

Mastering Business Data with SQL
A Practical Guide to Querying, Modeling, and Compliance Using SQL
Server 2025

Agus Kurniawan

Ilmu Data

5 August 2025

© 2025 Ilmu Data. All rights reserved.

Table of Contents
Preface
Acknowledgments
Section 1: Getting Started with SQL Server 2025
1 Introduction and Setup

1.1 Introduction
1.2 What’s New in SQL Server 2025
1.3 Tools You’ll Use in This Book

1.3.1 SQL Server Management Studio (SSMS) 21.x
1.3.2 Visual Studio Code with MSSQL Extension
1.3.3 Optional Tools

1.4 Exercise 1: Install SQL Server and Restore
AdventureWorks2022

1.4.1 Description
1.4.2 Objectives
1.4.3 Prerequisites
1.4.4 Steps
1.4.5 Summary

1.5 Exercise 2: Explore SSMS and Run Your First Query
1.5.1 Description
1.5.2 Objectives
1.5.3 Prerequisites
1.5.4 Steps
1.5.5 Summary

1.6 Conclusion
Section 2: Querying Data – Core Skills
2 SELECT and Filtering Essentials

2.1 The SELECT Statement: Retrieving Data
2.2 The WHERE Clause: Filtering Rows
2.3 The ORDER BY Clause: Sorting Results
2.4 Combining SELECT, WHERE, and ORDER BY
2.5 Exercise 3: Select and Filter Data from
AdventureWorks2022

2.5.1 Description

2.5.2 Objectives
2.5.3 Prerequisites
2.5.4 Steps
2.5.5 Summary

2.6 Exercise 4: Filter Sales by Region and Date
2.6.1 Description
2.6.2 Objectives
2.6.3 Prerequisites
2.6.4 Steps
2.6.5 Summary

2.7 Conclusion
3 Expressions, NULLs, and Logic

3.1 Using Expressions in SELECT
3.2 Understanding NULLs
3.3 The CASE Expression: Conditional Logic
3.4 Combining Expressions, NULLs, and CASE
3.5 Exercise 5: Add Calculated Columns and Handle Missing
Data

3.5.1 Description
3.5.2 Objectives
3.5.3 Prerequisites
3.5.4 Steps
3.5.5 Summary

3.6 Exercise 6: Use CASE for Business Rule Logic
3.6.1 Description
3.6.2 Objectives
3.6.3 Prerequisites
3.6.4 Steps
3.6.5 Summary

3.7 Conclusion
Section 3: Data Modeling and Design
4 Relational Database Design Basics

4.1 Tables and Data Types
4.1.1 What is a Table?
4.1.2 Data Types in SQL Server 2025

4.2 Keys in Relational Tables
4.2.1 Primary Key (PK)

4.2.2 Foreign Key (FK)
4.2.3 Candidate Key
4.2.4 Surrogate Key vs. Natural Key

4.3 Introduction to Normalization
4.3.1 First Normal Form (1NF)

4.4 Second Normal Form (2NF)
4.5 Third Normal Form (3NF)
4.6 Exercise 7: Basic ERD Design

4.6.1 Description
4.6.2 Objectives
4.6.3 Prerequisites
4.6.4 Steps
4.6.5 Step 7: Show ERD Diagram
4.6.6 Summary

4.7 Exercise 8: Design Schema for a Subscription Business
4.7.1 Description
4.7.2 Objectives
4.7.3 Prerequisites
4.7.4 Steps
4.7.5 Step 8: Show ERD Diagram
4.7.6 Summary

4.8 Exercise 9: Insert and Query Sample Data
4.8.1 Description
4.8.2 Objectives
4.8.3 Prerequisites
4.8.4 Steps
4.8.5 Summary

4.9 Exercise 10: Apply Normalization to Improve Table
Design

4.9.1 Description
4.9.2 Objectives
4.9.3 Prerequisites
4.9.4 Steps
4.9.5 Summary

4.10 Conclusion
5 Views and Logical Data Modeling

5.1 What Is a View?

5.2 Creating Views in SQL Server 2025
5.3 Views as Virtual Tables
5.4 Updatable Views
5.5 Role-Based Schema Simplification Using Views
5.6 Security and Compliance with Views
5.7 Indexed Views (Materialized Views)
5.8 Exercise 11: Create Reusable Views for Sales Analysis

5.8.1 Description
5.8.2 Objectives
5.8.3 Prerequisites
5.8.4 Steps
5.8.5 Summary

5.9 Exercise 12: Simplify Complex Joins via Views
5.9.1 Description
5.9.2 Objectives
5.9.3 Prerequisites
5.9.4 Steps
5.9.5 Summary

5.10 Conclusion
6 Designing Multi-Tenant and SaaS Databases

6.1 What Is a Multi-Tenant Database?
6.2 Multi-Tenant Patterns in SQL Server

6.2.1 Pattern 1: Shared Database, Shared Schema
6.2.2 Pattern 2: Shared Database, Schema-Per-Tenant
6.2.3 Pattern 3: Database-Per-Tenant

6.3 Tenant Isolation and Identity Filtering
6.3.1 Option 1: Manual Filtering by Tenant ID
6.3.2 Option 2: Use Row-Level Security (RLS)

6.4 Managing Identity and Shared Metadata
6.5 Best Practices for Multi-Tenant SQL Server Design
6.6 Exercise 13: Add Tenant Column and Apply Security
Filters

6.6.1 Description
6.6.2 Objectives
6.6.3 Prerequisites
6.6.4 Steps
6.6.5 Summary

6.7 Exercise 14: Build Views and Indexes per Tenant
6.7.1 Description
6.7.2 Objectives
6.7.3 Prerequisites
6.7.4 Steps
6.7.5 Summary

6.8 Conclusion
Section 4: Aggregation, Data Combination and Analytical Query
Techniques
7 Grouping, Aggregation, and PIVOTs

7.1 What Is Aggregation?
7.2 GROUP BY: Summarizing Rows by Category
7.3 HAVING: Filtering Groups
7.4 Multiple Columns in GROUP BY
7.5 PIVOT: Rotating Data for Reports
7.6 Unpivoting (Optional Advanced)
7.7 Exercise 15: Generate Monthly Revenue Summaries

7.7.1 Description
7.7.2 Objectives
7.7.3 Prerequisites
7.7.4 Steps
7.7.5 Summary

7.8 Exercise 16: Create Pivoted Sales Report
7.8.1 Description
7.8.2 Objectives
7.8.3 Prerequisites
7.8.4 Steps
7.8.5 Summary

7.9 Exercise 17: Filter Aggregated Results Using HAVING
7.9.1 Description
7.9.2 Objectives
7.9.3 Prerequisites
7.9.4 Steps
7.9.5 Summary

7.10 Conclusion
8 Joins and UNION Queries

8.1 Introduction to Joins

8.2 INNER JOIN
8.3 LEFT JOIN (LEFT OUTER JOIN)
8.4 FULL JOIN (FULL OUTER JOIN)
8.5 UNION vs UNION ALL
8.6 Best Practices
8.7 Exercise 18: Combine Customer, Order, and Region Data

8.7.1 Description
8.7.2 Objectives
8.7.3 Prerequisites
8.7.4 Steps
8.7.5 Summary

8.8 Exercise 19: Merge Archived and Active Records
8.8.1 Description
8.8.2 Objectives
8.8.3 Prerequisites
8.8.4 Steps
8.8.5 Summary

8.9 Conclusion
9 Trends, Time, and Window Functions

9.1 Introduction to Window Functions
9.2 ROW_NUMBER, RANK, and DENSE_RANK
9.3 LEAD and LAG: Accessing Adjacent Rows
9.4 DATE and TIME Functions
9.5 Combining Window + Time Analysis
9.6 Exercise 20: Rank Top Customers Monthly

9.6.1 Description
9.6.2 Objectives
9.6.3 Prerequisites
9.6.4 Steps
9.6.5 Summary

9.7 Exercise 21: Compare Customer Revenue Month-over-
Month

9.7.1 Description
9.7.2 Objectives
9.7.3 Prerequisites
9.7.4 Steps
9.7.5 Summary

9.8 Exercise 22: Calculate Moving Averages on Sales
9.8.1 Description
9.8.2 Objectives
9.8.3 Prerequisites
9.8.4 Steps
9.8.5 Summary

9.9 Exercise 23: Analyze Customer Sales Percentiles
9.9.1 Description
9.9.2 Objectives
9.9.3 Prerequisites
9.9.4 Steps
9.9.5 Summary

9.10 Conclusion
Section 5: Security, Access, and Compliance
10 User Management and Access Control

10.1 Authentication vs Authorization
10.2 Logins and Users
10.3 Fixed Server and Database Roles
10.4 Custom Roles and Role-Based Access Control (RBAC)
10.5 Schema-Level Security
10.6 Security Best Practices
10.7 Auditing Access
10.8 Exercise 24: Create Analyst Role and Grant Access

10.8.1 Description
10.8.2 Objectives
10.8.3 Prerequisites
10.8.4 Steps
10.8.5 Summary

10.9 Exercise 25: Restrict Access by Schema
10.9.1 Description
10.9.2 Objectives
10.9.3 Prerequisites
10.9.4 Steps
10.9.5 Summary

10.10 Exercise 26: Revoke Permissions and Audit Role
Membership

10.10.1 Description

10.10.2 Objectives
10.10.3 Prerequisites
10.10.4 Steps
10.10.5 Summary

10.11 Conclusion
11 Row-Level Security and Tenant Isolation

11.1 What Is Row-Level Security (RLS)?
11.2 RLS Architecture in SQL Server

11.2.1 How RLS Works Internally
11.2.2 Types of Security Predicates
11.2.3 Security Policy Management
11.2.4 Auditing RLS Activity

11.3 Example Scenario: Tenant-Based Filtering
11.4 Step-by-Step: Implementing RLS for Tenant Isolation
11.5 RLS for User-Specific Access
11.6 Best Practices for RLS
11.7 RLS Limitations to Note
11.8 Exercise 27: Enforce Tenant Filtering with RLS

11.8.1 Description
11.8.2 Objectives
11.8.3 Prerequisites
11.8.4 Steps
11.8.5 Summary

11.9 Exercise 28: Validate Isolation Using Test Accounts
11.9.1 Description
11.9.2 Objectives
11.9.3 Prerequisites
11.9.4 Steps
11.9.5 Summary

11.10 Exercise 29: Audit RLS Access and Log Session
Context Activity

11.10.1 Description
11.10.2 Objectives
11.10.3 Prerequisites
11.10.4 Steps
11.10.5 Summary

11.11 Conclusion

12 Masking, Encryption, and Auditing
12.1 Dynamic Data Masking (DDM)
12.2 Encryption Options

12.2.1 Transparent Data Encryption (TDE)
12.2.2 Always Encrypted
12.2.3 Cell-Level Encryption (CLE)

12.3 Auditing Access to Sensitive Data
12.4 Best Practices for Data Protection
12.5 Exercise 30: Mask Email and Phone Fields in Query
Output

12.5.1 Description
12.5.2 Objectives
12.5.3 Prerequisites
12.5.4 Steps
12.5.5 Summary

12.6 Exercise 31: Encrypt Sensitive Data Using Always
Encrypted

12.6.1 Description
12.6.2 Objectives
12.6.3 Prerequisites
12.6.4 Steps
12.6.5 Summary

12.7 Exercise 32: Enable and Configure an Audit Policy
12.7.1 Description
12.7.2 Objectives
12.7.3 Prerequisites
12.7.4 Steps
12.7.5 Summary

12.8 Conclusion
13 Complying with GDPR and Privacy Regulations

13.1 Key GDPR Data Subject Rights
13.1.1 Right of Access (Article 15)
13.1.2 Right to Erasure / Right to Be Forgotten (Article
17)
13.1.3 Right to Data Portability (Article 20)

13.2 Data Minimization
13.3 Pseudonymization

13.4 Data Classification in SQL Server 2025
13.5 Auditing for Compliance
13.6 Best Practices for GDPR Compliance
13.7 Exercise 33: Apply DDM to PII Columns

13.7.1 Description
13.7.2 Objectives
13.7.3 Prerequisites
13.7.4 Steps
13.7.5 Summary

13.8 Exercise 34: Apply Pseudonymization with Computed
Columns or Hashes

13.8.1 Description
13.8.2 Objectives
13.8.3 Prerequisites
13.8.4 Steps
13.8.5 Summary

13.9 Exercise 35: Implement the Right to Erasure and
Portability

13.9.1 Description
13.9.2 Objectives
13.9.3 Prerequisites
13.9.4 Steps
13.9.5 Summary

13.10 Exercise 36: Simulate GDPR “Right to Be Forgotten”
13.10.1 Description
13.10.2 Objectives
13.10.3 Prerequisites
13.10.4 Steps
13.10.5 Summary

13.11 Exercise 37: Enable Auditing and Access Log for
GDPR

13.11.1 Description
13.11.2 Objectives
13.11.3 Prerequisites
13.11.4 Steps
13.11.5 Summary

13.12 Exercise 38: Log Consent and Data Processing
Activities for GDPR Audits

13.12.1 Description
13.12.2 Objectives
13.12.3 Prerequisites
13.12.4 Steps
13.12.5 Summary

13.13 Conclusion
Section 6: Reporting and Exporting
14 Reporting and Data Connectivity

14.1 Exporting SQL Data to Excel and CSV
14.1.1 Export Using SQL Server Management Studio
(SSMS)
14.1.2 xport Using SQL Server Import and Export
Wizard
14.1.3 Export via bcp (Bulk Copy Program) CLI
14.1.4 Export to CSV with T-SQL (via SSMS
scripting)

14.2 Connecting Power BI to SQL Server
14.3 Building Reports on Exported Data
14.4 Practices for Reporting and Data Access
14.5 Exercise 39: Export Sales Summary to Excel

14.5.1 Description
14.5.2 Objectives
14.5.3 Prerequisites
14.5.4 Steps
14.5.5 Summary

14.6 Exercise 40: Connect SQL Server to Power BI Desktop
for Dynamic Visualization

14.6.1 Description
14.6.2 Objectives
14.6.3 Prerequisites
14.6.4 Steps
14.6.5 Summary

14.7 Conclusion
Appendix A: T-SQL Cheatsheet (SQL Server 2025)
Appendix B: Resources

SQL Server 2025 High Availability & Disaster Recovery:
Always On Solutions Course
Enhance Your Learning with Our Udemy Course
Build Secure PHP APIs Like a Pro with Laravel 12, OAuth2,
and JWT
Master Real-World Logging & Visualization with the Full
ELK Stack

Appendix C: Source Code
About

Preface
In today’s data-driven business landscape, mastering SQL is essential for
unlocking the full potential of your organization’s information. SQL Server
2025 introduces powerful new features and enhancements, enabling
professionals to query, model, and manage data with greater efficiency and
compliance.

“Mastering Business Data with SQL: A Practical Guide to Querying,
Modeling, and Compliance Using SQL Server 2025” is crafted to help
you build a strong foundation in SQL while exploring advanced techniques
for real-world business scenarios. This book offers a hands-on approach,
guiding you through practical examples and step-by-step instructions to
ensure you gain the skills needed to work confidently with business data.

Inside, you will discover:

Core SQL concepts and the latest features in SQL Server 2025.
Methods for querying and analyzing business data effectively.
Best practices for designing and modeling databases for scalability and
compliance.
Advanced topics such as data security, regulatory compliance, and
performance optimization.
Practical case studies demonstrating SQL’s role in solving business
challenges.
Tips for deploying, maintaining, and optimizing SQL Server
environments.

Whether you are a beginner or an experienced professional aiming to
deepen your expertise, this book serves as a comprehensive resource for
students, IT specialists, and anyone seeking to harness the power of SQL
Server 2025 in business data management.

Agus Kurniawan

Depok, August 2025

Acknowledgments
I extend my sincere gratitude to the SQL Server community, dedicated
contributors, and data professionals whose insights and encouragement
have greatly influenced the development of this book.

As you read through these chapters, I hope Mastering Business Data with
SQL: A Practical Guide to Querying, Modeling, and Compliance Using
SQL Server 2025 proves both practical and inspiring, empowering you to
achieve new levels of proficiency and innovation in business data
management.

Section 1: Getting Started with
SQL Server 2025

1 Introduction and Setup
1.1 Introduction

This book is designed for business users, data analysts, and professionals who work
with relational data and need to develop skills in querying, modeling, and ensuring
compliance using SQL Server 2025. You may be:

A business analyst generating reports and insights from enterprise data
A data professional supporting analytics and reporting pipelines
A developer building SaaS solutions with secure, multi-tenant databases
A compliance-oriented user interested in applying data governance, security, and
auditing best practices

Unlike books that target full-time database administrators (DBAs) or performance
tuners, this book emphasizes real-world, hands-on skills for interacting with SQL
Server in a business-driven context, with a focus on:

Writing effective and meaningful queries
Designing relational data models that scale
Enforcing access control, masking, and auditing for compliance (e.g., GDPR)
Supporting multi-tenant SaaS-style architecture from a data perspective

The book assumes basic familiarity with databases, such as tables and rows, but no
prior experience with T-SQL or SQL Server is required.

1.2 What’s New in SQL Server 2025

SQL Server 2025, part of Microsoft’s modern data platform, continues its evolution as
a hybrid and cloud-integrated database engine. As of July 2025, these are the notable
features relevant to this book’s focus:

✅ Enhanced T-SQL capabilities, including window function improvements,
performance hints, and support for DATETIME2 granularity enhancements
✅ Built-in support for data classification, sensitivity labeling, and improved
auditing — critical for GDPR/PII compliance
✅ Improved Row-Level Security (RLS) performance and diagnostics
✅ Support for ledger tables (blockchain-style tamper-evidence) for scenarios
where data integrity tracking is required

✅ SSMS 20.x and Azure Data Studio 1.47+ fully support SQL Server 2025’s
feature set
✅ Seamless integration with Microsoft Purview, Power BI, and Azure Arc for
hybrid deployments

These features make SQL Server 2025 well-suited for data-driven businesses,
especially those delivering multi-tenant services, operating under regulatory
compliance, or requiring enterprise-level data analysis.

1.3 Tools You’ll Use in This Book

To follow along with the exercises and labs in this book, you’ll primarily use the
following tools:

1.3.1 SQL Server Management Studio (SSMS) 21.x

The classic, full-featured Windows tool for managing SQL Server databases. SSMS
includes:

Query editor with IntelliSense for T-SQL
Object Explorer for browsing schemas, views, procedures
UI-based features for backups, security, and auditing
Graphical plans for query analysis

🔎 As of July 2025, the latest SSMS release is v21.x, which is compatible with SQL
Server 2025 and backward-compatible with earlier versions.

You can download SSMS from the official Microsoft site: Download SQL Server
Management Studio https://learn.microsoft.com/en-us/ssms/install/install.

While installing, you can choose some workload-specific options, but the defaults are
generally sufficient for most users. Figure 1.1 shows the installation process.

https://learn.microsoft.com/en-us/ssms/install/install

Figure 1.1: Installing SQL Server Management Studio (SSMS) 21.x.

After installation, you can launch SSMS and connect to your SQL Server instance
using Windows Authentication or SQL Server Authentication. The connection dialog
allows you to specify the server name, authentication method, and credentials.

Figure 1.2: SQL Server Management Studio (SSMS) 21.x.

1.3.2 Visual Studio Code with MSSQL Extension

As Microsoft transitions away from Azure Data Studio, Visual Studio Code (VS
Code) combined with the official MSSQL extension is now the preferred

lightweight, cross-platform SQL editor. With this setup, you can:

Connect to SQL Server on Windows, Linux, or macOS
Run and save T-SQL queries directly from the VS Code editor
Use IntelliSense, result grid, and connection profiles
Leverage Git and terminal integration for hybrid workflows

🟢 The MSSQL extension, maintained by Microsoft, brings ADS-like features to VS
Code and is actively supported as of July 2025.

❗ Microsoft has officially announced the retirement of Azure Data Studio, and
recommends moving to VS Code + MSSQL extension for future development: What’s
Happening to Azure Data Studio

1.3.3 Optional Tools

While the primary focus is on SSMS and VS Code, you may also find value in
exploring additional tools that complement your SQL Server workflow. These optional
tools can help with data visualization, automation, and advanced management tasks,
depending on your specific needs and environment.

Power BI Desktop: Connects directly to SQL Server to build visual dashboards
SQLCMD or Azure CLI: For automation and command-line interaction (covered
briefly)

1.4 Exercise 1: Install SQL Server and Restore
AdventureWorks2022

1.4.1 Description

In this lab, you will install SQL Server 2025 Developer Edition, set up SQL Server
Management Studio (SSMS), and restore the AdventureWorks2022 sample
database. This environment will be used for hands-on exercises throughout the book.

1.4.2 Objectives

Install SQL Server 2025 Developer Edition
Install SSMS 21.x

https://learn.microsoft.com/en-us/azure-data-studio/whats-happening-azure-data-studio?tabs=dev

Download the AdventureWorks2022.bak sample database
Restore the .bak file into a new database using SSMS

1.4.3 Prerequisites

Windows 10/11 or Windows Server 2019/2022
Administrator access to install software
Stable internet connection
At least 4 GB RAM and 10 GB free disk space

1.4.4 Steps

Here’s a step-by-step guide to complete this exercise:

1.4.4.1 Step 1: Download and Install SQL Server 2025 Developer Edition

1. Visit the SQL Server 2025 download pagehttps://www.microsoft.com/en-us/sql-
server/sql-server-downloads

Since SQL Server 2025 is not yet released, you can download the SQL Server
2025 on https://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2025.
The steps will be similar.

2. Download the Developer Edition installer (free for development use)

3. Run the installer and choose Basic installation

4. Accept license terms and continue

5. Wait until the installation completes

6. Note the instance name (default: MSSQLSERVER) and make sure SQL Server services
are running

1.4.4.2 Step 2: Install SQL Server Management Studio (SSMS) 21.x

1. Go to the official SSMS download page, https://learn.microsoft.com/en-
us/ssms/install/install

2. Download the latest SSMS 21.x installer (as of July 2025)
3. Run the installer and complete the setup
4. Launch SSMS and connect to your local SQL Server instance

https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://learn.microsoft.com/en-us/ssms/install/install

1.4.4.3 Step 3: Download AdventureWorks2022 Sample Database

1. Visit the official Microsoft GitHub repository:

👉 https://github.com/microsoft/sql-server-samples/releases

2. Locate and download: AdventureWorks2022.bak from the AdventureWorks OLTP
section.

Direct link (as of July 2025):

👉 https://github.com/microsoft/sql-server-samples/releases/tag/adventureworks

3. Save the .bak file to a known directory, e.g., C:\Backups\AdventureWorks2022.bak

Figure 1.3: Connect to SQL Server from SQL Server Management Studio
(SSMS) 21.x.

1.4.4.4 Step 4: Restore AdventureWorks2022 in SSMS

1. Open SSMS and connect to the SQL Server instance

2. In Object Explorer, right-click on Databases → choose Restore Database…

3. In the Source section:

Select Device
Click Add… and browse to C:\Backups\AdventureWorks2022.bak

https://github.com/microsoft/sql-server-samples/releases
https://github.com/microsoft/sql-server-samples/releases/tag/adventureworks

4. In the Destination section:

Database name: AdventureWorks2022

5. Click on the Files tab:

Change the restore file path if needed (ensure it points to a valid DATA folder)

Figure 1.4: Restore AdventureWorks2022.

6. Click OK to begin the restore

7. Wait until the success message appears

1.4.4.5 Step 5: Verify the Database

1. In Object Explorer, expand Databases → AdventureWorks2022

Figure 1.5: Explore AdventureWorks2022 database.

2. Expand Tables to verify that objects like Sales.SalesOrderHeader and Person.Person
exist

3. Run a sample query:

SELECT TOP 10 * FROM Person.Person;

Figure 1.6: Perform a query on MSSQL Studio.

1.4.5 Summary

In this exercise, you:

Installed SQL Server 2025 Developer Edition and SSMS 21.x
Downloaded the AdventureWorks2022 .bak file from Microsoft’s GitHub
repository
Restored the database into SQL Server using SSMS
Verified the successful restore and ran a test query

You are now ready to begin querying and working with a real-world sample database in
the next chapters.

1.5 Exercise 2: Explore SSMS and Run Your First Query

1.5.1 Description

In this hands-on lab, you will explore the SQL Server Management Studio (SSMS)
21.x user interface and run your first query against the AdventureWorks2022
database. This lab helps you become familiar with core features of SSMS that you’ll
use throughout the book.

1.5.2 Objectives

Navigate the SSMS interface: Object Explorer, Query Editor, and Results Pane
Connect to a SQL Server 2025 instance
Run a basic SELECT statement on the restored AdventureWorks2022 database
View and interpret query results

1.5.3 Prerequisites

SQL Server 2025 Developer Edition is installed and running
SQL Server Management Studio (SSMS) 21.x is installed
AdventureWorks2022 database is already restored (from Exercise 1)
User has access to connect as a SQL Server administrator or equivalent

1.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

1.5.4.1 Step 1: Launch SSMS and Connect to SQL Server

1. Open SQL Server Management Studio (SSMS).

2. In the Connect to Server dialog:

Server type: Database Engine
Server name: (local) or localhost
Authentication: Windows Authentication (or SQL Authentication if
configured)

3. Click Connect.

4. Once connected, you will see Object Explorer on the left panel.

1.5.4.2 Step 2: Explore the SSMS Interface

Familiarize yourself with key UI elements:

Object Explorer (left pane): View servers, databases, tables, views, and more
Query Editor: Write and run T-SQL scripts
Toolbar: Save files, execute queries, and format code
Results Pane: View query output (grid or text)

Expand the following to get familiar:

1. Databases → AdventureWorks2022

2. Expand Tables, Views, and Security

1.5.4.3 Step 3: Open a New Query Window

1. In Object Explorer, right-click on the AdventureWorks2022 database
2. Click New Query
3. Ensure the database context (top-left dropdown) is set to AdventureWorks2022

1.5.4.4 Step 4: Run a Simple Query

In the new query window, type the following T-SQL statement:

Click Execute (or press F5).

Figure 1.7: Run a query.

1.5.4.5 Step 5: View the Results

Review the Results tab (default grid view)
Notice column names and values

SELECT TOP 10 FirstName, LastName

FROM Person.Person;

Optionally click the Messages tab to view query execution info (e.g., (10 rows
affected))

You can also change the output to:

Text: Right-click in the query window → Results To → Results to Text (Ctrl+T)
File: Right-click → Results To → Results to File (Ctrl+Shift+F)

1.5.5 Summary

In this exercise, you:

Connected to SQL Server 2025 using SSMS 21.x
Navigated the SSMS interface and Object Explorer
Opened a query window and set the database context
Ran your first SQL query against the AdventureWorks2022 database
Viewed results in the results pane

You’re now ready to dive into querying and data exploration in upcoming chapters.

1.6 Conclusion

This book provides a comprehensive introduction to SQL Server 2025, focusing on
practical skills for business users and data professionals. By completing the exercises in
this chapter, you have set up your environment and gained familiarity with the tools
and interfaces that will be used throughout the book.

Section 2: Querying Data – Core
Skills

2 SELECT and Filtering Essentials
In this chapter, we introduce the foundation of querying data from SQL Server
2025. You’ll learn how to retrieve specific columns using SELECT, limit rows with
WHERE, and organize results with ORDER BY. These skills are essential for analyzing
business data effectively and precisely.

2.1 The SELECT Statement: Retrieving Data

The SELECT statement is the most fundamental command in SQL—it lets you extract
data from one or more tables.

Sample syntax:

Here’s how to retrieve all columns from the Customers table in the Sales schema:

Here’s how to select only the CustomerID, FirstName, and LastName columns:

Avoid SELECT * in production queries. Always specify the columns you need to
improve performance and clarity.

2.2 The WHERE Clause: Filtering Rows

WHERE is used to filter rows that meet specific criteria. It allows business users to
focus on relevant data only.

Sample syntax:

SELECT column1, column2, ...

FROM table_name;

SELECT *

FROM Sales.Customers;

SELECT CustomerID, FirstName, LastName

FROM Sales.Customers;

SELECT column1, column2, ...

FROM table_name

Comparison operators are used in the WHERE clause to filter data based on specific
conditions. Here are the common operators:

Operator Meaning

= Equal

<> or != Not equal

> Greater than

< Less than

>= Greater or equal

<= Less or equal

Here’s how to select customers from the ‘North’ region:

You can combine multiple conditions using AND and OR:

The WHERE clause can also use special operators for more complex filtering:

IN: Checks if a value exists in a list
BETWEEN: Checks within a range
LIKE: Pattern matching (with % and _)

Here are some examples:

WHERE condition;

SELECT CustomerID, Region

FROM Sales.Customers

WHERE Region = 'North';

SELECT OrderID, OrderDate, TotalAmount

FROM Sales.Orders

WHERE TotalAmount > 1000 AND Status = 'Completed';

-- Customers from specific regions

SELECT FirstName, LastName

FROM Sales.Customers

WHERE Region IN ('West', 'South');

-- Orders between two dates

SELECT OrderID, OrderDate

FROM Sales.Orders

WHERE OrderDate BETWEEN '2025-01-01' AND '2025-06-30';

Explanation:

The first query retrieves customers from the ‘West’ and ‘South’ regions.
The second query finds orders placed in the first half of 2025.
The third query gets customers whose first names start with ‘J’.

2.3 The ORDER BY Clause: Sorting Results

ORDER BY is used to sort query results by one or more columns, either ascending (ASC,
default) or descending (DESC).

Basic syntax:

Here’s how to sort customers by their last names in ascending order:

Here’s how to sort customers by their total purchase amount in descending order:

2.4 Combining SELECT, WHERE, and ORDER BY

You can combine SELECT, WHERE, and ORDER BY to create powerful queries that retrieve
and organize data effectively.

Here’s an example that retrieves orders over $500 and sorts them by order date:

-- Customers with names starting with 'J'

SELECT FirstName, LastName

FROM Sales.Customers

WHERE FirstName LIKE 'J%';

SELECT column1, column2, ...

FROM table_name

ORDER BY column1 [ASC|DESC], column2 [ASC|DESC];

SELECT FirstName, LastName

FROM Sales.Customers

ORDER BY LastName ASC;

SELECT CustomerID, TotalPurchase

FROM Sales.CustomerRevenue

ORDER BY TotalPurchase DESC;

SELECT OrderID, CustomerID, OrderDate, TotalAmount

FROM Sales.Orders

WHERE TotalAmount > 500

ORDER BY OrderDate DESC;

This retrieves orders over $500 and sorts them from the most recent.

2.5 Exercise 3: Select and Filter Data from
AdventureWorks2022

2.5.1 Description

In this exercise, you will learn how to retrieve data from a SQL Server 2025
database using the SELECT statement and apply filtering using the WHERE clause. You’ll
explore the Production.Product and Sales.SalesOrderHeader tables in the
AdventureWorks2022 sample database to extract meaningful information.

This lab builds your foundation for writing real-world business queries using SQL
Server Management Studio (SSMS) 21.x.

2.5.2 Objectives

Understand how to use the SELECT statement to retrieve specific columns
Apply the WHERE clause to filter rows based on conditions
Use logical operators such as AND, OR, and comparison operators
Retrieve business-relevant data from AdventureWorks2022

2.5.3 Prerequisites

SQL Server 2025 Developer Edition is installed and running
SSMS 21.x is installed
AdventureWorks2022 database has been restored (from Exercise 1)
User is connected to the SQL Server instance with appropriate permissions

2.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

2.5.4.1 Step 1: Open a New Query Window in SSMS

1. Launch SQL Server Management Studio (SSMS)
2. Connect to your SQL Server instance
3. In Object Explorer, expand Databases → right-click on

AdventureWorks2022 → choose New Query

4. Ensure the database context (in the dropdown near the toolbar) is set to
AdventureWorks2022

2.5.4.2 Step 2: Retrieve Product Name and List Price

In the query editor, type:

Click Execute or press F5. This returns a list of all products with their list prices.

2.5.4.3 Step 3: Filter Products with Non-Zero Price

Now let’s filter out products that have a price of 0.00:

This query returns only sellable products with a valid list price.

2.5.4.4 Step 4: Add Filtering by Product Color

Let’s get only red-colored products:

You can change 'Red' to other values such as 'Black', 'Silver', etc.

2.5.4.5 Step 5: Combine Multiple Conditions with AND and OR

Get all red or black products with a price above 500:

This shows how to use parentheses to control logic with AND / OR.

2.5.4.6 Step 6: Query Sales Orders by Date Range

SELECT Name, ListPrice

FROM Production.Product;

SELECT Name, ListPrice

FROM Production.Product

WHERE ListPrice > 0;

SELECT Name, Color, ListPrice

FROM Production.Product

WHERE Color = 'Red';

SELECT Name, Color, ListPrice

FROM Production.Product

WHERE (Color = 'Red' OR Color = 'Black')

 AND ListPrice > 500;

Now switch to the Sales.SalesOrderHeader table and query orders in 2013:

This helps you retrieve filtered transactional data.

Figure 2.1: Perform a query get orders by date range.

2.5.5 Summary

In this exercise, you:

Used the SELECT statement to query specific columns
Applied WHERE filters to extract meaningful subsets of data
Combined logical conditions with AND and OR
Explored data from both Product and SalesOrderHeader tables in
AdventureWorks2022

SELECT SalesOrderID, OrderDate, TotalDue

FROM Sales.SalesOrderHeader

WHERE OrderDate BETWEEN '2013-01-01' AND '2013-12-31';

These skills are essential for any business analyst or developer working with
relational data in SQL Server.

2.6 Exercise 4: Filter Sales by Region and Date

2.6.1 Description

In this hands-on lab, you will practice writing SQL queries to filter sales orders
based on both region (territory) and date range, using the AdventureWorks2022
database in SQL Server 2025. You will also use the ORDER BY clause to sort the
results for better readability and analysis.

2.6.2 Objectives

Join Sales.SalesOrderHeader with Sales.SalesTerritory
Apply multiple filters using WHERE with AND and BETWEEN
Sort results using the ORDER BY clause
Retrieve region-specific sales activity within a date range

2.6.3 Prerequisites

SQL Server 2025 Developer Edition installed and running
SSMS 21.x is installed
AdventureWorks2022 database is restored (from Exercise 1)
Familiarity with SELECT, WHERE, and JOIN from previous exercises

2.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

2.6.4.1 Step 1: Open a New Query Window in SSMS

1. Launch SQL Server Management Studio (SSMS)
2. Connect to your SQL Server instance
3. In Object Explorer, right-click AdventureWorks2022 → New Query
4. Ensure that the database context is set to AdventureWorks2022

2.6.4.2 Step 2: View Sales Order Data

Start with a basic query to explore Sales.SalesOrderHeader:

This gives you a sense of available fields, including region (TerritoryID).

2.6.4.3 Step 3: Join with Sales Territory Table

To retrieve the region name, join with Sales.SalesTerritory:

This query combines sales orders with their respective territories, allowing you to
see which region each order belongs to.

2.6.4.4 Step 4: Filter by Region and Date Range

Now filter for sales in the “Southwest” region during the year 2013:

You can try other territory names such as 'Northwest', 'Central', or 'Canada'.

SELECT TOP 10 SalesOrderID, OrderDate, TerritoryID, TotalDue

FROM Sales.SalesOrderHeader;

SELECT

 h.SalesOrderID,

 h.OrderDate,

 t.Name AS Territory,

 h.TotalDue

FROM Sales.SalesOrderHeader h

JOIN Sales.SalesTerritory t ON h.TerritoryID = t.TerritoryID;

SELECT

 h.SalesOrderID,

 h.OrderDate,

 t.Name AS Territory,

 h.TotalDue

FROM Sales.SalesOrderHeader h

JOIN Sales.SalesTerritory t ON h.TerritoryID = t.TerritoryID

WHERE

 t.Name = 'Southwest'

 AND h.OrderDate BETWEEN '2013-01-01' AND '2013-12-31';

Figure 2.2: Perform filtering data by region and date range.

2.6.4.5 Step 5: Sort Results by Total Sales Value

Add ORDER BY to sort by TotalDue in descending order:

This helps prioritize the highest value orders for analysis.

2.6.5 Summary

SELECT

 h.SalesOrderID,

 h.OrderDate,

 t.Name AS Territory,

 h.TotalDue

FROM Sales.SalesOrderHeader h

JOIN Sales.SalesTerritory t ON h.TerritoryID = t.TerritoryID

WHERE

 t.Name = 'Southwest'

 AND h.OrderDate BETWEEN '2013-01-01' AND '2013-12-31'

ORDER BY h.TotalDue DESC;

In this lab, you:

Joined the SalesOrderHeader and SalesTerritory tables
Filtered records by region and date range using WHERE and BETWEEN
Used ORDER BY to sort sales by their total value
Retrieved actionable sales insights for a specific region and time period

These skills are essential for generating regional reports and analyzing sales
performance in SQL Server 2025.

2.7 Conclusion

This chapter introduced the foundational SQL skills needed to retrieve and filter
data effectively. You learned how to use the SELECT statement, apply filters with
WHERE, and sort results with ORDER BY. These skills are crucial for any data
professional working with SQL Server 2025, enabling you to extract meaningful
insights from your data.

3 Expressions, NULLs, and Logic
This chapter explores how to write expressions, handle NULL values, and apply
conditional logic using CASE. These are essential tools for business analysts and
data professionals who must generate derived insights, perform transformations,
and manage missing or incomplete data.

3.1 Using Expressions in SELECT

Expressions allow you to perform calculations, manipulate strings, and format
output directly in your SQL queries.

In general, expressions can be categorized into:

Arithmetic expressions
String expressions
Date/time expressions

Arithmetic expressions perform calculations using numeric data types. They can
include addition, subtraction, multiplication, and division.

Here’s how to calculate the total price of items in an order:

String expressions concatenate or manipulate text data. You can combine fields,
format names, or create dynamic labels.

Here’s how to create a full name from first and last names:

Date/time expressions allow you to manipulate dates, such as calculating future
dates or extracting parts of a date.

Here’s how to calculate an expected delivery date by adding 30 days to the order
date:

SELECT ProductID, Quantity, UnitPrice, Quantity * UnitPrice AS TotalPrice

FROM Sales.OrderDetails;

SELECT FirstName + ' ' + LastName AS FullName

FROM Sales.Customers;

3.2 Understanding NULLs

NULL represents missing or unknown data. It’s not the same as 0 or an empty string.

Any comparison with NULL results in UNKNOWN (not TRUE or FALSE), which affects
filtering and logic.

Use IS NULL or IS NOT NULL:

Here are two common functions to handle NULL values:

Function Description

ISNULL() Replace NULL with a given value

COALESCE() Return the first non-null expression

Here’s how to replace NULL phone numbers with a default value:

The COALESCE function returns the first non-null value from a list of expressions. It’s
useful for providing fallback values.

3.3 The CASE Expression: Conditional Logic

The CASE expression allows you to perform if-then-else logic in SQL queries. This
is useful for categorization, flagging, and conditional formatting.

SELECT OrderID, OrderDate,

 DATEADD(day, 30, OrderDate) AS ExpectedDelivery

FROM Sales.Orders;

SELECT *

FROM HR.Employees

WHERE ManagerID = NULL; -- This does NOT return expected rows

SELECT *

FROM HR.Employees

WHERE ManagerID IS NULL;

SELECT CustomerID, ISNULL(PhoneNumber, 'Not Provided') AS ContactNumber

FROM Sales.Customers;

SELECT ProductID, COALESCE(SalePrice, ListPrice, 0) AS EffectivePrice

FROM Inventory.Products;

Let’s start with a simple example that maps specific values to new labels.

For more complex conditions, you can use the searched CASE syntax, which allows
for multiple conditions.

The CASE expression is versatile and can be used for various purposes:

Group numeric values into buckets (e.g., sales tier)
Convert raw codes into readable labels
Flag risky or abnormal data

3.4 Combining Expressions, NULLs, and CASE

In real-world SQL queries, you often need to combine expressions, handle NULL
values, and apply conditional logic all at once. This is especially important when
creating calculated fields, generating business metrics, or preparing data for
reports and dashboards.

By integrating arithmetic or string expressions with CASE statements and NULL
handling functions, you can produce more robust and meaningful query results.
The following examples demonstrate how these concepts work together to solve
practical business problems.

Here’s how to categorize customer revenue while handling potential NULL values:

SELECT

 OrderID,

 Status,

 CASE Status

 WHEN 'Completed' THEN 'Green'

 WHEN 'Pending' THEN 'Yellow'

 ELSE 'Red'

 END AS StatusColor

FROM Sales.Orders;

SELECT

 CustomerID,

 TotalPurchase,

 CASE

 WHEN TotalPurchase >= 10000 THEN 'Platinum'

 WHEN TotalPurchase >= 5000 THEN 'Gold'

 WHEN TotalPurchase >= 1000 THEN 'Silver'

 ELSE 'Bronze'

 END AS LoyaltyLevel

FROM Sales.CustomerRevenue;

SELECT

 CustomerID,

This query checks if the Revenue is NULL and categorizes it accordingly, ensuring that
all customers are accounted for, even those with missing data.

A more complex example that combines multiple concepts:

This query calculates the total amount for each order and categorizes it as either a
“Large Order” or “Standard” based on the total value, demonstrating how to
derive insights from existing data while applying conditional logic.

3.5 Exercise 5: Add Calculated Columns and Handle
Missing Data

3.5.1 Description

In this hands-on lab, you will learn how to add calculated columns in SQL
queries using expressions, such as arithmetic operations and string concatenation.
You will also learn how to handle missing or NULL values using the IS NULL
condition and the COALESCE() function. These techniques help create cleaner,
business-ready output from raw data.

3.5.2 Objectives

Create derived columns using arithmetic and string expressions
Use the IS NULL condition to identify missing data
Apply COALESCE() to substitute default values for NULLs
Enhance result sets for reporting and analytics

 Revenue,

 CASE

 WHEN Revenue IS NULL THEN 'Unknown'

 WHEN Revenue > 10000 THEN 'High'

 ELSE 'Normal'

 END AS RevenueStatus

FROM Sales.Customers;

SELECT

 OrderID,

 Quantity,

 UnitPrice,

 Quantity * UnitPrice AS TotalAmount,

 CASE

 WHEN Quantity * UnitPrice >= 5000 THEN 'Large Order'

 ELSE 'Standard'

 END AS OrderSize

FROM Sales.OrderDetails;

3.5.3 Prerequisites

SQL Server 2025 Developer Edition is installed and running
SSMS 21.x is installed
AdventureWorks2022 database is restored (from Exercise 1)
Familiarity with basic SELECT and WHERE clauses

3.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

3.5.4.1 Step 1: Open a New Query Window in SSMS

1. Launch SQL Server Management Studio (SSMS)
2. Connect to your SQL Server instance
3. Right-click on the AdventureWorks2022 database → New Query
4. Ensure that the database context is set to AdventureWorks2022

3.5.4.2 Step 2: Calculate Discounted List Price

Let’s assume a 10% promotional discount on all products. You can calculate the
discounted price with a derived column:

This adds a new column called DiscountedPrice without altering the actual table.

3.5.4.3 Step 3: Combine First and Last Names

Use + to concatenate FirstName and LastName into a full name:

SELECT

 Name,

 ListPrice,

 ListPrice * 0.9 AS DiscountedPrice

FROM Production.Product

WHERE ListPrice > 0;

SELECT

 FirstName + ' ' + LastName AS FullName,

 EmailPromotion

FROM Person.Person;

3.5.4.4 Step 4: Identify NULL Values Using IS NULL

Let’s find products with no color information:

This query returns products where the Color column is missing (i.e., NULL).

3.5.4.5 Step 5: Replace NULL Values Using COALESCE

To improve output for reporting, use COALESCE() to replace NULLs with a default
value:

COALESCE(Color, 'Not Specified') returns 'Not Specified' when Color is NULL.

You can also use this for numeric or date columns:

3.5.4.6 Step 6: Combine Expressions

Let’s combine calculations and NULL handling:

SELECT

 Name,

 Color

FROM Production.Product

WHERE Color IS NULL;

SELECT

 Name,

 COALESCE(Color, 'Not Specified') AS ProductColor

FROM Production.Product;

SELECT

 ProductID,

 Weight,

 COALESCE(Weight, 0) AS Weight_KG

FROM Production.Product;

SELECT

 Name,

 ListPrice,

 COALESCE(Color, 'N/A') AS Color,

 ListPrice * 0.95 AS SalePrice

FROM Production.Product

WHERE ListPrice > 100

ORDER BY SalePrice DESC;

Figure 3.1: Perform query to combine expression.

3.5.5 Summary

In this lab, you:

Created calculated columns using arithmetic and string operations
Identified missing data using IS NULL
Used COALESCE() to replace NULLs with default values
Combined expressions for enhanced output

These techniques are useful for transforming raw data into business-friendly
reports and preparing it for dashboards or exports.

3.6 Exercise 6: Use CASE for Business Rule Logic

3.6.1 Description

In this hands-on lab, you will learn how to use the CASE expression in SQL Server
2025 to apply conditional logic in query results. The CASE expression allows you
to implement simple business rules directly in your SQL queries—without writing
procedural code. You’ll use data from the AdventureWorks2022 database to
classify product pricing and evaluate sales performance.

3.6.2 Objectives

Understand how to use the CASE expression in SELECT statements
Apply conditional logic to classify numeric and text-based fields
Enhance SQL output with human-readable rule-based columns
Practice combining CASE with filtering and sorting logic

3.6.3 Prerequisites

SQL Server 2025 Developer Edition installed and running
SSMS 21.x installed
AdventureWorks2022 database restored (from Exercise 1)
Familiarity with basic SELECT and WHERE clauses

3.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

3.6.4.1 Step 1: Open a New Query Window in SSMS

1. Launch SQL Server Management Studio (SSMS)
2. Connect to your SQL Server instance
3. In Object Explorer, right-click on AdventureWorks2022 → choose New

Query
4. Ensure that the database context is set to AdventureWorks2022

3.6.4.2 Step 2: Classify Products by Price Tier

Use CASE to group products based on their ListPrice into categories:

💡 This creates a new column PriceCategory based on product pricing logic.

3.6.4.3 Step 3: Show Promotion Status for Customers

Use CASE to display a human-readable status from the EmailPromotion field:

EmailPromotion is an integer, and the CASE expression maps it to readable labels.

3.6.4.4 Step 4: Flag High-Value Sales Orders

Use CASE to add a flag column to identify large sales:

SELECT

 Name,

 ListPrice,

 CASE

 WHEN ListPrice = 0 THEN 'Free'

 WHEN ListPrice < 100 THEN 'Low Price'

 WHEN ListPrice BETWEEN 100 AND 500 THEN 'Mid Range'

 WHEN ListPrice > 500 THEN 'Premium'

 ELSE 'Unknown'

 END AS PriceCategory

FROM Production.Product

ORDER BY ListPrice;

SELECT

 FirstName + ' ' + LastName AS FullName,

 EmailPromotion,

 CASE

 WHEN EmailPromotion = 0 THEN 'No Promotions'

 WHEN EmailPromotion = 1 THEN 'Subscribed - Basic'

 WHEN EmailPromotion = 2 THEN 'Subscribed - Advanced'

 ELSE 'Unknown'

 END AS PromotionStatus

FROM Person.Person;

SELECT

 SalesOrderID,

 OrderDate,

 TotalDue,

 CASE

 WHEN TotalDue >= 10000 THEN 'High Value'

 WHEN TotalDue BETWEEN 5000 AND 9999.99 THEN 'Medium Value'

 ELSE 'Low Value'

 END AS OrderCategory

FROM Sales.SalesOrderHeader

WHERE OrderDate >= '2013-01-01'

ORDER BY TotalDue DESC;

You can use this logic for dashboards, alerts, or reports.

Figure 3.2: Perform query to flag high-value sales orders.

3.6.5 Summary

In this lab, you:

Used the CASE expression to implement conditional logic in query results
Created rule-based output fields such as PriceCategory, PromotionStatus, and
OrderCategory

Combined CASE with sorting and filtering for better insights

CASE is a powerful tool for translating business logic directly into your SQL queries
— a must-have skill for analysts and developers working with SQL Server 2025.

3.7 Conclusion

In this chapter, we explored how to use expressions, handle NULL values, and
apply conditional logic with the CASE expression in SQL Server 2025. These
techniques are essential for transforming raw data into meaningful insights,
enabling better decision-making and reporting.

Section 3: Data Modeling and
Design

4 Relational Database Design Basics
This chapter introduces essential concepts of relational database design. We’ll
explore tables, data types, keys, and the principles of normalization (1NF to
3NF). These concepts ensure that business data is stored efficiently, consistently,
and with minimal redundancy—key goals in enterprise data systems.

4.1 Tables and Data Types

We’ll start with the fundamental building blocks of relational databases: tables
and data types. Understanding these concepts is crucial for designing effective
database schemas that meet business requirements.

4.1.1 What is a Table?

A table is a structured set of data made up of rows and columns. Each row (or
record) represents a single entity instance, and each column holds a specific
attribute.

Here’s a simple example of a Customers table:

CustomerID FirstName LastName Email Region

1 Indah Chen indah@ilmudata.id West

2 Jane Brown jane@ilmudata.id South

4.1.2 Data Types in SQL Server 2025

SQL Server provides a rich set of data types to define what kind of data can be
stored in each column.

Here are some common data types used in SQL Server 2025:

Category Data Types

Numbers INT, BIGINT, DECIMAL(p,s), FLOAT

mailto:indah@ilmudata.id
mailto:jane@ilmudata.id

Category Data Types

Characters CHAR(n), VARCHAR(n), TEXT

Date/Time DATE, DATETIME2, TIME

Logical BIT

Unique IDs UNIQUEIDENTIFIER

Following is a SQL statement to create a Customers table with various data types:

4.2 Keys in Relational Tables

Keys are essential for uniquely identifying records in a table and establishing
relationships between tables. They help maintain data integrity and enforce
business rules.

4.2.1 Primary Key (PK)

A Primary Key is a column (or set of columns) that uniquely identifies each row
in a table. It ensures that no two rows can have the same value in the primary key
column(s).

Here’s how to define a primary key in SQL Server:

4.2.2 Foreign Key (FK)

A Foreign Key is a column (or set of columns) that creates a link between two
tables. It enforces referential integrity by ensuring that the value in the foreign key
column matches a value in the primary key column of another table.

CREATE TABLE Customers (

 CustomerID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Email VARCHAR(100) UNIQUE,

 Region VARCHAR(30),

 CreatedAt DATETIME2 DEFAULT GETDATE()

);

CONSTRAINT PK_Customers PRIMARY KEY (CustomerID)

Here’s how to define a foreign key in SQL Server:

4.2.3 Candidate Key

A Candidate Key is any column (or set of columns) that can uniquely identify a
row in a table. A table can have multiple candidate keys, but only one is chosen as
the primary key.

4.2.4 Surrogate Key vs. Natural Key

A Surrogate Key is an artificial key created to uniquely identify a record, often
using an auto-incrementing integer or a unique identifier (GUID). A Natural Key
is a real-world attribute that naturally identifies a record, such as a Social Security
Number or email address.

4.3 Introduction to Normalization

Normalization is the process of organizing data in a database to reduce
redundancy and improve data integrity. It involves decomposing tables into
smaller, related tables and defining relationships between them.

Normalization is a design process that organizes data to:

Minimize redundancy,
Avoid update anomalies,
Improve integrity.

4.3.1 First Normal Form (1NF)

First Normal Form (1NF) requires that all columns in a table contain atomic
values (indivisible) and that each column contains only one value per row. This
means no repeating groups or arrays.

Here’s an example of a table that violates 1NF:

OrderID Customer ProductNames

1 John TV, Laptop, Headphones

FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)

To convert this table to 1NF, we need to ensure that each product is stored in a
separate row:

OrderID Customer ProductName

1 John TV

1 John Laptop

1 John Headphones

4.4 Second Normal Form (2NF)

Second Normal Form (2NF) builds on 1NF by ensuring that all non-key attributes
are fully functionally dependent on the entire primary key. This means eliminating
partial dependencies, where a non-key attribute depends only on part of a
composite primary key.

Follow these rules to achieve 2NF:

Be in 1NF, and
All non-key attributes must depend on the entire primary key (eliminate
partial dependencies).

Here’s a table that violates 2NF:

In a table with a composite key:

This table has a composite primary key (OrderID, ProductID), but ProductName only
depends on ProductID, not the entire key.

To fix this, we need to move ProductName to a separate table:

Move ProductName to a separate Products table.

CREATE TABLE OrderDetails (

 OrderID INT,

 ProductID INT,

 ProductName VARCHAR(100), -- partial dependency

 Quantity INT,

 PRIMARY KEY (OrderID, ProductID)

);

4.5 Third Normal Form (3NF)

Third Normal Form (3NF) goes a step further by ensuring that all non-key
attributes are not only fully functionally dependent on the primary key but also
that there are no transitive dependencies. This means that non-key attributes
should not depend on other non-key attributes.

To achieve 3NF, a table must:

Be in 2NF, and
No transitive dependencies (non-key attributes must depend only on the
key).

Here’s a table that violates 3NF:

In this example, DepartmentName depends on DepartmentID, which is not the primary
key. This creates a transitive dependency.

To fix this, we need to remove the transitive dependency by moving DepartmentName
to a separate table:

Move DepartmentName to a separate Departments table.

4.6 Exercise 7: Basic ERD Design

4.6.1 Description

CREATE TABLE Products (

 ProductID INT PRIMARY KEY,

 ProductName VARCHAR(100)

);

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 Name VARCHAR(50),

 DepartmentID INT,

 DepartmentName VARCHAR(50) -- transitive dependency

);

CREATE TABLE Departments (

 DepartmentID INT PRIMARY KEY,

 DepartmentName VARCHAR(50)

);

Understanding how to represent different types of relationships in SQL Server is
essential for effective relational database design. In this hands-on lab, we’ll
explore four fundamental relationship types—one-to-one, one-to-many, many-
to-many, and self-referencing—and implement them in a SQL Server 2025
database. Each relationship will be implemented through proper table creation and
foreign key constraints.

4.6.2 Objectives

Learn how to create and enforce:

One-to-One relationships
One-to-Many relationships
Many-to-Many relationships (via junction tables)
Self-referencing relationships (hierarchical)

Understand when and why to use each type

4.6.3 Prerequisites

SQL Server 2025 Developer Edition
SQL Server Management Studio (SSMS) 21.x or higher
Basic knowledge of CREATE TABLE and FOREIGN KEY syntax

4.6.4 Steps

Here’s a step-by-step guide to implementing these relationships in SQL Server.
Each step includes the SQL code needed to create the tables and relationships,
along with explanations of the design choices made.

4.6.4.1 Step 1: Create the Database

We begin by creating a new sandbox database called ERDDesignDemo.

4.6.4.2 Step 2: One-to-One Relationship (Employee ↔︎ EmployeeDetail)

CREATE DATABASE ERDDesignDemo;

GO

USE ERDDesignDemo;

GO

A one-to-one relationship means that each row in one table is linked to a single
row in another.

We’ll simulate an Employee table with a one-to-one EmployeeDetail.

📝 Explanation:

EmployeeDetail.EmployeeID is both a primary and foreign key, ensuring one-to-one
mapping.

4.6.4.3 Step 3: One-to-Many Relationship (Customer → Orders)

A one-to-many relationship means one record in a table is linked to multiple
records in another.

📝 Explanation:

One customer can have many orders, but each order belongs to one customer.

4.6.4.4 Step 4: Many-to-Many Relationship (Student ↔︎ Course)

To model many-to-many, we use a junction table between Student and Course.

CREATE TABLE Employee (

 EmployeeID INT PRIMARY KEY,

 FullName NVARCHAR(100),

 HireDate DATE

);

CREATE TABLE EmployeeDetail (

 EmployeeID INT PRIMARY KEY,

 Address NVARCHAR(200),

 Phone NVARCHAR(20),

 FOREIGN KEY (EmployeeID) REFERENCES Employee(EmployeeID)

);

CREATE TABLE Customer (

 CustomerID INT PRIMARY KEY,

 CustomerName NVARCHAR(100)

);

CREATE TABLE Orders (

 OrderID INT PRIMARY KEY,

 CustomerID INT,

 OrderDate DATE,

 FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)

);

📝 Explanation:

A student can enroll in many courses, and a course can have many students.
The StudentCourse table manages the link.

4.6.4.5 Step 5: Self-Referencing Relationship (Employee → Manager)

A self-referencing relationship models hierarchical structures, like managers in
an organization.

📝 Explanation:

The ManagerID column refers back to EmpID, enabling an employee to report to
another employee.

4.6.4.6 Step 6: Verify the Schema Structure

Run a query to validate the structure by listing all created tables.

CREATE TABLE Student (

 StudentID INT PRIMARY KEY,

 StudentName NVARCHAR(100)

);

CREATE TABLE Course (

 CourseID INT PRIMARY KEY,

 CourseName NVARCHAR(100)

);

CREATE TABLE StudentCourse (

 StudentID INT,

 CourseID INT,

 PRIMARY KEY (StudentID, CourseID),

 FOREIGN KEY (StudentID) REFERENCES Student(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Course(CourseID)

);

CREATE TABLE OrgEmployee (

 EmpID INT PRIMARY KEY,

 EmpName NVARCHAR(100),

 ManagerID INT NULL,

 FOREIGN KEY (ManagerID) REFERENCES OrgEmployee(EmpID)

);

SELECT TABLE_NAME

FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_TYPE = 'BASE TABLE' AND TABLE_CATALOG = 'ERDDesignDemo';

This confirms the objects exist in the current database.

Figure 4.1: Verifiying the Schema Structure.

4.6.5 Step 7: Show ERD Diagram

To visualize the relationships, you can use SQL Server Management Studio’s
built-in diagram feature: 1. Right-click on the Database Diagrams folder in
ERDDesignDemo. 2. Select New Database Diagram. 3. Add the tables you created. 4.
Arrange them to show the relationships visually.

This helps you see how the tables relate to each other in a graphical format.

Figure 4.2: Showing ERD diagram for ERDDesignDemo.

4.6.6 Summary

In this hands-on lab, you’ve learned how to implement the most fundamental
database relationship types in SQL Server:

Relationship Type Example Tables

One-to-One Employee ↔︎ EmployeeDetail

One-to-Many Customer → Orders

Many-to-Many Student ↔︎ Course via StudentCourse

Self-Referencing OrgEmployee → ManagerID

Understanding and applying these patterns is crucial when designing normalized,
efficient relational models for real-world applications.

4.7 Exercise 8: Design Schema for a Subscription
Business

4.7.1 Description

In this lab, you’ll walk through designing a relational database schema for a basic
subscription-based business. You’ll start from identifying business entities,
normalize them into separate tables, and build relationships that comply with
Third Normal Form (3NF). You’ll implement the design by creating tables in a
new SQL Server 2025 database.

4.7.2 Objectives

Analyze a real-world business scenario into logical database entities
Normalize the data to eliminate redundancy and maintain data integrity
Use SQL Server 2025 to create normalized tables and define relationships
Apply primary and foreign keys for relational consistency

4.7.3 Prerequisites

SQL Server 2025 Developer Edition installed and running
SSMS 21.x installed
Basic SQL DDL (Data Definition Language) knowledge
Familiarity with primary/foreign keys and normalization principles

4.7.4 Steps

Here’s a step-by-step guide to designing the schema for a subscription business:

4.7.4.1 Step 1: Understand the Business Requirements

We are modeling a subscription-based service where users can subscribe to
different plans. Each subscription is billed monthly.

Entities Identified:

Customer: who subscribes
SubscriptionPlan: the available subscription types (Basic, Premium)
Subscription: the link between customer and plan

Payment: monthly billing records

Each of these will become a table.

4.7.4.2 Step 2: Create a New Database

Create a new isolated database named SubscriptionDB to contain our schema.

This step ensures we don’t affect other existing databases.

4.7.4.3 Step 3: Create Customer Table (1NF Compliant)

What we’re doing: Define a table that stores customer personal information with
atomic values.

The Email column is set as unique. JoinDate defaults to current date.

4.7.4.4 Step 4: Create SubscriptionPlan Table

Store plan types, pricing, and billing frequency. This helps normalize data instead
of storing this info in every subscription record.

CREATE DATABASE SubscriptionDB;

GO

USE SubscriptionDB;

GO

CREATE TABLE Customer (

 CustomerID INT PRIMARY KEY IDENTITY,

 FirstName NVARCHAR(100) NOT NULL,

 LastName NVARCHAR(100) NOT NULL,

 Email NVARCHAR(255) UNIQUE NOT NULL,

 JoinDate DATE DEFAULT GETDATE()

);

CREATE TABLE SubscriptionPlan (

 PlanID INT PRIMARY KEY IDENTITY,

 PlanName NVARCHAR(50) NOT NULL,

 MonthlyPrice DECIMAL(10,2) NOT NULL,

This allows easy management of plan changes and reuse across customers.

4.7.4.5 Step 5: Create Subscription Table (2NF and 3NF Compliant)

This table links each customer to a plan. It contains foreign keys to both Customer
and SubscriptionPlan.

This avoids redundancy and maintains clear entity relationships.

4.7.4.6 Step 6: Create Payment Table for Monthly Billing

Track each payment per subscription per billing cycle. This further normalizes the
schema for scalability.

This structure allows multiple payments per subscription and clear billing
history.

4.7.4.7 Step 7: Verify the Schema Structure

 Description NVARCHAR(255)

);

CREATE TABLE Subscription (

 SubscriptionID INT PRIMARY KEY IDENTITY,

 CustomerID INT NOT NULL,

 PlanID INT NOT NULL,

 StartDate DATE NOT NULL,

 EndDate DATE NULL,

 IsActive BIT NOT NULL DEFAULT 1,

 FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID),

 FOREIGN KEY (PlanID) REFERENCES SubscriptionPlan(PlanID)

);

CREATE TABLE Payment (

 PaymentID INT PRIMARY KEY IDENTITY,

 SubscriptionID INT NOT NULL,

 PaymentDate DATE NOT NULL,

 Amount DECIMAL(10,2) NOT NULL,

 PaymentStatus NVARCHAR(50) CHECK (PaymentStatus IN ('Paid', 'Failed', 'Pending')),

 FOREIGN KEY (SubscriptionID) REFERENCES Subscription(SubscriptionID)

);

Run a query to validate the structure by listing all created tables.

This confirms the objects exist in the current database.

Figure 4.3: Showing all tables for SubscriptionDB database.

4.7.5 Step 8: Show ERD Diagram

To visualize the relationships, you can use SQL Server Management Studio’s
built-in diagram feature: 1. Right-click on the Database Diagrams folder in
SubscriptionDB. 2. Select New Database Diagram. 3. Add the tables you created. 4.
Arrange them to show the relationships visually.

This helps you see how the tables relate to each other in a graphical format.

SELECT TABLE_NAME

FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_TYPE = 'BASE TABLE' AND TABLE_CATALOG = 'SubscriptionDB';

Figure 4.4: Showing ERD diagram for SubscriptionDB.

4.7.6 Summary

In this hands-on lab, you:

Identified key entities and their relationships for a subscription business
Applied 1NF, 2NF, and 3NF principles to structure your tables
Created tables using SQL Server 2025 with proper primary and foreign
keys
Designed a scalable and clean schema ready for query, analytics, and
compliance

This foundational schema can now be extended for reporting, analytics, and
business rules in upcoming chapters.

4.8 Exercise 9: Insert and Query Sample Data

4.8.1 Description

This lab guides you through inserting sample records into the subscription
database schema you created in the previous lab. After populating tables, you’ll
verify relational integrity using SELECT queries and JOIN clauses across related tables.

4.8.2 Objectives

Populate normalized tables using SQL INSERT statements
Verify referential integrity and relationships using INNER JOIN queries
Understand how table relations reflect real-world business data

4.8.3 Prerequisites

SQL Server 2025 Developer Edition is installed and running
SSMS 21.x is installed
SubscriptionDB schema from Exercise 8 is already created
Basic familiarity with SQL INSERT and SELECT statements

4.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

4.8.4.1 Step 1: Connect and Use the SubscriptionDB

Connect to SQL Server and ensure we’re using the correct database.

This ensures all operations are scoped within the correct database.

USE SubscriptionDB;

GO

4.8.4.2 Step 2: Insert Sample Data into SubscriptionPlan

Add subscription plans customers can choose from.

This query inserts three different subscription plans into the SubscriptionPlan table.

Each plan has a name, price, and description. These are referenced in
subscriptions.

4.8.4.3 Step 3: Insert Sample Data into Customer

Add some example customers to simulate real subscribers.

This inserts three customers into the Customer table.

The Email field must remain unique per customer.

4.8.4.4 Step 4: Insert Data into Subscription

Link customers to plans, simulating active subscriptions.

INSERT INTO SubscriptionPlan (PlanName, MonthlyPrice, Description)

VALUES

('Basic Plan', 9.99, 'Access to standard features'),

('Premium Plan', 19.99, 'Access to all features including analytics'),

('Enterprise Plan', 49.99, 'Custom enterprise support and reporting');

INSERT INTO Customer (FirstName, LastName, Email)

VALUES

('Linda', 'Alice', 'linda.alice@ilmudata.id'),

('Ujang', 'Smith', 'ujang.smith@ilmudata.id'),

('Cindy', 'Lee', 'cindy.lee@ilmudata.id');

-- Ujang subscribes to Basic

INSERT INTO Subscription (CustomerID, PlanID, StartDate)

VALUES (1, 1, '2025-07-01');

-- Ujang subscribes to Premium

INSERT INTO Subscription (CustomerID, PlanID, StartDate)

VALUES (2, 2, '2025-07-01');

-- Cindy subscribes to Enterprise

INSERT INTO Subscription (CustomerID, PlanID, StartDate)

VALUES (3, 3, '2025-07-01');

Ensure CustomerID and PlanID match those inserted earlier. You can verify with SELECT
if unsure.

4.8.4.5 Step 5: Insert Sample Data into Payment

Simulate first billing cycle payments for each subscription.

This gives each subscription an associated billing record.

4.8.4.6 Step 6: Query Data with Joins to Verify Relationships

Run JOIN queries to inspect data across tables and verify referential integrity.

This should return all customer-plan mappings clearly.

INSERT INTO Payment (SubscriptionID, PaymentDate, Amount, PaymentStatus)

VALUES

(1, '2025-07-05', 9.99, 'Paid'),

(2, '2025-07-05', 19.99, 'Paid'),

(3, '2025-07-05', 49.99, 'Pending');

-- List subscriptions with customer and plan info

SELECT

 s.SubscriptionID,

 c.FirstName + ' ' + c.LastName AS CustomerName,

 sp.PlanName,

 sp.MonthlyPrice,

 s.StartDate,

 s.IsActive

FROM Subscription s

JOIN Customer c ON s.CustomerID = c.CustomerID

JOIN SubscriptionPlan sp ON s.PlanID = sp.PlanID;

-- Show payment history with customer info

SELECT

 p.PaymentID,

 c.FirstName + ' ' + c.LastName AS Customer,

 sp.PlanName,

 p.PaymentDate,

 p.Amount,

 p.PaymentStatus

FROM Payment p

JOIN Subscription s ON p.SubscriptionID = s.SubscriptionID

JOIN Customer c ON s.CustomerID = c.CustomerID

JOIN SubscriptionPlan sp ON s.PlanID = sp.PlanID;

You’ll see how payment records are tied to both plans and customers.

4.8.5 Summary

In this hands-on lab, you:

Populated all key tables in a normalized subscription business schema
Practiced structured INSERT commands
Verified data relationships with JOIN-based queries
Saw how relational integrity provides accurate, multi-table views of business
data

✅ This lab prepares you for data retrieval, reporting, and enforcing business rules
in future chapters.

4.9 Exercise 10: Apply Normalization to Improve
Table Design

4.9.1 Description

This exercise introduces database normalization by starting with a poorly designed
table containing redundant and inconsistent data. You will progressively apply the
first three normal forms (1NF, 2NF, and 3NF) by decomposing the unnormalized
table into well-structured relational tables.

Normalization helps eliminate redundancy, maintain data integrity, and simplify
future queries or updates. In this lab, we focus on applying normalization concepts
practically in SQL Server 2025.

4.9.2 Objectives

Identify design problems in an unnormalized table
Apply 1NF, 2NF, and 3NF to improve data structure
Implement normalized tables using SQL Server
Understand the trade-offs of normalization in real-world design

4.9.3 Prerequisites

SQL Server 2025 Developer Edition
SQL Server Management Studio (SSMS) 21.x or later
Basic understanding of CREATE TABLE, INSERT, and SELECT
Prior completion of Exercise 7 (Basic ERD Design) is helpful but not
mandatory

4.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

4.9.4.1 Step 1: Create the Database

We’ll create a new database for this exercise called NormalizationDemo.

4.9.4.2 Step 2: Start with an Unnormalized Table

The following table stores customer orders but mixes customer, order, and product
info in a single table.

Insert some sample records:

📝 Explanation: This structure violates 1NF due to repeating groups (Product1,
Product2, Product3). It’s also hard to manage product details or query specific items.

4.9.4.3 Step 3: Apply First Normal Form (1NF)

CREATE DATABASE NormalizationDemo;

GO

USE NormalizationDemo;

GO

CREATE TABLE Orders_Unnormalized (

 OrderID INT,

 CustomerName NVARCHAR(100),

 CustomerPhone NVARCHAR(20),

 Product1 NVARCHAR(100),

 Product2 NVARCHAR(100),

 Product3 NVARCHAR(100)

);

INSERT INTO Orders_Unnormalized VALUES

(1, 'Nadia', '1234567890', 'Laptop', 'Mouse', 'Keyboard'),

(2, 'Marcel', '0987654321', 'Monitor', NULL, NULL);

We’ll remove repeating groups and move each product to its own row.

📝 Explanation: Now each row represents a single product per order. This
satisfies 1NF, but still has redundant customer data.

4.9.4.4 Step 4: Apply Second Normal Form (2NF)

Next, we remove partial dependencies—data that depends only on part of a
composite key (e.g., CustomerName on OrderID).

We split the table into separate Customers and Orders tables.

Insert normalized data:

CREATE TABLE Orders_1NF (

 OrderID INT,

 CustomerName NVARCHAR(100),

 CustomerPhone NVARCHAR(20),

 Product NVARCHAR(100)

);

CREATE TABLE Orders_1NF (

 OrderID INT,

 CustomerName NVARCHAR(100),

 CustomerPhone NVARCHAR(20),

 Product NVARCHAR(100)

);

INSERT INTO Orders_1NF VALUES

(1, 'Zahra', '1234567890', 'Laptop'),

(1, 'Zahra', '1234567890', 'Mouse'),

(1, 'Zahra', '1234567890', 'Keyboard'),

(2, 'Thariq', '0987654321', 'Monitor');

CREATE TABLE Customers (

 CustomerID INT PRIMARY KEY,

 CustomerName NVARCHAR(100),

 CustomerPhone NVARCHAR(20)

);

CREATE TABLE Orders (

 OrderID INT PRIMARY KEY,

 CustomerID INT,

 FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)

);

CREATE TABLE OrderDetails (

 OrderID INT,

 Product NVARCHAR(100),

 PRIMARY KEY (OrderID, Product),

 FOREIGN KEY (OrderID) REFERENCES Orders(OrderID)

);

📝 Explanation: This eliminates the redundant storage of customer information
across multiple order rows.

4.9.4.5 Step 5: Apply Third Normal Form (3NF)

Now assume product names have additional properties. We’ll factor products out
to a Products table and use IDs.

Insert products:

📝 Explanation: This final form ensures all non-key attributes depend only on
the key, the whole key, and nothing but the key—thus achieving 3NF.

INSERT INTO Customers VALUES

(1, 'Zahra', '1234567890'),

(2, 'Thariq', '0987654321');

INSERT INTO Orders VALUES

(1, 1),

(2, 2);

INSERT INTO OrderDetails VALUES

(1, 'Laptop'),

(1, 'Mouse'),

(1, 'Keyboard'),

(2, 'Monitor');

CREATE TABLE Products (

 ProductID INT PRIMARY KEY,

 ProductName NVARCHAR(100)

);

CREATE TABLE OrderDetails_3NF (

 OrderID INT,

 ProductID INT,

 PRIMARY KEY (OrderID, ProductID),

 FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),

 FOREIGN KEY (ProductID) REFERENCES Products(ProductID)

);

INSERT INTO Products VALUES

(1, 'Laptop'),

(2, 'Mouse'),

(3, 'Keyboard'),

(4, 'Monitor');

INSERT INTO OrderDetails_3NF VALUES

(1, 1),

(1, 2),

(1, 3),

(2, 4);

4.9.5 Summary

This exercise showed how to refactor an unnormalized flat table into a clean,
normalized relational model through:

Normal Form Key Improvement

1NF Removed repeating columns

2NF Eliminated partial dependencies

3NF Removed transitive dependencies via lookup

Normalization is key to long-term scalability, consistency, and easier querying in
any real-world SQL Server system. You now have a solid foundation to spot and
improve poor database designs.

4.10 Conclusion

In this chapter, we covered the basics of relational database design, including
tables, data types, keys, and normalization principles. We also explored how to
implement these concepts in SQL Server 2025 through practical exercises.
Understanding these foundational elements is crucial for building efficient and
maintainable databases that meet business needs.

5 Views and Logical Data Modeling
This chapter introduces the concept of views in SQL Server 2025, a
powerful tool for abstracting complex data relationships. Views function as
virtual tables, allowing you to create simplified, reusable representations
of data. We also explore how views support role-based access control and
logical data modeling, critical for secure and scalable enterprise reporting.

5.1 What Is a View?

A view is a saved SQL query that presents data as a virtual table. It does
not store data physically, but provides a consistent, queryable layer over one
or more base tables.

Views can encapsulate complex joins, aggregations, and business logic,
making it easier for users to access and analyze data without needing to
understand the underlying table structures.

Views offer several advantages:

Abstracts complex joins or business rules
Simplifies queries for end users
Enables consistent definitions of business metrics
Supports security and compliance through access control

5.2 Creating Views in SQL Server 2025

To create a view, you use the CREATE VIEW statement followed by the view
name and the SELECT query that defines its structure. Here’s a basic example:

CREATE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

For instance, to create a view that shows customer orders with relevant
details:

This view combines customer and order data, allowing users to query
customer orders without needing to write complex joins each time.

Users can now query:

5.3 Views as Virtual Tables

Views behave much like physical tables in that you can query them using
standard SQL statements. When you select from a view, SQL Server
dynamically generates the result set based on the underlying query
definition.

You can join views with other views or tables, enabling you to build
complex queries on top of simplified, reusable data structures. However, it’s
important to remember that views do not store data themselves; instead,
they produce results at runtime each time they are queried.

You can join views just like you would with tables. For example, if you
have a view for customer orders and another for order details, you can
combine them:

CREATE VIEW Sales.vw_CustomerOrders AS

SELECT

 c.CustomerID,

 c.FirstName,

 c.LastName,

 o.OrderID,

 o.OrderDate,

 o.TotalAmount

FROM Sales.Customers c

JOIN Sales.Orders o ON c.CustomerID = o.CustomerID;

SELECT * FROM Sales.vw_CustomerOrders

WHERE OrderDate >= '2025-01-01';

SELECT *

FROM Sales.vw_CustomerOrders co

JOIN Sales.vw_OrderDetails od ON co.OrderID = od.OrderID;

5.4 Updatable Views

Not all views are updatable, but many simple views allow updates.

An updatable view allows you to modify data through the view as if it were
a table. For example, if you have a view that shows customer names and
emails, you can update the email directly through the view:

You can then update the view like this:

Certain conditions make a view non-updatable. For example, if a view
includes:

Contains aggregate functions such as SUM or AVG
Uses set operations like DISTINCT, GROUP BY, or UNION
Includes joins across multiple tables (in most cases)

5.5 Role-Based Schema Simplification Using
Views

Views can be tailored to different user roles, providing a simplified schema
that exposes only the necessary data. This is particularly useful in
environments with diverse user groups, such as finance, HR, and sales
teams.

For example, you might have a complex sales database with sensitive
financial data. Instead of exposing the entire schema, you can create views
that present only the relevant information for each department:

Finance users see financial metrics.
HR users see employee data.

CREATE VIEW HR.vw_Employees AS

SELECT EmployeeID, FirstName, LastName

FROM HR.Employees;

UPDATE HR.vw_Employees

SET LastName = 'Anderson'

WHERE EmployeeID = 101;

Sales team sees customer and order history.

Each group can be given access to tailored views:

For HR users, you might create a view that shows employee names and
departments without sensitive salary information:

This view allows HR personnel to access employee information without
exposing sensitive data like salaries or personal identifiers.

For the sales team, you might create a view that aggregates customer orders
by region:

This view provides a high-level summary of sales data, allowing sales
representatives to focus on their performance metrics without needing to
understand the underlying table structures.

5.6 Security and Compliance with Views

Views can enhance security by restricting access to sensitive data. By
granting users permissions on views instead of base tables, you can control
what data they can see and modify.

Here are some key benefits of using views for security:

Views can restrict access to sensitive columns.
Views support schema-level abstraction for regulatory compliance
(e.g., GDPR, HIPAA).

You can create a view that masks sensitive information, such as email
addresses, while still allowing users to see other relevant data:

CREATE VIEW Secure.vw_EmployeeDirectory AS

SELECT FirstName, LastName, Department, HireDate

FROM HR.Employees;

CREATE VIEW Secure.vw_SalesSummary AS

SELECT CustomerID, Region, SUM(TotalAmount) AS TotalSales

FROM Sales.Orders

GROUP BY CustomerID, Region;

This view allows users to see customer names while masking their email
addresses, ensuring compliance with data protection regulations.

5.7 Indexed Views (Materialized Views)

Indexed views, also known as materialized views, are a powerful feature in
SQL Server that allows you to store the results of a view physically. This
can significantly improve query performance, especially for complex
aggregations or joins.

An indexed view is physically stored with a clustered index—like a
materialized view.

Indexed views are particularly useful for:

Aggregate data for reports
Improve performance on frequent heavy queries

To create an indexed view, you first define the view and then create a
clustered index on it. Here’s an example of creating an indexed view that
summarizes sales by region:

This indexed view allows you to quickly retrieve total revenue by region
without recalculating the aggregation each time the view is queried. It is
important to note that indexed views have specific requirements and
limitations, such as:

CREATE VIEW Compliance.vw_CustomerPublic AS

SELECT

 CustomerID,

 FirstName,

 LEFT(Email, CHARINDEX('@', Email)) + '***.com' AS MaskedEmail

FROM Sales.Customers;

CREATE VIEW Sales.vw_TotalRevenueByRegion

WITH SCHEMABINDING AS

SELECT Region, SUM(TotalAmount) AS Revenue

FROM dbo.Orders

GROUP BY Region;

CREATE UNIQUE CLUSTERED INDEX idx_TotalRevenue

ON Sales.vw_TotalRevenueByRegion(Region);

Note: WITH SCHEMABINDING is mandatory for indexed views.

5.8 Exercise 11: Create Reusable Views for Sales
Analysis

5.8.1 Description

In this exercise, you’ll create SQL views to simplify recurring sales queries.
Views provide an abstraction over complex JOIN and WHERE logic, making
analysis more accessible to business users and report developers. We’ll
simulate a basic sales reporting layer by joining customer, product, and
sales information into reusable views. These views reflect how logical data
modeling is implemented in SQL Server.

5.8.2 Objectives

Understand the purpose and benefits of views for logical modeling
Learn to build CREATE VIEW statements with JOIN, WHERE, and calculated
columns
Simplify multi-table reporting using views
Query from views as if they were tables

5.8.3 Prerequisites

SQL Server 2025 Developer Edition installed and running
SQL Server Management Studio (SSMS) 21.x installed
Basic understanding of SELECT, JOIN, and filtering in SQL
Internet access to download sample data (optional)

⚠️ Note: We will create a fresh database named SalesAnalysisDB for this
exercise.

5.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

5.8.4.1 Step 1: Create a New Database

We begin by creating an isolated database to work with views without
modifying existing systems.

This will be the workspace for our view-based modeling tasks.

5.8.4.2 Step 2: Create Sample Tables

What we’re doing: Define simple Customer, Product, and SalesOrder tables to
simulate transactional data.

CREATE DATABASE SalesAnalysisDB;

GO

USE SalesAnalysisDB;

GO

CREATE TABLE Customer (

 CustomerID INT PRIMARY KEY IDENTITY,

 FullName NVARCHAR(100),

 Region NVARCHAR(50)

);

CREATE TABLE Product (

 ProductID INT PRIMARY KEY IDENTITY,

 ProductName NVARCHAR(100),

 Category NVARCHAR(50),

 Price DECIMAL(10,2)

);

CREATE TABLE SalesOrder (

 SalesOrderID INT PRIMARY KEY IDENTITY,

 CustomerID INT,

 ProductID INT,

 OrderDate DATE,

 Quantity INT,

 FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID),

 FOREIGN KEY (ProductID) REFERENCES Product(ProductID)

);

These tables reflect a simplified model suitable for building analytical
views.

5.8.4.3 Step 3: Insert Sample Data

What we’re doing: Add representative data to simulate real sales records.

This dataset is enough to support basic aggregation and filtering through
views.

5.8.4.4 Step 4: Create a View for Sales Summary

Build a view to show aggregated sales metrics like total sales amount and
quantity per order.

-- Insert Customers

INSERT INTO Customer (FullName, Region)

VALUES ('Minji Kim', 'North'), ('Hiroshi Sato', 'South'), ('Priya Singh', 'East');

-- Insert Products

INSERT INTO Product (ProductName, Category, Price)

VALUES

('Subscription A', 'Service', 15.00),

('Subscription B', 'Service', 25.00),

('Consulting Package', 'Consulting', 100.00);

-- Insert Sales Orders

INSERT INTO SalesOrder (CustomerID, ProductID, OrderDate, Quantity)

VALUES

(1, 1, '2025-07-01', 2),

(2, 2, '2025-07-02', 1),

(3, 3, '2025-07-03', 3);

CREATE VIEW vw_SalesSummary AS

SELECT

 so.SalesOrderID,

 c.FullName AS CustomerName,

 c.Region,

 p.ProductName,

 p.Category,

 so.Quantity,

 p.Price,

This reusable view simplifies multi-table joins and includes a calculated
column for total order amount.

5.8.4.5 Step 5: Query the View

Query the view just like a regular table to see how it simplifies access to
sales data.

This returns all sales for customers in the North region, sorted by the most
recent orders.

5.8.4.6 Step 6: Create Another View: Total Sales per Region

Create a view that groups and aggregates sales by region.

This view is useful for generating dashboards that show high-level
business metrics per region.

 (so.Quantity * p.Price) AS TotalAmount,

 so.OrderDate

FROM SalesOrder so

JOIN Customer c ON so.CustomerID = c.CustomerID

JOIN Product p ON so.ProductID = p.ProductID;

SELECT * FROM vw_SalesSummary

WHERE Region = 'North'

ORDER BY OrderDate DESC;

CREATE VIEW vw_TotalSalesByRegion AS

SELECT

 c.Region,

 SUM(p.Price * so.Quantity) AS TotalSales,

 COUNT(DISTINCT so.SalesOrderID) AS OrdersCount

FROM SalesOrder so

JOIN Customer c ON so.CustomerID = c.CustomerID

JOIN Product p ON so.ProductID = p.ProductID

GROUP BY c.Region;

5.8.4.7 Step 7: Query the Aggregated View

Run a query to show summarized metrics across regions.

You now have a reusable, analytical view for regional sales comparison.

5.8.5 Summary

In this hands-on lab, you:

Created sample transactional tables simulating a business environment
Populated them with initial data to mimic real-world sales
Defined views that abstract away join logic and calculation complexity
Demonstrated how views can model reusable logical representations
for analysts and BI tools

✅ Views make querying easier, cleaner, and more consistent—especially
in collaborative or BI-focused environments.

5.9 Exercise 12: Simplify Complex Joins via Views

5.9.1 Description

In many real-world database environments, data is often stored across
multiple related tables—especially in normalized systems. Writing queries
that involve multiple joins can become tedious, especially for business
analysts or application developers who are only interested in specific high-
level information. In this lab, you’ll learn how to create a view that joins
multiple tables (SalesOrder, Customer, Product) into a single logical object. This
view will help simplify downstream queries by encapsulating complex
relationships behind a reusable layer.

SELECT * FROM vw_TotalSalesByRegion

ORDER BY TotalSales DESC;

5.9.2 Objectives

Understand how views help abstract join logic
Create a SQL view that joins multiple tables
Use calculated columns within views
Query the view as if it were a single flat table

5.9.3 Prerequisites

SQL Server 2025 Developer Edition running
SQL Server Management Studio (SSMS) 21.x installed
Exercise 11 completed (database SalesAnalysisDB with related tables and
sample data)

5.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

5.9.4.1 Step 1: Review Existing Schema

What we’re doing: Before we build the view, it’s helpful to recall the
structure of the tables we’ll join.

SalesOrder contains references to CustomerID and ProductID
Customer includes FullName and Region
Product includes ProductName, Category, and Price

These tables are all linked via foreign keys, and we’ll leverage those
relationships in our view.

5.9.4.2 Step 2: Create a New View with Multiple Joins

What we’re doing: We’ll write a view named vw_SalesDetails that joins the
three tables and adds a computed column.

USE SalesAnalysisDB;

GO

This view combines customer, product, and sales order data into a single
logical structure. It allows users to see all relevant information in one place
without needing to write complex joins each time.

This view flattens out the data structure and includes a calculated field for
TotalAmount.

5.9.4.3 Step 3: Query the View

Now that the view is created, we can query it like a regular table to get a
full picture of sales.

You’ll see customer, product, and transaction data joined and formatted in a
single result set.

5.9.4.4 Step 4: Filter and Project Specific Columns

We can use standard filtering and projection to refine our results without
rewriting the joins.

CREATE VIEW vw_SalesDetails AS

SELECT

 so.SalesOrderID,

 so.OrderDate,

 c.CustomerID,

 c.FullName AS CustomerName,

 c.Region,

 p.ProductID,

 p.ProductName,

 p.Category,

 p.Price,

 so.Quantity,

 (so.Quantity * p.Price) AS TotalAmount

FROM SalesOrder so

JOIN Customer c ON so.CustomerID = c.CustomerID

JOIN Product p ON so.ProductID = p.ProductID;

SELECT * FROM vw_SalesDetails

ORDER BY OrderDate DESC;

SELECT

 CustomerName,

 Region,

 ProductName,

This shows how views can support business-level queries with minimal
SQL complexity for the user.

5.9.4.5 Step 5: View Query Plan (Optional)

To understand performance, you can check the execution plan in SSMS by
clicking “Include Actual Execution Plan” before running a query on the
view.

This helps confirm that the view is executed dynamically and doesn’t
materialize data unless indexed.

5.9.5 Summary

In this lab, you:

Built a view that joins multiple normalized tables
Included calculated fields to provide richer data output
Simplified how users access and analyze relational data
Demonstrated how views improve productivity and consistency

5.10 Conclusion

In this chapter, we explored the concept of views in SQL Server 2025,
including their creation, usage, and benefits. We learned how views can
simplify complex queries, enhance security through role-based access
control, and support logical data modeling. Additionally, we discussed
indexed views for performance optimization.

 Quantity,

 TotalAmount

FROM vw_SalesDetails

WHERE Region = 'South' AND Category = 'Service';

6 Designing Multi-Tenant and SaaS
Databases
This chapter explores how to design SQL Server 2025 databases to support multi-
tenant Software-as-a-Service (SaaS) applications. You’ll learn architectural
patterns—shared database, schema-per-tenant, and how to enforce tenant
isolation using identity filtering. These practices help deliver secure, scalable
services across many customers (tenants) while maintaining performance and
compliance.

6.1 What Is a Multi-Tenant Database?

A multi-tenant database serves multiple customers (tenants) using shared
infrastructure, with varying levels of data isolation.

Here are the primary goals of a multi-tenant database design:

Scalability: Support many tenants without duplicating infrastructure.
Security: Isolate data between tenants.
Cost-efficiency: Share computing and storage resources.

6.2 Multi-Tenant Patterns in SQL Server

SQL Server 2025 supports several architectural patterns for multi-tenant
applications. The choice of pattern depends on your specific requirements for data
isolation, scalability, and management complexity.

6.2.1 Pattern 1: Shared Database, Shared Schema

Well-known in SaaS, this pattern allows multiple tenants to share the same
database and tables. Each table includes a TenantID column to identify which tenant
owns the data.

With this approach: * All tenants share the same database and tables. * A
TenantID column is added to every table to identify which tenant owns which data.

For instance, an Orders table might look like this:

This allows you to filter queries by TenantID to ensure each tenant only sees their
own data:

Well-suited for SaaS applications with many small tenants:

Low cost and resource usage.
Easy to scale and manage.
Simplifies updates and deployments.

Weigh the benefits against challenges:

Risk of data leakage if queries are not properly filtered.
Performance issues with large datasets.
Complex queries may require additional logic to ensure tenant isolation.
Harder to enforce row-level security.

6.2.2 Pattern 2: Shared Database, Schema-Per-Tenant

In this pattern, each tenant has its own schema within a shared database. This
provides better data isolation while still allowing shared infrastructure.

One shared database, but each tenant has their own schema.

This approach allows you to create separate schemas for each tenant, which can
help with data isolation and management. For example, you might have schemas
like tenant_101, tenant_102, etc.

With schema-per-tenant, you get:

CREATE TABLE Orders (

 OrderID INT PRIMARY KEY,

 TenantID INT NOT NULL,

 CustomerID INT,

 OrderDate DATE,

 TotalAmount DECIMAL(10,2)

);

SELECT * FROM Orders WHERE TenantID = @TenantID;

CREATE SCHEMA tenant_101;

CREATE TABLE tenant_101.Orders (...);

Better data isolation compared to shared schema.
Easier to manage tenant-specific changes.
Allows for tenant-specific optimizations (e.g., indexing).
Simplifies compliance with data protection regulations.
Easier to enforce row-level security.

We also face challenges:

More complex management as the number of schemas grows.
Increased metadata overhead.

6.2.3 Pattern 3: Database-Per-Tenant

In this pattern, each tenant has its own dedicated database. This provides the
highest level of data isolation and security.

Each tenant has a separate database.

Advantages of this approach include:

Complete data isolation.
Simplified compliance with data protection regulations.
Easier to manage tenant-specific performance tuning.
Simplifies backup and restore operations for individual tenants.
Allows for different database configurations per tenant (e.g., performance,
storage).

We also face challenges:

Higher resource usage due to multiple databases.
Increased management overhead for backups, updates, and monitoring.
More complex deployment and scaling strategies.
Difficult to apply updates globally.

Note: SQL Server 2025 supports elastic pools and automation, but this pattern is
best for large tenants.

6.3 Tenant Isolation and Identity Filtering

In multi-tenant applications, tenant isolation is crucial to prevent data leakage
between tenants. SQL Server provides several mechanisms to enforce this
isolation, including:

Identity filtering: Ensuring queries only return data for the current tenant.
Row-Level Security (RLS): Automatically filtering rows based on the tenant
context.
Views: Creating tenant-specific views to simplify access control.
Stored procedures: Encapsulating tenant logic to enforce isolation.

6.3.1 Option 1: Manual Filtering by Tenant ID

The simplest way to enforce tenant isolation is to include a TenantID column in
every table and filter queries by this ID. This approach requires you to manually
add the TenantID filter in every query.

Include TenantID in every table and apply it to every query.

For example, to retrieve orders for a specific tenant:

This method is straightforward but requires discipline to ensure every query
includes the TenantID filter. It can lead to potential data leaks if queries are not
properly constructed.

Best Practice: Always filter by TenantID in app layer and/or views.

6.3.2 Option 2: Use Row-Level Security (RLS)

Row-Level Security (RLS) allows you to define security policies that
automatically filter rows based on the user or session context. This provides a
robust way to enforce tenant isolation without requiring manual filtering in every
query.

SELECT OrderID, CustomerID, TotalAmount

FROM Orders

WHERE TenantID = @TenantID;

SQL Server’s Row-Level Security automatically filters rows based on the user or
session context.

Let’s create a simple RLS policy to enforce tenant isolation:

This function checks if the TenantID in the session context matches the TenantID in
the row. Next, we create a security policy that uses this function:

Now, when a user queries the Orders table, SQL Server automatically filters rows
based on the TenantID set in the session context.

We can set the TenantID in the session context at the start of each user session:

This ensures that all subsequent queries in that session automatically filter by the
tenant ID, providing a secure and efficient way to enforce tenant isolation.

All queries automatically return data only for TenantID = 101.

6.4 Managing Identity and Shared Metadata

In shared-schema systems, you often need shared metadata tables (e.g., product
catalogs) while keeping tenant data isolated.

For example, you might have a Products table that is shared across all tenants, while
the Orders table is tenant-specific. Here’s how you can structure your queries to
handle this:

Products: Shared
Orders: Tenant-isolated

CREATE FUNCTION Security.fn_TenantFilter(@TenantID INT)

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN SELECT 1 AS Result

WHERE @TenantID = CAST(SESSION_CONTEXT(N'TenantID') AS INT);

CREATE SECURITY POLICY Security.TenantSecurityPolicy

ADD FILTER PREDICATE Security.fn_TenantFilter(TenantID)

ON dbo.Orders

WITH (STATE = ON);

EXEC sp_set_session_context @key = N'TenantID', @value = 101;

To retrieve product information for a specific tenant’s orders, you can join the
Products table with the Orders table while filtering by TenantID:

This allows you to access shared metadata while ensuring tenant isolation for
transactional data.

6.5 Best Practices for Multi-Tenant SQL Server Design

Here are some best practices to follow when designing multi-tenant databases in
SQL Server:

Practice Benefit

Add TenantID to every tenant-specific table Data isolation and filtering

Enforce TenantID via views or RLS Prevents accidental data leaks

Use views for tenant-specific access Simplifies reporting and filtering

Avoid cross-tenant joins Keeps boundaries clean

Encrypt tenant data at rest and in transit Compliance and security

6.6 Exercise 13: Add Tenant Column and Apply
Security Filters

6.6.1 Description

In Software-as-a-Service (SaaS) environments, it’s common to host data for
multiple customers (tenants) in a single database. A popular approach is the
shared-database, shared-schema model, where tables include a TenantID column
to isolate data between tenants. In this lab, you’ll design a simple multi-tenant
schema with a TenantID column, and then implement security filtering using views
to restrict tenant access. This approach provides both simplicity and scalability for
multi-tenant applications.

SELECT p.ProductName, o.TotalAmount

FROM Products p

JOIN Orders o ON p.ProductID = o.ProductID

WHERE o.TenantID = @TenantID;

6.6.2 Objectives

Create a database and schema that supports multiple tenants
Add a TenantID column to relevant tables
Insert data for multiple tenants
Create filtered views to enforce row-level security logic

6.6.3 Prerequisites

SQL Server 2025 Developer Edition installed
SQL Server Management Studio (SSMS) 21.x
Basic knowledge of CREATE TABLE, INSERT, and VIEW syntax
A new database will be created for this lab

6.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

6.6.4.1 Step 1: Create a New Database

We’ll begin by creating a new database for this exercise named SaaSAppDB.

6.6.4.2 Step 2: Create Tables with TenantID

We define two main tables: Tenant to register each tenant, and Customer to store
customer data tied to a TenantID. This is the core of our multi-tenant schema.

CREATE DATABASE SaaSAppDB;

GO

USE SaaSAppDB;

GO

-- Tenant registration table

CREATE TABLE Tenant (

 TenantID INT PRIMARY KEY IDENTITY(1,1),

 TenantName NVARCHAR(100) NOT NULL

);

-- Shared Customer table

CREATE TABLE Customer (

 CustomerID INT PRIMARY KEY IDENTITY(1000,1),

 TenantID INT NOT NULL,

 FullName NVARCHAR(100),

 Email NVARCHAR(100),

The Customer table includes TenantID as a foreign key, which ensures each customer
is scoped to a tenant.

6.6.4.3 Step 3: Insert Sample Data for Multiple Tenants

Now, we insert demo tenants and customers to simulate a real SaaS setup.

This creates two distinct sets of customers, one for each tenant. Each customer is
associated with a specific TenantID, ensuring data isolation.

6.6.4.4 Step 4: Create a View to Filter by TenantID

Instead of querying Customer directly, we’ll create a filtered view for a specific
tenant. This ensures tenant isolation.

Later, a stored procedure or app logic can switch tenant context dynamically.

6.6.4.5 Step 5: Use the View to Query Tenant-Specific Data

Query the view to get only Ilmu Data’s customers—this simulates how the
application would restrict data visibility.

 CreatedAt DATETIME2 DEFAULT SYSDATETIME(),

 FOREIGN KEY (TenantID) REFERENCES Tenant(TenantID)

);

-- Insert two tenants

INSERT INTO Tenant (TenantName) VALUES ('Ilmu Data.'), ('Neuville Ltd.');

-- Insert customers for each tenant

INSERT INTO Customer (TenantID, FullName, Email)

VALUES

(1, 'Amina Okoro', 'amina@ilmudata.id'),

(1, 'Jeroen van Dijk', 'jeroen@ilmudata.id'),

(1, 'Élodie Martin', 'elodie@ilmudata.id'),

(1, 'Niran Chaiyawat', 'niran@ilmudata.id'),

(1, 'Lucas Silva', 'lucas@ilmudata.id'),

(2, 'Kwame Mensah', 'kwame@neuville.id'),

(2, 'Sanne de Vries', 'sanne@neuville.id'),

(2, 'Julien Dubois', 'julien@neuville.id'),

(2, 'Anong Srisuk', 'anong@neuville.id'),

(2, 'Bruna Costa', 'bruna@neuville.id');

-- View for Ilmu Data (TenantID = 1)

CREATE VIEW vw_IlmuData_Customers AS

SELECT * FROM Customer WHERE TenantID = 1;

Output should only include rows where TenantID = 1.

6.6.4.6 Step 6 (Optional): Create a Parameterized Filtering Procedure

If you want a reusable query for multiple tenants, you can use a stored procedure
with TenantID as a parameter:

This is a flexible way to support multiple tenants securely from backend logic.

6.6.5 Summary

In this hands-on lab, you:

Designed a shared-schema, multi-tenant database model
Added a TenantID column to enforce row-level separation
Created filtered views to isolate tenant data
Explored how to use stored procedures for secure tenant access

✅ This pattern is foundational for SaaS applications running on a single database
while maintaining logical data separation per tenant.

6.7 Exercise 14: Build Views and Indexes per Tenant

6.7.1 Description

SELECT FullName, Email, CreatedAt

FROM vw_IlmuData_Customers;

CREATE PROCEDURE GetCustomersByTenant

 @TenantID INT

AS

BEGIN

 SELECT FullName, Email, CreatedAt

 FROM Customer

 WHERE TenantID = @TenantID;

END;

GO

-- Usage

EXEC GetCustomersByTenant @TenantID = 2;

In multi-tenant database designs, isolating tenant data using views is common for
security and logical separation. However, performance may degrade as data
grows. A common strategy is to create filtered indexes on tenant-specific data,
paired with views per tenant or parameterized views. This lab demonstrates how
to build efficient views and tenant-filtered indexes to enhance query performance
in SQL Server 2025.

6.7.2 Objectives

Create a schema with tenant data
Define views per tenant for logical access control
Build filtered indexes to improve performance
Evaluate execution plans with and without indexes

6.7.3 Prerequisites

SQL Server 2025 Developer Edition
SQL Server Management Studio (SSMS) 21.x
Basic familiarity with CREATE VIEW, CREATE INDEX, and SELECT queries
No prior index tuning experience required

6.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

6.7.4.1 Step 1: Create the Multi-Tenant Database

We’ll start by creating a new database SaaSPerfDB.

6.7.4.2 Step 2: Define Tables with TenantID

We define two core tables: Tenant and Invoice. Each invoice belongs to a tenant
using the TenantID field.

CREATE DATABASE SaaSPerfDB;

GO

USE SaaSPerfDB;

GO

CREATE TABLE Tenant (

 TenantID INT PRIMARY KEY IDENTITY(1,1),

6.7.4.3 Step 3: Insert Sample Data for Multiple Tenants

We insert two tenants with several invoices each, simulating a real-world
workload.

This creates two tenants with invoices, each having a unique TenantID.

Each tenant now has its own subset of invoices.

6.7.4.4 Step 4: Create Tenant-Specific Views

For security and simplicity, we’ll define views to isolate each tenant’s data.

 TenantName NVARCHAR(100) NOT NULL

);

CREATE TABLE Invoice (

 InvoiceID INT PRIMARY KEY IDENTITY(1000,1),

 TenantID INT NOT NULL,

 InvoiceDate DATE,

 CustomerName NVARCHAR(100),

 Amount DECIMAL(10,2),

 Status NVARCHAR(50),

 FOREIGN KEY (TenantID) REFERENCES Tenant(TenantID)

);

-- Add tenants

INSERT INTO Tenant (TenantName) VALUES ('RetailCorp'), ('HealthPlus');

-- Add invoices

INSERT INTO Invoice (TenantID, InvoiceDate, CustomerName, Amount, Status)

VALUES

(1, '2025-01-15', 'Pram Jatmiko', 1200, 'Paid'),

(1, '2025-02-10', 'Olga Ivanova', 1500, 'Pending'),

(1, '2025-03-05', 'John Miller', 1800, 'Paid'),

(2, '2025-01-12', 'Siti Aisyah', 980, 'Paid'),

(2, '2025-03-10', 'Ivan Petrov', 2150, 'Pending');

-- View for RetailCorp (TenantID = 1)

CREATE VIEW vw_RetailCorp_Invoices AS

SELECT * FROM Invoice WHERE TenantID = 1;

GO

-- View for HealthPlus (TenantID = 2)

CREATE VIEW vw_HealthPlus_Invoices AS

SELECT * FROM Invoice WHERE TenantID = 2;

GO

These views simulate per-tenant data access in a SaaS application.

6.7.4.5 Step 5: Query Views (Without Indexes)

Now, test the views to simulate how a tenant would access their data:

Open the execution plan in SSMS to see that it scans the entire table.

Even though you’re filtering by TenantID, without an index, SQL Server performs a
table scan.

6.7.4.6 Step 6: Add Filtered Indexes for Each Tenant

To optimize performance, we create filtered indexes that include only rows per
tenant:

These indexes reduce the I/O cost when querying tenant views or filtering by
TenantID.

6.7.4.7 Step 7: Re-Run Queries and Review Execution Plan

Re-run the earlier view queries and inspect the execution plan again:

You should now observe an index seek instead of a scan, showing improved
performance.

SELECT * FROM vw_RetailCorp_Invoices;

-- Index for RetailCorp

CREATE NONCLUSTERED INDEX IX_Invoice_Tenant1

ON Invoice (InvoiceDate)

WHERE TenantID = 1;

-- Index for HealthPlus

CREATE NONCLUSTERED INDEX IX_Invoice_Tenant2

ON Invoice (InvoiceDate)

WHERE TenantID = 2;

SELECT * FROM vw_HealthPlus_Invoices WHERE InvoiceDate >= '2025-01-01';

Figure 6.1: Observing view queries performance.

6.7.5 Summary

In this lab, you learned how to:

Implement tenant views to isolate data
Use filtered indexes for performance gains
Optimize access to large multi-tenant tables
Analyze query performance using SSMS tools

This technique is vital in SaaS systems where maintaining both data security and
query responsiveness is crucial.

6.8 Conclusion

In this chapter, we explored how to design multi-tenant databases in SQL Server
2025, focusing on architectural patterns like shared database, schema-per-tenant,
and database-per-tenant. We also discussed tenant isolation techniques such as
identity filtering and row-level security. By following best practices and
leveraging SQL Server features, you can build secure, scalable multi-tenant
applications that meet diverse customer needs.

Section 4: Aggregation, Data
Combination and Analytical Query

Techniques

7 Grouping, Aggregation, and
PIVOTs
This chapter introduces how to summarize and transform large datasets
using GROUP BY, aggregate functions, HAVING filters, and PIVOT
queries in SQL Server 2025. These techniques are essential for reporting,
analytics, and deriving business intelligence directly from structured data.

7.1 What Is Aggregation?

Aggregation refers to the process of calculating summary values (e.g.,
totals, averages, counts) across groups of rows. It allows you to condense
large datasets into meaningful insights, making it easier to analyze trends
and patterns.

7.2 GROUP BY: Summarizing Rows by Category

When you want to summarize data, you use the GROUP BY clause to group
rows that share a common value in one or more columns. This is often
combined with aggregate functions like SUM, AVG, COUNT, etc.

Here’s the basic syntax:

Following are some commonly used aggregate functions in SQL Server:

Function Description

COUNT() Number of rows

SUM() Total value

SELECT column1, AGG_FUNCTION(column2)

FROM table

GROUP BY column1;

Function Description

AVG() Average value

MIN() Smallest value

MAX() Largest value

Now, let’s look at some examples of using GROUP BY with aggregate functions.

We can calculate total sales for each region using the SUM function:

This query groups the Orders table by Region and calculates the total sales
amount for each region.

We can also calculate the average order value per customer:

This query groups the Orders table by CustomerID and calculates the average
order value for each customer.

7.3 HAVING: Filtering Groups

Sometimes, you want to filter the results of a GROUP BY query based on the
aggregated values. This is where the HAVING clause comes in. It allows you to
specify conditions on aggregate functions, similar to how WHERE filters
individual rows.

HAVING filters grouped results, similar to how WHERE filters rows.

Here’s the syntax for using HAVING:

SELECT Region, SUM(TotalAmount) AS TotalSales

FROM Sales.Orders

GROUP BY Region;

SELECT CustomerID, AVG(TotalAmount) AS AvgOrderValue

FROM Sales.Orders

GROUP BY CustomerID;

For example, to find regions with total sales greater than 100,000:

Tip: Use HAVING only with aggregate functions.

7.4 Multiple Columns in GROUP BY

You can group by multiple columns to create more detailed summaries. For
example, to get total sales by both region and product category:

This query groups the Orders table by both Region and the year of the OrderDate,
providing a breakdown of sales by region and year.

7.5 PIVOT: Rotating Data for Reports

The PIVOT operator allows you to transform row values into columns, making
it ideal for creating cross-tab reports. This is particularly useful for
summarizing data in a more readable format.

Here’s the basic syntax for a PIVOT query:

SELECT column1, AGG_FUNCTION(column2)

FROM table

GROUP BY column1

HAVING AGG_FUNCTION(column2) condition;

SELECT Region, SUM(TotalAmount) AS TotalSales

FROM Sales.Orders

GROUP BY Region

HAVING SUM(TotalAmount) > 100000;

SELECT

 Region,

 YEAR(OrderDate) AS OrderYear,

 SUM(TotalAmount) AS TotalSales

FROM Sales.Orders

GROUP BY Region, YEAR(OrderDate);

SELECT *

FROM (

 SELECT column_to_group, column_to_pivot, value_column

 FROM your_table

) AS SourceTable

For example, to create a report showing monthly sales totals by region, you
can use the following PIVOT query:

This query transforms the monthly sales data into a format where each
month becomes a column, allowing for easy comparison of sales across
regions.

Here’s another example that shows how to pivot order details by status:

This query summarizes the quantity of products ordered by their status,
creating a clear view of how many items are pending, shipped, or cancelled.

7.6 Unpivoting (Optional Advanced)

UNPIVOT rotates columns back into rows—useful when data is stored in a wide
format but you need a tall structure.

Here’s the syntax for UNPIVOT:

PIVOT (

 AGG_FUNCTION(value_column)

 FOR column_to_pivot IN ([col1], [col2], [col3])

) AS PivotTable;

SELECT *

FROM (

 SELECT

 Region,

 FORMAT(OrderDate, 'MMM') AS OrderMonth,

 TotalAmount

 FROM Sales.Orders

) AS RawData

PIVOT (

 SUM(TotalAmount)

 FOR OrderMonth IN ([Jan], [Feb], [Mar], [Apr], [May], [Jun])

) AS MonthlySales;

SELECT *

FROM (

 SELECT ProductName, Status, Quantity

 FROM Sales.OrderDetails

) AS SourceData

PIVOT (

 SUM(Quantity)

 FOR Status IN ([Pending], [Shipped], [Cancelled])

) AS PivotResult;

7.7 Exercise 15: Generate Monthly Revenue
Summaries

7.7.1 Description

In this exercise, you’ll write SQL queries to generate monthly revenue
summaries from the AdventureWorks2022 database. You’ll group sales data by
month and year, calculate total revenue, and prepare it for potential
reporting or dashboarding use. This is a foundational exercise in analyzing
business trends over time using SQL Server 2025.

7.7.2 Objectives

By the end of this exercise, you will be able to:

Use GROUP BY with DATEPART() to extract month and year.
Calculate monthly revenue using SUM().
Sort and interpret aggregated results.

7.7.3 Prerequisites

SQL Server 2025 installed and running.
SQL Server Management Studio (SSMS) 21.x installed.
AdventureWorks2022 database restored (from Exercise 1).
A basic understanding of SELECT queries and aggregate functions.

7.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

7.7.4.1 Step 1: Connect to SQL Server and Select Database

SELECT CustomerID, Metric, Value

FROM SalesMetrics

UNPIVOT (

 Value FOR Metric IN (TotalSales, TotalOrders, TotalReturns)

) AS Unpivoted;

Before running any queries, open SSMS and connect to your SQL Server
2025 instance. Once connected, set the context to use the AdventureWorks2022
database.

📌 This command sets your working database so you can query tables like
Sales.SalesOrderHeader and Sales.SalesOrderDetail.

7.7.4.2 Step 2: Explore the Sales Data

Let’s review the structure of the sales orders. The key table is
Sales.SalesOrderHeader, which contains order dates and total due amounts.

📌 You’ll notice that OrderDate is a datetime column and TotalDue includes
tax, shipping, and discounts—perfect for calculating revenue.

7.7.4.3 Step 3: Group Sales by Month and Year

Now let’s write a query that groups sales by month and year, and then
calculates the total revenue per group.

📌 We use DATEPART(YEAR, OrderDate) and DATEPART(MONTH, OrderDate) to extract
year and month. SUM(TotalDue) calculates the total revenue for each period.
Finally, we ORDER BY to make the report chronological.

USE AdventureWorks2022;

GO

SELECT TOP 10 OrderDate, TotalDue

FROM Sales.SalesOrderHeader

ORDER BY OrderDate DESC;

SELECT

 DATEPART(YEAR, OrderDate) AS OrderYear,

 DATEPART(MONTH, OrderDate) AS OrderMonth,

 SUM(TotalDue) AS MonthlyRevenue

FROM Sales.SalesOrderHeader

GROUP BY

 DATEPART(YEAR, OrderDate),

 DATEPART(MONTH, OrderDate)

ORDER BY

 OrderYear,

 OrderMonth;

7.7.4.4 Step 4: Format Month-Year for Readability (Optional)

To improve readability, you can format the month and year into a single
column (e.g., 2025-01).

📌 FORMAT() helps you create a user-friendly label for reporting. It’s
especially useful if you’re feeding data into Excel or Power BI dashboards.

7.7.4.5 Step 5: Filter Specific Year (Optional)

If you’re only interested in a specific year—say 2013—you can use WHERE
with DATEPART.

📌 This query helps focus the summary on just one year, which is useful for
year-over-year analysis.

7.7.5 Summary

In this exercise, you:

Connected to the AdventureWorks2022 database using SSMS.
Explored sales data in the Sales.SalesOrderHeader table.
Used GROUP BY and DATEPART to summarize revenue by month and year.
Enhanced readability using FORMAT().
Applied filtering to focus on specific years.

SELECT

 FORMAT(OrderDate, 'yyyy-MM') AS OrderPeriod,

 SUM(TotalDue) AS MonthlyRevenue

FROM Sales.SalesOrderHeader

GROUP BY FORMAT(OrderDate, 'yyyy-MM')

ORDER BY OrderPeriod;

SELECT

 FORMAT(OrderDate, 'yyyy-MM') AS OrderPeriod,

 SUM(TotalDue) AS MonthlyRevenue

FROM Sales.SalesOrderHeader

WHERE DATEPART(YEAR, OrderDate) = 2013

GROUP BY FORMAT(OrderDate, 'yyyy-MM')

ORDER BY OrderPeriod;

✅ This foundational analysis is essential for generating executive
summaries, financial reports, and feeding BI dashboards. You now have the
SQL skills to explore temporal trends and revenue cycles in a business
context.

7.8 Exercise 16: Create Pivoted Sales Report

7.8.1 Description

In this hands-on exercise, you will learn how to use SQL Server’s PIVOT
operator to transform row-level data into column-based summaries.
This is especially useful when creating cross-tab reports such as monthly
totals by region, sales by product category, or order status breakdowns. You
will use data from the AdventureWorks2022 database.

7.8.2 Objectives

By the end of this exercise, you will be able to:

Use a subquery to prepare data for pivoting.
Apply the PIVOT operator to aggregate values and convert rows to
columns.
Generate a dynamic report layout that’s easier to interpret visually.

7.8.3 Prerequisites

SQL Server 2025 installed and running.
SQL Server Management Studio (SSMS) 21.x.
AdventureWorks2022 database restored (as completed in Exercise 1).
Familiarity with GROUP BY and aggregate functions like SUM().

7.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

7.8.4.1 Step 1: Connect to SQL Server and Select the Database

Start by connecting to your SQL Server instance in SSMS. Then, set your
active database context to AdventureWorks2022.

📌 This ensures all your queries run against the correct dataset.

7.8.4.2 Step 2: Understand the Source Data for Pivoting

We will build a report showing total sales (TotalDue) for each Sales
Territory across different order statuses (e.g., In Progress, Shipped,
Cancelled).

Let’s explore the base table:

📌 This query retrieves the key fields we’ll use: territory, status, and total
revenue. The Status column is an integer from 1–6 indicating order state.

7.8.4.3 Step 3: Prepare the Data to Be Pivoted

Let’s build the inner query that PIVOT will use:

📌 This query selects the territory, status, and sales amount, which we will
later convert into a pivoted format.

7.8.4.4 Step 4: Apply the PIVOT Operator

USE AdventureWorks2022;

GO

SELECT TOP 10

 soh.SalesOrderID,

 st.Name AS Territory,

 soh.Status,

 soh.TotalDue

FROM Sales.SalesOrderHeader soh

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID;

SELECT

 st.Name AS Territory,

 soh.Status,

 soh.TotalDue

FROM Sales.SalesOrderHeader soh

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID;

We now use PIVOT to transform status values into columns, showing the
total revenue per status for each territory.

📌 Each number in IN ([1], [2], ..., [6]) corresponds to a sales order
status. The pivoted result shows territories as rows and statuses as columns
with aggregated TotalDue.

Tip: Status codes can be interpreted as: 1 = In Process, 2 = Approved, 3 =
Backordered, etc. (check BOL for full mapping).

7.8.4.5 Step 5: Optional – Add Readable Status Labels (via View or
Report Layer)

While the pivot output shows numeric status columns (1 to 6), you may use
aliases or map them in your application/reporting layer for readability.

Example:

📌 SQL Server’s PIVOT requires static column names—dynamic pivoting
requires dynamic SQL, which is beyond this beginner exercise.

7.8.5 Summary

In this lab, you:

SELECT *

FROM (

 SELECT

 st.Name AS Territory,

 soh.Status,

 soh.TotalDue

 FROM Sales.SalesOrderHeader soh

 JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID

) AS SourceData

PIVOT (

 SUM(TotalDue)

 FOR Status IN ([1], [2], [3], [4], [5], [6])

) AS PivotTable

ORDER BY Territory;

-- In reporting tool: rename column [1] as 'In Process', [2] as 'Approved', etc.

Explored order data grouped by sales territory and status.
Wrote a query to prepare the data for pivoting.
Used the PIVOT operator to turn row values (Status) into column headers.
Created a cross-tab report that summarizes total revenue by territory
and order status.

✅ Pivoting is essential for transforming operational data into clear
business reports—especially in dashboards, Excel exports, or Power BI
models.

7.9 Exercise 17: Filter Aggregated Results Using
HAVING

7.9.1 Description

In this exercise, you’ll learn how to use the HAVING clause to filter grouped
results based on aggregate values. Unlike WHERE, which filters individual
rows, HAVING filters after aggregation, making it ideal for reporting
scenarios where only high-performing products, customers, or territories
should be included.

7.9.2 Objectives

By the end of this exercise, you will be able to:

Differentiate between WHERE and HAVING.
Use HAVING to filter groups by aggregated conditions.
Build queries that report only relevant summarized data (e.g., top-
selling products).

7.9.3 Prerequisites

SQL Server 2025 installed and running.
SQL Server Management Studio (SSMS) 21.x.
AdventureWorks2022 database restored (as per Exercise 1).
Familiarity with GROUP BY and aggregate functions like SUM() or COUNT().

7.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

7.9.4.1 Step 1: Connect to SQL Server and Use the Database

Start by connecting to your SQL Server instance in SSMS, and set the
context to AdventureWorks2022.

📌 Always ensure you’re working in the correct database before running
queries.

7.9.4.2 Step 2: Explore the Sales Data by Territory

We’ll group order data by sales territory to calculate total revenue and
number of orders per region.

📌 This gives a summary of sales per territory. Every territory is included
at this point, regardless of performance.

7.9.4.3 Step 3: Apply HAVING to Filter Only High-Revenue Territories

Now let’s say you only want to include territories with revenue over
$10,000,000. You’ll add a HAVING clause to filter based on the SUM() result.

USE AdventureWorks2022;

GO

SELECT

 st.Name AS Territory,

 COUNT(soh.SalesOrderID) AS OrderCount,

 SUM(soh.TotalDue) AS TotalRevenue

FROM Sales.SalesOrderHeader soh

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID

GROUP BY st.Name

ORDER BY TotalRevenue DESC;

SELECT

 st.Name AS Territory,

 COUNT(soh.SalesOrderID) AS OrderCount,

 SUM(soh.TotalDue) AS TotalRevenue

FROM Sales.SalesOrderHeader soh

📌 HAVING filters the grouped result after aggregation. Unlike WHERE, you can
use aggregate functions like SUM() inside HAVING.

7.9.4.4 Step 4: Filter Groups by Multiple Conditions

You can combine aggregate conditions using logical operators like AND or OR.

📌 This returns only territories that have both high total revenue and a
high number of orders—great for identifying your best-performing regions.

7.9.4.5 Step 5: Optional – Compare with WHERE

Try filtering with WHERE to see how it differs.

📌 This query only includes orders over $10,000 before grouping. Compare
this with HAVING, which filters based on the summary outcome.

7.9.5 Summary

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID

GROUP BY st.Name

HAVING SUM(soh.TotalDue) > 10000000

ORDER BY TotalRevenue DESC;

SELECT

 st.Name AS Territory,

 COUNT(soh.SalesOrderID) AS OrderCount,

 SUM(soh.TotalDue) AS TotalRevenue

FROM Sales.SalesOrderHeader soh

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID

GROUP BY st.Name

HAVING

 SUM(soh.TotalDue) > 5000000 AND

 COUNT(soh.SalesOrderID) > 100;

-- This filters individual orders BEFORE aggregation

SELECT

 st.Name AS Territory,

 COUNT(soh.SalesOrderID) AS OrderCount,

 SUM(soh.TotalDue) AS TotalRevenue

FROM Sales.SalesOrderHeader soh

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID

WHERE soh.TotalDue > 10000 -- filters orders over 10K only

GROUP BY st.Name

ORDER BY TotalRevenue DESC;

In this exercise, you:

Used GROUP BY to summarize sales data by territory.
Applied HAVING to filter results after aggregation.
Combined HAVING conditions for more precise reporting.
Learned the difference between WHERE (row-level) and HAVING (group-
level) filtering.

✅ HAVING is a crucial tool for data analysts when refining reports to show
only relevant, high-level summaries—particularly in dashboards and KPI
reports.

7.10 Conclusion

In this chapter, we explored how to summarize and transform data using
GROUP BY, aggregate functions, and PIVOT queries in SQL Server 2025. We
learned how to group rows by categories, filter groups with HAVING, and
create cross-tab reports using PIVOT. These techniques are essential for
reporting, analytics, and deriving business intelligence directly from
structured data.

8 Joins and UNION Queries
Real-world business data is rarely stored in a single table. In this chapter,
you’ll learn how to combine data from multiple tables using different
types of JOINs, and how to merge result sets using UNION and UNION ALL.
These techniques are fundamental for querying relational datasets in SQL
Server 2025.

8.1 Introduction to Joins

A JOIN allows you to combine rows from two or more tables based on a
related column, usually a primary-foreign key relationship.

Joins can be categorized into several types, each serving different purposes:

Join
Type Description

INNER JOIN Returns only matching rows in both tables

LEFT JOIN
Returns all rows from the left table and matches from the
right

FULL JOIN Returns all rows when there’s a match in one or both tables

8.2 INNER JOIN

An INNER JOIN returns only the rows where there is a match in both tables. It’s
the most common type of join and is used when you want to retrieve related
data from multiple tables.

Returns only rows where there is a match in both tables.

Following is the basic syntax for an INNER JOIN:

For example, to retrieve orders along with customer details, you can use an
INNER JOIN between the Orders and Customers tables:

This query retrieves all orders along with the corresponding customer
names, but only for customers who have placed orders.

8.3 LEFT JOIN (LEFT OUTER JOIN)

Returns all rows from the left table, and matching rows from the right. If
there’s no match, right-side columns are NULL.

For example, to find all customers and their orders, including those who
haven’t placed any orders, you can use a LEFT JOIN:

Useful for identifying records without matching data (e.g., customers who
haven’t ordered).

8.4 FULL JOIN (FULL OUTER JOIN)

Returns all rows from both tables. If there’s no match on either side, the
unmatched side will contain NULL.

For example, to retrieve all customers and all orders, including those
without matches, you can use a FULL JOIN:

SELECT a.Column1, b.Column2

FROM TableA a

INNER JOIN TableB b ON a.Key = b.Key;

SELECT o.OrderID, o.OrderDate, c.FirstName, c.LastName

FROM Sales.Orders o

INNER JOIN Sales.Customers c ON o.CustomerID = c.CustomerID;

SELECT c.CustomerID, c.FirstName, o.OrderID

FROM Sales.Customers c

LEFT JOIN Sales.Orders o ON c.CustomerID = o.CustomerID;

Ideal when comparing two sets and wanting everything, including non-
matching entries.

8.5 UNION vs UNION ALL

Both are used to combine rows from two or more separate queries with
the same number and type of columns.

You can see the differences in how they handle duplicates:

Feature UNION UNION ALL

Removes
duplicates Yes No

Includes all
rows No (only unique rows) Yes (all rows, including

duplicates)

Performance Slower (due to duplicate
removal) Faster (no duplicate check)

Use case When you need unique
results

When you want all results,
including duplicates

For both UNION and UNION ALL, the syntax is similar:

To combine domestic and international orders into a single result set, you
can use UNION ALL:

SELECT c.CustomerID, o.OrderID, c.FirstName, o.OrderDate

FROM Sales.Customers c

FULL JOIN Sales.Orders o ON c.CustomerID = o.CustomerID;

SELECT column1, column2 FROM TableA

UNION

SELECT column1, column2 FROM TableB;

SELECT OrderID, CustomerID, 'Domestic' AS Source

FROM Sales.DomesticOrders

8.6 Best Practices

Always specify columns instead of SELECT * in joins for clarity and
performance.
When using LEFT JOIN, test for missing matches with IS NULL.
Always align data types and column order when using UNION or UNION
ALL.

8.7 Exercise 18: Combine Customer, Order, and
Region Data

8.7.1 Description

In this exercise, you will combine customer, sales order, and region
information using JOIN operations in SQL Server 2025. The goal is to
produce a report that provides meaningful business insights—such as who
ordered, what they ordered, when, and from which region—by querying
across multiple related tables in the AdventureWorks2022 database.

8.7.2 Objectives

By the end of this exercise, you will be able to:

Use INNER JOIN to combine logically related tables.
Join three or more tables in a single query.
Select and format relevant columns to generate a sales report.

8.7.3 Prerequisites

SQL Server 2025 installed and running.
SQL Server Management Studio (SSMS) 21.x.

UNION ALL

SELECT OrderID, CustomerID, 'International' AS Source

FROM Sales.InternationalOrders;

AdventureWorks2022 database restored (from Exercise 1).
Understanding of primary/foreign key relationships and basic SELECT
queries.

8.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

8.7.4.1 Step 1: Set the Working Database

First, open SSMS, connect to your SQL Server instance, and set your
session to use the AdventureWorks2022 database.

📌 This ensures that your queries are executed against the correct data
context.

8.7.4.2 Step 2: Explore the Relevant Tables

You will use the following tables:

Sales.Customer: customer details
Sales.SalesOrderHeader: order headers with dates and totals
Sales.SalesTerritory: region/territory information

Let’s quickly preview these tables.

USE AdventureWorks2022;

GO

-- Preview Customers

SELECT TOP 5 CustomerID, PersonID, StoreID, TerritoryID

FROM Sales.Customer;

-- Preview Orders

SELECT TOP 5 SalesOrderID, CustomerID, OrderDate, TotalDue

FROM Sales.SalesOrderHeader;

-- Preview Territories

SELECT TOP 5 TerritoryID, Name AS RegionName

FROM Sales.SalesTerritory;

📌 These previews help you understand how tables are related. For
example, Customer.TerritoryID links to SalesTerritory.TerritoryID.

8.7.4.3 Step 3: Join Customers with Orders

Let’s join the Customer and SalesOrderHeader tables using CustomerID to retrieve
customer-related orders.

📌 This query lists all customer orders with totals. The INNER JOIN ensures
we only get orders from existing customers.

8.7.4.4 Step 4: Join Region Data with Customer and Orders

Now let’s add the third table, SalesTerritory, using TerritoryID. This enriches
the result with regional context.

📌 The report now includes not just who and what was ordered, but also
where the customer is located, using region names like “Northwest”,
“Southwest”, etc.

8.7.4.5 Step 5: Optional – Add Filtering for a Specific Region

SELECT

 c.CustomerID,

 soh.SalesOrderID,

 soh.OrderDate,

 soh.TotalDue

FROM Sales.Customer c

INNER JOIN Sales.SalesOrderHeader soh

 ON c.CustomerID = soh.CustomerID;

SELECT

 c.CustomerID,

 soh.SalesOrderID,

 soh.OrderDate,

 soh.TotalDue,

 st.Name AS Region

FROM Sales.Customer c

INNER JOIN Sales.SalesOrderHeader soh

 ON c.CustomerID = soh.CustomerID

INNER JOIN Sales.SalesTerritory st

 ON c.TerritoryID = st.TerritoryID

ORDER BY soh.OrderDate DESC;

To generate a regional report (e.g., for the “Southwest”), you can add a WHERE
clause.

📌 This version filters the report to a specific region—ideal for regional
sales managers.

8.7.5 Summary

In this hands-on lab, you:

Used INNER JOIN to combine customer and order data.
Extended your query to include regional sales territory information.
Generated a combined report with customer ID, order details, and
region.
Practiced adding filters for region-specific reporting.

✅ By mastering multi-table joins, you’re able to build comprehensive
views of your business data—critical for analysis, reporting, and executive
decision-making.

8.8 Exercise 19: Merge Archived and Active
Records

8.8.1 Description

In this hands-on lab, you’ll learn how to combine data from two similar
tables—one active and one archived—using the UNION operator. You’ll

SELECT

 c.CustomerID,

 soh.SalesOrderID,

 soh.OrderDate,

 soh.TotalDue,

 st.Name AS Region

FROM Sales.Customer c

INNER JOIN Sales.SalesOrderHeader soh

 ON c.CustomerID = soh.CustomerID

INNER JOIN Sales.SalesTerritory st

 ON c.TerritoryID = st.TerritoryID

WHERE st.Name = 'Southwest'

ORDER BY soh.OrderDate DESC;

simulate a scenario where sales records are stored in an active table
(Sales.SalesOrderHeader) and an archived version (Sales.SalesOrderHeaderArchive,
created for this exercise). You’ll use UNION to merge both sources into a
single view while tagging each record with a source indicator.

8.8.2 Objectives

By the end of this exercise, you will be able to:

Understand the difference between UNION and UNION ALL.
Merge datasets with similar structure.
Add source indicators (e.g., “Active” vs. “Archive”) to distinguish
merged rows.

8.8.3 Prerequisites

SQL Server 2025 installed and running.
SQL Server Management Studio (SSMS) 21.x.
AdventureWorks2022 database restored.
Sales.SalesOrderHeaderArchive table created (included below).
Basic understanding of SELECT and JOIN statements.

8.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

8.8.4.1 Step 1: Set the Active Database

Ensure you’re working in the AdventureWorks2022 database:

📌 This will ensure your queries execute against the right context.

8.8.4.2 Step 2: Create an Archive Table for Simulation

USE AdventureWorks2022;

GO

For the purpose of this lab, let’s create a simplified archive table by copying
a subset of historical data from Sales.SalesOrderHeader.

📌 This creates SalesOrderHeaderArchive with the same schema and data from
older records.

8.8.4.3 Step 3: Preview the Active and Archived Data

Use basic queries to inspect both tables:

📌 This step confirms both tables contain similarly structured data.

8.8.4.4 Step 4: Combine the Two Sources with UNION

Let’s now merge the two datasets using UNION and add a source label column
to track where each row comes from.

SELECT *

INTO Sales.SalesOrderHeaderArchive

FROM Sales.SalesOrderHeader

WHERE OrderDate < '2013-01-01';

-- Active Orders

SELECT TOP 5 SalesOrderID, OrderDate, TotalDue

FROM Sales.SalesOrderHeader

ORDER BY OrderDate DESC;

-- Archived Orders

SELECT TOP 5 SalesOrderID, OrderDate, TotalDue

FROM Sales.SalesOrderHeaderArchive

ORDER BY OrderDate DESC;

SELECT

 SalesOrderID,

 OrderDate,

 TotalDue,

 'Active' AS Source

FROM Sales.SalesOrderHeader

UNION

SELECT

 SalesOrderID,

 OrderDate,

 TotalDue,

 'Archive' AS Source

📌 This combines the datasets while removing duplicates (if any) between
them. The Source column helps users distinguish between current and
historical orders.

8.8.4.5 Step 5: Use UNION ALL to Preserve Duplicates

In some scenarios, you might want to preserve all records, even if
duplicates exist. Use UNION ALL instead:

📌 Unlike UNION, UNION ALL does not perform a distinct sort, and it’s generally
faster for large datasets.

8.8.4.6 Step 6: Filter the Combined Result by Source

You can now filter the merged result to view only one category—for
example, archived orders only:

FROM Sales.SalesOrderHeaderArchive

ORDER BY OrderDate DESC;

SELECT

 SalesOrderID,

 OrderDate,

 TotalDue,

 'Active' AS Source

FROM Sales.SalesOrderHeader

UNION ALL

SELECT

 SalesOrderID,

 OrderDate,

 TotalDue,

 'Archive' AS Source

FROM Sales.SalesOrderHeaderArchive

ORDER BY OrderDate DESC;

SELECT *

FROM (

 SELECT SalesOrderID, OrderDate, TotalDue, 'Active' AS Source

 FROM Sales.SalesOrderHeader

 UNION ALL

 SELECT SalesOrderID, OrderDate, TotalDue, 'Archive' AS Source

 FROM Sales.SalesOrderHeaderArchive

) AS CombinedOrders

WHERE Source = 'Archive';

📌 This is useful for reports or dashboards where you want a flexible way
to switch between current and archived data.

8.8.5 Summary

In this hands-on lab, you:

Created an archive version of SalesOrderHeader to simulate historical
data.
Combined archived and active sales records using UNION and UNION ALL.
Added a Source column to track where each record came from.
Filtered the combined results to view specific sources.

✅ Using UNION allows you to build unified datasets from distributed sources
while maintaining clarity and flexibility—essential in environments that
split data for performance or compliance.

8.9 Conclusion

In this chapter, you learned how to effectively combine data from multiple
tables using various types of joins (INNER JOIN, LEFT JOIN, FULL JOIN) and how to
merge datasets using UNION and UNION ALL. These techniques are essential for
querying relational databases, enabling you to create comprehensive reports
and insights from your data.

9 Trends, Time, and Window
Functions
This chapter introduces window functions and date/time functions in SQL
Server 2025. These are powerful tools for tracking business trends, computing
rankings, and performing time-based analysis, such as comparing current sales
to previous months or identifying top-performing products per region.

9.1 Introduction to Window Functions

Window functions perform calculations across a set of rows related to the
current row, without collapsing the result into a single group.

They differ from GROUP BY because they preserve row-level detail while enabling
analytics over partitions (e.g., over each customer, region, or month).

9.2 ROW_NUMBER, RANK, and DENSE_RANK

These functions assign a rank or number to rows based on specified ordering.

For example, to assign a unique number to each order per customer:

Example Use Case: Identify each customer’s first order, or paginate data.

RANK() assigns a unique rank to each row within a partition, but if two rows have
the same value, they receive the same rank, and the next rank will skip numbers.

SELECT

 CustomerID, OrderDate, TotalAmount,

 ROW_NUMBER() OVER (PARTITION BY CustomerID ORDER BY OrderDate) AS OrderNumber

FROM Sales.Orders;

SELECT

 ProductID, Category, TotalSales,

 RANK() OVER (PARTITION BY Category ORDER BY TotalSales DESC) AS SalesRank

FROM Sales.ProductSales;

Use case: Top-selling products in each category.

DENSE_RANK() assigns ranks without gaps, meaning if two rows share the same rank,
the next rank will be the immediate next number.

9.3 LEAD and LAG: Accessing Adjacent Rows

These functions let you compare current row values with previous or next rows,
useful for trends and comparisons.

LAG() retrieves a value from a previous row in the result set, allowing you to
compare current values with past ones.

LEAD() retrieves a value from a subsequent row, enabling you to compare current
values with future ones.

Use case: Detect sales drops, gaps in service, or payment delays.

9.4 DATE and TIME Functions

SQL Server provides many functions for working with dates and times.

Function Description

GETDATE() Current date and time

SELECT

 Region, SalesRep, Revenue,

 DENSE_RANK() OVER (PARTITION BY Region ORDER BY Revenue DESC) AS RepRank

FROM Sales.RegionalRevenue;

SELECT

 OrderID, CustomerID, OrderDate, TotalAmount,

 LAG(TotalAmount, 1) OVER (PARTITION BY CustomerID ORDER BY OrderDate) AS PrevOrderAmoun
FROM Sales.Orders;

SELECT

 OrderID, CustomerID, OrderDate, TotalAmount,

 LEAD(TotalAmount) OVER (PARTITION BY CustomerID ORDER BY OrderDate) AS NextOrderAmount

FROM Sales.Orders;

Function Description

SYSDATETIME() Higher precision than GETDATE()

DATEPART() Extracts part of a date (e.g., year)

DATEDIFF() Calculates the difference between dates

EOMONTH() End of month for a given date

FORMAT() Format a date/time value as text

For example, to get the current date and time:

For example, to find the number of days between orders for each customer:

To format sales data by month and year, you can use the FORMAT() function:

9.5 Combining Window + Time Analysis

You can combine window functions with date/time functions to analyze trends
over time.

For example, to calculate the monthly revenue and compare it with the previous
month:

SELECT

 OrderID, OrderDate,

 YEAR(OrderDate) AS OrderYear,

 MONTH(OrderDate) AS OrderMonth

FROM Sales.Orders;

SELECT

 CustomerID, OrderID, OrderDate,

 LAG(OrderDate) OVER (PARTITION BY CustomerID ORDER BY OrderDate) AS PrevOrderDate,

 DATEDIFF(day, LAG(OrderDate) OVER (PARTITION BY CustomerID ORDER BY OrderDate), OrderDa
FROM Sales.Orders;

SELECT

 FORMAT(OrderDate, 'yyyy-MM') AS OrderPeriod,

 SUM(TotalAmount) AS TotalSales

FROM Sales.Orders

GROUP BY FORMAT(OrderDate, 'yyyy-MM');

SELECT

 FORMAT(OrderDate, 'yyyy-MM') AS Month,

 SUM(TotalAmount) AS MonthlyRevenue,

LAG(SUM(TotalAmount)) OVER (ORDER BY FORMAT(OrderDate 'yyyy-MM')) AS PrevMonthRevenue

Use Common Table Expressions (CTE) if needed for complex aggregations with window
functions.

9.6 Exercise 20: Rank Top Customers Monthly

9.6.1 Description

In this exercise, you will use SQL Server 2025’s window functions, specifically
RANK() with PARTITION BY, to assign monthly rankings to customers based on their
total purchases. This approach enables insights like “Top 3 Customers Each
Month” and supports leaderboard-style reporting, trend tracking, and KPI analysis.

9.6.2 Objectives

By the end of this exercise, you will be able to:

Use RANK() to assign rank values based on aggregated totals.
Use PARTITION BY to segment ranking per month.
Combine grouping, aggregation, and windowing in a single query.

9.6.3 Prerequisites

SQL Server 2025 and SSMS 21.x.
AdventureWorks2022 database restored.
Familiarity with GROUP BY, SUM(), and subqueries or CTEs.
Some experience with window functions (OVER, PARTITION BY, ORDER BY).

9.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

9.6.4.1 Step 1: Connect to SQL Server and Set the Database

Open SSMS and set the working database to AdventureWorks2022.

 LAG(SUM(TotalAmount)) OVER (ORDER BY FORMAT(OrderDate, yyyy MM)) AS PrevMonthRevenue

FROM Sales.Orders

GROUP BY FORMAT(OrderDate, 'yyyy-MM');

📌 This ensures all queries run against the correct environment.

9.6.4.2 Step 2: Understand the Sales Data Structure

We’ll use these tables:

Sales.SalesOrderHeader: contains CustomerID, OrderDate, TotalDue.
Sales.Customer: additional customer info (optional for labeling).

Preview the order data:

📌 We’ll rank customers by SUM(TotalDue) per month.

9.6.4.3 Step 3: Aggregate Sales Monthly Per Customer

To prepare for ranking, we first calculate monthly revenue per customer.

📌 This shows each customer’s total purchases for each month. The FORMAT()
function helps extract and label the month.

9.6.4.4 Step 4: Apply RANK() to Determine Top Customers per Month

Now we’ll wrap the aggregation inside a Common Table Expression (CTE) and
apply RANK():

USE AdventureWorks2022;

GO

SELECT TOP 5 SalesOrderID, CustomerID, OrderDate, TotalDue

FROM Sales.SalesOrderHeader

ORDER BY OrderDate DESC;

SELECT

 CustomerID,

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

FROM Sales.SalesOrderHeader

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM');

WITH MonthlyCustomerTotals AS (

 SELECT

 CustomerID,

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM')

)

📌 Here’s what happens:

PARTITION BY OrderMonth: resets ranking per month.
ORDER BY MonthlyTotal DESC: highest spenders get lowest rank (1 = top).
RANK() handles ties by skipping numbers if there’s a tie.

9.6.4.5 Step 5: Optional – Filter to Top 3 Customers Per Month

To focus only on top performers, wrap the query and filter where RevenueRank <= 3.

📌 This final result gives a leaderboard of the top 3 customers per month, which
is useful for CRM, loyalty programs, or sales contests.

9.6.5 Summary

In this exercise, you:

Grouped customer revenue monthly using FORMAT() and SUM().
Applied RANK() with PARTITION BY to rank customers within each month.
Filtered to identify the top performers each month.

SELECT

 CustomerID,

 OrderMonth,

 MonthlyTotal,

 RANK() OVER (PARTITION BY OrderMonth ORDER BY MonthlyTotal DESC) AS RevenueRank

FROM MonthlyCustomerTotals

ORDER BY OrderMonth, RevenueRank;

WITH MonthlyCustomerTotals AS (

 SELECT

 CustomerID,

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM')

)

SELECT *

FROM (

 SELECT

 CustomerID,

 OrderMonth,

 MonthlyTotal,

 RANK() OVER (PARTITION BY OrderMonth ORDER BY MonthlyTotal DESC) AS RevenueRank

 FROM MonthlyCustomerTotals

) AS RankedData

WHERE RevenueRank <= 3

ORDER BY OrderMonth, RevenueRank;

✅ Window functions like RANK() allow you to build dynamic, trend-based reports
with ease—perfect for competitive analysis, top-N reporting, and business
dashboards.

9.7 Exercise 21: Compare Customer Revenue Month-
over-Month

9.7.1 Description

This exercise focuses on comparing each customer’s monthly revenue to their
previous and next month’s performance using LAG() and LEAD() window
functions. These functions are ideal for detecting trends like sales drops, growth,
or inactivity gaps—all within SQL Server 2025 using built-in analytics
capabilities.

9.7.2 Objectives

By the end of this exercise, you will be able to:

Use LAG() and LEAD() to reference adjacent rows in partitioned data.
Track month-to-month performance per customer.
Calculate growth or decline in revenue over time.

9.7.3 Prerequisites

SQL Server 2025 and SSMS 21.x.
AdventureWorks2022 database restored (as in Exercise 1).
Familiarity with GROUP BY, SUM(), and basic window functions like RANK().

9.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

9.7.4.1 Step 1: Connect to SQL Server and Use the Correct Database

Begin by opening SSMS and setting the working database context:

USE AdventureWorks2022;

GO

📌 Ensure you are querying within the correct environment.

9.7.4.2 Step 2: Aggregate Monthly Revenue per Customer

Before applying window functions, let’s aggregate revenue per customer for each
month.

📌 We’re preparing a dataset where each row shows how much a customer spent
each month.

9.7.4.3 Step 3: Apply LAG() and LEAD() to Track Adjacent Revenue

Now, use a CTE to build the base, then apply LAG() and LEAD() to compare month-
over-month revenue.

📌 This allows you to see revenue values from the previous and next month per
customer. If NULL appears, it means no activity for that customer in that adjacent
month.

9.7.4.4 Step 4: Calculate Month-over-Month Change (Optional)

SELECT

 CustomerID,

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

FROM Sales.SalesOrderHeader

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM')

ORDER BY CustomerID, OrderMonth;

WITH MonthlyRevenue AS (

 SELECT

 CustomerID,

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM')

)

SELECT

 CustomerID,

 OrderMonth,

 MonthlyTotal,

 LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS PreviousMonthRe
 LEAD(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS NextMonthReven
FROM MonthlyRevenue

ORDER BY CustomerID, OrderMonth;

You can now compute revenue growth or decline using arithmetic on the window
values.

📌 This version shows how much each customer’s spending changed from the
previous month—helpful for detecting retention or drop-off trends.

9.7.4.5 Step 5: Filter Specific Customer (Optional)

To zoom in on a specific customer’s history, use a WHERE clause.

📌 This is useful for account managers or CRM analytics dashboards.

9.7.5 Summary

In this lab, you:

WITH MonthlyRevenue AS (

 SELECT

 CustomerID,

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM')

)

SELECT

 CustomerID,

 OrderMonth,

 MonthlyTotal,

 LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS PreviousMonthRe
 MonthlyTotal - LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS
FROM MonthlyRevenue

ORDER BY CustomerID, OrderMonth;

-- Example for CustomerID 11000

WITH MonthlyRevenue AS (

 SELECT

 CustomerID,

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM')

)

SELECT

 CustomerID,

 OrderMonth,

 MonthlyTotal,

 LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS PreviousMonthRe
 MonthlyTotal - LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS
FROM MonthlyRevenue

WHERE CustomerID = 11000

ORDER BY OrderMonth;

Aggregated monthly customer revenue.
Used LAG() and LEAD() to compare current revenue to adjacent months.
Calculated revenue changes to detect growth or decline trends.

✅ These techniques are critical for trend analysis, performance monitoring, and
customer behavior prediction in modern BI systems.

9.8 Exercise 22: Calculate Moving Averages on Sales

9.8.1 Description

In this hands-on lab, you will calculate moving averages for customer sales using
SQL Server 2025’s windowing capabilities. Moving averages help identify short-
term trends and smooth out fluctuations in revenue over time. You’ll use the
AVG() function with a window frame (ROWS BETWEEN) to compute rolling revenue
insights.

9.8.2 Objectives

By the end of this exercise, you will be able to:

Use AVG() as a window function.
Define custom window frames to calculate moving averages.
Apply time-based logic using PARTITION BY and ORDER BY.

9.8.3 Prerequisites

SQL Server 2025 and SSMS 21.x installed.
AdventureWorks2022 database restored (from Exercise 1).
Familiarity with OVER, PARTITION BY, and basic aggregate functions.

9.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

9.8.4.1 Step 1: Set Up the Database Context

Start your session by selecting the appropriate database:

📌 This ensures you’re working with the correct sample data.

9.8.4.2 Step 2: Prepare Monthly Customer Revenue

Start by computing monthly totals for each customer. You’ll need this base to
compute moving averages over months.

📌 Each row now represents the revenue a customer generated in a particular
month.

9.8.4.3 Step 3: Apply Moving Average with a Window Frame

Now calculate a 3-month moving average using AVG() with a sliding window of
the current and previous 2 months.

📌 This query calculates the average of the current month and the two preceding
months—similar to a 3-month financial moving average.

USE AdventureWorks2022;

GO

SELECT

 CustomerID,

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

FROM Sales.SalesOrderHeader

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM');

WITH MonthlyRevenue AS (

 SELECT

 CustomerID,

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM')

)

SELECT

 CustomerID,

 OrderMonth,

 MonthlyTotal,

 AVG(MonthlyTotal) OVER (

 PARTITION BY CustomerID

 ORDER BY OrderMonth

 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW

) AS MovingAvg3Months

FROM MonthlyRevenue

ORDER BY CustomerID, OrderMonth;

Figure 9.1: Applying moving average with a window frame.

9.8.4.4 Step 4: Interpret the Moving Average

Look at how the MovingAvg3Months column, Figure 9.1, smooths out spikes or dips.
For the first two months per customer, the average may only include 1 or 2 values
(not a full 3-month window), but SQL Server handles this automatically.

9.8.4.5 Step 5: Filter a Specific Customer (Optional)

To see a clean trendline for one customer:

WITH MonthlyRevenue AS (

 SELECT

 CustomerID,

📌 This is useful for visual analysis, business health checks, or feeding into BI
dashboards.

9.8.5 Summary

In this exercise, you:

Aggregated monthly revenue per customer.
Applied the AVG() function with a rolling window to compute 3-month moving
averages.
Used ROWS BETWEEN to create a sliding analytic window.

✅ This pattern is valuable for understanding revenue stability, seasonality, and
forecasting performance over time.

9.9 Exercise 23: Analyze Customer Sales Percentiles

9.9.1 Description

This hands-on lab explores how to use percentile-based window functions in
SQL Server 2025. You’ll learn how to apply CUME_DIST() and PERCENT_RANK() to rank
customers based on their total purchases, providing insight into how each
customer performs relative to others. These functions are essential in loyalty
programs, revenue segmentation, and targeted marketing strategies.

9.9.2 Objectives

By the end of this exercise, you will be able to:

 FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth,

 SUM(TotalDue) AS MonthlyTotal

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM')

)

SELECT

 CustomerID,

 OrderMonth,

 MonthlyTotal,

 AVG(MonthlyTotal) OVER (

 PARTITION BY CustomerID

 ORDER BY OrderMonth

 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW

) AS MovingAvg3Months

FROM MonthlyRevenue

WHERE CustomerID = 11000

ORDER BY OrderMonth;

Calculate cumulative distribution and percentile rank over a dataset.
Apply percentile logic using window functions in SQL.
Identify customers in the top or bottom percentiles of revenue.

9.9.3 Prerequisites

SQL Server 2025 and SSMS 21.x.
AdventureWorks2022 database restored.
Basic familiarity with OVER(...), ORDER BY, and window functions.

9.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

9.9.4.1 Step 1: Set the Working Database

Begin by setting your database context to AdventureWorks2022:

📌 This ensures all subsequent queries run in the correct environment.

9.9.4.2 Step 2: Compute Total Revenue per Customer

Let’s first aggregate total revenue for each customer.

📌 This forms the base dataset used for percentile calculations.

9.9.4.3 Step 3: Apply CUME_DIST() and PERCENT_RANK()

Wrap the previous aggregation in a Common Table Expression (CTE) and apply
both percentile functions.

USE AdventureWorks2022;

GO

SELECT

 CustomerID,

 SUM(TotalDue) AS TotalRevenue

FROM Sales.SalesOrderHeader

GROUP BY CustomerID;

WITH CustomerRevenue AS (

 SELECT

 CustomerID,

📌 This returns each customer’s revenue along with two metrics:

CUME_DIST() → shows the proportion of customers with equal or lower
revenue.
PERCENT_RANK() → shows rank percentile, with lowest revenue = 0.0 and
highest = 1.0.

Figure 9.2: Applying CUME_DIST() and PERCENT_RANK().

 SUM(TotalDue) AS TotalRevenue

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID

)

SELECT

 CustomerID,

 TotalRevenue,

 CUME_DIST() OVER (ORDER BY TotalRevenue DESC) AS CumulativeDistribution,

 PERCENT_RANK() OVER (ORDER BY TotalRevenue DESC) AS PercentRank

FROM CustomerRevenue

ORDER BY TotalRevenue DESC;

9.9.4.4 Step 4: Interpret the Results

A customer with CUME_DIST() = 0.95 is among the top 5% by revenue.
A PERCENT_RANK() of 0.0 means the lowest-ranked customer, while 1.0 is the
highest.

Note: PERCENT_RANK() has one fewer steps than total rows, while CUME_DIST() includes
ties and equals 1 for the topmost record.

9.9.4.5 Step 5: Filter for High-Performing Customers (Optional)

You can now use a WHERE clause to get the top 10% customers by revenue:

📌 This is powerful for generating targeted sales reports or tiered loyalty
segments.

9.9.5 Summary

In this lab, you:

Aggregated customer revenue.
Used CUME_DIST() and PERCENT_RANK() to evaluate each customer’s percentile.
Identified top-performing customers for targeted analysis.

✅ Percentile functions allow businesses to contextualize performance within the
broader customer base—ideal for ranking, segmentation, and performance

WITH CustomerRevenue AS (

 SELECT

 CustomerID,

 SUM(TotalDue) AS TotalRevenue

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID

)

SELECT *

FROM (

 SELECT

 CustomerID,

 TotalRevenue,

 CUME_DIST() OVER (ORDER BY TotalRevenue DESC) AS CumulativeDistribution

 FROM CustomerRevenue

) AS RankedCustomers

WHERE CumulativeDistribution <= 0.10

ORDER BY TotalRevenue DESC;

targeting.

9.10 Conclusion

In this chapter, you learned how to leverage SQL Server 2025’s powerful window
functions and date/time capabilities to analyze trends, compute rankings, and
perform time-based analyses. These skills are essential for building advanced
analytics solutions, enabling you to derive insights from your data that drive
business decisions.

Section 5: Security, Access, and
Compliance

10 User Management and Access
Control
This chapter introduces essential SQL Server 2025 concepts for user
management and access control, including logins, users, roles, and schema-
level security. Understanding these concepts is critical for safeguarding sensitive
business data and ensuring that access aligns with organizational policies and
compliance standards.

10.1 Authentication vs Authorization

Authentication and authorization are two fundamental concepts in SQL Server
security.

Concept Description

Authentication Confirms who the user is (login identity)

Authorization Defines what they are allowed to do (permissions)

SQL Server uses logins for authentication and users/roles/permissions for
authorization.

10.2 Logins and Users

A login is a server-level identity that allows a user to connect to SQL Server. A
user is a database-level identity that maps to a login and defines what the user can
do within a specific database.

To create a login, you can use the CREATE LOGIN statement:

To create a user in a specific database that maps to the login:

CREATE LOGIN reporting_user WITH PASSWORD = 'StrongPassword123!';

USE SalesDB;

CREATE USER reporting_user FOR LOGIN reporting_user;

Now reporting_user can connect to the SalesDB database.

10.3 Fixed Server and Database Roles

SQL Server provides fixed server roles and fixed database roles that grant
predefined sets of permissions. These roles simplify user management by
grouping common permissions.

The following are some of the key fixed server roles:

Role Purpose

sysadmin Full control of SQL Server

securityadmin Manage logins and permissions

serveradmin Configure server-wide settings

These roles are specific to a database and control access to its objects:

Role Description

db_owner Full control over the database

db_datareader Can read all data from all user tables

db_datawriter Can modify (insert/update/delete) data

db_ddladmin Can run CREATE, ALTER, and DROP commands

To assign a role to a user, you can use the sp_addrolemember stored procedure:

You can combine roles to tailor permission sets.

-- Assign reader role

EXEC sp_addrolemember 'db_datareader', 'reporting_user';

10.4 Custom Roles and Role-Based Access Control
(RBAC)

You can create custom roles to define more granular access control.

We can create a custom role for business analysts that allows them to read data
from the Sales schema:

This allows all members of SalesAnalyst role to query all tables in the Sales schema.

10.5 Schema-Level Security

Schemas in SQL Server are containers for database objects. Permissions can be
applied at the schema level, which simplifies access management.

To grant a user access to all objects in a schema, you can use the GRANT statement at
the schema level:

Rather than granting table-level permissions one by one, this approach simplifies
access for business analysts.

10.6 Security Best Practices

Well-defined security practices are crucial for protecting sensitive data and
ensuring compliance with regulations. Here are some best practices:

Practice Reason

CREATE ROLE SalesAnalyst;

GRANT SELECT ON SCHEMA::Sales TO SalesAnalyst;

EXEC sp_addrolemember 'SalesAnalyst', 'reporting_user';

GRANT SELECT, INSERT, UPDATE ON SCHEMA::Sales TO SalesAnalyst;

Practice Reason

Use least privilege principle Prevents accidental or malicious
access

Use roles instead of user-specific grants Easier to audit and manage

Separate data readers from data writers Ensures role clarity and
auditability

Regularly review user access Keep access compliant with org
policies

Avoid using sa or sysadmin for daily tasks Reduces exposure and risks

10.7 Auditing Access

Auditing is a critical component of a secure SQL Server environment. By
monitoring and recording access and activity, organizations can detect
unauthorized actions, investigate incidents, and demonstrate compliance with
regulatory requirements. SQL Server provides several built-in tools and system
views to help administrators track who accessed what data and when.

To track and audit access:

Use SQL Server Audit (Enterprise)
Enable login auditing at server level
Query system views like sys.database_principals, sys.database_permissions,
sys.server_principals

10.8 Exercise 24: Create Analyst Role and Grant
Access

10.8.1 Description

In this exercise, you will practice implementing role-based access control
(RBAC) in SQL Server 2025 using T-SQL. You will create a new database,
define a custom database role named Analyst, and grant it read-only access to

selected tables. This is a fundamental step in enforcing principle of least
privilege and securing data access within business systems.

10.8.2 Objectives

By the end of this exercise, you will be able to:

Create a new SQL Server database.
Create a user and assign it to a custom database role.
Create a role and grant it appropriate read-only permissions.
Validate role-based access control using a login or impersonation.

10.8.3 Prerequisites

SQL Server 2025 and SSMS 21.x installed.
Permission to create databases and logins.
Basic familiarity with CREATE DATABASE, CREATE LOGIN, and GRANT.

10.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

10.8.4.1 Step 1: Create a New Database for Testing

Start by creating a clean database named SecureDataLab for this exercise.

📌 This isolates our RBAC test environment and avoids changes to production
databases.

10.8.4.2 Step 2: Create Sample Tables and Seed Data

Create a few tables that an analyst would typically query—like customers and
sales.

CREATE DATABASE SecureDataLab;

GO

USE SecureDataLab;

GO

CREATE TABLE Customers (

 CustomerID INT PRIMARY KEY,

📌 These simple tables simulate real business data an analyst might need.

10.8.4.3 Step 3: Create a Login and Map It to a Database User

Create a SQL Server login and map it to the SecureDataLab database as a user.

📌 This sets up the user that will be granted controlled access via a role.

10.8.4.4 Step 4: Create the Analyst Role and Assign Permissions

Now define the custom role Analyst and grant it read-only access to the tables.

 FullName NVARCHAR(100),

 Email NVARCHAR(100),

 Region NVARCHAR(50)

);

CREATE TABLE Orders (

 OrderID INT PRIMARY KEY,

 CustomerID INT FOREIGN KEY REFERENCES Customers(CustomerID),

 OrderDate DATE,

 Amount DECIMAL(10,2)

);

-- Insert sample data

INSERT INTO Customers VALUES

(1, 'Ahmad Smith', 'smith@ilmudata.id', 'East'),

(2, 'Laura Ave', 'ave@ilmudata.id', 'West');

INSERT INTO Orders VALUES

(101, 1, '2025-01-15', 1500.00),

(102, 2, '2025-02-10', 2300.00);

-- Create SQL login

CREATE LOGIN analyst_user WITH PASSWORD = 'StrongP@ssword123!';

GO

-- Map login to database user

USE SecureDataLab;

GO

CREATE USER analyst_user FOR LOGIN analyst_user;

-- Create custom role

CREATE ROLE Analyst;

GO

-- Grant SELECT permissions to role

GRANT SELECT ON Customers TO Analyst;

GRANT SELECT ON Orders TO Analyst;

GO

-- Add user to the role

EXEC sp_addrolemember 'Analyst', 'analyst_user';

📌 This ensures the analyst can read but not modify data. You can reuse this role
for other analysts in the future.

10.8.4.5 Step 5: Test Role Access (Optional via EXECUTE AS)

To test permissions from the analyst’s perspective:

📌 This helps verify that the user has only SELECT access as intended.

Figure 10.1: Error on inserting data.

10.8.5 Summary

In this hands-on lab, you:

-- Impersonate analyst_user

EXECUTE AS USER = 'analyst_user';

-- This should succeed

SELECT * FROM Customers;

-- This should fail (no INSERT permission)

INSERT INTO Customers VALUES (3, 'Unauthorized', 'hack@fake.com', 'North');

-- Revert session

REVERT;

Created a new database (SecureDataLab) for secure access testing.
Built customer and order tables with sample data.
Created a SQL login and mapped it to a database user.
Defined a custom Analyst role and granted it read-only access.
Tested permissions to ensure proper role enforcement.

✅ This exercise illustrates how to implement practical, secure, and reusable role-
based access control strategies using SQL Server 2025.

10.9 Exercise 25: Restrict Access by Schema

10.9.1 Description

In this exercise, you will practice managing access control at the schema level in
SQL Server 2025. You’ll create separate schemas for sensitive and general data,
assign different permissions, and restrict access to specific schemas using GRANT and
DENY. Schema-based access control helps manage logical separation of data and
simplifies security management in multi-user environments.

10.9.2 Objectives

By the end of this exercise, you will be able to:

Create and use custom schemas.
Assign ownership to schemas and manage access using GRANT and DENY.
Restrict user access based on schema-level permissions.

10.9.3 Prerequisites

SQL Server 2025 and SSMS 21.x installed.
SecureDataLab database created (see Exercise 24).
analyst_user login and user mapped to the database.
Familiarity with roles, users, and GRANT/DENY.

10.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

10.9.4.1 Step 1: Use the Existing Database

Ensure you are working within the SecureDataLab database:

📌 This keeps all security exercises contained in one place.

10.9.4.2 Step 2: Create New Schemas

Let’s define two schemas:

PublicData – for general-purpose access.
SensitiveData – for restricted access.

📌 Schemas act like containers or namespaces for tables, allowing grouped
permission management.

10.9.4.3 Step 3: Create Tables in Each Schema

Now add tables to the new schemas:

📌 This simulates a typical setup with public and sensitive business data.

10.9.4.4 Step 4: Grant Access to Public Schema Only

USE SecureDataLab;

GO

CREATE SCHEMA PublicData;

GO

CREATE SCHEMA SensitiveData;

GO

-- General access table

CREATE TABLE PublicData.SalesSummary (

 Year INT,

 Region NVARCHAR(50),

 TotalSales DECIMAL(12,2)

);

-- Restricted access table

CREATE TABLE SensitiveData.EmployeeSalaries (

 EmployeeID INT,

 FullName NVARCHAR(100),

 Salary DECIMAL(10,2)

);

-- Insert example data

INSERT INTO PublicData.SalesSummary VALUES (2025, 'East', 150000.00);

INSERT INTO SensitiveData.EmployeeSalaries VALUES (1, 'Ahmad Smith', 90000.00);

Grant read access on the PublicData schema to the Analyst role:

📌 This enables users in the Analyst role (e.g., analyst_user) to read all tables in the
PublicData schema.

10.9.4.5 Step 5: Explicitly Deny Access to Sensitive Schema

Deny access to the SensitiveData schema for the Analyst role:

📌 This ensures that even if a user has broad SELECT rights, they cannot access
sensitive tables.

10.9.4.6 Step 6: Test Access as Analyst User (Optional)

Impersonate the analyst to test access control:

📌 The SELECT on PublicData works, but the attempt on SensitiveData is denied—even
though both exist in the same database.

GRANT SELECT ON SCHEMA::PublicData TO Analyst;

DENY SELECT ON SCHEMA::SensitiveData TO Analyst;

-- Impersonate

EXECUTE AS USER = 'analyst_user';

-- Should succeed

SELECT * FROM PublicData.SalesSummary;

-- Should fail

SELECT * FROM SensitiveData.EmployeeSalaries;

-- Revert session

REVERT;

Figure 10.2: Error on selecting data.

10.9.5 Summary

In this exercise, you:

Created logical schemas for public and sensitive data.
Used GRANT and DENY to manage access at the schema level.
Enforced security boundaries using container-level permission control.

✅ Managing access by schema allows organizations to apply role-based access
rules with clarity and precision, reducing risks of unauthorized access and
simplifying permission maintenance.

10.10 Exercise 26: Revoke Permissions and Audit Role
Membership

10.10.1 Description

Security is not just about granting access — it’s equally important to revoke access
when no longer needed and audit who has which permissions. This hands-on lab
teaches how to revoke object-level permissions from a user or role and how to
inspect existing role memberships and permission assignments in SQL Server.

These skills are crucial for implementing the Principle of Least Privilege and
ensuring data security.

10.10.2 Objectives

By the end of this lab, you will be able to:

Revoke permissions from users and roles
Audit role membership using system views
Identify permission grants on objects
Use queries to document access control configuration

10.10.3 Prerequisites

SQL Server 2025
SQL Server Management Studio (SSMS) 21.x
A dedicated database for this exercise

10.10.4 Steps

Here’s a step-by-step guide to complete this exercise:

10.10.4.1 Step 1: Create a Dedicated Security Demo Database

We’ll start by creating a new database to isolate our permission configuration and
auditing.

✅ This ensures your practice won’t interfere with production or existing
configurations.

10.10.4.2 Step 2: Create Tables and Seed Data

Create a simple table to simulate sensitive data access.

CREATE DATABASE SecurityAuditDemo;

GO

USE SecurityAuditDemo;

GO

CREATE TABLE Sales (

 SaleId INT IDENTITY PRIMARY KEY,

 ProductName NVARCHAR(100),

✅ This is our target object for permission testing.

10.10.4.3 Step 3: Create Users and Assign Permissions

We’ll create a test login, database user, and assign SELECT permission.

✅ At this point, the reportuser has access to query the Sales table.

Figure 10.3: Login as reportuser to SQL Server.

Try to login as reportuser and run:

 Amount MONEY

);

INSERT INTO Sales (ProductName, Amount)

VALUES ('Widget A', 1500), ('Widget B', 2400), ('Widget C', 720);

GO

CREATE LOGIN reportuser WITH PASSWORD = 'ComplexPass123!';

CREATE USER reportuser FOR LOGIN reportuser;

GRANT SELECT ON dbo.Sales TO reportuser;

GO

SELECT * FROM dbo.Sales;

10.10.4.4 Step 4: Revoke the SELECT Permission

Now simulate revoking access, such as when a user changes role or leaves the
team.

✅ This removes the permission without deleting the user.

Try running the same SELECT query again as reportuser:

Figure 10.4: Error on selecting data while signing as reportuser to SQL
Server.

10.10.4.5 Step 5: Create a Custom Role and Grant Permission

Create a role for analysts and assign permission at the role level.

REVOKE SELECT ON dbo.Sales FROM reportuser;

GO

SELECT * FROM dbo.Sales;

CREATE ROLE analyst_role;

EXEC sp_addrolemember 'analyst_role', 'reportuser';

GRANT SELECT ON dbo.Sales TO analyst_role;

GO

✅ This demonstrates permission via roles rather than direct user-level grants.

10.10.4.6 Step 6: Audit Role Membership

Let’s now check which users belong to which roles.

✅ This is useful for documenting role-based access control (RBAC).

10.10.4.7 Step 7: Audit Object-Level Permissions

You can check what permissions each user or role has using this query:

✅ This helps you monitor what access is currently in place.

SELECT

 r.name AS RoleName,

 m.name AS MemberName

FROM

 sys.database_role_members drm

JOIN

 sys.database_principals r ON drm.role_principal_id = r.principal_id

JOIN

 sys.database_principals m ON drm.member_principal_id = m.principal_id;

SELECT

 dp.name AS PrincipalName,

 dp.type_desc AS PrincipalType,

 o.name AS ObjectName,

 p.permission_name,

 p.state_desc AS PermissionState

FROM

 sys.database_permissions p

JOIN

 sys.objects o ON p.major_id = o.object_id

JOIN

 sys.database_principals dp ON p.grantee_principal_id = dp.principal_id

WHERE

 o.type = 'U'; -- U = User table

Figure 10.5: Checking permissions for each user.

10.10.5 Summary

In this hands-on lab, you:

Created a security sandbox with a simple table
Granted and revoked permissions using GRANT and REVOKE
Created a custom role and added a user to it
Audited role membership and permission assignments using system views

✅ These are foundational skills for securing a SQL Server environment,
maintaining compliance, and managing user access lifecycles.

10.11 Conclusion

In this chapter, you learned how to manage user access and permissions in SQL
Server 2025. You explored concepts such as logins, users, roles, and schema-level
security. You also practiced creating custom roles, granting permissions, and
auditing access control configurations. These skills are essential for ensuring data
security, compliance with organizational policies, and effective role-based access
control in SQL Server environments.

11 Row-Level Security and Tenant
Isolation
In a multi-user or multi-tenant system, data isolation is critical. SQL Server 2025
supports Row-Level Security (RLS)—a powerful feature that filters records
dynamically based on the user’s identity or session context. This chapter covers
how to implement RLS for tenant isolation and fine-grained access control,
ensuring each user only sees the data they are authorized to access.

11.1 What Is Row-Level Security (RLS)?

Row-Level Security enables automatic filtering of rows based on rules tied to
the current user’s context—without rewriting the queries. It adds a security layer
directly at the database level.

Why is RLS important?

Enforces data privacy at the lowest level.
Centralizes filtering logic, reducing app-side complexity.
Supports multi-tenant SaaS models with shared tables.
Helps meet compliance and audit requirements (e.g., GDPR, HIPAA).

11.2 RLS Architecture in SQL Server

RLS works by defining a security predicate function that returns a table of rows
the user is allowed to see. This function is then applied through a security policy
to one or more tables.

11.2.1 How RLS Works Internally

When a query is executed against a table with RLS enabled, SQL Server
automatically appends the security predicate to the query’s WHERE clause. This
happens transparently—users and applications do not need to change their queries.
The filtering logic is enforced at the storage engine level, ensuring that
unauthorized rows are never returned, even if users attempt to bypass application
logic.

11.2.2 Types of Security Predicates

There are two main types of security predicates in SQL Server RLS:

FILTER Predicate: Restricts which rows are visible to users. This is the
most common use case for tenant isolation.
BLOCK Predicate: Prevents unauthorized users from performing certain
actions (like UPDATE or DELETE) on rows they should not access.

You can combine both predicate types for more granular control, such as allowing
users to see some rows but not modify them.

11.2.3 Security Policy Management

A security policy is a database object that binds one or more predicate functions to
tables. Policies can be enabled or disabled without dropping them, making it easy
to test or roll back RLS configurations. Policies can also be applied to multiple
tables, allowing for consistent enforcement across your data model.

11.2.4 Auditing RLS Activity

Because RLS operates at the database level, all access attempts—successful or
blocked—are logged in SQL Server’s audit logs. This provides a reliable audit
trail for compliance and security reviews. You can further enhance auditing by
combining RLS with SQL Server Audit or Extended Events to track access
patterns and detect suspicious activity.

11.3 Example Scenario: Tenant-Based Filtering

Assuming we have a shared Orders table that contains orders from multiple tenants,
we can use RLS to ensure that each tenant only sees their own orders.

Each tenant’s data is distinguished by the TenantID column.

CREATE TABLE Sales.Orders (

 OrderID INT PRIMARY KEY,

 TenantID INT,

 CustomerID INT,

 TotalAmount DECIMAL(10,2),

 OrderDate DATE

);

11.4 Step-by-Step: Implementing RLS for Tenant
Isolation

Follow these steps to implement Row-Level Security for tenant isolation in SQL
Server:

1. Step 1: Enable SESSION_CONTEXT for Tenant ID

The application must set the current tenant using:

2. Step 2: Create Predicate Function

Create a security predicate function that checks the TenantID against the session
context:

This function compares the current row’s TenantID to the session’s context value.

3. Step 3: Apply Security Policy to Table

We need to create a security policy that uses this predicate function:

This policy ensures that any query against the Sales.Orders table will automatically
filter rows based on the current tenant’s context.

4. Step 4: Test the Filtering

We can now test the RLS implementation by querying the Orders table:

EXEC sp_set_session_context @key = N'TenantID', @value = 101;

CREATE FUNCTION Security.fn_TenantPredicate(@TenantID INT)

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN

 SELECT 1 AS Result

 WHERE @TenantID = CAST(SESSION_CONTEXT(N'TenantID') AS INT);

CREATE SECURITY POLICY Security.TenantPolicy

ADD FILTER PREDICATE Security.fn_TenantPredicate(TenantID)

ON Sales.Orders

WITH (STATE = ON);

This query will only return rows where TenantID = 101, effectively isolating the
tenant’s data.

11.5 RLS for User-Specific Access

RLS can also be used for user identity-based filtering, such as allowing users to
only see their own records.

For instance, consider an EmployeeDocuments table where each employee can only
access their own documents:

To filter documents based on the logged-in user, we can create a predicate function
that checks the EmployeeID against the current user’s login:

Use SYSTEM_USER or ORIGINAL_LOGIN() to get current login name.

11.6 Best Practices for RLS

When implementing Row-Level Security, consider these best practices:

Practice Benefit

-- Set current tenant to 101

EXEC sp_set_session_context @key = N'TenantID', @value = 101;

-- Run unrestricted query

SELECT * FROM Sales.Orders;

CREATE TABLE HR.EmployeeDocuments (

 DocID INT,

 EmployeeID INT,

 DocumentName NVARCHAR(100)

);

CREATE FUNCTION HR.fn_UserAccessPredicate(@EmployeeID INT)

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN

 SELECT 1 AS Result

 WHERE @EmployeeID = (

 SELECT EmployeeID FROM HR.Users WHERE LoginName = SYSTEM_USER

);

Practice Benefit

Use SESSION_CONTEXT() for multi-tenant apps Better than parsing
usernames

Avoid hardcoding user logic in app Centralizes logic in DB

Keep security predicate functions simple Required for performance
and indexing

Use separate security schemas for RLS logic Improves clarity and
modularity

Combine with views or stored procedures for
added control

Simplifies reporting and
access

11.7 RLS Limitations to Note

For all its power, RLS has some limitations:

Limitation Notes

No support for TEXT, NTEXT, IMAGE columns Must be excluded

Not compatible with INSTEAD OF triggers Will be blocked

Applies only to SELECT, UPDATE,
DELETE

Not enforced on INSERT
logic

Admins (sysadmin) are exempt They bypass RLS
automatically

11.8 Exercise 27: Enforce Tenant Filtering with RLS

11.8.1 Description

Row-Level Security (RLS) allows SQL Server to restrict access to rows in a table
based on the executing user’s context. In this exercise, you’ll simulate a multi-
tenant SaaS environment by applying RLS so each tenant can access only their

own data. This is especially important for applications requiring strict data
isolation without duplicating schema or database logic.

11.8.2 Objectives

By completing this exercise, you will:

Understand the purpose and implementation of Row-Level Security.
Learn to create and bind a security policy to filter data.
Implement SESSION_CONTEXT() to set the current tenant at runtime.

11.8.3 Prerequisites

SQL Server 2025 and SSMS 21.x installed.
User has sysadmin or db_owner rights on the server.
Basic familiarity with SQL Server logins, users, and SESSION_CONTEXT().

11.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

11.8.4.1 Step 1: Create a New Database for RLS Demo

Create a clean database named RlsTenantLab.

📌 This isolates our RLS demonstration from other labs and databases.

11.8.4.2 Step 2: Create a Table with Tenant Data

Create a CustomerOrders table that includes a TenantId column used to filter data.

CREATE DATABASE RlsTenantLab;

GO

USE RlsTenantLab;

GO

CREATE TABLE CustomerOrders (

 OrderID INT IDENTITY PRIMARY KEY,

 TenantId INT NOT NULL,

 CustomerName NVARCHAR(100),

 OrderDate DATE,

 Amount DECIMAL(10,2)

);

📌 Each row is tagged with a TenantId, which determines which tenant “owns” the
record.

11.8.4.3 Step 3: Insert Sample Tenant Data

Insert rows for two different tenants:

📌 This simulates two tenants: Tenant 1 and Tenant 2.

11.8.4.4 Step 4: Create a Predicate Function for RLS

Create an inline table-valued function to check if the current row’s TenantId
matches the user’s context.

📌 This function uses SESSION_CONTEXT('TenantId') which you’ll set dynamically in
your app or session.

11.8.4.5 Step 5: Create a Security Policy Using the Predicate

Bind the filter function to the CustomerOrders table:

📌 This policy ensures that whenever a query is run against CustomerOrders, only
matching rows for the current TenantId are returned.

11.8.4.6 Step 6: Test the Policy with Different Tenant Contexts

INSERT INTO CustomerOrders (TenantId, CustomerName, OrderDate, Amount)

VALUES

(1, 'Tata Industries', '2025-07-01', 1200.00),

(1, 'Tata Industries', '2025-07-15', 3000.00),

(2, 'Infosys Ltd', '2025-07-02', 1500.00),

(2, 'Infosys Ltd', '2025-07-20', 500.00);

CREATE FUNCTION fn_tenant_filter(@TenantId INT)

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN SELECT 1 AS result

WHERE @TenantId = CAST(SESSION_CONTEXT(N'TenantId') AS INT);

CREATE SECURITY POLICY TenantFilterPolicy

ADD FILTER PREDICATE dbo.fn_tenant_filter(TenantId)

ON dbo.CustomerOrders

WITH (STATE = ON);

Set the tenant context using SESSION_CONTEXT, then query the data.

📌 The RLS filter activates automatically. If the context is not set or doesn’t
match, zero rows are returned.

-- Simulate Tenant 1 session

EXEC sp_set_session_context @key = N'TenantId', @value = 1;

SELECT * FROM CustomerOrders;

-- Returns only rows for TenantId = 1

-- Simulate Tenant 2 session

EXEC sp_set_session_context @key = N'TenantId', @value = 2;

SELECT * FROM CustomerOrders;

-- Returns only rows for TenantId = 2

Figure 11.1: Quering by tenant Id.

11.8.4.7 Step 7: Optional – Add a Role and User for Tenant Access

You can simulate an app login per tenant and use a login trigger or app logic to set
the SESSION_CONTEXT.

Then log in as Tenant1User, execute:

-- Create login and user for Tenant1

CREATE LOGIN Tenant1User WITH PASSWORD = 'StrongP@ssword123!';

CREATE USER Tenant1User FOR LOGIN Tenant1User;

GRANT SELECT ON CustomerOrders TO Tenant1User;

📌 This setup simulates app-level row-level access without changing application
logic.

Figure 11.2: Login as Tenant1User and then perform a query.

11.8.5 Summary

In this exercise, you:

Created a predicate function and bound it via a security policy.
Used SESSION_CONTEXT() to control visibility by tenant.
Enforced tenant-level filtering without altering query logic.

✅ Row-Level Security (RLS) is a powerful feature for tenant isolation and is
critical for modern SaaS, multi-tenant apps using SQL Server.

11.9 Exercise 28: Validate Isolation Using Test
Accounts

11.9.1 Description

EXEC sp_set_session_context @key = N'TenantId', @value = 1;

SELECT * FROM CustomerOrders;

After applying Row-Level Security (RLS), it’s essential to verify tenant isolation
by simulating access from different users. In this lab, you’ll create test user
accounts that represent different tenants and validate that each user only sees their
own data—even when using the same queries.

11.9.2 Objectives

By the end of this lab, you will:

Create separate users for different tenants.
Use login sessions to simulate application users.
Confirm that RLS policies enforce isolation without needing to alter
application code.

11.9.3 Prerequisites

Completed Exercise 27 (Enforce Tenant Filtering with RLS).
Database RlsTenantLab with RLS already applied.
SQL Server 2025 and SSMS 21.x installed.
Login privileges to create users, roles, and set session context.

11.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

11.9.4.1 Step 1: Reuse or Confirm Setup from Exercise

Ensure you’re using the same database and that the CustomerOrders table,
fn_tenant_filter() function, and TenantFilterPolicy are already present and active.

📌 If the policy or function is missing, complete Exercise 26 before continuing.

11.9.4.2 Step 2: Create Test Logins and Users for Tenants

USE RlsTenantLab;

GO

-- Confirm table

SELECT * FROM sys.tables WHERE name = 'CustomerOrders';

-- Confirm security policy

SELECT * FROM sys.security_policies WHERE name = 'TenantFilterPolicy';

Create one SQL login and user per tenant. Each will have read-only access to the
table.

📌 These users simulate tenant accounts connecting to the database from an
external app or reporting tool.

11.9.4.3 Step 3: Create a Logon Trigger to Set Tenant Context

Use a logon trigger to automatically set the correct TenantId in the session context
based on login.

📌 This ensures each tenant automatically gets the correct TenantId set during
login.

11.9.4.4 Step 4: Test Isolation via SSMS Query Windows

Open two SSMS sessions with different logins and test each account’s visibility.

Session A — Login as Tenant1User1

-- Tenant 1

CREATE LOGIN Tenant1User1 WITH PASSWORD = 'Tenant1Pass!';

CREATE USER Tenant1User1 FOR LOGIN Tenant1User1;

GRANT SELECT ON dbo.CustomerOrders TO Tenant1User1;

-- Tenant 2

CREATE LOGIN Tenant2User1 WITH PASSWORD = 'Tenant2Pass!';

CREATE USER Tenant2User1 FOR LOGIN Tenant2User1;

GRANT SELECT ON dbo.CustomerOrders TO Tenant2User1;

CREATE OR ALTER TRIGGER trg_SetTenantContext

ON ALL SERVER

FOR LOGON

AS

BEGIN

 DECLARE @tenantId INT;

 IF ORIGINAL_LOGIN() = 'Tenant1User1'

 SET @tenantId = 1;

 ELSE IF ORIGINAL_LOGIN() = 'Tenant2User1'

 SET @tenantId = 2;

 EXECUTE AS LOGIN = ORIGINAL_LOGIN();

 EXEC sp_set_session_context @key = N'TenantId', @value = @tenantId;

 REVERT;

END;

-- Connect using SQL login: Tenant1User1

USE RlsTenantLab;

SELECT * FROM dbo.CustomerOrders;

Expected output: Only orders where TenantId = 1.

Figure 11.3: Login as Tenant1User1 and then perform a query.

Session B — Login as Tenant2User1

Expected output: Only orders where TenantId = 2.

-- Connect using SQL login: Tenant2User1

USE RlsTenantLab;

SELECT * FROM dbo.CustomerOrders;

Figure 11.4: Login as Tenant2User1 and then perform a query.

📌 Notice that both users run the same query but only see their own rows due to
RLS.

11.9.4.5 Step 5: Try Bypassing RLS (Readonly Context Prevents Override)

By default, sp_set_session_context can override the value set by the logon trigger. To
prevent this, set the context value as readonly in the logon trigger so it cannot be
changed during the session.

Update your logon trigger as follows:

CREATE OR ALTER TRIGGER trg_SetTenantContext

ON ALL SERVER

FOR LOGON

AS

BEGIN

 DECLARE @tenantId INT;

 IF ORIGINAL_LOGIN() = 'Tenant1User1'

 SET @tenantId = 1;

 ELSE IF ORIGINAL_LOGIN() = 'Tenant2User1'

 SET @tenantId = 2;

 EXECUTE AS LOGIN = ORIGINAL_LOGIN();

 EXEC sp_set_session_context @key = N'TenantId', @value = @tenantId, @readonly = 1;

 REVERT;

END;

This ensures that once the tenant context is set, it cannot be changed during the
session.

Now, attempts to override the context will fail:

Expected: The session context remains restricted to the login-defined tenant, and
the override attempt will result in an error.

Figure 11.5: Error on overriding Tenant 2 to Tenant 1.

11.9.5 Summary

In this exercise, you:

Created separate users representing tenants.
Used a logon trigger to automatically assign tenant context.
Verified that Row-Level Security restricts access correctly based on login
identity.

✅ RLS enforcement is transparent to application users and ensures secure,
tenant-isolated access to shared data in SQL Server.

;

-- Attempt to impersonate Tenant2 as Tenant1User1 (run as Tenant1User1)

EXEC sp_set_session_context @key = N'TenantId', @value = 2;

SELECT * FROM dbo.CustomerOrders;

11.10 Exercise 29: Audit RLS Access and Log Session
Context Activity

11.10.1 Description

After implementing Row-Level Security (RLS), it’s important to verify and
monitor how users access sensitive or tenant-specific rows. In this lab, you will
configure a mechanism to log every access attempt to a sensitive table by
capturing the session context. This simulates an audit log to review who accessed
which data—useful for compliance, debugging, or multi-tenant systems.

11.10.2 Objectives

By the end of this hands-on lab, you will be able to:

Create a logging table to capture RLS access
Use SQL Server’s SESSION_CONTEXT for tenant/user tracking
Implement triggers to log access to RLS-protected tables
Query and interpret the access logs

11.10.3 Prerequisites

SQL Server 2025
SQL Server Management Studio (SSMS) 21.x
A new dedicated database for this exercise (to avoid affecting production or
shared schemas)

11.10.4 Steps

Here’s a step-by-step guide to complete this exercise:

11.10.4.1 Step 1: Create a New Database

Let’s begin by creating a clean environment for testing and logging.

CREATE DATABASE RLS_AuditLab;

GO

USE RLS_AuditLab;

GO

✅ This isolates our test data and ensures no interference with other exercises.

11.10.4.2 Step 2: Create Tenant Data Table and Sample Users

Create a basic Invoices table with a TenantId.

✅ This simulates tenant-partitioned data.

11.10.4.3 Step 3: Add Security Predicate for RLS

Define a function and security policy for tenant isolation.

✅ This ensures users can only see data matching their session’s tenant ID.

11.10.4.4 Step 4: Create a Logging Table

Now create a table to capture access attempts.

CREATE TABLE Invoices (

 InvoiceId INT PRIMARY KEY IDENTITY,

 TenantId INT,

 CustomerName NVARCHAR(100),

 Amount MONEY

);

GO

INSERT INTO Invoices (TenantId, CustomerName, Amount)

VALUES (1, 'Cecep', 1200.00),

 (1, 'Bambang', 890.00),

 (2, 'Ita', 455.50),

 (2, 'Diana', 310.75);

GO

CREATE FUNCTION fn_tenant_filter(@TenantId INT)

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN SELECT 1 AS result

WHERE @TenantId = CAST(SESSION_CONTEXT(N'TenantId') AS INT);

GO

CREATE SECURITY POLICY InvoiceTenantFilter

ADD FILTER PREDICATE dbo.fn_tenant_filter(TenantId)

ON dbo.Invoices

WITH (STATE = ON);

GO

CREATE TABLE InvoiceAccessLog (

 LogId INT IDENTITY PRIMARY KEY,

 TenantId INT,

✅ This will be used by a trigger to log activity transparently.

11.10.4.5 Step 5: Create AFTER INSERT Trigger

We’ll simulate access logging by capturing INSERT operations.

✅ This will log all SELECTs made to the table.

11.10.4.6 Step 6: Simulate Tenant Access

Let’s simulate different users accessing the system.

✅ Each access should insert a record into InvoiceAccessLog.

11.10.4.7 Step 7: Review Audit Logs

Now review the contents of the audit table.

 Username NVARCHAR(100),

 AccessedAt DATETIME2 DEFAULT SYSUTCDATETIME(),

 QueryType NVARCHAR(10)

);

GO

-- SQL Server does not support SELECT triggers; use an AFTER INSERT trigger for demonstrati
CREATE TRIGGER trg_log_invoice_access

ON Invoices

AFTER INSERT

AS

BEGIN

 DECLARE @tenantId INT = CAST(SESSION_CONTEXT(N'TenantId') AS INT);

 DECLARE @username NVARCHAR(100) = SYSTEM_USER;

 INSERT INTO InvoiceAccessLog (TenantId, Username, QueryType)

 SELECT DISTINCT @tenantId, @username, 'INSERT'

 FROM inserted;

END;

GO

-- Simulate access as Tenant 1

EXEC sp_set_session_context 'TenantId', 1;

INSERT INTO Invoices (TenantId, CustomerName, Amount) VALUES (1, 'Tenant1 Customer', 100.00

-- Simulate access as Tenant 2

EXEC sp_set_session_context 'TenantId', 2;

INSERT INTO Invoices (TenantId, CustomerName, Amount) VALUES (2, 'Tenant2 Customer', 200.00

SELECT * FROM InvoiceAccessLog;

✅ You should see which tenant accessed the data, at what time, and what
operation was performed.

Figure 11.6: Showing audit log from InvoiceAccessLog table.

11.10.5 Summary

In this exercise, you:

Created an RLS-protected table using SESSION_CONTEXT
Built an audit mechanism to capture access events
Simulated tenants accessing their own data
Logged and reviewed access history using a custom log table

✅ This approach enhances observability and compliance, particularly for multi-
tenant or regulated systems.

11.11 Conclusion

In this chapter, you learned how to implement Row-Level Security (RLS) in SQL
Server 2025 to enforce tenant isolation and fine-grained access control. You
explored the architecture of RLS, created security predicates, and applied them
through security policies. Additionally, you practiced auditing access to ensure
compliance and security in multi-tenant applications.

12 Masking, Encryption, and Auditing
In today’s regulatory environment, safeguarding sensitive business data—such as
personal identifiers, financials, and healthcare records—is not optional. This
chapter explores key SQL Server 2025 features for data privacy and protection,
including Dynamic Data Masking (DDM), encryption options, and auditing
access to sYou’ll create a table with sensitive data, then use the Always
Encrypted Wizard in SSMS 21.x to encrypt existing columns. This approach is
more practical and user-friendly than manual key management.nsitive data.

12.1 Dynamic Data Masking (DDM)

Dynamic Data Masking limits sensitive data exposure by masking it in query
results, while keeping it unchanged in storage.

Ideal for restricting sensitive columns (e.g., SSNs, emails) from non-privileged
users.

Here’s how to apply DDM to a column:

The following functions are commonly used for masking:

Function Example Column Masked Output

default() Salary → 0 Numeric/string
fallback

email() jane@corp.com → jXXX@XXXX.com

partial() partial(1,"XXXX",1) → shows start/end only

random()
For numeric data: masks with random
values

ALTER TABLE Employees

ALTER COLUMN Email ADD MASKED WITH (FUNCTION = 'email()');

We can create a table with masked columns like this:

Masking is applied at query time for users without UNMASK permission.

To allow a user to see masked data, you can grant them the UNMASK permission:

Use DDM to protect sensitive data while allowing users to work with the data they
need without exposing sensitive information.

12.2 Encryption Options

SQL Server supports multiple encryption models for securing data at rest, in
transit, and in use.

12.2.1 Transparent Data Encryption (TDE)

Encrypts the entire database at the file level, including backups and transaction
logs.

We can enable TDE with the following steps:

CREATE TABLE Customers (

 CustomerID INT PRIMARY KEY,

 FullName NVARCHAR(100),

 Email NVARCHAR(100) MASKED WITH (FUNCTION = 'email()'),

 CreditCard CHAR(16) MASKED WITH (FUNCTION = 'partial(4,"XXXX-XXXX-XXXX-",4)')
);

-- Allow access to see original data

GRANT UNMASK TO auditor_user;

-- Revoke access

REVOKE UNMASK FROM analyst_user;

-- Step 1: Create a master key

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'YourStrongPassword!';

-- Step 2: Create certificate

CREATE CERTIFICATE MyTDECert WITH SUBJECT = 'TDE Cert';

-- Step 3: Create encryption key and enable TDE

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES_256

ENCRYPTION BY SERVER CERTIFICATE MyTDECert;

ALTER DATABASE SalesDB SET ENCRYPTION ON;

These commands create a master key, a certificate, and then enable TDE on the
SalesDB database.

12.2.2 Always Encrypted

Encrypts specific columns at the client-side, so data is never visible in plaintext to
SQL Server.

Ideal for highly sensitive values like SSNs, credit cards.

Requires client drivers and key management.
Columns must be defined as encrypted during creation.

12.2.3 Cell-Level Encryption (CLE)

Encrypts individual column values using functions like EncryptByKey and
DecryptByKey.

Here’s how to encrypt a credit card number:

12.3 Auditing Access to Sensitive Data

SQL Server provides native tools to track and log access to sensitive tables,
columns, or actions.

SQL Server Audit allows you to create server-level and database-level audits to
track specific actions, such as:

-- Create symmetric key

CREATE SYMMETRIC KEY CreditCardKey

WITH ALGORITHM = AES_256

ENCRYPTION BY PASSWORD = 'KeyPassword123!';

-- Open and use the key

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY PASSWORD = 'KeyPassword123!';

SELECT

 CONVERT(varchar, DecryptByKey(EncryptedCreditCard)) AS CreditCard

FROM Customers;

-- Close key

CLOSE SYMMETRIC KEY CreditCardKey;

SELECT on sensitive columns
INSERT/UPDATE on critical tables
Login/logout events

You can create an audit and then define a database audit specification to capture
specific actions:

This setup captures all SELECT operations on the Customers table and logs them to the
specified audit file.

You can also filter by user roles or specific actions.

You can query the audit logs using the sys.fn_get_audit_file function:

12.4 Best Practices for Data Protection

The following best practices can help ensure effective data protection in SQL
Server:

Practice Why It Matters

Use DDM for casual data hiding Easy to implement, low impact

Use Always Encrypted for PII/PHI Data never exposed to DB or admins

Use TDE for broad protection Transparent protection of entire database

-- Create server audit

CREATE SERVER AUDIT Audit_SensitiveData

TO FILE (FILEPATH = 'C:\AuditLogs\', MAXSIZE = 10 MB);

-- Enable the audit

ALTER SERVER AUDIT Audit_SensitiveData WITH (STATE = ON);

-- Create database audit specification

CREATE DATABASE AUDIT SPECIFICATION Audit_PII_Reads

FOR SERVER AUDIT Audit_SensitiveData

ADD (SELECT ON OBJECT::dbo.Customers BY public);

-- Enable it

ALTER DATABASE AUDIT SPECIFICATION Audit_PII_Reads WITH (STATE = ON);

SELECT *

FROM sys.fn_get_audit_file('C:\AuditLogs*.sqlaudit', DEFAULT, DEFAULT);

Practice Why It Matters

Limit UNMASK and CONTROL grants Enforce least privilege

Enable auditing on sensitive objects For compliance and breach detection

12.5 Exercise 30: Mask Email and Phone Fields in
Query Output

12.5.1 Description

In this exercise, you will explore Dynamic Data Masking (DDM), a feature in
SQL Server that helps protect sensitive information such as email addresses and
phone numbers by obfuscating data in query results. This is especially useful in
scenarios where users should not see full personal data—like junior analysts or
customer support staff.

You’ll define masking rules directly in the schema, control who sees unmasked
data, and test the impact through different users.

12.5.2 Objectives

By the end of this lab, you will be able to:

Create a table with sensitive columns.
Apply built-in DDM functions (email, partial, default) to mask data.
Verify masked output for standard users.
Grant unmask privileges to view actual data.

12.5.3 Prerequisites

SQL Server 2025 instance with SSMS 21.x.
Permission to create databases, users, and apply masking rules.

12.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

12.5.4.1 Step 1: Create a New Database for the Lab

Let’s begin by creating a new test database called DataMaskingLab.

📌 This database will hold our customer table and test users.

12.5.4.2 Step 2: Create a Table with Sensitive Fields

Now define a Customers table with columns for name, email, and phone. We’ll apply
masks to email and phone fields using DDM.

📌 The email() mask hides the username part; partial() keeps the first and last 2
characters visible in phone numbers.

12.5.4.3 Step 3: Insert Sample Data

Next, insert several rows with full data.

12.5.4.4 Step 4: Query the Data as Admin

Check the data from your current admin context. You’ll see the full values.

Expected result as shown below:

CREATE DATABASE DataMaskingLab;

GO

USE DataMaskingLab;

GO

CREATE TABLE Customers (

 CustomerId INT IDENTITY PRIMARY KEY,

 FullName NVARCHAR(100),

 Email NVARCHAR(100) MASKED WITH (FUNCTION = 'email()'),

 PhoneNumber NVARCHAR(20) MASKED WITH (FUNCTION = 'partial(2,"XXXXXXX",2)')

);

INSERT INTO Customers (FullName, Email, PhoneNumber)

VALUES

('Priya Sharma', 'priya.sharma@ilmudata.id', '08123456789'),

('Wei Zhang', 'wei.zhang@ilmudata.id', '08561234567'),

('Ananya Gupta', 'ananya.gupta@ilmudata.id', '08781239876');

SELECT * FROM Customers;

Figure 12.1: Showing data from Customers table.

12.5.4.5 Step 5: Create a Limited Access User

Create a new login and user that will query the data without unmasking rights.

📌 The new user can query the table, but sensitive fields should be masked.

12.5.4.6 Step 6: Open a New Session as ReadOnlyUser

In SSMS, open a new query window using login:

Username: ReadOnlyUser
Password: ReadOnlyPass!

Run:

Expected masked output as shown below:

CREATE LOGIN ReadOnlyUser WITH PASSWORD = 'ReadOnlyPass!';

CREATE USER ReadOnlyUser FOR LOGIN ReadOnlyUser;

GRANT SELECT ON Customers TO ReadOnlyUser;

USE DataMaskingLab;

SELECT * FROM Customers;

Figure 12.2: Showing masking data.

12.5.4.7 Step 7: Grant UNMASK Permission

Return to the admin session and grant the user permission to see full data.

Re-run the query in the other window logged in as ReadOnlyUser.

Now the user will see unmasked data, same as the admin.

Figure 12.3: Showing unmasked data from Customers table.

12.5.5 Summary

In this hands-on lab, you:

GRANT UNMASK TO ReadOnlyUser;

Created a table with masked email and phone fields.
Used Dynamic Data Masking (DDM) to obscure output without changing the
data.
Simulated masked and unmasked access for different users.

✅ DDM allows for secure access control with minimal application logic and is
perfect for compliance with data privacy regulations.

12.6 Exercise 31: Encrypt Sensitive Data Using Always
Encrypted

12.6.1 Description

This exercise introduces Always Encrypted, a feature in SQL Server that protects
sensitive data like credit card numbers or national IDs at rest, in transit, and in
use. The encryption and decryption are handled on the client side—so SQL Server
itself can’t view the plaintext data.

You’ll create a table with sensitive data, then use the Always Encrypted Wizard
in SSMS 21.x to encrypt existing columns. This approach is more practical and
user-friendly than manual key management.

12.6.2 Objectives

By the end of this lab, you will:

Create a table with sensitive data
Use the Always Encrypted Wizard in SSMS 21.x to encrypt columns
Configure Column Master Key (CMK) and Column Encryption Key (CEK)
automatically
Test querying encrypted data with column encryption enabled/disabled
Understand limitations when querying encrypted columns

12.6.3 Prerequisites

SQL Server 2019 or later and SSMS 21.x (Always Encrypted UI support
required)
Windows environment (for Windows Certificate Store)
Administrative privileges on the local machine

12.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

12.6.4.1 Step 1: Create a New Database and Table

Start by creating a new lab database and a table with sensitive data:

12.6.4.2 Step 2: Insert Sample Data

Insert some test data that we’ll encrypt later:

Verify the data was inserted:

You should see the full values in the NationalID and CreditCardNumber columns.

12.6.4.3 Step 3: Launch the Always Encrypted Wizard

1. In Object Explorer, expand AlwaysEncryptedLab database so that you can see the
tables

2. Right-click on the table name Customers and select menu Always Encrypted Wizard
3. The Always Encrypted Wizard will open

CREATE DATABASE AlwaysEncryptedLab;

GO

USE AlwaysEncryptedLab;

GO

-- Create table with sensitive data (unencrypted initially)

CREATE TABLE Customers (

 CustomerId INT IDENTITY PRIMARY KEY,

 FullName NVARCHAR(100),

 Email NVARCHAR(100),

 NationalID NVARCHAR(20),

 CreditCardNumber NVARCHAR(20),

 Salary DECIMAL(10,2)

);

INSERT INTO Customers (FullName, Email, NationalID, CreditCardNumber, Salary)

VALUES

('Thariq Akbar', 'thariq.akbar@ilmudata.id', '1234567890123456', '4532-1234-5678-9012', 750
('Zahra Zhafirah', 'zahra.zhafirah@ilmudata.id', '9876543210987654', '5678-9012-3456-7890',
('Ananda Putra', 'ananda.putra@ilmudata.id', '5555666677778888', '1234-5678-9012-3456', 950

SELECT * FROM Customers;

Figure 12.4: Always Encrypted Wizard.

📌 This wizard will guide you through encrypting existing columns without
manual key management.

12.6.4.4 Step 4: Select Columns to Encrypt

In the Column Selection page:

1. Select the table: dbo.Customers
2. Choose columns to encrypt:

NationalID: Select Deterministic encryption (allows equality searches)
CreditCardNumber: Select Randomized encryption (highest security)

3. Click Next

Figure 12.5: Configuring columns.

📌 Deterministic encryption allows WHERE clauses with equality. Randomized
provides better security but limits querying.

12.6.4.5 Step 5: Configure Master Key

In the Master Key Configuration page:

1. Key Store: Select Windows Certificate Store
2. Auto generate column master key: select this option
3. Select Current User for a master key source
4. Click Next

Figure 12.6: Configuring master key.

📌 The wizard will automatically create a certificate in your Windows Certificate
Store.

12.6.4.6 Step 6: Run Settings

1. Select Offline (Default) for the encryption process
2. Click Next to confirm the settings

12.6.4.7 Step 7: Validation and Summary

1. Validation page: The wizard checks prerequisites
2. Summary page: Review the encryption settings:

Column Master Key will be created

Column Encryption Key will be created
Selected columns will be encrypted

3. Click Finish to start the encryption process

Figure 12.7: Setting confirmation.

📌 This process may take several minutes as it encrypts existing data.

12.6.4.8 Step 8: Verify Encryption Setup

After the wizard completes, verify the encryption objects were created:

-- Check Column Master Keys

SELECT name, key_store_provider_name

FROM sys.column_master_keys;

-- Check Column Encryption Keys ex

Figure 12.8: Verifying the encryption objects.

12.6.4.9 Step 8: Test Querying with Column Encryption Disabled

To test viewing encrypted data as binary values, we need to create a new
connection with Always Encrypted disabled:

1. In Object Explorer, click Connect → Database Engine

2. Enter your server details

3. Click Advanced button

4. Select Disabled on column encryption settings

SELECT name, column_encryption_key_id

FROM sys.column_encryption_keys;

-- Check encrypted columns

SELECT c.name, c.encryption_type_desc, c.encryption_algorithm_name

FROM sys.columns c

WHERE c.encryption_type IS NOT NULL;

Figure 12.9: Verifying the encryption objects.

5. Click OK button

6. Click Connect

7. In the new connection, run:

USE AlwaysEncryptedLab;

SELECT * FROM Customers;

Figure 12.10: Showing encrypted data on query.

📌 You should see encrypted binary data in the NationalID and
CreditCardNumber columns (showing as hexadecimal values like 0x01A2…).

12.6.4.10 Step 9: Test Querying with Column Encryption Enabled

Now test with Always Encrypted enabled to see decrypted values:

1. In Object Explorer, click Connect → Database Engine
2. Enter your server details
3. Click Advanced button
4. Select Enabled on column encryption settings
5. Click Connect
6. In this new connection, run:

USE AlwaysEncryptedLab;

SELECT * FROM Customers;

Figure 12.11: Showing descrypted data on query.

📌 You should now see the actual (decrypted) values in all columns, exactly as
you inserted them.

12.6.4.11 Step 10: Test Query Limitations

Try different query types to understand encryption limitations:

✔️ Equality search on deterministic encrypted column (works):

✖️ Pattern search on encrypted column (fails):

✖️ Comparison operators on randomized encrypted column (fails):

📌 Only equality comparisons work with deterministic encryption. No operations
work with randomized encryption except retrieval.

12.6.5 Summary

In this lab, you:

Created a table with sensitive data using standard SQL
Used the Always Encrypted Wizard in SSMS 21.x to encrypt existing
columns
Automatically configured Column Master Key (CMK) and Column
Encryption Key (CEK)
Tested querying encrypted data with different connection settings
Understood the limitations and proper use cases for deterministic
vs. randomized encryption

✅ This wizard-based approach is much more practical for real-world
implementations than manual key management, making Always Encrypted
accessible for protecting sensitive data in production environments.

SELECT * FROM Customers

WHERE NationalID = '1234567890123456';

SELECT * FROM Customers

WHERE CreditCardNumber LIKE '4532%'; -- This will give an error

SELECT * FROM Customers

WHERE CreditCardNumber > '4000-0000-0000-0000'; -- This will give an error

12.7 Exercise 32: Enable and Configure an Audit
Policy

12.7.1 Description

This exercise focuses on using SQL Server Audit, a built-in feature for tracking
and logging server and database-level activity. You’ll create an audit specification
that captures SELECT operations on a sensitive table, configure it to write logs to
a file, and then test it by querying the data. This is critical for compliance and
data access monitoring in regulated environments (e.g., GDPR, HIPAA).

12.7.2 Objectives

By the end of this lab, you will:

Create a server audit and database audit specification
Configure SQL Server to store audit logs in a file
Monitor SELECT statements executed on sensitive data
Review audit log content via T-SQL

12.7.3 Prerequisites

SQL Server 2025 instance with FILESTREAM or file system access
SSMS 21.x with administrative privileges
Use AlwaysEncryptedLab database from the previous exercise or any test database
with a sensitive table

12.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

12.7.4.1 Step 1: Create an Audit Object at the Server Level

Start by creating a file-based audit log on your local system.

CREATE SERVER AUDIT Audit_Read_Access

TO FILE (

 FILEPATH = 'C:\SQLAuditLogs\',

 MAXSIZE = 10 MB,

 MAX_FILES = 10,

 RESERVE_DISK_SPACE = OFF

📌 Make sure C:\SQLAuditLogs\ exists and SQL Server has permission to write to it.

Then enable the audit:

12.7.4.2 Step 2: Create a Database Audit Specification

Switch to the target database and create a specification to track SELECT
operations on a sensitive table.

📌 This specification audits all SELECTs on the Customers table by any user.

12.7.4.3 Step 3: Generate Audit Events

Run a SELECT query to trigger the audit:

Run this as a different user (if available) to simulate real access.

12.7.4.4 Step 4: Read the Audit Logs

To read and inspect the audit logs stored in the file:

)

WITH (

 QUEUE_DELAY = 1000,

 ON_FAILURE = CONTINUE

);

ALTER SERVER AUDIT Audit_Read_Access

WITH (STATE = ON);

USE AlwaysEncryptedLab;

GO

CREATE DATABASE AUDIT SPECIFICATION Audit_Select_Customers

FOR SERVER AUDIT Audit_Read_Access

ADD (SELECT ON dbo.Customers BY PUBLIC)

WITH (STATE = ON);

SELECT * FROM dbo.Customers;

SELECT

 event_time,

 session_server_principal_name,

 database_name,

 object_name,

 statement,

 action_id,

You should see the SELECT statements you ran earlier, with information about the
user and the exact query text.

Figure 12.12: Showing the audit logs.

12.7.4.5 Step 5: (Optional) Audit Other Actions

You can expand the scope to other actions like INSERT, UPDATE, or
SCHEMA_OBJECT_CHANGE_GROUP:

This will allow you to track updates on the Customers table as well.

12.7.5 Summary

In this exercise, you:

 succeeded

FROM sys.fn_get_audit_file('C:\SQLAuditLogs*.sqlaudit', DEFAULT, DEFAULT);

ALTER DATABASE AUDIT SPECIFICATION Audit_Select_Customers

WITH (STATE = OFF);

GO

ALTER DATABASE AUDIT SPECIFICATION Audit_Select_Customers

ADD (UPDATE ON dbo.Customers BY PUBLIC);

GO

ALTER DATABASE AUDIT SPECIFICATION Audit_Select_Customers

WITH (STATE = ON);

GO

Created a server audit to capture audit logs in a file
Monitored SELECT access on a sensitive table (Customers)
Reviewed audit logs via sys.fn_get_audit_file
Learned how SQL Server Audit supports visibility and compliance

✅ SQL Server Audit is a powerful tool for tracking access to protected data and
generating audit trails required by privacy regulations and internal policies.

12.8 Conclusion

In this chapter, we explored essential features for protecting sensitive data in SQL
Server:

Dynamic Data Masking (DDM) to obscure sensitive information in query
results.
Always Encrypted to secure data at rest, in transit, and in use.
SQL Server Audit to track and log access to sensitive data.

These features help ensure compliance with data privacy regulations and protect
sensitive information from unauthorized access, while still allowing necessary
operations on the data.

13 Complying with GDPR and Privacy
Regulations
With global regulations like the General Data Protection Regulation (GDPR)
and others (e.g., CCPA, HIPAA), organizations must ensure that personal data is
handled lawfully, transparently, and securely. This chapter outlines how to
implement privacy-centric practices using SQL Server 2025—supporting data
access, erasure, portability, and principles like data minimization and
pseudonymization.

13.1 Key GDPR Data Subject Rights

GDPR grants individuals several rights over their personal data. SQL Server
solutions must support the ability to fulfill these rights effectively and securely.

13.1.1 Right of Access (Article 15)

The right of access ensures that individuals can obtain confirmation as to whether
their personal data is being processed, and, if so, access to that data along with
information about its use. Organizations must be able to identify and retrieve all
relevant personal data for a specific user upon request. This typically involves
searching across multiple tables and systems to gather a comprehensive data set.

In SQL Server, supporting this right means designing your schema and queries to
efficiently locate and return all personal data linked to a user. This may require
maintaining clear relationships between user identities and their associated
records, and ensuring that sensitive data is not inadvertently exposed to
unauthorized users. Implementing robust authentication and authorization controls
is essential to prevent data leaks during access requests.

Users have the right to view their personal data.

We can create views or stored procedures that return personal records based on the
user’s identity. Following the principle of least privilege, we can restrict access to
only the data that the user is authorized to see.

Create views or stored procedures to return personal records based on
identity.
Use Row-Level Security (RLS) to restrict access to the requesting user only.

Here’s an example of a view that allows users to access their own personal
information:

13.1.2 Right to Erasure / Right to Be Forgotten (Article 17)

The right to erasure allows individuals to request the deletion of their personal
data when it is no longer necessary for the purposes for which it was collected, or
if they withdraw consent on which the processing is based. Organizations must
implement processes to handle such requests efficiently while ensuring
compliance with legal obligations.

Users can request that their personal data be deleted.

To implement the right to erasure, you can create a stored procedure that deletes a
user’s personal data from all relevant tables. This procedure should ensure that all
associated records are also removed to prevent orphaned data.

Design DELETE logic or masking strategies.
Implement a soft-delete mechanism for traceability.
Audit every erase request.

We can implement soft-delete logic by adding a flag to indicate that the record is
deleted, rather than physically removing it from the database. This allows for
traceability while complying with the right to erasure.

13.1.3 Right to Data Portability (Article 20)

-- Example: View for user to access their own data

CREATE VIEW HR.vw_MyPersonalInfo AS

SELECT FirstName, LastName, Email, HireDate

FROM HR.Employees

WHERE LoginName = SYSTEM_USER;

-- Soft-delete example

UPDATE Customers

SET IsDeleted = 1, DeletedAt = GETDATE()

WHERE CustomerID = @UserID;

The right to data portability allows individuals to receive their personal data in a
structured, commonly used, and machine-readable format, and to transmit that
data to another controller without hindrance. This right is particularly relevant
when users wish to switch service providers or access their data for personal use.

Users can request a structured, machine-readable export of their data.

We can create a stored procedure that exports user data into a format like CSV or
JSON. This procedure should ensure that the exported data is structured and
includes all relevant personal information.

Provide data in formats like JSON, CSV, or XML.
Use FOR JSON or FOR XML to generate export formats.

Combine with application-layer file generation or BCP/export tools.

13.2 Data Minimization

Data minimization is a key principle of GDPR that requires organizations to
collect and process only the personal data that is necessary for the intended
purpose. This means avoiding the collection of excessive or irrelevant data, which
can reduce the risk of data breaches and enhance user privacy.

Collect and retain only data that is necessary for processing.

Follow these techniques to implement data minimization in SQL Server:

Avoid SELECT * queries; use only needed columns.
Archive or purge unused fields periodically.
Use views or column-level security to restrict visibility.

-- Export customer profile as JSON

SELECT CustomerID, FirstName, LastName, Email

FROM Customers

WHERE CustomerID = @UserID

FOR JSON PATH;

13.3 Pseudonymization

Pseudonymization is a technique that replaces personal identifiers with
pseudonyms or tokens, allowing data to be processed without directly identifying
individuals. This approach helps reduce the risk of re-identification while still
enabling data analysis and processing.

Transform personal data so it can’t be attributed to a person without additional
info.

Here are some common pseudonymization techniques:

Replace names or emails with pseudonyms or tokens.
Use hashing, encryption, or masking.

Store original values separately with strict access control.

13.4 Data Classification in SQL Server 2025

SQL Server 2025 supports data classification and sensitivity labels to help
organizations identify and manage sensitive data. This feature allows you to
classify data based on its sensitivity level, making it easier to apply security
measures and compliance controls.

To classify sensitive data, you can use the ADD SENSITIVITY CLASSIFICATION command:

-- Example: Limit exposed data

CREATE VIEW Public.vw_EmployeeDirectory AS

SELECT FirstName, LastName, Department

FROM HR.Employees;

-- Hash email for pseudonymization

SELECT CustomerID, HASHBYTES('SHA2_256', Email) AS PseudoEmail

FROM Customers;

-- Mark column as sensitive

ADD SENSITIVITY CLASSIFICATION TO Customers.Email

WITH (LABEL = 'Confidential', INFORMATION_TYPE = 'Contact Info');

Use SQL Server Management Studio (SSMS) to audit and review
classifications.

13.5 Auditing for Compliance

Auditing is essential for compliance with GDPR and other privacy regulations.
SQL Server provides built-in auditing features that allow you to track data access,
modifications, and security events. This helps organizations demonstrate
compliance and investigate potential breaches.

To comply with GDPR, organizations must log:

Data access events
Erasure and export requests
Permission changes

Following SQL Server Audit features can help you track compliance:

13.6 Best Practices for GDPR Compliance

Following best practices ensures that your SQL Server environment is compliant
with GDPR and other privacy regulations. Here are some key practices:

Practice Why It Matters

Apply RLS and DDM Minimize unnecessary data
exposure

Track data exports and erasures Mandatory for legal compliance

Use pseudonymization where possible Helps reduce risk in analytics

Purge expired or unused data regularly Aligns with data minimization
principle

CREATE DATABASE AUDIT SPECIFICATION GDPR_AccessLog

FOR SERVER AUDIT GDPRAudit

ADD (SELECT ON Customers BY public),

ADD (DELETE ON Customers BY public);

Practice Why It Matters

Create procedures/views for data access
requests

Supports timely, accurate
responses

13.7 Exercise 33: Apply DDM to PII Columns

13.7.1 Description

In this exercise, we’ll explore how to apply Dynamic Data Masking (DDM) in
SQL Server 2025 to protect Personally Identifiable Information (PII) such as
emails, phone numbers, and national ID numbers. DDM helps minimize exposure
of sensitive data by automatically masking it in the result set based on the user’s
access privileges.

You will define masking rules on selected columns and test how users with
different privileges see the data differently—crucial for meeting GDPR data
minimization and privacy-by-default principles.

13.7.2 Objectives

By the end of this hands-on lab, you will:

Create a table containing PII fields
Apply dynamic masking functions to relevant columns
Create test users to validate how masking works
Understand how DDM supports GDPR-aligned data protection strategies

13.7.3 Prerequisites

SQL Server 2025 installed
SQL Server Management Studio (SSMS) 21.x
sysadmin or db_owner privileges to create database and users
Windows or SQL logins (can be test/demo users)

13.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.7.4.1 Step 1: Create the Working Database and Table

Let’s start by creating a fresh database to isolate this lab and define a simple table
with typical PII fields.

📌 The MASKED WITH clause applies the masking function.

email() masks the email except for the first character and domain.
partial() masks part of the phone number.
default() fully obfuscates the value.

13.7.4.2 Step 2: Insert Sample Data

Add some rows so we can later observe how masking works.

This creates a diverse set of customers with different names, emails, phones, and
SSNs.

13.7.4.3 Step 3: Create a Low-Privilege User

Now let’s create a login and user with read-only access (but no UNMASK
permission):

CREATE DATABASE GDPRLab;

GO

USE GDPRLab;

GO

CREATE TABLE Customers (

 CustomerID INT PRIMARY KEY,

 FullName NVARCHAR(100),

 Email NVARCHAR(100) MASKED WITH (FUNCTION = 'email()'),

 Phone VARCHAR(20) MASKED WITH (FUNCTION = 'partial(0,"XXX-XXX-",4)'),

 SSN CHAR(11) MASKED WITH (FUNCTION = 'default()')

);

INSERT INTO Customers (CustomerID, FullName, Email, Phone, SSN)

VALUES

(1, 'Devi Johnson', 'devi.johnson@ilmudata.id', '555-123-4567', '123-45-6789'),

(2, 'Smith Lee', 'smith.lee@ilmudata.id', '555-987-6543', '987-65-4321'),

(3, 'Hans Müller', 'hans.mueller@ilmudata.id', '555-111-2222', '321-54-6789'),

(4, 'Giulia Rossi', 'giulia.rossi@ilmudata.id', '555-333-4444', '654-32-1987'),

(5, 'Pierre Dubois', 'pierre.dubois@ilmudata.id', '555-555-6666', '789-12-3456'),

(6, 'Sven de Vries', 'sven.devries@ilmudata.id', '555-777-8888', '876-54-3210');

CREATE LOGIN AnalystUser WITH PASSWORD = 'StrongPassword!123';

CREATE USER AnalystUser FOR LOGIN AnalystUser;

ALTER ROLE db_datareader ADD MEMBER AnalystUser;

🧠 The AnalystUser can read data but should see it masked.

13.7.4.4 Step 4: Test the Masking Behavior

Now log in as AnalystUser (or simulate using EXECUTE AS) and run:

✅ You will see:

Masked email like aXXXX@XXXX.com
Partially masked phone like XXX-XXX-4567
SSN shown as XXXXXXX

Figure 13.1: Showing masked data.

13.7.4.5 Step 5: Unmask Privilege for Admin Role

If someone with full privileges needs to see the original data, you can grant UNMASK.

EXECUTE AS USER = 'AnalystUser';

SELECT * FROM Customers;

REVERT;

GRANT UNMASK TO AnalystUser;

Then re-run the SELECT * FROM Customers as AnalystUser and observe the difference.

Figure 13.2: Showing unmasked data.

13.7.5 Summary

In this lab, you:

Created a table with PII data (email, phone, SSN)
Applied various masking functions using DDM
Verified the effect of masking on a limited user account
Used UNMASK permission to control visibility

✅ Dynamic Data Masking is a lightweight, built-in mechanism to help protect
sensitive data from unauthorized access and aligns with GDPR’s privacy-by-
design principle.

13.8 Exercise 34: Apply Pseudonymization with
Computed Columns or Hashes

13.8.1 Description

In this exercise, you’ll learn how to implement pseudonymization techniques
using computed columns and hashing functions in SQL Server 2025. While
masking hides data on output, pseudonymization transforms the data at rest—an
essential GDPR strategy for reducing re-identification risks while allowing
analytical usage.

We’ll use SHA2 hashing to pseudonymize sensitive fields like email and phone.
This approach supports privacy-by-design practices without sacrificing data
integrity in analytics.

13.8.2 Objectives

By the end of this lab, you will:

Understand the concept of pseudonymization vs. masking
Use SQL Server’s built-in hashing function HASHBYTES
Create computed columns that store hashed PII
Explore usage in GDPR-compliant analytics

13.8.3 Prerequisites

SQL Server 2025 installed
SQL Server Management Studio (SSMS) 21.x
sysadmin or db_owner privileges
Enable CONCAT_NULL_YIELDS_NULL (default is ON)

13.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.8.4.1 Step 1: Create a New Database and Table

Start by creating a new working environment to isolate pseudonymized data.

📌 Here:

HASHBYTES('SHA2_256', column) produces a 256-bit hash
CONVERT(..., 2) renders the binary hash as a hex string
PERSISTED ensures the computed hash is stored physically and indexable

13.8.4.2 Step 2: Insert Sample Data

Add records with real email and phone numbers.

Now query to view the hashed fields:

You’ll see EmailHash and PhoneHash show long SHA-256 hash values.

Figure 13.3: Showing hashed data.

CREATE DATABASE GDPRPseudonymLab;

GO

USE GDPRPseudonymLab;

GO

CREATE TABLE Customers (

 CustomerID INT PRIMARY KEY,

 FullName NVARCHAR(100),

 Email NVARCHAR(100),

 Phone VARCHAR(20),

 EmailHash AS CONVERT(VARCHAR(100), HASHBYTES('SHA2_256', Email), 2) PERSISTED,

 PhoneHash AS CONVERT(VARCHAR(100), HASHBYTES('SHA2_256', Phone), 2) PERSISTED

);

INSERT INTO Customers (CustomerID, FullName, Email, Phone)

VALUES

(1, 'Hans Müller', 'hans.mueller@neuville.id', '555-123-4567'),

(2, 'Pierre Dubois', 'pierre.dubois@neuville.id', '555-987-6543');

SELECT CustomerID, Email, EmailHash, Phone, PhoneHash FROM Customers;

13.8.4.3 Step 3: Use Hashed Columns for Analytics Joins

Let’s say you need to pseudonymously join customers with another table using
hashed emails:

Now pseudonymously match records:

🧠 You achieved a GDPR-aligned join without using raw PII.

13.8.4.4 Step 4: Add Index on Hashed Columns (Optional)

You can index the hashed column for fast filtering:

This supports performance in large analytical datasets.

13.8.5 Summary

In this lab, you:

Created computed columns with HASHBYTES for pseudonymization
Stored SHA-256 hashes for email and phone
Used hashed fields for secure joins
Understood the distinction between masking and pseudonymization

✅ Pseudonymization enhances privacy compliance and enables GDPR-
compatible analytics without compromising data utility.

13.9 Exercise 35: Implement the Right to Erasure and
Portability

CREATE TABLE EmailCampaigns (

 CampaignID INT,

 TargetEmailHash VARCHAR(100)

);

INSERT INTO EmailCampaigns (CampaignID, TargetEmailHash)

VALUES

(1001, (SELECT EmailHash FROM Customers WHERE CustomerID = 1));

SELECT c.CustomerID, c.FullName, e.CampaignID

FROM Customers c

JOIN EmailCampaigns e ON c.EmailHash = e.TargetEmailHash;

CREATE INDEX IX_Customers_EmailHash ON Customers (EmailHash);

13.9.1 Description

The General Data Protection Regulation (GDPR) grants individuals the right to
access, port, and erase their personal data. In this lab, you’ll learn how to model
and implement these rights in SQL Server 2025 using T-SQL. You will create
mechanisms to:

Export user data in a machine-readable format (CSV-compatible)
Erase personal data while preserving referential integrity

These operations are foundational for compliance in modern business systems.

13.9.2 Objectives

By completing this exercise, you will:

Export PII and transactional data in a readable and portable format
Pseudonymize or erase data fields to support “right to be forgotten”
Use safe deletion via UPDATE and NULLing strategies instead of physical
DELETE

13.9.3 Prerequisites

SQL Server 2025 installed
SQL Server Management Studio (SSMS) 21.x
GDPRPseudonymLab database from Exercise 34 (or create a new one)
Sufficient privileges to modify and select from the database

13.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.9.4.1 Step 1: Add Export-Ready View for User Data

You’ll create a view that exposes only the relevant personal data for portability
(e.g., to share with the user upon request).

USE GDPRPseudonymLab;

GO

CREATE VIEW vCustomerExport AS

Now, run:

📤 This supports portability by exporting a clean snapshot of the user’s PII.

13.9.4.2 Step 2: Simulate CSV Output for Portability

You can simulate CSV export using concatenation. Tools like SSMS or apps can
copy/paste this output to Excel or flat files.

This produces a single CSV row for the customer, which can be copied to a file.

13.9.4.3 Step 3: Implement Right to Erasure with UPDATE

Instead of DELETE, which breaks foreign key relationships, use UPDATE to nullify or
pseudonymize PII:

Now recheck:

✅ The personal data is erased, but surrogate key (CustomerID) and related records
can be retained for audit or aggregation purposes.

13.9.4.4 Step 4: Use a Reversible Erasure Flag (Optional)

SELECT

 CustomerID,

 FullName,

 Email,

 Phone

FROM Customers;

SELECT * FROM vCustomerExport WHERE CustomerID = 1;

SELECT

 '"' + CAST(CustomerID AS VARCHAR) + '","' +

 FullName + '","' +

 Email + '","' +

 Phone + '"' AS CSVRow

FROM vCustomerExport

WHERE CustomerID = 1;

UPDATE Customers

SET

 FullName = NULL,

 Email = NULL,

 Phone = NULL

WHERE CustomerID = 1;

SELECT * FROM Customers WHERE CustomerID = 1;

Add a column to track erasure status for audit or recovery in non-production
environments:

Now you can query:

You’ll see records with NULL PII but still retain the CustomerID for traceability.

13.9.5 Summary

In this GDPR-focused hands-on lab, you:

Exported user data for portability in a flat format
Simulated a compliant CSV row
Erased personal information using UPDATE rather than DELETE
Optionally tracked erasure with a status flag

🔐 These techniques help businesses comply with GDPR while maintaining data
model integrity and traceability.

13.10 Exercise 36: Simulate GDPR “Right to Be
Forgotten”

13.10.1 Description

The GDPR mandates that users can request to be forgotten. In database terms, this
often translates to soft deletion (marking a record as deleted rather than physically
removing it) and anonymization (removing personal identifiers). This exercise
simulates this process on a customer table using SQL Server 2025.

You will create anonymization logic that replaces personally identifiable
information (PII) with generic placeholders and mark the record as erased,

ALTER TABLE Customers ADD IsErased BIT DEFAULT 0;

-- Erase customer PII and flag it

UPDATE Customers

SET

 FullName = NULL,

 Email = NULL,

 Phone = NULL,

 IsErased = 1

WHERE CustomerID = 2;

SELECT * FROM Customers WHERE IsErased = 1;

preserving referential integrity and auditability.

13.10.2 Objectives

By the end of this exercise, you will:

Soft-delete records using an IsDeleted flag
Anonymize sensitive data like name, email, and phone
Build and run reusable Stored Procedure for GDPR erasure requests

13.10.3 Prerequisites

SQL Server 2025
SQL Server Management Studio (SSMS) 21.x
A database named GDPRLab (create it below if needed)
Table Customers with sample PII

13.10.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.10.4.1 Step 1: Create and Seed the Customers Table

Let’s build the setup to simulate real user data and PII.

CREATE DATABASE GDPRLab;

GO

USE GDPRLab;

GO

CREATE TABLE Customers (

 CustomerID INT IDENTITY PRIMARY KEY,

 FullName NVARCHAR(100),

 Email NVARCHAR(100),

 Phone NVARCHAR(50),

 RegisteredDate DATE,

 IsDeleted BIT DEFAULT 0

);

GO

INSERT INTO Customers (FullName, Email, Phone, RegisteredDate)

VALUES

('Ujang Johnson', 'ujang.johnson@ilmudata.id', '555-1234', '2024-05-10'),

('James Turner', 'james.turner@neuville.id', '555-1122', '2024-04-18'),

('Sophie Evans', 'sophie.evans@ilmudata.id', '555-3344', '2024-03-22'),

('Lucía García', 'lucia.garcia@ilmudata.id', '555-5566', '2024-02-14'),

('Carlos Martínez', 'carlos.martinez@neuville.id', '555-7788', '2024-01-30'),

This creates three sample customers in the Customers table.

13.10.4.2 Step 2: Define the Anonymization and Soft Delete Logic

We’ll simulate the “Right to Be Forgotten” by replacing PII with anonymized
values and setting IsDeleted = 1.

🔐 You retain the CustomerID and RegisteredDate but anonymize the user.

Figure 13.4: Showing anonymized data.

13.10.4.3 Step 3: Create a Stored Procedure to Generalize the Action

('Giulia Rossi', 'giulia.rossi@ilmudata.id', '555-9900', '2024-05-25'),

('Marco Bianchi', 'marco.bianchi@neuville.id', '555-2233', '2024-06-05');

UPDATE Customers

SET

 FullName = CONCAT('DeletedUser_', CustomerID),

 Email = NULL,

 Phone = NULL,

 IsDeleted = 1

WHERE CustomerID = 2;

Make the process reusable via a stored procedure:

Now run it:

🎯 This ensures consistent anonymization logic across requests.

13.10.4.4 Step 4: Query to Verify Forgotten Records

Check results:

You’ll see that James and Sophie’s records are anonymized and flagged as deleted:

CREATE PROCEDURE AnonymizeAndSoftDeleteCustomer

 @CustomerID INT

AS

BEGIN

 UPDATE Customers

 SET

 FullName = CONCAT('DeletedUser_', @CustomerID),

 Email = NULL,

 Phone = NULL,

 IsDeleted = 1

 WHERE CustomerID = @CustomerID;

END;

EXEC AnonymizeAndSoftDeleteCustomer @CustomerID = 3;

SELECT * FROM Customers;

Figure 13.5: Showing customer data.

13.10.5 Summary

In this hands-on lab, you:

Created a sample customer table with PII
Simulated GDPR erasure using anonymization and soft deletion
Built a stored procedure to automate the “Right to Be Forgotten” process

This pattern enables regulatory compliance while maintaining integrity in
transactional systems.

13.11 Exercise 37: Enable Auditing and Access Log for
GDPR

13.11.1 Description

To comply with GDPR, it’s essential to track who accessed personal data, when,
and why. This exercise demonstrates how to set up SQL Server Audit to capture

access events to personal data stored in the database. You will create a server-level
audit and a database audit specification that tracks SELECT operations on a PII-
related table.

13.11.2 Objectives

By the end of this exercise, you will:

Configure a SQL Server Audit object
Create a database audit specification for SELECT access
Review logs to identify data access events

13.11.3 Prerequisites

SQL Server 2025
SQL Server Management Studio (SSMS) 21.x
Database GDPRLab with the Customers table (from Exercise 36)
Sufficient permissions (SQL Server sysadmin or audit admin)

13.11.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.11.4.1 Step 1: Create a Server Audit Object

We begin by creating a server audit that writes events to a file.

📝 This sets up a file-based audit log. Replace the FILEPATH with a valid path on
your SQL Server machine.

USE master;

GO

CREATE SERVER AUDIT GDPR_Data_Access_Audit

TO FILE (

 FILEPATH = 'C:\SQLAuditLogs\', -- Ensure this folder exists

 MAXSIZE = 10 MB,

 MAX_ROLLOVER_FILES = 5,

 RESERVE_DISK_SPACE = OFF

)

WITH (ON_FAILURE = CONTINUE);

GO

ALTER SERVER AUDIT GDPR_Data_Access_Audit

WITH (STATE = ON);

13.11.4.2 Step 2: Create a Database Audit Specification

Now link specific audit actions to the GDPRLab database:

📌 This captures any SELECT access to the Customers table, regardless of the user.

13.11.4.3 Step 3: Simulate a Data Access Event

Let’s mimic a user querying the Customers table:

This action is now captured in the audit logs.

13.11.4.4 Step 4: View the Audit Logs

Use the following script to query the audit records:

This shows you:

When the access occurred
Who accessed the table
What object was accessed
The query issued (if applicable)

USE GDPRLab;

GO

CREATE DATABASE AUDIT SPECIFICATION GDPR_Customers_Access_Spec

FOR SERVER AUDIT GDPR_Data_Access_Audit

ADD (SELECT ON OBJECT::dbo.Customers BY PUBLIC)

WITH (STATE = ON);

USE GDPRLab;

GO

SELECT * FROM dbo.Customers;

SELECT

 event_time,

 server_principal_name,

 database_name,

 object_name,

 statement

FROM sys.fn_get_audit_file(

 'C:\SQLAuditLogs*', NULL, NULL);

Figure 13.6: Showing audit data.

13.11.5 Summary

In this hands-on lab, you:

Created a server audit and database audit specification
Monitored SELECT access to sensitive PII data
Verified audit log entries using T-SQL

✅ This setup provides traceability and accountability—an essential part of GDPR
compliance when dealing with user personal data.

13.12 Exercise 38: Log Consent and Data Processing
Activities for GDPR Audits

13.12.1 Description

GDPR requires that data processing be lawful, transparent, and accountable.
Organizations must track whether users have given explicit consent to process
their personal data, along with when and how that consent was granted. In this lab,
you’ll implement a consent logging mechanism and simulate logging of data
processing events tied to that consent.

13.12.2 Objectives

By the end of this exercise, you will:

Create tables to log consent and data processing activities
Insert and manage consent records
Simulate GDPR-compliant activity logging for audit purposes

13.12.3 Prerequisites

SQL Server 2025
SQL Server Management Studio (SSMS) 21.x
Database GDPRLab with existing user data (from Exercise 36)
Appropriate permissions to create tables and insert data

13.12.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.12.4.1 Step 1: Create Tables for Consent and Processing Logs

We start by designing two core tables: one for storing user consent, and another
for tracking any processing done based on that consent.

USE GDPRLab;

GO

-- Table to store user consent information

CREATE TABLE ConsentLog (

 ConsentID INT IDENTITY(1,1) PRIMARY KEY,

 UserID INT NOT NULL,

 ConsentGiven BIT NOT NULL,

 ConsentDate DATETIME2 NOT NULL DEFAULT GETDATE(),

 ConsentMethod NVARCHAR(100) NOT NULL, -- e.g., "Checkbox on registration form"

 Notes NVARCHAR(255)

);

-- Table to log data processing activity

CREATE TABLE DataProcessingLog (

 LogID INT IDENTITY(1,1) PRIMARY KEY,

 UserID INT NOT NULL,

 Activity NVARCHAR(100) NOT NULL, -- e.g., "Email marketing", "Exported data"

 ProcessedAt DATETIME2 NOT NULL DEFAULT GETDATE(),

 PerformedBy NVARCHAR(100), -- e.g., app/service/user

 ConsentID INT NULL,

 FOREIGN KEY (ConsentID) REFERENCES ConsentLog(ConsentID)

);

✅ These tables support GDPR accountability for “lawful basis of processing”.

13.12.4.2 Step 2: Insert a Sample Consent Record

Let’s simulate a user giving consent during signup.

This stores a positive consent tied to user 1001.

13.12.4.3 Step 3: Log a Data Processing Activity

Now simulate that data from this user was processed (e.g., for marketing),
referencing the consent record.

💡 This trace links who processed what and which consent justified it.

13.12.4.4 Step 4: Query Logs for Compliance Reporting

To retrieve full accountability logs:

This gives a clear audit trail of activity justified by explicit consent.

INSERT INTO ConsentLog (UserID, ConsentGiven, ConsentMethod, Notes)

VALUES (1001, 1, 'Checkbox on signup form', 'User agreed to receive promotional emails');

INSERT INTO DataProcessingLog (UserID, Activity, PerformedBy, ConsentID)

VALUES (

 1001,

 'Email campaign - August 2025',

 'MarketingSystemApp',

 (SELECT TOP 1 ConsentID FROM ConsentLog WHERE UserID = 1001 ORDER BY ConsentDate DESC)

);

SELECT

 dp.UserID,

 dp.Activity,

 dp.ProcessedAt,

 dp.PerformedBy,

 cl.ConsentDate,

 cl.ConsentMethod,

 cl.Notes

FROM DataProcessingLog dp

JOIN ConsentLog cl ON dp.ConsentID = cl.ConsentID

ORDER BY dp.ProcessedAt DESC;

Figure 13.7: Showing audit data.

13.12.5 Summary

In this hands-on lab, you:

Created GDPR-friendly tables to record user consent and processing
activities
Simulated real-world user consent scenarios
Ensured every processing activity was tied back to an explicit consent

✅ This supports Article 5 and Article 7 of GDPR—accountability and lawful
basis.

13.13 Conclusion

In this chapter, we explored how to implement GDPR and privacy regulations in
SQL Server 2025. By leveraging features like Dynamic Data Masking,
pseudonymization, data classification, and auditing, organizations can ensure
compliance with data protection laws while maintaining the integrity and utility of
their databases.

We also covered practical exercises to demonstrate how to fulfill data subject
rights such as access, erasure, and portability. By following these guidelines and
best practices, you can build a robust SQL Server environment that respects user
privacy and adheres to legal requirements.

Section 6: Reporting and Exporting

14 Reporting and Data Connectivity
This chapter focuses on how to extract business data from SQL Server 2025 for
reporting and visualization. You’ll learn how to export query results to formats like
Excel and CSV, and how to connect SQL Server to Power BI for building interactive
dashboards. These skills are essential for data analysts, BI developers, and business
users who rely on SQL Server as their reporting backbone.

14.1 Exporting SQL Data to Excel and CSV

SQL Server provides multiple options for exporting tabular data, including SQL
Server Management Studio (SSMS) and T-SQL utilities.

14.1.1 Export Using SQL Server Management Studio (SSMS)

We can export data directly from SSMS using the following methods:

1. Run your query in SSMS.
2. Right-click on the result grid.
3. Select Save Results As…
4. Choose format: CSV, Excel (*.xls, *.xlsx via copy/paste), or Text (tab-

delimited).
5. Save and distribute.

Best for one-time exports or manual reporting.

14.1.2 xport Using SQL Server Import and Export Wizard

The SQL Server Import and Export Wizard provides a user-friendly interface for
exporting data to various formats, including Excel and CSV.

Steps:

1. Right-click on database → Tasks → Export Data.

2. Choose:

Data source: SQL Server

Destination: Flat File Destination or Excel

3. Choose tables or query to export.

4. Define file path and schema mapping.

5. Run and save the package (optional).

Ideal for recurring exports or large datasets.

14.1.3 Export via bcp (Bulk Copy Program) CLI

The bcp utility allows you to export data from SQL Server to a file using command-line
operations. This is useful for automation and scripting.

-c: character format
-t,: comma delimiter
-S: server name
-U, -P: login credentials

Use for automation and scripting.

14.1.4 Export to CSV with T-SQL (via SSMS scripting)

You can also use T-SQL to export data to CSV format by leveraging the bcp utility or
using xp_cmdshell to run command-line operations directly from SQL Server.

Requires enabling xp_cmdshell and proper file permissions.

14.2 Connecting Power BI to SQL Server

Power BI is a Microsoft analytics platform for building interactive reports and
dashboards using data from SQL Server and other sources.

bcp "SELECT * FROM Sales.Orders" queryout "orders.csv" -c -t, -S server -U username -P password

EXEC xp_cmdshell 'bcp "SELECT * FROM Sales.Customers" queryout "C:\Exports\customers.csv" -c -t,

Power BI allows users to create visualizations, perform data modeling, and share
insights across the organization. It supports both Import and DirectQuery modes for
connecting to SQL Server databases.

The following steps outline how to connect Power BI Desktop to a SQL Server
database:

1. Open Power BI Desktop.

2. Click Home → Get Data → SQL Server.

3. Enter:

Server name
Database name (optional)

4. Choose:

Import or DirectQuery mode
Windows or SQL Server Authentication

5. Click OK, then select tables or write SQL query.

We can choose between two modes when connecting Power BI to SQL Server:

Mode Description

Import Data copied into Power BI (.pbix) file

DirectQuery Live queries run directly on SQL Server

Use Import for performance, DirectQuery for real-time data.

To use a custom SQL query in Power BI:

1. Choose Advanced Options in Get Data.
2. Paste query:

Ideal for filtering or joining data before loading into Power BI.

SELECT Region, SUM(TotalAmount) AS Revenue

FROM Sales.Orders

GROUP BY Region;

Once your Power BI report is published to the Power BI Service, you can set up
scheduled refreshes to keep your data up-to-date. This ensures that your reports reflect
the latest data from SQL Server without manual intervention.

14.3 Building Reports on Exported Data

Once you have exported data to CSV or Excel, you can use various tools to build
reports and visualizations. Common options include:

Open the CSV or Excel file in Power BI, Excel, or other tools.
Use pivot tables, charts, slicers, or Power BI visuals to explore trends.

Use Power BI datasets to standardize reporting sources across the business.

14.4 Practices for Reporting and Data Access

Following best practices for exporting and accessing data ensures that reports are
efficient, secure, and maintainable. Here are some key practices:

Practice Reason

Limit result sets when exporting Prevent bloated exports and timeouts

Use views or stored procedures for Power
BI Encapsulate logic, improve reuse

Apply row-level filtering before export Protect sensitive or irrelevant data

Enable auditing for BI access Track who accessed or exported
reports

Use parameters in Power BI queries Support dynamic filtering and reuse

14.5 Exercise 39: Export Sales Summary to Excel

14.5.1 Description

Exporting SQL Server query results into Excel-compatible formats is a common
requirement for reporting and analysis. In this hands-on lab, you’ll create a sales
summary query from the AdventureWorks2022 database and export it to a .csv file using
SQL Server Management Studio (SSMS) and SQLCMD, making it easy for
stakeholders to open the file in Excel.

14.5.2 Objectives

By the end of this exercise, you will be able to:

Write a sales summary query using GROUP BY
Export query results from SSMS to .csv
Export query results from SQLCMD to .csv

14.5.3 Prerequisites

SQL Server 2025 instance with the AdventureWorks2022 database restored
SQL Server Management Studio (SSMS) 21.x installed
sqlcmd available via terminal or Command Prompt
Folder like C:\Exports available to store CSV files

14.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

14.5.4.1 Step 1: Write a Sales Summary Query in SSMS**

We’ll summarize total sales by year using the Sales.SalesOrderHeader table. Use the YEAR()
function and aggregate with SUM().

✅ This returns annual sales totals, perfect for exporting.

14.5.4.2 Step 2: Export Results from SSMS as CSV

USE AdventureWorks2022;

GO

SELECT

 YEAR(OrderDate) AS SalesYear,

 COUNT(*) AS OrderCount,

 SUM(TotalDue) AS TotalSales

FROM Sales.SalesOrderHeader

GROUP BY YEAR(OrderDate)

ORDER BY SalesYear;

You can export this result directly from SSMS to a .csv file:

1. Open SSMS and run the query above.
2. Right-click the result grid and choose Save Results As…
3. Select file type CSV (Comma delimited) (*.csv)
4. Save it as: C:\Exports\SalesSummary.csv
5. Open the file in Excel to verify the format.

✅ This approach is quick and user-friendly for business analysts.

14.5.4.3 Step 3: Export Results Using SQLCMD (Command Line)

You can also automate exports using sqlcmd. Here’s how:

Explanation:

-S localhost: SQL Server instance
-d AdventureWorks2022: database name
-E: use Windows Authentication
-Q: query
-s ",": delimiter is comma
-o: output file path

📌 This method is suitable for automation or scheduling using PowerShell or Task
Scheduler.

14.5.4.4 Step 4: Verify and Open in Excel

Open C:\Exports\SalesSummary_cmd.csv in Excel. Check for:

Correct columns and headers
No extra messages (due to SET NOCOUNT ON)
Proper comma-separated formatting

If required, you can add headers manually or adjust formatting within Excel.

14.5.5 Summary

In this exercise, you:

Created a yearly sales summary query

sqlcmd -S localhost -d AdventureWorks2022 -E -Q "SET NOCOUNT ON; SELECT YEAR(OrderDate) AS Sales

Exported results from SSMS to CSV
Automated export using sqlcmd for command-line reporting
Verified that outputs work seamlessly with Excel

✅ This enables business users and external systems to consume SQL data without
direct database access.

14.6 Exercise 40: Connect SQL Server to Power BI
Desktop for Dynamic Visualization

14.6.1 Description

Power BI enables users to analyze and visualize data interactively. This exercise
demonstrates how to connect Power BI Desktop to your SQL Server 2025 instance and
build a dynamic dashboard using data from the AdventureWorks2022 database. You’ll use
Power BI’s query editor and visual tools to explore and visualize sales data.

14.6.2 Objectives

By the end of this exercise, you will be able to:

Connect Power BI Desktop to a SQL Server database
Load and transform data using Power Query
Create basic sales visualizations and summaries

14.6.3 Prerequisites

SQL Server 2025 instance with AdventureWorks2022 database restored (from Exercise
1)
Power BI Desktop installed (latest version recommended)
Access to localhost or your SQL Server instance
Basic familiarity with Power BI UI

14.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

14.6.4.1 Step 1: Launch Power BI Desktop and Connect to SQL Server

1. Open Power BI Desktop.

2. On the Home tab, click SQL Server for data source.

3. Enter the server name (e.g., localhost) and database name AdventureWorks2022.

Figure 14.1: Connecting to SQL Server.

4. Use either:

Windows authentication, or
Database authentication if needed
Select my current credentials if using Windows authentication

Figure 14.2: Selecting authentication on SQL Server.

5. Click OK and allow Power BI to load available tables.

✅ This step sets up the live connection between Power BI and your SQL Server
instance.

14.6.4.2 Step 2: Select and Load Sales Data

In the Navigator window:

1. Expand the Sales schema.

2. Select the following tables:

SalesOrderHeader

SalesOrderDetail

Customer

Person

SalesTerritory

Figure 14.3: Selecting tables.

3. Click Load (or Transform Data if you want to clean the data before loading).

✅ Power BI loads the selected tables into the model for analysis.

14.6.4.3 Step 3: Build Relationships (if needed)

If Power BI doesn’t detect relationships automatically:

1. Go to Model View.

2. Power BI may suggest relationships based on foreign keys.

3. If not, you can manually connect:

SalesOrderHeader.CustomerID → Customer.CustomerID
Customer.PersonID → Person.BusinessEntityID
SalesOrderHeader.SalesTerritoryID → SalesTerritory.TerritoryID
SalesOrderDetail.SalesOrderID → SalesOrderHeader.SalesOrderID

✅ Establishing relationships allows Power BI to perform cross-table analysis.

Figure 14.4: Power BI detects model relationship.

14.6.4.4 Step 4: Create a Sales Dashboard

Now let’s visualize sales trends:

1. In Report View, insert a Bar Chart:

Axis: SalesTerritory.Name
Value: SalesOrderHeader.TotalDue (Sum)

Title: “Total Sales by Territory”

2. Insert a Line Chart:

Axis: SalesOrderHeader.OrderDate (Month)
Value: SalesOrderHeader.TotalDue (Sum)
Title: “Sales Trend Over Time”

3. Insert a Card:

Field: SalesOrderHeader.TotalDue
Aggregation: Sum
Title: “Total Revenue”

✅ You’ve created an interactive dashboard from SQL Server data.

Figure 14.5: Data visualization on Power BI.

14.6.4.5 Step 5: Save and Refresh Data

1. Save your Power BI report as AdventureWorksSalesReport.pbix.
2. Click Refresh to reload data from the SQL Server source.

Optional:

Set up Scheduled Refresh (requires Power BI Pro or Premium service +
gateway).

14.6.5 Summary

In this exercise, you:

Connected Power BI Desktop to SQL Server 2025
Loaded and modeled data from the AdventureWorks2022 database
Created a dynamic report with charts and KPIs
Enabled refresh to keep data synchronized

✅ This allows you to empower business users with self-service BI directly from
trusted SQL Server data.

14.7 Conclusion

In this chapter, we explored how to export SQL Server data for reporting and
visualization, focusing on practical methods using SSMS, bcp, and Power BI. By
mastering these techniques, you can effectively share insights and build interactive
dashboards that drive business decisions.

Appendix A: T-SQL Cheatsheet
(SQL Server 2025)
This cheatsheet provides a quick reference to common T-SQL commands
and concepts in SQL Server 2025. It covers database operations, data
manipulation, filtering, functions, aggregations, joins, subqueries,
transactions, stored procedures, window functions, and security.

1. Database and Table Operations

Create Database

Use Database

Create Table

Alter Table

Drop Table

2. Data Manipulation (CRUD)

Insert

CREATE DATABASE SalesDB;

USE SalesDB;

CREATE TABLE Customers (

 CustomerID INT PRIMARY KEY,

 FullName NVARCHAR(100),

 Email NVARCHAR(100),

 CreatedAt DATETIME DEFAULT GETDATE()

);

ALTER TABLE Customers ADD Phone NVARCHAR(20);

DROP TABLE Customers;

Update

Delete

Select

3. Filtering and Sorting

WHERE Clause

ORDER BY

4. Functions

String

Date/Time

Mathematical

5. Aggregations and Grouping

INSERT INTO Customers (CustomerID, FullName, Email)

VALUES (1, 'John Doe', 'john@example.com');

UPDATE Customers

SET Email = 'john.doe@example.com'

WHERE CustomerID = 1;

DELETE FROM Customers

WHERE CustomerID = 1;

SELECT * FROM Customers;

SELECT * FROM Customers

WHERE Email LIKE '%@gmail.com';

SELECT * FROM Customers

ORDER BY CreatedAt DESC;

SELECT UPPER('hello'), LEN('hello world');

SELECT GETDATE(), DATEPART(YEAR, GETDATE());

SELECT ROUND(123.4567, 2), ABS(-42);

6. Joins

INNER JOIN

LEFT JOIN

7. Subqueries and CTE

Subquery

CTE

8. Transactions

SELECT COUNT(*) AS TotalCustomers

FROM Customers;

SELECT YEAR(CreatedAt) AS Year, COUNT(*) AS Count

FROM Customers

GROUP BY YEAR(CreatedAt);

SELECT o.OrderID, c.FullName

FROM Orders o

INNER JOIN Customers c ON o.CustomerID = c.CustomerID;

SELECT c.FullName, o.OrderID

FROM Customers c

LEFT JOIN Orders o ON c.CustomerID = o.CustomerID;

SELECT * FROM Orders

WHERE CustomerID IN (SELECT CustomerID FROM Customers WHERE FullName LIKE 'J%');

WITH RecentOrders AS (

 SELECT TOP 10 * FROM Orders ORDER BY OrderDate DESC

)

SELECT * FROM RecentOrders;

BEGIN TRANSACTION;

UPDATE Accounts

SET Balance = Balance - 100

WHERE AccountID = 1;

UPDATE Accounts

SET Balance = Balance + 100

WHERE AccountID = 2;

9. Stored Procedures and Functions

Stored Procedure

Scalar Function

10. Window Functions

11. Security and Users

COMMIT;

-- or use ROLLBACK;

CREATE PROCEDURE GetCustomerByID @ID INT

AS

BEGIN

 SELECT * FROM Customers WHERE CustomerID = @ID;

END;

CREATE FUNCTION dbo.GetYear (@date DATETIME)

RETURNS INT

AS

BEGIN

 RETURN YEAR(@date);

END;

SELECT CustomerID, OrderDate,

 RANK() OVER (PARTITION BY CustomerID ORDER BY OrderDate DESC) AS OrderRank

FROM Orders;

CREATE LOGIN user1 WITH PASSWORD = 'StrongP@ssword!';

CREATE USER user1 FOR LOGIN user1;

GRANT SELECT ON Customers TO user1;

Appendix B: Resources
SQL Server 2025 High Availability & Disaster
Recovery: Always On Solutions Course

Dive into the world of SQL Server 2025 with our comprehensive Udemy
course, “SQL Server 2025: Build Always On HA & DR Solutions.” This
course is designed for database administrators and IT professionals who
want to master high availability (HA) and disaster recovery (DR) solutions
using the latest features of SQL Server 2025.

What You’ll Learn

In this course, you will learn to:

Understand HA and DR concepts in SQL Server 2025
Build and configure Windows Server Failover Clustering (WSFC)
Deploy Always On Availability Groups from scratch
Set up and manage the AG Listener for client connections
Configure read-only routing for reporting and BI workloads
Offload backups using Preferred Backup Replica
Perform failover testing: automatic, manual, and forced
Monitor and troubleshoot AG health
Integrate real-world ASP.NET Core apps with AG Listener
Apply best practices for performance and uptime

100% Hands-On with Real Labs

This course is not just theory. You’ll build your own lab environment using
virtual machines and simulate real-world HA/DR use cases.

We guide you through every step — from cluster setup to full availability
group testing. Whether you’re creating an AG with two replicas or

deploying to a multi-subnet environment, this course shows you how it
works in practice.

No scripts without context. No fluff. Just practical demos you can repeat
and apply at work.

Enroll today: SQL Server 2025: Build Always On HA & DR Solutions
https://www.udemy.com/course/sqlserverag/?
referralCode=2E28F5CFD4DFBAD4EC15

Enhance Your Learning with Our Udemy Course

For those who’ve journeyed with us through this book, we have something
special to further your understanding — a comprehensive Udemy course
titled “Red Hat NGINX Web Server: Publishing and Deploying Web
Apps.”

Why Choose This Course?

1. Specialized Knowledge: Dive deep into the world of Red Hat and
NGINX. Understand how to use NGINX on the Red Hat platform, a
powerful combination for web server deployments.

2. Hands-On Approach: Our course isn’t just about theory; we believe
in the ‘learn by doing’ philosophy. With guided tutorials and real-
world examples, grasp how to publish and deploy various web
applications effectively.

3. Expert Instructors: Benefit from the insights and expertise of
professionals who are not just educators but industry practitioners with
years of experience.

4. Flexible Learning: Learn at your own pace. With lifetime access, you
can revisit topics anytime and solidify your understanding.

Who Is This Course For? - Web developers looking to understand the
deployment process on Red Hat using NGINX. - System administrators
aiming to expand their knowledge in server configuration and optimization.
- IT professionals transitioning to roles that require knowledge of web
server setup and deployment on Red Hat.

https://www.udemy.com/course/sqlserverag/?referralCode=2E28F5CFD4DFBAD4EC15

Enroll today: Red Hat NGINX Web Server: Publishing and Deploying Web
Apps https://www.udemy.com/course/rhel-nginx/?
referralCode=C9CFA39AE9E332ADA9FB

Build Secure PHP APIs Like a Pro with Laravel
12, OAuth2, and JWT

Unlock the full potential of Laravel 12 for REST API development! This
hands-on course on Udemy teaches you how to build robust, secure, and
modern APIs using Laravel, MySQL, OAuth2, JWT, Sanctum, and Role-
Based Access Control (RBAC). Perfect for real-world applications and
2025 standards.

🚀 Highlight Topics

What’s New in Laravel 12 for API development
Build RESTful APIs from scratch (Hello World to full CRUD)
File upload and user data handling via REST API
Secure authentication with Sanctum, JWT, and OAuth2
Role-Based Access Control (RBAC) with middleware
Legacy support: Laravel 8, 7.x, and 6.x projects included
Real project codebases and testing tutorials

👨‍💻 Who Should Enroll?

Laravel developers aiming to modernize their API skills
Backend engineers securing APIs with token-based auth
Teams migrating legacy Laravel APIs to newer standards
Students and professionals building real-world Laravel apps
Anyone preparing for backend development roles in 2025

Future-proof your Laravel skills. This course gives you everything you
need to build secure, scalable, and professional REST APIs in Laravel 12.
Learn by doing — with real code, live tests, and full project coverage.

https://www.udemy.com/course/rhel-nginx/?referralCode=C9CFA39AE9E332ADA9FB

👉 Join now and start building APIs that meet today’s security
demands. PHP REST API: Laravel 12, MySQL, OAuth2, JWT, Roles-Based
https://www.udemy.com/course/phprestapi/?
referralCode=2C5B2F14100B499E9845

Master Real-World Logging & Visualization with
the Full ELK Stack

Take control of your logging, search, and monitoring pipeline with this
hands-on Udemy course covering Elasticsearch, Logstash, Kibana, and
Beats. Learn how to set up, ingest, visualize, and scale log data using
practical projects — all designed for developers, sysadmins, and DevOps
engineers in real production environments.

🚀 Highlight Topics

Cross-platform installation: Windows, Ubuntu, macOS, Docker
Elasticsearch REST API: CRUD, mapping, queries, aggregation, SQL,
geo fields
Real-world API integration: PHP, ASP.NET Core, Node.js, Python
Logstash ingestion: files, folders, and RDBMS (MySQL)
Kibana Lens visualizations: charts, maps, dashboards, Canvas
Beats agents: Filebeat, Winlogbeat, Metricbeat, Packetbeat, Heartbeat,
Auditbeat
High Availability (HA) setup for Elasticsearch and Kibana with Nginx

👨‍💻 Who Should Enroll?

Developers and DevOps engineers building log-driven applications
System administrators responsible for monitoring and observability
Backend/API developers seeking integration with Elasticsearch
Cybersecurity analysts and IT ops engineers using ELK for log
auditing
Teams adopting open-source observability tools for modern
infrastructure

https://www.udemy.com/course/phprestapi/?referralCode=2C5B2F14100B499E9845

Log smarter, visualize better, and scale with confidence. Whether you’re
just getting started or already managing production systems, this course
gives you everything you need to build and operate a powerful ELK Stack
pipeline. With real-world use cases, cross-platform setups, and step-by-
step guidance, you’ll go beyond the basics and into expert territory.

👉 Enroll today to master the ELK Stack and unlock actionable insights
from your data! Practical Full ELK Stack: Elasticsearch, Kibana and
Logstash https://www.udemy.com/course/elkstack/?
referralCode=863C1036F77169C975C5

https://www.udemy.com/course/elkstack/?referralCode=863C1036F77169C975C5

Appendix C: Source Code
You can download the source code files for this book from GitHub at
https://www.github.com/agusk/ilmudata-book-sqlserver.

https://www.github.com/agusk/ilmudata-book-sqlserver

About
Agus Kurniawan’s journey in the field of technology, spanning from 2001,
is a remarkable blend of deep technical expertise and a fervent passion for
sharing knowledge. As a seasoned professional, Agus has carved a niche in
diverse technological domains, including software development, IoT
(Internet of Things), Machine Learning, IT infrastructure, and DevOps. His
experiences are not just limited to developing cutting-edge solutions but
also extend to shaping the future of upcoming technologists through
training and workshops.

Agus’s career is marked by significant contributions to both technological
innovation and community development. His recognition as a Microsoft
Most Valuable Professional (MVP) from 2004 to 2022 underlines his
proficiency in Microsoft technologies and his dedication to educating
others. Agus has been at the forefront of delivering various training sessions
and workshops, sharing his insights and helping others grow in the ever-
evolving tech industry.

Mastering Business Data with SQL

A Practical Guide to Querying, Modeling, and Compliance Using SQL
Server 2025

This book is crafted for professionals and learners aiming to master
business data analysis and management using SQL Server 2025. Drawing
on Agus Kurniawan’s extensive experience in software engineering and
data technologies, it delivers practical techniques, real-world scenarios, and
best practices for querying, modeling, and ensuring compliance with
business data.

Agus invites readers to share feedback, questions, and suggestions. If you
have inquiries about SQL, ideas for future editions, or wish to discuss your
learning experiences, please get in touch.

For those seeking private or group training on SQL, data management, or
related technologies, Agus offers customized programs for individuals and
organizations. Contact him for details on available topics, schedules, and
formats.

Email: aguskur@hotmail.com, agusk2007@gmail.com

LinkedIn: linkedin.com/in/agusk

Twitter: [@agusk2010]

mailto:aguskur@hotmail.com
mailto:agusk2007@gmail.com
https://www.linkedin.com/in/agusk
https://twitter.com/agusk2010

	Preface
	Acknowledgments
	Section 1: Getting Started with SQL Server 2025
	1 Introduction and Setup
	1.1 Introduction
	1.2 What’s New in SQL Server 2025
	1.3 Tools You’ll Use in This Book
	1.3.1 SQL Server Management Studio (SSMS) 21.x
	1.3.2 Visual Studio Code with MSSQL Extension
	1.3.3 Optional Tools

	1.4 Exercise 1: Install SQL Server and Restore AdventureWorks2022
	1.4.1 Description
	1.4.2 Objectives
	1.4.3 Prerequisites
	1.4.4 Steps
	1.4.5 Summary

	1.5 Exercise 2: Explore SSMS and Run Your First Query
	1.5.1 Description
	1.5.2 Objectives
	1.5.3 Prerequisites
	1.5.4 Steps
	1.5.5 Summary

	1.6 Conclusion

	Section 2: Querying Data – Core Skills
	2 SELECT and Filtering Essentials
	2.1 The SELECT Statement: Retrieving Data
	2.2 The WHERE Clause: Filtering Rows
	2.3 The ORDER BY Clause: Sorting Results
	2.4 Combining SELECT, WHERE, and ORDER BY
	2.5 Exercise 3: Select and Filter Data from AdventureWorks2022
	2.5.1 Description
	2.5.2 Objectives
	2.5.3 Prerequisites
	2.5.4 Steps
	2.5.5 Summary

	2.6 Exercise 4: Filter Sales by Region and Date
	2.6.1 Description
	2.6.2 Objectives
	2.6.3 Prerequisites
	2.6.4 Steps
	2.6.5 Summary

	2.7 Conclusion

	3 Expressions, NULLs, and Logic
	3.1 Using Expressions in SELECT
	3.2 Understanding NULLs
	3.3 The CASE Expression: Conditional Logic
	3.4 Combining Expressions, NULLs, and CASE
	3.5 Exercise 5: Add Calculated Columns and Handle Missing Data
	3.5.1 Description
	3.5.2 Objectives
	3.5.3 Prerequisites
	3.5.4 Steps
	3.5.5 Summary

	3.6 Exercise 6: Use CASE for Business Rule Logic
	3.6.1 Description
	3.6.2 Objectives
	3.6.3 Prerequisites
	3.6.4 Steps
	3.6.5 Summary

	3.7 Conclusion

	Section 3: Data Modeling and Design
	4 Relational Database Design Basics
	4.1 Tables and Data Types
	4.1.1 What is a Table?
	4.1.2 Data Types in SQL Server 2025

	4.2 Keys in Relational Tables
	4.2.1 Primary Key (PK)
	4.2.2 Foreign Key (FK)
	4.2.3 Candidate Key
	4.2.4 Surrogate Key vs. Natural Key

	4.3 Introduction to Normalization
	4.3.1 First Normal Form (1NF)

	4.4 Second Normal Form (2NF)
	4.5 Third Normal Form (3NF)
	4.6 Exercise 7: Basic ERD Design
	4.6.1 Description
	4.6.2 Objectives
	4.6.3 Prerequisites
	4.6.4 Steps
	4.6.5 Step 7: Show ERD Diagram
	4.6.6 Summary

	4.7 Exercise 8: Design Schema for a Subscription Business
	4.7.1 Description
	4.7.2 Objectives
	4.7.3 Prerequisites
	4.7.4 Steps
	4.7.5 Step 8: Show ERD Diagram
	4.7.6 Summary

	4.8 Exercise 9: Insert and Query Sample Data
	4.8.1 Description
	4.8.2 Objectives
	4.8.3 Prerequisites
	4.8.4 Steps
	4.8.5 Summary

	4.9 Exercise 10: Apply Normalization to Improve Table Design
	4.9.1 Description
	4.9.2 Objectives
	4.9.3 Prerequisites
	4.9.4 Steps
	4.9.5 Summary

	4.10 Conclusion

	5 Views and Logical Data Modeling
	5.1 What Is a View?
	5.2 Creating Views in SQL Server 2025
	5.3 Views as Virtual Tables
	5.4 Updatable Views
	5.5 Role-Based Schema Simplification Using Views
	5.6 Security and Compliance with Views
	5.7 Indexed Views (Materialized Views)
	5.8 Exercise 11: Create Reusable Views for Sales Analysis
	5.8.1 Description
	5.8.2 Objectives
	5.8.3 Prerequisites
	5.8.4 Steps
	5.8.5 Summary

	5.9 Exercise 12: Simplify Complex Joins via Views
	5.9.1 Description
	5.9.2 Objectives
	5.9.3 Prerequisites
	5.9.4 Steps
	5.9.5 Summary

	5.10 Conclusion

	6 Designing Multi-Tenant and SaaS Databases
	6.1 What Is a Multi-Tenant Database?
	6.2 Multi-Tenant Patterns in SQL Server
	6.2.1 Pattern 1: Shared Database, Shared Schema
	6.2.2 Pattern 2: Shared Database, Schema-Per-Tenant
	6.2.3 Pattern 3: Database-Per-Tenant

	6.3 Tenant Isolation and Identity Filtering
	6.3.1 Option 1: Manual Filtering by Tenant ID
	6.3.2 Option 2: Use Row-Level Security (RLS)

	6.4 Managing Identity and Shared Metadata
	6.5 Best Practices for Multi-Tenant SQL Server Design
	6.6 Exercise 13: Add Tenant Column and Apply Security Filters
	6.6.1 Description
	6.6.2 Objectives
	6.6.3 Prerequisites
	6.6.4 Steps
	6.6.5 Summary

	6.7 Exercise 14: Build Views and Indexes per Tenant
	6.7.1 Description
	6.7.2 Objectives
	6.7.3 Prerequisites
	6.7.4 Steps
	6.7.5 Summary

	6.8 Conclusion

	Section 4: Aggregation, Data Combination and Analytical Query Techniques
	7 Grouping, Aggregation, and PIVOTs
	7.1 What Is Aggregation?
	7.2 GROUP BY: Summarizing Rows by Category
	7.3 HAVING: Filtering Groups
	7.4 Multiple Columns in GROUP BY
	7.5 PIVOT: Rotating Data for Reports
	7.6 Unpivoting (Optional Advanced)
	7.7 Exercise 15: Generate Monthly Revenue Summaries
	7.7.1 Description
	7.7.2 Objectives
	7.7.3 Prerequisites
	7.7.4 Steps
	7.7.5 Summary

	7.8 Exercise 16: Create Pivoted Sales Report
	7.8.1 Description
	7.8.2 Objectives
	7.8.3 Prerequisites
	7.8.4 Steps
	7.8.5 Summary

	7.9 Exercise 17: Filter Aggregated Results Using HAVING
	7.9.1 Description
	7.9.2 Objectives
	7.9.3 Prerequisites
	7.9.4 Steps
	7.9.5 Summary

	7.10 Conclusion

	8 Joins and UNION Queries
	8.1 Introduction to Joins
	8.2 INNER JOIN
	8.3 LEFT JOIN (LEFT OUTER JOIN)
	8.4 FULL JOIN (FULL OUTER JOIN)
	8.5 UNION vs UNION ALL
	8.6 Best Practices
	8.7 Exercise 18: Combine Customer, Order, and Region Data
	8.7.1 Description
	8.7.2 Objectives
	8.7.3 Prerequisites
	8.7.4 Steps
	8.7.5 Summary

	8.8 Exercise 19: Merge Archived and Active Records
	8.8.1 Description
	8.8.2 Objectives
	8.8.3 Prerequisites
	8.8.4 Steps
	8.8.5 Summary

	8.9 Conclusion

	9 Trends, Time, and Window Functions
	9.1 Introduction to Window Functions
	9.2 ROW_NUMBER, RANK, and DENSE_RANK
	9.3 LEAD and LAG: Accessing Adjacent Rows
	9.4 DATE and TIME Functions
	9.5 Combining Window + Time Analysis
	9.6 Exercise 20: Rank Top Customers Monthly
	9.6.1 Description
	9.6.2 Objectives
	9.6.3 Prerequisites
	9.6.4 Steps
	9.6.5 Summary

	9.7 Exercise 21: Compare Customer Revenue Month-over-Month
	9.7.1 Description
	9.7.2 Objectives
	9.7.3 Prerequisites
	9.7.4 Steps
	9.7.5 Summary

	9.8 Exercise 22: Calculate Moving Averages on Sales
	9.8.1 Description
	9.8.2 Objectives
	9.8.3 Prerequisites
	9.8.4 Steps
	9.8.5 Summary

	9.9 Exercise 23: Analyze Customer Sales Percentiles
	9.9.1 Description
	9.9.2 Objectives
	9.9.3 Prerequisites
	9.9.4 Steps
	9.9.5 Summary

	9.10 Conclusion

	Section 5: Security, Access, and Compliance
	10 User Management and Access Control
	10.1 Authentication vs Authorization
	10.2 Logins and Users
	10.3 Fixed Server and Database Roles
	10.4 Custom Roles and Role-Based Access Control (RBAC)
	10.5 Schema-Level Security
	10.6 Security Best Practices
	10.7 Auditing Access
	10.8 Exercise 24: Create Analyst Role and Grant Access
	10.8.1 Description
	10.8.2 Objectives
	10.8.3 Prerequisites
	10.8.4 Steps
	10.8.5 Summary

	10.9 Exercise 25: Restrict Access by Schema
	10.9.1 Description
	10.9.2 Objectives
	10.9.3 Prerequisites
	10.9.4 Steps
	10.9.5 Summary

	10.10 Exercise 26: Revoke Permissions and Audit Role Membership
	10.10.1 Description
	10.10.2 Objectives
	10.10.3 Prerequisites
	10.10.4 Steps
	10.10.5 Summary

	10.11 Conclusion

	11 Row-Level Security and Tenant Isolation
	11.1 What Is Row-Level Security (RLS)?
	11.2 RLS Architecture in SQL Server
	11.2.1 How RLS Works Internally
	11.2.2 Types of Security Predicates
	11.2.3 Security Policy Management
	11.2.4 Auditing RLS Activity

	11.3 Example Scenario: Tenant-Based Filtering
	11.4 Step-by-Step: Implementing RLS for Tenant Isolation
	11.5 RLS for User-Specific Access
	11.6 Best Practices for RLS
	11.7 RLS Limitations to Note
	11.8 Exercise 27: Enforce Tenant Filtering with RLS
	11.8.1 Description
	11.8.2 Objectives
	11.8.3 Prerequisites
	11.8.4 Steps
	11.8.5 Summary

	11.9 Exercise 28: Validate Isolation Using Test Accounts
	11.9.1 Description
	11.9.2 Objectives
	11.9.3 Prerequisites
	11.9.4 Steps
	11.9.5 Summary

	11.10 Exercise 29: Audit RLS Access and Log Session Context Activity
	11.10.1 Description
	11.10.2 Objectives
	11.10.3 Prerequisites
	11.10.4 Steps
	11.10.5 Summary

	11.11 Conclusion

	12 Masking, Encryption, and Auditing
	12.1 Dynamic Data Masking (DDM)
	12.2 Encryption Options
	12.2.1 Transparent Data Encryption (TDE)
	12.2.2 Always Encrypted
	12.2.3 Cell-Level Encryption (CLE)

	12.3 Auditing Access to Sensitive Data
	12.4 Best Practices for Data Protection
	12.5 Exercise 30: Mask Email and Phone Fields in Query Output
	12.5.1 Description
	12.5.2 Objectives
	12.5.3 Prerequisites
	12.5.4 Steps
	12.5.5 Summary

	12.6 Exercise 31: Encrypt Sensitive Data Using Always Encrypted
	12.6.1 Description
	12.6.2 Objectives
	12.6.3 Prerequisites
	12.6.4 Steps
	12.6.5 Summary

	12.7 Exercise 32: Enable and Configure an Audit Policy
	12.7.1 Description
	12.7.2 Objectives
	12.7.3 Prerequisites
	12.7.4 Steps
	12.7.5 Summary

	12.8 Conclusion

	13 Complying with GDPR and Privacy Regulations
	13.1 Key GDPR Data Subject Rights
	13.1.1 Right of Access (Article 15)
	13.1.2 Right to Erasure / Right to Be Forgotten (Article 17)
	13.1.3 Right to Data Portability (Article 20)

	13.2 Data Minimization
	13.3 Pseudonymization
	13.4 Data Classification in SQL Server 2025
	13.5 Auditing for Compliance
	13.6 Best Practices for GDPR Compliance
	13.7 Exercise 33: Apply DDM to PII Columns
	13.7.1 Description
	13.7.2 Objectives
	13.7.3 Prerequisites
	13.7.4 Steps
	13.7.5 Summary

	13.8 Exercise 34: Apply Pseudonymization with Computed Columns or Hashes
	13.8.1 Description
	13.8.2 Objectives
	13.8.3 Prerequisites
	13.8.4 Steps
	13.8.5 Summary

	13.9 Exercise 35: Implement the Right to Erasure and Portability
	13.9.1 Description
	13.9.2 Objectives
	13.9.3 Prerequisites
	13.9.4 Steps
	13.9.5 Summary

	13.10 Exercise 36: Simulate GDPR “Right to Be Forgotten”
	13.10.1 Description
	13.10.2 Objectives
	13.10.3 Prerequisites
	13.10.4 Steps
	13.10.5 Summary

	13.11 Exercise 37: Enable Auditing and Access Log for GDPR
	13.11.1 Description
	13.11.2 Objectives
	13.11.3 Prerequisites
	13.11.4 Steps
	13.11.5 Summary

	13.12 Exercise 38: Log Consent and Data Processing Activities for GDPR Audits
	13.12.1 Description
	13.12.2 Objectives
	13.12.3 Prerequisites
	13.12.4 Steps
	13.12.5 Summary

	13.13 Conclusion

	Section 6: Reporting and Exporting
	14 Reporting and Data Connectivity
	14.1 Exporting SQL Data to Excel and CSV
	14.1.1 Export Using SQL Server Management Studio (SSMS)
	14.1.2 xport Using SQL Server Import and Export Wizard
	14.1.3 Export via bcp (Bulk Copy Program) CLI
	14.1.4 Export to CSV with T-SQL (via SSMS scripting)

	14.2 Connecting Power BI to SQL Server
	14.3 Building Reports on Exported Data
	14.4 Practices for Reporting and Data Access
	14.5 Exercise 39: Export Sales Summary to Excel
	14.5.1 Description
	14.5.2 Objectives
	14.5.3 Prerequisites
	14.5.4 Steps
	14.5.5 Summary

	14.6 Exercise 40: Connect SQL Server to Power BI Desktop for Dynamic Visualization
	14.6.1 Description
	14.6.2 Objectives
	14.6.3 Prerequisites
	14.6.4 Steps
	14.6.5 Summary

	14.7 Conclusion

	Appendix A: T-SQL Cheatsheet (SQL Server 2025)
	Appendix B: Resources
	SQL Server 2025 High Availability & Disaster Recovery: Always On Solutions Course
	Enhance Your Learning with Our Udemy Course
	Build Secure PHP APIs Like a Pro with Laravel 12, OAuth2, and JWT
	Master Real-World Logging & Visualization with the Full ELK Stack

	Appendix C: Source Code
	About

