X1], E[X2], . . . , E[Xt ]
)T

.

The variance-covariance matrix of x. is 

.

V ar[x] = E
[

(x − E[x])(x − E[x])T
]

=

⎡

⎢

⎢

⎢

⎣

V ar(X1) cov(X1, X2) . . . cov(X1, Xt )

cov(X2, X1) V ar(X2) . . . cov(X2, Xt )
...

...
. . .

...

cov(Xt , X1) cov(Xt , X2) . . . V ar(Xt )

⎤

⎥

⎥

⎥

⎦

.

(13.13) 

We know some properties of mean and variance in Sects. 10.5.1.1 and 10.5.2.1 

of Chap. 10 for random variables. Here are a couple of vector generalisations of 

these properties.
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Suppose A. is a s × t .matrix of constants, b. is a s × 1. vector of constants, and 

x. is a t × 1. vector of random variables. 

.E[Ax + b] = AE[x] + b, (13.14) 

.V ar(Ax + b) = AV ar(x)AT . (13.15) 

The first of these two properties is illustrated in Example 13.8 since the expected 

value of a vector of random variables was easily defined above. It also looks like 

the properties of mean given in Sect. 10.5.1.1 of Chap. 10 and so an example 

is easy to understand. The second is more complicated since the variance of a 

vector of random variables is a matrix involving variances on the main diagonal 

and covariances in the other places, as shown in Eq. (13.13) above. So, we give 

proof of it instead of giving an example so that you can apply it with trust. If you 

are happy to accept the result, you can skip the proof. First, we give an example 

on the first property, which is the one involving the mean. 

Example 13.8 Suppose A. is the matrix of constants: A =

⎡

⎣

1 2

3 4

5 6

⎤

⎦.; b. is a 

vector of constants, b = (1, 2, 3)T .; and x. is a vector of random variables, 

x = (X1, X2)
T .. 

Now 

. Ax + b =

⎡

⎣

1 2

3 4

5 6

⎤

⎦

[

X1

X2

]

+

⎡

⎣

1

2

3

⎤

⎦ =

⎡

⎣

X1 + 2X2 + 1

3X1 + 4X2 + 2

5X1 + 6X2 + 3

⎤

⎦ .

So 

. E[Ax + b] =

⎡

⎣

E[X1 + 2X2 + 1]
E[3X1 + 4X2 + 2]
E[5X1 + 6X2 + 3]

⎤

⎦

=

⎡

⎣

E[X1] + 2E[X2] + 1

3E[X1] + 4E[X2] + 2

5E[X1] + 6E[X2] + 3

⎤

⎦

= AE[x] + b,

as required. The second line uses the first three properties of mean from 

Sect. 10.5.1.1 of Chap. 10.
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Now we prepare for the proof of the second property by developing a useful 

variation on the definition of V ar[x].. 

Example 13.9 Prove the following useful variation on the definition of 

V ar[x].. 

.V ar[x] = E[xxT ] − E[x](E[x])T . (13.16) 

Solution Before we start, let us recall the second property in Sect. 3.3.11.1 

of Chap. 3: (A + B)T = AT + BT
.. Therefore, we have (x − E[x])T =

xT − (E[x])T .. Recall the second property in Sect. 10.5.1.1 of Chap. 10: 

E(aX) = aE(X)., where a is a constant. Thus, we hav e E[E[x]xT ] =
E[x]E[xT ]. since each element of E[x]. is a constant. In addition, by the 
definition (13.2) above, of the expected random vector of random variables, 

we have E[xT ] = (E[x])T .. 

Proof Applying Eq. (13.13), we have 

. V ar[x] = E
[

(x − E[x])(x − E[x])T
]

= E
[

(x − E[x])(xT − (E[x])T )
]

= E
[

xxT − E[x]xT − x(E[x])T + E[x](E[x])T
]

= E[xxT ] − E[x]E[xT ] − E[x](E[x])T + E[x](E[x])T

= E[xxT ] − E[x](E[x])T . ⊓⊔

Now we can give the proof of the second property as promised: 

Proof V  ar(Ax + b) = AV  ar(x)AT
.. 

Applying Eqs. (13.16), (13.14), and the third property in Sect. 3.3.11.1 of 

Chap. 3, that is, (AB)T = BT AT
.,  we  ha  ve

.V ar(Ax + b) = E
[

(Ax + b)(Ax + b)T
]

− E[Ax + b](E[Ax + b])T

= E[AxxT AT + bxT AT + AxbT + bbT ]

− (AE[x] + b)(AE[x] + b)T
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= AE[xxT ]AT + bE(xT )AT + AE(x)bT + bbT 

− AE[x](E[x])T AT − b(E[x])T AT − AE(x)bT − bbT 

= AE[xxT ]AT − AE[x ](E[x])T AT

= AV ar(x)AT .

⊓⊔
The last step of the above has used the result shown in Example 3.26 in Chap. 3. 

• Suppose C. and D. are two matrices with a size of m × n. and n × m., respectively; 

then 

. tr(CD) = tr(DC),

as illustrated in Example 13.10. 

Example 13.10 Let U =
[

2 −1 3

0 5 1

]

., and V =

⎡

⎣

4 1

0 2

2 1

⎤

⎦.. 

. UV =
[

2 −1 3

0 5 1

]

⎡

⎣

4 1

0 2

2 1

⎤

⎦ =
[

14 3

2 11

]

.

. VU =

⎡

⎣

4 1

0 2

2 1

⎤

⎦

[

2 −1 3

0 5 1

]

=

⎡

⎣

8 1 13

0 10 2

4 3 7

⎤

⎦ .

. tr(UV) = tr(VU) = 25.

• A square matrix M. is defined to be idempotent if and only ifM2 = M.. 

Example 13.11 Suppose M. is idempotent. We use I. to denote an identity 

matrix whose size is the same as M.. 

. (I − M)(I − M) = I2 − MI − IM + M2 = I − 2M + M = I − M.

Therefore, I − M. is also idempotent.
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Every idempotent matrix, except the identity matrix, is singular. Its rank is equal 

to its trace. 

Example 13.12 Let the hat matrix, H = X(XT X)−1XT
., where X. is a N ×

(d + 1).matrix with N ≥ d + 1.. H. is therefore an N × N .matrix. Since 

. H2 = X(XT X)−1XT X(XT X)−1XT

= X[(XT X)−1(XT X)](XT X)−1XT

= XI(XT X)−1XT

= X(XT X)−1XT

= H,

H. is therefore idempotent, and the rank of it equals 

. tr(H) = tr(X(XT X)−1XT )

= tr(XT X(XT X)−1)

= tr(I(d+1)×(d+1))

= d + 1.

Inside the trace calculation, between the first and second line, we reversed two 

matrices to put XT
. at the front as we illustrated in Example 13.10. 

• The simplified version of Cochran’s theorem 

Let Y ∼ N(0, σ 2I). and H. is an idempotent matrix of rank d + 1.. Then YT HY. 

is a Chi-square distribution, that is, YT HY ∼ σ 2χ2
d+1 .; and YT (I − H)Y. is also 

a Chi-square distribution, that is, YT (I − H)Y ∼ σ 2χ2
N−(d+1) .. 

That completes the set of preliminary results we need. 

13.2.2.2 Sampling Distribution of Estimators ã. 

What form of distribution should we consider for ã.? Recall the central limit theorem 

(see Sect. 11.1.2 of Chap. 11), which states that samples of sums or means of a 

random variable tend to be normally distributed in large samples. Consider ã. as a 

weighted mean value of y.. We can use the normal distribution for ã..
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Consider the data generated from Eq. (13.6): 

. y = Xa + ǫ.

Based on the three assumptions of the ordinary linear regression model presented 

in Sect. 13.2.1,  we  have E[y] = Xa. and V ar(y) = σ 2IN ., where IN . is a N × N . 

identity matrix. This last result is because the matrix of V ar(ǫ). is just a diagonal 

matrix of variances of the components of ǫ . (all equal to σ 2
.) with the other values 

in the matrix equal to zero since the error terms are uncorrelated and therefore all 

covariance terms are zero. 

Now using Eq. (8.17)  fo  r ã., namely, 

. ̃a = (XT X)−1XT y,

the expected value of ã. is 

.

E[ã] = E[(XT X)−1XT y]

= (XT X)−1XT Xa since E[y] = Xa

= a,

(13.17) 

and the variance of ã. is 

.

V ar(ã) = V ar((XT X)−1XT y)

= (XT X)−1XT V ar(y)((XT X)−1XT )T

= (XT X)−1XT σ 2IX(XT X)−1

= σ 2(XT X)−1.

(13.18) 

The third line of the last result relies on three results from previous work: namely, 

that (AT )T = A., (AB)T = BT AT
., and (A−1)T = (AT )−1

.. That is, 

. ((XT X)−1XT )T = X((XT X)−1)T = X((XT X)T )−1 = X(XT X)−1.

Therefore, the distribution of ã. is N(a, σ 2(XT X)−1).. 

One of the properties of the multivariate normal distribution is that every single 

variable has a univariate normal distribution (see Sect. 11.2.4 of Chap. 11). If we let 

ãi . be the ith element of ã., then 

. ̃ai ∼ N(ai, σ
2mii),

where ai . is the ith element of a. and mii . is the ith diagonal element of M =
(XT X)−1

..
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If we replace the actual standard deviation with the estimated standard deviation, 

then the distribution is Student’s t.-distribution (see Sect. 12.2.6.1 of Chap. 12). The 

confidence interval can be constructed by applying Eq. (12.13) on the confidence 

intervals of means that is found in Sect. 12.3.2.1 of Chap. 12. We need to change Zc . 

to the critical value from a t.-distribution table, so that margin of error = tc × SD.. 

Since the standard deviation is the square root of the variance, we get the following 

confidence limits for αi .: 

.ãi ± tc

√

σ̃ 2mii, (13.19) 

where tc . is the critical value with degrees of freedom of N − (d + 1). if there are 

N observations and d + 1. elements in a. (there are d independent variables) and the 

required confidence level is c .

In this subsection and the following two subsections, we will continue with 

Example 13.5 to quickly illustrate finding the appropriate confidence limits. At the 

end of all three subsections we will do a full example involving all three subsections. 

You need to bear in mind that these examples are really simple ones in the sense that 

there is only a small amount of data. Hence, all the confidence limits come out very 

wide. Realistic examples have much larger amounts of data, but would be done 

using an appropriate computer program. 

Example 13.13 Continue with Example 13.5—Part 1: constructing the 95%. 

confidence interval for a.. Since this is a two-tailed test, we need t0.975 . in the 

t-table. 

We substitute ã =
[

−0.2

1.09

]

., σ̃ 2 = 0.05., the elements of main diagonal of 

(XT X)−1 =
[

1.5

0.214

]

., and t0.975 = 12.71. with degrees of freedom of N −

(d + 1) = 1. into Eq. (13.19) and obtain 

. 

[

−0.2

1.09

]

± 12.71 ×
√

0.05 ×
( [

1.5

0.214

] )

=
[

−0.2

1.09

]

±
[

3.48

1.31

]

.

Therefore, the confidence interval for the intercept, a0 .,  i  s [−0.2 −
3.48, −0.2 + 3.48] = [−3.68, 3.28]. and similarly the confidence interval 

for the gradient, a1 .,  is [−0.22, 2.40].. 
As indicated before, these values give a very wide confidence interval since 

we only had three data points. With lots more data points, we would be much 

further down the appropriate t-table column and would get a much smaller tc . 

value.
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13.2.2.3 Sampling Distribution of Variance σ̃ 2
. 

The residual vector is given by 

. e = y − ỹ

= (IN − X(XT X)−1XT )y

= (IN − X(XT X)−1XT )(Xa + ǫ)

= (IN − X(XT X)−1XT )Xa + (IN − X(XT X)−1XT )ǫ

= 0 + (IN − X(XT X)−1XT )ǫ

= (IN − H)ǫ,

where H. is the hat matrix introduced in Example 13.12. Note that we substituted 

ỹ = Xã = X(XT X)−1XT y., using the equation for ã., into the second equation line. 

Also, the first term of the fourth equation line is equal to 

. INXa − X(XT X)−1XT Xa

= INXa − X(XT X)−1(XT X)a

= Xa − XId+1a

= Xa − Xa

= 0.

As shown in Sect. 13.2.2.1,  i  f H. is idempotent, then IN − H. is also idempotent. 

Also since HT = (X(XT X)−1XT )T = H., therefore H. is symmetric. This means 

that IN − H. is also symmetric, that is, (IN − H)T = (IN − H).. 

So the sum of the squares of the residuals is 

. e
T
e = ǫ

T (IN − H)T (IN − H)ǫ

= ǫ
T (IN − H)2ǫ

= ǫ
T (IN − H)ǫ,

where we have used the idempotent property, that is, if matrix IN −H. is idempotent, 

(IN − H)2 = (IN − H).. 

Since σ̃ 2 ∝ e
T
e . (see Eq. (13.12)), we have 

.σ̃ 2 ∝ ǫ
T (IN − H)ǫ,
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and by applying Cochran’s theorem, we have 

. σ̃ 2 ∝ σ 2χ2
N−(d+1).

Recall that we constructed the confidence interval for the population standard 

deviation in Sect. 12.3.2.3 of Chap. 12 by applying Eq. (12.17). The confidence 

interval for σ 2
. can be constructed in the same way with degrees of freedom of 

N − (d + 1). in this case, that is, 

.
(N − (d + 1))σ̃ 2

χ2
α
2

≤ σ 2 ≤ (N − (d + 1))σ̃ 2

χ2
1− α

2

. (13.20) 

Example 13.14 Continue with Example 13.5, part 2: constructing the 95%. 

confidence interval for σ 2
.. 

By applying Eq. (13.20), where χ2
0.025 = 5.024. and χ2

0.975 = 0.001. with 

degrees of freedom of 1 (we have used a χ2
. distribution table showing the 

area to the right of critical value), then we have 

. 

[

(3 − 2) × 0.05

5.024
,

(3 − 2) × 0.05

0.001

]

= [0.01, 50].

Again we have very large confidence limits. 

13.2.2.4 Prediction 

Finally, assume that we use the fitted model to make a prediction ynew . for a new 

data point xnew ..  We  ha  ve

.E[ynew] = E[xnewã + ǫ] = xnewã, (13.21) 

and 

.V ar(xnewã) = xnewV ar(ã)(xnew)T . (13.22) 

Substituting Eq. (13.18) into Eq. (13.22), we have 

.V ar(xnewã) = σ 2xnew(XT X)−1(xnew)T . (13.23) 

If we replace the true standard deviation with the estimated standard deviation, 

then the distribution is Student’s t.-distribution. Hence, we can again use Eq. (12.13) 

on the confidence intervals of means that is found in Sect. 12.3.2.1 of Chap. 12. 

Again, we change Zc . to the critical value from a t.-distribution table as we did
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in Sect. 13.2.2.2 of this chapter; then the margin of error = tc × SD.. Hence, the 

confidence interval can be easily constructed as follows: 

.xnewã ± tc

√

σ̃ 2xnew(XT X)−1(xnew)T . (13.24) 

Example 13.15 Continue with Example 13.5, part 3: We use the fitted model 

to make a mean prediction ynew . for xnew = 3.. As before, we have that 

. ynew = a0 + a1 × xnew = −0.2 + 1.086 × 3 = 3.06.

Or, in vector form, using Eq. (13.21), we have 

. ynew = xnewã =
[

1 3
]

[

−0.2

1.086

]

= 3.06.

By applying Eq. (13.24) with xnew = [1, 3].,  the 95%. confidence interval 

of ynew . is computed as follows: 

. 3.06 ± 12.71

√

0.05 × [1, 3] ×
[

1.5 −0.5

−0.5 0.214

]

×
[

1

3

]

≈ 3.06 ± 1.85

= [1.21, 4.91].

We will now do a full example. 

Example 13.16 Continue with Example 13.7.  Here N = 5. and d = 1.,  so  

the degrees of freedom is N − (d + 1) = 3.. First, let us construct the 95%. 

confidence interval for a.. 

We substitute ã =
[

2.98

−0.5

]

., σ̃ 2 = 0.0093., the elements of main diagonal 

of (XT X)−1 =
[

1.1

0.1

]

., and t0.975 = 3.182. with degrees of freedom of 3 into 

Eq. (13.19) and obtain 

. 

[

2.98

−0.5

]

± 3.182 ×
√

0.0093 ×
( [

1.1

0.1

])

=
[

2.98

−0.5

]

±
[

0.32

0.097

]

.

(continued)
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Example 13.16 (continued) 

Therefore, the confidence interval for the intercept, a0 .,  is [2.66, 3.30]. and 
similarly the confidence interval for the gradient, a1 .,  is [−0.60, −0.40].. 

These confidence limits are tighter than in the previous example since we 

now have five data points. 

Second, we construct 95%. confidence interval for σ 2
.. 

By applying the Eq. (13.20), where χ2
0.025 = 9.348. and χ2

0.975 = 0.216. 

with degrees of freedom of 3 (we have again used a χ2
. distribution table 

showing the area to the right of critical value), we have 

. 

[

(5 − 2) × 0.0093

9.348
,

(5 − 2) × 0.0093

0.216

]

= [0.003, 0.13].

Finally, use the fitted model to make a mean prediction ynew . for xnew =
3.5.. That is, by applying Eq. (13.21), we have 

. ynew = a0 + a1 × xnew = 2.98 − 0.5 × 3.5 = 1.23.

By applying Eq. (13.24) with xnew = [1, 3.5].,  the 95%. confidence interval 

of ynew . is computed as follows: 

. 1.23 ± 3.182

√

0.0093 × [1, 3.5]
[

1.1 −0.3

−0.3 0.1

]

×
[

1

3.5

]

= 1.23 ± 0.15

= [1.08, 1.38].

Table 13.6 The data for 

Exercise 13.5 
xi . yi . 

− 0.5. 2.5. 

1 0.5. 

2 0
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Exercise 

13.5 Suppose a set of data is shown in Table 13.6, where xi . is the value of an 

independent variable X, and yi . is the corresponding value of the dependent 

variable Y . Fit a linear regression model for the data and construct 95%. 

confidence intervals for a. and σ 2
.. Round results to two decimal places. 

A new data point is given at x = 1.5., find the expected ỹ . value, and 

construct 95%. confidence limits for this value. 

13.6 Continuation of Exercise 13.4. The data is given in Table 13.5, where xi . 

is the value of an independent variable X, and yi . is the corresponding value of 

the dependent variable Y . Construct 95%. confidence intervals for the values 

of a. and σ 2
. that you have already found in Exercise 13.4. 

A new data point is given at x = 2.5., find the expected ỹ . value, and 

construct 95%. confidence limits for this value. 

13.3 The Logistic Regression Algorithm 

As mentioned in Chap. 1, there are two categories of supervised learning: regression 

and classification. In this section, we briefly show how to formulate a two-class 

classification algorithm, logistic regression, also called logit regression, using the 

maximum likelihood technique. This is a classification method despite its name. 

A classification problem could actually be a classification into multiple classes (a 

picture is a flower, a dog, a human, or a tank) or a two-class problem (with these 

symptoms, you have or have not got a particular medical condition). The most 

common type is two classes, so we only consider that here. 

Recall a sigmoid function defined as σ(z) = 1
1+e−z . is bounded between 0 and 1 

(see Fig. 5.5 in Chap. 5). Since it only has values between 0 and 1, it is a suitable 

function for converting a real number into a probability. So, logistic regression uses a 

sigmoid function to estimate the probability of P(yi = cj |xi)., that is, the probability 

that an instance i belongs to a specific class cj . given its features xi .. Here, each of 

the i = N . data points xi . is a vector of d features. 

Let z denote a linear combination of features, z = xia., where a. includes 

coefficients. That is, z = a0xi0 + a1xi1 + · · · + adxid ., where xi0 . is 1. For instance, 

with only one feature, we have z = a0 + a1xi1 .. Also, let Y be a discrete random 

variable that only takes two values, c1 = 1. and c2 = 0., giving a two-class 

classification. We have 

. P(yi = 1|xi) = 1

1 + e−z
, P (yi = 0|xi) = 1 − 1

1 + e−z
, where z = xia.

(13.25)
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Remark 13.1 We are finding the estimated value for Y (which is either 0 and 1 

using a threshold on the sigmoid function) from some linear combination of the 

features. For example, with only one feature, we have for the probability in the 

yi = 1. case as 

. 
1

1 + e−(a0+a1xi1)
.

Note that in the general sigmoid function 

. 
1

1 + e−(a0+a1x)
,

the a1 . gives the steepness of the curve. Figure 13.6 shows that the curve with a1 = 2. 

(black) is steeper than the one with a1 = 1. (red), and the curve with a1 = 2. (black) 

is symmetrical with the one with a1 = −2. (blue) about the line of x = 0.. 

For a given value of a1 ., a0 . is related to where the sigmoid gets to the half-height 

value ( 0.5.), that is, when e−(a0+a1x) = 1. or when a0 + a1x = 0.. So the sigmoid 

reaches half height when x = − a0
a1

.. For example, as illustrated in Fig. 13.7, when a1 . 

is fixed as 1 and y = 0.5. is indicated using the green dashed line, we can see how 

the curve changes as a0 . varies from −1. (red), 0 (black), and 1 (blue). Thus, varying 

the value of a0 . is related to how far the curve moves to the left or right. 

Hence, adjusting the coefficients in a. varies where and how the sigmoid comes. 

The same sort of thing is true in the multiple features case, but it is not possible to 

draw. 

�. 

We can rewrite Eq. (13.25)  using  Eq  . (10.14) from Chap. 10 as follows: 

.P(yi |xi) = σ(xia)
yi (1 − σ(xia))

1−yi . (13.26) 

Fig. 13.6 An illustration 

showing how varying a1 . in 

the sigmoid function 
1

1+e−(a1x+a0) . affects the 

steepness of the curve
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Fig. 13.7 An illustration of 

the effect of varying a0 . in the 

sigmoid function 1

1+e−(a1x+a0) .: 

varying a0 . is related to how 

far the curve moves to the left 

or right
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If we treat yi .’s as independent, then the likelihood function is 

. L =
N
∏

i=1

σ(xia)
yi (1 − σ(xia))

1−yi .

It is more convenient to minimise the negative logarithm of the likelihood: 

.L = −
N

∑

i

(

yi ln σ(xia) + (1 − yi) ln(1 − σ(xia))

)

. (13.27) 

Unlike simple linear regression, there is no closed form (that is, no explicit 

formula) to calculate a.. However, we can find a suitable estimated, ã., where 

ã = [ã0, . . . , ãd ]T ., using an optimisation method. Let us apply the gradient 

descent algorithm. To do so, we need to compute the partial derivatives ∂L
∂aj

., where 

j = 0, . . . , d .. 

Let us take each of the summation terms in L. in turn. So let 

. SL = −
(

yi ln σ(xia) + (1 − yi) ln(1 − σ(xia))

)

.

Because the derivative of a sum is the sum of derivatives (see Addition Rule in 

Sect. 5.2.2 of Chap. 5), the partial derivative ∂L
∂aj

. is simply the sum of the ∂SL
∂aj

., that 

is, the sum of the following for each data item (xi, yi). for each i from 1 · · · N .: 

. 

∂SL

∂aj

= −
(

∂

∂aj

yi ln σ(xia) + ∂

∂aj

(1 − yi) ln(1 − σ(xia))

)

= −
(

yi

σ(xia)
− 1 − yi

1 − σ(xia)

)

∂

∂aj

σ(xia) derivative of a log function

= −
(

yi

σ(xia)
− 1 − yi

1 − σ(xia)

)

σ(xia)(1 − σ(xia))xij chain rule

= −
(

yi − σ(xia)

σ (xia)(1 − σ(xia))

)

σ(xia)(1 − σ(xia))xij

= (σ (xia) − yi)xij .

(13.28)
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Note that for the third equation line above, we have used Example 5.13 from 

Sect. 5.2.2 in Chap. 5 to differentiate the sigmoid function and have applied the 

following: 

. xia =
d

∑

j=0

ajxij = a0xi0 + a1xi1 + · · · + adxid ,

and so 

. 
∂xia

∂aj

= xij .

Therefore, we have 

. 
∂L

∂aj

=
N

∑

i=1

(σ (xia) − yi)xij .

To update aj . over all data items, we apply Eq. (6.7) from Chap. 6 and have 

.anew
j = aold

j − ǫ

( N
∑

i=1

(σ (xia) − yi)xij

)

, (13.29) 

where ǫ . is the learning rate. 

Example 13.17 Suppose we have a set of data items [−1.5,−1, 0, 0.3].,  so  

we only have one feature. We apply the sigmoid function where zi = 2+4xi . 

to the data, that is, a0 = 2. and a1 = 4.. Figure 13.8 shows the inputs against 

their sigmoid function values. Since the sigmoid function values of − 1.5. 

and − 1. are less than the threshold 0.5., we set the class labels for these two 

data items to 0 (circle signs) and for the other two data items to 1 (square 

signs). Therefore, the corresponding estimated class labels are [0, 0, 1, 1].. 
More usually, of course, we already have the class for the data items and 

are using this technique as a supervision technique to determine the model 

(finding the values of a0 . and a1 .). Having found the model, we can use it to 

determine the class for a new, unknown data item. So now assume that we 

do not know a0 . and a1 ., and we want to fit a logistic regression model for the 

data using the gradient descent algorithm with one iteration and a learning 

rate of 0.1.. We already know that the first two data items are in the class 

labelled 0, and the others are in the class labelled 1. So the class labels are 

[0, 0, 1, 1].. 

(continued)
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Example 13.17 (continued) 

Solution Let us set initial values for a0 . and a1 . as 0.5. and 0.4., respectively. 

Substituting each data value to zi = 0.5 + 0.4xi .,  we  ha  ve

. z1 = 0.5 + 0.4 × (−1.5) = −0.1,

. z2 = 0.5 + 0.4 × (−1) = 0.1,

. z3 = 0.5 + 0.4 × 0 = 0.5,

. z4 = 0.5 + 0.4 × 0.3 = 0.62.

Substituting zi . to Eq. (13.25), we have 

. P(y1 = 1|x1) = 1

1 + e0.1
≈ 0.475,

. P(y2 = 1|x2) = 1

1 + e−0.1
≈ 0.525,

. P(y3 = 1|x3) = 1

1 + e−0.5
≈ 0.622,

. P(y4 = 1|x4) = 1

1 + e−0.62
≈ 0.650.

Considering the threshold is 0.5., then the estimated class label yi . is 

0, 1, 1, 1., respectively. So this setting gives a misclassification to the second 

data item. Note that the place where the sigmoid gets to the halfway value is 

− a0
a1

= − 0.5
0.4

= −1.25.which is to the left of the second point (see Fig. 13.8). 

So not surprisingly it does not classify this one correctly. This sort of analysis 

would be impossible visually with multiple points and many dimensions. 

We apply Eq. (13.29) to update the aj .. When updating a0 .,  we  use xi0 = 1. 

and have 

. anew
0 = 0.5 − 0.1 × ((0.475 − 0)

+ (0.525 − 0) + (0.622 − 1) + (0.650 − 1))1 ≈ 0.473.

. anew
1 = 0.4 − 0.1 × ((0.475 − 0) × (−1.5) + (0.525 − 0)

× (−1) + (0.622 − 1)0 + (0.650 − 1) × 0.3) ≈ 0.534.

(continued)
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Example 13.17 (continued) 

With the initial a.values, the second data item was misclassified. After the first 

iteration, 

. z1 = 0.473 + 0.534 × (−1.5) = −0.328,

. z2 = 0.473 + 0.534 × (−1) = −0.061,

. z3 = 0.473 + 0.534 × 0 = 0.473,

. z4 = 0.473 + 0.534 × 0.3 = 0.633.

Substituting zi . to Eq. (13.25), we have 

. P(y1 = 1|x1) = 1

1 + e0.328
≈ 0.419 ≈ 0.42,

. P(y2 = 1|x2) = 1

1 + e0.061
≈ 0.485 ≈ 0.49,

. P(y3 = 1|x3) = 1

1 + e−0.473
≈ 0.616 ≈ 0.62,

. P(y4 = 1|x4) = 1

1 + e−0.633
≈ 0.653 ≈ 0.65.

So using the threshold of 0.5., all 4 data points are now classified correctly. 

Again looking at where the sigmoid gets to the halfway value, that is, − a0
a1

=
− 0.473

0.534
= −0.88., which is to the right of the second point, it is reasonable 

that it gets this point classified correctly now. However, it is only just below 

the 0.5. probability, so perhaps more iterations are needed to make it a better 

predictor of new points. Getting a result in one iteration is not realistic. In this 

example, data are classified correctly with one iteration partly due to having 

an unrealistically high value for the learning rate (and choosing good values 

for the example).
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Fig. 13.8 Scatter plot 

showing data and their 

sigmoid values in Example 

13.17. The dashed line marks 

the threshold at 0.5. 

Example 13.18 Suppose we have a new set of data items [−1, 0, 1, 4].,  so  

we only have one feature again. Suppose the class labels are [0, 0, 1, 1]..  Fit  
a logistic regression model for the data using the gradient descent algorithm 

with two iterations and a learning rate of 0.05.

Solution Let us set initial values for a0 . and a1 . as − 0.3. and 0.1., respectively. 

Substituting each data value into zi = −0.3 + 0.1xi . gives 

. z1 = −0.3 + 0.1 × (−1) = −0.4,

and similarly, 

. z2 = −0.3, z3 = −0.2, and z4 = 0.1.

Substituting each zi . into Eq. (13.25), we have 

. P(y1 = 1|x1) = 1

1 + e0.4
≈ 0.401,

and similarly, 

. P(y1 = 1|x2) ≈ 0.426, P (y1 = 1|x3) ≈ 0.450, and P(y1 = 1|x4) ≈ 0.525.

Using the threshold of 0.5., then the estimated class label yi . is 0, 0, 0, 1.. 

So this setting gives a misclassification to the third data item. 

To update the aj . we apply Eq. (13.29) . When updating a0 .,  we  again  u  se

xi0 = 1. and have 

.anew
0 = −0.3 − 0.05 × ((0.401 − 0) + (0.426 − 0) + (0.450 − 1))

(continued)
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Example 13.18 (continued) 

+(0.525 − 1) × 1≈ − 0.290 .

. anew
1 = 0.1 − 0.05 × ((0.401 − 0) × (−1) + (0.426 − 0) × 0 + (0.450 − 1)

× 1 + (0.525 − 1) × 4) ≈ 0.243.

So after the first iteration we can recalculate the zi ., using the new values of a0 . 

and a1 ., and then use Eq. (13.25) to get the probabilities: 

. z1 = −0.543, z2 = −0.290, z3 = −0.047, and z4 = 0.682.

So 

. P(y1 = 1|x1) ≈ 0.367, P (y1 = 1|x2) ≈ 0.428, P (y1 = 1|x3) ≈ 0.488, and

P(y1 = 1|x4) ≈ 0.664.. 

With the same threshold of 0.5., we get estimated class labels of [0, 0, 0, 1]., 
so the third data item is still misclassified. 

For the next iteration we again update the aj . giving 

. a0 = −0.287, and a1 = 0.354.

Finally, to see how we are doing, we calculate the zi .s and the probabilities to 

get 

. z1 = −0.641, z2 = −0.287, z3 = 0.067, and z4 = 1.13,

and 

. P(y1 = 1|x1) ≈ 0.35, P (y1 = 1|x2) ≈ 0.43, P (y1 = 1|x3) ≈ 0.51, and

P(y1 = 1|x4) ≈ 0.76.. 

Now we have the correct classification of [0, 0, 1, 1]..
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Exercise 

13.7 Continue Example 13.17. Do the second iteration of the gradient 

descent algorithm and see if it gets all the points correctly classified more 

definitely, that is, it might make a better predictor. 

13.8 Suppose we have a new set of data items [−1, 0, 1, 3]. and suppose the 
class labels are [0, 0, 1, 1].. Fit a logistic regression model for the data using 

the gradient descent algorithm with one iteration and a learning rate of 0.05, 

starting with values of a0 . and a1 . as − 0.3. and 0.2., respectively.



Chapter 14 

Data Modelling in Practice 

In previous chapters, we have introduced some fundamental mathematical and 

statistical knowledge needed to understand algorithms and create new approaches. 

This chapter will deal with some of the important issues surrounding data analysis. 

The fields of machine learning and data science have developed rapidly recently 

with many new versions of algorithms being presented and evaluated, each suited 

for different tasks. There are too many to describe here and specialised literature is 

needed to introduce you to the ones in any area that you wish to study. 

However, there are some really fundamental issues that need mentioning in 

this book, such as data pre-processing, model selection, model evaluation, and 

understanding the bias-variance trade-off in model design. In this chapter, all of 

these will be discussed and we will use these issues to motivate the detailed 

discussion of two particular algorithms that can improve model generalisation, 

namely, ridge regression and early stopping. 

14.1 Data Pre-Processing 

Chapter 1 mentions that data scientists need to explore data to understand the 

relationships among the data better after obtaining some new raw data. To do that, 

one should spend some time learning some essential knowledge in the problem 

domain, for example, understanding the meaning of each feature or attribute and 

how they relate to the target of the problem going to be solved. 

14.1.1 Questions to Ask When Pre-Processing the Data 

As mentioned before, we need to check whether the data is organised. If it is 

unorganised, we need to convert it into a table-like structure. Then we need 

to understand what each row and column represents and whether each attribute 
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is quantitative or qualitative. Apart from these, some common issues must be 

considered when exploring the data. 

• Is the dataset balanced or imbalanced? 

This question is vital to a classification problem, though it has also been drawn to 

attention when dealing with the regression problem in recent years [16]. Let us 

consider a two-class application. If the ratio of the sizes of the two classes is much 

lower than 1, that is, the number of patterns in one class is much higher than in the 

other, then the trained model will tend to predict any unseen data belonging to the 

majority class. Therefore, it is helpful to balance the training dataset. Methods for 

balancing can be categorised into two groups: undersampling the majority class 

and oversampling the minority class. Readers interested in this topic may start by 

reading [17] and [18]. 

• Are there any inconsistent1 data points? 

We briefly discuss two types of inconsistency. First, by inconsistent, we mean 

data items that have the same feature values but different target values or class 

labels. For example, we have a dataset of customer profiles, and we want to 

use the data to train a model to predict whether a customer would like to buy a 

newly published book about cooking. Consider two attributes we use: the amount 

of money each customer spent and the number of books the customer bought 

in the last six months. With only two attributes available, there may be many 

inconsistent data items. That is, customers who spent the same amount of money 

and bought the same number of books in the last six months may or may not buy 

the newly published book as shown in Customer 1 and Customer 3 in Table 14.1. 

To cope with this problem, we can add more features to the dataset. For example, 

the gender and age of each customer and the types of book each customer prefers 

to buy as shown in Table 14.2. In this way, we can alleviate many inconsistent 

data items. 

The second type of inconsistency refers to data that violate general observations 

in the training set. Consider two attributes of a dataset: a book title and its 

author. The data displayed in Table 14.3 would be a data inconsistency. When 

Table 14.1 An example of data inconsistency 

ID The amount spent (£) The number of books Preference on the new book 

1 3100 1 Yes 

2 4060 2 Yes 

3 3100 1 No

1 This book focuses on addressing data quality issues such as label inconsistency caused by 

duplicates or measurement errors. In contrast, modelling input-dependent noise variance (het-

eroscedasticity), where noise levels vary systematically with the inputs, requires probabilistic 

approaches such as heteroscedastic Gaussian Processes or quantile-based regression. These 

methods explicitly account for structured noise and are beyond the scope of this book. 
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Table 14.2 Adding more features for dealing with inconsistent data 

The amount The number Types of Preference on the 

ID Gender Age spent (£) of books purchased book new book 

1 Female 35 3100 1 Cooking Yes 

2 Female 56 4060 2 Fiction Yes 

3 Male 41 3100 1 Finance No 

Table 14.3 Another example 

of data inconsistency 
Book Title Author 

Harry Potter and the Philosopher’s Stone Chris Columbus 

the book is Harry Potter and the Philosopher’s Stone, we expect the author to 

be J. K. Rowling. Chris Columbus is the director of the film Harry Potter and 

the Philosopher’s Stone. So there is something wrong here. To deal with this 

inconsistency, we need to check data accuracy by identifying and removing the 

causes of errors. We can compare data from different sources to identify and 

resolve any discrepancies. 

• Are there any missing data? 

It is common to see missing values in the collected dataset. It may be caused by 

errors during collection or by the fact that data are not available. For example, 

some people are likely to want to avoid answering specific questions in a survey. 

Data may be missing completely at random. That is, missing values can be 

observed in all features, and all data items have the same probability of having 

missing values. Data may be missing randomly for a specific feature or a 

set of features, or not all data items have the same chance of being missing. 

Alternatively, missing data may not be at random. That is, the probability of 

being missing is entirely different for different values of the same feature. 

It is crucial to identify missing values and determine why they are generated. 

When we have enough data representing the underlying distribution, removing 

observations involving missing values from the dataset is the easiest way to deal 

with missing values. Many methods have been proposed to deal with missing 

values—for example, replacing with the mean value of the corresponding 

attribute. However, replacing missing values may introduce bias. Therefore, extra 

care should be taken to check whether it still makes sense with the new filled-in 

values. Readers may find more details in [19]. 

• Are there repeated data? 

By repeated data, we mean those duplications among observations. How to deal 

with replicated data depends on the algorithm being used and the size of the 

dataset. It is generally a good idea to remove duplicated data items. Alternatively, 

we may consider whether it is necessary to add more features, as discussed in 

dealing with inconsistent data.
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Example 14.1 illustrates whether involving repeated data may affect results. Here 

we consider applying the principal component analysis technique on a small 

dataset with repeated data items. This material was covered in Sect. 4.2.3 of 

Chap. 4. 

Example 14.1 Suppose we have two datasets as follows: 

. X1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5 4

−2 2

−4 −4

4 4

2 −2

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and 

. X2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5 4

−2 2

−4 −4

4 4

2 −2

0 0

5 4

5 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As seen, X1 includes six unique data items, while X2 includes the 

same data except that the data point [5, 4]. is duplicated three times. The 

following analysis is done with the aid of suitable programs on a computer. 

The mean of X1  is [0.83̇, 0.6̇]. and the mean of X2  is [1.875, 1.5]..  After  

removing the mean values from each data matrix, we obtain the follo wing:

. newX1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4.16̇ 3.3̇

−2.83̇ 1.3̇

−4.83̇ −4.6̇

3.16̇ 3.3̇

1.16̇ −2.6̇

−0.83̇ −0.6̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(continued)
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Example 14.1 (continued) 

and 

. newX2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3.125 2.5

−3.875 0.5

−5.875 −5.5

2.125 2.5

0.125 −3.5

−1.875 −1.5

3.125 2.5

3.125 2.5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The covariance matrix of newX1. is shown as follows: 

. cov_newX1 =

[

12.16̇ 8.13̇

8.13̇ 10.6̇

]

,

and the covariance matrix of newX2. is given by 

. cov_newX2 =

[

12.41 8.79

8.79 10.00

]

,

where two decimal places are kept for each value. The results of eigende-

composition on both covariance matrices are displayed in Table 14.4 .  The  

eigenvectors are the two columns of the matrices in each case. Again, two 

decimal places are kept in all results. 

As can be seen, the PCA results of the two datasets are not identical, 

though they are close to each other in this e xample.

Table 14.4 The results of 

eigendecomposition on 

cov_newX1. and cov_newX2. 

The covariance matrix Eigenvalues Eigenvectors 

cov_newX1. [19.58, 3.25]. 
[

0.74 −0.67

0.67 0.74

]

. 

cov_newX2. [20.07, 2.34]. 
[

0.75 −0.66

0.66 0.75

]

.
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Exercise 

14.1 If you fancy reminding yourself about performing PCA, or if you want 

to try a suitable program on a computer, try the following exercise. Given the 

two datasets in transpose form as follows: 

. X1T =

[

1 0 0 1

2 0 1 1

]

,

and 

. X2T =

[

1 0 0 1 0 0 0 0

2 0 1 1 1 1 1 1

]

.

The second dataset has the same values as the first except that the data point 

[0, 1]. is duplicated five times. Apply principal component analysis to both 

datasets, having first removed the mean values from the datasets. Show that 

the eigenvalues and eigenvectors are different. 

Solving the above issues is also called data cleaning. After addressing these 

issues, data scientists need to focus on understanding the statistics of each predictor 

and the relations among predictors. The aim is to find more information about the 

data than was available when we initially saw it. This helps us to identify suitable 

models to apply, whether to adapt appropriate approaches or to create a new method 

to solve the problem. 

Applying descriptive statistics is helpful at this stage. In addition, employing 

unsupervised learning methods, for example, principal component analysis, can 

help to visualise the data and extract features. The difference between extracted and 

selected features is that extracted features differ from the original data attributes. 

For example, features extracted from the principal component analysis are linear 

combinations of original features. However, selected features are a subset of the 

features in the original feature set. In the following subsection, we will follow [20] 

to present a simple approach to carrying out feature selection. 

14.1.2 A Simple Feature Selection Method 

Suppose we have a structured dataset. The procedure used to select features 

considers the correlation between attributes as follows:
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Table 14.5 The correlation 

coefficient matrix of the 

dataset with six features 

f1 f2 f3 f4 f5 f6 

f1 1 0.80 0.61 0.91 0.20 −.0.45 

f2 0.80 1 0.75 0.37 0.85 −.0.30 

f3 0.61 0.75 1 0.18 0.39 0.52 

f4 0.91 0.37 0.18 1 0.21 −.0.15 

f5 0.20 0.85 0.39 0.21 1 0.52 

f6 −.0.45 −.0.30 0.52 −.0.15 0.52 1 

1. Calculate the correlation matrix of the features. 

2. Determine the two features A and B, associated with the largest absolute pairwise 

correlation. 

3. Determine the average of the absolute correlations between A and the other 

features and the average between B and the other features.

4. Remove the feature whose average correlation is the biggest. 

5. Repeat Steps 2–4 until no absolute correlations are above the threshold. 

Example 14.2 Consider a structured dataset with six features: from f 1  to  

f 6. Table 14.5 shows its correlation coefficients matrix. Select five features 

from the original six features using the method introduced above. 

Solution 

1. Determine the two features associated with the largest absolute pairwise 

correlation: 

As seen in Table 14.5, features f 1 and f 4 have the largest correlation:

0.91.. 

2. Determine the average absolute correlation between f 1 and the other 

features and the average between f 4 and the other features. 
0.80+0.61+0.20+0.45

4
= 0.515. is the average of the absolute correlations 

between f 1 and the other four features. 
0.37+0.18+0.21+0.15

4
= 0.2275. is the average of the absolute correlations 

between f 4 and the other four features.

3. Remove the feature whose average correlation is the biggest. 

We remove f 1 since its average correlation is bigger than f 4’s. 

Therefore, the five selected features are f 2, f 3, f 4, f 5, and f 6.
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Exercise 

14.2 Continue Example 14.2 and further remove one feature using the 

method introduced in Sect. 14.1.2 of this chapter. 

Remark 14.1 Why do we remove highly correlated features? 

A set of highly correlated features usually provides little or no additional 

information but increases the model complexity. The model complexity usually 

refers to the number of features, the number of terms included in a given predictive 

model, and whether the model is linear or non-linear. 

�. 

14.2 Model Selection 

14.2.1 Data Splitting 

When training a model using a supervised learning algorithm, we usually separate 

the whole dataset into a training, validation, and test set. 

The training set provides examples for the model to learn the mapping from 

inputs to the corresponding targets. The validation set helps search for the most 

suitable hyperparameters (user pre-set parameters). The test set determines how well 

the trained model performs on data it has never seen before, which is crucial: The 

model must never see the test data in the training phase. 

The goal of model training is not to learn an exact representation of the training 

data itself but rather to build a statistical model of the process that generates the 

data. That is, to find the model having the best performance on new data, this is 

known as the model’s generalisation ability. 

14.2.2 Model Evaluation 

Performance metrics are usually calculated for the validation and test sets when 

assessing how well a model fits data. 

14.2.2.1 Regression Models 

Let us use n to denote the number of data items in the validation or test set, 

whichever we are evaluating at the time, ỹi . denotes the estimated value for data
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item i, yi . is the actual target value for data value i, and y . is the mean of all target 

values in the validation or test set. 

• The mean squared and root mean squared errors. 

The mean squared error (MSE) is defined as follows: 

.MSE =

∑n
i (ỹi − yi)

2

n
. (14.1) 

The root mean squared error (RMSE) is given by 

.RMSE =

√

∑n
i (ỹi − yi)2

n
. (14.2) 

The lower the MSE or RMSE, the better a model fits a dataset. In practice, we use 

the RMSE more often since it is measured in the same units as the target value of 

the dependent variable. 

• Methods used for linear regression models 

1. The coefficient of determination 

The coefficient of determination was defined in Sect. 8.5.2 of Chap. 8, and is 

denoted as R2
.. It is a value between 0 and 1. It is defined based on assumptions 

underlying the linear regression algorithm. Readers are referred to [15]  for  

more details about the linear regression method. Here, we simply repeat its 

definition:

.R2 = 1 −

∑n
i (yi − ỹi)

2

∑n
i (yi − y)2

. (14.3) 

If all estimated values are equal to their target values, then the numerator 

in Eq. (14.3) is zero and R2
. equals one, indicating the model fits the data 

perfectly. If the ratio of the numerator and denominator is one, then R2
. equals 

zero, suggesting the model cannot fit the data, and all estimated values are 

equal to the mean of the actual target values. 

2. Scatter plots of residual against predictions 

It is common to plot residuals against features to look for extra regression 

structures. Residuals were defined in Sect. 8.5.1 of Chap. 8 as ei = yi − ỹi .,  or  

in vector form as e = y − ỹ., where ỹ. is the expected or estimated value. 

Recall (using Eq. (8.17) in Chap. 8) the expected prediction from a linear 

regression model is given by 

.Xã = X(XT X)−1XT y.
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Fig. 14.1 Scatter plots of residuals versus a feature 

The residual is calculated as follows: 

. e = y − X(XT X)−1XT y.

Therefore, we have 

.XT e = XT y − XT X(XT X)−1XT y = 0. (14.4) 

Equation (14.4) shows that if we calculate the dot product of residuals and 

any feature in the data matrix X., the result must always be equal to zero. 

So the residuals and the features are always independent. In Sect. 11.2.2.3 of 

Chap. 11, we show if two random variables are independent, they are also 

uncorrelated. Thus, we expect to observe a scatter plot similar to Panel (a) 

in Fig. 14.1, where the residuals and feature values are uncorrelated. We do 

not expect a straight line, a positive relationship as shown in Panel (b), or 

a negative relationship between the residuals and feature values. If we see a 

quadratic curve, such as in Panel (c), it suggests we need a quadratic term in 

the regression. 

14.2.2.2 Classification Models 

First, let us define the confusion matrix shown in Table 14.6. 

Table 14.6 A confusion matrix: where TN is the number of true-negative samples, FP false-

positive samples, FN false-negative samples, and TP true-positive samples 

Predicted negative Predicted positive 

Actual negative TN FP 

Actual positive FN TP
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The classification accuracy rate is given by 

.accuracy rate =
T N + T P

T N + FP + FN + T P
. (14.5) 

For a problem domain with an imbalanced dataset, that is, a dataset where one 

class is much bigger than the other, the classification accuracy rate is not sufficient 

as a standard performance measure. This is because you can get good accuracy by 

always predicting the majority class. So, if you use accuracy as your sole training 

criterion of success you, are likely to get a model that just predicts the majority class. 

Several common performance metrics, such as recall, precision, and F-score, which 

are calculated to fairly quantify the performance of the classification algorithm on 

the minority class, can be defined as follows: 

.Recall =
TP

(TP + FN)
, (14.6) 

.Precision =
TP

(TP + FP)
, (14.7) 

.F-score =
2 · Recall · Precision

Recall+Precision
, (14.8) 

.FP rate =
FP

FP+TN
, (14.9) 

.True-negative rate =
TN

TN+FP
. (14.10) 

Recall, also called sensitivity, measures the true-positive rate, that is, the number 

of actual positives you get right. Precision, also called positive predictive value, 

measures the accuracy rate of predicted positive values, that is, the number of 

predicted positives you have got right. Usually, a trade-off between precision and 

recall is integrated into the metrics, such as the F-score. The false-positive rate, or 

FP rate, is the number of actual negatives that you get wrong. A high F-score and 

low FP rate are generally seen as the preferred criterion of success. The true-negative 

rate is also called specificity, which is equal to 1 − FP rate..
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Table 14.7 The confusion 

matrix of the balanced dataset 

used in Example 14.3 

Predicted negative Predicted positive 

Actual negative 496 4 

Actual positive 0 500 

Example 14.3 Consider a perfectly balanced dataset with 1000 data points, 

500 in each class. Table 14.7 shows the confusion matrix. Compute accuracy 

rate, recall, precision, F-score, FP rate, and true-negative rate. 

Solution We have T P = 500., T N = 496., FP = 4., and FN = 0. from 

Table 14.7. 

. accuracy rate =
996

1000
= 0.996.

. Recall =
500

500
= 1,

. Precision =
500

504
≈ 0.992,

. F-score =
2 × 1 × 0.992

1 + 0.992
≈ 0.996,

. FP rate =
4

500
= 0.008.

. True-negative rate =
496

496 + 4
= 0.992.

Exercises 

14.3 Let us consider a dataset with a highly imbalanced class distribution 

with 1000 data points in total, but with only 10 data points in the positive 

class and the rest in the negative class. Table 14.8 shows a confusion matrix 

that could have been produced by training the algorithm on accuracy alone— 

it has predicted most of the data as being negative since that was the majority 

class. Compute accuracy rate, recall, precision, F-score, FP rate, and true-

negative rate. 

(continued)
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Now suppose it was trained on the F-score, and the possible results are 

shown  in  Tab  le 14.9. Compute accuracy rate, recall, precision, F-score, FP 

rate, and true-negative rate for this confusion matrix. 

14.4 Consider a reasonably balanced dataset, with 1000 data points in total. 

Table 14.10 shows the confusion matrix. Compute accuracy rate, recall, 

precision, F-score, FP rate, and true-negative rate. 

14.5 Let us consider a dataset with a reasonably imbalanced class distribution 

with 1000 data points in total but with only 100 data points in the positive class 

and the rest in the negative class. Table 14.11 shows the confusion matrix. The 

algorithm has predicted most of the data as being negative since that was the 

majority class. Compute accuracy rate, recall, precision, F-score, FP rate, and 

true-negative rate. A perfect predictor for this dataset would get the results 

shown in Table 14.12. Compute accuracy rate, recall, precision, F-score, FP 

rate, and true-negative rate for this confusion matrix. 

Table 14.8 The confusion 

matrix of the imbalanced 

dataset trained on accuracy in 

Exercise 14.3 

Predicted negative Predicted positive 

Actual negative 982 8 

Actual Positive 8 2 

Table 14.9 The confusion 

matrix of the imbalanced 

dataset trained on F-score in 

Exercise 14.3 

Predicted negative Predicted positive 

Actual negative 982 8 

Actual positive 0 10 

Table 14.10 The confusion 

matrix of the dataset in 

Exercise 14.4 

Predicted negative Predicted positive 

Actual negative 475 15 

Actual positive 10 500 

Table 14.11 The confusion 

matrix of the imbalanced 

dataset in Exercise 14.5 

Predicted negative Predicted positive 

Actual negative 855 45 

Actual positive 80 20 

Table 14.12 The perfect 

confusion matrix of the 

imbalanced dataset in 

Exercise 14.5 

Predicted negative Predicted positive 

Actual negative 900 0 

Actual positive 0 100
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14.2.3 Understanding Bias-Variance Trade-Off 

Definition 14.1 (Bias) Bias means that an estimator is calculated in a way that is 

systematically different from the quantity that it is supposed to estimate. 

Let f̃ (x).be a point estimator and f (x). the ground truth. The bias of the estimator 

is defined as follows: 

.B(f̃ (x)) = E{f̃ (x)} − f (x). (14.11) 

It says the bias measures how far the average estimate of a model is from the ground 

truth. A positive bias means that the model value is overestimated, and a negative 

bias means that the model value is underestimated. The bias may be caused by 

making wrong assumptions when choosing a model. 

Example 14.4 Recall that the distribution of estimated ã. for a linear regres-

sion approximates the normal distribution given by N(a, σ 2(XT X)−1). (see 

Sect. 13.2.2.2 in Chap. 13). That is, E[ã] = (XT X)−1XT Xa = a. (see 

Eq. 13.17). Applying Eq. (14.11), we have B(ã) = E[ã] − a = 0.. That 

is, under the assumptions mentioned in Sect. 13.2.1 of Chap. 13, estimates of 

the ordinary linear regression coefficients are unbiased. This is an important 

result for ordinary linear regression. 

For example, if the true underlying relationship between the independent 

variable and the dependent variable is f (x) = a0 + a1x ., then E[ã0] = a0 . and 

E[ã1] = a1 . if we estimate ã. from the ordinary linear regression method. 

Definition 14.2 (Variance) Variance is due to the model’s excessive sensitivity to 

small variations in the training data. Let f̃ (x). be a point estimator (see Sect. 12.3.1 

of Chap. 12). The variance of the estimator is defined as follows: 

.var{f̃ (x)} = E

(

(

f̃ (x) − E{f̃ (x)}
)2

)

. (14.12) 

The variance measures the variability of a model estimate when changing the 

training examples. 

Remark 14.2 If the model does not change much between samples, the model 

would be considered a low-variance model. On the other hand, if the model changes 

drastically between samples, then that model would be considered a high-variance 

model. 

�.
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Fig. 14.2 Scatter plot of the 

data from Example 14.5,  with  

the solid line showing the 

estimated linear regression 

line

Example 14.5 Figure 14.2 shows 66 data points with two variables. Values 

of the independent variable X are in the interval of [50, 460]., and values of 

the dependent variable Y are in the interval of [0, 24]..  We  have  used  simple  

linear regression to estimate the relationship between these two variables. The 

estimated line is shown as a solid line. 

We divide the whole data set randomly into two samples, including 33 

data points for each. Then simple linear regression is applied f or each sample.

Figure 14.3 shows the results. Data in sample 1 are denoted as plus signs, and 

data in sample 2 are denoted as square signs. The estimated line from sample 

1 is shown as the solid line, while the line from sample 2 is depicted as the 

dash-dotted line. As observed, the estimated model remains largely consistent 

between the two samples. So, the model is considered a low-variance model. 

Now, suppose we had employed a polynomial model with a degree of 5 

for each of the two samples. The estimated curves for each sample are shown 

in Fig. 14.4 as solid and dash-dotted curves. As can be seen, this estimated 

model changes between samples, especially with x values less than 100 and 

between 300 and 400. So, this model is considered a high-variance model.

The generalisation error, measured on the test set, can be shown to be composed 

of the sum of the bias squared, the variance, and the irreducible error. We cannot 

do anything about the irreducible error, or noise, but it is important that the full 

generalisation error includes both the bias squared and the variance. We will show 

that the generalisation error, or mean squared error, is composed of these three 

factors by breaking it down, or decomposing it, as shown in the following example. 

This process is quite complicated and can be skipped if needed.



430 14 Data Modelling in Practice

Fig. 14.3 The solid line is 

fitted to sample 1, while the 

dash-dotted line is fitted to 

sample 2, using the data in 

Example 14.5 

Fig. 14.4 The solid curve is 

fitted  to  sample  1  and  the  

dash-dotted curve to sample 

2, using data from

Example 14.5. Both models 

are fitted with a polynomial 

of degree 5 

Example 14.6 Let us decompose the mean squared error in the ordinary 

linear regression model. 

First, recall the equation for variance, namely, Eq. (10.11) of Chap. 10, 

showed the following equality: 

. E((X − E(X))2) = E(X2) − (E(X))2.

If we add (E(X))2 . to both sides of the above equation, it gives us 

.E(X2) = E((X − E(X))2) + (E(X))2. (14.13) 

Now suppose X and Y are two variables, and the underlying f unction is

y = f (x) + ǫ ., where ǫ ∼ N(0, σ 2)..  So σ 2
. is the variance of the error term ǫ ., 

which has a Gaussian distribution (see Sect. 13.2.1 of Chap. 13). 

(continued)
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Example 14.6 (continued) 

Since E(y) = E(f (x) + ǫ)., E(ǫ) = 0., and E(f (x)) = f (x). for a fixed 

function f at the point x,  we  have E(y) = f (x).. 

We fit a linear regression line f̃ (x) = ax + a0 . using N training e xamples,

(xi, yi), i = 1, . . . , N ., to minimise the square error: 

. 

N
∑

i

(yi − f̃ (xi))
2.

Given any new data point (xnew, ynew). from the same distribution, we can 

estimate the expected square error, E

(

(

ynew − f̃ (xnew)
)2

)

., as follows: 

. E

(

(

ynew − f̃ (xnew)
)2

)

= E

(

(ynew)2 − 2ynewf̃ (xnew) +
(

f̃ (xnew)
)2

)

= E
(

(ynew)2
)

− 2E(ynew)E
(

f̃ (xnew)
)

+E

(

(

f̃ (xnew)
)2

)

= E
(

(ynew)2
)

− 2f (xnew)E
(

f̃ (xnew)
)

+E

(

(

f̃ (xnew)
)2

)

, (14.14) 

where E(ynew) = f (xnew). for any x value as noted above. 

Consider the first term on the right-hand side of the last equal sign of 

Eq. (14.14). We can rewrite it using Eq. (14.13) with X = ynew . and then 

can use E(ynew) = f (xnew). to obtain 

. E
(

(ynew)2
)

= E

((

ynew − E
(

ynew

)

)2)

+

(

E
(

ynew

)

)2

= E

(

(

ynew − f (xnew)
)2

)

+
(

f (xnew)
)2

. (14.15) 

(continued)
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Example 14.6 (continued) 

Now consider the third term on the right-hand side of the last equal sign of 

Eq. (14.14). Again we can rewrite it using Eq. (14.13) with X = f̃ (xnew)..  We  

obtain

. E

(

(

f̃ (xnew)
)2

)

= E

((

f̃ (xnew) − E
(

f̃ (xnew)
)

)2)

+

(

E
(

f̃ (xnew)
)

)2

.

(14.16) 

Now we can substitute Equations (14.15) and (14.16) for the first and last 

terms of the last equal sign of Eq. (14.14) to get a new version of Eq. (14.14): 

. E

(

(

ynew − f̃ (xnew)
)2

)

= E

(

(

ynew − f (xnew)
)2

)

+
(

f (xnew)
)2

− 2f (xnew)E
(

f̃ (xnew)
)

+ E

((

f̃ (xnew)

− E
(

f̃ (xnew)
)

)2)

+

(

E
(

f̃ (xnew)
)

)2

= E

(

(

ynew − f (xnew)
)2

)

+ E

(

f̃ (xnew)

− E
(

f̃ (xnew)
)2

)

+

(

f (xnew) − E
(

f̃ (xnew)
)

)2

.

(14.17) 

The last line of Eq. (14.17) includes three terms. From left to right: 

• The first term is the noise E

(

(

ynew − f (xnew)
)2

)

= E(ǫ2)..  Now  from  

Eq. (10.11) of Chap. 10 we have E(ǫ2) = V ar(ǫ) + E(ǫ)2 = σ 2
. using 

Sect. 13.2.1 of Chap. 13 as noted above. So the first term is the noise, σ 2
.. 

• The second term E

(

f̃ (xnew) − E
(

f̃ (xnew)
)2

)

. is the variance (see 

Eq. 14.12). 

• The third term is the bias squared (see Eq. 14.11). 

Hence, we have seen in the above example (Example 14.6) that when we assess 

a trained model on a test set, the error over the test set, also called the generalisation 

error, can be decomposed into three parts. To minimise the generalisation error, we 

want to reduce both the bias squared and the variance, since we cannot change the 

irreducible error (the noise in Example 14.6). However, as illustrated in Fig. 14.5, 

bias squared decreases and variance increases as the model complexity increases.
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Fig. 14.5 Illustration of the 

bias-variance trade-off 

It indicates a trade-off between the bias squared and variance. Where the bias and 

variance are both relatively small, we get the minimum generalisation error. More 

details about error decomposition can be read in [21]. 

In practice, we usually start with several models widely used in many different 

real-world applications. These models are not interpretable due to their complexity, 

but they may produce better results with high probability. Then we can look into 

simpler models that are interpretable. The aim is to consider using a model that is as 

simple as possible but provides a similar performance to that of the complex models. 

14.2.4 Underfitting and Overfitting 

Underfitting occurs when models make little to no attempt to fit the data. Models 

that are high bias and low variance are prone to underfitting. A badly underfitted 

model is really unable to do the job of either fitting the training data or providing 

a useful estimation tool in the case of the test data, or any unseen data. It is really 

not a useful model at all. We need to do something about it such as adding more 

features and/or using a more complicated model to overcome this underfitting. 

Overfitting is the result of the model trying too hard to exactly fit into the 

training set, resulting in a lower bias but a much higher variance. Since the model 

fits the training set so well it often does not perform well on the test data or on 

any new unseen data, that is, its generalisation ability can be poor. To overcome 

this overfitting, we may use fewer features and/or use more training data. Another 

approach is to use a regularisation technique to stop the model from being only 

suitable for the data it has been trained on. 

Regularisation is, therefore, a technique to prevent overfitting or to help opti-

misation. Usually, it is done by adding additional terms in the objective, or cost, 

function. 

In the next two sections, we will introduce two widely used regularisation 

methods: ridge regularisation and early stopping.
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14.3 Ridge Regression 

14.3.1 The Closed-Form Solution 

In Chap. 8, we have shown that the coefficients of a linear regression model with 

multiple variables can be computed using the normal equation (see Eq. (8.17)  in  

Sect. 8.3 of Chap. 8), that is, 

. a = (XT X)−1XT y,

where X. is the input matrix including a column vector of 1′s ., and y. is the dependent 

variable. This result was found by minimising the sum of the squares of the errors 

between the data and the linear approximation. 

To control the model complexity, the ridge regression method proposed in [22] 

involves adding a penalty term, also called regularisation term, to the least-squares 

error function. It may, at first sight, seem strange to add another term to the 

objective function since minimising the error function must produce the best linear 

approximation to the data. However, that is what overfitting is all about. Using just 

the sum of the squares of the errors means the training data is fully satisfied, but it 

must be remembered that the real aim is to make the linear approximation best for 

the test set or any unseen data. In the case of ridge regression, 1
2
λ

∑d
j a2j . is added 

into the objective function shown in Eq. (8.15) in Chap. 8, where the regularisation 

parameter is λ. and λ ∈ [0,∞).. That is, 

.Ridge_Q =

N
∑

i=1

(yi −

d
∑

j=0

ajxij )
2 +

1

2
λ

d
∑

j=1

a2j . (14.18) 

Remark 14.3 We can compare Eq. (14.18) with the previous least-squares error 

formula given in Eq. (8.15) of Chap. 8. Looking at Eq. (14.18), if λ = 0.,  we  

have Ridge_Q =
∑N

i=1(yi −
∑d

j=0 ajxij )
2,. which is the same as the calculation 

of the least-squares error, namely, Eq. (8.15), exactly as we would have expected. 

When λ = ∞., we consider two cases: (1) if any of the estimated aj �= 0.,  we  ha  ve

Ridge_Q = ∞.; (2) if all the aj = 0.,  we  have Ridge_Q =
∑N

i=1(yi)
2
.. 

�. 

To minimise Ridge_Q., both terms in Eq. (14.18) should be as small as possible. 

When λ > 0., minimising 1
2
λ

∑d
j=1 a2j . means forcing the aj . to be as small as 

possible. That is how the ridge regression method controls the model complexity. 

Remark 14.4 The complexity of the ridge model is lower than the complexity of 

its corresponding ordinary linear regression model. 

�. 

Note that j starts with 1 in Eq. (14.18). That means ridge regression does not 

penalise the intercept.
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We can write Eq. (14.18) in its matrix form as follows: 

.Ridge_Q = (y − Xa)T (y − Xa) + λaT
∗ a∗. (14.19) 

The difference between a. and a∗ . is that a∗ . does not include the intercept a0 ..  To  

remove the awkward-looking a∗ . we can multiply the second term by I′ ., where I′ . 

is an identity matrix, with a size of (d + 1) × (d + 1)., except with a zero in the 

top-left cell, corresponding to the a0 . term. Therefore, the objective function of the 

ridge regression is given by 

.Ridge_Q = (y − Xa)T (y − Xa) + λaT I′a. (14.20) 

Example 14.7 Suppose aT
∗ = [a1, a2]. and aT = [a0, a1, a2]..  Le  t I′ =

⎡

⎣

0 0 0

0 1 0

0 0 1

⎤

⎦.. Compute aT
∗ a∗ . and aT I′a.. 

Solution aT
∗ 
a∗ = [a1,  a2]

[

a1 

a2

]

= a2 1 + a22 .. 

aT I′a = [a0, a1, a2]

⎡

⎣

0 0 0

0 1 0

0 0 1

⎤

⎦

⎡

⎣

a0

a1

a2

⎤

⎦ = [0, a1, a2]

⎡

⎣

a0

a1

a2

⎤

⎦ = a21 + a22 .. 

Therefore, aT
∗ a∗ = aT I′a.. 

To obtain a formula for a., we need to find the partial derivative of Ridge_Q.with 

respect to a.. The working of the derivative of the first term in Eq. (14.20)  is  the  

same as the one shown in E q. (8.16) in Chap. 8. The derivative of the second term is 
λ∂aT I′a

∂a
.. To calculate it, we can apply Eq. (7.4) of Chap. 7 and obtain 2λI′a.. Hence, 

we can obtain the derivative of Ridge_Q.: 

. 
∂Ridge_Q

∂a
=

∂[(y − Xa)T (y − Xa) + λaT I′a]

∂a

= −2XT (y − Xa) + 2λI′a. (14.21) 

Therefore, by setting Eq. (14.21) equal to zero and rearranging the formula, exactly 

like we did when we set Eq. (8.16) equal to zero in Chap. 8, we obtain the closed-

form solution of ridge regression as follows: 

.a = (XT X + λI′)−1XT y.



436 14 Data Modelling in Practice

As we can see, XT X + λI′ . replaces the XT X. in Eq. (8.17) to give the ridge 

regression solution. To distinguish this from the solution a. for the ordinary linear 

regression, we denote the solution for the ridge regression as aR .. That is, 

.aR = (XT X + λI′)−1XT y. (14.22) 

If λ = 0.,  Eq  . (14.22) gives the same solution as we obtained from the least-squares 

technique in Chap. 8. 

14.3.2 Bias and Variance of Ridge Regression Coefficients 

14.3.2.1 Bias 

Substituting y = Xa + ǫ . to Eq. (14.22), we have 

. aR = (XT X + λI′)−1XT (Xa + ǫ)

= (XT X + λI′)−1XT Xa + (XT X + λI′)−1XT
ǫ. (14.23) 

Therefore, the expected estimator of aR . is given by 

. E[ãR] = (XT X + λI′)−1XT Xa + (XT X + λI′)−1XT XE(ǫ)

= (XT X + λI′)−1XT Xa, (14.24) 

where we have used the assumption that E(ǫ) = 0. (see Sect. 13.2.1 in Chap. 13). 

Therefore, the ridge estimator is biased, since E[ãR] �= a.. Substituting Eq. (14.24) 

to Eq. (14.11), where we have ãR . as the point estimator of a.,  give  s

. B(ãR) = (XT X + λI′)−1XT Xa − a

= (XT X + λI′)−1XT Xa − (XT X)−1(XT X)a

=
(

(XT X + λI′)−1 − (XT X)−1
)

XT Xa. (14.25) 

The middle line in Eq. (14.25) is obtained by multiplying a. by (XT X)−1(XT X). 

which is a matrix and its inverse and so is just the identity matrix. We obtain 

E[ãR] = a. only if λ = 0., which is indeed the linear regression without the ridge 

regularisation term. 

Equation (14.25) shows the ridge estimator is biased if λ �= 0.. The lower the λ. 

value, the lower the bias.
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14.3.2.2 Variance 

Since XT X(XT X)−1
. gives an identity matrix, we can multiply it to Eq. (14.22) and 

obtain the following: 

. aR = (XT X + λI′)−1XT y

= (XT X + λI′)−1XT X(XT X)−1XT y.

Applying Eq. (8.17) to the second line of the above equation, we obtain 

.aR = (XT X + λI′)−1XT Xã. (14.26) 

The variance of the estimated value of aR ., ãR ., for the ridge regression is 

. V ar(ãR) = V ar((XT X + λI′)−1XT Xã)

= (XT X + λI′)−1XT XV ar(ã)XT X
(

(XT X + λI′)−1
)T

= (XT X + λI′)−1XT Xσ 2(XT X)−1XT X
(

(XT X + λI′)−1
)T

= σ 2(XT X + λI′)−1XT X
(

(XT X + λI′)−1
)T

, (14.27) 

where we have used the second property in Sect. 13.2.2.1 of Chap. 13, namely, 

Eq. (13.15), to simplify the variance, the fourth property in Sect. 3.3.11.1 of Chap. 3 

to evaluate the transpose of multiple matrices and V ar(ã) = σ 2(XT X)−1
. (see 

Eq. (13.18)) to replace V ar(ã)., where σ 2
. is the variance of the error term ǫ .. 

Example 14.8 Consider an example with d = 1., which is just one indepen-

dent variable. Also let us have 5 points, so N = 5.. Given the 5 points as 

(1, 2)., (2, 4). and (3, 3)., (4, 4). and (5, 5).. Perform ridge regression and find 

the estimated value of aR ., that is, ãR .,  for  (a  ) λ. equal to zero (so we actually 

get ã. and not ãR ., since this would be ordinary linear regression), (b) λ = 1., 

and (c) λ = 10.. For each value of λ. calculate the value of the bias and the 

variance. 

Solution We have X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1

1 2

1 3

1 4

1 5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. and y =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2

4

3

4

5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.. 

(a) For λ = 0.,  we  wish  to find a =

[

a0

a1

]

.. 

(continued)
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Example 14.8 (continued) 

So XT X =

[

5 15

15 55

]

. and (XT X)−1 = 1
50

[

55 −15

−15 5

]

=

[

1.1 −0.3

−0.3 0.1

]

.. 

Also XT y =

[

18

60

]

.. Since λ = 0.we use Eq. (8.17) from Chap. 8.  S  o

. ̃a = (XT X)−1XT y =

[

1.8

0.6

]

.

Now for the bias, we use Eq. (14.25) with λ = 0. and get that the bias is 

B(ã) =

[

0

0

]

., as expected. 

For the variance, we use Eq. (14.27) with λ = 0.,  givin  g

. V ar(ã) = σ 2(XT X)−1 = σ 2

[

1.1 −0.3

−0.3 0.1

]

.

(b) For λ = 1., we need matrix λI′ .which is 

. 

[

0 0

0 1

]

.

We now need to use XT X + λI′ . a lot. For λ = 1., 

. XT X + λI′ =

[

5 15

15 56

]

.

Using Eq. (14.22), we get 

. ̃aR =

[

1.96

0.55

]

.

For bias, we use Eq. (14.25) with λ = 1. and get that the bias is, 

. B(ãR) =

[

0 0.27

0 −0.09

]

a.

(continued)
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Example 14.8 (continued) 

If we assume that a = ã =

[

1.8

0.6

]

., then 

. B(ãR) =

[

0.16

−0.05

]

.

For variance, we use Eq. (14.27) with λ = 1.,  givin  g

. V ar(ãR) = σ 2

[

0.94 −0.25

−0.25 0.08

]

.

c) For λ = 10., we need matrix λI′ .which is 

. 

[

0 0

0 10

]

So 

. XT X + λI′ =

[

5 15

15 65

]

.

Using Eq. (14.22), we get 

. ̃aR =

[

2.7

0.3

]

For bias, we use Eq. (14.25) with λ = 10. and get that the bias is, 

. B(ãR) =

[

0 1.5

0 −0.5

]

a.

If we again assume that a = ã =

[

1.8

0.6

]

., then 

. B(ãR) =

[

0.9

−0.3

]

.

(continued)
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Example 14.8 (continued) 

For variance, we use Eq. (14.27) with λ = 10.,  givin  g

. V ar(ãR) = σ 2

[

0.425 −0.075

−0.075 0.025

]

.

Notice that we get three different lines for the three different values of λ.. 

These  are  shown  in  F  ig. 14.6. If you look at the three values of bias we have 

calculated, you will see that the absolute value increases as λ. increases. Also, 

if you look at the three matrices of values for the variance, you will see that 

the variance gets smaller as λ. increases. So, we have demonstrated that as λ. 

increases, the bias gets larger and the variance gets smaller. 

Remark 14.5 As already remarked, the aim of ridge regression is to find a better 

result on the test set than an overfitted linear approximation that favours the training 

data too much. This is where the validation set comes in. We could use different 

values for λ. and then test each on the validation data. The value of λ. that gives the 

best result on the validation data would be the one used for the final test on the real 

test data. 

�. 

Fig. 14.6 Regression lines 

for Example 14.8 with λ = 0. 

(solid line), λ = 1. (dashed 

line), and λ = 10. 

(dash-dotted line)
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Exercise 

14.6 Perform ridge regression on the d = 1., N = 4. example with the 

four points as (1, 3)., (2, 3). and (3, 2). and (4, 1).. Find the value of ãR . or 

ã., as appropriate, the bias and the variance for (a) λ = 0. and (b) λ = 10., 

respectively. For λ = 10. assume that a = ã. to get a value for the bias. 

14.4 Early Stopping 

When training a neural network or linear regression model using the gradient 

descent method, people usually need to pre-set the number of iterations before the 

training. After the weights are updated at each iteration, the error on the training and 

validation sets can be calculated. We can then produce learning curves by plotting 

these errors against the number of training iterations, as shown in Fig. 14.7.  As  we  

can see, as the number of iterations increases, the validation error decreases first 

and then increases while the training error keeps falling to convergence. Since we 

want the model to perform well on the validation set and then later on the test set, 

the training should stop when the training error reaches a reasonably small value, 

and the validation error reaches a minimum before going up. The number of training 

iterations that gives the minimum error on the validation set is the optimal number of 

iterations, presented as the dashed line shown in Fig. 14.7. Training that is stopped 

at the optimal number of iterations is called early stopping, another technique to 

prevent overfitting. 

Fig. 14.7 Illustration of 

learning curves
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Algorithm 1 displays the pseudocode for implementing the early-stopping 

method. First, we initialise a model and pre-set the number of training iterations and 

the minimum validation error as a huge value. As the training continues, we check 

whether the validation error is smaller than the previous one. If not, the training 

stops. 

Algorithm 1 Pseudocode for the Early Stopping Algorithm 

Initialising a model 

Pre-set a number of iterations: Items 

best_iteration = None 

best_model = None 

minimum_validation_error = infinite 

for <iteration in 1:Items> do 

<model: update the weights> 

<calculate the training error> 

<calculate the validation error> 

if validation error ≤ minimum validation error then 

minimum_validation_error = validation error 

best_iteration = iteration 

best_model = model 

else 

iteration = Items 

end if

end for



Solutions 

Problems of Chap. 1 

1.1 d. 

1.2 

(1) Unstructured. 

(2) Unstructured. 

(3) Unstructured. 

(4) Structured. 

1.3 

(1) Qualitative. 

(2) Qualitative. 

(3) Quantitative. 

(4) Qualitative. 

1.4 

(1) Nominal. 

(2) Nominal. 

(3) Ordinal. 

(4) Nominal. 

(5) Ordinal. 

1.5 

(1) Ordinal 

(2) Nominal. 

(3) Interval. 
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(4) Ratio. 

(5) Interval. 

(6) Ratio. 

Problems of Chap. 2 

2.1 

(1) True. 

(2) True. 

(3) False. 

(4) False. 

(5) True. 

(6) False. 

(7) True. 

2.2 

(1) 6. 

(2) 0. 

(3) 1. 

2.3 

(1) {{}, {−1}, {1}, {−1, 1}}.. Cardinality is 22 = 4.. 

(2) {{}, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3 },. 
{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {0, 1, 2, 3}}.. Cardinality is 24 = 16.. 

(3) 28 = 256.. 

2.4 

(1) A ∪ B = {b, c, e, f, g, h, i, k}.. 
(2) C ∩ B = {g, h , i}.. 
(3) A ∪ B = {a, d, j, l,m}.. 
(4) A\(B ∩ C) = {b, c, e, f }.. 
(5) A ∪ B ∪ C = {b, c, e, f, g, h, i, k, l,m}.. 
(6) A ∩ B ∩ C = {  g, h}.. 
(7) (A ∪ B)\C = {b, c, e, k}.. 
(8) (A ∪ B)\C = {a, d, f, g, h, i, j, l, m}.. 
2.5 

(1) A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.. 
(2) B = {6, 7, 8, 9, 10, 11 }.. 
(3) C = {0, 1, 2, 3, 4 }.. 
(4) D = {0, 1, 2, 3, 4, 5, 6 , 7}.. 
(5) E = {4, 5, 6, 7, 8, 9, 10, 11}..
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2.6 

(1) False. 

(2) True. 

(3) False. 

(4) True. 

2.7 

(1) {(2, 0), (2, 1), (3, 0), (3, 1), (5, 0), (5, 1)}.. 
(2) ∅.. 

2.8 

(1) True. 

(2) False. 

(3) False. 

(4) True. 

2.9 

(1) Odd. 

(2) Neither odd nor even. 

(3) Neither odd nor even. 

(4) Neither odd nor even. 

(5) Odd. 

(6) Even. 

(7) Neither odd nor even. 

(8) Even. 

(9) Odd. 

2.10 

(1) f 
−1(x) = 

3
√

x − 10.. 

(2) f 
−1(x) = arcsin x

3
.. 

(3) f 
−1(x) = e(x−4) − 1.. 

(4) f 
−1(x) = log3 

x 

1−x
.. 

2.11 

(1) g ◦ f  (x)  = 25x2 + 20x + 4.. 

(2) g ◦ f  (x)  = sin (2x).. 

(3) g ◦ f  (x)  = e2x .. 

(4) g ◦ f  (x) = x.. 

(5) g ◦ f  (x) = cos3 x..
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Problems of Chap. 3 

3.1 

(1) 

⎡ 

⎣ 

5 

7 

6 

⎤ 

⎦ ,. and

⎡

⎣

−1

−5

4

⎤

⎦ .. 

(2) 

⎡ 

⎣ 

4 

2 

10 

⎤ 

⎦ ,. and

⎡

⎣

−4

−2

−10

⎤

⎦ .. 

3.2 

(1) − 5 .. 

(2) − 11 .. 

(3) 0.. 

(4) 0.. 

3.3 

(1) d(w, z) = 6
√
2 ,. 

(2) d(a,b) = 10 .. 

3.4 

(1) The direction of u. is θ ≈ −0.9828. radians (or θ ≈ 2.1588. radians) and the 

direction of v. is θ ≈ 0.6747. radians. 

(2) ‖u‖ =
√
13. and ‖v‖ =

√
41.. 

(3) d(u, v) =
√
58 .. 

3.5 

(1) u · v = 12.. 

(2) u · w = 0.. 

(3) u · s = −8.. 

(4) u · t = 10.. 

3.6 

(1) ŵ = ( 2√
5 
, 1√ 

5
).. 

(2) ŝ = ( 3√
10 

, 1√ 

10
).. 

(3) t̂ = ( 3√
11 

, 1√
11 

, −1 √
11

).. 

(4) v̂ = ( −1√
22 

, 2√
22 

, 4√
22 

, 1 √
22

).. 

3.7 

(1) U + V = 

⎡ 

⎣ 

−4  12  

10 0.6 

1 −4

⎤

⎦..
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(2) 2U − 4V = 

⎡ 

⎣ 

−2  12  

14 1.2 

2 −14

⎤

⎦.. 

(3) − 3U + 2V = 

⎡ 

⎣ 

7 −26 

−25 −1.8 

−3 17

⎤

⎦.. 

3.8 

(1)

[

20 10 2 

17 8 14

]

.. 

(2) 

⎡ 

⎣ 

9  6  

0  3  

15 − 3

⎤

⎦ .. 

(3)

[

16 

10

]

.. 

(4)

[

27 54 

14 43

]

.. 

3.9 

(1) 8. 

(2) 14. 

3.10 

(1) 30. 

(2) − 3.. 

(3) 0. 

3.11 

(1) 80.6.. 

(2) − 42. 3.. 

3.12 

(1) A−1 = − 1 
18

[

6  3  

−2 −4

]

.. 

(2) The inverse matrix does not exist. 

(3) C−1 = 
1 
30

[

2 −1 

4  13  

]

.. 

(4) I−1 = I .. 

3.13 

(1) AT = 

⎡ 

⎣ 

1  4  7  

2  5  0  

10 −1 −3

⎤

⎦..
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(2) BT = 

⎡ 

⎣ 

−1  0  

4  5  

−13 8

⎤

⎦.. 

(3) CT =
[

10, −2, 23, −1
]

.. 

(4) DT = 

⎡ 

⎢

⎢

⎣ 

1 

0 

−0.7 

10 

⎤

⎥

⎥

⎦

.. 

3.14 

Yes, these three vectors are orthogonal to each other. 

3.15 

(1) a. QT =
[

1√
10 

− 
3√
10 

3√
10 

1√
10 

]

.. 

b. Q−1 =
[

1√
10 

− 
3√
10 

3√
10 

1√
10

]

.. 

c. Q. is an orthogonal matrix since QT = Q−1
.. 

(2) a. QT =
[

4√
5 

− 
3√
5 

3√
5 

4√
5 

]

.. 

b. Q−1 = 
1 
5

[

4√
5 

− 
3√
5 

3√
5 

4√
5 

]

.. 

c. Q. is not an orthogonal matrix since QT 	= Q−1
.. In fact, the columns of Q. 

are orthogonal but not of unit norm. 

3.16 

(1) Yes, S1 . is a subspace of R
3
.. 

(2) Yes, S2 . is a subspace of R
3
.. 

(3) Yes, S3 . is a subspace of R
2
.. 

3.17 

(1) Linearly independent. 

(2) Linearly independent. 

(3) Linearly dependent. 

3.18 

(1) det(A) = 0.. 

(2) The columns are linearly dependent. 

(3) No. 

(4) The rank of A = 2..
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Problems of Chap. 4 

4.1 

Possible solutions are: 

(1) λ1 = 6., λ2 = 2., uT
1 = [ 1√

10
, 3√

10
]., and uT

2 = [ 1√
2
,− 1√

2
].. 

(2) λ1 = 6., λ2 = 1., uT
1 = [ 1√

17
, 4√

17
]., and uT

2 = [ 1√
2
,− 1√

2
].. 

(3) λ1 = 2., λ2 = −3., uT
1 = [ 1√

5
,− 2√

5
]., and uT

2 = [− 3√
10

, 1√
10

].. 
(4) λ1 = 4., λ2 = 3., uT

1 = [− 1√
2
, 1√

2
]. and uT

2 = [− 3√
13

, 2√
13

].. 
(5) λ1 = −6., λ2 = −3., λ3 = 4., uT

1 = [ 2√
41

, 1√
41

, −6√
41

]., uT
2 = [ 1√

2
, 0,− 1√

2
]., and 

uT
3 = [ 4√

74
, 7√

74
, 3√

74
].. 

4.2 

We have complex eigenvalues. (Complex eigenvalues of a matrix with non-zero 

eigenvectors are beyond the scope of this book.) 

4.3 

(1) U =
[

1√
10 

1√
2 

3√
10 

−1√
2

]

.. So 

. D =
[

√
5

2
√
2

√
5

2
√
2

3

2
√
2

−1

2
√
2

]

[

3 1

3 5

]

[

1√
10

1√
2

3√
10

−1√
2

]

=
[

6 0

0 2

]

.

(2) U =
[

1√
5 

−2√
5 

2√
5 

1√
5

]

.. So 

. D =
[

1√
5

2√
5

−2√
5

1√
5

]

[

3 2

2 6

]

[

1√
5

−2√
5

2√
5

1√
5

]

=
[

7 0

0 2

]

.

The columns of U. are orthogonal, since u1 · u2 = 0., and both are of unit length 

so U. is an orthogonal matrix. 

4.4 

(1) The mean of each variable is 0.. 

(2) The standard deviation of each variable is
√
5.. 

(3) The covariance between two variables is 4. 

(4) 

.

[

5 4

4 5

]

.
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(5) λ1 = 9., λ2 = 1., uT
1 = [ 1√

2
, 1√

2
]., and uT

2 = [ 1√
2
, −1√

2
].. 

(6) The first principal component captures 90%. of the total variation, and the 

second captures 10%. of the total variation. 

(7) [3
√
2, 0].. 

4.5 

One possible solution is shown as follows: 

. Y =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3 3

0 0

−3 −3

−1 1

1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1√
2

0

0 0

− 1√
2

0

0 − 1√
2

0 1√
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

6 0

0 2

]

[

1√
2

1√
2

1√
2

− 1√
2

]T

.

4.6 

16.30.. 

4.7 

λ1 = 62

5−1
= 9. and λ2 = 22

5−1
= 1.. 

Problems of Chap. 5 

5.1 

(1) 1. 

(2) 3. 

(3) 0. 

(4) 6. 

(5) 1 
2
.. 

5.2 

(1) 0, 2 x.. 

(2) 1, 2x + 1.. 

5.3 

(1) 1. 

(2) 6x5
.. 

(3) 10ex
.. 

(4) 5 
x 
.. 

(5) 1 
x 
sin x + cos x ln x .. 

(6) ex cos x+ex sin x 

(cos x)2
.. 

(7) 10e(10x+1)
..
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(8) 8e2x .. 

(9) 5e3x cos 5x + 3e3x sin 5x .. 

(10) 1 

xe(x2) 
− 

2x ln (8x) 

e (x
2)

.. 

5.4 

(1) 6x ln x + 5x .. 

(2) a2y .. 

(3) a2y .. 

5.5 

(1) f  (  x). has the maximum value of 31 at x = −2. and the minimum value of − 77. 

at x = 4.. 

(2) f  (  x). has the maximum value of 1 at x = 0. and the minimum value of 3
4
. at 

x = 1
2
.. 

(3) f  (  x). has the maximum value of 32 at x = 2. and the minimum value of − 32. 

at x = −2.. 

(4) f  (  x). has the minimum value of 3 at x = − 1
2
.. 

(5) f  (  x). has the maximum value of 11 at x = 1. and the minimum value of − 5. at 

x = −1. and x = 3., respectively. 

(6) f  (  x). has the maximum value of eπ/2 ≈ 4.81. at x = π
2
. and the minimum value 

of − e
3π
2 ≈ −111.32. at x = 3π

2
.. 

(7) f  (  x). has the maximum value of e−1
. at x = 1.. 

(8) f  (  x). has the maximum value of 4e−2 ≈ 0.54. at x = 2. and the minimum value 

of 0 at x = 0.. 

5.6 

(1) e2x 

2 
+ C .. 

(2) − 2x4 + C .. 

(3) 6 ln |x| +  C .. 

(4) − 3e−x + C .. 

(5) − 5 cos x + C .. 

5.7 

(1) − 4 cos x + ex + C .. 

(2) π2 

18 
+ 

√
3
2

.. 

(3) ex−e−x 

2 
+ C .. 

5.8 

(1) Substituting u = 2 − x2
. gives − (2−x2)

3
2

3
+ C .. 

(2) Substituting u = x − 1. gives − 1
x−1

+ C .. 

(3) Substituting u = 4x . gives 1
4
.. 

(4) Substituting u = 1 + x3
. gives − 1

3(1+x3)
+ C ..
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(5) Substituting u = 1 + x . gives 1
8
.. 

(6) Substituting u = sin x . gives 3
2
.. 

(7) Substituting u = 1 + x2
. gives

ln |1+x2|
2

+ C .. 

(8) Substituting u = x2
. gives 1

2
ex2 + C .. 

5.9 

(1) (x − 1)ex + C .. 

(2) − x2 cos x + 2x sin x + 2 cos x + C .. 

(3) x4 

4 
(ln x − 

1 
4
) + C .. 

(4) 2 ln 2 − 1.. 

(5) − 
x cos 4x 

4 
+ 

sin 4x
16

+ C .. 

(6) x2 ln 5x − 
x2 

2
+ C .. 

(7) x−sin x cos x 

2
+ C .. 

Problems of Chap. 6 

6.1 

(1) 
∂f 

∂x 
= 3x2y + 10xy2 + 2y3

., 
∂f
∂y

= x3 + 10x2y + 6xy2,. 

∂f
∂x

∣

∣

∣ x=3
y=−1

= 1., 

∂f
∂y

∣

∣

∣ x=3
y=−1

= −45.. 

(2) 
∂f 

∂x 
= 2x sin y − 3 cos y ., 
∂f
∂y

= x2 cos y + 3x sin y,. 

∂f
∂x

∣

∣

∣ x=1
y= π

2

= 2., 

∂f
∂y

∣

∣

∣ x=1
y= π

2

= 3.. 

(3) 
∂f 

∂x 
= 2y3e2x + 3y2e3x + 4ye4x ., 
∂f
∂y

= 3y2e2x + 2ye3x + e4x,. 

∂f
∂x

∣

∣

∣x=0
y=2

= 36., 

∂f
∂y

∣

∣

∣x=0
y=2

= 17.. 

6.2 

The maximum error in the area is 0.075 cm2
., and this represents 0.3%. error.
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6.3 

(1) 
∂f 

∂x 
= 12x3y + 18x2y2 − 8xy3 + y4

., 

∂2f

∂x2
= 4y(9x2 + 9xy − 2y2)., 

∂f
∂y

= 3x4 + 12x3y − 12x2y2 + 4xy3
., 

∂2f

∂y2
= 12x(x2 − 2xy + y2)., 

∂2f
∂x∂y

= 12x3 + 36x2y − 24xy2 + 4y3
.. 

(2) 
∂f 

∂x 
= 2x sin y + 18x2 cos y ., 

∂2f

∂x2
= 2 sin y + 36x cos y ., 

∂f
∂y

= x2 cos y − 6x3 sin y ., 

∂2f

∂y2
= −x2(sin y + 6x cos y)., 

∂2f
∂x∂y

= 2x cos y − 18x2 sin y .. 

(3) 
∂f 

∂x 
= 2xe(x2+ y2)

., 

∂2f

∂x2
= 2(2x2 + 1)e(x2+y2)

., 
∂f
∂y

= 2ye(x2+y2)
., 

∂2f

∂y2
= 2(2y2 + 1)e(x2+y2)

., 

∂2f
∂x∂y

= 4xye(x2+y2)
.. 

(4) 
∂f 

∂x 
= 3x2 ln (x3 + y3) + 3x2

., 

∂2f

∂x2
= 6x(ln (y3 + x3) + 1) + 9x4

y3+x3
., 

∂f
∂y

= 3y2 ln (x3 + y3) + 3y2
., 

∂2f

∂y2
= 6y(ln (y3 + x3) + 1) + 9y4

y3+x3
., 

∂2f
∂x∂y

= 9x2y2

x3+y3
.. 

(5) 
∂f 

∂x 
= 2x − 

3 y

x2
., 

∂2f

∂x2
= 2 + 6y

x3
., 

∂f
∂y

= 3
x
., 

∂2f

∂y2
= 0., 

∂2f
∂x∂y

= − 3
x2

.. 

6.4 

(1) ∂z 

∂t 
= esin t ln (cos t) cos t − 

esin t sin t
cos t

.. 

(2) ∂z 

∂s 
= 4s(s2 + t2) sin (st2) + t2((s2 + t2)2 + 1) cos (st2)., 

∂z
∂t

= 2st ((s2 + t2)2 + 1) cos (st2) + 4t (s2 + t2) sin (st2)..
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6.5 

(1) The gradient vector at the point (1, 1). is [3, 3]., 
The gradient vector at the point (2, 1). is [12, 24]., 
The gradient vector at the point (1, 2). is [24, 12].. 

(2) The gradient vector at the point (0, 1). is [0, 2]., 
The gradient vector at the point (1, 0). is [0, 1]., 
The gradient vector at the point (π

2
, π
2
). is [0.674, 0]., 

The gradient vector at the point (π
4
, π
4
). is [0.675, 1.547]. 

6.6 

(1) J =
[

2x sin y  x2 cos y 

y3 cos x 3 y2 sin x

]

.. 

(2) J =
[

cos θ −r sin θ 

sin θ  r  cos θ

]

.. 

(3) J = 

⎡ 

⎣ 

sin θ cosφ  r  cos φ cos θ −r sin φ sin θ 

sinφ sin θ  r  sinφ cos θ r sin θ cosφ

cos θ −r sin θ 0

⎤

⎦ .. 

6.7 

(1) H =
[

y2ex + 2ey 2xey + 2yex 

2xey + 2yex x2ey + 2ex

]

.. 

(2) H = 

⎡ 

⎣ 

6xy2z 6x2yz − 2z3 3x2y2 − 6yz2 

6x2yz − 2z3 2x3z 2x3y − 6xz2 

3x2y2 − 6yz2 2x3y − 6xz2 −12xyz

⎤

⎦ .. 

6.8 

(2). 

6.9 

(1) The critical points are at (−1,−2), (−1, 1), (2,−2), (2, 1).. The local 

maximum value at (− 1.,− 2.) is 27. The local minimum value at (2,1) is − 27.. 

(2) The critical points are at ( 1
3
,− 1

3
), (1,−1).. The local maximum value at (1, −1.) 

is 6. 

(3) The critical point is at (− 1
3
,− 1

3
).. The local minimum value at this point is 1

3
.. 

(4) The critical points are at (0,−3), (0, 2), (3,−3), (3, 2).. The local maximum 

value at (0, − 3.) is 85. The local minimum value at (3,2) is − 67.. 

6.10 

(1) 

.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = − 1
2

y = 1
2

λ = 1.
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The relative extreme of the function is 1.5. obtained at (− 1
2
, 1
2
). subject to the 

given constraint. 

(2) 

. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = 1
2

y = 1
2

λ = − 3
4
.

The relative extreme of the function is 0.25. obtained at ( 1
2
, 1
2
). subject to the 

given constraint. 

6.11 

(2). 

6.12 

(1) 1, 

(2) 45 1 
3
., 

(3) 2. 

6.13 

(1) 1 
8
., 

(2) 5 
6
., 

(3) 74.4., 

(4) 16 
315

.. 

6.14 

(1) π(e4 − 1) ≈ 168.384., 

(2) 10, 

(3) π(1 − cos 1) ≈ 1 .44.. 

Problems of Chap. 7 

7.4 Possible answers: 

(1) With and without normalisation: 

. λ1 = 1.25, λ2 = 0.75.

.u1 =
[

1√
2
1√
2

]

,u2 =
[

− 1√
2

1√
2

]

.
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(2) Without normalisation: 

. λ1 = 2, λ2 = 0.4.

. u1 =
[

1√
2
1√
2

]

,u2 =
[

− 1√
2

1√
2

]

.

With normalisation: 

. λ1 = 5

3
, λ2 = 1

3
.

. u1 =
[

1√
2
1√
2

]

,u2 =
[

− 1√
2

1√
2

]

.

(3) Without normalisation: 

. λ1 = 1.8, λ2 = 1.6, λ3 = 1.4.

. u1 =

⎡

⎢

⎣

1√
2

0

− 1√
2

⎤

⎥

⎦
,u2 =

⎡

⎣

0

1

0

⎤

⎦ ,u3 =

⎡

⎢

⎣

1√
2

0
1√
2

⎤

⎥

⎦
.

With normalisation: 

. λ1 = 1.125, λ2 = 1, λ3 = 0.875.

. u1 =

⎡

⎢

⎣

1√
2

0

− 1√
2

⎤

⎥

⎦
,u2 =

⎡

⎣

0

1

0

⎤

⎦ ,u3 =

⎡

⎢

⎣

1√
2

0
1√
2

⎤

⎥

⎦
.

Problems of Chap. 8 

8.1 

(1) â0 = −1.0. and â1 = 2.0.. 

(2) â0 = 2. 0. and â1 = 0.5.. 

(3) â0 = 5. 0. and â1 = −1.25.. 

(4) â0 = 0. 75. and â1 = 0.75..
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8.3 

After the first iteration, a0 = 0.97. and a1 = 0.89.. The total error is 1.4428., 

and the total partial derivatives are ∂error
∂a0

= 1.92. and ∂error
∂a1

= 6.88., keeping two 

decimal places, respectively. 

8.4 

(1) The sum of the residuals is 0. The sum of the target values is 7.5..  The  sum  of  

the estimates is 7.5.. R2 ≈ 0.89.. 

(2) The sum of the residuals is 0. The sum of the target values is 9. The sum of the 

estimates is 9. R2 = 0.75.. 

Problems of Chap. 9 

9.1 

Initially: y1 = 0.5., y2 = 0.25. and E = 0.0625.. 

After the first iteration: w11 = 0.475., w12 = 0.5., w21 = 0.275., and w22 = 0.25.. 

Now: y1 = 0.475., y2 = 0.275. and E = 0.051.. 

9.2 

Initially: y1 = 0.622., y2 = 0.562. and E = 0.0711.. 

After the first iteration: w11 = 0.491., w12 = 0.5., w21 = 0.248., and w22 = 0.25.. 

Now: y1 = 0.620., y2 = 0.562. and E = 0.0703.. 

9.3 

Initially: y1 = 0.188., y2 = 0.375. and E = 0.0097.. 

After the first iteration: 

w
(1)
11 = 0.508., w

(1)
12 = 0.50., w

(1)
21 = 0.258., and w

(1)
22 = 0.25.. 

w
(2)
11 = 0.253., w

(2)
12 = 0.252., w

(2)
21 = 0.506., and w

(2)
22 = 0.503.. 

Now: y1 = 0.194. and y2 = 0.387. and E = 0.0080.. 

Problems of Chap. 10 

10.1 

(a) The number of different “words” from Wales is 5! = 120.. 

(b) The number of different “words” from Scotland is 8! = 40320.. 

10.2 The number of different photos they can take is 4! = 24.. 

10.3 

The number of passwords that can be made is 10!
6! = 5040..
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10.4 

The number of five digits that can be made is P(6, 5) − P(5, 4) = 600.. 

10.5 

The number of fruit salads that can be made is 7!
4!3! = 35.. 

10.6 

The number of triangles that can be made is 12!
3!9! = 220.. 

10.7 

The probability of getting two heads is 0.375.. 

10.8 

The probability of getting four different numbers is 6×5×4×3
64

. or 0.2778.. 

The probability of getting five different numbers is 6×5×4×3×2
65

. or 0.0926.. 

The probability of getting six different numbers is 6×5×4×3×2×1
66

. or 0.0154.. 

10.9 

The probability that all six digits are different is 10×9×8×7×6×5
106

. or 0.1512.. 

10.10 

See Table S.1. 

10.11 

See Table S.2. 

10.12 

a = 3
4
.. 

FX(x) = 3
4
(x2 − x3

3
). for 0 ≤ x < 2.. 

Below x = 0. it is zero, above x = 2. it is 1. 

P(X ≤ 1) = 1
2
.; P(X ≤ 1

2
) = 5

32
.; P(X > 1

2
) = 1 − 5

32
= 27

32
.. 

10.13 

m = 8
√
0.5. and n = 8

√
0.95.. 

Table S.1 Answer to Exercise 10.10: the probability distribution of X,  where  X is the total value 

after throwing two fair di ce

x 1 2 3 4 5 6 7 8 9 10 11 12 13 

fX(xk) = P(X = xk). 0 1
36

.
2
36

.
3
36

.
4
36

.
5
36

.
6
36

.
5
36

.
4
36

.
3
36

.
2
36

.
1
36

. 0 

FX(x) =
∑

xk≤x fX(xk). 0 1
36

.
3
36

.
6
36

.
10
36

.
15
36

.
21
36

.
26
36

.
30
36

.
33
36

.
35
36

. 1 1 

Table S.2 Answer to Exercise 10.11: the probability distribution of X,  where  X is the number of 

heads when tossing four fa ir coins

x − 1. 0 1 2 3 4 5 

fX(xk) = P(X = xk). 0 1
16

.
4
16

.
6
16

.
4
16

.
1
16

. 0 

FX(x) =
∑

xk≤x fX(xk). 0 1
16

.
5
16

.
11
16

.
15
16

. 1 1
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10.14 

(1) E(Z) = 
3 
8
,. 

(2) E(−Z + 2) = 
13 
8 

= 1.625,. 

(3) E(Z2) = 
49 
48

.. 

10.15 

(1) E(Z + X1 + X3) = 3.875,. 

(2) E(ZX4) = 1.125 ,. 

(3) E(3Z − 5) = −3.875., 

(4) E(X1Z) = 0.625 ,. 

(5) E(X2 + X4 + Z) = 4.875.. 

10.16 

Let X be the random variable that represents the absolute difference between the 

two numbers. E(X) = 5
3
.. 

10.17 

(1) E(X) = 
8
9
.. 

(2) E(X2) = 
4
5
.. 

10.18 

(1) E(X2) = 
1 
12

.; E(X4) = 1
80

,. 

(2) V  ar(2X2) = 
1 
45

,. 

(3) V  ar(2X2 + 5) = 
1
45

.. 

10.19 

μX = 4.5.. 

10.20 

The probability that: 

(1) exactly seven students out of 10 pass the module is about 0.13.. 

(2) exactly eight students out of 10 pass the module is about 0.28.. 

(3) exactly nine students out of 10 pass the module is about 0.35.. 

(4) exactly ten students out of 10 pass the module is about 0.20.. 

10.21 

(1) The probability that the doctor will see five patients is about 0.16.. 

(2) The probability that the doctor will see six patients is about 0.16.. 

(3) The probability that the doctor will see seven patients is about 0.14.. 

(4) The probability that the doctor will see eight patients is about 0.10.. 

10.22 

(1) The probability that the number of calls is exactly eight in one minute is about 

0.0298..
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(2) The probability that the number of calls is more than five per minute is about 

0.215.. 

10.23 

The probability that the student waits less than three minutes is 0.36.. 

10.24 

About 16%.. 

10.25 

About 160 students. 

10.26 

(1) P(X  <  8) = 0.9773., P(X < 0.5) = 0.3085., 

and P(0.5 < X < 8) = 0.6688.; 

(2) P(−1 <  X  <  5) = 68.27%.; 

(3) C = μ = 2.. 

10.27 

σ = 3.125.. 

Problems of Chap. 11 

11.1 

(2) 0.3264. 

(3) 0.1841 

11.2 . 

0.0228. 

11.3 

See Table S.3 

11.4 

See Table S.4. 

11.5 

See Table S.5. 

Table S.3 The answer to 

Exercise 11.3 
X=0 X=1 P(Y = yi). 

Y=0 9
26

.
9
26

.
9
13

. 

Y=1 2
13

.
2
13

.
4
13

. 

P(X = xi).
13
26

.
13
26

. –
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Table S.4 The answer to 

Exercise 11.4 
X=0 X=1 P(Y = yi). 

Y=0 1
10

.
3
10

.
2
5
. 

Y=1 3
10

.
3
10

.
3
5
. 

P(X = xi).
2
5
.

3
5
. – 

Table S.5 The answer to 

Exercise 11.5 
X=0 X=1 X=2 P(Y = yi). 

Y=0 2
50

.
3
50

.
1
10

.
1
5
. 

Y=1 3
50

.
9

100
.

3
20

.
3
10

. 

Y=2 1
10

.
3
20

.
1
4
.

1
2
. 

P(X = xi).
1
5
.

3
10

.
1
2
. – 

11.6 

(1) A = 
1 
64

., 

(2) 

. FXY (x, y) =
{

1
128

x2y + 1
128

xy2, 0 < x < 4, 0 < y < 4

0, otherwise .

(3) P(0 ≤ X  <  2, 0 ≤ Y  < 2) = 1
8
., 

(4) P(X  + Y  <  4) = 1
3
.. 

11.7 

fX(x) = e−x .. 

11.8 

(1) A = 
1 
2
.. 

(2) FXY (x, y) = 
1 
2 
sin x sin y + 

1 
2 
cos x cos y − 

1 
2 
cos x − 1

2
cosy + 1

2
. for 0 < x <

π
2
, 0 < y < π

2
.; otherwise, FXY (x, y) = 0.. 

(3) P(0 ≤ X  <  
π 

4 
, 0 ≤ Y  <  

π 

4
) = 1 −

√
2
2

.. 

(4) fX(x) = 
1 
2 
cos x + 

1
2
sin x.. 

(5) fY (y) = 
1 
2 
cos y + 

1
2
sin y.. 

11.9 

E(X) = 1
2
.; E(Y ) = 1

3
.; E(X, Y ) = 1

6
.. 

Cov(X, Y ) = 0.. 

11.10 

E(X) = 7
3
.; E(Y ) = 7

3
.; E(X, Y ) = 16

3
.. 

Cov(X, Y ) = − 1
9
..
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11.11 

P = 6!
2!1!0!3!

(

2
10

)2(

3
10

)1(

4
10

)0(

1
10

)3

= 0.00072.. 

11.12 

The probability that a given woman will have an episode of depression by the 

age of 65 in America is 33.34%.. 

The probability that a given man will have an episode of depression by the age 

of 65 in America is 20%.. 

11.13 

P(science |.female) = 44.4%. 

P(female |.science) = 46.15%. 

P(science |.male) = 60.87%. 

11.14 

P(two heads-up |. first comes heads up) = 50%. 

11.15 

P(son |. daughter) = 2
3
.. 

11.16 

fY |X(y|x) = 1
x
, y ≤ x < 2, 0 < x < 2.. 

11.17 

A = 1., fX|Y (x|y) = sin x,. fY |X(y|x) = cos y .. 

11.18 

E(Y |x) = 3
4
.; E(Y 2|x) = 3

5
.. 

V ar(Y |x) = 3
80

.. 

11.19 

A and B are independent, A and C are not independent, and B and C are not

independent.

11.20 

B = {1, 2, 3, 4}., B = {1, 2}., B = {1, 4}., B = {2, 3}., and B = {3, 4}.. 
11.21 

P = 71
120

.. 

If all balls in one bag, P = 35
57

.. 

11.22 

P = 2
5
.. 

11.23 
57
277

≈ 20.6%.. 

11.24 
135
276

≈ 48.9%..
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11.25 
285
2279

≈ 12.51%.. 

11.26 
29
92

≈ 31.52%.. 

Problems of Chap. 12 

12.1 

See Table S.6. 

12.2 

(1) 2.82 

(2) 3.76 

(3) 2.47 

(4) 0.19 

(5) 3.16 

(6) 0.3 

12.3 

(1) cov(x1,  x2) = −  0.125. and r(x1, x2) = −0.20.. 

(2) cov(x1,  x3) = −0.01125. and r(x1, x3) = −0.19.. 

(3) cov(x2,  x3) = −  0.225. and r(x2, x3) = −0.24.. 

(4) cov(x1,  x2) = 0.6., cov(x1, x3) = 0.055., cov(x2, x3) = 0.9375., and 

r(x1, x2) = 0.98., r(x1, x3) = 0.95., r(x2, x3) = 0.99.. 

12.4 

Class A and Class B have the same relative dispersion: 20%.. 

12.5 

For the first dataset: 

1. Mode = 87.. 

2. Median = 86.5.. 

3. IQR = 13.. 

4. 50 and 110 are outliers. 

Table S.6 Answers to 

Exercise 12.1 
Question number Mean Median Mode 

(1) 6.25 6 6 

(2) 23
6

. 4 0  an  d 5

(3) 5.1 5.5 5.5 

(4) 5.9 5.9 5.8 and 6.0 

(5) 8 9 10
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For the second dataset: 

1. Mode = 55.. 

2. Median = 54.. 

3. IQR = 10.. 

4. 30, 72, and 80 are outliers. 

12.6 

23.58%.. 

12.7 

49.72%.. 

12.8 

30.85%.. 

12.9 

92.36%.. 

12.10 

(1) 58.32%.. 

(2) 85.08%.. 

12.11 

(1) t = 1.753.. 

(2) t = 2.602.. 

12.12 

(1) χ2 = 21.03.. 

(2) χ2 = 26.22.. 

12.13 

The estimated μ. is 1486.4.; the estimated σ . is 98.53.. 

12.14 

The 95%. confidence interval is [161.432, 164.568].. 
The 99%. confidence interval is [160.939, 165.061].. 

12.15 

The 95%. confidence interval is [0.522, 0.658].. 
The 99%. confidence interval is [0.500, 0.680].. 

12.16 

The 90%. confidence interval of σ . is [5.196, 8.425].. 
The 95%. confidence interval of σ . is [4.997, 8.903].. 

12.17 

The 95%. confidence interval is [0.809, 0.831]..
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12.18 

The 90%. confidence interval of σ . is [0.056, 0.096].. 
12.19 

The 99%. confidence interval is [22.7, 23.1].. 
12.20 

t = −3.2.; reject H0 . at 0.05. significance level. 

12.21 

t = −1.69.; do not reject H0 . at 0.05. significance level. 

12.22 

t = −1.535.; do not reject H0 . at 0.1. significance level. 

12.23 

t = 0.83.; do not reject H0 . at 0.01. significance level. 

12.24 

t = 2.48.; reject H0 . at 0.05. significance level. 

12.25 

t = 1.88.; do not reject H0 . at 0.01. significance level. 

12.26 

See Table S.7. 

χ2 = 84.75.; reject H0 . at 0.05. significance level. 

12.27 

χ2 = 7.53.; do not reject H0 . at 0.05. significance level. 

12.28 

χ2 = 9.62.; do not reject H0 . at 0.05. significance level. 

12.29 

χ2 = 3.58.; do not reject H0 . at 0.05. significance level. 

12.30 

χ2 = 3.91.; Reject H0 . at 0.05. signif 

12.31 

χ2 = 3.8.; do not reject H0 . at 0.05. significance level. 

12.32 

χ2 = 2.29.; do not reject H0 . at 0.05. significance level. 

Table S.7 The distribution 

of Z of 360 thro ws
zi . 1 2 3 4 5 6 

Observed frequency 90 145 35 50 15 25 

Expected frequency 110 90 70 50 30 10
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Problems of Chap. 13 

13.1 

The maximum likelihood estimate of λ. is λ̂ = n
∑n

i=1 xi
.. 

(1) p(x = 1|λ = 1) ≈ 0.37., p(x = 2|λ = 1) ≈ 0.14., 

p(x = 1, x = 2|λ = 1) = 0.0518.. 

(2) p(x = 1|λ = 2) ≈ 0.27., p(x = 2|λ = 2) ≈ 0.037., 

p(x = 1, x = 2|λ = 2) = 0.01.. 

(3) λ̂ = 
2 
3
,  p(x  = 1|λ = 

2
3
) ≈ 0.34., p(x = 2|λ = 2

3
) ≈ 0.18., 

p(x = 1, x = 2|λ = 2
3
) = 0.0612.. 

13.2 

(1) E(y|x = 1) = −  1.. 

(2) std(y|x = 1) = 0 .1.. 

13.3 

For the first dataset (the left one in Table 13.4), the fitted linear regression is 

. ỹ = 9.14 − 1.93x + ǫ,

where ǫ ∼ N(μ = 0, σ̃ 2 = 0.64).. 

For the second dataset (the right one in Table 13.4), the fitted linear regression is 

. ỹ = 9.71 − 2.14x + ǫ,

where ǫ ∼ N(μ = 0, σ̃ 2 = 4.57).. 

13.4 

The fitted linear regression is 

. ỹ = 0.1 + 0.48x + ǫ,

where ǫ ∼ N(μ = 0, σ̃ 2 = 0.004).. 

13.5 

The fitted linear regression is 

. ỹ = 1.86 − 1.03x + ǫ,

where ǫ ∼ N(μ = 0, σ̃ 2 = 0.16).. 

The 95%. confidence interval for a0 . is [−1.92, 5.64]. and for a1 . is [−3.89, 1.83].. 
95%. confidence interval for σ 2

. is [0.032, 160].. 
ynew . is 0.315..  Its 95%. confidence interval is [−3.18, 3.81]..
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13.6 

The 95%. confidence interval for a0 . is [−0.23, 0.43]. and for a1 . is [0.36, 0.60].. 
The 95%. confidence interval for σ 2

. is [0.001, 0.16].. 
ynew . is 1.3..  Its 95%. confidence interval is [1.16, 1.44].. 

13.7 

anew
0 = 0.456. and anew

1 = 0.657.. 

. P(y1 = 1|x1) ≈ 0.37,

. P(y2 = 1|x2) ≈ 0.45,

. P(y3 = 1|x3) ≈ 0.61,

. P(y4 = 1|x4) ≈ 0.66.

13.8 

anew
0 =.0.293 and anew

1 = 0.309.. 

. P(y1 = 1|x1) ≈ 0.354,

. P(y2 = 1|x2) ≈ 0.427,

. P(y3 = 1|x3) ≈ 0.504,

. P(y4 = 1|x4) ≈ 0.653.

Problems of Chap. 14 

14.1 : 

For X1.: 

Eigenvalues are 0.873. and 0.127.. 

Eigenvectors are [0.526, 0.850]. and [−0.850, 0.526].. 
For X2.: 

Eigenvalues are 0.397. and 0.103.. 

Eigenvectors are [0.615, 0.788]. and [−0.788, 0.615].. 

14.2 : 

f 2 and f 5 have the largest correlation. 

Average absolute correlation for f 2  is 0.473. 

Average absolute correlation for f 5  is 0.373. 

Therefore, remove f 2.
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14.3 : 

For the first part: 

. Accuracy rate = 984

1000
= 0.984.

. Recall = 2

10
= 0.2,

. Precision = 2

10
= 0.2,

. F-score = 2 × 0.2 × 0.2

0.2 + 0.2
= 0.2,

. FP rate = 8

990
= 0.008.

. True-negative rate = 982

982 + 8
= 0.992.

For the second part: 

. Accuracy rate = 992

1000
= 0.992.

. Recall = 10

10
= 1,

. Precision = 10

18
≈ 0.556 ≈ 0.56,

. F-score = 2 × 1 × 0.556

1 + 0.556
≈ 0.71,

. FP rate = 8

990
= 0.008.

. True-negative rate = 982

982 + 8
= 0.992.

14.4 : 

.Accuracy rate = 975

1000
= 0.975.
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. Recall = 500

510
≈ 0.980 ≈ 0.98,

. Precision = 500

515
≈ 0.971 ≈ 0.97,

. F-score = 2 × 0.980 × 0.971

0.980 + 0.971
≈ 0.98,

. FP rate = 15

490
≈ 0.031.

. True-negative rate = 475

490
≈ 0.969.

14.5 : 

First part: 

. Accuracy rate = 875

1000
= 0.875.

. Recall = 20

100
= 0.2,

. Precision = 20

65
≈ 0.308 ≈ 0.31,

. F-score = 2 × 0.2 × 0.308

0.2 + 0.308
≈ 0.24,

. FP rate = 45

900
= 0.05.

. True-negative rate = 855

900
= 0.95.

Second part: 

. Accuracy rate = 1000

1000
= 1.

. Recall = 100

100
= 1,

.Precision = 100

100
= 1,
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. F-score = 2 × 1 × 1

1 + 1
= 1,

. FP rate = 0

900
= 0.

. True-negative rate = 900

900
= 1.

14.6 : 

(a) λ = 0.: 

. ̃a =
[

4

−0.7

]

. B(ã) =
[

0

0

]

.

. V ar(ã) = σ 2

[

1.5 −0.5

−0.5 0.2

]

.

(b) λ = 10.: 

. ̃aR =
[

2.83

−0.23

]

. B(ãR) =
[

0 1.67

0 −0.67

]

a.

If a = ã., then 

. B(ãR) =
[

−1.2

0.5

]

.

.V ar(ãR) = σ 2

[

0.39 −0.055

−0.055 0.022

]

.
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Index 

A 

Activation function, 228 

Antiderivative, 143 

Arithmetic mean, 336 

Associative property of multiplication, 60 

B 

Back-propagation, 230, 239 

Basis, 87 

Bayes’ theorem, 330 

Bernoulli distribution, 280 

Bias, 428 

Bias and variance of ridge regression 

coefficients, 436 

Bias in neural network, 248 

Binary relation, 33 

Binomial coefficients, 252 

Binomial distribution, 281 

Bounded function, 41 

Boxplot, 343 

C 

Cardinality, 24 

Cartesian Product, 32 

Central limit theorem, 296 

Chain rule, 132 

Characteristic polynomial, 92 

Chi-square ( χ2
.) Distribution, 352 

Chi-square test, 369 

Classification, 3 

Cochran’s theorem, 399 

Coefficient of determination, 225, 423 

Coefficient of variation, 341 

Combination, 254 

Composite function, 45 

Conditional mean, 324 

Conditional probability, 319, 320, 323 

Conditional variance, 324 

Confidence intervals for means, 356 

Confidence intervals for proportions, 360 

Confidence Intervals for χ2
., 361 

Confusion matrix, 424 

Continuity, 127 

Continuous random variables, 263 

Continuous uniform distribution, 286 

Covariance, 100, 310, 341 

Covariance matrix, 101 

Cumulative distribution function, 299, 305 

D 

Data normalisation, 194, 224 

Data pre-processing, 415 

Data Science, 1 

Data visualisation, 10 

Definite integral, 144 

Degrees of freedom, 349 

Delta rule, 247 

Dependent variable, 36, 207 

Derivative, 129 

Determinant, 68 

Diagonalisation, 97 

Diagonal matrix, 68 

Diagonal of a matrix, 67 

Differential, 129 

Differentiation of composite Function, 159 

Discrete random variable, 260 

Discrete uniform distribution, 279 
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Distributive properties, 61 

Dot product, 50, 53 

Double integral, 176 

E 

Early stopping, 441 

Eigendecomposition, 91 

Eigenvalue, 92 

Eigenvector, 92 

Even function, 42 

Expected random vector of random variables, 

395 

Expected value, 268 

Exponential function, 38 

F 

Factorial, 252 

Feature selection, 420 

Feed-forward propagation, 237 

The first partial derivative, 155 

FP rate, 425 

F-score, 425 

Function, 34, 35 

G 

Gaussian distribution, 288 

Generalisation error, 429 

Gradient, 161 

Gradient descent algorithm, 173 

Graph of a Function, 36 

H 

Hat matrix, 399 

Hessian matrix, 164 

Hyperparameter, 422 

I 

Idempotent, 398 

Identity matrix, 71 

Image compression ratio, 118 

Imbalanced dataset, 416 

Inconsistent data, 416 

Indefinite integral, 144 

Independent event, 327 

Independent variable, 36, 207 

Infinite sets, 24 

Integral, 142 

Integration  by  part  s, 152 

Integration by substitution, 148 

Integration of double integrals using Polar 

coordinates, 181 

Interquartile range, 342 

Interval, 24 

Interval estimation, 355 

Interval level, 20 

Inverse function, 43 

Inverse matrix, 71 

J 

Jacobian matrix, 163, 182 

Joint probability distribution, 299, 305 

Joint probability mass function, 299, 305 

L 

Law of large numbers, 294 

Law of total probability, 328 

Least-squares estimation, 208 

Left-singular vectors, 109 

Likelihood function, 381 

Limit, 121 

Linear combination, 80 

Linear function, 37 

Linearly dependent, 83 

Linearly independent, 83 

Linear regression, 207, 216 

Linear regression with maximum likelihood 

estimation, 384 

Linear transformation, 62 

Local maxima, 139, 166 

Local minima, 139, 166 

Logarithmic function, 39 

Logic, 31 

Logistic regression, 406 

Logistic sigmoid activation function, 232 

Lower quartile, 342 

M 

Marginal probability distribution, 300, 308 

Matrix, 55 

Matrix addition, 56 

Matrix decomposition, 91 

Matrix multiplication, 58 

Matrix transposition, 72 

Matrix transposition properties, 73 

Maximum likelihood estimation, 379 
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