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Introduction

1.1 CONDITION MONITORING (CM)

The condition monitoring (CM) strategy can detect various defects affecting
the performance of hydraulic machines. CM aims to provide early warnings
of potential equipment failures to facilitate timely diagnosis and repair [1-3].
Monitoring various machine parameters (vibration, acoustics, temperature, oil
condition, electrical parameters, corrosion, etc.) helps assess its overall health
[4]. Additionally, models can be established using different condition-monitor-
ing techniques to simulate and predict the change in the behavior of parameters
[5]. Prior knowledge of these measurement parameters helps the maintenance
engineer to improve the performance of the machine. CM offers the following
advantages:

1. Unexpected catastrophic breakdowns can be avoided, which may have
expensive or dangerous consequences.

2. Production time/available time to a machine is increased which ultimately
cuts the maintenance cost.

3. Unnecessary intervention in the functioning of a healthy machine can be
eliminated.

4. It reduced the consumption of extra power by correcting the fault in time.

In condition-based maintenance, the data gathered from the monitored machine
is collected, processed, and analyzed to assess its health condition. Based on the
analysis done, a replacement or repair decision is taken. Improvements in sensors,
data collection, signal processing, and appropriate software make this approach
more effective. That’s why the CM system is capable enough to predict accurate
and precise information about the machine’s health condition even in the presence
of environmental noise, electrical interference, severe deterioration, faults, etc. The
type of defect, its severity, and the location of such defect within the machine
can easily be identified. The CM system can also predict the approximate remain-
ing useful life of the machine. The CM techniques are categorized in the follow-
ing ways:

1.1.1 ViBrATION-BASED CONDITION MONITORING

Vibration-based CM employs noninvasive sensors and data capture to evaluate
machine performance in both time and frequency domains. Variations in these
attributes indicate possible damage or deterioration [6].
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Defects can be of different types such as misalignment, unbalance, mechanical
looseness, spall, and pitting. Analysis of the signal warns the maintenance depart-
ment about possible failures and measures to control the operating process param-
eters of the system. The vibration-based CM uses the concept that the damage in
the system alters the system’s mass, stiffness, and dissipation properties, resulting
in a change in the system’s dynamic response. However, it has a limitation that
sometimes local damages may not affect the low-frequency responses making
diagnosis difficult [7].

1.1.2 ViSuAL INSPECTION

Visual inspection, using human senses (sight, hearing, touch, smell) or sim-
ple tools, provides a flexible and readily accessible way to assess a system’s
condition [8, 9].

1.1.3 TEMPERATURE MONITORING

Defects in machine components result in an increase in friction which produces
heat. In temperature monitoring, tracking the temperature of the lubricant or hous-
ing of different components is considered.

1.1.4 AcousTtic-BAseD CONDITION MONITORING

Acoustic-based CM is a form of nondestructive testing that examines the acous-
tic or noise waveforms produced by machinery. The sound produced by machin-
ery components is acquired by the microphone to predict its health condition.
Generally, microphones can be easily installed compared to sensors and have a
high-frequency response range [10, 11].

1.1.5 AcousTic EMissioN IN CONDITION MONITORING

In acoustic emissions, a strain energy release occurs rapidly, creating an elas-
tic wave when there is deformation or damage on the surface of the machinery
component. There are different acoustic emission sources in rotating machinery
such as friction, turbulence, defects, cavitation, and fatigue. The most common
parameters which help in acoustic emission CM are root mean square, energy,
and Kurtosis [12].

1.1.6 OiL Basep CONDITION MONITORING

In oil-based CM, rough working conditions lead to changes in physicochemical
properties, which help determine the health status of the machinery. The slow
degradation process of rotating machinery can also be monitored by oil analysis.
In oil-based CM, the actual degree of degradation is difficult to evaluate [13].
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1.2 IMPORTANCE OF OPERATING FREQUENCY
IN DEFECT IDENTIFICATION

Hydraulic flow-induced rotary systems are prone to different defects such as a
broken impeller or bucket, clogging, added mass, cavitation, misalignment in the
shaft, and bearing defects. Such defects show its characteristic signature related
to shaft speed [14, 15]. For instance, the imbalance in the hydraulic system such
as a Pelton wheel and centrifugal pump causes the rotor to vibrate at shaft fre-
quency [16]. Similarly, misalignment defects raise the frequency sometimes
equal to shaft frequency and sometimes more than that depending on the type of
misalignment [17, 18].

1.3 HYDRAULIC FLOW-INDUCED ROTARY SYSTEM

A fluid energy system generally converts one form of energy into another. On the
basis of the direction of conversion of energy, fluid machines are further classi-
fied. Devices that transform stored energy (such as kinetic, potential, and inter-
molecular energy) into mechanical work are referred to as turbines. In contrast,
devices that use the mechanical energy from moving components to enhance the
stored energy of a fluid are called pumps, blowers, and fans. Pelton turbine is gen-
erally used in utilizing high-head energy applications. The buckets are attached to
the rotor that is in the form of a circular disk and are driven by the perpendicular
jet delivered through one or more jets (Figure 1.1).

Francis turbines are reaction turbines, unlike Pelton turbines. A key difference
is that pressure drop in a Francis turbine occurs both before and within the runner,
due to its diverging flow path, whereas in a Pelton turbine, the entire pressure drop
happens within the runner. Also, a Pelton turbine’s buckets interact with the water
jet individually, while a Francis turbine’s runner is fully submerged (Figure 1.2).

FIGURE 1.1 Pelton turbine.
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FIGURE 1.2 Francis turbine.

FIGURE 1.3 Centrifugal pump.

Centrifugal pumps convert rotational energy (from a motor or engine) into
fluid flow energy. As a type of turbomachinery, they accelerate fluid entering near
their axis outward through an impeller into a diffuser or volute casing, increasing
the fluid’s pressure and velocity (Figure 1.3).

1.4 POTENTIAL FAULTS IN A HYDRAULIC FLOW-INDUCED
ROTARY SYSTEM

Different hydraulic flow-induced systems such as the Pelton turbine, Francis tur-
bine, and Centrifugal pumps comprise many components such as buckets, shafts,
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rotor, nozzle, impeller, and bearing. Defects in these components could be broken
impeller or bucket, clogging, added mass (scales), cavitation, misalignment in the
shaft, and bearing defects. Some of the common defects are as follows.

Bucket defects: In Pelton turbines, the buckets are prone to damage, such as
wavy erosion of the splitter. This erosion transforms the initially sharp splitter edge
into a flattened, wavy surface curving inwards toward the runner’s axis [20]. The
wavy erosion pattern results from uneven wear along the splitter’s length. Another
type of erosion, ripple erosion, creates wave-like deformations across the bucket’s
curved surface, following the flow direction [21]. These ripples form from sedi-
ment particles sliding and scratching the bucket surface due to high acceleration in
areas of low curvature. “Bulging erosion” describes a slight thinning and outward
bulging of the flat area between the splitter and curved bucket surface [22].
Sediment scratching and sliding cause the bulging lines. In multi-jet Pelton tur-
bines, combined cavitation and erosion near the bucket inlet and root, along with
surface irregularities, generate secondary flows and splashing, leading to pitting. A
polished surface with a metallic sheen can form around the runner due to the impact
of small water droplets [23, 24]. Small sediment particles trapped in water droplets
create an abrasive environment within the runner. Hydro-abrasive erosion of coated
buckets depends on the coating’s bond strength, properties, and application method.
Hard coatings, being brittle, erode primarily on the splitter and cutout areas, with
less erosion in the curved zone. Seal defect: The seal consists of two components:
the inner diameter of the rotating seal element and the outer diameter of the station-
ary seal seat. Pump seals may experience failure or leakage due to extended peri-
ods of dry running, inappropriate lubrication (such as using heavy oil), excessive
installation pressure, or damage incurred during the installation process. Bearing
fault: The bearings are an integral part of the hydraulic machinery, which consists
of different components such as inner race, outer race, and ball that are prone to
defects. The bearing faces different defects such as brinelling, contamination, fret-
ting, peeling and spalling etc. Brinelling refers to tiny localized indentation into the
bearing race. Unlike brinelling, the small indentations (in the form of scratches,
pitting, and scoring) are scattered on the bearing surface in case of contamination
caused due to foreign fine particles, which are introduced through a defective bear-
ing seal/lubricant. Fretting represents a flaw that arises from excessive friction
between the inner race and the shaft. Peeling refers to a minor removal of the bear-
ing surface typically less than 0.025 mm deep, primarily resulting from inadequate
lubrication. Spalling occurs under metal fatigue and is an advanced stage of bear-
ing defect. In this, a microscopic crack under the bearing surface makes its way to
come to the surface, resulting in the flaking away of metal particles. Impeller
defect/Runner defects: The impeller or runner of the centrifugal pump or Francis
turbine is also subjected to the high impact of water and silt and corrosive material
coming along with water. A clogged impeller occurs when silt or other particles
block the impeller and get stuck together to the blade. Blade and Wheel cut occurs
due to the erosive or abrasive action of the particles that are dissolved in the water
or due to the corrosive or chemical action of the particles coming along with the
water. Cavitation occurs when liquid pressure drops below its vapor pressure, cre-
ating vapor-filled cavities (bubbles) that collapse violently, generating damaging
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shock waves. A “missing blade” defect, caused by fatigue or metallurgical issues,
involves a blade detaching from the impeller.

1.5 VIBRATION SIGNATURE OF FAULTS

Vibration signals contain a vast amount of data that can be categorized into vari-
ous frequency ranges.

a. High-frequency zone:
Surface roughness and corrosion on components (impeller, rotor, buckets,
bearings) within the hydraulic rotary system cause high-frequency peaks in
vibration spectra. These peaks reflect the increased stress and wear from the
relative motion and contact between these components.

b. Natural frequency and defect frequency zones:
There are impact events when one component makes relative movement
with the defective areas that excite at its natural frequencies. In this sce-
nario, the signal from defective machine element(s) has two components.
The initial part of the signal is generated when one of the machine compo-
nents interacts with the defective element, which is a low-frequency area
that produces an amplitude peak within the fault frequency range. When
any component strikes the trailing edge of the defective element, it results
in an amplitude peak within the natural frequency range [25, 26]. The defect
frequency generally depends on the defective elements.

c. Rotating frequency zone:
Issues in machinery such as imbalance, bent shafts, misalignment, and loose-
ness produce specific vibration patterns at the rotational speed and its multiples.
These faults change the characteristics of contact and the distribution of load.

1.6 VIBRATION AND SIGNAL PROCESSING TECHNIQUES

Vibration waveform analysis is divided into three primary domains: time domain,
frequency domain, and time-frequency domain techniques, as illustrated in
Figure 1.4. The signals are analyzed within these three domains, and significant
features are subsequently extracted for further examination.

FIGURE 1.4 Vibration monitoring techniques.
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1.6.1 TiMe-DoOMAIN TECHNIQUES

The time-domain analysis techniques in vibration signal processing are one of
the simplest approaches that help in extracting the hidden information or features
sensitive to defects. In this analysis, a series of digital waveforms are obtained that
represent displacement, velocity, and acceleration.

1.6.2 FReQUENCY-DOMAIN TECHNIQUES

Frequency-domain analysis transforms digital waveforms to reveal their fre-
quency components. This allows for easier identification and isolation of spe-
cific frequencies, a key advantage over time-domain analysis. The Fast Fourier
Transform (FFT) is the most common method used.

1.6.3 TiME=FReQUENCY DOMAIN TECHNIQUES

Frequency-domain analysis does not provide the same level of time resolution as
time-domain analysis, resulting in a loss of time related information. Time-frequency
analysis methods address this issue by examining signals in both time and fre-
quency domains, making them well-suited for nonstationary signals. Some exam-
ples of these techniques are Short Time Fourier Transform (STFT), Wigner-Ville
Distribution (WVD), Wavelet Transform (WT), Empirical Mode Decomposition
(EMD), and Ensemble Empirical Mode Decomposition (EEMD) [27-31].

1.7 SIGNIFICANCE OF WORK

The harsh and complex operating conditions and different unpredictable operat-
ing factors affect the performance of the hydraulic flow-induced rotary systems
and can result in various defects. These defects lead to severe damage in hydrau-
lic flow machines and sometimes result in the shutdown of the whole plant. The
sudden failure of different components not only results in an economic loss but is
also a threat to life. Preventative and planned maintenance are part of the machine
maintenance strategy, which is based on a set time interval and historical data-
base. However, these strategies are ineffective because set maintenance operations
either result in over or under-maintenance [32]. The CM approach used in this
thesis not only detect different faults but also help in estimating the magnitude
and severity of the defects, which can help maintenance personnel to determine
when to shut down for replacement or maintenance. The entire procedure can be
completed online without the need for any manual intervention or support.

1.8 SCOPE OF RESEARCH

The thesis mainly consists of the development of the fault identification scheme
making use of vibration signal processing and artificial intelligence to detect dif-
ferent defects in hydraulic flow-induced rotary systems and their components.
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In this book, different algorithms have been developed that classify the defects
seeded on various components such as bearings, impellers, rotors, and buckets.
Also, an attempt has been made to develop a vibration-based system through soft-
ware and hardware to diagnose the defect in the pump.

Other defect diagnosis techniques, including acoustic emission, lubrication,
and temperature analysis, are also available, however, they are beyond the scope
of this study. The present study does not include stress analysis or fracture
mechanisms.

1.9 ORGANIZATION OF THE BOOK

The book has been organized into six chapters.

Chapter 1 provides a brief overview of the techniques utilized in fault diagno-
sis of hydraulic flow-induced rotary systems. This chapter also includes a general
summary of the book.

In Chapter 2, a system utilizing signal processing and artificial intelligence
methods for diagnosing faults in Pelton turbines has been suggested. The effi-
ciency of the proposed system has been demonstrated through experimental
research and subsequently confirmed through comparative analysis.

In Chapter 3, a method for detecting defects on the inner race, outer race, and
rollers of a Francis turbine bearing has been introduced. This method has been
implemented on experimental data, and its effectiveness in diagnosing faults has
been evaluated.

Chapter 4 focuses on the automated detection of defects in different parts of
the centrifugal pump, including the bearing and impeller. The specifics of the
experiments and the outcomes of the automated defect identification have
been shared.

In Chapter 5, a method for identifying defects in the inner race, outer race, and
roller of the bearing has been introduced. The method has been used on experi-
mental signals, and its effectiveness in diagnosing faults is evaluated.

Finally, the scope of future research has been presented in Chapter 6.



Fault Diagnosis of the
Pelton Turbine

2.1 INTRODUCTION

A Pelton turbine is an impulse turbine that generates mechanical energy by utiliz-
ing the momentum change of a fluid jet [33—35]. The rotor of a Pelton turbine,
featuring buckets attached to a shaft and held in place by bearings, can be prone
to harm due to factors such as corrosion, erosion, metallurgical flaws, cavitation,
and insufficient lubrication [36, 37]. The primary components of a Pelton turbine
that are susceptible to failure include bearings, nozzles, servomotors, and buckets.
Condition monitoring, using acoustic or vibration analysis, can provide early
warnings of defects. While acoustic monitoring offers advantages, vibration mon-
itoring is often preferred due to its reduced sensitivity to environmental noise.
This chapter focuses on two specific defect cases: bucket and bearing defects
[38, 39].

2.2 DIAGNOSIS OF BUCKET DEFECT (CASE 1)

Pelton turbine buckets are susceptible to various forms of damage. Wavy erosion
creates a wavy pattern on the splitter edge [20]; ripple erosion forms wave-like
deformations on the curved surface due to sediment particle impact [21]. Bulging
erosion involves thinning and outward bulging between the splitter and curved
surface [22]. Cavitation erosion, particularly in multi-jet turbines, causes pitting,
especially near the bucket inlet and root [23]. A polished surface can develop due
to water droplet impact, trapping sediment and creating an abrasive environment
[24]. Finally, hydro-abrasive erosion in coated buckets is influenced by coating
quality and primarily affects the splitter and cutout areas.

Time-domain and frequency-domain analyses are widely used techniques for
fault diagnosis [40]. Other techniques include wavelet transforms (WT) [40, 41],
wavelet packet transforms (WPT) [42, 43], and signal sparse decomposition
methods [44, 45]. However, WT and WPT are nonadaptive, requiring predefined
wavelet functions [46, 47], while sparse decomposition, though adaptive, demands
significant computational resources for large industrial datasets [48].

Ensemble empirical mode decomposition (EEMD) adaptively decomposes
signals into intrinsic mode functions (IMFs) [49, 50], offering advantages in fault
diagnosis despite limitations. A key weakness is the inability to separate compo-
nents with frequencies within an octave, leading to mode mixing [51]. Additionally,
empirical mode decomposition (EMD)’s susceptibility to noise (intermittence)
[51], where a single IMF may contain multiple scales or similar scales appear

DOI: 10.1201/9781003614821-2 9


http://dx.doi.org/10.1201/9781003614821-2

10 Data-Driven Fault Diagnosis

across multiple IMFs, also contributes to mode mixing. These issues have spurred
the development of improved EMD methods.

EEMD, an improved version of EMD, addresses mode mixing by adding white
noise before decomposition [52]. However, EEMD’s limitations include difficulty
in determining optimal white noise amplitude and ensemble number, hindering its
adaptability. Furthermore, while EEMD significantly improves mode separation,
it does not completely resolve the issue.

To reduce mode mixing in EMD, Li et al. [51] proposed a method called time-
varying filtering-based EMD (TVF-EMD), which utilizes a B-spline approximation
filter during the shifting process. TVF-EMD offers several advantages over existing
methods such as EEMD and multivariate EMD [53]: (1) it simultaneously resolves
separation and intermittence issues; (2) its time-varying filter handles mode mixing
and time-varying features better than EEMD and variational mode decomposition;
and (3) an improved stopping criterion enhances adaptability, especially at low sam-
pling rates. Li et al. [51] demonstrated TVF-EMD’s effectiveness through simulations
and real-signal analysis, showing the significant influence of bandwidth threshold &
(separation performance) and B-spline order » (filtering performance) [51]. However,
optimal parameter selection (£ and n) is crucial and challenging, requiring optimiza-
tion techniques. The following contribution has been made in Case 1.

* An amended grey wolf optimization (AGWO) technique, which integrates
position updating and Gaussian mutation strategies, is employed to determine
ideal TVF-EMD parameters. This refinement helps the fundamental grey
wolf optimization (GWO) algorithm avoid becoming stuck in local minima,
thereby enhancing convergence speed and minimizing computational time.

¢ The suggested optimization algorithm employs kernel estimate for mutual
information (KEMI) as its objective function. This function is integrated
into the proposed health condition monitoring system for Pelton turbines.

* By utilizing the best parameters, TVF-EMD separates the original signal
into multiple IMFs.

e The least KEMI value (fitness function) signifies the best solution, for
which a scalogram is created for every health condition.

* Scalograms produced from the best solution are utilized to form training and
testing datasets. A convolutional neural network (CNN) model, which is trained
on this dataset, is assessed for classification accuracy using the testing set.

2.2.1 THEORETICAL BACKGROUND

2.2.1.1 Time-Varying Filter-Based Empirical Mode Decomposition
(TVF-EMD)

EMD decomposes a signal x(t) into IMFs and a residual r (t), as shown in Eq. (2.1).

N

x(1) = imfi(1)+7(1) @.1)

i=1
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where imf; (t) is ith IMF. In EMD, decomposition is a shifting process that takes
place as per the given steps:

(1) Estimation of the “local mean” m(t) and
(2) The mean m(t) is recursively subtracted from the input signal until the
stopping criteria are met.

In TVF-EMD, local narrow-band signals (with characteristics similar to mono-
components, but yield improved Hilbert spectra) replace mono-components to
enhance EMD performance. These signals are defined by an instantaneous band-
width below a given threshold. The method involves determining local cut-off
frequencies and applying a time-varying filter [51]. The shifting process in TVF-
EMD uses this filter, following the steps outlined in [51].

A. Estimation of the local cut-off frequency
A B-spline approximation filter evaluates the dynamically changing cut-off
frequency. This process includes generating polynomial splines that repre-
sent the input signal, as explained in Eq. (2.2).

©

gn(t) = e(k)p"(t/m~k) 2.2)

k=—x0

The B-spline function, denoted as " (t), along with coefficients c(k), order n,
and knots m, defines the B-spline approximation. For given n and m, the
approximation minimizes the squared error &, by determining optimal coef-
ficients c(k).

+00

&2 = Z(x(t)—[c]m b (r))2 (2.3)

t=—00

where b, (t): =p" (t / m), [.]Tm am. The asterisk * indicates the convolution oper-
ation. Then ¢ k) can be determined by

c(k) = [pﬁ, *xlm (k) 2.4)

In the above equation, [-] 1, fepresents down-sampling operation by m. The pre-
-1
filter is indicated by p;, = {([b;’l * by L ) * by (t)} By substituting the value of

c(k), Eq. (2.2) takes the following form:

gn=pnxx] #b(1) 2.5)
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Eq. (2.5) defines a specific low-pass filter for B-spline approximation, where the
knot spacing, m, influences the filter’s local cut-off frequency. Because the knot
information is initially unknown, the local cutoff frequency is first estimated from
the input signal to construct the time-varying filter. This process proceeds as follows:

Step 1: Calculating the instantaneous amplitude, A(t), and instantaneous fre-
quency, go’(t), of a signal, x(t), using the Hilbert transform.

A1) =2 +3(r) (2.6)
¢/ (1) = d(arctan (5(r) / x(1))) / dr 2.7)

where X (t) is the Hilbert transform of x(t) signal.

Step 2: Locate the maxima {,,,} and minima {t,;,} of A(¢). The signal
z(t)=x(t)+jfc(x =A(t exp(j(o(t)) is the analytical signal corre-
sponding to x(t . @(t) is the instantaneous phase represented as

go(t) = arctan[fc(t)/x(t)]. In the case of a multicomponent signal, z(t) is
expressed as the combination of two signals.

Z(t) = A(t)exp(jgo(t)) =aq exp(j(pl (t))+ a, exp(j(pz (t)) (2.8)

Thus, the following equations can be obtained:

A*(t)=ai (1)+a; (1) +2a)(1)a, (t)cos[(pl (1) (t)] (2.9)

1 {a{(t)az(t)sm[(pl t)-(/’z(fﬂ} (2.10)
)si

where a; (t) and ¢, (t) represents amplitude and phase for the ith component.
Using Eq. (2.9), the local minimum of A(t) is determined at 7.;,, which
satisfies the given equation:

c0S[ @t (fuin) = @2 (fuin) | = =1 (2.11)

On substituting Eq. (2.11) into Eq. (2.9) and Eq. (2.10), following Egs.
(2.12) and (2.13) are obtained:

A(tmin) = ‘al (tmin ) ) (tmin)

(2.12)
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(ol(tmin)Az (fmin) =l (tmin )(al2 (fmin ) —a (tmin )az (tmin ))

+ (05 (tmin ) (d% (tmin ) - (tmin )a2 (tmin )) (2 1 3)
Since Aty ) is minima of A(t), A’(fy;, ) = 0 is obtained. Thus,
ai (tmin)_aé (tmin) =0 (214)

On SO]Ving EqS (21 1)_(2 14’)a a (tmin )’ a (tmin )»(ﬂl (tmin )’ and %) (tmin) are
computed. In similar way gq, (tm,“X ),az (tmaX ) N (tmX ), and @, (tmax) are
obtained from Egs. (2.15)—(2.18).

COS[Q] (tmax)_¢72(tmax )] =1 (215)

A(tmax) =a (tmax)+a2 (tmax) (216)

(p,(tmax )A2 (tmax) = ¢{ (tmax )(al2 (tmax ) +a (tmax)aZ (tmax))
+ (Dé (tmax )(Cl% (tmax ) + a (tmax)a2 (tmax )) (217)

&1 (fmax ) + @ (Fmax ) = 0 (2.18)

Step 3: Computing a, (t) and a, (t)
The B-spline functions are given in Eqs. (2.19) and (2.20).

Bi(t)=|a (1) (r) 2.19)
Bo (1) =|ai (1) +ax (1) (2.20)

Using Eq. (4.9), the above equations can also be written as given in Eqs.
(2.21) and (2.22):

ﬂl(tmin):A(tmin):‘al(tmin)_aZ (tmin) (221)

ﬁZ (tmax) = A(tmax ) = ‘al (tmax ) ta, (tmax)

(2.22)

Using interpolation technique between A{(f,}) and A{(Z..}), the B (t)
and S, (t) can be easily computed. The (t) and a, (t) are slow varying
components which can be computed using Egs. (2.19) and (2.20). The mod-
ified form is given in Egs. (2.23) and (2.24) as

a(1)=[B(t)+p(1)] /2 (2.23)
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a (1) =] B(1)-Bi(1)]/2 (2.24)

Step 4: Calculating ¢ and @5.
The 7 (t) are expressed as given in Egs. (2.25) and (2.26) which is the func-

tion of ¢ (t) and ¢} (t)
m(t)=of [alz(t)—al (t)az(t)]i-(oé [a%(t)—al (t)az(t)J (2.25)
m(t) =gl [af (1)+a(t)a (t)] +¢b [a% (1)+a(t)a (t)} (2.26)

Here, a, (1), a;(t), (1), and ¢} (¢) are slow varying components. 77, (¢) and
7 (t) are solved using Egs. (2.25) and (2.26) by making interpolation
between go’({tmin})Az( tmm}) and (p’({tmax})A2 ({tmax}).

The components ¢} () and ¢5 (1) take the form as given in Egs. (2.27)
and (2.28).

t)= ﬂl(t) n 772(2‘)
Al 2af (1)=2a)(t)a (1) 2ai (1)+2a(t)ax (1) (2.27)

) n()
) ) -2aal) 2@ 2a@an O

Using Eq. (2.10), Eq. (2.25) and Eq. (2.26) can be modified and written as
given in Eqs. (2.29) and (2.30):

Ui (tmin) = (p'(tmin)Az (tmin) =l (tmin )[912 (tmin ) - (tmin)aZ (lmm ):|

+(pé(tmin)|:a§ (tmin)_al (tmin)aZ (tmin ):' (229)

7 (ts ) = 0 () A (fman ) = @1 (o ) @7 () = @1 () @2 ()|

+ wé (tmax )|:Ll% (tmax ) - al (tmax ) aZ (tmax )J (2'30)

Step 5: Computing local cut-off frequency ¢y (t) The local cut-off frequency
is computed using Eq. (2.31) as given below.

O (t) _ ol (t);("é (t) _ Zza(ll()t;lz((:)) 2.31)

Step 6: Realigning ¢y (t) to address the issue of intermittence problems.
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FIGURE 2.1  Algorithm-1 for frequency realignment.

B. Filtering input signal to obtain local mean
Intermittent noise affects the local cutoff frequency, @ (t), calculated in
Step 5. Algorithm 1 [51] (Figure 2.1) addresses this using a time-varying
filter to refine ¢y, (t)

With local cut-off frequency, the signal h(t) can be viewed as in Eq. (2.32).

h(r)= cos[ _[ Phis (t)dt] (232)

A B-spline approximation filter is created using the extrema (knots) of & (t), denoted
as {in } and {f,,,, } of h(1), to align the filter’s cutoff frequency with ¢}, (7). This
filter is then applied to the input signal, x(t), resulting in an approximation, m (t)

C. Verification of residual signal in meeting the stopping criterion

A narrowband signal is selected based on its instantaneous bandwidth. Eq. (2.33)
expresses a relative criterion for this selection.

9(1‘) — BL(mghlin (t) (233)

Purs (1)

A signal is classified as narrowband if H(I) is below the threshold & [Q(t) < f].
Egs. (2.34) and (2.35), respectively, define the average instantaneous frequency
@ay(t) and the Loughlin instantaneous bandwidth By, gin-

(1) e 1) (2.34)

2
2
2
2

Duvg (1) =
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FIGURE 2.2  Shifting process of TVF-EMD.

a (0 vaz () @ (e (0)(of (1) -0t (1))

By ougniin (t) = at (;)+a§ (t) " a; (t)+a§ (t))z

(2.35)

The TVF-EMD shifting process steps are detailed in Algorithm 2 [51] (Figure 2.2).

D. Limitations of TVF-EMD
The bandwidth threshold, &, and B-spline order, n, which impact TVF-
EMD performance (& affects separation, n affects filtering [51]), must be
carefully chosen. Poor selection leads to mode mixing in the IMFs.

Finding the optimal combination of these parameters to best match the original
signal is a key challenge addressed in this research.

2.2.1.2 Convolution Neural Network (CNN)

CNNs are deep learning tools that analyze images by processing and extracting
information [54, 55]. In contrast to other types of networks, CNNs feature a three-
dimensional structure of neurons. A standard CNN (Figure 2.3) typically consists
of convolutional layers, a max-pooling layer, fully connected layers, and a clas-
sification layer.

A. Convolution layer: The convolutional layer, an essential part of CNNs,
employs small filters that traverse the entire image through a process of
shifting [56]. Convolution consists of computing the dot product of the filter
with the image, aggregating the results over the area covered by the filter,
and then continuing this procedure for the subsequent positions of the filter
(Figure 2.3, Eq. 2.36).

2 =p(x o b)) (236)
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FIGURE 2.3 Convolution neural network architecture.

where @ represents the sigmoid activation function, b_g»l) is the bias at the [ layer,
and wgl) represents the weight between the i input and j” output at the /" layer.

B. Pooling layer: CNNs use pooling layers for downsampling. While various
pooling functions exist, max pooling is commonly employed. The pooling
expression is represented in Figure 2.3 and Eq. 2.37.

M (y) = max(L{f (x))forx =1,1¢o pat,, pat,, 2.37)

where M} (y) represents the pixel at location y in the I convolutional layer

for the ¢ channel, and pat, and pat,, denote the patch height and width,
respectively.

C. Fully connected layer: This layer is comparable to an artificial neural net-
work (ANN), where neurons from earlier layers are linked to neurons in the
following layers, as illustrated in Eq. 2.38.

¥ =2 e b)) (2.38)

where ¢ is the sigmoid function, b&z) is the bias, z; ' is the input from the previ-

ous layer, and w,(jz) represents the weight between the input and output nodes.
The fully connected layer, which connects the preceding layer’s output

to the next layer’s neurons, involves a large number of training parameters.

D. SoftMax layer: This layer calculates the probability distribution over all
potential target classes.

P(y))= en(y)) (2.39)

Zfl exp(y})
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(E) Classification output layer: This layer assesses the loss function through-
out the training process, with the goal of reducing the cost function (e”””"’g
of the CNN to enhance prediction accuracy, as illustrated in Eq. 2.40.

eustmg CE + l// z W (240)

where CE is cross-entropy loss as represented in Eq. (2.41).

_Zy]r Iny? (2.41)
j=1

Here, y” represents the predicted value, and the target value is y” . The L2 regular-
ization is represented by .

2.2.1.3 Optimization of TVF-EMD using AGWO

At this stage, TVF-EMD parameter optimization (threshold and B-spline order) is
performed to improve fault diagnosis from vibration signals. This optimization
uses a search algorithm comprising a fitness function and a search method,
detailed in the following section.

A. Kernel estimate for mutual information (KEMI)
KEMI quantifies the dependency between variables g and j, with high val-
ues indicating strong mutual information and zero indicating independence.
Copula transformation (rank ordering) scales the variables to the (0, 1)
range before using Gaussian kernels to estimate marginal and joint proba-
bility distributions [57, 58]. This kernel estimator dynamically detects non-
linear dependencies. For a dataset Z = { g j,} i=12,...,N, the joint

probability distribution, p Zh_zG l‘z Zi

) is computed, where

G is the bivariate standard normal dens1ty, h is the kernel bandwidth, and N
is the sample size. Marginal probabilities, p( g) and p( j ), are derived from
p(z). KEMI is then calculated as shown in Eq. (2.42).

KEMI(g,, ;) = Zlo g”]’ (2.42)

p(2)r(ii)

Table 2.1 presents the pseudo code for the KEMI calculation algorithm. To pre-
vent mode mixing, the lowest KEMI value is chosen. In the decomposition pro-
cess, the highest value is obtained from the cumulative information across all
modes and the raw signal is utilized to extract pertinent information. Eq. (2.43)
specifies the ratio of the overall mutual information among modes to the total
mutual information between the original signal and its modes.
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KEMI fitness function =

TABLE 2.1
Pseudocode to Calculate KEMI

Input: Variable 8- Variable J

Output: KEMI (g, )

1: Calculate the size of variables

2: Obtain Copula-transform

3: Calculate values for kernels at each data point
Kg = square form (exp (-ssd ([g; g])/h2)) + eye (Mg);
Kj = square form (exp (-ssd ([j; j1)/h2)) + eye (Mj);
4: Calculate kernel sums for marginal probabilities
Cf = sum (Kg);

Cl = sum (Kj);

5: Kernel product for joint probabilities

Kgj = Kg. *Kj;

m = sum (Cg. *Cj) *sum (Kgj)./(Cg*Kj)./(Cj*Kg);
KEMI = mean (log(m));

ssd indicates the sum of squared differences

K-1
. KEMI(mod(k),mod (k +1))

. (2.43)
KEMI (mod (k). g)

K=1

The KEMI fitness function reduces the mutual information among modes while
enhancing the information derived from the original signal to avoid mode mixing.

B. Amended grey wolf optimization (AGWO)
GWO, a meta-heuristic algorithm introduced by Mirjalili et al. [59], simu-
lates wolf pack hunting. As shown in Figure 2.4, the wolf hierarchy is
divided into four levels (cx, 7, 5,a)). The top three agents (a, 7,0 ) guide the
optimization process, while the remaining wolves (a)) follow. Subsequent
subsections detail GWO and AGWO, including the rationale behind
AGWO'’s modifications.

Encircling prey
The initial stage of the hunting process, where wolves encircle their prey,
is simulated by Eqgs. (2.44) and (2.45).

D =|C.Xp(1)-X(1) (2.44)

X(1+1)=X,(I)-AD (2.45)
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FIGURE 2.4 Hierarchy of grey wolf.

In these equations, [ represents the current iteration, X, denotes the prey’s posi-
tion, and X represents the grey wolf’s position. The coefficient vectors A and C
are calculated using Eqgs. (2.46) and (2.47), respectively.

A=2arn-a (2.46)
C=2n (2.47)

where the random vectors 7; and r, are within the interval [0, 1]. The parameter a
. 2t . . . . .
is defined as | 2 — T] , where t is the current iteration and 7" is the maximum

number of iterations. This ensures a linearly decreases from 2 to 0 over the
iterations.

Grey wolf position updates, based on prey location, are calculated using Eqgs.
(2.44) and (2.45). This is achieved by adjusting the A and C vectors. The random
vectors (wolves) r and r, can assume any position, as detailed in Ref. [59].

* Hunting
Initially, the top three search agents are randomly initialized, as the optimal
solution (target) is unknown. Their positions are then saved and used to
update the positions of the remaining agents. This process is described by
Eqgs. (2.48), (2.49), and (2.50).

D, =|C\.X,-X|.D, =|C,.X, - X|.D, =|C3.X5 - X| (2.48)
X] :Xa_A]'Da7X2 :X}/—Az.D:V,X:; :X(S—A:;.D()‘ (2.49)
X(H_l):w (2.50)

3
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* Attacking prey
The pursuit of the prey persists until it is caught, accomplished by lowering
the value of a in the hunting process framework. Lowering a also lessens
the variations in A (a random value ranging from [—2a,2a]). When ‘A‘ is
less than 1, the wolves gather around the prey.

» Search for prey (exploration)
Exploration is crucial for effective hunting; therefore, AGWO incorporates
additional operators during exploration to enhance performance. Grey
wolves initially disperse while searching for prey, converging only upon
locating it to initiate an attack.

Mathematically, A‘ >1 causes the grey wolves to diverge, searching for better
prey. Simultaneously, C takes random values to emphasize exploration, regardless
of iteration number. C also weights each prey, guiding the wolves toward it.

2.2.1.4 Proposed Modifications in GWO

This section outlines the enhancements made to the fundamental GWO algorithm.
These upgrades, which involve a position-updating method and a Gaussian muta-
tion approach centered on population division and reconstruction, are designed to
improve the search capability of the algorithm.

A. Position updating
During the hunt, wolf positions are updated according to a normal distribu-
tion. Eq. (2.51) incorporates weighting factors V;, V,, and V; into Eq. (2.50)
to achieve this position update.

ViXi + VL, X, +V3X5
3

X(1+1)= (2.51)

where Vi +V, +V; =1, and V|, V, and V; are drawn from a normal distribu-
tion. The ranges for V| and V, were determined empirically through experi-
mentation to optimize performance.

Vv, =[0.1,0.5] (2.52)
V,=[0.7,0.1] (2.53)
Vi=1-[Vi+V;] (2.54)

In this context, 0.1 represents the mean and 0.5 signifies the variance for V;.
Likewise, 0.7 denotes the mean and 0.1 indicates the variance for V, in order
to identify the optimal solution.
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B. Gaussian mutation strategy
Back and Schwefel [60] presented a Gaussian mutation approach to enhance
the effectiveness of metaheuristic algorithms [61, 62]. This method creates
new solutions that are close to current ones by taking small steps to navigate
the search space while preserving diversity. The Gaussian density function
is characterized as follows:

—6?

= 2’ (2.55)

In this context, o denotes the variance associated with the possible solu-
tion. Eq. (2.55) illustrates a probability density function that has a minimal
value at a mean of 0 and a standard deviation of 1. A random vector,
Gaussian (6’), is generated using this density function as shown in Eq. 2.56.

G} = G, (1+ Gaussian(0)) (2.56)

where G; is ith mutated candidate solution and Gaussian(@) is a ran-
dom vector.

2.2.2  DEerecT IDENTIFICATION SCHEME

An AGWO algorithm is proposed to determine the optimal bandwidth threshold (§ )
and B-spline order (n) for TVF-EMD, using KEMI as the fitness function [Eq. 2.57].
This enhanced GWO algorithm incorporates position updating and Gaussian muta-
tion strategies to minimize the fitness function as presented in Eq. 2.57.

objective function = min(yz{é,n}) (KEMI)

s.1,££[0,0.8]
n=5,,...,30

(2.57)

Here, KEMI denotes the kernel estimate of mutual information utilized in the TVF-
EMD decomposition modes. The parameters y = (§ , n) refer to the TVF-EMD
parameters that need to be optimized, where & (bandwidth threshold) varies between
[0, 0.8] and n (B-spline order) ranges from [5, 30], as indicated in the literature [54].
The procedure for applying the proposed method is outlined in the following steps:

Step 1: Collect vibration data from the Pelton turbine. Set up the AGWO algo-
rithm with a specified population size N and a maximum number of
iterations L, applying a defined range for the TVF-EMD parameters.
Document the objective function value for every iteration.
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FIGURE 2.5 Fault detection methodology.

Step 2: Break down the raw vibration data into IMFs utilizing TVF-EMD and
compute the KEMI for all IMFs. Document the lowest objective func-
tion value for every iteration.

Step 3: When the iteration count/ meets or exceeds the maximum allowed itera-
tions L, the algorithm stops running. If not, increase 1 and keep iterating.

Step 4: The combination of parameters that produces the lowest value for the
KEMI fitness function is determined and recorded. The IMF associated
with this lowest fitness value is referred to as the sensitive IMF.

Step 5: Scalograms are produced for the sensitive IMF and saved to form
image data.

Step 6: The image data is fed into a CNN to assess classification accuracy. The
process for fault diagnosis is demonstrated in Figure 2.5.

2.2.3 AprpLICATION OF DEFeCT IDENTIFICATION SCHEME ON PELTON TURBINE

A. Testrig

The suggested fault diagnosis method is implemented on a Pelton turbine
(refer to Table 2.2 for specifications and Figure 2.6 for the test rig). This
turbine consists of components such as a rotor with 16 buckets, casing, and
nozzle, which are prone to defects. The buckets function as cantilever
beams, directly experiencing the force of the water jet, which leads to
fatigue. The rotor is mounted on a shaft and is supported by two SKF UC
206 bearings, driven by a 15 hp motor combined with a centrifugal pump
system. The buckets receive the impact of the tangential water jet emitted
from the nozzle.
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TABLE 2.2

Specification of Pelton Turbine
Maximum Output 3 KW
Supply head 30 m

Maximum discharge 400 liter per minute
Sump tank capacity 200 liters

Number of buckets 16

FIGURE 2.6 Pelton turbine test rig.

(B) Data acquisition

Vibration data was gathered for four different conditions of the Pelton tur-
bine: healthy, splitter wear, added mass, and a missing bucket (see Figure
2.7). For each of these conditions, 350 signals were collected at seven dis-
tinct speeds (ranging from 900 to 1500 rpm) using a uniaxial accelerome-
ter from PCB® Piezotronics (with a sensitivity of 100 mV/g) installed on a
bearing. A National Instruments data acquisition system with 24-bit reso-
lution and 4 channels, operating within a LabVIEW environment, recorded
the data at a frequency of 70,000 Hz, resulting in 14,000 data points for
each sample. The raw signals underwent processing using an optimally
parameterized TVF-EMD to extract IMFs. The mode most sensitive to
detection (as established by KEMI) was chosen to create continuous wave-
let transform scalograms, thus producing the image dataset. The analysis
was performed using MATLAB R2019a, with data acquisition conducted
through LabVIEW 2020. The specifications of the system used were:
Intel(R) Core(TM) i5-4210U CPU running at 1.70 GHz and capable of
2.40 GHz, equipped with 8 GB of RAM, and operating on 64-bit
Windows 10.
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FIGURE 2.7 Various health states: (a) optimal health, (b) wear on the splitter, (c) addi-
tional mass, and (d) absence of one bucket.

Figure 2.8(a) shows a typical time-domain vibration signal at 1200 rpm, while
Figure 2.8(b) displays its TVF-EMD decomposition into IMFs using the opti-
mized parameters (§ =0.0073,n = 23) obtained via the proposed AGWO algo-
rithm. KEMI values were calculated for each IMF: 0.0379, 0.0338, 0.0360,
0.0313, 0.0331, 0.0337, 0.0302, 0.0375, 0.0365, and 1.8826. IMF 7, exhibiting
the minimum KEMI value (and thus minimum mutual information with the raw
signal), was selected for further analysis. Its scalogram is shown in Figure 2.8(c).

Splitter wear was simulated by grinding approximately 70% of a bucket’s split-
ter. Figure 2.9(a) shows a raw vibration signal under this condition. AGWO opti-
mization, using KEMI, yielded optimal TVF-EMD parameters of £ =0.0313 and
n =18 at 1200 rpm. The resulting decomposition is shown in Figure 2.9(b). KEMI
values for the 10 IMFs were: 0.0350, 0.0346, 0.0346, 0.0405, 0.0317, 0.0324,
0.0351, 0.342, 0.0349, and 1.7553. IMF 5, exhibiting the least mutual informa-
tion, was selected for scalogram generation (Figure 2.9c).

Figure 2.10(a) shows a typical vibration signal at 1200 rpm with added
mass (25 grams) on a bucket to simulate imbalance. The TVF-EMD
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FIGURE 2.8 (a) Raw signal, (b) decomposed signals, and
(Continued)
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FIGURE 2.8 (Continued) (c) scalogram at 1200 rpm under healthy condition.

decomposition is shown in Figure 2.10(b). Using the previously determined
optimal TVF-EMD parameters, KEMI values for the IMFs were calculated:
0.0365, 0.0387, 0.0323, 0.0321, 0.0367, 0.0343, 0.0362, 0.0357, 0.0336, and
2.0414. IMF 4, possessing the minimum KEMI value (and therefore minimum

FIGURE 2.9 (a) Unprocessed signal, (Continued)
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FIGURE 2.9 (Continued) (b) decomposed signals, and (c) scalogram at 1200 rpm under
conditions of splitter wear.
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FIGURE 2.10 (a) Unprocessed signal, (b) decomposed signals,
(Continued)
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FIGURE 2.10 (Continued) (c) scalogram at 1200 rpm with added mass condition.

mutual information with the raw signal), was selected for scalogram genera-

tion (Figure 2.10c).
Figure 2.11(a) shows a typical 1200 rpm vibration signal with a missing
bucket (simulating imbalance). Optimized TVF-EMD (§ =0.0095,n = 19)

FIGURE 2.11 (a) Unprocessed signal, (Continued)
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FIGURE 2.11 (Continued) (b) decomposed signals, and (c) scalogram recorded at a
speed of 1200 rpm with one bucket absent.
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decomposes this signal into ten IMFs [Figure 2.11(b)]. IMF 6, selected based
on the minimum KEMI value, is used to generate the scalogram as shown in
Figure 2.11(c).

2.2.4 ResuLts AND DiscussioN

2.2.4.1 Comparison of the AGWO with Other Art of Optimization

The AGWO algorithm was evaluated using 23 benchmark functions (see Table 2.3)
and was compared to GWO, salp swarm algorithm (SSA), sine-cosine (SCA),
whale optimization algorithm (WOA), ant lion optimization (ALO), and grass-
hopper optimization algorithm (GOA) based on their mean results and standard
deviations (refer to Table 2.4). AGWO achieved better performance than the other
algorithms on 17 of the functions (F1-F7, F9-F11, F15, F17-F18, F20-F22, and
F23), showing the smallest standard deviation. SCA excelled on functions F8 and
F16, while GOA was the top performer on F12 and F13, SSA on F14, and ALO
on F19. These findings highlight the exceptional optimization capabilities
of AGWO.

Here, C denotes the function’s characteristics, and D represents the dimension-
ality. US, UN, MS, and MN refer to unimodal separable, unimodal non-separable,
multimodal separable, and multimodal non-separable functions, respectively.

The algorithms were evaluated on benchmark functions by calculating the
mean and standard deviation over 20 independent runs (refer to Table 2.5), but
individual run comparisons were not made. To determine statistical signifi-
cance, a Wilcoxon rank-sum test was conducted at a 5% significance level,
resulting in P-values (see Table 2.5). P-values under 0.05 lead to the rejection of
the null hypothesis, suggesting there are statistically significant differences.
The algorithm that performed best (based on the lowest standard deviation) for
each function was compared to the others. Instances of self-comparison are
indicated as N/A.

Table 2.5 shows AGWO achieved the best results for 15 functions (F1-F7,
F9-F11, F17, F19, and F21-F23), while SCA performed best on F8, F15, F16,
and F18; GOA on F12, F13, and F20; and GOA and SSA performed equally well
on F14. Tables 2.4 and 2.5 demonstrate AGWO'’s statistically significant superior-
ity over other algorithms [60], indicating its enhanced effectiveness for Pelton
turbine fault identification.

2.2.4.2 The Need for Optimizing TVF-EMD Parameters

The TVF-EMD technique breaks down signals into IMFs, selecting a significant
IMF through an appropriate index. Typically, the parameters of TVF-EMD (&
and n) are determined based on empirical methods, which may impact the accu-
racy of the decomposition. This study suggests utilizing AGWO, an enhanced



TABLE 2.3
Definition of Benchmark Functions

S. No.

F1

F2

F3

F4

F5

Fé

F7

F8

F9

Function

Sphere

Schwefel 2.22

Schwefel 1.2

Schwefel 2.21

Rosenbrock

Step

Quartic

Schwefel

Rastrigin

Formulation

D

F(x):Z +lj

o-3(5

=1\ j=1

Xi Xi

Xi

F(x) =max; {

,léisD}

D

F(x) = Z(in + O.SJ)2

i=1

D

F(x) = Zi)q4 + random ‘:O,l)

i=1
* )

i

D

F(x) = 72()@ sin

i=l

D

F(x) = 10D+Z(x,<2 —10c0s(27rx,))

i=1

30

30

30

30

30

30

30

30

Range

[-100, 100]

[-10, 10]

[-100, 100]

[-100, 100]

[-30, 30]

[-100, 100]

[-1.28, 1.28]

[-500, 500]

[-5.12,5.12]

UsS

UN

UN

us

UN

UsS

UsS

MS

MS

Global Min.

—-418.9829*D
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TABLE 2.3 (CONTINUED)
Definition of Benchmark Functions

S. No. Function Formulation D Range
/ I« |«
_ . - 2| _ - X _
F10 Ackley F(x)=-20exp| -0.2 5 ;x,- exp[ 5 ;COS(Z/Z')C, )J +20+e 30 [-32,32]
1 2 - X
i - 2 _ i —
F11  Griewank F()=2000 Zx E[cos[ \ﬁj+l 30 [-600, 600]
D-1
F12 Penalized F(x)—g{lOsinz(ﬂyl)JrZ(yi 1) |:1+lOsin2(ﬂyi+l)}+(yD 1) 30 [-50, 50]
D
+) u(x,10,100,4)
2
k(xi —a)m (X >a
X +1
where y; =1+ ,andu(x,-,a,k,m)= 0;—a<x;<a
k(fx,» 7a)m (X <—a
2 2
in® (3 ;—1)"| L+sin* (37x,, D
F13 Penalized 2 F(x)=0.1 sin’ (37x)+ Z‘(x' Fresin® (e +Z"(xn5’1°0’4) 30 [-50,50]
+(xD —])2 |:1+sin2 (271')(0)} =l
25
F14 Foxholes F(x) = 1 Z L 2 [-65.536, 65.536]

500 b 6
=l j+2f:1(xi 7a,.j)

C

MN

MN

MN

MN

MS

Global Min.

0

0.998004
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F15

F16

F17

F18

F19

F20

F21

F22

F23

Kowalik
Six-hump
camel-back

Branin

Goldstein-Price

Hartman 3

Hartman 6

Shekel5

Shekel7

Shekell10

! X (b‘-z + b;xz) ’

b +bx; + x4

F(x) =4x7 —2.1x} +%x16 + XX, —4x3 +4x3

F(x)= v-2L @3 6] +10[1--1 |cosx +10
4 V4 87

2
T

F(x) =[1+(x1 3y +1) (1914, +3x —14x, +3x¢ — 143, +6x,x, +3x§):|

2
x[30+(2x| ~3x,) ><(18732x1 F1232 +48x, —36x,x, + 272 )J

A~

[\

w2

(o)}

[-5.5]

[-5.5]

[-5.5]

[-2.2]

[-5.5]

[-5.5]

[-5.5]

[-5.5]

[-5.5]

MN

MN

MN

MN

MN

MN

MN

MN

MN

0.0003075

—-1.0316285

0.398

-3.862782

-3.32236

—-10.1532

-10.4029

-10.5364
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TABLE 2.4

Comparison of the Proposed Algorithm with Other State of Art

Benchmark Function

Optimizations Algorithms

S.No  Parameters

F1 Average
Std

F2 Average
Std

F3 Average
Std

F4 Average
Std

F5 Average
Std

Fé6 Average
Std

F7 Average
Std

F8 Average
Std

F9 Average
Std

F10 Average
Std

F11 Average
Std

AGWO (Proposed)

0.0000

0.0000

6.1135 x 102
0.0000

0.0000

0.0000

1.3248 x 107217
0.0000

0.0000

0.0000

0.0000

0.0000

6.5921 x 10-%
6.5921 x 10-%
—2.2572 x 10+
388.8521
0.0000

0.0000

2.1316 x 107
1.7386 x 10-5
0.0000

0.0000

GWO

1.6822 x 1077
3.2926 x 1077
7.4670 x 10717
5.5843 x 1077
2.4797 x 10-%
7.4078 x 10-%
7.1546 x 1077
8.1491 x 1077
27.8866
0.7314
0.7193
0.3558
0.0018
0.0016
—5.8793 x 10+
1.0897 x 10+
2.0687
3.3984

1.0727 x 10713
1.3980 x 101
0.0032
0.0068

SSA

9.2785 x 107
2.5275 x 109
0.0177

0.0795

1.4655 x 107
6.8216 x 10-10
1.3318 x 107%
2.4181 x 107%
42.1985
71.3154
6.3532x10-1°
2.7101 x 10-1°
0.0058
0.0058
—2.8442 x 10%3
290.5105
12.9942
6.5411

0.4713
0.8689
0.2189
0.1479

SCA

5.8635 x 10728
2.5965 x 10727
2.3927 x 1072
5.1292 x 1072
1.3645 x 101
4.1399 x 101
5.9065 x 10~
1.7091 x 107
6.9228

0.3861

0.3368
0.1565
0.0008
0.0006
—2.3603 x 10+
122.5179
0.0005
0.0012
0.4445 x 1071
0.0068
0.0367
0.1680

WOA

1.0749 x 1017
0.0001

3.1655 x 10-177
1.4178 x 107106
1.2419 x 10+
7.9873 x 10+
32.2856
28.5950
26.5109
0.3158

0.0140

0.0118

8.7925 x 10~
9.3825 x 10~
—1.1147 x 10+
1.4553 x 10+
2.8412 x 101
1.2721 x 1071
42643 x 1071
2.4393 x 10
0.0028

0.0116

ALO

1.5679 x 10~
6.1292 x 10710
1.6047 x 107
4.3480 x 10
6.3561 x 1077
9.7641 x 1077
4.9145 x 10-%
3.7018 x 10%
62.2978
79.7189
1.8139 x 10
7.6227 x 10710
0.0062
0.0044
—2.3874 x 10+
459.7947
14.7264
6.8526
0.2989
0.6348
0.2039

0.0881

GOA

1.5789 x 10-%®
1.2995 x 10-%®
0.9994

1.5428

1.2175 x 1077
2.8859 x 1077
2.6025 x 10-%
1.3877 x 10-%
78.1317
258.6871
9.9609 x 10-1°
6.0218 x 10-1°
0.0486

0.0971
—-1.6823 x 10+03
176.9365
5.5881

4.1836
0.3764
0.8476
0.1543
0.0620

9¢

sisoudei( yne4 uaAlg-eleq



F12

F13

F14

F15

F16

F17

F18

F19

F20

F21

F22

F23

Average
Std
Average
Std
Average
Std
Average
Std
Average
Std
Average
Std
Average
Std
Average
Std
Average
Std
Average
Std
Average
Std
Average
Std

0.0020

0.0011

1.6006

1.3405

2.1787

2.4303

6.4854 x 10~
4.2116 x 10-»
-1.0316
4.5168 x 10-1¢
0.3979

0.0000
3.0000
7.1976 x 10~
-3.7296
0.1144
-2.9933
0.0250
—-10.1532
0.3852
-10.4029
1.3720 x 10-'¢
-10.3562
0.3492

0.0457
0.00212
0.6471

0.2262

4.668

4.4839
0.0044
0.0092
-1.0326
2.5459 x 10-%
0.3979
7.2878 x 10°%
3.0000
2.5872 x 10-%
-3.8617
0.0021
-3.2772
0.7073
-9.3935
1.8508
-10.0193
1.7073
-9.7229
2.4970

0.1814
0.2564

0.0031

0.0036
0.9980
1.4408 x 10-'¢
8.2716 x 10~
3.2919 x 10-%
-1.0326
3.3831 x 1071
0.3978
74515 x 10713
3.0000
8.7227 x 10~
—-3.8648
1.0131 x 10~
—3.2453
0.0586
-9.1356
2.0926
—-8.8751
3.1372
-9.6148
2.2967

0.0591
0.0226
0.2252
0.0568
1.5933
0.9329
0.0008
0.0004
-1.0326
0.0000
0.3988
0.0012
3.0000
0.0054
—-3.8748
0.0028
-2.9278
0.2376
—2.7220
2.0884
-3.9521
1.9058
—4.6768
1.2558

0.0021

0.0037
0.0289

0.0251

1.4446
0.8192
6.6597 x 10~
4.7822 x 107
-1.0326
3.1413 x 10712
0.3978

3.2921 x 107
3.0000
9.7787 x 1077
-3.86210
0.0014
-3.2245
0.8121
—-7.8594
2.9367
—8.7388
2.6217
-9.3178
2.5536

1.0969

1.6858
0.0017

0.0041

1.2961

0.5671

0.0048

0.0081
-1.0326
5.1535 x 101
0.3978

3.3361 x 10~
3.0000
1.3896 x 1013
-3.8638
9.4607 x 10~
-3.2814
0.0581
—6.7392
29772
—8.2953
2.9978
—7.3789
3.3304

4.9253 x 1077
1.4601 x 10-%
5.4868 x 10~
0.0025
0.9880

2.9563 x 10716
0.0077
0.0082
—-1.0416
3.9452 x 10~
0.3989

37172 x 10712
3.0000
3.4193 x 101
-3.8541
0.1799
-3.2581
0.0621
—-7.2580
3.3755
-8.9824
2.9456
-8.5997
3.5350
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P-values Calculated for the Wilcoxon Rank Sum-test (Significance Level 0.05) Corresponding to the Results in Table 2.4

TABLE 2.5

Ft. AGWO

F1 N/A

F2 N/A

F3 N/A

F4 N/A

F5 N/A

F6 N/A

F7 N/A

F8 6.7956 x 107%
F9 N/A

F10 N/A

F11 N/A

F12 6.7956 x 107%
F13 6.7956 x 107%
F14 0.0021

F15 0.0070

F16 7.9919 x 107
F17 N/A

F18 7.9919 x 10
F19 N/A

F20 0.1190

F21 N/A

F22 N/A

F23 N/A

GWO

6.7956 x 10-%
6.7956 x 10-%
6.7956 x 10-%
6.7956 x 10-%
8.0065 x 10-%®
8.0065 x 10-%®
6.7956 x 10-%
6.7956 x 10-%
7.4517 x 107
7.6187 x 10-0
0.0402

6.7956 x 10-%
6.7956 x 10-%
6.4846 x 10-%
0.2503

24231 x 10
8.0065 x 10~
0.2084

2.1025 x 10-7
0.0052

8.0065 x 10-%®
8.0065 x 10-%®
2.0446 x 1077

SSA

6.7956 x 107%
6.7956 x 107%
6.7956 x 107%
6.7956 x 10-%8
8.0065 x 10-%
8.0065 x 10-%
6.7956 x 107%
6.7956 x 107%
7.9043 x 10
7.9334 x 10-%
8.0065 x 10-%
0.0012

1.0473 x 1070
N/A

0.0256
7.9919 x 10-%
4.6827 x 10710
7.9919 x 10
4.6827 x 10710
1.7896 x 10~
0.0198
3.0335 x 107%
5.8842 x 107%

SCA

6.7956 x 10798
6.7956 x 107%
6.7956 x 107%8
6.7956 x 10-%8
8.0065 x 10~
8.0065 x 10~
9.1728 x 107%
N/A

0.0096

2.2273 x 1078
6.6826 x 107
6.7956 x 107%
6.7956 x 107%
3.5055 x 107
N/A

N/A

8.0065 x 10~
N/A

8.0065 x 10~
3.9295 x 107
8.0065 x 10~
8.0065 x 10-%
1.5747 x 107%

WOA

0.0028

6.7956 x 10-%
6.7956 x 10-%
6.7956 x 10-%
8.0065 x 10-%®
8.0065 x 10-%®
2.9249 x 10%
6.7956 x 10-%
0.3421

2.3754 x 10-%
0.3421

6.7956 x 10-%
1.4309 x 10-07
0.0196

1.7936 x 10~
7.9919 x 107
2.5497 x 10-%
9.0065 x 10-%
8.0065 x 10~
3.4042 x 10-%
7.9919 x 10~
8.0065 x 10-%®
1.5006 x 1097

ALO

6.7956 x 10-%
6.7956 x 10-%8
6.7956 x 10-%
6.7956 x 108
8.0065 x 10~
8.0065 x 10~
6.7956 x 10-%8
6.7956 x 1098
7.8609 x 10~
7.9919 x 107
8.0065 x 10-%
0.0012

1.9916 x 10-%
0.0196

8.3103 x 10~
7.9919 x 107
4.6827 x 10710
7.9919 x 10
4.6827 x 10710
1.0220 x 10-%
6.0278 x 10-%
0.0792

9.5900 x 10-%

GOA

6.7956 x 10-%
6.7956 x 10-%
6.7956 x 10-%
6.7956 x 10-%
8.0065 x 10-%®
8.0065 x 10-®
6.7956 x 10-%
6.5970 x 10-%
8.0065 x 10~
8.0065 x 10-®
8.0065 x 10-®
N/A

N/A

N/A

2.7089 x 10~
7.9919 x 10~
4.6827 x 10710
7.9919 x 10
0.0833

N/A

9.1876 x 10~
3.3265 x 10~
52113 x 10-%
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FIGURE 2.12 Comparative analysis of the proposed algorithm against existing state-of-
the-art methods using benchmark functions to assess convergence.

GWO algorithm that features Gaussian mutation and position updating, for select-
ing parameters. The effectiveness of AGWO is evaluated against GWO, SSA,
SCA, WOA, ALO, and GOA, with the convergence curves (Figure 2.12) demon-
strating its quicker convergence rate on benchmark functions.

2.2.4.3 Results of CNN Model and Its Comparison with Other
Classification Models

Following the methodology in Section 2.2.3, 1400 scalogram images (350 per
health condition) were generated. A total of 700 images (175 per condition) were
used for CNN model training, and the remaining 700 for testing (Table 2.6). Each
image had dimensions 656 x 875 x 3.
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TABLE 2.6
Description of the Training and Testing Datasets

S.No. Health Condition  Training Samples  Testing Samples

1 Healthy 700 (175 x4 =700) 700 (175 x 4 =700)
2 Splitter wear

3 Added mass

4 One bucket missing

The CNN model architecture is detailed in Table 2.7. Figure 2.13(a) and
2.13(b) shows the training accuracy and loss, respectively. The model’s accuracy
on the test data, for each defect, is presented in Figure 2.14, showing superior
performance compared to artificial neural network (ANN), support vector machine
(SVM), adaptive neuro fuzzy interference system (ANFIS), and extreme learning
machine (ELM) classifiers. Figure 2.15 explores the effect of varying the number
of convolutional layers (five layers proved optimal).

Figure 2.16 illustrates the classification accuracy attained by the proposed
AGWO algorithm in comparison to other optimization methods. Each algorithm
identifies the best TVF-EMD parameters, which are subsequently utilized to cre-
ate training and testing datasets for the CNN model. The findings highlight the
enhanced performance of the proposed AGWO algorithm.

TABLE 2.7

CNN Architecture

S. No. Layer Name Layer Size

1 Input 656 x 875x 3

2 Convolution 1 96 filters of size 11 x 11 x 3
3 Max Pooling 1 2 x 2 with stride 2

4 Convolution 2 128 filters of size 5 x 5 x 48
5 Max Pooling 2 3 x 3 with stride 2

6 Convolution 3 384 filters of size 3 x 3 x 256
7 Max Pooling 3 3 x 3 with stride 2

8 Convolution 4 192 filters of size 3 x 3 x 192
9 Max Pooling 4 3 x 3 with stride 2

10 Convolution 5 128 filters of size 3 x 3 x 192
11 Max Pooling 5 3 x 3 with stride 2

12 Fully Connected Layer 1000

13 SoftMax -

14 Output -




FIGURE 2.13 CNN model training performance, including (a) accuracy and (b) loss.
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FIGURE 2.14 Defect identification accuracy using various classifiers.

FIGURE 2.15 Accuracy achieved using different numbers of convolutional layers.
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FIGURE 2.16 Accuracy in identifying defects obtained through various optimization
algorithms.

2.2.5 CoNcLUsION FOR CAsE 1

This study uses an optimized TVF-EMD method, enhanced by a novel AGWO
algorithm, for Pelton turbine bucket defect identification. AGWO makes TVF-
EMD adaptive by optimally selecting & and n, improving the match with the input
signal. The key findings are:

1. TVF-EMD’s time-varying filter (a B-spline approximation filter) improves
EMD performance by preserving the input signal’s time-varying character-
istics, crucial for effective decomposition. However, improper selection of
£ and n can negatively impact results. The proposed AGWO algorithm
addresses this by adaptively selecting optimal values for these parameters.

2. This study uses the KEMI as the fitness function for TVF-EMD parameter
optimization. KEMI also serves as a metric for selecting the most informa-
tive IMF, minimizing information loss.

3. AGWO'’s performance was evaluated against other optimization algorithms
using 23 benchmark functions, comparing mean and standard deviation.
AGWO achieved superior results (lowest standard deviation) on 17 func-
tions (F1-F7, F9-F11, F15, F17-F18, and F20-F23). Wilcoxon tests con-
firmed this superiority as statistically significant for 15 functions (F1-F7,
F9-F11, F17, F19, and F21-F23).

4. Scalograms, generated from the sensitive IMF, formed the training and test
datasets for a CNN model. The model achieved 100% accuracy on the
test data.
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5. A comparison of classification accuracy using CNN, with different optimi-
zation algorithms, showed AGWO’s superior performance. Further com-
parison with other learning models demonstrated CNN’s superior accuracy.
Analysis of CNN architecture indicated that five convolutional layers are
sufficient for optimal results.

2.3 FAULT DIAGNOSIS OF BEARING IN PELTON TURBINE
(CASE 2)

This section describes standard sparse filtering (SF), followed by the introduction
of a novel feature extraction method: generalized normalized sparse filtering
(GNSF) combined with Wasserstein distance and maximum mean discrepancy
(MMD) for fault clustering. GNSF normalizes the feature matrix, while the
Wasserstein-MMD approach highlights feature contributions. This methodology
is applied to the Pelton turbine dataset (Chapter 4 provides details).

Vibration data was collected from the drive end bearing of a Pelton turbine
(Figure 2.17) using a National Instruments data acquisition system. The turbine
speed was maintained at 1100 and 1200 rpm. Five bearing conditions were stud-
ied: healthy condition (HC), inner race defect with one hole (1-IR), inner race
defect with two holes (2-IR), outer race defect with one hole (1-OR), and outer
race defect with two holes (2-OR) (Figure 2.18 and Table 2.8). Each condition
included 400 samples at a 70 kHz sampling frequency.

2.3.1 ResuLts AND DiscussioN

10% of the collected data was used to train the optimized sparse filter for bearing
health condition diagnosis, with the remaining 90% used for validation. Input and
output dimensions were set to 100, and the number of principal components
ranged from 15 to 35. Figure 2.19 shows diagnostic accuracy for various values
of p(g=2,r=2). Figure 220 illustrates results for different g values
( p=08andp = 3), indicating high accuracy at p = 3(p > ¢ for optimal accuracy).

FIGURE 2.17 A pictorial view of the Pelton turbine.
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FIGURE 2.18 Different health conditions of the Pelton turbine.

TABLE 2.8

Description of Different Health Conditions of the Pelton Turbine

S. No. Fault Condition No. of Samples  Condition Label
1 Healthy 400 0

2 1 seeded hole of 1 mm dia. at inner race (1 IR) 400 1

3 2 seeded holes of 1 mm dia. at inner race (2 IR) 400 2

4 1 seeded hole of 1 mm dia. at outer race (1 OR) 400 3

5 2 seeded holes of 1 mm dia. at outer race (2 OR) 400 4

Therefore, p was set to [1.8, 3.5]. Figure 2.21 supports these findings (p / g ratios
of 0.5 and 1.5). Figure 2.22 shows a t-distributed stochastic neighbor embedding
(t-SNE) visualization of extracted features. Table 2.9 shows the optimal normal-
ization parameters, enabling accurate and stable bearing condition detection
(Figure 2.23 shows the confusion matrix). Long short-term memory (LSTM) clas-
sifier results (accuracy and loss) are shown in Figure 2.24. These results demon-
strate the effectiveness of the proposed approach for fluid machinery bearing
defect diagnostics.

2.3.2 CoNCLUSION FOR CASE 2

A novel unsupervised learning method for Pelton turbine bearing fault diagnosis is
proposed: GNSF combined with Wasserstein distance and MMD. The method opti-
mizes a generalized /,_,,, norm objective function to enhance SF regularization.
Wasserstein-MMD clustering highlights feature contributions. Principal component
analysis (PCA) preprocessing removes the correlation between training samples,
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FIGURE 2.19 Diagnostic results of the Pelton turbine at various values of p with ¢ =2
and r=2: (a) p<gqand (b) p >gq.
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FIGURE 2.20 Diagnostic results of Pelton turbine using different normalization param-
eters ¢ with r=2: (a) p=0.8 and (b) p = 3.
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FIGURE 2.21 Diagnosis results of Pelton turbine at different values of p with r = 2: (a)
plq=0.5 (b) p/q=1.5.



FIGURE 2.22 2D visuals of the features using t-SNE at 3 different conditions with r =2.
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TABLE 2.9

Comparative Analysis of Various Sparse Filtering Methods Applied to a Pelton Turbine

Methods

Standard sparse filtering

GNSF without PCA (p=2.8,4=2)

The proposed method (p =2.8,9 =2, 20 PCs)
The proposed method (p =2.8,4 =2, 20 PCs)
The proposed method (p =2.8,q =2, 35 PCs)

No. of Training
Samples

10 %
10 %
1%
3%
5%

No. Health
States

(Y BV, B B B |

Computational
Rime (s)

18.9
42.62
8.2
12.9
17.5

Standard
Deviation (%)

0.80
0.25
0.12
0.09
0.05

Average
Accuracy (%)

94.93
97.25
98.12
99.56
99.91
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FIGURE 2.23 Confusion matrix.

and an LSTM classifier identifies bearing faults. Pelton turbine data validates the
method’s robustness, leading to the following conclusions:

1.

2.

Optimized SF parameters ensure accurate and reliable results by adaptively
extracting relevant features from the vibration signal.

Wasserstein distance with MMD is used for feature clustering, highlighting
each feature’s contribution. Comparison with traditional methods demon-
strates the superiority of this novel approach.

. The proposed method effectively identifies centrifugal pump health condi-

tions even with limited training data; for example, achieving 99.91% accu-
racy with only 5% of the samples used for training.

. The proposed method uses GNSF to extract discriminative features from

Pelton wheel vibration data, which are then clustered using Wasserstein
distance with MMD to facilitate accurate fault classification.

. GNSF offers a wider range of normalization parameters, resulting in more

accurate and robust performance compared to traditional SF.



FIGURE 2.24 Training performance of LSTM classifier for Pelton turbine (a) accuracy and (b) loss.
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TABLE 2.10
Comparison of Fault Schemes of Cases 1 and 2
Bucket Defects Bearing Defects
Methods Average Computational Average Computational
Accuracy (%) Time (s) Accuracy (%) Time (s)
TVF-EMD-AWGO-CNN 100 25.84 100 27.39
=28,¢g=2
GNSF (7= 25425, 98.52 18.67 99.91 17.5
35 PCs)

2.4 COMPARISON OF METHODOLOGIES PROPOSED IN
CASES 1 AND 2

While Case 1’s fault diagnosis scheme (for Pelton turbine bucket defects) demon-
strates robustness and superior performance, it requires manual feature extraction.
In contrast, Case 2’s scheme (for bearing defects) is fully automated. To compare
these schemes fairly, Case 1’s method was applied to bearing defect data, and
Case 2’s method to bucket defect data. Table 2.10 presents the resulting accuracy
and computational times.

Table 2.10 shows that method in Case 1 achieves slightly higher accuracy,
while method in Case 2 has a shorter computation time.

2.5 SUMMARY

This chapter investigates two Pelton turbine defect cases: bucket and bearing
defects. For bucket defects, an AGWO algorithm, using KEMI as the fitness func-
tion, optimizes TVF-EMD parameters. The optimal solution (minimum KEMI) is
used to generate scalograms for training and testing a CNN classifier. For bearing
defects, a GNSF method, incorporating Wasserstein distance and MMD for fault
clustering, is proposed, normalizing the feature matrix to highlight feature
contributions.



3 Fault Diagnosis of the
Francis Turbine

3.1 INTRODUCTION

The Francis turbine is an inward-flow reaction turbine that can achieve efficien-
cies greater than 95% [63]. It consists of a spiral casing, guide vanes, stay vanes,
runner blades, and a draft tube. Water flows into the spiral casing, moving through
stay vanes for smoothing and adjustable guide vanes that manage the angle of
attack on the runner blades. The runner blades have two sections: a lower bucket-
like section (impulse action) and an upper section (reaction force). The runner
thus utilizes both pressure and kinetic energy. The draft tube recovers pressure
energy before the tailrace, compensating for the low-energy state of the water
exiting the runner blades [64-66].

Increased power demands on Francis turbines lead to higher hydraulic forces
and stresses on components (runners, spiral casing, vanes), potentially causing
fatigue, misalignment, bearing defects, and cracks [67-69]. Bearing defects are a
major cause of turbine failure, characterized by quasiperiodic and periodic
impulses [67-69]. Acoustic signal analysis is a useful contactless method for
defect detection, particularly beneficial due to the hazardous operating conditions
and potential for leakage that make accelerometer-based measurements difficult
[70-73]. However, environmental noise and signal degradation can obscure fault
features. Blind deconvolution, such as minimal entropy deconvolution (MED)
[74], can enhance weak fault characteristics. MED, initially used in seismic signal
processing [74], increases kurtosis for weak impulses while reducing it for noise
[75]. While MED improves spectral kurtosis (SK) for fault detection [76-78],
excessive kurtosis can create spurious impulses. Optimal filter length is also cru-
cial. Improvements to MED include replacing kurtosis with skewness [79, 80],
correlation kurtosis maximum correlated kurtosis deconvolution (MCKD) [81],
optimal minimum entropy deconvolution adjusted (OMEDA) and multipoint
OMEDA (MOMEDA) (MOMEDA) [82], minimum entropy deconvolution based
on impulse norm (MIND) [83], and autocorrelation impulse harmonic to noise
(AIHN) [84], or optimizing filter coefficients using algorithms such as particle
swarm optimization (PSO) [85] and /, norm optimization [86]. These enhanced
methods have demonstrated improved rotating machinery diagnostics.

Research indicates that improper filter length in MED can transform periodic
impulses into single pulses, with longer lengths generally leading to higher kurto-
sis values [85—-88]. However, a definitive method for filter length selection remains
elusive with empirical formulas yielding inconsistent results. Li et al. [89] intro-
duced an adaptive MED that employs a modified power spectrum kurtosis (MPSK)
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index for the diagnosis of wind turbines; however, the outcomes were not ideal,
and the impact of filter length was not thoroughly investigated. Some studies rely
on empirical filter length selection without considering its impact on diagnostic
accuracy [90-92].

This chapter presents a novel automated method for determining optimal MED
filter length to improve rotating machinery diagnostics, addressing limitations in
existing approaches. The autocorrelation function, used as an energy measure-
ment index to identify fault-related periodic impulses, guides the filter length
selection. While various optimization techniques exist [93-95], this study employs
the Aquila optimizer (AO) [96] to find the optimal filter length, maximizing the
autocorrelation function. Experiments on a Francis turbine bearing demonstrate
the method’s effectiveness in enhancing weak fault features in acoustic signals.

3.2 THEORETICAL BACKGROUND
3.2.1 MiNniMAL ENTROPY DECONvVOLUTION (MED)

MED seeks to develop an inverse filter based on a typical signal transfer func-
tion [75]. Eq. (3.1) illustrates the vibration signal, xy, obtained from rotating
machinery.

xy=(p+m)*h 3.1)

where P stands for periodic fault impulses, m signifies noise, & indicates a param-
eter that influences harmonics and transmission, and * represents convolution.
The process of the MED filter is illustrated in Figure 3.1.

The MED method uses a low-entropy sparse pulse sequence, s, as input. The
MED system increases the entropy of the resulting signal, x. Deconvolution seeks
to identify the finite impulse response (FIR) filter, f* (length L), such that the fil-
tered output, y, approximates the original input, s, as shown in Eq. (3.2).

y(j)=ZL:f(z)x(j—z)zs(j)j:l,z,...,N (3.2)

FIGURE 3.1 Working of MED filter.
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MED is typically implemented using either an eigenvector method or an objec-
tive function method. This research utilizes the objective function method, imple-
mented via kurtosis calculation, as detailed in Eq. (3.3).

ANUIE ZN:y“(j) ZN:yz( J) (3.3)

To determine the optimal filter, we calculate the first derivative of Eq. (3.3) and set
it equal to zero. In this context, N represents the total length of the data set under
consideration.

oo, F(1)]1ar(1)=0 (G4

Eq. (3.2) can also be represented in the form of matrix as

y=Xof 3.5)
X X, Xy weeoeee Xy
where XO =0 X Xy . Xn-1
0 0 X Xy_2
_O 0 0 XN,LH_LxN

Substituting Eq. (3.3) and Eq. (3.4) into Eq. (3.5) and by further simplification,
Eq. (3.6) is obtained.

N,
E Vi
j=1 3

£=2 0 (xoxT) X [yiid ] (3.6)

4
Vi
Jj=1

The procedure followed by the MED filter is as follows:

Step 1: Initializing f° = (0, L0,.. .,O)T and also feed the raw vibration signal x
in order to obtain X .

Step 2: Set the values of filter parameters such as filter length (L), maximum
iteration (mmax) and convergence error (c_f )
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Step 3: Using Eq. (3.5), computey y” () by substituting X, and filter coef-
ficient (l) in order to get /™' through Eq. (5.6).

0, ( £ ) -0, ( f) utilizing Eq. (3.3).

Step 5: When m < m,,,, and AE < & the iteration using Eq. (3.3) will be con-
tinued otherwise save the final output obtained from Eq. (3.5) and Eq. (3.6).

Step 4: Compute the error AE =

3.2.2 INFLUENCE OF FILTER LENGTH ON OutpPuT RESULTS

The three basic components of the signal are represented in Eq. (3.7).
x(t)=u(t)+n(t)+h(r) (3.7)

Figure 3.2(a) illustrates the fault impulse u (t), which has a fault sampling interval
of 30 points. As depicted in Figure 3.2(b), noise n (t) isintroduced into the fault sig-
nal, with an impulse to noise energy ratio of 0.23. The resulting signal x(t) incorpo-
rates a harmonic component h(t) =0.1sin (27rf1t) +0.2sin (27rf2t) +sin (27rf3t) ,
where fi=4f,=2f;,= %5. The final signal comprises 2000 sample points or
data points.

Figure 3.3 demonstrates the application of MED to the resultant signal using
filter lengths of L =130 and L =131. When L =130, the filtration produces a

FIGURE 3.2 Simulated signal having fault (a) fault impulse signal u(t), (b) fault impulse
signal with noise n(t), and (c) resultant signal ofu(t), n(t), and h(z)
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FIGURE 3.3 The filtered signals at filter length (a) L = 130 and (b) L = 131.

single impulse, which is not ideal for diagnosing various faults in rotating machin-
ery. Ideally, a series of periodic pulses representing fault characteristics should be
obtained. These periodic pulses are clearly visible when L = 131. It’s important to
note that changing the filter length by just one unit results in drastically different
outputs.

These observations underscore the significance of filter length in MED, as it
directly influences the output. Consequently, selecting the appropriate filter length
is a crucial step in the MED process. To resolve the issue of single-pulse extrac-
tion, it’s essential to conduct a thorough investigation of the filter length determi-
nation process, as relying on experience alone may lead to inaccurate results.

3.2.3 OpTIMUM FILTER LENGTH SELECTION

To improve the MED filter’s capacity to amplify faint periodic impulses, it is nec-
essary to create a fitness function that assesses the periodicity of the filtered sig-
nal. This research utilizes autocorrelation energy to identify the best filter length.

3.2.3.1 Autocorrelation Analysis

Autocorrelation analysis serves as a useful tool for illustrating how a signal cor-
relates with itself over various time intervals, which makes it highly effective
for identifying periodic patterns in the signal. Eq. (3.8) illustrates the observed
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signal, wherein s(t) indicates a sinusoidal periodic signal, and n(t) stands for
white Gaussian noise.

x(t)=s(t)+n(t)=Asin(a)0t+®)+n(t) (3.8)
After x(t) has been passed through the autocorrelation analysis, it yields:
R, (r) = E[x(t)x(t —T):| =R, (z’)—i—R,, (z’)-ﬁ-Rs,, (z’)-I-R,,S (r) 3.9

Here, s (t) andn (t) are not dependent on each other thatis why R, (r) =R, (T) =0,
which results into:

R(#)= R () + Ru(r) = fim o[ [s(1)s(e=0)]ar+ R, (o)

-T
2

:A?cos(a)or)+Rn(r) (3.10)

Here, A represents amplitude, @, denotes angular frequency, and & signifies the
initial phase. The noise is represented by n(t), and R, (t) is concentrated around
7 =0, as illustrated in Figure 3.4. According to Eq. (5.9), the signal in R (z’) shares
the same angular frequency @, as s(t). As 7 increases, R, (z’) primarily reflects

R, (r), allowing R, (z') to be used for determining the amplitude and frequency of
s(t), as shown in Figure 3.5.

3.2.3.2 Development of Fitness Function

A key limitation of MED is its use of a fixed filter length for continuous computa-
tion, leading to results dependent on filter length. The fitness function’s main role

FIGURE 3.4 Autocorrelation analysis of noisy signal.
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FIGURE 3.5 Autocorrelation analysis of observed signal.

is to provide an index quantifying the filtered signal’s periodicity across different
filter lengths.

For a specific filter length L, let y; represent the output signal. The remaining
components of the raw signal can be expressed as:

SL:xN_yL (3.11)

Here, xy denotes the unprocessed signal. The fitness function is formulated acc-
ording to Eq. (3.12).

S (1)
L, =
ZR?L (n)

Here, N represents the data length, and R, () and Ry, () represent the output
and residual autocorrelation functions, respectively. Periodic impulses in the out-
put signal result in periodic autocorrelation. In these situations, MED improves
the kurtosis of weak impulses while reducing harmonics and noise from the sys-
tem, thereby elevating the energy ratio between the filtered signal and the resid-
ual signal.

Conversely, a single-pulse output signal results in a residual signal dominated
by noise, except for the main impact. This concentrates autocorrelation amplitude
near time zero, leading to a lower energy ratio. The value of L, determines if the
output constitutes a periodic pulse. To prevent interference, the autocorrelation
value at time zero needs to be omitted.

(3.12)
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The effectiveness of L,, has been demonstrated using a simulated signal repre-
sented in Eq. (3.7). Figure 3.6 illustrates the computed kurtosis and L, of the
output signal at filter lengths ranging from L =2 to L = 500. Figure 3.6(a) clearly
shows that kurtosis increases with filter length, consistent with results presented

FIGURE 3.6 (a) Kurtosis and (b) fitness function at various filter lengths.
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in Ref. [87]. This behavior arises because the MED fitness function maximizes
kurtosis, a strong indicator of impact characteristics. Nonetheless, ongoing
impulses in the output signal do not have a direct relationship with changes in
kurtosis; elevated kurtosis can amplify an individual pulse within the total signal.

Figure 3.6(b) shows the variation of L, at different filter lengths, initially
increasing, then decreasing, and finally stabilizing. As demonstrated in Figure 3.3,
there’s a significant difference in output between filter lengths L =130 and
L =131. Figure 3.7 presents outputs at filter lengths L =100, 185, and 186.

The results clearly indicate that a larger L,, the MED filter performs better,
obtaining strong periodic impact characteristics. However, beyond a certain filter
length (e.g., L =186), L, decreases continuously, and the output signal exhibits a
single impulse. At this point, MED becomes insufficient for enhancing periodic
weak signals. Thus, L, can serve as a fitness function for selecting the optimal
filter length for the MED filter.

FIGURE 3.7 Signals at filter lengths of (a) L = 100, (b) L = 185, and (c) L = 186.
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3.2.3.3 Aquila Optimizer (AO)

The AO algorithm [96] mimics the hunting tactics of the Aquila bird, which
includes processes such as initialization, evaluating the fitness function, and
updating solutions. This research applies AO to enhance the L, fitness function for
MED, determining the ideal integer filter length that is shorter than the raw signal
length. AO’s search strategy involves four approaches: expanded and narrowed
exploration and expanded and narrowed exploitation, aimed at finding near-opti-
mal and best solutions based on the fitness function. It iteratively adjusts solution
positions until a specified termination criterion is met.

Figure 3.8 illustrates the effect of population size (20, 40, 60, 80, and 100) on
the results, analyzing 100 iterations for each size.

Figure 3.8 shows that smaller population sizes yield suboptimal fitness func-
tion (Lﬂ) values. Increasing the population size increases L, reaching a maxi-
mum of 0.4867 at L = 159 (similar to Figure 3.6(b)). The relationship between
population size and L, is logarithmic, suggesting saturation beyond a certain
population size. While smaller populations may not maximize L,, some periodic
impulses might still be detected due to filtering. Since AO consistently seeks an
“optimal solution,” even with low L, values (resulting in single-impulse outputs),
a population size of 100 and 100 iterations were used (Figure 3.9 details the opti-
mal filter length selection).

FIGURE 3.8 Optimal filter length for different populations at 100 iterations.
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FIGURE 3.9 Procedure for obtaining the optimized filter length.

The basic steps are as follows:

1. The AO initialization step sets AO parameters and generates a random pop-
ulation of potential solutions, with encoding length determined by the raw
signal length.

2. The L, metric assesses the quality of each solution within the AO popu-
lation. The exploration and exploitation strategies of AO subsequently
uncover promising near-optimal and top solutions.

3. Following N iterations, the algorithm concludes and provides the best solu-
tion identified, which indicates the optimal length of the filter.

The flow chart of the proposed scheme for fault identification is shown in Figure 3.10.

FIGURE 3.10 Flowchart of the proposed fault detection method.
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3.3 FAULT DIAGNOSIS OF FRANCIS TURBINE

The proposed method was applied to data from a Francis turbine test rig (Figure
3.11). The turbine operated at 2350 rpm and 3040 rpm (specifications are shown
in Table 3.1).

The Francis turbine (refer to Figure 3.11) is made up of a spiral casing, guide
vanes, stay vanes, runner blades, and a draft tube. The guide and runner blades are
attached to a shaft that uses UC 206 bearings. Water flows through the spiral cas-
ing, guided by stay and guide vanes (the latter controlling power output by adjust-
ing the angle of attack on the runner blades). Guide vane water impact can cause
vibrations, leading to potential issues, such as shaft misalignment, runner or vane
damage, and bearing defects, which are the focus of this study. Five bearing con-
ditions were analyzed: healthy and seeded defects (1 mm diameter spalls created
via wire electrical discharge machining (WEDM) of one or two spalls on either
the inner (1-IR, 2-IR) or the outer (1-OR, 2-OR) race (Figure 3.12). UC 206 bear-
ing specifications are detailed in Table 3.2.

Acoustic data from the faulty Francis turbine bearing was recorded using a
microphone near the bearing, employing a National Instruments 24-bit, four-
channel data acquisition system at a 70 kHz sampling rate. Subsequent analysis
used 0.1-second segments (7000 data points).

FIGURE 3.11 Test rig of Francis turbine.

TABLE 3.1
Specification of Francis Turbine

Maximum output 3 kW
Maximum discharge 400 1/min
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FIGURE 3.12 Schematic of defective bearings: (a) one spall defect on the inner race
(1-IR), (b) one spall defect on the outer race (1-OR), (c) two spall defects on the inner race
(2-IR), and (d) two spall defects on the outer race (2-OR).

TABLE 3.2

Specification of UC 206 Bearing

Type Inner Diameter  Outer Diameter  No. of Balls  Contact Angle
UC-206 30 mm 62 mm 9 0°

The inner race defect signal waveforms and their corresponding envelope spec-
tra (1-IR and 2-IR) are depicted in Figure 3.13. The time-domain signals for both
acoustic measurements, represented in Figure 3.13 (a) and 3.13 (c), exhibit a
series of periodic pulses. In the envelope spectrum, the ball pass frequency of the
inner race (BPFI) is observed at 397 Hz, with harmonics appearing at 795 Hz for
the 1-IR scenario, and at 397 Hz and 2 BPFI (795 Hz) for the 2-IR scenario, as
illustrated in Figure 3.13 (b) and 3.13 (d). These impulses are masked by consid-
erable background noise, showing a gradual decrease in their amplitude, as dem-
onstrated in Figure 3.13 (a) and 3.13 (c). The envelope spectra in Figure 3.13 (b)
and 3.13 (d) reveal that the BPFIs are hidden among other frequencies, complicat-
ing the direct extraction of fault information related to inner race defects from the
acoustic signals.

The proposed method was used to detect inner race-bearing defects in the
Francis turbine. AO optimization determined an optimal filter length of L =100
for single inner race spall defects (1-IR), yielding L, = 0.8187 (Figure 3.14a).
Figure 3.14b shows L, values for various filter lengths, mostly below 1. For two
inner race spalls (2-IR), the optimal length was L =189 (L, =0.6047, Figure
3.14c and 3.14d). Comparing L =100 and L =140 (Figure 3.15) highlights the
method’s benefits: L = 100 produces clear periodic fault impulses with promi-
nent BPFI and harmonics (Fig 3.15b and 3.15d), while L =140 shows random
impulses and less-defined BPFI/harmonics (Fig 3.15e and 3.15f). This demon-
strates the importance of determining the optimal filter length.
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FIGURE 3.13 Time-domain waveform and envelope spectra: (a) waveform of one spall
defect at inner race (1-IR), (b) envelope spectrum of 1-IR, (c) waveform of two spall
defects at inner race (2-IR), and (d) envelope spectrum of 2-IR.



FIGURE 3.14  Selection of optimal filter length for inner race defect. (a) Results of Aquila optimizer for 1-IR optimization, (b) value of L, for 1-IR,
(c) results of Aquila optimizer for 2-IR optimization, and (d) value of L, for 2-IR.
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FIGURE 3.15 Results of inner race faults. (a) Time-domain signal, L =100 (optimized)
for 1-IR, (b) spectrum of (a), (c) time-domain signal, L =189 (optimized) for 2-IR, (d)

spectrum of (c) (Contined)
ontinue
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FIGURE 3.15 (Continued) Results of inner race faults. (e) time-domain signal, L =140
for 1-IR, and (f) spectrum of (e).

Outer race defects (1-OR and 2-OR) were also analyzed (Figure 3.16). Figures
3.16a and 3.16c shows that periodic fault impulses are masked by significant
noise, with diminishing amplitudes. While ball pass frequency of the outer race
(BPFO) is visible in Figure 3.16b (1-OR), its harmonics are obscured; for 2-OR,
BPFO is not discernible in Figure 3.16d. This suggests that signals from the
Francis turbine in harsh operating conditions are significantly weak.

Figure 3.17 shows the results obtained using the AO at the optimized filter
length. With an ideal filter length of L = 138, the fitness function L, is determined
to be 0.2772 for the case of 1-OR, and 0.1421 for the case of 2-OR, with an opti-
mal filter length of L = 159. Figure 3.18 shows the outputs for both outer race
faults (1-OR and 2-OR) at the appropriate optimum filter lengths. A continuous
recording of impulses is shown in Figure 3.18 (a), (b), (c), and (d). The BPFO, as
well as 2BPFO, 3BPFO, and 4BPFO, are clearly evident in the envelope spec-
trum, which shows rotation modulation. However, as the filter length is increased
to L = 110, the findings diverge dramatically. The minimum entropy deconvolu-
tion (MED) fails to recover periodic impulses, hence the time-domain signal
appears as random impulses. Furthermore, the BPFO and its harmonics are unde-
tectable, as seen in Figure 3.18 (e) and 3.18 (f).

Results from the Francis turbine bearing analysis under various conditions
highlight the importance of optimal MED filter length selection for accurate fault
detection. The correct length enhances the visibility of periodic impulses;
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FIGURE 3.16 Time-domain waveform and envelope spectra: (a) one spall defect at outer
race (1-OR), (b) envelope spectrum of 1-OR, (c) two spall defects at outer race (2-OR), and
(d) envelope spectrum of 2-OR.



FIGURE 3.17 Selection of optimal filter length for inner race defect: (a) results of Aquila optimizer for 1-OR optimization, (b) value of L, for
1-OR, (c) results of Aquila optimizer for 2-OR optimization, and (d) value of L, for 2-OR
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FIGURE 3.18 Results of outer race faults: (a) time-domain signal, L =138 (optimized)
for 1-OR, (b) spectrum of (a), (c) time-domain signal, L =159 (optimized) for 2-OR, (d)

spectrum of (c) (Continued)
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FIGURE 3.18 (Continued) Results of outer race faults: (e) time-domain signal, L =110
for 1-OR, and (f) spectrum of (e).

conversely, an incorrect length impairs MED’s ability to extract meaningful infor-
mation from weak signals, hindering accurate fault diagnosis. The proposed
method effectively addresses these challenges.

3.4 COMPARISON OF THE PROPOSED METHOD TO
EXISTING STATE-OF-THE-ART METHODS

MED performance can be enhanced by: (i) optimizing filter coefficients [85, 86] and
(ii) substituting different fitness functions for kurtosis [79-84]. The advantages of
the suggested technique are highlighted when compared to PSO-MED and MCKD.

3.4.1 ComrarisoN witH PSO-MED

The enhanced MED technique that employs PSO converts the filter coefficients
into generalized spherical coordinates, enabling PSO to determine the optimal
solution. Reference [85] suggests that PSO-MED is superior to MED, especially
in situations with a low signal-to-noise ratio. In the comparative analysis, the
parameters for PSO-MED were configured to correspond to those in Reference
[85]. Furthermore, in PSO-MED, it is essential to predefine the filter length to
accurately detect faults in the bearings of the Francis turbine.

The envelope spectrum for signals associated with inner race defects in bear-
ings, particularly 1-IR and 2-IR, is shown in Figure 3.19 after being processed
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FIGURE 3.19 The results of inner race faults after filtering by PSO-MED: (a) time
domain under 1-IR fault, (b) envelope spectrum of (a), (c) time-domain signal under 2-IR
fault, and (d) envelope spectrum of (c)
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with PSO-MED. This figure illustrates that while the BPFIs and their harmonics
are detectable, they are significantly masked by other noise frequencies, leading
to less pronounced fault characteristics than those depicted in Figure 3.15. The
outcomes of the PSO-MED method applied to outer race defects, specifically both
1-OR and 2-OR, are presented in Figure 3.20, which showcases time waveforms

FIGURE 3.20 The results of outer race fault after filtering by PSO-MED. (a) Time-
domain signal under 1-OR, (b) envelope spectrum of (a), (c) time-domain signal under
2-OR, and (d) envelope spectrum of (c).
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and envelope spectra. Notable impulses can be recognized in the envelope spec-
trum of Figure 3.20; however, the harmonics are not discernible. These results
suggest that PSO-MED does not perform adequately in detecting bearing defects
in signals affected by the demanding operating conditions of the Francis turbine.

PSO-MED attempts to optimize filter coefficients by maximizing signal kurtosis
using PSO-generated particle sequences to find an “optimal solution.” However, the
iterative filter coefficient update (Eq. 3.6) is computationally expensive and inac-
curate, resulting in poor performance with the turbine’s challenging bearing signals.

3.4.2 ComparisoN witTH MCKD

McDonald et al. [97] proposed MCKD, an improved MED method using correla-
tion instead of kurtosis as the fitness function, enhancing fault impulse visibility
and outperforming PSO-MED. However, MCKD struggles with harmonic identi-
fication. Accurate MCKD results depend critically on knowing the fault period, T
[97], which also influences filter length (Eq. 3.13 [85, 88]) and diagnostic accu-
racy. A better estimate of 7' generally leads to a longer filter length.

2f
L>=% (3.13)
f

Here, f. denotes the resonant frequency of the fault excitation, while f; represents
the sampling frequency.

As aresult, it is essential to choose the right fault period T and to carry out a fair
comparison. The value of T is derived from Reference [22] and is calculated using
T = f, / BPFI (or BPFO). Specifically, T is set at 111 for inner race faults and at
88.8 for outer race faults. All signals are filtered utilizing the same optimal filter
length and shift order. The envelope spectrum of MCKD with inner race defects for
both 1-IR and 2-IR is shown in Figure 3.21. It is clear that MCKD can only identify
a single BPFI with a faint peak, without any harmonic presence or rotational modu-
lation. Figure 3.22 illustrates the time-domain signal and envelope spectrum for
both 1-OR and 2-OR defects as processed by MCKD. Although the time-domain
signal lacks distinct impulses, the envelope spectrum displays BPFO intertwined
with noise. A comparison between PSO-MED and MCKD indicates that MCKD
performs better for inner race defects, whereas PSO-MED excels with outer race
defects. Nevertheless, the proposed method outperforms MCKD in detecting peri-
odic impulses with notable amplitude and in extracting BPFI and BPFO harmonics.

Table 3.3 compares the proposed method, PSO-MED, and MCKD in terms of
percentage error and computation time. The proposed method shows lower error
and computation time than both PSO-MED and MCKD. While conventional
MED, PSO-MED, and MCKD only detected defect frequencies, the proposed
method identified both defect frequencies and their harmonics.

The proposed algorithm was executed using MATLAB R2019a software,
while LabVIEW 2020 was employed as the interface for data acquisition. The
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FIGURE 3.21 The results of the inner race fault after filtering by MCKD. (a) Time-
domain signal under 1-IR fault, (b) spectrum of (a), (c) time-domain signal under 2-IR
fault, and (d) spectrum of (c).
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FIGURE 3.22 The results of outer race fault after filtering by MCKD. (a) Time-domain
signal under 1-OR, (b) spectrum of (a), (c) time-domain signal under 2-OR, and (d) spec-
trum of (c).
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TABLE 3.3

Comparison of Results of the Proposed Fault Identification Scheme with
Other Existing Schemes

Fault
Frequency  Percentage
Obtained Error
Signal after in Fault
Processing Processing  Frequency = Computational
Scheme Defect Type RPM  Signal (Hz) (%) Time (sec)
Conventional One seeded defect 3040 400 0.6220 20.12
MED on the inner race
(1-IR)
Two seeded defects 3040 399 0.3705 17.27
on inner race (2-IR)
One seeded defect on 3040 255 2.3729 21.21
outer race (1-OR)
Two seeded defects 3040 256.12 1.9441 19.84
on outer race
(2-OR)
PSO-MED One seeded defect on 3040 397 0.1325 18.54
inner race (1-IR)
Two seeded defects 3040 396.12 0.3539 17.63
on inner race (2-IR)
One seeded defect on 3040 260.52 0.2595 17.82
outer race (1-OR)
Two seeded defects 3040 261.14 0.0222 15.42
on outer race
(2-OR)
MCKD One seeded defect on 3040 396.5 0.2583 19.73
inner race (1-IR)
Two seeded defectson 3040 397.92 0.0988 17.97
inner race (2-IR)
One seeded defect on 3040 260.01 0.4548 17.13
outer race (1-OR)
Two seeded defects 3040 262 0.3070 16.57
on outer race
(2-OR)
Improved One seeded defect on 3040 397.5 0.0067 14.41
MED inner race (1-IR)
using auto Two seeded defects 3040 397.52 0.0017 13.92
correlation on inner race (2-IR)
energy and e seeded defecton 3040 261.197 0.0003 13.71
Aql_nl? outer race (1-OR)
OPUMIZEr o seeded defects 3040 261.20 0.0007 12.79

on outer race
(2-OR)
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machine was configured with an AMD Ryzen 5 4600 H processor featuring
Radeon graphics, operating at 3 GHz and equipped with 8 GB of RAM. It ran on
a 64-bit Windows 10 operating system.

The MED is a FIR filter, widely used for blind deconvolution. Setting the filter
length correctly is essential before utilizing the MED. Results from simulated and
test signals indicate that even a difference of 1 in filter length can yield entirely
different outputs, highlighting the significant impact of the chosen filter length on
the MED results. Numerous researchers have sought to enhance the performance
of the MED filter [79-84], achieving notable results; however, the filter length still
needs to be predetermined. An index, (L y ), has been developed to assess the effect
of periodic pulses on the output signal from the MED filter and to minimize the
influence of single pulses as much as possible. Findings from various bearing
health conditions of the Francis turbine demonstrated that using an optimized fil-
ter length can effectively mitigate the adverse effects of a noisy environment.

The superiority of the suggested method can also be demonstrated using an
index referred to as the characteristic frequency of the envelope (Cﬁ, ), which is
effective in distinguishing between various fault levels. Previous literature has
utilized similar indexes to evaluate the capabilities of various methods, as refer-
enced in [83-86]. The characteristic frequency of the envelope (Cfe ) can be calcu-
lated using the following equation:

_ Al/l'z,j-wli(i'ff”"h) _ N-Zililv(i.ffam) a1
LA MY AG)

Here, A( f ) at frequency f in the envelope spectrum represents the amplitude.
N stands for the spectrum’s spectral lines, M for the multiple of f;,,,, which in
this study is set to 3, and S for the fault frequency. With the search bandwidth
covering the range [-5, 5], the value of N is set at 500. As shown in Figure 3.23,
the characteristic frequency of the envelope C/, of the suggested method has been
contrasted with that of the PSO-MED and MCKD methods. This comparison led
to the following conclusions:

oF

e

a. The severe vibration environment that exists during Francis turbine opera-
tion greatly reduces the bearing’s fault characteristics under a variety of
health circumstances. The 1-IR, or spall defect at one point on the inner
race, is the least prominent of the several fault modes, whereas the 2-OR, or
spall faults at two sites on the outer race, is the most noticeable.

b. The suggested approach successfully addresses the difficulties presented
by the highly vibrating environment and extracts the fault characteristics of
faulty bearings, which are frequently hidden by a lot of noise. According
to the comparison, the suggested approach performs better than PSO-MED
and MCKD in detecting the signals connected to the Francis turbine’s faulty
bearings.
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FIGURE 3.23 Output of C,, index for failure modes.

3.5 CONCLUSION

This research introduces an innovative fault detection method utilizing an AO to
enhance the MED filter’s performance. The approach employs autocorrelation
energy as a fitness function, enabling optimal filter length determination to accu-
rately identify periodic impulses. The technique has been successfully applied to
Francis turbine-bearing acoustic signals, where challenging conditions and noise
often obscure fault indicators. The proposed method effectively amplifies weak
periodic impulses and has been benchmarked against PSO-MED and MCKD. It
accurately detects fault frequencies for various bearing defects (1-IR, 2-IR, 1-OR,
and 2-OR) with minimal percentage errors (0.0067, 0.0017, 0.0003, and 0.007,
respectively) and efficient computation times (14.41, 13.92, 13.71, and 12.79
seconds, respectively). Comparative analysis demonstrates the superiority of this
technique in extracting subtle defect characteristics over existing methods.

3.6 SUMMARY

This chapter focuses on the study that used sound signals to investigate bearing
issues in the Francis turbine. To accomplish this, a measurement index called
autocorrelation energy has been created. This index serves as a fitness function
when the MED filter length is optimized using the AO. The suggested technique
helps to strengthen the weak periodic impulses that are present in the turbine’s
difficult operating circumstances.



4 Fault Diagnosis of the
Centrifugal Pump

4.1 INTRODUCTION

Hydraulic pumps play a crucial role in various sectors, including agriculture,
industry, and domestic applications [36, 98, 99]. Centrifugal pumps, in particular,
require careful monitoring to prevent mechanical failures during continuous oper-
ation. These pumps can experience three main types of faults: mechanical-
induced, system-related, and operational. Mechanical faults involve component
failures such as impeller damage [100], bearing issues [101, 102], and shaft mis-
alignment [103]. System faults are associated with improper installation and leak-
age, while operational faults include blockages, cavitation, and erosion [104,
105]. This research concentrates on mechanical-induced faults, specifically those
affecting impellers and bearings. Condition-based monitoring (CBM) is employed
to evaluate the health of rotating components by analyzing measurable parame-
ters. When these parameters deviate from normal behavior or decline, the diag-
nostic system is activated, prompting maintenance actions once predetermined
thresholds are exceeded. For rotating machinery, CBM typically involves moni-
toring vibration, acoustic emission, sound, or pressure signals. In this study, the
focus is on vibration-based condition monitoring to diagnose impeller and bearing
defects in centrifugal pumps.

4.2 DIAGNOSIS OF IMPELLER DEFECT IN CENTRIFUGAL PUMP
(CASE 1)

A centrifugal pump generates a pressure head through its rotating impeller and
involute casing. The impeller is attached to a shaft that is supported by bearings.
As the impeller rotates, it creates velocity, which is then transformed into pressure
by the casing. Various factors can lead to malfunctions in the impeller, including
corrosion caused by reactive chemicals, erosion due to solid slurry particles, met-
allurgical defects, cavitation, and lack of proper lubrication [99, 106].

The vibration signals collected for monitoring may contain noise, which needs
to be eliminated for an accurate fault analysis. To find centrifugal pump problems,
researchers have been actively examining sophisticated signal processing and
machine learning approaches [101-103]. For example, Azizi et al. [107] classified
the findings using a generalized regression neural network (GRNN) after utilizing
empirical mode decomposition (EMD) to determine the degree of cavitation in cen-
trifugal pumps. The genetic algorithm support vector machine (GA-SVM) model
was created by Kumar and Kumar [108] to categorize different flaws using features
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that were taken from the scale marginal integration (SMI) signal as well as the raw
signal. Although the genetic algorithm showed promise in fault prediction, it had
drawbacks, including a sluggish rate of convergence and the ability to become
stuck in local minima. Additionally, Kumar et al. [109] employed symmetric cross-
entropy of neutrosophic sets to diagnose defective bearings in an axial pump.

Variational mode decomposition (VMD), introduced by Dragomiretskiy,
breaks down a signal into intrinsic modes, with the center frequency being calcu-
lated in real time, allowing the extracted modes to synchronize accordingly [110].
He demonstrated that VMD outperforms EMD in tone detection and separation.
Using a cross-entropy measurement index, Kumar et al. [68] applied the VMD
technique to find centrifugal pump problems. VMD was used by Zhang et al.
[105] to break down signals in order to identify bearing problems in a multistage
centrifugal pump. Mode number and quadratic penalty factor are two examples of
VMD parameters that are commonly determined by experience, which can have a
substantial effect on VMD’s performance and can lead to erroneous decomposi-
tion results. For VMD-based decomposition to be effective, the ideal parameter
combination must be determined.

To optimize VMD settings, a variety of optimization strategies have been used.
Swarm intelligence (SI) techniques stand out among these because they are mod-
eled after the collective behavior of various creatures, including schools of fish,
ants, and flocks of birds, and are inspired by natural events [111]. Gravitational
search algorithms (GSA), particle swarm optimization (PSO), sine cosine algo-
rithms (SCA), hybrid genetic algorithms and particle swarm optimization
(HGPSO), ant colony optimization (ACO), whale optimization algorithms
(WOA), grey wolf optimizers (GWO), and grasshopper optimization algorithms
(GOA) are a few examples of SI approaches. These methods are used for different
optimization problems [50, 112].

This chapter presents ASSA that utilizes opposition and position updating to
develop an adaptive VMD technique, applied to vibration signals for detecting
defects in centrifugal pumps. By efficiently expanding the starting population size,
the proposed technique not only speeds up convergence but also cuts down calcu-
lation time. This approach reduces the likelihood that the algorithm would stall
when attempting to find the optimal set of VMD decomposition parameters. The
sensitive mode for faulty feature extraction is chosen using the weighted kurtosis
index. Additionally, the extracted features are ranked using the Pearson correlation
coefficient (PCC) technique, which reduces data redundancy and determines each
feature’s impact on the signal. An extreme learning machine (ELM) is then trained
using the chosen characteristics to assess testing and training accuracy.

4.2.1 THEORETICAL BACKGROUND

4.2.1.1 Variational Mode Decomposition (VMD)

VMD is a signal processing method that breaks down the raw vibration signal into
intrinsic modes i, which maintains a sparsity with the original signal. Each mode
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is expected to be centered around a specific frequency w;. The corresponding
sparse-mode u; is selected as the bandwidth in the frequency domain, as described
in [110, 113]. To determine the mode bandwidth, the following steps are executed:
(1) each mode, u;, is derived using the Hilbert transform to generate its frequency
spectrum, (2) the frequency spectrum of each mode is exponentially shifted to the
“baseband” in relation to its central frequency, and (3) the bandwidth of the fre-
quency is then estimated using the (L2 norm of the gradient. This decomposition

process is conducted according to [110].

min E

k

2

s.t.Zuk = f(t) 4.1)

2 k
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where f (t) denotes an input signal, while {uk} indicates a distinct set of modes
and {wk} represents the central frequency. The Dirac distribution Ot signifies
convolution. The penalty factor & serves as the data fidelity constraint, and the
Lagrangian multiplier 1 is employed to impose this constraint, allowing the
optimization problem outlined in Eq. (4.1) to be transformed into an uncon-
strained form. The augmented Lagrangian £ is expressed in the following
equation:

2
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The alternate direction method of multipliers (ADMM) addresses the aforemen-
tioned minimization issue (augmented Lagrangian £) to find the saddle point and
generates a series of suboptimizations. By leveraging the solutions from these
suboptimizations, ADMM directly optimizes the problem in the Fourier domain,
as referenced in [110]. The complete algorithm is outlined in [110]. The values of
u;, and w; are updated in accordance with the ADMM optimization problem dur-
ing processing. Equation (4.2) updates the variational mode function (VMF) con-
cerning u;, and following this update of the VMEF, the suboptimal problem is
expressed as follows:

[
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The optimal solution to the quadratic equation presented in Eq. (4.3) can be con-
veniently determined using the Fourier transform in the frequency domain, with
the filter adjusted to the central frequency. Subsequently, Eq. (4.4) updates the
values of the modes ;.

An+l — i . (4'4)
uk (W) l+2a(w—wk)2

Filtering is performed on the current residual in conjunction with the signal prior

. 2 . . . .
to applying 1/ (w - wk) using a Wiener filter, and the mode «, is updated in accor-
dance with Eq. (4.4). Hermitian symmetric completion is used to derive the spec-
trum of each VMF (uk) The real part of the inverse Fourier transform of the
filtered signal yields the modes i, in the time domain. Eq. (4.2) is optimized with
respect to w; to ensure that the central frequency does not affect reconstruction
fidelity. The relevant problem is referenced from [110].

a{(a(t)+jj*uk(,)}wm

2
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Upon resolving the aforementioned suboptimization problem, the result for the
central frequency is obtained as follows:

@ 2
j w‘uk (w)‘ dw
n+l _ J 0
Wy =T e
jo

The central frequency w; is updated based on the center of gravity of the power
spectrum of the corresponding mode, as indicated in Eq. (4.6).

The aforementioned equations indicate that four parameters—namely, mode
number (K), quadratic penalty factor ( a), tolerance (z), and convergence criterion
(e)—are essential for the VMD procedure and must be defined ahead of time. The
parameters 7 and e typically use their default values from the original VMD, as
they have minimal impact on the decomposition outcomes. However, the mode
number K should not be predetermined without prior knowledge of the signal
being analyzed, as its appropriateness cannot be assessed, which may affect the
accuracy and efficiency of the decomposition results. The quadratic penalty factor
a helps suppress noise interference in the signal and regulates the frequency band-
width, necessitating careful selection. Therefore, finding the optimal combination
of these parameters is crucial for VMD and serves as the motivation for this work.

(4.6)
? dw

i
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4.2.1.2 Extreme Learning Machine (ELM)

Huang et al. [114] introduced the ELM for applications in both regression and
classification. The ELM is built on a single-layer feedforward network (SLFN), as
illustrated in Figure 4.1. It comprises three layers: the input layer, the hidden
layer, and the output layer. For M arbitrary samples (X ot j) € R"X R", the SLFN
with L hidden nodes and an activation function G(al-, ﬂ,-,Xl-) is mathematically
represented as shown in Eq. (6.7) [114]:

L
ﬁ(XJzZS@GQ@Xﬂ%JzQJ:L””M. 4.7)
i=1

Here, ¢; and b; are the learning parameters associated with the hidden nodes,
where ¢; connects the weight vector of the input nodes to the ith hidden node, and
b; represents the threshold for the ith hidden node. Additionally, f; signifies the
output weight, and ¢; indicates the test point, while the activation function
G(a,», /3,«,X,~) produces the output for the ith hidden node. This equation can also
be expressed in matrix form as follows:

HB=T (4.8)

FIGURE 4.1 Extreme learning machine (ELM) structure.
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where
H:(_0(1,...,OlL,bl,...,bL,Xl,...,XN)= .
G(O!l,ﬂl,Xl) G(aL’IBL’Xl)
4.9)
_G(O!l,ﬂl,XN) G(aL’ﬂL’XN)_NXL
and
B I’
p=| |\ T=|" (4.10)
B Ty

According to ELM theories, the values of ¢; and b; are assigned randomly for all
hidden nodes rather than being adjusted through tuning. The solution to the pre-
ceding equation is estimated by

B=HT A.11)

where H” represents the inverse of the output matrix H, and the Moore—Penrose
generalized inverse is employed for this purpose. The procedures included in the
ELM algorithm are summarized as follows:

Step 1: The hidden nodes’ learning parameters, ¢; and b;, are assigned
at random.

Step 2: It is necessary to compute the hidden layer’s output matrix H.

Step 3: The Moore—Penrose generalized inverse is used to calculate the inverse
of the hidden layer output matrix.

4.2.2 PROPOSED SCHEME

To enhance the analysis of vibration signals for pump fault detection, a VMD
process is proposed. This adaptation is achieved by optimizing the VMD’s param-
eters, specifically the mode number K and the quadratic penalty factor, through a
specialized search rule. This rule relies on two primary criteria: a measurement
index to evaluate the quality of the VMD results and an efficient search method. A
refined salp swarm algorithm (SSA), incorporating opposition-based learning and
position updating, is developed as the search method to effectively identify the
optimal parameter combination. Furthermore, to accurately locate the sensitive
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mode within the decomposed signal, a new measurement index, weighted kurto-
sis, is introduced. This index improves upon traditional kurtosis by incorporating
the correlation coefficient and considering density distribution, thus providing a
more comprehensive evaluation. Following the identification of the sensitive
mode, relevant features are extracted and utilized by an ELM to enable automated
fault detection in the pump.

4.2.2.1 Weighted Kurtosis Index

The measurement index is a crucial component in making VMD adaptive, as it
assesses the effectiveness of the decomposition results. Previous research has indi-
cated that kurtosis and correlation coefficients are two significant indices for diag-
nosing faults in rotating machinery using vibration signals [115]. The kurtosis index
primarily depends on the density distribution of the impacts caused by faults [116].
Utilizing maximum kurtosis alone to optimize VMD parameters can be problematic
because it may fail to detect impactful events with high amplitudes if their density
distribution is spread out. While the correlation coefficient offers a rapid assessment
of signal similarity, its vulnerability to noise, particularly in signals from faulty com-
ponents, limits its reliability [115]. To overcome the limitations of relying solely on
maximum kurtosis or the correlation coefficient, a combined metric, the weighted
kurtosis index, is proposed. This hybrid index will function as the fitness function,
guiding the optimization process to determine the most effective VMD parameters
[117]. The following Eq. (4.12) represents the weighted kurtosis index (KCI).

KCI = KI|C| (4.12)
where KT represents the kurtosis index for input signal x(n) and is expressed as
1 N-1 4
_ NZizzox (n)
2
1 N-1 2
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where the length of the signal is given by N. Considering E [] a mathematical
expectation, the correlation C between x and y is expressed as

E[(x-x)(y-¥)]
E|(x=x)' || (v-3) |

4.2.2.2 Ameliorated Salp Swarm Algorithm for Optimizing VMD
Parameters

Mirjalili et al. [118] introduced the SSA, an optimization method rooted in SI. This

technique emulates the foraging patterns of salps or chains of salps in the deep

ocean. Within SSA, the initial random population is divided into two groups:

K1

(4.13)

C= (4.14)
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leaders and followers, facilitating the creation of the mathematical model of the
salp swarm [118]. The leader directs the salp chain, while the followers move
behind the leaders. The basic principles of SSA and the Enhanced Salp Swarm
Algorithm (ASSA) proposed in this study are detailed in the following subsec-
tions, along with explanations for the modifications made to SSA. Shared pro-
cesses such as population initialization, function evaluation, and swarm division
are relevant to both SSA and ASSA. To improve SSA’s convergence speed, oppo-
sition-based learning is utilized. The approach for updating the positions of both
leaders and followers is refined through various equations, which are detailed in
the relevant subsections to thoroughly develop ASSA.

A. Initialization of population
To begin, the population is randomly generated within the search space
using a uniform distribution, as demonstrated in Eq. (4.15).

Xy = X" (P = xf )i (i = 1,2, NPy j=1,2,...,D) (4.15)

where NP represents the number of populations, D signifies the dimension
of the search space, x™ denotes the lower bound of the search space, x™
indicates the upper bound, and 7; is a uniformly generated random number
within the range (0,1).

B. Opposition-based learning

Nature-inspired optimization algorithms typically begin with random initial
guesses for potential solutions across a defined search space. However, this
random initialization can lead to lengthy computation times. To mitigate
this, an approach known as opposition-based learning can be employed.
Instead of solely relying on random guesses, each initial solution is paired
with its “opposite” counterpart, and the fitness of both is evaluated. The
superior solution, whether the original random guess or its opposite, is then
selected as the starting point. This strategy, by initializing with closer
approximations and validating them against the fitness function, effectively
reduces computation time and accelerates convergence. This technique is
applied consistently across the initial population and has been integrated
into the fundamental SSA, where the population initialization utilizes this
opposition-based learning framework.

X,, = X7+ x;"i“ —X; (4.16)

0jj J

where x,, represents the salp population from opposition-based learning.
C. Function evaluation

The fitness of the swarm is assessed using Eq. (4.16). Subsequently, the
optimal function value, F, (z) is derived mathematically and expressed as
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F, (i) = min{F (x(i))| 4.17)

wherei=1,2,...,NP
The best salp position is saved corresponding to the best function value, F, (i )

D. Dividing the swarm
The entire swarm is segmented into two groups known as leaders and fol-
lowers. The proportion of leaders can range from 10% to 90%, as indicated
in [118]. In this research, the leaders and followers are divided equally,
meaning they are assigned the same percentage.

E. Update the position of the leader
Similar to other swarm-based optimization methods, the position of each
salp serves as a candidate solution stored in a two-dimensional matrix
referred to as X for an m-dimensional search problem, where m represents
the number of design variables. Within the search space, the optimal posi-
tion corresponds to the best food source, denoted as F'. The positions of the
leaders are updated according to Eq. (4.18).

. F}+C|((ubj—lb])C2+lbj),C;ZP
X;= (4.18)
Fy—ci((ub; —1b; ) cy +1b;) ¢ < P

where Xj'- denotes the position of the leader (first salp), P is the probability
used to determine the leader’s position, and F; represents a food source in
the jth dimension. ub; and [b; are the upper and lower bounds, respectively,
for the jth dimension. The variables ¢y, ¢,, and ¢; are random values, with ¢
playing a crucial role in balancing exploitation and exploration. The defini-
tion of ¢, is provided in Eq. (4.19) as follows:

(7 (4.19)

where k represents the current iteration and L denotes the maximum num-
ber of iterations. The random variables ¢, and ¢; are generated uniformly
within the range of 0 and 1. The probability P is defined in Eq. (4.20) as
follows:

P =tanh|S (i) - DF| 420)
where S (l) represents the fitness of x;;, while DF signifies the best fitness

achieved across all iterations. Eq. (4.19) has been introduced as a modifica-
tion that facilitates the updating of the leaders’ positions.
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F. Update the position of the followers

The follower position is updated according to Eq. (4.20), which is based on
Newton’s Law of Motion.

o1 i i
X :5((1—05)X} +aX;”) (4.21)

V\I/here 2<i<L, X} indicates the position of i " follower in the salp chain of
«th
J dimension. And « is the weighting factor defined in Eq. (4.22)

a = rand (—varl,varl) (4.22)

where

varl = atanh(— ! + lj (4.23)
max L

Egs. (4.22) and (4.23) are incorporated in Eq. (4.21) as modifications in the
basic salp swarm which updates the follower’s position.
Pseudocode of the ASSA Algorithm is presented in the following manner.

Initialize the salp population NP1 x; using Eq. (4.15).
Apply opposition-based learning on this initial population to get NP2
members.
Calculate objective function on NP1 and NP2 using Eq. (4.25).
Select best NP members out of (NP1+NP2).
Select members, xbest ( J ) with best function value and designate as
gbest.
while (1< L)
Calculate the objective function of each individual.
Update c, by Eq. (4.19)
Jor i = 1: size of salp population
if i <= half of the salp population
generate €2 and €3 randomly within [0,1]
calculate the value of P using Eq. (4.20)
update the position of the leaders using the Eq. (4.18)
else if i > half of the salp population
generate the variable varl using Eq. (4.23)
create o using Eq. (4.22)
update the position of the follower using

Eq. (4.21)
end
end
updated salp position

end
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amend the salps based on upper and lower bounds of variables.
evaluate the objective function on the updated salp position
update the value xbest and gbest

end

4.2.2.3 Pearson Correlation Coefficient-Based Feature Ranking

In the context of large datasets, filter-type algorithms are typically employed to
rank the features. A feature filter is essentially a function of correlation or infor-
mation that returns the relevant index J(S | D,C) [119]. This index evaluates the
relevance of a given feature subset (S) for the task (C), which can involve either
classification or approximation of the data D. The relevant index is computed for
each individual feature Xi» where i=1...N, to establish the ranking order
J (X,-1 ) <J (X,~2 ) L2 (XiN ) Features with the lowest ranks are typically filtered
out. The PCC is one method used to determine the rank of features based on cor-
relation measurement [119]. The PCC is expressed as follows:

_E(xC)-E(X)E(C) D (x-3)(e-a)

i (4.24)

T Jr®)ee) =D

e(x.C)

where X represents a feature with value x, and class C is a class containing values ¢.
Ifc (X s C) is + 1, then X and C are considered dependent; conversely, if € (X ,C ) is

zero, X and C are uncorrelated. The error function P(X ~ C) =erf (\e (X, C)‘ NN /2 )

is utilized to calculate the probability that two variables are correlated. Decreasing
values of the error function P (X ~C ) indicate feature ranking and organize the
feature list accordingly.

4.2.3 FAuLT IDENTIFICATION APPROACH

This chapter introduces a parameter-adaptive VMD technique, driven by an
ASSA. The ASSA utilizes the maximum weighted kurtosis, as defined in Eq.
(4.25), as its fitness function to optimize VMD parameters. To improve the algo-
rithm’s performance, opposition-based learning is integrated into the original
SSA, leading to the development of ASSA. Since the optimization aims to mini-
mize the fitness function, the maximization problem inherent in the weighted kur-
tosis is transformed into a minimization problem by negating the fitness function,
as shown in Eq. (4.25). Furthermore, the study proposes a feature ranking method
based on the PCC to determine feature relevance for fault diagnosis. Finally, these
ranked features are used to train and test an ELM for accurate fault detection.

objective function = minu(k’a) (—KCI,-)

s.tk=2,3,...,7 (4.25)
a £[1000,...,10,000 |
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where KCI; (for (i =1,2,...,K)) represents the weighted kurtosis for the decompo-
sition modes of VMD. The parameters u(k,a) are those of VMD that need opti-
mization. The mode number k varies within the interval [2, 7], while the quadratic
penalty factor @ takes values within the range [1000, 10000]. The parameter
ranges have been determined based on a comprehensive literature review.

The detailed steps of the proposed methodology are outlined below:

* The acquired vibration signal is the input into VMD using the specified
ranges of parameters that require optimization. The value of the objective
function is stored for each iteration.

* Initialize the parameters of the ASSA using a population size of N and set-
ting the maximum number of iterations to L.

» Retrieve the modes following the decomposition of the vibration signal
using VMD. Next, calculate the objective function for each mode.

e If 1>L, then the desired condition is met, and the iteration concludes.
Otherwise, increment | by 1 and continue the iteration.

* Maintain the set of ideal parameters determined by the goal function’s low-
est value. Furthermore, keep track of the sensitive mode, which is the mode
linked to the highest weighted kurtosis index.

» The PCC is used to rate the distinguishing traits when they are taken out of
the sensitive state. After that, the data is saved.

* To assess the model’s accuracy during testing and training, the resulting
data is fed into the ELM.

A flow chart of the process is given in Figure 4.2.

FIGURE 4.2 Flowchart for adaptive VMD method for fault identification in the centrifu-
gal pump.
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4.2.4 EXPERIMENTATION

4.2.4.1 Test Rig

The centrifugal pump test rig is the source of the experimental dataset. The sche-
matic diagram and visual representation of the pump test rig are shown in Figure
4.3(a) and 4.3(b), respectively. The pump runs at a speed of 2800 rpm or 46.67 Hz.
Table 4.1 contains the pump’s detailed specifications. Two bearings support the

FIGURE 4.3 (a) Schematic of centrifugal pump test rig and (b) a typical photograph of
centrifugal pump test rig with an accelerometer placed for data acquisition.
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TABLE 4.1

Specification of Centrifugal Pump
Power supply 230/240 V
Motor power 0.5 Hp
Discharge 1.61 litre/s
Impeller type Closed
Impeller diameter 118.88 mm
Impeller vanes 3

pump shaft: Bearing 1, which is located closer to the impeller and is designated
6203-ZZ, and Bearing 2, which is located farther away from the impeller and is
designated 6202-ZZ. The impeller, which is housed in a casing and positioned on
the rotor shaft, has vanes that, when rotating, pull water axially through the impel-
ler’s eye. By doing this, the water is given kinetic energy, which allows it to flow
outward radially through the casing and transform it into potential energy, or head.

4.2.4.2 Data Acquisition

The vibration signals are collected using a uniaxial accelerometer with a sensitivity
of 100 mV/g, which is mounted near the impeller casing, as depicted in Figure
4.3(b). A National Instruments 24-bit, 4-channel data acquisition (DAQ) system is
utilized to capture the vibration signals, operating at a sampling frequency of 70
kHz. 7000 data points, covering 0.1 seconds, are evaluated. As shown in Figure 4.4,

FIGURE 4.4 Different operating conditions: (a) clogging, (b) blade cut, and (c) wheel cut.
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the study is conducted under a variety of impeller settings. The adaptive VMD
approach is used to process the raw signal obtained from the centrifugal test rig.
The modified salp swarm technique is used to optimize the two main parameters
of VMD, the mode number K, and the quadratic penalty factor . Other VMD
parameters are used as recommended in [110]. The ideal set of VMD parameters
is determined using the suggested ASSA algorithm. With these ideal pairings, the
maximum weighted kurtosis is used to determine the most important mode, which
is then processed for additional examination.

First, data is collected for a pump with a normal (defect-free) impeller installed
that runs at 2800 rpm (corresponding to an operational frequency of 46.67 Hz). In
every impeller situation under investigation, the pump keeps its speed constant.
Figure 4.5(a) displays the raw time-domain signal for the impeller condition with-
out defects. After that, this signal is converted into the frequency domain, as
shown in Figure 4.5(b), where the 47 Hz characteristic frequency which corre-
sponds to the operating frequency of the pump is emphasized. Under all health
conditions, the pump runs at a constant rpm, and hence the Fast Fourier Transform
(FFT) related to the operating frequency is constant. The adaptive VMD approach,
which is based on the ASSA, breaks down the raw signal into different modes.
The quadratic penalty factor @ and the mode number K are found to be 3 and
1000, respectively, based on the ASSA. Figure 4.5(c) provides illustrations of the
various modes. Every mode’s weighted kurtosis is determined; the third mode
yields the highest weighted kurtosis value, 12.73, and is chosen for feature extrac-
tion. Twenty signals in all are examined in the following scenarios: wheel cuts,
clogging, blade cuts, and no defect.

Similar to the analysis for the defect-free condition, adaptive VMD is also used
to deconstruct the data gathered under blocked impeller conditions into several
modes. ASSA optimizes this process by applying a quadratic penalty factor a of
4000 and a mode number K of 3. The three options in this case produce weighted
kurtosis values of 1.95, 3.08, and 1.99; the third mode, with the greatest weighted
kurtosis value, is selected for additional processing. Figure 4.6(a) shows the time-
domain signal, Figure 4.6(b) shows the frequency-domain signal, and Figure
4.6(c) shows the decomposed modes.

Figure 4.7(a) displays the blade cut impeller condition’s raw signal, and Figure
4.7(b) displays the matching frequency domain signal. For this signal, the optimal
K and @ parameter values are found to be 3 and 1000, respectively. As illustrated
in Figure 4.7(c), the raw signal is broken down into three modes using these
parameters. The first, second, and third modes have weighted kurtosis values of
1.62, 1.60, and 8.62, respectively. In this instance, the third mode is also chosen
for additional examination because it has the highest weighted kurtosis value.

The wheel-cut impeller situation is handled in the same way. Figure 4.8(a)
displays the time-domain signal, and Figure 4.8(b) displays the equivalent fre-
quency-domain signal. It is discovered that 3 and 2000 are the ideal parameter
combinations for the mode number and penalty factor, respectively. Figure 4.8(c)
shows the three resultant modes. The first, second, and third modes have weighted
kurtosis values of 1.54, 3.87, and 11.63, respectively. The prominent mode is
determined to be the one with a weighted kurtosis of 11.63.
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FIGURE 4.5 (a) Raw signal with non-defective impeller. (b) FFT for non-defective
impeller. (c) Different modes obtained by applying adaptive VMD to the raw signal.

4.2.4.3 Feature Extraction

A total of 80 prominent modes (20 for each condition: healthy (no defects),
clogged, blade cut, and wheel cut impeller conditions) are obtained from the adap-
tive VMD method based on ASSA, utilizing weighted kurtosis as the measure-
ment index. Subsequently, 11 features are extracted from the prominent modes
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FIGURE 4.6 (a) The raw signal under clogged impeller condition. (b) FFT under clogged
impeller condition. (c) Three different modes obtained by applying adaptive VMD under
the clogged impeller condition.

decomposed by adaptive VMD. The list of features, along with their definitions,
is presented in Table 4.2. The extracted features are normalized within the range

of [0, 1] using the following mathematical formula:

Feature —min ( F eature)

Normalized feature =

max(Feature) - min(Feature) (4.26)
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FIGURE 4.7 (a) The raw signal under blade-cut impeller condition. (b) FFT under blade-
cut impeller condition. (c) Three modes obtained by applying adaptive VMD under blade-
cut impeller condition.
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FIGURE 4.8 (a) The raw signal under wheel-cut impeller condition. (b) FFT under
wheel-cut impeller condition. (c) Different modes obtained by applying adaptive VMD
under wheel-cut impeller condition.
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TABLE 4.2

Extracted Features with Their Definition
S. No. Features

1. Standard Deviation (xx,d )

2. Peak (x,, )

3. Skewness (xxkg )

4. Kurtosis (x,ﬂ,,. )

5. Root Mean Square (x,.m)

6. Peak Factor (PF)

7. Square Root Amplitude (xm, )

8. Shape Factor (SF)

9. Impulse Factor (IF)

10. Wavelet Packet Decomposition (WPD) Energy
11. Permutation entropy

Definitions

Xgd = ZN:(x(i)—xm)z/N

i=1

X, = max‘x(i)‘

e =i(x(i)—x,,, } /N
Ktar =i(x(i)—xm)4 /ij,,,
Xy = ’ZNl:x(i)2 /N

PF = /rm
{gem]

SuE
gt

21 N
n)f > (n)
k=0 n=1
n_—_lljZle log, (P/)

Here, x represents data; N represents the number of data points; x,, is the average value of x; x; (n)
represents the decomposition coefficient for kth sequence; and j is the level of WPD decomposition.

4.2.5 ResuLt AND DiscussioN

4.2.5.1 Comparison of the ASSA with Other Art of Optimization

The effectiveness of the proposed optimization algorithm (ASSA) is assessed
using 23 benchmark functions. ASSA is compared with other advanced optimi-
zation algorithms, including SSA, GWO, GOA, SCA, and HGPSO, with met-
rics such as mean, standard deviation, best, worst, and median values being
utilized for comparison. The results are summarized in Table 4.3. ASSA proved



TABLE 4.3

Comparison of the Proposed Algorithm with Other Optimization Algorithms at Benchmark Functions

Function ASSA (Proposed) SSA GWO GOA SCA HGAPSO

F1 Mean 1.1063e-93 9.1209e—-09 1.6672e-27 1.5788e—09 2.7425e-25 2.9579e-31
Standard Deviation 3.2380e-94 1.6818e—09 3.2816e—27 1.2994e—-09 1.2119e-24 7.3334e-31
Best 5.5194e—-94 6.2194e—09 5.4044¢-30 1.8378¢-10 5.1600e—35 6.4055¢—34
Worst 1.7057¢-93 1.3329¢-08 1.4561e-26 5.5621e-10 5.4229¢-24 3.3693e-30
Median 1.0649e-93 9.1999e—-09 3.7141e-28 1.1901e-09 1.8613e-29 9.1882e-32

F2 Mean 5.3305e—48 7.7236e—-06 7.4550e—17 0.9993 1.1173e-17 7.5501e-248
Standard Deviation 1.1164e-48 2.8604e—06 5.5643e—17 1.5429 3.4603e—17 0.0000
Best 3.9818¢—48 4.7307e-06 1.5632¢—17 3.5204e—04 5.1631e-22 5.8965¢—301
Worst 6.8723¢—48 1.7809¢—-05 2.6718e-16 6.4414 1.4762¢-16 1.5100e-246
Median 5.2462e-48 7.1882e-06 6.2314e-17 0.4598 1.2468e-19 4.3475e-295

F3 Mean 1.1245¢-93 1.2365e-09 2.4787e-05 1.2172e-07 2.8603e—-09 6.1307e-30
Standard Deviation 1.1005¢-93 3.8545e-10 7.4077¢-05 2.8852e—07 1.1367¢-08 1.7521e-29
Best 1.8863¢-94 6.0467e—10 7.3815¢-08 1.5850e—10 6.6900e—19 8.6162e—32
Worst 4.3993¢-93 1.9480e-09 3.0164e—04 1.2462¢-06 5.1007e—08 7.9903¢-29
Median 7.2784e-94 1.1170e-09 4.9493e-07 1.0015e-08 8.7528e—13 1.1867¢-30

F4 Mean 1.1824e-47 1.3264e-05 7.1506e—-07 2.6024e-05 3.1534e-08 2.0042
Standard Deviation 2.5702¢-48 2.4542¢-06 8.1461e—07 1.3879e-05 6.8891e—08 0.9001
Best 5.6332¢—48 8.1067e—06 6.9376e—08 9.0241e—06 1.3787¢-07 0.4645
Worst 1.6194e-47 1.8578e—-09 3.3931e-06 5.4687¢—05 3.0085¢—07 3.5475
Median 1.2105e-47 1.2999e—05 3.6015e—07 2.2629¢-05 6.1902e—09 2.0167

(Continued)
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TABLE 4.3 (Continued)
Comparison of the Proposed Algorithm with Other Optimization Algorithms at Benchmark Functions

Function

F5

Fé

F7

F8

F9

Mean

Standard Deviation
Best

Worst

Median

Mean

Standard Deviation
Best

‘Worst

Median

Mean

Standard Deviation
Best

‘Worst

Median

Mean

Standard Deviation
Best

‘Worst

Median

Mean

Standard Deviation
Best

‘Worst

Median

ASSA (Proposed)

6.9279
0.3478
5.8069
7.3701
6.8667
6.5498e-10
1.6644e-10
3.8422e-10
1.0293e-09
6.3909¢-10
1.3569e-05
1.1634e-05
7.1617e-07
3.9854e-05
1.0738e-05
—3.2454e+3
420.1125
-3.9514e+3
—2.6257e+3
-3.3198e+3
0

o o o<

SSA

12.3668
24.2568
0.0546
111.8152
5.6310
6.0812e-10
2.2654e-10
2.0192e-10
1.0441e-09
5.5265e-10
0.0046
0.0023
0.0010
0.0087
0.0043
—2.8590e+3
347.6819
=3.7161e+3
—2.4041e+3
—2.9729¢+3
11.1933
5.3324
2.9849
20.8941
10.9445

GWO

26.8866
0.7314
25.7383
27.9746
27.1346
0.7139
0.3548
6.4081e-05
1.2556
0.6857
0.0017
0.0015
5.9667-04
0.0068
0.0011
—5.8693e+3
1.0887e+3
=7.9772e+3
—2.7557e+3
-5.9411e+3
2.0587
3.3974
1.1369e-13
11.1635
5.115%-13

GOA

78.1307
258.6771
0.0062
1.1219e+03
0.6503
9.9607e-10
6.0217e-10
8.9491e-11
1.7876e-09
1.0657e-09
0.0466
0.0921
2.3148e-04
0.4063
0.0088
—1.6813e+3
175.9365
-1.9765e+3
—-1.3797e+03
—-1.7379e+03
5.7581
4.5536
0.9950
20.0345
4.2202

SCA

7.1655
0.3510
6.5208
8.0564
7.2043
0.3435
0.1477
0.0597
0.6379
0.3523
0.0018
0.0014
1.6883e—04
0.0049
0.0015
—2.2116e+3
139.7250
—2.4821e+3
—1.9810e+3
—2.1900e+3
1.6298
5.0518

0

18.3262

0

HGAPSO

27.5146
26.1893
0.6620
89.6398
20.8308
3.6023e-31
9.8853e-31
0.0000
4.4959e-30
8.6282e-32
2.3283e-05
2.1560e-05
1.2256e-06
8.4515e-05
1.8608e—05
-3.692e+03
186.6751
-3.952e+02
-3.360e+03
—-3.656e+03
8.3079
2.8560
2.9849
12.9345
2.8560

oL
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F10 Mean 8.8818e-16 0.6157 1.0747e-13 0.3964 3.6419¢-05 0.1906
Standard Deviation 0 0.8981 1.3880e-14 0.8276 1.6287e—-04 0.4700
Best 8.8818e-16 5.2111e-06 7.9048e—-14 1.8110e-05 8.8818e-16 4.4409e-15
Worst 8.8818e-16 2.3168 1.2879e-13 2.3168 7.2839e-04 1.5017
Median 8.8818e-16 1.0758e-05 1.0925e-13 1.4032e-04 4.4409¢e-15 7.9936e-15

F11 Mean 0 0.2750 0.0032 0.1143 0.0390 0.0191
Standard Deviation 0 0.1323 0.0067 0.0520 0.0973 0.0257
Best 0 0.1083 0 0.0246 0 0.0000
Worst 0 0.5534 0.0215 0.2267 0.3520 0.0853
Median 0 0.2325 0 0.1047 6.2339¢e-14 0.0099

F12 Mean 6.3064e-12 0.0563 0.0457 4.9053e-07 0.0777 9.3944e-11
Standard Deviation 2.1561e-12 0.1419 0.0211 1.4601e—-06 0.0424 2.1414e-10
Best 2.6122e-12 2.0721e-12 0.0197 9.3515e-10 0.0167 1.5705e-11
Worst 9.9885e-12 0.5026 0.0997 6.6404e-06 0.2022 8.1376e-10
Median 6.7364e—12 9.3848e—-12 0.0395 9.6065e-08 0.0698 1.5964e-11

F13 Mean 0.0011 5.4937e-04 0.6470 5.4986e-04 0.3145 0.0016
Standard Deviation 0.004 0.0025 0.2260 0.0025 0.0786 0.0040
Best 1.8693e-11 1.6934e-11 0.3099 2.3636e-10 0.1684 1.3498e-32
Worst 0.0110 0.0110 1.0122 0.0110 0.4375 0.0110
Median 2.8484e-11 3.5422e-11 0.5954 1.0370e-07 0.3208 1.6579e-32

F14 Mean 0.9980 0.9980 4.665 0.9980 1.0973 0.9980
Standard Deviation 1.8367e-16 1.2478e-16 4.4838 2.9263e-16 0.4436 2.0587e-14
Best 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980
Worst 0.9980 0.9980 12.6705 0.9980 2.9821 0.9980
Median 0.9980 0.9980 2.4871 0.9980 0.9980 0.9980

(Continued)
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TABLE 4.3 (Continued)
Comparison of the Proposed Algorithm with Other Optimization Algorithms at Benchmark Functions

Function

F15

F16

F17

F18

Mean

Standard Deviation
Best

‘Worst

Median

Mean

Standard Deviation
Best

‘Worst

Median

Mean

Standard Deviation
Best

‘Worst

Median

Mean

Standard Deviation
Best

‘Worst

Median

ASSA (Proposed)

4.0088e—4
1.6608e—4
3.0749e-4
7.7990e—4
3.0932e-4
-1.0316
6.4525e-15
-1.0316
-1.0316
-1.0316
0.3979
5.5549e-15
0.3937
0.3937
0.3937
3.0000
6.3699¢-14
3.0000
3.0000
3.0000

SSA

8.2922e-04
3.4809e-04
3.1456e-04
0.0016
7.5297e-04
-1.0316
9.7833e-15
-1.0316
-1.0316
-1.0316
0.3979
4.7514e-12
0.3979
0.3979
0.3979
3.0000
9.7833e-14
3.0000
3.0000
3.0000

GWO

0.0044
0.0082
3.0785e-04
0.0204
3.9681e-04
-1.0316
2.5449e-08
-1.0316
-1.0316
-1.0316
0.3979
7.2876e-05
0.3979
0.3982
0.3979
3.0000
2.5871e-05
3.0000
3.0001
3.0000

GOA

0.0067
0.0092
4.2627e-04
0.0204
7.8225e-04
-1.0316
3.9422e-14
-1.0316
-1.0316
-1.0316
0.3979
3.7072e-12
0.3979
0.3937
0.3937
3.0000
3.4093e-13
3.0000
3.0000
3.0000

SCA

0.0011
3.4412e-04
5.8031e-04
0.0015
0.0013
-1.0316
2.2270e-05
-1.0316
—-1.0315
-1.0316
0.3993
0.0018
0.3979
0.4062
0.3989
3.0000
1.7842e-05
3.0000
3.0001
3.0000

HGAPSO

0.0003075
0.0002
0.0003075
0.0003075
0.0003075
-1.0316
7.2568e-06
-1.0316
-1.0316
-1.0316
0.3979
5.6245e-11
0.3979
0.3979
0.3979
3.0000
9.3963e-12
3.0000
3.0000
3.0000
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F19

F20

F21

F22

F23

Mean

Standard Deviation
Best

‘Worst

Median

Mean

Standard Deviation
Best

‘Worst

Median

Mean

Standard Deviation
Best

‘Worst

Median

Mean

Standard Deviation
Best

Worst

Median

Mean

Standard Deviation
Best

Worst

Median

-3.8624

1.8934e-14

-3.8628
-3.8628
-3.8628
-3.1955
0.0443
-3.3195
-3.3195
-3.3195
-10.1505
0.0012
-10.1524
—-10.1482
-10.1507
-10.1340
1.1682
-10.4023
-5.0860
-10.4001
-9.9932
1.6646
-10.5359
—-5.1244
-10.5340

—-3.8628

4.3318e-14

-3.8628
—-3.8628
-3.8628
-3.2324
0.0531
-3.3220
-3.2007
-3.2030
—8.5248
2.9578
—-10.1532
-2.6305
—-10.1532
-10.1392
1.1793
—-10.4029
—-5.1288
—-10.4029
-9.1089
2.9668
—-10.5364
-2.8066
—-10.5364

-3.8617
0.0021
-3.8628
-3.8553
-3.8627
-3.2772
0.7073
-3.3220
-3.1381
-3.3220
-9.3935
1.8508
-10.1529
-5.0982
-10.1513
-10.0193
1.7073
-10.4027
-2.7658
-10.4013
-9.7229
2.4970
—-10.5362
—2.4217
—-10.5338

-3.8241
0.1729
-3.8628
-3.0897
-3.8628
—-3.2681
0.0611
-3.3220
-3.1999
-3.3220
—-7.2680
3.3745
—-10.1532
-2.6305
—-10.1532
—-8.9924
2.9466
-10.4029
-1.8376
—-10.4029
—8.5497
3.5320
—-10.5364
—2.4217
—-10.5364

-3.8546
0.0021

-3.8604
-3.8521
-3.8542
-2.9750
0.2468

-3.1299
—2.0468
-3.0133
-2.7616
1.9669

-6.2621
-0.4982
~2.6870
-3.4448
2.3686

—6.8715
-0.5211
-4.3716
-4.1825
2.4040

-9.6145
-0.9415
—4.6284

-3.8627
6.5542e-02
-3.8628
-3.0698
-3.8628
-2.9964
0.0273
-3.0425
-2.9810
-2.9810
—-10.1406
1.8780
—-10.1532
—2.6305
-10.1531
-10.1392
2.2568
—6.4521
-2.7658
-4.3715
-9.1089
2.9678
-10.5364
—-2.6586
-10.5364
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to be superior in 19 benchmark functions, including Sphere, Schwefel 2.22,
Schwefel 1.2, Schwefel 2.21, Rosenbrock, Quartic, Rastrigin, Griewank,
Penalized, Penalized 2, Foxholes, Kowalik, Six-hump camel back, Branin,
Goldstein-price, Hartman 3, Shekel 5, Shekel 7, and Shekel 10, based on achiev-
ing the minimum standard deviation value. The SCA and GWO methods yielded
better results for the Schwefel and Ackley functions, while HGPSO delivered
the best performance on the Step and Hartman 6 benchmark functions. The
findings highlight the overall effectiveness of ASSA in comparison to other
optimization techniques.

The comparison of algorithms has been conducted on classical functions based
on metrics such as mean, standard deviation, best, worst, and median over 20 inde-
pendent runs. However, this approach does not assess individual runs, which raises
the possibility that any observed superiority may be coincidental. Therefore, it is
crucial to compare the results of each run to evaluate the significance of the out-
comes. To determine the significance level for each run, the Wilcoxon rank sum
statistical test was applied at 5% significance level, and the corresponding P-values
for each benchmark are presented in Table 4.4. Strong evidence against the null
hypothesis is provided by a P-value of less than 0.05, which implies that the supe-
rior final objective function values that the top algorithm achieved were not the
result of chance. The best method for each test function is selected for statistical
analysis, and it is contrasted with other algorithms one at a time. The smallest stan-
dard deviation is used to identify the optimal algorithm; if two algorithms have the
same standard deviation, the method with the lowest mean value is deemed to be
the best. The best algorithm in each function is marked with “N/A,” which stands
for “Not Applicable,” because the best algorithm cannot be compared to itself.

As shown in the table, ASSA obtained the best results for 18 functions: specifi-
cally, F1, F3-F14, F16-F18, and F21-F23. In contrast, SCA and SSA achieved
better results for functions F8 and F19, respectively, while HGPSO was identified
as the top algorithm for F2, F15, and F20. According to the findings presented in
Tables 4.3 and 4.4, ASSA consistently surpasses the other algorithms evaluated,
highlighting the statistical significance of its superiority. In accordance with the
No-Free Lunch (NFL) theorem [120], ASSA demonstrates a capacity to tackle
problems that other algorithms struggle to solve efficiently.

4.2.5.2 The Need for Optimization of VMD Parameters

The selection of optimal parameters, such as the mode number and quadratic pen-
alty factor (which controls frequency bandwidth), is crucial for determining VMD
parameters, and these can be derived using the Ameliorated Salp Swarm Algorithm
(ASSA) proposed in this study. By integrating opposition-based learning with a
position updating concept into the basic SSA, the process is accelerated. The
ASSA algorithm and the basic SSA have been compared. Figure 4.9 shows the
convergence curves for both techniques. ASSA attains convergence more quickly
than SSA, as seen in Figure 4.9.

In comparison to other methods, the accuracy of the suggested ASSA algo-
rithm in optimizing VMD parameters has also been evaluated. Figure 4.10



TABLE 4.4

P-values Calculated for the Wilcoxon Rank Sum-test (Significance Level 0.05) Corresponding to the Results in Table 4.3

Function

F1
F2
F3
F4
F5
Fé
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23

ASSA

N/A
6.7956 x 10%
N/A
N/A
N/A
N/A
N/A
6.7765 x 1008
N/A
N/A
N/A
N/A
N/A
N/A
5.4753 x 10
N/A
N/A
N/A
8.0065 x 10
2.8636 x 1008
N/A
N/A
N/A

SSA

6.7860 x 1098
6.7956 x 1008
6.7860 x 1008
6.7478 x 1008
0.0411
0.0720
6.7956 x 10%
1.2346 x 1077
7.9043 x 10
7.9334 x 10
8.0065 x 10"
0.7972
0.0026

N/A

8.0065 x 10
N/A

N/A

N/A

N/A

2.7747 x 108
0.0057
2.7769 x 1077
8.3337 x 10

GWO

6.7956 x 10"
6.7956 x 1008
6.7656 x 10
6.7956 x 1008
6.7956 x 1008
6.7956 x 1008
6.7956 x 1008
6.7956 x 1008
7.4517 x 10
7.6187 x 10
0.0402

6.7956 x 1098
6.7956 x 1008
6.4846 x 100
0.0055

1.1129 x 107
8.0065 x 10"
7.9919 x 10
8.0065 x 10
3.0480 x 104
0.2616

0.0859

0.9246

GOA

6.7956 x 1098
6.7956 x 1098
6.7956 x 1008
6.7956 x 1008
0.0962
0.0810
6.7956 x 1008
6.5970 x 1008
8.0065 x 10
8.0065 x 10
8.0065 x 10
6.7956 x 1008
1.2493 x 100
N/A

1.5253 x 10°%
N/A

N/A

N/A

8.0065 x 10
2.8836 x 108
0.3637
44162 x 10%
6.0054 x 10

SCA

6.7956 x 1098
6.7956 x 10-%
6.7956 x 1008
6.7956 x 1008
0.0337
6.9756 x 10°%8
6.9756 x 1008
N/A

0.0096
1.6310 x 107
6.6826 x 10
6.7956 x 1008
6.7860 x 1008
3.5055 x 1077
1.0352 x 10°%
7.9919 x 10
8.0065 x 10
7.991 x 10
8.0065 x 10
6.7956 x 1008
6.7956 x 10-%8
1.2346 x 1077
1.2330e-07

HGPSO

6.7956 x 1008
N/A

6.7956 x 1008
6.7956 x 1008
1.7936 x 10
6.776 x 1008
0.1075
6.5997 x 1008
7.8321 x 10
3.3187 x 10
9.4038 x 100
49511 x 108
7.7336 x 10
N/A

N/A

7.9919 x 10
N/A

N/A

8.0065 x 10
N/A

0.3637
44162 x 10%
8.3337e-04
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FIGURE 4.9 Convergence behavior for SSA and ASSA.

FIGURE 4.10 Comparison of various optimization methods regarding accuracy.
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displays the results as bar charts. The figure makes it evident that ASSA performs
better than the other optimization methods.

4.2.5.3 Results of the ELM Model and Its Comparison with Other
Classification Models

The relevance of the extracted features is assessed using PCC. The descending
values of the features’ coefficients (weights), which are generated from this
coefficient, are used to rank the features. Table 4.2 displays the feature weights,
which were determined using PCC, and Table 4.5 provides a summary.
Additionally, as shown in Figure 4.11, these weights are represented in bar
graphs for comparison study. The feature “root mean square” (designated as Sl.
No. 5) is the most significant of the 11 characteristics, as seen in Table 4.5 and
Figure 4.11, since it has the largest weight, with the standard deviation coming
in second.

The primary features found are used to generate a dataset. The ELM model
then uses this dataset to categorize the various fault conditions. As suggested in
[114], the ELM parameters are set up as follows: the kernel type is selected as
radial basis function (RBF)-kernel, the kernel parameter is set to 0.01 and the
regularization coefficient is set to 1. With a training time of 0.0012 seconds, the
suggested method attains 100% training and 97.5% testing accuracy rates, respec-
tively. Table 4.6 displays the results of comparing the ELM classifier’s perfor-
mance against alternative classification techniques. The outcomes show how well
the suggested ELM-based method performs in identifying defect states from
vibration data, clearly outperforming alternative classification methods.

TABLE 4.5

Weight of each Feature Obtained after Applying PCC
S. No. Features Weight of Features
1. Standard Deviation (x, ) 0.2743
2. Peak (x, ) 0.0552
3. Skewness (xm,) 0.0789
4 Kurtosis ( xy,, ) 0.1435
5. Root Mean Square (x,.,m ) 0.5223
6. Peak Factor (PF) 0.0552
7 Square Root Amplitude (xx,[,) 0.0711
8 Shape Factor (SF) 0.1619
9. Impulse Factor (IF) 0.0259
10. Wavelet Packet Decomposition (WPD) Energy 0.0915

11. Permutation entropy 0.0850
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FIGURE 4.11 Weight of features obtained by PCC.

TABLE 4.6

Comparison of Performance of Different Classification Techniques with
the Proposed Method Along with Training Time

S. No. Classification Method Training Time (sec)
Training Accuracy for One Iteration
With Without With Without

Ranking Ranking Ranking  Ranking

1 KNN 85% 83% 19.06 23.58
2 SVM 87% 86.25% 25.01 27.45
3 Random Forest 85% 87% 18.56 26.5

4 Proposed method (ELM) 100% 97.5% 0.0012 0.0014

4.2.6 ConcrusioN ofF CAse 1 STupy

An opposition-based ASSA has been developed to enhance the adaptability of
VMD for identifying impeller defects in centrifugal pumps. This algorithm adap-
tively selects the optimal combination of VMD parameters: mode number (K) and
quadratic penalty factor @ to align with the input signal. The key conclusions of
the study are summarized as follows:
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1. While the VMD parameters 7 and & have minimal effect on decomposition,
K and « significantly influence results. Prespecifying K and a without prior
signal knowledge is not recommended. Appropriate selection of the qua-
dratic penalty factor a is crucial for noise reduction and bandwidth
regulation.

2. VMD parameter optimization uses weighted kurtosis as its fitness function.
This metric identifies sensitive modes and prevents information loss.

3. ASSA’s performance was compared to other optimization algorithms across
23 benchmark functions (F1-F23), using mean, standard deviation, best,
worst, and median values. ASSA achieved superior results (based on mini-
mum standard deviation) on 19 functions (F1-F5, F6-F7, F9, F11-F19, and
F21-F23). Wilcoxon testing further confirmed ASSA’s statistically significant
superiority on 18 functions (F1, F3-F7, F9-F14, F16-F18, and F21-F23).

4. Feature relevance was assessed using the PCC. Features were ranked by
decreasing PCC value (weight). Root mean square was identified as the
most prominent feature (highest weight) among the 11 features; standard
deviation ranked second.

5. The developed ELM model achieved 100% training accuracy and 97.5%
testing accuracy. Comparisons with other training methods showed supe-
rior performance in terms of both accuracy and computation time. While
inherent, unstudied defects were included in the normal condition dataset,
the results for the studied defect conditions were promising, highlighting a
key advantage of this technique. The experiments demonstrate the method’s
capability for automatic centrifugal pump fault identification.

4.3 DIAGNOSIS OF BEARING DEFECTS IN CENTRIFUGAL
PUMP (CASE 2)

Centrifugal pumps, capable of handling high fluid volumes, are susceptible to
bearing defects caused by factors such as uneven forces, misalignment, insuffi-
cient lubrication, and manufacturing flaws. This work proposes a general normal-
ized sparse filtering (GNSF)-based Wasserstein distance with maximum mean
discrepancy (MMD) method for extracting bearing fault features from vibration
signals. GNSF normalizes the feature matrix, while the Wasserstein distance with
MMD performs fault clustering and highlights feature contributions.

4.3.1 THEORETICAL BACKGROUND

This section describes generalized sparse filtering, Wasserstein distance, MMD,
and long short-term memory (LSTM).

4.3.1.1 Sparse Filter

Sparse filtering, a two-layer neural network for unsupervised feature learning
[121], must satisfy three criteria: population sparsity, lifetime sparsity, and high
dispersion (see Figure 4.12 for its basic configuration). The sparse filter
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FIGURE 4.12 Schematic of generalized sparse filtering.

selectively activates a few features, differentiating features from different samples
for improved sample discrimination and thus, ensuring distinct feature extraction
from different samples. w

In a sparse filter, the input consists of collected training samples Xt ofa
signal, where x' € 8**! is a sample with N data points Ae;nd M is the total number

of samples. The output represents learned features {f } - The sparse filter learns
the feature matrix f' e R™' (with L learned features) using a weight matrix
W e R™ . The mapping relationship is:

fi =g (wix') (4.27)

where /1" is the Ith feature corresponding to the ith sample, W, is the Ith row vector
of W, and () = H is the absolute value function. Minimizing the cost function in a
sparse filter induces generalized normalization, increasing competition among
learned features and ensuring sparsity. As noted, Ji' is a feature matrix whose rows
are normalized using /,-norms, resulting in:

P_ i
fi= I, (4.28)

i
where Ji is the Ith row vector of ,fl and HH,, represents the 1 -norm. Subsequent
normalization of each column of /i using /,-norms yields

Bi fi
fr=r=
f’q

(4.29)

where f is ith column vector of /i’ and l,-norms are denoted by H H
Finally, the sparse filter minimizes cost function (C ) as represented in Eq. 4.30
to optimize the weight matrix W using an /,-norm penalty.

C =sgn(q—r). (4.30)
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where sgn () represents the sign function. Eq. 4.30 shows that if ¢ =7, then Hf IH
always equals 1, hindering cost function minimization. Standard sparse ﬁlteriné
[121] uses p =2, g =2, and r =1. The non-smooth cost function is smoothed by
incorporating the soft-absolute function (activation function), as shown in
Eq. 4.31.

f=y(Wx) +e¢ 431)

where £=10"*. The limited-memory Broyden—Fletcher—Goldfarb—Shanno
(L-BFGS) algorithm [122, 123] minimizes the cost function C. The gradient of
the cost function with respect to W is:

aic_ GLL 7 (4.32)

W fwn) ve

1 (4.33)

oC  ac 1 -l [ oC - 1
R — A — L (4.34)
i ! (ﬁ) [1 (aﬁl ﬁ} 1

T )

oc _ WSy & 435
o - senla=n) (i) | 2 () (4.35)

4.3.1.2 Wasserstein Distance

The distance between features that were extracted via generalized sparse filter-
ing is measured by the Wasserstein distance. The distance between feature vec-
tors X and y in feature space M is denoted by p(x, y). Because the Wasserstein
distance converts one distribution into another during distance calculation, it is
demonstrated to perform better than other probability measures such as Jensen-
Shannon (JS) divergence and Kullback-Leibler (KL) divergence [124]. The
Wasserstein distance between probability distributions P and Q is determined
using Eq. (4.36).
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inf

Wp(P,Q){ B er(P,Q)J p(xy) du(x,y)j (4.36)

where I' (P,Q) is the joint distribution of all the marginal distributions of P and €
inset M *M.

4.3.1.3 Maximum Mean Discrepancy (MMD)

MMD quantifies the similarity between two distributions. It operates on the prin-
ciple that if two distributions generate samples such that the mean values of a
function f (defined on the distributions’ shared feature space) are equal for both
distributions, then the distributions are considered identical. Given datasets

X' = {xl‘-"}_ . and X' = {x;} o for distributions, P and @s respectively, their
i=l,...n Jj=l,...n
MMD is expressed by Eq. 4.37.
, (e
MMD bl X 2 @ —; E:l @(xj) (4.37)

where Q() is a nonlinear mapping function, which represents the mapping
between two resembling distributions.

4.3.1.4 Long Short-Term Memory (LSTM) Network

LSTM, a type of recurrent neural network (RNN), is widely used and highly effi-
cient [125]. As described by Hochreiter and Schmidhuber [125], LSTMs include
input, output, and several control gates. The input gate data enables the network
to predict the output. The LSTM processes sequential data step-by-step. Egs.
(4.38)—(4.43) detail the fundamental principles of LSTM operation.

cl = tanh(WXCx"l +W,h" + bc) (4.38)

it = a(wxix‘*1 +Wh™ + Waet™ + bi) (4.39)
fl = o—(wxfxt-' +Wieh™ + We™! +bf) (4.40)
c=f'oc+i'oc! (4.41)

0'= a(wmx‘*' F W, h™ + W e+ bu) (4.42)

h'=0'0 tanh(ct> (4.43)
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where x; and h, are the inputs of the memory cell. f', i‘, and O' are the output

of the control gate, input gate, and output gate, respectively. W, , W, W, W,
W, W, W, W, W, W, . and W_ indicate the weight matrix. b., b;, b;, and b, are
the bias vectors. ¢ is LSTM unit step value that can be obtained by recur-
sive function h'? as shown in Eq. (4.43). Thus, LSTM’s output can be
defined as f, (hl) =h'W, +b,.

xf>

4.3.2 Proprosep FauLt DiagNosis APPROACH UsING GNSF BAsSeD oN
WASSERSTEIN DISTANCE WITH MMD

The proposed fault diagnosis scheme uses GNSF and LSTM as its two main
learning stages. First, GNSF training optimizes the weight matrix W to extract
features from the raw vibration signal. Then, the LSTM classifies the machinery’s

health conditions based on these learned features. A training dataset {xi, y }Ml is
created using M samples. -

Here, x' € R™™ represents the ith sample with N data points, and ¥ is its cor-
responding health condition label. The proposed fault diagnosis scheme proceeds
as follows:

Step 1: Training
First, the GNSF model is trained with input and output dimensions N,, and
N,., respectively, using N, overlapping segments (see Figure 4.13). The

"\ MN,
training set, comprising N, segments {S }j:] > where s/ € R""*! represents

the jith segment with N data points, is then , normalized, resulting in:

(4.44)

This normalization minimizes the negative impact of outliers, facilitating
optimal solution finding. The normalized training set (Sn) then undergoes
whitening to improve the sparse filter’s generalization ability, using Eq. 4.45.

COV(S,,) = EDE" (4.45)

where COV is the covariance matrix, E is the orthogonal matrix, and D is the
diagonal matrix. The whitened training set (Sw) is represented by Eq. 4.46.

S, = ED LS, (4.46)

Finally, S,, trains the SF model, yielding an optimized weight matrix W that
extracts discriminatory features from the training data.
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FIGURE 4.13  Architecture of the developed fault diagnosis method.
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Step 2: Feature extraction
Post-training, each sample is divided into K segments (K = % ), creat-

K ) .
ing a segment set {x,ﬂ} ~, where x; € RV is the kth segment of the ith

sample. The SF maps each Xi to a local feature vector f' € V!, produc-
K

ing a feature set {sz } + - The learned feature vector f "e RV*! is then rep-
resented by Eq. (4.47).

K
fi= e D (447)
k=1

where f;’ denotes the Ith learned feature of f', and fi. is the [7h local feature
of fi- These learned feature vectors J/ then form the feature matrix f e RNow M

Step 3: Clustering of the extracted features using the normalized GNSF parameters.
The clustering of GNSF-extracted features (using normalized parameters)
highlights individual feature contributions. This clustering uses a Wasser-
stein distance based on MMD; the Wasserstein distance measures inter-
feature distances, while MMD quantifies feature similarity.

Step 4: Using LSTM for fault diagnosis.
Finally, the LSTM classifies the different health states. Before LSTM train-
ing, the feature matrix columns are /2 normalized. The trained LSTM model
then diagnoses the health conditions of rotating machinery using test sam-
ples. Figure 4.13 presents a flowchart of the proposed algorithm. Figure
4.14 illustrates the designed unsupervised deep learning network incorpo-
rating the clustering method.

FIGURE 4.14 Schematic of the designed deep learning network (clustering).
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4.3.3 EXPERIMENTATION

4.3.3.1 Test Rig

The performance of the proposed method is validated using vibration data from a
centrifugal pump test rig (refer to Figure 4.15 for a photograph of the pump; bear-
ing details are provided in a previous section and in Figure 4.16; see Table 4.7).

FIGURE 4.15 Pictorial view of the centrifugal pump.

FIGURE 4.16 A pictorial view of different health conditions of centrifugal pump.

TABLE 4.7

Description of Different Health Conditions of the Centrifugal Pump

S. No. Health Condition No. of Samples  Condition Label
1 1 seeded hole of 1 mm dia. at inner race (1 IR) 400 0

2 2 seeded holes of 1 mm dia. at inner race (2 IR) 400 1

3 1 seeded hole of 1 mm dia. at outer race (1 OR) 400 2

4 2 seeded holes of 1 mm dia. at outer race (2 OR) 400 3
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The study examines four bearing health conditions, with 400 samples collected
for each condition. 10% of the data is randomly chosen for training the SF and
LSTM models, while the remaining data is utilized for validation purposes. Each
sample is divided into 200 training segments, each containing 700 data points, to
prevent data leakage. PCA is performed, and the first ¢ principal components
(PCs) are used to construct the GNSF training matrix. Following the guidelines in
[122], sparse filtering parameters are configured ( N,, =N,, =100,N, = 50), with
50 iterations of L-BFGS. To reduce variability, 20 experimental runs are per-
formed; the performance and computation time are averaged across these runs,
with standard deviations illustrated by error bars.

The number of PCs affects diagnostic performance and computation time by
influencing input sample dimensionality and error. PCA was applied to each train-
ing sample’s 200 segments to determine the optimal number of PCs (c) Diagnostic
performance was analyzed for p = 1,4 = 1,r =1 at different ¢ values (Figure 4.17;
¢ =0 indicates no PCA). PCA improves accuracy, consistency, and computational
efficiency. Increasing ¢ improves accuracy and reduces standard deviation but
increases computation time; computation time becomes excessive for ¢ >35.
A balance between accuracy and computation time is needed; experiments sug-
gest an optimal ¢ range of [15-35]. Therefore, ¢ was selected from this range to
optimize accuracy and computation time.

Prior sections explored the impact of normalization parameters. The method’s
performance was evaluated at various p values (with g = 2,7 =2). Figure 4.18
shows results for (a) when p<gq, and (b) when p>g. High accuracy and

FIGURE 4.17 Results at different no. of PCs with p=1 & g =2.
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FIGURE 4.18 Diagnostic results different P values withg=2& r=2(a) p<q (b) p>gq.

consistent diagnostic results were observed for 0.5< p <1 and p>2.5; p>2.5
yielded superior accuracy and lower standard deviation compared to p < gq. Two
key conclusions arise: (1) inappropriate p values negatively affect sparse filtering
performance and (2) optimal accuracy with generalized sparse filtering is achieved
when 2.5 < p <3 (with constant ¢ and r).
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This section analyzes the effect of varying ¢ values on performance for (a)
p=2.8 and (b) p=0.8. Sparse filtering failed to converge for both p values.
Figure 4.19(a) shows that the method performs better when p > g. Figure 4.19(b)
shows classification results for p =0.8. Optimal ¢ values fall within the range
1.5 < g < 2.5; results are generally better for ¢ > 1.8.

FIGURE 4.19 Diagnostic results at different values of g with r=2 (a) p=0:8
and (b) p =3.
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FIGURE 4.20 Diagnostic results at different values of r with p =3 and g =2.

Figure 4.20 shows the method’s performance at various r values. Higher accu-
racy is achieved for 2 <r <3. r has minimal impact on diagnostic results. While
row normalization extracts differential features and sparse filtering focuses on
features related to the second derivative, extremely small or large r values nega-
tively affect feature distinctiveness. Therefore, r =2 is selected as the opti-
mal value.

Results demonstrate the method’s ability to accurately classify centrifugal
pump health conditions for both p >¢g and p <g. Optimal ranges for p and ¢
ensure high efficiency and robustness. The study shows that generalized sparse
filtering performs better (lower standard deviation) when p > q. The optimal row
normalization parameter r is 2. p and g are interdependent; once p is chosen, g
must be selected from an optimal (not too small or too large) range. This aligns
with the theoretical approach. Figure 4.21 shows results from investigating the
optimal range for the p /g ratio (0.5 < p/q < 1.5). The method performs best at a
p/ g ratio of 1.5, offering a wider range of normalization parameters while main-
taining accuracy and stability.

Generalized sparse filtering extracts high-dimensional feature vectors. t-distrib-
uted stochastic neighbor embedding (t-SNE) [36] reduces these to two dimensions
for visualization (Figure 4.22), illustrating why varying normalization parameters
yield different accuracies. Figure 4.23 shows the confusion matrix ( p=28,g= 2),
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FIGURE 4.21 Diagnostic results with different values of p with r=2 (a) p/g=0.5
and (b) p/g=1.5.



FIGURE 4.22 2D visuals of the features using t-SNE at 4 different conditions with p < g and r = 2.
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FIGURE 4.23 Confusion matrix at p =2.8 and g =2.

demonstrating 100% accuracy in classifying centrifugal pump health conditions.
Figure 4.24 shows the LSTM classifier’s accuracy at p =2.8 and g = 2.

4.3.3.2 Comparison with Other Methods

Generalized sparse filtering’s effectiveness was compared to standard sparse fil-
tering using varying training sample sizes. Standard sparse filtering randomly
extracts 200 overlapping segments S € 9R°**®. per sample, then applies whiten-
ing S, € M Features are learned using p =2.8,q =2,r =2, and 20 PCs
(from the range [15, 35]). Table 4.8 and Figure 4.25 present the results, accuracy
increases, and standard deviation decreases with more training data. Standard
sparse filtering shows higher computation time and standard deviation than the
proposed method, even with larger training datasets. The proposed method
achieves better performance with fewer training samples (e.g., exceeding the
accuracy of standard sparse filtering at 10% of training data, even at only 1% of
training data). At 35 PCs and 5% training data, the proposed method achieved
99.95% accuracy with 0.04% standard deviation, comparable to standard sparse



FIGURE 4.24 Training performance of LSTM model for centrifugal pump: (a) accuracy and (b) loss.
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TABLE 4.8
Comparison of Different Sparse Filtering Methods for Centrifugal Pump
No. of No. Standard Average
Training  Health  Computational  Deviation  Accuracy
Methods Samples States Time (s) (%) (%)
Standard sparse 10 % 5 19.6 0.98 95.12
filtering
GNSF without PCA
P=28.q-2) 10 % 5 485 0.19 97.65
The proposed method
(p=28,4=2,20 1% 5 10.1 0.16 98.68
PCs)
The proposed method
P=28,9=2 2 3% 5 12.9 0.10 99.26
PCs)
The proposed method
(p=28,4=2,35 5% 5 19.5 0.04 99.95
PCs)

FIGURE 4.25 Comparison of diagnostic results under different methods with different
number of samples.
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FIGURE 4.26 Comparison of different clustering methods in the fault diagnosis
approach.

filtering’s computational time. Comparisons with fault diagnosis methods using
Mahalanobis, Cosine, Chebyshev, and Euclidean distances (Figure 4.26) demon-
strate the proposed method’s robustness and stability.

4.3.4 ConNcrusioN of CASE 2

This work proposes a novel unsupervised fault diagnosis method: GNSF com-
bined with Wasserstein distance and MMD. The generalized -7’4 norm objective
function is optimized to improve feature sparsity and sparse filtering regulariza-
tion. Wasserstein distance with MMD clusters features, highlighting their contri-
butions. PCA preprocesses the data to remove correlations. An LSTM classifier
identifies centrifugal pump faults. Results from the centrifugal pump dataset con-
firm the method’s robustness. The study concludes that:

1. Optimization of sparse filtering parameters ensures the proposed method
achieves more accurate and reliable results by adaptively extracting vibra-
tion signal features.

2. Feature clustering uses the Wasserstein distance with MMD, highlighting
each feature’s contribution to fault classification. Comparisons with tradi-
tional methods demonstrate the superiority of this new clustering approach.

3. The proposed method effectively identifies centrifugal pump health condi-
tions even with limited training data.

4. The proposed method uses GNSF to extract discriminative features from
the centrifugal pump. These features are then clustered using the Wasserstein
distance with MMD, improving fault classification.
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TABLE 4.9
Comparison of Fault Schemes of Cases 1 and 2
Impeller Defects Bearing Defects
Methods Average . Average .
Computational Computational
Accuracy Time (5) Accuracy Time (5)
(%) (%)

VMD-ASSA-ELM 100 12 100 13.8
GNSF (p=2.8,9=2,35PCs) 97.64 17.76 99.95 19.5

5. The proposed method accurately identifies various centrifugal pump health
conditions, even with limited training data; for example, achieving 99.95%
accuracy with only 5% of the samples used for training.

6. GNSF offers a wider range of normalization parameters, resulting in a more
accurate and robust method than traditional sparse filtering.

4.4 COMPARISON OF METHODOLOGIES PROPOSED IN
CASES 1 AND 2

Case 1’s proposed method, while superior and robust for diagnosing centrifugal
pump impeller defects, requires manual feature extraction. Case 2’s method is
fully automatic for bearing defect diagnosis. To compare them fairly, Case 1’s
method was applied to bearing defects, and Case 2’s method to impeller defects.
Table 4.9 shows the resulting accuracy and computation times.

Table 4.9 shows that Case 1’s method achieves slightly higher efficiency and
lower computation time compared to Case 2’s method in fault diagnosis.

4.5 SUMMARY

This chapter investigates two centrifugal pump defect scenarios: impeller defects
and combined impeller/bearing defects. For impeller defects, an ameliorated salp
swarm algorithm (ASSA) optimizes VMD parameters using weighted kurtosis as
the fitness function. The optimized VMD decomposes the signal into modes, and
weighted kurtosis selects the most sensitive mode for feature extraction. PCC
ranks features, indicating their importance and removing redundancy. These
selected features train an ELM model to determine training and testing accuracy.
For bearing defects, a GNSF method using Wasserstein distance with MMD is
proposed. GNSF normalizes the feature matrix, and the Wasserstein distance with
MMD performs fault clustering, highlighting feature contributions.



5 Fault Diagnosis
of Bearing

5.1 INTRODUCTION

Rolling bearings are critical components found in numerous applications, such
as wind turbines, helicopter gearboxes, aircraft engines, and high-speed trains,
and they are susceptible to failures that can lead to costly downtime. Bearing
defects generate cyclic impulses (repeating transients) in vibration signatures,
which are valuable for condition monitoring. However, detecting these transients
within complex signals presents difficulties due to noise and interference from
other machinery components [126, 127]. Effective signal processing techniques
are vital for early fault detection. Current methods designed to enhance fault char-
acteristics can be categorized into three groups: resonance demodulation, decom-
position, and time—frequency analysis [128—131].

A variety of signal processing techniques are available for detecting bearing
faults, including wavelet decomposition [42], wavelet packet decomposition [43],
linear mode decomposition (LMD) [132], empirical mode decomposition (EMD)
[133], ensemble empirical mode decomposition (EEMD) [134], and complete
ensemble empirical mode decomposition (CEEMD) [52]. These methods can
effectively manage multi-frequency components. However, wavelet methods
require pre-selection, which limits their adaptability. While both EMD and LMD
are adaptive, they face challenges with mode mixing. EEMD and CEEMD help
reduce mode mixing but can introduce difficult-to-remove noise [117]. Kumar
and Kumar [134] provided a review of various vibration signal processing tech-
niques for fault detection in rotary systems. Han et al. [133] utilized EMD, parti-
cle swarm optimization (PSO), and support vector machines (SVMs) for
diagnosing gear faults under different loads. Buzzoni et al. [135] implemented
automatic EMD for localized fault detection in multistage gearboxes. Variational
mode decomposition (VMD) [136] offers enhanced bandwidth selection and
noise suppression [137], but it requires predefined parameters [138]. Swarm
decomposition (SWD) [139] addresses issues related to mode mixing and
noise [140].

Contemporary researchers are increasingly relying on artificial intelligence for
its capability to identify relationships within training patterns. Structures such as
the Feed forward neural network (FFNN) [105], radial basis function neural net-
work (RBFNN) [141], Elman neural network [142], and SVM [36] are various
types of artificial neural networks (ANNs) employed to create classification mod-
els based on these relationships. Additionally, the extreme learning machine
(ELM) is another approach utilized in classifying different machine components,
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particularly in fault diagnosis and condition monitoring [114]. Abdoos [143] inte-
grated ELM with VMD for predicting wind power, while Liu et al. [144] con-
ducted numerical simulations to identify faults in gears and subsequently classified
them using ELM.

Researchers have investigated various optimization techniques to determine
the best ELM parameters, aiming to boost the model’s accuracy. Finding the ideal
parameter combination not only improves accuracy but also decreases computa-
tional time. Kang et al. [145] employed a genetic algorithm to optimize ELM
parameters for defect identification in transformers. A restricted optimization-
based method was presented by Shah et al. [146] to improve the ELM’s gait detec-
tion training and testing accuracy. Furthermore, Yang et al. [147] found the ideal
ELM parameters for diagnosing aero-engine faults by using quantum-behaved
particle swarm optimization (QPSO).

An optimized ELM model for the automatic identification of bearing faults is
presented in this work. SWD breaks down the raw signal into several modes. The
mode with the lowest permutation entropy (PE) among these is thought to be the
most significant or sensitive in terms of defect signatures. This prominent mode is
used to pick features using a filter-based relief technique. To minimize data redun-
dancy, characteristics are also ranked using score values obtained from statistical
measurements. The ELM model is then trained using these chosen features as
inputs. An opposition-based slime mold method is used to fine-tune the ELM
parameters to attain optimal performance. An established process is used to vali-
date the created ELM model.

5.2 PRELIMINARIES
5.2.1 Swarm DecomrosiTioN (SWD)

Apostolidis introduced an innovative method for signal decomposition called
SWD [139]. By effectively parameterizing the approach, Swarm Filtering (SWF)
can successfully isolate the key oscillatory component from the signal. The input
signal x[n] is viewed as the path taken by the prey in the swarm, and the process-
ing is analogous to the swarm’s hunting process, while the trajectory of the swarm
corresponds to the output. A swarming model is developed to understand the the-
ory behind SWF. Certain key concepts must be defined to construct this model.
The position of the prey at the nth step is denoted as P,,, [n] M refers to the
number of swarms involved. P, [n] and V, [n] represent the position and velocity
of the ith swarm at the nth step, respectively. Two distinct interactions govern the
swarm’s movement and hunting behaviors. The driving force Fj,_, [n] represents
the first interaction and is defined for the ith individual at the nth step as follows:

Fy[n]=Py[n]-P[n-1] (5.1)

The cohesion force produces the second interaction and is characterized as an
induced force acting on all members of the swarm, defined as follows:
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M

Foi= iy 2 F(B[n=1]-p[n-1]) (5:2)

i=11#j

f(d)= —sgn(d)ln[jj (5.3)

Here, sgn(.) and ln(.) denote the sign function and the logarithmic function,
respectively. The function f () can simultaneously apply the cohesion force in
both attractive and repulsive manners. The variable d represents the distance
between two swarm members, while H indicates the absolute value. The criti-
cal distance is denoted as d,., which typically regulates the swarm’s distribution.
Additionally, d. also serves as the root mean square (RMS) of the input signal. To
pursue the prey effectively, the swarm needs to update its position. Consequently,
the velocity and position for the ith individual at the nth step are expressed as
follows:

Vi =Vi[n—1]+6(Fyi[n])+ Fopui [ n] (5.4)
P[n]=P[n-1]+6V[n] (5.5)

In this case, d influences the adaptability of the swarm. The trajectory of the
swarm, which represents the output of the SWEF, is defined by the following
Eq. (5.6).

y[n]= ﬁiﬁ [n] (5.6)

The parameter £ disrupts the order of M, with a smaller £ value, such as 0.005,
being favored to achieve a reasonable M. Both parameters d and M are crucial in
governing the behavior of the swarm. The following criterion is used to determine
the optimal values of these parameters.

a;%nﬁnZ{Yw (k)1 (k)\}z (5.7)

In this context, |Y5 4 (k)‘ and ‘S (k)‘ denote the Fourier transforms of Y j, [n] and
s[n], respectively. Yy [n] signifies the output of the SWF with parameters &
and M, while s[n] represents the non-stationary multicomponent signal, which is
combined with a mono-component. The primary goal of this process is to identify
the values of & and M. The SWF detects similarities in oscillatory components
by comparing them with the non-stationary signal utilizing these parameters.
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The association between swarm parameters and each individual frequency is ref-
erenced in [139].

M(w)=[33.46w " ~29.1] (5.8)
5(w)=—15w" +3.454w—-0.001 (5.9)

where w represents the normalized frequency. The value of M is established
through a rounding operation.

The SWF is performed iteratively to identify the dominant oscillatory mode of
the residue. The algorithm halts when the residual signal lacks any oscillatory
mode. Additionally, SWF is concluded when the difference between two succes-
sive iterations falls below the threshold (T_th). The frequency band with the high-
est amplitude in spectral density is selected as a fitness function for optimization
in each iteration. To enhance efficiency, the Savitzky-Golay (SG) filter is utilized,
as it smooths the energy spectrum prior to identifying the highest peak [139, 140].
A predefined threshold for peak selection (PS,h) is established to minimize the
search space. The optimal frequency w,, is determined using the following
equations.

argmax

(Sx, (w)> PSy) (5.10)

Wm
Sk, = SGfilter Sy, (w)) (5.11)

where S is the Fourier transform for the signal x; [n]

5.2.2 PermuTtaTION ENTROPY (PE)

For an arbitrary time-domain series x( k),k =12,...,N } ,according to the embed-
ding theorem, the delay embedding vector for D-dimensional data at time i is
expressed in Eq. (5.12).

XP =[x(i),x(i+7),x(i+20),...x(i+(D=1)7)] (5.12)

where D denotes the embedding dimension, which is greater than 2, 7 represents
the time lag, and i takes the values 1,2,..., N. The notation D! refers to the order of
the symmetric group corresponding to the embedding dimension D, represented
as Sp. This symmetric group encompasses all the permutations of length D [148].

Letrz; = (jl,j2,...,jD)sSD, where 7; denotes the symbol in Sp, 7; is permuta-
tion of X only when it becomes the unique symbol for S;, and satisfy the follow-
ing two conditions:
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x(i+(ji-1)7)<x(i+(-1)7)<...<x(i+(jp-1)7) (5.13)
Jor < 3oif x(i+ (o =1)7) = x(i+(j = 1)7) (5.14)

Eq. (5.15) is used to obtain the relative frequency for each permutation 7;:

( )_#{x,-DhastypeﬂjIlSjSN—(D—l)T}
PU)= N-(D-1)r

(5.15)

where # denotes any constant number. As per Shannon’s entropy of D!, the PE is
defined as follows:

H, (D)=~ p(z;)In(p(x;)) (5.16)

7 €Sp

The above equation is normalized by In D! in the interval [0,1] and represented in
the following manner:

In

H,(D 1 ‘
Hp = ln(D!):_ D!Z:p(ﬂf)ln(p(”j)) (5.17)

The PE algorithm transforms the candidate time series into a symbolic series
while maintaining the relationship between the current value and its equidistant
past values [149]. To calculate PE, it is sufficient to understand the relationship
between two sample points from the time series. This characteristic not only
makes PE resistant to noise but also enhances its robustness. Additionally, PE
measures the extent to which the time series deviates from randomness. A lower
PE value indicates a more regular time series, meaning that an increase in the PE
value corresponds to greater randomness in the time series [150]. Any change in
PE amplifies variations in the time series.

5.2.3 EXTREME LEARNING MACHINE (ELM)

The ELM algorithm was introduced by Huang et al. [114]. It serves as a learning
framework for single hidden layer feedforward neural networks (SLFN) and can
be utilized for both classification and regression tasks. In ELM, the number of
hidden layer nodes in the SLFN can be set adaptively during training. The input
weights and biases of the hidden layer are chosen randomly, while the activation
function depends on the specific problem [114, 151]. The weights linking the
hidden layer to the output layer are computed analytically. Rather than randomly
choosing the input weights and biases for the hidden layer, it is crucial to optimize
both parameters to attain optimal fitness [145, 152].
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5.2.3.1 ELM Model

For N arbitrary samples (x,-,t,-), where x; = [x,-l,x,g,. o "¢R" and
t; = [ln,l;z,- st e R", a standard SLFNs with an activation function f (x) and
N neurons in the hidden layer can be mathematically modeled as

N N
Zﬂ,«fi(xj) = Zﬁ,«f(ai.xj +b)=13j=12....N (5.18)
i=1 i=1

where a; = [a,—l,a,-z,...,a,-n ! represents the weight vector that connects the i” hid-
den node to the input nodes. b, is the threshold associated with the i hidden
neuron. The weight vectors f; = [ Bits Birse s Pim ]T are used to link the i hidden
neuron to the output neurons. The activation functions that can be chosen include
“Sigmoid,” “Sine,” and “RFB.”

Eq. (5.18) can be written as

HB=T (5.19)

where

H(al,...,aN',bl,...,b/\f,xl,...,x’,\/) =

[ flax+b) . flavx+by)]
(5.20)
_f(al.xN +b) flay.xy+by )_N)W
B 77
A=l | T (521)
1% O £

In this equation, H is the hidden layer output matrix of the neural network. The ;"
column of H is the i hidden node output with regard to x;, x,,..., Xy.

The conventional neural network learning algorithm requires the adjustment of
multiple training parameters for the artificial network and often risks converging
to a locally optimal solution. In contrast, the ELM algorithm removes the neces-
sity for tuning the input weights and hidden biases of the network. The only
requirement is to establish the number of nodes in the hidden layer. This approach
yields a unique optimal solution, offering advantages such as rapid learning speed
and improved generalization performance. As a result, training the SLFN is
addressed as a linear equation using the least squares method (Figure 5.1).
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FIGURE 5.1 Extreme learning machine (ELM) architecture.
HH(a.,...,aN,b,,...,bN)A,B—TH = min HH(al,. cdysb,.. -,bN)ﬁ—TH (5.22)
The least-square solution of linear Eq. (5.22) is given as

B=HT (5.23)

H" indicates Moore—Penrose inverse of the hidden layer output matrix H.

5.2.4 SuLME MouLp ALGORITHM (SMA)

Lietal. [153] introduced a novel optimization algorithm known as the slime mould
algorithm (SMA). In this context, “slime mould” refers to Physarum polyceph-
alum, which is classified as a fungus. This eukaryotic organism thrives in cold
climates, with its primary nutritional stage being Plasmodium. During this stage,
the organic matter in the slime mould searches for food and secretes enzymes to
aid in digestion. Drawing inspiration from the behavior of slime mould, Li et al.
[153] developed a mathematical model. The slime mould navigates toward food
sources by detecting their scent in the air. The following formula simulates this
behavior of approaching food:

X, (0. (WX, ()-X5 (1), r<p

v_c..X(t), r=p

X(r+1)= (5.24)
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where X,, represents an individual position with the strongest odor. X denotes the
location of the slime. X, 4 and X, p are two randomly chosen individuals from the
slime mould. W indicates the weight of the slime. The parameter Vb is defined
within the range of [a —a] The values for p, vb, a, and W are specified in
Equation (5.25).

p =tanh|S (i) - DF| (5.25)

Here, 1€1,2,...,n, S(i) is the fitness of X. DF is the best fitness obtained in all
iterations. As

vb=[a,~a] (5.26)

where a is defined as per Eq. (5.27).

a= arctanh{—( ! j+ 1] (5.27)
max_ ¢

The weight W is given as follows:

bF - 5(i) N
1+r.log| ——=+1 |,condition
bF —wF

-w
W(Smelllndex(i)) = (5.28)
[ bF -5 (i) J
1-r.log| ——=%+1 |,others
bF —wF
Smelllndex = sort (S) (5.29)

where the condition indicates that the first half of the population is ranked accord-
ing to § (1) The variable r is a random value within the interval [0,1]. max_¢
refers to the maximum number of iterations. bF and wF represent the optimal
fitness and the worst fitness in the current iterations, respectively. Smelllndex
arranges the fitness values in ascending order. The following equation simulates
the contraction of food by the slime mould.

rand.(UB—LB)
X (1

X = X,,(r)+%.(W.XA

+LB,rand < 1
)= X5 (1)) < p (5.30)

?c.X(t),r >p

where UB and LB are upper and lower bound for the given search range, rand and
r represent random values in the range [0,1].
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5.2.5 OpPPOSITION-BASED LEARNING

The global optimum is randomly selected to initiate any optimization algo-
rithm, which in turn initializes individuals within a defined search space. Each
individual updates their position based on their intelligence and behavior while
searching for a solution. The computation time associated with these methods is
influenced by the initial guesses. However, this time can be reduced by examining
the opposite solution [154—-156]. Subsequently, the solutions obtained from both
the random choice and its opposite are evaluated to determine the best option.
This optimal solution is used to initialize the individual, as verified by its fitness
function. This approach not only lessens computational time but also enhances
convergence speed. This technique is applied to each solution during the initial-
ization process, which is conducted according to the following equations:

Xy = X" (7 = )i (i = 1,2, NPy j=1,2,...,D) (5.31)

max

j +Xx

Xo: = X

L (5.32)

%
where x; denotes the initial population with an upper bound of x;** and a lower
bound of xj"". The term x,, represents the population derived from opposition-
based learning. The variable r_ij is a uniformly distributed random number within
the range of [0,1].

5.2.6 RELIEF-BASED ALGORITHM

The relief-based algorithm introduced by Kira et al. [157, 158] is based on
instance-based learning principles. Relief calculates an intermediary statistic for
each feature, which is utilized to gauge the relevance of the feature to the target.
These statistics are referred to as feature weights (wW[N]) and fall within a range
from —1 (worst) to +1 (best). The code for the relief-based algorithm is presented
in Figure 5.2.

Where the diff is defined for discrete and continuous features using equation
(5.33) and (5.34), respectively.

: 1) = I
diff (N, 1,,1 ) = {O’Zf Valueff;hézwi::lue(N’ 2) (5.33)
lue(N, 1,)—value(N, I
i (.1, 1) = e (N 1) value (. 1) (534)

max (N)—min(N)

where I} = R; and I, is either "H' or'M' [159]
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FIGURE 5.2 Pseudocode for relief-based algorithm.

5.3 PROPOSED ALGORITHM FOR FAULT IDENTIFICATION

The detailed procedure adopted for the automatic fault identification in the bear-
ing is as follows:

* The obtained vibration signal is the input into the SWD with pre-
determined parameter ranges, which then decomposes it into vari-
ous modes.

* The mode exhibiting the lowest PE is chosen as the dominant mode.

* The filter-based Relief algorithm is employed for selecting and ranking the
features.

» With the extracted features, a dataset is created consisting of both training
and test data.

* The training dataset is the input into the ELM, where its parameters (the
weights connecting the input layer to the output layer and the biases in the
hidden neurons) are optimized using the opposition-based SMA.

* The weight search range is established from 0.001 to 1000, while the biases
have a range of 10 to 1000.

» Using the optimized ELM parameters, a classification model is developed
for the purpose of fitness evaluation.

* The established ELM model is evaluated using the test dataset to determine
the training and testing accuracy.

The whole procedure in the form of a flow chart is given in Figure 5.3.
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FIGURE 5.3 Flow chart for the proposed algorithm.

5.4 EXPERIMENTATION
5.4.1 EXPERIMENTAL SETUP AND DATA ACQUISITION

Experiments are conducted on a bearing setup, as shown in Figure 5.4. Vibration
signals are captured from the bearing setup using a uniaxial accelerometer from
PCB piezotronics with a sensitivity of 100 mV/g. The data acquisition system uti-
lized for data collection is a 24-bit, 4-channel model from National Instruments.
The accelerometer is secured to the bearing casing with wax and positioned per-
pendicular to the shaft’s axis of rotation, enabling the capture of vertical accel-
eration at a sampling rate of 70 kHz. The taper roller bearing-2, designated as
bearing number NBC 30205, is used to examine the seeded groove defect in (i)
the outer race only, (ii) the inner race only, and (iii) a combination of both races,
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FIGURE 5.4 (a) Schematic of test rig. (b) Experimental test rig.

utilizing vibration signals. The groove widths for the outer and inner races are
0.5776 mm and 0.4714 mm, respectively, as illustrated in Figure 5.5. The analysis
is performed for a signal length of 0.1 seconds, incorporating 7000 data points
for each operating condition. The raw signal obtained from the bearing test rig is
processed using the SWD method. PE is calculated for the decomposed modes
generated by SWD, with the mode exhibiting the lowest entropy selected as the
dominant mode.

Initially, the accelerometer gathers vibration data from the bearing test rig oper-
ating at a speed of 2050 rpm (equivalent to a frequency of 34.16 Hz) under healthy
(defect-free) conditions. The test rig is maintained at a constant operating speed
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FIGURE5.5 Different operating conditions: (a) outer race defect and (b) inner race defect.

throughout all experiments conducted in this study. The raw signal in the time
domain for the defect-free bearing condition is illustrated in Figure 5.6(a). This raw
signal is processed using SWD, which decomposes it into various modes. The
parameters that must be predetermined for SWD include the threshold for peak
selection P, and the termination threshold StD,,, which halts the SWD process.
The SWD parameters are configured as P, =0.2 and StD,, =0.2. The various
modes are depicted in Figure 5.6(b). PE is calculated for each mode, with the first
mode yielding the lowest PE value of 1.69, making it the choice for feature extrac-
tion. A total of 50 signals are analyzed under conditions of healthy (defect-free),
outer race defect, inner race defect, and a combination of both outer and inner race
defects.

Similarly, the data is collected under conditions simulating an outer race defect
and then decomposed into various modes using SWD, resulting in four modes
with P, =0.2 and StD,, = 0.2. The PE values for these four modes are 1.96, 3.02,
4.21, and 4.32. The first mode, exhibiting the lowest PE, has been chosen for fur-
ther analysis. The time-domain signal and the decomposed modes are illustrated
in Figure 5.7(a) and (b), respectively.

The raw signal associated with the inner race defect condition is shown in
Figure 5.8(a). With P, set to 0.2 and StD,, at 0.2, the raw signal is decomposed
into four modes, as illustrated in Figure 5.8(b). The PE values for the first, second,
third, and fourth modes are 2.14, 2.79, 3.04, and 4.31, respectively. Since the first
mode exhibits the lowest PE, it has been selected for further analysis.

The time-domain signal indicating the simultaneous occurrence of both outer-
race and inner-race defect conditions is shown in Figure 5.9(a). Following the
same procedure as in previous cases, the raw signal is decomposed into several
modes using the SWD parameters set to P;, = 0.2 and StD,, = 0.2. The resulting
four modes are illustrated in Figure 5.9(b). The PE values for the first, second,
third, and fourth modes are 2.21, 3.01, 3.89, and 4.59, respectively. The mode
with a PE of 2.21 has been identified as the dominant mode.
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FIGURE 5.6 Vibration signal under healthy condition. (a) Raw signal and (b) different
modes obtained through SWD.

5.4.2 FeATURE EXTRACTION

A total of 200 prominent modes of vibration signals are obtained from the SWD
method, with 50 modes corresponding to each condition: healthy (defect-free),
outer race defect, inner race defect, and a combination of outer and inner race
defects, utilizing PE as the measurement index. The mode with the lowest PE value
is regarded as the dominant mode for further analysis. Following this, 15 features
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FIGURE 5.7 Vibration signal under outer race defect condition. (a) Raw signal and (b)
different modes obtained through SWD.

are extracted from the prominent modes of the decomposed SWD. A list of these
features along with their definitions is presented in Table 5.1. The extracted fea-
tures are normalized within the range of [0,1] using the following mathematical
expression:

Feat — Feat,;
FeatNm‘mulized =" (535)

Feat,,, — Feat;,
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FIGURE 5.8 Vibration signal under inner race defect condition. (a) Raw signal and (b)
different modes obtained through SWD.

where Feat,;, denotes the minimum value of a feature, while Feat,,,, represents
the maximum value of that feature.

In this context, x denotes the data, N represents the length of the data (i.e., the
number of samples), and x; (n) indicates the decomposition coefficient for the kth
sequence. The variable j corresponds to the level of wavelet packet decomposition
(WPD) decomposition, while s(k) signifies the spectrum of the signal x, and K
represents the number of lines.

Fifteen features are extracted from the decomposed signal using SWD, cover-
ing both the time and frequency domains. To reduce data redundancy and
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FIGURE 5.9 Vibration signal under combined outer race and inner race defect condition.
(a) Raw signal and (b) different modes obtained through SWD.

determine which feature contributes the most, a filter-based feature selection
method, that is, relief-based algorithm (RA) is utilized. This filter-based technique
employs statistical measures to calculate a score for each feature, ranking them
according to these scores. The scores for each feature are presented in Figure 5.10,
while the ranks assigned to each feature are displayed in Figure 5.11. From these
figures, it is clear that the RMS is the most important feature among the fifteen, as
it holds the top rank, while the statistical parameter peak is in the second position.
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FIGURE 5.10 Weight (score) of each feature.

FIGURE 5.11 The rank assigned to features; Nf indicates the total number of features.

5.4.3 FiTNEss EVALUATION

Based on the ranking of the prominent features, a dataset is constructed. This dataset
is subsequently fed into the ELM, which classifies the different fault conditions.
Within the ELM, two parameters need optimization: the input connection weight
and the hidden biases of the single hidden layer feedforward network. These param-
eters are optimized using the opposition-based SMA. The optimized ELM classi-
fication method is then employed to compute the error, as expressed in Eq. (5.36).

f =min (error) (5.36)
where error is defined as 1 — Accuracy, where Accuracy represents the proportion

of samples that are correctly classified out of the total number of samples in the
training set.
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TABLE 5.1
Definition of Features
S. No. Features Name Features Definition
1 N , YAy )
Wavelet Packet Decomposition (WPD) Energy WPD, = Z X; (n)‘ / Zz‘xk (n)‘
n=l k=0 n=l1
ul 2
2 Standard Deviation (xA,d) Xopg = z (x (i ) — X ) /N
i=1
ul 4
3 Kurtosis (x,w) Xjur = Z(x(z) - xm) / Nxiy

4 Skewness (xm,) Xgke = ZN:(x(l) - X, )3 /N
i=1

5 Average (X, ) Xarg =

al 2
6 Root Mean Square (x,,,, ) X = ;x(t) IN

N >
7 Variance (x,, ) Xyar = z‘(jv(l_)l_ i)
8 Maximum (. ) T = max (x(7))
5 peak(s) s, = max ()
10 Peak Factor (PF) PF = x%m

N
11 Shape Factor (SF) SF = xm/ [Zx(i) / N]
i=1

N
12 Impulse Factor (IF) IF = xﬁ/[zx(i) / N]
i=1
K
K

13 Spectral Average MeanF =

(Z;s (k)- Meansz

K-1

e [Z;s(k)—MeanF)

15 Spectral Kurtosis K.RVF

14 Spectral Variance RVF =
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ZZIZ;f (i-7)C(i.J)
N

Accuracy =

(5.37)

where C denotes the labels of the dataset and N represents the number of samples
in the training set. C (i, j ) is equal to 1 if the predicted class of sample i is j; other-
wise, it is 0. The function f (i, Jj ) serves as a flag, indicating 1 if sample i belongs
to class j.

The sensitivity, specificity, and precision are also assessed for identifying bear-
ing defects using the optimized ELM. The mathematical expressions for sensitiv-
ity, specificity, and precision are provided in Equations (5.38), (5.39), and (5.40),
respectively.

+
Precison = L (5.40)
(TP+FP)

where TP indicates true positive, TN is true negative, FP is false positive, and FN
represents false negative.

5.5 RESULTS AND DISCUSSION
5.5.1 Purposte To OpTiMIiZE ELM PARAMETERS

ELM is a neural network designed for training models in classification and regres-
sion tasks. In ELM, the input weights (which connect the input layer to the output
layer) and the biases of the hidden neurons are selected randomly. This random-
ness can lead to longer computation times for training the model and lower classi-
fication accuracy. Therefore, the optimal selection of these parameters is essential
to address these issues and achieve an efficient ELM model. The outcomes of rec-
ognition using arbitrary values for input weights and biases are shown in Table 5.2.

Table 5.2 shows that the arbitrary selection of input weights and biases affects
performance parameters (such as accuracy, sensitivity, specificity, and precision)
and leads to suboptimal outcomes. As a result, the opposition-based SMA is uti-
lized to optimize the parameters of the ELM. For this application, a population
size of 30 is employed, with the maximum number of iterations set to 10, serving
as the stopping criterion for this problem. The optimal classification error during
training is achieved as zero in the second iteration, as shown in Figure 5.12, indi-
cating a training accuracy of 100%. The time taken by the opposition-based SMA
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TABLE 5.2

S. No. Input Weight
I 3.5624

2 4.9283

3 11.6578

4 2.8954

Biases

159.7268
456.2948
358.78

571.1072

Accuracy (%)

Sensitivity (%)

Specificity (%)

Precision(%)

Training

92.67%
85.65%
90.85%
88.60%

Testing

89.04%
78.72%
80.29%
85.75%

Training

90.92%
85.25%
80.59%
79.35%

Testing

92.02%
80.56%
87.15%
88.52%

Training

85.58%
80.98%
82.76%
81.59%

Testing

88.82%
87.65%
85.29%
80.62%

Training

88.71%
83.59%
86.82%
90.39%

Testing

89.27%

87.54%
82.47%
88.82%

sl
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FIGURE 5.12 Convergence behavior for simple SMA and opposition-based SMA.

to optimize the ELM parameters is 0.0023 seconds. The optimized values for the
input weights and biases in the hidden layers are determined to be 0.0789 and 500,
respectively. With this combination of input weights and biases, the sensitivity,
specificity, and precision are calculated to be 100%, 98.95%, and 100%, respec-
tively. Additionally, a confusion matrix is constructed at this input weight (0.0789)
and biases (500) in the hidden layers of ELM, reflecting various classes of bearing
faults, including those with only outer race defects, only inner race defects, and
both outer and inner race defects concurrently. The confusion matrix, presented in
Figure 5.13, further validates the robustness of the proposed identification
approach.

5.5.2 ResuLts oF THE FAULT IDENTIFICATION SCHEME AND
Its ComPARISON WITH OTHER CLASSIFIERS

The results from the ELM model are compared to those obtained from k-nearest
neighbors (KNN), SVM, decision tree, and random forest classification models.
The classification is performed for features both with and without ranking, and
these findings are summarized in Table 5.3. As shown in Table 5.3, ELM surpasses
other classifiers, achieving an accuracy of 100%. In contrast, KNN achieves an
accuracy of 77.50%, SVM reaches 87.50%, the decision tree computes 83%, and
the random forest achieves an accuracy of 86% for the provided data.

The accuracy of the proposed opposition-based SMA algorithm combined
with the ELM classifier in identifying faults for each defect case is presented in
Figure 5.14. A comparison with various classifiers (KNN, SVM, decision tree,
and random forest) is also included in the same figure. The notations ND, OR,
IR, and OR&IR in the figure represent no defect, outer race defect, inner race
defect, and a combination of both outer and inner race defects, respectively. It is
evident from this representation that the ELM classifier achieves the best perfor-
mance when integrated with the proposed opposition-based SMA algorithm
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FIGURE5.13 Confusion matrix showing recognition performance of the optimized ELM.

across all health conditions. Additionally, it has been noted that specific defect
types can be identified by inputting the data from any health condition into the
trained ELM model. The defect identification accuracy for each health condition
is presented in Figure 5.14.

To showcase the effectiveness of the algorithm, various optimization methods—
including the Ant Lion Optimizer (ALO), Sine-Cosine Algorithm (SCA), Salp
Swarm Algorithm (SSA), Grey Wolf Optimization (GWO), and opposition-based
PSO—are compared with the proposed opposition-based SMA during the optimi-
zation of ELM parameters. The results, evaluated based on accuracy, are displayed
in Figure 5.15. The proposed opposition-based SMA achieves the highest accu-
racy of 100% when optimizing the ELM parameters.

To evaluate the appropriateness of the basis chosen for identifying the domi-
nant mode from the different decomposed modes of SWD, a comparison is made
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TABLE 5.3
Comparison of Results of Different Classification Methods
S. Classification Without Feature Ranking With Feature Ranking
No. Method
Testing Training Testing Training
Accuracy % Accuracy %  Accuracy % Accuracy %
1. KNN 76.00 - 71.50 -
2. SVM 85.00 - 87.50 -
3. Decision tree 80% - 83% -
4. Random forest 82% - 86% -
5. Proposed method 97.65 98.50 100 100
(ELM)

FIGURE 5.14 Defect identification accuracy of the algorithm with different classifiers.

among several entropies, including Shannon Entropy (SE), Sample Entropy
(Sp.E), Corrected Conditional Entropy (CCE), Wavelet Energy (WE), and
Multiscale PE (MPE) against PE. The results of this comparison are illustrated in
Figure 5.16. PE demonstrates superior performance compared to the other mea-
surement indices, thereby establishing it as the basis for selecting the promi-
nent mode.
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FIGURE 5.15 Accuracy in results with different optimization algorithms.

FIGURE 5.16 Comparison of different entropies for selecting prominent mode after
decomposition in terms of defect identification accuracy.
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5.6 CONCLUSION

The ELM model has been created to identify defects in taper roller bearings. In the
signal processing stage, the raw vibration signal acquired from the bearing system
is broken down into several modes using SWD. The mode with the lowest PE is
selected as the dominant mode. Fault features are identified and prioritized using
a filter-based RA. An opposition-based SMA, inspired by nature, is introduced
to optimize the parameters of the ELM and to build the classification model. The
performance of the developed classifier is evaluated using a fitness function.

The proposed method for identifying bearing defects has been evaluated
against other training methods in terms of training accuracy for both ranked and
unranked features. It was shown that the overall recognition rate reached 100%,
with testing accuracy also recorded at 100%. The experimental outcomes suggest
that the proposed approach can effectively identify bearing defects automatically.
Furthermore, the fault identification method has been assessed against a variety of
signal processing techniques, measurement indices, optimization algorithms, and
classifiers to confirm each phase of the process. The proposed fault identification
algorithm surpassed all comparisons in terms of accuracy, computational effi-
ciency, sensitivity, specificity, and precision. The results and analysis from this
study underscore the benefits of the opposition-based SMA in improving the per-
formance of ELM. This methodology holds considerable promise for use in pre-
dictive maintenance within various industrial sectors.



6 The Future of Machine
Learning in Fault
Diagnosis

6.1 INTRODUCTION

Fault diagnosis, the process of identifying and isolating malfunctions within a sys-
tem, is crucial across numerous industries, from manufacturing and aerospace to
healthcare and energy. Conventional methods for fault diagnosis typically depend
on the expertise of professionals, rule-driven systems, and models based on physi-
cal principles. However, these approaches can be time-consuming, expensive, and
limited in their ability to handle complex systems with high dimensionality and
noisy data. The advent of machine learning (ML) has revolutionized fault diagno-
sis, offering powerful tools to analyze vast datasets, identify subtle patterns, and
predict failures with greater accuracy and efficiency. This chapter investigates the
prospects of ML in fault diagnosis, analyzing present trends, new technologies on
the horizon, and possible obstacles.

6.2 CURRENT LANDSCAPE OF ML IN FAULT DIAGNOSIS

Several ML techniques have proven effective in fault diagnosis applications.
These include the following sections.

6.2.1 SuUPERVISED LEARNING

This method entails training a model using labeled data, where each instance is
linked to a specific fault type. Popular algorithms for this task include support
vector machines (SVMs), k-nearest neighbors (KNN), and different varieties of
neural networks such as multilayer perceptrons (MLPs), Convolutional neural
networks (CNNs), and recurrent neural networks (RNNs). Supervised learning
is particularly effective when there is an ample supply of labeled data; however,
acquiring this data can be costly and labor intensive.

6.2.2 UNSUPERVISED LEARNING

In situations where labeled data is limited or not accessible, unsupervised learn-
ing methods such as clustering (including k-means and density-based spatial
clustering of applications with noise (DBSCAN)) and dimensionality reduction
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techniques (such as Principal Component Analysis (PCA) and t-distributed
Stochastic Neighbor Embedding (t-SNE)) can be used. These approaches focus
on uncovering underlying structures and patterns within the data, which can
highlight potential anomalies that suggest faults. Nonetheless, interpreting the
outcomes can be difficult, and pinpointing specific fault types may necessitate
additional analysis.

6.2.3 SEMI-SUPERVISED LEARNING

This method integrates both labeled and unlabeled data to boost the effectiveness
of models trained with a small amount of labeled data. Semi-supervised learning
methods utilize the insights present in the unlabeled data to improve the model’s
ability to generalize.

6.2.4 REINFORCEMENT LEARNING (RL)

Reinforcement learning (RL) is gaining traction in the area of fault diagnosis,
particularly within dynamic systems. An RL agent acquires knowledge by engag-
ing with the system, making decisions based on its observations, and receiving
rewards or penalties according to how well it identifies and addresses faults. This
method holds significant potential for adaptive fault diagnosis in intricate, chang-
ing environments.

6.3 EMERGING TRENDS AND TECHNOLOGIES

The field of ML in fault diagnosis is constantly evolving, with several exciting
trends and technologies shaping its future.

6.3.1 DEeEp LEARNING

Deep learning models, especially deep neural networks (DNNs), have shown
remarkable effectiveness in tackling intricate fault diagnosis challenges. CNNs
are particularly adept at managing image data from devices like cameras and
scanners, whereas RNNs are ideal for examining sequential data from time-series
sensors. Recent progress in deep learning, including generative adversarial net-
works (GANSs) and transformers, is also being utilized in fault diagnosis. GANs
can produce synthetic data to enhance limited datasets, while transformers excel
at managing long-range dependencies in sequential information.

6.3.2 TRANSFER LEARNING

Transfer learning refers to using insights gained from addressing one issue to
enhance performance on a similar task. This approach is particularly useful in fault
diagnosis when there is insufficient data for a specific system or fault category.
By initially training a model on a substantial, relevant dataset and subsequently
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refining it on the target dataset, the model can attain improved performance with
reduced amounts of training data.

6.3.3 ExpLainasLe Al (XAI)

A key challenge associated with ML models, especially deep learning ones, is
their “black box” characteristic. Understanding how these models generate their
predictions can be challenging, which makes it difficult to have confidence in
their decisions for critical applications like fault diagnosis. XAl techniques are
designed to enhance the transparency and interpretability of ML models, facilitat-
ing a better understanding of the reasoning behind their predictions. This greater
transparency is essential for fostering trust and acceptance of ML-based fault
diagnosis systems.

6.3.4 FEDERATED LEARNING

Federated learning enables various parties to jointly develop a common ML
model without the need to share their data directly. This approach is especially
applicable in fault diagnosis situations where data may be spread across different
entities or remote locations due to concerns about privacy or issues related to data
ownership.

6.3.5 HYBRID APPROACHES

Integrating ML with conventional techniques, such as physics-based models and
expert insights, can result in more dependable and effective fault diagnosis sys-
tems. Hybrid methodologies take advantage of the benefits of both ML and tra-
ditional approaches, overcoming weaknesses and improving performance. For
instance, a physics-based model could deliver preliminary estimates, which are
then fine-tuned by a ML model utilizing sensor data.

6.3.6 loT aAND EDGE COMPUTING

The growing implementation of the Internet of Things (IoT) and edge comput-
ing is revolutionizing fault diagnosis. IoT devices produce large quantities of
data from sensors integrated into diverse systems, offering valuable insights for
ML models. Edge computing enables real-time data processing nearer to the
source, minimizing latency and bandwidth needs. This supports quicker fault
identification and response, which is essential in applications where timing is
critical.

6.4 CHALLENGES AND FUTURE DIRECTIONS

Despite the significant progress, several challenges remain in the application of
ML to fault diagnosis.
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6.4.1 DATA ScarCITY AND QUALITY

Obtaining sufficient high-quality labeled data for training ML models can be chal-
lenging and expensive, especially for rare or infrequent fault events. Data aug-
mentation techniques, synthetic data generation, and transfer learning can help
mitigate this issue.

6.4.2 DATA HETEROGENEITY AND NOISE

Real-world datasets frequently include noise, incomplete data, and discrepancies,
which can impact the effectiveness of ML models. Employing effective data pre-
processing and feature engineering methods is essential to tackle these issues.

6.4.3 MODEL INTERPRETABILITY AND EXPLAINABILITY

The lack of transparency in some ML models makes it difficult to understand their
predictions, hindering trust and acceptance. XAl methods are essential for address-
ing this issue and improving confidence in ML-based fault diagnosis systems.

6.4.4 GENERALIZATION AND ROBUSTNESS

ML models trained on one dataset might not generalize well to other datasets or
operating conditions. Developing robust and generalizable models is crucial for
reliable fault diagnosis across various scenarios.

6.4.5 REeAL-TIME PERFORMANCE AND SCALABILITY

For some applications, real-time fault detection and diagnosis are essential.
Developing ML models that can operate efficiently and scale to handle large data-
sets in real time is a critical challenge.

6.4.6 SECURITY AND SAFETY

Implementing ML models in essential systems demands thorough attention to
safety and security factors. It is crucial to guarantee the strength and dependability
of these models to avoid unexpected outcomes.

6.5 SPECIFIC APPLICATION AREAS AND FUTURE OUTLOOK

The future of ML in fault diagnosis holds immense potential across various domains.

6.5.1 MANUFACTURING

ML has the potential to transform predictive maintenance, minimizing downtime
and enhancing efficiency in manufacturing operations. By examining sensor data
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from equipment, ML models can forecast possible failures and arrange mainte-
nance in advance.

6.5.2 AEROSPACE

In aerospace contexts, diagnosing faults is essential for maintaining safety and
reliability. ML can enhance the precision and speed of fault identification in air-
craft and spacecraft systems, which may help avert disastrous failures.

6.5.3 HEALTHCARE

ML has the potential to improve medical diagnosis by examining medical images,
patient information, and other pertinent data. This advancement can result in
quicker and more precise disease identification, ultimately benefiting patient
outcomes.

6.5.4 ENERGY

ML can enhance the effectiveness and dependability of power grids and various
energy systems by identifying and diagnosing faults in real time. This capability
can aid in preventing power outages and optimizing energy management.

6.5.5 AUTOMOTIVE

Self-driving cars depend significantly on effective fault diagnosis mechanisms to
guarantee safety and dependability. ML can enhance the precision and rapidity
of fault detection in autonomous driving technologies, reducing the likelihood of
accidents and boosting overall efficiency.

6.6 CONCLUSION

ML is revolutionizing fault diagnosis in a variety of industries by providing
robust tools that enhance accuracy, efficiency, and reliability. New trends such
as deep learning, transfer learning, XAlI, federated learning, and hybrid meth-
ods are further augmenting the capabilities of ML-based fault diagnosis systems.
Nevertheless, issues related to data limitation, diversity, model transparency, and
real-time performance must be tackled to fully harness the potential of ML in this
area. Current research and development initiatives are aimed at addressing these
challenges and broadening the use of ML in increasingly complex and critical
systems. The future of fault diagnosis is closely linked to the advancements in
ML, resulting in safer, more efficient, and more dependable systems across vari-
ous sectors. Ongoing partnerships between researchers, engineers, and industry
professionals will be crucial for advancing this swiftly developing field.
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