


Table of Contents
Cover
Table of Contents
Title Page
Foreword
Introduction

What Does This Book Cover?
Who Should Read This Book?

CHAPTER 1: Understanding Data
A Brief History of Data
Types of Data
Why Is Data Important?
Data and Information
Summary
Notes

CHAPTER 2: Introduction to Data Engineering
Data Engineering Explained Using an Oil Refinery Analogy
An Overview of the Data Engineering Life Cycle
Navigating Project Requirements, Engaging Stakeholders, and
Delivering Business Value
The Current State of Data Engineering
The Importance of Data Engineering
Summary

CHAPTER 3: Database Fundamentals
Key Concepts of Databases
Types of Databases
Choosing Between Relational and NoSQL Databases

file:///tmp/calibre_4.99.5_tmp_tifqlsco/e1hg55dx_pdf_out/OPS/cover.xhtml


Summary
CHAPTER 4: SQL Fundamentals

Introduction to SQL
Comparison Operators
Understanding Joins
Lab: Setting Up SQL Server and Running SQL Queries
Best Practices for Writing Efficient SQL Queries
Summary

CHAPTER 5: Database Design
Data Modeling
Normalization
Denormalization
Data Modeling Best Practices
Database Optimization
Summary

CHAPTER 6: Data Warehouses, Data Lakes, and Data Lakehouses
Data Warehouses
Data Marts
Data Lakes
Data Lakehouse
The Key Differences Between a Database, Data Warehouse, Data
Lake, and Data Lakehouse
Summary

CHAPTER 7: Data Pipelines
Batch Pipelines
Stream Pipelines
Lambda Architecture
Data Orchestration
Lab: Building an ETL Pipeline and Automating with Apache
Airflow



Summary
CHAPTER 8: Data Quality

Bad Data
Dimensions of Data Quality
Data Quality Hierarchy
Summary

CHAPTER 9: Data Security
What Is Data Security?
Common Threats to Data Security
Core Principles of Data Security
Data Encryption
Data Masking
Understanding Network Security
Access Control
Secrets Management
Data Security and Data Privacy
Summary

CHAPTER 10: Data Governance
How to Think About Data Governance
Data Governance Framework
Policies
Processes
Roles in the Data Governance Framework
Data Management and Data Governance
Summary

CHAPTER 11: Big Data and Distributed Systems
The Five V’s of Big Data
Distributed Systems
Distributed Data Processing



Big Data File Types
Summary

CHAPTER 12: Data Engineering on the Cloud
Cloud Computing
Core Cloud Concepts
Cloud Service Models
Cloud Management Models
Cost Optimization
Summary

CHAPTER 13: Building a Career in Data Engineering
Types of Data Engineering Roles
Types of Data Engineers
Landing Your First Data Engineering Role
Thinking Like a Data Engineer
Summary

APPENDIX: Sample Interview Questions
SQL
Data Modeling
Data Pipelines
Apache Spark
System Design

Data Engineering Glossary
Index
Copyright
Dedication
Acknowledgments
About the Author
About the Technical Editor
End User License Agreement



List of Tables
Chapter 1

Table 1-1: Comparing Structured, Unstructured, and Semi-
structured...

Chapter 3

Table 3-1: A Database Schema

Chapter 6

Table 6-1: Comparison Between a Database, a Data Warehouse,
and a ...

Chapter 9

Table 9-1: Personally Identifiable Information (PII) and
Respectiv...

Chapter 11

Table 11-1: Comparing Apache Spark and Hadoop MapReduce

List of Illustrations
Chapter 2

Figure 2-1: Data engineering life cycle

Figure 2-2: Blob storage management

Figure 2-3: A metadata table

Chapter 3

Figure 3-1: SQL commands

Figure 3-2: ACID properties

Figure 3-3: Representation of relationships in a graph database f...

Chapter 4

Figure 4-1: Inner join



Figure 4-2: LEFT JOIN

Figure 4-3: RIGHT JOIN

Figure 4-4: FULL OUTER JOIN

Chapter 5

Figure 5-1: Types of cardinality

Figure 5-2: Entity relationship diagram for an online shopping
sy...

Chapter 6

Figure 6-1: The extract, transform, and load process

Figure 6-2: Star schema

Figure 6-3: Snowflake schema

Figure 6-4: Data mart architecture

Figure 6-5: Data lake architecture

Figure 6-6: Data lakehouse architecture

Chapter 7

Figure 7-1: Batch pipeline

Figure 7-2: A streaming pipeline architecture

Figure 7-3: 30-second tumbling window

Figure 7-4: Hopping window

Figure 7-5: Sliding window

Figure 7-6: Session window

Figure 7-7: Components of the Lambda architecture

Figure 7-8: A graph structure

Figure 7-9: A directed acyclic graph

Figure 7-10: The first 5 rows of our customer data

Figure 7-11: The delivery address column split into separate col...



Figure 7-12: The last delivery column split into date and time c...

Figure 7-13: The delivery address column has been dropped

Figure 7-14: The birthday column has been renamed to
birth_date...

Chapter 8

Figure 8-1: Data quality hierarchy

Chapter 9

Figure 9-1: The CIA Triad

Figure 9-2: How a checksum works

Figure 9-3: Symmetric key encryption

Figure 9-4: Asymmetric key encryptionSource: Generated using
Scal...

Figure 9-5: TLS handshake

Figure 9-6: How multifactor authentication works

Figure 9-7: Access control models

Figure 9-8: The principle of least privilege

Chapter 10

Figure 10-1: Data governance framework

Figure 10-2: Data classification

Figure 10-3: Data classification policy framework

Figure 10-4: Types of metadata

Figure 10-5: Data governance roles

Chapter 11

Figure 11-1: The five V’s of big data

Figure 11-2: Vertical and horizontal scaling

Figure 11-3: A local file system and a distributed file system

Figure 11-4: Hadoop’s distributed file system architecture



Figure 11-5: The MapReduce process

Figure 11-6: Apache Spark RDD description

Figure 11-7: Apache Spark architecture

Figure 11-8: A DAG representing a simple Spark job

Figure 11-9: ORC file format

Chapter 12

Figure 12-1: Cloud storage models

Figure 12-2: A virtual private cloud

Figure 12-3: A subnet

Figure 12-4: Cloud service models

Figure 12-5: Comparing IaaS, SaaS, and PaaS

Chapter 13

Figure 13-1: Data engineering roles

Figure 13-2: Common stages of a data engineering interview



 

Data Engineering for Beginners
 

Chisom Nwokwu

 

 

 

 

 



Foreword
Over the past decade, I've worked across the spectrum of data-driven
organizations—from nimble startups to global tech leaders. In that time,
I've collaborated with data engineers, leaders, product managers, and
countless others who rely on data to make decisions. Through both
professional experience and online engagement with aspiring data
engineers, I've noticed one recurring theme: confusion. Again and again, the
same question surfaces: Who exactly is a data engineer, and what do they
do?

I only wish this book had existed when I was starting out. It would've saved
me countless hours lost in confusion and dead ends. Chisom Nwokwu
delivers a rare combination: comprehensive coverage of data engineering,
grounded in clarity, relevance, and real-world experience.

Each chapter invites readers deeper into the world of data engineering—
from broad concepts to advanced techniques, all the way to practical steps
for entering the field. With a thoughtful structure, well-chosen topics, and
clear, accessible examples, this book makes the journey both exciting and
informative. It's remarkable how much Chisom has packed into just a bit
over 300 pages.

With data volumes growing exponentially, and businesses racing to turn
information into a competitive edge—especially in the age of artificial
intelligence—data engineering has become indispensable … and so has the
knowledge captured in this book.

Whether you're just stepping into the world of data engineering or looking
to sharpen your understanding of the role, this book delivers clarity, depth,
and practical insight in equal measure. Chisom has created something
special: a resource that's both technically solid and genuinely enjoyable to
read. I'm confident it will inspire many to not only understand the field but
to thrive in it.

Enjoy the journey.



—Slawomir Tulski,
Data Engineering Manager, Meta (Prev)



Introduction
Data is more than just numbers and text; it’s the foundation of modern
decision-making, innovation, and intelligent systems. Data is everywhere,
from the personalized recommendations we see online while shopping to
the analytics that drive billion-dollar businesses. But data alone isn’t
enough. Behind the scenes are professionals who collect, clean, transform,
and deliver data where it needs to go. These professionals are data
engineers, and this book is your invitation to learn about data engineering.

The field of data engineering is growing at lightning speed, especially with
the rise of artificial intelligence systems, which rely on quality data. Many
people are eager to break into this field but find it difficult to navigate their
learning journey. Others may already be working in tech- or data-adjacent
roles but lack the foundational understanding of how modern data systems
are designed, built, and maintained.

Data Engineering for Beginners is a comprehensive, beginner-friendly
guide designed to help engineers, analysts, and industry professionals grasp
the fundamentals of data engineering, learn necessary concepts with real-
world scenarios, and ultimately launch a career with a well-defined
roadmap.

This book is unique because it offers a clear and accessible introduction to
complex and often intimidating concepts. Most resources on data
engineering assume a certain level of prior knowledge or experience,
making it difficult for true beginners to find a starting point.

I believe the strength of an engineer is understanding the rudiments of a
topic, and that is what this book plans to achieve. It takes you on an
intentional learning journey from understanding various data formats to
designing databases, to learning how to secure data systems, to building
architectures that scale.

With the rise of AI, data engineering has become even more popular. AI
models also rely on vast amounts of high-quality data for training and
operations, which would involve complex data processing and integration.
Organizations are now keen on investing in data platforms and



professionals who can manage those platforms, driving greater competition
in the market.



What Does This Book Cover?
This book serves as a complete roadmap, starting from the basics and
progressing to more advanced topics, providing a solid foundation for
building your knowledge as you read.

Chapter 1: Understanding Data
This chapter explores the various forms of data: structured, semi-structured,
and unstructured data, their advantages and their limitations. It also covers a
brief history of data and the impact of data across several industries.

Chapter 2: Introduction to Data Engineering
This chapter introduces you to the world of data engineering, what it is,
why it matters, and how it has evolved. You’ll learn about the role of a data
engineer, the key stages of the data engineering life cycle, and how
engineers navigate stakeholder needs to deliver real business value.

Chapter 3: Database Fundamentals
This chapter covers the essentials of databases, what they are, and how they
store data. You’ll learn the difference between relational and NoSQL
databases, and explore when to use each. We’ll also introduce the major
types of NoSQL databases and their use cases and explain the ACID
principles that ensure data integrity. This chapter gives you the tools to
choose and work with the right database for your project needs.

Chapter 4: SQL Fundamentals
After discussing relational databases, we need to learn how to interact with
them. This chapter is all about mastering SQL, starting with the basics, then
build up to more powerful tools and advanced techniques like subqueries
and window functions. You’ll also learn how to set up a SQL environment
to practice writing and running your queries.

Chapter 5: Database Design
This chapter covers the principles of good schema design. We begin by
exploring how to model data based on real-world requirements and best



practices. You’ll learn how to understand and apply cardinality, design
entity relationship diagrams (ERDs), and make smart decisions about
normalization and denormalization to balance performance with data
integrity.

Chapter 6: Data Warehouses, Data Lakes, and Data
Lakehouses
This chapter introduces you to the world of data storage at scale, focusing
on data warehouses, data lakes, and the hybrid data lakehouse architecture.
You’ll learn how to design analytical models like star and snowflake
schemas and explore data marts.

Chapter 7: Data Pipelines
In this chapter, you’ll learn the core methods of ingesting data, from
traditional batch loads to real-time streaming. You will learn concepts like
windowing for managing time in streaming, and architectural patterns like
Lambda that combine batch and stream processing. This chapter also
unpacks data orchestration, scheduling, and automation.

Chapter 8: Data Quality
This chapter focuses on data quality. You’ll learn about common causes of
bad data and the real impact poor quality can have on business decisions
and the key data quality dimensions.

Chapter 9: Data Security
In this chapter, you’ll learn core security principles and how to safeguard
data both at rest and in transit. The chapter covers key concepts like
authentication and authorization, as well as the basics of encryption and
data masking to keep sensitive information safe.

Chapter 10: Data Governance
This chapter unpacks the essential concept of data governance through a
simple, relatable analogy. You’ll learn about policies and processes that



ensure data is managed responsibly and compliantly, along with common
regulations.

Chapter 11: Big Data and Distributed Systems
This chapter introduces you to the exciting world of big data, starting with
its fundamentals and the famous 5 V’s—volume, velocity, variety, veracity,
and value—that define big data challenges. You’ll also explore popular big
data frameworks like Apache Spark and Hadoop.

Chapter 12: Data Engineering on the Cloud
In this chapter, you’ll start by understanding what the cloud is and how it
compares to traditional on-premises setups for data storage and processing.
The chapter breaks down cloud service models: IaaS, PaaS, and SaaS.
You’ll explore different storage types, object, block, and file storage, and
learn how to leverage cloud compute services for data transformation.

Chapter 13: Building a Career in Data Engineering
This chapter gives you career tips. You’ll have a clear understanding of the
various data engineering roles available and how to identify which fits your
skills and interests best. You’ll learn strategies to ace interviews, including
both technical challenges and behavioral questions.

Appendix: Sample Interview Questions
Get ready to test your knowledge! This appendix includes a curated set of
common data engineering interview questions, complete with explanations.
Topics span SQL, data modeling, pipeline design, and Apache Spark, giving
you a well-rounded prep experience.

Data Engineering Glossary
To cap things off, you’ll explore a glossary of key terms, tools, and
acronyms.

Who Should Read This Book?



In 2021, I started a new role as a software engineer, which required me to
build and manage data platforms. Before this role, I had little or no
background in data. For the first few months, I struggled to understand a lot
of concepts. While I was successful in my deliverables, my foundation was
faulty. Driven by curiosity, I started asking questions, engaging with
industry experts, and deepening my expertise in the field. This journey
sparked a passion in me that inspired the creation of this book, to share the
knowledge I had acquired.

This book is for curious beginners, anyone starting their career or pivoting
into data engineering. This book was written specifically for you; it’s a
roadmap that gives you a solid starting point. It breaks down data
engineering concepts with clear explanations and practical examples, giving
you a strong foundation. I remember how intimidating it was when I first
started, and I wanted to create something that feels like a friendly guide, not
a textbook.

This book is also for software engineers, data analysts and scientists, and AI
engineers in the room who keep hearing about data engineering at work but
aren’t quite sure what it entails. Maybe you’re already writing SQL or
deploying models but you don’t understand how the data gets cleaned,
transformed, and served to you. This book shows you what’s happening
behind the scenes, so you can speak the language, contribute more
effectively to cross-functional teams, and create more impact in your role.

Then there are the career switchers, people who are trying to find their
footing in tech. Data engineering is one of the most practical, foundational
paths in the data world, and this book is your first step into the world of
data, with no prior knowledge required.

Data Engineering for Beginners is both a learning tool and a reference that
I hope you’ll come back to again and again. It contains real-world
examples, interview tips, and scenarios that reflect the day-to-day life of a
data engineer, preparing you to thrive in your first role and throughout your
data engineering career. It’s written as a roadmap, so you can read each
chapter sequentially or skip ahead if you’re already conversant with those
concepts. The labs are available to help you put your knowledge into
practice.



Congratulations on taking your first step into data engineering, but it
doesn’t end here. Keep learning, growing, and building!



CHAPTER 1
Understanding Data
Data is often referred to as the new oil. In today’s world, data powers
almost every decision we make and shapes the innovations that define
industries. The word “data” is derived from the Latin word “datum”
(singular), meaning “something given” or “a thing given.” This reflects the
idea that data consists of pieces of information that are provided or recorded
as they are observed, without interpretation or analysis. In its original sense,
a “datum” is a single fact or piece of evidence.

Data refers to raw, unorganized facts or information that can be processed
or analyzed to derive meaning. These facts can be in the form of numbers,
text, images, audio, or any other measurable elements. Data on its own does
not have meaning until it is structured and interpreted. Once organized and
processed, data can provide insights, inform decision-making, and be used
for a variety of purposes, such as scientific research, business analytics, or
technological development. In this chapter, we’re going to explore the
fundamentals of data and its different forms, and discuss its importance.
This will build a solid foundation for subsequent chapters in this book.

WHAT YOU WILL LEARN IN THIS CHAPTER:

The growing importance of data throughout history

The advantages and limitations of different types of data

How data is used in different industries

The role of data engineering

A Brief History of Data
The first time I encountered the term “data” was in high school, and I heard
it even more frequently in college. Instructors would often refer to data as
“raw facts,” which is accurate. However, the concept of data has evolved
and holds different meanings for various individuals, particularly for older



generations. The history of data stretches back much further than we often
realize. Data has existed for centuries, in forms different from what we
know today. Throughout history, people have continuously sought
innovative ways to harness and benefit from data. Exploring the evolution
of data over time, we can appreciate the impact data has had on science,
technology, and social good.

Data in 19,000 bce: The Great Baboon and Abacus
According to Wikipedia,1 the first use of data dates back to 20,000 bce,
with the discovery of the Ishango bone in the Congo region. This tool was a
baboon bone marked with notches, speculated by some scholars to have
been used for counting or tracking, possibly representing one of the earliest
forms of recorded data.

At that time, calculators, pens, and paper—things we take for granted today
—did not yet exist. This prehistoric tool is considered the earliest known
evidence of tallying, or recording, information. Another tool that was also
common at this time was the abacus, which is quite familiar in our learning
curricula today. The abacus is a simple device used for arithmetic
calculations. It was believed to be invented by the Babylonians as early as
2400 BCE. The abacus was widely used in Asia and Europe for centuries
and is still used today in some parts of the world.

Data in the 1600s: Public Health Statistics
In 1640, data began to gain some form of interpretation. John Grant, a
hatmaker, started collecting information about deaths in London,
information such as the number of deaths, mortality rates among age
groups, and the cause of death. He conducted the first recorded experiment
in statistical data analysis, and he was able to predict life expectancies,
analyze death rates between genders, and eventually devise an early
warning system for the bubonic plague, which was ravaging Europe at the
time. London started issuing a weekly report called “Bills of Mortality.”
Grant became known as the Father of Statistics, laying a foundation for
modern demographic research.

Data in the 1800s: The U.S. Census



In the 1800s, the emergence of data processing was prompted by the U.S.
Census. The population was growing rapidly; the census process was
becoming increasingly complex, and traditional methods of data collection
and processing were no longer effective. Due to the volume of data, it was
almost impossible to process information manually on time. To solve this
problem, Herman Hollerith, a German American statistician and an
employee of the U.S. Census Bureau, devised the Hollerith Tabulating
Machine. This machine used punch cards to input data. A punch card is
normally a type of stiff paper, onto which a machine would create holes in
specific locations, and this could process data much more quickly than
traditional methods. According to Wired,2 the U.S. Census Bureau used a
tabulating machine for the first time during the 1890 census, cutting
processing time down from eight years to just two. This innovation not only
saved the government millions in logistics costs but also improved accuracy
by reducing human errors.

Data in the 1900s: The Concept of Storage
As data was now being processed in the 1800s, the concept of storage came
up as there was an increasing need to store greater amounts of data to be
collected and processed. To address this need, new storage technologies
emerged such as magnetic tape and cloud storage, which played a
significant role.

German engineer Fritz Pfleumer3 invented the first magnetic tape in 1928.
This technology allowed for data to be stored magnetically on tape, and it
was used extensively for audio and video recordings. This idea inspired the
invention of floppy disks and hard disk drives later on.

Dr. Joseph Carl Robnett Licklider, a visionary computer scientist, was
considered one of the pioneers of cloud computing. According to the
Internet Hall of Fame,4 in the 1960s he introduced the idea of a network of
interconnected computers capable of communicating and sharing resources.
His groundbreaking concept eventually paved the way for cloud storage,
which is now a vital technology for data storage and management.

In the 1970s, British computer scientist Edgar F. Codd developed the
popular relational data management framework. This framework allowed



for the storage and retrieval of data in a more efficient and structured
manner, making it easier for organizations to manage large amounts of data.

Data in the 1990s: Data and the Internet
The advent of the Internet in the 1990s marked a major transformation in
how data was collected, interpreted, and stored. It enabled the collection of
a much broader array of data from diverse sources, which could then be
shared and analyzed by individuals worldwide, regardless of geographic
location. At this time, Tim Berners-Lee introduced the World Wide Web.
Before the web was introduced, sharing information on the Internet was
limited to computer experts, but Berners-Lee created a system whereby
documents and resources could be linked together through hypertext,
making it easy to navigate from one page to another. Now, people can
access information, communicate, and collaborate on a global scale like
never before. The World Wide Web became the backbone of the modern
Internet.

Types of Data
Data is often categorized based on structure, format, or the context in which
they are used. This is important to note because we interact with different
types of data in different ways. Based on how data is structured (not the
type of values it holds), here are some common categories.

Structured Data
Structured data refers to data that is highly organized and easily searchable
in databases or spreadsheets. It follows a predefined model, typically with
rows and columns. Each column has a specific data type (e.g., integers,
dates, strings), and each row represents a unique record. This rigid structure
ensures easy access and retrieval.

Examples of structured data include:

Financial systems (e.g., banking transactions)

Customer databases (e.g., CRM systems)

Inventory management systems



Log files from servers

Excel spreadsheets

Structured data comes with a lot of advantages. It is neatly organized in
rows and columns, making it easy to retrieve, query, and analyze with SQL
and other traditional tools. The rigid schema ensures that data is consistent
and accurate, and that it follows predefined formats, which helps maintain
data integrity. Due to predefined schemas, structured data supports strong
validation and data types, which helps maintain its integrity. In terms of
scalability, databases that are structured are well established and can be
highly scalable for specific applications like transaction processing.

Schema: A schema is a blueprint or structure that defines how data is
organized in a database.

Integrity: The accuracy, consistency, and reliability of data

Structured data also has its limitations. Because structured data follows a
strict schema, it lacks flexibility. Any changes to the structure, such as
adding new columns, may require significant effort. It is also not well suited
for handling rich, complex data like images, audio, or free-form text.
Structured data also requires a defined schema upfront, which can limit how
the data evolves in the future.

Unstructured Data
Unstructured data refers to data that doesn’t have a predefined format or
structure. This type of data is often text-heavy or multimedia content, and it
requires more complex tools like natural language processing (NLP) or
machine learning for analysis.

Examples of unstructured data include:

Emails and chat messages

Social media posts

Multimedia content (images, videos, audio)

Documents (PDFs, Microsoft Word files)



Unstructured data can include anything from text, images, and audio, to
videos, making it extremely versatile. The majority of data generated today
is unstructured, and this type of data can provide deeper insights when
analyzed correctly (e.g., social media content, logs, or multimedia). Unlike
structured data, unstructured data does not require a fixed schema, which
allows for easy storage and flexibility in how the data is collected and
stored. Unstructured data often contains valuable insights that go beyond
the confines of structured data’s rigid format, such as sentiment in text,
behavior in logs, or patterns in images and video. Techniques like natural
language processing (NLP), computer vision, and deep learning rely on
unstructured data to derive insights.

Most times, unstructured data is difficult to analyze and extracting
meaningful insights is complex and requires advanced techniques like
machine learning, which can lead to significant computational resources
and time compared to structured data. Unstructured data (e.g., large video
files, logs) can also be massive in size, leading to storage issues and higher
costs for storage systems. Without a schema to enforce validation and rules,
unstructured data can lack integrity or consistency, making it harder to
manage. Querying unstructured data often involves indexing and searching
through large, complex datasets, which can be slow and require specialized
algorithms.

Semi-structured Data
Semi-structured data is data that does not conform to a formal structure but
that has some organizational properties that make it easier to parse. It
doesn’t adhere to a fixed schema, but it has tags, metadata, or markers that
provide a loose structure. You can think of semi-structured data as a mixture
of both structured and unstructured data.

Examples of semi-structured data include:

JSON and XML files

Email metadata

HTML and web pages

YAML files



IoT/sensor data

Common formats like JavaScript Object Notation (JSON) and Extensible
Markup Language (XML) are widely used for exchanging data across
systems, especially in APIs. Like unstructured data, semi-structured data
does not require a predefined schema, which allows for flexibility in storing
and handling data of various types. Data formats like XML and JSON
provide structure with tags, allowing for easier parsing and transformation
compared to unstructured data. Let’s look at an example of how data is
represented in JSON and XML.

JSON is a format that represents data as key-value pairs. An object is a
group of key-value pairs, enclosed in curly braces, {}. JSON is more
structured than plain text but less rigid than a relational table:

{
  "name": "Ada",
  "age": 30,
  "isStudent": false
}

XML uses a tree-like structure made up of elements (tags), which can
contain values, attributes, or other elements:

<person>
  <name>Ada</name>
  <age>30</age>
</person>

Semi-structured data can handle complex and nested data formats, making
it suitable for modern applications. To address scalability issues, NoSQL
databases and cloud storage systems are designed to efficiently store semi-
structured data, often at scale.

While more organized than unstructured data, semi-structured data still
requires parsing and processing techniques that are more complex than
structured data querying. Querying and indexing semi-structured data can
be less efficient than querying structured data in relational databases. Since
semi-structured data can vary from record to record, it can lead to
inconsistencies, making analysis and data integrity more difficult to
maintain. While tools exist for processing semi-structured data, they are not
as standardized or mature as those for structured data, meaning that



handling this data can involve custom or specialized solutions. Table 1-1
compares structured, unstructured, and semi-structured data.

Table 1-1: Comparing Structured, Unstructured, and Semi-structured Data

FEATURE STRUCTURED UNSTRUCTURED SEMI-
STRUCTURED

Format Tabular, fixed rows
and columns like
Excel sheets

Free-form, like plain
text, images, or audio

Hierarchical or
tagged format
like JSON files

Schema Rigid and
predefined schema

No formal schema or
metadata

Schema exists
but is flexible
and self-
describing

Storage
systems

Relational
databases

Filesystems or object
storage

NoSQL
databases

Ease of
analysis

Easy to analyze
with SQL and
business
intelligence tools

Requires advanced
methods like natural
language processing
(NLP)

Needs parsing,
flattening, or
schema-on-read
tools

Why Is Data Important?
Data is no longer just a byproduct of operations—it’s playing a critical role
in key sectors worldwide, making it one of the most valuable assets. From
healthcare to supply chain, and from transportation to artificial intelligence
(AI), data is reshaping how decisions are made and creating a lot of value.
Let’s explore how data is impacting these sectors.

Healthcare
One of the most promising developments in modern healthcare is predictive
healthcare, where algorithms use vast amounts of data to predict potential
health risks before they happen. With this, a doctor treating a diabetic
patient can analyze patterns in their blood sugar levels, lifestyle, and even
family medical history. Data systems now flag early signs of complications,



which allows doctors to intervene early and potentially prevent a severe
health crisis.

Another area where data is making a significant impact is in clinical
decision-making. The volume of medical research, treatment options, and
patient outcomes is overwhelming for any individual doctor to keep up
with. But by analyzing health data at scale, we can uncover trends and
insights that would have been impossible to see. AI and machine learning
models can now analyze thousands of medical records to identify which
treatments work best for specific conditions or even uncover rare side
effects of a drug that may not have been apparent in initial clinical trials, all
with the help of data.

While these innovations are great, one of the biggest challenges in the
healthcare industry has always been the difficulty of accessing up-to-date
patient information. The problem isn’t the lack of data but how fragmented
it is across different systems. But now, with health data being integrated
from multiple sources, healthcare providers have a comprehensive view of a
patient’s health, allowing them to provide more coordinated treatment.

Supply Chain
A supply chain is a network of people, activities, and resources involved in
the creation and delivery of a product or service from the raw materials to
the end customer. In supply chain management, a common challenge has
been visibility. Companies have lacked real-time insights into where their
products were, how they are moving, and when they were going to arrive.
This lack of transparency creates a lot of inefficiencies and delays in the
long run.

But with data, organizations have been able to set up real-time tracking
using data from sensors, and Internet of Things (IoT) devices embedded in
products and shipments, which has fundamentally changed how companies
approach inventory management, helping them have more visibility on their
processes. They can also predict exactly how much stock they need, where
it should be stored, and when to replenish, thus reducing waste. During the
global supply chain disruptions caused by the COVID-19 pandemic, data-
driven insights became important. Companies that leveraged data to predict
shipping delays were able to stay ahead of the curve and save costs.



Transportation and Logistics
Years ago, getting from point A to B was a complete hassle. But today, you
can use your mobile device to book a ride and have a driver locate you
seamlessly. Companies like Uber started building data systems that collect
and analyze real-time data like location, traffic patterns, rider behavior,
surge demand, and even weather conditions, making transportation smarter
and more personalized.

The impact of data on transportation didn’t end there. We’re also seeing the
rise of self-driving cars. These vehicles rely on huge amounts of sensor
data, like cameras and GPS systems, to make split-second decisions. But
it’s not just about collecting that data—it’s about learning from it. Every
mile a self-driving car travels generates terabytes of data that feed back into
machine learning models, helping the system get better at identifying
obstacles. Before this, autonomous driving was just science fiction. Now,
thanks to the constant flow of real-world driving data, we’re getting closer
to safe, driverless transportation at scale.

Artificial Intelligence
Data is the lifeblood that fuels the development of AI systems, and it’s
currently driving the rapid advancements we’re seeing across AI today.
When you think about AI and its evolution, especially when we talk about
large language models (LLMs) or AI products, it’s clear how far we’ve
come in such a short time.

Earlier, AI was quite limited. For example, language models in their early
days had difficulty understanding context and generating coherent text that
made sense because the data they were trained on was very sparse and these
models generated outputs that were far from perfect. As data volumes
increased, we started to see massive datasets emerging—text, images,
videos, and real-time information from a variety of sources, allowing AI
models to train on much larger and more complex datasets.

For example, in LLMs, models like GPT have been able to learn billions of
words across countless contexts, picking up on language, tone, and even
cultural context. The real breakthrough came with the ability to use data to
fine-tune models. Now, instead of general-purpose, one-size-fits-all AI
systems, data allows us to tailor AI models to specific industries or



problems. Data didn’t just improve AI; it has evolved AI from basic
automation tools to powerful systems that drive decision-making.

Data and Information
Initially, we defined data as raw, unprocessed facts and figures, but we also
need to understand what information means. Information is data that has
been processed, organized, and structured, giving a meaningful
interpretation. In the digital world, information can be regarded as business
financial reports, monthly bank statements, sales visualizations, and so
much more. But before we can extract information, data must be processed
and organized.

This is where data engineering comes in. It plays a critical role in
transforming raw data into information and helps to ensure that raw data—
often unstructured and scattered across various sources—is organized,
cleaned, and transformed into a format that can be easily turned into
actionable insights. When we discussed the importance of data in healthcare
earlier, we mentioned that the greatest challenge health facilities faced was
fragmented data. In hospitals, patient records are one of the most valuable,
sensitive types of data, and you would typically have them scattered across
electronic health records (EHRs), lab results, prescriptions, doctors’ notes,
and even data from wearables. If a patient relocates from one city to
another, their medical records are scattered across different hospitals,
specialists, and labs; because a centralized system doesn’t exist for this,
they would have to have multiple tests run all over again, which isn’t
efficient.

Another good example is the National Health Service (NHS) in the UK,
which handles millions of patient records. Here, data engineers build the
systems that collect all that messy data from different hospitals, GP clinics,
and labs and make sure it flows into one place in a clean, organized, and
secure way. Cleaning could involve removing duplicates (so one patient
doesn’t show up as two people); standardizing formats such as dates,
names, and measurements so they’re the same across records; handling
missing data; and carrying out necessary transformations with the goal of
getting high-quality data. Once the data is all in one place, doctors and
nurses can access up-to-date and accurate records faster, which means better



decisions for patients. Security is a huge part, too; data engineers help make
sure only the right people can see the right information, which is extremely
important for privacy.

Without data engineering, the journey from data to useful information
would be inefficient, unreliable, and incomplete. Now that you have a good
foundation, we’ll dive deeper into this topic in our next chapter.

Summary
Data refers to raw, unorganized facts or information that can be
processed or analyzed to derive meaning.

Data can be grouped into structured, unstructured, and semi-structured
data.

Structured data is organized in fixed formats like tables with
predefined schemas. Examples are Excel spreadsheets.

Unstructured data is raw, unorganized data in free-form formats.
Examples are plain text, images, and audio.

Semi-structured data has some organizational structure but flexible
schemas, requiring parsing. Examples include JSON files.

A schema is a blueprint or structure that defines how data is organized
in a database.

Data was first processed in the 1800s for the U.S. Census.

Data is raw, unprocessed facts and figures, whereas information is data
that has been processed and organized to provide meaning and context.

Data is improving healthcare by providing more personalized care for
patients and predictive analytics for medicine.

Data is helping companies transform inventory management by
enabling real-time tracking through sensors and IoT devices.

In transportation, data enables real-time ride booking, smarter routes,
and self-driving car technology.



In AI, data is helping models evolve from basic automation tools to
powerful systems that drive decision-making.

Notes
1.  https://en.wikipedia.org/wiki/Ishango_bone

2.  https://www.wired.com/2007/06/dayintech-0601

3.  https://www.historyofrecording.com/fritz-pfleumer.html

4.  https://www.internethalloffame.org/inductee/jcr-licklider

https://en.wikipedia.org/wiki/Ishango_bone
https://www.wired.com/2007/06/dayintech-0601/
https://www.historyofrecording.com/fritz-pfleumer.html
https://www.internethalloffame.org/inductee/jcr-licklider


CHAPTER 2
Introduction to Data Engineering
As organizations started working with more and more data, they ran into
some big challenges—like how to scale their data systems, keep the data
clean and reliable, and turn their raw data into something useful for either
analytics, business insights, or machine learning initiatives. But there was
one common question: How can we actually collect, store, process, and
manage all this data efficiently?

In the last chapter, we looked at how data engineering is helping the
healthcare industry become more efficient. In this chapter, we’re going to
dig deeper into how data engineering really works, what the main building
blocks are, and how the systems behind the scenes are put together.

WHAT YOU WOULD LEARN IN THIS CHAPTER:

The definition of data engineering and its evolution

Data engineering explained using an oil refinery model

The role of a data engineer in an organization

An overview of the data engineering life cycle

Navigating project requirements and stakeholders, and deliver business
value as a data engineer

The current state and importance of data engineering

Data engineering can be defined in many ways, and these definitions reflect
the diverse experiences and viewpoints of various professionals in the
industry. This variety in definitions makes sense because data engineering is
a complex field with many different aspects.

By weaving these definitions together, we can see some similarities. Data
engineering can be defined as the process of designing and maintaining
systems that enable the collection, storage, and transformation of raw data
into usable information for analysis and decision-making. In the field of



data science and analytics, data engineering is one of the specializations.
With data engineering, you can ensure that data is readily available,
reliable, and structured in a way that makes it accessible to data scientists,
analysts, and other stakeholders.

At its core, data engineering focuses on creating data pipelines that move
data from one system to another. These pipelines are built to extract data
from various sources, transform it into the required format, and load it into
storage systems. Data engineering also involves optimizing these pipelines
to ensure that they can handle high volumes of data efficiently and scale as
needed.

Beyond just moving and transforming data, data engineering also
emphasizes the importance of data quality and integrity. This means
ensuring that data is clean, free of errors, and consistent across systems.
Data engineers employ techniques such as validation, deduplication, and
error handling to maintain the integrity of the data being processed.
Security is another vital aspect, with data engineers often responsible for
ensuring that sensitive or regulated data is handled in compliance with
industry standards and regulations.

In addition to managing the flow and quality of data, data engineering
involves making decisions about how to store data effectively. Depending
on the type and volume of data, this could mean choosing between various
storage technologies, such as relational databases, NoSQL databases, or
distributed filesystems.

Data Engineering Explained Using an Oil
Refinery Analogy
Let’s imagine you work at an oil refinery as a refiner. An oil refinery is an
industrial plant that refines crude oil into petroleum products such as diesel,
gasoline, and heating oils. A refiner is an expert who owns, operates, or
otherwise controls a refinery. An oil refinery takes in crude oil, which is
raw material, and turns it into useful products like gasoline, diesel, and
chemicals.

To make this happen smoothly, so many things are involved. The crude oil
that comes into the refinery is messy and unrefined and cannot be used in



this form until it undergoes some processes in the refinery. The refinery’s
expert takes the crude oil through several machines and cleans it up to
remove impurities and dirt from the raw oil. They also separate the oil into
different components to get different products.

Now, this refined oil is sent through a complex system of pipes and tanks to
be processed. The refinery’s expert also needs to make sure the oil meets
certain quality standards. Lastly, the finished product is sent out to multiple
stations and vendors, where they would be sold or processed further.

There are multiple ways we can relate this analogy to data engineering.
Think of the crude oil like raw data, which is messy, unstructured, and not
immediately useful. Just like a refiner turns crude oil into valuable products,
a data engineer transforms raw data into clean, organized, and structured
information that businesses can work with. The heavy machines in a
refinery are like the processing tools that data engineers use to clean up
errors, remove noise, and make sure the data is in shape. Just like refined oil
gets delivered in different forms, maybe as jet fuel, diesel, or gas, clean data
that has just been processed is delivered in ways that suit the end user,
maybe as a dashboard for an analyst, an API for an app, or a file for deeper
analysis.

In summary, the fundamental role of a data engineer is to pull data from
multiple sources and design and build data pipelines and data stores that
would aid in the processing and storing of this data.

This data is made available to downstream users like data analysts,
researchers, stakeholders, and even other data engineers within the
organization. The data engineer also ensures that data in an organization is
accurate, consistent, reliable, and most importantly, available.

An Overview of the Data Engineering Life
Cycle
The data engineering life cycle refers to the structured flow of how data is
handled from its raw state to becoming usable and ready for consumption. It
can also be defined as the end-to-end process of the movement and
transformation of data within an organization. There are typically five main



stages of the data engineering life cycle, which are shown in Figure 2-1.
They are:

Source systems

Storage

Ingestion

Transformation

Serving data

The data engineering life cycle usually begins with getting the data from
various source systems and storing that data in a data store. This data is then
transformed according to business use cases before being served to various
end users. Depending on the organization and project requirements, these
stages could differ, and various stages could repeat themselves during the
life cycle.

Figure 2-1: Data engineering life cycle

Source systems refer to the various origins of data that a data engineer
interacts with, and these source systems can come in many forms. They
could be databases, APIs, IoT devices, cloud file storage, or streaming data
platforms.

Data sources are the lifeblood of any data pipeline. As a data engineer, you
need to identify and understand the functionality of the source systems
you’re dealing with, monitor the data sources for updates or changes, and
most importantly, validate data accuracy from various sources, especially
when merging or aggregating data from different sources. Data from source



systems could come in various formats, which could be structured,
unstructured, or semi-structured. Let’s discuss a few examples of what these
source systems may look like:

On a social media platform like X or Instagram, users post photos,
upload videos, make comments, like, and share. Data from these
actions are constantly generated by millions of users interacting with
the platform. This data is usually unstructured like comments or tweets
in text form, uploaded images or videos, or audio from voice notes,
and this type of data doesn’t follow a predefined format.

Smart home devices such as thermostats, security cameras, or smart
lighting systems continuously generate data. For example, a smart
thermostat records temperature data every minute to optimize
heating/cooling. This data is usually semi-structured data typically in
JSON format, which is logged in real time (e.g., sensor readings, logs,
status updates).

An online shopping platform like Amazon or Shopify generates data
every time a customer makes a purchase. This includes details such as
items bought, payment method, shipping address, and timestamps.
This could be a mix of both structured data (e.g., order details,
payment records) that would come in a table-like format or semi-
structured data (customer reviews that might have text, images, or
videos).

Data Storage
Before ingesting data from these source systems, you need to figure out
where this data would be stored. Storage is one major factor in a data
engineering life cycle because the need for where to store data arises in
multiple stages of a data pipeline. Depending on the structure and
requirements, data can be stored in either a database, a data lake, or a data
warehouse. A database is best suited for transactional, structured data where
quick access and updates are needed; a data lake is ideal for raw,
unstructured, or semi-structured data that may not have a fixed schema; and
a data warehouse is designed for structured data, typically aggregated from
various sources and formatted mainly for analysis and reporting. We’ll be
looking at these terms in detail in the coming chapters.



Choosing a Storage System
In a retail store, before restocking products, you need to make some space
in the warehouse, and there are certain things you think about, like how
many products are going to be bought, how much space is needed to store
those products, and how these products would be accessed after storage.
This is like how we think about storage systems in data engineering.

Proper data storage ensures that data is well-organized, easily accessible to
users, and secure. When data is stored well, it’s easy to query, which is
important for smooth operations. On the other hand, when we make poor
storage choices, data can get very difficult to access and slow down
processing, which affects the overall performance of the system. You must
consider several things when choosing a storage system:

Scalability When you’re picking a storage system, one of the first
things to think about is scalability. Basically, you want to pick a
storage system that can grow with your data, because your data will
grow, both in size and how often it comes in with time. A scalable
system means you won’t have to keep pausing to reconfigure things or
deal with slowdowns. It just keeps things running smoothly, even as
the data piles up.

Performance In every storage system, you can either read data or
write data into the system. Performance in storage systems refers to
the system’s ability to handle data access (read) and data input (write)
speeds efficiently. You need to make sure your system has good
performance to ensure that the storage system can process transactions,
handle queries, or respond to data retrieval requests on time.

According to the project requirements (in terms of read and write
operations), fast access speeds are essential for real-time applications
or high-frequency data access, whereas slower speeds may suffice for
batch processing or archival storage. Achieving optimal performance
is important for applications that rely on real-time or near-real-time
data access, such as analytics dashboards or high-frequency trading
platforms, so it’s important to select storage solutions suited to the
data’s speed requirements.



Storage Suitability This involves selecting and configuring the
storage solution in a way that aligns with its intended purpose. It
includes ensuring that the storage technology fits the system’s data
access and query requirements. For example, if the goal is to store
large volumes of raw, unstructured data for data science or machine
learning applications, an object storage would be a suitable choice, as
it is scalable and cost-effective for raw data storage. Alternatively, if
the focus is on running complex analytical queries on highly structured
data, a cloud data warehouse would be optimal, as it’s designed to
handle structured data efficiently, with support for advanced querying
and fast retrieval.

Access Tiers Access tiers help you classify data storage solutions
based on the frequency of data access and the speed required for
retrieving that data. As you can see in Figure 2-2, each storage tier has
assigned days that act as a guideline to help you decide which tier to
use based on how recently the data was accessed or how often it’s
needed. Understanding the differences between these storage types
helps you choose the right data storage solutions based on their
specific needs and results in cost savings for your organization.

Figure 2-2: Blob storage management

Hot Storage Used for data that needs to be accessed frequently
and immediately. This includes files that are actively in use, such
as application data, real-time logs, or website content. Although
hot storage is the most expensive in terms of storage cost, it offers
the fastest read and write speeds, making it ideal for performance-
critical tasks where speed is essential.



Cold Storage Meant for data that is accessed infrequently but
still needs to be available without delay. This tier is commonly
used for older reports, backups, or data that is no longer active but
that may still be referenced occasionally. Cold storage is cheaper
than hot storage but comes with higher costs when reading or
writing data.

Archive Storage Designed for data that is rarely accessed and
that can tolerate retrieval delays of several hours. It is the most
cost-effective option for long-term retention, such as storing audit
logs, compliance records, or historical datasets. While storage costs
are very low, retrieving data from archive storage takes time and
incurs additional charges. It’s best suited for information you need
to keep but don’t expect to use often.

In storage management, delete refers to the process of permanently
removing data from storage. This action frees up space and eliminates
ongoing storage costs. Deletion is typically used when data is no
longer needed, has expired according to data retention policies, or
must be removed for privacy or regulatory reasons. Once deleted, the
data cannot be recovered, so it should be done with careful
consideration.

Data Governance and Compliance When you’re dealing with large
amounts of data, compliance is a big deal. Your storage system should
not only store data, it should also help keep it safe and well managed.
That means making sure the data is high-quality, you can trace where it
came from, and you know how it’s being used, all of which ties into
good data governance. On top of that, you’ve got to think about legal
rules, like where the data is stored geographically, so you don’t run
into any compliance issues. We’ll dive deeper into data governance in
the next few chapters.

Metadata Management Metadata refers to the information that
describes and provides context for data throughout its life cycle within
data systems. Without metadata, you’re just looking at raw numbers
and text with no context. The choice of storage system needs to be
designed to capture metadata about schema changes, data flows, and
lineage, which enhances the organization’s ability to locate,



understand, and leverage data for future projects. As organizations
expand and accumulate more data, having a clear, organized repository
of metadata reduces the time spent on data discovery. Figure 2-3
shows two tables: The first contains records about employees, whereas
the second is a metadata table that provides details about each column,
such as data type, description, and other contextual information.

Figure 2-3: A metadata table

Data Ingestion
At this phase, you’ve identified both your source systems and the
destination where the data will live. The next step is to figure out how to
ingest the data, which means designing the process that connects your
sources to your destination. Ingestion refers to gathering data from different
sources, which could be databases, APIs, third-party services, or real-time
streaming systems, as discussed earlier. Data from these systems can come
in different formats such as JSON, CSV, XML, etc. This is the foundation
of the data engineering life cycle as it brings raw data into the system,
where it can later be transformed and analyzed.

There are two popular approaches used to move and process data from
various sources into a data processing system or storage: batch and
streaming. Batch ingestion involves collecting and processing data in large
chunks or batches at scheduled intervals. Streaming ingestion involves
processing data in real time or near real time as it arrives, and this is usually
for real-time analytics. Both methods have their different use cases



depending on the requirements of the project and can also be used together
in data architectures to meet different needs for data processing and
analysis. We will be looking at these concepts in detail as we move forward
in the book.

Before ingesting data, there are some popular factors to consider:

The destination of the data after ingestion

How often the data arrives

The format and volume of the data

Whether you need to transform the data before it arrives at its
destination

Having these key factors in mind will enable you to design your ingestion
process more efficiently.

Data Ingestion Scenarios
As a data engineer, regardless of the industry, you’ll find that data ingestion
processes are similar. To gain a clear understanding of data ingestion, you
should consider some of the typical tasks you might encounter.

Ingesting Data from a Database
In a fintech company, you can be asked to retrieve data from a relational
database like MySQL, PostgreSQL, or SQL Server that has either
transactional data, financial records, or customer information to make it
available to other departments in the organization.

Retrieving Data from APIs
Here, you can be tasked with making social media data available for the
marketing team to monitor social media trends and analyze customer
engagement. Using APIs from X, Facebook, and Instagram, you establish
secure connections to pull data streams directly into your data pipeline. You
can also design a process that filters and structures social media metrics,
such as likes, comments, and mentions, to make it accessible for analysts to
measure the impact of recent campaigns.



Retrieving Data from Cloud Storage or Local Filesystems Your
company has recently migrated data storage to the cloud to support the
scaling data needs of its analytics team. They’ve accumulated years’
worth of JSON logs, CSVs of sales data, and Parquet files containing
rich user behavior information. You can be asked to access these data
files, clean them, and prepare them for analysis. Starting with data in
JSON logs, you can develop a script that connects to the data store,
iterates through directories, and extracts the necessary data.

Web Scraping for Publicly Available Data Your company’s e-
commerce team is exploring a new product line and needs to analyze
competitor pricing and customer sentiment for similar products.
Unfortunately, the competitor’s website doesn’t offer an API for
product data, so they enlist you to help with web scraping. As a data
engineer on this project, you can design a scraping script that navigates
the site to pull relevant information on product prices, descriptions,
and customer reviews and use special tools to automate the collection
of thousands of product reviews.

Retrieving Real-Time Data from IoT Sensors You’re working as a
data engineer at Siemens, an industrial automation company, and
you’ve been asked to retrieve real-time data from IoT sensors and
industrial equipment to monitor temperature and machinery
performance in real time. To streamline this data collection, you create
a pipeline that ingests data directly from these sensors. With this, once
the data flows into your system, you apply real-time anomaly detection
algorithms to detect unusual temperature spikes or make this data
available for other users.

Data Transformation
At this stage, data has been ingested and stored in a storage system. The
next stage involves transformation, which involves cleaning and
preprocessing raw data to remove inconsistencies, duplicates, and errors.
The goal is to prepare the data so that it can be analyzed efficiently. Without
clean, well-processed data, any insights derived from it could be misleading
or inaccurate.



Data transformation ensures the data is usable and reliable for downstream
tasks. It could involve aggregating data, deriving new features, or
summarizing large datasets into more usable formats. Transformation can
also be done at multiple stages throughout the data engineering life cycle.

Before transformation is done, the most important information to note is the
business use case. Business logic and use cases help clarify the objectives
of the data transformation process. They specify what the business aims to
achieve with the data, guiding the transformation efforts toward those goals.

A few questions to ask at this stage:

What transformations will make the data more valuable or usable for
stakeholders?

Are there missing values or inconsistencies in the data?

Do I need to enrich this data with information from other sources?

What business logic or calculations need to be applied to the data?

Does the data need to be standardized, and how can I optimize the data
for analysis or reporting?

Data Serving
This is the last stage of the data engineering life cycle, and this phase allows
the organization to leverage its data effectively for major use cases like data
analytics, machine learning, and other processes. Here you think about who
your users are and how best to serve your data. Let's look at a few use cases
in detail:

Data Analytics
Data analytics is a common use case you’ll encounter as a data engineer
when serving data. It involves analyzing data to identify patterns, trends,
and insights. A data analyst can perform multiple types of analytics like
business or operational analytics. The first step is to identify the goal of the
project.

Business analytics is a combination of both historical and current data,
using statistics and trend analysis to make actionable decisions for the



company. An analyst will need to build dashboards and design reports, or
perform ad hoc analysis of the data available depending on the requirements
of stakeholders.

Dashboards: In building dashboards, analysts can present core metrics
on how each area of the business is doing according to business
objectives. Dashboards provide a high-level, interactive view of key
performance indicators (KPIs) and metrics, allowing users to monitor
trends and track progress toward specific goals—for example, a sales
dashboard that shows live updates on daily revenue, conversion rates,
and sales by region, with clickable filters for different time frames.

Reports: Analysts can also use this data to build reports that
investigate a particular finding or problem in the organization or to
answer specific questions. Reports provide detailed, static information,
often presenting a comprehensive view of historical data over a
specific period. They are typically used for in-depth analysis. For
example, a monthly sales report that breaks down revenue, expenses,
and profit margins by region and product line.

Ad hoc requests: Another common use case is ad hoc requests, one-
time data inquiries that are typically initiated by business users or
stakeholders to answer immediate questions. They are usually
unplanned, allowing teams to act quickly on insights.

On the other hand, operational analytics is the process of analyzing real-
time or near-real-time data to improve day-to-day business operations.
Unlike traditional analytics, which focuses on historical data for strategic
decision-making, operational analytics emphasizes immediate insights to
support ongoing processes and optimize efficiency. An example of
operational analytics is building dashboards to monitor the health of your
application for metrics like database I/O, CPU utilization or even real-time
monitoring of stock levels or sales trends.

Machine Learning
Machine learning (ML) is a branch of artificial intelligence (AI) that
enables computers to learn from data and make decisions without being
explicitly programmed for specific tasks. In machine learning, algorithms



are trained on data to recognize patterns, classify information, and make
predictions. Machine learning engineers rely on clean, processed data from
data engineers that is free from errors, redundancies, and irrelevant
information, allowing the model to focus on meaningful patterns. This
improves the accuracy of predictions and the overall performance of the
model.

Once the data is accessible, featurization comes into play. Featurization is
the process of transforming raw data into a structured set of attributes
(features) that are meaningful and useful for model training. Featurization
typically requires close collaboration with ML engineers to understand the
features needed for specific models and applications.

Data engineers may work with ML engineers to select relevant columns that
are statistically important for the machine learning task. This would involve
eliminating unnecessary columns, cleaning the data to remove missing
values or outliers, and aggregating features like finding the average
purchase frequency per customer, finding the total spend in the last 90 days,
or finding the average session duration. After this, the features are stored in
a feature store to allow easy access for ML training and real-time inference,
and data engineers are also tasked with maintaining data pipelines that
produce this data.

Navigating Project Requirements, Engaging
Stakeholders, and Delivering Business Value
In the previous sections, we explored the various stages of the data
engineering life cycle. However, before building pipelines or identifying
source systems, understanding the intersection between business needs and
technical work is important. This section lays the groundwork for
successful data engineering projects, emphasizing the importance of
requirement gathering, stakeholder engagement, and delivering business
value. When you align data solutions with organizational goals, your work
not only meets technical specifications but also drives strategic outcomes.
We’ll discuss the requirements-gathering process, identifying stakeholders,
translating stakeholder requirements to system requirements, and delivering
business value.



Requirements Gathering
The first step in any data engineering project is requirements gathering,
where project goals and scope are defined with clarity. This phase involves
collaboration with stakeholders, including business leaders, product
managers, and end users, to pinpoint their needs and expectations. When
clear objectives are established, data engineers create a roadmap that guides
the project from inception to completion. This process not only clarifies the
intended outcomes but also helps to manage stakeholder expectations and
ensures that the final product aligns with the organization’s vision. Defining
the project scope also minimizes the risk of scope creep, which can derail
timelines and budgets.

Understanding Stakeholders
Stakeholders are individuals or groups who have an interest in the project’s
outcome and can influence its success. Communicating effectively with
stakeholders is important for ensuring that the project meets its objectives
and aligns with business needs. There are two types of stakeholders you
would interact with during a project: upstream and downstream
stakeholders.

A Data Engineer Collaborating with a Machine Learning
Engineer—A Downstream Stakeholder
Downstream stakeholders are involved later in the data engineering life
cycle. They use the processed data for analysis, reporting, or operational
purposes. These stakeholders could be data scientists, business intelligence
professionals, executives, or machine learning engineers.

Let’s say you’re a data engineer working alongside a machine learning
engineer (MLE) who is developing a predictive model to forecast customer
churn (the rate at which customers stop doing business with a company) for
your organization. The machine learning engineer requires access to process
and clean datasets that will be used to train and validate the ML models. To
serve the MLE effectively, you must consider several factors to ensure the
data meets their needs:



You need to clarify what specific data points the MLE requires for
their model. For example, do they need customer demographics,
transaction history, engagement metrics, or support interactions?

You need to discuss the importance of historical data; the MLE may
need several months or even years of data to identify patterns and
trends.

Talk about potential features that can be derived from the raw data. For
instance, should you create a feature that tracks the number of support
tickets raised by a customer over the last three months?

Establish how often the MLE will need the data refreshed. For
instance, do they need daily updates for model training, or is weekly
sufficient?

Discuss the acceptable latency for the model’s predictions. For
example, if the MLE is deploying the model for real-time predictions,
you may need to ensure that the data pipeline can handle near-real-
time updates.

A Data Engineer Collaborating with a Software Engineer—An
Upstream Stakeholder
Upstream stakeholders are involved in the initial stages of the data
engineering process. They are typically responsible for providing the data
that will be processed and analyzed. These stakeholders could be software
engineers who build the source systems or third-party sources you would be
working with.

Imagine you are a data engineer working on a project that involves
ingesting data from an application developed by a software engineer. This
application collects user activity data, which your team will analyze to gain
insights into user behavior. In this scenario, you need to engage effectively
with the software engineer to ensure a smooth data ingestion process. Here
are a few steps you can take:

Initiate discussions with the software engineer to understand how data
is generated within the application. You'll want to know what types of
data are collected (e.g., user interactions, timestamps, device
information) and how this data is structured.



Discuss the expected volume of data generated by the application.
Understanding the volume will help you design an efficient data
pipeline that can handle incoming data without overwhelming the
system.

Clarify how frequently the data is generated and whether it’s batch or
streaming. This will inform decisions about how often you need to
ingest data and update your datasets.

Confirm the format in which data will be available (e.g., JSON, CSV,
Avro). Understanding the format is critical for designing the ingestion
process and for any necessary transformations.

Work with the software engineer to establish a consistent schema.
Agree on the names and types of fields, as well as any required
metadata that should accompany the data.

Suggest to the software engineer that they collect missing data based
on the requirements of the stakeholders.

Discuss any security measures in place for the data, including
encryption and access controls. Understand how sensitive data is
handled, especially if it involves personally identifiable information
(PII).

Lastly, build a relationship with the software engineer to establish open
lines of communication. Discuss how you can be notified in advance
of any changes that might affect data ingestion, such as application
updates, schema changes, or planned outages.

Understanding System Requirements
Once you've gathered the project requirements, the next step is to translate
them into specific technical details, identifying what your system needs to
fulfill these requirements. System requirements fall into two main
categories: functional and nonfunctional requirements.

Functional Requirements
Functional requirements refer to what the system should do. They define
the specific behaviors, features, and functionalities that the system must



support. These requirements would be generated from conversations with
stakeholders. Examples of functional requirements include the following:

The system will ingest data from CSV files and JSON APIs.

The system will perform data validation checks during ingestion to
ensure data quality.

The system will store processed data in a relational database with
predefined schemas.

The system will provide a user interface for users to query and
visualize data.

The system will trigger the ingestion pipeline at 2 a.m. daily.

Nonfunctional Requirements
Nonfunctional requirements are all about the quality and behavior of the
system rather than specific tasks. They define the operational standards the
system must meet, like performance, reliability, scalability, and more. While
functional requirements tell you what the system does, nonfunctional
requirements explain how well it should do those things. Examples include
the following:

The system should achieve 99.9 percent uptime to ensure continuous
availability.

The system should process data ingestion tasks within a maximum
latency of five minutes.

The system should encrypt data in transit and at rest.

The system should be designed to scale to support a 200 percent
increase in data volume over the next two years.

At the early stages of the project, especially during planning and
requirements gathering, it’s common for the project scope or goals to
change over time. Stakeholders might realize they need additional data
points, adjust business goals based on new insights, or shift priorities due to
external or market changes.



Because of this, you’ll often go through multiple iterations of your pipeline
design, data models, or reporting structure before reaching a final, stable
solution. And that’s perfectly normal. To manage this change, constant and
clear communication with your stakeholders is essential. It avoids reworks,
because if you check in regularly, you’re less likely to build something they
don’t need. Getting feedback early means you can make small changes
instead of re-architecting later.

Best practices to stay on track include holding regular check-ins such as
weekly syncs or demos, documenting requirements, and updating those
requirements as they evolve.

Delivering Business Value
The goal of any data engineering project is delivering business value. The
key part of your work as a data engineer is how you can find and give value
to the business through the data you provide. It’s easy to get caught up in
the technical aspects of your work, writing scripts and picking up shiny new
tools. However, it’s important to step back and consider the broader
perspective of your organization. By identifying its goals and objectives,
you can discover ways to contribute meaningfully and drive initiatives that
accelerate your organization’s success.

To deliver business value, start by determining the why behind your tasks.
Before jumping into coding, ask the right questions, such as: What is this
data going to be used for? What decision will it influence? If you don’t have
a clear answer, it’s worth taking a step back to clarify the purpose. Doing so
ensures you’re not just building for the sake of building but solving a
problem that matters.

Engaging with stakeholders early is also key. Whether it’s product
managers, analysts, marketers, or operations teams, these are the people
who depend on data to do their jobs well. Ask them what pain points
they’re facing, what data they wish they had, or which manual processes
take up too much of their time. These conversations lead to opportunities to
create tools, pipelines, or datasets that save hours of work.

Another way to drive value is to think critically about what projects you
prioritize. Technical tasks will always be on your plate, but not all of them
will have equal impact. Focus on work that either supports business growth



or improves efficiency. Projects that save time or reduce errors are high-
leverage efforts that make a visible difference.

Don’t forget to communicate your impact. If you automate a pipeline that
saves someone three hours a day, or if your new data model helped
marketing target customers more accurately, make sure people know. Share
outcomes in terms the business understands, like time saved, cost reduced,
revenue gained. It helps others appreciate your work.

Finally, remember that it’s not enough to just provide data—it must be
usable. Invest in making your datasets clean, well documented, and easy to
access. Build dashboards that tell a clear story and collaborate with analysts
or business users to help them make sense of the numbers. When you make
data not just available but useful, you’ve delivered real value.

The Current State of Data Engineering
A lot of the things we talked about sound pretty cool, but in the early days,
data engineering was just primarily focused on setting up databases and
handling data storage, which involved creating simple systems to collect
and keep data in one place. The work was often ad hoc and manual, with
engineers writing scripts to move data around without much thought to
automation or scalability.

Over time, as companies collected more data and demanded quicker, more
accurate insights, data engineering evolved into a field focused on building
scalable data pipelines, automating data flows, and making data accessible
for various business needs. By 2024, data engineering had shifted to being
highly automated, with systems that pull, clean, and transform data from
different sources into organized formats.

Now, data engineers design robust architectures that can handle real-time
data streaming and support machine learning and AI workloads, supporting
model pipelines, feature stores, and data versioning to help maintain and
monitor ML models in production.

We’ve also seen a shift in data storage. The combination of data lakes and
data warehouses into a single “lakehouse” architecture has gained
popularity. Technologies like Delta Lake and Apache Iceberg are allowing



organizations to store structured and unstructured data in the same
environment while supporting both batch and real-time processing.

For data management, the data mesh approach is now being used to
encourage decentralized data ownership across domains, allowing each
team or department to treat data as a product. This shift moves data
management away from centralized warehouses, letting each domain
independently manage its data. New trends in data engineering also include
the adoption of cloud-native platforms, which allow companies to manage
data more flexibly.

There’s also a growing focus on data observability and quality, with tools
and practices to monitor data health and ensure accuracy across systems. In
2024, data engineering is no longer just about moving data from Point A to
Point B. It’s about building intelligent, automated, and scalable systems that
allow companies to unlock the full potential of their data.

The Importance of Data Engineering
Data engineering is the backbone of any organization that wants to make
smart, data-driven decisions. One way it’s helping organizations is through
integration. Without the right systems in place, data would be sitting in
silos, scattered across tools and platforms, but with data engineering, we
have infrastructure that lets data flow smoothly from all these different
sources into one place, in a clean, reliable, and timely way

Data engineering also improves efficiency in organizations. Usually, data
analysts and scientists would spend hours cleaning and wrangling data
before they could start getting insights or building models. However, when
a good data engineering team is set up, they can rely on data engineers for
clean data and focus on high-value tasks.

Data quality is a key factor for any data-driven organization. Bad data leads
to bad decisions, and those decisions can be costly. To address this, a huge
part of data engineering focuses on ensuring quality at every point in its life
cycle. Data engineers build in checks and validations to make sure the data
is accurate and trustworthy.

Along with quality, security is also important. It's not enough to store data,
it's also important to make sure the data is secure. A lot of organizations



deal with sensitive information like customer details, financial records, etc.
Data engineers ensure access controls, masking, and compliance with
regional laws are put in place.

We’ve officially come to the end of this chapter; the goal was to help you
understand the key building blocks of data engineering and provide a broad
overview of the topic. In the upcoming chapters, we’ll dive deeper into
some of the topics we’ve touched here and explore them in more detail.

Summary
In this chapter, you learned about the following:

Data engineering can be defined as the process of designing and
maintaining systems that enable the collection, storage, and
transformation of raw data into usable information for analysis and
decision-making.

Data engineering lays a good foundation for data-driven decision-
making in an organization, helping organizations unify data and
improve quality.

The data engineering life cycle consists of five main stages: Source
Systems, Storage, Ingestion, Transformation, and Serving.

Source systems generate raw data followed by an ingestion process
that collects moving data from source systems to storage.

A data store is where ingested data is kept for further processing (e.g.,
data lakes or warehouses).

Ingestion refers to gathering data from different sources. These sources
can be databases, APIs, or third-party services. Ingestion methods can
be either batch or streaming.

The transformation stage cleans and enriches the raw data and
structures it for analysis.

The last stage of the data engineering life cycle is serving, where the
processed data is made available to end users or systems through
dashboards, APIs, or reports.



Building a successful data engineering project involves understanding
project requirements, communicating with stakeholders, and delivering
business value.

There are two types of stakeholders you interact with during a data
engineering life cycle: upstream and downstream stakeholders.

Upstream stakeholders are typically responsible for providing the data
that will be processed and analyzed (e.g., software engineers).

Downstream stakeholders are the people or systems that rely on the
processed data after it has been ingested, transformed, and stored (e.g.,
data analysts).

To understand your system requirements, you need to outline your
functional requirements, which is what your system should do, and
your nonfunctional requirements, which is how your system should
behave.

A good way to deliver business value is to understand the why behind
your tasks, engage with your stakeholders to know their pain points,
and most importantly, communicate your impact within the
organization.

The current trends in data engineering involve the use of data mesh
and data lake house approaches, with more focus on data observability
and quality.



CHAPTER 3
Database Fundamentals
In the previous chapter, we touched on storage as a part of the data
engineering life cycle. Now, let’s zoom in on one of the most important
tools in that stage: databases. As a data engineer, you’re going to spend a lot
of time working with databases, designing them and understanding how
they work.

In this chapter, we’ll introduce you to the foundational concepts you need to
start working with databases confidently. You’ll learn what they are, the
different types that exist, and how to interact with them in a real-world
context.

HERE’S WHAT WE’LL COVER:

What databases are and why they matter

The difference between relational and NoSQL databases

Various types of NoSQL databases and their use cases

Primary and foreign key concepts

Interacting with databases using SQL

Applying ACID principles

Choosing the best type of database for your project

Databases are organized collections of data that allow for efficient storage,
retrieval, and management of information. In any digital application or
system, databases are the foundation for storing data, making them essential
in nearly every industry. One of the key strengths of a database is that it
allows data to be structured in a way that supports queries. A query is a
request for information from a database. This ability to query data is what
makes databases powerful for reporting, analysis, and decision-making.

The primary purpose of databases is to efficiently manage large volumes of
data while ensuring that information remains consistent, accessible, and



reliable. Since they provide a structured way to store and retrieve data, it
makes maintaining data integrity easier, especially when multiple users
access or update the data simultaneously, which makes it essential for every
business.

Key Concepts of Databases
There are a few foundational concepts that are common across databases.
No matter the kind of database you’re working with, these concepts show
up often, and understanding them would help you navigate the rest of this
chapter better. They are:

Rows

Columns

Schema

Keys

Rows
A row represents a single record or entry in a database. Think of it as one
complete set of information about a particular item, person, or event. For
example, in a database that stores customer information, one row might
contain the name, email address, phone number, and location of a single
customer, and each row holds a unique set of values.

Columns
A column defines a specific type of information that will be stored across
all rows. You can think of columns as the categories or fields that describe
each record. In the customer example, there might be columns for Name,
Email, Phone Number, and Location, and each column holds the same type
of data for every row in the table.

Schema
A schema is the blueprint or structure of a database. A schema defines how
data is organized, like what fields exist, what type of data is allowed, and



how different parts of the database relate to each other (see Table 3-1). The
schema acts like a set of rules that ensure data is stored in a consistent and
meaningful way.

Table 3-1: A Database Schema

SCHEMA DATA TYPE
CustomerID INT

Name VARCHAR(100)

Email VARCHAR(255)

Phone Number VARCHAR(15)

Keys
A key is a special piece of data used to uniquely identify or connect data
records. For example, a customer ID can be used as a key to make sure each
customer can be uniquely identified, even if some of their other information
(like name) is the same. Keys also help link data across different parts of a
database.

Types of Databases
Databases have come a long way since the early days of computing. At
first, they were simple flat files like basic structures where data was stored
in plain lists or tables, with no way to define relationships between pieces
of information. These systems worked for small, straightforward tasks, but
as the volume and complexity of data grew, they quickly became limiting.

To solve this, relational databases were introduced. Instead of one giant list,
data could now be organized into multiple tables, with relationships defined
between them. This made it easier to manage, query, and scale structured
data. But that innovation didn’t stop there. When the Internet went
mainstream, data started taking on new forms, such as images, videos, and
documents. NoSQL databases were built for that type of flexibility and
scale, capable of handling semi-structured and unstructured data.

In this section, we’ll focus on the two main types of databases: relational
and NoSQL databases. You’ll learn how they differ and about their use



cases.

Relational Databases
Relational databases organize data into structured tables with rows and
columns. If you’ve ever seen a Microsoft Excel sheet, that’s a perfect
example of what a table in a relational database looks like. In a relational
database, we have what we call an entity, and this represents a real-world
object or concept that you want to store information about. Think of a
Student, Customer, or Product—these are all examples of entities. Each
entity is typically modeled as a table in the database and within that table:

Each row in a relational database represents a single instance or record
of the entity—for example, one specific Customer.

Each column represents an attribute, or a piece of information that all
entities in the table share. For example, Customer Name, Email, or
Phone Number).

Every row is one Customer, and the columns store details like Name,
Address, and Phone Number:

CUSTOMER
ID

NAME EMAIL PHONE
NUMBER

1 Daniella Peters daniellap@gmail.com 555-0125
2 Ashley Smith ashley@hotspot.com 801-9902
3 Gabriella

Hudson
gabriella@yahoo.com 567-1001

It’s typical to have more than one table to represent different entities. A
retail store can have separate tables for other entities like Orders, Products,
Shipping, etc. In order to organize, manage, and access these tables
efficiently, you can use a system. A relational database management system
(RDBMS) provides the necessary tools and interface needed to manage
structured data within a relational database. It allows users to store and
retrieve data efficiently. Common examples of RDBMSs include MySQL,
PostgreSQL, Oracle Database, and Microsoft SQL Server.

mailto:daniellap@gmail.com
mailto:ashley@hotspot.com
mailto:gabriella@yahoo.com


Characteristics of Relational Databases
Relational databases are built on a set of features that enable them to handle
data consistency, ensure data integrity, and support complex queries. These
features are:

Primary and foreign keys

Defined relationships between tables

Use of Structured Query Language (SQL)

ACID (Atomicity, Consistency, Isolation, Durability) compliance

Primary Key (PK)
A primary key is a specific column in a relational database table that has a
unique entry for each record. These keys have no duplicates or null values,
and they don’t change over time. A primary key can also be referred to as a
unique identifier for each record in a table, making each row in the table
unique. For instance, a CustomerID in a Customer table might serve as a
primary key, uniquely identifying each customer:

CUSTOMER ID
(PK)

NAME EMAIL PHONE
NUMBER

1 Daniella Peters daniellap@gmail.com 555-0125
2 Ashley Smith ashley@hotspot.com 801-9902
3 Gabriella

Hudson
gabriella@yahoo.com 567-1001

Composite Primary Key
A composite primary key is a primary key that consists of two or more
columns in a database table, rather than just a single column. This
combination of columns is used to uniquely identify each record in the
table. Each column in the composite key can contain duplicate values, but
together, the values in the composite key must be unique for every row in
the table. Let’s look at an example of where composite keys are useful.

Suppose we have a StudentCourses table that tracks which students are
enrolled in which courses. In this case, neither the StudentID nor the

mailto:daniellap@gmail.com
mailto:ashley@hotspot.com
mailto:gabriella@yahoo.com


CourseID alone can uniquely identify a record because a student may enroll
in multiple courses, and a course may have multiple students. We can use a
combination of StudentID and CourseID as a composite primary key.
Together, these two columns uniquely identify each record:

STUDENT ID
(COMPOSITE
PRIMARY KEY)

COURSE ID
(COMPOSITE
PRIMARY KEY)

ENROLLMENT
DATE

1 CS 101 2025-01-01
1 CS 102 2025-01-05
2 CS 101 2025-01-02
2 CS 103 2025-01-07

Foreign Key (FK)
A foreign key is a field in one table that establishes relationships between
tables. For example, an Orders table might include a CustomerID as a
foreign key that references the CustomerID in the Customer table, linking
orders to the specific customers who placed them:

Customer Table

CUSTOMER ID
(PK)

NAME EMAIL PHONE
NUMBER

1 Daniella
Peters

daniellap@gmail.com 123-456-7890

2 Audrey
Smith

audrey@gmail.com 987-654-3210

Orders Table

ORDER ID (PK) CUSTOMER ID (FK) ORDER DATE AMOUNT
101 1 2024-01-01 $200
102 1 2024-01-05 $250
103 2 2024-01-03 $150

mailto:daniellap@gmail.com
mailto:audrey@gmail.com


In this example, the OrderID uniquely identifies each order and
CustomerID in the Orders table refers to CustomerID in the Customer table,
linking the order to the customer who placed it. This linking is necessary
for building relationships between tables.

Relationships
A unique characteristic of relational databases is relationships.
Relationships define how data in one table is linked to data in another table.
Instead of dumping all your data into one giant table, we split it into
separate tables and then link them together using primary keys and foreign
keys.

As discussed earlier, a primary key is the unique ID for each record in a
table and the foreign key is what lets another table point back to it. We will
be looking at different types of relationships like one-to-one, one-to-many,
and many-to-many, later in this chapter.

Structured Query Language (SQL)
SQL (Structured Query Language) is a domain-specific language used to
manage and manipulate data in relational databases. It provides a way to
interact with these databases, allowing users to retrieve, insert, update, and
delete data. Relational databases store data in tables, which are organized
into rows (records) and columns (attributes). SQL is designed to operate
within this tabular structure.

SQL allows users to specify what data they want without needing to detail
how the database should fetch it. The RDBMS handles the underlying
processes, which is efficient for complex queries.

SQL Commands
SQL commands can be broadly categorized into different types, each
serving a specific purpose, as shown in Figure 3-1. To help you understand
these concepts, let’s assume you’re working as a data engineer in a retail
store and you’re in charge of everything happening in the stores database.



Figure 3-1: SQL commands

Data Definition Language (DDL)
Data Definition Language is used to define and manage the structure of
database objects such as tables, indexes, and schemas. Before the store’s
operations can start, you need a structure to store your information. DDL
commands are generally used for setting up or altering the framework of a
database and its objects. These commands are as follows:

CREATE  This command is used to create new database objects like
tables, indexes, and views. In this example, you’ll use this command to
create tables for different entities you have:

     CREATE TABLE TableName (
         ID INT PRIMARY KEY,
         Column1 VARCHAR(50),
         Column2 VARCHAR(50),
         Column3 VARCHAR(100)
     );
     
     #This creates a new table to store customer 
information.
     CREATE TABLE Customer (
         CustomerID INT PRIMARY KEY,
         FirstName VARCHAR(50),
         LastName VARCHAR(50),
         Email VARCHAR(100),
         CreatedDate DATE DEFAULT CURRENT_DATE
     );



ALTER  This command modifies an existing database object. As the
data needs of your project changes, this keyword is useful for adding
new columns:

     ALTER TABLE TableName
     ADD Column4 VARCHAR(15);
     
     #This adds a new column for customer phone numbers 
to an existing table.
     ALTER TABLE Customer
     ADD PhoneNumber VARCHAR(15);

DROP  This command deletes database objects permanently and
should be used with caution:

     DROP TABLE TableName;
     #This deletes the OldRecords table that’s no longer 
needed.
     DROP TABLE OldRecords;

TRUNCATE  This command removes all rows from a table quickly
without deleting the table structure, meaning the table remains
available for future use and also frees up space while keeping the
schema intact.

     TRUNCATE TABLE TableName;
     
     #This removes all data from the Logs table without 
deleting the table structure.
     TRUNCATE TABLE Logs;

Data Manipulation Language (DML)
Now the store opens, and customers start shopping. You need to add new
customer information, update stock levels, and record purchases. Data
Manipulation Language (DML) is used to work with the data within tables,
focusing on the actual records inside the database. DML commands allow
for the retrieval, insertion, updating, and deletion of data. These commands
are as follows:

SELECT  This statement retrieves data from the database. It’s the most
commonly used SQL command, allowing you to specify columns you
need to retrieve and apply conditions:



     SELECT column1, column2, …
     FROM table_name;
     #This retrieve customer names and emails.
     SELECT FirstName, LastName, Email
     FROM Customer;

INSERT This command adds new rows of data to a specific table:

     INSERT INTO TableName (ID, Column1, Column2, 
Column3)
     VALUES (1, 'Value1', 'Value2', 'Value3');
     
     #This adds a new customer to the Customer table.
     INSERT INTO Customer (CustomerID, FirstName, 
LastName, Email)
     VALUES (1, 'John', 'Doe', 'john.doe@example.com');

UPDATE  This command modifies existing data in a table, with
specific conditions:

     UPDATE TableName
     SET Column3 = 'newvalue'
     WHERE ID = 1;
     #This updates a customer's email, where the 
CustomerID is 1
     UPDATE Customer
     SET Email = 'new.email@example.com'
     WHERE CustomerID = 1;
     #This updates the stock once a customer buys an 
item
     UPDATE products
     SET quantity_in_stock = quantity_in_stock - 1
     WHERE product_id = 1;

DELETE  This command removes rows from a table based on
specified conditions:

     DELETE FROM TableName
     WHERE ID = 1;
     
     #This removes a specific customer by ID. 
     DELETE FROM Customer
     WHERE CustomerID = 1;

Data Control Language (DCL)



Not everyone should have full access to the database. You might want the
cashier to only view products and customers, but only the store manager
can update stock levels. Data Control Language (DCL) is used to control
access to data within the database, managing permissions and security.
These commands help ensure that users have the correct level of access to
specific data and database objects. These commands are as follows:

GRANT  This command gives users specific permissions to interact
with database objects:

     -- This allows the cashier to read product and 
customer data
     GRANT SELECT ON products TO cashier;
     GRANT SELECT ON customer TO cashier;

REVOKE  This command removes permissions from users:

     -- This revokes stock update rights from an intern
     REVOKE UPDATE ON products FROM intern;

Transaction Control Language (TCL)
If a customer walks into the store and wants to buy several products in one
order, your system must update the inventory carefully so that you don’t
accidentally reduce stock for some items but not others. Transaction
Control Language (TCL) manages transactions within the database. A
transaction is a sequence of operations executed as a single unit, and TCL
commands help ensure that these operations are handled consistently,
especially in the event of errors or interruptions. These commands are as
follows:

COMMIT  This command saves all changes made in the current
transaction to the database:

     #This query updates the stock for all products both 
and commits the change, BEGIN or BEGIN TRANSACTION is 
used in some SQL dialects to explicitly start a 
transaction.
     BEGIN;
     UPDATE products
     SET quantity_in_stock = quantity_in_stock - 2
     WHERE product_id = 1;  
     



     UPDATE products
     SET quantity_in_stock = quantity_in_stock - 1
     WHERE product_id = 2;  
     COMMIT;

ROLLBACK  This command undoes changes made in the current
transaction if there’s an error:

     #This cancels all changes and ensures inventory 
stays the same
     BEGIN;
     UPDATE products
     SET quantity_in_stock = quantity_in_stock - 2
     WHERE product_id = 1;  
     
     ROLLBACK;  

SAVEPOINT This command sets a save point within a transaction,
allowing partial rollbacks to specific stages. In this query, assuming a
customer buys three products, you update stock for the first two
products successfully and create a savepoint, like a safety checkpoint.
If updating the third product fails due to an error, you can undo just the
last step and keep the first two.

     BEGIN;
     
     UPDATE products
     SET quantity_in_stock = quantity_in_stock - 1
     WHERE product_id = 1;  -- Sold 1 Glow Serum
     
     SAVEPOINT first_two_updated;
     
     UPDATE products
     SET quantity_in_stock = quantity_in_stock - 1
     WHERE product_id = 2; 
     
     -- Error happens here with product_id 3
     
     # Undo last update only
     ROLLBACK TO first_two_updated;  
     
     # Confirm the successful updates
     COMMIT; 

We’ve covered some common SQL commands you’ll use in your day-to-
day work, but in the next chapter, you’ll learn how to write SQL queries



that interact with your database and help you analyze data.

Atomicity, Consistency, Isolation, and Durability (ACID)
Compliance
The retail store you’re working in is having a Black Friday sale and
customers are flooding the site to grab discounted items, with popular items
selling out fast. Two different customers add the last item to their carts and
try to check out at the same time.

Without proper safeguards, both transactions might go through, resulting in
overselling. Worse, one customer might be charged for the product even
though the order fails to complete due to a system glitch. In some cases,
your database might crash midway through a transaction, leaving your
system in an inconsistent and unreliable state. These kinds of problems can
create serious issues, like lost sales and refunds. From a technical
standpoint, they lead to data corruption and a system that’s hard to
maintain.

Relational databases prevent these issues by following ACID compliance, a
set of four properties that ensure data is reliable, consistent, and has
integrity, especially under high pressure or simultaneous activity. ACID
stands for Atomicity, Consistency, Isolation, and Durability.

What Do We Mean by Data Integrity, Reliability, and
Consistency?

Integrity means the data is accurate, complete, and protected from
unauthorized changes. For instance, an order cannot exist without a
valid customer.

Reliability means the data is dependable; if a customer places an order,
they can trust that it will be saved and available when they check back
later.

Consistency means the data remains logically valid throughout the
system. For example, if a customer buys a product, the inventory count
must decrease accordingly.



Let’s take a look at the ACID properties in detail, scenarios where they are
used, and how they can be implemented in a relational database. Figure 3-2
will help you to remember what each of them means.

Figure 3-2: ACID properties

Atomicity
In the context of atomicity, a transaction is an indivisible unit of work. This
means that either all parts of the transaction succeed, or none of them is
applied. If any part of the transaction fails, the entire transaction is rolled
back.



For example, suppose a customer is checking out with items worth $500 in
their cart. During the checkout process, the system needs to perform two
key actions: deduct the items from the inventory and charge the customer’s
payment method. If either of these actions fails, say the payment is
declined, the inventory should not be updated. You don’t want to reduce
stock for an order that was never completed. Atomicity ensures that both
actions must succeed together, or none at all.

Relational databases use transaction logs to record changes made during a
transaction. If a failure occurs, the log ensures a rollback to undo partial
changes. Additionally, as we discussed earlier, database API functions like
BEGIN TRANSACTION, COMMIT, and ROLLBACK ensure that all operations
within a transaction boundary are atomic.

This query ensures that a series of operations are executed as a single,
atomic unit. The transaction begins with BEGIN TRANSACTION, then deducts
three units of a product (with product_id = 101) from the inventory and
inserts a new order into the Orders table. The COMMIT statement ensures that
both actions are permanently saved to the database only if both succeed. If
any part of the transaction fails, perhaps due to a stock mismatch or
payment failure, the database will roll back to its previous state, preventing
partial updates and maintaining data integrity:

BEGIN TRANSACTION;
 
UPDATE inventory 
SET stock = stock - 3 
WHERE product_id = 101;
 
INSERT INTO orders (customer_id, product_id, quantity, 
amount) 
VALUES (42, 101, 3, 500);
 
COMMIT; -- Ensures both inventory updates and order creation 
succeed together



BEGIN TRANSACTION;

UPDATE accounts SET balance = balance - 500 WHERE id = 1; –

Debit

UPDATE accounts SET balance = balance + 500 WHERE id = 2; –

Credit

COMMIT; –- Ensures both operations succeed together

Consistency
In consistency, a transaction should bring the database from one valid state
to another. The database must adhere to defined rules at all times for it to be
consistent. For example, an e-commerce site can enforce a constraint that
the total stock count cannot be negative. If the stock count is 10 and a
customer attempts to purchase 15 items, the transaction should fail because
it violates the consistency rule.

Relational database schemas enforce rules like primary keys, foreign keys,
and unique constraints to maintain consistency. Keywords like CHECK ensure
that data adheres to business rules.

This query creates a products table in a SQL database with three columns:
id, name, and stock. The stock column represents the quantity of the
product in stock and is constrained by a CHECK condition that ensures the
value is never negative. This CHECK constraint enforces data consistency,
guaranteeing that the stock value remains logically valid and aligns with
business rules, preventing invalid entries like negative stock quantities:

CREATE TABLE products (
    id INT PRIMARY KEY,
    name VARCHAR(100),
    stock INT CHECK (stock>= 0) -- Consistency constraint
);

Isolation
Isolation states that transactions that run concurrently should not interfere
with each other. The outcome of a transaction should not depend on another
transaction running simultaneously. For instance, if two users try to book



the last available ticket for a concert, only one transaction succeeds. The
database prevents the other from proceeding by isolating the transactions.

Relational databases support configurable levels using the READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE
keywords to control the extent of isolation between transactions.

In the query, the SET TRANSACTION ISOLATION LEVEL SERIALIZABLE sets
the transaction isolation level to SERIALIZABLE. SERIALIZABLE is the
highest isolation level, which ensures that no other transactions can access
the data being worked on until the current transaction is completed. At this
level, the transaction is fully isolated from others, making it behave as if it
were the only one executing in the system.

The transaction begins with BEGIN TRANSACTION, marking the start of the
process. It first reads the balance of an account using SELECT, and then
deducts 500 from the balance using the UPDATE statement. The isolation
level is set to SERIALIZABLE, which ensures that no other transaction can
read or modify the account’s balance while the transaction is in progress.
Finally, the transaction is committed with COMMIT, making the changes
permanent. This approach guarantees the highest level of data consistency
and integrity, ensuring that the account balance is updated accurately
without interference from other transactions:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN TRANSACTION;
SELECT balance FROM accounts WHERE id = 1;
UPDATE accounts SET balance = balance - 500 WHERE id = 1;
COMMIT;

Durability
Once a transaction is committed, the changes are permanent, even in the
event of a system crash. For instance, if a customer pays for an online order,
and the transaction is committed and the system crashes immediately after
the commit, the payment data remains saved when the system is restored.

Relational databases achieve this using Write-Ahead Logging (WAL),
where changes are first written to a log file on disk before being applied to
the database. This ensures durability even if the system crashes. Databases



also have checkpoints, periodic snapshots of the database state to ensure
quick recovery after a crash.

The following query updates the status of an order to 'paid' within a
transaction. This means the change is applied atomically and changes
persist after a commit, ensuring reliable database behavior.

BEGIN TRANSACTION;
UPDATE orders 
SET status = 'paid' 
WHERE id = 101;
#This keyword ensures the change persists even if the server 
crashes
COMMIT;

NoSQL Databases
Early in my career, I used to think that all databases were structured like
relational databases, with rows and columns. But as I later discovered,
databases can take on many different forms beyond just tables. NoSQL
databases, which means “Not only SQL,” became popular when the
Internet was introduced in the mid-1990s. Data from applications came in
several forms—structured, unstructured, and semi-structured—and schema
definition became nearly impossible. In response to the weakness of
traditional SQL databases, NoSQL databases allowed developers to store
data in an unstructured and more flexible way than standard relational
databases.

The acronym NoSQL was first used in 1998 by Carlo Strozzi when naming
his open source relational database that didn’t use standard SQL. In 2006,
Google introduced a paper on BigTable, a wide-column database that stores
data in columns rather than rows, designed to support massive, distributed
storage systems. Google’s paper highlighted the potential of NoSQL
databases to manage vast amounts of data across distributed servers as a
solution to traditional relational databases, which struggled with scale and
flexibility in certain applications.

Around 2009, people started gaining more interest in NoSQL databases,
and document-oriented databases like MongoDB and CouchDB came
about. They provided a schema-less structure ideal for storing unstructured



and semi-structured data, enabling developers to efficiently manage data
that didn’t consistently fit neatly into rows and columns.

The Agile methodology also gained popularity, and developers started
thinking of ways they could iterate quickly and make changes on the go.
NoSQL databases align well with these demands. Developers could now
update their database schemas on the fly, keeping pace with changing
application needs instead of being locked into a rigid structure.

The rise of cloud computing also fueled NoSQL’s popularity. As developers
used cloud platforms like AWS, Google Cloud, and Microsoft Azure, they
sought database solutions that supported distributed, scalable storage across
multiple servers and regions. NoSQL databases are optimized for these
cloud environments, which help to maintain application resilience and scale
by distributing data across servers.

Key Characteristics of NoSQL Databases
NoSQL databases offer a set of unique features that make them well suited
for handling large-scale data workloads. Unlike relational databases, they
emphasize flexibility, scalability, and high performance over strict
consistency and relationships. In this section, we’ll explore the key
characteristics of NoSQL databases:

Multimodel Support NoSQL databases are multimodel because
they can support different types of data structures, like documents,
key-value pairs, graphs, or columns, all in one database. In a company,
data can come in many forms, and with a NoSQL database, data
engineers can store and retrieve these different data types in one place.
This reduces complexity and makes data management more efficient
since there’s no need to manage multiple databases. Think of a
multimodel database like a Swiss Army knife; rather than using
separate tools for different tasks, a multimodel database lets you
handle various types of data in a single system.

Distributed Architecture A NoSQL database is considered
distributed in nature not simply because it spreads data, but because its
design philosophy and goals prioritize scalability, availability, and
flexibility. It’s important to note that data distribution itself is not
unique to NoSQL; relational databases (RDBMSs) can also distribute



data. However, what sets NoSQL apart is that distribution is a
foundational aspect of its architecture.

Let’s use as an example a social media application used by millions of
people worldwide. If all its data were stored on a single server, that
server could quickly become overloaded, leading to downtime. By
distributing data across multiple servers, the application can better
handle high traffic and maintain uptime.

For data engineers, this distributed setup offers the advantage of
horizontal scalability; they can add more servers as needed instead of
upgrading to more powerful (and often more expensive) hardware.
This approach also helps with balancing workloads and maintaining
fast response times, even under heavy data loads and user demand.

Flexible Schema In traditional databases, like a relational database,
a schema has to be defined ahead of time and is usually fixed.
However, in NoSQL databases, data can be stored without a schema,
making it easier to change the format as needed. A common scenario
in data engineering is working with data from multiple sources and
having their formats change over time. With a flexible schema, data
engineers can quickly adapt to these changes without reworking the
database structure, allowing them to handle evolving data sources.

High Availability NoSQL databases are designed to stay up and
running as much as possible, even if parts of the system fail. They
achieve this by automatically replicating data across several servers. In
a company setting, some applications must be available at all times,
especially customer-facing ones. For data engineers, a high-availability
setup means they don’t have to worry about the database going down if
one server fails. This kind of setup maintains data access without any
interruptions.

Partition Tolerance Partition tolerance ensures that the NoSQL
databases can still operate and work smoothly even if communication
is temporarily lost between some parts (or partitions) or a minor
network issue occurs. Partition tolerance is essential when handling
large, distributed systems; in situations where one part of the system
loses connection, the rest can still function without causing a
disruption.



Fast Development Fast development refers to the ability to quickly
build, modify, and deploy applications. This is important in Agile
environments where businesses need to roll out features rapidly,
respond to market changes, or experiment with new ideas. In
traditional databases, you often need to set up a strict structure
(schema) for data before development. This means planning each
table, field, and relationship, which can slow down the process if
requirements change.

NoSQL databases, however, offer flexible schema designs that allow
developers to store data without predefining the structure. This
flexibility speeds up the process of prototyping, testing, and deploying
new features. For data engineers, fast development with NoSQL
databases means they can quickly adapt to new data sources or
formats, integrate data from various systems, and add new features
without making time-consuming changes to the database schema. This
agility allows them to support fast-paced development teams, making
it easier to keep up with business demands.

Types of NoSQL Databases
There are a variety of databases you can use for NoSQL workloads,
depending on the requirements of the project. The type of NoSQL database
you choose largely depends on your project’s unique needs. In this section,
we’ll examine the primary types of NoSQL databases and explore their
unique features and real-world use cases. The primary types of NoSQL
databases are as follows:

Document Databases Document databases store data in documents,
usually in formats like JSON, XML, or BSON (Binary JSON). In
relational databases, each row in a table must follow the predefined
table schema and columns with specified data types. However,
document databases do not enforce a strict schema. This means that
documents within the same collection can have different fields, data
types, and structures without needing to modify or redefine a schema.
For example, one document in a collection could have fields like name
and age, while another document could have name, age, and address.



Take an e-commerce platform with a variety of products. There are
electronics with a lot of technical specifications, books with authors
and publishers, and even apparel with size options and colors. Instead
of creating multiple tables, each product could be represented as a
document in a collection, with each document containing fields
relevant to that specific product. Documents are grouped into
collections, which roughly resemble tables in relational databases but
are more flexible. In collections, you can have two similar documents
with a relationship, but these documents can have additional fields.

The JSON file represents two products in an e-commerce inventory
system, stored as documents in a document database. Each document
contains key-value pairs, where the key represents the attribute of the
product (e.g., name, price, stock) and the value holds the
corresponding data.

The first document describes a Wireless Mouse with attributes like
price, stock, and features. The second document describes a
Smartphone, including additional attributes such as color and brand,
which are specific to this product. The flexible schema allows each
document to have unique attributes, showcasing the adaptability of
document databases to store and manage diverse product data without
a rigid structure. The unique identifier ("_id") in each document
ensures that each product is easily identifiable and accessible.

       "_id": "product1",
       "name": "Wireless Mouse",
       "category": "Electronics",
       "price": 29.99,
       "stock": 150,
       "features": ["Wireless", "Ergonomic", 
"Rechargeable"]
     }
     
     {
       "_id": "product2",
       "name": "Smartphone",
       "category": "Electronics",
       "price": 599.99,
       "stock": 50,
       "features": ["5G", "OLED Display", "128GB 
Storage"],



       "color": "Black",
       "brand": "BrandX"
     }

Document databases are mostly used when:

You’re working with semi-structured data, like customer profiles,
product catalogs, or IoT sensor data.

You need flexible schemas where each record doesn’t have to
follow a rigid structure.

You want to store complex data with nested arrays or objects, as in
the case of e-commerce, where each product might have unique
specifications.

Document databases can also get cumbersome to manage and query
when the documents become very large, and they are not suited for
transactional operations.

Graph Databases Graph databases store data in nodes and edges,
representing entities and the relationships between them. This structure
is ideal for analyzing connections, because it allows for efficient
queries based on relationships, often better than relational databases
where complex joins are needed for similar queries.

Figure 3-3 shows a graph representation of user relationships in a
social media context, showing follow and unfollow actions between
users. Each circle represents a user node, and the arrows (edges)
represent the relationships between them.

Graph databases are useful when:

You’re working with data that’s highly interconnected, like social
networks, recommendation systems, or fraud detection. For a
social networking site, every user is connected to other users via
"friend" relationships. If you want to find "friends of
friends" or see how two people are indirectly connected, a graph
database efficiently allows these queries by following the edges
(relationships) between nodes (users).



Figure 3-3: Representation of relationships in a graph database for
a social media application

You need to run complex queries on relationships, such as finding
the shortest path between two entities or identifying clusters within
a network.

Graph databases are not optimized for handling large volumes of
unconnected data, so they are less efficient for data without many
relationships. They also have limited vendor support and a smaller
community compared to other NoSQL databases and are somewhat
complex to manage and optimize if you’re unfamiliar with graph
theory.

Key-Value Databases Key-value databases store data as pairs of
keys and values. This is one of the simplest database types, where each
key is unique and used to retrieve its corresponding value. Values can
be anything from simple data types to complex objects, depending on
the database.

In our example, the data represents three distinct entries where each
key is associated with a JSON object as its value. The key
"user:56789" maps to Bob’s user profile, containing his name, age,
and email. The key "product:9876" stores information about a



product, a TechCorp Smartphone priced at $699.99. The key
"session:abc123" holds session-related data, linking it to Bob’s user
ID, along with the session’s expiration timestamp and current status as
"active". Each entry is a simple and independent object, which is
typical in key-value stores that prioritize fast lookups and scalability.

User Profile

     Key: "user:56789"
     Value: {"name": "Bob", "age": 28, "email": 
"bob@example.com"}

Product Information

     Key: "product:9876"
     Value: {"name": "Smartphone", "brand": "TechCorp", 
"price": 699.99}

Session Data

     Key: "session:abc123"
     Value: {"user_id": "user:56789", "expires_at": 
"2024-12-05T12:00:00Z", "status": "active"}

Key-value (KV) databases are useful when:

You need a caching solution, such as temporarily storing frequently
accessed data in memory to reduce load on the primary database
and improve application performance. For example, systems like
Redis are widely used as in-memory KV stores to cache session
data, user preferences, or API responses, enabling applications to
serve repeated requests much more quickly.

You need quick access to data and don’t require complex querying
capabilities.

You’re storing session information, user profiles, shopping carts, or
any other data that can be retrieved by a unique key. For instance,
in an online shopping website where each customer has a shopping
cart, you can assign a unique key (like the customer ID) to each
cart, and the cart’s contents are the value. When the customer adds
or removes items, you only need to update this value, making the
process fast and efficient.



You’re handling data that is transient or frequently changing, as
key-value databases are optimized for speed and low latency.

Key-value databases are optimized for speed and simplicity, but they
come with some limitations. Because data is accessed directly by its
key, they have limited support for advanced querying (reading data
from the database) or combining data, like calculating totals or
averages across many records. Additionally, key-value stores are not
well suited for scenarios that require complex filtering or managing
relationships between different pieces of data. Since each entry is
independent, linking related data across keys can be difficult and may
result in data duplication. These trade-offs make key-value databases
less ideal for applications that require rich querying or relational data
modeling.

Columnar (Column-Family) Databases Columnar databases store
data in columns rather than rows. This allows for highly efficient reads
on specific columns, as data is physically stored in columns, making it
ideal for analytical queries that need to scan large datasets. Since
columnar databases store similar data types together, they achieve high
compression rates and excel at queries that involve aggregates and
large scans over specific columns.

Here’s what a typical column-based storage would look like compared
to a row-based design. In row-based storage, all the values for a single
record are stored together in one row and each row represents a
complete record:

Row-Based Storage

     [1, Alice, 30, 70000], [2, Bob, 45, 90000], [3, 
Carol, 29, 80000]

In contrast, column-based storage groups the same attribute from
multiple records together into columns. Now, all the IDs are stored
together, all the names together, and so on. This design is beneficial for
analytical queries where operations are performed on a single column,
like finding the average salary. Since only the relevant columns need
to be accessed and loaded into memory, it makes processing faster and
more efficient.



Column-Based Storage

     [1, 2, 3], [Alice, Bob, Carol], [30, 45, 29], 
[70000, 90000, 80000]

Columnar databases are useful when:

You’re handling time-series data, logs, or data from IoT devices
where writes are frequent, and reads are for specific columns.

You need high availability and scalability for distributed
applications.

You want fast retrieval of aggregated data for analytics purposes,
since reading columns instead of rows is efficient for large
datasets.

For an application monitoring system, you’re collecting metrics (CPU
usage, memory, response times) from thousands of servers every
second. By storing each metric in its column, it’s easy to pull
aggregated data quickly (like average CPU usage over the past hour)
without reading all the rows.

Columnar databases have some disadvantages, as they are not intuitive
to query for those familiar with traditional relational databases. They
are less suitable for transactions and scenarios requiring high data
consistency, and the schema design for columnar databases can be
complex, since it often requires careful planning to achieve
performance benefits.

Choosing Between Relational and NoSQL
Databases
When starting a project, picking the right database is important. This
section will help you decide when to use a relational database versus a
NoSQL database based on your data and application needs. Let’s break
down the key factors to consider.

Start with Your Data’s Structure



The first thing to consider is your data structure. Ask yourself whether the
data you’re working with is highly structured and consistent. If it is, a
relational database is probably your best bet. These databases use tables
with strict schemas, which is perfect when you know your data types ahead
of time. On the flip side, if your data is more flexible or doesn’t have a
fixed format—say you’re storing JSON documents, user profiles that vary
in fields, or log data—then NoSQL databases give you that freedom.
NoSQL doesn’t enforce rigid schemas, so you can evolve your data model
as your app grows.

Think About the Relationships in Your Data
Relational databases shine when your data has lots of connections, like
users tied to orders, products tied to categories, and so on. That’s because
they’re designed to handle joins efficiently. You can run complex queries
across multiple tables and get exactly the results you want. But if your data
is more self-contained, like storing blog posts, sensor readings, or user
settings, NoSQL might be a better fit. You won’t need to join across tables
because each record often holds everything it needs.

How Fast Do You Need to Move?
Speed matters. So think about whether you’re building a quick minimum
valuable product (MVP) or designing for a long-term system. If you’re
moving fast, especially during prototyping, NoSQL can be less of a
headache. You don’t need to spend time defining tables and enforcing
constraints. You just toss in your documents and go. It’s super helpful when
you’re still figuring out your data model. But if you’re designing a system
meant to scale predictably and last long-term, especially with business-
critical data, relational databases give you integrity, consistency, and years
of battle-tested reliability.

How Do You Need to Query Your Data?
If your team, or future you, needs to write complex, ad hoc queries or do
deep analysis, relational databases win hands down. SQL is super powerful
and standard across platforms, so your queries are readable and portable.
NoSQL, in contrast, often lacks that flexibility. You can still query, but it’s
usually simpler and more limited. Some NoSQL systems require you to



know exactly how you’ll access the data in advance, so you design around
your read/write patterns from day one.

Scaling and Performance
With NoSQL databases, you can scale horizontally. That means you can add
more servers as your app grows, especially when dealing with massive
volumes of traffic and data. Relational databases can grow to handle more
data and users, but usually by making one server more powerful, like
adding more CPU, RAM, or faster disks. This is called vertical scaling.
When many users read data, it’s easier to handle by adding things like read
replicas (copies of the data that handle read requests), so reading scales
better. But when many users need to write or update data, it’s harder to
scale because all those writes have to be carefully managed on the main
server to keep data correct. So relational databases can slow down or reach
limits if write traffic gets too heavy. In summary, if you’re expecting
explosive growth and need to serve millions of users, NoSQL can be a
better choice for scaling.

Transaction and Strong Consistency Needs
If your app needs ACID transactions, like banking apps or anything that
deals with money, relational databases are your best choice. They make sure
that data changes are always valid, even in the face of errors or crashes.
Most NoSQL databases sacrifice some level of consistency for performance
and scalability. You get eventual consistency in many of them, which means
data might take a bit to sync across nodes. That’s fine for something like a
user profile update—but not ideal for transferring $100.

In choosing the right database, it’s not either/or. Many modern systems use
both. You might store transactional data in a relational database and logs in
a NoSQL store. You don’t need to pick one forever. Just make sure you
understand your data, your use case, and how your app will grow, and most
importantly, ask lots of questions!

Summary



Databases are organized collections of data that allow for efficient
storage, retrieval, and management of information. One of the key
strengths of a database is that it allows data to be structured in a way
that supports queries.

There are four concepts common to all databases: rows, columns, keys,
and schemas.

A row represents a single record or entry in a database, a column
defines a specific type of information that will be stored across all
rows, a schema is the blueprint or structure of a database, and a key is
a special piece of data used to uniquely identify or connect data
records.

There are two main types of databases: relational and NoSQL
databases. Relational databases organize data into structured tables
with rows and columns. NoSQL databases allow engineers to store
data in an unstructured and more flexible way than standard relational
databases.

The characteristics of relational databases include primary and foreign
keys, relationships, the use of SQL, and ACID compliance.

A primary key is a specific column in a relational database table that
has a unique entry for each record. A foreign key is a field in one table
that establishes relationships between tables.

Relationships in relational databases define how data in one table is
linked to data in another table.

SQL is a domain-specific language used to manage and manipulate
data in relational databases. Its statements are typically categorized
into four types: DDL (Data Definition Language), DML (Data
Manipulation Language), TCL (Transaction Control Language), and
DCL (Data Control Language).

In ACID compliance, atomicity means a transaction is an indivisible
unit of work, consistency ensures a transaction brings the database
from one valid state to another, isolation states that transactions that
run concurrently should not interfere with each other, and durability
ensures that once a transaction is committed, the changes are
permanent, even in the event of a system crash.



Key characteristics of NoSQL databases include multimodel support,
distributed architecture, high availability, flexible schema, and fast
deployment.

Various types of NoSQL databases include document databases, graph
databases, key-value databases, and columnar (Column-Family)
databases.



CHAPTER 4
SQL Fundamentals
In the previous chapter, you learned about the foundations of databases, what they are and how they’re structured.
Now it’s time to explore SQL, the language used to communicate with relational databases. As a data engineer,
you’ll find that SQL will become one of your most-used tools. Whether you’re extracting insights, transforming
data, or building pipelines, you’ll need to write queries. In this chapter, we’re going to walk you through SQL
fundamentals and look at simple code examples. By the end of this chapter, you’ll be able to analyze data and
apply what you’ve learned using a database management system.

HERE’S WHAT WE’LL COVER:

What SQL is and why it’s important

Basic SELECT queries

Filtering using the WHERE statement and logical operators

Using JOINs to combine data

Aggregating data with GROUP BY and functions

Writing subqueries and using window functions

Setting up SQL Server and running queries

Best practices for writing clean and efficient SQL

Introduction to SQL
SQL is a programming language used to communicate with and manage data stored in relational databases. Think
of it as a tool used to ask questions and give instructions to a database. To maintain clarity and consistency
throughout this chapter, we’ll rely on two tables for most of our examples: a Customer table that stores customer
information and an Orders table that stores all orders and the total amount for the store.

Customer Table

CUSTOMER_ID CUSTOMER_NAME STATUS
1 Ada Herbert Gold
2 Grace Turing Gold
3 Alan Hopper Bronze
4 Margaret Bill Silver

Orders Table

ORDER_ID CUSTOMER_ID TOTAL_AMOUNT SHIPPING_COUNTRY PAYMENT_METHOD ORDER
101 1 200.0 USA Credit 2025-01
102 1 100.0 UK Credit 2025-02
103 2 400.0 USA Coupon 2025-01
104 5 150.0 Canada Credit NULL

Basic SQL Clauses
Let’s begin with the most common and essential SQL commands, the SELECT statement, the AS statement, and the
WHERE statement. The SQL queries in this chapter are written using standard SQL syntax. If you’re using another
database system like PostgreSQL, you may need to make slight adjustments based on dialect differences.

SELECT Statement



The SELECT statement is used to retrieve data from a table. You can either list specific columns you want to see or
use * to select all columns. The syntax for SELECT is as follows:

SELECT column1, column2, …
FROM table_name;

This query gets all orders from the Orders table:

SELECT * FROM orders;

ORDER_ID CUSTOMER_ID TOTAL_AMOUNT SHIPPING_COUNTRY PAYMENT_METHOD SHIPPE
101 1 200.0 USA Credit 2025-01
102 1 100.0 UK Credit 2025-02
103 2 400.0 USA Coupon 2025-01
104 5 150.0 Canada Credit NULL

This query gets only order_id and total_amount:

SELECT order_id, total_amount
FROM orders;

ORDER_ID TOTAL_AMOUNT
101 200.0
102 100.0
103 400.0
104 150.0

AS Statement
The AS statement is used to give a temporary name (alias) to a column or table, making the output easier to read or
shortening long names.

SELECT column_name AS alias_name
FROM table_name;

This query displays the total_amount as amount_paid:

SELECT order_id, total_amount AS amount_paid
FROM orders;

ORDER_ID AMOUNT_PAID
101 200.0
102 100.0
103 400.0
104 150.0

WHERE Statement
The WHERE statement filters rows that meet a certain condition. It helps you retrieve only the data you need.

SELECT column1, column2
FROM table_name
WHERE condition;

This query gets all orders with a total amount greater than 100:

SELECT order_id, total_amount
FROM orders
WHERE total_amount> 100;

ORDER_ID TOTAL_AMOUNT
101 200.0
103 400.0



ORDER_ID TOTAL_AMOUNT
104 150.0

This query gets all orders shipped to the United States:

SELECT order_id, shipping_country
FROM orders
WHERE shipping_country = 'USA';

ORDER_ID SHIPPING_COUNTRY
101 USA
103 USA

Comparison Operators
Comparison operators are used in the WHERE clause to build conditions that filter rows. They allow comparisons,
check for values in a set, or match patterns.

DESCRIPTION OPERATOR
Equal to =

Not equal to <> or !=

Greater than >

Less than <

Greater than or equal to >=

Less than or equal to <=

This query finds orders where the total amount is not equal to 200:

SELECT order_id, total_amount
FROM orders
WHERE total_amount != 200;

ORDER_ID TOTAL_AMOUNT
102 100.0
103 400.0
104 150.0

LIKE Statement
The LIKE operator in SQL is used to search for a specified pattern in a column, often with text data. It’s commonly
used in WHERE clauses to filter rows based on partial matches.

The LIKE operator works with two special wildcard characters: the percent sign (%) and the underscore (_). The %
matches zero or more characters, and the _ matches exactly one character.

This query finds all orders paid with a method that starts with credit:

SELECT order_id, customer_id, shipping_country, payment_method
FROM orders
WHERE payment_method LIKE 'Credit%';

ORDER_ID CUSTOMER_ID SHIPPING_COUNTRY PAYMENT_METHOD
101 1 USA Credit
102 1 UK Credit
104 5 Canada Credit

This query finds payment methods with Pay in the middle:

SELECT DISTINCT payment_method
FROM orders



WHERE payment_method LIKE '%Pay%';

This query matches names with exactly three letters where the second and third letters are da:

SELECT * FROM customers
WHERE name LIKE '_da';

CUSTOMER_ID CUSTOMER_NAME
1 Ada Herbert

IN Statement
The IN statement is used when you want to match a value against a list of values. It’s cleaner than writing a bunch
of OR conditions.

This query finds customers that are either Gold or Bronze:

SELECT customer_id, customer_name, status
FROM customer
WHERE status IN (Gold, Bronze);

CUSTOMER_ID CUSTOMER_NAME STATUS
1 Ada Herbert Gold
2 Grace Turing Gold
3 Alan Hopper Bronze

This is the same as writing this:

SELECT order_id, status
FROM orders
WHERE status = 'Shipped' OR status = 'Pending' OR status = 'Delivered'

BETWEEN Statement
BETWEEN is used to filter values within a range, and it’s inclusive of both ends. This statement is helpful when you
want to get a specific range of values, especially dates.

This query finds orders with a total amount between $100 and $300:

SELECT order_id, customer_id, total_amount
FROM orders
WHERE total_amount BETWEEN 100 AND 300;

ORDER_ID CUSTOMER_ID TOTAL_AMOUNT
101 1 200.0
102 1 100.0
104 5 150.0

This query gets all orders placed between January 1 and January 31, 2025:

SELECT order_id, total_amount, order_date
FROM orders
WHERE shipped_date BETWEEN '2025-01-01' AND '2025-01-31';

ORDER_ID TOTAL_AMOUNT SHIPPED_DATE
101 200.0 2025-01-02
103 400.0 2025-01-30

Logical Operators
Logical operators in SQL are used to combine multiple conditions in a WHERE clause and return rows based on
whether those conditions evaluate to TRUE, FALSE, or UNKNOWN.

AND Statement
The AND statement combines two conditions and returns TRUE only if both conditions are true.



This query returns credit orders that were made in the United States:

SELECT * FROM orders
WHERE payment_method = 'Credit' AND shipping_country = 'USA';

ORDER_ID CUSTOMER_ID TOTAL_AMOUNT SHIPPING_COUNTRY PAYMENT_METHOD SHIPPE
101 1 200.0 USA Credit 2025-01

OR Statement
The OR statement combines two conditions and returns TRUE if at least one condition is true.

This query returns orders from either the United States or Canada:

SELECT * FROM orders
WHERE shipping_country = 'USA' OR shipping_country = 'Canada';

ORDER_ID CUSTOMER_ID TOTAL_AMOUNT SHIPPING_COUNTRY PAYMENT_METHOD SHIPPE
101 1 200.0 USA Credit 2025-01
103 2 400.0 USA Coupon 2025-01
104 5 150.0 Canada Credit NULL

NOT Statement
The NOT statement is used to negate a condition. It returns the opposite of the condition it’s applied to.

This query returns a list of all employees who are not in the HR department:

SELECT * FROM orders
WHERE NOT payment_method = 'Credit';

ORDER_ID CUSTOMER_ID TOTAL_AMOUNT SHIPPING_COUNTRY PAYMENT_METHOD SHIPPE
103 2 400.0 USA Coupon 2025-01

IS NULL and IS NOT NULL Statements
In SQL, NULL means a value is missing or not recorded. IS NULL and IS NOT NULL help us filter for missing values
accordingly.

This query helps us find all orders that haven’t been shipped yet, and we can do this by checking records that have
a shipped_date of NULL:

SELECT order_id, shipped_date
FROM orders
WHERE shipped_date IS NULL;

ORDER_ID CUSTOMER_ID TOTAL_AMOUNT SHIPPING_COUNTRY PAYMENT_METHOD SHIPPE
104 5 150.0 Canada Credit NULL

This query finds all orders that have been shipped, using IS NOT NULL:

SELECT order_id, shipped_date
FROM orders
WHERE shipped_date IS NOT NULL;

ORDER_ID CUSTOMER_ID TOTAL_AMOUNT SHIPPING_COUNTRY PAYMENT_METHOD SHIPPE
101 1 200.0 USA Credit 2025-01
102 1 100.0 UK Credit 2025-02
103 2 400.0 USA Coupon 2025-01

Sorting and Limiting
These clauses help organize and reduce the data returned by your queries, especially when dealing with large
datasets. To achieve this, we can use the ORDER BY, LIMIT, or TOP statement.



ORDER BY
This is used to sort query results by one or more columns. You can sort in ascending (ASC, which is the default) or
descending (DESC) order.

SELECT column1, column2
FROM table_name
ORDER BY column1 [ASC|DESC];

This query sorts orders by total_amount in ascending order, and this puts the lowest amount on the first row:

SELECT order_id, total_amount
FROM orders
ORDER BY total_amount ASC;

ORDER_ID TOTAL_AMOUNT
102 100.0
104 150.0
101 200.0
103 400.0

This query sorts by shipped_date in descending order to get the most recent order that was shipped:

SELECT order_id, shipped_date
FROM orders
ORDER BY shipped_date DESC;

ORDER_ID SHIPPED_DATE
102 2025-02-15
103 2025-01-30
101 2025-01-02
104 NULL

LIMIT or TOP
These clauses restrict the number of rows returned in a result set. The syntax differs slightly depending on the
database.

This query returns the first two highest orders:

SELECT order_id, total_amount
FROM orders
ORDER BY total_amount DESC
TOP 2;

ORDER_ID TOTAL_AMOUNT
103 400.0
101 200.0

Aggregate Functions
Aggregate functions perform calculations on a set (group) of rows and return a single value. They’re commonly
used in reports, summaries, and dashboards.

COUNT

AVG

SUM

MIN & MAX

COUNT()
This returns the number of rows that match a particular condition or returns the count of all the rows using (*).



This query counts the total number of orders:

SELECT COUNT(*) AS number_of_orders
FROM orders;

NUMBER_OF_ORDERS
4

SUM()
The SUM statement returns the total (sum) of a numeric column.

This query gets the total revenue from the Orders table:

SELECT SUM(total_amount) AS total_revenue
FROM orders;

TOTAL_REVENUE
850.0

AVG()
The AVG() statement returns the average value of a numeric column.

This query calculates the average order value from the Orders table:

SELECT AVG(total_amount) AS average_order_value
FROM orders;

AVG_ORDER_VALUE
212.5

MAX() and MIN()
MAX() returns the highest value and MIN() returns the lowest value in a column.

This code returns the highest order value:

SELECT MAX(total_amount) AS highest_order
FROM orders;

HIGHEST_ORDER
850.0

This code returns the earliest order date:

SELECT MIN(order_date) AS first_order_date
FROM orders;

EARLIEST_ORDER
850.0

GROUP BY
Use the Group By statement when you want to group rows that have the same values in specified columns so that
you can apply an aggregate function like SUM, COUNT, or AVG. It’s like saying, “Group this data by customer, or
country, or status, and give me totals or averages for each group.”

This code counts the number of orders per shipping country:

SELECT shipping_country, COUNT(*) AS order_count
FROM orders
GROUP BY shipping_country;

SHIPPING_COUNTRY ORDER_COUNT
USA 2
UK 1



SHIPPING_COUNTRY ORDER_COUNT
Canada 1

This query calculates the total revenue per customer:

SELECT customer_id, SUM(total_amount) AS total_spent
FROM orders
GROUP BY customer_id;

CUSTOMER_ID TOTAL_SPENT
1 300
2 400
5 150

To avoid errors, always note that every column in the SELECT clause that isn’t part of an aggregate function must be
included in the GROUP BY clause.

HAVING
The HAVING clause works like the WHERE clause, but it’s used after data has been grouped. While WHERE filters
individual rows before grouping, HAVING filters entire groups based on aggregate functions like SUM(), COUNT(), or
AVG(). Since aggregate functions aren’t allowed in WHERE, we use HAVING instead.

This code shows only countries with more than five orders:

SELECT shipping_country, COUNT(*) AS order_count
FROM orders
GROUP BY shipping_country
HAVING COUNT(*)> 5;

SHIPPING_COUNTRY ORDER_COUNT
USA 6

This code shows customers who spent over $200 total:

SELECT customer_id, SUM(total_amount) AS total_spent
FROM orders
GROUP BY customer_id
HAVING SUM(total_amount)> 200;

CUSTOMER_ID TOTAL_SPENT
1 300
2 400

In summary, use GROUP BY to group rows by a category and use HAVING to filter those grouped results based on
aggregated values.

Understanding Joins
Imagine your company has two tables, one called Orders, which shows information about each order, and another
called Customers, which stores customer details, and you need to find the name of the customer who placed order
#1005. You would need to combine data from both tables to get this data, and that’s where joins come in.

Customers Table

CUSTOMER_ID CUSTOMER_NAME STATUS
1 Ada Herbert Gold
2 Grace Turing Gold
3 Alan Hopper Bronze
4 Margaret Bill Silver

Orders Table



ORDER_ID CUSTOMER_ID TOTAL_AMOUNT SHIPPING_COUNTRY PAYMENT_METHOD ORDER
101 1 200.0 USA Credit 2025-01
102 1 100.0 UK Credit 2025-02
103 2 400.0 USA Coupon 2025-01
104 5 150.0 Canada Credit NULL

A join in SQL lets you pull information from two or more tables based on a related column between them. Using a
join, you can match rows from one table to rows in another table where a shared column (usually an ID) lines up.
Let’s walk through the four main types of joins using a simple example.

INNER JOIN
An INNER JOIN is the most common type of join. It returns only the rows where there’s a match in both tables. In
Figure 4-1, the shaded area in the middle represents the matching rows, which are records that exist in both tables
based on a common column. To get all orders that have a valid customer, using the Customers and Orders table,
you’d write this query:

SELECT
    orders.order_id,
    customers.customer_name,
    orders.total_amount
FROM orders
INNER JOIN customers
    ON orders.customer_id = customers.customer_id;

Figure 4-1: Inner join

Now, only customers who have matching orders would appear in the output. Alan and Margaret don’t appear, and
Order #104 is also excluded because customer 5 doesn’t exist.

CUSTOMER_NAME ORDER_ID TOTAL_AMOUNT
Ada Herbert 101 250.00
Ada Herbert 102 100.00
Grace Turing 103 400.00

LEFT JOIN
In Figure 4-2, a LEFT JOIN returns all rows from the first (left) table and the matchedrows from the second (right)
table. If there’s no match, the result will show NULL for the missing pieces.



Figure 4-2: LEFT JOIN

A LEFT JOIN is useful when data might be missing in the second table but you still want to keep everything from
the first. We use a LEFT JOIN when we want to retrieve a complete list of all customers, including those who
haven’t placed any orders yet.

SELECT
    customers.customer_id,
    customers.customer_name,
    orders.order_id,
    orders.total_amount
FROM customers
LEFT JOIN orders
    ON customers.customer_id = orders.customer_id;

CUSTOMER_ID CUSTOMER_NAME ORDER_ID TOTAL_AMOUNT
1 Ada Herbert 101 250.00
1 Ada Herbert 102 100.00
2 Grace Turing 103 400.00
3 Alan Hopper NULL NULL
4 Margaret Bill NULL NULL

Customers like Alan and Margaret haven’t made any purchases yet, so their order_id and total_amount appear as
NULL. Now we can identify inactive customers who’ve signed up but never placed an order and even target
marketing campaigns to them.

RIGHT JOIN
A RIGHT JOIN is the opposite of a LEFT JOIN. As shown in Figure 4-3, a RIGHT JOIN gives you all the rows from
the second (right) table, and the matching rows from the first (left) table.



Figure 4-3: RIGHT JOIN

Imagine you’re working on cleaning up historical sales data. Due to a migration from an old system, some orders
exist without a matching customer profile; maybe the customer data was lost or never recorded properly. Now, you
will want to list all orders, including those where the customer details are missing, so the data team can investigate
or clean it up. This is where a RIGHT JOIN comes in handy; it ensures all records from the Orders table are
included, even if there’s no match in the customers table.

SELECT
    customers.customer_name,
    orders.order_id,
    orders.total_amount
FROM customers
RIGHT JOIN orders
    ON customers.customer_id = orders.customer_id;

CUSTOMER_ID CUSTOMER_NAME ORDER_ID TOTAL_AMOUNT
1 Ada Herbert 101 250.00
1 Ada Herbert 102 100.00
2 Grace Turing 103 400.00
NULL NULL 104 150.00

Order 104 was placed without matching order records, possibly due to the migration. RIGHT JOINs are not used as
often, but they’re a good choice if your focus is on the second table.

FULL OUTER JOIN
A FULL OUTER JOIN returns all rows from both tables, as seen in Figure 4-4. If there’s no match, you’ll see NULL
for the missing pieces on either side.



Figure 4-4: FULL OUTER JOIN

Using our tables, you might be tasked with generating a comprehensive report that shows all customers and all
orders, even if they don’t line up, so the team can identify data mismatches and clean things up.

SELECT
    customers.customer_name,
    orders.order_id,
    orders.total_amount
FROM customers
FULL OUTER JOIN orders
    ON customers.customer_id = orders.customer_id;

CUSTOMER_NAME ORDER_ID TOTAL_AMOUNT
Ada Herbert 101 250.00
Ada Herbert 102 100.00
Grace Turing 103 400.00
Alan Hopper NULL NULL
Margaret Bill NULL NULL
NULL 104 150.00

Subqueries
Let’s say you want to find the customer with the highest order total. You can’t answer this directly with just one
simple query, because first, you need to find the highest order total, then use that value to find the customer who
made it.

This is when we use a subquery. A subquery is a query inside another query. It’s useful when you need to retrieve
an intermediate result, like the maximum value, a filtered list, or a calculated metric, then use that result in your
main query to drive further analysis. Let’s use a subquery to figure out our problem.

This query finds customers with the highest order total:

SELECT
    customers.customer_name,
    orders.order_id,
    orders.total_amount
FROM orders
JOIN customers
    ON orders.customer_id = customers.customer_id
WHERE orders.total_amount = (
    SELECT MAX(total_amount)
    FROM orders
);
 



CUSTOMER_NAME ORDER_ID TOTAL_AMOUNTCUSTOMER_NAME ORDER_ID TOTAL_AMOUNT
Grace Turing 103 400

The subquery (inner query) finds the highest total_amount across all orders. The WHERE clause filters the results to
show only the order(s) that match the highest total found in the subquery.

Common Table Expressions (CTEs)
A subquery is a query nested inside another query. It’s great for quick, one-off filters or calculations but can get
hard to read if complex or repeated. To solve this, we use a common table expression (CTE), which is a named
temporary result set defined at the start of your query using WITH. It makes your SQL easier to read, debug, and
maintain, especially when you reuse the same logic multiple times or build multistep queries.

The syntax for the subquery looks like this:

WITH cte_name AS (
    -- Your inner query here
)
SELECT * FROM cte_name;

Let’s calculate the average order amount, using a subquery versus a CTE. Using a subquery, we calculated the
average order amount twice on both queries:

SELECT *
FROM orders
WHERE total_amount> (
    SELECT AVG(total_amount) FROM orders
);
 
SELECT COUNT(*)
FROM orders
WHERE total_amount> (
    SELECT AVG(total_amount) FROM orders
);

Using a CTE means you write that logic once and refer to it by name, rather than nesting subqueries repeatedly.

WITH avg_order AS (
    SELECT AVG(total_amount) AS average_amount
    FROM orders
)

AVERAGE_AMOUNT
212.5

This query gets the order that is greater than or equal to the average amount of all orders:

SELECT *
FROM orders, avg_order
WHERE orders.total_amount>= avg_order.average_amount;

ORDER_ID CUSTOMER_ID TOTAL_AMOUNT SHIPPING_COUNTRY PAYMENT_METHOD ORDER
103 2 400.0 USA Coupon 2025-01

This query gets the number of records that have total amounts greater than or equal to the average amount of all
orders:

SELECT COUNT(*)
FROM orders, avg_order
WHERE orders.total_amount> avg_order.average_amount;

COUNT
1

Set Operations
Set operators are SQL commands that let you combine results from two or more queries into a single result set by
treating those results like mathematical sets. They are UNION, INTERSECT, and EXCEPT.



Set operations are helpful when you want to merge data from different queries or tables, to find commonalities or
differences between datasets, or to simplify complex queries that involve multiple result sets.

An important thing to note before using set operations is that the combined queries must have the same number of
columns and the columns must be of compatible data types. The order of columns also matters because the set
operator compares rows positionally. Let’s explore each of them with examples.

UNION
UNION combines the results of two queries into a single result set, removes duplicate rows by default, and returns
all distinct rows that appear in either query. This query gets a list of all customers who have either placed an order
or are listed in the Customers table, excluding duplicates:

SELECT customer_id FROM customers
UNION
SELECT customer_id FROM orders;

CUSTOMER_ID
1
2
3
4
5

UNION ALL
UNION ALL in SQL is used to combine the results of two or more SELECT statements into a single result set. Unlike
UNION (which removes duplicates), UNION ALL returns every row, even if some are exact duplicates, which makes it
faster than UNION because it doesn’t sort or check for duplicates. This query gets a list of all customers who have
either placed an order or are listed in the Customers table, including duplicates:

SELECT customer_id FROM customers
UNION ALL
SELECT customer_id FROM orders;

CUSTOMER_ID
1
2
3
4
1
1
2
5

INTERSECT
INTERSECT returns only the rows that appear in both queries and also removes duplicates. Let’s find customers who
have placed orders:

SELECT customer_id FROM customers
INTERSECT
SELECT customer_id FROM orders;

CUSTOMER_ID
1
2

EXCEPT



EXCEPT returns rows from the first query that do not appear in the second query. This query finds customers who
exist in the Customers table but who have never placed an order:

SELECT customer_id FROM customers
EXCEPT
SELECT customer_id FROM orders;

CUSTOMER_ID
3
4

Window Functions
Window functions in SQL perform calculations across a set of rows related to the current row. It does this without
collapsing rows like GROUP BY does. There are several types of window functions:

Ranking functions

Aggregate functions

Value functions

Ranking Functions
These functions assign a position or order to each row within a group. You can use rank functions to answer
questions like these:

Who are the top three performers in each department?

What is the rank of each product based on sales within a region?

In SQL, there are three types of ranking functions:

ROW_NUMBER()

RANK()

DENSE_RANK()

ROW_NUMBER()
Let’s use an employee table with employees, their region, and respective sales.

EMPLOYEE REGION SALES
David West 900
Eve West 800
Frank West 800
Grace West 700
Bob East 600
Alice East 500
Charlie East 500
Hannah East 400

Using this query, the ROW_NUMBER statement assigns a unique row number to each row within a specific group,
based on a defined order:

SELECT
  employee, region, sales,
  ROW_NUMBER() OVER (PARTITION BY region ORDER BY sales DESC) AS row_num
FROM sales;

Let’s explain the various parts of this statement:



ROW_NUMBER() OVER (PARTITION BY region ORDER BY sales DESC) AS row_num

OVER()  Defines the window of rows the function operates on.

PARTITION BY  Resets the row numbering for each region. So, employees in different regions will have
separate sequences starting with 1.

ORDER BY  Sorts the rows in each partition by sales in descending order. The highest sales get row_num = 1.

EMPLOYEE REGION SALES ROW_NUM
David West 900 1
Eve West 800 2
Frank West 800 3
Grace West 700 4
Bob East 600 1
Alice East 500 2
Charlie East 500 3
Hannah East 400 4

RANK()
RANK() assigns the same rank to tied rows and skips ranks after a tie; that is, if two people tie for rank 2, the next
rank will be 4. This is important when you want to reflect actual competition rankings where ties affect positions.

A good example is a sports competition or tournament, where if two players tie for second place, no one is ranked
third; the next competitor is fourth. This approach helps maintain fairness and accurately represents the standings
when multiple participants achieve the same score or result.

SELECT
  employee, region, sales,
  RANK() OVER (PARTITION BY region ORDER BY sales DESC) AS rank
FROM sales;

EMPLOYEE REGION SALES RANK
David West 900 1
Eve West 800 2
Frank West 800 2
Grace West 700 4
Bob East 600 1
Alice East 500 2
Charlie East 500 2
Hannah East 400 4

This preserves the idea that those tied share the second-place position, and the next place is effectively the fourth
position.

DENSE_RANK()
DENSE_RANK assigns a ranking number to rows within a partition, based on the specified order, without skipping
ranks when there are ties. It’s useful when you want to avoid gaps in your ranking sequence, and it also keeps the
ranking continuous, even with ties.

EMPLOYEE REGION SALES DENSE_RANK
David West 900 1
Eve West 800 2
Frank West 800 2
Grace West 700 3



EMPLOYEE REGION SALES DENSE_RANK
Bob East 600 1
Alice East 500 2
Charlie East 500 2
Hannah East 400 3

Aggregate Functions
We discussed aggregate functions like SUM(), AVG(), MIN(), MAX(), and COUNT() earlier, but when used in a
window function, they operate across a set of rows (a window). Instead of returning one row per group, they return
a value for every row, while still considering the group. This function is useful when you want to compare each
row to a group total or average while still keeping the full row detail.

EMPLOYEE REGION SALES
David West 900
Eve West 800
Frank West 800
Grace West 700
Bob East 600
Alice East 500
Charlie East 500
Hannah East 400

SELECT
     employee, region, sales,
     DENSE_RANK() OVER (PARTITION BY region ORDER BY sales DESC) AS rank FROM sales;

EMPLOYEE REGION SALES TOTAL_SALES_REGION AVG_SALES_REGION
David West 900 3,200 800
Eve West 800 3,200 800
Frank West 800 3,200 800
Grace West 700 3,200 800
Bob East 600 2,000 500
Alice East 500 2,000 500
Charlie East 500 2,000 500
Hannah East 400 2,000 500

Here, total_sales_region is the sum of sales within each region, and avg_sales_region is the average sales
within each region. We can use this approach to easily compare each employee’s sales with the average sales
amount in the region.

Value Functions
Value functions return values from other rows in the result set without collapsing rows. These functions allow you
to compare current rows with previous/next rows or to compute running totals, differences, and trends, all while
preserving every row. Common value functions include LAG() and LEAD(), which are useful for analyzing
sequential data or tracking changes over time.

LAG()
The LAG() function is used to access data from a previous row in the same result set without using a self-join. This
function is particularly useful when comparing a current row with its previous one, like checking how sales
changed compared to the previous month. You can specify how many rows behind to look (the default is 1), and
even a default value if the previous row doesn’t exist.



Let’s introduce a month column into the table.

ID MONTH SALES
1 Jan 1,000
2 Feb 1,200
3 Mar 1,100

SELECT
  month,
  sales,
  LAG(sales) OVER (ORDER BY month) AS prev_month_sales
FROM sales;

Here, LAG() has gotten the previous month’s sales value for easy comparison.

ID MONTH SALES PREV_MONTH_SALES
1 Jan 1,000 NULL
2 Feb 1,200 1,000
3 Mar 1,100 1,200

LEAD()
The LEAD() function retrieves data from a future row in the result set. This function is useful when you want to
compare current values with upcoming ones, such as when you’re forecasting or analyzing trends between current
and next entries.

SELECT
  month,
  sales,
  LEAD(sales) OVER (ORDER BY month) AS next_month_sales
FROM sales;

ID MONTH SALES NEXT_MONTH_SALES
1 Jan 1,000 1,200
2 Feb 1,200 1,100
3 Mar 1,100 NULL

Lab: Setting Up SQL Server and Running SQL Queries
In this lab, you’ll be creating the tables we used in this chapter from scratch in MySQL Server Studio and running
your queries directly on the server. This hands-on approach will give you a clear understanding of what it’s like to
build tables and perform analysis on them. Let’s begin.

Step 1: Download and Install SQL Server

1. Go to the official Microsoft SQL Server download page at www.microsoft.com/en-us/sql-
server/sql-server-downloads

2. Under Express Edition (Free), click Download Now (or choose Developer Edition for full features; free
for nonproduction use).

3. Run the installer and follow these steps:

a. Choose Basic installation for simplicity.

b. Accept the license terms.

c. Wait for the installation to complete.

Step 2: Download and Install SQL Server Management Studio (SSMS)

1. Go to https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-
ssms.

https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms


2. Download the latest SSMS installer.

3. Run the installer and follow the instructions to install.

Step 3: Connect to Your SQL Server Instance

1. Open SQL Server Management Studio (SSMS).

2. In the Connect To Server window, specify the following:

a. Server type: Database Engine

b. Server name: localhost or .\SQLEXPRESS (for Express edition)

c. Authentication: Windows Authentication (or SQL Server Authentication if you created a login)

3. Click Connect.

Step 4: Create Database

1. Right-click Database, and create a new database called RetailStoreDB.

2. Double-click RetailStoreDB and create a new table.

Step 5: Create Tables

1. On the blank document, enter this code to create the Customer table and then click Run:

     CREATE TABLE Customer (
       customer_id INT PRIMARY KEY,
       customer_name VARCHAR(100),
       status VARCHAR(20)
     );

2. In the left panel, you should see dbo.Customer, confirming that your table now exists.

3. Clear the editor, enter the following command for the Orders table, and click Run.

     CREATE TABLE Orders (
           order_id INT PRIMARY KEY,
          customer_id INT,
          total_amount DECIMAL(10, 2),
                shipping_country VARCHAR(50),
           payment_method VARCHAR(20),
          order_date DATE,
           FOREIGN KEY (customer_id) REFERENCES Customer(customer_id)
     );

Step 6: Insert Data into Tables

1. Clear your editor and enter this code to insert data into your Customer table:

     INSERT INTO Customer (customer_id, customer_name, status) VALUES
     (1, 'Ada Herbert', 'Gold'),
     (2, 'Grace Turing', 'Gold'),
     (3, 'Alan Hopper', 'Bronze'),
     (4, 'Margaret Bill', 'Silver');

2. Click Run.

3. Run this code to confirm your data has been inserted:

     SELECT *
     FROM Customers

4. Clear the editor and enter the following code to populate your Orders table:

     INSERT INTO Orders (order_id, customer_id, total_amount, shipping_country, 
payment_method, order_date) VALUES
     (101, 1, 200.00, 'USA', 'Credit', '2025-01-02'),
     (102, 1, 100.00, 'UK', 'Credit', '2025-02-15'),
     (103, 2, 400.00, 'USA', 'Coupon', '2025-01-30'),
     (104, 5, 150.00, 'Canada', 'Credit', NULL);

5. Run this code to verify that your tables were created correctly and your data was inserted as expected:



     SELECT *
     FROM Orders

Step 7: Practice SQL Queries

Now that you’ve created your tables and inserted the data, go ahead and run the queries from this lesson to
deepen your understanding. All the code from this chapter is available in this GitHub repository:
https://github.com/Sommie09/sql-chapter-examples. Try out SELECT, WHERE, JOIN, and GROUP BY
clauses to explore different patterns and gain familiarity with result sets.

Best Practices for Writing Efficient SQL Queries
You’re going to be writing a lot of SQL queries during your day-to-day, and the way you write those queries can
make or break the performance. Writing efficient SQL isn’t just about getting correct results; it’s about getting
them fast, with minimal strain on your database. Your goal is to make queries readable, maintainable, and
optimized for scale. In this section, we’ll explore best practices that help you write SQL that’s both clean and high-
performing so that your pipelines run smoothly.

Write Clear Queries  Clarity is key in SQL, especially when working in teams or returning to your code
later. Stick to consistent formatting, capitalize SQL keywords, and indent. Always use descriptive names for
tables and columns, and avoid ambiguous or overly abbreviated aliases. Doing so makes your queries easier
to read and maintain, especially as complexity grows.

Avoid SELECT * Using SELECT * pulls in unnecessary data, which can hurt the performance of your queries
and make them less explicit. Always select only the columns you need. This not only improves performance
by reducing I/O and memory usage, but it also makes the intent of your query clearer to others.

Filter and Limit Early  When possible, reduce the dataset as early as you can in the query. Applying filters
before joins or aggregations reduces the number of rows being processed, which improves performance.
Similarly, if you’re only interested in a small number of results, use limits to avoid processing unnecessary
rows.

Use CTEs and Subqueries for Modularity Common table expressions (CTEs) and subqueries help break
down complex logic into modular, understandable blocks. This makes debugging and future changes easier,
though you should be mindful of performance implications, especially if CTEs are used repeatedly.

Test and Optimize Don’t assume a query is efficient; test it on real or large datasets and analyze how the
database engine executes your query.

Summary
SQL is a programming language used to communicate with and manage data stored in relational databases.

The SELECT statement retrieves data from a table. You can specify the columns you want or use * to select all
columns.

Operators are used in the WHERE clause to build conditions that filter rows. They are =, <, >, <=, >=, and !=.

Logical operators in SQL are used to combine multiple conditions in a WHERE clause; these operators are AND,
OR, and NOT.

Sorting and limiting clauses help organize and reduce the data returned by your queries, especially when
dealing with large datasets. These clauses are ORDER BY, LIMIT, and TOP.

Aggregate functions calculate on a set (group) of rows and return a single value. These functions are COUNT(),
AVG(), SUM(), MIN(), and MAX().

A join in SQL lets you pull information from two or more tables based on a related column between them. We
have INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.

A subquery is a query inside another query. It’s useful when you need to retrieve an intermediate result.

A common table expression (CTE) is a named temporary result set defined at the start of your query using
WITH.

https://github.com/Sommie09/sql-chapter-examples


Set operators are SQL commands that let you combine results from two or more queries into a single result
set. They are UNION, INTERSECT, and EXCEPT.

Window functions in SQL perform calculations across a set of rows related to the current row. They are
divided into ranking, aggregate, and value functions.

When writing SQL queries, always use descriptive names for tables and columns, and avoid ambiguous
aliases. When possible, reduce the dataset as early as you can in the query using filters.



CHAPTER 5
Database Design
A well-designed database is the backbone of any reliable system. It determines how efficiently data is stored, how
easily it’s retrieved, and how well the system scales as users and data grow. Without thoughtful design, even the
best applications can suffer from data redundancy and performance issues.

Database design acts as the foundation for how data flows through a system. Just like architects need blueprints
before construction begins, engineers need a clear plan for how data will be structured and maintained. This plan
guides everything from table creation and relationships to how queries and updates are handled, ensuring the
system remains maintainable and scalable over time.

As business needs change and new features are introduced, data volume grows. A well-designed database should
accommodate those changes with minimal disruption. So as you go through this chapter, whether you’re designing
from scratch or maintaining existing databases, always remember that design is not just about creating tables and
building models. It’s about creating a solid, efficient, and flexible foundation for everything else that comes after.

In this section, we’ll walk you through the principles and practices that make up strong database design, from
gathering requirements to defining data models, setting up relationships, and optimizing for performance. You’ll
learn how to structure data in a way that supports both the business and the technology behind it. These topics
include:

How to model data

Various stages of data modeling

Data modeling best practices

Understanding cardinality

Designing an entity relationship diagram (ERD)

Normalization and denormalization

Rules of normalization

Database optimization strategies

Data Modeling
Data modeling is the process of designing a blueprint that represents how data is organized, structured, and related
within a system. It defines the relationships between different pieces of data, ensuring they are stored efficiently
and can be accessed in meaningful ways. This process helps guide the creation of databases, data warehouses, and
other data storage systems.

As discussed in the previous chapter, a schema refers to the structure that defines the organization of data within a
database. It includes tables, columns, data types, and the relationships between them. While data modeling is the
conceptual process of designing how data should be represented, the schema is the actual implementation of that
design in a database. In other words, the schema is a tangible version of the data model, a way of translating the
design into a physical structure that a database can use to store and manage data.

Why Do We Need to Model Data?
Let’s look at a simple instance where building a data model would come in handy. Imagine you own a bakery and
you take orders from customers. A customer named, Emily Johnson comes to the store to pick up her order. The
store staff tries to search for her name in the system, but they see three different Emilys: Emily J, Johnson, Emily,
and emily_j01. This confusion could lead to giving out the wrong order or not finding the order at all.

The bakery shop can solve this by linking every order to a CustomerID and generating a unique OrderID. Doing so
makes it easy to find orders without relying solely on names. The staff can quickly retrieve Emily’s order using her
OrderID or CustomerID, eliminating any confusion.



Beyond just convenience, this structure supports the concept of ACID principles, which we discussed in previous
chapters. These principles also guide good database design:

In ACID principles, atomicity ensures that an order is either fully processed or not at all. A good data model
enforces foreign key relationships. So when creating an order, if there’s no valid CustomerID, the whole
transaction fails and does not partially save, which prevents broken or half-finished data.

Consistency enforces rules, like requiring every order to be linked to a valid CustomerID. If someone tries to
insert an Order with a fake CustomerID, the model rejects it, thus maintaining consistent, valid data.

Isolation makes sure that two staff members adding orders for different Emilys at the same time don’t
overwrite or corrupt each other’s data. Because each order is tied to a unique OrderID and CustomerID, the
database won’t mix them up. The structure helps different users’ transactions run safely in parallel.

Durability guarantees that once an order is saved, it won’t disappear even if the system crashes. The model
itself doesn’t ensure durability, but it works with the database engine to make sure valid, complete data is
written.

In this way, good data modeling not only helps organize information but also ensures that critical rules for data
integrity and reliability are enforced.

Data models are built around business needs, so the first step before building a data model is to gather
requirements from stakeholders. These business needs are integrated into planning in order to design a blueprint of
what the database would look like.

A successful data model should:

Map real-world business concepts like customers, orders, and products to data structures in a database.

Create relationships between the data and maintain data integrity.

Be flexible enough to adapt to changing requirements over time.

Types of Data Modeling
Data modeling can be categorized into different types based on the scope and level of detail they represent. These
types help ensure that data is structured appropriately for the system’s needs, whether it’s for a simple database, a
data warehouse, or a more complex enterprise system. The three primary types of data modeling are conceptual,
logical, and physical.

Conceptual Data Model
A conceptual data model provides a high-level structure of business concepts and their relationships, focusing on
how data is represented in the real world. It is defined by business stakeholders and data architects to capture
initial project requirements, business rules, and entity relationships.

These models, also known as domain models, are abstract and independent of hardware, software, or database
technologies. The goal is to organize and define the scope of business concepts, as well as establish data
relationships, without detailing physical implementation or data processing flows.

Imagine a large retail company that is planning to launch a new online store. The leadership team needs a high-
level overview of the key data entities involved, like customers, products, orders, and payments. They gather
stakeholders from various departments, including marketing, sales, and IT, to define the relationships between
these entities without focusing on technical details. The goal is to ensure everyone understands the data structure
and how different parts of the business interact. A conceptual data model looks at the bigger picture without
necessarily going into the details of how the database system would function.

Let’s look at a conceptual data model for an e-commerce business.

Entities:

Customer: Represents individuals who shop on the platform

Product: Represents items available for sale



Order: Represents customer purchases

Payment: Represents transactions for orders

Relationships:

A customer can place multiple orders.

An order can have multiple products, and a product can be part of multiple orders.

Each order is linked to a single payment transaction.

Business rules:

Each customer must have at least one registered payment method.

Products have a set inventory quantity that must be updated with each order.

Orders cannot be processed without a valid payment.

Logical Data Model
A logical data model goes a step further by providing more detail about the concepts and relationships stated in the
conceptual data model. In this stage, the attributes for each entity are defined. It serves as a bridge between the
conceptual model and the physical model.

Using the retail company we spoke about earlier, after agreeing on the conceptual model, a logical model would be
the details of these entities. We need to specify attributes such as customer names, email addresses, product
categories, and payment methods.

The logical model also defines relationships like one customer placing many orders or one order containing
multiple products. This model becomes the blueprint for database development, helping the team decide how data
will be structured without considering specific database technologies.

For our example, here are the entities with their attributes:

Customer (CustomerID, Name, Email)

Order (OrderID, Date, TotalAmount)

Product (ProductID, Name, Price)

Entity Relationship Diagrams (ERDs)
We’ve explored the logical data model, which defines entities and attributes. Our next step is to visualize these
elements. Entity relationship diagrams (ERDs) are a key tool for representing logical data models in a clear, visual
format. They help us map out how different entities relate to one another and ensure that the structure aligns with
business requirements before any database is built.

An ERD visually represents the data structure of a system. It illustrates entities, attributes, and relationships
between entities, making it a foundational tool in relational database design. Entity diagrams simplify complex
data structures for stakeholders, serve as a blueprint for database creation, and most importantly, enable technical
and nontechnical teams to understand data requirements.

The process of designing an ERD typically involves defining entities, their attributes, the relationships between
them, and the cardinality of those relationships. Let’s discuss each in detail.

Entities
Entities represent real-world objects or concepts that are significant to the business and need to be tracked in a
database. Each entity is typically a noun and corresponds to a table in a database. Entities can be formed by
identifying the core objects your business needs to manage, naming them using singular, descriptive terms (e.g.,
Customer instead of Customers), and ensuring entities are distinct and not overlapping (e.g., Employee and
Manager can be separate if they have different attributes).

Here are some examples:

In a retail system: Customer, Product, Order



In a school system: Student, Teacher, Course

Attributes
Attributes describe properties or characteristics of an entity. Each attribute corresponds to a column in a database
table. To form an attribute, you identify the key pieces of information you need to capture about each entity; use
clear, meaningful names; and ensure attributes are atomic, meaning they cannot be broken down further—for
instance, FullName might be split into FirstName and LastName.

Relationships
Relationships define how entities are connected. As discussed in the previous chapters, they show how data in one
table relates to data in another. They are often represented using primary and foreign keys. It is intuitive to form
relationships when you think about how entities can relate to each other in a real-world setting. To form these
relationships, you must think about the appropriate cardinality and, additionally, implement foreign keys in your
database to establish these relationships in a physical database model.

Cardinality
As seen in Figure 5-1, cardinality refers to the number of relationships between two entities in a database. It
defines how many instances of one entity can be associated with instances of another entity.

Figure 5-1: Types of cardinality

Here are the types of cardinality:



One-to-One (1:1): Each entity instance in Entity A is related to one entity instance in Entity B. This is used
when entities have a unique and direct relationship, such as a company’s employee ID linked to a security
badge or a person having one passport.

One-to-Many (1:N): One entity instance in Entity A can relate to many instances in Entity B. This is common
in transactional systems, like e-commerce platforms where one customer can make several purchases.

Many-to-many (M:N): Multiple instances in Entity A can relate to multiple instances in Entity B. Many-to-
many relationships are typically used in scenarios involving multiple associations, such as students enrolling
in multiple courses and each course having many students.

Designing an Entity Relationship Diagram
Figure 5-2 shows an ERD for an online shopping system. Each box contains an entity name, its attributes, and a
primary and foreign key where necessary. Notice that some symbols represent cardinality, as we discussed earlier.
Let’s look at each entity in more detail.

Figure 5-2: Entity relationship diagram for an online shopping system

Category table:

This table represents different categories of products.

It has a one-to-many relationship with the Products table, which means that a category like Electronics can
have multiple products such as laptops, smartphones, and headphones.

It has a one-to-many relationship with the Payment table, which allows payments made for products. For
instance, the fashion category can be grouped together for revenue analysis.



Products table:

This table represents Products available for sale.

It has a one-to-many relationship with the Seller table, which means that a product like Lenovo can be sold by
Seller A and Seller B, each having their own seller ID and attributes.

Seller table:

This table represents sellers who sell products and belongs to one product in the Products table.

Customer table:

This table represents customers who place orders.

It has a one-to-many relationship with the Shopping Order table, meaning that a customer can place multiple
orders over time but each order is associated with one customer.

It also has a one-to-many relationship with the Deliveries table. A customer can have multiple deliveries for
different orders, but each delivery is linked to one customer.

Shopping Order table:

This table represents orders placed by customers and belongs to one customer in the Customer table, which
means each shopping order is associated with a single customer but a customer can have multiple orders over
time.

Deliveries table:

This table represents deliveries made to customers and belongs to one customer in the Customer table, which
means each delivery is associated with a single customer but a customer can have multiple deliveries over
time.

Payment table:

This table represents payments made for products and belongs to one category in the Categories table.

Transaction Reports table:

This table provides a summary of transactions involving customers, orders, products, and payments along
with a foreign key to reference these tables. This table would be useful for aggregating data from the
Customers, Shopping Order, Products, and Payment tables.

For instance, a transaction report could indicate that Customer A purchased Product X via Order Y and paid
through Payment Z.

Physical Data Model
A physical data model is the most detailed stage of data modeling. It translates the logical data model into an
implementable database design. It specifies how data will be stored, managed, and accessed in a specific database
management system (DBMS). Unlike conceptual and logical models, the physical model considers the technical
aspects, including storage structures, indexing, and constraints.

The retail company now needs to implement their physical model using a specific database technology, let’s say
PostgreSQL. The data engineers create a physical data model that defines tables, columns, data types, indexes, and
partitions. They also specify primary and foreign keys for each table. According to the table, the physical model is
the final, detailed plan for the database, ensuring it meets performance, scalability, and security requirements when
deployed in production.

COLUMN NAME DATA TYPE CONSTRAINT



COLUMN NAME DATA TYPE CONSTRAINT
CustomerID INT PRIMARY KEY
Name VARCHAR(100) NOT NULL
Email VARCHAR(100) UNIQUE
Age INT CHECK (Age > 18)
OrderID INT FOREIGN KEY

In physical data modeling, one of the most important decisions you’ll make is choosing the appropriate data type
for each column. A data type defines what kind of data a column can store, like numbers, text, or dates. These
choices might seem small, but they have real consequences on how much storage your database uses, how fast
queries run, and how accurate your data remains over time. Let’s break them down into categories:

Numeric Data Types  These are used when you need to store numbers. SQL gives you several options,
depending on the size and precision you need. They include:

INT/INTEGER Integers can store whole numbers. It usually takes up 4 bytes and works well for things
like IDs, as long as the values stay within the limit of about 2 billion.

SMALLINT/TINYINT/BIGINT These are variants of integers that use less or more space. For example,
BIGINT can store much larger values (up to 9 quintillion), but takes 8 bytes.

FLOAT/REAL/DOUBLE These can store approximate decimal values. They are fast but not always exact.

DECIMAL/NUMERIC Stores exact decimal values. Perfect for financial data because they avoid rounding
errors.

String (Character) Data Types These types store text, like names, addresses, or notes:

CHAR(n) This data type is used for fixed-length strings. If you define CHAR(10) and only store yes, SQL
still stores 10 characters, padding the rest with spaces.

VARCHAR(n) This data type stores variable-length strings up to a max length n. If you define
VARCHAR(100) and store yes, it only uses three characters. This is more efficient for unpredictable text.

TEXT/CLOB These data types are used for very long text (like articles or descriptions). They are less
efficient for indexing and querying, so avoid them unless absolutely necessary.

Date and Time Data Types These data types are used to track when something happens:

DATE This data type stores only the calendar date (e.g., 2025-05-18).

TIME This data type stores only the time of day (e.g., 14:30:00).

DATETIME/TIMESTAMP This data type stores both date and time. DATETIME is often time zone–agnostic,
while TIMESTAMP usually stores values relative to UTC.

Boolean Data Types BOOLEAN/BOOL data types store TRUE or FALSE values but are not supported in all
databases natively; some use TINYINT(1) under the hood.

Normalization
Let’s assume that we have a table named Orders in an online store’s database that is used to store customer
information. In its initial, non-normalized form, the Orders table might look like this:

ORDERID CUSTOMERID CUSTOMER
NAME

CUSTOMER
ADDRESS

PRODUCT
NAME

QUANTITY ORDER
DATE

1001 1 Jessica 405 Whitehouse St,
NY, USA

Laptop 1 2024-11-
20

1002 2 Lily 456 Elm St, LA, USA Smartphone 2 2024-11-
21



ORDERID CUSTOMERID CUSTOMER
NAME

CUSTOMER
ADDRESS

PRODUCT
NAME

QUANTITY ORDER
DATE

1003 1 Jessica 405 Whitehouse St,
NY, USA

Headphones 1 2024-11-
22

1004 3 Ben 789 Oak St, Chicago,
USA

Laptop 1 2024-11-
22

We have a few problems with this table:

Jessica’s address is repeated for every order she makes. If Jessica places multiple orders, her address
information is stored multiple times and this wastes storage space.

If Jessica changes her address—maybe she moves to a new home—we need to ensure that the address is
updated in every order record for her. If we miss updating even one record, the system will have inconsistent
data, leading to errors in customer communication or shipping.

How does normalization solve this?

With the Customer table and the Orders table created, the customer’s address is now stored only once in the
Customer table rather than being repeated for every order. This reduces redundancy and storage usage.

If Alice changes her address, we only need to update the Customer table. This change will automatically
apply to all of Alice’s orders without having to modify each order record individually, making maintenance
more efficient.

By storing the address in only one place, the risk of inconsistent data is eliminated. Every time a customer
places an order, the correct address is used from the Customer table.

There’s no risk of having outdated or incorrect address information across different rows because the address
is always retrieved from the Customer table.

Here is the Customer table:

CUSTOMER ID CUSTOMER NAME CUSTOMER ADDRESS
1 Jessica 405 Whitehouse St, NY, USA
2 Lily 456 Elm St, LA, USA
3 Ben 789 Oak St, Chicago, USA

And here is the Orders table:

ORDER ID CUSTOMER ID PRODUCT NAME PRODUCT QUANTITY ORDER DATE
1001 1 Laptop 1 2024-11-20
1002 2 Smartphone 2 2024-11-21
1003 1 Headphones 1 2024-11-22
1004 3 Laptop 1 2024-11-22

Normalization is one of those key principles in database design that keeps things clean and efficient. The idea is
simple: We don’t want to store the same piece of information in multiple places. Why? Because it takes up
unnecessary space and can easily lead to mistakes and redundancy. It also helps to improve data integrity by
organizing data into separate tables and reducing the risk of errors.

Rules of Normalization
The rules of normalization are guidelines for organizing data in a relational database. These rules are divided into
normal forms (NF), with each form addressing specific types of data anomalies, each ensuring redundancy and
data integrity. As a data engineer, you might find that understanding the concept of normal forms can be confusing,
but in this section, we’ll simplify the rules of normalization and make it easy for you to recognize and apply each
one.



First Normal Form: 1NF
The first normal form ensures all columns contain atomic values—that is, indivisible values. This means each cell
should hold only a single piece of information, not a list or a set of values. Another attribute is that each row must
be unique, and no duplicate rows are allowed. Let’s take a look at an example.

The following table stores information about customers and their phone numbers. But there’s an issue: If you look
closely at the PhoneNumber column, Bailey has two different numbers in one column, which doesn’t adhere to the
1NF rule.

CUSTOMER ID NAME PHONE NUMBER
1 Bailey 123-456, 987-654
2 Ashley 555-789

This new table is now 1NF compliant because the PhoneNumber column now contains atomic values.

CUSTOMER ID NAME PHONE NUMBER
1 Bailey 123-456
1 Bailey 987-654
2 Ashley 555-789

The 1NF rules don’t just enforce structure; they also support the Atomicity and Consistency principles of ACID.
By making sure each value is atomic and properly separated, databases can handle updates and queries more
reliably, without risking partial updates or mismatched records. In 1NF, atomic means each field in a table contains
only one value—for example, one phone number per cell. In ACID, atomicity means a transaction must either
complete fully or not at all. When your data is structured with atomic values, thanks to 1NF it’s easier for a
transaction to meet the atomicity requirement because you don’t have to worry about partially updating a list of
values in a single cell, because each update touches only one clean, separate value.

1NF also helps enforce data consistency by eliminating duplicate rows and ensuring each field is clearly defined.
In ACID, consistency means that a transaction brings the database from one valid state to another, maintaining
integrity constraints. If your tables are not in 1NF—for example, if one column stores multiple phone numbers—
it’s much easier for inconsistent states to occur. One part of the application might update one number but forget the
other, violating business rules. 1NF enforces a structure that helps keep your data valid and predictable, which
supports transactional consistency.

While 1NF is a normalization rule, and ACID is a set of transactional guarantees, they support each other
indirectly.

Second Normal Form: 2NF
The second normal form achieves the 1NF and removes partial dependencies. Partial dependencies occur when a
column that is not part of any candidate key depends on part of a composite primary key rather than the whole key,
and this is common only in tables with composite primary keys. As discussed in the previous chapters, a composite
primary key is a primary key that is formed by combining two or more columns to uniquely identify each row in a
table. This partial dependency creates a lot of inconsistencies, and 2NF helps us with this.

Assume we have a table that stores information about courses taken by students. The composite primary key is
(StudentID, CourseID) because each student can take multiple courses and each course can be taken by multiple
students.

The attribute CourseName depends only on CourseID, not on the entire composite key (StudentID, CourseID).
Similarly, Instructor depends only on CourseID. This is a partial dependency, as CourseName and Instructor are
functionally dependent on part of the primary key (CourseID) rather than the whole composite key.

Why Should Attributes Depend on the Entire Key?
In our table with a composite primary key (StudentID + CourseID), every non-key column should only depend on
the whole key, not just part of it.



The primary key uniquely identifies each row in the table. If some columns (like CourseName) depend only on
part of the key (like CourseID) and not the whole key (StudentID + CourseID), it means they don’t belong in this
table. Instead, they belong in a table where CourseID is the primary key.

The StudentCourses table looks like this:

STUDENT ID COURSE ID COURSE NAME INSTRUCTOR
1 CS 101 Programming Dr. Smith
1 CS 102 Networking Mrs. Logan
2 CS 101 Programming Dr. Smith

By splitting the table, we separate the Student–Course relationship from the Course details. The StudentCourses
table tracks which student takes which course, and the Courses table tracks details about each course (like name
and instructor). This reduces data redundancy because Programming and Dr. Smith are no longer repeated for
every student taking CS 101), and it also improves data integrity; if an instructor changes for a course, you update
it in one place.

This is the StudentCourses table:

STUDENT ID COURSE ID
1 CS 101
1 CS 102
1 CS 101

And this is the Courses table:

COURSE ID COURSE NAME INSTRUCTOR
CS 101 Programming Dr. Smith
CS 102 Networking Mrs. Logan

Third Normal Form: 3NF
The third normal form, 3NF, achieves 2NF and removes transitive dependencies, which is where all non-prime
attributes, that is, columns that are not part of any candidate key, are only dependent on the primary key and not on
any other non-prime attribute. Let’s break that down with an example:

In this table, the primary key is StudentID. StateTaxCode depends on State, not directly on StudentID. This creates
a transitive dependency that would look like this: StudentID → State → StateTaxCode.

This setup causes redundancy because "NY123" is repeated for every student in New York and risks inconsistency.

STUDENT ID NAME CITY STATE STATE TAX CODE
1 Jessica New York New York NY123
2 Alexa Los Angeles California CA456
3 Daniella Albany New York NY123

Now in this new design, we have two tables: the Students table and States table. In this setup, StateTaxCode
depends directly on the state in the States table. There’s no more redundancy because "NY123" is stored only once
for "New York".

If the tax code for a state changes, you update it in one place and most importantly, for scalability, adding a new
state or modifying state information doesn’t affect the Students table.

Students

STUDENT ID NAME CITY STATE
1 Jessica New York New York
2 Alexa Los Angeles California
3 Daniella Albany New York



States

STATE STATE TAX CODE
New York NY123
California CA456

Higher Normal Forms (BCNF, 4NF, 5NF)
Higher normal forms address more complex dependencies and anomalies that usually occur in large-scale and
highly normalized systems. They also build upon the rules and conditions of earlier normal forms, providing
stricter criteria for database design, although rarely used, it’s important to also have a good understanding of them.
They include Boyce-Codd Normal Form (BCNF), Fourth Normal Form (4NF), and Fifth Normal Form (5NF).

Boyce-Codd Normal Form (BCNF)
In the Boye-Codd Normal Form:

The table must already be in 3NF.

For every functional dependency  → ,  must be a superkey (i.e.,  uniquely identifies every row in the
table). A functional dependency is when one set of columns (A) determines another set of columns (B).

For example, in a table of students, if StudentID determines StudentName, that’s a functional dependency. If
A determines B, then A must be a superkey.

A superkey is any column (or combination of columns) that can uniquely identify every row in the table. In
simpler terms: If one thing (A) decides another thing (B), that “thing” (A) must be able to uniquely identify
all rows in the table.

In this table, the Instructor is dependent on the Department, because an instructor is always associated with one
department. But the Instructor is not a superkey because it cannot uniquely identify rows. After all, Dr. Andrew
might teach multiple courses.

COURSE ID INSTRUCTOR DEPARTMENT
CS 101 Dr. Andrew Computer Science
CS 102 Mrs. Kayla Computer Science
ENG 103 Mr. Stephen Engineering

To make all functional dependencies link directly to superkeys, we must split the tables: the Instructor_Department
table and the Course_Instructor table. In summary, every determinant (a column or set of columns that determines
another attribute) must be a candidate key. Boyce-Codd Normal Form (BNCH) can be used in transactional
systems where data integrity is critical, and we can also regard BCNF as a stricter version of
3NF.Instructor_Department table

INSTRUCTOR DEPARTMENT
Dr. Andrew Computer Science
Mrs. Kayla Computer Science
Mr. Stephen Engineering

Course_Instructor table

COURSE ID INSTRUCTOR
CS 101 Dr. Andrew
CS 102 Mrs. Kayla
ENG 101 Mr. Stephen

Fourth Normal Form (4NF):



For a table to be in 4NF, the table must already be in BCNF and all multivalued dependencies must be removed. A
multivalued dependency occurs when a single attribute determines two or more independent values (attributes).
These should be separated into distinct tables.

The following table tracks students, the languages they speak, and the sports they play. There are a couple of
multivalue dependencies here. A student can speak multiple languages and a student can play multiple sports. The
problem here is that the languages a student speaks are independent of the sports they play. This would result in
redundant data where every combination of language and sport is listed for each student.

STUDENT ID LANGUAGE SPORT
1 English Basketball
1 French Basketball
1 English Football
1 French Football

To eliminate that redundancy, we split the above table into two tables, Languages and Sports. With this change, we
can add a new language or sport for a student without duplicating unrelated data. 4NF improves database integrity
by ensuring independent relationships are stored in separate tables. If such dependencies don’t exist in your
schema, you might not need to normalize to 4NF.Languages table

STUDENT ID LANGUAGE
1 English
1 French

Sports table

STUDENT ID SPORTS
1 Basketball
1 Football

Fifth Normal Form (5NF)
5NF is a level of database normalization aimed at eliminating redundancy by breaking down tables into smaller
ones without losing data integrity. A table is in 5NF if and only if every nontrivial join dependency in the table is
implied by the candidate keys. A join dependency occurs when a table can be broken into two or more smaller
tables, which can then be joined together to re-create the original table. The goal is to ensure that data is
represented in the most atomic way possible and that all relationships are captured without redundancies.

Let’s look at the Employee table that follows. Here, the combination of Employee, Skill, and Project shows a
multivalued dependency because skills and projects are independent facts associated with an employee. But this
table has some issues:

Skills and projects for each employee are listed repeatedly, causing redundancy.

If Alexa gets assigned a new project, we need to repeat her skills for the new project.

Removing a project could inadvertently delete all skill information for an employee.

Employee table

EMPLOYEE SKILL PROJECT
Alexa SQL Alpha
Alexa Python Alpha
Bella SQL Alpha
Bella Python Beta

By breaking this table into smaller tables, all anomalies are eliminated:



We can add a new skill or project without duplicating other information.

Updating a skill or project doesn’t require repetitive changes.

Deleting one project won’t lose information about skills or employees.

Most importantly, we can join the Employee_Project table with the Project_Tasks table using the Project
column to identify which employees are linked to which tasks via their projects.

Employee_Task table

EMPLOYEE TASK
Alexa SQL
Alexa Python
Bella SQL
Bella Python

Employee_Project table

EMPLOYEE PROJECT
Alexa Alpha
Bella Alpha
Bella Beta

Project_Tasks table

PROJECT TASK
Alpha SQL
Alpha Python
Beta Python

5NF ensures that tables are broken into smaller tables to eliminate redundancy caused by multivalued
dependencies. While 5NF is not always necessary in a typical database design, it is important in cases of complex
relationships and large enterprise systems.

Downsides of Normalization
We’ve discussed the benefits of normalization in detail, but normalization also has its downsides:

Normalized databases often require multiple joins to fetch related data, which can slow down query
performance for complex datasets or high-traffic applications.

Normalization requires a thorough understanding of data relationships, making database design more time-
consuming. While normalization is ideal for transactional systems, it may not be efficient in certain scenarios,
and this is where denormalization comes in.

Denormalization
Denormalization is the process of combining separate tables into one to reduce the need for complex joins during
queries. Additionally, calculated or aggregated data may be stored directly in tables instead of computing it on
demand. It is essentially the opposite of normalization, where a database is organized to reduce redundancy and
improve data integrity.

Denormalization handles reporting use cases where read performance is prioritized over write performance. With
fewer joins on tables, query logic becomes simpler and easier to write. Denormalized tables also store
precomputed data, and this speeds up data retrieval critical for large-scale reporting systems.

This is what a denormalized table would look like:



ORDERID CUSTOMERID CUSTOMERNAME PRODUCTID PRODUCTNAME QUANTITY ORDERDORDERID CUSTOMERID CUSTOMERNAME PRODUCTID PRODUCTNAME QUANTITY ORDERD
101 C001 Alexa P001 Laptop 1 2025-12-0
102 C002 Daniella P002 SmartPhone 2 2025-12-0
103 C001 Alexa P003 Headphone 1 2025-12-0

This table is denormalized because:

CustomerName is repeated for CustomerID C001, meaning customer info is duplicated across rows.

ProductName is repeated for each order instead of referencing a Products table.

TotalPrice is calculated and stored, avoiding the need to calculate it on-the-fly using (Price * Quantity). For
instance, the cost of two Smartphones has been calculated as 1200.

While normalization helps maintain data integrity and reduce redundancy, some real-world systems actually
benefit from denormalized data due to performance needs and faster read times:

Analytical and Reporting Systems A data warehouse is a centralized repository designed to store,
process, and manage large volumes of data collected from various sources. In data warehouses or OLAP
(online analytical processing) systems, data is denormalized for read-heavy workloads and analytical queries.
The goal in these systems is to simplify the retrieval of aggregated or summarized data for reporting and
decision-making purposes. Analytical systems prioritize the speed of complex queries overwrite efficiency,
making denormalization favorable choice. We will be looking at data warehouses in detail later in this book.

Real-Time Applications Real-time applications such as stock trading systems or IoT (Internet of Things)
platforms require low-latency data reads. Denormalization is used here to avoid the lag in performance
associated with frequent joins, because data needed for a single operation is often stored together, eliminating
the need to join multiple tables during query execution.

Distributed Systems In distributed databases, data is partitioned and stored across multiple nodes.
Denormalization ensures that all the data required for a query resides on a single node, reducing latency and
network overhead that would come up. Distributed systems prioritize availability, and denormalization aligns
with this model by simplifying data retrieval, even if consistency across nodes is delayed.

Data Modeling Best Practices
Data modeling is the foundation of an efficient data system, ensuring that data is organized, accessible, and
optimized for both performance and scalability. A solid data model helps us organize data in a way that makes
sense for the business and keeps things efficient. Let’s look at best practices for creating effective data models for
business needs.

Define the Grain
The grain of a table specifies the level of detail represented by each row. It answers the question, What does one
row in the table represent? Is it one transaction? One customer per month? Or one product per store, per day?

Imagine you’re building a sales table. You have to decide if each row should represent an individual transaction,
like one order placed at a specific time or if it should represent something more aggregated, like total sales per
store per day. This decision defines your grain.

One row = One transaction

ORDER_ID STORE_ID PRODUCT_ID QUANTITY PRICE ORDER_DATE
1234 01 P001 2 20.00 2025-05-17 10:32 AM

One row = one day of sales per store

STORE_ID SALE_DATE TOTAL_SALES TOTAL_TRANSACTIONS
01 2025-05-17 1500.00 5



You can’t mix grains in the same table, so if the grain isn’t clear, your data model becomes inconsistent and
downstream reports become unreliable. Choosing the right grain is also a collaborative process. You don’t decide it
in a vacuum. You work with business stakeholders, product managers, and analysts to understand how the data will
be used. What are the key questions the business is trying to answer? What kind of analysis needs to happen?

Sometimes, a fine-grained level (like one row per transaction) is what you need when you want flexibility and
detail. Other times, an aggregated level (like one row per day per product) can make querying and performance
more efficient, especially for reporting use cases.

Normalize Now, Denormalize Later
When you’re starting out on a project, especially in the early stages of designing your data model, your top priority
should be to normalize the data. That means structuring it cleanly into separate, related tables where each piece of
information is stored only once. This keeps your data consistent and makes it easier to maintain in the long run.

As discussed earlier, instead of storing customer names and emails with every order, you keep that customer
information in one Customer table and reference it from your Orders table. This structure is easier to understand
and ensures that if a customer’s email changes, you update it in only one place.

Now, as your application matures and your data grows, something interesting happens. You start to notice
performance bottlenecks. Your application might start making a lot of JOINs across multiple tables to serve a single
user request. Here’s where denormalization comes in.

Denormalization is a conscious decision to optimize for performance by combining or duplicating data to reduce
the number of complex JOINs needed. For example, you might add a customer’s name directly into the Orders
table if it’s something you frequently display together, even if it breaks strict normalization.

The key here is, you don’t start with denormalization. You first get your structure clean and correct. Then, based
on actual performance needs, you denormalize in a targeted way. It’s a trade-off; you’re giving up some
maintainability to gain speed where it matters.

Choose the Right Data Types
As discussed earlier, selecting the right data type is one of the most important decisions you make during physical
data modeling. It might seem like a minor detail, but it directly impacts how your database performs, how much
storage it uses, and how reliably it scales.

Each data type defines the boundaries and behavior of your data. If you choose well, your system runs efficiently,
your queries perform better, and your storage usage stays lean. If you choose poorly, you may face a range of
problems.

For example, consider a database that tracks user login timestamps. Using DATETIME might seem fine at first, but in
many systems, it occupies more space than TIMESTAMP. If you don’t need time zone support, switching to
TIMESTAMP can save significant storage, especially at scale.

In another case, a financial system uses INT for transaction IDs. As the system grows and transaction volume
increases, it eventually exceeds the limit for INT, resulting in runtime errors or even system crashes. In situations
like this, BIGINT is a safer choice for fields expected to grow significantly over time.

Here are some other common considerations:

Use INTEGER instead of FLOAT for primary keys or IDs because integers provide exact values and use less
space, whereas floats are approximate and not ideal for joins or indexing.

Prefer VARCHAR(255) over TEXT when string lengths are predictable. TEXT types are less efficient to index and
can lead to wasted storage.

Be mindful of precision; using the wrong numeric type (like FLOAT for financial data) can cause rounding
errors and data inaccuracies.

Avoid overly flexible types like VARCHAR if your data follows a strict format. It’s better to define constraints
that protect the quality and consistency of your data.

Proper Naming Conventions



Good naming is about clarity, consistency, and communication. When you name your tables and columns well,
you’re making processes easier, not just for yourself, but for everyone who will work with that system after you.

Imagine opening a database and seeing a table called tbl001, with columns like c1, c2, or field_x. You’d have no
clue without digging into the data, and that slows everyone down. On the other hand, if the table is called
Customers, and it has columns like First_Name, Last_Name, and Account_ID, the intent is immediately obvious.
That’s what good naming does—it removes friction and reduces guesswork.

Adopt a naming convention and stick with it. Whether that’s snake_case for column names (like account_id) or
PascalCase for table names (like TransactionHistory), consistency is key. This way, when someone moves from
one part of the database to another, they’re not relearning the rules each time.

Database Optimization
Sepora is a rapidly growing e-commerce platform that specializes in same-day delivery. The company has a central
relational database used to store its product inventory, customer information, order details, and delivery schedules.
Initially, Sepora handled a few hundred transactions per day efficiently. As the business expanded, the number of
daily transactions surged to thousands, but the database structure remained unchanged.

On Christmas Eve, they had a holiday sale, and the website traffic skyrocketed. Customers had a bad experience
searching for products because the pages weren’t loading fast enough. The database server got overwhelmed
because every query, especially for popular products, was sent to the same server, causing a lot of bottlenecks.

As a data engineer working at Sepora, what can you do?

As your database grows in size and complexity, you may start to notice slower performance and reduced
responsiveness. These challenges are common, especially in large-scale systems, where the volume of data and
number of queries can quickly become overwhelming. To keep your systems running efficiently, it’s important to
apply techniques that can address those issues. Database optimization to the rescue! It’s the process of improving
how well your database performs, ensuring it remains fast and scalable as it grows. In this section, we’ll walk you
through key optimization techniques:

Indexing

Partitioning

Sharding

Views

Indexing
Indexing is the process of creating a data structure (called an index) that improves the speed of data retrieval
operations in a database table. Instead of scanning every row, the database can use the index to quickly locate the
data it needs, making queries more efficient. Indexing helps us improve query performance by reducing the
amount of data scanned, especially while handling large datasets where full table scans are inefficient.

In the e-commerce platform we talked about earlier, indexing helps in situations where users frequently search for
products by name or category. If the database stores millions of product details without an index, a query to find a
product by name would scan the entire table, leading to high latency (delay), but with an index on the
product_name column, the database can quickly locate the relevant rows.

Let’s see how this would work.

The first step is to create a table:

CREATE TABLE products (
    id SERIAL PRIMARY KEY,
    name VARCHAR(255) NOT NULL,
    category VARCHAR(100),
    price DECIMAL(10, 2),
    stock_quantity INT
);



After defining your table, you add indexes to optimize queries that are expected to be frequent or slow—for
example, if users often search products by name.

CREATE INDEX idx_product_name ON products(name);

Now when you query, the database engine uses the index you created on name to quickly find matching rows,
rather than scanning every row in the products table.

SELECT * FROM products WHERE name = 'Laptop';

Partitioning
Say you visit a large library with thousands of books and your task is to find a specific book quickly. If all the
books were placed randomly on one massive shelf, searching for a particular book would take forever. But to make
the search easier, the librarian organizes the books into sections based on categories like Fiction, Nonfiction,
Science, and History. The librarian can also divide the books using certain criteria, like dividing books by year of
publication (e.g., 1900–1950, 1951–2000), dividing books by genre (e.g., Fiction, Science, History) or randomly
distributing books into sections by assigning them a unique identifier, which is referred to as hashing.

Partitioning involves dividing a large table in a database into smaller, more manageable pieces known as
partitions, stored separately. The database uses partition logic to determine where data is stored and retrieved.
Partitioning improves query performance by restricting scans to specific partitions.

In the e-commerce store we talked about, let’s assume their launch day was in the year 2005. The sales table of the
store would contain transaction data from 2005 to the present day. To efficiently manage this massive dataset and
optimize query performance, you as the data engineer might decide to partition the sales table by year of the sale:

CREATE TABLE sales (
    sale_id INT PRIMARY KEY,
    sale_date DATE,
    amount DECIMAL(10, 2)
) PARTITION BY RANGE (YEAR(sale_date)) (
    PARTITION p0 VALUES LESS THAN (2000),
    PARTITION p1 VALUES LESS THAN (2010),
    PARTITION p2 VALUES LESS THAN (2020),
    PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

In the SQL query, data would be automatically stored in different partitions based on the year in the sale_date
column.

Sales from before the year 2000 go into p0.

Sales from 2000 to 2009 go into p1.

Sales from 2010 to 2019 go into p2.

Sales from 2020 on go into p3.

To get the total sales for the year 2021, you’d query the sales table and filter by the sale_date column; with our
partitioning strategy, we won’t need to search the entire table.

SELECT SUM(amount) AS total_sales
FROM sales
WHERE sale_date BETWEEN '2021-01-01' AND '2021-12-31';

Sharding
Sharding is a database optimization strategy used when your data becomes too large to handle efficiently on a
single server. It works by horizontally partitioning data across multiple databases or nodes, each of which holds
just a portion of the overall data, known as a shard. This approach helps applications scale horizontally and
reduces the risk of one server becoming a performance bottleneck.

You’ll often see sharding in action on platforms like social media apps, which serve billions of users. Instead of
placing all user data in one central location, they shard the data, sometimes by region or user ID, so information is



stored closer to users. This significantly reduces latency and improves performance for things like region-specific
queries or content delivery.

Choose a Sharding Key
One of the most important decisions when sharding is selecting the right sharding key, the value that determines
how data gets divided across shards. A well-chosen key ensures data is evenly distributed, which helps balance
load and maintain performance. Common sharding keys include UserID, OrderID, or even Region, depending on
how your application is used.

Configuring Multiple Shards
Each shard in a sharded architecture is essentially a separate database instance. These shards usually share the
same schema, but each one holds a different slice of the data. For example, if you’re storing user data, Shard 1
might contain users with IDs from 1 to 1,000,000, while Shard 2 could hold users from 1,000,001 to 2,000,000.
This setup reduces the load on any single database and makes it easier to scale your application horizontally.

Let’s see how sharding is implemented across data. To start, we define a basic schema for the users table. This
structure will typically be replicated across all shards:

CREATE TABLE users (
    user_id INT PRIMARY KEY,
    name VARCHAR(100),
    email VARCHAR(100),
    region VARCHAR(50)
);

This table will exist in each shard, but each shard will store only a portion of the users based on the sharding key,
in this case, user_id. For example:

Shard 1 holds rows where user_id is between 1 and 1,000,000.

Shard 2 holds rows where user_id is between 1,000,001 and 2,000,000.

By distributing the data this way, we prevent bottlenecks and enable the system to handle higher loads, especially
useful in high-traffic systems like social platforms, e-commerce apps, or streaming services.

Now that we’ve split our user data across multiple shards, a big question comes up: How does the application
know which shard to query? That’s where sharding logic comes in. Suppose you’re using a very simple sharding
rule:

If user_id % 2 = 0, the user belongs to shard1.

If user_id % 2 = 1, the user belongs to shard2.

This is a hash-based sharding strategy. It evenly distributes users between two shards based on the parity of their
user ID. Here’s what the logic might look like in Python:

# Determine the shard for a given user_id
def get_shard(user_id):
    if user_id % 2 == 0:
        return "shard1"
    else:
        return "shard2"
 
#Sample query
user_id = 12345
shard = get_shard(user_id)
 
#Run SQL code according to the shard
if shard == "shard1":
    execute_query("SELECT * FROM shard1.users WHERE user_id = 12345")
else:
    execute_query("SELECT * FROM shard2.users WHERE user_id = 12345")

This logic allows your application to route queries to the correct database, avoiding unnecessary load on other
shards and improving performance. In production systems, this sharding logic is often abstracted away inside a



shard manager, middleware, or ORM layer so engineers don’t have to manually write conditional logic like this
every time.

Difference Between Sharding and Partitioning
At first glance, sharding and partitioning might seem like the same thing because both involve breaking large
datasets into smaller pieces. But the key difference lies in where the data lives.

Partitioning happens within one database server. You’re dividing a large table into smaller segments (called
partitions), but it all still lives in the same physical system. These partitions are often based on criteria like dates,
regions, or product categories. This approach is used when you’ve got a huge orders table, and you partition it by
month to make queries for recent orders faster. It improves query performance and data management within one
server.

While sharding goes a step further, it spreads the data across multiple physical databases or servers. Each shard
holds a subset of the data, often based on a sharding key like user_id or region. It’s mostly used when user base has
grown into the hundreds of millions, and your single database can’t handle the load anymore. It then enables
horizontal scaling, fault isolation, and better geographical performance.

Views
Views are like virtual tables created from the results of an SQL query. Instead of rewriting complex queries or
joins over and over, you define a view once and reuse it wherever you need. This not only saves time but also
makes your code cleaner and easier to maintain. Views can handle complicated joins, filters, and aggregations
behind the scenes, so when you query a view, you’re working with a simplified and consistent dataset.

Also, from a security standpoint, views are powerful because they let you control what data users can see. You can
restrict access to sensitive columns or rows by exposing only certain parts of the underlying tables through the
view, adding an extra layer of protection. Let’s explore how to work with views.

Creating a View
This view filters out only the employees in the Engineering department:

CREATE VIEW EngineeringEmployees AS
SELECT id, name, salary
FROM employees
WHERE department = 'Engineering';

Querying the View
This query retrieves the names and salaries of engineering employees who earn more than $50,000, using the view
we defined earlier:

SELECT name, salary
FROM EngineeringEmployees
WHERE salary> 50000;

Materialized Views
Materialized views are like regular views but with a key difference: They store the query results physically. While
a regular view runs the query fresh every time you access it, a materialized view saves the results when it’s created
or refreshed. This means that for queries that are run frequently and don’t need real-time updates, like summary
reports or dashboards, materialized views can boost performance significantly by avoiding repeated computations.
However, because the data is stored, materialized views need to be refreshed whenever the underlying data
changes, either on a schedule or triggered by certain events. Let’s look at how materialized views work.

Creating a Materialized View
This query creates a materialized view that stores the total value of orders greater than $1,000.

CREATE MATERIALIZED VIEW HighValueOrders AS
SELECT o.order_id, o.customer_id, SUM(oi.quantity * oi.unit_price) AS total_value
FROM orders o
JOIN order_items oi ON o.order_id = oi.order_id



GROUP BY o.order_id, o.customer_id
HAVING SUM(oi.quantity * oi.unit_price)> 1000;

Refreshing a Materialized View
Materialized views can become outdated when the underlying data changes. To keep the data current, you can
refresh the materialized view:

REFRESH MATERIALIZED VIEW materialized_view_name;

Summary
Database design is the process of structuring how data will be stored, organized, and accessed in a database. It
also involves deciding what tables to create, how they relate to each other, and how to optimize for
performance.

A successful data model should map real-world business concepts to database structures, create relationships
between the data, maintain data integrity, and be flexible enough to adapt to changing requirements over time.

There are three types of data models: conceptual, logical, and physical data models. Conceptual models cover
the high-level view of entities and their relationships. Logical models add attributes, whereas physical models
cover the actual implementation, like tables, indexes, and storage details for a specific database.

An entity relationship diagram (ERD) visually represents the data structure of a system. It illustrates entities,
attributes, and relationships between entities.

Cardinality refers to the number of relationships between two entities in a database. It could be one-to-one,
one-to-many, or many-to-many.

A data type defines what kind of data a column can store, like numbers, text, or dates. They are grouped into
Numeric, String, Date and Time, and Boolean.

Numeric data types are used to store numbers, String data types are used to store text, Date and Time data
types are used to store dates and times, and Boolean data types are used to store True or False values.

Normalization is the process of organizing data in a database to reduce redundancy and improve data
integrity. It involves splitting large, repetitive tables into smaller, related ones and defining clear relationships
between them.

The rules of normalization are divided into six normal forms: 1NF, 2NF, 3NF, and higher normal forms like
BCNF, 4NF, and 5NF.

Denormalization is the process of combining separate tables into one to reduce the need for complex joins
during queries. Systems that benefit from denormalization are analytical and reporting systems, real-time
systems, and distributed systems.

Some best practices for modeling data include defining the grain, normalizing now and denormalizing later,
choosing the right data types, and using proper naming conventions.

Database optimization is the process of improving the performance, efficiency, and scalability of a database.
Optimization techniques include indexing, partitioning, sharding, and views.



CHAPTER 6
Data Warehouses, Data Lakes, and Data Lakehouses
In previous chapters, we explored the fundamentals of databases, exploring how databases are
structured, managed, and optimized for business operations. Databases are the backbone of data
storage and retrieval for many organizations. However, traditional database systems have some
limitations. This chapter will introduce you to other database solutions designed to tackle unique
challenges faced by organizations.

IN THIS CHAPTER, YOU WILL LEARN ABOUT THE FOLLOWING:

What are data warehouses and how do they work?

Extract, transform, and load processes

Star and Snowflake modeling techniques

Online Transaction Processing (OLTP) and Online Analytical Processing (OLAP) systems

Data marts and their benefits

Storing raw data with data lakes

The data lakehouse architecture

Choosing between a database, a data warehouse, and a data lake

Exploring real-world use cases

By the end of this chapter, you will have a solid foundation for understanding these key data storage
paradigms, enabling you to make informed decisions while integrating them into modern data
workflows. Throughout this chapter, we’ll use Dough & Delight, a fictional bakery, as our retail store
example. All data models and scenarios will reference this business to provide consistency and real-
world context.

Data Warehouses
Our retail store, Dough & Delight, has a relational database with separate tables for tracking customer
orders, pastries, prices, and transactions.

TABLE PURPOSE
Orders Stores general information about customer purchases, such as the order ID, customer

ID, and date of the transaction
Products Stores information about the items the bakery sells, such as product name, category,

and product ID
OrderDetails Tracks the specific items included in each order, including product ID, quantity, and

order ID
Price Maintains pricing information for each product, including product ID and unit price

At the end of the week, Dough & Delight wants to analyze the number of cupcakes that were sold. The
IT team picks up this request and starts running queries on the transactional database by following
these steps:



1. Querying the Orders table to retrieve orders placed within the past week

2. Filtering the Products table to identify entries related to cupcakes and joining this with
OrderDetails

3. Querying the OrderDetails table to retrieve quantities of cupcakes sold using the relevant product
IDs

4. Using the Price table to fetch the unit price of cupcakes if needed for revenue calculations

5. Finally, summing up the total quantity of cupcakes sold during the week

This operation would be successful, but the process has several issues. The transaction database
records thousands of transactions per second. The previous query would have to read thousands of
rows, filter the data, and join multiple tables to get the result. Because these databases aren’t built to
handle complex queries, they slow down business operations and processing time, especially during
peak hours. The IT team might even be forced to run these queries at night when the system is less
busy.

Another issue with traditional databases is fetching historical records. The price table contains the
current price of items. If the price of a cupcake changes, the table won’t record the previous prices. To
know how much a cupcake was sold for at different points in the week, we won’t have this data,
making our result inaccurate. This limitation also makes long-term trend analysis, like year-over-year
analysis, impossible with a traditional database.

These limitations arise because Dough & Delight is using a traditional database, which is optimized
for Online Transaction Processing (OLTP). OLTP systems are designed to handle high volumes of
short, simple transactions like placing an order, updating a product’s inventory, or processing a
payment. These systems are used to run the everyday operations of a business. The focus is on speed,
accuracy, and consistency. For example, when a customer places an order for a cupcake, the system
needs to save that order immediately, update the inventory, and confirm the purchase, all in real time.

However, OLTP systems aren’t built for deeper data analysis. This is where Online Analytical
Processing (OLAP) comes in. OLAP systems are designed to answer big-picture questions, such as
these:

How many cupcakes did we sell last week?

What were our top-selling products this month?

Are there seasonal patterns in customer purchases?

These questions usually require scanning through large amounts of historical data, joining multiple
tables, and performing calculations like totals, averages, or trends. They are complex and resource-
intensive, and running them on an OLTP system can slow everything down. To avoid this, many
businesses separate their systems into two parts: OLTP systems for handling real-time operations and
OLAP systems for analyzing data and generating insights. This separation ensures that transactions
stay fast and reliable, while analysts and decision-makers can still get the reports and dashboards they
need, without interfering with day-to-day business processes.

This is where a data warehouse proves valuable. A data warehouse is a special type of database
optimized for analytics. It’s a centralized repository designed to store large volumes of structured data
that contain current and historical data from various source systems. Unlike databases, data
warehouses are denormalized, and this consolidates all the data into one table and provides a unified
view of the data supporting querying, reporting, and data analysis. Popular data warehouses include
Amazon Redshift, Google BigQuery, Snowflake, and Microsoft Azure Synapse Analytics.



Extract, Transform, and Load (ETL)
An integral part of a data warehouse architecture is the extract, transform, and load (ETL) process,
shown in Figure 6-1. In this process, data is cleaned, standardized, and enriched before being loaded
into the data warehouse.

Figure 6-1: The extract, transform, and load process

Extract In Figure 6-1, the first step in the ETL process is extraction. In this phase, data is
extracted from various sources like relational databases, flat files, websites, etc. This phase also
involves understanding source systems and interacting with different file formats and schemas.

Transform The next step is to carry out transformations on the data to make it suitable for
analytics. Depending on the project requirements, the transformation process might include any
of the following:

Data Enrichment Enrichment involves adding extra data with valuable information that
would be helpful during analysis. For example, this enrichment makes it possible to map
customer locations or analyze geographic trends better. Enriched data can also include
metadata, which provides context about the data itself, such as the source, format, or time of
collection, enabling a more informed analysis.

Data Reformatting Reformatting is the process of transforming the structure of the data to
better suit analytical needs. An example of this is splitting a single column into multiple fields
for more granular insights or merging several columns into one.

Data Cleaning Cleaning involves handling inconsistencies in the dataset, such as
identifying missing or null values, removing duplicate entries, and correcting data points that
fall outside acceptable ranges. This step ensures that the data is accurate.

Data Standardization Data standardization is the process of making data uniform so that it
follows certain rules or guidelines. This means adjusting the data to a common format or
scale, so it’s easier to use together—for example, converting dates and times into a standard
format, such as YYYY-MM-DD or HH:mm:ss.

Data Aggregation This is the process of combining multiple data points into a summary. It
often involves applying functions like sum, average, count, or maximum/minimum to group
data by certain attributes.

Load The final step involves loading the transformed data into the data warehouse. There are
two types of loading strategies:

Full Load In this method, all the data is loaded into the data warehouse at once. It’s usually
done when the data warehouse is first set up or when a big update is needed. However, it can



take a lot of time and resources because it moves all the data. A full load is the best choice if
the data volume is small and the frequency of updates is low.

Incremental Load This method loads only the data that has been added or changed since
the last time it was loaded. It’s more efficient than a full load because it transfers less data and
takes less time. This method is often used for regular updates and when dealing with large
datasets that grow over time.

Schema Design
A data warehouse has two common schema designs that make it optimized for querying and reporting,
especially for analytical workloads. Before data is loaded into the data warehouse, this schema ensures
data integrity and structure. Here’s an overview of each:

Star Schema A star schema is a common data modeling technique used in data warehousing to
organize data for efficient querying. It organizes data into a central fact table, which stores
quantitative metrics like sales or revenue, and multiple surrounding dimension tables, which
contain descriptive attributes such as time, location, or product details.

As seen in Figure 6-2, this layout resembles a star, with the fact table at the center and
dimensions radiating outward. The structure reduces the number of joins required during
analysis, making it faster and more efficient for querying large datasets.

Fact Table The fact table stores measurable data about business events (numbers). In our
bakery Dough & Delight, the fact table would track sales metrics such as Quantity_Sold and
Total_Sale_Amount.

Figure 6-2: Star schema

Each record represents a unique sale, identified by SaleID. It also contains foreign keys linking to
dimension tables, ProductID, CustomerID, StoreID, and DateID, which provide additional details
about each sale.

Sales Fact Table

SALE
ID

PRODUCT
ID

CUSTOMER
ID

STORE
ID

DATE
ID

QUANTITY_
SOLD

TOTAL_SALE_AMOUNT

1 101 1001 201 301 2 50.00



SALE
ID

PRODUCT
ID

CUSTOMER
ID

STORE
ID

DATE
ID

QUANTITY_
SOLD

TOTAL_SALE_AMOUNT

2 102 1002 202 302 1 30.00
3 103 1003 203 303 5 100.00

Dimension Table The dimension tables provide descriptive information about the data in the
fact table like the product, customer, store, and date.

Product Dimension Table

PRODUCT ID PRODUCT NAME CATEGORY FLAVOR PRICE
101 Cupcakes Pastries Vanilla 25.00
102 Donuts Pastries Chocolate 30.00
103 Croissants Bread Butter 20.00
104 Brownies Desserts Chocolate 25.00

Customer Dimension Table

CUSTOMER ID CUSTOMER NAME AGE EMAIL LOYALTY LEVEL
1001 Alice Smith 28 alice.smith@gmail.com Bronze
1002 Daniella Peters 27 daniellap@gmail.com Gold
1003 Bob Johnson 45 bj@gmail.com Silver

Store Dimension Table

STORE ID STORE NAME LOCATION REGION
201 Dough & Delight NY New York, USA North America
202 Dough & Delight CA Toronto, Canada North America
203 Dough & Delight UK London, UK Europe

Date Dimension Table

DATE_ID DATE DAY OF WEEK MONTH QUARTER YEAR
301 2025-05-01 Friday May Q2 2025
302 2025-05-02 Saturday May Q2 2025
303 2025-05-03 Sunday May Q2 2025

By linking the sales fact table with these dimension tables, analysts can perform detailed queries.
Now, using these tables, it’s time to put your SQL skills to practice, so let’s take a look at some queries
to help you understand why data warehouses are optimized for analytics.

Example 1: Finding the Total Sales by Product
Using the existing tables, we want to get the total sales by product in a store. The following query
calculates the total sales amount for each product and lists them along with the product name.

This query joins the Sales (fact table) with the Products (dimension) table based on Product_ID.

It sums the sales amounts for each product.



The GROUP_BY groups the results by product name so the sales for each product are calculated
separately.

Finally, it first sorts the results (using ORDER_BY) in descending order (using DESC) by the total
sales amount, showing the most sold products.

SELECT 
    p.ProductName, 
    SUM(s.Total_Sales_Amount) AS Total_Sales
FROM 
    Sales s
JOIN 
    Products p ON s.Product_ID = p.Product_ID
GROUP BY 
    p.ProductName
ORDER BY 
    Total_Sales DESC;

Here’s the output of this query:

PRODUCT NAME TOTAL SALES
Cupcakes 100
Donuts 75
Croissants 30
Brownies 50

Let’s also compare how this would have been done on a transactional database. A hypothetical
transactional database table structure would have the following tables: Orders, Products, and
OrderDetails (as discussed earlier). Using this table structure, this is what the query would look like:

SELECT 
    p.ProductName,
    SUM(oi.Quantity * oi.Unit_Price) AS TotalSales
FROM 
    Orders o
JOIN 
    OrderDetails oi ON o.OrderID = oi.OrderID
JOIN 
    Products p ON oi.ProductID = p.ProductID
GROUP BY 
    p.ProductName
ORDER BY 
    TotalSales DESC;

In a transactional database, you typically need to join three tables to get total sales by product. First,
join Orders with OrderDetails to access individual product-level details within each order. Then, join
OrderDetails with the Products table to retrieve the product names. This is more complex than in a
data warehouse, where only a single join is often needed between a fact table and a dimension table.

Also, in contrast to a data warehouse where Total_Sales might already exist as a precomputed column,
transactional systems usually store raw data. This means you must calculate the total sales at query
time by multiplying Quantity * Unit_Price for each item sold.

Example 2: Finding the Sales by Region and Day of the Week
Let’s calculate the total quantity of products sold per region.



This query calculates the total quantity of products sold in each region by joining the Sales table
with the Stores table using the Store_ID.

It selects the Region from the Stores table and sums the Quantity_Sold from the Sales table,
representing the total number of products sold in each region.

The results are grouped by Region to calculate the total quantity sold for each distinct region.

Finally, the query sorts the results in descending order based on the Total_Quantity_Sold,
showing the regions with the highest total sales first.

This helps to identify which regions are selling the most products.

SELECT 
    st.Region, 
    SUM(s.Quantity_Sold) AS Total_Quantity_Sold
FROM 
    Sales s
JOIN 
    Stores st ON s.StoreID = st.StoreID
GROUP BY 
    st.Region
ORDER BY 
    Total_Quantity_Sold DESC;

Here’s the output of this query:

REGION TOTAL QUANTITY SOLD
Europe 5
North America 3

North America has a total of three items sold:

Store 201 sold 2 items.

Store 202 sold 1 items.

Europe has a total of 5 items sold:

Store 203 sold 5 items.

The result is grouped by the Region column from the Stores table, which displays the sum of the
Quantity_Sold for each region.

In summary, the fact and dimension table structure used in data warehouses enables highly efficient
summarization and aggregation. The schemas are denormalized, meaning that related data is grouped
together in fewer tables. This design reduces the number of joins required for queries, making
aggregations faster and easier to write and execute. Additionally, most modern data warehouses store
data in a columnar format, which is specifically optimized for read-heavy operations like scanning,
filtering, and aggregating across large datasets.

While traditional (OLTP) databases can support similar queries, they are not optimized for them.
OLTP systems are highly normalized to minimize data redundancy and maintain data integrity, which
leads to more complex joins across multiple tables during analysis. They also store data in a row-based
format, which is ideal for fast lookups and frequent inserts/updates but inefficient for aggregations that
touch large portions of the dataset. This means that even if a transactional database can produce the
same results, it would typically do so more slowly and with greater resource consumption.



Snowflake Schema
A snowflake schema is a variation of the star schema, where the central fact table is connected to
multiple-dimension tables. The only difference in the snowflake schema is that the dimension tables
are further broken into sub-dimensions to eliminate redundancy. The snowflake schema in Figure 6-3
is more complex than the star schema because it involves multiple related dimension tables, which can
make querying slightly more complicated.

Figure 6-3: Snowflake schema

Choosing Between the Star and the Snowflake Schema
When designing a data warehouse, choosing the right schema structure is important to ensure it meets
the analytical needs of the project. Both star and snowflake schema come with unique features,
making them suitable for different use cases, but understanding their trade-offs is important for
making decisions. We will be discussing these trade-offs under the following topics:

Complexity

Performance

Normalization

Maintenance

Scalability

Complexity
The star schema is much simpler when comparing the complexity of star and snowflake schemas. It
has a central fact table with dimensions, which are not broken down further. These dimension tables
contain all the descriptive data, even if it’s repetitive. This simplicity makes it intuitive to understand
and quick to design.



The snowflake schema normalizes the dimension tables. Instead of storing all information in a single
dimension table, the data is split into additional tables based on hierarchy qualities. For example, in a
snowflake schema, a Location table might be divided into Country, State, and City tables. Designing
this structure is more complex and requires a deeper understanding of relationships in the data. This is
common in systems like customer relationship management (CRM), healthcare data analysis, and
supply chain management, where reducing redundancy is a priority. Redundancy in a database refers
to unnecessary data duplication within the database. This occurs when the same information is stored
in multiple places or tables.

Performance
The star schema is an excellent choice for querying large datasets. Its denormalized structure means
fewer joins are needed when combining the fact table with the dimensions, so query execution is
faster. A star schema excels in analytical queries, especially where speed is critical for dashboards or
reports. The snowflake schema introduces more joins because the data is spread across multiple
related tables. These extra joins can slow down performance particularly with large datasets, since the
database must work harder to combine the tables.

Normalization
Normalization is the major difference between these two schemas. The star schema uses minimal
normalization, which means it keeps redundant data. For example, the same city name is repeated for
multiple customers. While this redundancy increases storage requirements, it simplifies the schema
and makes querying straightforward.

The snowflake schema is highly normalized. It removes redundancy by splitting data into smaller,
related tables. This reduces duplication and saves storage space but increases complexity.

Maintenance
The star schema is easier to maintain because it has fewer tables and simpler relationships. Adding a
new data field involves modifying just one or two tables, making debugging more straightforward.

Maintenance is more challenging in the snowflake schema because changes often require updating
multiple related tables. Also, troubleshooting can take more time and effort if a mistake occurs, such
as a missing relationship.

Scalability
The snowflake schema is more scalable because its normalized structure supports growth. Adding new
attributes, dimensions, or even entirely new datasets is easier to integrate without disrupting existing
tables. However, the star schema is less flexible for scaling. When adding new dimensions or
attributes, it might require restructuring tables, which can be difficult as the dataset expands.

In summary, star schemas are best for simplicity, speed, and ease of use. They are ideal for scenarios
where quick query performance is essential, especially with smaller to medium-sized datasets. The
denormalized structure of a star schema allows for faster reads, which is useful for reporting and
analysis. Snowflake schemas, due to their normalized structure, reduce redundancy and save storage
space, making them better for systems that require managing hierarchical data relationships, such as
an employee management system where each employee reports to a manager, forming a tree-like
structure. Choosing between the two depends on your specific use case and future growth
expectations.

Slowly Changing Dimensions



Our bakery, Dough & Delight, has successfully designed its data warehouse but in a few months, they
discovered that historical records weren’t being properly tracked. They couldn’t see how records
changed over time, and this created a huge gap in their dashboards. Fact tables change constantly to
reflect business events, but dimension tables are not modified as frequently. When data in a dimension
table changes multiple times, how do we keep track of that data?

Slowly changing dimensions (SCD) is a framework for updating and maintaining data stored in
dimension tables, as dimensions change. They are important because they help us to track how a
record is changing over time.

There are a lot of ways to handle slowly changing dimensions, and in this section, we will discuss the
three types of slowly changing dimensions.

Slowly Changing Dimensions (Type 1)
In SCD Type 1, if a record in a dimension table changes, the existing record is overwritten. With this,
the records in the dimension table always reflect the current state and no historical data is maintained.

For example, our Products Dimensions table stores information about the price of pastries sold in a
Dough & Delight, and this handles changing of records using SCD Type 1. If the record of the pastry
already exists in the table, it will be updated with the new information. Otherwise, the record will be
inserted into the dimension table. In data engineering, updating data if it exists or inserting it otherwise
is known as “upserting.”

PRODUCT ID PRODUCT NAME PRICE
93201 cupcake 5.40
07879 croissants 8.20

If the price of cupcakes changes to 7.80, we can use SCD Type 1 to capture this change in the
dimension table, producing the following result. Without SCD Type 1, the old price would remain in
the dimension table, leading to outdated or incorrect pricing in reports and dashboards.

PRODUCT ID PRODUCT NAME PRICE
93201 cupcake 7.80
07879 croissants 8.20

SCD Type 1 ensures that the data reflects the most recent current dimension and there are no duplicate
records in the table. This is also useful for real-time dashboarding, where only the current state is of
interest, but since only the most recent information is stored in the table, we can’t compare changes in
dimensions over time. This shows that SCD Type 1 has limitations when performing historical
analysis.

Slowly Changing Dimensions (Type 2)
In many businesses, it’s important to keep track of how data has changed over time. For example, if
the price of a cupcake changes or a supplier’s address is updated, we may still want to know what the
old value was and when the change happened. This is where Slowly Changing Dimensions (Type 2)
comes in. In SCD Type 2, historical data is maintained by adding a new row when a dimension
changes and Type 2 dimensions are the most common approach to tracking historical records. There
are two ways to implement an SCD Type 2 table:

Using a Flag In this method, a column is used as a flag to show which record is active, using
True if the record reflects the most current value, and False otherwise.



PRODUCT ID PRODUCT NAME PRICE IS CURRENTPRODUCT ID PRODUCT NAME PRICE IS CURRENT
93201 cupcake 5.40 False

07879 croissants 8.20 True

93201 cupcake 7.80 True

In the table, when the price of a product changes, a new row is added with the value True in the
IsCurrent column. To maintain historical data and accurately show the current state, the IsCurrent
column for the previous record is set to False.

Using a Timestamp
When there is a need for granular data, such as revealing how customers responded to a particular
price change, we can achieve this by recording transactions along with time-stamped dimension
references. This allows us to analyze behavior at specific points in time. Rather than using the
IsCurrent column, this uses a StartDate and an EndDate column. These dates represent the period
when the dimension was the most current. The EndDate is set to null since the data in this table is the
most recent.

PRODUCT ID PRODUCT NAME PRICE START DATE END DATE
93201 cupcake 5.40 2024-11-13 null
07879 croissants 8.20 2024-08-24 null

If the price of cupcakes changes to 7.80, a new record would be added. The EndDate for the first row
has been updated to the last day cupcakes were 5.4. With a new record added, the EndDate of the new
row would be set to null.

SCD Type 2 offers more information about data changes than SCD Type 1. In SCD Type 1, instead of
checking for whether a record is active or not, you can find the most recent timestamp and fetch the
active data row. You can also piece together the timestamps to get a full picture of how a row has
changed over time.

PRODUCT ID PRODUCT NAME PRICE START DATE END DATE
93201 cupcake 5.40 2024-11-13 2025-01-03
07879 croissants 8.20 2024-08-24 null
93201 cupcake 7.80 2025-01-04 null

Slowly Changing Dimensions (Type 3)
In the Type 3 SCD, a column is used to indicate a change. Rather than upserting, or adding a new row
to store changes, it uses current and previous columns, especially when the most recent data is
important or in cases where the dimension rarely changes.

The following table contains information about warehouse details. It helps the bakery keep track of its
warehouse locations for easier supply chain management. We have two columns to store the current
and previous addresses for the bakery’s warehouses. Since each of these warehouse addresses are still
valid, the PreviousAddress column is populated with NULLs.

WAREHOUSEID WAREHOUSENAME CURRENTADDRESS PREVIOUSADDRESS
562819 Cinnamon Square Depot Parkside Avenue NULL
930193 Butter & Flour Hub Eastwood Plaza NULL



If Cinnamon Square Depot changes its address, the updated table will look like the following. To
account for the new address, Parkside Avenue is moved to the PreviousAddress column, and Riverside
Mall takes its place in the CurrentAddress column. This means that only a single historical record for a
single-dimensional attribute can be maintained.

WAREHOUSEID WAREHOUSENAME CURRENTADDRESS PREVIOUSADDRESS
562819 Cinnamon Square Depot Riverside Mall Parkside Avenue
930193 Butter & Flour Hub Eastwood Plaza Null

Choosing Between Type 1, Type 2, and Type 3
How do you choose between the three types?

Type 1, Slowly Changing Dimensions, is suitable for situations where historical tracking is
unnecessary and only the latest data matters. For example, correcting a misspelled name would
be an ideal use case. These changes do not impact historical reporting because the business only
cares about the current state. However, it’s essential to confirm with stakeholders that overwriting
data aligns with business objectives, as there’s no way to recover the original data after the
update.

Type 2, Slowly Changing Dimensions, preserves history by adding a new row such as metadata
—start and end dates or a flag for the current version—for each change. This type is best suited
for situations where maintaining a full history of changes is critical, such as tracking customer
addresses or employee roles over time. It enables detailed historical analysis and allows reports to
reflect the state of the data at any specific point in the past.

Type 3, Slowly Changing Dimensions, stores limited historical information by adding new
columns for previous values. This approach works well when the business needs to track only the
most recent change, such as storing an employee’s current and previous job titles. It is less
complex than Type 2 and requires less storage since only a fixed number of changes are tracked.

Data Marts
A data mart is a subset of a data warehouse designed to focus on a specific business area or
department within an organization. As shown in Figure 6-4, it contains a smaller set of data compared
to the entire data warehouse, and this makes it easier for users to access and analyze relevant
information.

Figure 6-4: Data mart architecture

Benefits of a Data Mart
The advantages of a data mart are as follows:



Domain-specific focus: Data marts allow departments in an organization to focus on the specific
data they need for their operations without having to navigate the complexity of a full data
warehouse.

Better performance: Data marts contain a smaller subset of data, which provides a faster query
performance compared to querying the entire data warehouse. This reduces the load on the main
warehouse and enhances the efficiency of business operations.

Cost efficiency: A data mart provides the ability to segment data and store only the relevant
information needed by a department, thereby reducing the costs associated with setting up an
entire data warehouse.

Maintenance: Data marts are smaller and less complex than data warehouses, making them
easier to maintain, especially when the volume of data isn’t large.

Challenges with Data Marts
Data marts can be incredibly powerful. They give departments the flexibility to focus on their own
subject areas and reporting needs. For instance, the marketing team might need a customer-focused
view, whereas the finance team might want a detailed transactional data view. So, each team builds its
own data mart to serve its goals. That’s great, but in a large enterprise, this flexibility can become an
issue because different teams would build and customize their own data marts independently, and
although that solves short-term problems, it can create long-term issues.

Over time, this decentralized approach can lead to what we call data silos. A data silo is when
different departments store and manage their data in isolation, often in separate systems or formats.
These silos prevent teams from accessing each other’s data, limit collaboration, and most importantly,
break the consistency of your enterprise data.

When marketing’s version of revenue doesn’t match finance’s numbers, and both differ from what
operations is tracking, you lose your single source of truth. This inconsistency leads to duplicated
work, skewed reports, and poor decision-making.

Your role in designing a data storage solution is to balance flexibility with structure. Yes, give teams
what they need. But also ensure there’s a unified data strategy, one that prevents silos and ensures
reliable insights across the business.

Data Lakes
Our retail store, Dough & Delight, made a lot of sales in the past year and expanded its products to
over 50 stores worldwide. Its website now has new features, such as customer reviews and product
and recipe videos, and it generates more data in both structured and unstructured formats. The IT team
wants to store all of this data in one bucket, and using a data lake as an additional storage solution
would be the best choice for this expansion.

A data lake is a centralized repository that stores large volumes of structured, semi-structured, and
unstructured data at any scale. Unlike a data warehouse, which organizes data into predefined
schemas, a data lake allows you to store data in its raw format until needed. In terms of volume, data
lakes are usually built on scalable cloud systems, meaning they can handle growing amounts of data
without running out of space. With the variety of data in the data lake, the IT team can launch various
initiatives like building machine learning models on customer reviews, create personalized marketing
campaigns, or optimize their supply chain. Data lakes offer flexibility, scalability, and support for
diverse data types, and it’s also cost effective. Popular data lakes include Amazon S3, Azure Data
Lake Storage, and Google Cloud Storage.



How Do Data Lakes Work?
Data lakes are designed to store large volumes of diverse data in its raw form. According to Figure 6-
5, to make this data useful, it flows through several stages, from ingestion to storage, enrichment, and
finally, consumption, and each stage plays a key role:

Figure 6-5: Data lake architecture

Data Sources Data lakes gather data from multiple sources, such as transactional databases,
social media platforms, websites, and more. This data can include structured information (like
tables and spreadsheets), semi-structured data (like JSON or XML), and unstructured content
(like images, videos, or text).

Extract, Load, and Transform (ELT) Process Unlike data warehouses, which typically
follow an extract, transform, and load (ETL) process, data lakes use an extract, load, and
transform (ELT) approach. Data is extracted and directly loaded into the lake in its raw format
without immediate transformation. In the data lake, the data is organized hierarchically in folders
using object storage systems such as Amazon S3, Azure Blob Storage, or Hadoop Distributed
File System (HDFS).

Storage Layer The storage layer in the data lake is essential for managing data in different
stages as it arrives. Once data is loaded into the data lake, it doesn’t get dumped in one big pile—
it passes through three different zones: the raw zone, the cleansed zone, and the curated zone.

Raw Zone The raw zone contains unprocessed, raw data as it is ingested from various
sources into the data lake. The data is stored without any modifications, cleaning, or
transformation. We keep it in its original form so we can always go back to it if needed.

Cleansed Zone Next, we move the data into the cleansed zone. Here’s where we start
fixing date formats, handling missing values, correcting inconsistencies, and just doing the
basics that make the data usable. We’re not adding business logic yet—we’re just making
sure the data is accurate and structured enough for processing.



Curated Zone The curated zone contains data that is enriched and transformed to be more
business-specific and ready for consumption. This is the version of data stakeholders
consume and that dashboards run on.

For instance, in Amazon S3, a widely used data lake service, users typically create separate directories
(or folders) for each data zone, such as raw, cleaned, and curated. As raw data is ingested, it is stored
in the appropriate user-defined folder. This deliberate organization helps maintain a structured and
easily accessible data storage system.

s3://your-bucket-name/
    ├── raw-zone/
    │   ├── source1/
    │   │   ├── 2025-01-01/
    │   │   │   ├── data_part1.json
    │   │   │   ├── data_part2.json
    ├── cleansed-zone/
    │   ├── source1/
    │   │   ├── 2025-01-01/
    │   │   │   ├── cleaned_data_part1.json
    │   │   │   ├── cleaned_data_part2.json
    ├── curated-zone/
    │   ├── reports/
    │   │   ├── monthly_sales_2025-01.csv
    │   │   ├── monthly_sales_2025-02.csv
    │   ├── machine-learning-models/

Data Integration When data first lands in a data lake, it’s unorganized and raw. It hasn’t been
structured or labeled and, in that state, it’s hard to work with. You can’t expect analysts or
downstream systems to make sense of it right away. That’s where metadata comes in. Metadata is
like a label that tells you what’s inside your data, where it came from, how it’s structured, and
how to handle it. It doesn’t change the data itself, but it adds critical context. By extracting
metadata, such as schema, data types, source system, and timestamps, we turn the raw data into
something we can work with. Metadata is what makes a data lake navigable.

Data Cataloging
Once we’ve extracted metadata from the raw data in our lake, we need to set up a catalog. A data
catalog is like the library’s index—it organizes all that metadata into a searchable, browsable format,
typically using SQL tables or JSON documents. These catalog entries don’t store the actual data; they
reference it. This catalog enables end users to

Quickly discover datasets relevant to their work

Understand a dataset’s lineage and structure without opening raw files

Ensure they’re using consistent definitions across the company

So rather than going through folders and files, they query the catalog and save time.

Schema-on-Read
With a catalog in place, a data lake uses a schema-on-read. Unlike traditional systems where the
schema is fixed before data is stored (schema-on-write), in data lakes we apply a schema only when
we need to access or analyze the data. This flexibility allows users to define the structure and format
of the data, depending on the use case. For instance, a machine learning engineer might access data
from the catalog to build predictive models, defining the schema only at the time of model training or



analysis. The same dataset could be used differently by a business analyst and a data scientist, each
applying their own schema at query time.

In summary, data lakes are a highly versatile solution for storing massive data volumes in structured
and unstructured formats. They offer cost-effective storage for raw data, allowing organizations to
retain historical data that may be valuable in the future. By leveraging a data lake, organizations
establish a foundation for big data analytics, predictive modeling, machine learning, and other
initiatives.

Challenges of Data Lakes
The main challenge of using a data lake is storing huge amounts of raw data without clear objectives,
which can lead to a “data swamp.” To prevent this, it is essential to ensure that the data stored is
usable. This can be achieved through effective data cataloging, so everyone knows what data exists,
where it lives, and how to access it, and strong governance frameworks to enforce data quality,
ownership, and access control.

Data Lakehouse
Dough & Delight now has an operational transactional database, its analytics and reporting needs
sorted, and a way to store structured and unstructured data together; but at the end of the year, they
want to answer more specific questions:

Which recipe videos do customers like the most?

Are website reviews affecting sales?

Is there a link between positive reviews and more purchases?

To answer these questions, they need data from both their data lake and data warehouse. A storage
solution that combines these two to give a single, unified view is called a data lakehouse. A data
lakehouse is a modern data architecture that combines the best features of a data lake and a data
warehouse, making it easier to store, manage, and analyze all types of data within a single system.

Features of a Data Lakehouse

Unified storage: Just like a data lake and data warehouse, a data lakehouse can store massive
amounts of raw, unstructured, and semi-structured data and also organize structured data for fast
queries. You get the scalability of a data lake and the organization of a warehouse in one place.

Transactional support: A data lakehouse supports ACID (Atomicity, Consistency, Isolation,
Durability) transactions, ensuring data consistency when multiple users or processes are
accessing and modifying the data.

Performance: Data lakehouses deliver query speeds similar to traditional data warehouses, with
indexing, caching, and optimization techniques.

Flexibility: Whether you're running dashboards for executives or building machine learning
models, a lakehouse can handle both, so there's no need to copy data between tools.

Cost-effectiveness: Since you don't need to maintain separate systems for raw storage and
analytics, you cut down on infrastructure and ETL costs.

Data Lakehouse Architecture



A data Lakehouse architecture, shown in Figure 6-6, outlines the flow of data as it moves through
different stages in a unified framework. In the first stage, data is ingested from diverse sources such as
transactional systems, IoT devices, streaming platforms, or external APIs using an Extract and Load
process. This raw, unprocessed data is stored in a data lake.

The architecture in Figure 6-6 consists of the following layers:

Storage layer: The storage layer is the data lake layer for all of your raw data.

Metadata layer: The Lakehouse extracts all the metadata and stores it in a separate catalog in a
structured format. It provides a detailed catalog of all the data objects in the data lake.

Consumption layer: The consumption layer exposes all your data for use, using a query engine
that connects to the data lake and data catalog. For example, if a data analyst needs to access the
data warehouse, the system would fetch structured records from the catalog like videos, images,
and reviews and apply necessary transformations like dates, addresses, and prices to build
separate tables. The data analyst can then apply a star schema to arrange these tables into fact and
dimension tables. This can now be connected to visualization applications to create dashboards
for the business.

Figure 6-6: Data lakehouse architecture

The Key Differences Between a Database, Data Warehouse,
Data Lake, and Data Lakehouse

A database stores real-time transactional data that supports day-to-day application operations.

A data warehouse stores both current and historical data from one or more systems, organized in
a predefined and structured schema, making it easy for business analysts and data scientists to
analyze the data.

A data lake stores both current and historical data from one or more systems in its raw,
unprocessed form.



A data lakehouse combines the features of both data lakes and data warehouses, offering the
flexibility of raw data storage with the structure and performance optimization for analytics,
allowing for more efficient data analysis. Table 6-1, compares these storage designs under
various key factors.

Table 6-1: Comparison Between a Database, a Data Warehouse, and a Data Lake

ARCHITECTURE WORKLOADS DATA
STRUCTURE

USE CASE PERFORMANCE STORAGE
FORMAT

Database Operational and
Transactional

Structured data
with
predefined
schema

Real-time
applications,
transactional
processing

Fast read/write for
transactional
workloads

Row-based
format
(ideal for
fast, record-
level
transactions)

Data Lake Analytical Structured,
semi-
structured, and
unstructured

Storing
large
volumes of
raw data for
future
analysis

Scalable for large
data but not real-
time optimized

Flexible
format (e.g.,
Parquet,
ORC,
JSON,
CSV)

Data Warehouse Analytical Structured data
with optimized
schemas

Reporting,
business
intelligence,
complex
querying

Optimized for
read-heavy and
complex analytical
queries

Columnar
format
(ideal for
aggregations
and
analytical
processing)

Summary
A data warehouse is a special type of database optimized for analytics, and it consolidates all the
data into one table and provides a unified view.

An integral part of a data warehouse architecture is the Extract, Transform, and Load (ETL)
process, where data is cleaned, standardized, and enriched before being loaded into the
warehouse.

The transformation step involves data enrichment, reformatting, cleaning, standardization, and
aggregation.

Data is loaded into a data warehouse, using two loading strategies: full or incremental load. A full
load is the best choice if the data volume is small and the frequency of updates is low, while an
incremental load is often used for regular updates and when dealing with large datasets that grow
over time.

Data warehouses are optimized for OLAP systems, they're built to handle large volumes of
historical data and perform complex queries. On the other hand, traditional databases are
optimized for OLTP systems, they're designed for fast, reliable transaction processing.

A data warehouse supports two types of schema designs, the star and snowflake schema.



A star schema organizes data into a central fact table, which stores quantitative metrics, and
multiple surrounding dimension tables, which contain descriptive attributes.

A snowflake schema is a variation of the star schema, where the central fact table is connected to
multiple dimension tables.

Slowly changing dimensions (SCD) is a framework for updating and maintaining data stored in
dimension tables, as dimensions change. There are 3 types: Type 1, Type 2, and Type 3.

Type 1 Slowly Changing Dimensions are suitable for situations where historical tracking is
unnecessary, and only the latest data matters.

Type 2 Slowly Changing Dimensions preserves history by adding a new row, such as metadata—
start and end dates or a flag for the current version.

Type 3 Slowly Changing Dimensions stores limited historical information by adding new
columns for previous values.

A data mart is a subset of a data warehouse designed to focus on a specific business area or
department within an organization.

A data lake is a centralized repository that stores large volumes of structured, semi-structured,
and unstructured data at any scale.

The storage layer of a data lake contains three zones: the raw zone, which contains unprocessed
data; the cleansed zone, where cleaned data is stored; and the curated zone, where the
transformed data is kept.

In a data lake architecture, data cataloging is the process of organizing and indexing metadata
(information about data) to make it easier for users to find, understand, and access the data stored
in a data lake.

Data lakes operate on a schema-on-read principle, where the data structure is applied only when
the data is accessed or queried, not when it’s stored.

A data lakehouse is a modern data architecture that combines the best features of a data lake and
a data warehouse. Its architecture consists of a storage, a metadata, and a consumption layer.



CHAPTER 7
Data Pipelines
The data engineering life cycle consists of various stages, but how does data
flow between these stages? It flows through data pipelines. Data pipelines
power data systems and are a foundational component of data engineering.
A data pipeline simply moves data between systems, applies
transformations to make it analysis-ready, or does both concurrently.

It’s a structured system that controls the flow of data from one or more
sources to one or more destinations. Along the way, it can perform
operations like cleaning, filtering, joining, or aggregating data. Data
pipelines can run in real time or in batches, depending on the needs of the
business, and it usually follows a series of stages: collect, ingest, process,
store, and serve.

IN THIS CHAPTER, YOU WILL LEARN THE FOLLOWING:

Popular ingestion methods in data engineering

How batch and streaming pipelines work

Publish and subscribe patterns in message queues

Windowing in stream processing

The Lambda architecture

Data orchestration and its key components

Scheduling and automation in data pipelines

Best practices for designing directed acyclic graphs (DAGs)

How to build an ETL pipeline and automate with Apache Airflow

At the end of this chapter, you will have a good understanding of various
types of data pipeline architectures, their use cases, and the techniques
needed to design, build, and manage them effectively.



Batch Pipelines
Imagine a fintech (financial-technology) company that offers loan services.
At the end of each month, the company must generate detailed financial
reports that include metrics such as total loans issued, interest accrued, and
customer payment trends. To support this, a data pipeline is designed to run
automatically at midnight on the last day of the month. It collects all
relevant transaction data from the database, processes it in bulk, and stores
the results in a data warehouse for reporting. This is a classic example of
batch processing. Batch processing involves processing large volumes of
historical data at scheduled intervals, and this makes it ideal for tasks where
the data does not need to be processed in real time, such as generating
monthly reports, performing data backups, or processing payroll.

Batch pipelines can ingest data in two ways, time or size intervals. In time-
based intervals, data is ingested into the pipeline at fixed time intervals.
This method is ideal when data needs to be processed regularly (e.g., every
hour, day, or week), especially in data warehousing. In size-based intervals,
data is ingested into the pipeline once a certain volume threshold is reached,
irrespective of the time taken to accumulate the data. For example,
processing can begin when a specific data size, such as 1 GB or 10,000
records, is reached. This method is suitable when there are significant
fluctuations in the rate of data generation, and it also helps with efficient
resource utilization by ensuring sufficient data volume is available before
triggering processing.

Components of a Batch Pipeline
To understand how batch processing works in practice, it’s helpful to
understand the key components involved. As shown in Figure 7-1, a typical
batch pipeline has the following stages, each playing an important role in
the movement and transformation of data:

Data Sources

Staging Area

Data Transformation

Data Storage



Data Consumption

Job Scheduler

Figure 7-1: Batch pipeline

Data Sources
Data sources are the starting point of any pipeline. The first step is
collecting raw data from various sources. In the fintech company scenario,
this could include the following:

Transactional databases storing daily records of customer transfers,
card payments, or mobile deposits

CSV/JSON exports from customer support logs

APIs from payment gateways or third-party services that provide
exchange rates

Staging Area
Once collected, the raw data is temporarily stored in a staging area, a safe
place where data lands for a short duration before it’s cleaned or
transformed. A staging area could be a cloud storage or even a staging table
in a database. This staging area is also important for backups and acts as a
safeguard for data that might be missed if your batch job fails. For example,



if the batch job that generates the monthly report fails, you don’t need to re-
pull everything—you just fetch the data from the staging area.

Data Transformation
The transformation layer is where the actual business logic and data
transformations happen. As discussed in the previous chapter,
transformation involves cleansing, filtering, aggregating, joining, and
enriching data. In a batch pipeline, these transformations usually happen in
bulk. The process could be done on an extract, transform, and load (ETL)
engine like Apache Spark for large datasets or a simple Python script for
smaller datasets.

Data Storage
After data is processed, it needs to be stored in a system that supports
efficient querying or long-term storage. This could be a data warehouse,
data lake, or database, depending on the nature of the data and the use case.
For instance, in the fintech company’s monthly reporting scenario, where
metrics like total transactions over the months are tracked, a data warehouse
would be the most suitable option, because it supports the kind of
aggregated, historical analysis often required.

Data Consumption
This is where the processed data is made available for upstream and
downstream users. A batch data pipeline can feed data directly into
dashboards, reporting tools, or internal business systems. In the context of
our fintech company, analysts might use the monthly aggregated data to
populate dashboards tracking key metrics. Data scientists could use
historical transaction trends to train models. Internal systems like alerting
tools may consume this batch data daily to flag unusual behavior.

Job Scheduler
Once a pipeline has been designed, it needs a trigger to start running. This
is where we use a job scheduler. A job is a specific unit of work within the
pipeline. In batch processing, these jobs are triggered on a regular schedule
by a scheduler. A scheduler ensures that tasks run at the right time, daily,
weekly, or monthly, without manual intervention. For simple cases, this



could be a cron job, which is a time-based command scheduler in Unix-like
systems, that can be configured to run a script every evening. In more
complex pipelines, tools like Apache Airflow are used to provide more
control, such as handling dependencies between jobs and retrying failed
steps.

In the fintech scenario, the job scheduler might trigger a
sequence every month, which may look like this:

Pull the past month’s transactions

Run transformation logic to compute the total transaction value and
active users

Load the cleaned data into the data warehouse

Notify the analytics team or automatically refresh business dashboards

ETL Pipelines vs. ELT Pipelines
In the previous chapter, we discussed ETL and ELT processes. ETL and
ELT are two methods that enable batch processing. Each method is suited
for different use cases depending on the system’s infrastructure and data
requirements.

Extract, Transform, and Load (ETL)
ETL supports batch processing by extracting data from source systems,
transforming it according to business rules, and then loading it into a target
system. This process is often used in traditional data workflows where jobs
are scheduled during off-peak hours to reduce the strain on source systems.
For example, pulling customer data from a CRM, normalizing and
aggregating it, and storing it in a centralized data warehouse. While ETL is
effective in many scenarios, it has some challenges. In ETL, transformation
happens before loading, which can slow down various processes, especially
for large datasets.

Extract, Load, and Transform (ELT)
The ELT process was introduced as a modern data integration process,
particularly for organizations working with big data and cloud-based



architectures. Instead of transforming data before loading it, as in traditional
ETL, ELT loads raw data directly into the target system, such as a cloud
data warehouse or lakehouse, and applies transformations in place. This
design significantly reduces performance bottlenecks because it leverages
the distributed computing and parallel processing capabilities of modern
data warehouse platforms. It’s also effective for evolving analytical needs,
as it allows data to remain accessible and reusable for multiple
transformation workflows.

In the fintech monthly report example, the company might prefer ELT since
it uses a modern data warehouse and deals with large volumes of data. The
workflow could look like this: extract data from CRMs, transaction
systems, and marketing tools; load it in raw form directly into a cloud data
warehouse; and then transform it using SQL scripts to calculate metrics.

Stream Pipelines
We’ve solved one of the data processing needs for the fintech company, but
there are more requirements. The same fintech company wants to monitor
transactions to detect fraudulent activities, which requires immediate action
like freezing an account or blocking a transaction, to prevent further
damage. Here is why a batch pipeline wouldn’t work. In this scenario, every
millisecond matters, and a batch pipeline cannot analyze individual
transactions in real time, so it is not appropriate for a fraud detection
system, which needs to be able to analyze each transaction as it occurs. If
the fintech company waits to process transactions in bulk, fraudulent
activity might go unnoticed until the next processing cycle. With these
limitations, the fintech company can implement a streaming pipeline.

How Would This Work?
The bank’s payment gateway continuously generates transaction data,
which is streamed in real time to a stream processing system. The system
analyzes each transaction against a set of predefined fraud detection rules to
identify suspicious patterns. If a transaction is flagged as potentially
fraudulent, the system triggers an alert. The alert is sent to the customer for
confirmation, and the transaction is temporarily held. Also, a dashboard for
fraud analysts is updated in real time with the flagged transactions for



further investigation. The benefit of using stream processing is that
fraudulent transactions are identified and mitigated in real time, reducing
potential losses.

Stream processing is the continuous processing of events as data streams
are generated in real time or near real time. In stream processing, an event
is a single unit of data, or a record representing an occurrence or change of
state in a system. When a user transfers money between accounts, this
action generates an event with details like the transfer amount, source,
destination, and timestamp.

Streaming pipelines have three major characteristics:

Event-driven: Streaming pipelines are triggered by individual events,
such as a user swiping a card or clicking a button. This means the
system doesn’t wait for a scheduled batch; instead, it responds as
events occur.

Continuous data processing: Unlike batch systems that work on
fixed intervals, streaming pipelines ingest and process data
continuously. As soon as data enters the pipeline, it’s processed right
away, without waiting for a collection of other data points.

Low latency: This refers to the speed at which the system responds. A
low-latency system ensures that from the moment an event occurs to
when it is processed and responded to, only a minimal amount of time
passes (often milliseconds to seconds).

Other common use cases for streaming pipelines include real-time analysis
of stock market data to identify price fluctuations, as well as monitoring
social media feeds to track sentiment and user behavior.

Components of a Streaming Data Pipeline
A streaming data pipeline has various components that work together to
process, analyze, and deliver data in real time. In Figure 7-2, each
component in a streaming data pipeline serves a specific purpose, and a
proper understanding of these components would be useful while designing
and maintaining a streaming pipeline. Let’s look at each of them in detail.



Figure 7-2: A streaming pipeline architecture

Producers
Producers are the origin points of data in a streaming pipeline that
constantly generates data streams to be processed. Depending on the
application, producers can take many forms. For example, in an industrial
setting, IoT sensors on machinery might produce data about temperature,
pressure, and vibrations in real time. In financial systems, stock trades,
deposits, and withdrawals are examples of continuous data production.
Social media platforms are another classic example, where every post,
comment, like, or share constitutes an event in the data stream.

Producers are critical because they form the starting point for the entire
pipeline. They must be reliable and consistent, as any failure or downtime
can disrupt the flow of data through the pipeline, leading to gaps in
analysis. The format of the data emitted by producers is often semi-
structured, like JSON or XML, which makes it easier to handle and
transform in subsequent pipeline stages.

Message Queue
A message queue sits between the data producers and the processing
framework, and its primary role is to ensure that data is reliably collected,
ordered, and passed along for further processing, ensuring no message is
lost even if the consumer is temporarily unavailable. This component
decouples the producers from the downstream systems, enabling the
pipeline to scale independently at both ends. However, a message queue is
typically managed by a message broker. A message broker is the system



that orchestrates how messages are handled within the queue. It handles the
following:

It temporarily saves messages until they’re processed.

It ensures messages get delivered at least once, exactly once, or at
most once.

It resends messages if they fail to be processed (called retries).

It confirms successful message receipt and processing (called
acknowledgments).

Message brokers follow a pattern called Publish and Subscribe, or Pub/Sub,
which is fundamental to many streaming systems and forms the basis for
how data flows between producers and consumers. In this model, producers
(data sources) “publish” messages to an intermediary system without
knowing who will receive them. Consumers then “subscribe” to receive
messages on specific topics of interest.



HOW DOES A PUB/SUB WORK?
Imagine we have an e-commerce platform that implements a
notification system to keep customers, warehouse staff, and delivery
partners updated about orders. The order management system,
producer , produces events as orders are placed, shipped, or
delivered. The message broker organizes these events into what we
call topics like order/placed, order/shipped, and order/delivered. We
have multiple consumers like the customer app and warehouse
management system, also known as subscribers , subscribing to
these topics.

The customer app subscribes to the order/placed, order/shipped,
and order/delivered topic to send real-time updates to customers
about their orders. The warehouse management system subscribes
to orders/placed to prepare for packaging and shipping. Then the
delivery partner system subscribes to orders/shipped to plan
delivery routes.

In Pub/Sub patterns, topics serve as categories to which messages
are published. They act as a sorting mechanism, allowing producers
to tag messages and consumers to subscribe only to messages that
relate to their specific interests. Messages published to a topic are
typically immutable (unable to be changed), and consumers
subscribing to that topic receive copies of the messages. Topics
enable the streaming system to handle multiple data streams
independently, allowing for better organization and filtering of
information.

If an event arrives and it doesn’t match any of the defined topics,
our pipeline may crash or simply ignore the event. A common
technique to manage such errors is using a dead letter queue
(DLQ). A DLQ is a special storage mechanism where problematic
or unprocessable events are sent instead of being discarded. When
an invalid event arrives, the system redirects this event to the DLQ
and these events in the DLQ are stored along with their metadata
for further investigation. Engineers can later review the DLQ to



analyze why the event was not processed, which makes error-
handling and maintaining integrity important.

Schema Registry
A schema registry is a centralized place where the structure (schema) of
these event messages is stored and managed. For example, an event for a
placed order might look like this:

{
  "order_id": 123,
  "customer_name": "Jane Doe",
  "delivery_address": "123 Maple St",
  "order_time": "2025-01-15T10:00:00Z"
}

Later, the development team decides to add a new field to the schema, such
as preferred_delivery_time, to include more information about the order.
Now, the event looks like this:

     {
       "order_id": 123,
       "customer_name": "Jane Doe",
       "delivery_address": "123 Maple St",
       "order_time": "2025-01-15T10:00:00Z",
       "preferred_delivery_time": "2025-01-15T12:00:00Z"
     }

If the consumer doesn’t know about this new field, it will crash or throw
errors when subscribing to the event. A schema registry is useful here,
because it helps coordinate these changes smoothly. By using a schema
registry:

Schema evolution is centrally managed, allowing producers to register
new versions of message schemas. This ensures that changes to the
data structure, such as adding, removing, or modifying fields, are
tracked and controlled over time.

Both producers and consumers can query the registry to access current
and historical schema versions. This helps them validate and interpret
data correctly, even when operating on different schema versions.



Backward and forward compatibility is maintained, meaning updated
schemas can coexist with older versions. This allows changes like
adding optional fields without breaking existing consumers, or reading
older messages using newer consumers. This compatibility promotes
seamless feature integration, enabling data engineers to introduce
updates to data formats while maintaining the stability and
functionality of existing systems.

Stream Processor
A stream processor is the engine that processes, transforms, and analyzes
data in real time. Once the message broker delivers data, the stream
processing framework handles various operations such as filtering,
aggregation, transformation, and enrichment. For example, in an e-
commerce application, the framework might calculate the real-time total
sales for each product as they occur. Stream processors have several key
features that make them efficient these operations:

Windowing

Checkpointing

Watermarks

Stateful processing

Windowing
In streaming pipelines, windowing groups events into time-based snapshots
to aggregate and process data over defined periods. Streaming windows can
be divided based on different criteria. This could be time-based, for
instance, 5-minute intervals, or count-based, grouping every 1,000
messages or grouping changes in data value. We can also apply
mathematical computations to streaming windows. These could be
aggregations such as sum, count, and average, or transformations like joins
and maps to streaming windows. Examples of these computations include
the following:

Finding the total number of vehicles passing through a toll booth every
15 minutes to detect congestion patterns.



Tracking the frequency of a hashtag every 30 seconds to identify viral
trends in real time.

Aggregating energy consumption data from smart meters every hour
for billing purposes

Tracking the number of viewers watching a live stream in 1-minute
intervals to monitor engagements

Without windowing, data streams are infinite, and the event system would
need to process and store all incoming data indefinitely, but by limiting the
data volume that needs to be processed at any given time, streaming
windows help reduce computational load and the use of system resources.

In streaming windows, the concept of time is important to ensure accuracy,
because this determines how data is ordered, grouped, and analyzed. When
working with streaming data, time is viewed in three different ways:

Event time: Event time is the timestamp indicating when the event
occurred in the real world, as recorded by the event producer.

Ingestion time: Ingestion time refers to when an event is received and
recorded by the streaming system.

Processing time: Processing time is when the streaming system
processes an event, based on the system clock of the machine
performing the computation.

For example, if a sensor records a temperature reading at 10:00:00 a.m.,
that’s the event time. If, due to network delays, the data doesn’t reach the
system until 10:00:05 a.m., that’s the ingestion time. And, assuming there is
a delay before the system analyzes that event, which might happen at
10:00:10, making this the processing time.

The choice between event time, ingestion time, and processing time
depends on what your application needs. Event time is best when you need
accuracy based on when an event happened, like in IoT or finance.
Ingestion time is simpler and works well when you need quick data, like for
social media tracking or logging, especially when event timestamps aren’t
reliable. Processing time focuses on speed, making it ideal for real-time
applications like dashboards, alerts, or gaming leaderboards. Choosing the



right time type ensures your system meets the accuracy, complexity, and
speed needed for your task.

Types of Streaming Windows
In stream processing, various types of streaming windows define how
windows are grouped. We will describe each of them, their specific use
case, and how they work. In this section we will be using the following
terms commonly, so let’s define them:

Window: A window segments a continuous data stream into
manageable chunks.

Contiguous: This means that there are no gaps or interruptions
between items in a data stream.

Non-overlapping: This means that there is no shared content between
intervals. Each segment is independent and does not include elements
or data points from another segment.

Tumbling Window
Tumbling windows process streaming data in fixed-size, contiguous, and
nonoverlapping chunks. In Figure 7-3, where we defined a tumbling
window of 30 seconds, the stream would be divided as follows: 0–30 
seconds, 30–60 seconds, 60–90 seconds, and so on. All tumbling windows
are of the same size and are nonoverlapping, meaning that each event is
uniquely assigned to a single tumbling window and processed only once.

Figure 7-3: 30-second tumbling window

Tumbling windows are useful when you need to analyze data in equal,
separate chunks, making it easier to compare results over time. For
example, you could use tumbling windows to measure e-commerce
transactions minute by minute, giving you clear insights into how users are



purchasing products. They’re also helpful in finance for tasks like
calculating moving averages for stock prices over fixed periods.

However, choosing the right window size can be tricky. If the window is too
big, you might miss smaller details in the data. On the other hand, if it’s too
small, you’ll end up with too many windows, each having just a little data
and this can make it hard to spot important trends or patterns.

Hopping Window
Hopping windows let you process data in fixed-size chunks that overlap and
move forward at a set interval. In Figure 7-4, each window lasts 60 seconds,
and it moves forward and “hops” every 30 seconds. This means each new
window overlaps with the previous one.

Figure 7-4: Hopping window

Unlike tumbling windows, where each event belongs to only one window,
an event in a hopping window can appear in multiple windows. This
overlap is useful because it ensures that no data is missed. It’s important to
note that the hop interval (how much the window moves forward) should be
smaller than the window duration; otherwise, there could be gaps between
windows, leaving some data unprocessed.

Hopping windows are great for continuous, detailed analysis where you
need to track changes over time and catch sudden spikes or drops in data.



For example, if a sudden spike in network traffic happens at the edge of one
window, it may not be fully captured by that window, but because the
windows overlap, the spike will likely be included in the next window as
well. This overlap ensures that any important changes or unusual events are
analyzed across multiple intervals and reduces the chance of missing
critical events that might be overlooked with nonoverlapping windows like
tumbling windows.

While implementing hopping windows, you might face a few challenges
like computational overhead, because the same data might be processed
multiple times in different windows, making it difficult to find the right
balance between window size and hop interval.

Sliding Window
Sliding windows in stream processing allow you to group events within a
moving time interval that updates as new events arrive. Unlike other
windows, sliding windows change based on the arrival of data.

In Figure 7-5, we have a sliding window that lasts 5 minutes. If the window
starts at 12:00:00 and ends at 12:05:00, and a new event arrives at 12:05:30,
the window slides forward. It will now cover the time from 12:00:30 to
12:05:30, dropping any events that occurred before 12:00:30. This way, the
analysis always focuses on the most recent data without waiting for a fixed
time interval.

Figure 7-5: Sliding window

Sliding windows are great for continuous, real-time analysis. For instance,
they can be used to monitor data from sensors on machines, such as
temperature or pressure, because the window constantly slides and updates,



so you’re always working with the most up-to-date information. This
continuous monitoring helps you to spot patterns or issues that might lead
to equipment failure.

However, working with sliding windows has some challenges. First, they
require more computational power because the window adjusts every time a
new event arrives. Second, finding the right balance between the window
size and the slide interval is important and can be tricky. It needs to be
tuned based on what you’re analyzing.

Session Window
A session window is a way to group events based on activity. It creates a
time block that starts when an event happens. As long as more events keep
coming within a set amount of time, the session stays open. If no events
come during that time, the session closes, and a new session starts with the
next event. You can see this illustrated in Figure 7-6, where there is an
inactivity gap.

Session windows are useful for studying activity patterns. For example, in a
video game, session windows can track how long someone plays and how
engaged they are.

Working with session windows can be challenging when you need to decide
the right inactivity timeout. If the timeout is too short, events that should be
in the same session might get split into different ones. If it’s too long,
unrelated events could end up in the same session.

Figure 7-6: Session window

Also, session windows can stay open for different lengths of time, which
means they need more memory and careful management, especially when



there’s a lot of data. With session windows, events don’t always arrive in
order or on time because of delays, like network issues, which can mess up
the session boundaries, so it’s important to make sure events are processed
in the right order.

Checkpointing
Checkpointing is the process of periodically saving an application’s state to
persistent storage. It enables fault tolerance by allowing the system to
recover from failures without restarting the processing from scratch. Here,
fault tolerance refers to the ability of a system to recover (to continue
functioning correctly) even when unexpected failures (or faults) occur. A
checkpoint typically includes data such as the position of consumed data in
the stream called offsets and the current state of any stateful operations or
aggregations called snapshots.

Let’s imagine this scenario. A fintech company manages a real-time fraud
detection system for credit card transactions. The system uses a stream
processing engine to analyze transaction streams and flag suspicious
activity. Midway through the processing, the stream processor crashes due
to a network issue.

Without checkpointing, the system restarts from the beginning of the
transaction stream, reprocessing all transactions and possibly generating
duplicate fraud alerts. But with checkpointing, the stream processor
periodically saves its progress, including the data it has already processed,
using an offset. An offset is a marker or pointer that indicates how far a
stream processor or consumer has read through a stream of data. If the
system crashes or restarts, it resumes from the last saved offset instead of
starting over.

This mechanism helps ensure what’s called exactly once processing,
meaning each event is processed only once, even in the event of a failure,
and is neither lost nor duplicated, offering the most robust guarantee in
stream processing systems. It’s important in use cases like fraud detection
or billing, where duplicate or missing events can lead to serious errors. The
other alternatives are as follows:

At-most-once: Where events may be lost, but they are never
duplicated. It’s fast but risky in scenarios where data loss is



unacceptable.

At-least-once: Where events are guaranteed to be processed but
duplicates might occur. This is more reliable than at-most-once but
requires deduplication logic.

Watermarking
Imagine a fintech company operating a real-time stock trading platform that
analyzes and aggregates stock trades from various exchanges. The system
calculates the total traded volume for each stock symbol in one-minute
windows (a tumbling window), based on the event time, the actual time
when the trade occurred, not when it was processed.

Some trades might arrive out of order due to latency differences in data
sources and network delays. If a trade for a stock arrives after the system
has already closed the one-minute window, it may be dropped or incorrectly
ignored without proper handling, which could result in incomplete or
inaccurate metrics. Here, we use watermarking.

Watermarking is a technique in stream processing used to handle out-of-
order events or late-arriving events by tracking the progress of event time. It
serves as a marker that indicates up to which point in the event timeline the
system has processed all events, including late-arriving ones up to a
specified threshold. Watermarking ensures accurate results in scenarios
where events may not arrive in order due to network delays or system
latencies.

With watermarking, we can define a lateness threshold, such as 5 seconds.
This ensures that trades arriving within 5 seconds after the end of a window
are still included in the window’s calculations. Once the watermark
advances past the end of the window plus the lateness threshold, the system
finalizes and emits the results. This helps balance timeliness and
completeness, because the system doesn’t wait forever for late events, but
still tolerates a small delay.



PICKING THE RIGHT WATERMARK
THRESHOLD
When you’re designing a streaming pipeline, here are ways you can
determine the best watermark threshold for your stream processor:

Understand Your Data Characteristics

The first step in determining the threshold for a watermark is to
analyze the characteristics of your data. Observe how events arrive
in the stream, whether they are mostly in order or prone to delays,
and measure the typical time lag between when an event occurs and
when it is received. For instance, you might discover that most
events arrive within 2 seconds, but outliers can take up to 8 seconds.
To ensure accuracy, you want your system to include these late-
arriving events.

To handle this, you set a watermark threshold of 10 seconds,
allowing the system to wait for late events within that window. If a
fraudulent transaction from an international gateway arrives 6 
seconds late, it’s still processed and flagged within the same analysis
window. However, events arriving later than 10 seconds are marked
as “too late” and logged for separate processing. Visual tools like
histograms can help you spot trends and guide your initial decision
on setting a reasonable threshold.

Create a Balance Between Application Needs and Trade-offs

The ideal watermark threshold strikes a balance between the
accuracy of your results and the latency of your application.
Shorter thresholds improve responsiveness but risk excluding late
events, whereas longer thresholds capture more late data at the cost
of delayed results. Consider your application’s requirements; if
you’re building a real-time stock trading platform, you may need
low latency, but for regulatory compliance or financial reporting,
you might prioritize completeness and accuracy.



Iteratively Monitor and Refine

Once you set an initial threshold based on application requirements,
use monitoring tools to evaluate its effectiveness. Most stream
processing frameworks, like Apache Flink or Spark Structured
Streaming, provide metrics on late events and watermark
progression. Regularly review these metrics and adjust the
threshold iteratively based on your observations to achieve the best
balance between data completeness and system performance.

Stateful Processing
Stateful processing is another important feature of stream processors. A
state refers to the information the system needs to remember and track as
new data comes in, and stateful processing is when the system keeps track
of information (called state) across multiple events in a data stream.

For example, imagine you want to detect suspicious behavior by tracking a
user’s spending habits, such as making several large purchases in a short
period. To do this, the system needs to maintain a state, a running record of
the user’s recent transactions. For instance, it will keep track of

How much the user has spent in the last 60 minutes

How many transactions they’ve made in that time frame

If a user normally makes small purchases of $20 and $30 but suddenly buys
something for $1,000 in the same time frame, say 60 minutes, the system
can compare this with the user’s previous spending and flag it as suspicious
because it’s an anomaly in their behavior.

Stateful processing is like having a memory, where the system doesn’t just
look at one transaction at a time but remembers what happened before to
make smarter decisions. This is useful when you want to detect fraud or
abnormal patterns in real time. In contrast, stateless processing handles
events independently, with no memory of previous events. This works well
for simple tasks like filtering or format conversion.

Sinks



Sinks are the destination for data in a streaming pipeline. Once data is
ingested, processed, and transformed, it needs to be either stored for future
use or consumed immediately to drive actions. Sinks typically fall into two
categories: storage systems and consumers.

Storage systems act as long-term or temporary destinations where processed
data is saved. This allows organizations to retain, query, and reuse data after
it flows through the pipeline. It could be temporary storage—which are fast,
in-memory systems that hold data briefly for real-time access and that are
useful for caching intermediate results or storing session-level data used for
immediate decision-making—or permanent storage, designed to hold large
volumes of data over time and which store processed or raw data that can
be used for future analysis. This is often where a data lake or data
warehouse comes in. For more on the types of storage systems, refer to the
previous chapter.

Consumers, on the other hand, are systems or applications that act on the
processed streaming data in real time. It could be dashboards and
visualization tools that display live metrics. This is also common in
monitoring applications where fast feedback is essential. Consumers drive
real-time actions that bring value from the data as it flows.

Lambda Architecture
You’re a data engineer at an e-commerce company tasked with building a
real-time analytics dashboard. Executives want to track live sales trends as
they happen, while also generating detailed reports on historical customer
behavior. You can design either a streaming or a batch pipeline, but they
would struggle to meet both needs simultaneously because a streaming
pipeline lacks historical depth and batch pipelines are too slow for live
insights. This is where the Lambda architecture shines.

The Lambda architecture is a robust data processing design architecture that
combines both batch and stream processing. It was created to address the
challenges of processing massive volumes of real-time data and the fetching
of historical data, while ensuring low-latency updates, fault tolerance, and
accuracy.



Components of the Lambda Architecture
As shown in Figure 7-7, there are three main layers in the Lambda
architecture: the batch, the speed, and the serving layer.

Figure 7-7: Components of the Lambda architecture

The Batch Layer
As data flows continuously from the data sources, it is sent to two layers:
the batch layer and the speed layer. The batch layer stores the full,
immutable raw data, called the master data, and processes it on a set
schedule to ensure everything is accurate and complete. This area is also
where traditional data tools like ETL processes and data warehouses are
used. The batch layer plays two important roles: keeping the main dataset
organized and preparing summaries or precomputed results (called batch
views) for easier access later.

The Speed Layer
The speed layer handles data processing. It works in parallel with the batch
layer to provide up-to-the-minute results. Here, data is processed as it
arrives, in small increments, creating views over smaller time intervals (T0
to T1, T1 to T2, etc.) to provide low-latency insights. The speed layer helps
to fill in the gaps in batch processing, providing a complete view of the data
to the user by creating real-time views.



The Serving Layer
The serving layer is where the results from both the batch and the speed
layers are merged. The serving layer stores batch views and real-time views
in a way that facilitates querying. It allows end users or applications to
access the final, combined data, which gives them a comprehensive view of
both historical and recent data. After processing both historical data and
real-time user activity, the serving layer can allow users to query the data
and get insights like “How many people visited the website today?” and
“How does this compare to last week?”

For our e-commerce company, the layers would work
like this:

The streaming layer would process live transactions as they happen,
powering real-time dashboards and alerting systems.

At the same time, the batch layer stores all historical customer
transactions and behaviors and runs periodic batch jobs to compute
summaries.

The serving layer combines outputs from both the batch and speed
layers into a single interface that enables fast querying.

Advantages of the Lambda Architecture
The advantages of the Lambda architecture are as follows:

Fault tolerance: The Lambda architecture is fault-tolerant because it
has both batch and speed layers. If the real-time system crashes due to
an issue, the batch layer ensures all data is eventually processed and
the system remains accurate. This way, no data is lost.

Scalability: The Lambda architecture is designed to scale easily as
data grows because it distributes the workload across multiple
machines.

Flexibility: The Lambda architecture allows experimentation with
different methods of real-time or batch processing and change of
architecture as needed.



Challenges and Trade-offs
While the Lambda Architecture offers several benefits, there are also some
challenges:

Complexity: The architecture can become complex to maintain, as it
requires both batch and real-time processing pipelines, which makes
debugging difficult.

Data duplication: Sometimes, duplicate data exists between the batch
and speed layers, requiring deduplication logic.

Latency: Although it’s fast, there is some inherent latency in the
system, especially in the batch layer.

In summary, the Lambda architecture is a powerful approach to processing
and analyzing large datasets in both real time and batch modes. It is useful
in scenarios where we need to balance speed with accuracy, ensuring we get
both fast insights and comprehensive data analysis.

Data Orchestration
To understand orchestration in data engineering, we can use an actual
orchestra as an analogy. In an orchestra, we have various instrumentalists
and a conductor. The conductor doesn’t just lead, they ensure that every
note aligns to create a masterpiece. The instrumentalists must play at an
exact time with the correct tempo. Now, imagine that orchestra as your data
pipeline. Each instrument could represent a stage of the data engineering
life cycle, and like an orchestra, a data pipeline has numerous moving parts.
To achieve harmony, these parts need to work together seamlessly.

As a data engineer, you are the conductor. It’s your responsibility to
coordinate these processes and workflows to ensure they run smoothly.
Let’s explore what this might look like in practice. Picture yourself working
at a small startup. You’ve just built your first ETL pipeline to run daily
batch jobs, and the pipeline has several key components such as a data
ingestion script that pulls raw data from source systems, another script that
runs transformations, and a service that loads this data into a storage
system.



Initially, you run each of these components manually by testing the
ingestion process, confirming the transformations work as expected, and
checking if the data lands in the correct storage destination. This is good for
testing, but the process is not sustainable, because each time your
downstream users request batch data, you have to manually execute each
task. In situations where you’re not available, how would someone else
figure out the order to run these tasks?

This is where orchestration comes in. Orchestration in data engineering
refers to the process of managing and coordinating workflows across
different tools and systems to ensure seamless data movement and
processing. Various building blocks make orchestration possible; it relies on
the following:

Directed Acyclic Graphs (DAGs) to define task dependencies

Automation to reduce manual triggers

Scheduling to run workflows at specific times or intervals

Monitoring to track progress and performance

Alerting to notify teams when something goes wrong

Let’s discuss each of these topics in detail.

Directed Acyclic Graphs (DAGs)
In data engineering, pipelines and workflows involve many interdependent
tasks. To ensure these tasks run in the correct order, we use directed acyclic
graphs (DAGs), a key building block of orchestration. A DAG organizes
tasks in a sequence where each one depends on the successful completion
of previous steps.

In orchestration tools like Apache Airflow, a DAG defines the structure of
your workflow, such as which task runs first, what follows next, and what
must wait. This kind of coordination is a must-have when you’re managing
complex data workflows where the failure or delay of one step can impact
others.

As shown in Figures 7-8 and 7-9, DAGs are a type of graph, a nonlinear
data structure made up of nodes (representing tasks) and edges



(representing dependencies). While similar to general graphs in computer
science, DAGs are specifically designed to ensure a one-way, cycle-free
flow, making them ideal for orchestrating reliable and repeatable data
pipelines.

Figure 7-8: A graph structure



Figure 7-9: A directed acyclic graph

In a graph, nodes represent individual objects and edges represent
relationships between them. In a directed graph, the edges have a direction.
This means the connection goes from one node to another in a specific way.
For example, if there is an edge from node A to node B, it shows a
connection from A to B, but not necessarily from B to A. A path is a
sequence of nodes connected by edges in the graph. In a directed graph, the
path must follow the direction of the edges. It starts at one node and moves
through the connected edges to reach another node.

The term directed acyclic graph implies two key properties. Directed means
the graph has edges with a specific direction. The direction shows how one
task leads to another or the sequence in which tasks need to be executed.
Acyclic means the graph has no cycles. A cycle occurs when you can start at
one task, follow the directed edges, and eventually return to the starting
task. In an acyclic graph, this is not possible, which ensures there is no
repetition or looping of tasks.

In a DAG, tasks are represented by nodes, where each node corresponds to
a specific task or unit of work that needs to be completed. Dependencies are
represented by edges. A dependency shows that one task depends on the
completion of another task before it can proceed. The direction of the edge
indicates the order of execution. For example, if there is an edge from node
A to node B, it means that task A must be completed before task B can
start.

While all data pipelines, whether batch or streaming, require tasks to be
performed in a particular order, DAGs are required for this orchestration



because they make these dependencies explicit. In batch processing, DAGs
are widely used to schedule and coordinate workflows like data ingestion,
transformation, and loading. For example, you might have a DAG where a
file must be downloaded before it can be cleaned and then stored in a data
warehouse.

In contrast, streaming frameworks don’t typically expose a user-defined
DAG, even though under the hood, the engine constructs one to manage
flow between operations like windowing, aggregations, and joins. When we
discussed concepts like windows or checkpoints, those fit into a streaming
engine’s internal DAG to ensure correct processing, but they’re not about
orchestration—they’re about computation and state.



BEST PRACTICES FOR DESIGNING DAGs
Here are some best practices for designing DAGs:

Set clear dependencies. When you’re designing a DAG for
data pipelines, it’s essential to define dependencies explicitly.
This ensures that tasks are executed in the correct order. For
example, if Task B depends on the output of Task A, this
relationship must be represented in the DAG structure. This
clarity prevents unexpected execution sequences and ensures
data consistency.

Keep it simple. Simplicity is key to creating effective DAGs.
Avoid adding unnecessary nodes or introducing overly complex
structures. Simpler DAGs are not only easier to understand
but also quicker to debug and maintain. A clean,
straightforward design minimizes errors and reduces
onboarding time for new team members.

Use modular workflows. Large DAGs can become difficult to
manage. Breaking them into smaller, reusable sub-DAGs or
modular workflows enhances clarity and makes testing more
manageable. For instance, a sub-DAG handling data extraction
can be reused across multiple pipelines, saving development
time.

Implement error handling. Always set up alerts to notify
stakeholders of failures, and design mechanisms to skip or
rerun failed tasks without restarting the entire pipeline. This
approach ensures reliable workflows.

Use version control. Use version control systems like Git to
manage your DAG definitions. This practice helps track
changes, enables collaboration among team members, and
allows you to revert to earlier versions if needed. Version
control also promotes transparency in pipeline development.

Use monitoring and logging. Effective monitoring and
logging are critical for maintaining healthy pipelines.



Continuously monitor the DAG’s execution to ensure tasks run
as expected. Log errors, successes, and performance metrics
for each task. These logs come in handy for troubleshooting
and optimizing pipeline performance.

Scheduling and Automation
In orchestration, automation refers to building workflows that run without
manual intervention. This helps reduce human error and ensure consistency
across repetitive tasks. An example is automatically running an ETL
pipeline to pull, transform, and load data without anyone pushing a button.

At the heart of automation is scheduling, which defines when these
automated tasks should run. Scheduling ensures tasks are triggered at
optimal times based on predefined rules, helping teams align workflows
with business needs or system usage patterns. For instance, a backup job
might run daily at midnight when system activity is low, and a batch
processing pipeline could be scheduled hourly to deliver near real-time
insights. Automation uses the following triggers to initiate workflows:

Time-based triggers: These run tasks at fixed intervals or specific
times (e.g., every day at 8:00 a.m.).

Dependency-based triggers: These ensure tasks run only after certain
other tasks are complete.

Event-driven triggers: These respond to real-world signals, like a
new file landing in an S3 bucket or an API call from an app.

To better understand these terms, scheduling is like setting the coffee
machine to brew every morning at 7:00 a.m. and automation is what makes
the machine start brewing without you pressing a button. Scheduling is just
one way it can be automated. So, scheduling is a form of automation, but
automation also includes event-driven and manual workflows, giving you
much more flexibility. Together, they allow data pipelines to operate
smoothly and reduce manual effort.

Monitoring



Monitoring is an important aspect of the data engineering life cycle. It
involves continuous observation of workflows to ensure they’re running as
expected. Monitoring helps detect issues early and provides insights into
performance, usage, and resource consumption. These insights are provided
through metrics. Metrics are numerical values that are collected at regular
intervals to describe some aspect of a system at a particular time. Let’s
examine a few metrics you should look out for.

Performance Metrics
Performance metrics ensure your pipeline operates at its peak and meets
service-level agreements (SLAs). SLAs are formal agreements between a
service provider and a customer that define the level of service expected. In
terms of performance, we track three major things:

Latency: This is the time it takes for data to move through the
pipeline, especially for real-time applications. For example, an SLA
for a real-time pipeline could be a latency of ≤100 ms.

Throughput: This is the rate of data ingestion and processing to
ensure the pipeline handles the required load. A pipeline’s throughput
can be 500 MB/s.

Error rates: This is the frequency of errors in data ingestion,
transformation, or loading stages. For example, in an ETL pipeline, out
of 1,000,000 records ingested, only 2,000 records fail due to schema
mismatches, resulting in an error rate of 0.2 percent.

Resource Metrics
Monitoring resource utilization ensures your pipeline operates efficiently,
using resources effectively while minimizing costs. By tracking key
metrics, you can identify when to scale resources up or down to match
workload demands. These resource metrics are as follows:

CPU and memory usage: This metric tracks how much CPU and
memory your pipeline consumes to identify overloading or
underutilization. For instance, a data processing pipeline running on a
Spark cluster shows 80 percent CPU usage and 65 percent memory



usage during peak hours, which is normal, but if the CPU usage
frequently exceeds 90 percent, this may signal the need for scaling up.

Disk input/output (I/O): This metric measures the speed and volume
of read/write operations on storage devices. If a pipeline’s read speed
exceeds 500 MB/s, ensure the storage infrastructure can handle the
load without delays.

Network bandwidth: This metric tracks the capacity and utilization of
network resources to ensure data transfer. A data ingestion pipeline
transferring 5 GB/min between systems operates within the network
bandwidth limit of 10 Gbps. If data transfer consistently reaches 9 
Gbps, consider upgrading network capacity.

Data Quality Metrics
Data quality metrics ensure that as data moves through each stage of the
pipelines, it is complete, accurate, and consistent. Let’s look at a few data
quality metrics:

Data completeness: This is the percentage of missing or incomplete
data. This value measures how much data is missing or incomplete in
the pipeline. A drop in completeness could indicate some failures in
data collection, transformation, or ingestion processes. To check
completeness, you can set up rules in your monitoring tool to compare
the actual record count with the expected count from the source
system.

Data accuracy: This metric is the percentage of records that match
expected values or business rules. This ensures that data is correct and
conforms to business requirements. An example of this is using SQL
queries to validate data at each stage of the pipeline.

Data consistency: This metric tracks the percentage of records that are
the same across different datasets or stages of the pipeline. It ensures
that data doesn’t contradict itself between multiple sources or stages.

Alerts
A typical data pipeline is prone to failure for various reasons, but how can
we detect when these failures happen? We use alerts. Alerts are notifications



triggered when a certain condition is met, ensuring immediate action when
issues occur. For example, an alert might notify a team when a data pipeline
fails to ingest data within a given time. Depending on the alerting tool used,
alerts can be delivered through various channels such as emails or by SMS.
Alerts are important, especially for critical pipelines.

Best Practices for Setting Alerts
While alerts are great, they can also be misused. Let’s discuss some best
practices for setting up alerts for your data pipeline.

Define critical thresholds: Always define critical thresholds to avoid
excessive noise from noncritical alerts. You might set a critical alert if
a job fails to run for two consecutive hours, as this could delay
financial reporting. However, setting an alert for every 5-minute delay
in processing may overwhelm your team with noise. Without critical
thresholds, your team might get bombarded with alerts at midnight
about minor delays, making them likely to ignore alerts

Use context-rich messages: When an alert is triggered, ensure it
provides sufficient details to help the team resolve the issue quickly.
Be sure to include the pipeline name, issue details, and resolution
steps, especially for other employees on other teams who might be on
call.

If you receive an alert that just says “Pipeline failed,” you’d have to
dig through logs to find the root cause. Instead, if the alert says:
“Pipeline daily_sales_aggregator failed at step 3. Error: Database
connection timeout. Suggested action: Check the database server’s
health and retry the job,” your team can respond more effectively.

Set severity levels: Not all alerts are created equal, and prioritizing
them helps the team respond to the most critical ones first. Severity
levels could be high, medium, or low. High severity could mean a
major business impact, like production pipelines. Medium severity
could mean minimal business impact but needs resolution. Low
severity might just be informational alerts for monitoring purposes.

Set appropriate channels: Ensure alerts are directed to the right team
via appropriate channels like email, Slack, or incident management



tools. This is designed to elicit a quick response.

Lab: Building an ETL Pipeline and
Automating with Apache Airflow
In this lab, you will build an ETL (extract, transform, load) pipeline to
process customer data from a bakery. The pipeline will extract raw data,
apply necessary transformations, and load the processed data into a
PostgreSQL database using Python. Additionally, you will automate the
ETL process by integrating it with Apache Airflow, a widely used
orchestration framework.

Requirements
Hardware:

Laptop or desktop computer (macOS, Windows, or Linux): Any
modern system with at least 8 GB of RAM and sufficient storage (SSD
preferred) to run development tools and data processing tasks.

Software:

Python (version 3.8 or higher)

Jupyter Notebooks

Visual Studio Code (VS Code)

Apache Airflow

Railway

Codebase:

All the code for this chapter is available in this GitHub repository:
https://github.com/Sommie09/data_pipelines.

Python libraries:

Pandas (Data manipulation library)

https://github.com/Sommie09/data_pipelines


psycopg2 or SQLAlchemy (PostgreSQL database connector)

Project files:

Bakery_Customer_Data.CSV

Set Up Your Development Environment

Install Python

1. Ensure Python is installed on your computer. If not, you can download
it from www.python.org/downloads. After installation, verify Python
by running it on your terminal:

     python --version

Install VS Code and Other Extensions

1. If you don’t have VS Code installed, download it from
https://code.visualstudio.com.

2. Open VS Code.

3. Go to the Extensions view by clicking the square icon on the sidebar or
by pressing Ctrl+Shift+X (Windows/Linux) or Cmd+Shift+X
(macOS).

4. Search for Python and install the extension provided by Microsoft.

5. Search for Jupyter and install the Jupyter extension in VS Code.

Set Up Your Project Folder

1. Download the file Bakery_Customer_Data.csv to your computer.

2. Create a new folder on your desktop called Customer_ETL.

3. Move the CSV file into the Customer_ETL folder.

4. Open the folder in VS Code by choosing File ➪ Open Folder and
navigating to Customer_ETL.

http://www.python.org/downloads
https://code.visualstudio.com/


Set Up a Virtual Python Environment (Inside Your Project
Folder)

1. Open the terminal in VS Code (Ctrl+ or Cmd+).

2. From the root of the Customer_ETL folder, create a virtual
environment:

     python -m venv env

3. Activate the virtual environment:

Windows:

     .\env\Scripts\activate

macOS/Linux:

     source env/bin/activate

4. Press Ctrl+Shift+P (Windows/Linux) or Cmd+Shift+P (macOS) to
open the Command palette.

5. Type Python: Select Interpreter and choose it.

6. Select the Python interpreter from your virtual environment (env).

Install Pandas, Jupyter, and SQLAlchemy in Your Python
Environment
In the terminal (still within the Customer_ETL folder), run the following:

     pip install pandas
     pip install notebook jupyter
     pip install psycopg2 sqlalchemy

Create a New Python File to Test Python

1. Create a new file with a .py extension (e.g., test.py).

2. Write a sample script to test pandas:

     import pandas as pd
     data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': 
[25, 30, 35]}
     customer_data = pd.DataFrame(data)
     print(customer_data)



Right-click the editor and select Run Python File In Terminal.

3. View the output in the terminal.

Create a Jupyter Notebook
In VS Code, inside the Customer_ETL folder, create a new file named
Customer_Notebook.ipynb. Doing so creates a new Jupyter notebook.

Extracting Data from CSV

Importing the Data
To import our customer data, we’re going to be using a built-in function in
the Pandas Library. With this function, we can import CSV, JSON, or Excel
files. Hover on the function to view other options.

1. In the Jupyter Notebook cell, type

     import pandas as pd
     #Import the CSV file
     customer_data = pd.read_csv("customer_data.csv")

Exploring the Data
It’s best practice in data engineering to explore your data before applying
any transformations. One common way to do this in pandas is by using the
.head() function, which returns the first five rows of a DataFrame.

1. Click the plus sign to create a new cell and paste the following
command:

     customer_data.head()  

2. Run the cell by clicking the play/run button next to it or by pressing
Shift+Enter. This will display a snapshot of your dataset, as seen in
Figure 7-10, helping you understand its structure and contents before
proceeding with any data cleansing or transformation steps.

Check for Duplicates
We also need to check for duplicates in our data because duplicates can
skew analysis and lead to incorrect insights.



1. Check the shape of the dataset to see how many rows and columns it
has:

customer_data.shape #Get the number of rows and columns

2. Identify duplicate rows:

     customer_data.duplicated() #Shows the rows with 
duplicates as true and false
     customer_data.head()#Do this after each block of code 
to see the output before moving on.

3. Run the cell using Shift+Enter or by clicking the Run button in your
notebook.

Figure 7-10: The first 5 rows of our customer data

Transforming the Data
We need to prepare our data to be suitable for analysis. The preparation
process will include removing null values, validating and correcting phone
number formats, and eliminating duplicate rows to ensure data quality,
integrity, and consistency.

Check for Duplicates and Drop Them
To ensure consistency, we want to identify and remove rows where both the
customerID and email fields are duplicated, as these indicate repeated
entries of the same customer.

     # Remove any rows where both customerID and email are 
duplicated
     customer_data = customer_data.drop_duplicates(subset=
['customerID', 'email'])



Rename Null Values
In order to handle incomplete data without discarding potentially valuable
records, we will address missing values in the phone number and email
address columns. Rather than dropping rows with null entries, we replace
missing values with a placeholder. This approach ensures that the dataset
remains intact while clearly indicating which entries originally lacked this
information.

     # Fill missing phone numbers and emails with 'Unknown' 
to prevent loss of data
     customer_data['phone'].fillna('Unknown', inplace=True)
     customer_data.head()

Run the cell using Shift+Enter or by clicking the Run button in your
notebook.

Split the delivery_address into Separate Components: Address,
Country Code, and Zip Code
To make the delivery address data more structured and easier to analyze, it
is helpful to split the delivery_address field into separate components: the
address, the country code, and the zip code. This separation enables more
precise filtering, validation, and geographic analysis in downstream
processes.

     # Extract the first part of the address before the 
first comma (street address)
     customer_data['address'] = 
customer_data['delivery_address'].str.split(pat=',').str[0]
     # Extract the second part after the first comma 
(country code)
     customer_data['country_code'] = 
customer_data['delivery_address'].str.split(pat=',').str[1]
     # Extract the third part (zipcode)
     customer_data['zipcode'] = 
customer_data['delivery_address'].str.split(pat=',').str[2]
     customer_data.head()

Run the cell using Shift+Enter or by clicking the Run button in your
notebook. The output would display the table, as shown in Figure 7-11.



Figure 7-11: The delivery address column split into separate columns

Split the Last Delivery Time Column into Separate Columns
To clean and organize our data, let’s split the last_delivery column into
two separate columns: one for the date and one for the time. The original
column contains both values separated by a comma (e.g., 2025-05-01,
14:30), so we’ll use the .str.split() function.

1. Paste the following code into a new cell:

     #Extract the first and second string
     customer_data['last_delivery_date'] = 
customer_data['last_delivery'].str.split(pat=',').str[0]
     customer_data['last_delivery_time'] = 
customer_data['last_delivery'].str.split(pat=',').str[1]
     customer_data = 
customer_data.drop(['last_delivery'], axis = 1)
     #View the data frame
     customer_data.head()

Run the cell using Shift+Enter or by clicking the Run button in your
notebook. The output would display the table shown in Figure 7-12.



Figure 7-12: The last delivery column split into date and time columns

Drop Original Address
Now that we’ve split delivery_address into address, country_code, and
zipcode, we no longer need the original column.

Run this cell using Shift+Enter.

# Drop the original 'delivery_address' column as the data is 
now split
customer_data = customer_data.drop(['delivery_address'], 
axis = 1)
customer_data.head() #Inspect the updated DataFrame, this 
helps This verify that the new columns are present and 
delivery_address has been successfully removed.

Run the cell using Shift+Enter or by clicking the Run button in your
notebook. The output would give the table shown in Figure 7-13.



Figure 7-13: The delivery address column has been dropped

Rename Birthday Column
To maintain consistent naming conventions across the dataset, we will
rename the Birthday column to a more descriptive label. This helps ensure
that the column name clearly conveys its contents and aligns with naming
practices used throughout the project.

# Rename the 'birthday' column to 'birth_date' for better 
clarity
customer_data = customer_data.rename(columns={'birthday':' 
birth_date'})
# View the updated DataFrame
customer_data.head()

Run this cell using Shift + Enter to see the effect of the renaming and to
preview the updated data. The output would give the table shown in Figure
7-14.



Figure 7-14: The birthday column has been renamed to birth_date

Save the Cleaned DataFrame to a New CSV File
After completing all necessary cleaning steps, the final version of the
dataset is saved to a new CSV file. This ensures that the cleaned data is
preserved for future analysis or use without altering the original source.

customer_data.to_csv("customer_data_cleaned.csv", 
index=False)

Load the New CSV File into a Postgres Database
Instance
Once your data has been cleaned and transformed, the next step is to load it
into a PostgreSQL database so that it can be queried efficiently and
integrated into downstream systems.

Set Up Railway
To set up a PostgreSQL instance with Railway, follow these steps:

1. Visit Railway at https://railway.app.

2. Sign up using your GitHub, Google, or email account.

3. After logging in, click the New Project button on the dashboard.

4. Select Provision PostgreSQL from the templates offered.

https://railway.app/


5. Once the PostgreSQL instance is provisioned, Railway will
automatically set it up.

6. You will be redirected to the project dashboard, where you’ll see the
details of your PostgreSQL instance.

7. Click the PostgreSQL service in your project.

8. Select the Connect tab.

9. Copy the provided Connection URI.

Connect Railway to Jupyter Notebook
To connect a Railway PostgreSQL instance to your Jupyter Notebook,
follow these steps:

1. Create a new code tab in your Jupyter Notebook by clicking the +
(plus) icon in the Jupyter Notebook toolbar.

2. Set up the database engine to connect to Railway:

     # Replace with your Supabase connection details
     connection_uri = "postgresql://postgres:[YOUR-
PASSWORD]@db.******.supabase.co:*****/postgres"
     # Create a database engine
     engine = db.create_engine (connection_uri)

3. Click Run, and the engine shows up in the output.

Load the Data into Railway
The customer data that has been transformed would be loaded to a customer
table in Railway. On the railway dashboard, you can view the Customer
table that has just been created:

     customer_data_cleaned.to_sql("customers", engine, 
if_exists='replace', index=False)

Schedule ETL Pipeline with Apache Airflow

Set Up Apache Airflow



1. Make sure you’re still in your project’s virtual environment. If it’s not
active, activate it:

     # For Windows:
     .\env\Scripts\activate
     
     #For macOS:
     source env/bin/activate

2. Once your virtual environment is active, run the following commands
in the VS Code Terminal:

     # Installing Airflow 
     pip install apache-airflow
     # Initialise the airflow database 
     airflow db init

Configure the User Credentials
With these commands, Airflow would require a username and password:

1. From your computer’s terminal, run the following to locate and open
the airflow.cfg file:

$AIRFLOW_HOME/airflow.cfg

2. Search for webserver in the file.

3. Add the following lines:

     authenticate = True
     auth_backend = 
airflow.contrib.auth.backends.password_auth

4. Save and close the file.

5. On the terminal, run:

     airflow users create  -u USERNAME  -p PASSWORD -e 
EMAIL -r ROLE -f FIRSTNAME -l LASTNAME 

Start Airflow

1. Start the web server:

     airflow webserver --port 8080



2. Open a new tab on your terminal and start the scheduler:

     airflow scheduler

3. Run the local host link on your browser and view the Airflow UI:

     http://localhost:8080:453

Creating a DAG

Setting Up the ETL Python Script

1. Navigate to $AIRFLOW_HOME/airflow.cfg on your computer terminal.

2. Open the dag folder in that directory on your Visual Studio Code.

3. In the dag folder on Visual Studio Code, create a customer_etl.py
file.

4. Copy and paste the import and engine code:

     import pandas as pd
     import re
     import sqlalchemy as db
     customer_csv = "/your_path /customer_data.csv"
     # Replace with your Supabase connection details
     connection_uri = "postgresql://postgres:[YOUR-
PASSWORD]@db.******.supabase.co:*****/postgres"
     # Creates a database engine
     engine = db.create_engine (connection_uri)

5. Copy and paste the transformation logic under def main():

     def main():
     customer_data = pd.read_csv(customer_data)
     customer_data = 
customer_data.drop_duplicates(subset=['customerID', 
'email'])
     customer_data['phone_number'].fillna('Unknown', 
inplace=True)
     
     # Split delivery address
     customer_data['address'] = 
customer_data['delivery_address'].str.split(pat=',').str
[0]
     customer_data['country_code'] = 
customer_data['delivery_address'].str.split(pat=',').str



[1]
     customer_data['zipcode'] = 
customer_data['delivery_address'].str.split(pat=',').str
[2]
     #Split delivery date
     customer_data['last_delivery_date'] = 
customer_data['last_delivery'].str.split(pat=',').str[0]
     customer_data['last_delivery_time'] = 
customer_data['last_delivery'].str.split(pat=',').str[1]
     customer_data = 
customer_data.drop(['last_delivery'], axis = 1)
     # Drop the original 'delivery_address' column as 
the data is now split
     customer_data = 
customer_data.drop(['delivery_address'], axis = 1)
     # Rename the 'birthday' column to 'birthday_date' 
for better clarity
     customer_data = customer_data.rename(columns=
{'status':'loyalty_status'})
     customer_data.to_sql("customers_2", engine, 
if_exists='replace', index=False)
     print("ETL successful!")

Setting Up the DAG Script

1. Create a new file, customers_dag.py.

2. Import the following libraries. The last line is the name of the
customer_etl.py file.

     from datetime import datetime, timedelta
     from airflow import DAG
     from airflow.operators.python_operator import 
PythonOperator
     from orders_etl_logic import main

3. Paste this code block in the next line to define default arguments for
the DAG:

     default_args = {
         'owner': 'airflow',  # Owner of the DAG
     'depends_on_past': False,  # Does not depend on the 
success of previous DAG runs
         'start_date': datetime(2024, 1, 1),  # Start 
date for the DAG schedule
         'email_on_failure': False,  # Disable email 
alerts on failure



         'email_on_retry': False,  # Disable email 
alerts on retries
         'retries': 1,  # Number of retries for failed 
tasks
         'retry_delay': timedelta(minutes=5),  # Delay 
between retries
     }

4. Define the DAG:

     dag = DAG( 'customer_full_load', # Unique 
identifier for the DAG 
     default_args=default_args, 
     description='Customer Table ETL DAG', # Description 
of the DAG's purpose 
     schedule_interval='@daily', # Schedule the DAG to 
run daily

5. Define the task to run the ETL process:

     run_etl = PythonOperator( 
     task_id=run_customer_etl, # Unique identifier for 
the task 
     python_callable=main, # Function to execute in the 
customer_ETL script 
     dag=dag, # The DAG to which this task belongs

6. Finally, call the run_etl task at the end of the editor and run the script:

     run_etl

Running the DAG on Airflow
Once the DAG has been defined and scheduled in Airflow, you can
manually trigger and monitor its execution through the Airflow web
interface. Follow these steps to run the DAG and verify the results:

1. Go back to your browser and refresh the Airflow tab.

2. View the task run_etl or search for it in the search bar.

3. Click Auto Refresh.

4. When the DAG is done running, view the new table customer2 created
on Railway.



Summary
Batch processing involves processing large volumes of data at
scheduled intervals, while stream processing involves processing data
in real time or near real time as it arrives.

A batch pipeline consists of six stages: data sources, staging area, data
transformation, data storage, consumption layer, and job scheduler.

A staging area is important in batch pipelines for data backup in case
of job failures.

An ELT process addresses the limitations of an ETL by loading data
into the storage system before transformations.

Streaming pipelines process data continuously; they are event-driven
and have a low latency.

A streaming pipeline has four main components: Producers, Message
Queues, Schema Registry, and Stream Processors.

Stream processors consist of four key features that make them function
efficiently: windowing, checkpointing, watermarking, and stateful
processing.

In stream processing, there are four different types of windowing
patterns: Tumbling, Session, Sliding, and Session Window.

A Lambda architecture in data engineering is a combination of both
batch and streaming solutions. It consists of the batch, streaming, and
serving layers.

Orchestration in data engineering relies on directed acyclic graphs
(DAGs) to define task dependencies, automation to reduce manual
triggers, scheduling to run workflows at specific times or intervals,
monitoring to track progress and performance, and alerting to notify
teams when something goes wrong.

A directed acyclic graph (DAG) in data orchestration is a collection of
tasks arranged in a specific order to ensure that they are executed in
the correct sequence.



Three important metrics to look out for when monitoring a pipeline are
performance, resource, and data quality metrics.



CHAPTER 8
Data Quality
So far, we’ve discussed the fundamentals of databases, data storage systems, and data
pipelines. While these are essential components of the data engineering process, even the
best designs or storage solutions are meaningless if the data delivered to downstream
users is bad. So, how do we ensure quality data in our data engineering process?

IN THIS CHAPTER, YOU WILL LEARN ABOUT THE FOLLOWING:

Causes of bad data and the impact

Understanding what data quality means and the importance

Various data quality dimensions

How to identify data quality issues

Common data quality checks

Your role in ensuring data quality in your organization using best practices

Data quality is an important aspect of the data engineering process, but let's step back and
look at the broader picture. Data engineering serves multiple business needs in an
organization across various departments. To truly understand the impact of bad data or
why we need to ensure data quality, we can examine how it affects the overall business
performance and decision-making process.

The truth is a lot of organizations don’t care about the quality of their data. Although
quality data is an important part of their process, it is still overlooked. Most organizations
want to start initiatives that can impact their business positively, but since they have bad
data, they rather build walk-arounds or create makeshift solutions.

In this era of innovation, poor data quality is a major roadblock for businesses looking to
innovate—especially with the rise of artificial intelligence. These technologies rely on
accurate, high-quality data to function effectively, as these AI systems learn from data to
make predictions and optimize processes. When the data is inconsistent or flawed, the
potential of AI is significantly limited if the foundation it relies on is unreliable.

Additionally, with poor data quality, a business doesn’t have a competitive edge.
Companies that rely on poor data cannot adapt quickly to market changes at the scale of
their competitors. In summary, addressing data quality isn’t just a technical task, it is a
strategic decision that affects the entire organization.

Bad Data



Before we describe what quality data truly means, you should understand what bad data
is. Organizations define certain thresholds that deem data to be of good quality. Subject to
several requirements, bad data is any data that doesn’t meet these requirements.

Data is bad when it fails to meet the standards needed for meaningful analysis. Bad data is
incomplete, with missing values that leave gaps in understanding. It is also poorly
formatted, where data fields like dates are inconsistent or text appears in numerical
columns. Sometimes, it’s outdated, reflecting conditions that are no longer relevant. All
these issues combined make it harder to derive insights. For example, imagine a sales
department trying to generate a monthly revenue report, only to find that several entries
are missing or some sales are recorded in the wrong month or maybe duplicated. This
leads to multiple inconsistencies in the reports.

Bad data is both a cultural and a technical problem. From a cultural perspective, it starts
with how data is perceived, handled, and prioritized within an organization. If employees
are not trained to enter accurate and consistent data, or if there’s a lack of accountability
for maintaining data quality, there will be errors. On the technical side, inadequate tools
contribute significantly. Legacy databases or source systems that are poorly integrated can
introduce errors and inconsistencies.

To truly address bad data, organizations need a combination of a strong data culture that
promotes ownership and accountability, along with the right technical systems for data
validation and integration. But where does this bad data come from?

Human error is one of the most common causes of poor data quality. This occurs
especially during data entry processes. Imagine an employee manually entering
customer information into a CRM system. Due to a lack of standardization, the
employee might enter the same data in different formats. For example, the phone
number could be entered as “555-1234” in one record and “5551234” in another.

Another cause of bad data is when organizations store data across multiple systems,
which are sometimes separate from each other. When creating a dataset, data
integration from these systems can lead to problems such as duplicated data, missing
fields, or inconsistent labels. Also, different systems may use different terminology
for the same concept, creating further complications.

Consider an organization with sales data stored in one system and inventory data
stored in a separate system. When trying to combine data from both sources to
generate a report on product performance, duplicates could arise. For example, the
same product listed under different names in each system or important fields might
be missing. Additionally, the data labels for the same concept may differ, such as
“customer ID” in one system being labeled “client number” in another system.

The key distinction between high-quality and low-quality data lies in how well the data
serves its intended purpose. In other words, the distinction tells us if data is reliable and
suitable for use in making decisions, running operations, or powering analytics. Without



high-quality data, even the best systems and tools can produce inaccurate insights or fail
to function efficiently.

When we’re talking about data quality, we’re looking at how well the data serves the
organization’s needs. For example, if a company’s data is accurate, they can confidently
use it to guide strategic decisions. This also ties into operational efficiency. Imagine a
supply-chain company relying on incorrect inventory data. This could result in production
delays or overstocking, which is both time-consuming and costly. If a business has clean
and reliable data, it can ensure smooth workflows, reduce errors in systems, and avoid
costly rework.

Additionally, one of the main goals of any business is to offer an exceptional customer
experience whether directly or indirectly. If the quality of your data is high, you can create
personalized services and interactions with your customers. For example, a company like
Amazon relies on high-quality data to suggest products tailored to each individual, which
is a huge part of why they have such a strong customer base.

Finally, in industries where regulatory compliance is crucial, maintaining data quality is
not optional. Accurate data ensures that organizations meet legal requirements and avoid
hefty fines. Legal requirements refer to the laws, regulations, and standards that
organizations must follow to ensure their operations are compliant with local, national, or
international rules. These requirements are typically set by governing bodies or regulatory
agencies to ensure fairness and protect consumer rights. For instance, in healthcare, legal
requirements often focus on the protection of personal health information with strict
standards for how health data should be stored, processed, and shared. In this instance,
poor data quality such as incomplete or incorrect patient information can lead to violations
of these laws, and this could result in patient harm, fines, and significant reputational
damage for healthcare providers.

Maintaining good data quality isn’t just about preventing errors—it’s about ensuring that
the data available is fit for its intended purpose, enabling the organization to operate
efficiently and, most importantly, prioritize good data quality practices.

Dimensions of Data Quality
Let’s explain the various dimensions of data quality. Think of these dimensions as
different lenses through which we evaluate the fitness of data. When we encounter bad
data, these dimensions help us assess its suitability for its intended use and pinpoint areas
where transformation or improvement is needed. These dimensions are also important
when discussing service level agreement (SLA) requirements with stakeholders. SLA
requirements are the specific standards and performance metrics outlined in a contract
between a service provider and a customer, defining the expected quality, availability, and
response time of the service provided, including consequences for not meeting those
standards.

In this section, we will go over these dimensions, explore their significance, and discuss
how they can be measured effectively. Each dimension gives us a unique perspective on



how well the data is serving its purpose. At the end of this section, you’ll be able to
identify data quality issues and know the necessary steps to take to ensure data meets each
dimension. The dimensions are as follows:

Accuracy

Completeness

Consistency

Validity

Uniqueness

Timeliness

Accessibility

Relevance

Accuracy
Accuracy is one of the fundamental aspects of data quality. It measures how closely data
matches the real-world entities it represents and ensures that data is free from errors that
could mislead decision-making.

Consider this example. A customer database ingests data from a form. The email column
contains incorrect values, such as “jaen_doe@mail.com” instead of
“jane_doe@mail.com.” Imagine you’re part of the marketing team and you’re sending out
a promotional email campaign. With the incorrect values, the mail would be sent to the
wrong recipient. Similarly, if the delivery address on the form is stored incorrectly,
packages could be routed to the wrong person or locations that don’t exist in the real
world. Accurate data is critical in maintaining the credibility of data-driven operations.
The SLA for accuracy could be that data values must be correct with an error rate below
0.1% per reporting period.

CUSTOMER FORM
Name: Jane Doe

Email: jane_doe@mail.com

Birth Date: 02-10-1997

Delivery Address: 23 Elm Marker Street

City: London

Postal code: E1 BA2

mailto:jaen_doe@mail.com
mailto:jane_doe@mail.com


NAME EMAIL BIRTH
DATE

DELIVERY
ADDRESS

CITY POSTAL
CODE

NAME EMAIL BIRTH
DATE

DELIVERY
ADDRESS

CITY POSTAL
CODE

Jane Doe jaen_doe@mail.com 02-10-
1997

23 Elm Marker
Street

London E1 BA2

Gabriel
Johnson

gjohnson@gmail.com 09-01-
1996

221B Baker Street London NW1 6XE

Completeness
Completeness evaluates whether all required data is present in a dataset. It is the degree to
which all expected records are populated and ensures that no important pieces of
information are missing.

For instance, in the following example data, we have a database for a banking application.
If we have missing data like First Name, Last Name, or Social Security Number (SSN),
this could halt the registration process. If the system expects these fields and they are
missing, it may not allow the user to proceed with onboarding. Analytics relies heavily on
the completeness of datasets. If critical data is missing, the analysis will be skewed, which
could lead to incorrect conclusions.

Completeness also refers to maintaining the same number of records between systems.
This ensures that data transfer processes have correctly captured all records without
omission. This is important because, if one system contains 10,000 customer records but
the target system only shows 9,950 after migration, this inconsistency can result in data
gaps.

CUSTOMER
ID

FIRST
NAME

LAST
NAME

SSN EMAIL ADDRESS ACCOUNT
CREATION
DATE

101 John Doe 555-
12-
3456

john.doe@email.com 123 Elm
St, NY

01-01-2025

102 Null Smith 987-
65-
7432

Null 456 Maple
Ave, TX

01-10-2025

103 Jane Null Null janef@gmail.com 789 Oak
Blvd, CA

01-15-2025

190 Daniella Peters 678-
01-
2678

daniellapet@yahoo.com 12,
Oklahoma
Street, DC

01-25-2025

Let’s explore some effective ways to perform a completeness check.

Checking for NULL Values

mailto:jaen_doe@mail.com
mailto:gjohnson@gmail.com
mailto:john.doe@email.com
mailto:janef@gmail.com
mailto:daniellapet@yahoo.com


NULL value checks are a way of identifying whether certain fields in your data contain
missing or undefined values. In a database, a NULL value represents the absence of any
data in a column for a particular record. However, it’s not the same as 0, an empty string,
or a blank space; it just means “no value.”

Mathematical operations or joins involving NULLs can produce unexpected results, so
catching them early helps avoid issues. Also, identifying NULLs helps you assess whether
your data meets completeness requirements or if critical data is missing.

The following SQL query retrieves all rows from a table where a specific column contains
NULL values. The NULL keyword was discussed in detail in Chapter 4, “SQL
Fundamentals.”

SELECT * #This selects all columns from the table for each row where the 
condition is met.
FROM table_name 
WHERE column_name IS NULL; #This filters the rows to include only those 
where the value in the specified column (column_name) is NULL.

To handle NULL values, you can either fill in missing values with a default value, like 0
for numeric fields or Unknown for strings, or remove rows if the missing data is
insignificant.

Checking the Completeness Score
A completeness score is expressed as a percentage that reflects the proportion of data that
is complete compared to the total expected data. To calculate the completeness score of a
table, use this formula:

Assume we’re checking completeness by field. Let’s say you have the following columns
and the number of missing records for each:

FIELD
NAME

TOTAL
RECORDS

MISSING
RECORDS

COMPLETENESS
SCORE

First Name 1,000 50 95%
Last Name 1,000 30 97%
SSN 1,000 100 90%

The completeness score for each field is calculated as

Completeness for First Name = (1,000 − 50 / 1,000) × 100 = 95%

Completeness for Last Name = (1,000 − 30 / 1,000) × 100 = 97%

Completeness for SSN = (1,000 − 100 / 1,000) × 100 = 90%



To get the overall completeness score for the entire dataset, you can average the individual
field completeness scores. This is particularly useful when comparing the completeness of
different columns or datasets.

Overall Completeness Score = Number of Fields / Sum of Completeness Scores

The overall completeness score would be

Overall Completeness Score = 95 + 97 + 90 / 3 = 94%

This means that, on average, 94 percent of the expected data across these fields is
complete.

The completeness score provides you with a quick overview of how much of the dataset is
ready for use in reports or models. A low completeness score indicates that there may be
issues with missing data that need to be addressed before the data can be reliably used for
decision-making or analysis.

Checking the Volume of Data
Data volume checks ensure that the data volume (the size of the data) is within its
expected limit. This check also helps to detect missing data to ensure no data is lost during
ingestion or transformation processes. We can manually compare the volume of current
data with historical baselines. For example, if a batch pipeline normally outputs 200 rows
but suddenly jumps to 1,500, this should flag an issue in the query.

Automated min/max threshold alerts can be set for data volume. A common way to
monitor data volume is to validate that the number of records ingested from source
systems matches the number stored in your destination. A completeness SLA might
specify that at least 99.9 percent of all required fields must be filled in for each dataset.

Consistency
Consistency refers to the uniformity and accuracy of data across different systems and
datasets. Inconsistencies arise when errors occur during data entry, such as one system
recording “John Doe” while another captures “J. Doe.” They can also occur when updates
in one database are not sent to other systems, causing synchronization issues.
Additionally, inconsistencies happen when merging data from diverse sources with
conflicting formats or values.

For example, a customer’s email address should match across multiple tables and remain
consistent throughout the data life cycle. Inconsistent data, such as differing values for the
same customer in separate systems, can lead to errors in reporting. Consistency is also
important when integrating data from multiple sources, as it ensures that analysis and
decisions are based on reliable information.

Also, consistency involves maintaining referential integrity within and across datasets. In
relational databases, referential integrity ensures that the relationships between primary



keys and foreign keys are valid. This means that every foreign key in a child table must
reference a valid primary key in a parent table. If this rule is violated, the data becomes
inconsistent, leading to potential errors in reporting, analytics, and operations.

Referential integrity is a concept that ensures the consistency of relationships between
tables by guaranteeing that foreign key values in one table always correspond to valid
primary key values in another table.

Suppose you have two tables, Orders and Customers. The CustomerID in the Orders table
(a foreign key) must always match an existing CustomerID in the Customers table (a
primary key). If OrderID=1001 is referencing a CustomerID=9999 but CustomerID=9999
does not exist in the Customers table, this violates referential integrity and creates
inconsistent data.

The following SQL query checks referential integrity between the Orders and Customers
tables, ensuring that every CustomerID in the Orders table exists in the Customers table:

SELECT orders.customer_id
FROM orders
LEFT JOIN customers ON orders.customer_id = customers.customer_id
WHERE customers.customer_id IS NULL;

In this query, the LEFT JOIN combines all records from the orders table with matching
records from the customers table. WHERE customers.customer_id IS NULL filters for
cases where there is no matching customer_id in the customers table, indicating a
referential integrity violation. This query will return any orphaned orders with missing
corresponding customer records.

Ensuring referential integrity is a consistency check because it maintains the logical
structure and prevents contradictions within the database. Without it, you might end up
with orphaned records—that is, orders without a corresponding customer or duplicate
relationships, leading to unreliable and inconsistent data representations.

Validity
Validity measures the degree to which the values in a data element are valid. Validity
ensures that data conforms to expected formats, types, and ranges, such as ensuring dates
are logical, numerical values are within defined ranges, and text fields match predefined
formats. Validity also ensures that data adheres to business rules and industry
requirements. Data that fails validation can cause a lot of system errors because
applications expect data in a certain format.

Let’s look at the following table to identify some validity issues:

STUDENT ID NAME AGE BIRTH DATE GRADE
101 Alice Green 18 12-05-2006 A
102 Bob White −3 01-15-2029 B
103 Jane Doe 20 09-10-2004 X



Some issues found:

Bob’s age is −3; age values cannot be negative.

Bob’s birth date is in the future; birth dates must be in the past.

Jane’s grade is X, and X is not a grade in the school’s curriculum.

To validate data within relational databases, one approach is using the CHECK constraint in
SQL, as discussed in Chapter 4. This constraint allows us to enforce rules directly at the
database level, ensuring that only data meeting predefined conditions is accepted. By
embedding these validation rules within the database schema, organizations can maintain
data integrity and reduce the risk of errors downstream.

Let’s walk through some SQL query examples designed to assess the validity of data in
each of these columns.

Checking birthdays: This query enforces the rule that all birth dates should always be in
the past.

CREATE TABLE Student (
  student_id INT PRIMARY KEY,
  name VARCHAR(50) NOT NULL,
  birthdate DATE NOT NULL,
  CHECK (birthdate <= CURRENT_DATE)#This ensures that the birthdate 
cannot be in the future.
);

Checking grades: This query ensures that all grades should only be within a predefined
range (e.g., A, B, C, D, F).

CREATE TABLE StudentGrades (
  student_id INT PRIMARY KEY,
  subject VARCHAR(50) NOT NULL,
  grade CHAR(1) NOT NULL,
  CHECK (grade IN ('A', 'B', 'C', 'D', 'F'))
);

Checking ages: This query ensures that the field Age is always a positive integer and
within a reasonable range (e.g., between 1 and 120).

CREATE TABLE AgeValidation (
  student_id INT PRIMARY KEY,
  name VARCHAR(50) NOT NULL,
  age INT NOT NULL,
  CHECK (age BETWEEN 1 AND 120)
);

These completeness checks are implemented as constraints within the database schema.
Rather than correcting invalid data, they prevent it from being inserted into the database in
the first place. If someone tries to insert or update a row that violates any of these checks,
the database will reject the operation and return an error. A validity SLA could specify
that 100 percent of data entries must conform to defined formats and business rules.



Uniqueness
Uniqueness is an important part of data quality. It measures the degree to which the
records in a dataset are not duplicated. Duplicate data can lead to errors in processing and
incorrect reporting, and it can also increase storage requirements or slow down processing
and querying.

Consider a banking application where customers are registered. If a customer’s data is
entered more than once, it could lead to multiple accounts being created for the same
individual. This can cause errors in transactions, orders, or even fraud detection. A unique
constraint ensures that every customer has only one record in the system.

In this table, the customer John Doe appears twice in the database.

CUSTOMER
ID

FIRST
NAME

LAST
NAME

SSN EMAIL ADDRESS ACCOUNT
CREATION
DATE

101 John Doe 555-
12-
3456

john.doe@email.com 123 Elm
St, NY

01-01-2025

102 Null Smith 987-
65-
7432

Null 456 Maple
Ave, TX

01-01-2025

103 Jane Null 111-
220-
3333

janef@gmail.com 789 Oak
Blvd, CA

2025-01-15

104 Michael Johnson 222-
33-
4444

michael.j@email.com 321 Birch
Ave, TX

2025-01-20

105 John Doe 555-
123-
456

john.doe@email.com 123 Elm
St, NY

2025-01-01

Data uniqueness checks are used to ensure that data in a dataset are distinct and that no
duplicate records exist. To ensure data uniqueness, a common approach is the duplicate
record check. This check identifies and removes or resolves duplicate entries based on key
fields.

SELECT customer_id, COUNT(*) AS record_count
FROM sales
GROUP BY customer_id
HAVING COUNT(*)> 1;

In this query, GROUP BY customer_id groups records by the unique identifier
(customer_id). COUNT(*) > 1 identifies cases where the same customer_id appears more
than once, indicating duplicates.

mailto:john.doe@email.com
mailto:janef@gmail.com
mailto:michael.j@email.com
mailto:john.doe@email.com


In addition to querying for duplicates, data uniqueness can also be enforced at the schema
level by using the SQL UNIQUE constraint, as seen in the following SQL query. This
ensures that certain fields, like email addresses or student IDs, remain unique across all
records, and that any attempt to insert a duplicate value will be rejected by the database.

CREATE TABLE sales (
  customer_id INT UNIQUE
);

Timeliness
Timeliness refers to the degree to which data is available and up-to-date, especially when
meeting SLA requirements. For example, in the banking application database, the
customer dataset must be loaded at 9:00 a.m. Some records in the following database table
do not meet those requirements.

CUSTOMERID CUSTOMER
NAME

TRANSACTION
AMOUNT ($)

EXPECTED
UPDATE
TIME

EXPECTED
UPDATE
TIME

SLA
MET

101 Jane Doe 500.00 9:00 a.m. 9:10 a.m. No
102 John Smith 200.00 9:00 a.m. 8:55 a.m. Yes
103 Alice Brown 750.00 9:00 a.m. 9:30 a.m. No

Accessibility
Accessibility refers to the ease with which users can locate, retrieve, and use data when
needed. This dimension ensures that data is accessible and made available to the right
people at the right time and in the right format. Without accessibility, even high-quality
data becomes useless because it cannot serve its intended purpose. Consider an e-
commerce company, where sales and inventory teams need access to real-time product
stock data to avoid overselling. If this data is only available to IT administrators or is
stored in an outdated system requiring multiple steps to access, although the data is of
good quality it is not accessible. An accessibility SLA could require that authorized users
must have 99.9 percent uptime access to data platforms during business hours.

Relevance
Relevance is the degree to which data meets the specific needs of its users. It addresses
whether the data is meaningful and applicable to the context in which it is used. Data
needs to align with the specific questions or goals of the business, it needs to be captured
at the right level of detail, and most importantly, it has to be filtered to remove data that
does not contribute to insights. Say a marketing team is preparing a targeted campaign for
Valentine’s Day and they need recent customer purchase behavior data. Providing
customer data from two years ago is irrelevant to their current objective. They would most
likely need timely data from the last three months.



Data Quality Hierarchy
Data quality is perceived differently depending on who is using the data. The data quality
hierarchy is a conceptual framework that outlines the various levels at which data quality
is evaluated, depending on the user’s perspective. As engineers, our focus is primarily on
cleaning, transforming, and maintaining the accuracy of data throughout its life cycle.
However, stakeholders view data through a different lens, often prioritizing its usability,
relevance, and reliability for decision-making. Figure 8-1 represents the different layers
stakeholders go through to get the right data.

Figure 8-1: Data quality hierarchy

In the accessibility layer in Figure 8-1, stakeholders, whether downstream or upstream,
simply want to know if data can be easily accessed, searched, and understood. At this
stage, they are concerned with whether they can find and retrieve the data they need
without jumping through a lot of hoops.

In the timeliness layer, they want to know if the data is available when needed. Timeliness
is crucial for stakeholders like business managers who rely on up-to-date data for
reporting and making time-sensitive decisions. Delays in data availability reduce its value.

In the relevance layer, they check if the data supports the current business initiatives and
decisions. Executives and decision-makers look for data that is directly relevant to solving
business problems or answering key questions. In this layer, data that isn't aligned with
business goals is often ignored.



At the accuracy layer, they check if the data is an accurate representation of the element it
describes. As this is the final level, stakeholders such as data scientists or auditors need
assurance that the data accurately reflects reality. Any inaccuracies can lead to flawed
insights and costly errors.

In summary, the pyramid structure implies that each layer builds on the previous one.
Moving beyond accuracy, data engineers and stakeholders can decide on more granular
requirements for specific projects.

Data Quality Best Practices
Data quality is not just about having clean data. Achieving and maintaining high data
quality requires a comprehensive approach that combines cultural and technical efforts.
Let’s explore best practices that organizations can implement to safeguard the integrity of
their data.

Establishing a data quality culture: The change starts with you. To build a strong
data quality culture, the first step is leadership involvement. Senior leaders need to
set the tone and demonstrate a commitment to data quality by allocating necessary
resources and prioritizing them across teams. However, it’s not just up to leadership;
every department should own the data they work with. This is where data stewards
come in; they’re responsible for specific datasets and ensure that those datasets are
maintained to high standards. Also, encouraging cross-department collaboration
allows for a more comprehensive approach to data quality, making sure everyone
understands data quality best practices. When everyone in the organization knows
that data quality is a shared responsibility, it becomes part of the organizational
culture.

Building a data quality framework: A data quality framework sets the rules for
what good data looks like. These rules focus on six key dimensions; accuracy,
completeness, consistency, timeliness, uniqueness, and validity. It’s important to
define quality thresholds for each of these dimensions so that everyone knows what
good data means in the organization. Once these standards are in place, tools like
Monte Carlo—a data observability platform that helps organizations monitor, detect,
and resolve data quality issues across their data pipelines—can help operationalize
the framework by continuously monitoring data for issues related to those
dimensions. This ensures that the framework is not just theoretical, but actively
enforced in real time.

Data profiling: To truly understand the quality of your data, you need to profile it.
Data profiling helps identify patterns, errors, and inconsistencies in your data. It’s
like taking a deep dive into your data to see how it looks, and this will help you spot
issues like missing values, duplicates, or inconsistent formatting. Once you’ve
profiled the data, data cleansing comes into play. Here you can use Great
Expectations, an open source data validation tool that allows you to create, manage,



and test data quality rules throughout your data pipelines. It can be used as a tool to
automatically validate data quality at ingestion or transformation time.

Effective monitoring and reporting: Data quality requires constant monitoring.
Real-time systems allow you to keep an eye on the quality of data as it flows through
your pipelines, allowing you to spot issues like missing records or invalid values
before they impact your analysis or decision-making.

Dashboarding tools like Looker, Tableau, and PowerBI are great tools for this
purpose, as they allow you to design dashboards that visualize key metrics such as
completeness, consistency, and error rates. Reports generated from these dashboards
provide insights that help teams stay on top of potential data quality issues. Having
this ongoing visibility enables them to act proactively rather than reactively,
preventing bigger issues down the road.

Summary
Data quality measures how well data aligns with its intended purpose, showing us if
data is reliable and suitable for use in making decisions.

Bad data is data that fails to meet the standards needed for meaningful analysis. It is
usually incomplete, with missing values and poorly formatted.

Two common causes of bad data are human error and synchronizing data across
multiple systems.

Service level agreements (SLAs) are the specific standards and performance metrics
outlined in a contract between a service provider and a customer.

Data quality dimensions are the different lenses through which we evaluate the
fitness of data. These dimensions are accuracy, completeness, consistency, validity,
uniqueness, timeliness, accessibility, and relevance.

Accuracy measures how closely data matches the real-world entities it represents.

Completeness evaluates whether all required data is present in a dataset. A
completeness score is expressed as a percentage that reflects the proportion of data
that is complete compared to the total expected data.

Consistency refers to the uniformity and accuracy of data across different systems
and datasets.

Referential integrity is a concept that ensures the consistency of relationships
between tables by guaranteeing that foreign key values in one table always
correspond to valid primary key values in another table.

Validity measures the degree to which the values in a data element are valid. To
validate data within relational databases, one approach is using the CHECK constraint
in SQL.



Uniqueness measures the degree to which the records in a dataset are not duplicated.
A common approach to ensure this is by carrying out a duplicate record check.

Other dimensions are timeliness, which refers to the degree to which data is available
and up-to-date; accessibility, which refers to the ease with which users can locate,
retrieve, and use data when needed; and relevance, which refers to the degree to
which data meets the specific needs of its users.

The data quality hierarchy is a conceptual framework that outlines the various levels
at which data quality is evaluated, depending on the user’s perspective.

Data quality best practices include establishing a data quality culture, building a data
quality framework, effective monitoring and data profiling, and most importantly,
utilizing the right tools.



CHAPTER 9
Data Security
In 2017, Uber Technologies, one of the world’s leading ride-hailing
companies, disclosed a massive data breach that had occurred a year earlier
in 2016. Hackers accessed Uber’s AWS cloud storage, stealing personal
information of 57 million users and drivers globally. The stolen information
included names, email addresses, phone numbers, and in some cases, trip
details.

The attackers gained access by obtaining API credentials that had been
published in a private GitHub repository. Using these keys, they accessed
Uber’s cloud environment and downloaded the data. The breach went
undetected for nearly a year. When it was discovered in late 2017, Uber
chose not to disclose it publicly. Instead, the company paid the hackers
$100,000 to delete the data, disguising the payment as part of a bug bounty
program. The breach raised concerns about the broader state of
cybersecurity in the tech industry.

What could they have done differently? The hackers gained access to
Uber’s AWS systems because API keys were exposed. This shows that
Uber might not have followed adequate security practices for protecting
sensitive credentials, and it also suggests their access controls might have
been too weak or set up incorrectly. Uber didn‘t detect the breach for over a
year, which suggests that their monitoring systems were either insufficient
or not appropriately configured, and there wasn’t any real-time monitoring
setup to quickly detect unauthorized access.

The Uber data breach was a wake-up call for tech companies about the
importance of securing sensitive data. Data engineers, in particular, have a
role in ensuring that data is protected from unauthorized access and that
best practices are followed in storing and processing sensitive information.

It’s perfectly fine if some of the terminologies in this story aren’t clear to
you yet. As we learn more about the fundamentals of data security, you’ll
gain a better understanding of these concepts and see how they play a
crucial role in safeguarding data. Data security is the backbone of modern



data systems, ensuring that data stays private and accessible only to the
right people. Knowing how to secure your data is a must for any data
engineer. In this chapter, we’ll explore the following:

Why data security matters

The principles of data security

How to protect data at rest and in transit

The concepts of authentication and authorization

Data encryption and masking basics

The principle of least privilege

Access control models

Understanding network security

By the end of this chapter, you’ll not only understand the basics of securing
your data, but you’ll also be confident enough to make smart decisions to
protect your data systems from threats.

What Is Data Security?
Data security refers to the measures and processes used to protect data from
unauthorized access, corruption, or loss. In the context of data engineering,
it focuses on ensuring the confidentiality of data throughout its life cycle,
from when it’s generated, stored, processed, and finally consumed by
different systems or users.

When data is properly secured it has multiple benefits. Looking at the Uber
data breach, we can see that data breaches can expose sensitive information
such as personal details, financial data, or proprietary business information,
which can result in a lot of damages. Implementing data security practices
ensures that only authorized individuals can access sensitive data,
significantly reducing the risk of breaches.

Data security also maintains the integrity of our data. Integrity refers to the
accuracy and consistency of data. If data is not properly secured, it can be
altered, corrupted, or tampered with, affecting the quality of the data. Data



security ensures that the data remains intact and trustworthy, especially
when being processed or transferred across various systems.

A proper data security framework helps organizations that handle sensitive
data, like healthcare and finance companies, build trust because they must
prove that they can securely manage the data. Also, businesses must comply
with data protection laws and regulations, like the GDPR (General Data
Protection Regulation) in Europe or CCPA (California Consumer Privacy
Act) in the United States. These are regulatory bodies that we will be
exploring in the next chapter. These regulations mandate that data is stored
securely and that individuals’ privacy is protected. Noncompliance can lead
to heavy fines and legal consequences.

In the era of big data, many organizations rely on large datasets for
competitive advantage. Poor data security practices can result in intellectual
property theft, where competitors steal valuable data. In summary, data
security is a critical aspect of data engineering. Even the most advanced
systems and architectures are ineffective if the data they handle can be
easily accessed or compromised.

Common Threats to Data Security
Data breaches make sensational news stories, but there are other common
data security threats with unique challenges, particularly in environments
where data storage and processing systems manage large volumes of
sensitive information. By understanding these potential threats, you
gradually build a security-conscious mindset while designing your data
infrastructure.

Malware: This is like a poison that gets into your water system and
spreads everywhere. Malware is software that can infect your cloud
storage, databases, or data processing tools. The worst kind is
ransomware, which locks up your data and demands money to unlock
it. If this happens, your entire data pipeline can shut down, and all your
work is stuck until you fix it. Suppose you have a data pipeline that
moves customer transactions from an app to a database. If ransomware
attacks your database, all transaction records become unreadable, and
your company can’t process payments or refunds.



Phishing attacks: Phishing is when a hacker pretends to be someone
you trust like your boss or a coworker, tricks you into giving them
your keys, and reveals your login details for cloud storage or
databases. Once they have access, they can steal, delete, or change
important data. For instance, say you get an email that looks like it’s
from your company’s IT team, asking you to reset your database
password. But it’s fake—once you enter your password, the hacker
now has access to your company’s customer data and can do whatever
they want with it.

Insider threats: Sometimes, the biggest danger isn’t from outside; it’s
from someone inside the company. An employee with the right
privileges and access to databases might leak or manipulate data, either
by accident or on purpose.

SQL injection: Many data ingestion pipelines interact with SQL-
based databases. If an API endpoint or data ingestion process accepts
unsanitized inputs, an attacker could sneak a bad command into a
system that isn’t properly protected. For instance, if a website or app
allows users to enter text, like a search bar or a login form, but doesn’t
check it properly, hackers can insert a command that makes the
database spill out information or delete records.

Lack of encryption: Data engineers often work with sensitive data in
transit and at rest. Without proper encryption, data can be intercepted
or stolen during transfer or accessed by unauthorized individuals once
stored.

Core Principles of Data Security
To handle these numerous threats, there are core principles that act as a
framework that guides data security and forms the foundation for protecting
data in any organization. As shown in Figure 9-1, the core principles of data
security are confidentiality, integrity, and availability, often referred to as
the CIA Triad.



Figure 9-1: The CIA Triad

Confidentiality
Confidentiality ensures that data is kept private and is accessible only to
those who are authorized to view it. It’s important for sensitive data,
especially personal information. It is also a requirement for legal
compliance. Companies have strict regulations around protecting personal
data, such as HIPAA in healthcare or GDPR in the EU. If confidentiality
isn’t maintained, the company can face data breaches and reputational
damage. Confidentiality is often maintained through the following
practices:

Encryption: This is a process where we transform data into an
unreadable format using an encryption algorithm. Only those with the
correct key can decrypt it and make sense of it.

Data masking: This is a technique that protects sensitive information
by replacing it with fake or randomized data.



Access control: We can define who can access data and what level of
access they have. For example, only certain team members might be
able to modify data, while others can only view it.

Network security: When transferring data over the Internet, we need
to secure protocols (like HTTPS) to prevent unauthorized interception.
We will be discussing these in detail in this chapter.

Integrity
Integrity involves ensuring that data is accurate, consistent, and not altered
or corrupted in any unauthorized manner. This principle helps maintain the
trustworthiness of data throughout its life cycle and ensures that
unauthorized changes, whether accidental or malicious, don’t occur in the
system. For instance, if a hospital sends patient records across a network, it
needs to ensure that the data isn’t tampered with during transmission. To do
this, data engineers often use techniques like checksums or data auditing.

Checksums: A checksum is a unique value or code generated by
applying a mathematical algorithm (usually a hashing function) to a set
of data, such as a file, database row, or network packet at the time it’s
sent. The checksum acts as a digital fingerprint of the data; when it
reaches the destination, the code is checked again. If the codes match,
we know the data hasn’t been altered. According to Figure 9-2, we
have three columns:

The input text, which contains original data or messages

A checksum function that takes the text and generates a checksum

The checksum output, the output of the checksum function, shown
as a sequence of values

We notice that “The red fox jumps over the blue dog” has a checksum
of 92 33 86 37 92 31 33 and “The red fox jumps ouer the blue dog,”
with a typo of ouer instead of over, has a checksum of 93 33 86 33 88
03 89. This shows that even a small change like switching letters
produces a very different checksum.



Figure 9-2: How a checksum works

Checksums are used to ensure data integrity by verifying that data has not
been altered, corrupted, or tampered with during storage or transmission.

Data auditing: Another way to preserve the integrity of our data is
auditing. Data auditing helps us keep track of all data modifications,
access, and actions, using audit logs. Audit logs are used to track who
accessed data and what changes were made, and this helps detect
unexpected alterations. They also provide a compliance trail to prove
that sensitive data is handled properly. Additionally, version control
systems are used to keep a history of changes, allowing you to revert
to previous states if needed.



Availability
This principle ensures that data is accessible and usable when needed. It’s
not enough for data to be secure and accurate; it also needs to be accessible
when users or systems require it. We ensure availability through
redundancy, setting up backup systems, and using failover mechanisms.

Redundancy: One of the most effective ways to ensure availability is
through redundancy. Your system is redundant when multiple copies of
the same information are stored in more than one place at a time. By
replicating data across multiple systems or locations, you ensure that
there is always an accessible copy available in case one system fails.
This can be done at the database level or by using distributed
filesystems. In case of a failure in one location, another replica can
take over. The key lesson here is to never rely on a single point of
failure.

Failover mechanisms: Failover is switching to a backup system
automatically when the primary system fails. This ensures that services
remain available even in the event of system crashes or hardware
failures. Automated systems that can detect failures are set up, ready to
jump into action the moment an issue occurs.

Backups and disaster recovery: Regular backups ensure that data can
be restored in case of any loss or system failure. These backups can be
incremental or full. In incremental backups, only changes to data since
the last backup are saved, making the process faster and using less
storage, while full backups restore the complete copy of the data.
Without availability, systems can’t function properly. If an e-commerce
website crashes during a sale, customers can’t make purchases, which
would result in lost revenue. Data systems need to be running
continuously to support day-to-day operations.

We’ve discussed techniques that support the core principles of data security.
In the following sections, our focus will shift more specifically toward
practices that ensure confidentiality.

Data Encryption



In the CIA Triad, encryption is one of the practices under Confidentiality
and a fundamental component of security. It converts readable data
(plaintext) into an unreadable format (ciphertext) to prevent unauthorized
access. This transformation is achieved using encryption algorithms and
keys, ensuring that only those with the correct decryption key and algorithm
can restore the data to its original form.

We can see encryption in action in online banking. When a customer logs in
to their bank’s website, their username, password, and financial data are
encrypted before transmission to prevent interception by hackers.
Messaging applications like WhatsApp use end-to-end encryption to ensure
that only the sender and recipient can read the messages, even if someone
gains access to the network.

Two major techniques are used to encrypt data using a key: symmetric and
asymmetric encryption. In encryption, a key is a string of bits used to
encrypt and decrypt data; it acts as a secret code that ensures only
authorized parties can access the information. They both have different
ways of handling this key, serving different use cases in security.

Symmetric Encryption
In symmetric encryption, as seen in Figure 9-3, the same key is used for
both encrypting and decrypting data. This means that both the sender and
the receiver must have access to the same secret key, which makes the
process fast and efficient. The advantage of symmetric encryption is its
speed and efficiency, making it ideal for encrypting large amounts of data.
However, symmetric encryption has a significant drawback: key
management. Since the same key is used for both encryption and
decryption, securely sharing the key between parties becomes a challenge.
If an attacker gains access to the key, they can decrypt all encrypted data.

Figure 9-3: Symmetric key encryption



Asymmetric Encryption
Unlike symmetric encryption, asymmetric encryption (see Figure 9-4) uses
two separate keys: a public key for encryption and a private key for
decryption. This approach eliminates the need to share a secret key between
parties, reducing the risk of interception and making it especially suitable
for secure communication over untrusted networks. The main advantage of
asymmetric encryption lies in enhanced security. Since the private key is
never shared, the risk of key compromise is significantly reduced, even if
the public key is widely available. Without the private key, decryption is
practically impossible. However, it is computationally slower than
symmetric encryption due to the complexity of its algorithm.

Figure 9-4 illustrates the concept of asymmetric encryption. The process
begins with a readable message or data (plain text) that needs to be secured.
A public key (depicted on the left) is used to encrypt the plain text. This key
is freely distributed and can be shared with anyone. After encryption, the
plain text becomes cipher text (unreadable to unauthorized parties). The
cipher text is the scrambled version of the original message, which ensures
that even if intercepted, it cannot be read without the correct decryption key.

After this, a different but mathematically related key, called the private key,
is used to decrypt the cipher text back into plain text. The private key is
kept secret and only known to the intended recipient. After decryption using
the private key, the original message is restored.

A key differentiator between these two methods is key management. In
symmetric encryption, both parties must securely share and store the same
secret key. In contrast, asymmetric encryption simplifies this process by
enabling public key distribution while keeping the private key secure. This
distinction makes key management not just an important concept, but a
central factor in determining the practicality and security of each encryption
method in different use cases.



Figure 9-4: Asymmetric key encryptionSource: Generated using Scaler
Topics

Data Masking
Let’s look at another data protection technique under confidentiality called
data masking. Data masking involves altering sensitive data to make it
unreadable or unusable for unauthorized users while maintaining its
integrity for applications and workflows. It is commonly used to protect
personally identifiable information (PII) and other sensitive data.

Personally Identifiable Information (PII) refers to any data that can be used
to identify, locate, or contact an individual. According to Table 9-1,
personally identifiable information (PII) can be categorized into direct
identifiers and indirect identifiers, with different risk levels. In cases where
PII is exposed, it can lead to identity theft, fraud, and reputational damage
for both individuals and organizations.



Table 9-1: Personally Identifiable Information (PII) and Respective Risk
Levels

CATEGORY EXAMPLES RISK
LEVELS

Direct
Identifiers

Full name, Social Security Number (SSNs),
passport number, driver’s license, biometric data

High

Indirect
Identifiers

Date of birth, gender, zip code, phone number, IP
address

Medium

Sensitive PII Credit card numbers, bank account details,
health records, financial transactions

Very
High

The key idea behind data masking is that even if someone gains access to
masked data, they cannot reverse-engineer it to obtain the original
information. Developers and analysts often need access to production-like
data for testing, analytics, and software development, but using real
customer data in nonsecure environments increases security risks. Data
masking allows technical staff to work with realistic but anonymized data,
minimizing risk.

If you’re working in a fintech company, you will often deal with sensitive
customer information like names, Social Security numbers (SSNs), emails,
and credit card numbers. However, due to regulatory compliance such data
is never stored or processed in raw form. Instead, it is masked to protect
customer privacy while still allowing necessary business operations.

In this table, storing information like this violates data protection laws. To
ensure security, you implement a masking policy.

FULL
NAME

SOCIAL SECURITY
NUMBER (SSN)

EMAIL CREDIT
CARD
NUMBER

John Doe 123-45-6789 johndoe@email.com 9876-5432-
1234-5678

Jane
Smith

234-56-7890 janesmith@email.com 8765-4321-
5678-1234

mailto:johndoe@email.com
mailto:janesmith@email.com


After implementing your data masking logic, the transformed dataset looks
like this:

FULL
NAME

SOCIAL SECURITY
NUMBER (SSN)

EMAIL CREDIT
CARD
NUMBER

John Doe XXX-XX-6789 johndoe@email.com –****-5678
Jane
Smith

XXX-XX-6789 janesmith@email.com –****-1234

This approach allows customer service agents to verify users without
exposing their full personal details.

mailto:johndoe@email.com
mailto:janesmith@email.com


DATA AT REST vs. DATA IN TRANSIT
In data engineering, data exists in two primary states: at rest and in
transit. Each requires different security measures.

Data at rest refers to any data that is stored on a physical or cloud-
based storage system, such as hard drives, databases, or cloud
storage platforms, and not actively moving across a network but is
instead stored for later retrieval. Since stored data is a common
target for cybercriminals, data-at-rest encryption is critical for
preventing unauthorized access.

We typically use symmetric encryption for this purpose, because it
is efficient for encrypting large amounts of data. Encryption
methods for data at rest include full-disk encryption (FDE), which
secures all the contents of a storage device, and database
encryption, which protects sensitive records within databases. For
example, Microsoft SQL Server and Oracle databases offer
Transparent Data Encryption (TDE), ensuring that even if someone
gains access to the database files, the data remains unreadable
without the encryption key.

A real-life example of data at rest encryption is in cloud storage
services like Google Drive and Dropbox, which encrypt user files on
their servers to prevent unauthorized access by hackers or
employees. The advantage of encrypting data at rest is that even if a
device is lost, stolen, or accessed by an unauthorized person, the
encrypted files remain protected.

On the other hand, data in transit refers to data actively being
transferred between devices, networks, or systems. This includes
data sent over the Internet, corporate networks, or mobile
communications. Data in transit is more vulnerable to interception
through attacks, where a hacker intercepts and alters
communication between two parties.

One of the most common methods for protecting data in transit is
Transport Layer Security (TLS), which encrypts data between a
user’s device and a web server. When you enter your credit card



details on an e-commerce website, TLS ensures that your sensitive
information is encrypted before being transmitted to the payment
processor.

Another example of data in transit encryption is the use of Virtual
Private Networks (VPNs). A VPN encrypts Internet traffic between
a user’s device and a remote server, preventing ISPs, hackers, or
governments from monitoring online activity. This is particularly
useful for remote workers accessing company systems securely. The
advantage of encrypting data in transit is that it prevents
eavesdropping and unauthorized access, ensuring secure
communication over the Internet and private networks. These are
key concepts in networking fundamentals, which we’ll explore in
detail in the next section.

Understanding Network Security
Network security is the practice of protecting data as it travels across or is
accessed through computer networks. As a data engineer, you will work
with various tools and services such as APIs, data pipelines, and cloud
storage systems that exchange data over networks. Data doesn’t just move
freely; protocols are in place to ensure that it remains secure at every stage,
preventing tampering and unauthorized access. One of the most commonly
used protocols to secure data during transmission (data in transit) is
Transport Layer Security (TLS), which encrypts data in transit between
systems, so that even if intercepted, the data remains unreadable. But TLS
evolved from an older protocol known as Secure Sockets Layer (SSL).

SSL was the original protocol designed to secure communications over a
network, specifically between a client (like a web browser) and a server
(like a web server or database). SSL provided key security services, it
ensured that the data being transmitted is scrambled so that only the
intended recipient can read it, it also ensured that the data has not been
altered during transmission, and it verified the server’s identity, ensuring
you’re communicating with the correct system. However, SSL had several
vulnerabilities, leading to its deprecation in favor of TLS.



TLS is the successor to SSL and offers stronger encryption and better
security features. It is designed to address the weaknesses in SSL and
provide more robust security measures. TLS is what is actually in use today,
even though many systems still refer to it as SSL due to historical reasons.
TLS supports more modern and secure encryption algorithms, and it has an
improved handshake process that establishes a secure connection, reducing
the risk of attacks.

For example, when you’re fetching customer data from a third-party API,
TLS ensures no one alters the data before it reaches your system. It ensures
that the data is encrypted during transmission and also encrypts database
connections to prevent attackers from sniffing credentials or queries.
PostgreSQL, MySQL, and Snowflake DB allow connections over TLS to
ensure secure query execution.

We mentioned that TLS has an improved handshake process, so if you’re
wondering what goes on behind the scenes, let’s see how that handshake
works using a web browser as an example. This process is shown in Figure
9-5.

Step 1: When you type a website address (like
https://snowflake.com), your browser sends a “Hello” message to
the website’s server, as shown in Figure 9-5. This message means,
“Hey, I want to connect securely! What security options do you
support?”

Step 2: The website’s server replies with its own “Hello” and says,
“Great! I support TLS. Here’s my security certificate!” This certificate
is like an ID card that proves the website is legitimate.

Step 3: Your browser looks at the certificate to make sure it’s valid and
trustworthy. It checks things like whether the certificate is from a
trusted authority, expired, does it match the website you’re visiting. If
everything looks good, the HTTP request is sent for the website above.
If not, you get a security warning.

Step 4: The request is received and the HTTP response is sent to the
client. Now, your browser and the server agree on a secret key. This
key will be used to encrypt the information sent between them so no
one else can read it.

https://snowflake.com/


Figure 9-5: TLS handshake

Once the key is shared, all the data between your browser and the website is
locked with encryption. Even if a hacker intercepts the data, they won’t be
able to read it without the secret key. At this moment, you will notice a
padlock icon in your browser’s address bar. This means your connection is
secure, and you can safely send sensitive information like passwords or
credit card details.

Now that you grasp the fundamentals, let’s explore the role TLS plays in a
typical data engineering task. Suppose you’ve been tasked with building a
data pipeline that pulls data from a third-party API, processes the data, and
writes it to an Amazon Relational Database Service (RDS) instance. The
key requirement is that all communications between your services should
be encrypted using TLS to ensure the data is secure during transmission.
Let’s look at all the steps.

1. Pulling data from the API:



When your data pipeline calls an external API, it often communicates over
HTTPS. APIs typically expose HTTPS endpoints, which use TLS
encryption to ensure confidentiality and integrity of the data in transit.

For example, consider a scenario where you’re using Python’s requests
library to retrieve data from an external API. The following code sends a
secure HTTP (HTTPS) GET request:

import requests
url = "https://api.example.com/data"
response = requests.get(url)#This sends an HTTP GET request 
to the API.
data = response.json()

In this example, requests.get(url) sends an HTTP GET request to the
specified HTTPS endpoint. Because the URL begins with https://, the
communication is encrypted using TLS. The data received is securely
transferred over the network, helping protect it from tampering or
eavesdropping.

TLS ensures that your system and the API provider authenticate each other.
The data being sent is encrypted during transit to prevent it from being
intercepted by unauthorized parties and the integrity of the data is
maintained so that no one can tamper with the API response during
transmission.

2. Processing the data on your local machine:

After pulling the data, you may process or transform it before sending it to
the Amazon RDS database. In this step, TLS doesn’t apply, as you’re
handling data locally. However, the next step of writing the data to RDS
will require secure transmission.

3. Writing data to Amazon RDS:

When writing the data to Amazon RDS, TLS is used to secure the database
connection and prevent unauthorized access or tampering of data while it’s
in transit.

Access Control



Access control refers to the processes put in place to ensure that only
authorized users, systems, or applications can access specific data within a
system. It involves defining who can access what data, under which
conditions, and for what purposes, to maintain data privacy, integrity, and
security.

Access control is important because it ensures that sensitive data is
protected from unauthorized access and misuse, especially in environments
that handle large-scale data, such as data lakes, data warehouses, and
distributed databases and where multiple users need to interact with the
data. Let’s discuss some core concepts that ensure access control:

Authentication and authorization

Access control models

The principle of least privilege

Access levels

Authentication
Imagine you arrive at a hotel to check in. The first thing the receptionist
does is ask for your passport, driver’s license, or booking confirmation to
verify your identity. If your credentials match the hotel’s records, you are
authenticated, and they proceed with assigning you a room.

Authentication is the process of verifying the identity of a user or system
before granting access. It answers the question, “Are you who you say you
are?” Before granting access to a system, the system needs to confirm that
the person or application trying to log in is legitimate. In data engineering,
authentication happens when a user logs into a system, database, or cloud
platform. A user must prove their identity using one or more authentication
methods:

Username and password

Multifactor authentication

Biometrics authentication

OAuth authentication



Username and Password Authentication
This is the most common and fundamental form of user authentication. It
involves two pieces of information: a unique username that identifies the
user and a password known only to the user, which acts as a secret key to
access their account. When a user attempts to log in to a system, they input
their username and the corresponding password. If both match what the
system has stored, access is granted. This method is simple and widely
used; however, its simplicity is also a weakness. If someone gains access to
both the username and password, they can impersonate the legitimate user.
Passwords can also be weak, reused across sites, or forgotten.

Multifactor Authentication (MFA)
Multifactor authentication (MFA) is a security method that requires users to
present multiple forms of identification before being granted access. As
shown in Figure 9-6, it involves two or more factors, something you know
(a password or PIN), something you have (a phone, security token, or smart
card), or something you are (biometric factors like fingerprints or facial
recognition).

For example, when logging in to your online banking app, after entering
your password, you might be required to enter a one-time code sent to your
phone via SMS or use an authentication app like Google Authenticator to
generate a code. This method provides an extra layer of security, as even if
an attacker gains access to the username and password, they will also need
access to the second factor (e.g., your phone) to successfully authenticate.
MFA makes it significantly more difficult for unauthorized users to break
into an account, thus enhancing overall security.



Figure 9-6: How multifactor authentication works

Biometric Authentication
Biometric authentication uses unique physical or behavioral characteristics
of a user to verify their identity. These characteristics include things like
fingerprints, facial recognition, and voice patterns. Biometric systems work
by comparing the captured data to a pre-enrolled template stored in a
database. If there’s a match, access is granted. Using Face ID on an iPhone
or unlocking your laptop with a fingerprint sensor are both forms of
biometric authentication. Biometrics are also unique to individuals, making
them harder to spoof than traditional passwords. However, while biometric
authentication is more secure than passwords, it’s not entirely immune to
attacks, especially if the database storing the biometric data is
compromised.

OAuth Authentication
OAuth, which stands for Open Authorization, is an open standard for
authentication that allows users to share their private resources stored on
one site with another site without exposing their credentials. OAuth enables
third-party applications to access user data on a service on behalf of the
user, using tokens instead of the user’s password. OAuth is commonly used
in scenarios where users want to grant limited access to their accounts on
one platform without sharing their passwords. For example, using your
Google account to log into a third-party website allows that website to
access your Google account information, without needing to know your



Google password. The service asking for access receives a token that can
only be used for specific actions and a limited time.

OAuth authentication is important because it improves security by limiting
the exposure of passwords. It also enhances user experience by reducing the
number of login credentials users need to remember while maintaining
control over the information they share.

In summary, most cloud platforms support OAuth for API access and MFA
for securing accounts, and some also integrate biometric options for
securing personal devices or mobile access. The choice of method can be
influenced by the resources you’re using, the level of security needed, and
the user experience you want to create.

Authorization
Authentication and authorization are two fundamental concepts that
determine how users access systems and what they can do once inside.
Though they are often confused, they serve distinct purposes. Now, think of
them as two gates in a security process, one verifying who you are and the
other deciding what you’re allowed to do.

Authentication is the first step in access control. But just because someone
successfully logs in doesn’t mean they should have unrestricted access. This
is where authorization comes in. Authorization determines what actions an
authenticated user can perform and what resources they can access. It
answers the question, “Now that we know who you are, what are you
allowed to do?”

Let’s go back to the hotel scenario. After confirming your identity, the
receptionist doesn’t just give you access to any room in the hotel. Instead,
they issue you a key card that only opens your assigned room. If you
booked a standard room, you cannot enter the presidential suite or any other
standard room other than the one assigned to you. Similarly, hotel staff like
housekeeping or managers have different levels of access; housekeeping
can enter guest rooms for cleaning, but they can’t access the hotel’s
financial records.

In cloud databases, once a user logs into a data system, authorization
determines what actions they can perform. The marketing team might only



have read access to query datasets but not modify them, a data engineer
might have write access to modify tables but not delete them, and a
database administrator (DBA) might have full access, including deleting
databases and modifying access policies. Without proper authorization
controls, a company risks data leaks, breaches, or accidental modifications
that could lead to a lot of issues. Authorization is usually implemented
using different access control models, as shown in Figure 9-7.

Figure 9-7: Access control models

Role-based access control (RBAC)

Attribute-based access control (ABAC)

Access control lists (ACLs)

Role-Based Access Control (RBAC)
Role-based access control (RBAC) is a widely used method of managing
user permissions based on roles within an organization. In this principle,
access to resources is granted based on the user’s role within an
organization rather than individual permissions. A role represents a
collection of permissions that define what actions a user can perform on a
resource. Users are assigned roles, and roles are linked to specific
permissions.

In RBAC, permissions are grouped by role, and users are assigned one or
more roles depending on their job function. For example, in a company’s
internal system, you may have roles like Admin, Manager, and Employee.
An Admin can create and delete accounts, a Manager can access certain
reports and manage teams, and an Employee might only be able to view
their data or submit requests. Each role has a predefined set of permissions.
This arrangement simplifies the assignment and management of access



rights, because rather than assigning individual permissions to each user,
roles can be assigned to users, and permissions are automatically granted
based on those roles.

RBAC also reduces the complexity of managing permissions at a granular
level. It ensures users only have the permissions necessary for their role,
improving both security and efficiency.

Attribute-Based Access Control (ABAC)
Attribute-based access control (ABAC) is a more flexible and dynamic
approach to managing access than RBAC. In ABAC, access is granted
based on the attributes/characteristics of the user, the resource, and the
environment. These attributes can include things like the user’s department,
location, time of access, or even the classification of the resource being
accessed.

ABAC uses a policy engine, which is a tool that applies rules to each access
request. This tool evaluates various attributes to make an access decision.
For example, a policy might specify that only users who are part of the
human resources department and are accessing employee records during
business hours can have access to those records. The access decision would
depend not just on the user’s role but also on attributes like time of day, the
department, and the sensitivity of the data being accessed. ABAC policies
are highly customizable and can incorporate a wide range of factors, which
makes it a good choice for complex systems where roles alone are
insufficient.

Access Control Lists (ACLs)
An access control list (ACL) is a more direct and fine-grained way of
defining permissions for specific resources, especially in cloud resources.
ACLs are typically attached to objects such as files, databases, or network
devices and specify which users or groups can perform which actions (e.g.,
read, write, delete) on those objects. Each entry in the ACL lists a user or
group and the actions they are allowed to perform on a particular resource.

Unlike RBAC and ABAC, which work by grouping users or permissions
into roles or policies, ACLs specify exactly what access a specific user or
group has to a particular resource. Each resource has its own ACL, and each



ACL entry typically grants or denies specific permissions to individual
users or groups.

Let’s say you’re managing a cloud-based data lake stored in Amazon S3 or
Google Cloud Storage and you have multiple teams, including Marketing,
Analytics, and Engineering, who need access to different datasets.
However, you don’t want to give every user full access; instead, you want
to restrict access at a granular level.

If you have the following datasets stored in your cloud storage, and each
dataset is stored in a separate folder in Amazon S3:

s3://company-data/raw/raw_sales_data.csv

s3://company-data/processed/cleaned_sales_data.csv

s3://company-data/sensitive/customer_sensitive_data.csv

Amazon S3 Bucket

We can use ACLs to define permissions at the file level. Here, we set up
ACLs for each file to control exactly who can access what.

RESOURCE USER/GROUP PERMISSIONS
raw_sales_data.csv audit_compliance_team Read
raw_sales_data.csv analytics-team Read
cleaned_sales_data.csv analytics-team Read, Write
cleaned_sales_data.csv marketing-team Read
customer_sensitive_data.csv security-team Read, Write
customer_sensitive_data.csv analytics-team Deny

The analytics team has read and write access to cleaned sales data since
they are responsible for generating business insights. The audit and
compliance team, however, can read the raw data but cannot modify it.
Meanwhile, access to sensitive customer data is restricted for the analytics
team, ensuring privacy, while the security team has full read and write
permissions to manage and protect it. ACLs provide detailed access control
at the object level, which is ideal for managing data security and



governance in cloud-based environments. However, managing ACLs can
become cumbersome in large systems with many users and resources.
ACLs are typically used in more static environments where access control
rules are not as dynamic or complex.

In summary, RBAC is ideal for simpler, more static systems where access
can be grouped based on roles. ABAC is a more flexible system that
evaluates a variety of attributes to make complex access decisions. Access
control lists (ACLs) provide granular, resource-specific control over who
can do what with specific objects, offering precise control at the object
level.

The Principle of Least Privilege
A key concept in access control is the principle of least privilege, which
means users should only be given the minimum level of access necessary to
perform their tasks. This principle guides the design of many access control
systems, including models like RBAC and ABAC.

Let’s assume you’re working in a company and a junior engineer is given
full access to a company’s entire cloud storage. One wrong command and
they could accidentally delete a critical database. This is exactly why the
principle of least privilege (PoLP) exists. It’s the practice of giving users,
applications, and systems only the access they need, nothing more, nothing
less. Figure 9-8 clearly shows a good intersection of what should be
accessible to the employee. Additionally, if an attacker gets hold of an
employee’s credentials, PoLP ensures they can’t access everything. They’re
limited to only what the employee was allowed to do, reducing the damage
they can cause.



Figure 9-8: The principle of least privilege

Here are a few ways organizations implement these principles effectively:

Use role-based access control (RBAC): Rather than assigning
permissions to individuals directly, organizations define roles, and
each role should come with predefined access rights tailored to
specific job functions. For example, as a data engineer, I might not
need access to financial reports, but I do need access to raw datasets
and ETL workflows. With RBAC, I’m assigned only the permissions
required for my work, nothing more.

Apply just-in-time (JIT) access: Permanent access increases security
risks, especially in highly regulated environments. Instead,
organizations should implement just-in-time (JIT) access, granting
permissions only when needed and for a limited duration. In my role, I
often need access to specific datasets, and I must request permission
each time. When approved, I typically receive temporary, read-only
access, which is automatically revoked once the assigned timeframe
expires. This approach enforces security best practices while ensuring
I can still perform my tasks efficiently.



Regularly audit and revoke unused privileges: Employees switch
teams, change projects, or leave the company altogether, yet their
access privileges often remain unchanged. Over time, this creates a
security risk, as dormant accounts with excessive permissions become
potential vulnerabilities. Regular access audits help identify
unnecessary privileges and revoke them proactively. I’ve seen cases
where former employees still had database access months after leaving
a project. Routine audits ensure that only the right people have access
at any given time.

Monitor access logs and set alerts: Monitoring access logs allows
security teams to track who accessed what and when. Automated alerts
can flag unusual behavior, such as a user accessing a dataset they don’t
typically interact with or attempting to log in outside of working hours.

In summary, a best practice is to ask these questions when assigning
permissions: Does this person need this access? How can I grant access
with the least risk possible? Are there ways to automate access removal
after use?

Access Levels
There are typically four standard access levels. Access levels are important
when managing access to resources in a system. It’s important to define
different access levels and the associated permissions that users can have.
These levels determine what actions a user can perform on the resources,
whether it’s reading data, modifying it, or managing the system. The levels
are as follows:

Reader: Users with this access level can read data, view reports, or
examine content, but they cannot modify or delete anything. This
access level is ideal for users who need to view information but should
not have the ability to alter it. It is often assigned to employees or
stakeholders who require visibility into the data or operations but are
not responsible for maintaining or updating them. Examples include
nontechnical staff or clients who need to access reports or analytics, or
executives who need to view data or business metrics. This level



minimizes the risk of accidental changes or data corruption, which
makes it low-risk.

Writer: This level allows users to make changes to the content or data.
With this level of access, users can create, update, or modify resources
such as documents, database entries, or records. Write access is
typically granted to users who need to update, edit, or contribute to a
resource but do not need full administrative control. However, granting
it without proper controls can result in unauthorized changes or errors,
so it’s better to limit it to trusted individuals with specific roles.

Administrator: This level provides users with full control over a
system or resource. This includes the ability to manage settings, add or
remove users, and modify system configurations. Admins can also
delete or modify permissions for other users. Typically, admin access
is granted to system administrators, security officers, or managers who
need to manage the system’s infrastructure, install software, or
configure servers. Admin access is powerful and can potentially harm
the system if misused, so it must be tightly controlled.

Superuser: The superuser, also known as the owner, is the highest
level of access and grants full control over all aspects of a system or
resource. In addition to the permissions of an admin, a superuser can
typically make irreversible changes to the system, including deleting
entire databases, shutting down servers, or transferring ownership.
Superusers should be reserved for individuals with the highest level of
trust and responsibility. This level is usually granted to founders or
executives who own the system or resource and need complete control
over it, and to system architects or other professionals responsible for
the foundational setup and operation of large systems. The superuser
carries the highest risk of misuse or error.

Secrets Management
We’ve talked a lot about keys and passwords, but how do we securely
manage them? Secrets management refers to the secure storage, handling,
and access control of sensitive credentials such as database passwords, API
keys, encryption keys, and authentication tokens. Secrets are used at



multiple stages when connecting to data sources, cloud platforms, and third-
party services—for example, when an ETL job needs to authenticate with a
cloud storage service, or a connection is set up between a data warehouse
and a business intelligence tool.

Secrets management is important because exposed credentials can be a
significant security risk. If an API key or database password is accidentally
committed to a public repository or stored in an insecure location,
unauthorized users could gain access to sensitive data or security breaches
(like the Uber Technologies breach). To effectively manage secrets,
organizations should follow these best practices:

Never store passwords, API keys, or tokens directly in code or
configuration files. Instead, use secure vaults or environment variables
to avoid hardcoding secrets.

Implement secret management tools like AWS Secrets Manager,
HashiCorp Vault, Azure Key Vault, or Google Secret Manager to store
and manage your secrets securely.

Apply role-based access control (RBAC) to ensure that only
authorized users and services can retrieve secrets.

Change passwords, API keys, and tokens periodically to reduce the
risk of compromised credentials being exploited.

Data Security and Data Privacy
We’ve discussed various concepts related to data security. Now let’s look at
the difference between data security and privacy. Data security and data
privacy both involve protecting data, but they focus on different aspects. A
lot of people often confuse them because both fields overlap, but while
security focuses on preventing unauthorized access and breaches, privacy is
about ensuring that personal data is handled lawfully and transparently.

Think of a house. Data security is like locking the doors and installing an
alarm system to keep burglars out. It protects the house itself from being
broken into. Data privacy is like deciding who gets invited inside, which
rooms they can enter, and what they’re allowed to see or know about your



personal life. It’s about controlling access. So while security keeps the
house safe, privacy manages the rules for the people inside.

The goal of data security is to ensure that data is protected from breaches,
attacks, and any form of unauthorized access or modification. Key aspects
of data security include encrypting data so that only authorized parties can
read it, defining who can access this data and what they can do with it, and
protecting data as it travels across networks. The focus of data security is on
ensuring data integrity and confidentiality from a technical standpoint.

Data privacy, on the other hand, is about the rights and expectations
regarding the collection, storage, and sharing of personal information. It
focuses on how individuals’ data is handled. It ensures individuals must
permit their data to be collected only when necessary for a specific purpose,
being transparent in the process, and most importantly, giving users the
right to access, correct, or delete their data. The main concern here is
respecting individuals’ personal autonomy and legal rights regarding their
data.

Data security often relies on technological tools like encryption, firewalls,
and so forth, whereas data privacy focuses more on policies, consent, and
compliance with laws like the General Data Protection Regulation (GDPR).

In the next chapter, we will explore data governance, a broad framework
that encompasses both data quality and data security. This chapter will
explain the policies, regulations, and best practices that guide how data is
managed and protected within an organization.

Summary
Data security refers to the measures and processes used to protect data
from unauthorized access, corruption, or loss.

Aside from data breaches, there are other common threats to data
security such as malware, phishing attacks, SQL injections, and insider
threats.

Data security focuses on preventing unauthorized access and breaches,
while data privacy ensures that personal data is handled lawfully and
transparently.



The core principles of data security are confidentiality, which protects
sensitive data, integrity, which ensures data is accurate and unaltered,
and availability, which ensures data is accessible when needed.

Encryption is converting readable data (plain text) into an unreadable
format (cipher text) to prevent unauthorized access. We have two main
types of encryption: symmetric and asymmetric encryption.

Data at rest refers to any data that is stored on a physical or cloud-
based storage system; data in transit refers to data actively being
transferred between devices, networks, or systems.

Data Masking is a technique that protects sensitive information by
replacing it with fake or randomized data.

Transport Layer Security encrypts data in transit using an improved
handshake process that establishes a secure connection.

A checksum is a unique value or code generated by applying a
mathematical algorithm (usually a hashing function) to a set of data, to
ensure integrity.

Audit logs are used to track who accessed data and what changes were
made, and this helps detect unexpected alterations.

Availability ensures that data is accessible and usable when needed.
We ensure availability through redundancy, setting up backup systems,
and using failover mechanisms.

Network security is the practice of protecting data as it travels across
or is accessed through computer networks.

TLS (Transport Layer Security) encrypts data in transit between
systems so that even if intercepted, the data remains unreadable.

Access control refers to the processes put in place to ensure that only
authorized users, systems, or applications can access specific data
within a system.

We have three major access control methods: role-based access control
(RBAC), attribute-based access control (ABAC), and access control
lists (ACLs).



Authentication is the process of verifying the identity of a user or
system, whereas authorization determines what actions an
authenticated user can perform and what resources they can access.

The principle of least privilege is giving users, applications, and
systems only the access they need, nothing more, nothing less.

There are four access levels with different levels of permissions:,
Reader, Writer, Admin, and Superuser.

Secrets management refers to the secure storage, handling, and access
control of sensitive credentials such as database passwords, API keys,
and encryption keys.

The goal of data security is to ensure that data is protected from
breaches, attacks, and any form of unauthorized access or
modification, while data privacy is about the rights and expectations
regarding the collection, storage, and sharing of personal information.



CHAPTER 10
Data Governance
In the early days of technology, data was much simpler, mostly on paper
records or small digital files stored on local computers. Fast-forward to
today: Organizations generate massive amounts of data every second. With
that growth, regulations and frameworks are needed to ensure that data is
managed responsibly. This is where data governance comes in. I know data
governance might sound like a dry, bureaucratic concept, but it plays an
important role in any organization. Think of it as a rulebook that ensures
data is high-quality, well organized, secure, and accessible to the right
people. It also ensures that everyone interacting with data knows their
responsibilities and follows best practices.

The two major pillars of data governance are security and quality, both of
which were covered extensively in earlier chapters. But governance goes
beyond just protecting data and keeping it clean; it’s about creating a
structured approach and a template to manage data across an organization
ethically and efficiently.

IN THIS CHAPTER, WE’LL EXPLORE:

A simple analogy to explain data governance

The key components of data governance

Policies and processes that guide data governance

Common regulatory policies and their guidelines

How data is classified and disposed of in an organization

Metadata management and why it matters

The roles and responsibilities involved in governance and their impact
on an organization

By the end of this chapter, you’ll have a comprehensive understanding of
how data governance frameworks establish control, maintain trust, and



ensure the reliability of data across an organization. You’ll also learn how
these frameworks help enforce data quality, security, and compliance.

How to Think About Data Governance
Imagine you’ve just bought a hotel that’s been abandoned for over five
years. Everything inside the hotel, including the furniture, artwork, and
appliances, comes with the building, but you have no clue of what’s
valuable or what’s junk. The first thing you’d probably do is take a tour
around the hotel to figure out what’s inside. That step is what we call
discovery in data governance, which involves understanding all the data
assets your company has across different systems, even the ones no one
remembers are there.

After the tour, the next step is figuring out how to organize the items you’ve
seen. You start sorting items into large boxes, things to keep, things to
throw out, and things you might want to donate. This is classification,
grouping data into different categories based on what it is, how valuable it
is, or how sensitive it might be.

But imagine trying to organize hundreds of items without writing anything
down. You’d probably forget what’s inside each box. You don’t just throw
items in boxes—you label them, list what’s inside, and maybe even add
extra details like where the item was found or how valuable it is. In data
governance, metadata acts like those labels, giving information about the
data itself, such as when it was created, who owns it, or whether it contains
sensitive information.

Before you start sorting or labeling, you need some rules to guide your
decisions. How do you know what’s worth keeping, what needs to be
locked away, or what should be discarded? Those rules are your policies,
and policies help set guidelines for how data should be handled, especially
when it comes to sensitive information like personally identifiable
information (PII). For example, any document in the hotel with people’s
private details should be locked away, not tossed out or left lying around.

Let’s move on to delegation. Since running everything alone isn’t feasible,
you hire staff and assign them specific roles, entrusting them with key
responsibilities in different areas of the hotel to ensure smooth operations.



With these roles and responsibilities, processes should be put in place to
make sure that the rules you set are followed by your staff. In data
governance, we have Roles and Responsibilities given to people in the
organization and processes to follow these rules.

While you’re sorting through the hotel, you stumble on some valuable
paintings and hidden safes you had no idea were there. Maybe you’re not
interested in keeping them, but you could sell them for a good price. That’s
the hidden value data governance can unlock, helping companies discover
insights buried in their data that could drive growth or even create new
business opportunities. This analogy gives a good understanding of how
data governance works, but don’t worry about the terms mentioned, as we
will be explaining them in more detail in this chapter.

Data governance is simply the way organizations set rules and processes to
manage their data properly. It’s like creating a playbook that guides how
data should be handled, who can access it, how it should be stored, and
what it can be used for. At its core, data governance is not just about tools
and tech—it’s about setting the right rules, assigning responsibilities, and
making sure everyone follows them.

Imagine a company where everyone stores data however they want: on their
laptops, in random spreadsheets, or with different cloud storage platforms.
Some data might be duplicated, some might be outdated, and some might
be completely wrong. Without some rules in place, the company would
have no way of knowing which version of the data is accurate or whether
sensitive customer information is being handled securely.

If you’ve ever called someone from customer service to fill in your
information and a few days later, you’re talking to someone else from
another department asking for the same information, that’s a red flag. This
highlights how poor data governance negatively impacts the business. In
this situation, data silos start to form when different departments keep their
separate versions of the same data without talking to each other.

There have been many high-profile cases where poor data governance cost
companies millions of dollars in fines and damaged their reputation. In
2018, Facebook faced backlash for mishandling user data in the Cambridge
Analytica scandal, where third parties accessed personal information



without proper consent. This incident showed the world how dangerous it
can be when there are no clear rules for managing data.

We’ve talked about data security and data quality in the previous chapters,
and they’re both important. Data governance is what ties everything
together. Think of it like an umbrella that covers both security and quality.
Let’s break it down. While data security ensures that only the right people
can access data and that sensitive information stays protected, data quality
makes sure data is accurate, consistent, and reliable, data governance is a
big-picture framework that sets the rules and processes for how security and
quality should be applied across the entire organization.

Without governance, different teams might do things their own way, some
following best practices, others not so much. Governance creates a clear
blueprint, ensuring that data quality and security measures are applied
consistently, so data is managed the right way across the board.

Data Governance Framework
In every organization, there is a central repository for data, and this data
could come from websites, customer forms, and multiple sources. This data
can be a mix of nonconfidential and confidential information like customer
name, address, SSN, or account number.

Imagine you’re working in a company where different teams are storing the
same customer information in different ways. For example, one team might
save a customer’s name as FirstName LastName, while another team stores
it as LastName FirstName. It might not seem like a big deal at first, but
when you’re trying to merge data or generate reports, these small
inconsistencies can cause major headaches.

In terms of security, what happens when unauthorized employees access
sensitive customer data, like account details or personal information? Not
only does that put customer privacy at risk, but the company could also face
serious legal penalties for not protecting that data properly.

Without clear rules on who owns what data, things can get even messier. If
something is wrong in the system, who is responsible for fixing it? Is it the
finance or customer service team? This lack of accountability can slow
down operations.



Additionally, if there are no rules on how long data should be kept,
companies can end up storing unnecessary information for years. This not
only clutters systems but also leads to higher storage costs.

Lastly, tracking where data comes from and how it moves through different
systems is called data lineage. This becomes almost impossible without
proper governance, and this makes it harder to troubleshoot issues or prove
compliance with regulations.

Now, the question is how we control the flow of this data within the
organization, making sure all these issues are prevented. Organizations do
this by designing a data governance framework. A data governance
framework is a structured set of policies, processes, roles, and tools that
guide how an organization manages its data. It’s like a blueprint for
handling data across the entire company. A good data governance
framework answers the question of what data the company has; who owns
the data; who is responsible for its accuracy and usage; what regulations
and internal guidelines govern how the data should be stored, protected, and
managed; who can access the data; and how long should it should be
retained. To answer these questions, according to Figure 10-1, a
comprehensive data governance framework is typically built on three key
components, which play an important role in ensuring an effective data
governance strategy:

Policies

Processes

Roles and Responsibilities



Figure 10-1: Data governance framework

Policies
Policies are formal rules and guidelines that dictate how data should be
handled across an organization. They guide what you’re allowed to do,
what you’re not allowed to do, and how things should be done when it
comes to managing data. Policies aren’t just internal rules; they align with
legal requirements that companies must follow to protect individuals’ rights
and avoid legal penalties. Think of them as the foundation of data



governance, setting the standards for collecting, storing, and sharing data.
While there are many data policies, this book will focus on six common
ones.

Regulatory compliance policies

Data classification policies

Data retention and disposal policies

Data quality policies

Data security policies

Data sharing policies

Regulatory Compliance Policy
This policy ensures that an organization adheres to industry and government
regulations that govern data protection, security, and privacy. These
regulations include, but are not limited to:

General Data Protection Regulation (GDPR)

Health Insurance Portability and Accountability Act (HIPAA)

CCPA (California Consumer Privacy Act)

SOC 2 (System and Organization Control 2)

PCI DSS (Payment Card Industry Data Security Standard)

General Data Protection Regulation (GDPR)
The General Data Protection Regulation (GDPR) is one of the biggest and
most famous regulatory policies in data governance. It’s a data privacy law
from the European Union (EU) that was introduced in 2018. It doesn’t only
apply to companies inside Europe. If you’re anywhere in the world and
you’re handling the personal data of European customers, GDPR applies to
you too. The GDPR is built on seven key principles that guide how personal
data should be handled:

Principle 1—Lawfulness, Transparency, and Fairness: This triad
forms the cornerstone of GDPR. It ensures that data is collected for



legitimate reasons, processed in a way that individuals understand, and
handled fairly without misleading or harming them.

Principle 2—Data Minimization: This means collecting only the
necessary data for a specific purpose and nothing extra. It prevents
businesses from gathering excessive or irrelevant information.

Principle 3—Accuracy: This principle requires data to be correct and
regularly updated.

Principle 4—Storage Limitation: This principle mandates that data
should not be kept longer than necessary, with unused data promptly
deleted.

Principle 5—Integrity and Confidentiality: This states that
organizations must establish appropriate security safeguards at
technical and organizational levels to protect data from breaches,
leaks, or unauthorized access.

Principle 6—Accountability: This requires companies to not only
follow these principles but also to demonstrate their compliance
through proper documentation and processes.

Principle 7—Purpose Limitation: This ensures that data is collected
and used only for a clearly defined and legitimate purpose. Businesses
can’t repurpose the data for something else without proper justification
or user consent.

Health Insurance Portability and Accountability Act (HIPAA)
In the United States, the Health Insurance Portability and Accountability
Act (HIPAA) protects sensitive health information. It applies to healthcare
providers, insurance companies, and any business that handles medical
data. Data governance policies under HIPAA include:

Data access policy, which limits who can access patient records. For
example, a hospital cannot give a patient’s medical records to anyone
without their permission, unless the law allows it.

Data encryption policy, which ensures that medical data is encrypted to
prevent unauthorized access.



Audit policy, which requires companies to log and monitor who
accesses patient data.

Data breach notification policy, which outlines how companies must
inform patients if their health data is exposed.

California Consumer Privacy Act (CCPA)
The California Consumer Privacy Act (CCPA) is a state-level privacy law
that gives California residents more control over personal data. While it
shares similarities with GDPR, it is generally considered less strict. The
CCPA applies to businesses that meet specific criteria, such as having
annual revenues over $25 million, processing data for 50,000 or more
consumers, or deriving 50 percent or more of revenue from selling
consumer data. There are five key rights under CCPA:

Right to Know: Consumers can request details about the personal data
a business collects, including what is collected, why it is collected, and
whether it is shared or sold.

Right to Delete: Consumers can ask businesses to delete personal
data, with some exceptions like legal or security reasons.

Right to Opt Out-of-Sale: If a business sells consumer data,
individuals have the right to opt out and businesses must provide a
“Do Not Sell My Personal Information” link on their website.

Right to Nondiscrimination: Businesses cannot discriminate against
consumers who exercise their CCPA rights—for example, by charging
higher prices or denying services.

Right to Correct Data: Consumers can request corrections to
inaccurate personal data.

SOC 2 (System and Organization Control 2)
System and Organization Control is not exactly a law, but it’s a big deal if
you’re working in cloud services, especially software-as-a-service (SaaS)
applications. It’s a security checklist for companies that store customer data
in the cloud. The checklist consists of five foundational principles:



Principle 1—Security: This is the most fundamental part of SOC 2. It
focuses on how well a company protects its systems from unauthorized
access. It covers everything from setting up firewalls and encryption to
enforcing strong passwords and multifactor authentication. The goal is
to make sure that only authorized users can access sensitive data,
preventing hackers or even internal employees from tampering with
information.

Principle 2—Availability: This principle checks whether the system
is reliable and accessible when customers need it. It’s not just about
protecting data; it’s also about making sure that the service is always
up and running. It checks if companies have backup systems, disaster
recovery plans, and performance monitoring tools to minimize
downtime. For example, a cloud storage provider needs to prove that
customers can access their files 24/7, even during unexpected outages.

Principle 3—Confidentiality: This principle focuses on who can
access sensitive information. Not all data should be visible to everyone
in a company, especially personal or financial information. This
principle makes sure companies have access controls that restrict
sensitive data to only authorized individuals. It also looks at whether
data is encrypted when it’s being stored or transferred so that even if
someone intercepts the information, they can’t read it without the
proper keys.

Principle 4—Processing Integrity: This principle checks if data is
processed correctly, on time, and without errors. This is especially
important for systems that handle financial transactions or automated
processes. Imagine an online payment platform where every payment
request needs to be processed accurately without altering the amount
or duplicating transactions. Companies need to have controls in place
to detect errors, delays, or unauthorized changes and fix them quickly.

Principle 5—Privacy: This principle focuses on how companies
collect, store, and use personally identifiable information (PII). This
includes things like customer names, emails, phone numbers, or any
other data that can identify a person. Companies are expected to be
transparent about what data they’re collecting, why they need it, and
how long they’ll keep it. They should also ask for user consent before



sharing data and only collect the information that’s necessary for their
services.

Each of these principles works together to help companies protect customer
data, build trust, and comply with industry regulations. Even though SOC 2
isn’t legally required, having the certification signals to customers that their
data is in safe hands, which can be a big advantage in the cloud services
industry.

Payment Card Industry Data Security Standard (PCI DSS)
If you’re handling credit card data in any way, whether you’re running an
online store, a subscription service, or even just processing one-off
payments, Payment Card Industry Data Security Standard (PCI DSS) is a
mandatory security standard for you and any business that processes, stores,
or transmits credit card information. The whole point of PCI DSS is to
protect cardholder data from theft or misuse.

One of the biggest rules in PCI DSS is encryption. Credit card numbers
should never be stored or transmitted in plain text; they need to be
scrambled using encryption algorithms so that even if someone intercepts
the data, they can’t read it without the right decryption key. For example, if
a customer enters their card number on a payment form, the system should
encrypt that number before storing or sending it.

Another key rule is to never store card numbers in plain text, not even
temporarily. If your system needs to store card data at all, it must be
encrypted or masked. In many cases, companies are required to avoid
storing card numbers altogether unless necessary.

Additionally, access to payment data should also be strictly limited. Only a
small group of employees like those working in payment processing or
fraud detection should have permission to view cardholder information.
This is managed through role-based access controls (RBAC) that ensure
employees only see the data they need to perform their jobs.

Regular security audits are another big part of PCI DSS. Companies are
required to run vulnerability scans and system monitoring to check if there
are any weaknesses in their systems. These audits help businesses spot
security gaps before attackers can exploit them.



Data Classification Policy
Data exists in various forms and serves different purposes. Some data is
openly available, whereas other data is highly sensitive and must be
protected from unauthorized access. A data classification policy helps an
organization categorize data based on its sensitivity and criticality, ensuring
proper handling, security, and compliance with regulatory requirements.
Organizations typically use a tiered classification system to define how data
should be handled. As shown in Figure 10-2, the most common
classification levels include:

Figure 10-2: Data classification

Public Data: This type of data is nonsensitive and can be freely shared
with the public without causing harm to the organization, such as press
releases, marketing materials, and publicly available financial reports.

Private Data: This data is intended for internal use within an
organization and not meant for public distribution. Unauthorized
disclosure may have minimal consequences but is still undesirable.



Examples include company policies, internal memos, and employee
handbooks.

Confidential Data: This data is highly sensitive data that is restricted
to authorized personnel. If this data is exposed, it could result in
financial loss, reputational damage, or legal consequences. Examples
of this are customer data, financial records, business strategies, and
employee personal details.

Restricted Data: This type is the most sensitive form of data and is
highly confidential. It requires strict access controls, encryption, and
security measures. Examples are trade secrets, intellectual property,
PII, medical records, and credit card information.

To successfully implement a data classification policy, as shown in Figure
10-3, organizations can follow these key steps:

Figure 10-3: Data classification policy framework

Step 1: Identify data assets by conducting an inventory of all data
within the organization and determining where data is stored.

Step 2: Define classification levels by establishing clear criteria for
each classification level and ensuring consistency across departments
and teams.

Step 3: Label data accordingly using metadata tags to indicate
classification levels and automating this labeling where possible using
data governance tools.

Step 4: Apply access controls based on classification levels—for
example, public data may be accessible to everyone, whereas restricted
data requires multifactor authentication.



Step 5: Finally, conduct periodic audits to ensure compliance with the
classification policy and also update classifications as business needs
and regulations evolve.

Data Retention and Disposal Policy
A data retention and disposal policy establishes clear guidelines on how
long different types of data should be stored and the processes for securely
disposing of data once it is no longer needed. This policy is important for
compliance and operational efficiency, ensuring that data is retained for as
long as necessary but not beyond its usefulness or legal requirements. It
reduces the risks associated with holding unnecessary or outdated data and
prevents excessive storage costs.

A data retention policy in an organization might look like this, and these
periods are usually tailored based on industry standards and business needs.

DATA RETENTION
PERIOD

REASON FOR RETENTION

Customer
records

5–7 years Compliance with tax and consumer
protection laws like GDPR, CCPA

Financial
transactions

7+ years Required by financial regulations like SOX,
IRS

Employee
records

3–6 years after
departure

Compliance with labor laws

Emails 1–3 years Internal business records
System logs 30–90 days Security and troubleshooting
Backup data 30 days–1 year Business continuity and disaster recovery

In my role as a data engineer, my team follows a policy that automatically
deletes PII after 30 days to minimize data retention risks, because the longer
PII is stored, the higher the risk of unauthorized access or data breaches.
Once data reaches the end of its retention period, it can either be logically
deleted by removing access to the data while retaining it in a secure archive;
by overwriting it to prevent recovery; or by physically destroying it in cases
where it exists in a storage media such as hard drives.



To effectively implement a data retention and disposal policy, organizations
can:

Set up automated retention schedules by using data management tools
to apply retention rules consistently, so nothing slips through the
cracks.

Keep an eye on data storage and access by carrying regular audits,
which help ensure that data is deleted on time and that everything stays
in compliance.

Review and update policies regularly, because regulations and the
needs of the business change, so it’s important to revisit your policies
from time to time to keep them up to date.

Data Sharing Policy
The data sharing policy establishes guidelines on how data can be shared
both internally, within the organization and externally (third parties,
partners, vendors, or the public). The primary objective of a data sharing
policy is to define who can share data, with whom, and under what
conditions, and to facilitate controlled and responsible data exchange
between entities. Internal sharing is the controlled exchange of data within
the organization, while external sharing is sharing data with third parties,
which requires additional security measures. A data sharing policy might
look like this, defining which categories of data are shareable and under
what conditions.

Public data can be freely shared both internally and externally with no
restrictions.

Internal business data can be shared within the organization but
requires management approval before being shared externally.

Confidential data is restricted from internal sharing and strictly
prohibited from external sharing, except under regulatory conditions
such as NDAs or user consent.

Financial records are restricted from internal sharing and highly
prohibited from external sharing due to financial regulations like SOX
(Sarbanes–Oxley Act).



We did not cover the data quality policy, which sets standards for accuracy,
completeness, consistency, and timeliness, and the data security policy,
which governs access control, encryption, authentication, and breach
protection, as these topics were already explored in detail in previous
chapters. In summary, policies provide some structure and guidance on how
data should be handled. Without policies, different teams might make their
own rules, leading to a lot of inconsistencies.

Processes
An effective data governance framework relies not just on policies but also
on well-defined processes that ensure the policies are followed. These
processes outline the workflows and methodologies for handling data
throughout its life cycle, from creation and storage to usage and eventual
deletion. Each process involves ongoing activities and decision-making
steps to ensure data is properly governed. The key processes in data
governance include:

Metadata management

Data lineage

Incident management

Master data management (MDM)

Metadata Management
Metadata is data that describes other data. It provides context about data,
including where it comes from and how it is structured. When organizations
manage metadata effectively, it’s much easier to track the lineage of data
and keep its quality in check. Imagine you own a fruit supply store, and you
send fresh produce daily to retailers. Your grapes are first picked from the
field and placed in baskets. A truck then transports those baskets to a
warehouse, where they’re sorted, checked for quality, and sent off to
grocery stores. Now, let’s say your retailers complain about spoiled grapes
and you want to trace the journey of where those grapes might be coming
from, like where it was grown, which truck carried it, or which warehouse it



passed through. That’s where metadata comes in: It acts like a digital
record, helping you track the life cycle, from the field to the store.

Metadata management is the process of organizing, storing, and
maintaining metadata to ensure that it is easily accessible, accurate, and
usable. It involves:

Collecting metadata from different sources like databases, reports, and
data pipelines

Storing and cataloging metadata in a central place like a metadata
repository or data catalog

Keeping metadata up to date so users always have the latest
information

Making metadata searchable so data engineers, analysts, and end users
in general can easily find what they need

Types of Metadata
There are three main types of metadata: technical, business, and
operational, all serving unique purposes.

As shown in Figure 10-4, technical metadata is like the blueprint of
data; it tells engineers how data is stored and structured. With technical
metadata we can understand what columns exist in a table, what data
types they have, and how different tables are related.

Business metadata explains what the data means in a way nontechnical
people can understand. For instance, suppose a marketing manager
wants to analyze customer data to create a campaign. Business
metadata helps them understand what a column like “active
customers” might mean, and it ensures they use the right data.
Business metadata might contain other information, like ownership
information stating which department in an organization own a
particular dataset.



Figure 10-4: Types of metadata

Operational metadata tracks what happens to data over time and it’s
majorly for monitoring and debugging. If a data engineer notices an
error in a financial report, they can make use of operational metadata
to check when the data was last updated, where it came from, and what
transformations were applied. Operation metadata also includes
timestamps showing when data was last updated and data sources
connected to that data.

Metadata is usually stored in specialized systems for storing, managing, and
retrieving metadata called catalogs. Examples are Apache Atlas, used in big
data ecosystems like Hadoop or Spark; AWS Glue Data Catalog, which
stores metadata for AWS services like S3, Redshift, and Athena; Google
Data Catalog, which stores metadata for Google Cloud services like
BigQuery; and Microsoft Purview, a metadata repository for Azure data
sources.

Benefits of Metadata Management
Metadata management makes data discovery faster, and it helps users
quickly find the right datasets without manually searching through files or
databases. A marketing analyst can search for “customer churn rate” and
find the relevant dataset instantly.

Metadata management ensures that metadata is updated and consistent
across systems, reducing errors. If a product price column changes from



“integer” to “decimal,” an effective metadata management process helps to
inform engineers to update their queries.

Metadata management helps organizations track where data comes from
and who has access, helping with regulatory compliance. A company can
see who accessed sensitive customer data and when, ensuring security
policies are followed.

Lastly, operation metadata helps trace how data moves through different
systems, making it easier to debug errors. If a report shows incorrect
revenue figures, data engineers can track the data lineage to find the issue.

Data Lineage
Data lineage refers to the visual representation of the journey that data takes
throughout its life cycle within an organization. It’s like a map that shows
the flow of data from its origin through various transformations and
processing until it reaches its final destination. When a data source changes,
data lineage helps evaluate the impact on downstream reports and
applications, and in case of errors, it also allows us to quickly trace the root
cause and debug data pipeline issues.

A robust metadata management strategy can be combined with a data
lineage process to create a unified repository for all data-related
information, so we can think of metadata management and data lineage as
two sides of the same coin. Data lineage helps keep things transparent, and
this traceability makes troubleshooting easier because you can quickly
pinpoint where things went wrong.

One of the biggest challenges with data lineage is just how complex modern
data pipelines can get. If you’re dealing with a simple pipeline with one
input and minimal transformations, mapping its lineage is pretty
straightforward, but when data moves through multiple systems, undergoes
various transformations, and ends up in different places. Keeping track of
all those movements isn’t easy and it takes the right tools and careful
planning.

Incident Management



Incident management is how organizations handle data security issues,
whether it’s a leak, a system failure, or any kind of security incident. It’s a
structured way of identifying the problem, figuring out how bad it is,
responding to it, and making sure it doesn’t cause too much damage. The
whole point is to have processes in place to keep operations running
smoothly while protecting data from being lost, exposed, or misused.

Key Components of an Incident Management Process
A strong incident management process minimizes disruption and ensures
that the organization can respond quickly and effectively to incidents. Here
are the key components involved:

Identification: The first step is spotting issues early. Organizations use
monitoring systems to watch for anything unusual like unauthorized
access, system slowdowns, or security threats. Logs, alerts, and
automated tools help catch problems before they get out of hand.

Classification: Not every incident is the same, so companies
categorize them based on severity, minor, major, or critical. They
assess how the issue affects data security in terms of confidentiality
and determine if they need to report it to regulators.

Incident Response: Once an incident is confirmed, the response team
jumps into action. Their priority is to stop the issue from spreading,
and this could mean isolating systems, revoking access, or fixing
vulnerabilities like applying patches.

Communication: When a breach happens, communication is key.
Internal teams need to be informed, and depending on the severity,
external parties, like regulators, customers, or users may also need to
be notified. The goal is to be transparent while protecting the
organization’s reputation.

Root Cause Analysis: Once the dust settles, the next step is figuring
out what went wrong. This involves forensic analysis to trace the root
cause and then making changes, whether that’s updating policies,
fixing security gaps, or adding stronger protections to prevent it from
happening again.



Documentation: After everything is resolved, a postmortem review (a
structured analysis that happens after an incident) helps assess how
well the response was handled. At this stage, lessons learned get
documented, security policies are updated where needed, and
employees are trained to prevent similar incidents in the future. In
summary, incident management is all about staying prepared,
minimizing damage, and strengthening security for next time.

Best Practices for an Effective Incident Management Process
To stay ahead of security issues, organizations must be proactive when
something goes wrong. Here are a few best practices that you can follow for
effective incident response management:

Regular audits and monitoring are important for maintaining a strong
security posture. When systems are continuously scanned for
vulnerabilities, organizations can identify weak points before attackers
exploit them. This proactive approach ensures that security gaps are
addressed promptly. Monitoring tools help spot suspicious activities
early, allowing teams to take action before an incident escalates.

Having incident response playbooks is like having a fire drill for
cybersecurity. These playbooks outline step-by-step actions for
handling different types of data breaches, ensuring that teams know
exactly what to do in an emergency. A well-prepared response can
significantly reduce downtime and limit the impact of an attack.
Playbooks should cover various scenarios so that teams can respond
quickly and effectively to any situation.

Employee training is another critical layer of defense. Security isn’t
just the responsibility of the IT team, every employee plays a role in
keeping data secure. Training programs should teach staff how to
recognize common threats, especially phishing emails or suspicious
links, and how to report them. When employees are well informed,
they become the first line of defense against security breaches, helping
to prevent incidents before they happen.

Finally, simulated breach exercises put all these measures to the test.
Just like emergency drills prepare people for real-life situations,
cybersecurity simulations help organizations assess their response



readiness. These exercises expose weaknesses in security protocols
and provide an opportunity to improve them before an actual breach
occurs.

Master Data Management
Let’s understand what master data is first before diving into how we can
manage it. Think of master data as the core, high-value information that’s
shared across an organization. It’s the who, what, where of a business,
things like customers, products, employees, suppliers, or locations. Unlike
transactional data, like sales records that change frequently, master data is
relatively stable and is used across different systems and departments. For a
retail company, master data could be the customer details (name, address,
loyalty number) or product catalog (product name, price) because they’re
referenced everywhere, on the website, in-store systems, and marketing
databases.

Master data management is a key process in data governance because
governance is all about ensuring data is accurate, consistent, and used
correctly across the business. If your master data is messy, like duplicate
customer records or inconsistent product names, your whole organization
suffers from inefficiencies. While governance provides the rules and
policies, master data management puts them into practice.

Let’s look at some key master data management processes.

Agreeing Ownership of Attributes: Think of this as deciding who
owns what. In any business, different teams may use the same data but
in different ways. For example, is the Product Price owned by the
Finance team, the Sales team, or Marketing? Ownership means
someone is responsible for maintaining and updating that attribute
correctly. Without clear ownership, you might have multiple versions
of the same data floating around.

Data Definition: This step is about making sure everyone speaks the
same language when it comes to data. If one team calls it Customer ID
and another calls it Client Number, things can get messy. So, data
definition involves standardizing terms, descriptions, and rules so that



everyone knows what a data attribute means, what format it should be
in, and how it should be used.

Defining Attributes: This means setting clear rules and properties for
each piece of important data. This ensures that everyone in the
organization understands how a data attribute should be structured,
stored, and used. Let’s take the example of Product Name in a retail
company. We need to define certain properties to make sure it’s
consistent and usable across different systems.

Format: This defines the data type and length. Should it be text or
can it contain numbers? How many characters should it allow?
Should it allow special characters?

Source: Where does this data come from? Does it come from the
product catalog system? Is it entered manually by employees? Is it
imported from a supplier’s database?

Valid Values: What are the acceptable inputs? Should
abbreviations be allowed? Should brand names always be
included? Can numbers be used in the name?

Business Rules: Special conditions that must always be followed.
Must each product name be unique? Should duplicate names be
prevented?

Amending Attributes: Over time, business needs change, and master
data needs to evolve. Amending attributes means updating existing
data fields, maybe a new regulation requires more details on customer
records, or a product’s price needs a new decimal format. The key here
is making sure updates happen in a controlled way so they don’t break
systems or create inconsistencies.

Retiring Attributes: At some point, some data attributes eventually
become unnecessary. Maybe the company no longer tracks Fax
Number for customers. Instead of deleting it recklessly, retiring an
attribute means gradually phasing it out, ensuring it doesn’t impact
reports, databases, or integrations with other systems.



Without a solid master data management process, companies end up with
duplicate data and outdated information. Good management ensures that
everyone in the organization is working with one accurate version of the
truth, which leads to fewer errors. Several master data management
solutions help organizations manage master data efficiently, like
Informatica MDM, SAP Master Data Governance, IBM InfoSphere MDM,
Oracle MDM, and Talend MDM.

Roles in the Data Governance Framework
The data governance framework assigns specific roles to individuals or
teams, as shown in Figure 10-5, each with clear responsibilities to ensure
that policies are met and to create a system that protects data quality,
privacy, and compliance. Let’s break down the key roles and their
responsibilities.

Figure 10-5: Data governance roles

Data Owner
The data owner is the decision-maker for a particular dataset. This person
typically comes from the business side, such as a department head or senior
manager, and is responsible for defining how the data should be used and
creating policies. The data owner decides:

What kind of data should be collected?

Who is allowed to access the data?



How long the data should be kept?

What rules apply to the data?

The data owner makes the final decision if any questions or conflicts arise
regarding the data. Their primary goal is to ensure that the data is aligned
with business needs and regulatory requirements.

Data Steward
A data steward is a person from the business who has detailed knowledge
of the data that is needed to support targeted business initiatives. They act
as the day-to-day caretaker of the organization’s data. While the data owner
sets the rules, the data steward makes sure those rules are followed. They
are responsible for:

Evaluating data quality

Cleaning up incorrect or duplicate data

Adding business descriptions to data fields in a data catalog

Working closely with data owners to ensure the data meets business
requirements and working with IT to accelerate these processes

Data stewards help maintain consistent and reliable data across the
organization, making it easier for others to trust and use the data. They are
found in an organization and not made because there might be people
already doing this unofficially in the organization without the role title.

Data Custodian
Data custodians are technical experts who manage the storage, security, and
infrastructure of data. This role is usually performed by IT or engineering
teams. Their main responsibilities include:

Implementing access controls to restrict who can view or edit data

Encrypting sensitive data to prevent unauthorized access

Managing backups and recovery systems

Ensuring the systems meet security standards



While data custodians don’t make business decisions about the data, they
play a critical role in protecting the data from breaches and loss.

Chief Data Officer (CDO)
The chief data officer (CDO) is the executive who oversees the entire data
governance program. Not every company has a CDO, but in organizations
that do, this person is responsible for:

Defining the company’s overall data strategy

Aligning data governance efforts with business goals

Advocating for data governance at the executive level

Measuring the success of the data governance program

The CDO acts as the champion of data governance, making sure the entire
organization understands the value of data as a business asset.

In summary, each role in the data governance framework contributes
uniquely to the process. The framework works best when everyone
understands their responsibilities and how they fit into the bigger picture.
These roles are commonly found in organizations, especially those that
handle large volumes of data or operate in regulated industries like finance,
healthcare, or technology.

In many organizations, especially smaller ones, the same person might take
on multiple roles. For example, a data steward might also act as a data
custodian by not only cleaning the data but also managing its storage in
databases. Although not every company uses the same job titles. Some
companies might refer to data owners as data managers or data stewards as
data quality analysts. Larger companies with more advanced data
governance programs are more likely to have a chief data officer and a
formal data governance committee.

However, even without formal titles, the responsibilities still exist.
Someone is always making decisions about data, cleaning and maintaining
data, or securing the infrastructure. Understanding these roles helps
organizations build more effective data governance programs, whether or
not they have dedicated teams.



Data Management and Data Governance
We’ve discussed data governance extensively, but the definition of data
management and data governance often overlap. Some sources tell you that
data management allows you to manage your data, while data governance
allows you to manage your data better. Let’s understand the difference
between them.

Data is not useful unless we can get value from it. The journey to making
data valuable involves it getting cleaned, modeled, analyzed, and secured.
When these processes are carried out daily, we can say that our data is being
managed. Data management focuses on the operational aspects of handling
data and maintaining its quality to support business needs. But how do we
set clear rules on what clean data should look like, or how data should be
secured and made accessible? This is where data governance comes in.

Data governance establishes the policies, standards, and accountability
frameworks that define how data should be handled. It answers critical
questions like what are the rules for accessing and modifying data, or what
data quality metrics should we track?

In simpler terms, data management is about executing processes to handle
data efficiently, whereas data governance sets the rules and guidelines that
ensure data is managed properly.

Summary
Data governance is the overall framework that ensures data within an
organization is accurate, secure, consistent, and used responsibly. It
involves setting policies, standards, and processes to manage data
throughout its life cycle, from creation to deletion.

Data governance acts like a blueprint for data security and data quality
measures in an organization.

A data governance framework consists of policies, processes, and roles
and responsibilities, each of which plays an important role in ensuring
an effective data governance strategy.



Key regulatory policies include GDPR for global data privacy, HIPAA
for healthcare data, CCPA for California consumer privacy, PCI DSS
for payment security, and SOC 2 for cloud security compliance.

The Service Organization Control, SOC 2, is a security checklist for
companies that store customer data in the cloud.

A data classification policy helps organizations categorize data into
public, private, confidential, and restricted data categories based on its
sensitivity.

Metadata is data that describes other data, and there are three main
types of metadata, namely technical metadata, business metadata, and
operational metadata.

Data lineage refers to the visual representation of the journey that data
takes throughout its life cycle within an organization.

Incident management is how organizations handle data security issues,
whether it’s a leak, a system failure, or any kind of security incident.
The best practices for a good incident response are regular audits and
monitoring, having incident response playbooks, and employee
training.

Master data is core, high-value data that’s shared across an
organization, and managing master data involves defining data,
deciding ownership of attributes and making sure there is only one
accurate version of the truth.

Data governance roles include data owner, data steward, data
custodian, and chief data officer, with each role contributing uniquely
to the data governance goals of an organization.

Data management and data governance definitions often overlap, but
data management allows you to manage your data, while data
governance allows you to manage your data better.



CHAPTER 11
Big Data and Distributed Systems
In my experience, organizations across industries work with data of all
sizes, ranging from gigabytes to petabytes and, in some cases, even more.
Earlier chapters covered the basics of databases and data processing. Still,
when data gets so large, it requires a completely different method of
processing, one that is faster, more efficient, and built to scale.

Traditional databases and single-server architectures—that is, database
systems that run entirely on a single machine—struggle to keep up with the
scale and complexity of modern data because when large datasets are
processed on a single machine, it leads to slow performance and a lot of
scalability issues. Looking at big companies like Netflix, Google, and
Amazon, which manage massive amounts of data without their systems
crashing, raises an important question: What makes this possible? What
technologies and strategies allow them to handle such enormous workloads
seamlessly?

The answer lies in distributed computing and understanding the basic
features of big data. With the right systems, businesses can process huge
amounts of data more efficiently.

IN THIS CHAPTER, WE WILL EXPLORE:

The fundamentals of big data

The five V’s of big data

Key principles of distributed systems and their components

An overview of big data processing and frameworks

The design architectures of Apache Spark and Hadoop

Various big data file types

Choosing the right file types for big data projects



By the end of this chapter, you’ll have a strong understanding of how big
data is managed at scale and how distributed systems form the backbone of
modern data engineering.

The Five V’s of Big Data
We create data each time we scroll through a social media application,
watch a YouTube video, buy something online, or even just walk around
with our phone’s location on. Now, imagine billions of people doing this
every second and companies trying to collect, store, and manage this data.
That’s big data in simple terms.

Big data refers to extremely large and complex datasets that are so vast that
traditional data tools like your average spreadsheet or small database can’t
handle them effectively. It’s not just about the size; it’s also about how
quickly the data arrives, the different formats it comes in, and how
unpredictable or messy it can be.

The five V’s of big data are essential characteristics that define and help us
understand the nature of big data. Originally, there were three V’s—volume,
velocity, and variety—but over time, more V’s have been introduced as the
field evolved, as shown in Figure 11-1. Let’s break them down.



Figure 11-1: The five V’s of big data

Volume
Volume refers to the amount of data being generated and stored, often on a
massive scale. For instance, Meta (Facebook) alone processes terabytes of
data daily, from user interactions like posts, comments, and likes, to video
uploads, messaging, and more. To put that in perspective, one terabyte (TB)
equals 1,000 gigabytes (GB), and one gigabyte can store about 250 songs or
a few hours of video. Now, imagine what 1,000 gigabytes can hold, and
Meta handles that kind of data volume several times over every single day.



This scale isn’t just about storage; it also presents challenges for data
management, requiring powerful systems to collect, organize, and access
such large quantities of information efficiently. What makes volume a
uniquely big data concern is not only the sheer amount of data but also the
need for scalable architectures and advanced algorithms that can process
and analyze this data in a reasonable time frame, something traditional
databases and tools simply aren’t built to handle.

Velocity
Velocity is all about the speed at which data is generated, transmitted, and
processed. In the past, data was collected in batches and analyzed at
intervals, perhaps once a day or even once a week. But with big data, things
move much faster. Many modern systems rely on data that is streaming in
real time, meaning the data is continuously generated and needs to be
analyzed immediately or within seconds of arrival. This is common in areas
where quick insights are critical like financial trading, real-time fraud
detection, and health monitoring systems. Velocity matters in small data
too, but in big data, it’s not just the speed, it’s the scale and continuity of
that speed that makes it defining, shifting organizations to a more proactive
way of responding to events as they happen, rather than analyzing them
later.

Variety
Big data differs from traditional data systems in terms of its diversity. Data
no longer comes only in neat rows and columns like it used to in
conventional databases. Instead, big data encompasses an entire spectrum of
formats, and to manage it effectively, you need to understand the various
forms it comes in. In the previous chapters, we discussed three major forms
of data—structured, semi-structured, and unstructured. In the context of big
data, these forms become even more significant, because the more data you
have, the more crucial it is to organize and manage it properly, and that
starts with understanding what kind of data you’re dealing with.

Imagine a company that’s analyzing customer feedback; they may have
survey results in a structured format, email inquiries in a semi-structured
format, and social media posts or product review videos in an unstructured
format. Structured data can still be managed with traditional relational



databases and SQL. But semi-structured and unstructured data require
specialized tools like Hadoop, Spark, or machine learning models to extract
insights. Most value in big data lies in semi-structured and unstructured
forms, like customer reviews, video content, or clickstream data.
Understanding the data type helps prioritize the right tools and processing
strategies that can work across formats to extract value whether the data is
numbers, words, images, or sounds.

Veracity
Veracity is all about the quality and reliability of the data you’re working
with. One of the challenges in big data is that the greater the volume and
variety of data, the harder it becomes to ensure accuracy and consistency.
The more data you collect, the higher the chance that some of it will be
incomplete, inconsistent, or duplicated. Unlike small datasets that might
come from a single source or system, big data often pulls from multiple
sources. For example, social media data might include fake accounts or bots
that are hard to interpret accurately. Veracity is critical because businesses
rely on accurate data to make decisions; if the data is faulty, the entire
decision-making process is compromised.

Value
It’s not enough to simply collect large amounts of data quickly and from
various sources; we need to do something useful with it. In big data
systems, where information flows in from hundreds or even thousands of
sources, often in real time, the challenge isn’t lack of data but identifying
what’s meaningful. Value is about translating raw data into insights that
result in decisions and actions that have a tangible impact on an
organization or its customers. While smaller datasets can certainly offer
valuable insights, the power of big data lies in uncovering patterns, trends,
and connections that only emerge at scale. Take Spotify as an example; they
use data on your listening habits to recommend new songs and playlists.
This data-driven personalization enhances user experience, and that’s only
possible because of scalable infrastructure that can process millions of
interactions per second.



Distributed Systems
Every time you watch a movie on Netflix, shop online, or search on
Google, you’re interacting with a distributed system hidden by a web page
or application. They are everywhere. Distributed systems have always been
popular in computer science, but in the context of data engineering, how did
we start using them? Back in the day, businesses had one computer called a
mainframe that did all the work, stored data, processed it, and ran programs.
These were centralized systems, and they were massive, expensive, and not
exactly flexible.

Over time, companies transitioned to client-server models, where a server
handled requests from multiple clients. Think of it like a waiter serving
different tables; the waiter represents the server, while the tables represent
the clients. This approach worked well for a while, especially for websites,
simple applications, and databases.

But then, data exploded when applications started generating way more data
than one server could handle. What was the next step? Companies tried to
make servers more powerful, with bigger hard drives, faster CPUs, and
more RAM. But there was a limit; you can only make one machine so
powerful before it becomes ridiculously expensive and still prone to
crashing if overloaded.

Then this question came up: What if we used multiple servers and designed
them to work together instead of beefing up one server, and this is how
distributed systems came about. Popular companies like Google faced this
problem early with their search engine where they couldn’t store the entire
Internet on one machine, so they built their own distributed systems to split
the data across many machines. They also introduced what they called
MapReduce, which later inspired Hadoop, an open source tool that lets the
rest of us process big data across multiple machines. Fast-forward to today,
and tools like Apache Spark and others have emerged, all designed with
distributed systems at their core.

A distributed system is a collection of independent computers that appear to
the user as a single system. These computers work together to achieve a
common goal, coordinating actions and sharing resources, even though they
might be physically located in different places.



Imagine trying to build a house by yourself. This would take a long time,
and you’d probably be exhausted. Now imagine you have a team of skilled
workers, each handling a different part of the construction like plumbing,
wiring, roofing, and painting, all working together to finish the house faster
and more efficiently. This is the basic idea behind distributed systems:
breaking down a task into smaller parts, sharing the load across multiple
machines, and working together to complete tasks that would be too slow or
too big for one machine to handle.

Distributed systems are the backbone of modern data engineering. They’re
what makes it possible to handle and process huge amounts of data without
everything slowing to a crawl or breaking down. As the amount of data in
the world keeps exploding, knowing how distributed systems work isn’t just
a nice-to-have for data engineers; it’s a must because these systems let you
build data processing solutions that are scalable, so you can keep up with
the demands of big data.

Distributed systems have unique characteristics that enable them to do their
work efficiently, but before we explore them, let’s figure out how they
work.

When a task like processing a large dataset is being executed, that big task
is divided into smaller tasks and these smaller tasks are distributed across
computers called nodes. Each node is connected to a network, like the
Internet or a local network, and they may be physically apart but are
logically connected. Nodes communicate using protocols, rules for sending
and receiving messages like HTTPS, and they agree on what tasks to do and
who does what; this is called coordination. One node might be a leader
(coordinator), or all nodes might be equal peers. All nodes work
simultaneously (in parallel) to speed up the job, which is why distributed
systems are scalable and fast.

While working, nodes often need to share data or results. They send
messages back and forth. The system also handles issues like network
delays and message loss. Nodes may also fail or crash, and distributed
systems use techniques like replication, which is keeping copies of data and
trying again if a node fails, in order to keep the system working. Once all
nodes finish their tasks, the results are collected and combined. The system
gives a final output to the user as if it were done by one computer.



The common features of distributed systems that make them super-efficient
include:

Scalability

Fault tolerance

Reliability

Concurrency

Resource management

Consistency

Availability

Load balancing

Latency

Scalability
Scalability is the ability of a system to continue to work correctly as the
load increases. Load here can mean the number of requests per second
received by a web server, the number of reads from versus writes to a
cache, or the number of users on an application.

Imagine your company experiences a surge in data, maybe due to a Black
Friday sale or a viral marketing campaign. As a data engineer, you notice
that your current ETL pipeline is running slower due to the increased
volume. To make sure the system can handle this spike in data, you may
need to upgrade your data processing infrastructure by either increasing the
number of nodes in your system to distribute the workload efficiently or
implementing autoscaling in your cloud setup when demand increases.
Scalability ensures that as data grows, the system can handle it without a
drop in performance. There are two main ways we can scale our system:
either horizontally or vertically, as shown in Figure 11-2.



Figure 11-2: Vertical and horizontal scaling

Horizontal scalability, also called scale-out, means you can add more
machines to the system. For example, if your system is slow in
processing data from 1 million users, you add 10 more servers to share
the load, and you can keep adding more nodes as needed.

Vertical scalability, also called scale-up, means you upgrade a single
machine by adding more CPU or RAM. But the limitation here is that,
eventually, there’s a limit to how big machines can get, and they can be
very expensive because you can’t get infinite RAM.

Most companies use a mix of both methods; they use more powerful
machines and add more machines to share the load. Also, every system is
different, and although there’s no one-size-fits-all, things like how users
access the system and how fast it needs to respond according to your SLA
requirements affect how you design your scaling strategy. In summary,
scale-up when you can, scale-out when you need to, and always design
based on your system’s specific needs.

Fault Tolerance
Fault tolerance is the ability of a system to continue functioning even when
some of its components fail. Distributed systems are built with redundancy,
meaning that if one node fails, another can take over without disrupting the
service. For instance, you might be running a batch job that processes
customer transactions and a server crashes in the middle of execution.



Without fault tolerance, this could mean losing hours of data processing.
Here, distributed processing frameworks like Spark have checkpointing
features to resume from the last successful state instead of restarting the
entire job. Similarly, in distributed databases such as Apache Cassandra,
data is stored across multiple nodes, ensuring that even if some nodes fail,
the data remains accessible. Without fault tolerance, a single point of failure
could bring down an entire system, leading to loss of data and service
interruptions.

Reliability
Reliability in distributed systems refers to the ability of a system to function
correctly and consistently over time, ensuring that data is not lost,
operations are completed successfully, and users receive accurate results
even in the presence of failures. A reliable system must handle network
disruptions, hardware failures, and software crashes without compromising
data integrity.

This is achieved through techniques like data replication, where multiple
copies of data are stored across different nodes; automatic retries, which
ensure that failed operations are retried until they succeed; and
checkpointing, where the system periodically saves its state to recover from
unexpected crashes. For instance, in financial transactions, banks use
distributed databases with transaction logs to ensure that even if a failure
occurs in the middle of a transaction, the system can roll back or retry the
operation to maintain accuracy and consistency. Reliable distributed
systems are designed to minimize downtime and prevent data loss, making
them essential for applications where uninterrupted service and data
correctness are critical.

While fault tolerance ensures that the system keeps running even when
failures occur, reliability ensures that the system always produces correct
results.

Concurrency
Concurrency allows multiple tasks or users to access and use the system at
the same time, independently, without interfering with each other. In
distributed systems, tasks are executed in parallel across different nodes.



For instance, multiple users can query the database at once. Another prime
example of concurrency is seen in online ticket booking systems like
Airbnb or Booking.com. When multiple users try to book the same hotel
room at the same time, the system must handle concurrent requests and
ensure that the room is allocated to only one user while preventing double
bookings or when a company has a shared database that allows multiple
users to run ad hoc queries.

Resource Management
In a distributed system, there are limited resources like CPU (processing
power), memory (RAM), storage (disk space), and network bandwidth
(how fast data moves between machines). If these resources are not
managed well, some machines might be overloaded while others sit idle,
leading to slow and inefficient processing. To prevent this, resource
managers allocate tasks to different machines based on their availability and
workload. A good example is running queries on Apache Spark, only to
notice that the cluster suddenly slows down. Upon investigation, you realize
that some jobs are consuming too much memory. In such cases, resource
management plays a crucial role in reallocating resources, adjusting
memory limits, redistributing workloads, or scaling up the cluster to restore
smooth performance.

Consistency
Consistency, in the context of distributed systems, ensures that all nodes in
a distributed system have the same data at a given point in time. It prevents
conflicts and ensures that users see the latest updates across all devices. A
good example is Amazon’s shopping cart. If a user adds an item to their cart
using a mobile device, the same item should appear in the cart when they
switch to a desktop browser. This requires strong consistency across
Amazon’s distributed database system. However, achieving strong
consistency in large-scale distributed systems can be expensive. Some
systems, like Twitter or Facebook, use an approach called eventual
consistency, where updates propagate over time, ensuring that all nodes
eventually converge to the same state.

Different consistency models exist:

http://booking.com/


Strong consistency, where all nodes reflect updates immediately

Eventual consistency, where nodes update asynchronously but will
eventually sync

Causal consistency, where operations that are causally related appear
in order

Availability
Availability ensures that the system is accessible and operational at all
times, even in the presence of failures. A practical example is Amazon Web
Services (AWS), which offers a 99.99 percent uptime guarantee for its
cloud services. This is achieved by deploying servers in multiple
availability zones (data centers in different geographic locations). Even if
one availability zone fails due to a hardware issue, another zone takes over,
ensuring that services remain operational. Another example is WhatsApp or
Facebook Messenger, which must be available 24/7 globally. If a server in
one region goes down, users are automatically redirected to another server
to maintain uninterrupted communication.

Load Balancing
A distributed system can distribute workloads across multiple nodes to
prevent any single node from becoming overloaded, ensuring optimal
performance. A classic example is Google Search, which handles billions of
search queries daily. Google uses load balancers to distribute incoming
queries across thousands of servers worldwide, ensuring that no single
server is overwhelmed. Similarly, in content delivery networks (CDNs) like
Cloudflare, user requests are routed to the nearest or least-busy server to
improve response times. Load balancing is important for handling large-
scale distributed applications such as video streaming, online gaming, and
high-traffic websites.

Latency
Latency is the time it takes for a request to get a response. Latency also
affects performance, which is how quickly and efficiently tasks are
completed. The goal in most distributed systems is to minimize latency and
maximize throughput, that is, how many tasks are completed per time unit.



When processing large datasets, queries are expected to be fast and
responsive. Low latency is also essential for real-time analytics,
dashboards, and recommendation systems, while higher latency can
sometimes be acceptable for batch processing workflows.

Distributed Data Processing
Distributed data processing is a method of handling large volumes of data
by breaking data into smaller chunks and processing them across multiple
computers working together. Instead of relying on a single powerful
machine, this approach distributes the workload across many machines,
making data processing faster, more efficient, and scalable, especially for
big data. Without distributed processing, big data engineering would
struggle to handle the volume, velocity, and variety of modern data because
that’s the engine under the hood.

To achieve this, data engineers use frameworks designed to handle
distributed workloads. Some of the most common ones are Apache Hadoop,
Spark, Flink (for real-time streaming), and Apache Kafka.

Many other tools are available, each designed for specific use cases.
Throughout this section, we’ll explore some of these popular frameworks
and how they help data engineers process massive datasets efficiently.

Apache Hadoop
As data started growing massively in the early 2000s, thanks to things like
web apps, social media, and just about everything going online, tech giants
like Google ran into a serious problem: How could they store and process
mountains of data that simply wouldn’t fit on one machine? Their answer?
Spread the load.

In 2003 and 2004, Google shared two game-changing ideas with the world:
(1) the Google File System (GFS), a way to stash huge amounts of data
across many computers; and (2) MapReduce, a method for breaking data
tasks into smaller pieces and processing them at the same time on different
machines. These ideas laid the foundation for what we now call distributed
data processing.



Inspired by Google’s approach, Doug Cutting and Mike Cafarella built an
open source version and called it Hadoop. It went on to become one of the
first big tools that helped engineers process data at scale.

Hadoop is an open source framework that enables distributed storage and
processing of large datasets using clusters of commodity hardware—
affordable, regular computers. Traditional systems store and process data on
a single machine. But what if your data is so big it can’t fit or process
efficiently on one machine? Hadoop breaks big data into small pieces,
stores them across multiple computers, and processes them in parallel,
making the entire process faster and scalable.

Hadoop has the same features a distributed system would typically have; it
adds more machines to handle more data, making it scalable. If one
machine fails, others take over, which makes it fault-tolerant and efficient.
It also processes data where it is stored, minimizing data movement. The
Hadoop engine is powered by three main components: the Hadoop
Distributed File System (HDFS); MapReduce, the processing engine; and
Hadoop YARN, the resource manager.

Hadoop Distributed File System (HDFS)
Hadoop Distributed File System (HDFS) is the primary storage system used
by Hadoop for managing big data. It is designed to store vast amounts of
data across many machines in a distributed manner. HDFS works by
breaking down large files into smaller fixed-size blocks, typically 128 MB
or 256 MB, and distributing them across multiple machines in a cluster.

As seen in Figure 11-3, the local file system represents a single machine
with a 10 TB storage capacity. In a local file system, all data is stored on
one machine, making it a single point of failure (if the machine crashes, all
data is lost). In a distributed file system, like HDFS, data is distributed
across multiple machines. The figure shows four machines, each with 10
TB of storage, effectively scaling storage to 40 TB. These nodes are
connected and work together to store and process data.



Figure 11-3: A local file system and a distributed file system

The HDFS Architecture
The HDFS architecture, shown in Figure 11-4, is how data is stored,
replicated, and accessed within a Hadoop cluster. Let’s break it down step
by step.

Figure 11-4: Hadoop’s distributed file system architecture



The NameNode acts as the master node of HDFS. It maintains metadata
such as filenames, directories, permissions, and replication details. It does
not store actual data; instead, it keeps track of which DataNodes store
which data blocks.

DataNodes are also known as the storage workers. These are the machines
responsible for storing actual data blocks. DataNodes store, replicate, and
retrieve data as requested by clients. In Figure 11-4, DataNodes are grouped
into Rack 1 and Rack 2, representing physical separation in a data center to
ensure redundancy and fault tolerance.

The HDFS client (a user) interacts with the HDFS system to read or write
data. A client can request to write a file, and the system stores it in blocks
across multiple DataNodes, or the client can request to read a file, and data
is fetched from the relevant DataNodes. In this case, the NameNode
provides the client with metadata, including locations of the block the data
is stored on. If the NameNode fails, a secondary or standby NameNode
takes over.

As illustrated in Figure 11-4, replication occurs in HDFS by storing
multiple copies of each block across different racks and nodes. These
blocks are stored redundantly to ensure fault tolerance. By default, HDFS
follows a default replication factor of 3, and each block is replicated three
times across different nodes. This means that if one node fails, the data can
still be retrieved from another node holding a replica. The replication
process is shown in Figure 11-4, where blocks are duplicated across racks
for reliability.

Physically, HDFS spans across a network of machines, often using
commodity hardware, affordable, off-the-shelf computers that are not
specially designed for high-performance computing. Logically, it appears as
a single, unified file system to users and applications. Data is written and
read through APIs or command-line tools, and the entire system can scale
horizontally. From a visualization standpoint, HDFS is typically monitored
through web interfaces that show data node status, storage usage, and file
system health.

Companies use HDFS for tasks like log processing, recommendation
systems, fraud detection, and data archiving. It’s especially useful in



environments where traditional storage systems can’t handle the size, speed,
or complexity of the data.

MapReduce
MapReduce is the processing component of Hadoop, designed to generate
and process large datasets in parallel across a distributed cluster of
computers. The core idea is to divide a task into smaller subtasks, process
them independently, and then combine the results. The MapReduce process
has two major phases: Map and Reduce, often preceded by data input and
followed by output. Figure 11-5 shows how the MapReduce process works:

Figure 11-5: The MapReduce process

Input splitting: Large data files in HDFS are divided into fixed-size
blocks, typically 128 MB as discussed earlier, and each block is
processed independently. If we had a 1 GB file, Hadoop would split
that into about 8 blocks. Each block can then be processed
independently and in parallel.

Map Phase: Each block of data is fed into a Map function, which
processes the input and emits key-value pairs in this format: word,
countOfWord.

Shuffle and Sort: The system automatically groups all values by key,
shuffling them across nodes to prepare for the reduce phase. This
ensures that all values associated with the same key are sent to the
same reducer.



Reduce Phase: Each reduce function takes the grouped key and
associated list of values and processes them to output a result.

Output: The final results are written back into HDFS or another
storage system.

The entire process is parallelized and fault-tolerant. If any task fails, it can
be restarted on another node without affecting the overall job. However,
MapReduce is less popular today than Apache Spark, which is faster and
more versatile. It’s still foundational in many legacy systems and big data
workflows, especially where batch processing of large datasets is required.

Yet Another Resource Negotiator—YARN
Hadoop YARN is a resource management and job scheduling system for
Hadoop. It is responsible for allocating system resources like CPU and
memory and also managing tasks across a cluster of machines. If a task
fails, it’s YARN’s job to reschedule it on another node.

Limitations of Hadoop MapReduce
Hadoop MapReduce was great for handling large amounts of data, but it has
some major performance problems that made it slow and inefficient. Let’s
discuss the limitations.

Slow Processing and High Latency: Imagine you are writing an
essay, but after every sentence, you must save your work, close the
document, and reopen it before writing the next sentence. That’s
exactly how MapReduce worked. After each step in a data processing
job, it would save results to disk before moving to the next step. Then,
when it needed those results again, it had to read them back from the
disk. This write-read-write-read process happened over and over,
making everything very slow.

Not Ideal for Real-Time or Repeated Workloads: MapReduce was
not good for tasks that needed fast results or repeated calculations.
Let’s say you are learning a dance routine. If you had to read the
instructions from a book before every move, you’d never finish. You’d
rather remember the steps in your head and practice quickly. But
MapReduce doesn’t “remember” anything; each time it runs a step, it



has to load everything from the disk again. This made it bad for real-
time analytics and also for machine learning, where calculations
needed to be repeated over and over again.

Waste of Resources: When a MapReduce job is finished, it releases
the computer power it was using. If another job needed to run, it had to
request computer power again from scratch. This caused gaps and
delays between jobs, making things inefficient.

To address these limitations, Apache Spark was introduced.

Apache Spark
Apache Spark is an open source, distributed computing system designed for
big data processing. It was born out of a need for faster data processing than
what was possible with Hadoop MapReduce. In 2010, Spark was open
sourced, and by 2014, it became a top-level Apache project. Its rise was fast
and attracted a lot of attention because it could process data up to 100 times
faster than Hadoop MapReduce, thanks to its in-memory computing
capabilities. At its core, Spark is a distributed data processing engine that
enables you to write applications in Java, Scala, Python, R, and SQL, which
can run on a single machine or across clusters.

The foundational data structure in Spark is called a resilient distributed
dataset (RDD), as shown in Figure 11-6. Imagine you have a huge list of
names that you want to process. If you use just one computer, it might take
a long time. But if you split the list into smaller parts and give each part to a
different computer, they can all work at the same time. This is what an
RDD does: It splits a large dataset across multiple machines so that Spark
can process it faster.



Figure 11-6: Apache Spark RDD description

When Spark loads data into an RDD from a file or database, the RDD
divides the data into small chunks and spreads them across multiple
computers. Spark then processes each chunk in parallel (all at once),
making it very fast. Spark can also cache (store) RDDs in memory, so it
doesn’t have to reload data from disk each time, unlike Hadoop. Later on,
Spark introduced easier and more user-friendly tools for working with data
called DataFrames and Datasets. DataFrames are conceptually similar to
tables in Excel, with rows and columns, making them intuitive for many
users. Datasets provide a similar tabular structure but offer more control and
type safety for programmers working in strongly typed languages like
Scala. These tools help you better organize and understand data, especially
when it has structures. However, in the architecture section that follows, we



continue to refer to RDDs (resilient distributed datasets) because they form
the fundamental low-level data structure underpinning Spark.
Understanding RDDs is important for grasping how Spark achieves fault
tolerance at its core, while also appreciating how DataFrames and Datasets
have provided a more user-friendly and efficient way to work with data.

Another interesting thing about Spark is that it uses something called lazy
evaluation. This means that when you tell Spark to do something with data,
like to filter data or sort it, Spark doesn’t do it immediately. Instead, it waits
until you ask for the final result, like counting the data, aggregating or
saving it, and then it quickly figures out the best way to do everything. This
helps Spark save time and work more efficiently.

Apache Spark Architecture
The core of Spark’s architecture is based on the driver–worker model. To
understand how Spark executes tasks, we need to break down its key
components, which are the Driver Program, Cluster Manager, Executors,
and the internal mechanisms that coordinate task execution. Let’s look at
these components in detail in Figure 11-7.

Figure 11-7: Apache Spark architecture

Driver Program
Every Spark application begins with a Driver Program, which serves as the
central controller of execution. It runs the user’s main function, defines the



logic of data processing, and coordinates with other components to ensure
smooth execution. The Driver Program initializes the SparkContext, which
acts as the entry point for interacting with Spark. The SparkContext
requests resources from the cluster and establishes communication between
the Driver and the rest of the system.

A Spark job refers to the entire sequence of computations that is triggered
when an action is called on a dataset. When a Spark job is submitted, the
Driver analyzes the transformations applied to the data and constructs a
directed acyclic graph (DAG), which is a logical representation of an
execution plan. One of the main responsibilities of the Driver is managing
the DAG of computations. This DAG determines the sequence of
operations (such as functions applied to the data) and helps optimize how
Spark executes tasks across the cluster.

Figure 11-8 is a DAG in Apache Spark that shows how Spark breaks your
code into stages and connects them with dependencies. Let’s understand
what’s happening in Stages 0–3.

Stage 0 begins the job by reading data using newAPIHadoopFile, which
loads input from a Hadoop-compatible file system. Immediately after, a
map transformation is applied to process each record individually. A map is
commonly used for parsing the raw input into a structured format. The
output of this stage is passed on to the next stages.

In Stage 1, a different dataset is loaded into an RDD named newLogRDD.
This data undergoes two successive filter operations. These filters likely
remove irrelevant or malformed records. The final filtered RDD from this
stage is sent to Stage 2 for joining with other datasets.

Stage 2 is the most complex and central stage in the DAG. It has multiple
branches converging. One branch receives input from both Stage 0 and
Stage 1, and performs a cogroup, which most likely joins the two datasets
on a common key. After the cogroup, a mapValues transformation reshapes
the grouped values, and flatMap likely flattens the nested structure into a
simpler form.

Simultaneously, another path in this stage reads additional data via
newAPIHadoopFile, applies a filter, transforms it using map, and then



combines it using union with the earlier transformed dataset. This union
merges the two datasets into one cohesive RDD for further processing.

In the final stage, Stage 3, a reduceByKey operation aggregates the records,
often used for summing up metrics or counting events per key. This is
followed by a coalesce, which reduces the number of partitions, in order to
optimize the performance when writing the final output.

Figure 11-8: A DAG representing a simple Spark job

Cluster Manager
The Cluster Manager is the component responsible for managing and
distributing resources across the cluster. It acts as a bridge between the
Driver Program and the physical infrastructure, ensuring that resources such
as CPU and memory are allocated efficiently.

When the Driver requests resources, the Cluster Manager assigns them by
provisioning worker nodes within the cluster. Depending on the deployment
mode, Spark can work with different types of cluster managers, like YARN,
which is used in Hadoop ecosystems, Kubernetes for containerized
workloads, or Spark’s built-in Standalone Mode. Regardless of the specific



cluster manager, its main role is to provide the necessary computing power
for the Spark job to execute.

Executors
Once the Cluster Manager assigns resources, Spark launches executors on
the worker nodes. Executors are distributed processes that perform the
actual computations defined in the user’s code. Each Spark application gets
its own set of Executors, which are dedicated solely to that application and
remain active for its duration.

Executors perform two primary functions, which are executing assigned
tasks and storing intermediate data in memory or on disk. Tasks are the
smallest units of execution in Spark and correspond to operations like
mapping, filtering, or reducing data. The Driver schedules these tasks
across available Executors based on the DAG, ensuring parallel execution
to maximize efficiency. Since Executors also cache data, they enable
Spark’s in-memory computing capabilities, reducing the need to repeatedly
read from disk and improving performance.

DAG Scheduler and Task Execution
Spark’s execution process follows a structured pipeline. When a user writes
transformations such as .map(), .filter(), or .groupBy(), Spark does not
execute them immediately. Instead, it constructs a logical execution plan in
the form of a DAG, as seen in Figure 11-8. This DAG captures all
dependencies between transformations and helps Spark determine the most
efficient way to execute the job. The DAG Scheduler is responsible for
breaking down the execution plan into stages, where each stage contains
tasks that can run in parallel. These stages are then passed to the Task
Scheduler, which assigns individual tasks to Executors based on resource
availability.

Understanding Spark’s execution model is key to writing efficient and
reliable Spark applications. The Driver Program orchestrates the workflow,
the Cluster Manager allocates resources, Executors perform distributed
computations, and the DAG Scheduler ensures optimized execution.

Apache Spark is a versatile distributed engine that supports a wide range of
data engineering tasks, from batch processing to real-time analytics to even



training and deploying ML models at scale. For any data engineer, learning
Spark is non-negotiable. It opens the door to building scalable and efficient
data pipelines that process massive datasets. In Table 11-1, you can see the
comparison between Apache Spark and Hadoop across a couple of features.

Table 11-1: Comparing Apache Spark and Hadoop MapReduce

FEATURE APACHE SPARK HADOOP MAPREDUCE
Processing
speed

Much faster, because it
processes data in memory

Slower, because it writes
intermediate data to the disk
after every step

Data
processing

Uses DAG to optimize and
execute tasks efficiently

Uses a step-by-step process,
meaning each task must finish
before the next one starts

Storage Stores data in memory, only
writing to disk when
necessary

Writes data to the disk after
each step, which causes a
higher read/write overhead

Language Provides high-level APIs in
Python, Scala, Java, and R,
making it versatile

Requires writing low-level
Java code

Fault
tolerance

Uses RDDs to automatically
recover lost data

Uses HDFS replication (stores
multiple copies of data across
nodes)

Resource
management

Uses YARN or Spark’s
resource manager

Uses YARN for resource
allocation

Use case Can handle batch, real-time,
machine learning, and graph
processing in one system

Mainly designed for batch
processing

Machine
learning
support

Has a built-in ML library for
AI/ML tasks

Has no built-in ML library

Adoption Widely used in modern data
engineering projects

An older technology, but is
still used in legacy systems



Big Data File Types
When working with big data, you’ll come across a variety of file types and
formats, each suited for different storage, processing, and analysis needs.
Big Data file types are data serialization formats designed to store and
exchange data efficiently at scale, especially within big data ecosystems
where data needs to move efficiently between components. Data
serialization here is the process of converting data into a specific format
that can be easily stored, transmitted, and reconstructed later.

These file types act as specialized containers for data, each designed for a
specific purpose. Some focus on speed, others on compression, schema
evolution, or query performance. The choice of file type directly affects
storage efficiency, processing speed, and scalability. Let’s explore some
common file types:

Avro

Parquet

ORC

Avro
Avro is a binary, row-based serialization format developed within the
Apache Hadoop ecosystem. It stores both the data and its schema together
in the same file, enabling schema evolution, which is the ability to change
data structure over time without breaking systems.

As mentioned earlier, with Avro, data is serialized in a compact binary
form. A separate schema that is usually defined in JSON format to describe
the structure of the data, like its fields and data types. When reading the file,
tools use this schema to deserialize the data correctly. Avro is ideal for
write-heavy systems because it’s a row-based format. When writing data, it
writes rows sequentially, which is fast and efficient.

Strengths:

Avro is efficient and compact due to its binary format.



It has excellent support for schema evolution, allowing you to add or
remove fields safely.

It’s good for write-heavy applications and row-wise operations.

It can be used across different systems seamlessly, making it cross-
platform.

It’s an excellent choice for real-time streaming projects.

Weaknesses:

It’s not human-readable, and it requires a tool to interpret.

It’s less efficient for column-based analytics.

It requires schema management and understanding for proper use.

Parquet
Parquet is a columnar, binary file format designed for efficient data storage
and analytical querying and is widely used in data lakes and analytics
platforms. In analytics, you often query only a few columns out of many
and Parquet stores data column by column instead of row by row. With this
style of storage, Parquet reads only the columns you need, not the entire
dataset, saving time and resources.

Parquet also applies compression and encoding techniques per column,
which boosts efficiency. For example, if we have 100 rows with the same
country value, =United States, count=100". This reduces the file size
and speeds up reading because less data needs to be loaded into memory.

Parquet files also store the schema inside the file itself. This makes it self-
describing, so tools can automatically understand the data without needing
external schema definitions. In contrast, Avro separates the schema from the
data and the schema is maintained separately. Parquet files are ideal for
analytics queries where users often need to read a few specific columns
from large datasets.

Strengths:

Parquet is highly compressed, saving storage costs.



It is fast for queries involving specific columns, as only relevant data is
read.

It supports filtering data before reading it.

It is compatible with many cloud storage solutions.

Weaknesses:

It has slower writes due to the overhead of organizing data by
columns.

It is not suitable for small, frequent updates.

It is not human-readable and not ideal for simple key-value lookups.

Optimized Row Columnar (ORC)
ORC is a high-performance columnar data storage format that stores data in
an optimal way for column-based operations like filtering and aggregation.
ORC is like a super-efficient way of storing big tables of data, especially
when you have lots of rows and columns, like in a huge Excel sheet. Instead
of storing all the data row by row, ORC organizes the data into sections
called stripes.

As shown in Figure 11-9, each stripe contains many rows, but it stores the
data in columns rather than rows. So, instead of having a whole row of data
saved together, each column in a row is stored separately, making it easier
and faster to access just the specific columns you need. This is helpful when
you’re working with big amounts of data and you want to perform
operations like filtering or adding up numbers quickly, because the system
doesn’t have to load all the data, just the parts you’re interested in.



Figure 11-9: ORC file format

ORC saves important metadata about the data, such as column names,
types, and structures at the end of the file. This metadata helps tools quickly
understand the content without reading the whole file.

Strengths:

ORC has smaller file sizes than Parquet in many cases.

It is optimized for fast reads and writes in Hive.



It has built-in indexes and metadata for faster query execution.

It also supports schema evolution.

Weaknesses:

ORC has less cross-platform support outside the Hadoop ecosystem.

Like Parquet, it is not ideal for write-heavy or streaming scenarios.

ORC is not human-readable, and it requires processing tools to access
and interpret its contents.

Choosing the File Type
Choosing the right file format is important when working in big data
environments because efficiency, speed, and storage matter. While different
file formats are designed for different use cases, using the right one can
save money, speed up your system, and make your work easier. These are a
few questions that would guide your decision.

1. How Will You Use the Data?

Start by asking, “What am I going to do with this data?” If your goal
is to run analytics or reports, formats like Parquet or ORC are perfect
because they are fast and optimized for reading large amounts of data.
If you are sharing data between systems or working with web APIs,
then Avro is better because they are easier to use for sending and
receiving data. For real-time streaming, like with Kafka, Avro is often
the best option.

2. Do You Need to Save Storage Space?

Some file formats compress data automatically, which helps save disk
space and reduces storage costs, which is an important consideration
for big data environments. If space-saving is important, choose
Parquet, ORC, or Avro, as they support compression and they’re
efficient for storing and processing large datasets.

3. Do You Want Faster Read Performance?



If you need to read or analyze data quickly, especially large datasets,
you should choose a columnar format like Parquet or ORC. These
formats allow your system to read only the columns it needs, which
makes queries much faster.

4. Do You Need to Include Schema in the File?

A schema is like a blueprint that describes the structure of your data,
like what each field means and what type it is. Avro, Parquet, and
ORC embed the schema inside the file, which helps tools read the
data correctly and ensures consistency.

5. Will Your Data Structure Change Over Time?

If your data’s schema may evolve, for example, by adding new fields
or changing data types, Avro is a smart choice. It is built to handle
schema evolution, meaning it can manage changes over time without
breaking. Parquet and ORC also support this, but Avro handles it best,
especially in streaming systems.

6. What Tools and Technologies Are You Using?

Your choice might depend on the tools or platforms you’re using. For
example, AWS technologies work best with Parquet. Hadoop often
prefer ORC or Parquet, and Apache Kafka uses Avro widely.

Summary
Big data refers to extremely large and complex datasets that traditional
data processing tools cannot handle efficiently.

Big data is characterized by five main properties, often called the five
V’s of big data: Value, Velocity, Veracity, Variety, and Volume.

Volume refers to the amount of data being generated and stored, often
on a massive scale.

Velocity is the speed at which data is generated, transmitted, and
processed.

Big data varies in terms of how diverse it can be. It doesn’t just come
in only neat rows and columns.



Veracity is all about the quality and reliability of the data you’re
working with.

Value is about translating raw data into insights that result in decisions
and actions that have a tangible impact on an organization or its
customers.

A distributed system is a collection of independent computers (or
nodes) that work together as a single system to achieve a common
goal.

Key components of distributed systems are scalability, fault tolerance,
reliability, availability, consistency, and resource management.

Fault tolerance is the ability of a system to continue functioning even
when some of its components fail.

Reliability in distributed systems refers to the ability of a system to
function correctly and consistently over time.

Concurrency allows multiple tasks or users to access and use the
system at the same time, independently, without interfering with each
other.

Resource management ensures tasks are allocated to different
machines based on availability and workload.

Consistency, in the context of distributed systems, ensures that all
nodes in a distributed system have the same data at a given point in
time.

Availability ensures that the system is accessible and operational at all
times, even in the presence of failures.

Load balancers ensure that workloads are distributed across multiple
nodes to prevent any single node from becoming overloaded.

Latency is the time it takes for a request to get a response.

There are two main types of scaling: horizontal and vertical.
Horizontal scaling involves adding more machines to a system,
whereas vertical scaling involves upgrading a single machine.



In distributed systems, three consistency models exist: strong,
eventual, and casual consistency. This design is due to how expensive
achieving consistency can be.

Distributed data processing is a method of handling large volumes of
data by breaking data into smaller chunks and processing them across
multiple computers working together.

Some common frameworks help us achieve distributed data processing
are Apache Hadoop, Spark, and Kafka.

Hadoop is an open source framework that enables distributed storage
and processing of large datasets using clusters of commodity hardware
—affordable, regular computers.

Apache Hadoop is powered by three main components: the Hadoop
Distributed File System (HDFS); the processing engine, MapReduce;
and the resource manager, Hadoop YARN.

Hadoop Distributed File System (HDFS) is the primary storage system
used by Hadoop for managing big data.

MapReduce is the processing component of Hadoop, designed to
generate and process large datasets in parallel across a distributed
cluster of computers.

Hadoop YARN is a resource management and job scheduling system
for Hadoop.

Due to the limitations of MapReduce, Apache Spark was introduced as
a faster alternative due to its in-memory capabilities.

Apache Spark is an open source, distributed computing system
designed for big data processing.

In Spark, a cluster manager is the component responsible for managing
and distributing resources across the cluster and an executor is a
distributed process that performs the actual computations defined in
the user’s code.

There are three major big data file types: Parquet, Avro, and ORC.
These file types act as specialized containers for data, each designed



for a specific purpose. Some focus on speed; others on compression,
schema evolution, or query performance.

Avro is a binary, row-based serialization format developed within the
Apache Hadoop ecosystem.

Parquet is a columnar, binary file format designed for efficient data
storage and analytical querying.

ORC is a high-performance columnar data storage format that stores
data in an optimal way for column-based operations like filtering and
aggregation.

The most important considerations for choosing a file type are
understanding how the data would be used, the storage or performance
concerns, and most importantly, the likelihood that the structure of
your data will change over time.



CHAPTER 12
Data Engineering on the Cloud
In the early days of computing, computers were very large and expensive.
Organizations that could afford them had mainframes housed in dedicated
rooms where the temperature was controlled, and users interacted with them
through terminals. With this setup, every single byte of processing or
storage was managed internally. As personal computers and servers became
more affordable, many companies transitioned to building their on-premises
(in-house) infrastructure. This meant buying physical servers, installing
them in racks, and having a dedicated IT team to manage everything from
hardware maintenance to software updates.

However, this setup had several limitations. First, it required heavy capital
investment because companies had to predict their future computing needs,
which, to be honest, often changed. If they underestimated, they couldn’t
handle sudden spikes in traffic. If they overestimated, they wasted money
on hardware that won’t be used. Second, maintaining on-premise systems
was complex. IT teams had to worry about cooling, power supply, backups,
disaster recovery, hardware failures, and security, all while trying to support
the business’s evolving data needs.

Later on, a game-changing idea began to emerge along with questions like,
“What if companies could access computing power over the Internet?,”
without having to buy and maintain the hardware themselves. This idea
wasn’t entirely new, because something similar was happening during the
time-sharing mainframe era, where multiple users could access a single
mainframe computer at the same time, each from their terminal. These
systems switched between users very quickly, so quickly that it felt like
everyone had their dedicated machine, even though they were all sharing
one big computer. But cloud computing did not become a reality until
Amazon launched Amazon Web Services (AWS) in 2006. AWS became the
first major player to successfully commercialize cloud computing at scale.
With their services, developers could now store data and run machines
virtually on demand, paying only for what they used.



This was revolutionary because it lowered the barrier to entry for startups
and allowed large companies to become more agile. Soon after, Microsoft
Azure and Google Cloud Platform (GCP) followed suit, along with IBM
Cloud, Oracle Cloud, and others. Over the next decade, cloud providers
kept adding services, not just machines that can be used virtually, but also
databases, analytics tools, and developer-friendly services. This laid a good
foundation for modern data engineering practices. The cloud wasn’t just
about hosting servers anymore; it became a powerful ecosystem that
changed how we collect, process, store, and analyze data.

In this chapter, we will be exploring the following:

Understanding the concept of the cloud

Comparing cloud and on-premises setups for data storage and
processing

Exploring cloud service models

Choosing between IaaS, Saas, and PaaS for different data engineering
tasks

Understanding object, block, and file storage for storing large-scale
data

Leveraging cloud-based compute services for data transformation

Setting up virtual private clouds, subnets, and gateways for secure data
movement

Technical trade-offs between serverless, managed, and self-managed
data infrastructure

Best practices for optimizing cost for storage on the cloud

Cloud Computing
The cloud refers to a network of remote servers on the Internet that store,
manage, and process data, rather than using a local computer or personal
device. It is often referred to as “someone else’s computer” because when
you use the cloud, you’re essentially renting storage, compute power, and
other services on physical machines owned by cloud providers, and these



machines are housed in massive data centers around the world. So
essentially, you’re using someone else’s computer, just a very sophisticated
one. Cloud computing refers to the on-demand delivery of IT resources and
services over the Internet. Instead of owning and maintaining physical data
centers and servers, companies can rent these resources and gain access to
them any time and from anywhere.

In an organization, we generally consider two main development
architectures: on-premise and cloud-based solutions. Both approaches serve
the same goal, efficiently managing and processing data, but they differ
significantly in how they handle infrastructure.

On-Premises
An on-premises setup is where data infrastructure is managed on physical
hardware that resides within your organization’s premises. This means you
own the servers, storage devices, processing frameworks, and networking
equipment, and you’re in complete control of every aspect of your data
engineering systems—data pipelines, ETL jobs, and storage.

The key advantage of on-premises solutions is control. Because the
hardware and software are under your organization’s roof, you can
customize the architecture to your specific needs. There’s also a sense of
security because all the data stays within your internal network, reducing
the exposure to external threats.

However, this all comes at a cost. The upfront capital expenses for buying
physical hardware, setting up data centers, and ensuring that they are
properly maintained can be expensive. You also need a dedicated team of
engineers and systems administrators to manage the infrastructure, monitor
performance, and handle scaling as your data needs grow.

Cloud
A cloud-based setup, on the other hand, involves using cloud service
providers to host and manage your data infrastructure. These services
provide preconfigured data storage, compute power, and other tools that
you can use on demand.



One of the most significant advantages of cloud-based solutions is
scalability. You can easily scale up or down based on demand without
worrying about buying additional hardware. This flexibility is useful for
businesses with fluctuating data needs. The cloud also provides a pay-as-
you-go model, meaning you pay only for what you use, which can be a
cost-effective solution for growing companies.

Another major benefit is the ease of setup. Cloud providers offer fully
managed services for databases, storage, and data processing, which means
you don’t need to worry about setting up servers, configuring networks, or
managing hardware.

From a security perspective, cloud providers invest heavily in securing their
data centers and offer advanced security features like encryption, identity
management, and compliance with various regulatory standards, and these
usually exceed what many organizations can afford to implement
themselves. However, this also means you’re somewhat reliant on the
provider for ensuring security and compliance, which can be a concern for
businesses with very sensitive data.

Making the Right Choice
In summary, both on-premises and cloud-based data engineering have their
strengths and weaknesses. On-premises may be the right choice for
businesses that prioritize control, security, and compliance and have the
resources to manage the infrastructure. Cloud-based solutions are ideal for
organizations looking for scalability, flexibility, and reduced maintenance
overhead, especially if they’re growing or uncertain about their future
needs. Many companies today adopt a hybrid approach, using both on-
premises and cloud infrastructure to take advantage of the best of both
worlds, depending on the type of data and the specific requirements of each
project.

Core Cloud Concepts
Cloud computing is built on a set of core elements, and understanding these
elements is key to knowing how everything fits together and helps you
navigate the rest of this chapter better. Your data engineering workflows



depend on how well you can leverage cloud infrastructure, and that starts
with mastering the core concepts. In this section, we’ll break down the
following concepts:

Storage

Compute

Networking

Storage
Cloud storage is one of the foundational elements of modern data
engineering. It allows us to store and manage massive amounts of data
without the need for on-premises hardware like traditional hard drives or
servers. The beauty of cloud storage lies in its scalability, which is
important because we work with large datasets that are constantly growing.

When we talk about cloud storage, we’re usually referring to services
provided by cloud providers. These platforms provide various storage
solutions designed to support different use cases and performance needs.
There are different ways to organize and store data depending on your
needs. The three primary types of cloud storage are object, block, and file
storage, as shown in Figure 12-1. Each type offers unique advantages and is
better suited for different scenarios.

Figure 12-1: Cloud storage models

Object Storage



Object storage is one of the most popular forms of storage in the cloud. It is
designed to store large amounts of unstructured data such as files, images,
or videos. Unlike traditional filesystems that use folders and files, object
storage manages data as objects, where each object consists of the data
itself, metadata, and a unique identifier called an object ID, as shown in
Figure 12-1, and this data is usually accessed by an API.

How does this work? Instead of saying “go to folder X and open file Y,”
you say, “give me object 12345 from bucket Z.” This type of storage is
ideal for highly scalable storage because it has a flat structure, and there’s
no folder-tree system to manage, which makes it suitable for long-term
archiving, big data analytics, and storing files that don’t need to be accessed
quickly or regularly.

A great example is when raw IoT data or clickstream logs are stored in
Amazon S3, Google Cloud Storage, or Azure Blob Storage, to be later
processed by tools like Spark or Databricks.

Block Storage
Block storage is similar to the hard drives you might have in a local server.
As you can see in Figure 12-1, it stores data in chunks, or blocks, and each
block has its own address. This makes block storage more like a traditional
filesystem; when a file is uploaded, it is split into blocks, and each block is
stored individually and given a unique ID/address. When the file is read or
written, the system finds the relevant blocks, assembles them, and serves
the file with the operating system or database managing the logic and
structure.

Block storage is typically used when you need fast access to data. For
example, if you’re running a database, block storage is often the preferred
choice because it allows for quick reads and writes. It’s also useful when
you need to set up custom filesystems that are not supported by object
storage. Block storage allows you to attach storage directly to your virtual
machines (VMs), enabling low-latency access to data. In data engineering,
this is important because certain workloads, like performing large-scale data
transformations, require fast, consistent access to disk. Attaching storage
directly to the VM ensures that the compute and storage resources are



closely linked, minimizing network delays and improving performance for
I/O-intensive tasks.

In a data engineering project, you can launch a virtual machine on AWS and
attach Elastic Block Store to store temporary intermediate files during a
Spark job.

File Storage
File storage, also known as file-level storage, is one of the most familiar
types of storage. If you think about how you store files on your computer,
that’s essentially how file storage works in the cloud. It’s based on the
traditional filesystem structure, where data is stored in files and folders. In a
cloud environment, file storage allows you to organize and manage data just
like you would in a directory on your personal computer but with the added
benefits of scalability and reliability.

In file storage, the system hierarchically manages the data, meaning that
data is organized within folders (directories), and each file has a specific
name and path. File storage is typically used when you need to share files or
access them in a structured, organized way, especially when multiple
machines or users need to access the same files simultaneously. Using
Azure Files or Amazon EFS (Elastic File System) to store shared ETL
scripts or job logs for a team of data engineers working on Airflow DAGs is
an example of how file storage is used.

Key Factors for Choosing a Cloud Storage Solution
When working with cloud infrastructure, choosing the right type of storage
is important. Let’s compare the various types of storage under these key
factors:

Scalability

Performance

Cost

Use case

Scalability



Object storage is known mostly for its scalability. Since it’s built to handle
large volumes of unstructured data, as your data needs expand, it scales
horizontally by distributing data across multiple nodes and regions. This
makes object storage ideal for workloads that experience significant data
growth over time, such as media libraries, log storage, and backup systems.

Block storage also scales well but has a different approach. Block storage
tends to scale vertically, meaning you have to increase the size of individual
storage units or attach more blocks to the system. While it’s still highly
scalable, it can require more management and planning.

File storage can scale, but it’s not as straightforward as object or block
storage. File storage is often limited by the underlying filesystem, which
may have restrictions on the number of files or the amount of data that can
be handled efficiently. It is best suited for applications that require
filesystem semantics and don’t need to scale to the extreme levels that
object storage can achieve.

Performance
In data engineering, performance is critical when choosing the right storage
type for a given workload. Object storage, like Amazon S3 or Azure Blob
Storage, is highly scalable and cost-effective, making it ideal for storing
large volumes of raw or processed data. However, it doesn’t provide the
fastest access speeds because each object must be retrieved via a unique
identifier, which can introduce latency. This is acceptable for batch
processing but not ideal for real-time analytics or low-latency tasks.

Block storage, on the other hand, offers the best performance. Since it
stores data in fixed-size blocks and allows direct read/write access, it’s ideal
for I/O-intensive data engineering tasks, such as running relational
databases or high-speed data transformation jobs using Spark on virtual
machines.

File storage falls in between. It supports structured, hierarchical file access
and is useful when multiple data engineering jobs or users need shared
access to scripts, datasets, or logs. While it performs better than object
storage in these scenarios, it may not scale or respond quickly enough for
large-scale, high-throughput processing pipelines.



Cost
Cost is one of the biggest advantages of object storage. Due to its
distributed nature and simple architecture, object storage is very cost-
effective. Cloud providers offer pricing models that allow you to store data
at different price points based on how frequently you need to access it.
Infrequently accessed data can be stored at a much lower cost.

Block storage is generally more expensive than object storage because it’s
optimized for high performance. Pricing for block storage depends on
factors like the type of volume and storage capacity. While it provides
excellent performance, the cost can become significant.

File storage falls between object and block storage in terms of cost. It’s
more expensive than object storage because it includes the overhead of
maintaining a filesystem structure, but it’s generally more affordable than
block storage.

Use Case
Object storage is the go-to solution for massive amounts of unstructured
data. It’s a perfect choice for cloud backups, media and entertainment
content, log storage, and data lake environments. If you’re dealing with a
situation where data is accessed infrequently but needs to be durable and
stored for the long term, object storage is your best bet. It is optimized for
scalability and cost-efficiency when storing this kind of data.

Block storage is best suited for performance-intensive applications. It’s
commonly used for databases, virtual machines, and high-performance
applications that need low-latency data access. It’s also the ideal choice for
environments where the data needs to be frequently written to or updated.
In data engineering workflows, especially when maintaining source systems
or staging transactional data, databases like PostgreSQL or MySQL require
fast, consistent input/output operations per second. Block storage offers
low-latency access and high throughput, which are critical for frequent
reads and writes.

File storage is optimal when you need a traditional filesystem structure with
directories and files. It’s commonly used for applications that require access
to shared files, such as content management systems, home directories, or
network drives. Many businesses use file storage for collaboration tools



where multiple users need to access and update files in a familiar structure.
When data engineers work in teams, they often share transformation scripts,
configuration files, or documentation. These require a traditional folder
structure and simultaneous access from multiple machines or users. File
storage provides this shared filesystem environment.

Compute
Compute services on the cloud provide the processing power needed to run
applications, perform calculations, and handle workloads. In data
engineering, compute services on the cloud provide the processing power
required to ingest, transform, and analyze large volumes of data. These
services can be used to run ELT jobs on distributed data processing
frameworks like Apache Spark, execute SQL queries in cloud warehouses,
and orchestrate complex workflows across multiple stages of the data
pipeline. We will be discussing virtual machines and containers.

Virtual Machines
Virtual machines are cloud-hosted computers that you can spin up on
demand. They give you full control, you choose the operating system,
install your tools, and configure your environment. It’s like having your
server but without the physical hardware. Virtual machines are ideal for
workloads that require customization. A common use case for virtual
machines is setting up a custom ETL environment using tools like Apache
Airflow, Python libraries, or Spark clusters that require specific
configurations. For example, if you’re processing large CSV files with
custom logic using Pandas and need to schedule jobs with Airflow, a virtual
machine allows you to install all dependencies, tune performance settings,
and manage the pipeline exactly how you want.

Virtual machines give you a lot of flexibility and control when you’re
testing new tools, working with complex dependencies, or need to manage
resource allocation. The trade-off, of course, is that you’re responsible for
managing the OS, applying patches, and handling scale manually. A best
practice is to use VMs when you need customization or isolation.

Containers



Imagine you’re working on a data pipeline that processes marketing
analytics data, and different teams are responsible for different parts of the
pipeline. One team writes the ingestion scripts in Python, and another
handles transformations using Java. Although this division of labor works
in theory, things get messy fast when all these jobs are deployed into the
same environment.

You start to run into version conflicts; some people use Python 3.9, others
use 3.10. Java libraries might clash. Dependency issues show up, and soon,
someone drops the dreaded line, “But it works on my machine.” This slows
down development and makes debugging painful, especially in fast-moving
projects.

To solve this, we use containers. A container is a lightweight, portable unit
that packages your code, its dependencies, and its runtime environment into
a single executable unit. Each stage of the pipeline is containerized. What
this means is that every team packages their code, dependencies, and
environment. These containers are like sealed boxes: they include
everything needed to run the job and behave the same way whether they’re
running on a developer’s laptop or in a cloud production environment.

Networking
In traditional infrastructure, networks consist of routers, switches, and
physical cables that connect machines. In the cloud, we use virtual
networks, software-defined systems that mimic those physical networks. A
network is a collection of connected devices like servers, databases, or
containers that can communicate with each other. It allows different
services you create to talk to each other securely and efficiently. If a
network isn’t set up correctly, your pipeline might fail to move data,
connect to databases, or even start at all.

As a data engineer, learning networking fundamentals is essential because
modern data systems are highly distributed and cloud-based. Here are a few
ways a good networking knowledge can be helpful:

In data movement, you would work with data that flows between
multiple sources, processing tools, and storage. So understanding
network latency and protocols helps you build efficient pipelines.



Networking knowledge is key to securing your data. You’ll need to
configure VPCs, subnets, and access rules to control how services talk
to each other, especially in the cloud.

When your pipeline fails or slows down, networking is often the
bottleneck. Knowing how to check connectivity or port blocks can
save hours of debugging.

Tools like Airflow, Spark clusters, and Kafka often run across multiple
nodes in the cloud. You’ll need to understand how these services
discover and communicate with each other over internal IPs.

Let’s explore key networking concepts through the lens of data movement
to help you understand how it fits into your day-to-day operations:

Virtual private cloud (VPC)

Subnets

IP addresses

Gateways

Virtual Private Cloud (VPC)
A virtual private cloud (VPC) is your isolated network space within a cloud
provider. It functions like a private data center that you fully control,
allowing you to define which services are allowed to communicate and how
traffic flows. For instance, you might deploy your ETL jobs, storage
systems, and databases all inside the same VPC to keep traffic private and
secure. This isolation is useful when building data pipelines, as it ensures
that components like your ingestion layer, transformation jobs, and output
targets can interact with a high security. You can configure your pipeline to
access an internal dataset without ever exposing it to the public Internet,
keeping compliance and data governance in check. As shown in Figure 12-
2, VPC ensures that your services don’t interact with the public Internet
unless explicitly allowed, which is important for protecting sensitive data.



Figure 12-2: A virtual private cloud

Subnets
Inside a virtual private cloud, which acts like your personal data center in
the cloud, you don’t just throw all your resources into one big space.
Instead, you divide that space into smaller segments called subnets, as
shown in Figure 12-3. You can think of a subnet as a room within a house.
A subnet (short for subnetwork) allows you to group related resources
together. For example, you might have, one subnet that holds your compute
resources and another subnet that holds your databases. For data engineers,
this segmentation is crucial because it helps control which parts of your
data pipeline are exposed to the Internet and which remain protected.



Figure 12-3: A subnet

There are two types of subnets:

Public subnets can access the Internet and are commonly used for
resources that need to fetch updates or interact with APIs.

Private subnets are restricted to internal communication and are ideal
for databases, data warehouses, or backend compute jobs, ensuring
sensitive data stays isolated.

For data engineers, this means your extraction or ingestion services could
run in public subnets to pull data from external APIs, whereas sensitive
storage and transformation workloads stay locked down inside private
subnets. This setup creates security boundaries and logical groupings that
reduce the risk of accidental exposure.

IP Addresses
Each resource in a VPC, whether it’s a virtual machine, a container, or a
database, has an IP address. These addresses serve as the unique identifier
that allows one service to communicate with another. There are two types of
IP addresses: private IPs, which are used for communication inside the
VPC, and public IPs, which are used to communicate with the Internet. In
your day-to-day, you will often need to configure your jobs to talk to



databases or APIs using their IP addresses. Knowing whether to use a
private or public IP is important for ensuring access and maintaining
security. Using the correct IP type is important. Your ETL jobs and data
processing clusters should typically use private IPs to connect securely
within the VPC, avoiding unnecessary exposure to the Internet. Conversely,
when your pipeline needs to pull data from an external source, you’ll
configure public IPs to allow outbound Internet access without exposing
your internal resources. A practical way to observe this is when
provisioning cloud resources, you’ll often need to reference or configure IP
addresses to establish network connectivity between multiple services.

Gateways
In a cloud environment, your virtual private cloud is like a walled city. It
keeps your infrastructure isolated and secure. But sometimes, the things
inside that city, like your data pipeline, your databases, or your
orchestration tools, need to communicate with the outside world, whether
it’s fetching code from GitHub, sending logs to a monitoring service, or
reading data from S3. That’s where gateways come in. Gateways act like
controlled doorways between your VPC and other networks. They decide
who can go out, who can come in, or whether communication stays internal
or reaches the broader Internet. In a typical data engineering workflow, your
pipelines don’t just sit still. They talk to APIs, download packages, access
external data, and interact with cloud storage and databases. If the right
gateway isn’t configured, your job will fail, not because of your logic, but
because your code couldn’t even reach what it needed. Learning how to
configure gateways correctly is critical because your pipelines often depend
on external services for data ingestion, dependency management, or
monitoring. Without proper gateway setup, your ETL jobs might fail not
due to logic errors, but because they cannot reach these essential external
resources.

Cloud Service Models
Having covered the core cloud concepts, let’s now explore cloud service
models. These models define the various ways cloud computing services
are delivered to users. They describe the layers of responsibility between



the cloud service provider and the customer. In these models, the cloud
provider offers a variety of resources, from infrastructure to fully managed
applications, and the customer chooses the level of control and
responsibility they want. These models are designed to help businesses and
individuals access computing resources in a flexible and cost-effective way
without needing to manage physical hardware or complex IT infrastructure.
In data engineering, cloud service models shape how much of the data
infrastructure you’re responsible for building and managing yourself, versus
what the cloud provider handles for you. At the core, it’s about deciding
where you want to spend your time, maintaining systems or building data
solutions.

The three primary cloud service models are:

Infrastructure as a service (IaaS)

Platform as a service (PaaS)

Software as a service (SaaS)

Infrastructure as a Service
As seen in Figure 12-4, the Infrastructure as a Service (IaaS) model
provides the foundational building blocks of cloud computing. It offers
virtualized hardware resources, like servers, storage, and networking, on a
pay-as-you-go basis. In this service model, users are responsible for
managing everything from the operating system upward, which means they
install, configure, and maintain the operating system applications, runtime,
and data. Here, you’re deeply involved in setting up environments for data
storage, processing, and scheduling. Imagine you’re building a pipeline to
process millions of product transaction records daily. In an IaaS model, you
provision virtual machines (software-based emulations of physical
computers), configure the operating system, install processing frameworks,
and manage your own job scheduler.



Figure 12-4: Cloud service models

The main advantage of IaaS is its high flexibility and control. Since you
have full access to the infrastructure, you can customize the environment to
fit specific requirements. For example, say you’re working on a batch data
pipeline that processes CSV files from multiple clients. You set up virtual
machines, choose the exact version of Python you want, install libraries like
Pandas or PySpark, and write custom scripts. However, the downside is that
you are also responsible for maintaining and updating everything, which
requires technical expertise, but this model is a good fit when you need a
tailored solution and have a capable technical team.

Platform as a Service
The platform as a service (PaaS) model sits one level above IaaS, as shown
in Figure 12-4. With the PaaS model, the cloud provider manages the
infrastructure, operating system, and runtime, leaving users to focus solely
on developing and deploying their applications. It abstracts away the
infrastructure and gives us a platform to develop, run, and manage our
applications. This is a dream for engineers who don’t want to worry about
server configurations or scaling issues and want to get apps to market fast
without dealing with infrastructure management. In platform-based models,



you focus more on designing and running data workflows. The underlying
systems, like compute, scaling, and scheduling, are already handled. In the
scenario we mentioned in IaaS, you define the logic of your ETL pipeline
using a built-in framework, and the platform handles the scheduling,
scaling, and underlying compute. You spend less time managing servers and
more time refining data transformations and ensuring quality.

A popular example of PaaS for data engineering is Google Cloud Composer
(a managed Apache Airflow service), Azure Data Factory, or AWS Glue
Studio, which allow engineers to build and schedule data workflows
without managing the underlying infrastructure. The biggest benefit of PaaS
is increased productivity. You can deploy data processing jobs using tools
like Apache Airflow or build data APIs using FastAPI, without worrying
about servers or underlying infrastructure, which makes it best suited for
startups or teams focused on rapid development. On the flip side, PaaS can
sometimes limit your control over configurations or the environment, which
might be a challenge for legacy applications. If your pipelines rely on very
specific configurations or custom dependencies, PaaS might limit your
control over the runtime environment.

Software as a Service
Software as a service (SaaS) is the most accessible and widely used model.
With Saas, the cloud provider delivers fully functional software over the
Internet, which users access through a web browser or app. Think of it as
buying a subscription to an app that solves a specific business problem.
We’re talking about ready-made, fully managed software applications. All
the underlying infrastructure, operating systems, and software updates are
handled by the provider. With SaaS models, the priority shifts almost
entirely to the data itself, defining what to extract, how to transform it, and
where to deliver it. The infrastructure is abstracted away. Your job becomes
more about ensuring correctness, speed, and efficiency in delivering
insights. You simply configure a data workflow through a web interface, set
your source, define some basic transformations, and specify where the
output should go. You don’t worry about how jobs are executed behind the
scenes. SaaS tools like Snowflake, BigQuery, or Fivetran simplify many
tasks by abstracting infrastructure, offering built-in scalability, and enabling
fast querying or integration with minimal setup.



The key strength of SaaS is its simplicity and convenience. These platforms
are ideal when you need to move quickly, ingest data from multiple sources,
or collaborate with nontechnical teams. It’s also cost-effective because most
SaaS tools follow a subscription-based model. While Saas offers a great out
of the box, it offers the least flexibility; you can’t customize the application
beyond the options the provider gives you, because the software is designed
to do a specific thing. Moreover, since your data is stored on the provider’s
servers, it raises privacy concerns, especially in industries with strict data
regulations like healthcare or finance. You may have limited visibility into
how and where your data is stored, which makes it harder to enforce
encryption standards and access control. SaaS is perfect for everyday users
and businesses looking for ready-to-use solutions that don’t require
technical intervention.

Choosing Between IaaS, PaaS, and SaaS
Choosing the right cloud service model isn’t a one-size-fits-all situation. In
Figure 12-5, we can see what you manage and what the service provider
manages under the different models. The choice depends on what the
business is trying to accomplish, the level of control needed, how
experienced the team is, and the business’s long-term goals.



Figure 12-5: Comparing IaaS, SaaS, and PaaS

Let’s look at some of the factors you must consider when you decide which
model is appropriate for your situation.

Your Organization’s Needs
The first step is to analyze your organization’s needs, especially around data
volume, velocity, processing complexity, and security requirements. In data
engineering, the decision between IaaS, PaaS, and SaaS goes beyond just
technical expertise or control; it’s about how much of the data infrastructure
you need to manage directly. If your team has technical skills in handling
large-scale data processing like building custom Spark clusters or managing
Kafka infrastructure, IaaS provides the control needed to fine-tune
performance, manage networking for secure data pipelines, and scale



storage and compute independently. It’s best suited for organizations
building bespoke data platforms from scratch.

If your priority is speeding up data pipeline development and reducing
maintenance overhead, PaaS solutions like Google Cloud Composer or
Azure Data Factory enable engineers to focus on data workflows rather than
provisioning infrastructure. This model supports mid-sized teams or
projects where data orchestration, ingestion, and transformation are key, but
the team prefers a managed environment.

For teams looking to move fast with minimal setup, SaaS tools like
Snowflake, BigQuery, or Fivetran handle most of the heavy lifting like data
storage, scaling, patching, and even parts of data transformation, making
them ideal for small teams or nontechnical users integrating data into
dashboards and business intelligence (BI) tools. However, they may fall
short if your organization needs deep customization, granular security
control, or advanced lineage tracking.

In terms of flexibility, IaaS offers full control, ideal for custom ETL jobs,
advanced monitoring, and optimizing performance at scale. PaaS offers
balance, with flexibility over logic and workflows but limitations in
infrastructure tuning. SaaS is the most rigid, optimized for ease of use but
less suited to organizations needing fine-grained control over data
architecture, transformation logic, or privacy compliance.

Cost Efficiency
Cost is a significant factor when choosing a cloud service model. IaaS may
seem cost-effective at first, but keep in mind that managing infrastructure
comes with its costs, both in terms of time and money. You’ll need to invest
in a skilled team to manage everything, and if you’re not careful, scaling
can get expensive. For data engineering teams, this means budgeting not
just for storage and compute but also for monitoring tools, cluster tuning,
and data transfer between zones or services, especially when working with
large datasets.

PaaS simplifies many aspects of management, which can lower overhead
costs. With managed services for orchestration, transformation, and pipeline
scheduling, you can reduce engineering effort, but you’ll pay for
convenience, especially when running frequent or complex data workflows.



But depending on how much you use the platform, costs can rise as your
needs grow. SaaS usually comes with predictable pricing models in the
form of subscriptions, and it’s often the most affordable option upfront,
especially for smaller businesses. For example, using a SaaS data
warehouse like Snowflake or BigQuery can help eliminate infrastructure
concerns, but pay-per-query or storage usage models mean that poorly
optimized queries or unnecessary data scans can drive up costs quickly.
However, depending on how many licenses you need, the costs can add up.

Security
IaaS offers more control over security, but you’ll be responsible for
managing the security of your virtual machines, storage, and applications.
This means you must secure your data processing environments, databases,
and storage layers yourself, ensuring data encryption, access controls, and
compliance are properly configured. If your security needs are complex and
you have the right expertise, IaaS gives you flexibility. PaaS simplifies
security, but you’ll still need to handle security at the application level. This
is often the case with managed data platforms and ETL services, where the
cloud provider secures the underlying infrastructure, but data engineers
need to secure data pipelines, manage user permissions, and enforce data
governance policies. The platform provider secures the infrastructure, but
your application’s security is still your responsibility. SaaS takes care of
security and compliance for you, which is great if you’re dealing with
sensitive data, but you have to ensure your provider meets your specific
compliance requirements. This is important for data engineers who rely on
SaaS analytics or reporting tools handling sensitive datasets. You must
validate that the provider’s compliance certifications align with your
organization’s data privacy requirements.

Scalability
At some point, your organization would need to increase or decrease its IT
resources based on demand. IaaS and PaaS are built to scale quickly. This
means being able to scale data processing clusters, storage capacity, and
ETL workflows to handle growing volumes of data or spikes in query load.
But scaling infrastructure with IaaS can require more manual intervention
and careful planning to avoid bottlenecks. Data engineers using IaaS might



need to provision additional servers, optimize distributed computing
resources, or reconfigure data storage solutions to maintain pipeline
performance. PaaS handles a lot of the scaling automatically, so it’s a great
choice if you need quick and seamless scaling without worrying too much
about the infrastructure behind it, allowing data engineers to focus more on
building data transformations and analytics rather than managing compute
resources. SaaS is typically easy to scale for user numbers or features, but
it’s not as customizable when it comes to optimizing performance for your
specific needs. This means SaaS tools may be suitable for scaling
dashboards or reporting usage quickly, but data engineers may find them
limiting if they need fine-tuned control over data processing performance or
complex pipeline customization.

Time to Deploy
The faster you can deploy a solution, the sooner you can start benefiting
from it. Time to deploy refers to how long it takes to set up, configure, and
implement a cloud solution before it’s ready for use. IaaS will take more
time to set up and configure. This means setting up servers and installing
and configuring data processing frameworks, databases, and security
settings, all of which can extend deployment timelines for data pipelines or
analytics environments. You need to prepare the environment and configure
everything, which can slow down deployment. PaaS is quicker to set up,
especially if you just need a platform to develop your applications. This
allows data engineering teams to rapidly deploy managed data warehouses,
ETL tools, or streaming platforms with minimal configuration. Much of the
environment is already preconfigured for you. SaaS is the fastest. Since
everything’s ready to go, you can implement the solution right away and
start using it. This is especially useful for data engineers who want to
quickly spin up analytics dashboards without worrying about infrastructure
setup.

Integration with Existing Systems
Many organizations already have legacy systems in place, and making sure
your cloud solution works smoothly with these systems helps everything
run without any issues. If you have existing legacy systems or specific
requirements, IaaS may be the best choice. IaaS allows you to customize



and configure your infrastructure to connect legacy databases, on-premises
data warehouses, or custom data sources, enabling seamless data ingestion
and processing across hybrid environments. You can integrate your
infrastructure as needed and ensure it fits with your current systems. PaaS
might require more effort for integration, especially if the platform doesn’t
support some of your legacy systems. This can mean data engineers must
find work-arounds to connect managed data services with older systems,
which can add complexity to pipeline development. SaaS is easiest to
integrate if it fits into your workflow. But if it doesn’t, integration could be
challenging. Data engineers relying on SaaS analytics or ETL tools benefit
from quick setup when SaaS aligns with existing workflows, but they may
struggle if the SaaS lacks connectors or APIs for legacy data sources,
limiting data accessibility or requiring additional integration layers.

Long-Term Strategy
Lastly, organizations need flexibility to grow and innovate. Picking a cloud
solution that doesn’t align with your long-term goals prevents you from
scaling, customizing, or adapting as your business changes. A long-term
strategy defines how well a cloud solution can adapt and grow with your
organization’s evolving needs over time. If you plan to build custom
applications, scale infrastructure, or pivot your tech stack, IaaS and PaaS
are better suited. For data engineering teams, this means choosing platforms
that can handle growing data volumes, evolving pipeline complexity, and
new analytics requirements without forcing costly migrations or redesigns.
SaaS is perfect for short-term or specific business needs but may require
switching to a more customizable solution if your requirements grow. Data
engineers might initially use SaaS BI or data integration tools for quick
wins but may later need to migrate to PaaS or IaaS solutions for greater
control over data workflows, performance tuning, and compliance.

A Hybrid Approach
Ultimately, it’s all about what works best for your team, your current needs,
and where you want to be in the future. It’s not always an either-or choice;
you could use a combination of all three, depending on what different parts
of your organization require. In many real-world scenarios, organizations
use a mix of all three models because each model provides different levels



of abstraction and control. Data engineering often leverages a hybrid
approach, using IaaS for custom data infrastructure, PaaS for managed data
platforms, and SaaS for analytics and visualization, to balance agility,
control, and speed across their data ecosystem.

Cloud Management Models
While cloud service models define what kind of service the provider
delivers, cloud management models define the level of operational
responsibility shared between the user and the cloud provider. This
relationship varies across the three main service models, IaaS, PaaS, and
SaaS, with increasing levels of management responsibility handled by the
provider as you move from IaaS to SaaS. In other words, the chosen service
model directly influences the management model, determining how much
control the user retains versus how much operational burden the cloud
provider assumes. As organizations adopt cloud services, one of the key
decisions they face is how much control they want over their infrastructure
versus how much responsibility they’re willing to offload to the cloud
provider. These models, which offer flexibility based on business needs,
technical skillsets, and scalability goals, are as follows:

Serverless

Managed

Self-managed

Serverless
Serverless represents an architecture where cloud providers manage all the
infrastructure, like servers, so you don’t have to worry about any of it. The
concept is simple: You write functions or small pieces of code that are
executed in response to specific events, and the cloud automatically handles
the rest.

Let’s say you’re building a system where data is continuously flowing, and
maybe users are uploading files or new records and they are being added to
a database. In such cases, a serverless model works like a charm. For data
engineers, this means you can build event-driven data pipelines that



automatically process incoming data without managing or provisioning
servers, which simplifies scaling and reduces operational overhead. Every
time a file is uploaded, it triggers a serverless function to process that file,
maybe converting it into a different format or extracting some data from it.
The beauty of this is that you don’t need to have a server running 24/7,
waiting for someone to upload a file. You just let the serverless function fire
up automatically when that event happens, and it processes the task quickly;
this makes it event-driven.

Another good scenario is when you have small, stateless tasks, meaning the
task doesn’t need to remember anything between executions. For example,
suppose you have a function that checks whether new records in a database
meet certain criteria, and, if they do, sends an email notification. This task
is fast and doesn’t require any complex database state to be stored.
Serverless is perfect for that; you just write the logic, and the platform takes
care of everything else. In data engineering, this enables lightweight
transformations, validations, or alerts within pipelines, allowing you to
build scalable and cost-efficient workflows that respond immediately to
data changes or anomalies.

Challenges with Serverless
The serverless model does have some challenges:

Cold Start Latency One of the big downsides of serverless is the
cold start problem. If a function hasn’t been triggered for a while, it
can take a few seconds to warm up when it’s called again, adding an
unnecessary delay. For data engineering workloads that require near-
real-time processing or low-latency responses, cold starts can
introduce unwanted delays in event-driven data pipelines, and this may
also impact the freshness of data insights.

Limited Execution Time Serverless functions often have time limits
on how long they can run. If you need to process a huge file or run a
long-running task, serverless might not be the best fit because your
function could time out before finishing. Large-scale ETL jobs or
complex batch data transformations often exceed typical serverless
time limits, so data engineers may need to rely on other compute



options like containerized jobs or managed clusters for those
workloads.

Complex Debugging Since you don’t have direct access to the
underlying infrastructure, debugging can be tricky. If something goes
wrong, you might have to rely on logs and error messages from the
cloud provider, and sometimes, that’s not enough to get to the root
cause. It can be harder to troubleshoot compared to self-managed
setups where you have full control. This lack of control can complicate
diagnosing data pipeline failures or performance bottlenecks, making
observability tools, detailed logging, and monitoring even more critical
in serverless data architectures.

Managed
A managed service is when the cloud provider takes care of most of the
heavy lifting for data processing, including infrastructure management,
scaling, and sometimes even optimization, and you have access to a range
of high-level tools and features for managing your data pipeline. For
example, cloud providers give you services where you don’t need to
manage the underlying database hardware or the infrastructure; it’s
managed for you, but you get full access to the system’s features. This is
common in managed data warehouses like BigQuery or Snowflake where
data engineers can run complex queries and transform data without
worrying about tuning servers or storage. Another example is opting for a
fully managed ETL service and not having to worry about server
configurations or Apache Airflow upgrades. Most managed services come
with built-in redundancy. This means they’re designed to stay up and
running even if something goes wrong, whether it’s hardware failure or
network issues. There are automatic failover mechanisms that make sure
your system is always available, which is super important for data pipelines
that need to run without interruptions.

Challenges with Managed Services
The managed model has some challenges:

Less Flexibility Managed services are great for standard use cases,
but they can be a bit restrictive. If your workload requires custom



configurations or very specific needs, you might feel limited by the
provider’s available options. This means certain complex or highly
customized data transformations, pipeline orchestration, or
performance tuning might not be possible with managed services,
requiring workarounds or hybrid solutions that combine managed and
self-managed components.

Vendor Lock-In Another thing to consider is vendor lock-in. Once
you’re deep into a managed service’s ecosystem, migrating away from
it can be challenging. For example, if you’re using one cloud platform,
moving your data to another platform could require significant effort,
both in terms of data migration and learning the new platform’s quirks.
Data engineering teams face risks here, especially with proprietary
data formats, APIs, or orchestration tools that tie your pipelines to one
cloud provider, making future transitions expensive and time-
consuming. This is why designing systems with interoperability in
mind is important.

Self-Managed
Self-managed services allows you to take full control over your
infrastructure. By using IaaS, you can rent virtual machines from the cloud
provider and build out your clusters. While cloud platforms can simplify
provisioning, you’re still responsible for handling everything else, from OS
patches to scaling and troubleshooting. Examples of self-managed services
include running Apache Hadoop or Apache Spark on virtual machines. For
data engineers, self-managed infrastructure offers the flexibility to
customize every aspect of the data processing environment, from tuning
cluster configurations to installing specific versions of tools and libraries,
which is essential when dealing with complex, performance-sensitive data
workloads or legacy systems.

Let’s say you have very specific requirements for how you process data;
maybe your algorithm requires a custom setup that isn’t available in
managed services, or you’re working on a pipeline where you need precise
control over the specific software versions and tools installed on your
system. In this case, self-managed infrastructure is ideal because you can
install, configure, and manage everything in a way that perfectly suits your



needs. This level of control enables advanced data engineering tasks such as
deploying custom ML pipelines to be possible.

Challenges with Self-Managed Models
Challenges with self-managed models include the following:

High Maintenance With self-managed solutions, you’re responsible
for maintenance. This includes tasks like applying updates and
patches, and troubleshooting issues when something goes wrong. It
can take up a lot of your team’s time. This means that data engineers
would spend considerable effort on infrastructure upkeep instead of
focusing on building and optimizing data pipelines.

Scalability Issues Scaling your infrastructure is your responsibility.
Unlike managed services that automatically scale to meet demand,
with self-managed systems, you need to plan for scaling, which means
setting up the right architecture upfront. If you don’t design it well,
scaling to handle a large volume of data can become a nightmare,
especially if you’re working with unpredictable growth. This adds
complexity to data engineering workflows, especially for big data
projects, where unexpected spikes in data volume require rapid scaling
to maintain performance and avoid pipeline failures.

Putting It All Together
In summary, an organization can use a combination of serverless, managed,
and self-managed models within the same data processing architecture. It
helps them leverage a hybrid approach to take advantage of the strengths of
each model in different parts of their data pipeline.

Cost Optimization
One of the most important yet often overlooked skill is understanding how
to design cost-efficient systems in the cloud. When you’re running
pipelines, storing massive datasets, or processing workloads at scale, the
cost can add up quickly. And trust me, in most organizations, once your
data team starts spending, finance will come knocking. That’s why you



need to go beyond building systems that work—you need to build systems
that scale responsibly.

Cost optimization means thinking strategically about how you run
workloads, when you run them, what resources you use, and how data is
stored. Every design decision you make, from choosing a VM type to
setting a data retention policy, has a dollar impact. This section discusses
various strategies you can use to optimize cost on the cloud.

Understanding Cloud Pricing Models
To manage costs, you have to understand how you’re being charged. Most
cloud platforms follow similar pricing principles; you’re billed based on
compute time, storage used, data transfer, and API calls. For compute,
you’re typically charged per second or minute based on the type of instance
and resources (CPU, memory, GPU) you allocate. For storage, the cost
depends on volume, tier (hot/cold/archive), and access frequency. There are
three main pricing models you’ll run into when working with cloud
computing, and each one has its advantages depending on the type of
workload you’re running:

On-Demand Instances This is the most flexible option. You spin up
resources whenever you need them, pay per second or per hour, and
shut them down when you’re done. There is no long-term commitment
or upfront costs. We usually use on-demand for things like testing,
development, or one-off jobs. The downside is, it gets expensive fast if
you’re running long, consistent workloads this way. You can use on-
demand instances for experimental pipelines, quick data validation
jobs, or testing new transformations.

Reserved Instances After running experiments, you can predict the
amount of compute you need long term. Especially for a core service
that runs 24/7, it’s smarter to go with reserved instances. Here, you
commit to using a particular instance type for one or three years, and
in return, the cloud provider gives you a big discount. Production data
pipelines or ETL jobs that process data regularly are candidates for
reserved instances because they help to control ongoing costs.



Spot Instances  Cloud providers often have leftover compute
capacity that nobody’s using. They’ll sell it to you at a cheaper rate,
but the catch is, they can take it back at any time. They’re great for
workloads that can handle interruptions, like large-scale data
processing or Spark jobs. If a job gets killed midway, it must be able to
checkpoint, retry, or pick up from where it left off. We typically use
this model for noncritical batch jobs that can run when resources are
available, so you can design batch processing jobs to leverage spot
instances for cost savings while ensuring fault tolerance.

The best practice is to match your workload type with the right
pricing model or mix them. Use on-demand for development,
reserved instances for production pipelines, and spot instances for
batch or parallel jobs that can handle interruptions.

Rightsizing Resources
The key is to not overdo it. If a job only needs two vCPUs, giving it eight
doesn’t make it faster; it just burns more money. I’ve seen teams spin up
huge machines just to be safe and then wonder why the bill tripled. Instead,
use monitoring tools to see how much CPU and memory your jobs are
actually using. Then right-size your compute so it matches the need, no
more, no less. You can instrument your pipelines and clusters to track
resource utilization and adjust configurations accordingly.

Smart Job Scheduling
Not everything needs to run immediately. For non-urgent or batch jobs,
schedule them during off-peak hours like overnight or during weekends,
when spot instance pricing is cheaper. If you’re working with serverless,
design your pipeline to be event-driven so that it only runs when there’s
data to process.

Storage Optimization
Data isn’t just expensive to process; it’s also expensive to store, especially
at scale. Cloud providers offer storage tiers to help balance cost and
performance depending on how often data is accessed.



Hot storage is optimized for frequent access. Active datasets, like real-time
logs, current analytics data, or streaming inputs, are stored here for rapid
read/write operations, whereas cold storage is much cheaper but slower to
retrieve. It is ideal for backups, archived event data, or historical records
that are not needed often. The key to managing storage cost is life cycle
policies. Most storage systems let you define rules that automatically move
data between tiers based on age or usage. For example, logs older than 30 
days could move from hot to cold storage. After 90 days, they might be
deleted or moved to an archive.

The best way to do this is to audit your storage buckets regularly. Asking
questions like, “Do we still need this in hot storage? When was it last
accessed? Is it part of a regulatory requirement?” Automation here can save
thousands of dollars annually.

Shutting Down Idle Resources
One of the easiest ways to save on cloud costs is by shutting down
resources when they’re not in use. For example, if you’re running dev or
test environments, there’s no reason they should be running overnight or on
weekends. You can automate this or write your own scripts to stop or
terminate unused instances. Also, don’t forget to clean up temporary
environments after demos or testing; those forgotten resources can quietly
run up a big bill. The goal is to treat cloud infrastructure like a utility; turn it
off when you’re not using it. This also applies directly to data engineering
clusters, interactive query engines, and test data environments.

Use Serverless Where Possible
Another cost-efficient strategy is to leverage serverless computing for
lightweight tasks or workloads that don’t require full-time infrastructure.
Some dedicated tools let you run code without provisioning or managing
servers, and you only pay for the actual execution time. It’s perfect for
things like event-driven functions, scheduled jobs, or lightweight APIs.
Plus, it scales automatically, so you don’t pay for idle time or over-
provision for peak loads. Data engineers can use serverless architectures for
small transformation functions or alerting mechanisms.

Monitoring and Alerting



As you start working with cloud infrastructure, one of the most important
habits to build is monitoring proactively. A good starting point is setting
budgets and alerts to give you early warnings before things get out of hand.
Make it a routine to track daily usage patterns so you can quickly identify
anomalies, like a sudden spike in compute or storage that might indicate an
error or misconfiguration. Don’t just rely on intuition; use visibility tools to
get a clear, detailed picture of where your money is going.

Summary
The cloud refers to a network of remote servers on the Internet that
store, manage, and process data. Cloud computing refers to the on-
demand delivery of IT resources and services over the Internet.

An on-premises setup is where data infrastructure is managed on
physical hardware that resides within your organization’s premises. A
cloud-based setup involves using cloud service providers to host and
manage your data infrastructure.

Cloud service models refer to the different ways cloud computing
services are delivered to users. They are infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a service (SaaS).

IaaS provides virtualized infrastructure like servers and storage, PaaS
offers a platform to develop and deploy data pipelines, and SaaS
delivers ready-to-use data solutions over the Internet.

There are multiple criteria for choosing which model to use, such as
your organization’s needs, cost, scalability, time to deploy, interaction
with existing systems, and long-term strategy.

The cloud offers three ways to manage cloud services: self-managed,
where you manage everything; managed, where the provider handles
infrastructure; and serverless, where you focus only on code while the
provider manages scaling and infrastructure automatically.

Cloud computing is built on three major blocks; storage, compute, and
networking. Storage handles data persistence, compute powers
processing and workloads, and networking connects resources and
enables data transfer across systems.



There are three primary types of cloud storage. Block storage splits
data into fixed-size blocks for fast access, file storage organizes data in
a hierarchy like traditional folders, and object storage stores data as
objects with metadata, ideal for unstructured data and scalability.

A compute service is a part of cloud computing that provides the
processing power needed to run applications, perform calculations, and
handle workloads. In data engineering, compute services power batch
processing jobs, real-time data flows, and analytics workloads.

Virtual machines are cloud-hosted computers that you can spin up on
demand. They’re useful when you need full control over the
environment, like for custom Spark jobs or running database clusters.

A container is a lightweight, portable unit that packages your code, its
dependencies, and its runtime environment into a single executable
unit. They’re ideal for deploying reproducible, modular data services
and pipelines.

In cloud networking, VPCs provide isolated network environments,
subnets segment the VPC into smaller networks, IP addresses identify
devices, and gateways enable communication between different
networks or the Internet.

Data engineers must often configure IP addresses and VPC’s to secure
pipelines and ensure systems can access each other efficiently and
securely.

Best practices for optimizing cost on the cloud is understanding cloud
pricing models, rightsizing resources, using serverless where possible,
shutting down idle resources, and effectively monitoring and managing
resources.



CHAPTER 13
Building a Career in Data Engineering
Congratulations! You’re almost done with the book, and now you’re ready
to embark on the most exciting part of your journey, which is launching
your career as a data engineer. With all the technical skills you’ve learned,
the path to landing your first job can be overwhelming. This chapter is
designed to help you transition from learning to doing. It will guide you
through the process of positioning yourself for success in data engineering
interviews and understanding what companies are looking for.

BY THE END OF THIS CHAPTER, YOU’LL BE EQUIPPED
WITH THE FOLLOWING KNOWLEDGE:

The different types of data engineering roles available, and which one
aligns best with your skills and interests

How to ace a data engineering interview, from technical assessments to
behavioral questions

A typical data engineering job description and how to identify patterns

Data engineering project recommendations to improve your portfolio

Tips for optimizing your résumé to stand out and increase your
chances of landing interviews

How to think like a data engineer and tackle problems from a problem-
solving perspective

With this, you’ll be ready to step into the job market with confidence and
make your first big leap toward becoming a successful data engineer.

Types of Data Engineering Roles
If you’ve ever searched for data engineering jobs online, you’ve probably
seen different job titles that all sound similar but seem to ask for very
different skill sets. One role might emphasize the knowledge of cloud



infrastructure. Another might want you to be fluent in SQL and build
dashboards or machine learning (ML) pipelines.

In practice, data engineering has evolved into multiple specialized
subfields, each shaped by the kind of data a company works with, its stage
of growth, and its technical priorities. So while two job descriptions might
both say Data Engineer, what they actually need can range from building
infrastructure and pipelines to preparing data for ML or supporting AI-
powered apps. We’ll break down the three major flavors of data engineering
roles you’re likely to encounter and walk you through what each role
focuses on, what their daily work looks like, the kinds of tools they use, and
where they tend to sit in the data ecosystem.

Types of Data Engineers
Among the different specialties of data engineers, I’ll group them into three
categories, as seen in Figure 13-1:

Platform data engineer

Analytics data engineer

AI/ML data engineer

Platform Data Engineer
This role is all about building the foundation. It’s more focused on making
sure the data systems are scalable, reliable, and performant. If you enjoy
DevOps or cloud architecture, you’ll probably feel right at home here.
You’ll be designing data platforms, setting up distributed systems like
Hadoop or Spark clusters, configuring cloud services, and managing
orchestration tools. In this role, you’ll seldom work with SQL or
dashboards. Instead, your focus will be on making sure everything behind
the scenes operates smoothly, securely, and at scale.



Figure 13-1: Data engineering roles

As a platform or infrastructure data engineer, you will:

Design, build, and maintain data infrastructure and platforms

Develop frameworks and automation for the ingestion, processing, and
storage of large-scale datasets

Implement data governance, security, and monitoring of best practices
across pipelines and storage layers

Continuously optimize platform performance, scalability, and cost-
efficiency

Key skills include the following:

Strong experience with distributed data systems

Infrastructure as code (IaC) tools

Deep understanding of cloud platforms and their data services

Expertise in building scalable storage and compute systems

Knowledge of observability tools for monitoring and alerting



Analytics Data Engineer
This is probably the most well-known type of data engineer, and what most
people imagine when they hear the term. The focus here is on building data
pipelines, cleaning raw data, transforming it into structured formats, and
making it ready for analysts or dashboards. If you’re someone who loves
SQL and enjoys digging into messy data and collaborating with data
analysts or BI teams, this is your zone.

For instance, the marketing team in your organization might want to
understand user churn. In this role, you’ll be tasked with building a pipeline
that extracts user logs from a database, transforms that data, and calculates
metrics like session duration or last active time. This role is all about
making data useful and accessible to decision-makers. It also requires the
most collaboration with downstream teams.

As an analytics data engineer, you will:

Build and maintain ETL/ELT pipelines to support reporting,
dashboards, and business analytics

Develop complex SQL queries and transformations to organize and
prepare data for analysis

Integrate data from multiple internal and external sources into
centralized systems

Ensure data quality, deduplication, and consistency across analytical
datasets

Collaborate closely with analysts, business intelligence teams, and
stakeholders to understand reporting needs and deliver accurate,
trusted data

Key skills include the following:

Strong SQL expertise for building analytical datasets

Experience with ETL tools and frameworks

Familiarity with data modeling and data warehousing concepts

Knowledge of orchestration tools for managing ETL workflows



AI/ML Data Engineers
An AI/ML data engineer combines data engineering principles with AI
expertise to build, manage, and maintain robust data pipelines specifically
for AI and ML models. This infrastructure powers large language models,
chatbots, recommendation engines, and generative AI tools. While a
traditional data engineer might focus on analytics or reports, an AI data
engineer focuses on feeding clean, structured, and relevant data into AI
models and ensuring those models run smoothly in production.

As an AI/ML data engineer, you will:

Build and maintain infrastructure that can store and process the
petabytes of data needed to power models

Design, build, and maintain ETL/ELT pipelines for AI-driven data
workflows

Integrate data from multiple structured and unstructured sources,
including APIS and third-party platforms

Ensure data quality, deduplication, and consistency across datasets
powering AI systems

Key skills include the following:

Strong proficiency in SQL for data extraction, transformation, and
analysis

Experience with data processing tools like Spark

Experience in filtering and processing datasets for training multimodal
data

Expertise in API integration and building custom connectors to ingest
diverse datasets

An Organization’s Structure
While we’ve explored these data engineering roles separately, the reality in
most organizations is that the lines between them are not always so clear-
cut. Depending on the company size, industry, and maturity of the data



function, you might see these roles exist as distinct positions on separate
teams, or they might be merged into a single, hybrid role with overlapping
responsibilities. For instance:

In a startup, one data engineer might handle everything from building
a data warehouse, designing pipelines, enabling analytics, and even
deploying machine learning models into production.

In a large tech company, there might be separate teams specializing
deeply in their lane.

In consulting or product-facing roles, engineers are expected to adapt
quickly and move across domains depending on the needs of the
project or client.

These titles may differ, but the core skill set is rooted in the same
foundations. As the field evolves, companies are always seeking engineers
who can move across these domains, understand the end-to-end data
journey.

Landing Your First Data Engineering Role
We’ve discussed different types of data engineering roles and how to
identify them. Now, it’s time to get practical about landing your first job. In
this section, you’ll learn what a typical data engineering job description
looks like, the anatomy of a data engineering interview, and additionally,
how to position yourself effectively on your résumé.

A Typical Data Engineering Job Description
The following sidebar shows a sample job description. Learning how to
analyze a job description, not just at face value, but with a critical eye, is an
important skill. You’ll start identifying patterns like which skills are truly
essential, which ones are nice-to-have, and which responsibilities you
should be prepared to talk about. This allows you to prepare smarter and
avoid wasting time on areas that don’t matter as much for the roles you’re
targeting. Also, recognizing these expectations early will help you better
prepare for the realities of the role and stand out during interviews.



A SAMPLE JOB DESCRIPTION
Job Overview
We are seeking a talented and motivated data engineer to join our
dynamic team. As a data engineer, you will be responsible for
designing, building, and maintaining scalable and efficient data
pipelines that enable data-driven decision-making across the
organization. You will work closely with data scientists, analysts,
and other stakeholders to ensure seamless data integration,
transformation, and availability.

Key Responsibilities

Design, develop, and maintain ETL (Extract, Transform,
Load) pipelines to support data integration from various
sources into data warehouses or data lakes.

Collaborate with cross-functional teams (data scientists,
analysts, product teams) to gather data requirements and
ensure data is available, accurate, and reliable.

Build and optimize data pipelines for batch and real-time
processing using frameworks such as Apache Spark, Apache
Kafka, or AWS Lambda.

Implement and maintain data warehouses and data lakes using
technologies like Amazon Redshift, Google BigQuery, or
Snowflake.

Skills and Qualifications

Strong proficiency in SQL and experience with relational
databases (MySQL, PostgreSQL, etc.)

Proficiency in programming languages such as Python, Java,
or Scala for data engineering tasks



Experience working with cloud platforms (AWS, Google Cloud
Platform, Microsoft Azure) and services like AWS S3, Redshift,
BigQuery, or Databricks

Solid understanding of data warehousing concepts,
dimensional modeling, and star/snowflake schemas

Knowledge of data security and governance best practices

Excellent communication skills and the ability to work in a
collaborative team environment

Why Join Us

Work in a fast-paced, innovative environment where your
ideas and contributions will have a significant impact

Collaborate with talented and motivated colleagues across
different departments

Opportunity to work on cutting-edge technologies and data
engineering challenges

Competitive salary and benefits package

It’s easy to get overwhelmed by the long list of tools and technologies
companies mention; one company might ask for Airflow, another for Azure
Data Factory, and another for AWS Glue. But here’s an important thing to
remember: Tools are just tools. They are flavors of the same fundamental
concepts. What truly matters are the foundations behind those tools.

For example, whether a company uses Apache Airflow or Azure Data
Factory, the underlying principle is the same: You’re just orchestrating and
scheduling data workflows. If you understand the concept of orchestration
and how data pipelines work, learning a new tool is just a matter of picking
up the different interface or syntax. Companies know that technology stacks
change all the time, so they prioritize candidates who can adapt, not just
candidates who know a particular tool today.

Reading job descriptions gives you clarity on the core technical skills you
need to master. For most data engineering roles, a strong foundation in



SQL, Python, cloud platforms, and building ETL pipelines is non-
negotiable. When you know what’s consistently expected, you can focus
your learning and projects around these high-impact skills, instead of trying
to learn everything at once.

Another benefit of studying job descriptions is that it helps you map your
current learning to real-world applications. It becomes easier to see how the
concepts and tools you’ve studied show up in actual job tasks. This
connection not only boosts your confidence but also helps you explain your
skills more effectively during interviews.

How to Build a Winning Résumé
Your résumé is the very first impression you make on a company,
sometimes even before they see your portfolio. You could have all the right
skills, but if your résumé doesn’t present them clearly and confidently, you
might not even get a chance to show what you can do. A poorly crafted
résumé can close doors before you even get in the room. In this section,
we’ll talk about how to position yourself on paper so that your résumé
actually works for you and not against you. A good résumé should have the
following sections.

Experience Section
In this section, you list your work experience with your most recent job
first. For each role, focus on accomplishments rather than just listing tasks.
Always quantify your impact when possible, and also focus on high-impact
roles and not just “any” role. The following sidebar shows a sample
experience section.



SAMPLE EXPERIENCE SECTION OF A
DATA ENGINEERING RÉSUMÉ
XYZ Company | Data Engineer | June 2025

Designed and implemented ETL pipelines, reducing data
processing time by 40%

Built and maintained a real-time data pipeline using Apache
Kafka and Spark, improving data flow efficiency by 25%

Optimized SQL queries for data extraction, leading to a 20%
decrease in query runtime

Skills Section
This section highlights your technical skills. It helps recruiters quickly
identify your proficiency, and so, it’s always best to categorize them. The
following sidebar shows a sample skills section.



SAMPLE SKILLS SECTION OF A DATA
ENGINEERING RÉSUMÉ
XYZ Company | Data Engineer | June 2025

Programming languages: Python, Scala, and SQL

Data warehousing: Amazon Redshift, Google BigQuery,
Snowflake

ETL tools: Apache Airflow

Big data: Apache Spark, Hadoop, Kafka

Databases: MySQL, PostgreSQL, MongoDB

Cloud platforms: AWS/Azure

Projects Section
For beginners or people with little or no work experience, including a
projects section can demonstrate your skills. When learning a new skill, one
of the best ways to solidify your knowledge is by building real projects. It’s
not enough to just learn concepts in theory; you need to show that you can
apply them to solve real-world problems. Let’s go through a list of practical
project ideas that will help you put your knowledge into action. By working
through these projects, you’ll gain hands-on experience and create concrete
examples you can showcase during interviews. To build these projects,
you’ll need access to real-world datasets. Thankfully, several platforms
offer free, high-quality datasets across a range of domains, like Kaggle,
HuggingFace, Google Datasets, and DataGov.



SAMPLE PROJECTS
Data pipeline for web scraping: Build a data pipeline that scrapes
data from websites and stores it in a database or data warehouse.
This project will help you practice web scraping, data extraction,
and storage in databases like MySQL or PostgreSQL.

ETL pipeline with data transformation: Design an ETL pipeline
that extracts data from a source, transforms it, and loads it into a
target system like a data warehouse or a cloud storage solution.

Data warehouse with star schema: Build a simple data warehouse
with a star schema for an e-commerce or retail business. You can
create tables for facts and dimensions and practice SQL queries for
reporting and analysis.

Real-time data streaming with Apache Kafka: Set up a real-time
data streaming pipeline using Apache Kafka. You can simulate real-
time sensor data or log data and stream it into a system like Apache
Spark for processing.

Log data analytics pipeline: Build a pipeline that collects log data
from an application or server; processes it for analysis, like
counting error rates; and visualize it in a dashboard.

Cloud-based data lake project: Create a simple data lake using a
cloud storage service. Ingest raw data files into different folders
(raw, processed, curated) and practice organizing and tagging.
You’ll get hands-on experience with the idea of a data lake
architecture.

Batch data processing with Apache Spark: Set up a batch data
processing workflow using Apache Spark. You can work with a
large public dataset and write Spark jobs to clean, transform, and
summarize the data. This helps you get comfortable using
distributed computing to handle big datasets.

Event-driven architecture with cloud functions: Create a simple
event-driven pipeline where a cloud function triggers when a new
file is uploaded to a bucket, processes the file, and stores the result



in a database. This project teaches you about serverless processing
and reactive systems.

Be sure to add these projects to your résumé with a clear description of the
projects, tools used, and a link to view either the architecture or the working
solution.

Education and Certifications
List your academic background, including your degree(s) and any relevant
certifications. Obtaining industry-recognized certifications also helps you
improve your credibility.

TIP Many companies use applicant tracking systems (ATSs) to
screen résumés. Ensure your résumé includes relevant keywords
from the job description. Also, avoid using excessive jargon or
nonstandard abbreviations that ATSs may not recognize.

Preparing for a Data Engineering Interview
The structure of data engineering interviews differs by the company, but the
expectations are usually the same. As shown in Figure 13-2, most data
engineering interviews are broken into a few common stages: a technical
screen, a coding or SQL assessment, a system design interview, and a
behavioral interview. Some companies may combine these steps, whereas
others may spread them across multiple rounds. Let’s look at the popular
rounds.

The Résumé Review or Recruiter Screen
This is the warm-up interview, which is usually not technical. A recruiter
wants to know if you’re worth moving forward based on two things: Do
you meet the baseline qualifications in terms of tech stack, years of
experience, or background? The recruiter also checks if you can
communicate well and articulate your journey clearly. The best way to
prepare for recruiter screens is to review your résumé, research the



company and role you’re applying to, and prepare questions to ask the
recruiter about the interview process, role, or company.

Figure 13-2: Common stages of a data engineering interview



SQL Interview
The first technical screen for data engineering roles is often a SQL
interview, and for good reason. SQL is the language of data, and companies
want to know if you can work with real-world datasets, write efficient
queries, and think logically. Doing well in a first-stage SQL interview is not
just about writing a query that works; it’s about showing clear thinking,
good habits, and understanding of best practices. In a SQL interview, you
would meet with an engineer on the team who would assess your ability to
write SQL code to solve business problems. In some cases, you might be
given a dataset that contains 2–4 separate tables. Here are some tips for
approaching the questions:

Understand the problem clearly before writing code: Read the
question carefully and reread it to be sure you understand what’s being
asked. Also, pay attention to details like whether they want a specific
aggregation or a filter condition. If you’re allowed to ask clarifying
questions, especially in live interviews, don’t be afraid to ask. It shows
thoughtfulness, not weakness.

Plan your approach out loud: Try to talk through your plan before
you start typing. This gives the interviewer insight into your thought
process and can even earn partial credit if you get stuck later.

Break down complex queries into smaller parts: If the query seems
complicated, don’t try to do everything at once. Start by writing a
simple query to select the right data. Then, add grouping or filters.
Another tip is using subqueries or common table expressions (CTEs)
to help you organize your work better and solve the problem step-by-
step.

Aim for correctness before optimization: Your first goal is to get a
correct query that answers the question. Only after that should you
start thinking about optimizations like minimizing joins or using
indexes.

Test your logic with sample inputs: Before submitting, think through
small, hypothetical data samples in your head and walk your
interviewer through the solution.



Data Modeling Interview
Data modeling interviews test whether you can design data structures that
are efficient and scalable and that make sense for the business. It’s less
about coding and more about logical thinking and communication. The goal
is to create models that can aid better decision-making that would profit the
business. Here’s a step-by-step approach you can follow to solve a data
modeling problem:

Clarify the requirements first: Always start by asking clarifying
questions, “Who will use this data?,” “How often will the data be
updated?,” “What types of queries will be run against it?”
Understanding access patterns and business goals is important because
a model that’s perfect for reporting might be wrong for real-time
querying.

Identify key entities and relationships: Break the problem down into
entities and relationships and show how they connect. The best way to
do this is to think in terms of nouns and actions—for example,
Customers place Orders for Products.

Apply normalization thoughtfully: Start by designing a normalized
model, with entities in different tables instead of repeating
information, but also mention when denormalization might be helpful
and the trade-offs.

You can get good at data modeling interviews with practice by designing
models for everyday systems, like a ride-sharing app, a music-streaming
service, or an e-commerce platform. Doing these repeatedly helps you get
more confident.

The Coding Interview
In this stage, you will be writing code with a programming language to
solve various business problems. Here, companies are trying to understand
if you can think logically and write clean and efficient code with a coding
language of your choice.

Get comfortable with data structures: Practice parsing and
manipulation on strings and arrays, and get familiar with hash maps



and dictionaries for counting and grouping. You might encounter
questions like finding duplicates in a list, grouping log entries by IP
address, or parsing a CSV to find the most frequent user.

Write clean code: Interviewers don’t just care if your code works;
they care about how easy it is to read and understand. Practice writing
clear function names, using proper indentation and making your code
modular.

The System Design Interview
In this stage, depending on the company and the expectations for the role
you’re applying for, you might be asked to design an end-to-end data
pipeline or architecture. This might happen live in the interview, or it could
be a take-home challenge. Interviewers typically want to understand several
key things:

Your understanding of the problem statement and discovery
process: Interviewers want to see if you ask the right clarifying
questions before jumping into the design. It’s important to fully
understand data volume, update frequency, latency needs, and business
goals.

The tools you would use and why: Rather than just naming tools, you
should explain why you chose a particular tool and how the tool works
behind the scenes. You should also discuss trade-offs like cost,
performance, and ease of maintenance.

How you handle failures: Good system design includes planning for
inevitable failures. You should also discuss strategies to keep the
pipeline reliable.

How do you ensure data quality and freshness? Talk about
implementing validation checks, schema enforcement, and monitoring
to make sure bad or stale data doesn’t silently break your pipeline.

How you would scale the pipeline: Interviewers want to know how
your design would handle an increase in data volume, user base, or
query load. This is where strategies like autoscaling, partitioning, and
sharding are used.



Bonus points: If you proactively mention how you would handle
monitoring, automation, and security, it shows you think like a real-
world engineer who is ready to build production-ready systems.

The Behavioral Interview
A lot of engineers focus on building technical skills but forget that soft
skills also matter. Behavioral interviews are used to assess how you work
with others, how you solve problems, and how you handle challenges, not
just your technical skills. Companies want to know if you’ll be a good
teammate and collaborator.

In a behavioral interview, you might be asked these kinds of questions:

A challenging project you’ve worked on

A time you made a mistake and how you fixed it

A time you led a project or initiative

A time you went above and beyond your regular responsibilities

An instance when you took the initiative to fix or improve something

A time you worked with a difficult teammate or cross-functional team

A situation where you had to quickly learn something new

A time you had to handle a large workload under pressure

How you prioritize tasks or handle conflicting priorities

A situation where you missed a deadline—what did you learn?

A project where you improved a system or process

To answer these questions, focus on using the STAR (Situation, Action,
Task, and Result) method. STAR keeps you organized and focused, and it
makes it easy for interviewers to follow your story and assess your impact.
Let’s explain each section:

Situation: Briefly explain the context, where you were working, and
what the project or challenge was.



Task: Explain your responsibility or what you were trying to achieve.
What was the problem you had to solve or the goal you needed to
meet?

Action: Describe the specific steps you took to address the task. Focus
on what you did, even if it was a team project, and avoid using the
word “we.”

Result: Share the outcome with your interviewer. What happened
because of your action? Try to use numbers or impact if you can.

This is a sample reply:

At my internship at XYZ Company, we were facing frequent ETL
pipeline failures during high-traffic hours. My task was to
investigate the failures and implement a solution to improve
pipeline reliability.

I analyzed log files to identify bottlenecks, optimized SQL queries,
and implemented retry mechanisms for failed jobs. After the
changes, pipeline failure rates dropped by 85%, and we were able
to handle 2× more traffic during peak hours.

Thinking Like a Data Engineer
Becoming an exceptional data engineer is not just about learning tools and
writing code—it’s about developing a mindset. Data engineers are problem-
solvers at heart. They think about how systems fit together and how to
design solutions that scale as data grows. Let’s talk about how you can
develop a mindset that will set you apart not just in interviews, but
throughout your career.

Think in Systems
Always remember that you’re not just writing a piece of code—you’re
building part of a system. A lot of people, early in their careers, focus on
making a script work for today’s problem, and that’s fine at first. But as you
grow, you have to start thinking bigger. Ask yourself, if I step away



tomorrow, can someone else pick this up? If the data doubles in volume,
will it still work? Systems thinking means designing pipelines that are
modular, resilient, and easy to monitor.

Learn to Prioritize Data Quality
In an organization, the data you move and transform will directly influence
major business decisions. If your pipeline lets bad data slip through, you’re
not just creating technical debt; you’re eroding trust. That’s why it’s
important to treat data validation by setting up schema checks, null checks,
and so forth. These shouldn’t be an afterthought; they should be core parts
of your pipeline, because it’s easier to build in data quality checks from the
beginning than to fix trust once it’s broken.

Design for Failure
No matter how perfect your design is, something will eventually fail, and
that’s normal. APIs will time out, databases will go down, and some weird
corner case will pop-up, but good engineers plan for that reality from day
one. What happens if your data source is unavailable? What if the schema
changes unexpectedly? With robust systems, always expect things to go
wrong. That means using retries, backoffs, checkpointing, and alerting. It’s
not about eliminating failure; it’s about recovering from it quickly and
gracefully.

Balance Business Context with Technical Choices
It’s easy to get excited about the newest tools, but you need to make choices
based on business needs, and you must be able to balance technical
excellence with a strong grasp of business needs. Does the marketing team
need real-time insights, or is batch good enough? Should we use a managed
warehouse or set up open source tooling ourselves? The best engineers
understand how to map technical architecture to business value. The tools
and technologies you choose must serve the organization’s goals, not just be
the latest or most complex solution. When designing a solution, always
consider both the technical feasibility and the business context, as that will
guide your decisions.

Optimize for Clarity, Then Speed



It’s tempting to dive straight into optimizing your pipeline for speed and
performance, but clarity should always come first. Your queries, pipelines,
and workflows should be understandable by the next person on your team.
Once your logic is clean and correct, then you can profile and optimize.
Premature optimization leads to brittle systems, but clear pipelines are
easier to debug, test, and scale.

Think Beyond the Tool
You need to develop a mindset of understanding the tools you’re using and
why these tools exist by learning the underlying design patterns. Tools
change, but patterns stay. Thinking like a data engineer means going
beyond syntax and into strategy. A lot of new data engineers get caught up
in learning the latest tools and frameworks. While tools are important, the
mindset of a data engineer is less about being tool-agnostic and more about
understanding the data infrastructure.

Master Automation
Data engineering is a repetitive job, and automation is key to efficiency.
Once you’ve built a pipeline or workflow, you should be thinking about
how to automate it, monitor it, and scale it. Automation isn’t just about
scheduling jobs; it’s about creating systems that run smoothly, without
needing constant human oversight. The more you automate and orchestrate,
the more reliable and scalable your data pipelines will be.

Finally, always stay curious. Data engineering is a constantly evolving
discipline, and the best engineers are the ones who never stop asking
questions or seeking better ways to solve problems.

Summary
Platform data engineers are more involved in building the foundation
and making sure the data systems are scalable, reliable, and
performant.

Analytics data engineers focus more on building data pipelines,
cleaning raw data, transforming it into structured formats, and making
it ready for analysts or dashboards.



An AI data engineer combines data engineering principles with AI
expertise to build, manage, and maintain robust data pipelines
specifically for AI and machine learning models.

To land a data engineering role, you need to learn how to study job
descriptions, build a winning résumé, and prepare well for interviews.

Adding your experience, skills, projects, and relevant certifications to
your résumé makes you stand out as a candidate.

A typical data engineering interview consists of SQL, data modeling,
coding, system design, and behavioral interviews.

The SQL interview evaluates your ability to interpret data
requirements and write effective SQL queries to meet those needs.

Data modeling interviews test whether you can design data structures
that are efficient and scalable and that make sense for the business.

The coding interview involves writing code in a programming
language to solve various business problems.

System design interviews assess how well you can architect scalable,
reliable systems from the ground up.

Behavioral interviews are used to assess how you work with others,
how you solve problems, and how you handle challenges, not just your
technical skills.

To answer behavioral questions, focus on using the STAR method.
STAR stands for Situation, Action, Task, and Result.

Becoming an exceptional data engineer is not just about learning tools
and writing code—it’s about developing a mindset. You need to think
in systems, prioritize data quality, design for failure, master
automation, and most importantly, balance business context with
technical choices.



APPENDIX
Sample Interview Questions
In this chapter, we’ll walk through sample interview questions that cover
some of the most important areas in data engineering interviews. Think of
this appendix as a set of flashcards, something you can quickly flip through
when preparing for interviews to refresh your memory and sharpen your
thinking. Use it to test yourself, spot any weak areas, and build the
confidence you need to walk into your interviews.

SQL
What is the difference between INNER JOIN, LEFT JOIN, RIGHT JOIN, and
FULL OUTER JOIN?

INNER JOIN returns rows when there’s a match in both tables. LEFT JOIN
returns all rows from the left table and matches rows from the right. RIGHT
JOIN does the opposite. FULL OUTER JOIN returns all rows from both tables,
matching where possible and filling in NULLs where there’s no match.

What are indexes, and how do they improve performance?

Indexes are special lookup tables that the database uses to speed up data
retrieval. They allow queries to find rows faster, especially in large datasets,
but can slow down inserts and updates due to maintenance overhead.

What is the difference between WHERE and HAVING clauses?

WHERE filters rows before grouping, whereas HAVING filters groups after
aggregation. Use WHERE for raw data filtering and HAVING when dealing with
GROUP BY queries.

What does GROUP BY do?

GROUP BY aggregates rows that have the same values in specified columns,
allowing you to perform aggregate functions like SUM, COUNT, or AVG on
each group.

Explain the difference between UNION and UNION ALL.



UNION combines two result sets and removes duplicates, whereas UNION ALL
includes all rows, including duplicates. UNION ALL is generally faster
since it skips the duplicate check.

What is a window function? Give an example.

Window functions perform calculations across rows related to the current
row, without collapsing them. Unlike aggregate functions (like SUM, AVG,
COUNT), which collapse rows into a single result, window functions retain
the original rows and add new information alongside them. For instance,
this query assigns a unique rank to each employee within their department
based on descending salary order.

SELECT 
  id,
  name,
  department,
  salary,
  ROW_NUMBER() OVER (PARTITION BY department ORDER BY salary 
DESC) AS rank_in_dept
FROM employees;
 

ID NAME DEPARTMENT SALARY RANK_IN_DEPT
2 Bob HR 75,000 1
5 Eve HR 70,000 2
1 Alice HR 60,000 3
4 David IT 95,000 1
6 Frank IT 80,000 2

Explain ACID properties in the context of SQL databases.

ACID stands for Atomicity, Consistency, Isolation, and Durability. They
make sure operations are completed fully, without corruption, even during
failures.

What is the difference between DELETE, TRUNCATE, and DROP?

DELETE removes specific rows and can be rolled back. TRUNCATE removes
all rows faster and resets identity, but cannot be rolled back easily. DROP
removes the entire table structure and data.



What’s the purpose of COALESCE() in SQL?

COALESCE() returns the first non-null value in a list. It’s useful for handling
NULLs gracefully, especially when selecting fallback values.

How do you handle NULLs in SQL joins?

Use IS NULL or IS NOT NULL in filters. In joins, outer joins are useful when
you expect NULLs on one side and still want to retain unmatched rows.

What is a CTE, and how is it different from a subquery?

A CTE (common table expression) is a temporary result set defined with
WITH. Unlike subqueries, CTEs are more readable and reusable, and can be
self-referenced (useful for recursion).

What’s the difference between scalar and aggregate functions?

Scalar functions return a single value per row (e.g., UPPER(), LEN()), while
aggregate functions summarize data over many rows (e.g., SUM(), AVG(),
COUNT()).

How do you optimize a slow SQL query?

You check for missing indexes, avoid selecting all rows, reduce subqueries,
use CTEs for clarity, and analyze query plans to determine performance.

What is a surrogate key, and how is it different from a natural key?

A surrogate key is a system-generated unique identifier (like an auto-
increment ID), whereas a natural key is derived from real-world data (like
email or SSN). Surrogate keys are preferred for flexibility and stability.

What is a CASE statement, and when would you use it?

The CASE statement is SQL’s version of if-else logic. It allows you to
apply conditional logic in queries, and it’s also useful for categorizing data
or customizing output based on certain rules.

What’s the difference between EXISTS and IN ?

IN checks if a value exists in a static list or subquery result set. EXISTS
checks for the presence of rows in a correlated subquery and often performs
better for large datasets, especially when checking for existence rather than
matching values.



Explain how RANK(), DENSE_RANK(), and ROW_NUMBER() differ.

All three are window functions for ranking rows. ROW_NUMBER() gives
unique sequential numbers. RANK() skips numbers for ties. DENSE_RANK()
assigns the same number to ties but doesn’t skip ranks.

What is a transaction in SQL?

A transaction is a sequence of operations performed as a single unit of
work. It ensures data integrity through BEGIN, COMMIT, and ROLLBACK, and
adheres to ACID properties for consistency.

What is a self-join, and when is it useful?

A self-join is when a table is joined to itself. It’s useful for hierarchical
relationships, like finding manager–employee pairs or comparing rows
within the same table (e.g., finding people in the same department).

What is a data type mismatch, and how do you avoid it?

A data type mismatch occurs when columns being compared or operated on
have incompatible types. You avoid it by ensuring consistent data types or
using CAST() and CONVERT() functions to align them.

Data Modeling
What are the types of data models?

There are three types: conceptual, which outlines high-level business
entities; logical, which defines structure and relationships; and physical,
which implements the model in a particular database.

What is an entity?

An entity is a real-world object or concept represented in a data model. For
example, a Customer or an Order is an entity in a sales database.

What is an attribute?

Attributes are properties that describe an entity. For example, a Customer
entity may have attributes like Name, Email, and PhoneNumber.

What is normalization? Why is it important?



Normalization is the process of organizing data to reduce redundancy and
improve integrity. It involves breaking a database into smaller, related
tables. It helps ensure consistency, reduces update anomalies, and makes
queries more efficient.

What is a primary key and a foreign key?

A primary key uniquely identifies each row in a table. A foreign key is a
field that links one table to the primary key of another, enabling relational
integrity between tables.

What is denormalization?

Denormalization is the process of combining tables to reduce joins and
improve query performance, often at the cost of some redundancy.

What are the different types of relationships in data modeling?

The common types are one-to-one, one-to-many, and many-to-many
relationships between entities.

What is referential integrity?

Referential integrity ensures that foreign keys accurately and consistently
reference primary keys in related tables.

What is a star schema?

A star schema has a central fact table connected to dimension tables. It’s
simple and optimized for read-heavy analytical queries.

What is a snowflake schema?

A snowflake schema is a normalized form of a star schema where
dimension tables are further split into subdimensions.

What are fact and dimension tables?

Fact tables store measurable data, whereas dimension tables store
descriptive attributes.

When would you choose a star schema over a snowflake schema?

Choose a star schema when simplicity and performance are more important
than storage efficiency; it requires fewer joins.

What is a slowly changing dimension (SCD)?



SCD tracks changes in dimension data over time. Type 1 overwrites data,
Type 2 keeps history, and Type 3 stores a limited change history using a
flag.

What is a surrogate key?

A surrogate key is a system-generated key used as a primary key instead of
a natural key to simplify joins and indexing.

What are the advantages of using surrogate keys?

They reduce data size and simplify updates since they remain static even if
natural keys change.

What is dimensional modeling?

Dimensional modeling is a design technique for data warehouses focused
on ease of querying, usually involving facts and dimensions.

How do you decide between normalized and denormalized models?

Normalized models are used for transaction databases, and denormalized
models are used for analytics systems to optimize performance based on use
case.

What is a data mart?

A data mart is a subset of a data warehouse designed for a specific
department or use case, typically modeled using a star schema.

What is cardinality in data modeling?

Cardinality defines the numerical relationship between entities. It affects
how tables are joined.

What is a composite key?

A composite key is a primary key made of two or more columns used
together to uniquely identify a row.

Data Pipelines
What are the key components of an ETL pipeline?



The three main components are extract (pulling data from various sources),
transform (cleaning and converting data) and load (writing data into a
storage or analytics system).

What is the difference between ETL and ELT?

In ETL, transformation happens before loading into the destination. In ELT,
raw data is loaded first, and transformation happens within the destination
system, typically used in modern cloud-based systems.

How do you handle data quality in ETL pipelines?

By applying validations during transformation, like null checks and type
checks, using logging for failed records, and alerting systems for anomalies.

How do you manage schema changes in ETL?

By using schema versioning to track and manage changes to a database or
data structure over time

What are DAGs?

DAGs (directed acyclic graphs) represent the workflow of tasks, where
each node is a task and edges represent dependencies.

How do you monitor ETL jobs?

Through logging, alerting systems, dashboards, or tools

How do you ensure idempotency in ETL jobs?

By designing ETL steps so that rerunning them does not produce
duplicates. This can be done by using UPSERTs, deduplication logic, or
versioning. For example, if a pipeline loads yesterday’s sales data into a
warehouse, an idempotent process ensures that even if the load runs twice
by mistake, the sales numbers don’t double and they stay correct.

What is the difference between batch and streaming ETL?

Batch ETL processes data in chunks at intervals, whereas streaming ETL
processes data in near real time as it arrives.

What is a watermark in streaming pipelines?

A watermark tracks the progress of event time in streaming data and helps
handle late-arriving data appropriately.



How would you load large volumes of data efficiently?

By using partitioning, parallel processing, and compression techniques to
reduce I/O and improve speed.

How do you handle duplicate records in ETL?

By using deduplication logic during transformation, based on primary keys,
timestamps, or unique constraints.

What’s the difference between full load and incremental load?

Full load replaces the entire dataset each time, whereas incremental load
only updates the changes (new or modified data).

How do you implement incremental loading?

By using techniques like change data capture (CDC), timestamps, or
version columns.

What is CDC (change data capture)?

CDC is a method of capturing only the data that has changed in the source
since the last load, reducing ETL time and load.

What is data lineage, and why is it important?

Data lineage traces the flow of data from source to destination, helping in
debugging, impact analysis, and auditing.

How do you handle failed ETL jobs?

By implementing retry logic, capturing failure logs, and setting up alerts for
monitoring.

What is data partitioning, and why is it useful?

Partitioning splits data into segments (like by date or region) to improve
query performance and parallelism during processing.

How do you ensure pipeline scalability?

By using distributed processing frameworks like Spark and designing
modular pipelines

What is backfilling in ETL pipelines?



Backfilling refers to reprocessing or loading historical data into the system,
typically after a bug fix or schema update.

Apache Spark
How is Spark different from Hadoop MapReduce?

Spark processes data in memory, making it faster than MapReduce, which
writes data to disk between each stage. Spark is also easier to develop and
supports iterative algorithms better.

What is an RDD?

An RDD (resilient distributed dataset) is the fundamental data structure in
Spark representing an immutable, distributed collection of objects that can
be processed in parallel.

What is the difference between RDD, DataFrame, and dataset?

RDD is low-level and offers full control, a DataFrame is a distributed
collection of data organized into named columns, and a dataset combines
RDD and DataFrame features, adding type safety.

What is lazy evaluation in Spark?

Spark doesn’t execute transformations immediately. It waits until an action
(like collect or count) is called, allowing for optimized execution planning.

What are transformations and actions in Spark?

Transformations (like map, filter) define a new RDD/DataFrame, whereas
actions (like collect, count) trigger the execution of the transformations.

What is a SparkSession?

A SparkSession is the unified entry point to Spark functionality.

How does Spark achieve fault tolerance?

Through lineage and RDDS. If a partition is lost, Spark recomputes it using
the transformation history from the original data.

What are partitions in Spark?



Partitions are chunks of data distributed across the cluster for parallel
processing. More partitions usually mean better parallelism.

What is a wide transformation in Spark?

Wide transformations (like groupByKey, join) require shuffling data across
the cluster and are more expensive than narrow transformations.

What is a shuffle operation in Spark?

Shuffling is the process of redistributing data across partitions, often caused
by wide transformations, but the process is expensive.

How do you optimize Spark jobs?

By using techniques like caching, avoiding shuffles, choosing appropriate
joins, broadcasting small tables, and tuning parallelism.

What is Spark SQL?

Spark SQL lets you execute SQL queries on structured data using
DataFrames or datasets.

What are accumulators in Spark?

Accumulators are variables used for aggregating information (e.g., counters
or sums) across tasks and are only readable by the driver.

How does caching work in Spark?

You can use cache() or persist() to store intermediate results in memory
to avoid recomputation and improve performance for iterative tasks.

What is Spark Streaming?

Spark Streaming is a component of Spark that enables processing of real-
time data streams using micro-batches.

What is coalesce vs. repartition in Spark?

Coalesce reduces partitions without shuffle, whereas repartition increases or
redistributes partitions with shuffle.

System Design
How would you design a batch processing system?



When designing a batch processing system where data arrives in bulk (daily
or hourly), I would use a scheduler such as Apache Airflow to trigger
processing jobs at set intervals. These jobs would read input data from
sources like files or databases, perform necessary transformations such as
aggregation and cleaning, leverage Apache Spark for distributed
processing, and then store the output in a data warehouse or data lake.

How do you handle failures in a data pipeline?

To handle failures in data pipelines, I would implement retries. I’d also use
checkpoints or save intermediate states, especially for streaming pipelines,
so that processes can resume from the last known good point. As
monitoring and alerting are important, I’ll integrate notifications via email
to inform teams of failures. Additionally, orchestration tools like Airflow
help manage dependencies and failure handling systematically.

What is data partitioning, and why is it important?

Data partitioning involves splitting large datasets into smaller, more
manageable parts based on keys like date or region. This is important
because it significantly speeds up query performance by limiting data scans
to relevant partitions.

How would you design a simple data warehouse for an e-commerce
company?

A data warehouse design for an e-commerce company would include fact
tables such as Orders, Transactions, and Website Visits, paired with
dimension tables like Customers, Products, Time, and Location. I would use
a star schema for simplicity and maintainability. Data would be loaded daily
from operational databases via batch processes, and analytics would be
performed through SQL queries to generate reports and dashboards for
business insights.

How would you design a data pipeline for real-time fraud detection?

For real-time fraud detection, I would ingest transactional events using a
messaging system like Kafka. Processing would be done with stream
processors such as Apache Flink or Spark Structured Streaming to apply
fraud detection rules and anomaly checks. Real-time feature stores can
enrich events with historical user behavior. The flagged transactions are
then sent to alert topics, and all data is archived for audits. Key



considerations here would include minimizing latency, ensuring data quality
through schema validation, and implementing fault tolerance with
checkpoints and monitoring.

How would you scale a warehouse for analytics across departments?

I would scale a data warehouse for analytics across departments by
organizing data into data marts using star or snowflake schemas. For
scalability, cloud warehouses offer elastic scaling, allowing separate
compute clusters per department to prevent query interference. Data
governance would be enforced with role-based access control.

How would you handle production ETL failures?

I would handle this by enforcing schema validations and designing my
pipelines to be modular. For detection, orchestration tools like Airflow
manage retries and send alerts on failures. When failures occur, I would
triage by reviewing logs to identify the failing step, then roll back or patch
as needed. Backfill jobs would also be used to recover missed data windows
safely.

How would you design a data pipeline to ingest and process streaming
data?

I’d use Kafka as the ingestion layer. For real-time processing, tools like
Apache Flink or Spark Structured Streaming would apply necessary
transformations, such as parsing, filtering, and enrichment. Raw data would
be stored in data lakes, and processed data would be loaded into a data
warehouse for analysis. Finally, results would be exposed via dashboards or
APIs.

How would you design a data pipeline to handle schema evolution?

To handle schema evolution, I’d store data in schema-on-read formats like
Parquet or Avro and use a schema registry to track versions.



Data Engineering Glossary
ACID — 

Set of properties (Atomicity, Consistency, Isolation, Durability)
ensuring reliable database transactions.

Ad Hoc Query — 
A one-time query created for a specific analysis purpose, not regularly
scheduled.

Aggregate Function — 
A function that performs a calculation on a set of values (e.g., SUM, AVG).

Algorithm — 
A step-by-step method for solving a problem or performing a task.

Alias — 
Alternative name for a database table or column, often used for
simplicity.

Anomaly Detection — 
Identifying unusual patterns in data that do not conform to expected
behavior.

ANSI SQL — 
A standardized version of SQL agreed upon by the American National
Standards Institute.

API — 
Application programming interface; allows software components to
communicate.

Append-Only — 
A data storage model where new data is only added, not modified.

Array — 
A data structure that holds a collection of elements, typically of the
same type.

Artificial Intelligence — 
The simulation of human intelligence processes by machines.

Asset — 



A valuable piece of data, system, or infrastructure in an organization.
Authentication — 

Verifying the identity of a user or system.
Authorization — 

Granting access permissions to users or systems.
Autoscaling — 

Automatically adjusting resources based on system load.
Availability — 

Measure of a system’s operational performance and uptime.
Backup — 

A copy of data stored separately to prevent data loss.
Batch Processing — 

Processing data in large blocks at scheduled times.
Big Data — 

Extremely large datasets that require specialized tools to manage and
analyze.

Blob Storage — 
Object storage service for unstructured data like images and videos.

BLOB — 
Binary Large Object; stores large binary data like images or files.

Bottleneck — 
A point of congestion that limits system performance.

Bucket — 
A logical storage container in cloud object storage.

Build Pipeline — 
Automated process that builds, tests, and prepares code for deployment.

Business Intelligence — 
The technologies and strategies used for data analysis to inform
business decisions.

CDC — 
Change data capture; identifies and captures changes made to data.

Cache — 
Temporary storage that helps speedup data retrieval.



Cartesian Join — 
Join that matches each row of one table with all rows of another table.

Catalog — 
Central repository that manages metadata about data assets.

Checkpointing — 
Saving the current state of a system to allow recovery after failure.

CI/CD — 
Continuous integration/continuous deployment; automating software
development practices.

CLI — 
Command-line interface; text-based way to interact with software.

Cloud Computing — 
Delivery of computing services over the Internet.

Cluster — 
A group of servers or computers working together.

Cold Data — 
Infrequently accessed data that is stored in low-cost storage solutions,
which are cheaper than primary or frequently accessed (hot) storage
options.

Columnar Database — 
A database that stores data by columns rather than rows.

Compliance — 
Adhering to laws, regulations, and standards.

Compression — 
Reducing the size of data to save storage or transmission time.

Concurrency — 
Ability of a system to handle multiple operations at once.

Confidentiality — 
Ensuring information is accessible only to those authorized.

Consistency — 
Guarantee that a system will reach a correct state after a transaction.

Container — 



A lightweight, stand-alone package that contains software and its
dependencies.

Contextual Data — 
Data that provides context about other data.

Continuous Data — 
Data that can take any value within a range.

Control Flow — 
The order in which operations or tasks are executed.

Correlation — 
Statistical relationship between two variables.

Cron Job — 
A scheduled task run at specified intervals on Unix systems.

CRUD — 
Create, Read, Update, Delete; basic operations for managing data.

Data Aggregation — 
Process of gathering and summarizing data.

Data Anonymization — 
Protecting privacy by removing identifiable information.

Data API — 
An interface to allow applications to access and manipulate data.

Data Catalog — 
Tool that organizes, manages, and searches metadata about datasets.

Data Cleansing — 
Process of detecting and correcting corrupted or inaccurate data.

Data Engineer — 
Professional who designs and builds systems for collecting, storing, and
analyzing data.

Data Governance — 
Policies and processes that ensure data integrity, security, and usage.

Data Integration — 
Combining data from different sources into a single view.

Data Lake — 
Storage repository that holds raw data in its native format.



Data Lineage — 
Tracking the movement and transformation of data through systems.

Data Mart — 
Subset of a data warehouse focused on a specific business line.

Data Mesh — 
Decentralized approach to managing data architecture.

Data Migration — 
Moving data from one system to another.

Data Modeling — 
Designing data structures for storage and retrieval.

Data Pipeline — 
A series of processes that ingest, process, and store data.

Data Profiling — 
Analyzing data to summarize its structure, content, and quality.

Data Quality — 
Measure of the condition of data based on factors like accuracy and
completeness.

Data Replication — 
Copying data from one location to another.

Data Retention — 
Policies for how long data is kept before being deleted.

Data Scientist — 
Professional who analyzes and interprets complex data.

Data Security — 
Protecting data from unauthorized access or corruption.

Data Sharding — 
Splitting a database into smaller pieces for scalability.

Data Silo — 
Isolated data storage not easily shared across systems.

Data Steward — 
Person responsible for ensuring data quality and governance.

Data Stream — 
Continuous flow of data generated in real time.



Data Synchronization — 
Keeping multiple data sources updated consistently.

Data Warehouse — 
Centralized repository for structured data used for reporting and
analysis.

Database — 
Organized collection of data that can be accessed electronically.

Database Normalization — 
Organizing data to minimize redundancy.

Dataset — 
Collection of related data typically presented in a table.

Deadlock — 
A situation where two processes are waiting on each other indefinitely.

Deduplication — 
Removing duplicate copies of repeating data.

Default Value — 
A preset value assigned if no specific value is provided.

Delta Lake — 
Storage layer that brings ACID transactions to data lakes.

Denormalization — 
Adding redundancy to speed up read operations.

Deployment — 
Releasing a system or feature into a production environment.

Distributed System — 
A system where components are located on different networked
computers.

DNS — 
Domain Name System; translates domain names into IP addresses.

Document Store — 
A NoSQL database designed to store and retrieve documents.

Downsampling — 
Reducing the resolution or frequency of data collection.

Drift — 



Changes in data, schema, or system behavior over time.
Dynamic Partitioning — 

Automatically creating table partitions based on incoming data.
Egress — 

Data leaving a system or network.
Elasticity — 

System’s ability to dynamically scale resources up or down.
ELT — 

Extract, Load, Transform; loading data before transforming it.
ETL — 

Extract, Transform, Load; classic method for data integration.
Entity — 

An object or concept about which data is stored.
Entity Relationship Model — 

Diagram showing relationships between data entities.
Environment — 

The setup where software runs (e.g., dev, test, production).
Epoch Time — 

Number of seconds since January 1, 1970 (UTC).
Event-Driven Architecture — 

System design based on events triggering actions.
Exploratory Data Analysis (EDA) — 

Analyzing datasets to summarize their main characteristics.
Export — 

Sending data from one system to another format or location.
Failover — 

Automatic switching to a backup system in case of failure.
Federated Query — 

Query that retrieves data from multiple sources in one operation.
Field — 

Single piece of data in a record or table.
File System — 



System that manages how data is stored and retrieved on storage
devices.

Filter — 
Operation to remove unwanted data based on conditions.

Flink — 
Open source stream-processing framework.

Foreign Key — 
A key used to link two tables together.

Full Outer Join — 
Combines all records from two tables, matching where possible.

Function — 
A reusable block of code that performs a specific task.

Garbage Collection — 
Automatic memory management process.

Git — 
A version control system for tracking changes in code.

GitHub — 
Hosting service for Git repositories.

Granularity — 
Level of detail represented by data.

Graph Database — 
A database that uses graph structures for semantic queries.

Hash Partitioning — 
Distributing data based on a hash function.

Health Check — 
Monitoring system that checks if components are working properly.

High Availability — 
System design that minimizes downtime.

Hive — 
Data warehouse infrastructure built on top of Hadoop.

Horizontal Scaling — 
Adding more machines to handle increased load.

Hot Data — 



Frequently accessed data stored in high-performance storage, usually
stored in RAM.

IAM — 
Identity and Access Management; controls user access.

IDEMPOTENT — 
Operation that can be applied multiple times without changing the
result.

Imputation — 
Filling in missing data values with substituted values.

Index — 
Data structure that improves the speed of data retrieval.

Ingestion — 
Process of collecting and importing data for use.

Infrastructure as Code (IaC) — 
Managing infrastructure using configuration files.

Instance — 
Single virtual machine running on a cloud platform.

Integration Test — 
Test to check whether combined parts of an application are working
together.

Interactive Query — 
User-driven queries typically used for ad hoc analysis.

Interoperability — 
Ability of systems to work together.

IoT — 
Internet of Things; network of interconnected devices.

IP Address — 
Numerical label assigned to each device on a network.

Job — 
A scheduled unit of work in data processing.

Join — 
Combining rows from two or more tables based on a related column.

JSON — 



JavaScript Object Notation; lightweight data-interchange format.
Kafka — 

Distributed streaming platform.
Key — 

A field that uniquely identifies a record in a table.
Key-Value Store — 

Simple database using keys and associated values.
Kubernetes — 

System for automating deployment and management of containerized
apps.

Latency — 
Delay between a request and its corresponding response.

Layered Architecture — 
Organizing a system into layers for better separation of concerns.

Load Balancer — 
Distributes network or application traffic across multiple servers.

Logging — 
Recording system events for monitoring or debugging.

Lookup Table — 
Table used to map, translate, or enrich datasets.

Machine Learning — 
Field of AI that uses data to train algorithms to make decisions.

MapReduce — 
Programming model for processing large datasets.

Materialized View — 
Precomputed table derived from a query.

Metadata — 
Data that describes other data.

Migration — 
Moving data or applications to a new environment.

Monitoring — 
Observing system performance in real time.

Namespace — 



Logical grouping of names to avoid conflicts.
Normalization — 

Organizing data to minimize duplication.
Notebook — 

Interactive document combining code, visualizations, and text.
NoSQL — 

Nonrelational database system for large, distributed data.
Null Value — 

A field with no assigned value.
Object Storage — 

Storage architecture that manages data as objects.
OLAP — 

Online analytical processing; systems optimized for query and analysis.
OLTP — 

Online transaction processing; systems optimized for transactional
tasks.

On-Premises — 
Computing infrastructure hosted in-house rather than in the cloud.

Orchestration — 
Coordinating automated tasks and data flows.

Outlier — 
Anomalous data point significantly different from others.

Paginated Query — 
Query that retrieves results in chunks rather than all at once.

Parquet — 
Columnar storage file format.

Partition — 
Dividing a database or table into parts for performance.

Payload — 
Actual data transmitted over a network.

Performance Tuning — 
Optimizing systems for better efficiency.

Pipeline Orchestration — 



Managing the sequence and dependency of data processing tasks.
Platform as a Service (PaaS) — 

Cloud service that provides a platform for app development.
Primary Key — 

Unique identifier for table records.
Privacy by Design — 

Embedding privacy features in systems and processes from the start.
Polling — 

Regularly checking for updates or changes in data.
Polyglot Persistence — 

Using different types of databases for different needs.
PostgreSQL — 

Popular open source relational database known for extensibility.
Primary Key — 

Unique identifier for each record in a database table.
Privacy — 

The right to control access to personal information.
Process — 

An instance of a running program.
Profiling — 

Measuring code or system performance.
Projection — 

Selecting specific columns in a database query.
Provisioning — 

Preparing and equipping a system to provide services.
Pub/Sub — 

Publish-Subscribe messaging pattern for event-driven systems.
Query — 

A request for data or information from a database.
Query Optimization — 

Techniques to improve the speed and efficiency of database queries.
Queue — 

Data structure or service that stores messages or tasks to be processed.



RDBMS — 
Relational database management system; database based on relational
model.

Real-Time Processing — 
Immediate processing of data as it is ingested.

Record — 
A complete set of fields representing a single item in a table.

Recovery — 
Process of restoring a system after a failure.

Redundancy — 
Duplication of critical components for fault tolerance.

Referential Integrity — 
Ensuring relationships between tables remain consistent.

Replication Lag — 
Delay between the primary and replica databases syncing.

Resharding — 
Redistributing data shards across servers.

Resilience — 
System’s ability to handle failures and continue operating.

Resource Allocation — 
Assigning system resources to tasks.

REST API — 
Representational State Transfer; architecture for building web services.

Retention Policy — 
Rules about how long data is kept.

Reverse ETL — 
Moving data from a warehouse back into operational systems.

Rollback — 
Reverting database changes after a failed transaction.

Root Cause Analysis — 
Identifying the underlying cause of a problem.

Row-Level Security — 
Restricting access to rows in a database table.



Row-Oriented Database — 
Database that stores data by rows.

Runtime — 
The period during which a program is running.

Sampling — 
Analyzing a subset of data to infer characteristics about the full dataset.

Sandbox — 
Isolated environment for testing and development.

Scalability — 
Ability to handle growing amounts of work or expand.

Schema — 
Structure that defines the organization of data in a database.

Schema Evolution — 
Adapting a database schema as requirements change.

Schema Registry — 
Store and manage schemas for data serialization.

Scope Creep — 
Gradual expansion of project goals beyond original objectives.

SDK — 
Software development kit; tools for building applications.

Secure Socket Layer (SSL) — 
Protocol for encrypting Internet communications.

Security Audit — 
Examination of a system’s security measures.

Self-Healing System — 
System capable of identifying and fixing problems autonomously.

Semi-Structured Data — 
Data that doesn’t fit neatly into tables (e.g., JSON, XML).

Serialization — 
Converting an object into a format for storage or transmission.

Serverless — 
Cloud model where cloud providers manage the server infrastructure.

Sessionization — 



Grouping user activities into sessions for analysis.
Sharding — 

Splitting a database horizontally to spread load.
SLA (Service Level Agreement) — 

Contract defining service expectations between provider and client.
Slowly Changing Dimension (SCD) — 

Data warehouse technique to manage data that changes slowly over
time.

Snapshot — 
A read-only copy of data at a specific point in time.

Snowflake Schema — 
Data warehouse schema with normalized tables.

Soft Delete — 
Marking data as deleted without actually removing it.

Spark — 
Open source distributed data processing engine.

Spatial Data — 
Data that represents the location, size, and shape of objects.

SQL Injection — 
A security attack that exploits vulnerabilities in SQL queries.

SQL — 
Structured Query Language; standard language for relational database
management.

SSH (Secure Shell) — 
Protocol for secure network communication.

Stateful Application — 
Application that keeps track of client session information.

Stateless Application — 
Application that treats each request independently.

Streaming Data — 
Data continuously generated by sources.

Structured Data — 
Organized data that fits neatly into a table.



Subquery — 
Query nested inside another query.

Surrogate Key — 
Artificial key used instead of a natural key in a database.

Synthetic Data — 
Artificially generated data used for testing or training.

Table Scan — 
Reading every row in a table to find results.

Tagging — 
Adding metadata labels to data or resources.

Task — 
A unit of work in a workflow.

Tenant — 
A group of users sharing access to common infrastructure in a multi-
tenant architecture.

Throughput — 
Amount of work a system can perform over a given time.

Time Series Data — 
Data points indexed in time order.

Tokenization — 
Replacing sensitive data elements with nonsensitive equivalents.

Transaction — 
A sequence of database operations treated as a single logical unit.

Transactional Database — 
Database optimized for transaction processing.

Transformation — 
Modifying or changing data as part of a pipeline.

Trigger — 
A database object that automatically executes a procedure in response to
events.

TTL (Time To Live) — 
The lifespan of data before it is discarded.

UDF (User-Defined Function) — 



Custom function written by users for specialized computations.
UI (User Interface) — 

The means through which a user interacts with a system.
Unstructured Data — 

Data without a predefined model (e.g., text, video).
Upsert — 

Database operation that updates a record if it exists or inserts if it does
not.

URI — 
Uniform Resource Identifier; a string that identifies a resource.

UUID — 
Universally Unique Identifier; unique ID used in databases.

Validation — 
Checking data for correctness.

Version Control — 
Managing changes to code or data.

Vertical Scaling — 
Increasing the capacity of a single machine.

Virtual Machine (VM) — 
Software emulation of a physical computer.

Visualization — 
Graphical representation of data.

VPC (Virtual Private Cloud) — 
Isolated network within a cloud provider.

Warehouse Schema — 
Organizational structure of a data warehouse.

Watermarking — 
Keeping track of the latest record processed in streaming data.

Workflow — 
Sequence of processes involved in completing a task.

Write-Ahead Log (WAL) — 
Log that records changes before they are committed to the database. It is
commonly used in PostgreSQL and other databases to ensure durability



during crashes.
YAML — 

Human-readable data serialization standard often used for configuration
files.

YARN — 
Yet Another Resource Negotiator; resource management layer in
Hadoop.

Zero Downtime Deployment — 
Deploying updates without interrupting service.



Index
NUMERICS

1NF. See first normal form

2NF. See sec ond normal form

3NF. See third normal form

4NF. See fourth normal form

5NF. See fifth normal form

A

ABAC. See attribute-based access control

abacus, 2

access audits, 223

access control, 207, 216–217, 236

access levels, 224–226

authentication, 217–219

authorization, 219–222

models, 220

principle of least privilege, 222–224

access control lists (ACLs), 221–222

access logs, 224

access tiers, 18

accessibility, data, 198, 199

ACID. See Atomicity, Consistency, Isolation, and Durability Compliance

ACLs. See access control lists

ad hoc requests, 23



administrator (access level), 224

aggregate functions, SQL, 68–71, 83–84

Agile methodology, 48, 49

AI. See artificial intelligence

AI/ML data engineers, 310–311

alerts

access control, 224

and cloud cost optimization, 305

in data orchestration, 172–173

data volume threshold, 194

ALTER command, 40

Amazon, 189, 261

Amazon EFS (Elastic File System), 284

Amazon Relational Database Service (RDS), 215–216

Amazon S3, 221, 285

Amazon Web Services (AWS), 280, 284

availability of, 261

Glue Data Catalog, 243

analytics data engineer, 310

AND statement, 65

Apache Airflow, 150, 287, 293

DAGs in, 168, 284

scheduling ETL pipeline with, 182–185

Apache Atlas, 243

Apache Cassandra, 260

Apache Flink, 163



Apache Hadoop, 257, 262–263, 301

Hadoop Distributed File System, 263–265

MapReduce, 263, 265–267, 271–272

YARN, 266

Apache Iceberg, 29

Apache Spark, 150, 257, 259, 261, 267, 301

architecture, 268

Cluster Manager, 270

DAG Scheduler and task execution, 271

Driver Program, 269–270

executors, 270–271

and MapReduce, comparison, 271–272

resilient distributed dataset, 267–268

sample interview questions, 331–332

Structured Streaming, 163

APIs, 6, 21, 216, 290

application monitoring system, 54

archive storage, 18–19

artificial intelligence (AI), 8, 9, 188, 310–311

AS statement, 61

asymmetric encryption, 210–211

at-least-once processing, 162

at-most-once processing, 162

atomicity (database), 44–45, 92–93, 103

Atomicity, Consistency, Isolation, and Durability (ACID) Compliance, 43,
44, 56, 92–93, 103, 143



attribute-based access control (ABAC), 221, 222

attributes, 94, 95, 96, 104, 246–247

auditing/audits

cloud storage, 304

data, 208, 223, 235

logs, 208

security, 237–238, 245

authentication, 217–219

authorization, 219–222

automation, 322

in data orchestration, 170–171

of ETL pipeline with Apache Airflow, 182–185

availability

data, 208–209, 236

of distributed systems, 261

and NoSQL databases, 49

AVG() function, 69, 83

Avro, 272–273, 274, 275–276

AWS. See Amazon Web Services

AWS Glue Studio, 293

Azure Blob Storage, 285

Azure Data Factory, 293, 295

Azure Files, 284

B

backups, data, 149, 209

bad data, 188–190



batch ingestion, 20

batch layer (Lambda architecture), 165

batch pipelines, 148. See also Lambda architecture

components of, 148–151

directed acyclic graphs in, 169

ETL vs. ELT pipelines, 151–152

BCNF. See Boyce-Codd Normal Form

BEGIN TRANSACTION command, 42, 45, 46

behavioral interview, 320–321

Berners-Lee, Tim, 4

BETWEEN statement, 64–65

big data

file types, 272–276

five V's of, 254–256

BigQuery, 300

BigTable, 47

biometric authentication, 218

blob storage, 18

block storage, 283–284, 285, 286

Boolean data types, 100

Boyce-Codd Normal Form (BCNF), 106–107



business

and conceptual data model, 93–94

metadata, 242

needs, balancing technical choices with, 322

use cases, and data transformation, 22

value, delivering, 28

business analytics, 22–23

C

California Consumer Privacy Act (CCPA), 205, 235–236

Cambridge Analytica scandal, 231

cardinality, 96–97

career in data engineering, 307–308

data engineer mindset, 321–322

data engineering roles, 308–311

preparation for interview, 316–321

résumé, 314–316

typical job description, 312–313

catalogs (metadata), 243

causal consistency, 261

CCPA. See California Consumer Privacy Act

CDNs. See content delivery networks

CDO. See chief data officer

CHECK constraint, 45–46, 195–196

checkpointing, 161–162, 259–260

checkpoints (database), 47

checksums, 207–208



chief data officer (CDO), 249, 250

cleansed zone (data lake storage), 140–141

client-server models, 257

clinical decision-making, 8

cloud computing, 3, 48, 280–281

benefits of cloud-based solutions, 281–282

compute services, 286–287

cost optimization, 302–305

networking, 287–291

cloud data warehouse, 18

cloud management models, 298

managed, 300–301

self-managed, 301–302

serverless, 299–300

cloud pricing models, 302–303



cloud service models, 291

choosing, 294–298

and cost efficiency, 295–296

and deployment time, 297

hybrid approach, 298

Infrastructure as a Service (IaaS), 291–292

integration with existing systems, 297

and long-term strategy, 297–298

and organization's needs, 294–295

Platform as a Service (PaaS), 292–293

and scalability, 296

and security, 296

Software as a Service (SaaS), 293–294

cloud storage, 7, 203, 236, 282

block storage, 283–284

cost of, 285–286

data retrieval from, 21

data-at-rest encryption, 213

file storage, 284

models, 283

object storage, 283

optimization, 304

and performance, 285

pricing, 302

scalability, 284–286

and use cases, 286



Codd, Edgar F., 3

coding interview, 319

cold start latency, 299

cold storage, 18, 304

columnar (column-Family) databases, 54

columns (database), 34, 113

COMMIT command, 42, 45, 46

common table expressions (CTEs), 77–78, 88

comparison operators, in SQL, 62–63

completeness, data, 172, 191–194, 196

completeness score, 193

composite primary key, 37, 103–104

compute services, cloud, 286–287, 302

conceptual data model, 93–94

concurrency, in distributed systems, 260

confidential data, 239

confidentiality, 206–207, 235, 236

access control, 207, 216–225

data encryption, 206, 207, 209–211

data masking, 207, 211–213

network security, 207, 214–216

consistency

data, 172, 194–195

database, 44, 45–46, 56, 93, 103

in distributed systems, 261

consumers (stream processing), 167



containers (cloud), 287

content delivery networks (CDNs), 262

cost optimization, cloud, 302

cloud pricing models, 302–303

monitoring and alerting, 305

rightsizing resources, 303

serverless computing, 304–305

shutting down idle resources, 304

smart job scheduling, 304

storage optimization, 304

CouchDB, 47

COUNT() function, 69, 83

CPU usage of data pipelines, 171–172

CREATE command, 39–40

CTEs. See common table expressions

curated zone (data lake storage), 141

D

DAGs. See directed acyclic graphs

dashboards, 23–24, 28, 150, 152, 167, 201



data, 1. See also storage, data

bad, 188–190

big, 254–256, 272–276

history of, 2–4

importance of, 7–9

and information, 9–10

at rest, 213

semi-structured, 6–7, 16, 17, 256

structured, 4–5, 7, 16, 17, 256

in transit, 213, 214–216

types of, 4–7

unstructured, 5–6, 7, 16, 17, 256, 283, 284

data accuracy, 172, 191, 200, 234

data aggregation, 126

data analytics, 22–23

data breaches, 203–204, 235

data catalog, 141–142

data classification policies, 238–239

data cleaning, 126, 201

data compliance, 19. See also data governance

ACID Compliance, 43, 44, 56, 92–93, 143

and data quality, 189–190

data consumption stage (batch pipeline), 150

Data Control Language (DCL), 41–42

data custodians, 249

Data Definition Language (DDL), 39–40



data duplication, 166, 189, 196–197

data engineering, 9–10, 13

career in, 307–322

current state of, 28–29

definition of, 14

delivering business value, 28

importance of, 29–30

life cycle, 15–24

oil refinery analogy for, 14–15

requirements gathering, 24

understanding stakeholders, 24–26

understanding system requirements, 26–27

data enrichment, 126

data governance, 19, 229

classification in, 230

and data management, 250

discovery in, 230

framework, 232–233

policies, 230, 233–241

processes, 230–231, 241–247

roles and responsibilities, 230–231, 248–250

data ingestion, 20–21, 148

data integration, 141, 189

data integrity, 4, 14, 43, 110, 127, 204–205, 207–208, 235, 236–237

data lakehouse, 29, 142–144

data lakes, 17, 139–142, 144–145, 167, 221



data lineage, 232, 244

Data Manipulation Language (DML), 40–41

data marts, 138–139

data masking, 207, 211–213

data mesh, 29

data minimization, 234

data modeling, 92

best practices, 111–113

interview, 318

reasons for, 92–93

sample interview questions, 328–329

types of, 93–100

data orchestration, 167

alerts, 172–173

directed acyclic graphs, 168–170, 183–185

monitoring, 171–172

scheduling and automation, 170–171, 182–185

data owners, 248



data pipelines, 14, 16, 21, 147–148

batch pipelines, 148–152

building an ETL pipeline and automating with Apache Airflow, 173–185

complexity, and data lineage, 244

data orchestration, 167–173

error rates, 171

Lambda architecture, 164–167

and malware, 205

sample interview questions, 329–331

streaming pipelines, 152–164

data privacy, 10, 225–226, 232, 234–236, 237. See also data governance

data profiling, 201



data quality, 14, 30, 187–188, 231, 321

accessibility, 198, 199

accuracy, 172, 191, 200, 234

bad data, 188–190

best practices, 200–201

big data, 256

completeness, 172, 191–194, 196

consistency, 172, 194–195

culture, 200

framework, 200

hierarchy, 199–200

metrics, 172

in pipelines, 172

relevance, 198, 200

timeliness, 198, 199

uniqueness, 196–197

validity, 195–196

data redundancy, 102, 104, 105, 107, 108, 131, 133, 208

data reformatting, 126

data reliability, 43, 256

data replication, in distributed systems, 258, 260, 264–265

data retention and disposal policies, 239–240



data security, 10, 14, 30, 203–204, 231, 232. See also data governance

access control, 207, 216–225

and cloud-based solutions, 281–282, 296

common threats to, 205–206

core principles of, 206–209

data encryption, 206, 207, 209–211

data masking, 207, 211–213

and data privacy, difference between, 225–226

importance of, 204–205

network security, 207, 214–216

secrets management, 225

and views, 117–118

data serialization, 272

data serving, 22–24

data sharing policies, 239–240

data silos, 139, 231

data sources

of data lakes, 140

of data pipelines, 16, 149

data standardization, 126

data stewards, 248–249

data transformation, 21–22, 150

data type, 99, 112–113

data volume

big data, 255

checks, 194



data warehouses, 17, 110, 124–125, 144–145, 150, 167, 300

cloud, 18

data marts, 138–139

extract, transform, and load (ETL) process, 126–127

schema design, 127–134

slowly changing dimensions, 134–137

database design, 91

data modeling, 92–100, 111–113

database optimization, 114–120

denormalization, 110–111, 112

normalization, 100–109, 112

database optimization, 114

indexing, 114–115

partitioning, 115–116, 118

sharding, 116–118

views, 118–120

databases, 17, 33–34, 144–145

access to, 41–42

ingestion of data from, 20

key concepts of, 34–35

NoSQL, 6, 35, 47–56

relational, 20, 34, 35–47, 55–56, 194, 195–196

DataFrames, Spark, 268

Datasets, Spark, 268

date and time data types, 100

DCL. See Data Control Language



DDL. See Data Definition Language

dead letter queue (DLQ), 155

debugging, 88, 243, 244, 287, 300

deep learning, 5

DELETE command, 41

deletion, data, 19

Delta Lake, 29

denormalization, 110–111, 112

DENSE_RANK() function, 82–83

dependency-based triggers, for data orchestration, 170

dimension table, 128–131. See also slowly changing dimensions (SCD)

directed acyclic graphs (DAGs), 168–170, 183–185, 269, 270, 271

disaster recovery, 209

disk input/output (I/O), 172

distributed architecture of NoSQL databases, 48–49

distributed data processing, 262

Apache Hadoop, 262–267

Apache Spark, 267–272



distributed systems, 111, 256–258

availability of, 261

concurrency in, 260

consistency, 261

and fault tolerance, 259–260

functioning of, 258

and latency, 262

load balancing, 261–262

reliability of, 260

resource management, 260–261

scalability of, 258–259

DLQ. See dead letter queue

DML. See Data Manipulation Language

document databases, 50–51

domain models. See conceptual data model

downstream stakeholders, 25

DROP command, 40

duplicate record check, 197

durability (database), 47, 93

E

e-commerce, 50, 114, 154–155, 156, 166, 198

ELT. See extract, load, and transform process

employee training on security, 246



encryption, 206, 207, 209–211, 235

data in transit, 213, 214–216

data-at-rest, 213

and PCI DSS, 237

entity (relational database), 36, 95

entity relationship diagrams (ERDs), 95, 97–99

ERDs. See entity relationship diagrams

ETL. See extract, transform, and load process

event time (stream processing), 157

event-driven triggers, for data orchestration, 170

eventual consistency, 261

exactly once processing, 161–162

EXCEPT operator, 80

Extensible Markup Language (XML), 6

extract, load, and transform (ELT) process, 140, 151–152

extract, transform, and load (ETL) process, 126–127, 170, 287

batch processing, 151

building an ETL pipeline and automating with Apache Airflow, 173–185

F

Facebook, 231, 255, 261

fact table, 127–131

failover mechanisms, 209

fast development, and NoSQL databases, 49

fault tolerance, 161, 166, 259–260

FDE. See full-disk encryption

featurization, 24



fifth normal form (5NF), 108–109

file storage/file-level storage, 284, 285, 286

first normal form (1NF), 102–103

flag method, slowly changing dimensions, 136

floppy disks, 3

foreign key, 37–38

fourth normal form (4NF), 107

full backups, 209

full load, 127

FULL OUTER JOIN, 75–76

full-disk encryption (FDE), 213

functional dependencies, 106

functional requirements (system requirements), 26–27

G

gateways, 290–291

GDPR. See General Data Protection Regulation

General Data Protection Regulation (GDPR), 205, 207, 234–235

Git, 170

Google, 47, 257, 262

Google Authenticator, 218

Google Cloud Composer, 293, 295

Google Cloud Platform (GCP), 280

Google Data Catalog, 243

Google File System (GFS), 262–263

Google Search, 262

grain, table, 111–112



Grant, John, 2–3

GRANT command, 41

graph databases, 51–52

Great Expectations, 201

GROUP BY statement, 70–71, 129, 197

H

Hadoop Distributed File System (HDFS), 263–265

handshake process, 214–215

hard disk drives, 3

hashing, 116

HAVING statement, 71

Health Insurance Portability and Accountability Act (HIPAA), 206, 235

healthcare

data compliance in, 190

use of data in, 7–8, 10

high availability of NoSQL databases, 49

higher normal forms, 105–109

HIPAA. See Health Insurance Portability and Accountability Act

Hollerith, Herman, 3

Hollerith Tabulating Machine, 3

hopping windows, 158–159

horizontal scalability (scale-out), 259, 284

horizontal scaling, 56

hot storage, 18, 304

HTTPS, 216, 258

human errors, and bad data, 189



I

IaaS. See Infrastructure as a Service

IBM Cloud, 280

idle resources, shutting down, 304

IN statement, 64

incident management, 244

best practices for, 245–246

components of, 244–245

incident response playbooks, 245

incremental backups, 209

incremental load, 127

indexing (database), 114–115

information, and data, 9–10

Infrastructure as a Service (IaaS), 291–292, 295–298, 301

ingestion time (stream processing), 157

INNER JOIN, 72–73

INSERT command, 41

insider threats to data security, 206

Internet, 4

Internet of Things (IoT), 21

INTERSECT operator, 79–80



interview, data engineering, 316

behavioral interview, 320–321

coding interview, 319

data modeling interview, 318

résumé review/recruiter screen, 316

sample questions, 325–334

SQL interview, 317–318

system design interview, 319

I/O. See disk input/output

IoT. See Internet of Things

IP addresses, 290

IS NOT NULL statement, 67

IS NULL statement, 66

Ishango bone, 2

isolation (database), 46, 93

J

JavaScript Object Notation (JSON), 6, 21, 50, 52, 273

JIT. See just-in-time access

job description, data engineering, 312–313

job scheduler, 150–151

join dependency, 108

joins, SQL, 72–76

JSON. See JavaScript Object Notation

just-in-time (JIT) access, 223

K



key management, and data encryption, 210–211

keys (database), 35

key-value (KV) databases, 52–53

key-value pairs, 50

KV. See key-value databases

L

LAG() function, 84–85

Lambda architecture, 164

advantages of, 166

challenges and trade-offs, 166

components of, 165–166

large language models (LLMs), 9

late-arriving events, 162–163

latency, 171

cold start, 299

and distributed systems, 262

and Lambda architecture, 166

and MapReduce, 266

and streaming pipelines, 153, 162–163

lazy evaluation, 268

LEAD() function, 85

least privilege principle. See principle of least privilege (PoLP)

LEFT JOIN, 73–74, 195

legacy systems, integration of cloud services with, 297

Licklider, Joseph Carl Robnett, 3



life cycle, data engineering, 15–16

data ingestion, 20–21, 148

data serving, 22–24

data transformation, 21–22, 150

source systems, 16

storage, 16–19

LIKE statement, 63–64

LIMIT statement, 68

limiting, in SQL, 67–68

LLMs. See large language models

load balancing, in distributed systems, 261–262

loading, data, 127

logical data model, 94–95

attributes, 94, 95, 96

cardinality, 96–97

entities, 95

entity relationship diagrams, 95, 97–99

relationships, 96

logical operators, in SQL, 65–67

logistics, use of data in, 8–9

Looker, 201

M

machine learning (ML), 5, 8, 9, 23–24, 310–311

machine learning engineers (MLEs), 25

magnetic tape, 3

mainframes, 257, 279



maintenance

of data marts, 138

and data warehouse schema selection, 133–134

and self-managed services, 301

malware, 205

managed services in cloud computing, 300–301

Many-to-many (M:N) cardinality, 97

MapReduce, 257, 263, 265

and Apache Spark, comparison, 271–272

limitations of, 266–267

process, 265–266

master data management, 246–247

materialized views, 119–120

MAX() function, 69–70, 83

memory usage of data pipelines, 171–172

message broker, 154

message queue, streaming pipelines, 154–155

Messenger, 261

Meta, 255

metadata, 19, 230, 264

data lake, 141

data lakehouse, 143

management, 242–244

types of, 242–243

MFA. See multifactor authentication

Microsoft Azure, 280, 284, 285, 293, 295



Microsoft Excel, 36

Microsoft Purview, 243

MIN() function, 69–70, 83

ML. See machine learning

MLEs. See machine learning engineers

MongoDB, 47

monitoring, 245

application monitoring system, 54

and cloud cost optimization, 305

and data breaches, 203

in data orchestration, 171–172

of data quality, 201

and operational metadata, 243

Monte Carlo, 200

multifactor authentication (MFA), 217–218

multimodel support of NoSQL databases, 48

multiple shards, configuring, 117–118

multivalued dependencies, 107

N

naming of tables/columns, 113

National Health Service (NHS), 10

natural language processing (NLP), 5

network bandwidth, 172

network security, 207, 214–216

networking, cloud, 287–291

NHS. See National Health Service



NLP. See natural language processing

nonfunctional requirements (system requirements), 27

normal forms (NF), 102–109

normalization, 100–102, 112

and data warehouse schema selection, 133

downsides of, 109

rules of, 102–109

NoSQL databases, 6, 35, 47–48

characteristics of, 48–49

reasons for choosing, 55–56

types of, 50–54

NOT statement, 66

null values, 177–178, 192–193

numeric data types, 99–100

O

OAuth (Open Authorization), 219

object storage, 18, 283, 284–285, 286

offsets (stream processing), 161

OLAP. See Online Analytical Processing systems

OLTP. See Online Transaction Processing systems

on-demand instances, 303

One-to-Many (1:N) cardinality, 97

One-to-One (1:1) cardinality, 96–97

Online Analytical Processing (OLAP) systems, 110, 125



online shopping

platforms, 16, 53

system, entity relationship diagram, 97–99

Online Transaction Processing (OLTP) systems, 125, 131–132

on-premises solutions, 281, 282

operational analytics, 23

operational metadata, 243, 244

Optimized Row Columnar (ORC), 273, 274–276

OR statement, 65–66

Oracle Cloud, 280

ORC. See Optimized Row Columnar

ORDER BY statement, 67–68, 129

out-of-order events, 162–163

P

PaaS. See Platform as a Service

Parquet, 273–274, 275–276

partial dependencies, 103–104

partition tolerance of NoSQL databases, 49

partitioning (database), 115–116, 118

patient records, 8, 10

Payment Card Industry Data Security Standard (PCI DSS), 237–238

PCI DSS. See Payment Card Industry Data Security Standard



performance

and cloud storage, 285

and data lakehouse, 143

and data marts, 138

and data warehouse schema selection, 133

and database choice, 56

and denormalization, 110–111, 112

metrics, 171

and storage system, 17

personally identifiable information (PII), 211–212, 230, 237, 240

Pfleumer, Fritz, 3

phishing attacks, 205–206

physical data model, 99–100

PII. See personally identifiable information

PK. See primary key

Platform as a Service (PaaS), 292–293, 295–298

platform data engineer, 308–309

policy engine, 221

PoLP. See principle of least privilege

PostgreSQL, 99, 173, 181–182

PowerBI, 201

predictive healthcare, 7–8

premature optimization, 322

primary key (PK), 37

principle of least privilege (PoLP), 222–224

privacy. See data privacy



private data, 238

private IPs, 290

private key, 210

private subnets, 290

processing time (stream processing), 157

producers, streaming pipelines, 153–154

public data, 238

public health statistics, 2–3

public IPs, 290

public key, 210

public subnets, 290

Publish and Subscribe (Pub/Sub), 154–155

punch card, 3

R

RANK() function, 82

ranking functions, SQL, 80–83

ransomware, 205

raw zone (data lake storage), 140

RBAC. See role-based access control

RDBMS. See relational database management system

RDD. See resilient distributed dataset, Apache Spark

RDS. See Amazon Relational Database Service

READ COMMITTED isolation level, 46

READ UNCOMMITTED isolation level, 46

reader (access level), 224

Redis, 53



referential integrity, 194–195

regulatory compliance policies, 234–238

relational data management framework, 3

relational database management system (RDBMS), 36, 38

relational databases, 20, 36. See also Structured Query Language (SQL)

ACID Compliance, 43, 44

characteristics of, 36–47

data validation in, 195–196

reasons for choosing, 55–56

referential integrity in, 194

relationships (database), 38, 55, 96

relevance, data, 198, 200

reliability

data, 43, 256

of distributed systems, 260

REPEATABLE READ isolation level, 46

reports (business analytics), 23

requirements gathering, 24

reserved instances, 303

resilient distributed dataset (RDD), Apache Spark, 267–268

resource management, in distributed systems, 260–261

resource metrics, 171–172

restricted data, 239



résumé

educations and certifications, 316

experience section, 314

projects section, 315–316

skills section, 314–315

REVOKE command, 42

RIGHT JOIN, 74–75

role-based access control (RBAC), 220, 222, 223, 225, 237

ROLLBACK command, 42, 45

row-based storage, 54

ROW_NUMBER() function, 81

rows (database), 34

S

SaaS. See Software as a Service

SAVEPOINT command, 42–43



scalability

and cloud services, 296

and cloud storage, 284–286

and cloud-based solutions, 281

and data warehouse schema selection, 134

and database choice, 56

of distributed systems, 258–259

and Lambda architecture, 166

and self-managed services, 302

and semi-structured data, 6–7

and storage system, 17

and structured data, 4–5

SCD. See slowly changing dimensions

scheduling

in data orchestration, 170–171

of ETL pipeline with Apache Airflow, 182–185

job, 150–151, 304

schema (database), 35, 92

design, data warehouse, 127–134

and NoSQL databases, 49

and relational databases, 49

schema registry, streaming pipelines, 155–156

schema-on-read, 142

second normal form (2NF), 103–104

secrets management, 225

Secure Sockets Layer (SSL), 214



security. See data security

SELECT statement, 40, 46, 60–61

self-driving cars, 9

self-managed services in cloud computing, 301–302

semi-structured data, 6–7, 16, 17, 256

SERIALIZABLE isolation level, 46

serverless computing, 299–300, 304–305

service level agreements (SLAs), 171, 190, 191, 194, 196, 198, 259

serving layer (Lambda architecture), 165–166

session windows, 160–161

set operations, SQL, 78–80

sharding (database), 116–118

sharding key, 116

simulated breach exercises, 246

sinks, 164

size-based intervals (data ingestion), 148

SLAs. See service level agreements

sliding windows, 159–160

slowly changing dimensions (SCD), 134–137

smart home devices, 16

snapshots (stream processing), 161

Snowflake, 300

snowflake schema, 132–134

SOC 2 (System and Organization Control 2), 236–237

social media, 16, 21, 52, 53, 153, 256

social networking sites, 51–52



Software as a Service (SaaS), 236, 293–294, 295–298

software engineers, collaboration of data engineers with, 25–26

sorting, in SQL, 67–68

source systems, 16

speed layer (Lambda architecture), 165

spot instances, 303, 304

Spotify, 256

SQL. See Structured Query Language

SQL injection, 206

SSL. See Secure Sockets Layer

staging area (batch pipeline), 149

stakeholders, engagement with, 24–26, 28

STAR (Situation, Action, Task and Result) method, 320

star schema, 127–129, 132–134

stateful processing, 163–164

storage, data, 16–17, 29

batch pipelines, 150

choosing, 17–19

cloud storage, 7, 21, 203, 213, 236, 282–286, 302, 304

concept of, 3

data lakes, 140–141

stream processing, 164

storage suitability, 18

streaming ingestion, 20



streaming pipelines, 152. See also Lambda architecture

architecture of, 153

characteristics of, 152–153

directed acyclic graphs in, 169

message queue, 154–155

producers, 153–154

schema registry, 155–156

sinks, 164

stream processor, 156–164

string (character) data types, 100

strong consistency, 261

Strozzi, Carlo, 47

structured data, 4–5, 7, 16, 17, 256



Structured Query Language (SQL), 38, 55–56, 59–60

aggregate functions, 68–71

basic clauses, 60–62

commands, 39

common table expressions, 77–78, 88

comparison operators, 62–63

Data Control Language, 41–42

Data Definition Language, 39–40

Data Manipulation Language, 40–41

data validation, 196

interview, 317–318

joins, 72–76

logical operators, 65–67

queries, best practices for writing, 87–88

sample interview questions, 325–328

set operations, 78–80

setting up SQL Server and running SQL queries, 85–87

sorting and limiting, 67–68

SQL injection, 206

subqueries, 76, 88

Transaction Control Language, 42–43

window functions, 80–85

subnets, 289–290

subqueries, SQL, 76, 88

SUM() function, 69, 83

superkey, 106



superuser (access level), 224–225

supply chain, use of data in, 8

symmetric encryption, 209–210, 211, 213

system design interview, 319, 332–334

system requirements, 26–27

systems thinking, 321

T

Tableau, 201

tabulating machine, 3

TCL. See Transaction Control Language

TDE. See Transparent Data Encryption

technical metadata, 242

third normal form (3NF), 104–105

throughput of data pipelines, 172

time-based intervals (data ingestion), 148

time-based triggers, for data orchestration, 170

timeliness, data, 198, 199

timestamps, 113, 136, 243

TLS. See Transport Layer Security

TOP statement, 68

Transaction Control Language (TCL), 42–43

transaction logs, 44

transactional database, 124, 130

transitive dependencies, 104–105

Transparent Data Encryption (TDE), 213

Transport Layer Security (TLS), 213, 214–216



transportation, use of data in, 8–9

TRUNCATE command, 40

tumbling windows, 158

U

Uber, 8–9, 203–204

UNION ALL operator, 79

UNION operator, 78–79

UNIQUE constraint, 197

uniqueness, data, 196–197

unstructured data, 5–6, 7, 16, 17, 256, 283, 284

UPDATE command, 41, 46

upstream stakeholders, 25–26

U.S. Census, 3

username and password authentication, 217

V

validity, data, 195–196

value functions, SQL, 84–85

value of big data, 256

variety of big data, 255–256

velocity of big data, 255

vendor lock-in, and managed services, 301

veracity of big data, 256

version control systems, 170

vertical scalability (scale-up), 259

vertical scaling, 56



views (database), 118–120

virtual machines (VMs), 284, 287, 301

virtual networks, 287–291

virtual private cloud (VPC), 288–289

Virtual Private Networks (VPNs), 213

VMs. See virtual machines

VPC. See virtual private cloud

VPNs. See Virtual Private Networks

W

WAL. See Write-Ahead Logging

watermarking (stream processing), 162–163

web scraping, 21

WhatsApp, 261

WHERE statement, 62

window functions, SQL, 80–85

windowing (stream processing), 156–161

World Wide Web, 4

Write-Ahead Logging (WAL), 47

writer (access level), 224

X

XML. See Extensible Markup Language

Y

YARN. See Yet Another Resource Negotiator

Yet Another Resource Negotiator (YARN), 266



Copyright © 2026 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data
mining and training of artificial intelligence technologies or similar technologies.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada and the United Kingdom.
ISBNs: 9781394325412 (paperback), 9781394325436 (ePDF), 9781394325429 (ePub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either
the prior written permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.
The manufacturer’s authorized representative according to the EU General Product Safety Regulation
is Wiley-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail:
Product_Safety@wiley.com.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without
written permission. All other trademarks are the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor mentioned in this book.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Further, readers should be aware that websites listed in this work may have changed or
disappeared between when this work was written and when it is read. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the United States
at (317) 572-3993 or fax (317) 572-4002. For product technical support, you can find answers to
frequently asked questions or reach us via live chat at https://support.wiley.com.
If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our
reader support team at wileysupport@wiley.com with the subject line “Possible Book Errata
Submission”.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.
Library of Congress Control Number: 2025946035

Cover image: © koyash07/stock.adobe.com
Cover design: Wiley

http://www.copyright.com/
http://www.wiley.com/go/permission
mailto:Product_Safety@wiley.com
https://support.wiley.com/
https://wileysupport@wiley.com/
http://www.wiley.com/
https://stock.adobe.com/


 

To my parents, Mr. Osita & Dr. Mrs. Ngozi Nwokwu



Acknowledgments
First and foremost, I would like to thank God, the ultimate source of my
wisdom and strength, for guiding me through every stage of my career and
providing me with the clarity and direction I needed. He sustained and
continually renewed my passion for teaching and writing through every
chapter of this book and moments of self-doubt. I am grateful to him!

To my incredible managing editor, Navin Vijayakumar; my project
manager, Connor O’Brien; and my technical editor, Arthur Augustus: thank
you for being the steady hands behind this project. Your structure, feedback,
and unwavering belief in this book’s mission helped shape it into something
I am proud of. You steadily ensured nothing fell through the cracks, making
this work exceptional. Also, special thanks to Kenyon Brown for giving me
an opportunity to work with Wiley on this project; it was truly an honor.
I’ve learned so much through this experience as an author, and I look
forward to future collaborations with Wiley.

To my amazing family, thank you for believing in me long before I believed
in myself. Your love, sacrifices, and endless prayers laid the foundation for
everything I do. You instilled in me the value of hard work, the discipline to
follow through, and the courage to take bold steps. You have always been
my greatest cheerleaders! And to my friends, my incredible support system,
thank you for your never-ending encouragement toward all my endeavors
and for being there to celebrate every small victory.

Finally, to every reader holding this book, thank you for trusting me to be
part of your learning journey. I wrote this book with you in mind, hoping to
make data engineering a little more accessible and a little less intimidating.
I hope you find clarity in its pages.



About the Author
Chisom Nwokwu is a multitalented software engineer, published author,
and digital creator. She’s passionate about big data and artificial
intelligence, and her expertise cuts across leveraging big data and cloud
technologies to designing and developing scalable data platforms for
organizations. She is currently contributing to the development of the next
generation of systems that redefine how data powers large-scale AI model
training.

Chisom holds a bachelor’s degree in computer science and is currently
pursuing a master’s in computer science at the Georgia Institute of
Technology. She has worked with some of the biggest international firms,
such as Microsoft, where she was a Big Data Engineer on the Windows
Engineering Team, and Bank of America, where she was a Technology
Analyst on the Robotics and Automation Team.

As someone who has made tremendous progress in her career in a short
period, she was nominated as a Rising Star of the Year by the Women Tech
Network, Author of the Year by Women Business Awards, and a finalist for
the Young Digital Woman of the Year Award by Digital Women UK.

In addition to her professional achievements, Chisom is an accomplished
public speaker and technology thought-leader, playing a pivotal role in the
global tech scene.



About the Technical Editor
Arthur Augustus is a distinguished software engineer and technical leader
with a proven track record of designing and deploying high-impact systems
at scale. With over a decade of experience spanning fintech, logistics,
consulting, and sustainability, Arthur has consistently delivered engineering
solutions that drive business value and technological innovation. He has led
end-to-end architecture and implementation of real-time logistics systems
and intelligent matchmaking engines to large-scale data experimentation
frameworks powered by generative AI.

At Microsoft, Arthur was part of the Sustainability team, where he
collaborated closely with OEM partners to embed energy efficiency directly
into Windows. He also led the development of orchestration tooling that
now underpins data pipelines processing telemetry from millions of devices
globally.

Arthur’s contributions extend beyond the industry. He teaches systems
design to undergraduate students and mentors aspiring engineers. When he
isn't writing code, you can find him enjoying a Netflix classic!



WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Table of Contents
	Title Page
	Foreword
	Introduction
	What Does This Book Cover?
	Who Should Read This Book?

	CHAPTER 1: Understanding Data
	A Brief History of Data
	Types of Data
	Why Is Data Important?
	Data and Information
	Summary
	Notes

	CHAPTER 2: Introduction to Data Engineering
	Data Engineering Explained Using an Oil Refinery Analogy
	An Overview of the Data Engineering Life Cycle
	Navigating Project Requirements, Engaging Stakeholders, and Delivering Business Value
	The Current State of Data Engineering
	The Importance of Data Engineering
	Summary

	CHAPTER 3: Database Fundamentals
	Key Concepts of Databases
	Types of Databases
	Choosing Between Relational and NoSQL Databases
	Summary

	CHAPTER 4: SQL Fundamentals
	Introduction to SQL
	Comparison Operators
	Understanding Joins
	Lab: Setting Up SQL Server and Running SQL Queries
	Best Practices for Writing Efficient SQL Queries
	Summary

	CHAPTER 5: Database Design
	Data Modeling
	Normalization
	Denormalization
	Data Modeling Best Practices
	Database Optimization
	Summary

	CHAPTER 6: Data Warehouses, Data Lakes, and Data Lakehouses
	Data Warehouses
	Data Marts
	Data Lakes
	Data Lakehouse
	The Key Differences Between a Database, Data Warehouse, Data Lake, and Data Lakehouse
	Summary

	CHAPTER 7: Data Pipelines
	Batch Pipelines
	Stream Pipelines
	Lambda Architecture
	Data Orchestration
	Lab: Building an ETL Pipeline and Automating with Apache Airflow
	Summary

	CHAPTER 8: Data Quality
	Bad Data
	Dimensions of Data Quality
	Data Quality Hierarchy
	Summary

	CHAPTER 9: Data Security
	What Is Data Security?
	Common Threats to Data Security
	Core Principles of Data Security
	Data Encryption
	Data Masking
	Understanding Network Security
	Access Control
	Secrets Management
	Data Security and Data Privacy
	Summary

	CHAPTER 10: Data Governance
	How to Think About Data Governance
	Data Governance Framework
	Policies
	Processes
	Roles in the Data Governance Framework
	Data Management and Data Governance
	Summary

	CHAPTER 11: Big Data and Distributed Systems
	The Five V’s of Big Data
	Distributed Systems
	Distributed Data Processing
	Big Data File Types
	Summary

	CHAPTER 12: Data Engineering on the Cloud
	Cloud Computing
	Core Cloud Concepts
	Cloud Service Models
	Cloud Management Models
	Cost Optimization
	Summary

	CHAPTER 13: Building a Career in Data Engineering
	Types of Data Engineering Roles
	Types of Data Engineers
	Landing Your First Data Engineering Role
	Thinking Like a Data Engineer
	Summary

	APPENDIX: Sample Interview Questions
	SQL
	Data Modeling
	Data Pipelines
	Apache Spark
	System Design

	Data Engineering Glossary
	Index
	Copyright
	Dedication
	Acknowledgments
	About the Author
	About the Technical Editor
	End User License Agreement

