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Introduction

According to Andrew Ng, AI is the new electricity—powered by big data. It is evident 

the intersection between big data and AI will grow bigger and stronger as time goes 

on. Apache Spark was born before the AI revolution. However, it has evolved into 

an invaluable piece of big data technology to help companies around the world to 

transform their business with big data and machine learning.

Apache Spark version 3.0 was released in 2020, the same year as Spark’s tenth 

anniversary. Release 3.0 includes many improvements and advancements across the 

Spark stack. Some of the notable features include 2x performance improvement with 

adaptive query execution, significant performance improvement and ease of use in 

panda APIs, and new UI for structured streaming to gain insights into the streaming 

queries and debug performance-related issues.

There is no better time to learn and gain Apache Spark skills.
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CHAPTER 1

Introduction to Apache 
Spark
There is no better time to learn Apache Spark than now. It has become one of the critical 

components in the big data stack due to its ease of use, speed, and flexibility. Over the 

years, it has established itself as the unified engine for multiple workload types, such as 

big data processing, data analytics, data science, and machine learning. Companies in 

many industries widely adopt this scalable data processing system, including Facebook, 

Microsoft, Netflix, and LinkedIn. Moreover, it has steadily improved through each major 

release.

The more recent version of Apache Spark is 3.0, which was released in June 2020, 

marking Spark’s tenth anniversary as an open source project. This release includes 

enhancements to many areas of Spark. The notable enhancements are the innovative 

just-in-time performance optimization techniques to speed up Spark applications and 

help reduce the time and effort it takes developers to tune their Spark applications.

This chapter provides a high-level overview of Spark, including the core concepts, 

architecture, and the various components inside the Apache Spark stack.

 Overview
Spark is a general distributed data processing engine built for speed, ease of use, and 

flexibility. The combination of these three properties is what makes Spark so popular 

and widely adopted in the industry.

The Apache Spark website claims that it can run certain data processing jobs up 

to 100 times faster than Hadoop MapReduce. In fact, in 2014, Spark won the Daytona 

GraySort contest, which is an industry benchmark to see how fast a system can sort 

100TB of data (1 trillion records). The submission from Databricks claimed Spark could 

https://doi.org/10.1007/978-1-4842-7383-8_1#DOI
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sort 100 TB of data three times faster using ten times fewer resources than the previous 

world record set by Hadoop MapReduce.

Ease of use has been one of the main focuses of the Spark creators since the 

inception of the Spark project. It offers over 80 high-level, commonly needed data 

processing operators to make it easy for developers, data scientists, and analysts to use to 

build all kinds of interesting data applications. In addition, these operators are available 

in multiple languages: Scala, Java, Python, and R. Software engineers, data scientists, 

and data analysts can pick and choose their favorite language to solve large-scale data 

processing problems with Spark.

In terms of flexibility, Spark offers a single unified data processing stack that can 

solve multiple types of data processing workloads, including batch applications, 

interactive queries, machine learning algorithms that require many iterations, and real- 

time streaming applications to extract actionable insights in near real time. Before the 

existence of Spark, each of these types of workloads requires a different solution and 

technology. Now companies can just leverage Spark for all their data processing needs, 

and it dramatically reduces the operational cost and resources.

The big data ecosystem consists of many pieces of technology, including Hadoop 

Distributed File System (HDFS), a distributed storage engine and cluster management 

system that efficiently manages a cluster of machines and different file formats to store a 

large amount of data in binary and columnar formats. Spark integrates well with the big 

data ecosystem. This is another reason why Spark adoption has been growing at a fast 

pace.

Another cool thing about Spark is it is open source. Therefore, anyone can download 

the source code to examine the code, figure out how a certain feature was implemented, 

and extend its functionalities. In some cases, it can dramatically help reduce the time to 

debug problems.

 History
Spark started as a research project at the University of California, Berkeley, AMPLab 

in 2009. At that time, the researchers of this project observed the inefficiencies of the 

Hadoop MapReduce framework in handling interactive and iterative data processing  

use cases, so they came up with ways to overcome those inefficiencies by introducing 

ideas like in-memory storage and an efficient way of dealing with fault recovery.  

Once this research project has proven to be a viable solution that outperforms 
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MapReduce. It was open sourced in 2010 and became the Apache top-level project in 

2013.

Many researchers who worked on this research project founded a company 

called Databricks, and they raised over $43 million in 2013. Databricks is the primary 

commercial steward behind Spark. In 2015, IBM announced a major investment in 

building a Spark technology center to advance Apache Spark by working closely with the 

open source community and build Spark into the core of the company’s analytics and 

commerce platforms.

Two popular research papers on Spark are “Spark: Cluster Computing with Working 

Sets” (http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf) and 

“Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster 

Computing” (http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf). 

These papers are well received at academic conferences and provide good foundations 

for anyone that would like to learn and understand Spark.

Since its inception, the Spark open source project has been a very active project and 

community. The number of contributors has increased by more than 1000, and there are 

over 200 thousand Apache Spark meetups. The number of Apache Spark contributors 

has exceeded the number of contributors of the widely popular Apache Hadoop.

The creators of Spark picked Scala programming language for their project due to 

the combinations of Scala’s conciseness and static typing. Now Spark is considered one 

of the largest applications written in Scala and its popularity certainly has helped Scala 

become a mainstream programming language.

 Spark Core Concepts and Architecture
Before diving into the details of Spark, it is important to have a high-level understanding 

of the core concepts and the various core components. This section covers the following.

• Spark clusters

• Resource management system

• Spark applications

• Spark drivers

• Spark executors

Chapter 1  IntroduCtIon to apaChe Spark
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 Spark Cluster and Resource Management System
Spark is essentially a distributed system designed to process large volumes of data 

efficiently and quickly. This distributed system is typically deployed onto a collection of 

machines, known as a Spark cluster. A cluster can be as small as a few machines or as 

large as thousands of machines. According to the Spark FAQ at https://spark.apache.

org/faq.html, the world’s largest Spark cluster has more than 8000 machines.

Companies rely on a resource management system like Apache YARN or Apache 

Meso to efficiently and intelligently manage a collection of machines. The two main 

components in a typical resource management system are cluster manager and worker. 

The master knows where the slaves are located, how much memory, and the number 

of CPU cores each one has. One of the main responsibilities of the cluster manager is to 

orchestrate work by assigning work to workers. Each worker offers resources (memory, 

CPU, etc.) to the cluster manager and performs the assigned work. An example of this 

type of work is to launch a particular process and monitor its health. Spark is designed 

to easily interoperate with these systems. In recent years, most companies adopting big 

data technologies have a YARN cluster to run MapReduce jobs or other data processing 

frameworks like Apache Pig or Apache Hive.

Startup companies that fully adopt Spark can just use the out-of-the-box Spark cluster 

manager to manage a set of machines dedicated to performing data processing using Spark.

 Spark Applications
A Spark application consists of two parts. One is the data processing logic expressed 

using Spark APIs, and the other is the driver. Data processing logic can be as simple as a 

few lines of code to perform a few data processing operations that solve a specific data 

problem or as complex as training a complicated machine learning model that requires 

many iterations and runs many hours to complete. A Spark driver is effectively the 

central coordinator of a Spark application to interact with a cluster manager to figure out 

which machines to run the data processing logic. For each of those machines, a driver 

requests a cluster manager to launch a process known as an executor.

Another very important job of the Spark driver is managing and distributing Spark tasks 

onto each executor on behalf of the application. If the data processing logic requires the 

Spark driver to collect the computed results to present to a user, it coordinates with each 

Spark executor to collect the computed result and merge them together before presenting 

them to the user. A Spark driver performs tasks through a component called SparkSession.

Chapter 1  IntroduCtIon to apaChe Spark
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 Spark Drivers and Executors
Each Spark executor is a JVM process and is dedicated to a specific Spark application. 

The life span of a Spark executor is the duration of a Spark application, which could 

be minutes or days. There was a conscious design decision not to share a Spark 

executor between different multiple Spark applications. This has the benefit of isolating 

each application from each other. Still, it is not easy to share data between different 

applications without writing that data to an external storage system like HDFS.

In short, Spark employs a master/slave architecture, where the driver is the master, 

and the executor is the slave. Each of these components runs as an independent process 

on a Spark cluster. A Spark application consists of one driver and one or more executors. 

Playing the slave role, a Spark executor does what is being told, which is to execute the 

data processing logic in the form of tasks. Each task is executed on a separate CPU core. 

This is how Spark parallelly processes data to speed things up. In addition, each Spark 

executor is responsible for caching a portion of the data in memory and/or on disk when 

it is told to do so by the application logic.

When launching a Spark application, you can specify the number of executors the 

application needs, and the amount of memory and the number of CPU cores each 

executor should have.

Figure 1-1 shows interactions between a Spark application and cluster manager.

Figure 1-1. Interactions between a Spark application and the cluster manager
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 Spark Unified Stack
Unlike its predecessors, Spark provides a unified data processing engine known as the 

Spark stack. Like other well-designed systems, this stack is built on a strong foundation 

called Spark Core, which provides all the necessary functionality to manage and run 

distributed applications like scheduling, coordination, and handling fault tolerance. 

In addition, it provides a powerful and generic programming abstraction for data 

processing called resilient distributed datasets (RDDs). On top of this strong foundation 

is a collection of libraries where each one is designed for a specific data processing 

workload. Spark SQL specializes in interactive data processing. Spark Streaming is  real- 

time data processing. Spark GraphX is for graph processing. Spark MLlib is for machine 

learning. Spark R runs machine learning tasks using the R shell.

This unified engine brings several important benefits to building the next generation 

of big data applications. First, applications are simpler to develop and deploy because 

they use a unified set of APIs and run on a single engine. Second, combining different 

types of data processing (batch, streaming, etc.) is far more efficient because Spark can 

run those different sets of APIs over the same data without writing the intermediate data 

out to storage.

Finally, the most exciting benefit is that Spark enables brand-new applications 

made possible due to the ease of composing different sets of data processing types; for 

example, running interactive queries on the results of machine learning predictions 

of real-time data streams. An analogy that everyone can relate to is a smartphone, 

Figure 1-2. A Spark cluster that consists of one driver and three executors
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consisting of a powerful camera, cellphone, and GPS device. By combining the functions 

of these components, smartphones enable innovative applications like Waze, a traffic 

and navigation application.

 Spark Core

Spark Core is the bedrock of the Spark distributed data processing engine. It consists of 

an RDD, a distributed computing infrastructure and programming abstraction.

The distributed computing infrastructure is responsible for distributing, 

coordinating, and scheduling computing tasks across many machines in the cluster. This 

enables the ability to perform parallel data processing of large volumes of data efficiently 

and quickly on a large cluster of machines. Two other important responsibilities of 

the distributed computing infrastructure are handling computing task failures and the 

efficient way of moving data across machines, known as data shuffling. Advanced Spark 

users should have intimate knowledge of Spark distributed computing infrastructure to 

effectively design high-performance Spark applications.

The RDD key programming abstraction is something that every Spark user should 

learn and effectively use the various provided APIs. An RDD is a fault-tolerant collection 

of objects partitioned across a cluster that can be manipulated in parallel. Essentially it 

provides a set of APIs for Spark application developers to easily and efficiently perform 

large-scale data processing without worrying where data resides on the cluster and 

machine failures. The RDD APIs are exposed to multiple programming languages, 

including Scala, Java, and Python. They allow users to pass local functions to run on the 

cluster, which is very powerful and unique. RDDs are covered in detail in a later chapter.

Figure 1-3. Spark unified stack
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The rest of the components in the Spark stack are designed to run on top of Spark 

Core. Therefore, any improvement or optimization done in the Spark Core between 

versions of Spark is automatically available to the other components.

 Spark SQL

Spark SQL is a module built on top of Spark Core, and it is designed for structured data 

processing at scale. Its popularity has skyrocketed since its inception since it brings a 

new level of flexibility, ease of use, and performance.

Structured Query Language (SQL) has been the lingua franca for data processing 

because it is easy for users to express their intent. The execution engine then performs 

intelligent optimizations. Spark SQL brings that to the world of data processing at the 

petabytes level. Spark users now can issue SQL queries to perform data processing or 

use the high-level abstraction exposed through the DataFrame API. A DataFrame is 

effectively a distributed collection of data organized into named columns. This is not a 

new idea. It is inspired by data frames in R and Python. An easier way to think about a 

DataFrame is that it is conceptually equivalent to a table in a relational database.

Behind the scenes, the Spark SQL Catalyst optimizer performs optimizations 

commonly done in many analytical database engines.

Another Spark SQL feature that elevates Spark’s flexibility is the ability to read and 

write data to and from various structured formats and storage systems, such as JavaScript 

Object Notation (JSON), comma-separated values (CSV), Parquet or ORC files, relational 

databases, Hive, and others.

According to the 2021 Spark survey, Spark SQL was the fastest-growing component. 

This makes sense because Spark SQL enables a wider audience beyond “big data” 

engineers to leverage the power of distributed data processing—that is, data analysts or 

anyone familiar with SQL.

The motto for Spark SQL is to write less code, read less data, and the optimizer does 

the hard work.

 Spark Structured Streaming

It has been said that “data in motion has equal or greater value than historical data.” 

The ability to process data as they arrive has become a competitive advantage for many 

companies in highly competitive industries. The Spark Structured Streaming module 

enables the ability to process real-time streaming data from various data sources in 
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a high-throughput and fault-tolerant manner. Data can be ingested from sources like 

Kafka, Flume, Kinesis, Twitter, HDFS, or TCP socket.

Spark’s main abstraction for processing streaming data is a discretized stream 

(DStream), which implements an incremental stream processing model by splitting the 

input data into small batches (based on a time interval) that can regularly combine the 

current processing state to produce new results.

Stream processing sometimes involves joining with data at rest, and Spark makes 

it very easy. In other words, combining batch and interactive queries with stream 

processing can be easily done in Spark due to the unified Spark stack.

A new scalable and fault-tolerant stream processing engine called Structured 

Streaming was introduced in Spark version 2.1. This engine further simplifies stream 

processing app developers’ lives by treating streaming computation the same way as 

you express a batch computation on static data. This new engine automatically executes 

the stream processing logic incrementally and continuously and produces the result as 

new streaming data arrives. Another unique feature in the Structured Streaming engine 

is the guarantee of end-to-end exactly-once support, which makes “big data” engineer’s 

life much easier than before in terms of saving data to a storage system like a relational 

database or a NoSQL database.

As this new engine matures, it enables a new class of stream processing applications 

that are easy to develop and maintain.

According to Reynold Xin, Databricks’ chief architect, the simplest way to perform 

streaming analytics is not having to reason about streaming.

 Spark MLlib

MLlib is Spark’s machine learning library. It provides more than 50 common machine 

learning algorithms and abstractions for managing and simplifying model-building 

tasks, such as featurization, a pipeline for constructing, an evaluating and tuning model, 

and the persistence of models to help move models from development to production.

Starting with Spark 2.0 version, the MLlib APIs are based on DataFrames to take 

advantage of the user-friendliness and many optimizations provided by the Catalyst and 

Tungsten components in the Spark SQL engine.

Machine learning algorithms are iterative, meaning they run through many 

iterations until the desired objective is achieved. Spark makes it extremely easy to 

implement those algorithms and run them in a scalable manner through a cluster 
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of machines. Commonly used machine learning algorithms such as classification, 

regression, clustering, and collaborative filtering are available out of the box for data 

scientists and engineers to use.

 Spark GraphX

Graph processing operates on a data structure consisting of vertices and edges 

connecting them. A graph data structure is often used to represent real-life networks of 

interconnected entities, including professional social networks on LinkedIn, a network 

of connected web pages on the Internet, and so on. Spark GraphX is a library that 

enables graph-parallel computations by providing an abstraction of a directed multi- 

graph with properties attached to each vertex and edge. GraphX includes a collection of 

common graph processing algorithms, including page ranks, connected components, 

shortest paths, and others.

 SparkR

SparkR is an R package that provides a lightweight frontend to use Apache Spark. R is a 

popular statistical programming language that supports data processing and machine 

learning tasks. However, R was not designed to handle large datasets that cannot fit on a 

single machine. SparkR leverages Spark’s distributed computing engine to enable large- 

scale data analysis using familiar R shell and popular APIs that many data scientists love.

 Apache Spark 3.0
The 3.0 release has new features and enhancements to most of the components in the 

Spark stack. However, about 60% of the enhancements went into Spark SQL and Spark 

Core components. Query performance optimization was one of the major themes in 

Spark 3.0, so the bulk of the focus and development was in the Spark SQL component. 

Based on the TPC-DS 30 TB benchmark done by Databricks, Spark 3.0 is roughly two 

times faster than Spark 2.4. This section highlights a few notable features that are related 

to performance optimization.
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 Adaptive Query Execution Framework
As the name suggests, the query execution framework adapts the execution plan at 

runtime based on the most recent statistics about data size, the number of partitions, 

and so forth. As a result, Spark can dynamically switch join strategies, automatically 

optimize skew joins, and adjust the number of partitions. All these intelligent 

optimizations lead to improving the query performance of Spark applications.

 Dynamic Partition Pruning (DPP)
The primary idea behind DPP is simple, which is to avoid reading unnecessary data. 

It is designed specifically for use cases when querying data using joins against fact 

tables and dimension tables in a star schema scheme. It can dramatically improve the 

join performance by reducing the number of rows in the fact table that need to join 

with the dimension tables based on the given filtering conditions. Based on a TPC-DS 

benchmark, this optimization technique can speed up the performance of 60% of the 

queries in the range of 2x to 18x.

 Accelerator-aware Scheduler
More and more Spark users are leveraging Spark for both big data processing and machine 

learning workload. The latter type of workload often needs GPU to speed up the machine 

learning model training process. This enhancement enables Spark users to describe and 

request GPU resources for their complex workloads that involve machine learning.

 Apache Spark Applications
Spark is a versatile, fast, and scalable data processing engine. It was designed to be a 

general engine since the beginning days and has proven that it can be used to solve 

many use cases. As a result, many companies in various industries are using Spark to 

solve many real-life use cases. The following is a small list of applications that were 

developed using Spark.

• Customer intelligence application

• Data warehouse solutions

• Real-time streaming solutions
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• Recommendation engines

• Log processing

• User-facing services

• Fraud detection

 Spark Example Applications
In the world of big data processing, the canonical example application is the word count 

application. This tradition started with the introduction of the MapReduce framework. 

Since then, every big data processing technology-related book must follow this 

unwritten tradition by including this canonical example. The problem space in the word 

count example application is easy for everyone to understand since all it does is count 

how many times a particular word appears in each set of documents, whether that is a 

chapter of a book or hundreds of terabytes of web pages from the Internet.

Listing 1-1 is a word count example application in Spark in the Scala language.

Listing 1-1. The Word Count Spark Example Application Written in Scala 

Language

val textFiles = sc.textFile("hdfs://<folder>")

val words = textFiles.flatMap(line => line.split(" "))

val wordTuples = words.map(word => (word, 1))

val wordCounts = wordTuples.reduceByKey(_ + _)

wordCounts.saveAsTextFile("hdfs://<outoupt folder>")

A lot is going on behind these five lines of code. The first line is responsible for 

reading the text files under the specified folder. The second line iterates through each 

line in each of the files, then each line is tokenized into an array of words and finally 

flattens each array into one word per line. The third line attaches a count of 1 to each 

word to count the number of words across all documents. The fourth line performs 

the summation of the count of each word. Finally, the last line saves the result in the 

specified folder. Hopefully, this gives you a general sense of the ease of use of Spark to 

perform data processing. Future chapters go into more detail about what each of those 

lines of code does.
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 Apache Spark Ecosystem
In the realm of big data, innovation doesn’t stand still. As time goes on, the best 

practices and architectures emerge. The Spark ecosystem is expanding and evolving 

to address some of the emerging needs in data lakes, helping data scientists be more 

productive at interacting with the vast amount of data and speeding up the machine 

learning development life cycle. This section highlights a few of the exciting and recent 

innovations in the Spark ecosystem.

 Delta Lake
At this point, most companies recognize the value of data and have some form of strategy 

to ingest, store, process, and extract insights from their data. The idea behind Delta Lake 

is to leverage a distributed storage solution to store both structured and unstructured 

data for various data consumers such as data scientists, data engineers, and business 

analysts. To ensure the data in Delta Lake is usable, there must be oversights in the data 

catalog, data discovery, data quality, access control, and data consistency semantics. 

Data consistency semantics presents many challenges, and companies have invented 

tricks or “Band-Aid” solutions.

Delta Lake is an open source solution for data consistency semantics that provides 

an open data storage format with transactional guarantees and schema enforcement and 

evolution support. Delta Lake is further discussed later.

 Koalas
For years, data scientists have been using the Python pandas library to perform data 

manipulation in their machine learning–related tasks. The pandas library (https://

pandas.pydata.org) is a “fast, powerful, flexible and easy to use open source data 

analysis and manipulation tool built on top of Python programming language.” pandas 

is widely popular and has become the de facto library due to its powerful and flexible 

abstraction called a DataFrame for data manipulation. However, pandas is designed to 

run on a single machine only. To perform parallel computing in Python, you can explore 

an open source project called Dask (https://docs.dask.org).

Koalas marries the best of both worlds, the powerful and flexible DataFrame 

abstraction and Spark’s distributed data processing engine by implementing the pandas 

DataFrame API on top of Apache Spark.
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This innovation enables data scientists to leverage their pandas knowledge to 

interact with much bigger datasets than in the past.

Koalas version 1.0 was released in June 2020 with 80% coverage of the pandas APIs. 

Koalas aims to enable data science projects to leverage large datasets instead of being 

blocked by them.

 MLflow
The field of machine learning has been around a long time. Recently, it has become 

more approachable due to advancements in algorithms, ease of access to a large 

collection of useful datasets such as images and a large corpus of text, and the availability 

of educational resources. However, applying machine learning to business problems has 

proven to be a challenge because it is more of a software engineering problem to manage 

the machine learning life cycle.

MLflow is an open source project. It was conceived in 2018 to provide a platform 

to help with managing the machine learning life cycle. It consists of the following 

components to address the various needs in each step of the life cycle.

• Tracking records and compares machine learning experiments.

• Projects provides a consistent format of organizing machine learning 

projects to share and reproduce machine learning models easily.

• Models provides a standardized format to package machine learning 

models, a consistent API for working with machine learning models, 

such as loading and deploying them.

• Registry is a model store that hosts machine learning models and 

tracks their lineage, version, and deployment state transitions.

 Summary
• Apache Spark has certainly produced many sparks since its 

inception. It has created much excitement and opportunities in the 

world of big data. And more importantly, it allows you to create many 

new and innovative big data applications to solve a diverse set of data 

processing problems of data applications.
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• The three important properties of Spark to note are ease of use, 

speed, and flexibility.

• The Spark distributed computing infrastructure employs a master 

and slave architecture. Each Spark application consists of a driver 

and one or more executors to process the data in parallel. Parallelism 

is the key enabler to process massive amounts of data in a short 

amount of time.

• Spark provides a unified scalable and distributed data processing 

engine that can be used for batch processing, interactive and 

exploratory data processing, real-time stream processing, building 

machine learning models and predictions, and graph processing.

• Spark applications can be written in multiple programming 

languages, including Scala, Java, Python, or R.
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CHAPTER 2

Working with Apache 
Spark
When it comes to working with Spark or building Spark applications, there are many 

options. This chapter describes the three common options, including using Spark 

shell, submitting a Spark application from the command line, and using a hosted cloud 

platform called Databricks. The last part of this chapter is geared toward software 

engineers who want to set up Apache Spark source code on a local machine to study 

Spark source code and learn how certain features were implemented.

 Downloading and Installation
To learn or experiment with Spark, it is convenient to have it installed locally on your 

computer. This way, you can easily try out certain features or test your data processing 

logic with small datasets. Having Spark locally installed on your laptop lets you learn it 

from anywhere, including your comfortable living room, the beach, or at a bar in Mexico.

Spark is written in Scala. It is packaged so that it can run on both Windows and 

UNIX-like systems (e.g., Linux, macOS). To run Spark locally, all that is needed is Java 

installed on your computer.

To set up a multitenant Spark production cluster requires a lot more information and 

resources, which are beyond the scope of this book.

 Downloading Spark
The Download section of the Apache Spark website (http://spark.apache.org/

downloads.html) has detailed instructions for downloading the pre-packaged Spark 

binary file. At the time of writing this book, the latest version is 3.1.1. In terms of package 

type, choose the one with the latest version of Hadoop. Figure 2-1 shows the various 

https://doi.org/10.1007/978-1-4842-7383-8_2#DOI
http://spark.apache.org/downloads.html)
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options for downloading Spark. The easiest way is to download the pre-packaged binary 

file because it contains the necessary JAR files to run Spark on your computer. Clicking 

the link on line item 3 triggers the binary file download. There is a way to manually build 

the Spark binary from source code. The instructions on how to do that are covered later 

in the chapter.

 Installing Spark
Once the file is successfully downloaded onto your computer, the next step is to 

uncompress it. The spark-3.1.1-bin-hadoop2.7.tgz file is in a GZIP compressed tar 

archive file, so you need to use the right tool to uncompress it.

For Linux or macOs computers, the tar command should already exist. So run the 

following command to uncompress the downloaded file.

tar xvf spark-3.1.1-bin-hadoop2.7.tgz

For Windows computers, you can use either the WinZip or 7-zip tool to unzip the 

downloaded file.

Once the uncompression is successfully finished, there should be a directory called 

spark-3.1.1-bin-hadoop2.7. From here on, this directory is referred to as the Spark directory.

Note If a different version of Spark is downloaded, the directory name is slightly 
different.

There are about a dozen directories under the spark-3.1.1-bin-hadoop2.7 

directory. Table 2-1 describes the ones that are good to know.

Figure 2-1. Apache Spark download options
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The next step is to test out the installation by bringing up the Spark shell.

Spark shell is like a Unix shell. It provides an interactive environment to easily learn 

Spark and analyze data. Most Spark applications are developed using either Python or 

Scala programming language. Spark shell is available for both of those languages. If you 

are a data scientist and Python is your cup of tea, you will not feel left out. The following 

section shows how to bring up Spark Scala and Spark Python shell.

Note Scala is a Java JVM-based language, and thus, it is easy to leverage 
existing Java libraries in Scala applications.

 Spark Scala Shell

To start up the Spark Scala shell, enter the ./bin/spark-shell command in the Spark 

directory. After a few seconds, you should see something similar to Figure 2-2.

Table 2-1. The Subdirectories in spark-3.1.1-bin-hadoop2.7

Name Description

bin Contains the various executable files to bring up Spark shell in Scala or python, 

submit Spark applications, run Spark examples

data Contains small sample data files for various Spark examples

examples Contains both the source code and binary file for all Spark examples

jars Contains the necessary binaries that are needed to run Spark

sbin Contains the executable files to manage Spark cluster
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To exit the Scala Spark shell, type :quit or :q.

Note Java version 11 or higher is preferred to run the Spark Scala shell.

 Spark Python Shell

To start up the Spark Python shell, enter the ./bin/pyspark command in the Spark 

directory. After a few seconds, you should see something similar to Figure 2-3.

To exit the Python Spark shell, enter ctrl-d.

Figure 2-2. Scala Spark shell output

Figure 2-3. Output of Python Spark shell
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Note Spark python shell requires python 3.7.x or higher.

The Spark Scala shell and the Spark Python shell are extensions of Scala REPL 

and Python REPL, respectively. REPL is an acronym for read-eval-print loop. It is an 

interactive computer programming environment that takes user inputs, evaluates them, 

and returns the result to the user. Once a line of code is entered, the REPL immediately 

provides feedback on whether there is a syntactic error. If there aren’t any syntax errors, 

it evaluates them. If there is any output, it is displayed in the shell. The interactive and 

immediate feedback environment allows developers to be very productive by bypassing 

the code compilation step in the normal software development process.

To learn Spark, Spark shell is a very convenient tool to use on your local computer 

anytime and anywhere. It doesn’t have any external dependencies other than the data 

files you process need to reside on your computer. However, if you have an Internet 

connection, it is possible to access those remote data files, but it will be slow.

The remaining chapters of this book use the Spark Scala shell.

 Having Fun with the Spark Scala Shell
This section provides information about Scala Spark shell and a set of useful commands 

to know to be effective and productive at using it for exploratory data analysis or building 

Spark applications interactively.

The ./bin/spark-shell command effectively starts a Spark application and 

provides an environment where you can interactively call Spark Scala APIs to easily 

perform exploratory data processing. Since Spark Scala shell is an extension of Scala 

REPL, it is a great way to use it to learn Scala and Spark at the same time.

 Useful Spark Scala Shell Command and Tips
Once a Spark Scala shell is started, it puts you in an interactive environment to enter 

shell commands and Scala code. This section covers various useful commands and a few 

tips on working in the shell.
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Once inside the Spark Shell, type the following to bring a complete list of available 

commands.

scala>  :help

The output of this command is shown in Figure 2-4.

Some commands are used more often than others because of their usefulness. 

Table 2-2 describes the commonly used commands.

Figure 2-4. List of available shell commands
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In addition to these commands, a helpful feature for improving developer 

productivity is the code completion feature. Like popular integrated development 

environments (IDEs) like Eclipse or IntelliJ, the code completion feature helps 

developers explore the possible options and reduce typing errors.

Inside the shell, type spa and then hit the Tab key. The environment adds characters 

to transform “spa” to “spark”. In addition, it shows possible matches for Spark (see 

Figure 2-5).

scala> spa <tab>

In addition to completing the name of a partially entered word, the tab completion 

can show an object’s available member variables and functions.

Table 2-2. Useful Spark Shell Commands

Name Description

:history this command displays what was entered during the previous Spark shell session as 

well as the current session. It is useful for copying purposes.

:load Load and execute the code in the provided file. this is particularly useful when the data 

processing logic is long. It is a bit easier to keep track of the logic in a file.

:reset after experimenting with the various Scala or Spark apIs for a while, you may lose track 

of the value of various variables. this command resets the shell to a clean state to 

make it easy to reason.

:silent this is for an advanced user who is a bit tired at looking at the output of each Scala or 

Spark apIs that were entered in the shell. to re-enable the output, simply type :silent 

again.

:quit this is a self-explanatory command but useful to know. often, people try to quit the 

shell by entering :exit, which doesn’t work.

:type Display the type of a variable. :type <variable name>

Figure 2-5. Tab completion output of spa
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In the shell, type spark, and then hit the Tab key. This displays a list of available 

member variables and functions of the Scala object represented by the spark variable 

(see Figure 2-6).

The :history command displays the previously entered commands or lines of code. 

This suggests that the Spark shell maintains a record of what was entered. One way to 

quickly display or recall what was entered recently is by pressing the up arrow key. Once 

you scroll up to the line you want to execute, simply hit Enter to execute it.

 Basic Interactions with Scala and Spark
The preceding section covered the basics of navigating the Spark shell; this section 

introduces a few fundamental ways of working with Scala and Spark in Spark shell. 

This fundamental knowledge will be really helpful in future chapters as you dive much 

deeper into topics like Spark DataFrame and Spark SQL.

 Basic Interactions with Scala

Let’s start with Scala in the Spark Scala shell, which provides a full-blown environment 

for learning Scala. Think of Spark Scala shell as a Scala application with an empty body, 

and this is where you come in. You fill this empty body with Scala functions and logic 

for your application. This section intends to demonstrate a few simple Scala examples 

in Spark shell. Scala is a fascinating programming language that is powerful, concise, 

and elegant. Please refer to Scala-related books to learn more about this programming 

language.

The canonical example for learning any programming language is the “Hello World” 

example, which entails printing out a message. So let’s do that. Enter the following line in 

the Spark Scala shell; the output should look like Figure 2-7.

scala> println("Hello from Spark Scala shell")

Figure 2-6. List of available member variables and functions of object called 
“spark”
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The next example defines an array of ages and prints those element values out in the 

Spark shell. In addition, this example illustrates the code completion feature mentioned 

in the previous section.

To define an array of ages and assign it to an immutable variable, enter the following 

into the Spark shell. Figure 2-8 shows the evaluation output.

scala> val ages = Array(20, 50, 35, 41)

Now you can refer to the ages variable in the following line of code. Let’s pretend 

that you can’t exactly remember a function name in the Array class to iterate through the 

elements in the array, but you know it starts with “fo”. You can enter the following and hit 

the tab to see how Spark shell can help.

scala> ages.fo

After you press the Tab key, Spark shell displays what’s shown in Figure 2-9.

Aha! You need the foreach function to iterate through the elements in the array. Let’s 

use it to print the ages.

scala> ages.foreach(println)

Figure 2-7. Output of the Hello World example command

Figure 2-8. Output of defining an array of ages

Figure 2-9. Output of code completion
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Figure 2-10 shows the expected output.

The previous code statement may look a bit cryptic for those new to Scala; however, 

you can intuitively guess what it does. As the foreach function iterates through each 

element in the “ages” array, it passes that element to the println function to print the 

value out to the console. This style is used quite a bit in the coming chapters.

The last example in this section defines a Scala function to determine whether the 

age is an odd number or even number; it is then used to find the odd number ages in the 

array.

scala> def isOddAge(age:Int) : Boolean = {

  (age % 2) == 1

}

If you come from a Java programming background, this function signature may look 

strange, but it is not too difficult to decipher what it does. Notice the function doesn’t 

use the return keyword to return the value of the expression in its body. In Scala, it is not 

necessary to add the return keyword. The output of the last statement in a function body 

is returned to the caller (if that function was defined to return a value). Figure 2-11 shows 

the output from the Spark shell.

To figure out the odd number ages in the ages array, let’s leverage the filter 

function in the Array class.

scala> ages.filter(age => isOddAge(age)).foreach(println)

Figure 2-10. Output from printing out the ages

Figure 2-11. If there are syntax errors, Spark shell returns the function 
signature
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This line of code does the filtering and then iterates through the result to print out 

the odd ages. It is a common practice in Scala to use function chaining to make the code 

concise. Figure 2-12 shows the output from Spark shell.

Now let’s try out the :type shell command on a Scala variable and function defined 

earlier. This command comes in handy once you have used Spark shell for a while and 

lost track of the data type of a certain variable or the return type of a function. Figure 2-13 

shows examples of the :type command.

To learn Spark, it is not necessary to master the Scala programming language. 

However, one must be comfortable with knowing and working with the basics of Scala. 

A good resource for learning just enough Scala to learn Spark is at https://github.com/

deanwampler/JustEnoughScalaForSpark. This resource was presented at various Spark- 

related conferences.

 Spark UI and Basic Interactions with Spark

In the previous section, I mentioned Spark shell is a Scala application. That is only 

partially true. The Spark shell is a Spark application written in Scala. When the Spark 

shell is started, a few things are initialized and set up for you to use, including Spark UI 

and a few important variables.

Figure 2-12. The output from filtering and printing out only ages that are odd 
numbers

Figure 2-13. Output of :type command
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Spark UI

If you go back and carefully examine the Spark shell output in either Figure 2-2 or 

Figure 2-3, you see a line that looks something like the following. (The URL may be a bit 

different for your Spark shell.)

The SparkContext Web UI is available at http://<ip>:4040.

If you point your browser to that URL in your Spark shell, it displays something like 

what’s shown in Figure 2-14.

The Spark UI is a web application designed to help with monitoring and debugging 

Spark applications. It contains detailed runtime information and various resource 

consumptions of a Spark application. The runtime includes various metrics that are 

tremendously helpful in diagnosing performance issues in your Spark applications. One 

thing to note is that the Spark UI is only available while a Spark application is running.

The navigation bar at the top of the Spark UI contains links to the various tabs, 

including Jobs, Stages, Storage, Environment, Executors, and SQL. I briefly cover the 

Environment and Executors tabs and describe the remaining tabs in later chapters.

The Environment tab contains static information about the environment that a Spark 

application is running in. This includes runtime information, spark properties, system 

properties, and classpath entries. Table 2-3 describes each of those areas.

Figure 2-14. Spark UI
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The Executors tab contains the summary and breakdown information for each of 

the executors supporting a Spark application. This information includes the capacity of 

certain resources and how much is being used in each executor. The resources include 

memory, disk, and CPU. The Summary section provides a bird’s-eye view of the resource 

consumption across all the executors in a Spark application. Figure 2-15 shows more of 

the details.

Table 2-3. Sections in the Environment Tab

Name Description

runtime Information Contains the locations and versions of the various components that Spark 

depends on, including Java and Scala.

Spark properties this area contains the basic and advanced properties that are configured 

in a Spark application. the basic properties include the basic information 

about an application like application id, name, and so on. the advanced 

properties are meant to turn on or off certain Spark features or tweak them 

in certain ways that are best for a particular application. See the resource  

at https://spark.apache.org/docs/latest/configuration.

html for a comprehensive list of configurable properties.

resource profiles Information about the number of CpUs and the amount of memory in the 

Spark cluster.

hadoop properties the various hadoop and hadoop File System properties.

System properties these properties are mainly at the oS and Java level, not Spark specific.

Classpath entries Contains a list of classpaths and jar files that are used in a Spark 

application.
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You revisit Spark UI in a later chapter.

Basic Interactions with Spark

Once a Spark shell is successfully started, an important variable called spark is 

initialized and ready to be used. The spark variable represents an instance of a 

SparkSession class. Let’s use the :type command to verify this.

scala>:type spark

And the Spark shell displays its type in Figure 2-16.

The SparkSession class was introduced in Spark 2.0 to provide a single entry 

point to interact with underlying Spark functionalities. This class has APIs for reading 

unstructured and structured data in text and binary formats, such as JSON, CSV, Parquet, 

ORC, and so on. In addition, the SparkSession component provides a facility to retrieve 

and set Spark configurations.

Figure 2-15. Executor tab of a Spark application that uses only a single 
executor

Figure 2-16. Showing the type of “spark” variable
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Let’s start interacting with the spark variable in Spark shell to print out a few useful 

pieces of information, such as the version and existing configurations. From the Spark 

shell, type the following code to print the Spark version. Figure 2-17 shows the output.

scala> spark.version

To be a little more formal, you can use the println function covered in the previous 

section to print out the Spark version and output shown in Figure 2-18.

scala> println("Spark version: " + spark.version)

To see the default configurations in the Spark shell, you access the conf variable of 

spark. Here is the code to display the default configurations, and the output is shown in 

Figure 2-19.

scala> spark.conf.getAll.foreach(println)

Figure 2-17. Spark version output

Figure 2-18. Display Spark version using println function

Figure 2-19. Default configurations in Spark shell application
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To see the complete set of available objects you can access from spark variable, you 

can leverage the Spark shell code completion features.

scala> spark.<tab>

Figure 2-20 shows the result this command.

Upcoming chapters have more examples of using spark to interact with underlying 

Spark functionalities.

 Introduction to Collaborative Notebooks
Collaborative Notebooks is a commercial product offered by Databricks, the original 

creator of the open source project called Apache Spark. According to the product 

documentation, Collaborative Notebooks is designed for data engineers, data scientists, 

and data analysts to perform data analysis and build machine learning models that 

support multiple languages, built-in data visualization, and automatic data versioning. 

It also provides Spark on demand compute infrastructure and can execute jobs for 

production data pipelines on a specific schedule. It is built around Apache Spark and 

provides four main value propositions to customers around the world.

• Fully managed Spark clusters

• An interactive workspace for exploration and visualization

• A production pipeline scheduler

• A platform for powering your favorite Spark-based applications

The Collaborative Notebooks product has two versions, the full platform and the 

community edition. The commercial edition is a paid product that provides advanced 

features such as creating multiple clusters, user management, and job scheduling.  

Figure 2-20. A complete list of variables that can be accessed from the spark 
variable
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The community edition is free and ideal for developers, data scientists, data engineers 

and anyone who wants to learn Apache Spark or try Databricks.

The following section cover the basic features of Collaborative Notebooks 

community edition. It provides an easy and intuitive environment to learn Spark, 

perform data analysis or build Spark applications. This section is not intended to be a 

comprehensive guide. For that, you can refer to the Databricks user guide (https://

docs.databricks.com/user- guide/index.html).

To use Collaborative Notebooks, you need to sign up for a free account on the 

community edition at https://databricks.com/try- databricks. This signup process is 

simple and quick; an account can be created in a matter of minutes. Once the necessary 

information is provided and submitted in the sign-up form, you shortly receive an email 

from Databricks to confirm your email, which looks something like Figure 2-21.

Clicking the URL link shown in Figure 2-21 takes you to the Databricks sign-in form, 

as shown in Figure 2-22.

Figure 2-21. Databricks email to confirm your email address
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After a successful sign in using the email and password, you see the Databricks 

welcome page like in Figure 2-23.

Figure 2-22. Databricks sign-in page
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Over time, the welcome page may evolve, so it does not look exactly like Figure 2-23. 

Feel free to explore the tutorial or the documentation.

This section aims to create a notebook in Databricks so that you can learn the 

commands covered in the previous section. The following are the main steps.

 1. Create a cluster.

 2. Create a folder.

 3. Create a notebook.

 Create a Cluster
One of the coolest features of the community edition (CE) is that it provides a single 

node Spark cluster with 15 GB of memory for free. At the time of writing this book, this 

single node cluster is hosted on the AWS cloud. Since the CE account is free, it provides 

the capability to create multiple clusters simultaneously. A cluster continues to stay up 

as long as it is being used. If it is idle for two hours, it automatically shuts down. This 

means you don’t have to proactively shut down the cluster.

Figure 2-23. Databricks welcome page
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To create a cluster, click the Clusters icon in the vertical navigation bar on the left 

side of the page. The Cluster page looks like Figure 2-24.

Now click the Create Cluster button to bring up the New Cluster form that looks like 

Figure 2-25.

The only required field on this form is the cluster name. Table 2-4 describes each 

field.

Figure 2-24. DataBricks Cluster page with no active clusters

Figure 2-25. Create Cluster form
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Once you enter a cluster name, click the Create Cluster button. It can take up to 

10 minutes to create a single node Spark cluster. If needed, try switching to a different 

availability zone if the default one takes a long time. Once a Spark cluster is successfully 

created, a green dot appears next to the cluster name, as shown in Figure 2-26.

Feel free to explore by clicking the name of your cluster or the various links on this 

page. If you try to create another Spark cluster by following the same steps, it won’t allow 

you to do so.

Figure 2-26. After a cluster is created successfully

Table 2-4. Databricks New Cluster Form Fields

Name Description

Cluster name a unique name to identify your cluster. the name can have space between each 

word; for example, “my spark cluster”.

Databricks 

runtime Version

Databricks supports many versions of Spark. For learning purposes, select the 

latest version, which is automatically filled for you. each version is tied to a 

specific aWS image.

Instance For the Ce edition, there isn’t any other choice.

aWS – availability 

Zone

this allows you to decide which aWS availability Zone your single node cluster 

runs in. the options may look different based on your location.

Spark – Spark 

Config

this allows you to specify any application-specific configurations that should be 

used to launch the Spark cluster. examples include JVM configurations to turn 

on certain Spark features.
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To terminate an active Spark cluster, click the square block under the Actions 

column.

For more information on creating and managing a Spark cluster in Databricks, go to 

https://docs.databricks.com/user- guide/clusters/index.html.

Let’s move on to the next step, creating a folder.

 Create a Folder
Before going into how to create a folder, it is worth it to take a moment to describe the 

workspace concept in Databricks. The easiest way to think about workspace is to treat 

it as the file system on your computer, which means one can leverage its hierarchical 

property to organize the various notebooks.

To create a folder, click the Workspace icon in the vertical navigation bar on the left 

side of the page. The Workspace column slides out, as shown in Figure 2-27.

Now click the downward arrow in the upper right of the Workspace column, and the 

popup menu shows up (see Figure 2-28).

Figure 2-27. Workspace column
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Selecting the Create ➤ Folder menu item brings up the New Folder Name dialog box 

(see Figure 2-29).

Now you can enter a folder name (i.e., Chapter 2), and click the Create Folder button 

to complete the process. The Chapter 2 folder should now appear in the Workspace 

column, as shown in Figure 2-30.

Figure 2-28. Menu item for creating a folder

Figure 2-29. New Folder Name dialog box
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Before creating a notebook, it is worth mentioning that there is an alternative way to 

create a folder. Place your mouse pointer anywhere in the Workspace column and right- 

click; the same menu options appear.

For more information on workspaces and creating folders, please go to  https://

docs.databricks.com/user- guide/workspace.html.

 Create a Notebook
To create a Scala notebook in the Chapter 2 folder. First, select the Chapter 2 folder in the 

Workspace column. The Chapter 2 column slides out after the Workspace column, as 

shown in Figure 2-31.

Figure 2-30. Chapter 2 folder appears in the Workspace column
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Now you can either click the downward arrow in the upper right of the Chapter 2 

column or right-mouse click anywhere in the Chapter 2 column to bring the menu, as 

shown in Figure 2-32.

Selecting the Notebook menu item brings up the Create Notebook dialog box. Give 

your notebook a name, and make sure to select the Scala option for the Language field. 

The value for the cluster should be automatically filled in because the CE edition can 

only have one cluster at a time. The dialog box should look something like Figure 2-33.

Figure 2-32. Create notebook menu item

Figure 2-31. Chapter 2 column appears to the right of Workspace column
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Once the Create button is clicked, a brand-new notebook is created, as shown in 

Figure 2-34.

If you have never worked with IPython notebook, the notebook concept may seem a 

bit strange at first. However, once you get used to it, you find it intuitive and fun.

A notebook is essentially an interactive computational environment (similar to 

Spark shell, but way better). You can execute Spark code, document your code with rich 

text using Markdown or HTML markup language and visualize the result of your data 

analysis with various types of chart and graph.

Figure 2-33. Create Notebook dialog box with Scala language option selected

Figure 2-34. New Scala notebook
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The following section covers only a few essential parts to help you be productive 

in using the Spark Notebook. For a comprehensive list of instructions on using and 

interacting with a Databricks notebook, please go to https://docs.databricks.com/

user- guide/notebooks/index.html.

The Spark Notebook contains a collection of cells, and each one contains either a 

block of code to execute or markups for documentation purposes.

Note a good practice of using the Spark notebook is to break your data 
processing logic into multiple logical groups so each one resides in one or 
more cells. this is similar to the practice of developing maintainable software 
applications.

Let’s divide the notebook into two sections. The first section contains the code 

snippets you entered in the “Basic Interactions with Scala” section. The second section 

contains the code snippets you entered in the “Basic Interactions with Spark” section.

Let’s start with adding a Markdown statement to document the first section of your 

notebook by entering the following into the first cell (see Figure 2-35).

%md #### Basic Interactions with Scala

To execute that markup statement, make sure the mouse cursor is in cell 1, hold 

down the Shift key, and hit the Enter key. That is the shortcut for running code or 

markup statements in a cell. The result should look like Figure 2-36.

Figure 2-36. The output of executing the markup statement

Figure 2-35. Cell contains section header markup statement
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Notice the Shift+Enter key combination executes the statements in that cell and 

creates a new cell below it. Now let’s enter the “Hello World” example into the second 

cell and execute that cell. The output should look like Figure 2-37.

The remaining three code statements in the “Interactions with Scala” section are 

copied into the notebook (see Figure 2-38).

Like Spark Scala shell, Scala Notebook is a full-blown Scala interactive environment 

where you can execute Scala code.

Figure 2-37. The output of executing the println statement

Figure 2-38. The remaining code statements from the “Interactions with Scala” 
section
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Now let’s enter the second markup statement to denote the beginning of the second 

part of your notebook and the remaining code snippets in the “Interactions with Spark” 

section. Figure 2-39 shows the output.

%md #### Basic Interactions with Spark

There are a few important notes to know when working with a Spark Notebook. 

It provides a very convenient auto-saving feature. The content of a notebook is 

automatically saved as you enter market statements or code snippets. In fact, the menu 

items under the File menu item don’t have an option for saving a notebook.

Sometimes there is a need to create a new cell between two existing cells. One way to 

do this is to move the mouse cursor to the space between them, then click the plus icon 

that appears to create a new cell. Figure 2-40 shows what the plus icon looks like.

Figure 2-39. Output of the code snippets from Interactions with Spark section

Figure 2-40. Using plus icon to create a new cell between two existing cells
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Sometimes, you need to share your notebook with a co-worker who works in a 

remote office or other collaborators to either show off your awesome Spark knowledge 

or get their feedback on your data analysis. Simply click the File menu item at the top of 

your Spark notebook and select the Publish submenu item. Figure 2-41 shows what it 

looks like.

Clicking the Publish submenu item brings up a confirmation dialog box (see 

Figure 2-42). If you follow through with it, the Notebook Published dialog box (see 

Figure 2-43) provides a URL that you can send to anyone in the world. With that URL, 

your co-worker or collaborators can view your notebook, or they can import it into their 

Databricks workspace.

Figure 2-42. Publishing confirmation dialog box

Figure 2-41. Notebook publishing menu item
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Figure 2-43. Notebook published URL

This section covers only the essential parts of using Databricks. Many other 

advanced features make it enticing to use Databricks as the platform for performing 

interactive data analysis or building advanced data solutions like machine learning 

models.

The CE provides a free account with a single node Spark cluster. Learning Spark 

through the Databricks product becomes so much easier than before. I highly 

recommend giving Databricks a try in your journey of learning Spark.

 Setting up Spark Source Code
This section is geared toward software developers or anyone interested in learning how 

Spark works at the code level. Since Apache Spark is an open source project, its source 

code is publicly available to download from GitHub, examine and study how certain 

features were implemented. The Spark code is written in Scala by some of the smartest 

Scala programmers on the planet, so studying the Spark code is a great way to improve 

one’s Scala programming skills and knowledge.

There are two ways to download Apache Spark source code to your computer. 

You can download it from the Spark download page at  http://spark.apache.org/

downloads.html, the same page used earlier to download the Spark binary file. This 

time, let’s choose the Source Code package type, like in Figure 2-44.
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To complete the source code download process, click the link on line #3 to download 

the compressed source code file. The final step is to uncompress the file into the 

directory your choice.

You can also use the git clone command to download Apache Spark source 

code from its GitHub repository. This requires an installation of git on your computer. 

Git is available for download at https://git- scm.com/downloads. The installation 

instructions are available at https://git- scm.com/book/en/v2/Getting- Started- 

Installing- Git. Once Git is properly installed on your computer, issue the following 

command to clone the Apache Spark git repository on GitHub  (https://github.com/

apache/spark).

git clone git://github.com/apache/spark.git

Once the Apache Spark source code is downloaded on your computer, go to http://

spark.apache.org/developer- tools.html for information on how to import them into 

your favorite IDE.

 Summary
• When it comes to learning Spark, there are a few options. You 

can either use the locally installed Spark or use the Collaborative 

Notebook Community Edition. These tools make it easy and 

convenient for anyone to learn Spark.

• The Spark shell is a powerful and interactive environment to learn 

Spark APIs and to analyze data interactively. There are two types of 

Spark shell, Spark Scala shell, and Spark Python shell.

Figure 2-44. Apache Spark source download option
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• The Spark shell provides a set of commands to help its users to 

become productive.

• Collaborative Notebooks is a fully managed platform designed to 

simplify building and deploying data exploration, data pipelines, 

and machine learning solutions. The interactive workspace provides 

an intuitive way to organize and manage notebooks. Each notebook 

contains a combination of markup statements and code snippets. 

Sharing a notebook with others only requires a few mouse clicks.

• For software developers interested in learning about the internals of 

Spark, downloading and examining the Apache Spark source code is 

a great way to satisfy that curiosity.
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Figure 3-1. Spark SQL components

CHAPTER 3

Spark SQL: Foundation
As Spark evolves and matures as a unified data processing engine with more features 

in each new release, its programming abstraction also evolves. The resilient distributed 

dataset (RDD) was the initial core programming abstraction when Spark was introduced 

to the world in 2012. In Spark version 1.6, a new programming abstraction called 

Structured APIs was introduced. This is the new and preferred way to handle data 

engineering tasks such as performing data processing or building data pipelines. The 

Structured APIs were designed to enhance developer productivity with easy-to-use, 

intuitive and expressive APIs. The new programming abstract requires the data available 

in a structured format, and the data computation logic needs to follow a certain 

structure. Armed with these two pieces of information, Spark can perform the necessary 

and sophisticated optimizations to speed up data processing applications.

Figure 3-1 shows how the Spark SQL component is built on top of the good old 

reliable Spark Core component. This layered architecture enables it to easily take 

advantage of any new improvements introduced in the Spark Core component.

https://doi.org/10.1007/978-1-4842-7383-8_3#DOI
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This chapter covers the Spark SQL module, which is designed for structured data 

processing. It provides an easy-to-use abstraction to express the data processing logic 

with the minimum amount of code, and underneath the cover, it intelligently performs 

necessary optimizations.

Spark SQL module consists of two main parts. The first one is the representations 

of the structure APIs called DataFrame and Dataset that define the high-level APIs 

for working with structured data. The DataFrame concept was inspired by the Python 

pandas DataFrame. The main difference is that a DataFrame in Spark can handle a large 

volume of data spread across many machines. The second part of the Spark SQL module 

is the Catalyst optimizer, which is responsible for all the complex machinery that works 

behind the scenes to make your life easier and ultimately speed up your data processing 

logic. One of the cool things that the Spark SQL module offers is executing SQL queries 

to perform data processing. With this capability, Spark can gain a new group of users 

called business analysts, who are very familiar with SQL language because it is one of the 

main tools they use regularly.

One main concept that differentiates structured data from unstructured data is the 

schema, which defines the data structure in the form of column names and associated 

data types. The schema concept is an integral part of Spark Structured APIs.

Structured data is often captured in a certain format. Some of the formats are text- 

based, and some of them are binary-based. Common formats for text data are CSV, XML, 

and JSON, and the common formats for binary data are Avro, Parquet, and ORC. Out of 

the box, the Spark SQL module makes it very easy to read data and write data from and 

to any of those formats. One unanticipated consequence of this versatility is that Spark 

can be used as a data format conversion tool.

Before going into Structured APIs, let’s discuss the initial programming abstraction 

to better understand the motivations behind the new one.

 Understanding RDD
To truly understand how Spark works, you must understand the essence of RDD. It 

provides a solid foundation and the abstraction that the Structured APIs are built 

upon. In short, an RDD represents a fault-tolerant collection of elements partitioned 

across the nodes of a cluster that can be operated in parallel. It consists of the following 

characteristics.

Chapter 3  Spark SQL: Foundation



53

• A set of dependencies on parent RDDs

• A set of partitions, which are the chunks that make up the entire 

dataset

• A function for computing all the rows in the dataset

• The metadata about the partitioning scheme (optional)

• The location of where the data resides on the cluster (optional)

These five pieces of information are used by Spark runtime to schedule and execute 

the data processing logics expressed using the RDD operations.

The first three pieces of information make up the lineage information, which Spark 

uses for two purposes. The first is to determine the order of execution of RDDs and the 

second is for failure recovery.

The set of dependencies are essentially the input data to an RDD. This information 

is needed to reproduce the RDD in failure scenarios, and therefore it provides the 

resiliency characteristic.

The set of partitions enables Spark to execute the computation logic in parallel to 

speed up the computation time.

The last part that Spark needs to produce the RDD output is the compute function, 

which is provided by Spark users. The compute function is sent to each executor in the 

cluster to execute against each row in each partition.

The RDD abstraction is both simple and flexible. The flexibility has a drawback, 

where Spark has no insights into the user’s intentions. It has no idea whether the 

computation logic is performing data filtering, joining, or aggregation. Therefore, Spark 

can’t perform any optimizations, such as performing predicate pushdowns to reduce the 

amount of data to read from the input sources, recommending a more efficient join type 

to speed up the computation, or pruning the columns that are no longer needed by the 

output.

 Introduction to the DataFrame API
A DataFrame is an immutable, distributed collection of data organized into rows. Each 

one consists of a set of columns and each column has a name and an associated type. 

In other words, this distributed collection of data has a structure defined by a schema. 

If you are familiar with the table concept in a relational database management system 
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(RDBMS), you realize that a DataFrame is essentially equivalent. A generic Row object 

represents each row in the DataFrame. Unlike RDD APIs, DataFrame APIs offer a set 

of domain specific operations that are relational and have rich semantics. You learn 

more about these APIs in upcoming sections. Like the RDD APIs, the DataFrame APIs 

are classified into two types: transformation and action. The evaluation semantics 

are identical in RDD. Transformations are lazily evaluated, and actions are eagerly 

evaluated.

A DataFrame can be created by reading data from many structured data sources 

and by reading data from tables in Hive or other databases. In addition, the Spark SQL 

module provides APIs to easily convert an RDD to a DataFrame by providing the schema 

information about the data in the RDD. The DataFrame API is available in Scala, Java, 

Python, and R.

 Creating a DataFrame
There are many ways to create a DataFrame; one common thing among them is 

providing a schema, either implicitly or explicitly.

 Creating a DataFrame from RDD
Let’s start with creating a DataFrame from an RDD. Listing 3-1 first creates an RDD with 

two columns of integers. Then it calls the toDF implicit function that converts an RDD to 

a DataFrame using the specified column names. The column types are inferred from the 

data values in the RDD. Listing 3-2 shows two commonly used functions in a DataFrame, 

printSchema, and show. The printSchema function prints out the column names and 

their associated type to the console. The function prints out the data in a DataFrame in 

a tabular format. By default, it displays 20 rows. To change the default number of rows 

to display, you can pass a number to the show function. Listing 3-3 is an example of 

specifying the number of rows to display.

Listing 3-1. Creating DataFrame from an RDD of Numbers

import scala.util.Random

val rdd = spark.sparkContext.parallelize(1 to 10).map(x => (x, Random.

nextInt(100)* x))

val kvDF = rdd.toDF("key","value")
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Listing 3-2. Print Schema and Show the Data of a DataFrame

kvDF.printSchema

|-- key: integer (nullable = false)

|-- value: integer (nullable = false)

kvDF.show

+----+-------+

| key|  value|

+----+-------+

|   1|     58|

|   2|     18|

|   3|    237|

|   4|     32|

|   5|     80|

|   6|    210|

|   7|    567|

|   8|    360|

|   9|    288|

|  10|    260|

+----+-------+

Listing 3-3. Call show Function to Display 5 Rows in Tabular Format

kvDF.show(5)

+----+------+

| key| value|

+----+------+

|   1|    59|

|   2|    60|

|   3|    66|

|   4|   280|

|   5|    40|

+----+------+

Note the actual numbers in the value column may look different for you because 
they are generated randomly by calling the Random.nextInt() function.
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Another way of creating a DataFrame is by specifying an RDD and a schema, 

which can be programmatically created. Listing 3-4 first creates an RDD using an array 

of Row objects, where each row object contains three columns. It creates a schema 

programmatically and finally provides the RDD and schema to the createDataFrame 

function to convert to a DataFrame. Listing 3-5 shows the schema and the data in the 

peopleDF DataFrame.

Listing 3-4. Create a DataFrame from a RDD with a Schema Created 

Programmatically

import org.apache.spark.sql.Row

import org.apache.spark.sql.types._

val peopleRDD = spark.sparkContext.parallelize(Array(Row(1L, "John 

Doe",  30L),Row(2L, "Mary Jane", 25L)))

val schema = StructType(Array(

        StructField("id", LongType, true),

        StructField("name", StringType, true),

        StructField("age", LongType, true)

))

val peopleDF = spark.createDataFrame(peopleRDD, schema)

Listing 3-5. Display Schema of peopleDF and Its Data

peopleDF.printSchema

 |-- id: long (nullable = true)

 |-- name: string (nullable = true)

 |-- age: long (nullable = true)

peopleDF.show

+----+-------------+----+

| id |        name | age|

+----+-------------+----+

|   1|     John Doe|  30|

|   2|    Mary Jane|  25|

+----+-------------+----+
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The ability to programmatically create a schema gives Spark applications the 

flexibility to adjust the schema based on some external configuration.

Each StructField object has three pieces of information: name, type, whether the 

value is nullable or not.

Each column type in a DataFrame is mapped to an internal Spark type, which can be 

a simple scalar type or a complex type. Table 3-1 references the available Scala type in 

Spark in the order of scalar type first and then the complex type last.

 Creating a DataFrame from a Range of Numbers
Spark 2.0 introduced a new entry point for Spark applications that primarily use 

DataFrame and Dataset APIs. This new entry point is represented by the SparkSession 

class, which has a convenient function called range that you can use to easily create a 

Table 3-1. Spark Scala Type Reference

Data Type Scala Type

Booleantype Boolean

Bytetype Byte

Shorttype Short

integertype int

Longtype Long

Floattype Float

doubletype double

decimaltype java.math.Bigdecial

Stringtype String

Binarytype array[Byte]

timestamptype java.sql.timestamp

datetype java.sql.date

arraytype scala.collection.Seq

Maptype scala.collection.Map

Structtype org.apache.spark.sql.row
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dataset with a single column with id as the name and LongType as the type. This function 

has a few variations that can take additional parameters to specify the end and the step. 

Listing 3-6 provides examples of using this function to create a DataFrame.

Listing 3-6. Examples Using SparkSession.range Function to Create a DataFrame

val df1 = spark.range(5).toDF("num").show

+-----+

|  num|

+-----+

|    0|

|    1|

|    2|

|    3|

|    4|

+-----+

spark.range(5,10).toDF("num").show

+-----+

|  num|

+-----+

|    5|

|    6|

|    7|

|    8|

|    9|

+-----+

spark.range(5,15,2).toDF("num").show

+------+

|   num|

+------+

|     5|

|     7|

|     9|

|    11|

|    13|

+------+
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The last version of the range function takes three parameters. The first one 

represents the starting value, the second represents the end value (exclusive), and the 

last represents step size. Notice the range function can create only a single column 

DataFrame. Do you have any ideas about how to create a two-column DataFrame?

One option to create a multicolumn DataFrame uses Spark’s implicits, which convert 

a collection of tuples inside a Scala Seq collection. Listing 3-7 is an example of Spark’s 

toDF implicit.

Listing 3-7. Converting a Collection Tuples to a DataFrame Using Spark’s toDF 

Implicit

val movies = Seq(("Damon, Matt", "The Bourne Ultimatum", 2007L),

                 ("Damon, Matt", "Good Will Hunting", 1997L))

val moviesDF = movies.toDF("actor", "title", "year")

moviesDF.printSchema

|-- actor: string (nullable = true)

|-- title: string (nullable = true)

|-- year: long (nullable = false)

moviesDF.show

+-----------+--------------------+------+

|      actor|               title|  year|

+-----------+--------------------+------+

|Damon, Matt|The Bourne Ultimatum|  2007|

|Damon, Matt|   Good Will Hunting|  1997|

+-----------+--------------------+------+

These fun ways to create a DataFrame make it easy to learn and work with 

DataFrame APIs without loading the data from some external files. However, when you 

start performing serious data analysis with large datasets, it is imperative to know how to 

load data from external data sources, which is covered next.
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 Creating a DataFrame from Data Sources
Out of the box, Spark SQL supports a set of built-in data sources, where each one is 

mapped to a data format. The data source layer in the Spark SQL module is designed to 

be extensible, so custom data sources can be easily integrated into the DataFrame APIs. 

The Spark community writes hundreds of custom data sources, and it is not too difficult 

to implement them.

The two main classes in Spark for reading and writing data are DataFrameReader 

and DataFrameWriter, respectively. This section covers working with the APIs in the 

DataFrameReader class and the various available options when reading data from a 

specific data source.

An instance of the DataFrameReader class is as available as the read variable of the 

SparkSession class. You can refer to it from a Spark shell or in a Spark application, as 

shown in Listing 3-8.

Listing 3-8. Using read Variable from SparkSession

spark.read

The common pattern for interacting with DataFrameReader is described in 

Listing 3-9.

Listing 3-9. Common Pattern for Interacting with DataFrameReader

spark.read.format(...).option("key", value").schema(...).load()

Table 3-2 describes the three main pieces of information used when reading data: 

format, option, and schema. More on these three pieces of information is discussed in 

later in the chapter.

Chapter 3  Spark SQL: Foundation



61

Listing 3-10. Specifying Data Source Format

spark.read.json("<path>")

spark.read.format("json")

spark.read.parquet("<path>")

spark.read.format("parquet")

spark.read.jdbc

spark.read.format("jdbc")

spark.read.orc("<path>")

spark.read.format("orc")

spark.read.csv("<path>")

spark.read.format("csv")

spark.read.text("<path>")

spark.read.format("text")

// custom data source – fully qualified package name

spark.read.format("org.example.mysource")

Table 3-2. Main Information on DataFrameReader

Name Optional Comments

format no it can be one of the built-in data sources or custom format. For a built-in format, 

you can use a short name (json, parquet, jdbc, orc, csv, text). For a custom 

data source, it requires providing a fully qualified name. See Listing 3-10 for 

examples.

option Yes dataFramereader has a set of default options for each of the data source 

formats. You can override those default values by providing a value as the 

option function.

schema Yes Some data sources have the schema embedded in the data files, especially 

parquet and orC. in those cases, the schema is automatically inferred. For other 

cases, you may need to provide a schema.
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Table 3-3 describes Spark’s six built-in data sources and provides comments for each 

of them.

 Creating a DataFrame by Reading Text Files

Text files contain unstructured data. As it is read into Spark, each line becomes a row in 

the DataFrame. There are a lot of free books that are available for download in plain text 

format at www.gutenberg.org. For plain text files, one common way to parse the words 

is by splitting each line with a space delimiter. This is similar to how a typical word count 

example works. Listing 3-11 is an example of a README text file.

Listing 3-11. Read README.md File as a Text File from Spark Shell

val textFile = spark.read.text("README.md")

textFile.printSchema

|-- value: string (nullable = true)

// show 5 lines and don't truncate

textFile.show(5, false)

Table 3-3. Spark’s Built-in Data Sources

Name Data 
Format

Comments

text 

file

text no structure.

CSV text Comma-separated values. Can specify another delimiter. the column name 

can be referred from the header.

JSon text popular semistructured format. Column name and data type are inferred 

automatically

parquet Binary (default format) the popular binary format in the hadoop community.

orC Binary another popular binary format in the hadoop community.

JdBC Binary the common format for reading and writing to rdBMS.
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+-------------------------------------------------------------------------+

|value                                                                    |

+-------------------------------------------------------------------------+

|# Apache Spark                                                           |

|                                                                         |

|Spark is a fast and general cluster computing system for Big Data. It provides |

|high-level APIs in Scala, Java, Python, and R, and an optimized engine that    |

|supports general computation graphs for data analysis. It also supports a      |

+-------------------------------------------------------------------------+

If a text file contains a delimiter that you can use to parse the columns in each line, 

then it is better to read it using CSV format, which is covered in the following section.

 Creating a DataFrame by Reading CSV Files

One of the popular text file formats is CSV, which stands for comma-separated values. 

Popular tools like Microsoft Excel can easily import and export data in CSV format. The 

CSV parser in Spark is designed to be flexible such that it can parse a text file using a 

user- provided delimiter. The comma delimiter just happens to be the default one. This 

means you can use CSV format to read tab-separated value text files or other text files 

with an arbitrary delimiter.

Some CSV files have a header, and some don’t. Since a column value may contain 

a comma, it is a common and good practice to escape it using a special character. 

Table 3-4 describes commonly used options when working with CSV format. For a 

complete list of options, please see the CSVOptions class at https://github.com/

apache/spark.
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Specifying the header and inferSchema options as true won’t require you to specify 

the schema. Otherwise, you need to define a schema by hand or programmatically and 

pass it into the schema function. If the inferSchema option is false and no schema is 

provided, Spark assumes the data type for all the columns to be the string type.

The data file you are using as an example is called movies.csv in the data/chapter4 

folder. This file contains a header for each column: actor, title, year. Listing 3-12 

provides a few examples of reading CSV files.

Listing 3-12. Read CSV Files with Various Options

val movies = spark.read.option("header","true").csv("<path>/book/chapter4/

data/movies/movies.csv")

movies.printSchema

 |-- actor: string (nullable = true)

 |-- title: string (nullable = true)

 |-- year: string (nullable = true)

// now try to infer the schema

val movies2 = spark.read.option("header","true").

option("inferSchema","true")

                          .csv("<path>/book/chapter4/data/movies/movies.csv")

Table 3-4. CSV Common Options

Key Value(s) Default Description

sep Single 

character

, the single character value used as a delimiter for each 

column.

header true,false false if the value is true, it means the first line in the file represents 

the column names.

escape any character \ the character to use to escape the character in the column 

value is the same as sep.

inferSchema true,false false Whether Spark should try to infer the column type based on 

column value.
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movies2.printSchema

 |-- actor: string (nullable = true)

 |-- title: string (nullable = true)

 |-- year: integer (nullable = true)

// now try to manually provide a schema

import org.apache.spark.sql.types._

val movieSchema = StructType(Array(StructField("actor_name", StringType, true),

                                               StructField("movie_title",  

StringType, true),

                                               StructField("produced_year",  

LongType, true)))

val movies3 = spark.read.option("header","true").schema(movieSchema)

                                 .csv("<path>/book/chapter4/data/movies/

movies.csv")

movies3.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

movies3.show(5)

+-----------------+--------------+--------------+

|       actor_name|   movie_title| produced_year|

+-----------------+--------------+--------------+

|McClure, Marc (I)| Freaky Friday|          2003|

|McClure, Marc (I)|  Coach Carter|          2005|

|McClure, Marc (I)|   Superman II|          1980|

|McClure, Marc (I)|     Apollo 13|          1995|

|McClure, Marc (I)|      Superman|          1978|

+-----------------+--------------+--------------+

The first example reads the file movies.csv with specifying the first line as the 

header. Spark can recognize column names. However, since the inferSchema option 

was not set to true, all the columns have string as the type. The second example added 
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the inferSchema option, and Spark was able to identify column type. The third example 

provides a schema with column names different from what is in the header, so Spark 

uses the provided column names.

Now let’s try to read in a text file with a different delimiter, not a comma. In this case, 

you specify a value for the sep option for Spark to use. Listing 3-13 shows a file called 

movies.tsv in the data/chapter4 folder.

Listing 3-13. Read a TSV File with CSV Format

val movies4 = spark.read.option("header","true").option("sep", "\t")

                                         .schema(movieSchema).csv("<path> 

/book/chapter4/data/movies/ 

movies.tsv")

movies.printSchema

|-- actor_name: string (nullable = true)

|-- movie_title: string (nullable = true)

|-- produced_year: long (nullable = true)

As you can see, it is quite easy to work with text files that have comma-separated 

values and other-separated values.

 Creating a DataFrame by Reading JSON Files

JSON is a very well-known format in the JavaScript community. It is considered a 

semistructured format because each object (aka row) has a structure, and each column 

has a name. In the web application development space, JSON is widely used as a data 

format for transferring data between the backend server and the browser side. One of the 

strengths of JSON is that it provides a flexible format that can model any use case, and it 

can support nested structure. JSON has one disadvantage that is related to verbosity. The 

column name is repeated in each row in the data file (image your data file has 1 million 

rows).

Spark makes it easy to read data in a JSON file. However, there is one thing that 

you need to pay attention to. A JSON object can be expressed on a single line or across 

 multiple lines, and this is something you need to let Spark know. Given that the JSON 

data file contains only column names and no data type, how can Spark come up with 

a schema? Spark tries its best to infer the schema by parsing a set of sample records. 

The number of records to sample is determined by the samplingRatio option, which 
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has a default value of 1.0. Therefore, it is quite expensive to load a very large JSON file. 

In this case, you can lower the samplingRatio value to speed the data loading process. 

Table 3-5 describes a list of common options for the JSON format.

Listing 3-14 shows two examples of reading JSON files. The first one simply reads 

a JSON file without overriding any option value. Notice Spark automatically detects 

the column name and data type based on the information in the JSON file. The second 

example specifies a schema.

Listing 3-14. Various Example of Reading a JSON File

val movies5 = spark.read.json("<path>/book/chapter4/data/movies/movies.json")

movies.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

// specify a schema to override the Spark's inferring schema.

// producted_year is specified as integer type

import org.apache.spark.sql.types._

val movieSchema2 = StructType(Array(StructField("actor_name",  

StringType, true),

                                               StructField("movie_title",  

StringType, true),

                                               StructField("produced_year",  

IntegerType, true)))

Table 3-5. JSON Common Options

Key Value(s) Default Description

allowComments true,false false ignore comments in JSon file

multiLine true,false false treat the entire file as one large JSon object that 

spans across many lines

samplingratio 0.3 1.0 the sampling size to read to infer the schema
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val movies6 = spark.read.option("inferSchema","true").schema(movieSchema2)

                                         .json("<path>/book/chapter4/data/

movies/movies.json")

movies6.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: integer (nullable = true)

What happens when a column data type specified in the schema doesn’t match the 

value in the JSON file? By default, when Spark encounters a corrupted record or runs 

into a parsing error, it set the value for all the columns in that row to be null. Instead of 

getting null values, you can tell Spark to fail fast. Listing 3-15 tells Spark’s parsing logic to 

fail fast by specifying the mode option as failFast.

Listing 3-15. Parsing Error and How to Tell Spark to Fail Fast

// set data type for actor_name as BooleanType

import org.apache.spark.sql.types._

val badMovieSchema = StructType(Array(StructField("actor_name", 

BooleanType, true),

                                                StructField("movie_title", 

StringType, true),

                                                StructField("produced_year", 

IntegerType, true)))

val movies7 = spark.read.schema(badMovieSchema)

                                         .json("<path>/book/chapter4/data/

movies/movies.json")

movies7.printSchema

 |-- actor_name: boolean (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: integer (nullable = true)
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movies7.show(5)

+----------+-----------+-------------+

|actor_name|movie_title|produced_year|

+----------+-----------+-------------+

|      null|       null|         null|

|      null|       null|         null|

|      null|       null|         null|

|      null|       null|         null|

|      null|       null|         null|

+----------+-----------+-------------+

// tell Spark to fail fast when facing a parsing error

val movies8 = spark.read.option("mode","failFast").schema(badMovieSchema)

                                         .json("<path>/book/chapter4/data/

movies/movies.json")

movies8.printSchema

 |-- actor_name: boolean (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: integer (nullable = true)

// Spark will throw a RuntimeException when executing an action

movies8.show(5)

ERROR Executor: Exception in task 0.0 in stage 3.0 (TID 3)

java.lang.RuntimeException: Failed to parse a value for data type 

BooleanType (current token: VALUE_STRING).

 Creating a DataFrame by Reading Parquet Files

Parquet is one of the most popular open source columnar storage formats in the Hadoop 

ecosystem. It was created on Twitter. Its popularity is due to its self-describing data 

format, and it stores data in a highly compact structure by leveraging compressions. The 

columnar storage format is designed to work well with data analytics workload where 

only a small subset of columns are used during the data analysis. Parquet stores each 

column’s data in a separate file; therefore, columns that are not needed in data analysis 

wouldn’t have to be unnecessarily read in. It is quite flexible when it comes to supporting 

a complex data type with a nested structure. Text file formats like CSV and JSON are good 
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for small files, and they are human-readable. Parquet is a much better file format for 

working with large datasets to reduce storage cost and speed up the reading step. If you 

peek at the movies.parquet file in the chapter4/data/movies folder, you see that its size 

is about one-sixth of the size of movies.csv.

Spark works extremely well with Parquet file format, and in fact, Parquet is the 

default file format for reading and writing data in Spark. Listing 3-16 shows an example 

of reading a Parquet file. Notice you don’t need to provide a schema or ask Spark to infer 

the schema. Spark can retrieve the schema from the Parquet file.

A cool optimization that Spark does when reading data from Parquet is 

decompression and decoding in column batches, which considerably speeds up the 

reading.

Listing 3-16. Reading a Parquet File in Spark

// Parquet is the default format, so we don't need to specify the format 

when reading

val movies9 = spark.read.load("<path>/book/chapter4/data/movies/movies.

parquet")

movies9.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

// If we want to more explicit, we can specify the path to the parqet 

function

val movies10 = spark.read.parquet("<path>/book/chapter4/data/movies/movies.

parquet")

movies10.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

 Creating a DataFrame by Reading ORC Files

Optimized Row Columnar (ORC) is another popular open source self-describing 

columnar storage format in the Hadoop ecosystem. It was created by Cloudera as a 

part of the initiative to massively speed up Hive. It is quite similar to Parquet in terms of 
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efficiency and speed and was designed for analytics workload. Working with ORC files 

is just as easy as working with Parquet files. Listing 3-17 shows an example of creating a 

DataFrame from reading from an ORC file.

Listing 3-17. Reading ORC File in Spark

val movies11 = spark.read.orc("<path>/book/chapter4/data/movies/movies.orc")

movies11.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

movies11.show(5)

+--------------------------+-------------------+--------------+

|                actor_name|        movie_title| produced_year|

+--------------------------+-------------------+--------------+

|         McClure, Marc (I)|       Coach Carter|          2005|

|         McClure, Marc (I)|        Superman II|          1980|

|         McClure, Marc (I)|          Apollo 13|          1995|

|         McClure, Marc (I)|           Superman|          1978|

|         McClure, Marc (I)| Back to the Future|          1985|

+--------------------------+-------------------+--------------+

 Creating a DataFrame from JDBC

JDBC is a standard application API for reading data from and writing data to a relational 

database management system (RDBMS). Spark has support for JDBC data source, which 

means you can use Spark to read data from and write data to any of the existing RDBMSs 

like MySQL, PostgreSQL, Oracle, SQLite, and so on. You need to provide a few important 

pieces of information when working with a JDBC data source: a JDBC driver for your 

RDBMS, a connection URL, authentication information, and a table name.

For Spark to connect to an RDBMS, it must have access to the JDBC driver JAR file at 

runtime. Therefore, you need to add the location of a JDBC driver to the Spark classpath. 

Listing 3-18 shows how to connect to MySQL from the Spark Shell.
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Listing 3-18. Specifying a JDBC Driver When Starting the Spark Shell

 ./bin/spark-shell ../jdbc/mysql-connector-java-5.1.45/mysql-connector-

java-5.1.45-bin.jar  --jars ../jdbc/mysql-connector-java-5.1.45/mysql-

connector-java-5.1.45-bin.jar

Once the Spark shell successfully starts, you can quickly verify if Spark can connect to 

your RDBMS by using java.sql.DriverManager, as shown in Listing 3-19. This example 

is trying to test a connection to MySQL. The URL format is a bit different if your RDBMS 

is not MySQL, so consult the documentation of the JDBC driver you are using.

Listing 3-19. Testing Connection to MySQL in Spark Shell

import java.sql.DriverManager

val connectionURL = "jdbc:mysql://localhost:3306/<table>?user=<username>&pa

ssword=<password>"

val connection = DriverManager.getConnection(connectionURL)

connection.isClosed()

connection close()

If you didn’t get any exception about the connection, the Spark shell could 

successfully connect to your RDBMS.

Table 3-6 describes the main options that you need to specify when using a JDBC 

driver. For a complete list of options, please consult  https://spark.apache.org/docs/

latest/sql- programming- guide.html#jdbc- to- other- databases.

Table 3-6. Main Options for a JDBC Data Source

Key Description

url the JdBC urL for Spark to connect to. at the minimum, it should contain the host, port 

and database name. For MySQL, it may look something like jdbc:mysql://localhost:3306/

sakila.

dbtable the name of the database table that Spark read data from or write data to.

driver the class name of the JdBC driver that Spark instantiate to connect to the preceding 

urL. Consult the JdBC driver documentation that you are using. For MySQL Connector/ 

J driver, the class name is com.mysql.jdbc.Driver.
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Listing 3-20 shows an example of reading data from a film table of the Sakila 

database in a MySQL server.

Listing 3-20. Reading Data from a Table in MySQL Server

val mysqlURL= "jdbc:mysql://localhost:3306/sakila"

val filmDF = spark.read.format("jdbc").option("driver", "com.mysql.jdbc.

Driver")

                                                         .option("url", 

mysqlURL)

                                                         .option("dbtable", 

"film")

                                                         .option("user", 

"<username>")

                                                         .option("password", 

"<pasword>")

                                                        .load()

filmDF.printSchema

 |-- film_id: integer (nullable = false)

 |-- title: string (nullable = false)

 |-- description: string (nullable = true)

 |-- release_year: date (nullable = true)

 |-- language_id: integer (nullable = false)

 |-- original_language_id: integer (nullable = true)

 |-- rental_duration: integer (nullable = false)

 |-- rental_rate: decimal(4,2) (nullable = false)

 |-- length: integer (nullable = true)

 |-- replacement_cost: decimal(5,2) (nullable = false)

 |-- rating: string (nullable = true)

 |-- special_features: string (nullable = true)

 |-- last_update: timestamp (nullable = false)

filmDF.select("film_id","title").show(5)
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+-------+---------------------+

|film_id|                title|

+-------+---------------------+

|      1|     ACADEMY DINOSAUR|

|      2|       ACE GOLDFINGER|

|      3|     ADAPTATION HOLES|

|      4|     AFFAIR PREJUDICE|

|      5|          AFRICAN EGG|

+-------+---------------------+

When working with a JDBC data source, Spark pushes the filter conditions all the way 

down to the RDBMS as much as possible. By doing this, much of the data is filtered out 

at the RDBMS level, and therefore this speeds up the data filtering logic and dramatically 

reduces the amount of data Spark needs to read. This optimization is known as predicate 

pushdown, and Spark often does this when it knows the data source can support the 

filtering capability. Parquet is another data source that has this capability. The “Catalyst 

Optimizer” section in Chapter 4 provides an example of what this looks like.

 Working with Structured Operations
Now that you know how to create a DataFrame, the next part is to learn how to manipulate 

or transform them using structured operations. Unlike the RDD operations, the structured 

operations are designed to be more relational, meaning the operations mirror the kind 

of expressions you can do with SQL, such as projection, filtering, transforming, joining, 

and so on. Similar to RDD operations, the structured operations are divided into two 

categories: transformation and action. The semantics of the structured transformations 

and actions are identical to the ones in RDDs. In other words, structured transformations 

are lazily evaluated, and structured actions are eagerly evaluated.

Structured operations are sometimes described as a domain-specific language 

(DSL) for distributed data manipulation. DSL is a computer language specialized for a 

particular application domain. In this case, the application domain is the distributed 

data manipulation. If you have ever worked with SQL, then it is easy to learn the 

structured operations.

Table 3-7 describes the commonly used DataFrame structured transformations. As a 

reminder, a DataFrame is immutable, and its transformation operation always returns a 

new DataFrame.
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Table 3-7. Commonly Used DataFrame Structured Transformations

Operation Description

select Select one or more columns from an existing set of columns in the 

dataFrame. a more technical term for select is projection. during the 

projection process, columns can be transformed and manipulated.

selectexpr Similar to select but provide powerful SQL expressions in transforming each 

column.

filter

where

Both filter and where have the same semantics. where is more relational 

and similar to the where condition in SQL. they are both used for filtering 

rows based on the given boolean condition(s).

distinct

dropduplicates

remove duplicate rows from the dataFrame

sort

orderBy

Sort the dataFrame by the provided column(s)

limit return a new dataFrame by taking the first “n” rows.

union Combine the rows from two dataFrame and return it as a new dataFrame.

withColumn use to add a column or replace an existing column in the dataFrame

withColumnrenamed renames an existing column. if a given column name doesn’t exist in the 

schema, then it is a no-op.

drop drop one or more columns from dataFrame. the operation does nothing if 

schema doesn’t contain the given column name(s)

sample randomly select a set of rows based on the given fraction, an optional seed 

value, and an optional replacement option.

randomSplit Split the dataFrame into one or more dataFrames based on the given 

weights. Splits the master dataset into training and test datasets in the 

machine learning process.

join Join two dataFrames. Spark supports many types of joins. More information 

is covered in the next chapter.

groupBy Group the dataFrame by one or more columns. a common pattern is to 

perform aggregation after the groupBy. More information is covered in the 

next chapter.
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 Working with Columns

Most of the DataFrame structured operations in Table 3-7 require you to specify one or 

more columns. For some, the columns are specified in a string; for others, the columns 

need to be specified as instances of the Column class. It is completely fair to question 

why there are two options and when to use what. To answer those questions, you need 

to understand the functionality the Column class provides. At a high level, the Column 

class’s functionality can be broken down into the following categories.

• Mathematical operations, like addition, multiplication, and so forth

• Logical comparisons between column value or a literal, such as 

equality, greater than, and less than

• String pattern matching, such as starting with, ending with, and so on.

For a complete list of available functions in the Column class, refer to the Scala 

documentation at https://spark.apache.org/docs/latest/api/scala/index.

html#org.apache.spark.sql.Column.

With an understanding of the functionality that the Column class provides, you can 

conclude that whenever there is a need to specify a column expression, it is necessary 

to specify the column as an instance of Column class rather than a string. The upcoming 

examples make this clear.

There are different ways to refer to a column, which has created confusion in the 

Spark user community. A common question is when to use which one, and the answer 

is—it depends. Table 3-8 describes the available function options.

Table 3-8. Ways to Refer to a Column

Function Example Description

"" "columnName" refers to column as string type.

col col("columnName") the col function returns an instance of the Column class.

column column("columnName") Similar to col, this function returns an instance of the 

Column class.

$ $"columnName" a syntactic sugar way of constructing a Column class in 

Scala only.

' (tick) ''columnName a syntactic sugar way of constructing a Column class in 

Scala by leveraging Scala symbol literals feature.
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Both col and column functions are synonymous, and both are available in Scala and 

Python Spark APIs. If you often switch between Spark Scala and Python APIs, then it 

makes sense to use the col function, so there is consistency in your code. If you mostly 

or exclusively use Spark Scala APIs, then my recommendation is to use ' (apostrophe 

symbol) because there is only a single character to type. The DataFrame class has its own 

col function, which disambiguates between columns with the same name from two or 

more DataFrames when performing a join. Listing 3-21 provides examples of different 

ways to refer to a column.

Listing 3-21. Different Ways of Referring to Columns

import org.apache.spark.sql.functions._

val kvDF = Seq((1,2),(2,3)).toDF("key","value")

// to display column names in a DataFrame, we can call the columns function

kvDF.columns

Array[String] = Array(key, value)

kvDF.select("key")

kvDF.select(col("key"))

kvDF.select(column("key"))

kvDF.select($"key")

kvDF.select('key)

// using the col function of DataFrame

kvDF.select(kvDF.col("key"))

kvDF.select('key, 'key > 1).show

+---+----------+

|key| (key > 1)|

+---+----------+

|  1|     false|

|  2|      true|

+---+----------+

This example illustrates a column expression, and therefore it is required to specify 

a column as an instance of the Column class. If the column was specified as a string, it 

results in a type mismatch error. More examples of column expressions are available in 

the examples of the various DataFrame structure operations.
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 Working with Structured Transformations

This section provides usage examples of the structured transformations listed in  

Table 3-7. To be consistent, all the examples consistently use a ' (apostrophe) to refer 

to column(s) in a DataFrame. To reduce redundancy, most of the examples refer to the 

movies DataFrame created by reading from a Parquet file (see Listing 3-22).

Listing 3-22. Creating the movies DataFame from a Parquet File

val movies = spark.read.parquet("<path>/chapter4/data/movies/movies.parquet")

select(columns)

This transformation commonly performs projection, selecting all or a subset of columns 

from a DataFrame. During the selection, each column can be transformed via a column 

expression. There are two variations of this transformation. One takes the column as 

a string, and the other takes columns as the Column class. This transformation doesn’t 

permit you to mix the column type when using one of these two variations. Listing 3-23 

is an example of the two variations.

Listing 3-23. Two Variations of Select Transformation

movies.select("movie_title","produced_year").show(5)

+------------------------+--------------+

|             movie_title| produced_year|

+------------------------+--------------+

|            Coach Carter|          2005|

|             Superman II|          1980|

|               Apollo 13|          1995|

|                Superman|          1978|

|      Back to the Future|          1985|

+------------------------+--------------+

// using a column expression to transform year to decade

movies.select('movie_title,('produced_year - ('produced_year % 10)).

as("produced_decade")).show(5)
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+------------------------+----------------+

|             movie_title| produced_decade|

+------------------------+----------------+

|            Coach Carter|            2000|

|             Superman II|            1980|

|               Apollo 13|            1990|

|                Superman|            1970|

|      Back to the Future|            1980|

+------------------------+----------------+

The second example requires two column expressions: modulo and subtraction. 

Both are implemented by modulo (%) and subtraction (-) functions in the Column class 

(see the Scala documentation). By default, Spark uses the column expression as the 

name of the result column. To make it more readable, the as function is renames it to a 

more human- readable column name. As an astute reader, you can probably figure out 

the select transformation that can add one or more columns to a DataFrame.

selectExpr(expressions)

This transformation is a variant of the select transformation. The one big difference is 

that it accepts one or more SQL expressions rather than columns. However, both are 

essentially performing the same projection task. SQL expressions are powerful and 

flexible constructs that allow you to express column transformation logic naturally, just 

like the way you think. You can express SQL expressions in a string format, and Spark 

parses them into a logical tree to evaluate them in the right order.

If you want to create a new DataFrame with all the columns in the movies DataFrame 

and introduce a new column to represent the decade a movie was produced in, do 

something like what’s shown in Listing 3-24.
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Listing 3-24. Adding the Decade Column to Movies DataFrame using SQL 

Expression

movies.selectExpr("*","(produced_year - (produced_year % 10)) as decade").

show(5)

+-----------------+--------------------+-------------------+----------+

|       actor_name|         movie_title|      produced_year|    decade|

+-----------------+--------------------+-------------------+----------+

|McClure, Marc (I)|        Coach Carter|               2005|      2000|

|McClure, Marc (I)|         Superman II|               1980|      1980|

|McClure, Marc (I)|           Apollo 13|               1995|      1990|

|McClure, Marc (I)|            Superman|               1978|      1970|

|McClure, Marc (I)|  Back to the Future|               1985|      1980|

+-----------------+--------------------+-------------------+----------+

The combination of SQL expressions and built-in functions makes it easy to perform 

a data analysis that otherwise take multiple steps. Listing 3-25 shows how easy it is to 

determine the number of unique movie titles and unique actors in the movies dataset 

in a single statement. The count function performs an aggregation over the entire 

DataFrame.

Listing 3-25. Using SQL Expression and Built-in Functions

movies.selectExpr("count(distinct(movie_title)) as 

movies","count(distinct(actor_name)) as actors").show

+---------+--------+

|   movies| actors |

+---------+--------+

|     1409|   6527 |

+---------+--------+

filler(condition), where(condition)

This transformation is straightforward. It filters out the rows that don’t meet the given 

condition, in other words, when the condition evaluates to false. A different way of 

looking at the behavior of the filter transformation is that it returns only the rows that 

meet the specified condition. The given condition can be simple or as complex as it 

needs to be. Using this transformation requires knowing how to leverage a few logical 

Chapter 3  Spark SQL: Foundation



81

comparison functions in the Column class, like equality, less than, greater than, and 

inequality. Both the filter and where transformations have the same behavior, so pick 

the one that you are most comfortable with. The latter one is just a bit more relational 

than the former. Listing 3-26 shows a few examples of filtering.

Listing 3-26. Filter Rows with Logical Comparison Functions in Column Class

movies.filter('produced_year < 2000)

movies.where('produced_year > 2000)

movies.filter('produced_year >= 2000)

movies.where('produced_year >= 2000)

// equality comparison require 3 equal signs

movies.filter('produced_year === 2000).show(5)

+-------------------+---------------------------+--------------+

|         actor_name|                movie_title| produced_year|

+-------------------+---------------------------+--------------+

|  Cooper, Chris (I)|         Me, Myself & Irene|          2000|

|  Cooper, Chris (I)|                The Patriot|          2000|

|    Jolie, Angelina|       Gone in Sixty Sec...|          2000|

|     Yip, Françoise|             Romeo Must Die|          2000|

|     Danner, Blythe|           Meet the Parents|          2000|

+-------------------+---------------------------+--------------+

// inequality comparison uses an interesting looking operator =!=

movies.select("movie_title","produced_year").filter('produced_year =!= 

2000).show(5)

+-------------------+--------------+

|        movie_title| produced_year|

+-------------------+--------------+

|       Coach Carter|          2005|

|        Superman II|          1980|

|          Apollo 13|          1995|

|           Superman|          1978|

| Back to the Future|          1985|

+-------------------+--------------+
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// to combine one or more comparison expressions, we will use either the OR 

and AND expression operator

movies.filter('produced_year >= 2000 && length('movie_title) < 5).show(5)

+----------------+------------+--------------+

|      actor_name| movie_title| produced_year|

+----------------+------------+--------------+

| Jolie, Angelina|        Salt|          2010|

|  Cueto, Esteban|         xXx|          2002|

|   Butters, Mike|         Saw|          2004|

|  Franko, Victor|          21|          2008|

|   Ogbonna, Chuk|        Salt|          2010|

+----------------+------------+--------------+

// the other way of accomplishing the result is by calling the filter 

function two times

movies.filter('produced_year >= 2000).filter(length('movie_title) < 

5).show(5)

distinct, dropDuplicates

These two transformations have identical behavior. However, dropDuplicates allows 

you to control which columns should be used in the deduplication logic. If none is 

specified, the deduplication logic uses all the columns in the DataFrame. Listing 3-27 

shows different ways of counting how many movies are in the movies dataset.

Listing 3-27. Using distinct and dropDuplicates to Achieve the Same Goal

movies.select("movie_title").distinct.selectExpr("count(movie_title) as 

movies").show

movies.dropDuplicates("movie_title").selectExpr("count(movie_title) as 

movies").show

+--------+

|  movies|

+--------+

|    1409|

+--------+
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In terms of performance, there is no difference between these two approaches 

because Spark transforms them into the same logical plan.

sort(columns), orderBy(columns)

Both transformations have the same semantics. The orderBy transformation is more 

relational than the other one. By default, the sorting is in ascending order, and it is easy 

to change it to descending. When specifying more than one column, it is possible to have 

a different order for each of those columns. Listing 3-28 has some examples.

Listing 3-28. Sorting the DataFrame in Ascending and Descending Order

val movieTitles = movies.dropDuplicates("movie_title")

                                       .selectExpr("movie_title", 

"length(movie_title) as title_length", , "produced_year")

movieTitles.sort('title_length).show(5)

+-----------+-------------+--------------+

|movie_title| title_length| produced_year|

+-----------+-------------+--------------+

|         RV|            2|          2006|

|         12|            2|          2007|

|         Up|            2|          2009|

|         X2|            2|          2003|

|         21|            2|          2008|

+-----------+-------------+--------------+

// sorting in descending order

movieTitles.orderBy('title_length.desc).show(5)

+---------------------+-------------+--------------+

|          movie_title| title_length| produced_year|

+---------------------+-------------+--------------+

| Borat: Cultural L...|           83|          2006|

| The Chronicles of...|           62|          2005|

| Hannah Montana & ...|           57|          2008|

| The Chronicles of...|           56|          2010|

| Istoriya pro Rich...|           56|          1997|

+---------------------+-------------+--------------+
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// sorting by two columns in different orders

movieTitles.orderBy('title_length.desc, 'produced_year).show(5)

+---------------------+-------------+--------------+

|          movie_title| title_length| produced_year|

+---------------------+-------------+--------------+

| Borat: Cultural L...|           83|          2006|

| The Chronicles of...|           62|          2005|

| Hannah Montana & ...|           57|          2008|

| Istoriya pro Rich...|           56|          1997|

| The Chronicles of...|           56|          2010|

+---------------------+-------------+--------------+

Notice the title of the last two movies are at the same length, but their years are 

ordered in the correct ascending order.

limit(n)

This transformation returns a new DataFrame by taking the first n rows. This 

transformation is commonly used after the sorting is done to figure out the top n or 

bottom n rows based on the sorting order. Listing 3-20 shows an example of using the 

limit transformation to find the top ten actors with the longest names.

Listing 3-29. Using the limit Transformation to Figure Top Ten Actors with the 

Longest Name

// first create a DataFrame with their name and associated length

val actorNameDF = movies.select("actor_name").distinct.selectExpr("*", 

"length(actor_name) as length")

// order names by length and retrieve the top 10

actorNameDF.orderBy('length.desc).limit(10).show

+--------------------------------+-------+

|              actor_name        | length|

+--------------------------------+-------+

|    Driscoll, Timothy 'TJ' James|     28|

|    Badalamenti II, Peter Donald|     28|

|    Shepard, Maridean Mansfield |     27|

|    Martino, Nicholas Alexander |     27|
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|    Marshall-Fricker, Charlotte |     27|

|    Phillips, Christopher (III) |     27|

|    Pahlavi, Shah Mohammad Reza |     27|

|    Juan, The Bishop Don Magic  |     26|

|    Van de Kamp Buchanan, Ryan  |     26|

|     Lough Haggquist, Catherine |     26|

+--------------------------------+-------+

union(otherDataFrame)

You learned that a DataFrame is immutable. If there is a need to add more rows to 

an existing DataFrame, then the union transformation is useful for that purpose 

and combining rows from two DataFrames. This transformation requires that both 

DataFrames have the same schema, meaning both column names and their order must 

exactly match. Let’s say one of the movies in the DataFrame is missing an actor, and you 

want to fix that issue. Listing 3-30 shows how to do that using union transformation.

Listing 3-30. Add a Missing Actor to the movies DataFrame

// the movie we want to add missing actor is "12"

val shortNameMovieDF = movies.where('movie_title === "12")

shortNameMovieDF.show

+---------------------+------------+---------------+

|           actor_name| movie_title| produced_year |

+---------------------+------------+---------------+

|     Efremov, Mikhail|          12|           2007|

|      Stoyanov, Yuriy|          12|           2007|

|      Gazarov, Sergey|          12|           2007|

| Verzhbitskiy, Viktor|          12|           2007|

+---------------------+------------+---------------+

// create a DataFrame with one row

import org.apache.spark.sql.Row

val forgottenActor = Seq(Row("Brychta, Edita", "12", 2007L))

val forgottenActorRDD = spark.sparkContext.parallelize(forgottenActor)

val forgottenActorDF = spark.createDataFrame(forgottenActorRDD, 

shortNameMovieDF.schema)
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// now adding the missing action

val completeShortNameMovieDF = shortNameMovieDF.union(forgottenActorDF)

completeShortNameMovieDF.union(forgottenActorDF).show

+----------------------+------------+---------------+

|            actor_name| movie_title|  produced_year|

+----------------------+------------+---------------+

|      Efremov, Mikhail|          12|           2007|

|       Stoyanov, Yuriy|          12|           2007|

|       Gazarov, Sergey|          12|           2007|

|  Verzhbitskiy, Viktor|          12|           2007|

|        Brychta, Edita|          12|           2007|

+----------------------+------------+---------------+

withColumn(colName, column)

This transformation adds a new column to a DataFrame. It requires two input 

parameters; a column name and a value in the form of a column expression. You 

can accomplish pretty much the same goal by using the selectExpr transformation. 

However, if the given column name matches one of the existing ones, that column is 

replaced with the given column expression. Listing 3-31 provides examples of adding a 

new column as well as replacing an existing one.

Listing 3-31. Add as Well Replacing a Column Using withColumn 

Transformation

// adding a new column based on a certain column expression

movies.withColumn("decade", ('produced_year - 'produced_year % 10)).show(5)

+------------------+------------------------+--------------+-----------+

|        actor_name|             movie_title| produced_year|     decade|

+------------------+------------------------+--------------+-----------+

| McClure, Marc (I)|            Coach Carter|          2005|       2000|

| McClure, Marc (I)|             Superman II|          1980|       1980|

| McClure, Marc (I)|               Apollo 13|          1995|       1990|

| McClure, Marc (I)|                Superman|          1978|       1970|

| McClure, Marc (I)|      Back to the Future|          1985|       1980|

+------------------+------------------------+--------------+-----------+
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// now replace the produced_year with new values

movies.withColumn("produced_year", ('produced_year - 'produced_year % 10)).

show(5)

+------------------+-------------------+--------------+

|        actor_name|        movie_title| produced_year|

+------------------+-------------------+--------------+

| McClure, Marc (I)|       Coach Carter|          2000|

| McClure, Marc (I)|        Superman II|          1980|

| McClure, Marc (I)|          Apollo 13|          1990|

| McClure, Marc (I)|           Superman|          1970|

| McClure, Marc (I)| Back to the Future|          1980|

+------------------+-------------------+--------------+

withColumnRenamed(existingColName, newColName)

This transformation is strictly about renaming an existing column name in a DataFrame. 

It is fair to ask why in the world Spark provides this transformation. As it turns out, this 

transformation is useful in the following situations.

• To rename a cryptic column name to a more human friendly name. 

The cryptic column name can come from an existing schema that 

you don’t control, such as when your company’s partner produced 

the column you need in a Parquet file.

• Before joining two DataFrames that happen to have one or more 

same column name. This transformation can rename one or more 

columns in one of the two DataFrames, so you can refer to them 

easily after the join.

Notice that if the provided existingColName doesn’t exist in the schema, Spark 

doesn’t throw an error, and it silently does nothing. Listing 3-32 renames some of 

the column names in movies DataFrame to short names. By the way, this can be 

accomplished by using the select or selectExpr transformations as well. I leave that as 

an exercise for you.
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Listing 3-32. Using withColumnRenamed Transformation to Rename Some of 

the Column Names

movies.withColumnRenamed("actor_name", "actor")

           .withColumnRenamed("movie_title", "title")

           .withColumnRenamed("produced_year", "year").show(5)

+------------------+--------------------+------+

|             actor|               title|  year|

+------------------+--------------------+------+

| McClure, Marc (I)|        Coach Carter|  2005|

| McClure, Marc (I)|         Superman II|  1980|

| McClure, Marc (I)|           Apollo 13|  1995|

| McClure, Marc (I)|            Superman|  1978|

| McClure, Marc (I)|  Back to the Future|  1985|

+------------------+--------------------+------+

drop(columnName1, columnName2)

This transformation simply drops the specified columns from the DataFrame. You 

can specify one or more column names to drop, but only the ones that exist in the 

schema are dropped, and the ones that don’t are silently ignored. You can use the 

select transformation to drop columns by projecting out the columns you want to 

keep. However, if a DataFrame has 100 columns, and you want to drop a few, then this 

transformation is more convenient to use than the select transformation. Listing 3-33 

provides examples of dropping columns.

Listing 3-33. Drop Two Columns, One Exists and the Other One Doesn’t

movies.drop("actor_name", "me").printSchema

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

As you can see, the second column, "me", doesn’t exist in the schema, and the drop 

transformation simply ignores it.
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sample(fraction), sample(fraction, seed), sample(fraction, seed, 
withReplacement)

This transformation returns a randomly selected set of rows from the DataFrame. 

The number of the returned rows is approximately equal to the specified fraction, 

representing a percentage, and the value must be between 0 and 1. The seed seeds the 

random number generator, which generates a row number to include in the result. If a 

seed is not specified, then a randomly generated value is used. The withReplacement 

option determines whether a randomly selected row is placed back into the selection 

pool. In other words, when withReplacement is true, a particular selected row has 

the potential to be selected more than once. So, when would you need to use this 

transformation? It is useful when the original dataset is large and there is a need to 

reduce it down to a smaller size so you can quickly iterate on the data analysis logic. 

Listing 3-34 provides examples of using sample transformation.

Listing 3-34. Different ways of Using the sample Transformation

// sample with no replacement and a ratio

movies.sample(false, 0.0003).show(3)

+--------------------+----------------------+--------------+

|          actor_name|           movie_title| produced_year|

+--------------------+----------------------+--------------+

|     Lewis, Clea (I)|  Ice Age: The Melt...|          2006|

|      Lohan, Lindsay|   Herbie Fully Loaded|          2005|

|Tagawa, Cary-Hiro...|       Licence to Kill|          1989|

+--------------------+----------------------+--------------+

// sample with replacement, a ratio and a seed

movies.sample(true, 0.0003, 123456).show(3)

+---------------------+-----------------+--------------+

|           actor_name|      movie_title| produced_year|

+---------------------+-----------------+--------------+

| Panzarella, Russ (V)|   Public Enemies|          2009|

|         Reed, Tanoai|        Daredevil|          2003|

|         Moyo, Masasa|     Spider-Man 3|          2007|

+---------------------+-----------------+--------------+

As you can see, the returned movies are pretty random.

Chapter 3  Spark SQL: Foundation



90

randomSplit(weights)

This transformation is commonly used during the process of preparing the data to train 

machine learning models. Unlike the previous transformations, this one returns one 

or more DataFrames. The number of DataFrames it returns is based on the number 

of weights you specify. If the set of weights don’t add up to 1, they are normalized 

accordingly to add up to 1. Listing 3-35 provides an example of splitting the movie 

DataFrame into three smaller ones.

Listing 3-35. Use randomSplit to Split movies DataFrame into Three Parts

// the weights need to be an Array

val smallerMovieDFs = movies.randomSplit(Array(0.6, 0.3, 0.1))

// let's see if the counts are added up to the count of movies DataFrame

movies.count

Long = 31393

smallerMovieDFs(0).count

Long = 18881

smallerMovieDFs(0).count + smallerMovieDFs(1).count + smallerMovieDFs(2).count

Long = 31393

 Working with Missing or Bad Data

In reality, the data you often work with is not as clean as you would like. Maybe it’s 

because the data evolves, and therefore some columns have values and some don’t. It is 

important to deal with this kind of issue at the beginning of your data manipulation logic 

to prevent any unpleasant surprises that cause your long-running data processing job to 

stop working.

The Spark community recognizes the need to deal with missing data is a fact of life. 

Therefore, Spark provides a dedicated class called DataFrameNaFunctions to help in 

dealing with this inconvenient issue. An instance of DataFrameNaFunctions is available 

as the an member variable in the DataFrame class. There are three common ways of 

dealing with missing or bad data. The first way is to drop the rows that have missing 

values in one or more columns. The second way is to fill those missing values with user-

provided values. The third way is to replace the bad data with something that you know 

how to deal with.
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Let’s start with dropping rows with missing data. You can tell Spark to drop rows 

where any column or only the specific columns have missing data. Listing 3-36 shows a 

few different ways of drop rows with missing data.

Listing 3-36. Dropping Rows with Missing Data

// first create a DataFrame with missing values in one or more columns

import org.apache.spark.sql.Row

val badMovies = Seq(Row(null, null, null),

                    Row(null, null, 2018L),

                    Row("John Doe", "Awesome Movie", null),

                    Row(null, "Awesome Movie", 2018L),

                    Row("Mary Jane", null, 2018L))

val badMoviesRDD = spark.sparkContext.parallelize(badMovies)

val badMoviesDF = spark.createDataFrame(badMoviesRDD, movies.schema)

badMoviesDF.show

+-----------+-----------------+--------------+

| actor_name|      movie_title| produced_year|

+-----------+-----------------+--------------+

|       null|             null|          null|

|       null|             null|          2018|

|   John Doe|    Awesome Movie|          null|

|       null|    Awesome Movie|          2018|

|  Mary Jane|             null|          2018|

+-----------+-----------------+--------------+

// dropping rows that have missing data in any column

// both of the lines below achieve the same output

badMoviesDF.na.drop().show

badMoviesDF.na.drop("any").show

+----------+------------+--------------+

|actor_name| movie_title| produced_year|

+----------+------------+--------------+

+----------+------------+--------------+
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// drop rows that have missing data in every single column

badMoviesDF.na.drop("all").show

+-----------+--------------+--------------+

| actor_name|   movie_title| produced_year|

+-----------+--------------+--------------+

|       null|          null|          2018|

|   John Doe| Awesome Movie|          null|

|       null| Awesome Movie|          2018|

|  Mary Jane|          null|          2018|

+-----------+--------------+--------------+

// drops rows that column actor_name has missing data

badMoviesDF.na.drop(Array("actor_name")).show

+------------+---------------+--------------+

|  actor_name|    movie_title| produced_year|

+------------+---------------+--------------+

|    John Doe|  Awesome Movie|          null|

|   Mary Jane|           null|          2018|

+------------+---------------+--------------+

 Working with Structured Actions

This section covers the structured actions. They have the same eager evaluation 

semantics as the RDD actions, so they trigger the computation of all the transformations 

that lead up to a particular action. Table 3-9 describes a list of structured actions.
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Most of these are self-explanatory. The show action has been used in many examples 

in the structured transformation section.

Another interesting action is called describe, which is discussed next.

describe(columnNames)

Sometimes it is useful to have a general sense of the basic statistics of the data you 

are working with. This action can compute the basic statistics of string and numeric 

columns, such as count, mean, standard deviation, minimum, and maximum. You have 

the option to choose which string or numeric column(s) to compute the statistics for. 

Listing 3-37 is an example.

Table 3-9. Commonly Used Structured Actions

Operation Description

show()

show(numRows)

show(truncate)

show(numRows, 

truncate)

display the row in a tabular format. if numrows is not specified, it shows the 

top 20 rows. the truncate option controls whether to truncate a string column 

if it is longer than 20 characters.

head()

first()

head(n)

take(n)

return the first row. if n is specified, then it returns the first n rows. first is an 

alias for first. take(n) is an alias for first(n).

takeAsList(n) return the first n rows as a Java list. Be careful not to take too many rows; 

otherwise, it may cause an out-of-memory error on the application’s driver 

process.

collect

collectAsList

return all the rows as an array or a Java list. apply the same caution as the 

one described in takeasList action.

count return the number of rows in the dataFrame.

describe Compute common statistics about numeric and string columns in the 

dataFrame. available statistics are count, mean, stddev, min, max, and 

arbitrary approximate percentiles.
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Listing 3-37. Use describe Action to Show the Statistics of produced_year 

Column

movies.describe("produced_year").show

+-----------+-------------------------+

|    summary|            produced_year|

+-----------+-------------------------+

|      count|                    31392|

|       mean|       2002.7964449541284|

|     stddev|        6.377236851493877|

|        min|                     1961|

|        max|                     2012|

+-----------+-------------------------+

 Introduction to Datasets
At one point, there was a lot of confusion about the differences between the DataFrame 

and Dataset APIs. Given these options, it is fair to ask what the differences are between 

them, the advantages and disadvantages of each option, and when to use which one. 

Recognizing this huge confusion in the Spark user community, Spark designers decided 

to unify the DataFrame APIs with Dataset APIs in Spark 2.0 version to have one fewer 

abstraction for users to learn and remember.

Starting with the Spark 2.0 release, there is only one high-level abstraction called 

Dataset, which has two flavors: a strongly-typed API and an untyped API. The term 

DataFrame doesn’t go away; instead, it has been redefined as an alias for a collection 

of generic objects in Dataset. From the code perspective, a DataFrame is essentially a 

type alias for Dataset[Row], where a Row is a generic untyped JVM object. A Dataset is 

a collection of strongly-typed JVM objects, represented by either a case class in Scala 

or a class in Java. Table 3-10 describes the Dataset API flavors available in each of the 

programming languages that Spark supports.
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Table 3-10. Dataset Flavors

Language Flavor

Scala dataset[t] and dataFrame

Java dataset[t]

python dataFrame

r dataFrame

The Python and R languages have no compile-time type-safety; therefore, only the 

untyped Dataset APIs (a.k.a. DataFrame) are supported.

Consider the Dataset as a younger brother of DataFrame. Its unique properties 

include type safety and object-oriented. A Dataset is a strongly typed, immutable 

collection of data. Like a DataFrame, the data is mapped to a defined schema. However, 

there are a few important differences between a DataFrame and a Dataset.

• Each row in a Dataset is represented by a user-defined object so that 

you can refer to an individual column as a member variable of that 

object. This provides you with compile-type safety.

• The Dataset has helpers called encoders, which are smart and 

efficient encoding utilities that convert data in each user-defined 

object into a compact binary format. This translates into a reduction 

of memory usage when a Dataset is cached in memory and a 

reduction in the number of bytes when Spark needs to transfer over a 

network during the shuffling process.

In terms of limitations, the Dataset APIs are available in only strongly typed 

languages such as Scala and Java. There is the conversion cost associated with 

converting a Row object into a domain-specific object, and this cost can be a factor 

when a Dataset has millions of rows. At this point, a question should pop into your mind 

regarding when to use DataFrame APIs and Dataset APIs. The Dataset APIs are good for 

production jobs that need to run regularly and are written and maintained by a team 

of Data Engineers. For most interactive and explorative analysis use cases, using the 

DataFrame APIs is sufficient.
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Note a case class in the Scala language is like a JavaBean class in Java 
language; however, it has a few built-in interesting properties. an instance of a 
case class is immutable, and therefore it is commonly used to model domain- 
specific objects. in addition, it is easy to reason about the internal states of the 
instances of a case class because they are immutable. the toString and equals 
methods are automatically generated to make it easier to print out the case class's 
content and compare between case class instances. Scala case classes work well 
with the Scala pattern matching feature.

 Creating Datasets
Before creating a Dataset, you need to define a domain-specific object to represent each 

row. There are a few ways to create a Dataset. The first way is to transform a DataFrame 

to a Dataset using the as(Symbol) function of the DataFrame class. The second way is to 

use the SparkSession.createDataset() function to create a Dataset from a collection of 

objects. The third way is to use the toDS implicit conversion utility. Listing 3-38 provides 

different examples of creating Datasets.

Listing 3-38. Different Ways of Creating Datasets

// define Movie case class

case class Movie(actor_name:String, movie_title:String, produced_year:Long)

// convert DataFrame to strongly typed Dataset

val moviesDS = movies.as[Movie]

// create a Dataset using SparkSession.createDataset() and the toDS 

implicit function

val localMovies = Seq(Movie("John Doe", "Awesome Movie", 2018L),

                                     Movie("Mary Jane", "Awesome Movie", 

2018L))

val localMoviesDS1 = spark.createDataset(localMovies)

val localMoviesDS2 = localMovies.toDS()

localMoviesDS1.show
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+------------+---------------+-------------+

|  actor_name|    movie_title|produced_year|

+------------+---------------+-------------+

|    John Doe|  Awesome Movie|         2018|

|   Mary Jane|  Awesome Movie|         2018|

+------------+---------------+-------------+

Among the different ways of creating Datasets, the first way is the most popular one. 

While transforming a DataFrame to a Dataset using a Scala case class, Spark performs a 

validation to ensure the member variable names in the Scala case class match up with 

column names in the schema of the DataFrame. If there is a mismatch, Spark lets you 

know.

 Working with Datasets
Now that you have a Dataset, you can manipulate it using the transformations and 

actions. Earlier in the chapter, the columns in the DataFrame used one of these options. 

With a Dataset, each row is represented in a strongly typed object; therefore, you can just 

refer to the columns using the member variable names, which give you type safety and 

compile- time validation. If there is a misspelling in the name, the compiler flags them 

immediately during the development phase. Listing 3-39 are examples of manipulating a 

Dataset.

Listing 3-39. Manipulating a Dataset in a Type-Safe Manner

// filter movies that were produced in 2010 using

moviesDS.filter(movie => movie.produced_year == 2010).show(5)

+---------------------+---------------------+-------------+

|           actor_name|          movie_title|produced_year|

+---------------------+---------------------+-------------+

|    Cooper, Chris (I)|             The Town|         2010|

|      Jolie, Angelina|                 Salt|         2010|

|      Jolie, Angelina|          The Tourist|         2010|

|       Danner, Blythe|       Little Fockers|         2010|

|   Byrne, Michael (I)| Harry Potter and ...|         2010|

+---------------------+---------------------+-------------+
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// displaying the title of the first movie in the moviesDS

moviesDS.first.movie_title

String = Coach Carter

// try with misspelling the movie_title and get compilation error

moviesDS.first.movie_tile

error: value movie_tile is not a member of Movie

// perform projection using map transformation

val titleYearDS = moviesDS.map(m => ( m.movie_title, m.produced_year))

titleYearDS.printSchema

 |-- _1: string (nullable = true)

 |-- _2: long (nullable = false)

// demonstrating a type-safe transformation that fails at compile time, 

performing subtraction on a column with string type

// a problem is not detected for DataFrame until runtime

movies.select('movie_title - 'movie_title)

// a problem is detected at compile time

moviesDS.map(m => m.movie_title - m.movie_title)

error: value - is not a member of String

// take action returns rows as Movie objects to the driver

moviesDS.take(5)

Array[Movie] = Array(Movie(McClure, Marc (I),Coach Carter,2005), 

Movie(McClure, Marc (I),Superman II,1980), Movie(McClure, Marc (I),Apollo 

13,1995))

For those who use the Scala programming language regularly, working with Dataset 

strongly-typed APIs feels natural and gives you the impression that those objects in the 

Dataset reside locally.

When you use the Dataset strongly-typed APIs, Spark implicitly converts each Row 

instance to the domain-specific object that you provide. This conversion has some cost 

in terms of performance; however, it provides more flexibility.

One general guideline to help decide when to use a Dataset over DataFrame is the 

desire to have a higher degree of type-safety at compile time, which are important for 

complex ETL Spark jobs developed and maintained by multiple Data Engineers.
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 Using SQL in Spark SQL
In the big data era, SQL has been described as the lingua franca for big data analysis. 

One of the coolest features in Spark is the ability to use SQL to perform distributed data 

manipulation at scale. Data analysts who are proficient at SQL can now use Spark to 

perform data analysis on large datasets. One important note to remember is that SQL in 

Spark is designed for online analytical processing (OLAP) use cases, not online transaction 

processing use cases (OLTP). In other words, it is not applicable for low-latency use cases.

SQL has evolved and improved over time. Spark implements a subset of ANSI 

SQL:2003 revision, which most popular RDBMS servers support. Being compliant with 

this revision means Spark SQL data processing engine can be benchmarked using a 

widely used industry-standard decision support benchmark called TPC-DS.

In late 2016, Facebook began migrating some of its largest Hive workloads to Spark to 

take advantage of the power of the Spark SQL engine (see  https://code.facebook.com/

posts/1671373793181703/apache- spark- scale- a- 60- tb- production- use- case/).

Note Structure Query Language (SQL) is a domain-specific language that 
performs data analysis and manipulation of structured data organized in a table 
format. the concepts in SQL are based on relational algebra; however, it is an 
easy language to learn. one key difference between SQL and other programming 
languages like Scala or python is that SQL is a declarative programming language, 
which means you express what you want to do with the data and let the SQL 
execution engine figure out how to perform the data manipulations as well as the 
necessary optimizations to speed up execution time. if you are new to SQL, there 
is a free course at this site at www.datacamp.com/courses/intro- to- sql- 
for- data- science.

 Running SQL in Spark
Spark provides a few different options for running SQL in Spark.

• Spark SQL CLI (./bin/spark-sql)

• JDBC/ODBC server

• Programmatically in Spark applications
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The first two options integrate Apache Hive to leverage its megastore, a repository 

that contains the metadata and schema information about the various systems and user- 

defined tables. This section covers only the last option.

A DataFrame and a Dataset are essentially like tables in a database. Before you 

can issue SQL queries to manipulate them, you need to register them as temporary 

views. Each view has a name, which is used as the table name in the select clause. 

Spark provides two levels of scoping for views. One is at the Spark session level. When 

a DataFrame is registered at this level, only the queries issued in the same session can 

refer to that DataFrame. The session-scoped level disappears when the associated 

Spark session is closed. The second scoping level is global, which means these views are 

available to SQL statements in all Spark sessions. All the registered views are maintained 

in the Spark metadata catalog that can be accessed via SparkSession. Listing 3-40 is an 

example of registering views and using the Spark catalog to inspect the metadata of the 

views.

Listing 3-40. Register the movies DataFrame as a Temporary View and 

Inspecting Metadata Catalog

// display tables in the catalog, expecting an empty list

spark.catalog.listTables.show

+-------+------------+---------------+------------+------------+

|   name|    database|    description|   tableType| isTemporary|

+-------+------------+---------------+------------+------------+

+-------+------------+---------------+------------+------------+

// now register movies DataFrame as a temporary view

movies.createOrReplaceTempView("movies")

// should see the movies view in the catalog

spark.catalog.listTables.show

+-------+---------+------------+-----------+--------------+

|   name| database| description|  tableType|   isTemporary|

+-------+---------+------------+-----------+--------------+

| movies|     null|        null|  TEMPORARY|          true|

+-------+---------+------------+-----------+--------------+
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// show the list of columns of movies view in catalog

spark.catalog.listColumns("movies").show

+--------------+------------+---------+---------+------------+------------+

|          name| description| dataType| nullable| isPartition|    isBucket|

+--------------+------------+---------+---------+------------+------------+

|    actor_name|        null|   string|     true|       false|       false|

|   movie_title|        null|   string|     true|       false|       false|

| produced_year|        null|   bigint|     true|       false|       false|

+--------------+------------+---------+---------+------------+------------+

// register movies as global temporary view called movies_g

movies.createOrReplaceGlobalTempView("movies_g")

Listing 3-40 gives you a couple of views to select from. The programmatic way 

of issuing SQL queries is to use the sql function of SparkSession class. In the 

SQL statement, you have access to all SQL expressions and built-in functions. The 

SparkSession.sql function executes the given SQL query; it returns a DataFrame. The 

ability to issue SQL statements and use DataFrame transformations and actions provides 

you a lot of flexibility in how you choose to perform distributed data processing in Spark.

Listing 3-41 provides examples of issuing simple and complex SQL statements.

Listing 3-41. Executing SQL Statements in Spark

// simple example of executing a SQL statement without a registered view

val infoDF = spark.sql("select current_date() as today , 1 + 100 as value")

infoDF.show

+----------+--------+

|     today|   value|

+----------+--------+

|2017-12-27|     101|

+----------+--------+

// select from a view
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spark.sql("select * from movies where actor_name like '%Jolie%' and 

produced_year > 2009").show

+---------------+----------------+--------------+

|     actor_name|     movie_title| produced_year|

+---------------+----------------+--------------+

|Jolie, Angelina|            Salt|          2010|

|Jolie, Angelina| Kung Fu Panda 2|          2011|

|Jolie, Angelina|     The Tourist|          2010|

+---------------+----------------+--------------+

// mixing SQL statement and DataFrame transformation

spark.sql("select actor_name, count(*) as count from movies group by actor_

name")

         .where('count > 30)

         .orderBy('count.desc)

         .show

+----------------------+--------+

|            actor_name|   count|

+----------------------+--------+

|      Tatasciore, Fred|      38|

|         Welker, Frank|      38|

|    Jackson, Samuel L.|      32|

|         Harnell, Jess|      31|

+----------------------+--------+

// using a subquery to figure out the number movies produced each year.

// leverage """ to format multi-line SQL statement

spark.sql("""select produced_year, count(*) as count

                    from (select distinct movie_title, produced_year from 

movies)

                   group by produced_year""")

         .orderBy('count.desc).show(5)

Chapter 3  Spark SQL: Foundation



103

+------------------+--------+

|     produced_year|   count|

+------------------+--------+

|              2006|      86|

|              2004|      86|

|              2011|      86|

|              2005|      85|

|              2008|      82|

+------------------+--------+

// select from a global view requires prefixing the view name with key word 

'global_temp'

spark.sql("select count(*) from global_temp.movies_g").show

+--------+

|   count|

+--------+

|   31393|

+--------+

Instead of reading the data file through DataFrameReader class and registering the 

newly created DataFrame as a temporary view, there is a short and convenient way to 

issue SQL queries against a data file. Listing 3-42 is an example.

Listing 3-42. Issue SQL Query Against a Data File

spark.sql("SELECT * FROM  parquet.`<path>/chapter4/data/movies/movies.

parquet`").show(5)

 Writing Data Out to Storage Systems
At this point, you know how to read data from various file formats or a database server 

using DataFrameReader, and you know how to use SQL or transformations and actions 

of structured APIs to manipulate the data. At some point, you need to write the result 

of the data processing logic in the DataFrame to an external storage system (i.e., a local 

file system, HDFS, or Amazon S3). In a typical ETL data processing job, the results most 

likely be written out to some persistent storage system.
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In Spark SQL, the DataFrameWriter class is responsible for the logic and complexity 

of writing out the data in a DataFrame to an external storage system. An instance of 

DataFrameWriter class is available to you as the write variable in the DataFrame class. 

The pattern for interacting with DataFrameWriter is similar to the interacting pattern 

of DataFrameReader. You can refer to it from a Spark shell or in a Spark application, as 

shown in Listing 3-43.

Listing 3-43. Using write Variable from DataFrame Class

movies.write

Listing 3-44 describes the common pattern for interacting with DataFrameWriter.

Listing 3-44. Common Interacting Pattern with DataFrameWriter

movies.write.format(...).mode(...).option(...).partitionBy(...).bucketBy(..

.).sortBy(...).save(path)

Similar to DataFrameReader, the default format is Parquet; therefore, it is 

unnecessary to specify a format if the desired output format is Parquet. The 

partitionBy, bucketBy, and sortBy functions control the directory structure of the 

output files in the file-based data sources. Structuring the directory layout based on 

reading patterns dramatically reduces the amount of data that needs to be read for 

analysis. You learn more about this later in the chapter. The input to the save function is 

a directory name, not a file name.

One of the important options in the DataFrameWriter class is the save mode, 

which controls how Spark handles the situation when the specified output 

location exists. Table 3-11 lists the various supported save modes.
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Listing 3-45 shows a few examples of using the various combination of formats and 

modes

Listing 3-45. Using DataFrameWriter to Write Out Data to File-based Sources

// write data out in CVS format, but using a '#' as delimiter

movies.write.format("csv").option("sep", "#").save("/tmp/output/csv")

// write data out using overwrite save mode

movies.write.format("csv").mode("overwrite").option("sep", "#").save("/tmp/

output/csv")

The number of files written out to the output directory is corresponding to the 

number of partitions your DataFrame has. Listing 3-46 shows how to find out the 

number of partitions a DataFrame has.

Listing 3-46. Display the Number of DataFrame Partitions

movies.rdd.getNumPartitions

Int = 1

When the number of rows in a DataFrame is not large, there is a need to have a single 

output file to make it easier to share. A small trick to achieve this goal is to reduce the 

number of partitions in your DataFrame to one and then write it out. Listing 3-47 shows 

an example of how to do that.

Table 3-11. Save Modes

Mode Description

append this appends the dataFrame data to the list of files that already exist at the specified 

destination location.

overwrite this completely overwrites any data files that already exist at the specified destination 

location with the data in the dataFrame.

error

errorifexists

default

this is the default mode. if the specified destination location exists, then 

dataFrameWriter throws an error.

ignore if the specified destination location exists, then simply do nothing. in other words, 

silently don’t write out the data in the dataFrame.
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Listing 3-47. Reduce the Number of Partitions in a DataFrame to 1

val singlePartitionDF = movies.coalesce(1)

The idea of writing data out using partitioning and bucketing is borrowed from 

the Apache Hive user community. As a rule of thumb, the partition by column should 

have low cardinality. In the movies DataFrame, the produced_year column is a good 

candidate for the partition by column. Let’s say you want to write out the movies 

DataFrame with partitioning by the produced_year column. The DataFrameWriter 

writes out all the movies with the same produced_year into a single directory. The 

number of directories in the output folder corresponds to the number of years in the 

movies DataFrame. Listing 3-48 is an example of using partitionBy function.

Listing 3-48. Write the movies DataFrame Using Partition By produced_year 

Column

movies.write.partitionBy("produced_year").save("/tmp/output/movies ")

// the /tmp/output/movies directory will contain the following 

subdirectories

produced_year=1961 to produced_year=2012

The directory names generated by the partitionBy option seems strange because 

each directory name consists of the partitioning column name and the associated value. 

These two pieces of information are used at the data reading time to choose which 

directory to read based on the data access pattern, and therefore it ends up reading 

much less data than otherwise.

 The Trio: DataFrame, Dataset, and SQL
Now you know there are three different ways of manipulating structured data in the 

Spark SQL module. Table 3-12 shows where each option falls in the syntax and analysis 

spectrum.
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The earlier you catch errors, the more productive you are and the more stable your 

data processing applications will be.

 DataFrame Persistence
A DataFrame can be persisted/cached in memory just like how it is done with RDDs. 

The same familiar persistence APIs (persist and unpersist) are available in DataFrame 

class. However, there is one big difference when caching a DataFrame. Since Spark SQL 

knows the schema of the data in a DataFrame, it can organize the data in a columnar 

format and apply any applicable compressions to minimize space usage. The net result 

is it require much less space to store a DataFrame in memory than storing an RDD when 

both are backed by the same data file. All the different storage options described in 

Table 3-5 are applicable for persisting a DataFrame. Listing 3-49 demonstrates persisting 

a DataFrame with a human readable name, which is easy to identify in Spark UI.

Listing 3-49. Persisting a DataFrame with a Human Readable Name

val numDF = spark.range(1000).toDF("id")

// register as a view

numDF.createOrReplaceTempView("num_df")

// use Spark catalog to cache the numDF using name "num_df"

spark.catalog.cacheTable("num_df")

// force the persistence to happen by taking the count action

numDF.count

Next, point your browser to the Spark UI (http://localhost:4040 when running 

Spark shell) and click the Storage tab. Figure 3-2 shows an example.

Table 3-12. Syntax and Analysis Errors Spectrum

SQL DataFrame Dataset

System errors runtime Compile time Compile time

analysis errors runtime runtime Compile time
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 Summary
In this chapter, you learned the following.

• The Spark SQL module provides a new and powerful abstraction for 

structured distributed data manipulation. Structured data has a defined 

schema, which consists of column names and a column data type.

• The main programming abstraction in Spark SQL is the Dataset, 

and it has two flavors of APIs: a strongly typed API and an untyped 

API. For the strongly typed APIs, each row is represented by a 

domain- specified object. For the untyped APIs, the reach row is 

represented by a Row object. A DataFrame is now just an alias of 

Dataset[Row]. The strongly-typed APIs give you static-typing and 

compile-time checking; therefore, they are only available in strongly 

typed languages, such as Scala or Java.

• Spark SQL supports reading data from a variety of popular 

data sources in different formats. The DataFrameReader class is 

responsible for creating a DataFrame by reading data from any of 

these data sources.

• Like RDD, a Dataset has two types of structured operations. They are 

transformation and actions. The former is lazily evaluated, and the 

latter is eagerly evaluated.

• Spark SQL makes it very easy to use SQL to perform data processing 

against large sets. This opens up Spark to data analysts and 

nonprogrammers.

• Writing out data from either a Dataset or DataFrame is done via a 

class called DataFrameWriter.

Figure 3-2. Storage tab
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SPARK SQL EXERCISES

the following exercises are based on the movies.tsv and movie-ratings.tsv files in 

chapter3/data/movies directory. the column delimiter in these files is a tab, so make sure 

to use that splitting each line.

each line in the movies.tsv file represents an actor played in a movie. if a movie has ten 

actors played in it, there are rows for that movie.

 1. Compute the number of movies produced each year. the output should have 

two columns: year and count. the output should be ordered by the count in 

descending order.

 2. Compute the number of movies each actor was in. the output should have two 

columns: actor, count. the output should be ordered by the count in descending 

order.

 3. Compute the highest-rated movie per year and include all the actors played 

in that movie. the output should have only one movie per year, and it should 

contain four columns: year, movie title, rating, a semicolon-separated list of 

actor names. this question requires a join between movies.tsv and movie- 

ratings.tsv files. there are two approaches to this problem. the first is to 

figure out the highest-rated movies per year and then join with a list of actors. 

the second one is to perform the join first and then figure out the highest-rated 

movies per year and a list of actors. the result of each approach is different 

from the other one. Why do you think that is?

 4. determine which pair of actors worked together most. Working together 

is defined as appearing in the same movie. the output should have three 

columns: actor1, actor2, and count. the output should be sorted by the count in 

descending order. the solution to this question requires doing self-join.
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CHAPTER 4

Spark SQL: Advanced
Chapter 3 introduced the foundational elements in the Spark SQL module, including 

the core abstraction, structured operations for manipulating structured data, and 

various supported data sources to read data from and write data to. Building on top of 

that foundation, this chapter covers some of the advanced capabilities in the Spark SQL 

module and peeks behind the curtain to understand the optimization and execution 

efficiency that the Catalyst optimizer and Tungsten engine provide. To help you with 

performing complex analytics, Spark SQL provides a set of powerful and flexible 

aggregation capabilities, the ability to join with multiple datasets, a large set of built-in 

and high-performant functions, an easy way to write your own custom function, and a 

set of advanced analytic functions. This chapter covers each of these topics in detail.

 Aggregations
Performing any interesting and complex analytics on big data usually involves 

aggregation to summarize the data to extract patterns or insights or generate summary 

reports. Aggregations usually require grouping either on the entire dataset or based 

on one or more columns, and then apply aggregation functions such as summation, 

counting, or average to each group. Spark provides many commonly used aggregation 

functions and the ability to aggregate the values into a collection, which can then 

be further analyzed. The grouping of rows can be done at different levels, and Spark 

supports the following levels.

• Treat a DataFrame as one group.

• Divide a DataFrame into multiple groups using one or more columns 

and perform one or more aggregations on each group.

• Divide a DataFrame into multiple windows and perform moving 

average, cumulative sum, or ranking. If a window is based on time, 

the aggregations can be done per tumbling or sliding windows.

https://doi.org/10.1007/978-1-4842-7383-8_4#DOI
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 Aggregation Functions
In Spark, all aggregations are done via functions. The aggregation functions are designed 

to perform aggregation on a set of rows, whether rows consist of all the rows or a 

subgroup of rows in a DataFrame. The documentation of the complete list of aggregation 

functions for the Scala language is available at http://spark.apache.org/docs/latest/

api/scala/index.html#org.apache.spark.sql.functions$. For the Spark Python 

APIs, sometimes there are some gaps in the availability of some functions.

 Common Aggregation Functions

This section describes a set of commonly used aggregation functions and provides 

examples of working with them. Table 4-1 describes the aggregation function. For a 

complete list, please see http://spark.apache.org/docs/latest/api/scala/index.

html#org.apache.spark.sql.functions$.

Table 4-1. Commonly Used Aggregation Functions

Operation Description

count(col) Return the number of items per group.

countDistinct(col) Return the unique number of items per group.

approx_count_

distinct(col)

Return the approximate number of unique items per group.

min(col) Return the minimum value of the given column per group.

max(col) Return the maximum value of the given column per group.

sum(col) Return the sum of the values in the given column per group.

sumDistinct(col) Return the sum of the distinct values of the given column per group.

avg(col) Return the average of the values of the given column per group.

skewness(col) Return the skewness of the distribution of the values of the given column 

per group.

kurtosis(col) Return the kurtosis of the distribution of the values of the given column per 

group.

variance(col) Return the unbiased variance of the values of the given column per group.

(continued)
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To demonstrate the usage of these functions, let’s use the flight summary dataset, 

which is derived from the data files available on the Kaggle site at www.kaggle.com/

usdot/flight- delays/data. This dataset contains the 2015 US domestic flight delays 

and cancellations. Listing 4-1 is the code for creating a DataFrame from this dataset.

Listing 4-1. Create a DataFrame from Reading Flight Summary Dataset

val flight_summary = spark.read.format("csv")

                                           .option("header", "true")

                                           .option("inferSchema","true")

                                           .load("<path>/chapter5/data/

flights/flight-summary.csv")

// use count action to find out number of rows in this dataset

flight_summary.count()

Long = 4693

Remember the count() function of the DataFrame is an action so it 

immediately returns a value to us. All the functions listed in Table 5-1 

are lazily evaluated functions.

Below is the schema of the flight_summary dataset.

 |-- origin_code: string (nullable = true)

 |-- origin_airport: string (nullable = true)

 |-- origin_city: string (nullable = true)

 |-- origin_state: string (nullable = true)

 |-- dest_code: string (nullable = true)

 |-- dest_airport: string (nullable = true)

 |-- dest_city: string (nullable = true)

 |-- dest_state: string (nullable = true)

 |-- count: integer (nullable = true)

Operation Description

stddev(col) Return the standard deviation of the values of the given column per group.

collect_list(col) Return a collection of values of the given column. the returned collection 

may contain duplicate values.

collect_set(col) Return a collection of unique values of the given column.

Table 4-1. (continued)
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Each row represents the flights from the origin_airport to dest_airport. The count 

column has the number of flights.

All the aggregation examples below are performing aggregation at the entire 

DataFrame level. Examples of performing aggregations at the subgroups level are given 

later in the chapter.

count(col)

Counting is a commonly used aggregation to find out the number of items in a group. 

Listing 4-2 computes the count for both the origin_airport and dest_airport 

columns, and as expected, the count is the same. To improve the readability of the result 

column, you can use the as function to give a friendlier column name. Note that you 

need to call the show action to see the result.

Listing 4-2. Computing the Count for Two Columns in the flight_summary 

DataFrame

flight_summary.select(count("origin_airport"), count("dest_airport").

as("dest_count")).show

+--------------------------+---------------+

|     count(origin_airport)|     dest_count|

+--------------------------+---------------+

|                      4693|           4693|

+--------------------------+---------------+

When counting the number of items in a column, the count(col) function doesn’t 

include the null value in the count. To include the null value, the column name should 

be replaced with *. Listing 4-3 demonstrates this behavior by creating a small DataFrame 

with a null value in some columns.

Listing 4-3. Counting Items with Null Value

import org.apache.spark.sql.Row

case class Movie(actor_name:String, movie_title:String, produced_year:Long)

val badMoviesDF = Seq( Movie(null, null, 2018L),

                       Movie("John Doe", "Awesome Movie", 2018L),

                       Movie(null, "Awesome Movie", 2018L),

                       Movie("Mary Jane", "Awesome Movie", 2018L)).toDF
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badMoviesDF.show

+---------------+--------------------+-------------------+

|     actor_name|         movie_title|      produced_year|

+---------------+--------------------+-------------------+

|           null|                null|               2018|

|       John Doe|       Awesome Movie|               2018|

|           null|       Awesome Movie|               2018|

|      Mary Jane|       Awesome Movie|               2018|

+---------------+--------------------+-------------------+

// now performing the count aggregation on different columns

badMoviesDF.select(count("actor_name"), count("movie_title"), 

count("produced_year"), count("*")).show

+------------------+-------------------+---------------------+---------+

| count(actor_name)| count(movie_title)| count(produced_year)| count(1)|

+------------------+-------------------+---------------------+---------+

|                 2|                  3|                    4|        4|

+------------------+-------------------+---------------------+---------+

The output table confirms that the count(col) function doesn’t include null the in 

the final count.

countDistinct(col)

This function does what it sounds like. It only counts the unique items per group. Listing 4-4 

shows the differences in the count result between the countDistinct function and the count 

function. As it turns out, there are 322 unique airports in the flight_summary dataset.

Listing 4-4. Counting Unique Items in a Group

flight_summary.select(countDistinct("origin_airport"), countDistinct("dest_

airport"), count("*")).show

+-------------------------------+-----------------------------+----------+

| count(DISTINCT origin_airport)| count(DISTINCT dest_airport)|  count(1)|

+-------------------------------+-----------------------------+----------+

|                            322|                          322|      4693|

+-------------------------------+-----------------------------+----------+

approx_count_distinct (col, max_estimated_error=0.05)
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Counting the exact number of unique items in each group in a very large dataset 

is an expensive and time-consuming. In some use cases, it is sufficient to have an 

approximate unique count. One of those use cases is in the online advertising business, 

where there are hundreds of millions of ad impressions per hour. There is a need to 

generate a report on the number of unique visitors per certain type of member segment. 

Approximating a count of distinct items is a well-known problem in computer science. It 

is also known as the cardinality estimation problem.

Luckily, there is already a well-known algorithm called HyperLogLog (https://

en.wikipedia.org/wiki/HyperLogLog) that you can use to solve this problem, and 

Spark has implemented a version of this algorithm in the approx_count_distinct 

function. Since the unique count is an approximation, there is a certain amount of 

error. This function allows you to specify the value for an acceptable estimation error for 

this use case. Listing 4-5 demonstrates the usage and behavior of the approx._count_

distinct function. As you dial down the estimation error, it takes longer and longer for 

this function to complete and return the result.

Listing 4-5. Counting Unique Items in a Group

// let's do the counting on the "count" column of flight_summary DataFrame.

// the default estimation error is 0.05 (5%)

flight_summary.select(count("count"),countDistinct("count"), approx_count_

distinct("count", 0.05)).show

+--------------+----------------------+-----------------------------+

| count(count) | count(DISTINCT count)| approx_count_distinct(count)|

+--------------+----------------------+-----------------------------+

|          4693|                  2033|                         2252|

+--------------+----------------------+-----------------------------+

// to get a sense how much approx_count_distinct function is faster than 

countDistinct function,

// trying calling them separately

flight_summary.select(countDistinct("count")).show

// specify 1% estimation error

flight_summary.select(approx_count_distinct("count", 0.01)).show
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// one my Mac laptop, the approx_count_distinct function took about 

0.1 second and countDistinct function took 0.6 second.  The larger the 

approximation estimation error, the less time approx_count_distinct 

function takes to complete.

min(col), max(col)

The minimum and maximum values of the items in a group are the two ends of a 

spectrum. These two functions are easy to understand and work with. Listing 4-6 extracts 

these two values from the count column.

Listing 4-6. Get the Minimum and Maximum Values of the Count Column

flight_summary.select(min("count"), max("count")).show

+-------------+----------------+

|   min(count)|      max(count)|

+-------------+----------------+

|            1|           13744|

+-------------+----------------+

// looks like there is one very busy airport with 13744 incoming flights 

from another airport. It will be interesting  to find which airport

sum(col)

This function computes the sum of the values in a numeric column. Listing 4-7 performs 

the sum of all the flights in the flight_summary dataset.

Listing 4-7. Using sum Function to Sum up the Count Values

flight_summary.select(sum("count")).show

+---------------+

|     sum(count)|

+---------------+

|        5332914|

+---------------+
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sumDistinct(col)

This function does what it sounds like. It sums up only the distinct values of a numeric 

column. The sum of the distinct counts in the flight_summary DataFrame should be less 

than the total sum displayed in Listing 4-7. Listing 4-8 computes the sum of the distinct 

values.

Listing 4-8. Using sumDistinct Function to Sum up the Distinct Count Values

flight_summary.select(sumDistinct("count")).show

+------------------------------+

|           sum(DISTINCT count)|

+------------------------------+

|                       3612257|

+------------------------------+

avg(col)

This function calculates the average value of a numeric column. This convenient 

function simply takes the total and divides it by the number of items. Let’s see whether 

Listing 4-9 can validate the hypothesis.

Listing 4-9. Computing the Average Value of the Count Column Using Two 

Different Ways

flight_summary.select(avg("count"), (sum("count") / count("count"))).show

+--------------------------+------------------------------------+

|                avg(count)|         (sum(count) / count(count))|

+--------------------------+------------------------------------+

|        1136.3549968037503|                  1136.3549968037503|

+--------------------------+------------------------------------+

skewness(col), kurtosis(col)

In statistics, the distribution of the values in a dataset tells numerous stories behind the 

dataset. Skewness measures the symmetry of the value distribution in a dataset, and its 

value can be positive, zero, negative, or undefined. In a normal distribution or bell-shaped 
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distribution, the skew value is 0. A positive skew indicates the tail on the right side is 

longer or fatter than the left side. A negative skew indicates the opposite, where the tail of 

the left side is longer or fatter than the right side. The tail of both sides is even when the 

skew is 0. Figure 4-1 shows an example of negative and positive skew.

Kurtosis is a measure of the shape of the distribution curve, whether the curve is 

normal, flat, or pointy. Positive kurtosis indicates the curve is slender and pointy, and 

negative kurtosis indicates fat and flat. Listing 4-10 calculates the skewness and kurtosis 

for the count distribution in the flight_summary dataset.

Listing 4-10. Compute the Skewness and Kurtosis of Column Count

flight_summary.select(skewness("count"), kurtosis("count")).show

+--------------------------+----------------------------+

|           skewness(count)|             kurtosis(count)|

+--------------------------+----------------------------+

|         2.682183800064101|           10.51726963017102|

+--------------------------+----------------------------+

The result suggests the distribution of the counts is not symmetric, and the right tail 

is longer or fatter than the left tail. The kurtosis value suggests that the distribution curve 

is pointy.

Figure 4-1. Negative and positive skew examples from https://en.wikipedia.org/
wiki/Skewness
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variance(col), stddev(col)

In statistics, variance, and standard deviation measure the dispersion or the spread of the 

data. In other words, they tell the average distance of the values from the mean. When the 

variance value is low, the values are close to the mean. Variance and standard deviation 

are related; the latter is the square root of the former. Figure 4-2 shows samples from two 

populations with the same mean but different variances. The red population has a mean 

of 100 and a variance 100. The blue population has a mean of 100 and a variance of 2500. 

This example comes from https://en.wikipedia.org/wiki/Variance.

The variance and stddev calculate the variance and standard deviation, 

respectively. Spark provides two different implementations of these functions; one uses 

sampling to speed up the calculation, and the other uses the entire population.  

Listing 4-11 shows the variance and standard deviation of the count column in the 

flight_summary DataFrame.

Figure 4-2. Example of samples from two population from https://en.wikipedia.
org/wiki/Variance
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Listing 4-11. Compute the Variance and Standard Deviation Using variance and 

sttdev Functions

// use the two variations of variance and standard deviation

flight_summary.select(variance("count"), var_pop("count"), stddev("count"), 

stddev_pop("count")).show

+-----------------+------------------+------------------+-----------------+

|   var_samp(count)|     var_pop(count)| stddev_samp(count)| stddev_pop(count)|

+-----------------+------------------+------------------+-----------------+

|1879037.7571558713| 1878637.3655604832|  1370.779981308405| 1370.633928355957|

+-----------------+------------------+------------------+-----------------+

It looks like the count values are pretty spread out in flight_summary DataFrame.

 Aggregation with Grouping
This section covers aggregation with the grouping of one or more columns. The 

aggregations are usually performed on datasets that contain one or more categorical 

columns, which have low cardinality. Examples of categorical values are gender, age, city 

name, or country name. The aggregation is done through functions similar to the ones 

mentioned earlier. However, instead of performing aggregation on the global group in 

the DataFrame, they perform the aggregation on each subgroup.

Performing aggregation with grouping is a two-step process. The first step is to 

perform the grouping by using the groupBy(col1,col2,...) transformation, and that’s 

where you specify which columns to group the rows by. Unlike other transformations 

that return a DataFrame, the groupBy transformation returns an instance of 

RelationalGroupedDataset class, to which you can apply one or more aggregation 

functions. Listing 4-12 demonstrates a simple grouping of using one column and one 

aggregation. Notice the groupBy columns automatically be included in the output.
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Listing 4-12. Grouping by origin_airport and Perform Count Aggregation

flight_summary.groupBy("origin_airport").count().show(5, false)

+------------------------------------------------------+-------+

|     origin_airport                                   |  count|

+------------------------------------------------------+-------+

|Melbourne International Airport                       |      1|

|San Diego International Airport (Lindbergh Field)     |     46|

|Eppley Airfield                                       |     21|

|Kahului Airport                                       |     18|

|Austin-Bergstrom International Airport                |     41|

+------------------------------------------------------+-------+

Listing 4-12 shows the flights out of Melbourne International Airport (Florida) go to 

only one other airport. However, the flights out of the Kahului Airport land at one of 18 

other airports.

To make things a bit more interesting, let’s try grouping by two columns to calculate 

the same metric at the city level. Listing 4-13 shows how to do that.

Listing 4-13. Grouping by origin_state and origin_city and Perform Count 

Aggregation

flight_summary.groupBy('origin_state, 'origin_city).

count().                  .where('origin_state === "CA").orderBy('count.

desc).show(5)

+---------------+------------------+---------+

|   origin_state|       origin_city|    count|

+---------------+------------------+---------+

|             CA|     San Francisco|       80|

|             CA|       Los Angeles|       80|

|             CA|         San Diego|       47|

|             CA|           Oakland|       35|

|             CA|        Sacramento|       27|

+---------------+------------------+---------+

In addition to grouping by two columns, the statement filters the rows to only the ones 

with a “CA” state. The orderBy transformation makes it easy to identify which city has the 
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greatest number of destination airports. It makes sense that both San Francisco and Los 

Angeles in California have the largest number of destination airports that one can fly to.

The RelationalGroupedDataset class provides a standard set of aggregation 

functions that you can use to apply to each subgroup. They are avg(cols), count(), 

mean(cols), min(cols), max(cols), sum(cols). Except for the count() function, all 

the remaining ones operate on numeric columns.

 Multiple Aggregations per Group

Sometimes there is a need to perform multiple aggregations per group at the same time. 

For example, in addition to the count, you want to know the minimum and maximum 

values. The RelationalGroupedDataset class provides a very powerful function called 

agg that takes one or more column expressions, which means you can use any of the 

aggregation functions, including the ones listed in Table 4-1. One cool thing is these 

aggregation functions return an instance of the Column class, so you can then apply any 

of the column expressions using the provided functions. A common need is to rename 

the column after the aggregation is done to make it shorter, more readable, and easier to 

refer to. Listing 4-14 demonstrates how to do all of this.

Listing 4-14. Multiple Aggregations After a Group by of origin_airport

import org.apache.spark.sql.functions._

flight_summary.groupBy("origin_airport")

                        .agg(

                                count("count").as("count"),

                                min("count"), max("count"),

                                sum("count")

                         ).show(5)

+--------------------+-------+----------+----------+------------+

|      origin_airport|  count|min(count)|max(count)|  sum(count)|

+--------------------+-------+----------+----------+------------+

|Melbourne Interna...|      1|      1332|      1332|        1332|

|San Diego Interna...|     46|         4|      6942|       70207|

|     Eppley Airfield|     21|         1|      2083|       16753|

|     Kahului Airport|     18|        67|      8313|       20627|

|Austin-Bergstrom ...|     41|         8|      4674|       42067|

+--------------------+-------+----------+----------+------------+
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By default, the aggregation column name is the aggregation expression, making the 

column name a bit long and difficult to refer to. Therefore, a common pattern is to use 

the Column.as function to rename the column to something more suitable.

The versatile agg function provides an additional way to express the column 

expressions via a string-based key-value map. The key is the column name, and the value 

is the aggregation method, which can be avg, max, min, sum, or count. Listing 4-15 

provides an example of this approach.

Listing 4-15. Specifying Multiple Aggregations Using a Key-Value Map

flight_summary.groupBy("origin_airport")

                        .agg(

                                 "count" -> "count",

                                 "count" -> "min",

                                 "count" -> "max",

                                 "count" -> "sum")

                       .show(5)

The result is the same as the one from Listing 4-14. Notice there isn’t an easy to 

rename the aggregation result column name. One advantage this approach has over the 

first one is the map can programmatically be generated. When writing production ETL 

jobs or performing exploratory analysis, the first approach is used more often than the 

second one.

 Collection Group Values

The collect_list(col) and collect_set(col) functions are useful to collect all 

the values of a particular group after the grouping is applied. Once the values of each 

group are placed in a collection, there is freedom to operate them any way you choose. 

There is one small difference in the returned collection of these functions, which is the 

uniqueness. The collection_list function returns a collection containing duplicate 

values, and the collection_set function returns a collection containing unique values. 

Listing 4-16 shows using the collection_list function to collect the destination cities 

with more than 5500 flights coming into them from each origin state.
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Listing 4-16. Using collection_list to Collect High Traffic Destination Cities Per 

Origin State

val highCountDestCities = flight_summary.where('count > 5500)

                               .groupBy("origin_state")

                               .agg(collect_list("dest_city")

                               .as("dest_cities"))

highCountDestCities.withColumn("dest_city_count",

                               size('dest_cities))

                   .show(5, false)

+------------+------------------------------------+----------------+

|origin_state|         dest_cities                | dest_city_count|

+------------+------------------------------------+----------------+

|          AZ|      [Seattle, Denver, Los Angeles]|               3|

|          LA|      [Atlanta]                     |               1|

|          MN|      [Denver, Chicago]             |               2|

|          VA|      [Chicago, Boston, Atlanta]    |               3|

|          NV|[Denver, Los Angeles, San Francisco]|               3|

+------------+------------------------------------+----------------+

 Aggregation with Pivoting
Pivoting is a way to summarize the data by specifying one of the categorical columns 

and then performing aggregations on other columns so that the categorical values are 

transposed from rows into individual columns. Another way of thinking about pivoting is 

that it is a way to translate rows into columns while applying one or more aggregations. 

This technique is commonly used in data analysis or reporting. The pivoting process 

starts with grouping one or more columns, pivots on a column, and finally ends with 

applying one or more aggregations on one or more columns.

Listing 4-17 shows a pivoting example on a small dataset of students where each row 

contains the student’s name, gender, weight, and graduation year. Pivoting makes it easy 

to compute the average weight of each gender for each graduation year.
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Listing 4-17. Pivoting on a Small Dataset

import org.apache.spark.sql.Row

case class Student(name:String, gender:String, weight:Int, graduation_

year:Int)

val studentsDF = Seq(Student("John", "M", 180, 2015),

                     Student("Mary", "F", 110, 2015),

                     Student("Derek", "M", 200, 2015),

                     Student("Julie", "F", 109, 2015),

                     Student("Allison", "F", 105, 2015),

                     Student("kirby", "F", 115, 2016),

                     Student("Jeff", "M", 195, 2016)).toDF

// calculating the average weight for gender per graduation year

studentsDF.groupBy("graduation_year").pivot("gender")

                                     .avg("weight").show()

+----------------+------+---------+

| graduation_year|     F|        M|

+----------------+------+---------+

|            2015| 108.0|    190.0|

|            2016| 115.0|    195.0|

+----------------+------+---------+

This example has only one aggregation, and the gender categorical column has 

only two possible unique values; therefore, the result table has only two columns. If the 

gender column has three possible unique values, there are three columns in the result 

table. You can leverage the agg function to perform multiple aggregations, creating 

more columns in the result table. Listing 4-18 is an example of performing multiple 

aggregations on the DataFrame from Listing 4-17.

Listing 4-18. Multiple Aggregations After Pivoting

studentsDF.groupBy("graduation_year").pivot("gender")

                  .agg(

                          min("weight").as("min"),

                          max("weight").as("max"),
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                          avg("weight").as("avg")

                  ).show()

+---------------+------+-------+-------+-------+-------+------+

|graduation_year| F_min|  F_max|  F_avg|  M_min|  M_max| M_avg|

+---------------+------+-------+-------+-------+-------+------+

|           2015|   105|    110|  108.0|    180|    200| 190.0|

|           2016|   115|    115|  115.0|    195|    195| 195.0|

+---------------+------+-------+-------+-------+-------+------+

The number of columns added after the group columns in the result table is 

the product of the number of unique values of the pivot column and the number of 

aggregations.

If the pivoting column has a lot of distinct values, you can selectively choose which 

values to generate the aggregations for. Listing 4-19 shows how to specify values to the 

pivoting function.

Listing 4-19. Selecting Values of Pivoting Column to Generate the  

Aggregations For

studentsDF.groupBy("graduation_year").pivot("gender", Seq("M"))

                  .agg(

                          min("weight").as("min"),

                          max("weight").as("max"),

                          avg("weight").as("avg")

                  ).show()

+---------------------+---------+----------+---------+

|      graduation_year|    M_min|     M_max|    M_avg|

+---------------------+---------+----------+---------+

|                 2015|      180|       200|    190.0|

|                 2016|      195|       195|    195.0|

+---------------------+---------+----------+---------+

Specifying a list of distinct values for the pivot column speeds up the pivoting 

process. Otherwise, Spark spends some effort in figuring out a list of distinct values on its 

own.
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 Joins
To perform any kind of complex and interesting data analysis or manipulations, you 

often need to bring together the data from multiple datasets through the process of 

joining. This is a well-known technique in SQL parlance. Performing a join combines 

the columns of two datasets (could be different or same), and the combined dataset 

contains columns from both sides. This enables you to further analyze the combined 

dataset so that it is not possible with each set. Let’s take an example of the two datasets 

from an online e- commerce company. One represents the transactional data that 

contains information about which customers purchased what products (a.k.a. fact table). 

The other one represents the information on each customer (a.k.a. dimension table). 

By joining these two datasets, you can extract insights about which products are more 

popular with certain segments of customers in terms of age or location.

This section covers how to perform joining in Spark SQL using the join 

transformation and the various types of join it supports. The last portion of this section 

describes how Spark SQL internally performs the joining.

Note In the world of performing data analysis using SQL, a join is a technique 
used quite often. If you are new to SQL, it is highly recommended that you learn 
the fundamental concepts and the different kinds of join at https://en.wikipedia.
org/wiki/Join_(SQL). a few tutorials about joins are provided at  www.w3schools.
com/sql/sql_join.asp.

 Join Expression and Join Types
Performing a join of two datasets requires you to specify two pieces of information. 

The first one is a join expression that specifies which columns from each side should 

determine which rows from both datasets are included in the joined dataset. The second 

one is the join type, which determines what should be included in the joined dataset. 

Table 4-2 provides a list of supported join types in Spark SQL.
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To help visualize some of the join types, Figure 4-3 shows a set of Venn diagrams for the 

common join types from https://en.wikipedia.org/wiki/Join_ (SQL)#Outer_join.

Table 4-2. Join Types

Type Description

Inner join (a.k.a. 

equi-join)

Return rows from both datasets when the join expression evaluates to true.

Left outer join Return rows from the left dataset even when the join expression evaluates as 

false.

Right outer join Return rows from the right dataset even when the join expression evaluates as 

false.

Outer join Return rows from both datasets even when the join expression evaluates as 

false.

Left anti-join Return rows only from the left dataset when the join expression evaluates as 

false.

Left semi-join Return rows only from the left dataset when the join expression evaluates to 

true.

Cross

(a.k.a. Cartesian)

Return rows by combining each row from the left dataset with each row in the 

right dataset. the number of rows is a product of the size of each dataset.

Figure 4-3. Venn diagrams for common join types
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 Working with Joins
I used two small DataFrames to demonstrate how to perform joining in Sparking 

SQL. The first one represents a list of employees, and each row contains the employee’s 

name and the department they belong to. The second one contains a list of departments, 

and each row contains a department ID and department name. Listing 4-20 contains a 

snippet of code to create these two DataFrames.

Listing 4-20. Creating Two Small DataFrames to Use in the Following Join Type 

Examples

case class Employee(first_name:String, dept_no:Long)

val employeeDF = Seq( Employee("John", 31),

                      Employee("Jeff", 33),

                      Employee("Mary", 33),

                      Employee("Mandy", 34),

                      Employee("Julie", 34),

                      Employee("Kurt", null.asInstanceOf[Int])

                     ).toDF

case class Dept(id:Long, name:String)

val deptDF = Seq( Dept(31, "Sales"),

                  Dept(33, "Engineering"),

                  Dept(34, "Finance"),

                  Dept(35, "Marketing")

                 ).toDF

// register them as views so we can use SQL for perform joins

employeeDF.createOrReplaceTempView("employees")

deptDF.createOrReplaceTempView("departments")

 Inner Joins

This is the most used join type with the join expression containing the equality 

comparison of the columns from both datasets. The joined dataset contains the rows 

only when the join expression is evaluated to be true; in other words, the join column 

values are the same in both datasets. Rows that don’t have matching column values are 

excluded from the joined dataset. If the join expression uses the equality comparison, 
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then the number of rows in the joined table only be as large as the size of the smaller 

dataset. The inner join is the default join type in Spark SQL, so it is optional to specify it 

in the join transformation. Listing 4-21 provides examples of doing an inner join.

Listing 4-21. Performing Inner Join by the Department ID

// define the join expression of equality comparison

val deptJoinExpression = employeeDF.col("dept_no") === deptDF.col("id")

// perform the join

employeeDF.join(deptDF, joinExpression, "inner").show

// no need to specify the join type since "inner" is the default

employeeDF.join(deptDF, joinExpression).show

+-------------+----------+---+----------------+

|   first_name|   dept_no| id|            name|

+-------------+----------+---+----------------+

|         John|        31| 31|           Sales|

|         Jeff|        33| 33|     Engineering|

|         Mary|        33| 33|     Engineering|

|        Mandy|        34| 34|         Finance|

|        Julie|        34| 34|         Finance|

+-------------+----------+---+----------------+

// using SQL

spark.sql("select * from employees JOIN departments on dept_no == id").show

As expected, the joined dataset contains only the rows with matching department 

IDs from both employee and department datasets and the columns from both datasets. 

The output tells you exactly which department each employee belongs to.

The join expression can be specified in the join transformation or using the where 

transformation. If the column names are unique, it is possible to refer to the columns 

in the join expression using a short-handed version. If not, you must specify which 

DataFrame a particular column comes from using the col function. Listing 4-22 shows 

different ways of expressing a join expression.
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Listing 4-22. Different Ways of Expressing a Join Expression

// a shorter version of the join expression

employeeDF.join(deptDF, 'dept_no === 'id).show

// specify the join expression inside the join transformation

employeeDF.join(deptDF, employeeDF.col("dept_no") === deptDF.col("id")).show

// specify the join expression using the where transformation

employeeDF.join(deptDF).where('dept_no === 'id).show

Join expression is simply a Boolean predicate, and therefore it can be as simple as 

comparing two columns or as complex as chaining multiple logical comparisons of pairs 

of columns.

 Left Outer Joins

The joined dataset of this join type includes all the rows from an inner join plus all 

the rows from the left dataset that the join expression is evaluated as false. For those 

nonmatching rows, it fills in a NULL value for the columns of the right dataset.  

Listing 4-23 is an example of doing a left outer join.

Listing 4-23. Performing a Left Outer Join

// the join type can be either "left_outer" or "leftouter"

employeeDF.join(deptDF, 'dept_no === 'id, "left_outer").show

// using SQL

spark.sql("select * from employees LEFT OUTER JOIN departments on dept_no 

== id").show

+--------------+----------+----+----------------+

|    first_name|   dept_no|  id|            name|

+--------------+----------+----+----------------+

|          John|        31|  31|           Sales|

|          Jeff|        33|  33|     Engineering|

|          Mary|        33|  33|     Engineering|

|         Mandy|        34|  34|         Finance|

|         Julie|        34|  34|         Finance|

|          Kurt|         0|null|            null|

+--------------+----------+----+----------------+
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As expected, the marketing department doesn’t have any matching rows from the 

employee dataset. The joined dataset tells you the department that an employee is 

assigned to and which departments have no employees.

 Right Outer Joins

The behavior of this join type resembles the behavior of the left outer join type, except 

the same treatment is applied to the right dataset. In other words, the joined dataset 

includes all the rows from an inner join plus all the rows from the right dataset that the 

join expression evaluates as false. Listing 4-24 is an example of doing a right outer join.

Listing 4-24. Performing a Right Outer Join

employeeDF.join(deptDF, 'dept_no === 'id, "right_outer").show

// using SQL

spark.sql("select * from employees RIGHT OUTER JOIN departments on dept_no 

== id").show

+-------------+-----------+----+----------------+

|   first_name|    dept_no|  id|            name|

+-------------+-----------+----+----------------+

|         John|         31|  31|           Sales|

|         Mary|         33|  33|     Engineering|

|         Jeff|         33|  33|     Engineering|

|        Julie|         34|  34|         Finance|

|        Mandy|         34|  34|         Finance|

|         null|       null|  35|       Marketing|

+-------------+-----------+----+----------------+

As expected, the marketing department doesn’t have any match rows from the 

employee dataset. The joined dataset tells you the department that an employee is 

assigned to and which departments have no employees.

 Outer Joins (a.k.a. Full Outer Joins)

The behavior of this join type is effectively the same as combining the result of both the 

left outer join and the right outer join. Listing 4-25 is an example of doing an outer join.
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Listing 4-25. Performing an Outer Join

employeeDF.join(deptDF, 'dept_no === 'id, "outer").show

// using SQL

spark.sql("select * from employees FULL OUTER JOIN departments on dept_no 

== id").show

+-------------+-----------+----+----------------+

|   first_name|    dept_no|  id|            name|

+-------------+-----------+----+----------------+

|         Kurt|          0|null|            null|

|        Mandy|         34|  34|         Finance|

|        Julie|         34|  34|         Finance|

|         John|         31|  31|           Sales|

|         Jeff|         33|  33|     Engineering|

|         Mary|         33|  33|     Engineering|

|         null|       null|  35|       Marketing|

+-------------+-----------+----+----------------+

The result from the outer join allows you to see which department an employee 

is assigned to and which departments have employees and which employees are not 

assigned to a department and which departments don’t have any employees.

 Left Anti-Joins

This join type lets you find out which rows from the left dataset don’t have any matching 

rows on the right dataset, and the joined dataset contains only the columns from the left 

dataset. Listing 4-26 is an example of doing a left anti-join.

Listing 4-26. Performing a Left Anti-Join

employeeDF.join(deptDF, 'dept_no === 'id, "left_anti").show

// using SQL

spark.sql("select * from employees LEFT ANTI JOIN departments on dept_no == 

id").show
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+-------------+-----------+

|   first_name|    dept_no|

+-------------+-----------+

|         Kurt|          0|

+-------------+-----------+

The result from the left anti-join can easily tell you which employees are not assigned 

to a department. Notice the right anti-join type doesn’t exist; however, you can easily 

switch the datasets around to achieve the same goal.

 Left Semi-Joins

The behavior of this join type is similar to the inner join type, except the joined dataset 

doesn’t include the columns from the right dataset. Another way of thinking about this 

join type is its behavior is the opposite of the left anti-join, where the joined dataset 

contains only the matching rows. Listing 4-27 is an example of doing a left semi-join.

Listing 4-27. Performing a Left Semi-Join

employeeDF.join(deptDF, 'dept_no === 'id, "left_semi").show

// using SQL

spark.sql("select * from employees LEFT SEMI JOIN departments on dept_no == 

id").show

+-------------+-----------+

|   first_name|    dept_no|

+-------------+-----------+

|         John|         31|

|         Jeff|         33|

|         Mary|         33|

|        Mandy|         34|

|        Julie|         34|

+-------------+-----------+
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 Cross (a.k.a. Cartesian)

In terms of usage, this join type is the simplest to use because the join expression is not 

needed. Its behavior can be a bit dangerous because it joins every single row in the left 

dataset with every row in the right dataset. The size of the joined dataset is the product of 

the size of the two datasets. For example, if each dataset size is 1024, then the size of the 

joined dataset is over 1 million rows. For this reason, the way to use this join type is by 

explicitly using a dedicated transformation in the DataFrame class, rather than specifying 

this join type as a string. Listing 4-28 is an example of doing a cross join.

Listing 4-28. Performing a Cross Join

// using crossJoin transformation and display the count

employeeDF.crossJoin(deptDF).count

Long = 24

// using SQL and passing 30 value to show action to see all rows

spark.sql("select * from employees CROSS JOIN departments").show(30)

+-------------+----------+---+----------------+

|   first_name|   dept_no| id|            name|

+-------------+----------+---+----------------+

|         John|        31| 31|           Sales|

|         John|        31| 33|     Engineering|

|         John|        31| 34|         Finance|

|         John|        31| 35|       Marketing|

|         Jeff|        33| 31|           Sales|

|         Jeff|        33| 33|     Engineering|

|         Jeff|        33| 34|         Finance|

|         Jeff|        33| 35|       Marketing|

|         Mary|        33| 31|           Sales|

|         Mary|        33| 33|     Engineering|

|         Mary|        33| 34|         Finance|

|         Mary|        33| 35|       Marketing|

|        Mandy|        34| 31|           Sales|

|        Mandy|        34| 33|     Engineering|

|        Mandy|        34| 34|         Finance|

|        Mandy|        34| 35|       Marketing|
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|        Julie|        34| 31|           Sales|

|        Julie|        34| 33|     Engineering|

|        Julie|        34| 34|         Finance|

|        Julie|        34| 35|       Marketing|

|         Kurt|         0| 31|           Sales|

|         Kurt|         0| 33|     Engineering|

|         Kurt|         0| 34|         Finance|

|         Kurt|         0| 35|       Marketing|

+-------------+----------+---+----------------+

 Dealing with Duplicate Column Names
From time to time, two DataFrames might have one or more columns with the same 

name. Before joining them, it is best to rename those columns in one of the two 

DataFrames to avoid access ambiguity issues; otherwise, the joined DataFrame would 

have multiple columns with the same name. Listing 4-29 simulates this situation.

Listing 4-29. Simulate a Joined DataFrame with Multiple Names That Are the 

Same

// add a new column to deptDF with name dept_no

val deptDF2 = deptDF.withColumn("dept_no", 'id)

deptDF2.printSchema

 |-- id: long (nullable = false)

 |-- name: string (nullable = true)

 |-- dept_no: long (nullable = false)

// now employeeDF with deptDF2 using dept_no column

val dupNameDF = employeeDF.join(deptDF2, employeeDF.col("dept_no") === 

deptDF2.col("dept_no"))

dupNameDF.printSchema

 |-- first_name: string (nullable = true)

 |-- dept_no: long (nullable = false)

 |-- id: long (nullable = false)

 |-- name: string (nullable = true)

 |-- dept_no: long (nullable = false)
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Notice the dupNameDF DataFrame now has two columns with the same name, dept_

no. Spark throws an error when you project the dupNameDF DataFrame using the dept_no 

in Listing 4-30.

Listing 4-30. Projecting Column dept_no in the dupNameDF DataFrame

dupNameDF.select("dept_no")

org.apache.spark.sql.AnalysisException: Reference 'dept_no' is ambiguous, 

could be: dept_no#30L, dept_no#1050L.;

As it turns out, there are several ways to deal with this issue.

 Use Original DataFrame

The joined DataFrame remembers which columns come from which original DataFrame 

during the joining process. To disambiguate which DataFrame a column comes from, 

you can just tell Spark to prefix it with its original DataFrame name. Listing 4-31 shows 

how to do this.

Listing 4-31. Using the Original DataFrame deptDF2 to Refer to dept_no 

Column in the Joined DataFrame

dupNameDF.select(deptDF2.col("dept_no"))

 Renaming Column Before Joining

Another approach to avoid a column name ambiguity issue is to rename a column in one 

of the DataFrames using the withColumnRenamed transformation. Since this is simple, I 

leave it as an exercise for you.

 Using Joined Column Name

When the joined column name is the same in both DataFrames, you can leverage a 

version of the join transformation that automatically removes the duplicate column 

name in the joined DataFrame. However, if it was a self-join, meaning joining a 

DataFrame to itself, then there is no way to refer to other duplicate column names. 

In that case, you need to use the column renaming technique. Listing 4-32 shows an 

example of performing a join using a joined column name.
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Listing 4-32. Performing a Join Using Joined Column Name

val noDupNameDF = employeeDF.join(deptDF2, "dept_no")

noDupNameDF.printSchema

 |-- dept_no: long (nullable = false)

 |-- first_name: string (nullable = true)

 |-- id: long (nullable = false)

 |-- name: string (nullable = true)

Notice there is only one dept_no column in the noDupNameDF DataFrame.

 Overview of Join Implementation
Joining is one of the most complex and expensive operations in Spark. At a high level, 

there are a few strategies Spark uses to perform the joining of two datasets. They are 

shuffle hash join and broadcast join. The main criteria for selecting a particular strategy 

are based on the size of the two datasets. When the size of both datasets is large, then the 

shuffle hash join strategy is used. When the size of one of the datasets is small enough 

to fit into the memory of the executor, then the broadcast join strategy is used. The 

following sections go into detail on how each joining strategy works.

 Shuffle Hash Join

Conceptually, joining is about combining the rows of two datasets that meet the 

condition in the join expression. To do that, rows with the same column values need to 

be transferred across the network, co-located on the same partition.

The shuffle hash join implementation consists of two steps. The first step computes 

the hash value of the column(s) in the join expression of each row in each dataset and 

then shuffles those rows with the same hash value to the same partition. To determine 

which partition a particular row is moved to, Spark performs a simple arithmetic 

operation, which computes the modulo of the hash value by the number of partitions. 

The second step combines the columns of those rows that have the same column 

hash value. At the high level, these two steps are like the steps in the MapReduce 

programming model.

ChapteR 4  SpaRk SQL: advanCed



140

Figure 4-4 shows the shuffling going on in the shuffle hash join. It is an expensive 

operation due to transferring a large amount of data from across machines over 

the network. When moving data across a network, the data usually goes through a 

serialization and deserialization process. Imagine performing a join on two large 

datasets where the size of each one is 100 GB. In this scenario, it moves approximately 

200GB of data around. It is not possible to completely avoid a shuffle hash join when 

joining two large datasets. Still, it is important to be mindful about reducing the 

frequency of joining them whenever possible.

 Broadcast Hash Join

This join strategy is applicable when one of the datasets is small enough to fit into 

memory. Knowing that the shuffle hash join is an expensive operation, the broadcast 

hash join avoids shuffling both datasets and shuffles only the smaller one. Like the 

shuffle hash join strategy, this one also consists of two steps. The first step is to broadcast 

a copy of the smaller dataset to each of the larger dataset’s partitions. The second step is 

to iterate through each row in the larger dataset and look up the corresponding rows in 

the smaller dataset with match column values. Figure 4-5 shows the broadcasting of the 

small dataset.

Figure 4-4. Shuffle hash join
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It is easy to understand that a broadcast hash join is preferred when it is applicable. 

For the most part, Spark SQL can automatically figure out when to use broadcast hash 

join or shuffle hash join based on the statistics it has about datasets while reading them. 

However, it is feasible to provide a hint to Spark SQL to use broadcast hash join when 

using the join transformation. Listing 4-33 provides an example of doing that.

Listing 4-33. Provide a Hint to Use Broadcast Hash Join

import org.apache.spark.sql.functions.broadcast

// Use broadcast hash join strategy and print out execution plan

employeeDF.join(broadcast(deptDF), employeeDF.col("dept_no") === deptDF.

col("id")).explain()

// User broadcast hash join hint in a SQL statement

spark.sql("select /*+ MAPJOIN(departments) */ * from employees JOIN 

departments on dept_no == id").explain()

== Physical Plan ==

*BroadcastHashJoin [dept_no#30L], [id#41L], Inner, BuildRight

:- LocalTableScan [first_name#29, dept_no#30L]

+- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, 

false]))

   +- LocalTableScan [id#41L, name#42]

Figure 4-5. Broadcast hash join
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 Functions
The DataFrame APIs are designed to operate or transform individual rows in a dataset, 

such as filtering and grouping. If you want to transform the column value of each row, 

such as converting a string from uppercase to camel case, you use a function. Functions 

are methods that are applied to columns. Spark SQL provides a large set of commonly 

needed functions and an easy way to create new ones. Approximately 30 new built-in 

functions were added in Spark 3.0 version.

 Working with Built-in Functions
To be effective and productive at using Spark SQL to perform distributed data 

manipulations, you must be proficient at working with Spark SQL built-in functions. 

These built-in functions are designed to generate optimized code for execution at 

runtime, so it is best to take advantage of them before coming up with your own 

functions. One commonality among these functions is they are designed to take one 

or more columns of the same row as the input, and they return only a single column as 

the output. Spark SQL provides more than 200 built-in functions, and they are grouped 

into different categories. These functions can be used in DataFrame operations, such as 

select, filter, and groupBy.

For a complete list of built-in functions, refer to the Spark API Scala documentation 

at https://spark.apache.org/docs/latest/api/scala/org/apache/spark/sql/

functions$.html. Table 4-3 classifies them into different categories.
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Table 4-3. A Subset of Built-in Functions for Each Category

Category Description

date time unix_timestamp, from_unixtime, to_date, current_date, current_timesatmp, date_

add, date_sub, add_months, datediff, months_between, dayofmonth, dayofyear, 

weekofyear, second, minute, hour, month, make_date, make_timestamp, make_

interval

String concat, length, levenshtein, locate, lower, upper, ltrim, rtrim, trim, lpad, rpad, repeat, 

reverse, split, substring, base64

Math cos, acos, sin, asin, tan, atan, ceil, floor, exp, factorial, log, pow, radian, degree, sqrt, 

hex, unhex

Cryptography cr32, hash, md5, sha1, sha2

aggregation approx._count_distinct, countdistinct, sumdistinct, avg, corr, count, first, last, max, 

min, skewness, sum,

Collection array_contain, explode, from_json, size, sort_array, to_json, size

Window dense_rank, lag, lead, ntile, rank, row_number

Misc. coalesce, isnan, isnull, isnotnull, monotonically_increasing_id, lit, when

Most of these functions are easy to understand and straightforward to use. The 

following sections provide working examples of some of the interesting ones.

 Working with Date Time Functions

The more you use Spark to perform data analysis, the more chance you encounter 

datasets that have one more date or time-related columns. The Spark built-in data 

time functions broadly fall into the following three categories: converting the date 

or timestamp from one format to another, performing a data-time calculation, and 

extracting specific values from a date or timestamp, such as year, month, day of the week, 

and so on.

The date-time conversion functions help convert a time string into either a date, 

timestamp, or Unix timestamp and vice versa. Internally, it uses the Java date format 

pattern syntax, which is documented at http://docs.oracle.com/javase/tutorial/

i18n/format/simpleDateFormat.html. The default date format these functions use is 

yyyy-MM-dd HH:mm:ss. Therefore, if your date or timestamp column’s date format is 
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different, you need to provide that pattern to these conversion functions. Listing 4-34 

shows an example of converting date and timestamp in string type to Spark date and 

timestamp type.

Listing 4-34. Converting date and timestamp String to Spark Date and 

Timestamp Type

// the last two columns don't follow the default date format

val testDF = Seq((1, "2018-01-01", "2018-01-01 15:04:58:865",

                  "01-01-2018", "12-05-2017 45:50"))

                 .toDF("id", "date", "timestamp", "date_str",

                       "ts_str")

// convert these strings into date, timestamp and unix timestamp

// and specify a custom date and timestamp format

val testResultDF = testDF.select(to_date('date).as("date1"),

                           to_timestamp('timestamp).as("ts1"),

                     to_date('date_str,"MM-dd-yyyy").as("date2"),

             to_timestamp('ts_str, "MM-dd-yyyy mm:ss").as("ts2"),

             unix_timestamp('timestamp).as("unix_ts"))

                     .show(false)

// date1 and ts1 are of type date and timestamp respectively

testResultDF.printSchema

 |-- date1: date (nullable = true)

 |-- ts1: timestamp (nullable = true)

 |-- date2: date (nullable = true)

 |-- ts2: timestamp (nullable = true)

 |-- unix_ts: long (nullable = true)

testDateResultDF.show

+----------+-------------------+----------+-------------------+-----------+

|     date1|                ts1|     date2|                ts2|    unix_ts|

+----------+-------------------+----------+-------------------+-----------+

|2018-01-01|2018-01-01 15:04:58|2018-01-01|2017-12-05 00:45:50| 1514847898|

+----------+-------------------+----------+-------------------+-----------+
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It is just as easy to convert a date or timestamp to a time string by using the date_

format function with a custom date format or using the from_unixtime function to 

convert a Unix timestamp (in seconds) to a time string. Listing 4-35 shows examples of 

the conversions.

Listing 4-35. Converting Date, Timestamp, and Unix Timestamp to Time String

testResultDF.select(date_format('date1,"dd-MM-YYYY").as("date_str"),date_

format('ts1, "dd-MM-YYYY HH:mm:ss").as("ts_str"),

 from_unixtime('unix_ts,"dd-MM-YYYY HH:mm:ss").as("unix_ts_str"))

                 .show

+-------------+------------------------+------------------------+

|     date_str|                  ts_str|             unix_ts_str|

+-------------+------------------------+------------------------+

|   01-01-2018|     01-01-2018 15:04:58|     01-01-2018 15:04:58|

+-------------+------------------------+------------------------+

The date-time calculation functions are useful for figuring out the difference 

between two dates or timestamps and the ability to perform date or time arithmetic. 

Listing 4-36 shows working examples of date-time calculation.

Listing 4-36. Date Time Calculation Examples

val employeeData = Seq(("John", "2016-01-01", "2017-10-15"),

                       ("May", "2017-02-06", "2017-12-25"))

                       .toDF("name", "join_date", "leave_date")

employeeData.show

+------+----------------+--------------+

|  name|       join_date|    leave_date|

+------+----------------+--------------+

|  John|      2016-01-01|    2017-10-15|

|   May|      2017-02-06|    2017-12-25|

+------+----------------+--------------+
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// perform date and month calculations

employeeData.select('name,

            datediff('leave_date, 'join_date).as("days"),

            months_between('leave_date, 'join_date).as("months"),

            last_day('leave_date).as("last_day_of_mon"))

             .show

+------+------+----------------+-----------------------+

|  name|  days|          months|        last_day_of_mon|

+------+------+----------------+-----------------------+

|  John|   653|      21.4516129|             2017-10-31|

|   May|   322|     10.61290323|             2017-12-31|

+------+------+----------------+-----------------------+

// perform date addition and subtraction

val oneDate = Seq(("2018-01-01")).toDF("new_year")

oneDate.select(date_add('new_year, 14).as("mid_month"),

               date_sub('new_year, 1).as("new_year_eve"),

               next_day('new_year, "Mon").as("next_mon"))

        .show

+--------------+--------------------+----------------+

|     mid_month|        new_year_eve|        next_mon|

+--------------+--------------------+----------------+

|    2018-01-15|          2017-12-31|      2018-01-08|

+--------------+--------------------+----------------+

The ability to extract specific fields from a date or timestamp value such as year, 

month, hour, minutes, and seconds is convenient. For example, when there is a need 

to group all the stock transactions by quarter, month, or week, you can just extract that 

information from the transaction date and group by those values. Listing 4-37 shows how 

easy it is to extract fields out of a date or timestamp.
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Listing 4-37. Extract Specific Fields from a Date Value

val valentimeDateDF = Seq(("2018-02-14 05:35:55")).toDF("date")

valentimeDateDF.select(year('date).as("year"),

                       quarter('date).as("quarter"),

                       month('date).as("month"),

                       weekofyear('date).as("woy"),

                       dayofmonth('date).as("dom"),

                       dayofyear('date).as("doy"),

                       hour('date).as("hour"),

                       minute('date).as("minute"),

                       second('date).as("second"))

                .show

+-----+--------+------+-----+-----+-----+------+-------+--------+

| year| quarter| month|  woy|  dom|  doy|  hour| minute|  second|

+-----+--------+------+-----+-----+-----+------+-------+--------+

| 2018|       1|     2|    7|   14|   45|     5|     35|      55|

+-----+--------+------+-----+-----+-----+------+-------+--------+

 Working with String Functions

Undoubtedly most columns in the majority of datasets are of string type. The Spark SQL 

built-in string functions provide versatile and powerful ways of manipulating this type of 

column. These functions fall into two broad buckets. The first one is about transforming 

a string, and the second one is about applying regular expressions either to replace some 

part of a string or to extract certain parts of a string based on a pattern.

There are many ways to transform a string. The most common ones are trimming, 

padding, uppercasing, lowercasing, and concatenating. Trimming is about removing 

the spaces on the left side or right side of a string, or both. Padding is about adding 

characters to the left side or the right side of a string. Listing 4-38 demonstrates the 

various ways of transforming a string using the various built-in string functions.

ChapteR 4  SpaRk SQL: advanCed



148

Listing 4-38. Different Ways of Transforming a String With Built-in String 

Functions

val sparkDF = Seq(("  Spark  ")).toDF("name")

// trimming - removing spaces on the left side, right side of a string, or both

// trim removes spaces on both sides of a string

// ltrim only removes spaces on the left side of a string

// rtrim only removes spaces on the right side of a string

sparkDF.select(trim('name).as("trim"),

               ltrim('name).as("ltrim"),

               rtrim('name).as("rtrim"))

             .show

+-----+----------+---------+

| trim|     ltrim|    rtrim|

+-----+----------+---------+

|Spark|   Spark  |    Spark|

+-----+----------+---------+

// padding a string to a specified length with given pad string

//  first trim spaces around string "Spark" and then pad it so the final 

length is 8 characters long

// lpad pads the left side of the trim column with - to the length of 8

// rpad pads the right side of the trim colum with = to the length of 8

sparkDF.select(trim('name).as("trim"))

       .select(lpad('trim, 8, "-").as("lpad"),

               rpad('trim, 8, "=").as("rpad"))

       .show

+---------+-------------+

|     lpad|         rpad|

+---------+-------------+

| ---Spark|     Spark===|

+---------+-------------+
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// transform a string with concatenation, uppercase, lowercase and reverse

val sparkAwesomeDF = Seq(("Spark", "is", "awesome"))

                        .toDF("subject", "verb", "adj")

sparkAwesomeDF.select(concat_ws(" ",'subject, 'verb,

                                'adj).as("sentence"))

              .select(lower('sentence).as("lower"),

                      upper('sentence).as("upper"),

                      initcap('sentence).as("initcap"),

                      reverse('sentence).as("reverse"))

              .show

+-----------------+-----------------+-----------------+-----------------+

|            lower|            upper|          initcap|          reverse|

+-----------------+-----------------+-----------------+-----------------+

| spark is awesome| SPARK IS AWESOME| Spark Is Awesome| emosewa si krapS|

+-----------------+-----------------+-----------------+-----------------+

// translate from one character to another

sparkAwesomeDF.select('subject, translate('subject, "ar",

                                          "oc").as("translate"))

              .show

+---------+------------+

|  subject|   translate|

+---------+------------+

|    Spark|       Spock|

+---------+------------+

Regular expressions are a powerful and flexible way to replace some portion of a 

string or extract substrings out of a string. The regexp_extract and regexp_replace 

functions are designed specifically for those purposes. Spark leverages the Java regular 

expressions library for the underlying implementation of these two string functions.

The input parameters to the regexp_extract function are a string column, a pattern 

to match, and a group index. There could be multiple pattern matches in a string; 

therefore, the group index (starts with 0) is needed to identify which one. If there is no 

match for the specified pattern, this function returns an empty string. Listing 4-30 is an 

example of working with the regexp_extract function.
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Listing 4-39. Using regexp_extract string Function to Extract “fox” Out Using a 

Pattern

val rhymeDF = Seq(("A fox saw a crow sitting on a tree singing

                    \"Caw! Caw! Caw!\"")).toDF("rhyme")

// using a pattern

rhymeDF.select(regexp_extract('rhyme,"[a-z]*o[xw]",0)

                             .as("substring")).show

+------------+

|   substring|

+------------+

|         fox|

+------------+

The input parameters to the regexp_replace string function are the string column, a 

pattern to match, and a value to replace with. Listing 4-40 is an example of working with 

the regexp_replace function.

Listing 4-40. Using regexp_replace String Function to Replace “fox” and “crow” 

with “animal”

val rhymeDF = Seq(("A fox saw a crow sitting on a tree singing

                   \"Caw! Caw! Caw!\"")).toDF("rhyme")

// both lines below produce the same output

rhymeDF.select(regexp_replace('rhyme, "fox|crow", "animal")

                             .as("new_rhyme"))

       .show(false)

rhymeDF .select(regexp_replace('rhyme, "[a-z]*o[xw]", "animal")

                .as("new_rhyme"))

        .show(false)

+----------------------------------------------------------------+

|                              new_rhyme                         |

+----------------------------------------------------------------+

|A animal saw a animal sitting on a tree singing "Caw! Caw! Caw!"|

+----------------------------------------------------------------+
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 Working with Math Functions

The second most common column type is numerical type. This is especially true in 

customer transactions or IoT sensor-related datasets. Most of the math functions are 

self- explanatory and easy to use. This section covers one useful and commonly used 

function called round, which performs the half-up rounding of a numeric value based 

on the given scale. The scale determines the number of decimal points to round up to. 

There are two variations of this function. The first one takes a column with a floating-

point value and a scale, and the second one takes only a column with a floating-point 

value. The second variation calls the first one with a value of 0 for the scale. Listing 4-41 

demonstrates the behavior of the round function.

Listing 4-41. Demonstrates the Behavior of round with Various Scales

val numberDF =Seq((3.14159, 3.5, 2018)).toDF("pie","gpa", "year")

numberDF.select(round('pie).as("pie0"),

                round('pie, 1).as("pie1"),

                round('pie, 2).as("pie2"),

                round('gpa).as("gpa"),

                round('year).as("year"))

         .show

// because it is a half-up rounding, the gpa value is rounded up to 4.0

+-----+------+-----+-----+------+

| pie0|  pie1| pie2|  gpa|  year|

+-----+------+-----+-----+------+

|  3.0|   3.1| 3.14|  4.0|  2018|

+-----+------+-----+-----+------+

 Working with Collection Functions

The collection functions are designed to work with complex data types such as arrays, 

maps, or structs. This section covers the two specific types of collection functions. The 

first one is about working with an array data type. The second one is about working with 

the JSON data format.

Instead of a single scalar value, sometimes a particular column in a dataset contains 

a list of values. One way to model that is by using an array data type. For example, let say 

there is a dataset about tasks that need to be performed per day. In this dataset, each row 
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represents a list of tasks per day. Each row consists of two columns. One column contains 

the date, and the other column contains a list of tasks. You can use the array-related 

collection functions to easily get the array size, check for the existence of a value, or sort the 

array. Listing 4-42 contains examples of working with the various array-related functions.

Listing 4-42. Using Array Collection Functions to Manipulate a List of Tasks

// create an tasks DataFrame

val tasksDF = Seq(("Monday", Array("Pick Up John",

                                   "Buy Milk", "Pay Bill")))

                  .toDF("day", "tasks")

// schema of tasksDF

tasksDF.printSchema

 |-- day: string (nullable = true)

 |-- tasks: array (nullable = true)

 |    |-- element: string (containsNull = true)

// get the size of the array, sort it, and check to see if a particular 

value exists in the array

tasksDF.select('day, size('tasks).as("size"),

               sort_array('tasks).as("sorted_tasks"),

               array_contains('tasks, "Pay Bill").as("payBill"))

        .show(false)

+---------+-----+-----------------------------------+-----------+

|    day  | size|       sorted_ta                   |    payBill|

+---------+-----+-----------------------------------+-----------+

|   Monday|  3  | [Buy Milk, Pay Bill, Pick Up John]|   true    |

+---------+-----+-----------------------------------+-----------+

// the explode function will create a new row for each element in the array

tasksDF.select('day, explode('tasks)).show

+----------+------------------+

|       day|               col|

+----------+------------------+

|    Monday|      Pick Up John|

|    Monday|          Buy Milk|

|    Monday|          Pay Bill|

+----------+------------------+
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Many unstructured datasets are in the form of JSON, which is a popular self-

describing data format. A common example is to encode the Kafka message payload in 

JSON format. Since this format is widely supported in most programming languages, a 

Kafka consumer written in one of these programming languages can easily decode those 

Kafka messages. The JSON-related collection functions are useful for converting a JSON 

string to and from a struct data type. The main functions are from_json and to_json. 

Once a JSON string is converted to a Spark struct data type, you can easily extract those 

values. Listing 4-43 shows examples of working with from_json and to_json functions.

Listing 4-43. Examples of Using from_json and to_json Functions

import org.apache.spark.sql.types._

// create a string that contains JSON string

val todos = """{"day": "Monday","tasks": ["Pick Up John",

                "Buy Milk","Pay Bill"]}"""

val todoStrDF = Seq((todos)).toDF("todos_str")

// at this point, todoStrDF is DataFrame with one column with string data type

todoStrDF.printSchema

 |-- todos_str: string (nullable = true)

// in order to convert a JSON string into a Spark struct data type, we need 

to describe its structure to Spark

val todoSchema = new StructType().add("day", StringType)

                           .add("tasks",  ArrayType(StringType))

// use from_json to convert JSON string

val todosDF = todoStrDF.select(from_json('todos_str, todoSchema)

                        .as("todos"))

// todos is a struct data type that contains two fields: day and tasks

todosDF.printSchema

|-- todos: struct (nullable = true)

|    |-- day: string (nullable = true)

|    |-- tasks: array (nullable = true)

|    |    |-- element: string (containsNull = true)
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// retrieving value out of struct data type using the getItem function of 

Column class

todosDF.select('todos.getItem("day"), 'todos.getItem("tasks"),

            'todos.getItem("tasks").getItem(0).as("first_task"))

        .show(false)

+-----------+-----------------------------------+-------------+

|  todos.day| todos.tasks                       | first_task  |

+-----------+-----------------------------------+-------------+

|  Monday   | [Pick Up John, Buy Milk, Pay Bill]| Pick Up John|

+-----------+-----------------------------------+-------------+

// to convert a Spark struct data type to JSON string, we can use to_json 

function

todosDF.select(to_json('todos)).show(false)

+---------------------------------------------------------------+

|            structstojson(todos)                               |

+---------------------------------------------------------------+

|{"day":"Monday","tasks":["Pick Up John","Buy Milk","Pay Bill"]}|

+---------------------------------------------------------------+

 Working with Miscellaneous Functions

A few of the functions in the miscellaneous category are interesting and can be useful 

in certain situations. This section covers the following functions: monotonically_

increasing_id, when, coalesce, and lit.

Sometimes there is a need to generate monotonically increasing unique, but not 

consecutive, IDs for each row in the dataset. It is quite an interesting problem if you 

spend some time thinking about it. For example, if a dataset has 200 million rows and 

is spread across many partitions (machines), how do you ensure the values are unique 

and increasing simultaneously? This is the job of the monotonically_increasing_id 

function, which generates IDs as 64-bit integers. The key part of its algorithm is that it 

places the partition ID in the upper 31 bits of the generated IDs. Listing 4-44 shows an 

example of using the monotonically_increasing_id function.
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Listing 4-44. monotonically_increasing_id in Action

// first generate a DataFrame with values from 1 to 10

// and spread them across 5 partitions

val numDF = spark.range(1,11,1,5)

// verify that there are 5 partitions

numDF.rdd.getNumPartitions

Int = 5

// now generate the monotonically increasing numbers

// and see which ones are in which partition

numDF.select('id, monotonically_increasing_id().as("m_ii"),

             spark_partition_id().as("partition")).show

+----+--------------+-----------+

|  id|          m_ii|  partition|

+----+--------------+-----------+

|   1|             0|          0|

|   2|             1|          0|

|   3|    8589934592|          1|

|   4|    8589934593|          1|

|   5|   17179869184|          2|

|   6|   17179869185|          2|

|   7|   25769803776|          3|

|   8|   25769803777|          3|

|   9|   34359738368|          4|

|  10|   34359738369|          4|

+----+--------------+-----------+

// the above table shows the values in m_ii columns have a different range 

in each partition.

If there is a need to evaluate a value against a list of conditions and return a value, 

then a typical solution is to use a switch statement, which is available in most high-level 

programming languages. When there is a need to do this with the value of a column in 

DataFrame, you can use the when function for this use case. Listing 4-45 is an example of 

using the when function.
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Listing 4-45. Use the when Function to Convert a Numeric Value to a String

// create a DataFrame with values from 1 to 7 to represent each day of the week

val dayOfWeekDF = spark.range(1,8,1)

// convert each numerical value to a string

dayOfWeekDF.select('id, when('id === 1, "Mon")

                       .when('id === 2, "Tue")

                       .when('id === 3, "Wed")

                       .when('id === 4, "Thu")

                       .when('id === 5, "Fri")

                       .when('id === 6, "Sat")

                       .when('id === 7, "Sun").as("dow"))

           .show

+---+----+

| id| dow|

+---+----+

|  1| Mon|

|  2| Tue|

|  3| Wed|

|  4| Thu|

|  5| Fri|

|  6| Sat|

|  7| Sun|

+---+----+

// to handle the default case when we can use the otherwise function of the 

column class

dayOfWeekDF.select('id, when('id === 6, "Weekend")

                        .when('id === 7, "Weekend")

                        .otherwise("Weekday").as("day_type"))

           .show
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+---+--------+

| id|day_type|

+--+---------+

|  1| Weekday|

|  2| Weekday|

|  3| Weekday|

|  4| Weekday|

|  5| Weekday|

|  6| Weekend|

|  7| Weekend|

+------------+

When working with data, it is important to handle null values properly. One of the 

ways to do that is to convert them to some other values that represent null in your data 

processing logic. Borrowing from the SQL world, Spark provides a coalesce that takes 

one or more column values and returns the first one that is not null. Each argument 

in the coalesce must be of type Column, so if you want to fill in a literal value, you can 

leverage the lit function. This function works because it takes a literal value and returns 

an instance of the Column class that wraps the input. Listing 4-46 is an example of using 

both coalesce and lit functions together.

Listing 4-46. Using coalesce to Handle null Value in a Column

// create a movie with null title

case class Movie(actor_name:String, movie_title:String,

                 produced_year:Long)

val badMoviesDF = Seq( Movie(null, null, 2018L),

                       Movie("John Doe", "Awesome Movie", 2018L))

                   .toDF

// use coalesce function to handle null value in the title column

badMoviesDF.select(coalesce('actor_name,

                            lit("no_name")).as("new_title"))

           .show
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+-------------+

|    new_title|

+-------------+

|      no_name|

|     John Doe|

+-------------+

 Working with User-Defined Functions (UDFs)
Even though Spark SQL provides a large set of built-in functions for most common use 

cases, there are always cases where none of those functions can provide the functionality 

your use cases need. However, don’t despair. Spark SQL provides a simple facility to 

write user-defined functions (UDFs) and uses them in your Spark data processing logic 

or applications similarly to using built-in functions. UDFs are effectively one of the ways 

you can extend Spark’s functionality to meet your specific needs.

Another thing that I like about Spark because UDFs can be written in either Python, 

Java, or Scala, and they can leverage and integrate with any necessary libraries. Since you 

can use a programming language that you are most comfortable with to write UDFs, it is 

extremely easy and fast to develop and test UDFs.

Conceptually, UDFs are just regular functions that take some inputs and provide 

an output. Although UDFs can be written in either Scala, Java, or Python, you must be 

aware of the performance differences when UDFs are written in Python. UDFs must be 

registered with Spark before they are used, so Spark knows to ship them to executors to 

be used and executed. Given that executors are JVM processes written in Scala, they can 

execute Scala or Java UDFs natively in the same process. If a UDF is written in Python, 

then an executor can’t execute it natively, and therefore it must spawn a separate Python 

process to execute the Python UDF. In addition to the cost of spawning a Python process, 

there is a high cost in terms of serializing data back and forth for each row in the dataset.

There are three steps involved in working with UDFs. The first one is to write a 

function and test it. The second step is to register that function with Spark by passing in 

the function name and its signature to Spark’s udf function. The last step is to use UDF 

in either the DataFrame code or when issuing SQL queries. The registration process is 

slightly different when using a UDF within SQL queries. Listing 4-47 demonstrates the 

three steps with a simple UDF.
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Listing 4-47. A Simple UDF in Scala to Convert Numeric Grades to Letter Grades

import org.apache.spark.sql.functions.udf

// create student grades DataFrame

case class Student(name:String, score:Int)

val studentDF = Seq(Student("Joe", 85),  Student("Jane", 

90),  Student("Mary", 55)).toDF()

// register as a view

studentDF.createOrReplaceTempView("students")

// create a function to convert grade to a letter grade

def letterGrade(score:Int) : String = {

   score match {

     case score if score > 100 => "Cheating"

     case score if score >= 90 => "A"

     case score if score >= 80 => "B"

     case score if score >= 70 => "C"

     case _ => "F"

   }

}

// register as an UDF

val letterGradeUDF = udf(letterGrade(_:Int):String)

// use the UDF to convert scores to letter grades

studentDF.select($"name",$"score",

                 letterGradeUDF($"score").as("grade")).show

+----+-----+-----+

|name|score|grade|

+----+-----+-----+

| Joe|   85|    B|

|Jane|   90|    A|

|Mary|   55|    F|

+----+-----+-----+
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// register as UDF to use in SQL

spark.sqlContext.udf.register("letterGrade",

                              letterGrade(_: Int): String)

spark.sql("select name, score, letterGrade(score) as grade from students").

show

+----+-----+-----+

|name|score|grade|

+----+-----+-----+

| Joe|   85|    B|

|Jane|   90|    A|

|Mary|   55|    F|

+----+-----+-----+

 Advanced Analytics Functions
The previous sections covered the built-in functions Spark SQL provides for basic 

analytic needs such as aggregation, joining, pivoting, and grouping. All those functions 

take one or more values from a single row and produce an output value, or they take a 

group of rows and return an output.

This section covers the advanced analytics capabilities Spark SQL offers. The first 

one is about multidimensional aggregations, which is useful for use cases involving 

hierarchical data analysis. Calculating subtotals and totals across a set of grouping 

columns is commonly needed. The second capability is about performing aggregations 

based on time windows, which is useful when working with time-series data such as 

transactions or sensor values from IoT devices. The third one is the ability to perform 

aggregations within a logical grouping of rows, referred to as a window. This capability 

enables you to easily perform calculations such as a moving average, a cumulative sum, 

or the rank of each row.

 Aggregation with Rollups and Cubes
Rollups and cube are more advanced versions of grouping on multiple columns, and they 

generate subtotals and grand totals across the combinations and permutations of those 

columns. The order of the provided set of columns is treated as a hierarchy for grouping.
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 Rollups
When working with hierarchical data such as the revenue data that spans different 

departments and divisions, rollups can easily calculate the subtotals and a total across 

them. Rollups respect the given hierarchy of the given set of rollup columns and always 

start the rolling up process with the first column in the hierarchy. The total is listed in 

the output, where all the column values are null. Listing 4-48 demonstrates how a rollup 

works.

Listing 4-48. Performing Rollups with Flight Summary Data

// read in the flight summary data

val flight_summary = spark.read.format("csv")

                          .option("header", "true")

                          .option("inferSchema","true")

          .load(<path>/chapter4/data/     flights/flight-summary.csv)

// filter data down to smaller size to make it easier to see the rollups 

result

val twoStatesSummary = flight_summary.select('origin_state,

                                             'origin_city,'count)

     .where('origin_state === "CA" || 'origin_state === "NY")

     .where('count > 1 && 'count < 20)

     .where('origin_city =!= "White Plains")

     .where('origin_city =!= "Newburgh")

     .where('origin_city =!= "Mammoth Lakes")

     .where('origin_city =!= "Ontario")

// let's see what the data looks like

twoStatesSummary.orderBy('origin_state).show

+-------------+--------------+------+

| origin_state|   origin_city| count|

+-------------+--------------+------+

|           CA| San Diego    |    18|

|           CA| San Francisco|     5|

|           CA| San Francisco|    14|

|           CA|     San Diego|     4|
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|           CA| San Francisco|     2|

|           NY|      New York|     4|

|           NY|      New York|     2|

|           NY|        Elmira|    15|

|           NY|        Albany|     5|

|           NY|        Albany|     3|

|           NY|      New York|     4|

|           NY|        Albany|     9|

|           NY|      New York|    10|

+-------------+--------------+------+

// perform the rollup by state, city,

// then calculate the sum of the count,and finally order by null last

twoStatesSummary.rollup('origin_state, 'origin_city)

               .agg(sum("count") as "total")

               .orderBy('origin_state.asc_nulls_last,

                        'origin_city.asc_nulls_last)

               .show

+-------------+--------------+------+

| origin_state|   origin_city| total|

+-------------+--------------+------+

|           CA|     San Diego|    22|

|           CA| San Francisco|    21|

|           CA|          null|    43|

|           NY|        Albany|    17|

|           NY|        Elmira|    15|

|           NY|      New York|    20|

|           NY|          null|    52|

|         null|          null|    95|

+-------------+--------------+------+

This output shows the subtotals per state on the third and seventh lines. The last line 

shows the total with a null value in both the original_state and origin_city columns. The 

trick is to sort with the asc_nulls_last option, so Spark SQL order null values last.
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 Cubes
A cube is a more advanced version of a rollup. It performs the aggregations across all 

the combinations of the grouping columns. Therefore, the result includes what a rollup 

provides, as well as other combinations. In the cubing by origin_state and origin_city 

example, the result includes the aggregation for each of the original cities. The way to use 

the cube function is similar to how you use the rollup function.

Listing 4-49 is an example.

Listing 4-49. Performing a Cube Across the origin_state and origin_city Columns

// perform the cube across origin_state and origin_city

twoStatesSummary.cube('origin_state, 'origin_city)

               .agg(sum("count") as "total")

               .orderBy('origin_state.asc_nulls_last,

                        'origin_city.asc_nulls_last)

               .show

+------------+-------------+-----+

|origin_state|  origin_city|total|

+------------+-------------+-----+

|          CA|    San Diego|   22|

|          CA|San Francisco|   21|

|          CA|         null|   43|

|          NY|       Albany|   17|

|          NY|       Elmira|   15|

|          NY|     New York|   20|

|          NY|         null|   52|

|        null|       Albany|   17|

|        null|       Elmira|   15|

|        null|     New York|   20|

|        null|    San Diego|   22|

|        null|San Francisco|   21|

|        null|         null|   95|

+------------+-------------+-----+
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In the table, the lines with a null value in the origin_state column represent an 

aggregation of all the cities in a state. Therefore, the result of a cube always has more 

rows than the result of a rollup.

 Aggregation with Time Windows

Aggregation with time windows was introduced in Spark 2.0 to make it easy to work with 

time-series data, consisting of a series of data points in time order. This kind of dataset 

is common in industries such as finance or telecommunications. For example, the stock 

market transaction dataset has the transaction date, opening price, close price, volume, 

and other pieces of information for each stock symbol. Time window aggregations can 

help answer questions such as the weekly average closing price of Apple stock or the 

monthly moving average closing price of Apple stock across each week.

Window functions come in a few versions, but they all require a timestamp type 

column and a window length, specified in seconds, minutes, hours, days, or weeks. 

The window length represents a time window with a start time and end time, and 

it determines which bucket a particular piece of time-series data should belong to. 

Another version takes additional input for the sliding window size, which tells how much 

a time window should slide when calculating the next bucket. These versions of the 

window function are the implementations of the tumbling window and sliding window 

concepts in world event processing, and they are described in more detail in Chapter 6.

The following examples use the Apple stock transactions, which can be found on the 

Yahoo! Finance website at https://in.finance.yahoo.com/q/hp?s=AAPL. Listing 4-50 

calculates the weekly average price of Apple stock based on one year of data.

Listing 4-50. Using the Time Window Function to Calculate the Average Closing 

Price of Apple Stock

val appleOneYearDF = spark.read.format("csv")

                          .option("header", "true")

                          .option("inferSchema","true")

           .load("<path>/chapter5/data/stocks/aapl-2017.csv")

// display the schema, the first column is the transaction date

appleOneYearDF.printSchema

 |-- Date: string (nullable = true)

 |-- Open: double (nullable = true)
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 |-- High: double (nullable = true)

 |-- Low: double (nullable = true)

 |-- Close: double (nullable = true)

 |-- Adj Close: double (nullable = true)

 |-- Volume: integer (nullable = true)

// calculate the weekly average price using window function inside the 

groupBy transformation

// this is an example of the tumbling window, aka fixed window

val appleWeeklyAvgDF = appleOneYearDF.

        groupBy(window('Date, "1 week"))

        .agg(avg("Close"). as("weekly_avg"))

// the result schema has the window start and end time

appleWeeklyAvgDF.printSchema

 |-- window: struct (nullable = false)

 |    |-- start: timestamp (nullable = true)

 |    |-- end: timestamp (nullable = true)

 |-- weekly_avg: double (nullable = true)

// display the result with ordering by start time and

// round up to 2 decimal points

appleWeeklyAvgDF.orderBy("window.start")

                .selectExpr("window.start",

                            "window.end","round(weekly_avg, 2) as

                            weekly_avg")

                .show(5)

// notice the start time is inclusive and end time is exclusive

+--------------------+--------------------+---------------+

|               start|                 end|     weekly_avg|

+--------------------+--------------------+---------------+

| 2016-12-28 16:00:00| 2017-01-04 16:00:00|         116.08|

| 2017-01-04 16:00:00| 2017-01-11 16:00:00|         118.47|

| 2017-01-11 16:00:00| 2017-01-18 16:00:00|         119.57|

| 2017-01-18 16:00:00| 2017-01-25 16:00:00|         120.34|

| 2017-01-25 16:00:00| 2017-02-01 16:00:00|         123.12|

+--------------------+--------------------+---------------+
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Listing 4-50 uses a one-week tumbling window, where there is no overlap.

Therefore, each transaction is used only once to calculate the moving average. The 

example in Listing 4-51 uses the sliding window. This means some transactions are used 

more than once in calculating the average monthly moving average. The window size is 

four weeks, and it slides by one week at a time in each window.

Listing 4-51. Use the Time Window Function to Calculate the Monthly Average 

Closing Price of Apple Stock

// 4 weeks window length and slide by one week each time

val appleMonthlyAvgDF = appleOneYearDF.groupBy(

                          window('Date, "4 week", "1 week"))

                         .agg(avg("Close").as("monthly_avg"))

// display the results with order by start time

appleMonthlyAvgDF.orderBy("window.start")

              .selectExpr("window.start", "window.end",

                          "round(monthly_avg, 2) as monthly_avg")

              .show(5)

+--------------------+--------------------+------------+

|               start|                 end| monthly_avg|

+--------------------+--------------------+------------+

| 2016-12-07 16:00:00| 2017-01-04 16:00:00|      116.08|

| 2016-12-14 16:00:00| 2017-01-11 16:00:00|      117.79|

| 2016-12-21 16:00:00| 2017-01-18 16:00:00|      118.44|

| 2016-12-28 16:00:00| 2017-01-25 16:00:00|      119.03|

| 2017-01-04 16:00:00| 2017-02-01 16:00:00|      120.42|

+--------------------+--------------------+------------+

Since the sliding window interval is one week, the previous result table shows that 

the start time difference between two consecutive rows is one week apart. Between two 

consecutive rows, there are about three weeks of overlapping transactions, which means 

a transaction is used more than once to calculate the moving average.
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 Window Functions

You know how to use functions such as concat or round to compute an output from one 

or more column values of a single row and leverage aggregation functions such as max or 

sum to compute an output for each group of rows. Sometimes there is a need to operate 

on a group of rows and return a value for every input row. Window functions provide this 

unique capability to make it easy to perform calculations such as a moving average, a 

cumulative sum, or the rank of each row.

There are two main steps for working with window functions. The first one is to 

define a window specification that defines a logical grouping of rows called a frame, 

which is the context in which each row is evaluated. The second step is to apply a 

window function appropriate for the problem you are trying to solve. You learn more 

about the available window functions in the following sections.

The window specification defines three important components the window 

functions use. The first component is called partition by, and this is where you specify 

one or more columns to group the rows by. The second component is called order by, 

and it defines how the rows should be ordered based on one or more columns and 

whether the ordering should be in ascending or descending order. Out of the three 

components, the last one is more complicated and requires a detailed explanation. 

The last component is called a frame, and it defines the boundary of the window in 

the current row. In other words, the “frame” restricts which rows to be included when 

calculating a value for the current row. A range of rows to include in a window frame 

can be specified using the row index or the actual value of the order by expression. The 

last component is applicable for some of the window functions, and therefore it may 

not be necessary for some scenarios. A window specification is built using the functions 

defined in the org.apache.spark.sql.expressions.Window class. The rowsBetween and 

rangeBetweeen functions define the range by row index and actual value, respectively.

Window functions can be categorized into three different types: ranking functions, 

analytic functions, and aggregate functions. The ranking and analytic functions are 

described in Table 4-4 and Table 4-5, respectively. For aggregate functions, you can use 

any of the aggregation functions as a window function. You can find a complete list of the 

window functions at https://spark.apache.org/docs/latest/api/java/org/apache/

spark/sql/functions.html.
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Let’s put the steps together by working through a small sample dataset to 

demonstrate window function capabilities. Table 4-6 contains the shopping transaction 

data of two fictitious users: John and Mary.

Table 4-4. Ranking Functions

Name Description

rank Returns the rank or order of rows within a frame based on some sorting order.

dense_rank Similar to rank, but leaves no gaps in the ranks when there are ties.

percen_rank Returns the relative rank of rows within a frame.

ntile(n) Returns the ntile group Id in an ordered window partition. For example, if n is 4, 

the first quarter of the rows get a value of 1, the second quarter of rows get a 

value of 2, and so on.

row_number Returns a sequential number starting with 1 with a frame.

Table 4-5. Analytic Functions

Name Description

cume_dist Returns the cumulative distribution of values with a frame. In other words, the 

fraction of rows that are below the current row.

lag(col, offset) Returns the value of the column that is offset rows before the current row.

lead(col, offset) Returns the value of the column that is offset rows after the current row.

Table 4-6. User Shopping Transactions

Name Date Amount

John 2017-07-02 13.35

John 2016-07-06 27.33

John 2016-07-04 21.72

Mary 2017-07-07 69.74

Mary 2017-07-01 59.44

Mary 2017-07-05 80.14
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With this shopping transaction data, let’s try using window functions to answer the

following questions.

• For each user, what are the two highest transaction amounts?

• What is the difference between the transaction amount of each user 

and their highest transaction amount?

• What is the moving average transaction amount of each user?

• What is the cumulative sum of the transaction amount of each user?

To answer the first question, you apply the rank window function over a window 

specification that partitions the data by user and sorts it by the amount in descending 

order. The ranking window function assigns a rank to each row based on the sorting 

order of each row in each frame. Listing 4-52 is the actual code to solve the first question.

Listing 4-52. Apply the Rank Window Function to Find out the Top Two 

Transactions per User

// small shopping transaction dataset for two users

val txDataDF= Seq(("John", "2017-07-02", 13.35),

                  ("John", "2017-07-06", 27.33),

                  ("John", "2017-07-04", 21.72),

                  ("Mary", "2017-07-07", 69.74),

                  ("Mary", "2017-07-01", 59.44),

                  ("Mary", "2017-07-05", 80.14))

                 .toDF("name", "tx_date", "amount")

// import the Window class

import org.apache.spark.sql.expressions.Window

// define window specification to partition by name

// and order by amount in descending amount

val forRankingWindow =

    Window.partitionBy("name").orderBy(desc("amount"))

// add a new column to contain the rank of each row,

// apply the rank function to rank each row

val txDataWithRankDF =

   txDataDF.withColumn("rank", rank().over(forRankingWindow))
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// filter the rows down based on the rank to find

// the top 2 and display the result

txDataWithRankDF.where('rank < 3).show(10)

+------+-----------+-------+-----+

|  name|    tx_date| amount| rank|

+------+-----------+-------+-----+

|  Mary| 2017-07-05|  80.14|    1|

|  Mary| 2017-07-07|  69.74|    2|

|  John| 2017-07-06|  27.33|    1|

|  John| 2017-07-04|  21.72|    2|

+------+-----------+-------+-----+

The approach for solving the second question involves applying the max function 

over the amount column across all the partition rows. In addition to partitioning 

by the username, it needs to define a frame boundary that includes all the rows in 

each partition. To do that, you use the Window.rangeBetween function with Window. 

unboundedPreceding as the start value and Window.unboundedFollowing as the end 

value. Listing 4-53 defines a window specification according to the logic defined earlier 

and applies the max function over it.

Listing 4-53. Applying the max Window Function to Find the Difference of Each 

Row and the Highest Amount

// use rangeBetween to define the frame boundary that includes

// all the rows in each frame

val forEntireRangeWindow =

    Window.partitionBy("name").orderBy(desc("amount"))

          .rangeBetween(Window.unboundedPreceding,

                        Window.unboundedFollowing)

// apply the max function over the amount column and then compute // the 

difference

val amountDifference =

        max(txDataDF("amount")).over(forEntireRangeWindow) -

                                     txDataDF("amount")
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// add the amount_diff column using the logic defined above

val txDiffWithHighestDF =

  txDataDF.withColumn("amount_diff", round(amountDifference, 3))

// display the result

txDiffWithHighestDF.show

+------+-----------+-------+-------------+

|  name|    tx_date| amount|  amount_diff|

+------+-----------+-------+-------------+

|  Mary| 2017-07-05|  80.14|          0.0|

|  Mary| 2017-07-07|  69.74|         10.4|

|  Mary| 2017-07-01|  59.44|         20.7|

|  John| 2017-07-06|  27.33|          0.0|

|  John| 2017-07-04|  21.72|         5.61|

|  John| 2017-07-02|  13.35|        13.98|

+------+-----------+-------+-------------+

To compute the transaction amount moving average of each user in the order of 

transaction date, you leverage the avg function to calculate the average amount for each 

row based on a set of rows in a frame. For this example, you want each frame to include 

three rows: the current row plus one row before it and one row after it. Depending on a 

particular use case, the frame might include more rows before and after the current row. 

Like the previous examples, the window specification partition the data by user, but the 

rows in each frame are sorted by transaction date. Listing 4-54 shows how to apply the 

avg function over the window specification described earlier.

Listing 4-54. Applying the Average Window Function to Compute the Moving 

Average Transaction Amount

// define the window specification

// a good practice is to specify the offset relative to

// Window.currentRow

val forMovingAvgWindow =

        Window.partitionBy("name").orderBy("tx_date")

            .rowsBetween(Window.currentRow-1,Window.currentRow+1)
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// apply the average function over the amount column over the

// window specification

// also round the moving average amount to 2 decimals

val txMovingAvgDF = txDataDF.withColumn("moving_avg",

        round(avg("amount").over(forMovingAvgWindow), 2))

// display the result

txMovingAvgDF.show

+------+-----------+-------+-----------+

|  name|    tx_date| amount| moving_avg|

+------+-----------+-------+-----------+

|  Mary| 2017-07-01|  59.44|      69.79|

|  Mary| 2017-07-05|  80.14|      69.77|

|  Mary| 2017-07-07|  69.74|      74.94|

|  John| 2017-07-02|  13.35|      17.54|

|  John| 2017-07-04|  21.72|       20.8|

|  John| 2017-07-06|  27.33|      24.53|

+------+-----------+-------+-----------+

To compute the cumulative sum of the transaction amount for each user, apply the 

sum function over a frame that consists of all the rows up to the current row. The partition 

by and order by clauses are the same as the moving average example. Listing 4-55 shows 

how to apply the sum function over the window specification described earlier.

Listing 4-55. Applying the sum Window Function to Compute the Cumulative 

Sum of Transaction Amount

// define the window specification with each frame includes all

// the previous rows and the current row

val forCumulativeSumWindow =

         Window.partitionBy("name").orderBy("tx_date")

               .rowsBetween(Window.unbounded

                            Preceding,Window.currentRow)
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// apply the sum function over the window specification

val txCumulativeSumDF =

     txDataDF.withColumn("culm_sum",round(sum("amount")

             .over(forCumulativeSumWindow),2))

// display the result

txCumulativeSumDF.show

+------+-----------+-------+---------+

|  name|    tx_date| amount| culm_sum|

+------+-----------+-------+---------+

|  Mary| 2017-07-01|  59.44|    59.44|

|  Mary| 2017-07-05|  80.14|   139.58|

|  Mary| 2017-07-07|  69.74|   209.32|

|  John| 2017-07-02|  13.35|    13.35|

|  John| 2017-07-04|  21.72|    35.07|

|  John| 2017-07-06|  27.33|     62.4|

+------+-----------+-------+---------+

The default frame of a window specification includes all the preceding rows and up 

to the current row. In Listing 4-55, it is unnecessary to specify the frame, so you should 

get the same result. The window function examples were written using the DataFrame 

APIs. You can achieve the same goals using SQL with the PARTITION BY, ORDER BY, ROWS 

BETWEEN, and RANGE BETWEEN keywords.

The frame boundary can be specified using the following keywords: UNBOUNDED 

PRECEDING, UNBOUNDED FOLLOWING, CURRENT ROW, <value> PRECEDING, and <value> 

FOLLOWING. Listing 4-56 shows examples of using the window functions with SQL.

Listing 4-56. Example of a Window Function in SQL

// register the txDataDF as a temporary view called tx_data

txDataDF.createOrReplaceTempView("tx_data")

// use RANK window function to find top two highest transaction amount

spark.sql("select name, tx_date, amount, rank from

(

  select name, tx_date, amount,
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     RANK() OVER (PARTITION BY name ORDER BY amount DESC) as rank

     from tx_data

) where rank < 3").show

// difference between maximum transaction amount

spark.sql("select name, tx_date, amount, round((max_amount -

           amount),2) as amount_diff from

(

  select name, tx_date, amount, MAX(amount) OVER

   (PARTITION BY name ORDER BY amount DESC

  RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

) as max_amount from tx_data)").show

// moving average

spark.sql("select name, tx_date, amount, round(moving_avg,2) as moving_avg 

from

(

   select name, tx_date, amount, AVG(amount) OVER

      (PARTITION BY name ORDER BY tx_date

       ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

      ) as moving_avg from tx_data)"

).show

// cumulative sum

spark.sql("select name, tx_date, amount, round(culm_sum,2) as moving_avg 

from

(

    select name, tx_date, amount, SUM(amount) OVER

      (PARTITION BY name ORDER BY tx_date

       ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

      ) as culm_sum from tx_data)"

).show

When using the window functions in SQL, the partition by, order by, and frame

window must be specified in a single statement.
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 Exploring Catalyst Optimizer
The easiest way to write efficient data processing applications is to not worry about it 

and automatically optimize your data processing applications. That is the promise of the 

Spark Catalyst, which is a query optimizer and is the second major component in the 

Spark SQL module. It plays a major role in ensuring the data processing logic written in 

either DataFrame APIs or SQL runs efficiently and quickly. It was designed to minimize 

end-to- end query response times and be extensible such that Spark users can inject user 

code into the optimizer to perform custom optimization.

At a high level, the Spark Catalyst translates the user-written data processing logic into 

a logical plan, then optimizes it using heuristics, and finally converts the logical plan to 

a physical plan. The final step is to generate code based on the physical plan. Figure 4-6 

provides a visual representation of the steps.

 Logical Plan
The first step in the Catalyst optimization process is to create a logical plan from either 

a DataFrame object or the abstract syntax tree of the parsed SQL query. The logical plan 

is an internal representation of the user data processing logic in a tree of operators and 

expressions. Next, the Catalyst analyzes the logical plan to resolve references to ensure 

they are valid. Then it applies a set of rule-based and cost-based optimizations to the 

logical plan. Both types of optimizations follow the principle of pruning unnecessary 

data as early as possible and minimizing per-operator cost.

Figure 4-6. Catalyst optimizer
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The rule-based optimizations include constant folding, project pruning, predicate 

pushdown, and others. For example, during this optimization phase, the Catalyst may 

decide to move the filter condition before performing a join. For curious minds, the 

list of rule-based optimizations is defined in the org.apache.spark.sql.catalyst.

optimizer.Optimizer class.

The cost-based optimizations were introduced in Spark 2.2 to enable Catalyst to be 

more intelligent in selecting the right kind of join based on the statistics of the data being 

processed. The cost-based optimization relies on the detailed statistics of the columns 

participating in the filter or join conditions, and that’s why the statistics collection 

framework was introduced. Examples of the statistics include cardinality, the number of 

distinct values, max/min, and average/max length.

 Physical Plan
Once the logical plan is optimized, the Catalyst generates physical plans using 

the physical operators that match the Spark execution engine. In addition to the 

optimizations performed in the logical plan phase, the physical plan phase performs 

its own ruled-based optimizations, including combining projections and filtering into 

a single operation and pushing the projections or filtering predicates down to the data 

sources that support this feature, i.e., Parquet. Again, these optimizations follow the data 

pruning principle. The final step the Catalyst performs is to generate the Java bytecode of 

the cheapest physical plan.

 Catalyst in Action
This section shows how to use the explain function of the DataFrame class to display the 

logical and physical plans.

You can call the explain function with the extended argument as a boolean true 

value to see both the logical and physical plan. Otherwise, this function displays only the 

physical plan.

The small and somewhat silly example first reads the movie data in Parquet format, 

performs filtering based on produced_year, adds a column called produced_ decade, 

and projects the movie_title and produced_decade columns and finally filters rows 

based on produced_decade. The goal here is to prove that the Catalyst performs the 

predicate pushdown and filtering condition optimizations by examining the generated 
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logical and physical plan by passing a boolean true value to the explain function. In 

the output, you see four sections: parsed logical plan, analyzed logical plan, optimized 

logical plan, and physical plan. Listing 4-57 shows how to generate logical and physical 

plans.

Listing 4-57. Using the explain Function to Generate the Logical and Physical 

Plans

// read movies data in Parquet format

val moviesDF =

      spark.read.load("<path>/book/chapter4/data/movies/movies.

                      parquet")

// perform two filtering conditions

val newMoviesDF = moviesDF.filter('produced_year > 1970)

                          .withColumn("produced_decade",

                           'produced_year + 'produced_year % 10)

val latestMoviesDF = newMoviesDF.select('movie_title,

                                        'produced_decade)

                                 .where('produced_decade > 2010)

// display both logical and physical plans

latestMoviesDF.explain(true)

== Parsed Logical Plan ==

'Filter ('produced_decade > 2010)

+- Project [movie_title#673, produced_decade#678L]

   +- Project [actor_name#672, movie_title#673, produced_year#674L, 

(produced_year#674L + (produced_year#674L % cast(10 as bigint))) AS 

produced_decade#678L]

      +- Filter (produced_year#674L > cast(1970 as bigint))

      +- Relation[actor_name#672,movie_title#673,produced_year#674L] parquet

== Analyzed Logical Plan ==

movie_title: string, produced_decade: bigint

Filter (produced_decade#678L > cast(2010 as bigint))

+- Project [movie_title#673, produced_decade#678L]
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   +- Project [actor_name#672, movie_title#673, produced_year#674L, 

(produced_year#674L + (produced_year#674L % cast(10 as bigint))) AS 

produced_decade#678L]

      +- Filter (produced_year#674L > cast(1970 as bigint))

      +- Relation[actor_name#672,movie_title#673,produced_year#674L] parquet

== Optimized Logical Plan ==

Project [movie_title#673, (produced_year#674L + (produced_year#674L % 10)) 

AS produced_decade#678L]

+- Filter ((isnotnull(produced_year#674L) AND (produced_year#674L > 1970)) 

AND ((produced_year#674L + (produced_year#674L % 10)) > 2010))

   +- Relation[actor_name#672,movie_title#673,produced_year#674L] parquet

== Physical Plan ==

*(1) Project [movie_title#673, (produced_year#674L + (produced_year#674L % 

10)) AS produced_decade#678L]

+- *(1) Filter ((isnotnull(produced_year#674L) AND (produced_year#674L > 

1970)) AND ((produced_year#674L + (produced_year#674L % 10)) > 2010))

   +- *(1) ColumnarToRow

   +- FileScan parquet [movie_title#673,produced_year#674L] Batched: 

true, DataFilters: [isnotnull(produced_year#674L), (produced_year#674L > 

1970), ((produced_year#674L + (produced_yea..., Format: Parquet, Location: 

InMemoryFileIndex[file:<path>/chapter4/data/movies/..., PartitionFilters: 

[], PushedFilters: [IsNotNull(produced_year), GreaterThan(produced_

year,1970)], ReadSchema: struct<movie_title:string,produced_year:bigint>

If you carefully analyze the optimized logical plan, you see that it combines both 

filtering conditions into a single filter. The physical plan shows that Catalyst both pushes 

down the filtering of produced_year and performs the projection pruning in the FileScan 

step to optimally read in only the needed data.

In Spark 3.0, a new variation of the explain function was introduced. It takes an 

input in the form of a string to allow you to specify which of the five modes to see in the 

output (see Table 4-7).
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The last three options generate new information. It is fascinating to examine the 

generated Scala code and leave that as an exercise for you. The output of the formatted 

option is much more readable and easier to understand. Listing 4-58 shows how to use 

the explain function with the formatted mode.

Listing 4-58. Using the explain Function with formatted Mode

latestMoviesDF.explain("formatted")

== Physical Plan ==

* Project (4)

+- * Filter (3)

   +- * ColumnarToRow (2)

   +- Scan parquet  (1)

(1) Scan parquet

Output [2]: [movie_title#673, produced_year#674L]

Batched: true

Location: InMemoryFileIndex [file:<path>/chapter4/data/movies/movies.

parquet]

PushedFilters: [IsNotNull(produced_year), GreaterThan(produced_year,1970)]

ReadSchema: struct<movie_title:string,produced_year:bigint>

(2) ColumnarToRow [codegen id : 1]

Input [2]: [movie_title#673, produced_year#674L]

(3) Filter [codegen id : 1]

Input [2]: [movie_title#673, produced_year#674L]

Table 4-7. The Various Modes of the Output Format

Mode Description

simple print only a physical plan.

extended print both logical and physical plans.

codegen print a physical plan and the generated codes (if they are available).

cost print a logical plan and statistics if they are available.

formatted Split the explain output into two sections; a physical plan outline and details.
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Condition : ((isnotnull(produced_year#674L) AND (produced_year#674L > 

1970)) AND ((produced_year#674L + (produced_year#674L % 10)) > 2010))

(4) Project [codegen id : 1]

Output [2]: [movie_title#673, (produced_year#674L + (produced_year#674L % 

10)) AS produced_decade#678L]

Input [2]: [movie_title#673, produced_year#674L]

The output clearly shows Spark’s four steps to compute the latestMoviesDF: scan or read 

the input parquet file, convert the data in columnar format into rows, filter them based on 

the two specified conditions, and finally project the title and produced decade columns.

 Project Tungsten
Starting in 2015, the Spark designers observed that the Spark workloads were 

increasingly bottlenecked by CPU and memory rather than I/O and network 

communication. It is a bit counterintuitive but not too surprising, given the 

advancements on the hardware side like 10Gbps network links and high-speed 

SSD. Project Tungsten was created to improve the efficiency of using memory and CPU 

in Spark applications and push the performance closer to the limits of modern hardware. 

There are three initiatives in the Tungsten project.

• Manage memory explicitly by using off-heap management 

techniques to eliminate the overhead of the JVM object model and 

minimize garbage collection.

• Use intelligent cache-aware algorithms and data structures to exploit 

memory hierarchy.

• Use whole-stage code generation to minimize virtual function calls 

by combining multiple operators into a single function.

The hard and interesting work that went into the Tungsten project has dramatically 

improved the Spark execution engine since Spark 2.0. Much of the work in the Tungsten 

project happens behind the scenes in the execution engine. The following example 

demonstrates a small glimpse into the whole-stage code generation initiative by 

examining the physical plan. In the following output, whenever an asterisk (*) appears 

before an operator, it means the whole-stage code generation is enabled. Listing 4-59 

displays the physical plan of filtering and summing integers in a DataFrame.
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Listing 4-59. Demonstrating the Whole-Stage Code Generation by Looking at 

the Physical Plan

spark.range(1000).filter("id > 100")

                 .selectExpr("sum(id)").explain("formatted")

== Physical Plan ==

* HashAggregate (5)

+- Exchange (4)

   +- * HashAggregate (3)

      +- * Filter (2)

      +- * Range (1)

(1) Range [codegen id : 1]

Output [1]: [id#719L]

Arguments: Range (0, 1000, step=1, splits=Some(12))

(2) Filter [codegen id : 1]

Input [1]: [id#719L]

Condition : (id#719L > 100)

(3) HashAggregate [codegen id : 1]

Input [1]: [id#719L]

Keys: []

Functions [1]: [partial_sum(id#719L)]

Aggregate Attributes [1]: [sum#726L]

Results [1]: [sum#727L]

(4) Exchange

Input [1]: [sum#727L]

Arguments: SinglePartition, ENSURE_REQUIREMENTS, [id=#307]

(5) HashAggregate [codegen id : 2]

Input [1]: [sum#727L]

Keys: []

Functions [1]: [sum(id#719L)]

Aggregate Attributes [1]: [sum(id#719L)#723L]

Results [1]: [sum(id#719L)#723L AS sum(id)#724L]
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The whole-stage code generation combines the logic of filtering and summing 

integers into a single function.

 Summary
This chapter covered a lot of useful and powerful features available in the Spark SQL 

module.

• Aggregation is one of the most commonly used features in the world 

of big data analytics. Spark SQL provides many of the commonly 

needed aggregation functions such as sum, count, and avg. 

Aggregation with pivoting provides a nice way of summarizing the 

data as well as transposing columns into rows.

• Performing any complex and meaningful data analytics or processing 

often requires joining two or more datasets. Spark SQL supports 

many of the standard join types that exist in the SQL world.

• Spark SQL comes with a rich set of built-in functions, which should 

cover most of the common needs for working with strings, math, date 

and time, and so on. If none meets a particular need of a use case, 

then it is easy to write a user-defined function that can be used with 

the DataFrame APIs and SQL queries.

• Window functions are powerful and advanced analytics functions 

because they can compute a value for each row in the input group. 

They are particularly useful for computing moving averages, a 

cumulative sum, or the rank of each row.

• The Catalyst optimizer enables you to write efficient data processing 

applications. The cost-based optimizer was introduced in Spark 2.2 

to enable Catalyst to be more intelligent about selecting the right 

kind of join implementation based on the collected statistics of the 

processed data.

• Project Tungsten is the workhorse behind the scenes that speeds 

up the execution of data process applications by employing a few 

advanced techniques to improve the efficiency of using memory and 

CPU.
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CHAPTER 5

Optimizing Spark 
Applications
Chapter 4 covered major capabilities in Spark SQL to perform simple to complex data 

processing. When you use Spark to process large datasets in hundreds of gigabytes or 

terabytes, you encounter interesting and challenging performance issues; therefore, it 

is important to know how to deal with them. Mastering Spark application performance 

issues is a very interesting, challenging, and broad topic. It requires a lot of research and 

a deep understanding of some of the key areas of Spark related to memory management 

and data movement.

A comprehensive tuning guide is a very large surface area and deserves to be in 

its own book. However, this is not the intent of this chapter. Rather, it aims to discuss a 

few common Spark application performance issues that you might encounter in your 

journey of developing Spark applications.

First, it describes a set of common performance issues. Then it goes into detail about 

common techniques for improving Spark application performance, such as tuning 

important Spark configurations and leveraging in-memory computation. The last part 

looks at the intelligent optimization techniques in the Adaptive Query Execution (AQE) 

framework introduced in Spark 3.0, such as dynamically coalescing shuffle partitions, 

dynamically switching join strategies, and optimizing skew joins. These techniques 

enable Spark developers to focus more time on building powerful Spark applications and 

less time optimizing the performance.

 Common Performance Issues
If you do a quick Internet search on common Spark application performance issues, you 

discover they broadly fall into two categories: OOM (out of memory) and taking a long 

time to complete. To overcome these performance issues, it requires understanding the 
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underlying mechanisms about how Spark handles memory management and how it 

performs some of the complex and expensive transformations such as joining, grouping, 

and aggregations.

 Spark Configurations
One of the important aspects of optimizing Spark application performance is to know 

which knobs are available to use, how to apply those knobs, and when those knobs 

are effective. In the Spark world, these knobs are known as Spark properties. There are 

hundreds of them, and most have reasonable default values. For a comprehensive list of 

Spark properties, you can review the Spark property documentation at https://spark.

apache.org/docs/latest/configuration.html.

There are two important aspects of Spark properties that every Spark application 

developer needs to know: the three different ways of setting properties and the two 

different kinds of properties.

 Different Ways of Setting Properties

There are three different ways of setting properties, which are described in the order of 

precedence.

The first way is done through a set of configuration files. Under the directory 

where you installed Spark, there is a conf folder with three files: log4j.properties.

template, spark-env.sh.template, and spark-default.conf.template. Simply 

adding the desired properties and associated values and then saving them without the 

.template suffix let Spark know to apply those properties to the Spark cluster and all 

the Spark applications submitted to the cluster. In other words, the properties in these 

configuration files are applicable at the global cluster level.

The second way is to specify the Spark properties when submitting your Spark 

application via the spark-submit or start up a Spark shell via the spark-shell command 

line using --config or -c flag. Listing 5-1 is an example of passing in Spark properties via 

the command line.

Listing 5-1. Passing in Spark Properties via Command Line

./bin/spark-submit --conf "spark-executor-memory=4g" --class org.apache.

spark.examples.SparkPi ./examples/jars/spark-examples_2.12-3.1.1.jar
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The third way is to directly specify Spark properties through the SparkConf object in 

your Spark application. Listing 5-2 is a very short example of setting properties in a Spark 

application in Scala.

Listing 5-2. Setting Spark Properties Directly in a Spark Application in Scala

import org.apache.spark.sql.SparkSession

def main(args: Array[String]) {

  val sparkSession = SparkSession.builder

                      .config("spark.executor.memory","4g")

                      .config("spark.eventLog.enabled","true")

                      .appName("MyApp").getOrCreate()

}

Since there are multiple ways of setting properties, Spark establishes the following 

precedence. The properties set directly on the SparkConf object take highest precedence, 

followed by the flags passed on the spark-submit or spark-shell command line, and 

then the options in the configuration file.

 Different Kinds of Properties

Not all Spark properties are created equally. Understanding which ones are meant to 

be used at which part of your application deployment life cycle is important. Spark 

properties can mainly be divided into two kinds: deployment and runtime.

The deployment-related properties are set once during the Spark application 

launching step, and they are not meant to be changed after that. Therefore, it is fruitless 

to set them programmatically through the SparkConf object at runtime. Examples of 

this type of property are spark.driver.memory or spark.executor.instances. It is 

recommended to set these properties either through the configuration files or through 

the spark-submit command line.

The runtime-related properties control the various aspects of Spark during the 

running of your Spark application, such as spark.sql.shuffle.partitions, the 

number of partitions to use when shuffling data for joins and aggregations. In addition 

to setting these in configuration files through the command line, they can also be set 

programmatically and repeatedly through the SparkConf object.
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 Viewing Spark Properties

After setting the Spark properties, it is important to verify their values. One of the easiest 

ways to view Spark properties is in the Environment tab of the Spark web UI. Figure 5-1 

shows an example of the Spark properties.

Another easy way to view Spark properties is by programmatically retrieving them 

from the SparkConf object in your Spark application. Listing 5-3 shows how to do that.

Listing 5-3. Displaying Spark Properties Programmatically

scala> for (prop <- spark.conf.getAll.keySet) {

            println(s"${prop}: ${spark.conf.get(prop)}")

       }

spark.sql.warehouse.dir: file:/<path>/spark-warehouse

spark.driver.host: 192.168.0.22

spark.driver.port: 63834

spark.repl.class.uri: spark://<ip>:63834/classes

Figure 5-1. Spark properties in the Environment tab
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spark.repl.class.outputDir:/private/var/folders/_m/nq53ddp...

spark.app.name: Spark shell

spark.submit.pyFiles:

spark.ui.showConsoleProgress: true

spark.app.startTime: 1621812866358

spark.executor.id: driver

spark.submit.deployMode: client

spark.master: local[*]

spark.home: /<path>/spark-3.1.1-bin-hadoop2.7

spark.sql.catalogImplementation: hive

spark.app.id: local-1621812867559

 Spark Memory Management
One of the challenges Spark developers run into when developing and operating Spark 

applications that process large amounts of data is dealing with out-of-memory (OOM) 

errors. When this happens, your Spark application stops working or crashes and the only 

thing you can do is figure out the underlying cause, fix it and restart your application.

Before going into the OOM issue, let’s step back to examine how Spark manages 

its memory on the driver and the executor. As mentioned in Chapter 1, each Spark 

application consists of one driver and one or more executors.

 Spark Driver

Regarding memory management, the amount of memory a Spark driver is determined 

by the spark.driver.memory configuration, which is usually specified when starting 

a Spark application via the spark-submit command or a similar mechanism in the 

Databricks cluster creation process. The default value for the spark.driver.memory 

configuration is 1 GB.

The driver is mainly responsible for orchestrating Spark applications’ workload, so 

it doesn’t need as much memory as executors. There are two scenarios when it needs to 

allocate memory, and any incorrect usage of Spark in these scenarios likely causes an 

OOM issue.

The first scenario is when either the RDD.collect or DataFrame.collect action 

is invoked. This action transfers all the data of the RDD or DataFrame from all the 

executors over to the application’s driver, which then tries to allocate the necessary 

memory to store the transferred data. For example, if the data size in the DataFrame is 
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about 5 GB and the driver has only 2 GB, you encounter the OOM issue when calling 

actions. The closest analogy to this situation is dumping water from five one-gallon 

buckets into a single two-gallon bucket.

The Spark documentation recommends these actions should only be used when the 

data amount is expected to be small and can fit into the driver memory. Two common 

ways to reduce the size of an RDD or DataFrame is to perform some sort of filtering and 

calling the limit transformation before collecting the data to the Spark driver side.

The second scenario is when Spark is trying to broadcast the content of a dataset. It 

does this either because your Spark application uses broadcasting variables by calling 

the SparkContext.broadcast function or while Spark is performing a broadcast join, 

which is discussed in the “Understanding Spark Joins” section.

The broadcasting variable is an optimizing technique where Spark sends an 

immutable copy of the dataset from the driver to all the executors in a Spark application. 

Once an executor has a copy of the dataset, it is available to all the current and future 

tasks on that executor to consume. Essentially, this is to avoid transferring the same 

dataset multiple times to executors when it is needed repeatedly. To ensure you don’t 

run into the OOM issue, make sure the size of your dataset is small or increase the 

memory size of the driver.

While performing a broadcast join, Spark sends the data of the smaller DataFrame 

of the two being joined to all the executors. Like the broadcasting variable situation, 

you encounter an OOM issue if the data of the smaller DataFrame is too big. You can 

control when Spark use the broadcast join by setting the value of the spark.sql.

autoBroadcastJoinThreshold configuration, which has a default value of 10 GB. If you 

want to disable the broadcast join, you can set this configuration value to –1.

 Spark Executor

The memory management on the Spark executor side is more involved and complicated 

than on the driver side. First, let’s discuss how it manages memory and what it decides to 

store in the memory.

At runtime, each executor is a JVM process running on an operating system. The 

amount of memory available is allocated in a Java virtual machine (JVM) memory heap. 

When launching a Spark application, you can specify the JVM memory heap size for 

an executor by specifying a value for the spark.executor.memory property, which has 

a default value of 1 GB. The JVM heap is divided into three areas: Spark memory, user 

memory, and reserved memory (see Figure 5-2).
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Figure 5-2 indicates not all the memory specified in the spark.executor.memory 

property is allocated to the executor. It is important to keep that in mind when dealing 

with memory-related issues in your Spark application. Let’s explore each area in the JVM 

memory heap.

• Reserved memory sets aside a fixed amount of memory for its 

internal usage. As of Spark version 3.0, the reserved amount is 

300 MB.

• User memory is the area for storing objects created from a Spark 

application developer’s data structure, the internal metadata in 

Spark, and safeguarding against OOM errors in case of sparse and 

usually large records. The size of this area is calculated as (1 – spark.

memory.fraction) * (spark.executor.memory – reserved memory).

• Spark memory is the area under the control of the executor. It is 

used for execution and storage. The size of this area is calculated as 

(spark.memory.fraction) * (spark.executor.memory – reserved 

memory).

To make it more concrete, let’s walk through an example where the JVM heap size 

(spark.executor.memory) is 4 GB and uses the default value of the spark.memory.

fraction configuration as 0.6. Table 5-1 lists the size of each of the JVM heap areas.

Figure 5-2. The different areas of JVM heap
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Now let’s dive deeper into the Spark memory area of the JVM heap, which a Spark 

executor has total control of. This area is further divided into two compartments: 

execution and storage (see Figure 5-3). The size of these two compartments is calculated 

using the spark.memory.storageFraction configuration, which has a default value of 0.5.

The Spark executor decides what to store in each compartment and it can expand 

and contract each compartment as needed. The following lists what is stored in each 

compartment and how its initial size is calculated.

• Execution

• This compartment is used for buffering intermediate data 

during the execution of a task such as shuffling data, joining 

two datasets, performing aggregations, or sorting data. These 

objects are often short-lived and no longer needed after the task 

is completed.

• The size of this compartment is calculated as (Spark memory area 

* (1 – spark.memory.storageFraction))

Table 5-1. JVM Heap Area Size with a 4 GB Heap Size

Area Formula Size

reserved memory n/a 300 mB

User memory (1 - 0.6) * (4 gB – 300 mB) 1.4 gB

Spark memory (0.6) * (4 gB – 300 mB) 2.2 gB

Figure 5-3. The two compartments in the Spark memory area
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• Storage

• This compartment is used for storing all the cached data for 

future and repeated accesses and broadcast variables. When you 

invoke either the persist() or cache() API on a DataFrame, its 

data is persisted in memory and is called cached data. The Spark 

application user controls the lifetime of the cached data, but the 

data could be evicted due to memory pressure.

• The size of this compartment is controlled by spark.memory.

storageFraction and is calculated as (Spark memory area * 

spark.memory.storageFraction)

The Unified Memory Management feature was introduced in Spark version 1.6 to 

intelligently manage these two compartments in a way that works for most workloads, 

requires very little expertise in tuning the memory fractions, and takes advantage of the 

unused storage memory where applications don’t cache data that much.

It achieves these goals by instituting a boundary between the compartments as a 

flexible barrier where it can be moved to either side based on the need and establishing 

specific rules to avoid memory starvation and system failure. The rules are as follows.

• When execution memory exceeds its compartment, it can borrow as 

much of the storage memory as is free.

• When storage memory exceeds its compartment, it can borrow as 

much of the execution memory as is free.

• When execution needs more memory and some of its memory was 

borrowed by the storage compartment, it can forcefully evict that 

memory occupied by storage.

• When storage needs more memory and some of its memory is 

borrowed by the execution compartment, it cannot forcefully evict 

that memory occupied by execution. Storage must wait until the 

executor releases them.

The main motivations behind these rules are to provide execution as much space as 

it needs, and evicting storage memory is significantly simpler to implement.
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To prevent the storage memory starvation, there needs to be a guarantee about 

the minimum reserved memory for cached data. This is accomplished by requiring 

the executor to honor the amount of memory specified by the spark.memory.

storageFraction property, which specifies the amount of storage memory that is 

immune from eviction. In other words, the storage memory for cached data may only be 

evicted if total storage exceeds the storage compartment size.

The rules and guarantee work well for Spark to support multiple types of workloads. 

When a particular type of workload performs a lot of complex and wide transformations, 

and it doesn’t need to cache much data, it can leverage the free memory in the storage 

compartment as much as it needs.

Table 5-2 describes the memory-related properties.

Next, let’s discuss a few common scenarios where you might run into the OOM issue.

Table 5-2. Memory-Related Spark Properties

Property Name Default Value Description

spark.driver.memory 1gB amount of memory to use for the driver process

spark.executor.memory 1 gB amount of memory to use per executor process

spark.memory.fraction 0.6 Fraction of (JVm heap space – 300 mB) used 

for execution and storage. the lower. it is 

recommended to leave this at the default value.

spark.memory.

storageFraction

0.5 the amount of storage memory is immune to 

eviction, expressed as a fraction of the region’s 

size set aside by spark.memory.fraction. 

the higher it is, the less memory might be 

available for execution and tasks may spill to 

disk more often. it is recommended to leave this 

at the default value
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 Leverage In-Memory Computation
One of the distinguishing features of Spark from other data processing engines or 

frameworks is the ability to perform in-memory computation to speed up the data 

processing logic in a Spark application. This section discusses when to leverage this 

unique feature and how to persist data in Spark temporary storage (either memory or 

disk) across the executors in your Spark cluster.

 When to Persist and Cache Data
Spark provides the ability to persist (or cache) the data in your DataFrame in memory, 

which is available to any future operations to use. As a result, those operations run 

much faster, often by 10x, because the data they need is read from the computer 

memory. This capability is very useful for iterative algorithms and when the data of a 

DataFrame is needed or reused multiple times. Machine learning algorithms are highly 

iterative, meaning they run through many iterations to produce an optimized model. 

This capability is also useful to provide fast and interactive use of the data for analytical 

purposes. In short, when the data of a DataFrame is reused multiple times in your Spark 

applications, it is highly recommended that you consider persisting that DataFrame data 

to speed up your Spark application.

Let’s walk through a simple example to illustrate the need for leveraging in-memory 

computation. Imagine you are asked to analyze a large log file with billions of rows to 

identify the root cause of a recent production issue by analyzing the various types of 

exceptions. After reading the data from the log file into a DataFrame, the next step is to 

filter those rows down to only the rows that contain the word exception. Then, persist 

those rows in memory so you can repeatedly analyze the different kinds of exceptions.

Persisting a dataset does incur some costs in terms of serialization, deserialization, 

and storage cost. If a dataset is only to be used once, caching slows down your Spark 

application.

 Persistence and Caching APIs
Spark DataFrame class provides two APIs to persist data: cache() and persist(). Both 

offer the same capability. The former is a shorthand version of the latter, which provides 

more control over how and where your DataFrame should be stored, such as in memory 

or on disk, and whether the data is stored in a serialized format.
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It is reasonable to ask what happens when your Spark application doesn’t have 

sufficient memory to cache the large dataset in memory. For example, let’s say your 

Spark application has ten executors, and each one has 6 GB of RAM. If the size of 

a DataFrame you want to persist in memory is 70 GB, it wouldn’t fit into 60 GB of 

RAM. This is where the storage-level concept comes in. There are two options you 

can choose from when persisting the data: location and serialization. The location 

determines whether the data should be stored in memory, on disk, or a combination 

of the two. The serialization option determines whether data should be stored as a 

serialized object or not. These two options represent the different types of trade-offs you 

are making: CPU time and memory usage. Table 5-3 describes the different options, and 

Table 5-4 describes the trade-off information.

Table 5-3. Storage and Serialization for Persisting Data

Storage Level Description

memOrY_OnlY persist data as deserialized objects in memory only

memOrY_anD_DiSk persist data as deserialized objects in memory. if there isn’t 

sufficient memory, the rest is stored as serialized objects on a disk.

memOrY_OnlY_Ser persist data as serialized objects in memory only.

memOrY_anD_DiSk_Ser Similar to memOrY_anD_DiSk, but persist data as serialized 

objects in memory.

DiSk_OnlY persist data as serialized objects on disk only.

memOrY_OnlY_2,

memOrY_anD_DiSk_2

the same as memOrY_OnlY and memOrY_anD_DiSk, but 

replicate the data on two cluster nodes.

Table 5-4. Memory Space vs. CPU Time Trade-offs

Storage Level Memory Space CPU Time

memOrY_OnlY high low

memOrY_anD_DiSk high medium

memOrY_OnlY_Ser low high

memOrY_anD_DiSk_Ser low high

DiSk_OnlY low high
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When the data of a DataFrame is no longer needed to be persisted, you can use 

the unpersist() API to remove it from memory or disk depending on the specified 

level when calling the persist() API. A spark cluster has limited memory; if you keep 

persisting DataFrames, Spark uses the LRU eviction policy to automatically evict the 

persisted ones that have not been recently accessed when the available memory amount 

is low.

 Persistence and Caching Example
This section walks through an example of persisting the data in Spark show performance 

improvement. It also looks at an example Spark UI to show the partitions stored in a 

Spark executor. The example in Listing 5-4 first generates the app_log_df DataFrame 

with 300 million rows with three columns: id, message, date. Then it filters app_log_df 

DataFrame to contain only messages with the word exception in the message column 

and finally assigns the output to the except_log_df DataFrame.

Listing 5-4. Code Example to Persisting Data in Spark

import org.apache.spark.sql.functions._

import scala.util.Random

val log_messages = Seq[String](

      "This is a normal line",

      "RuntimeException - this is really bad",

      "ArrayIndexOutOfBoundsException - don’t do this",

      "NullPointerException - this is a nasty one",

      "SQLException - bad SQL again!!!"

)

// set up functions and UDF

def getLogMsg(idx:Int) : String = {

    val randomIdx = if (Random.nextFloat() < 0.3) 0 else

    Random.nextInt(log_messages.size)

    log_messages(randomIdx)

}

val getLogMsgUDF = udf(getLogMsg(_:Int):String)
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// generate a DataFrame

val app_log_df = spark.range(30000000).toDF("id")

                  .withColumn("msg", getLogMsgUDF(lit(1)))

                  .withColumn("date",

                              date_add(current_timestamp,

                              -(rand() * 360).cast("int")))

// generate a DataFrame with “Exception” message

val except_log_df = app_log_df

                          .filter(msg.contains("Exception"))

// before persisting

except_log_df.count()

// call persist transformation to persist exception_log_df

except_log_df.cache()

// materialize the exception_log_df

except_log_df.count()

// this should be really fast

// since exception_log_df is now in memory

exception_log_df.count()

// evict exception_log_df from memory

exception_log_df.unpersist()

Figure 5-4 shows the duration for each of the three count actions. Job 0 is for the first 

call, which took 8 seconds. Job 0 is for the second call, which forces Spark to materialize 

DataFrame data in memory, which took 7 seconds. Job 2 is for the last call, which took 

only 56 milliseconds. As you can see, accessing the data in memory is extremely fast.

Figure 5-4. Shows the duration of each of the count action
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To see how Spark stores the except_log_df DataFrame in memory, bring up the 

Spark UI and navigate to the Storage tab. Figure 5-5 shows the number of cached 

partitions and the total size in memory.

To see the detailed information of each partition of the persisted DataFrame, click 

the link under the RDD name column. Figure 5-6 shows each partition’s size, location, 

storage level, and replication factor.

You can specify the storage and replication factor by calling the persist API with an 

appropriate argument of type StorageLevel.

To programmatically evict the persisted DataFrame, you can simply call the 

unpersist API. The partitions disappear from memory and the Storage tab of Spark UI.

Figure 5-5. The Storage tab in Spark UI shows the cached DataFrame

Figure 5-6. The detailed information of the cached partitions
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Note that the RDD Name column in Figure 5-5 has a long and cryptic name. To 

specify a human-readable name of a persisted DataFrame, you must take a few extra 

lines of code. The first step is to create a temporary view with a name and then pass that 

same name into the cachTable API of SQLContext use. Listing 5-5 shows the needed line 

of code.

Listing 5-5. Persisting a DataFrame with a Human-Readable Name

except_log_df.createOrReplaceTempView("exception_DataFrame")

spark.sqlContext.cacheTable("exception_DataFrame")

If those two lines were executed successfully then the name under the RDD Name 

column of the Storage tab should look something like Figure 5-7.

To evict the persisted DataFrame, simply pass the view name into the uncacheTable 

API of the SQLContext.

 Understanding Spark Joins
Performing any meaningful data analytics requires joining two datasets to enrich 

one dataset with more information or to extract insights by performing some sort 

of aggregations. The join operation essentially merges the two datasets using the 

specified key.

Spark has extensive support for join operation and the various join types in DataFrame, 

Dataset, and Spark SQL APIs. This is covered in Chapter 4. This chapter discusses some of 

the join strategies that Spark uses and memory and performance- related aspects.

A join strategy is an approach to carry out a join operation. Spark supports five 

different join strategies: broadcast hash join (BHJ), shuffle hash join (SHJ), shuffle sort- 

merge join (SMJ), broadcast nested loop join (BNLJ), and shuffle-and-replicated nested 

Figure 5-7. Human readable name of persisted DataFrame on Storage tab
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loop join (a.k.a. cartesian product join). A summary of each is captured in Table 5-5.  

Out of these five strategies, the commonly used ones in Spark are BHJ and SMJ because 

they are versatile enough to handle most of the scenarios, such as when the size of one of 

the datasets is small or when the size of both datasets are large.

 Broadcast Hash Join
Among the five join strategies, BHJ, also known as the map-side-only join, is the simplest 

and fastest in Spark and is applicable when one of the datasets is small. This strategy 

broadcasts a copy of the smaller dataset via the driver to all executors in the Spark 

cluster. Then the join is performed against the larger dataset, as shown in Figure 5-7.

Spark uses the value of the property spark.sql.autoBroadcastJoinThreshold to 

determine which dataset is eligible for broadcasting and its default value is 10 MB. If 

your Spark cluster has sufficient memory to handle the broadcasting of a larger dataset, 

you can simply increase the threshold to an appropriate value. BHJ is depicted in 

Figure 5-8.

Table 5-5. Join Strategy Summary

Name Join Condition Description

broadcast hash join equi joins When one of the datasets is small enough to 

broadcast across the network, perform the 

hash join.

shuffle hash join equi joins When two datasets are large, shuffle them 

across the network, then perform the hash join.

shuffle merge join equi joins When two datasets are large, shuffle them 

across the network, sort them and then merge.

broadcast nested loop 

join

equi and non- equi joins Broadcast the smaller dataset and use the 

nested loops to perform the join.

shuffle-replicated 

nested loop join

equi and non- equi joins Cartesian product join. Very slow.
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Figure 5-8. Broadcasting smaller dataset from driver to executors hash join strategy

When you perform a join between two datasets and are certain the size of one of 

them is smaller than the threshold of the property mentioned, you can verify that Spark 

uses the BHJ strategy by examining the execution plan. Listing 5-6 shows a simple 

example of joining two datasets.

Listing 5-6. Joining One Small Dataset with a Larger One

import org.apache.spark.sql.functions._

val small_df = Seq(("WA", "Washington"), ("CA", "California"),

                   ("AZ", "Arizona"), ("AK", "ALASKA"))

                .toDF("code", "name")

val large_df = spark.range(500000).toDF("id")

            .withColumn("code", when(rand() < 0.2, "WA")

                               .when(rand() < 0.4, "CA")

                               .when(rand() < 0.6, "AZ")

                               .otherwise("AK"))

            .withColumn("date",

                date_add(current_date,

                         -(rand() * 360).cast("int")))

val joined_df = small_df.join(large_df, "code")
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Spark UI has a good visual way to example the execution plan, as depicted in 

Figure 5-9. Simply navigate to the SQL tab and click the job you want to execute. This 

example shows the smaller dataset is broadcasted via the BroadcastExchange operator, 

and then the BroadHashJoin strategy is employed.

 Shuffle Sort Merge Join
Spark’s other commonly used join strategy is SMJ, an efficient approach to joining two 

large datasets. SMJ first shuffles the rows with the same key from both datasets to the 

same partition on the same executor. Next, those rows are sorted by the specified join 

key. Finally, the merge step iterates over those rows and merges the ones with matching 

Figure 5-9. Broadcasting hash join strategy in Spark UI
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keys. The sort-merge process is similar to the one in the merge sort algorithm. It is an 

efficient way of merging two large datasets without loading one into memory first, like 

the one in SHJ.

Listing 5-7 shows a small example of simulating SMJ by first disabling the SHJ by 

setting the value of property spark.sql.autoBroadcastJoinThreshold to –1, and then 

joining two reasonably sized DataFrames.

Listing 5-7. Joining Two Large Datasets Using SMJ

import org.apache.spark.sql.functions._

// disable the broadcast hash strategy for Spark

// to use the shuffle sort merge strategy

spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "-1")

val item_df = spark.range(3000000).toDF("item_id")

                   .withColumn("price",

                               (rand() * 1000).cast("int"))

val sales_df = spark.range(3000000).toDF("pId")

                    .withColumn("item_id",

                       when(rand() < 0.8, 100)

                       .otherwise(rand() *

                                  30000000).cast("int"))

                     .withColumn("date",

                                 date_add(current_date,

                                 -(rand() * 360).cast("int")))

val item_sale_df = item_df.join(sales_df, "item_id")

item_sale_df.show()

+-------+-----+-------+----------+

|item_id|price|    pId|      date|

+-------+-----+-------+----------+

|  18295|  484|2607123|2020-09-27|

|  19979|  261|1121863|2020-07-05|

|  37282|  915|1680173|2020-10-04|

|  54349|  785| 452954|2021-05-28|

|  75190|  756| 142474|2021-02-19|
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|  89806|  763|1842105|2020-06-26|

|  92357|  689|1451331|2021-03-07|

| 110753|  418|1803550|2020-11-25|

| 122965|  729| 917035|2020-06-22|

| 150285|  823|2306377|2020-10-05|

| 180163|  591| 330650|2020-07-13|

| 181800|  606|2065247|2020-11-06|

| 184659|  443| 982178|2020-09-01|

| 198667|  796|2985859|2021-04-02|

| 201833|  464| 709169|2020-07-31|

| 208354|  357| 927660|2021-05-30|

| 217616|  627| 174367|2021-04-25|

| 223396|  752|2850510|2020-11-05|

| 225653|  188|2439243|2021-01-16|

| 233633|  628|2811113|2020-12-02|

+-------+-----+-------+----------+

After running the code, you can navigate to the SQL tab in Spark UI to see the 

execution plan, which looks like Figure 5-10. Notice the sorting step takes place first, and 

then next is the merging step.
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 Adaptive Query Execution
Among the useful and innovative features introduced in Spark 3.0 is the Adaptive 

Query Execution (AQE) framework. It should be a favorite feature of Spark application 

developers who develop and maintain large data pipelines that process hundreds 

of terabytes to petabytes or data analysts who use Spark daily to perform complex 

and interactive analysis on large datasets. AQE extends Spark SQL’s query optimizer 

and planner to dynamically adjust and regenerate high-quality and optimized query 

execution plans using the latest statistics about row count, partition size, and such to 

automatically address most of the common performance issues and to speed up Spark 

application completion time or prevent them from running into OOM.

Figure 5-10. Shuffle merge join strategy in Spark UI
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In Spark 2.0, the Spark SQL Catalyst optimizer provides a generic framework for 

generating query execution plans with a set of rule-based optimizations to improve 

performance. Cost-based optimization was introduced in Spark 2.2 to improve the 

optimizations by leveraging the generated per column data statistics such as cardinality, 

min/max values, and NULL values.

AQE was introduced in Spark 3.0 to leverage the runtime statistics about the 

partitions between the stages to adjust and regenerate the query execution plans to 

improve performance of some of the most encountered performance scenarios, such as 

too many partitions, skew data, or using the wrong kind of joins.

To better understand how AQE works, let’s first revisit a few core concepts about 

Spark jobs, stages, and tasks. When an action type API of a DataFrame is called, such 

as count(), or collect(), or show(), Spark launches a job to carry out that action by 

executing all the previous transformations that led up to it.

Each job consists of one or more stages, and a stage is needed whenever Spark 

encounters a wide transformation, which involves moving its input data from multiple 

partitions. Examples of wide transformations include groupBy() or orderBy(). Each 

stage materializes its intermediate result to disk, and the following stage can only 

proceed if the materialization of all the partitions is completed. This represents a 

natural place for AQE to adapt its execution plan by leveraging the partitions’ runtime 

statistics, such as the total number of partitions and the size of each one. That is the 

main reason why the first word in the name of each AQE feature starts with the word 

dynamically. One thing to note, AQE is helpful only when your Spark applications have 

one or more stages.

Figure 5-11 visually summarizes the flow described in this paragraph.

Figure 5-11. AQE in action
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The performance optimizations provided in AQE are extremely easy to use. Simply 

just turn on the appropriate properties, and AQE leaps into action. The top-level 

property to enable AQE is called spark.sql.adaptive.enabled, so make sure to set it to 

true before trying out the following examples. Each feature has its own set properties to 

control the various fine-grained aspects of that particular feature, which are discussed in 

each section.

AQE framework provides these three extremely useful features.

• Dynamically coalescing shuffle partitions

• Dynamically switching join strategies

• Dynamically optimizing skew joins

The following sections discuss what they are and how they work.

 Dynamically Coalescing Shuffle Partitions
One of the most expensive operations in Spark is shuffling, meaning moving the data 

across the network such that the data is redistributed appropriately based on the needs 

of subsequent operations. If not tuned accordingly, this operation can significantly 

impact query performance. The main tuning knob about shuffling is the number of 

partitions. The query performance degrades if the number is either too low or too high. 

A common challenge is the best number of partitions is often specific to the use case 

at hand. It might need to be updated frequently due to the data volume increase or any 

changes to the data processing logic.

When the number of partitions is too large, it creates unnecessary inefficiency about 

I/O usage due to transferring a small amount of data across many nodes in the Spark 

cluster. Also, many tasks are required to copy the data, which generates unnecessary 

work for the Spark task scheduler.

When the number of partitions is too small, some of the partitions have a large 

amount of data. The tasks that process those large partitions take a long time to complete 

and may need to spill data to disk. As a result, this slows down the completion time of the 

whole query.

To combat against the two extremes of the number of partitions, you can start your 

query by setting the number of partitions to be large. AQE automatically combines 

or coalesce the small partitions into larger ones to overcome the inefficiency and 
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performance-related issues described by leveraging the most up-to-date statistics at the 

end of a shuffle. Figure 5-12 visually depicts an example where AQE is not enabled, and 

those small partitions are processed separated reducers. Figure 5-13 visually depicts 

an example where AQE is enabled. The small partitions (B, C, D) coalesce into a single 

partition, and therefore the overall number of reducers is less. The figures are inspired by 

this Databricks log (see https://databricks.com/blog/2020/05/29/adaptive- query-

execution- speeding- up- spark- sql- at- runtime.html).

Now let’s see the dynamically coalescing shuffle partitions feature in action by 

simulating a scenario to analyze the count of a small transactional fact table with 

approximately 80% of the items sold is a popular item with an ID of 100. Listing 5-8 

generates 100 million rows, and 80% of the item_ids with a value of 100. Next, it counts 

each item_id and then counts the different item_ids.

Figure 5-12. AQE is disabled

Figure 5-13. AQE is enabled
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Listing 5-8. Performing the Analysis of Item Count from a Synthetic Small 

Transaction Fact Table

import org.apache.spark.sql.functions._

// make sure the AQE is enabled

spark.conf.set("spark.sql.adaptive.enabled", "true")

spark.conf.get("spark.sql.adaptive.enabled")

val dataDF = spark.range(100000000).toDF("pId")

                .withColumn("item_id",

                     when(rand() < 0.8, 100)

                     .otherwise(rand() * 3000000).cast("int"))

dataDF.groupBy("item_id").count().count()

Once the count() action has been completed, go to the Spark UI. On the Jobs tab, 

which is the first one, you notice two out of the three jobs were skipped, and the bulk of 

the work was done in job 0. Figure 5-14 shows an example of the skipped jobs.

Let’s examine job 2 by clicking the hyperlink under the Description column. 

The Spark UI shows stages 2 and 3 were skipped, and you see an operator called 

CustomShuffleReader operator at the top of stage 2. The AQE framework introduced this 

operator to coalesce partitions with the size that is smaller than the size specified by the 

property spark.sql.adaptive.advisoryPartitionSizeInBytes, which has a default 

value of 64 MB. Figure 5-15 shows the Spark UI with skipped stages.

Figure 5-14. Spark UI shows skipped jobs

Chapter 5  Optimizing Spark appliCatiOnS



209

Figure 5-15. Spark UI shows skipped jobs the skipped stages

If the AQE is disabled, you would see a very different execution plan which consists 

of a single job (see Figure 5-16) with three stages (see Figure 5-17). The most notable part 

is the second stage partition the data into 200 partitions, according to the default value 

of the property spark.sql.shuffle.partitions, where the majority of them have only a 

small amount of data, as depicted in Figure 5-18.

Figure 5-16. Spark UI shows a single job to perform GroupBy operator
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Figure 5-18. Spark UI shows 200 tasks

Figure 5-17. Spark UI shows three stages with their tasks
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There is a small set of properties for the dynamically coalesced shuffle partition 

feature to control its behavior. Table 5-6 describes these properties. Their names start 

with the same spark.sql.adaptive prefix, so it is omitted for brevity.

 Dynamically Switching Join Strategies
Among the different joint types Spark supports, the most performant one is called 

broadcast hash join. In the past, Spark developers would either need to give hints to 

Spark or explicitly request Spark to use broadcast hash join by marking one of the 

datasets using the broadcast function. With AQE enabled, when Spark detects the size 

of one side of the joint below the broadcast-size threshold, it dynamically switches to 

broadcast hash join to speed up the query performance. This is useful when one of 

the joint datasets starts with a large size, and after the filter operator is done, its size is 

dramatically reduced. AQE has the updated statistics of all the partitions between stages, 

and therefore it can leverage it to determine whether it makes sense to switch join at 

runtime.

The threshold to control whether the broadcast hash join should be used is the 

spark.sql.autoBroadcastJoinThreshold property, which has a default value of 

10 MB. If the data size of one of the datasets in a join is less than that value, then AQE 

switch to broadcast hash join. It makes sense to increase the threshold to a higher value 

Table 5-6. Dynamically Coalesce Shuffle Partitions Properties

Property Default Value Description

<prefix>.coalescepartitions.

enabled

true Fine-grain control to enable partition 

coalescing.

<prefix>advisorypartition 

SizeinBytes

64 mB the approximate target coalesced 

partition size. the size is not larger 

than the target size.

<prefix>.coalescepartitions.

minpartitionSize

1 mB the minimum size of coalesced 

partitions. the size is not smaller 

than this value.

<prefix>.coalescepartitions.

minpartitionnum

default Spark parallelism 

when not specified

the suggested minimum number of 

shuffle partitions after coalescing.

Chapter 5  Optimizing Spark appliCatiOnS



212

if your Spark cluster has sufficient memory to store the broadcasted dataset in memory. 

If you are using Databricks, then the property is called spark.databricks.adaptive.

autoBroadcastJoinThreshold.

Now let’s see the dynamically switching join strategies feature in action by simulating 

a scenario where after joining two datasets, the aggregation logic has a filtering condition 

such that the size of one dataset fall below the autobroadcast joint threshold. AQE can 

detect this at runtime, and it switches the sort-merge join to the broadcast hash join to 

speed up the query. The initial static plan is not aware of the selectivity of the filter.

Listing 5-9 sets up two DataFrames—car registration and car sales. A filter is applied 

to one of the columns after they are joined. The filter condition is not known at the initial 

execution plan.

Listing 5-9. Apply a Filter Condition after Joining Car Registrations and Car Sales 

DataFrames

spark.conf.set("spark.sql.adaptive.enabled", true)

import org.apache.spark.sql.functions._

import scala.util.Random

// setting up functions and UDFs

def getCarByIdx(idx:Int) : String = {

  val validIdx = idx % popularCars.size

  val finalIdx  = if (validIdx == 0) 1 else validIdx

  popularCars(finalIdx)

}

def randomCar(idx:Int): String = {

  val randomCarIdx = if (Random.nextFloat() < 0.4) 0 else

                         Random.nextInt(popularCars.size)

  popularCars(randomCarIdx)

}

val getCarByIdxUDF = udf(getCarByIdx(_:Int):String)

val randomCarUDF = udf(randomCar(_:Int):String)

// setting the data frames

val car_registration_df = spark.range(5000000).toDF("id")

          .withColumn("make", when('id > 1,
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            getCarByIdxUDF('id)).otherwise("FORD:F-Series"))

          .withColumn("sale_price",

                      (rand() * 100000).cast("int"))

val car_sales_df = spark.range(30000000).toDF("id")

             .withColumn("make",randomCarUDF(lit(5)))

             .withColumn("date",

                  date_add(current_date,

                           -(rand() * 360).cast("int")))

car_sales_df.join(car_registration_df, "make")

            .filter('sale_price < 300)

            .groupBy("date").agg(

                     sum("sale_price").as("total_sales"),

                     count("make").as("count_make"))

             .orderBy('total_sales.desc)

             .select('date, 'total_sales).show()

 Dynamically Optimizing Skew Joins
Skew joins are one of the most annoying performance issues when joining two datasets in 

parallel data computation systems like Spark. The data skew in one of the joined datasets 

causes the imbalance in the partition data size. As a result, the join takes a long time to 

complete. The data skew in real-life datasets is a natural phenomenon and occurs more 

often than you think due to popularity, population concentration, or consumer behavior. 

For example, the population of West Coast and East Coast cities tend to be larger than 

other US cities. In past years, Spark application developers have come up with many 

innovative ideas to overcome the skew join performance issue, requiring additional 

effort. This feature only speeds up the skew joins. It requires very little effort from Spark 

developers. Undoubtedly, this feature put a big smile on a lot of Spark developers.

Note From the probability theory and statistics field of studies, skewness is a 
measure of the symmetry of a distribution. in the data processing world, the data 
skew suggests the distribution is uneven or asymmetric, where some column 
values have way more rows than others, and some columns have very few.
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To perform a join, Spark assigns a partition id to each row of joined datasets based on 

the hash of the joined keys and then shuffle those rows with the same partition id to the 

same partition. If one of the datasets has data skew, then one or more partitions have way 

more rows than others, as depicted in Figure 5-19. The task assigned to process the large 

partition takes much longer to complete than other tasks that process smaller partitions.

When AQE is enabled, the large partition is split into a few smaller ones to be 

processed by multiple tasks in parallel to speed up the overall join completion time. 

Using the example in Figure 5-9, partition A, the skewed one, is split into two smaller 

partitions. Partition D is duplicated two times, as depicted in Figure 5-20. As a result, four 

tasks are running the join, and each one roughly takes about the same amount of time; 

therefore, the overall completion time is shorter.

Now let’s see the dynamically optimizing skew join feature in action by simulating 

a scenario where one of the two joined datasets has skew data and see how much AQE 

speeds up the join by. Listing 5-10 is an adaptation of an example from the blog at 

https://coxautomotivedatasolutions.github.io/datadriven/spark/data%20skew/

joins/data_skew/.

Figure 5-19. Skew partitions

Figure 5-20. Skew partition is split, and corresponding partitions are duplicated
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Listing 5-10 demonstrates the skew join optimization by setting up two datasets, car 

registrations, and car sales. There is a data skew in the second one; 40% of the sales are 

for Ford F-Series by calling the randomCarUDF function.

Listing 5-10. Joining Car Registrations and Car Sales DataFrames (Cars Sales 

Has Skew Data)

import org.apache.spark.sql.functions._

// make sure to turn on AQE

spark.conf.set("spark.sql.adaptive.enabled", true)

// since the data size is small, avoid broadcast hash join,

// reduce the skew partition factor and threshold

spark.conf.set("spark.sql.autoBroadcastJoinThreshold", -1)

spark.conf.set("spark.sql.adaptive.skewJoin.

                skewedPartitionFactor", "1")

spark.conf.set("spark.sql.adaptive.skewJoin.

                skewedPartitionThresholdInBytes", "2mb")

val popularCars = Seq[String]("FORD:F-Series",

         "RAM:1500/2500/3500","CHEVROLET:SILVERADO",

         "TOYOTA:RAV4","HONDA:CRV",

         "TOYOTA:TACOMA","HONDA:CIVIC",

         "TOYOTA:COROLLA","GMC:SIERRA"

)

// setting up functions and UDFs

def getCarByIdx(idx:Int) : String = {

  val validIdx = idx % popularCars.size

  val finalIdx  = if (validIdx == 0) 1 else validIdx

  popularCars(finalIdx)

}

def randomCar(idx:Int): String = {

  val randomCarIdx = if (Random.nextFloat() < 0.4) 0 else

  Random.nextInt(popularCars.size)

  popularCars(randomCarIdx)

}
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val getCarByIdxUDF = udf(getCarByIdx(_:Int):String)

val randomCarUDF = udf(randomCar(_:Int):String)

// create the two data frames to join

val car_registration_df = spark.range(500000).toDF("id")

           .withColumn("registration",

                lit(Random.alphanumeric.take(7).mkString("")))

           .withColumn("make",

                       when('id > getCarByIdxUDF('id))

                       .otherwise("FORD:F-Series"))

           .withColumn("engine_size",

                       (rand() * 10).cast("int"))

val car_sales_df = spark.range(30000000).toDF("id")

            .withColumn("make",randomCarUDF(lit(5)))

            .withColumn("engine_size",

                        (rand() * 11).cast("int"))

            .withColumn("sale_price",(

                         rand() * 100000).cast("int"))

            .withColumn("date",

                          date_add(current_date,

                          - rand() * 360).cast("int")))

// perform the join by make

car_registration_df.join(car_sales_df, "make")

                .groupBy("date").agg(

                    sum("sale_price").as("total_sales"),

                    count("make").as("count_make"))

                .orderBy('total_sales.desc)

                .select('date, 'total_sales).show()

From the partition statistics, AQE sees the skew data in the car sales DataFrame and 

split the large partition into three smaller partitions. Figure 5-21 shows the details of the 

split in the execution plan.
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Once the skewed partition is split into smaller ones, both the median and max 

duration are 41 seconds. Figure 5-22 shows the task completion time.

This feature also has a small set of properties to control its behavior. Table 5-7 

describes the properties. Their names start with the same spark.sql.adaptive.

skewJoin prefix, so it is omitted for brevity.

Figure 5-21. One skew partition split into three partitions

Figure 5-22. Task duration even out at 41 seconds
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A partition is considered skewed when both of the following conditions are true.

• partition size > skewedPartitionFactor * median partition size

• partition size > skewedPartitionThresholdInBytes

 Summary
Spark application tuning and optimization is a broad topic. This chapter covered 

common performance-related challenges, including memory issues and long-running 

query performance. The ability to optimize Spark applications requires a broad 

understanding of some of the tuning knobs, how Spark manages its memory, and taking 

advantage of some of the new capabilities in AQE.

• The tuning knobs in Spark are the properties, and there are 

three different ways of setting them. The first way is through 

the configuration file. The second way is to specify them on the 

command line when launching your Spark applications. The final 

way is to set them programmatically in your Spark applications, 

which takes the highest precedence. Spark UI provides an easy 

way to view the configured properties, organized under the 

Environment tab.

Table 5-7. Dynamically Optimizing Skew Joins Properties

Property Default Value Description

<prefix>.enabled true Fine-grain control to enable optimize a 

skew join.

<prefix>.skewedPartitionFactor 5 a factor to multiply to the median 

partition size to determine whether a 

partition is considered skewed.

<prefix>.skewedPartition 

ThresholdInBytes

256 mB the minimum size of coalesced 

partitions. the size is not smaller than 

this value.
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• Memory is another important resource. A Spark driver uses its 

allocated memory to store broadcast variables and the data collected 

from all Spark executors, which flexibly manages its allocated 

memory to handle different workloads.

• One of the unique features of Spark is the ability to perform in- 

memory computation, which can speed iterative and interactive use 

cases by 10x. If a dataset is used multiple times in a Spark application, 

it is a good candidate to persist its data in memory or on disk.

• Introduced in Spark 3.0, the Adaptive Query Execution framework 

can perform three different optimizations at runtime by leveraging 

the up-to-date statistics about the materialized partitions between 

stages to speed up your query performance. The first one is about 

coalescing shuffle partitions to improve I/O efficiency and reduce the 

burden on the Spark scheduler. The second one is about dynamically 

switching a join to broadcast hash join from a sort-merge join 

when the size of one of the datasets falls below the broadcast-size 

threshold. The last one is about optimizing skew joins by detecting 

and splitting skewed partitions into multiple smaller partitions to 

speed up the over query performance.
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CHAPTER 6

Spark Streaming
In addition to batch data processing, stream processing has become a must-have 

capability for any business to harness the value of real-time data to increase their 

competitive advantages, make better business decisions, or improve user experience. 

With the advent of the Internet of Things, the volume and velocity of real-time data has 

increased. For Internet companies like Facebook, LinkedIn, or Twitter, millions of social 

activities happening every second on their platform are represented as streaming data.

At a high level, stream processing is about the continuous processing of unbounded 

streams of data. Doing this at scale in a fault-tolerant and consistent manner is a 

challenging task. Luckily, stream processing engines such as Spark, Flink, Samza, Heron, 

and Kafka have been steadily and dramatically matured over the last few years to enable 

businesses to build and operate complex stream processing applications much easier 

than before.

More interesting real-time data processing use cases have emerged as the 

community understands how best to apply the increasingly matured streaming engines 

to their business needs. For example, Uber leverages stream processing capabilities to 

understand the number of riders and drivers on their platform in real time. These near 

real-time insights influence business decisions like moving excess drivers from a low- 

demand area to higher-demand areas in a city.

Most Internet companies leverage an experimentation system to perform A/B testing 

when releasing new features or trying new designs. Stream processing enables a faster 

reaction to the experiments by reducing the time it takes to understand the experiment 

effectiveness from days to hours.

Fraud detection is an area that has embraced stream processing with open arms 

due to the benefits it gains from instant insights of fraud activities, so they can either 

be stopped or monitored. For large companies that have hundreds of online services, 

a common need is to monitor their health by processing the large volume of generated 

logs in near real-time via stream processing. There are many more interesting real-time 

data processing use cases, and some of them are shared in this chapter.
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This chapter starts with describing useful stream processing concepts and then 

provides a short introduction to the stream processing engine landscape. Then the 

remaining sections of this chapter describe the Spark stream processing engine in detail 

and its APIs.

 Stream Processing
In the world of big data, batch data processing is widely known since the introduction of 

Hadoop. The popular MapReduce framework is one of the components in the Hadoop 

ecosystem, and it became the king of batch data processing because of its capabilities 

and robustness. After a period of innovation in the batch data processing area, most 

of the challenges in this space are now well understood. Since then, the big data open 

source community has shifted its focus and innovations to the stream processing space.

Batch data processing applies the computational logic through a fixed size and static 

input dataset and produces the result at the end. This means the processing stop when 

it gets to the end of the dataset. By contrast, stream processing is about running the 

computational logic through unbounded streams of data, and therefore the processing 

is continuous and long-running. Although the difference between batch data and 

streaming data is mainly about the finiteness, stream processing is much more complex 

and challenging than batch data processing because of the unbounded data nature, 

the incoming order of real-time data, the different rates that the data arrive, and the 

expectation of the correctness and low latency in the face of machine failure.

In the world of batch data processing, it is common to hear that it takes hours to 

finish a complex batching data processing job because of the size of the input datasets.

There is an expectation that stream processing engines must provide low latency 

and high throughput by delivering incoming streams of data as efficiently as possible to 

applications, so they can react to or extract insight quickly. Performing any interesting 

and meaningful stream processing usually involves maintaining a state in a fault-tolerant 

manner. For example, a stock trading streaming application wants to maintain and 

display the top 10 or 20 most actively traded stocks throughout the day. To accomplish 

this goal, the running count of each stock must be maintained by the stream processing 

engine on behalf of the application or by the application itself. Usually, the state is 

maintained in memory and backed by resilient storage like disk, which is resilient to 

machine failures.
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Stream processing doesn’t work in a silo. Sometimes there is a need to work together 

with batch data processing to enrich the incoming streaming data. A good example of 

this is when a page view streaming application needs to compute page view statistics of 

its users based on user location; then, it needs to join user clicks data with member data. 

A good stream processing engine should provide an easy way to join batch data with 

streaming data without much effort.

One of the common use cases of stream processing is to perform some aggregations 

of incoming data and then write that summarized data out to an external data sink to 

be consumed by either a web application or a data analytics engine. The desire here is 

to have an end-to-end exactly-once guarantee of the data in the face of failure, whether 

because of machine failures or some bugs in the data processing application. The key 

here is how does the stream processing engine deal with failure such that the incoming 

data is not lost and not double-counted.

As stream processing engines mature, they provide fast, scalable, and fault-tolerant 

distributed system properties and developer-friendly ways to perform data streaming 

computation by up-leveling an abstraction from low-level APIs to high-level declarative 

language as SQL. With this advancement, it is much easier to build a self-service 

streaming platform to enable product teams to quickly make meaningful business 

decisions by tapping into the data or events generated by various company products. 

Remember, one of the goals in data stream processing is to extract business insights in a 

timely manner so businesses can either react quickly or take business actions.

In summary, stream processing has its own set of unique challenges resulting from 

processing data that is continuous and unbounded. It is important to be mindful of 

these challenges as you set out to build long-running stream processing applications or 

evaluate a particular stream processing engine. The challenges are as follows.

• Reliably maintaining potentially large state for data streaming 

applications

• Efficiently and quickly deliver messages for applications to process

• Dealing with streaming data that arrives out of order

• Joining with batch data to enrich the incoming streaming data

• End-to-end exactly once guarantee delivery of data even where there 

is failure

• Dealing with uneven data arrival rate
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 Concepts
To perform stream processing, it is imperative to understand the following core and 

useful concepts. These important concepts are very much applicable to developing 

streaming applications on any stream processing engine. Knowing them is useful to 

evaluating stream processing engines; they also enable you to ask the right questions to 

find out how much support a particular stream processing engine provides in each of 

these areas.

• Data delivery semantics

• Notion of time

• Windowing

 Data Delivery Semantics

When a piece of data enters a stream processing engine, it is responsible for delivering 

it to the streaming application for processing. There are three types of guarantees that a 

stream processing engine can provide even under failure scenarios.

• At most once: This implies a stream processing engine guarantees 

that a piece of data is delivered to an application no more than one 

time, but it could be zero time. In other words, there is a chance that 

a piece of data is lost, and therefore the application does not see it 

at all. For some use cases, this is acceptable, but it is not for some 

other use cases. One of those use cases is the financial transaction 

processing applications. Losing data can result in not charging 

customers and, therefore, a reduction in revenue.

• At least once: This implies a stream processing engine guarantees 

that a piece of data is delivered to an application one or more times. 

There is no data lost in this case; however, there is a potential for 

double or triple counting. In the example of the financial transaction 

processing applications, a transaction is applied multiple times, 

resulting in customer complaints. This guarantee is stronger than at 

most once because no data is lost.
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• Exactly once: This implies a stream processing engine guarantees 

that a piece of data is delivered to an application exactly one time 

only, no more and no less. In this case, there is no data loss and 

no double counting. Most modern and popular stream processing 

engines provide this kind of guarantee. Of the three guarantees, this 

one is the most desirable one for building critical business streaming 

applications.

One way of looking at these delivery semantics is that they fall into a spectrum, 

where at most once is the weakest guarantee and exactly once is the strongest guarantee, 

depicted in Figure 6-1.

When evaluating a stream processing engine, it is important to understand the level 

of guarantee it provides and the implementation behind this guarantee. Most modern 

stream processing engines employ a combination of check-pointing and write-ahead 

logs techniques to provide an exactly-once guarantee.

 Notion of Time

In the world of stream processing, the notion of time is very important because it enables 

you to understand what’s going on in terms of time. For example, in the case of a real- 

time anomaly detection application, the notion of time gives insights into the number of 

suspicious transactions occurring in the last 5 minutes or a certain part of the day.

There are two important types of time: event time and processing time. As 

depicted in Figure 6-2, event time represents when the piece data was created, and 

this information is typically encoded in the data. For example, in IoT devices that take 

ocean temperature in a certain part of the world, the event time is when the temperature 

Figure 6-1. Delivery semantics spectrum
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was taken. The encoding of the temperature data may consist of the temperature itself 

and timestamp. The processing time represents the time when the stream processing 

engine processes a piece of data. In the example of the ocean temperature IoT devices, 

the processing time is the clock time of the stream processing engine when it starts to 

perform transformations or aggregations on the temperature data.

To truly understand what’s going behind the incoming stream of data, it is imperative 

to process the incoming data in terms of even time because the event time represents the 

point in time that the data was created. In an ideal state, the data arrive and be processed 

shortly after it was created, and therefore the gap between the event time and the 

processing time is short. That is often not the case, and therefore the lag varies over time 

according to the conditions that prevent the data from arriving immediately after they 

are created. The greater the lag, the greater the need to process data using event time 

and not using the processing time.

Figure 6-3 illustrates the relationship between event time and processing time, and 

an example of what a real lag looks like. The notion of time is very much related to the 

windowing concept, which is described next. To deal with unbounded incoming streams 

of data, one common practice in the stream processing engines is to divide the incoming 

data into chunks by using the start and end time as the boundary. It makes more sense to 

use event time as the temporal boundaries.

Figure 6-2. Event time and processing
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 Windowing

Given the unbounded nature of streaming data, it is not feasible to have a global view of 

the incoming streaming data. Hence, to extract any meaningful value from the incoming 

data, you must process them in chunks. For example, given a traffic count sensor that 

emits a count of the number of cars every 20 seconds, it is not feasible to compute a final 

sum. Instead, it is more logical to ask how many cars pass that sensor every minute or 

five minutes. In this case, you need to partition the traffic counting data into chunks of 1 

minute or 5 minutes, respectively. Each chunk is called a window.

Windowing is a common stream processing pattern where the unbounded coming 

streaming of data is divided into chunks based on temporal boundaries—either event 

time or processing time. Although the former is used more commonly to reflect the 

actual reality of the data. However, given that the data may not arrive in the order they 

were created or delayed due to network congestion, it is impossible to always have all the 

data created in that time window.

There are three commonly used windowing patterns, and most modern stream 

processing engines support them. The three patterns are depicted in Figure 6-4.

Figure 6-3. The lag between event time and processing time
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Fixed/tumbling window divides the incoming stream of data into fixed-size 

segments, where each one has a window length, a start time, and an end time. Each 

coming piece of data is slotted into one and only one fixed/tumbling window. With this 

small batch of data in each window, it is easy to reason when performing aggregations 

like sum, max, or average.

A sliding window is another way of dividing the incoming stream of data into fixed- 

size segments, where each one has a window length and sliding interval. If the sliding 

 interval is the same size as the window length, it is the same as the fixed/tumbling 

window. The example in Figure 6-4 shows the sliding interval is smaller than the window 

length. This implies that one or more pieces of data are included in more than one 

sliding window. Because of the overlapping of the windows, the aggregation produces a 

smoother result than in the fixed/tumbling window.

The session window type is commonly used to analyze user behavior on a website. 

Unlike the fixed/tumbling and sliding window, it has no predetermined window length. 

Rather, it is usually determined by a gap of inactivity that is greater than some threshold. 

For example, the length of a session window on Facebook is determined by the duration of 

activities that a user does, such as browsing the user feeds, sending messages, and so on.

 Stream Processing Engine Landscape
There is no shortage of innovations from the open source community in coming up with 

solutions for stream processing. In fact, there are multiple options to choose a stream 

processing engine from. Some of the earlier stream processing engines were born out of 

Figure 6-4. Three commonly used windowing patterns
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necessity, some later ones were born out of research projects, and some evolved from 

batching processing engines. This section presents a few popular stream processing 

engines: Apache Storm, Apache Samza, Apache Flink, Apache Kafka Streams, Apache 

Apex, and Apache Beam.

Apache Storm is one of the pioneers in stream processing, and its popularity is 

mainly associated with the large-scale stream processing that Twitter does. Apache 

Storm’s initial release was in 2011, and it became the Apache top-level project in 2014. 

In 2016, Twitter abandoned Apache Storm and switched over to Heron, which is the next 

generation of Apache Storm. Heron is more resource-efficient and provides much better 

throughput than Apache Storm.

Apache Samza was born at LinkedIn to help solve its stream processing needs, and 

it was open sourced in 2013. It was designed to work very closely with Kafka and runs 

on top of Hadoop YARN for process isolation, security, and fault tolerance. Apache 

Samza was designed to process streams, which are composed of ordered, partitioned, 

replayable, and fault-tolerant sets of immutable messages.

Apache Flink started as a fork of the research project called “Stratosphere: 

Information Management on the Cloud.” It became an Apache top-level project in 2015, 

and ever since then, it has been steadily gaining popularity as a high-throughput and low 

latency streaming engine. One key difference between Apache Flink and Apache Storm 

and Apache Samza is that it supports both batch and stream processing in the same 

engine.

Apache Kafka has evolved from a distributed publish-subscribe messaging system 

to a distributed streaming platform. It was created at LinkedIn and became a top-level 

Apache project in 2012. Unlike other stream processing engines, Kafka’s stream processing 

capabilities are packaged as a lightweight library, making it very easy to write real- time 

streaming applications.

Apache Apex is a relative newcomer to this space. It was developed by a company 

called DataTorrent, and they decided to open source it in 2016. Apache Apex is 

considered a Hadoop YARN native platform that unifies stream and batch processing.

Apache Beam is quite an interesting project that came out of Google in 2016. The 

main idea behind this project is to provide a common layer of powerful and easy-to-use 

abstraction for both streaming and batch processing that is portable across a variety of 

runtime platforms (i.e., Apache Flink, Apache Spark, Google Cloud DataFlow). In other 

words, think of Apache Beam as an uber-API for big data processing.
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There are two standard stream processing models, and each of the stream processing 

engines (except Apache Beam) is subscribed to one of them. The two models are called 

record-at-a-time and micro-batching, which are depicted in Figure 6-5.

Both models have inherent advantages and disadvantages. The record-at-a-time 

model does what it sounds like. It immediately processes each piece of incoming piece 

of data as it arrives. As a result, this model can provide low latency in milliseconds. The 

micro-batching model waits and accumulates a small batch of input data based on a 

configurable batching interval and processes each batch in parallel. The micro-batching 

model can’t provide the same level of latency as the other model. In terms of  throughput, 

the micro-batch has a much higher rate because a batch of data is processed in an 

optimized manner, and therefore the cost per piece of data is low compared to the other 

model. One interesting side note is that it is fairly easy to build a micro-batching model 

on top of the record-of-a-time model.

Of all the stream processing engines discussed, only Apache Spark employs the 

micro-batching model; however, some work is already underway to support the record- 

at- a-time model.

 Spark Streaming Overview
One of the contributing factors to the popularity of Apache Spark’s unified data 

processing platform is the ability to perform stream processing and batch data 

processing.

Figure 6-5. Two different models of stream processing
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With the high-level description of the intricacies and challenges of stream processing 

and a few core concepts out of the way, the remainder of this chapter focuses on the 

Spark streaming topic. First, it provides a short and high-level understanding and some 

of the capabilities of Spark’s first-generation stream processing engine called DStream. 

Then the bulk of the remaining chapter provides information about Spark’s second 

stream processing engine called Structured Streaming.

New Spark streaming applications should be developed on top of Structured 

Streaming to take advantage of some of the unique and advanced features it provides.

 Spark DStream
The first generation of Spark stream processing engine was introduced in 2012, and the 

main programming abstraction in this engine is called discretized stream, or DStream. 

It works by employing the micro-batching model to divide the incoming stream of data 

into batches, which are then processed by the Spark batch processing engine. This 

makes a lot of sense at the time when RDD was the main programming abstraction 

model. Each batch is internally represented by an RDD. The number of pieces of data in 

a batch is a function of the incoming data rate and the batch interval. Figure 6-6 visually 

describes the way DStream works at a high level.

A DStream can be created from an input data stream from Kafka, AWS Kinesis, a file, 

or a socket. One of the key pieces of information needed when creating a DStream is the 

batch interval, which can be in seconds or milliseconds. With a DStream, you can apply 

high-level data processing functions such as map, filter, reduce, or reduceByKey on the 

incoming stream of data. Additionally, you can perform windowing operations such as 

reducing and counting over either a fixed/tumbling or a sliding window by providing a 

window length and a sliding interval. One important note is that the window length and 

sliding interval must be multiples of the batch interval. For example, if the batch interval 

Figure 6-6. Spark DStream
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is three seconds and the fixed/tumbling interval is used, the window length and sliding 

interval can be six seconds. Although, maintaining an arbitrary state while performing 

computations across batches of data is supported in DStream, it is a manual process 

and a bit cumbersome. One of the cool things you can do with a DStream is to join it 

with another DStream or an RDD representing static data. After all the processing logic 

is complete, you can use DStream to write out the data to external systems such as a 

database, a file system, or HDFS.

New Spark streaming applications should be developed on the second-generation 

Spark stream processing engine, called Structured Streaming, which is covered in the 

next section. For the remainder of this section, you look at a small word count Spark 

DStream application; the goal is to understand what a typical Spark DStream application 

looks like. Listing 6-1 contains the code for the word count application, which is 

an example from Apache Spark source code GitHub repository (see https://bit.

ly/2G8N30G).

Listing 6-1. Apache Spark DStream Word Count application

object NetworkWordCount {

  def main(args: Array[String]) {

    // Create the context with a 1 second batch size

    val sparkConf = new SparkConf().setAppName("NetworkWordCount")

    val ssc = new StreamingContext(sparkConf, Seconds(1))

    val host = "localhost"

    val port = 9999

     val lines = ssc.socketTextStream(host, port, StorageLevel.MEMORY_AND_

DISK_SER)

    val words = lines.flatMap(_.split(" "))

    val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

    wordCounts.print()

    ssc.start()

    ssc.awaitTermination()

  }

}
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There are a few important steps when putting together a DStream application. The 

entry point to a DStream application is the StreamingContext. One of the required inputs 

is the batch interval, which defines Spark’s time duration to batch up a set of incoming 

data into an RDD for processing. It also represents a trigger point for when Spark should 

execute streaming application computation logic. For example, if the batch interval is 3 

seconds, Spark batches all the data that arrive within that 3-second interval. After that 

interval elapses, it turns that batch of data into an RDD and processes it according to the 

processing logic you provide. Once a StreamingContext is created, the next step creates 

an instance DStream by defining an input source. The example defines the input source 

as a socket that reads lines of text. After this point, then you provide the processing logic 

for the newly created DStream. The processing logic in the preceding example is not 

complex. Once an RDD for a collection of lines is available after 1 second, Spark executes 

the logic of splitting each line into words, converting each word into a tuple of the word 

and a count of 1, and finally summing up all the count of the same word.

Finally, the counts are printed out on the console. Remember that a streaming 

application is a long-running application; therefore, it requires a signal to start 

receiving and processing the incoming stream of data. That signal is given by calling 

the StreamingContext start() function, which is usually done at the end of the file. 

The awaitTermination() function waits for the execution of the streaming application 

to stop and a mechanism to prevent the driver from exiting while your streaming 

application is running. In a typical program, once the last line of code is executed, it 

exits. However, a long-running streaming application needs to keep going once it starts 

and only ends when you explicitly stop it.

Like most first-generation stream processing engines, DStream has a few drawbacks.

• Native support for event time: For most stream processing 

applications, it is extremely important to extract insights or 

aggregations based on the event time. DStream, unfortunately, 

doesn’t provide native support for this need.

• Separate APIs for batch and stream processing: Spark developers 

need to learn different APIs to build batch and streaming process 

applications. This isn’t a fault of DStream, because Structured APIs 

were not available when DStream was invented.
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 Spark Structured Streaming
Structured Streaming is Spark’s second-generation streaming engine. It was designed to 

be much faster, more scalable, and more fault-tolerant and address the shortcomings in 

the first-generation streaming engine. It was designed for developers to build end-to-end 

streaming applications to react to data in real-time using a simple programming model, 

which is built on top of the optimized and solid foundation of the Spark SQL engine. One 

distinguishing aspect of Structured Streaming is that it provides a unique and easy way 

for Spark users and developers to reason about building streaming applications.

Building production-grade streaming applications requires overcoming many 

challenges, and with that in mind, the Structured Streaming engine was designed to help 

deal with these challenges.

• Handling end-to-end reliability and guaranteeing correctness

• Ability to perform a complex transformation on various kinds of 

incoming data

• Processing of data based on event time and dealing with out-of-order 

data easily

• Integrating with a variety kind of data sources and data sinks

The following sections cover various aspects of the Structured Streaming engine and 

its support to deal with these challenges.

 Overview
There are two key ideas in Structured Streaming. The first one treats a streaming 

computation the way a batch computation is treated. This means treating the incoming 

data stream as an input table, and as a new set of data arrives, treating it as a new set of 

rows appended to the input table (see Figure 6-7).
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Another way of thinking of a stream of incoming data is as nothing more than a table 

being continuously appended. This simple yet radical idea has many implications. One 

of them is leveraging the existing structured APIs for DataFrame and Dataset in Scala, 

Java, or Python to perform streaming computations. The Structured Streaming engine 

takes care of running them incrementally and continuously as new streaming data 

arrives. Figure 6-8 provides a visual comparison between performing batch and stream 

processing in Spark. The other implication is that the same Catalyst engine discussed 

in Chapter 5 optimizes the streaming computation logic expressed via structured APIs. 

The knowledge you gain from working with structured APIs is directly transferable to 

building streaming applications running on the Spark Structured Streaming engine. The 

only remaining parts to be learned are the ones that are specific to the stream processing 

domain, like event-time processing and maintaining state.

Figure 6-7. Treating streaming data as a table being continuously updated

Figure 6-8. Comparing batch processing and stream processing in Spark
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The second key idea is the transactional integration with storage systems to provide 

an end-to-end, exactly-once guarantee. The goal here is to ensure that the serving 

applications that read data from the storage systems see a consistent snapshot of the 

data that has been processed by streaming applications. Traditionally, it is a developers’ 

responsibility to ensure there is no duplicate data or data loss when sending data from 

a streaming application to an external storage system. This is one of the pain points that 

was raised by streaming application developers. Internally, the Structured Streaming 

engine already provides an exactly-once guarantee, and now that same guarantee is 

extended to external storage systems, provided those systems support transactions.

Starting with Apache Spark 2.3, the Structured Streaming engine’s processing 

model has been expanded to support a new model called continuous processing. The 

previous processing model was the micro-batching model, which is the default one. 

Given the nature of the micro-batching processing model, it is suitable for use cases that 

can tolerate end-to-end latency in the range of 100 milliseconds. For other use cases 

that need end-to-end latency as low as 1 millisecond, they should use the continuous 

processing model; however, it is in an experimental status as of Apache Spark 2.3 

version. It has a few restrictions in terms of what streaming computations are supported.

 Core Concepts
This section covers a set of core concepts you need to understand before building a 

streaming application. The main parts of a streaming application consist of specifying 

one or more streaming data sources, providing the logic for manipulating the incoming 

data streams in the form of DataFrame transformations, defining the output mode and 

the trigger, and finally specifying a data sink to write the result to. Since both the output 

mode and trigger have default values, they are optional if their default values meet your 

use case. Figure 6-9 outlines the steps. The optional ones are marked with an asterisk.

Each of these concepts is described in detail in the following sections.

Figure 6-9. The core parts of a Structured Streaming application
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 Data Sources

Let’s start with data sources. With batching processing, the data source is a static dataset 

that resides on some storage system like the local file system, HDFS, or S3. The data 

sources in Structured Streaming are quite different. They generate the data continuously, 

and the rate can vary over time. Structured Streaming provides native support for the 

following sources.

• Kafka source: require Apache Kafka with version 0.10 or higher. 

This is the most popular data source in a production environment. 

Working with this data source requires a fundamental understanding 

of how Kafka works. Connecting to and reading data from a Kafka 

topic requires a specific set of settings that must be provided. Please 

refer to Kafka Integration Guide on the Spark website (https://

spark.apache.org/docs/latest/structured- streaming- kafka-

integration.html) for more information.

• File source: Files located on either local file system, HDFS or S3. As 

new files are dropped into a directory, this data source picks them 

up for processing. Commonly used file formats are supported, such 

as text, CSV, JSON, ORC, and Parquet. See the DataStreamReader 

interface for an up-to-date list of supported file formats. A good 

practice when working with this data source is to make the input files 

are completely written, then move them into the path of this data 

source.

• Socket source: This is for testing purposes only. It reads UTF8 data 

from a socket listening on a certain host and port.

• Rate source: This is for testing and benchmark purposes only. This 

source can be configured to generate several events per second, 

where each event consists of a timestamp and a monotonically 

increased value. This is the easiest source to work with while learning 

Structured Streaming.

One important property a data source needs to provide for Structured Streaming to 

deliver an end-to-end exactly-once guarantee is a marker. It can rewind to that location 

when reprocessing is needed. For example, Kafka data source provides a Kafka offset 
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to track the read position of a partition of a topic. This property determines whether a 

particular data source is fault-tolerant or not. Table 6-1 describes some of the options for 

each of the out-of-the-box data sources.

Apache Spark 2.3 introduced the Data Source V2 API, which is an officially supported 

set of interfaces for Spark developers to develop custom data sources that can easily 

integrate with Structured Streaming. With this well-defined set of APIs, the number of 

custom Structured Streaming sources dramatically increase.

Table 6-1. Out-of-the-Box Data Sources

Name Fault- Tolerant Configurations

File Yes path: path to the input directory

maxFilesPerTrigger: maximum number of new files to read 

per trigger

latestFirst:  Whether to process the latest files (in terms of 

modification time) or not.

Socket no the following are required

host: host to connect to

port: port to connect to

rate Yes rowsPerSecond: number of rows to generate per second

rampUpTime: ramp up time in seconds before reaching 

rowsPerSecond

numPartitions: number of partitions

kafka Yes kafka.bootstrap.servers: a comma-separated list of 

host:port of kafka brokers

subscribe: a comma-separated list of topics

please refer to the kafka integration guide on the Spark website 

for more information.
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 Output Modes

Output modes are a way to tell Structured Streaming how the output data should be 

written to a sink. This concept is unique to stream processing in Spark. There are three 

options.

• Append mode: This is the default mode if the output mode is not 

specified. In this mode, only the new rows appended to the resulting 

table are sent to the specified output sink.

• Complete mode: The entire resulting table is written to the  

output sink.

• Update mode: Only the updated rows in the resulting table are 

written to the output sink. This means unchanged rows are not 

written out.

The semantics of the various Output modes take some time to get used to because 

there are a few dimensions to them. Given the three options, it is natural to wonder 

under what circumstances you would use one output mode versus the other ones. 

Hopefully, it makes more sense when you go through a few examples.

 Trigger Types

The trigger is another important concept to understand. The Structured Streaming 

engine uses the trigger information to determine when to execute the provided 

streaming computation logic on the newly discovered streaming data. Table 6-2 

describes the different trigger types.
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 Data Sinks

Data sinks are at the opposite end of the data sources. They are meant for storing the 

output of streaming applications. It is important to understand which sinks can support 

which output mode and whether they are fault-tolerant. A short description of each sink 

is provided here, and the various options for each sink are outlined in Table 6-3.

• Kafka sink: require Apache Kafka with version 0.10 or higher. There 

is a specific set of settings to connect to a Kafka cluster. Please 

refer to the Kafka Integration Guide on the Spark website for more 

information.

• File sink: This is a destination on a file system, HDFS, or S3. 

Commonly used file formats are supported, such as text, CSV, JSON, 

ORC, and Parquet. See the DataStreamReader interface for an up-to- 

date list of supported file formats.

• Foreach sink: This is meant for running an arbitrary computation on 

the rows in the output.

Table 6-2. Trigger Types

Type Description

not specified

(default)

For this default type, Spark uses the micro-batch mode and processes the next 

batch of data as soon as the previous batch of data has completed processing.

Fixed interval For this type, Spark uses the micro-batch mode and processes the batch of 

data based on the user-provided interval. if the processing of the previous 

batch of data takes longer than the interval, then the next batch of data is 

processed immediately after the previous one is completed. in other words, 

Spark does not wait until the next interval boundary.

One-time this trigger type is meant to be used for one time processing of the available 

batch of data, and Spark immediately stop the streaming application once the 

processing is completed. this trigger type is useful when the data volume is 

extremely low, and therefore it is more cost effective to spin up a cluster and 

process the data only a few times a day.

Continuous Spark executes your streaming application logic using the new low latency and 

continuous processing mode.
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• Console sink: This is for testing and debugging purposes only and 

when working with low volume data. The output is printed out to the 

console on every trigger.

• Memory sink: This is for testing and debugging purposes only when 

working with low-volume data. It uses the memory of the driver to 

store the output.

One important property a data sink must support for Structured Streaming to deliver 

an end-to-end and exactly-once guarantee is idempotent for handling reprocessing. In 

other words, it must be able to handle multiple writes (that occur at different times) of 

the same data such that the outcome is the same as if there was only a single write. The 

multiple writes are a result of reprocessing data during a failure scenario.

Table 6-3. Out-of-the-Box Data Sinks

Name Supported

Output Modes

Fault

Tolerant

Configurations

File append Yes path: path to the input directory

all the popular file formats are supported. See 

DataFrameWriter for more information.

Foreach append,

Update,

Complete

Depends this is a very flexible sink, and it is implementation-

specific.

See the following details.

Console append,

Update,

Complete

no numrows: number of rows to print every trigger. 

Default is 20 rows

truncate: whether to truncate if each row is too 

long. Default is true.

memory append,

Complete

no n/a

kafka append,

Update,

Complete

Yes kafka.bootstrap.servers: a comma-separated list of 

host:port of kafka brokers

topic: a kafka topic to write data to.

please refer to kafka integration guide on Spark’s 

website for more information.
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The next section uses examples to demonstrate how the various pieces fit together 

when developing a Spark Structured Streaming application.

 Watermarking

Watermarking is a commonly used technique in stream processing engines to deal 

with data that arrives at a much later time than other data created at about the same 

time. Late data presents challenges to stream processing engines when the streaming 

computation logic requires maintaining some state. Examples of this scenario are when 

there are aggregations or joining going on. Streaming application developers can specify 

a threshold to let the Structured Streaming engine know how late the data is expected 

to be in event time. With this information, the Structured Streaming engine can decide 

whether a piece of late data is processed or discarded.

More importantly, Structured Streaming uses the specified threshold to determine 

when the old state can be discarded. Without this information, Structured Streaming 

needs to maintain all the states indefinitely, and this causes out-of-memory issues for 

streaming applications. Any production Structured Streaming applications that perform 

aggregations or joining need to specify a watermark. This is an important concept, and 

more information about this topic is discussed and illustrated in later sections.

 Structured Streaming Applications
This section walks through a Spark Structured Streaming example application to see how 

concepts are mapped into code. The following example is about processing a small set of 

mobile action events from a file data source. Each event consists of three fields.

• id: Represents the unique id of a phone. In the provided sample 

dataset, the phone ID is something like phone1, phone2, phone3.

• action: Represents an action taken by a user. Possible values of the 

action are open and close

• ts: Represents the timestamp when the action was taken by a user. 

This is the event time.
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The mobile event data is split into three JSON files, which are available in the 

chapter6/data/mobile directory. To simulate the data streaming behavior, the JSON 

files are copied into the input folder in a certain order, and then the output is examined 

to validate your understanding.

Let’s explore the mobile event data by using DataFrames to read the data (see 

Listing 6-2).

Listing 6-2. Reading in Mobile Data and Printing Its Schema

val mobileDataDF = spark.read.json("<path>/chapter6/data/mobile")

mobileDataDF.printSchema

 |-- action: string (nullable = true)

 |-- id: string (nullable = true)

 |-- ts: string (nullable = true)

file1.json

{"id":"phone1","action":"open","ts":"2018-03-02T10:02:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:03:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:03:50"}

{"id":"phone1","action":"close","ts":"2018-03-02T10:04:35"}

file2.json

{"id":"phone3","action":"close","ts":"2018-03-02T10:07:35"}

{"id":"phone4","action":"open","ts":"2018-03-02T10:07:50"}

file3.json

{"id":"phone2","action":"close","ts":"2018-03-02T10:04:50"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:10:50"}

By default, Structured Streaming requires a schema when reading data from a file- 

based data source. This makes sense because it is not possible to infer the schema of the 

incoming streaming data when the directory is empty. However, if you want it to infer the 

schema, you can set the configuration spark.sql.streaming.schemaInference to true. 

In this example, you explicitly create a schema. Listing 6-3 contains a snippet of code for 

creating the schema for the mobile event data.
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Listing 6-3. Create a Schema for Mobile Event Data

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType()

                           .add("id", StringType, false)

                           .add("action", StringType, false)

                           .add("ts", TimestampType, false)

Let’s start with a simple use case for processing the mobile event data. Our goal is 

to generate a count of each action type using a fixed window length with a ten-second. 

The three lines of code in Listing 6-4 help to achieve this goal. The first line illustrates 

using a file-based data source by using the DataStreamReader class to read data from 

a directory. The expected data format is in JSON, and the schema consists of three 

columns, defined in Listing 6-3. The returned object of the first line is an instance 

of DataFrame class. Unlike the DataFrame covered in Chapter 4, this DataFrame is 

a streaming DataFrame. You can simply confirm this by calling the isStreaming 

function, and the returned value should be true. The streaming computation logic 

in this simple application is expressed in the second line, which performs the group 

by transformation using the action column and a fixed window based on the ts 

column. The fixed window in the group by transformation is based on the timestamp 

embedded inside the mobile event data. The third line is important because it defines 

the output mode and data sink. Most importantly, it tells the Structured Streaming 

engine to start incrementally running the streaming computation logic expressed in 

the second line. To go into more detail, the third line of code uses the DataFrameWriter 

instance of the actionCountDF DataFrame to specify the console as the data sink, 

meaning the output is printed out to a console for you to examine. It then defines the 

output mode as "complete" so you can see all the records in the result table. Finally, 

it invokes the start() function of the DataStreamWriter class to start the execution, 

which means the data source starts processing files that are dropped into the /<path>/

chapter6/data/input directory. Another important thing to note is that the start 

function returns an instance of a StreamingQuery class, representing a handle to a 

query that is continuously executing in the background as new data arrives. You can 

use the mobileConsoleSQ streaming query to examine the status and progress of the 

computation in your streaming application.
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Before you type in the lines of code in Listing 6-4, make sure the input folder  

is empty.

Listing 6-4. Generate a Count Per Action Type in a 10-Second Sliding Window

// create a streaming DataFrame from reading data file in the specified 

directory

val mobileSSDF = spark.readStream.schema(mobileDataSchema)

                      .json("/<path>/chapter6/data/input")

mobileSSDF.isStreaming

// perform a group by using event time of column ts and fixed window of 10 mins

val actionCountDF = mobileSSDF.groupBy(window($"ts",

                                "10 minutes"), $"action").count

// start the streaming query and write the output to console

val mobileConsoleSQ = actionCountDF.writeStream

                  .format("console").option("truncate", "false")

                  .outputMode("complete")

                  .start()

The start() function in Listing 6-4 triggers the Spark Structured Streaming engine 

to start watching the input folder and start processing the data once it sees new files in 

that folder. After copying the file1.json file from the chapter6/data/mobile directory 

to the chapter6/data/input directory, the output console displays the output similar to 

the lines in Listing 6-5.

The output indicates there is only one window from 10:00 to 10:10, and within this 

window, there are one close action and three open actions, which should match the four 

lines of events in files1.json. Now repeat the same process with file2.json, and the 

output should match Listing 6-6. The file2.json data file contains one event with open 

action and another with close action and both fall in the same window. Therefore, the 

counts are updated to two close and four open respectively for action type.
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Listing 6-5. Output from Processing file1.json

-------------------------------------------

Batch: 0

-------------------------------------------

+-----------------------------------------------+--------+------+

|                                         window|  action| count|

+-----------------------------------------------+--------+------+

|     [2018-03-02 10:00:00, 2018-03-02 10:10:00]|  close |     1|

|     [2018-03-02 10:00:00, 2018-03-02 10:10:00]|  open  |     3|

+-----------------------------------------------+--------+------+

Listing 6-6. Output from Processing file2.json

-------------------------------------------

Batch: 1

-------------------------------------------

+----------------------------- --------------+--------+-------+

|                                      window|  action|  count|

+--------------------------------------------+--------+-------+

|  [2018-03-02 10:00:00, 2018-03-02 10:10:00]|  close |      2|

|  [2018-03-02 10:00:00, 2018-03-02 10:10:00]|  open  |      4|

+--------------------------------------------+--------+-------+

At this point, let’s invoke a few functions of the query stream mobileConsoleSQ (an 

instance of StreamingQuery class) to examine the status and progress. The status() 

function tells you what’s going on at the current state of the query stream, which can 

be either in wait mode or in the middle of processing the current batch of events. The 

lastProgress() function provides some metrics about the processing of the last batch of 

events, including processing rates, latencies, and so on. Listing 6-7 contains the sample 

output from both of these functions.

Listing 6-7. Output from Calling status() and lastProgress() Functions

scala> mobileConsoleSQ.status

res14: org.apache.spark.sql.streaming.StreamingQueryStatus =

{

  "message" : "Waiting for data to arrive",
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  "isDataAvailable" : false,

  "isTriggerActive" : false

}

scala> mobileConsoleSQ.lastProgress

res17: org.apache.spark.sql.streaming.StreamingQueryProgress =

{

  "id" : "2200bc3f-077c-4f6f-af54-8043f50f719c",

  "runId" : "0ed4894c-1c76-4072-8252-264fe98cb856",

  "name" : null,

  "timestamp" : "2018-03-18T18:18:12.877Z",

  "batchId" : 2,

  "numInputRows" : 0,

  "inputRowsPerSecond" : 0.0,

  "processedRowsPerSecond" : 0.0,

  "durationMs" : {

    "getOffset" : 1,

    "triggerExecution" : 1

  },

  "stateOperators" : [ {

    "numRowsTotal" : 2,

    "numRowsUpdated" : 0,

    "memoryUsedBytes" : 17927

  } ],

  "sources" : [ {

    "description" : "FileStreamSource[file:<path>/chapter6/data/input]",

    "startOffset" : {

      "logOffset" : 1

    },

    "endOffset" : {

      "logOffset" : 1

    },

    "numInputRows" : 0,

    "inputRowsPerSecond" : 0.0,...
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Let’s finish processing the last file of the mobile event data. It’s the same as file2.

json. After file3.json is copied to the input directory, the output should look like 

Listing 6-8. File file3.json contains one close action that belongs to the first window 

and an open action that falls into a new window from 10:10 to 10:20. In total, there are 

eight actions. Seven of those fall into the first window, and one action falls into the 

second window.

Listing 6-8. Output from Processing file3.json

-------------------------------------------

Batch: 2

-------------------------------------------

+----------------------------------------------+--------+-------+

|                                        window|  action|  count|

+----------------------------------------------+--------+-------+

|    [2018-03-02 10:00:00, 2018-03-02 10:10:00]|   close|      3|

|    [2018-03-02 10:00:00, 2018-03-02 10:10:00]|    open|      4|

|    [2018-03-02 10:10:00, 2018-03-02 10:20:00]|    open|      1|

+----------------------------------------------+--------+-------+

In a production and long-running streaming application, it is required to call the 

StreamingQuery.awaitTermination() function. It is a blocking call to prevent the 

main thread process from exiting and enable the streaming query to continuously run 

and process new data as they arrive into the data source. This function fails when the 

streaming query fails due to some foreseen errors.

While learning Structured Streaming, you may want to stop the streaming 

query to change the output mode, trigger, or other configurations. You can use the 

StreamingQuery.stop() function to stop the data source from receiving new data and 

stop the  continuous execution of logic in a streaming query. Listing 6-9 shows examples 

of managing streaming queries.

Listing 6-9. Managing Streaming Query

// this is blocking call

mobileSQ.awaitTermination()

// stop a streaming query

mobileSQ.stop
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// another way to stop all streaming queries in a Spark application

for(qs <- spark.streams.active) {

    println(s"Stop streaming query: ${qs.name} - active:

              ${qs.isActive}")

    if (qs.isActive) {

      qs.stop

    }

}

 Streaming DataFrame Operations
Listing 6-9 shows that once a data source is configured and defined, the 

DataStreamReader returns an instance of a DataFrame—the same one you are 

familiar with from Chapter 3 and Chapter 4. This means you can use most operations 

and Spark SQL functions to express your application’s streaming computation 

logic. It is important to note that not all operations in DataFrame are supported in 

a streaming DataFrame. This is because some of them are not applicable in stream 

processing, where the data is unbounded. Examples of such operations include 

limit, distinct, cube, and sort.

 Selection, Project, Aggregation Operations

One of the selling points of Structured Streaming is a set of unified APIs for batch 

processing and stream processing in Spark. With a streaming DataFrame, it is 

feasible to apply any of the select and filter transformations to it and any of the 

Spark SQL functions that operate on individual columns. In addition, the basic 

aggregations and the advanced analytics functions covered in Chapter 4 are also 

available to a streaming DataFrame. A streaming DataFrame can be registered as a 

temporary view and then apply SQL queries on it. Listing 6-10 provides an example 

of filtering and applying Spark SQL functions on top of the mobileSSDF DataFrame in 

Listing 6-4.
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Listing 6-10. Apply Filtering and Spark SQL Functions on a Streaming 

DataFrame

import org.apache.spark.sql.functions._

val cleanMobileSSDF = mobileSSDF.filter($"action" === "open"

                               || $"action" === "close")

                          .select($"id", upper($"action"), $"ts")

// create a view to apply SQL queries on

cleanMobileSSDF.createOrReplaceTempView("clean_mobile")

spark.sql("select count(*) from clean_mobile")

It is important to note the following DataFrame transformations are not supported 

yet in a streaming DataFrame either because they are too complex to maintain state or 

because of the unbounded nature of streaming data.

• Multiple aggregations or a chain of aggregations on a streaming 

DataFrame

• Limit and take N rows

• Distinct transformation (There is a way to deduplicate data using a 

unique identifier, however.)

• Sorting on a streaming DataFrame without any aggregation (sorting 

is supported after some form of aggregation, however.)

Any attempt to use one of the unsupported operations results in an 

AnalysisException exception. You see a message that states something like, “operation 

XYZ is not supported with streaming DataFrames/Datasets”.

 Join Operations

One of the coolest things you can do with a streaming DataFrame is to join it with either 

a static DataFrame or another streaming DataFrame. Joining is a complex operation and 

the tricky part is that not all of the data for a streaming DataFrame is available at the time 

of joining. Therefore, the result of a join is generated incrementally at each trigger point, 

similar to how the result of an aggregation is generated.
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Starting with Spark version 2.3, Structured Streaming supports joining two streaming 

DataFrames. Given the unbounded nature of a streaming DataFrame, Structured 

Streaming must maintain the past data of both streaming DataFrames to match with 

any future, yet-to-be-received data. To avoid the explosion of the streaming state that 

Structured Streaming must maintain, a watermark can be optionally provided for 

both streaming DataFrames, and a constraint on event-time must be defined in the 

join condition. Let’s go through an IoT use case of joining two data sensor–related 

data streams of a data center. The first one contains the temperature reading of the 

various locations in a data center. The second one contains the load information of 

each computer in the same data center. The joint condition of these two streams is the 

location. Listing 6-11 contains code about providing watermarks and a constraint on the 

event-time in the join condition.

Listing 6-11. Joining Two Streaming DataFrames

import org.apache.spark.sql.functions.expr

//  the specific streaming data source information is not important in this 

example

val tempDataDF = spark.readStream. ...

val loadDataDF = spark.readStream. ...

val tempDataWatermarkDF = tempDataDF.withWaterMark("temp_taken_time",  

"1 hour")

val loadDataWatermarkDF = loadDataDF.withWaterMark("load_taken_time",  

"2 hours")

// join on the location id as well as the event time constraint

tempWithLoadDataDF = tempDataWatermarkDF.join(loadDataWatermarkDF,

   expr(""" temp_location_id = load_location_id AND

            load_taken_time >= temp_taken_time AND

            load_taken_time <= temp_taken_time + interval 1 hour

        """)

)

There are more restrictions on the outer joins when joining a static DataFrame 

and a streaming DataFrame and two streaming DataFrames. Table 6-4 provides some 

information.
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 Working with Data Sources
The previous section described each of the built-in sources that Structured Streaming 

provides. This section goes into more detail and provides sample codes for working 

with them.

Both socket and rate data sources are designed for testing and learning purposes 

only, and they shouldn’t be used in production.

 Working with a Socket Data Source

The socket data source is easy to work with, and it only requires information about the 

host and port to connect to. Before starting a streaming query for the socket data source, 

it is important to start a socket server first using a network utility command-line utility 

like nc on macOS or netcat for Windows. In this example, the nc network utility is used, 

and you need to bring up two terminals. The first one is for starting up a socket server 

with port number 9999; the command is nc -lk 9999. The second one is for running the 

Spark shell with the code in Listing 6-12.

Table 6-4. Some Details About Joining Streaming DataFrame

Left Side+Right Side Join Type Note

Static+Streaming inner Supported

Static+Streaming Left Outer not supported

Static+Streaming right Outer Supported

Static+Streaming Full Outer not supported

Streaming+Streaming inner Supported

Streaming+Streaming Left Outer Conditionally supported. must specify 

watermark on right side and time constraint

Streaming+Streaming right Outer Conditionally supported. must specify 

watermark on left and time constraint

Streaming+Streaming Full Outer not supported
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Listing 6-12. Reading Streaming Data from Socket Data Source

val socketDF = spark.readStream.format("socket")

                               .option("host", "localhost")

                               .option("port", "9999").load()

val words = socketDF.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count()

val query = wordCounts.writeStream.format("console")

                      .outputMode("complete")

                      .start()

Now go back to the first terminal, type Spark is great, and hit the Enter key. Then 

type Spark is awesome and hit the enter key. Hitting the enter key tells the Netcat 

server to send whatever was typed to the socket listener. If everything went well, there 

should be two output batches in the Spark shell console, as in Listing 6-13, and each 

one contains the count of each word. Since Structured Streaming maintains state across 

batches, it was able to update the count of the words Spark and is to 2.

Listing 6-13. Output of Socket Data Source in Spark-Shell Console

-------------------------------------------

Batch: 0

-------------------------------------------

+--------+-------+

|   value|  count|

+--------+-------+

|   great|      1|

|      is|      1|

|   Spark|      1|

+--------+-------+
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-------------------------------------------

Batch: 1

-------------------------------------------

+------------+-------+

|       value|  count|

+------------+-------+

|       great|      1|

|          is|      2|

|     awesome|      1|

|       Spark|      2|

+------------+-------+

When you are done testing the Socket data source, feel free to stop the streaming 

query by calling the stop function, as shown in Listing 6-14.

Listing 6-14. Stop a Streaming Query of Socket Data Source

query.stop

 Working with a Rate Data Source

Like the socket data source, the rate data source was designed for testing and learning 

purposes only. It supports a few options, and the key one is the number of rows to 

generate per second. If that number is high, then another optional configuration can 

be provided to specify the ramp-up time to get to the number of rows per second. Each 

piece of data the rate source produces contains two columns: the timestamp and the 

auto-increment value. Listing 6-15 contains the code for printing out the data from the 

rate data source and what the first batch looks like in the console.

Listing 6-15. Working with Rate Data Source

// configure it to generate 10 rows per second

val rateSourceDF = spark.readStream.format("rate")

                                   .option("rowsPerSecond","10")

                                   .load()
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val rateQuery = rateSourceDF.writeStream

                            .outputMode("update")

                            .format("console")

                            .option("truncate", "false")

                            .start()

-------------------------------------------

Batch: 1

-------------------------------------------

+--------------------------------+-------+

|                       timestamp|  value|

+--------------------------------+-------+

|         2018-03-19 10:30:21.952|   0   |

|         2018-03-19 10:30:22.052|   1   |

|         2018-03-19 10:30:22.152|   2   |

|         2018-03-19 10:30:22.252|   3   |

|         2018-03-19 10:30:22.352|   4   |

|         2018-03-19 10:30:22.452|   5   |

|         2018-03-19 10:30:22.552|   6   |

|         2018-03-19 10:30:22.652|   7   |

|         2018-03-19 10:30:22.752|   8   |

|         2018-03-19 10:30:22.852|   9   |

+--------------------------------+-------+

One interesting thing to note is the number in the value column is guaranteed to be 

consecutive across all the partitions. Listing 6-16 illustrates what the output looks like 

with three partitions.

Listing 6-16. the Output of Rate Data Source with the Partition ID

import org.apache.spark.sql.functions._

// with 3 partitions

val rateSourceDF2 = spark.readStream.format("rate")

                         .option("rowsPerSecond","10")

                         .option("numPartitions",3).load()
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// add partition id column to examine

val rateWithPartitionDF =

  rateSourceDF2.withColumn("partition_id", spark_partition_id())

val rateWithPartitionQuery = rateWithPartitionDF.writeStream

                                    .outputMode("update")

                                    .format("console")

                                    .option("truncate", "false")

                                    .start()

// output of batch one

-------------------------------------------

Batch: 1

-------------------------------------------

+--------------------------------+--------+--------------+

|                       timestamp|   value|  partition_id|

+--------------------------------+--------+--------------+

|         2018-03-24 08:46:43.412|    0   |     0        |

|         2018-03-24 08:46:43.512|    1   |     0        |

|         2018-03-24 08:46:43.612|    2   |     0        |

|         2018-03-24 08:46:43.712|    3   |     1        |

|         2018-03-24 08:46:43.812|    4   |     1        |

|         2018-03-24 08:46:43.912|    5   |     1        |

|         2018-03-24 08:46:44.012|    6   |     2        |

|         2018-03-24 08:46:44.112|    7   |     2        |

|         2018-03-24 08:46:44.212|    8   |     2        |

|         2018-03-24 08:46:44.312|    9   |     2        |

+--------------------------------+--------+--------------+

The output shows the ten rows are spread across three partitions, and the values 

are consecutive as if they were generated for a single partition. If you are curious about 

the implementation of this data source, then check out https://github.com/apache/

spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/

streaming/RateSourceProvider.scala.

Chapter 6  Spark Streaming

https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/RateSourceProvider.scala
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/RateSourceProvider.scala
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/RateSourceProvider.scala


257

 Working with a File Data Source

The file data source is simplest to understand and work with. Let’s say there is a 

need to process new files that are periodically copied into a directory. This is the 

perfect data source for this use case. Out of the box, it supports all the commonly 

used file formats, including text, CSV, JSON, ORC, and Parquet. For a complete list 

of supported file formats, please consult the DataStreamReader interface. Among 

the four options that the file data source supports, the only required one is the input 

directory to read files from.

As new files are copied into a specified directory, the file data source picks them up 

to process. It is possible to configure this data source to selectively pick up only a fixed 

number of new files for processing. The option to specify the number of files is called 

maxFilesPerTrigger.

Listing 6-17 provides an example of reading JSON mobile data events from a 

directory and using the same schema defined in Listing 6-3. Another interesting and 

optional option that the file data source supports is processing the latest files before the 

older files. It uses the timestamp of a file to determine which file is newer. The default 

behavior is to process files from oldest to latest. This option is useful when there is a large 

backlog of files to process, and you want to process the new files first.

Listing 6-17. Working with File Data Source

val mobileSSDF = spark.readStream.schema(mobileDataSchema)
                      .json("<directory name>")

// if you want to specify maxFilesPerTrigger
val mobileSSDF =  spark.readStream.schema(mobileDataSchema)
                       .option("maxFilesPerTrigger", 5)
                       .json("<directory name>")

// if you want to process new files first
val mobileSSDF =  spark.readStream.schema(mobileDataSchema)
                       .option("latestFirst", "true")
                       .json("<directory name>")
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 Working with a Kafka Data Source

Most production streaming applications process streaming data from Kafka data 

sources. To be effective at working with this data source, you need to have basic 

knowledge about working with Kafka. At a high level, this data source acts as a Kafka 

consumer, so the information it needs is very similar to what a typical Kafka consumer 

needs. There are two required pieces of information and a handful of optional ones.

The two required ones are a list of Kafka servers to connect to and information about 

one or more topics to consume the data from. In terms of flexibility and support a variety 

of needs, it supports three different ways of specifying this information. You just need to 

pick the one that best suits your use case. Table 6-5 contains information about the two 

required options.

After the required options are specified, you can optionally specify the options in 

Table 6-5, which contains only a subset of the commonly used ones. For a complete 

list of optional options, please consult the Structured Streaming and Kafka Integration 

Guide. The reason these options are optional is that they have default values.

The startingOffsets and endingOffsets options are a way for you to have fine- 

grain control of processing data in Kafka from a specific point in a particular partition 

of a particular topic. This flexibility is extremely useful in scenarios where reprocessing 

Table 6-5. Required Options for Kafka Data Source

Option Value Description

kafka.bootstrap.

servers

host1:port1, host2:port2 this is a comma-separated list of kafka broker 

servers. Consult your kafka administrators for 

hostname and port number to use

subscribe topic1,topic2 this is a comma-separated list of topic names for 

this data source to read data from.

subscribepattern topic.* this is a regex pattern to express which topics to 

read data from. it is a little bit more flexible than 

the subscribe option.

assign { topic1: [1,2], topic2: 

[3,4] }

With this option, you can specify the specific list 

of partitions of the topics to read data from. this 

information must be provided in JSOn format.
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is needed due to a failure, bugs introduced in a new version of the software, or when 

retraining a machine learning model. The ability to reprocess data in Kafka is one of the 

reasons that Kafka is very popular in the world of big data processing. It may be obvious, 

but the startingOffsets is used by the Kafka data source to figure out where to start 

reading the data from in Kafka. and therefore, once the processing is going, this option is 

no longer used. The endingOffsets is used by the Kafka data source to figure out when 

to stop reading the data from Kafka. For example, if you want your streaming application 

to read the latest data from Kafka and continue with processing new incoming data, the 

latest are the startingOffsets and endingOffsets values.

Table 6-6. Optional Options for Kafka Data Source

Option Default Value Value Description

startingOffsets latest earliest, latest

JSOn string of starting offset for 

each topic, i.e.,

{ “topic1”: { “0”:45, “1”: -1},

“topic2”: { “0”:-2}

}

earliest means the beginning 

of a topic. latest means 

whatever the latest data is in 

a topic. When using the JSOn 

string format, –2 represents 

the earliest offset in a specific 

partition, and –1 represents the 

latest offset in a specific partition

endingOffsets latest latest

JSOn string, i.e.

{ “topic1”: { “0”:45, “1”: -1},

“topic2”: { “0”:-2}

}

latest means the latest data 

in a topic. When using the JSOn 

string format, –1 represents 

the latest offset in a specific 

partition. naturally, –2 is not 

applicable for this option.

maxOffsets 

pertrigger

none Long. i.e., 500 this option is a rate limit 

mechanism to control the 

number of records to process 

per trigger interval. if a value is 

specified, it represents the total 

number of records across all the 

partitions, not per partition.
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By default, the Kafka data source is not included in the Apache Spark binary 

available at https://spark.apache.org/downloads.html. If you want to use the Kafka 

data source from the Spark shell, it is important to start the Spark shell with an extra 

option to download and include the right jar file. The deployment section of Structured 

Streaming and Kafka integration documentation (https://spark.apache.org/docs/

latest/structured- streaming- kafka- integration.html) provides the information 

about the extra option. It looks something like in Listing 6-18.

Listing 6-18. Start Spark Shell with Kafka Data Source Jar File

./bin/spark-shell --packages  org.apache.spark:spark-sql- kafka-0-10_2.11:2.3.0

//  if the above package is not provided, the following problem will be 

encountered

java.lang.ClassNotFoundException: Failed to find data source: kafka. Please 

find packages at http://spark.apache.org/third-party-projects.html

   at org.apache.spark.sql.execution.datasources.DataSource$.

lookupDataSource(DataSource.scala:635)

   at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.

scala:159)

Let’s start with a simple example of processing the data from the beginning of a 

Kafka topic called pageviews and continue processing new data as they arrive in Kafka. 

Listing 6-19 shows the code.

Listing 6-19. Kafka Data Source Example

import org.apache.spark.sql.functions._

val pvDF = spark.readStream.format("kafka")

             .option("kafka.bootstrap.servers","localhost:9092")

             .option("subscribe", "pageviews")

             .option("startingOffsets", "earliest")

             .load()

pvDF.printSchema

 |-- key: binary (nullable = true)

 |-- value: binary (nullable = true)
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 |-- topic: string (nullable = true)

 |-- partition: integer (nullable = true)

 |-- offset: long (nullable = true)

 |-- timestamp: timestamp (nullable = true)

 |-- timestampType: integer (nullable = true)

One unique thing about the Kafka data source is that the streaming DataFrame it 

returns has a fixed schema, which looks like Listing 6-19. The value column contains 

the actual content of each Kafka message, and the column type is binary. Kafka doesn’t 

care about the content of each message, and therefore it treats it as a binary blob. The 

remaining columns in the schema contain the metadata of each message. If the content 

of the messages was serialized in some binary format at the time of sending to Kafka, 

then you need a way to deserialize it using either Spark SQL functions or a UDF before 

those messages can be processed in Spark.

In Listing 6-20, the content is a string, so you simply need to cast it to a String type. 

For demonstration purposes, Listing 6-20 performs the casting of the value column and 

selects a few metadata-related columns to display.

Listing 6-20. Casting Message Content To String Type

val pvValueDF = pvDF.selectExpr("partition","offset",

                  "CAST(key AS STRING)", "CAST(value AS STRING)")

                        .as[(String, Long, String, String)]

The examples in Listing 6-21 contain a few variations of specifying Kafka topic, 

partition, and offset to read Kafka messages.

Listing 6-21. Various Examples of Specifying Kafka Topic, Partition and Offset

//  reading from multiple topics with default startingOffsets and 

endingOffsets

val kafkaDF = spark.readStream.format("kafka")

   .option("kafka.bootstrap.servers","server1:9092,server2:9092")

   .option("subscribe", "topic1,topic2")

   .load()
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//  reading from multiple topics using subscribePattern

val kafkaDF = spark.readStream.format("kafka")

   .option("kafka.bootstrap.servers","server1:9092,server2:9092")

   .option("subscribePattern", "topic*")

   .load()

// reading from a particular offset of a partition using JSON format

//  the triple quotes format in Scala is used to escape double quote in  

JSON string

Val kafkaDF = spark.readStream.format("kafka")

        .option("kafka.bootstrap.servers","localhost:9092")

        .option("subscribe", "topic1,topic2")

        .option("startingOffsets", """ {"topic1": {"0":51} } """)

        .load()

 Working with a Custom Data Source

Starting with Spark 2.3 version, the Data Source APIs V2 was introduced to address the 

issues in V1 and provide a set of new APIs that are clean, extensible, and easy to work 

with. The Data Source APIs V2 is available in Scala only.

This section is meant to provide a quick overview of the interfaces and main 

APIs involved in building a custom data source using Data Source APIs V2. Before 

doing so, it is a good idea to study the implementation of a few of the built-in data 

sources, such as the RateSourceProvider.scala, RateSourceProviderV2.scala, and 

KafkaSourceProvider.scala classes.

All custom data sources must implement a marker interface called DataSourceV2, 

and then it can decide whether to implement interface ContinuousReadSupport 

or MicroBatchReadSupport or both. For example, KafkaSourceProvider.scala 

implements both interfaces because it allows users to choose which processing mode to 

use based on a use case. Each of the two interfaces acts as a factory method for creating 

an instance of ContinuousReader or MicroBatchReader, respectively. The bulk of the 

custom data source implementation is in implementing the APIs defined in these two 

interfaces.

I’ve implemented a fun and non-fault-tolerant data source that reads wiki edits from 

the Wikipedia IRC server. It is fairly easy to use Spark Structured Streaming to analyze 

the wiki edits of various Wikipedia sites. See the README.md in the GitHub repository 
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(https://github.com/beginning- spark/beginning- apache- spark- 3/tree/master/

chapter6/custom- data- source) for more information. To use this custom data source in 

Spark shell, the first step is to download the streaming_sources-assembly-0.0.1.jar 

file from the GitHub repository. Listing 6-22 describes the remaining steps

Listing 6-22. Analyzing Wiki Edits with a Custom Data Source

// start up spark-shell with streaming_sources-assembly-0.0.1.jar

bin/spark-shell --jars <path>/streaming_sources-assembly-0.0.1.jar

// once spark-shell is successfully started

// define the data source provider name

val provideClassName = "org.structured_streaming_sources.wikedit.

WikiEditSourceV2"

// use custom data and subscribe to English Wikipedia edit channel

val wikiEditDF = spark.readStream.format(provideClassName).

option("channel", "#en.wikipedia").load()

// examine the schema of wikiEditDF streaming DataFrame

wikiEditDF.printSchema

 |-- timestamp: timestamp (nullable = true)

 |-- channel: string (nullable = true)

 |-- title: string (nullable = true)

 |-- diffUrl: string (nullable = true)

 |-- user: string (nullable = true)

 |-- byteDiff: integer (nullable = true)

 |-- summary: string (nullable = true)

// select only a few columns for analysis

val wikiEditSmallDF = wikiEditDF.select("timestamp", "user", "channel", 

"title")

// start streaming query and write out the wiki edits to console

val wikiEditQS = wikiEditSmallDF.writeStream.format("console").

option("truncate", "false").start()
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// wait for a few seconds for data to come in and the result might looking 

like below
+------------------------+-------------+--------------+-----------------------------+

|            timestamp   |    user     |     channel  |                 title        |

+------------------------+-------------+--------------+-----------------------------+

| 2018-03-24 15:36:39.409| 6.62.103.211| #en.wikipedia| Thomas J.R. Hughes           |

| 2018-03-24 15:36:39.412|  .92.206.108| #en.wikipedia| List of international schools|

+------------------------+-------------+--------------+-----------------------------+

// to stop the query stream

wikiEditQS.stop

Notice the custom data source name is a fully qualified class name of the data source 

provider. It is not short like the built-in data sources because those already registered 

their short name in a file called org.apache.spark.sql.sources.DataSourceRegister.

 Working with Data Sinks
The last step in a streaming application involves writing the computation result to some 

storage system or sending it to some downstream system for consumption. Structured 

Streaming provides five built-in sinks, and three of them are for production usage, and 

the remaining ones are for testing purposes. The following sections go into detail on 

each one and provide sample codes for working with them.

 Working with a File Data Sink

The file data sink is a simple to understand and work with. The only required option 

you need to provide is the output directory. Since the file data sink is fault-tolerant, 

Structured Streaming requires a checkpoint location to write the progress information 

and other metadata to help with the recovery when there was a failure.

The example in Listing 6-23 configures the rate data source to generate ten rows per 

second, send the generated rows to two partitions, and write the data in JSON format to 

the specified directory.
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Listing 6-23. Write Data from Rate Data Source To File Sink

val rateSourceDF = spark.readStream.format("rate")

                        .option("rowsPerSecond","10")

                        .option("numPartitions","2")

                        .load()

val rateSQ = rateSourceDF.writeStream.outputMode("append")

                      .format("json")

                      .option("path", "/tmp/output")

                      .option("checkpointLocation", "/tmp/ss/cp")

                      .start()

// use the line below to stop the writing the data

rateSQ.stop

Since the number of partitions was configured as two, Structured Streaming writes 

the output out to two files to the specified output folder at each trigger point. So, if you 

examine the output folder, you see files with names that start with either part-00000 and 

part-00001. The rate data source was configured with ten rows per second, and there are 

two partitions. Therefore, each output contains five rows, as shown in Listing 6-24.

Listing 6-24. the Content of Each Output File

{"timestamp":"2018-03-24T17:42:08.182-07:00","value":205}

{"timestamp":"2018-03-24T17:42:08.282-07:00","value":206}

{"timestamp":"2018-03-24T17:42:08.382-07:00","value":207}

{"timestamp":"2018-03-24T17:42:08.482-07:00","value":208}

{"timestamp":"2018-03-24T17:42:08.582-07:00","value":209}

 Working with a Kafka Data Sink

In Structured Streaming, writing the data of a streaming DataFrame to Kafka data sink is 

simpler than reading data from Kafka data source. The Kafka data sink can be configured 

with the four options listed in Table 6-7. Three of the options are required. The important 

options to understand are the key and value related to the Kafka message structure. The 

unit of data in Kafka is a message, which essentially is a key-value pair. The role of the 

value is to hold the actual content of a Kafka message.
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As far as Kafka is concerned, the value is just a collection of bytes. Kafka considers 

key as metadata, and it is saved along with the value in the Kafka message. When a 

message is sent to Kafka, and a key is provided, Kafka utilizes it as a routing mechanism 

to determine which partition a particular Kafka message should be sent to by hashing 

the key and performing a modulo on the number of partitions a particular topic has. This 

implies that all messages with the same key are routed to the same partition. If a key is 

not provided, Kafka can’t guarantee which partition that message is sent to, and Kafka 

employs a round-robin algorithm to balance the messages between partitions.

There are two ways to provide a topic name. The first way is to provide it in the 

configuration of a Kafka data sink and the second way is by defining a column in the 

streaming DataFrame called topic. The value of that column is used as the topic name.

If a streaming DataFrame has a column called key, that column value is used as the 

message key. Since the key is an optional piece of metadata, it is not required to have this 

column in the streaming DataFrame. On the other hand, the value must be provided, 

and Kafka data sink expects a column named value in the streaming DataFrame.

Listing 6-25 provides an example of setting a rate data source and then writes the 

data out to a Kafka topic called rates. If you are planning to use the Spark shell to 

try the code, include the necessary argument described to include the org.apache.

spark:spark-sql-kafka-0-10_2.11:2.3.0 jar file and its dependencies.

Table 6-7. Options for Kafka Data Sink

Option Value Description

kafka.bootstrap.

servers

host1:port1, 

host2:port2

this is a comma-separated list of kafka broker 

servers. Consult your kafka administrators for 

hostname and port number to use

topic topic1 this is a topic name

key a string or binary this key determines which partition a kafka message 

should be sent to. all kafka messages with the same 

key go to the same partition. this is an optional option.

value a string or binary this is the content of a message. to kafka, it is simply 

just an array of bytes.
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Note the simplest way to get started with kafka is to download the Confluent 
platform package and follow its getting Started guide. more information is 
available at https://docs.confluent.io/current/getting- started.
html. Once the download is completed, uncompress the compressed tar file into 
a directory. to start up the servers (Zookeeper, kafka Broker, Schema registry), 
use the ./bin/confluent start command line. each of those servers listens on a 
specific port. all the command line tools are available in the bin directory, and 
almost all of them require the host and port for either Zookeeper or kafka Broker. 
Before running the code in Listing 6-21, make sure to create a topic called rates. 
the command to do that is bin/kafka-topics --create --zookeeper localhost:2181  
--replication-factor 1  --partitions 2 --topic rates. to list active topics, use this 
command: ./bin/kafka- topics --zookeeper localhost:2181  --list.

Listing 6-25. Write Data from Rate Data Source To File Sink

import org.apache.spark.sql.functions._

//  setting up the rate data source with 10 rows per second and use two 

partitions

val ratesSinkDF = spark.readStream.format("rate")

                       .option("rowsPerSecond","10")

                       .option("numPartitions","2")

                       .load()

//  transform the ratesSinkDF to create a column called "key" and "value" 

column

// the value column contains a JSON string that contains two fields: 

timestamp and value

val ratesSinkDF = ratesSinkDF.select(

                 $"value".cast("string") as "key",

                 to_json(struct("timestamp","value")) as "value")

// setup a streaming query to write data to Kafka using topic "rates"

val rateSinkSQ = ratesSinkDF.writeStream

                            .outputMode("append")
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                            .format("kafka")

                            .option("kafka.bootstrap.servers",

                                    "localhost:9092")

                            .option("topic","rates")

                            .option("checkpointLocation",

                                    "/Users/hluu/tmp/ss/cp")

                           .start()

// it doesn't take long to write a lot of messages to Kafka, so after a few 

second, feel free to stop the

// rateSinkSQL

rateSinkSQ.stop

To read the data back from the rates topic in Kafka, use the sample code listed 

in Listing 6-21 and substitute the appropriate value for options such as  kafka.

bootstrap.servers and topic name. The data in the rates Kafka topic look something 

like Listing 6-22.

Listing 6-26. Sample of Data from Kafka

+---------+---------+---------+-------------------------------------------------------------+

|partition|  offset|    key   | value                                                       |

+---------+---------+---------+-------------------------------------------------------------+

|  1      | 9350    |   583249| {"timestamp":"2018-03-25T09:53:52.582- 07:00","value":583249}|

|  1      | 9351    |   583250| {"timestamp":"2018-03-25T09:53:52.682- 07:00","value":583250}|

|  1      | 9352    |   583251| {"timestamp":"2018-03-25T09:53:52.782- 07:00","value":583251}|

|  1      |   9353  |   583256| {"timestamp":"2018-03-25T09:53:53.282- 07:00","value":583256}|

|  1      |   9354  |   583261| {"timestamp":"2018-03-25T09:53:53.782- 07:00","value":583261}|

|  1      |   9355  |   583266| {"timestamp":"2018-03-25T09:53:54.282- 07:00","value":583266}|

|  1      |   9356  |   583267| {"timestamp":"2018-03-25T09:53:54.382- 07:00","value":583267}|

|  1      |   9357  |   583274| {"timestamp":"2018-03-25T09:53:55.082- 07:00","value":583274}|

|  1      |   9358  |   583275| {"timestamp":"2018-03-25T09:53:55.182- 07:00","value":583275}|

|  1      |   9359  |   583276| {"timestamp":"2018-03-25T09:53:55.282- 07:00","value":583276}|

+---------+---------+---------+-------------------------------------------------------------+
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 Working with a foreach Data Sink

Compared to the other built-in data sinks that Structured Streaming provides, the 

foreach data sink is interesting because it provides complete flexibility in terms of how 

the data should be written, when to write out the data, and where to write the data 

to. It was designed to be an extensible as well as a pluggable data sink. This flexibility 

and extensibility come with a responsibility because you are responsible for the logic 

of writing out the data. In a nutshell, you need to provide an implementation of the 

ForeachWriter abstract class, which consists of three methods: open, process, and 

close. They get called whenever there is a list of output rows after a trigger. Working with 

this data sink requires some intimate details about how Spark works.

• An instance of the ForeachWriter abstract class implementation 

is created on the driver side, and it is sent to the executors in your 

Spark cluster for execution. This has two implications. First, the 

implementation of ForeachWriter must be serializable; otherwise, 

an instance of it can’t be shipped across the network to the executors. 

Second, if there are any initializations during the creation of the 

implementation, they happen on the driver side. For example, if 

you want to create a database or socket connection, that should not 

happen during the class initialization but rather somewhere else.

• The number of partitions in a streaming DataFrame determines how 

many instances of the ForeachWriter implementation are created. 

This is very similar to the behavior of the Dataset.foreachPartition 

method.

• The three methods defined in the ForeachWriter abstract class are 

invoked on the executor’s side.

• The open method is the best place to perform initializations like 

opening a database connection or socket connect. However, it is 

called each time data is written out; therefore, that logic must be 

intelligent and efficient.

• The open method signature has two input parameters: partition id 

and version. Boolean is the return type. The combination of these 

two parameters uniquely represents a set of rows that needs to be 

written out. The value of the version is a monotonically increasing id 
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that increases with every trigger. Based on the value of the partition id 

and version parameters, the open method needs to decide whether 

it needs to write out the sequence of rows or not and return the 

appropriate boolean value for a Structured Streaming engine.

• If the open method returns true, then the process method is called 

for each row of the output of a trigger.

• The close method is guaranteed to be called. If there was an error 

during the call to the process method, that error is passed to the 

close method. The intention for calling the close method is to give 

you a chance to clean up any necessary state that was created during 

the open or process method invocation. The only time the close 

method is not called is when the JVM of the executor crashes or the 

open method throws a throwable exception.

In short, this data sink provides the ultimate flexibility in writing out the data of 

a streaming DataFrame. Listing 6-27 contains a very simple implementation of the 

ForeachWriter abstract class by writing the data from the rate data source out to the 

console.

Listing 6-27. Sample Code for Working with Foreach Data Sink

// define an implementation of the ForeachWriter abstract class

import org.apache.spark.sql.{ForeachWriter,Row}

class ConsoleWriter(private var pId:Long = 0, private var ver:Long = 0) 

extends ForeachWriter[Row] {

    def open(partitionId: Long, version: Long): Boolean = {

       pId = partitionId

       ver = version

       println(s"open => ($partitionId, $version)")

       true

    }

    def process(row: Row) = {

      println(s"writing => $row")

    }
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    def close(errorOrNull: Throwable): Unit = {

      println(s"close => ($pId, $ver)")

    }

}

// setup the Rate data source

val ratesSourceDF = spark.readStream.format("rate")

                         .option("rowsPerSecond","10")

                         .option("numPartitions","2")

                         .load()

// setup the Foreach data sink

val rateSQ = ratesSourceDF.writeStream.foreach(new ConsoleWriter).start()

// sample output from the console

open => (1, 1)

writing => [2018-03-25 13:03:41.867,5]

writing => [2018-03-25 13:03:41.367,0]

writing => [2018-03-25 13:03:41.967,6]

writing => [2018-03-25 13:03:41.467,1]

writing => [2018-03-25 13:03:42.067,7]

writing => [2018-03-25 13:03:41.567,2]

writing => [2018-03-25 13:03:42.167,8]

writing => [2018-03-25 13:03:41.667,3]

writing => [2018-03-25 13:03:42.267,9]

close => (1, 1)

// to close the rateSQ streaming query

rateSQ.stop

 Working with a Console Data Sink

This console data sink is easy to work with. It does exactly what it sounds. It is not a fault- 

tolerant data sink. It is designed to be used for debugging purposes or while learning 

Structured Streaming. The two options it provides are the number of rows to display and 

whether to truncate the output if too long. Each option has a default value, as shown in 

Table 6-8. The underlying implementation of this data sink uses the same logic as in the 

DataFrame.show method to display the data in a streaming DataFrame.
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Listing 6-28 shows the console data sink in action and provides a value for each of 

the two options.

Listing 6-28. Sample Code for Working with Console Data Sink

// setting up a data source

val ratesDF = spark.readStream.format("rate")

                   .option("rowsPerSecond","10")

                   .option("numPartitions","2")

                   .load()

Val ratesSQ = ratesDF.writeStream.outputMode("append")

                     .format("console")

                     .option("truncate",false)

                     .option("numRows",50)

                     .start()

 Working with a Memory Data Sink

Like the console data sink, the memory data sink is very easy to understand and work 

with. It is so easy because it has no options that you need to provide. It is not a fault- 

tolerant data sink. It is designed to be used for debugging purposes or while learning 

Structured Streaming. The data it collects is sent to the driver and stored on the driver 

as an in-memory table. In other words, the amount of data you can send to the memory 

data sink is bounded by the amount of memory the driver JVM has. While setting up 

this data sink, you can specify a query name as an argument to DataStreamWriter.

queryName function. Then you can issue SQL queries against the in-memory table. 

Unlike the console data sink, once the data is sent to the in-memory table, you can 

Table 6-8. Options for Console Data Sink

Option Default Value Description

numrows 20 the number of rows to print to console

truncate true Whether to truncate with the content of each column is 

longer than 20 characters
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further analyze or process the data using pretty much all the features available in the 

Spark SQL component. If the amount of data is large and wouldn’t fit into memory, the 

next best option is to use the file data sink to write the data out in Parquet format.

The sample code in Listing 6-29 writes the data from the rate data source into an  

in- memory table, and issues Spark SQL queries against the in-memory table.

Listing 6-29. Sample Code for Working with the Memory Data Sink

val ratesDF  = spark.readStream.format("rate")

                    .option("rowsPerSecond","10")

                    .option("numPartitions","2")

                       .load()

// write data out to Memory data sink with in-memory table name as "rates"

val ratesSQ = ratesDF.writeStream.outputMode("append")

                     .format("memory")

                     .queryName("rates")

                     .start()

// you issue SQL queries against the "rates" in-memory table

spark.sql("select * from rates").show(10,false)

+---------------------------------+-------+

|           timestamp             |  value|

+---------------------------------+-------+

|          2018-03-25 14:02:59.461|   0   |

|          2018-03-25 14:02:59.561|   1   |

|          2018-03-25 14:02:59.661|   2   |

|          2018-03-25 14:02:59.761|   3   |

|          2018-03-25 14:02:59.861|   4   |

|          2018-03-25 14:02:59.961|   5   |

|          2018-03-25 14:03:00.061|   6   |

|          2018-03-25 14:03:00.161|   7   |

|          2018-03-25 14:03:00.261|   8   |

|          2018-03-25 14:03:00.361|   9   |

+---------------------------------+-------+
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// count the number of rows in the "rates" in-memory table

spark.sql("select count(*) from rates").show

+-----------+

|   count(1)|

+-----------+

|        100|

+-----------+

// to stop the ratesSQ query stream

ratesSQ.stop

One thing to note is that the in-memory rates table still be around after the ratesSQ 

streaming query has stopped. However, once a new streaming query is started with the 

same name, then the data from in-memory is truncated

Before concluding this section, it is important to understand which outputs are 

supported by each type of data sink. Table 6-9 is a quick summary for reference. The 

output modes are covered in the next section.

 Output Modes
The “Output Modes” section described each of the output modes. This section provides 

more information about them and ways to understand which output mode is applicable 

for which streaming query type.

There are two types of streaming queries. The first type is called the stateless type, 

and it performs only basic transformations on the incoming streaming data and then 

writes out the data to one or more data sinks. The second type is the stateful type, which 

Table 6-9. Data Sinks and Their Support Output Modes

Sink Supported Output Modes Notes

File append Support writing out new rows only and no update

kafka append,Update,Complete

Foreach append,Update,Complete Depends on the ForeachWriter implementation

Console append,Update,Complete

memory append,Complete Doesn’t support in-place updates
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requires maintaining some state between trigger points, whether that is done implicitly 

or explicitly. The stateful type usually performs aggregations or uses the Structured 

Streaming APIs like mapGroupsWithState or flatMapGroupsWithState to maintain some 

arbitrary state needed for a particular use case; for example, maintaining user session 

data.

Let’s start with the simple, stateless streaming query type. A typical use case for 

this kind of streaming query is the real-time streaming ETL. It continuously reads the 

incoming streaming data like page view events produced by online services to capture 

which pages are being viewed by their users. In this kind of use case, it usually performs 

the following.

• Filtering, transforming, and cleaning. Real-world data is messy. The 

structure may not be well suited for repeated analysis.

• Converting to a more efficient storage format. Text, CVS, and JSON 

are human-readable file formats but are inefficient for repeated 

analysis, especially if the data volume is large such as hundreds of 

terabytes. More efficient binary formats like ORC, Parquet, or Avro 

are more suitable to reduce data size and improve analysis speed.

• Partitioning data by certain columns. While writing the data out to 

a data sink, it is possible to partition the data based on the value 

of commonly used columns in queries to speed up the repeated 

analysis from various teams in the organization.

As you can see, the tasks don’t require a streaming query to maintain any kind 

of state before writing the data out to a data sink. As new data comes in, it is cleaned, 

transformed, and possibly restructured, and finally written out. append is the only 

applicable output mode for this stateless streaming type. The complete output mode is 

not applicable because that requires Structured Streaming to maintain all the previous 

data, which may be too large. The update output mode is not applicable because only 

new data is being written out. However, when this output mode is used for a stateless 

streaming query, Structured Streaming recognizes this and treats it the same as the 

append output mode. The cool thing is when an inappropriate output mode is used for 

a streaming query, the Structured Streaming engine lets you know. Listing 6-30 shows 

what happens when an inappropriate output mode is used.

Chapter 6  Spark Streaming



276

Listing 6-30. Using “Complete” Output Mode with a Stateless Streaming Query

val ratesDF  = spark.readStream.format("rate")

                    .option("rowsPerSecond","10")

                    .option("numPartitions","2")

                    .load()

// simple transformation

val oddEvenDF = ratesDF.withColumn("even_odd",

                                   $"value" % 2 === 0)

// write out to Console data sink using complete output mode

val ratesSQ = oddEvenDF.writeStream.outputMode("complete")

                       .format("console")

                       .option("truncate",false)

                       .option("numRows",50)

                       .start()

// An exception from Structured Streaming during the analysis phase

org.apache.spark.sql.AnalysisException: Complete output mode not supported 

when there are no streaming aggregations on streaming DataFrames/Datasets;

Now let’s move on to the second query type. When a steaming query performs an 

aggregation via a groupBy transformation, the state of that aggregation is maintained 

implicitly by the Structured Streaming engine. As more data comes in, the result of 

the aggregation on new data is updated into the result table. At each trigger point, the 

updated data or all the data in the result table is written to a data sink, depending on the 

output mode. This implies that using the append output mode is inappropriate because 

that violates the semantics of that output mode, which specifies that only new rows 

appended to the result table are sent to the specified output sink. In other words, only 

the complete and update output modes are appropriate for stateful query types. The 

output of a streaming query using the complete output mode is always equal to or more 

than the output of the same streaming query using the update output mode. Listing 6-31 

contains the code to illustrate the difference in the output.
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Listing 6-31. the Output Differences Between Update and Complete Mode

// import statements

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val schema = new StructType().add("id", StringType, false)

                             .add("action", StringType, false)

                             .add("ts", TimestampType, false)

val mobileDF = spark.readStream.schema(schema)

                    .json("<path>/chapter6/data/input")

val actionCountDF = mobileDF.groupBy($"action").count

val completeModeSQ = actionCountDF.writeStream.format("console")

                                  .option("truncate", "false")

                                  .outputMode("complete")

                                  .start()

val updateModeSQ = actionCountDF.writeStream.format("console")

                                .option("truncate", "false")

                                .outputMode("complete").start()

// at this point copy file1.json, file2.json, file3.json and newaction.json 

from

// mobile directory to the input directory

// the output of the streaming query with complete mode is below

-------------------------------------------

Batch: 3

-------------------------------------------

+--------+-------+

|  action|  count|

+--------+-------+

|  close | 3     |

|  swipe | 1     |

|  crash | 1     |

|  open  | 5     |

+--------+-------+
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// the output of the streaming query with update mode is below

-------------------------------------------

Batch: 3

-------------------------------------------

+-------+--------+

| action|   count|

+-------+--------+

| swipe |   1    |

| crash |   1    |

+-------+--------+

The output of the streaming query with the Complete output mode contains all the 

action types in the result table. The output of the streaming query with the update output 

mode contains only the actions in the newaction.json file that the result table hasn’t 

seen before.

Again, if an inappropriate output mode is used for a stateful query type, the 

Structured Streaming engine lets you know, as shown in Listing 6-32.

Listing 6-32. Using an Inappropriate “Append” Output Mode with a Stateful 

Streaming Query

// use an inappropriate output for stateful streaming query, see exception 

below

val actionCountSQ = actionCountDF.writeStream.format("console")

                                 .outputMode("append").start()

org.apache.spark.sql.AnalysisException: Append output mode not supported 

when there are streaming aggregations on streaming DataFrames/DataSets 

without watermark;

There is an exception to this logic. All the output modes are applicable if a watermark 

is provided to the stateful streaming query with aggregation. The semantics of the 

Append output are not violated anymore because the Structured Streaming engine drops 

the old aggregation state data that is older than the specified watermark, which means 

new rows can be added to the result table once the watermark is crossed.
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Undoubtedly, the output mode is one of the most complicated concepts in 

Structured Streaming because multiple dimensions come together to determine which 

output modes are appropriate to use. The Structured Streaming programming guide 

provides a compatibility matrix, which is at https://spark.apache.org/docs/latest/

structured-streaming-programming- guide.html#output- modes.

 Triggers
The trigger setting determines when the Structured Streaming engine runs the streaming 

computation logic expressed in a streaming query, which includes all the transformation 

logic and writing out the data to the data sink. Another way of thinking about it is that the 

trigger setting controls when the data is written out to a data sink and which processing 

mode to use. Starting with Spark version 2.3, a new processing mode called continuous 

was introduced.

The “Trigger Types” section describes the supported types in Structured Streaming. 

This section goes into more detail and provides a sample code for specifying the different 

trigger types.

All the stream query examples have used the default trigger type, which is used when 

a trigger type is not specified. This default trigger type chooses the micro-batch mode as 

the processing mode, and the logic in the streaming query is executed not based on time 

but as soon as the previous batch of data has completed processing. This implies there is 

less predictability in terms of how often the data is written out.

If a little more predictability is desired, then the fixed interval trigger can be specified 

to tell Structured Streaming to execute the streaming query logic at a certain time 

interval based on the user-provided value, for example, every 30 seconds. In terms 

of processing mode, this trigger type uses the micro-batch one. The interval can be 

specified in a string format or as a Scala Duration or Java TimeUnit. Listing 6-33 contains 

examples for using the fixed interval trigger.
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Listing 6-33. Examples of Using Fixed Interval Trigger Type

import org.apache.spark.sql.streaming.Trigger

// setting up with 3 rows per second

val ratesDF  = spark.readStream.format("rate")

                    .option("rowsPerSecond","3")

                    .option("numPartitions","2")

                    .load()

//  trigger the streaming query execution every 3 seconds and write out to 

console

val ratesSQ = ratesDF.writeStream.outputMode("append")

                     .format("console")

                     .option("numRows",50)

                     .option("truncate",false)

                    .trigger(Trigger.ProcessingTime("3 seconds"))

                     .start()

// you should expect to see about 9 rows in every 3 seconds

+---------------------------------+-------+

|          timestamp              |  value|

+---------------------------------+-------+

|          2018-03-26 07:14:11.176|    0  |

|          2018-03-26 07:14:11.509|    1  |

|          2018-03-26 07:14:11.843|    2  |

|          2018-03-26 07:14:12.176|    3  |

|          2018-03-26 07:14:12.509|    4  |

|          2018-03-26 07:14:12.843|    5  |

|          2018-03-26 07:14:13.176|    6  |

|          2018-03-26 07:14:13.509|    7  |

|          2018-03-26 07:14:13.843|    8  |

+---------------------------------+-------+

// specifying the interval using Scala Duration type

import scala.concurrent.duration._
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val ratesSQ = ratesDF.writeStream.outputMode("append")

                     .format("console")

                     .option("numRows",50)

                     .option("truncate",false)

                     .trigger(Trigger.ProcessingTime(3.seconds))

                     .start()

The Fixed interval trigger provides the best effort. It can’t guarantee the execution 

of a streaming query always happens exactly at the specified internal. There are two 

reasons for this. The first one is when there is no incoming data, then there is nothing 

to process, and therefore nothing is written out the data sink. The second reason is 

that when the previous batch’s processing time exceeds the specified interval, the next 

execution of a streaming query starts as soon as the processing completes. In other 

words, it does not wait for the next interval boundary.

The one-time trigger does what it sounds like. It executes the logic in a streaming 

query in a micro-batch mode and writes out the data to a data sink one time, and then 

the processing stops. It may sound silly for this trigger type to exist; however, it is very 

useful in both development and production environments. While in the development 

phase, the streaming computation logic is usually developed in an iterative manner, and 

in each iteration, you want to test the logic. This trigger type simplifies the develop-test 

iteration a bit. For a production environment, this trigger type is suitable for use cases 

where the volume of incoming streaming data is low. Therefore, it is only necessary to 

run the streaming application a few times a day. Instead of launching a Spark cluster and 

leaving it running throughout the day, the frequency of launching a Spark and executing 

the stream processing logic one time or multiple times per day is based on the desired 

processing frequency of your particular use cases. It is quite simple to specify this one- 

time trigger type. Listing 6-34 shows how to do that.

Listing 6-34. Example of Using One-Time Trigger Type

import org.apache.spark.sql.streaming.Trigger

val mobileSQ =  mobileDF.writeStream.outputMode("append")

                        .format("console")

                        .trigger(Trigger.Once())

                        .start()
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The continuous trigger type is a new, exciting, and experimental processing mode 

was introduced in Spark version 2.3 to address the use cases that need end-to-end 

streaming millisecond latency. In this new processing mode, Structured Streaming 

launches long-running tasks to continuously read, process, and write data to a data 

sink. This implies the incoming data is processed and written out to the data sink 

as soon as they arrive in the data source, and the end-to-end latency is within a few 

milliseconds. In addition, an asynchronous checkpoint mechanism was introduced to 

record the  streaming query progress efficiently to not interrupt the long-running tasks 

from providing consistent millisecond-level latencies. A good use case to leverage this 

trigger type is credit card fraudulent transaction detection. At a high level, the Structured 

Streaming engine figures out which processing mode to use based on the trigger type, 

which is depicted in Figure 6-10.

As of Spark version 2.4, only the projection and selections operations are allowed in 

the continuous processing mode, such as select, where, map, flatmap, and filter. In this 

processing mode, all Spark SQL functions are supported except aggregation functions.

To use the continuous processing mode for a streaming query, you must specify a 

continuous trigger with the desired checkpoint interval like in Listing 6-35.

Figure 6-10. Structured Streaming supports two different processing modes
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Listing 6-35. Examples of Specifying a Continuous Trigger Type

import org.apache.spark.sql.streaming.Trigger

// setting a Rate data source with two partitions

val ratesDF  = spark.readStream.format("rate")

                    .option("numPartitions","2").load()

// write out the data to console and using continuous trigger with 2 second 

interval for writing out progress

val rateSQ = ratesDF.writeStream.format("console")

                    .trigger(Trigger.Continuous("2 second"))

                   .start()

// sample output from console

+--------------------------+-------+

|                 timestamp|  value|

+--------------------------+-------+

|      2018-03-26 21:43:...|      0|

|      2018-03-26 21:43:...|      2|

|      2018-03-26 21:43:...|      4|

|      2018-03-26 21:43:...|      6|

|      2018-03-26 21:43:...|      1|

|      2018-03-26 21:43:...|      3|

|      2018-03-26 21:43:...|      5|

|      2018-03-26 21:43:...|      7|

+--------------------------+-------+

The ratesDF streaming DataFrame was set up with two partitions; therefore, 

Structured Streaming launched two running tasks in the continuous processing mode. 

That is why the output shows all the even numbers appearing together and all the odd 

numbers appearing together.
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 Summary
Structured Streaming is the second-generation stream processing engine of Apache 

Spark. It provides an easy way to build and reason about fault-tolerant and scalable 

streaming applications. This chapter covers a lot of ground, including the core concepts 

in the stream processing domain and the key parts of Structured Streaming.

• Stream processing is an exciting domain that can help solve many 

new and interesting use cases in the era of big data.

• Building production streaming data applications is much more 

challenging than building batch data processing applications 

because of the nature of the unbounded data and the unpredictability 

of the data arrival rate and out-of-order data.

• To be effective at building streaming data applications, you must be 

comfortable with the three core concepts in the stream processing 

domain. They are data delivery semantics, the notion of time, and 

windowing.

• Stream processing engines have drastically and dramatically matured 

in the last few years, and now there are many options to choose from. 

The popular ones are Apache Flink, Apache Samza, Apache Kafka, 

and Apache Spark.

• Spark DStream is the first-generation stream processing engine of 

Apache Spark. It was built on top of the RDD programming model.

• Structured Stream processing engine was designed for developers 

to build end-to-end streaming applications that can react to data 

in real-time using a simple programming model built on top of the 

optimized and solid foundation of the Spark SQL engine.

• The unique idea in Structured Streaming is to treat streaming data as 

an unbounded input table, and as new data arrives, it treats that as a 

new set of new rows to append to an unbounded table.

• The core components in streaming query are the data source, 

streaming operations, output mode, trigger, and data sink.
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• Structured Streaming provides a set of built-in data sources as well as 

data sinks. The built-in data sources are File, Kafka, Socket, and Rate. 

The built-in data sinks are File, Kafka, Console, and Memory.

• Output mode determines how the data is output to a data sink. There 

are three options: Append, Update, and Complete.

• A trigger is a mechanism for a Structured Streaming engine to 

determine when to run the streaming computation. There are several 

options to choose from: micro-batch, fixed interval micro-batch, one- 

time micro-batch, and continuous. The last one is for use cases that 

need millisecond latency. It is in an experimental state as of Spark 

version 2.3.
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CHAPTER 7

Advanced Spark 
Streaming
Chapter 6 introduced the core concepts in streaming processing, the Spark Structured 

Streaming processing engine’s features, and the basic steps of developing a streaming 

application. Real-world streaming applications usually need to extract insights or 

patterns from the incoming real-time data at scale and feed that information into 

downstream applications to make business decisions or save that information in some 

storage system for further analysis or visualization purposes. Another aspect of real- 

world streaming applications is that they are continuously running to process real-time 

data as it comes in. Therefore, they must be resilient against failures.

The first half of this chapter covers event-time processing and stateful processing 

features in Structured Streaming and how they can help extract insights or patterns 

from incoming real-time data. The second half of this chapter explains the support that 

Structured Streaming provides to help streaming applications be fault-tolerant against 

failures and monitor their status and progress.

 Event Time
The ability to process incoming streaming data based on the data creation time is 

a must-have feature for any serious streaming processing engine. This is important 

because to truly understand and accurately extract insights or patterns from streaming 

data. You need to process them based on when that data or those events happened, 

not when they are processed. Often, the event time processing is in the context of 

aggregation, which includes the event time and zero or more pieces of additional 

information in the event.
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Let’s take the example of the mobile action events described in Chapter 6. Instead 

of applying the aggregations over the action type, you can apply the aggregations over a 

time window, which could be a fixed or a sliding window type (described in Chapter 6). 

In addition, you can easily add the action type to the grouping key to further group the 

mobile action events by time bucket and action type.

The following example process the mobile data event; Listing 7-1 shows its schema. 

The ts column represents the time when an event was created, in other words, when 

a user opens or closes an application. The mobile event data is located in <path>/

chapter6/data/mobile directory, containing file1.json, file2.json, file3.json, and 

newaction.json. Listing 7-2 displays the content in each of those files.

Listing 7-1. Mobile Data Event Schema

mobileDataDF.printSchema

 |-- action: string (nullable = true)

 |-- id: string (nullable = true)

 |-- ts: timestamp (nullable = true)

Listing 7-2. Mobile Event Data in file1.json, file2.json, file3.json, newaction.json

// file1.json

{"id":"phone1","action":"open","ts":"2018-03-02T10:02:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:03:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:03:50"}

{"id":"phone1","action":"close","ts":"2018-03-02T10:04:35"}

// file2.json

{"id":"phone3","action":"close","ts":"2018-03-02T10:07:35"}

{"id":"phone4","action":"open","ts":"2018-03-02T10:07:50"}

// file3.json

{"id":"phone2","action":"close","ts":"2018-03-02T10:04:50"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:10:50"}

// newaction.json

{"id":"phone2","action":"crash","ts":"2018-03-02T11:09:13"}

{"id":"phone5","action":"swipe","ts":"2018-03-02T11:17:29"}
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 Fixed Window Aggregation over an Event Time
A fixed window (a.k.a. a tumbling window) operation discretizes a stream of incoming 

data into nonoverlapping buckets based on window length. Each piece of incoming data 

is placed into one of the buckets based on its event time. Performing aggregations is just 

a matter of going through each bucket and applying the aggregation logic, whether a 

count or sum. Figure 7-1 illustrates the fixed window aggregation logic.

An example of fixed window aggregation is to perform a counting aggregation of 

the number of mobile events per each fixed window of ten minutes long. The window 

length is usually determined by the needs of a particular use case and the data volume. 

The aggregation result gives you high-level insights into the rate of mobile events that 

were generated per window. If you are interested in mobile usage throughout the day 

and by the hour, maybe the window length of 60 minutes is more appropriate. Listing 7-3 

contains the code for performing the counting aggregation and the aggregation result. As 

expected, there are only ten mobile data events in all four files listed, and the total count 

in the output matches that number.

Listing 7-3. Process Mobile Event Data with a 10 Minute Window

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType()

                          .add("id", StringType, false)

                          .add("action", StringType, false)

                          .add("ts", TimestampType, false)

Figure 7-1. Fixed window operation
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val mobileSSDF = spark.readStream.schema(mobileDataSchema)

                      .json("<path>/chapter6/data/input")

val windowCountDF = mobileSSDF.groupBy(

                                 window($"ts", "10 minutes"))

                              .count()

val mobileConsoleSQ = windowCountDF.writeStream.format("console")

                                   .option("truncate", "false")

                                   .outputMode("complete")

                                   .start()

// stop the streaming query

mobileConsoleSQ.stop

// output

+------------------------------------------------------+-------+

|                        window                        |  count|

+------------------------------------------------------+-------+

|            [2018-03-02 10:00:00, 2018-03-02 10:10:00]|      7|

|            [2018-03-02 10:10:00, 2018-03-02 10:20:00]|      1|

|            [2018-03-02 11:00:00, 2018-03-02 11:10:00]|      1|

|            [2018-03-02 11:10:00, 2018-03-02 11:20:00]|      1|

+------------------------------------------------------+-------+

windowCountDF.printSchema

 |-- window: struct (nullable = false)

 |    |-- start: timestamp (nullable = true)

 |    |-- end: timestamp (nullable = true)

 |-- count: long (nullable = false)

When performing an aggregation with a window, the output window is a struct type, 

and it contains the start and end time.

In addition to specifying a window in the groupBy transformation, you can also 

specify additional columns from the event itself. Listing 7-4 performs the aggregation 

with a window length and the action. This gives additional insights into the count of each 

window and action type. It requires only a small change to the preceding example to 

accomplish this. Listing 7-4 contains only the lines that needed changes.
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Listing 7-4. Process Mobile Event Data with a 10 Minute Window and Action Type

val windActDF= mobileSSDF.groupBy(

                    window($"ts", "10 minutes"), $"action").count

val windActDFSQ = windActDF.writeStream.format("console")

                           .option("truncate", "false")

                           .outputMode("complete")

                           .start()

// result

+----------------------------------------------+--------+-------+

|        window                                |  action|  count|

+----------------------------------------------+--------+-------+

|    [2018-03-02 10:00:00, 2018-03-02 10:10:00]|  close |      3|

|    [2018-03-02 11:00:00, 2018-03-02 11:10:00]|  crash |      1|

|    [2018-03-02 11:10:00, 2018-03-02 11:20:00]|  swipe |      1|

|    [2018-03-02 10:00:00, 2018-03-02 10:10:00]|  open  |      4|

|    [2018-03-02 10:10:00, 2018-03-02 10:20:00]|  open  |      1|

+----------------------------------------------+--------+-------+

// stop the query stream

windowActionCountSQ.stop()

Each line in this result table contains insights about the number of action types in 

each 10-minute window. If there are many crash actions in a certain window, that insight 

is useful if there was a release around that time frame.

 Sliding Window Aggregation over Event Time
In addition to the fixed window type, there is another windowing type called sliding 

window. Defining a sliding window requires two pieces of information, the window 

length and a sliding interval, which is usually smaller than the window length. Given the 

aggregation computation is sliding over the incoming stream of data, the result is usually 

smoother than the result of fixed window type. Therefore, this windowing type is often 

used to compute moving averages. An important thing to note about a sliding window 

is that a piece of data can fall into more than one window because of the overlapping, as 

illustrated in Figure 7-2.
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To illustrate the sliding window aggregation over the incoming data, you use small 

synthetic data about the temperature of computer racks in a data center. Imagine each 

computer rack emits its temperature at a certain interval. You want to generate a report 

about the average temperature among all computer racks and per rack over a window 

length of 10 minutes and a sliding interval of 5 minutes. This dataset is in the <path>/

chapter7/data/iot directory, which contains file1.json and file2.json. The 

temperature data is shown in Listing 7-5.

Listing 7-5. Temperature Data of Two Racks

// file1.json

{"rack":"rack1","temperature":99.5,"ts":"2017-06-02T08:01:01"}

{"rack":"rack1","temperature":100.5,"ts":"2017-06-02T08:06:02"}

{"rack":"rack1","temperature":101.0,"ts":"2017-06-02T08:11:03"}

{"rack":"rack1","temperature":102.0,"ts":"2017-06-02T08:16:04"}

// file2.json

{"rack":"rack2","temperature":99.5,"ts":"2017-06-02T08:01:02"}

{"rack":"rack2","temperature":105.5,"ts":"2017-06-02T08:06:04"}

{"rack":"rack2","temperature":104.0,"ts":"2017-06-02T08:11:06"}

{"rack":"rack2","temperature":108.0,"ts":"2017-06-02T08:16:08"}

Figure 7-2. Fixed window operation
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Listing 7-6 first reads the temperature data, then performs a groupBy transformation 

on a sliding window over the ts column. For each sliding window, the avg() function 

is applied to the temperature column. To make it easy to inspect the output, it writes 

the data out to a memory data sink with a query name of iot. Then you can issue SQL 

queries against this temporary table.

Listing 7-6. Average Temperature of All the Computer Racks over a Sliding 

Window

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

// define schema

val iotSchema = new StructType().add("rack", StringType, false)

                                .add("temperature",

                                      DoubleType, false)

                                .add("ts", TimestampType, false)

val iotSSDF = spark.readStream.schema(iotSchema)

                   .json("<path>/chapter7/data/iot")

// group by a sliding window and perform average on the temperature column

val iotAvgDF = iotSSDF.groupBy(window($"ts",

                                 10 minutes", "5 minutes"))

                      .agg(avg("temperature") as "avg_temp")

// write the data out to memory sink with query name as iot

val iotMemorySQ = iotAvgDF.writeStream.format("memory")

                          .queryName("iot")

                          .outputMode("complete")

                          .start()

// display the data in the order of start time

spark.sql("select * from iot")

     .orderBy($"window.start").show(false)

// output
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+------------------------------------------------+-------------+

|                       window                   |     avg_temp|

+------------------------------------------------+-------------+

|      [2017-06-02 07:55:00, 2017-06-02 08:05:00]|         99.5|

|      [2017-06-02 08:00:00, 2017-06-02 08:10:00]|       101.25|

|      [2017-06-02 08:05:00, 2017-06-02 08:15:00]|       102.75|

|      [2017-06-02 08:10:00, 2017-06-02 08:20:00]|       103.75|

|      [2017-06-02 08:15:00, 2017-06-02 08:25:00]|        105.0|

+------------------------------------------------+-------------+

// stop the streaming query

iotMemorySQ.stop

This output shows five windows in the synthetic dataset. Notice the start time of 

each window is five minutes apart because of the length of the sliding interval you 

specified in the groupBy transformation. The temperature column indicates the average 

temperature is increasing, which is alarming. It is unclear whether the temperature of all 

the computer racks is increasing or only certain ones.

To help identify which computer racks, Listing 7-7 adds the rack column to the 

groupBy transformation, and it shows only the lines that are different from in Listing 7-6.

Listing 7-7. Average Temperature of Each Rack over a Sliding Window

// group by a sliding window and rack column

val iotAvgByRackDF = iotSSDF.groupBy(

                      window($"ts", "10 minutes", "5 minutes"),

                             $"rack")

                     .agg(avg("temperature") as "avg_temp")

// write out to memory data sink with iot_rack query name

val iotByRackConsoleSQ = iotAvgByRackDF.writeStream

                                       .format("memory")

                                       .queryName("iot_rack")

                                       .outputMode("complete")

                                       .start()
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spark.sql("select * from iot_rack").orderBy($"rack",

                   $"window.start").show(false)

+------------------------------------------+-------+------------+

|                        window            |  rack |    avg_temp|

+------------------------------------------+-------+------------+

|[2017-06-02 07:55:00, 2017-06-02 08:05:00]|  rack1|        99.5|

|[2017-06-02 08:00:00, 2017-06-02 08:10:00]|  rack1|       100.0|

|[2017-06-02 08:05:00, 2017-06-02 08:15:00]|  rack1|      100.75|

|[2017-06-02 08:10:00, 2017-06-02 08:20:00]|  rack1|       101.5|

|[2017-06-02 08:15:00, 2017-06-02 08:25:00]|  rack1|       102.0|

|[2017-06-02 07:55:00, 2017-06-02 08:05:00]|  rack2|        99.5|

|[2017-06-02 08:00:00, 2017-06-02 08:10:00]|  rack2|       102.5|

|[2017-06-02 08:05:00, 2017-06-02 08:15:00]|  rack2|      104.75|

|[2017-06-02 08:10:00, 2017-06-02 08:20:00]|  rack2|       106.0|

|[2017-06-02 08:15:00, 2017-06-02 08:25:00]|  rack2|       108.0|

+------------------------------------------+-------+------------+

// stop query stream

iotByRackConsoleSQ.stop()

The output table clearly shows the average temperature of rack 1 is below 103, and it 

is rack 2 that you should be concerned about.

 Aggregation State
The previous examples of performing aggregations of over fixed or sliding windows with 

event time and additional columns show how easy it is to perform commonly used and 

complex streaming processing operations in Spark Structured Streaming. While it seems 

easy from the usage perspective, both the Structure Streaming engine and the Spark SQL 

engine work hard and cooperatively together to maintain the intermediate aggregation 

result in a fault-tolerant manner while executing the streaming aggregation. Any time an 

aggregation is performed on a streaming query, the intermediate aggregation state must 

be maintained. This state is maintained in key-value pairs structure, similar to a hash 

map, where the key is the group name and the value is the intermediate aggregation 

value. In the previous example of aggregation by a sliding window and rack ID, the key is 

the combined value of the start and end time of the window and the rack name, and the 

value is the average temperature.
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The intermediate state is stored in an in-memory, versioned, key/value “state store” 

on the Spark executors. It is written to a write-ahead log, which should be configured to 

reside on a persistent storage system like HDFS. The state is read and updated at every 

trigger point in the in-memory “state store” and then written out to the write-ahead log. 

After a failure when a Spark Structured Streaming application is restarted, the state is 

restored from the write-ahead log and resumes from that point. This fault-tolerant state 

management incurs some resource and processing overheads in the Structure Streaming 

engine. The amount of overhead is proportional to the amount of state it needs to 

maintain. Therefore it is important to keep the amount of state in an acceptable size; in 

other words, the size of the state should not grow indefinitely.

Given the nature of sliding windows, the number of windows grows indefinitely. 

This implies that a sliding window aggregation requires the intermediate state to grow 

indefinitely unless there is a way to drop the old state that is no longer updated. This is 

accomplished using a technique called watermarking.

 Watermarking: Limit State and Handle Late Data
Watermarking is a commonly used technique in streaming processing engines to deal 

with late data and limit the amount of state needed to maintain. Streaming data in the 

real world often arrive out of order or late because of network congestion, network 

disruption, or the data generator like mobile devices are not online. As a developer of 

real-time streaming applications, it is important to understand the tradeoff decision in 

dealing with the late data that arrives after a certain threshold. In other words, what is 

an acceptable amount of time you expect most of the data arrives relative to the others? 

Most likely, the answer to the preceding question is it depends on the use case. It might 

be that it is acceptable to drop the late data on the floor and ignore them.

From the perspective of Structured Streaming, a watermark is a moving threshold in 

event time that trails behind the maximum event time seen so far. As new data arrives, 

the maximum event time is updated, which causes the watermark to move. Figure 7-3 

illustrates an example where the watermark is defined as ten minutes. The solid line 

represents the watermark line. It is trailing behind the maximum event timeline, which 

is represented by the dotted line. Each rectangular box represents a piece of data, and 

its event-time is immediately below the box. The piece of data with event-time 10:07 

arrives a bit late, around 10:12; however, it still falls within the threshold between 10:03 

Chapter 7  advanCed Spark Streaming



297

and 10:13. Therefore it is processed as usual. The piece of data with event time 10:15 falls 

in the same category. The piece of data with event time 10:04 arrives late, around 10:22, 

which falls below the watermark line, and therefore it is ignored and not processed.

One of the biggest benefits of specifying the watermark is to enable the Structure 

Streaming engine to safely remove the aggregation state that is older than the watermark. 

Production streaming applications that perform aggregations should specify a 

watermark to avoid out-of-memory issues. Without a doubt, watermarking is an essential 

tool to deal with the messy part of real-time streaming data.

Structured Streaming makes it very easy to specify a watermark as a part of the 

streaming DataFrame. You just need to provide two pieces of data to the withWatermark 

API, the event time column, and the threshold, which can be in seconds, minutes, or 

hours. To demonstrate the watermark in action, you can work through a simple example 

of processing two JSON files in the <path>/chapter7/data/mobile directory and specify 

a watermark of 10 minutes. Listing 7-8 shows the data in those two files. The data is set 

up so that each row in the file1.json file falls into its own 10-minute window. The first 

row in the file2.json file falls into the 10:20:00 to 10:30:00 window, and even though 

it arrives late, its timestamp still falls within an acceptable threshold, so it is processed. 

Figure 7-3. Handling late date with watermark
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The last row in the file2.json file is a simulation of late data where its timestamp is in the 

10:10:00 to 10:20:00 window, and since that falls outside the watermark threshold, it is 

ignored and not processed.

Listing 7-8. Mobile Event Data in Two JSON Files

// file1.json

{"id":"phone1","action":"open","ts":"2018-03-02T10:15:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:22:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:33:50"}

// file2.json

{"id":"phone4","action":"open","ts":"2018-03-02T10:29:35"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:11:35"}

To simulate the processing, first create a directory called input under the <path>/

chapter7/data directory. Then run the code in Listing 7-9. The next step is to copy the 

file1.json file to the input directory and examine the output. The final step is to copy 

the file2.json file to the input directory and examine the output.

Listing 7-9. Code for Processing Mobile Data Events with Late Arrival

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileSchema = new StructType().add("id", StringType, false)

                                .add("action", StringType, false)

                                .add("ts", TimestampType, false)

val mobileSSDF = spark.readStream.schema(mobileSchema)

                      .json("<path>/book/chapter7/data/input")

// setup a streaming DataFrame with a watermark and group by ts and action 

column.

val windowCountDF = mobileSSDF.withWatermark("ts", "10 minutes")

                              .groupBy(window($"ts",

                                     "10 minutes"), $"action")

                               .count
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val mobileMemorySQ = windowCountDF.writeStream

                                  .format("console")

                                  .option("truncate", "false")

                                  .outputMode("update")

                                  .start()

// the output from processing filel1.json

// as expected each row falls into its own window

+----------------------------------------------+--------+-------+

|         window                               |  action|  count|

+----------------------------------------------+--------+-------+

|    [2018-03-02 10:20:00, 2018-03-02 10:30:00]|  open  |   1   |

|    [2018-03-02 10:30:00, 2018-03-02 10:40:00]|  open  |   1   |

|    [2018-03-02 10:10:00, 2018-03-02 10:20:00]|  open  |   1   |

+----------------------------------------------+--------+-------+

// the output from processing file2.json

// notice the count for window 10:20 to 10:30 is now updated to 2

// and there was no change to the window 10:10:00 and 10:20:00

+----------------------------------------------+--------+-------+

|                       window                 | action |  count|

+----------------------------------------------+--------+-------+

|    [2018-03-02 10:20:00, 2018-03-02 10:30:00]|  open  |   2   |

+----------------------------------------------+--------+-------+

Since the timestamp of the last line in the file2.json file falls outside the 10- minute 

watermark threshold, it was not processed. If the call to watermark API is removed, 

the output looks something like Listing 7-10. The count of windows 10:10 and 10:20 is 

updated to 2.

Listing 7-10. Output of Removing the Call to Watermark API

+----------------------------------------------+--------+-------+

|                        window                |  action|  count|

+----------------------------------------------+--------+-------+

|    [2018-03-02 10:20:00, 2018-03-02 10:30:00]| open   |      2|

|    [2018-03-02 10:10:00, 2018-03-02 10:20:00]|  open  |      2|

+----------------------------------------------+--------+-------+
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Watermark is a useful feature, so it is important to understand the conditions under 

which the aggregation state is properly cleaned up.

• The output mode can’t be the complete mode and must be in either 

update or append mode. The reason is the semantics of the complete 

mode dictate that all aggregate data must be maintained, and to not 

violate those semantics; the watermark can’t drop any intermediate 

state.

• The aggregation via the groupBy transformation must be directly on 

the event time column or a window on the event time column.

• The event time column specified in the Watermark API and the 

groupBy transformation must be the same one.

• When setting up a streaming DataFrame, the Watermark API must be 

called before the groupBy transformation; otherwise, it is ignored.

 Arbitrary Stateful Processing
The intermediate state of aggregations by key or event window is automatically 

maintained by Structured Streaming. However, not all event-time-based processing 

can be satisfied by simply aggregating on one or more columns and with or without 

windowing. For example, you want to send out an alert, email, or pager when three 

consecutive temperature readings with a value greater than 100 degrees are seen in the 

IoT temperature dataset.

Maintaining user sessions is anoher example, where the session length is not 

determined by a fixed amount of time but rather by the user’s activities and the lack 

thereof. To solve these two examples and similar use cases, you need to apply arbitrary 

processing logic on each group of data, control the window length for each group of data, 

and maintain an arbitrary state across trigger points. This is where Structured Streaming 

arbitrary state processing comes in.

 Arbitrary Stateful Processing with Structured Streaming
To enable flexible and arbitrary stateful processing, Structure Streaming provides a 

callback mechanism. It takes care of ensuring the intermediate state is maintained and 

stored in a fault-tolerant manner. The callback mechanism enables you to provide a  
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user-defined function with your custom state management logic, and Structured 

Streaming calls it at the appropriate time This style of processing essentially boils down to 

the ability to perform one of the two following tasks, which are illustrated in Figure 7- 4.

• Map over groups of data, apply arbitrary processing on each group, 

and generate only a single row per group.

• Map over groups of data, apply arbitrary processing on each group, 

and generate any number of rows per group, including none.

Structure Streaming provides a specific API for each of these tasks. For the first 

task, the API is called mapGroupsWithState, and for the second one, the API is called 

flatMapGroupsWithState. These APIs are available starting with Spark 2.2 and only in 

Scala and Java.

When working a callback mechanism, it is important to clearly understand the 

contract between the framework and callback function regarding the input arguments, 

when and how often it gets called. In this case, the sequence goes as follows.

• To perform arbitrary stateful processing on a streaming DataFrame, 

you must first specify the grouping by calling the groupByKey 

transformation and provide a group by column; it then returns an 

instance of KeyValueGroupedDataset class.

Figure 7-4. Visual description of the two arbitrary stateful processing tasks
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• From an instance of KeyValueGroupedDataset class, you can call 

either mapGroupsWithState or flatMapGroupsWithState function. 

Each API requires a different set of input parameters.

• When calling mapGroupsWithState function, you need to provide the 

timeout type and a user-defined callback function. The timeout part 

is explained in a moment.

• When calling flatMapGroupsWithState function, you need to 

provide an output mode, the timeout type, and a user-defined 

callback function. Both the output mode and timeout parts are 

explained in a moment.

The following is the contract between Structured Streaming and the user-defined 

callback function.

• The user-defined callback function is invoked once for each group in 

each trigger. In each invocation, it is meant for each group that has 

data in the trigger. If a particular group doesn’t have any data in a 

trigger, there is no invocation. Therefore, you shouldn’t assume this 

function is invoked in every trigger for every group.

• Each time the user-defined callback function is called, the following 

information is passed along.

• The value of the group key.

• All the data of a group; there is no guarantee they are in any 

particular order.

• The previous state of a group, which was returned by previous 

invocation of the same group. A group state is managed by a state 

holder class called GroupState. When there is a need to update 

the state of a group, you must call the update function of this class 

with the new state. A user-defined class defines the information 

in the state for each group. When calling the update function, the 

provided user-defined state can’t be null.
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As you learned in Chapter 6, only certain output modes are allowed whenever there 

is a need to maintain the intermediate state. As of Spark 2.3, only the update output 

mode is supported when calling API mapGroupsWithState API; however, both append 

and update modes are supported when calling flatMapGroupsWithState API.

 Handling State Timeouts
In the case of event-time aggregation with watermark, the timeout of the intermediate 

state is internally managed by Structured Streaming, and there isn’t any way to influence 

it. On the other hand, Structured Streaming’s arbitrary stateful processing provides the 

flexibility to control the intermediate state timeout. Since you can maintain an arbitrary 

state, it makes sense for the application logic to control the intermediate state timeout to 

meet specific use cases.

Structure Streaming stateful processing provides three different timeout types. The 

first one is based on processing time, and the second one is based on event time. The 

timeout type is configured at the global level, meaning it is for all the groups within 

a particular streaming DataFrame. The timeout amount can be configured for each 

individual group and can be changed at will. If the intermediate state is configured with 

a timeout, it is important to check whether it timed out before processing the given 

list of values in the callback function. A timeout is not needed in some use cases, and 

the third timeout type is designed for this scenario. The timeout type is defined in the 

GroupStateTimeout class. You specify the type when calling mapGroupsWithState or 

flatMapGroupsWithState function. The timeout duration is specified using either the 

GroupState.setTimeoutDuration or GroupState.setTimeoutTimeStamp function for 

processing time out and event time out, respectively.

Keen readers may be wondering what happens when an intermediate state of a 

specific group has timed out. The contract Structure Streaming provides regarding this 

situation is that it calls your user-defined callback function with an empty list of values 

and sets the flag GroupState.hasTimedOut to true.

Of the three timeout types, the event-time timeout is the most complicated one 

and is covered first. Event-time timeout implies that it is based on the time in the 

event and therefore setting a watermark in the streaming DataFrame via DataFrame.

withWatermark is required. To control the time out per group, you need to provide 

a timestamp value to the GroupState.setTimeoutTimestamp function during the 

processing of a particular group. The intermediate state of a group is timed out when 
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the watermark advances beyond the provided timestamp. In the user sessionization use 

case, as a user interacts with your website, the session is extended by simply updating 

the timeout timestamp based on the user’s latest interaction time plus some threshold. 

This ensures that as long as a user interacts with your website, the user session remains 

active, and the intermediate data is not timed out.

The processing timeout type works in a similar fashion to the event-time timeout 

type; however, the difference is that it is based on the wall clock of the server, which is 

constantly advancing forward. To control the time out per group, you provide a time 

duration to the GroupState.setTimeoutDuration function during the processing of 

a particular group. The time duration can be something like one minute, one hour, or 

two days. The intermediate state of a group is timed out when the clock has advanced 

past the provided duration. Since this timeout type depends on the system clock, it is 

important to consider the scenario when the time zone changes or there is a clock skew.

This may be obvious to keen readers, but it is important to recognize that the user- 

defined callback function is not called when there is no incoming data in the stream for 

a while. In addition, the watermark does not advance, and the timeout function call does 

not happen.

At this point, you should have a good understanding of how arbitrary state 

processing in Structured Streaming works and which APIs are involved. The following 

section work through a couple of examples to demonstrate how to implement arbitrary 

state processing.

 Arbitrary State Processing in Action
This section demonstrates the arbitrary state processing in Structured Streaming by 

working through two use cases.

• The first one is about extracting patterns out of the data center 

computer rack temperature data and maintaining the status of 

each rack in the intermediate state. Whenever three consecutive 

temperatures of 100 degrees or more are encountered, the rack 

status is upgraded to the warning level. This example uses the 

mapGroupsWithState API.

• The second example is user sessionization, which keeps track of the 

user state based on their interactions with a website. This example 

uses the flatMapGroupsWithState API.
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Regardless of which API performs arbitrary state processing, a common set of setup 

steps is needed.

 1. Define a few classes to represent the input data, the intermediate 

state, and the output.

 2. Define two functions. The first one is the callback function for 

Structured Streaming to call. The second function contains the 

arbitrary state processing logic on the data of each group as well 

as the logic to maintain the state.

 3. Decide on a timeout type and an appropriate value for it.

 Extracting Patterns with mapGroupsWithState

This use case aims to identify a particular pattern in the data center computer rack 

temperature data. The pattern of interest is the three consecutive temperature readings 

of 100 degrees or more from the same rack. The time difference between two consecutive 

high-temperature readings must be within 60 seconds. When such a pattern is detected, 

the status of that rack is upgraded to a warning status. If the next incoming temperature 

reading falls below the 100-degree threshold, the rack status is downgraded to normal.

The data for this example is in the <path>/chapter7/data/iot_pattern directory, 

which consists of three files, and their content is shown in Listing 7-11. The content of 

file1.json shows the temperature of rack1 is alternating between above and below 100 

degrees. The file2.json file shows the temperature of rack2 is heating up. In the file3.

json file, rack3 is heating up, but the temperature readings are more than one minute 

apart.

Listing 7-11. Temperature Data in file1.json, file2.json and file3.json

// file1.json

{"rack":"rack1","temperature":99.5,"ts":"2017-06-02T08:01:01"}

{"rack":"rack1","temperature":100.5,"ts":"2017-06-02T08:02:02"}

{"rack":"rack1","temperature":98.3,"ts":"2017-06-02T08:02:29"}

{"rack":"rack1","temperature":102.0,"ts":"2017-06-02T08:02:44"}

// file2.json

{"rack":"rack1","temperature":97.5,"ts":"2017-06-02T08:02:59"}

{"rack":"rack2","temperature":99.5,"ts":"2017-06-02T08:03:02"}
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{"rack":"rack2","temperature":105.5,"ts":"2017-06-02T08:03:44"}

{"rack":"rack2","temperature":104.0,"ts":"2017-06-02T08:04:06"}

{"rack":"rack2","temperature":108.0,"ts":"2017-06-02T08:04:49"}

// file3.json

{"rack":"rack2","temperature":108.0,"ts":"2017-06-02T08:06:40"}

{"rack":"rack3","temperature":100.5,"ts":"2017-06-02T08:06:20"}

{"rack":"rack3","temperature":103.7,"ts":"2017-06-02T08:07:35"}

{"rack":"rack3","temperature":105.3,"ts":"2017-06-02T08:08:53"}

Next you prepare a few classes and two functions to apply the pattern detection 

logic to the previous data. For this use case, the rack temperature data input data is 

represented by the RackInfo class and both the intermediate state and output are 

represented by the same class called RackState. Listing 7-12 shows the code.

Listing 7-12. Scala Case Classes for the Input and Intermediate State

case class RackInfo(rack:String, temperature:Double,

                    ts:java.sql.Timestamp)

//  notice the constructor arguments are defined to be modifiable so you can 

update them

// the lastTS variable is used to compare the time between previous and 

current temperature reading

case class RackState(var rackId:String, var highTempCount:Int,

                     var status:String,

                     var lastTS:java.sql.Timestamp)

Next, you define two functions. The first one is called updateRackState, which 

contains the core logic of the event pattern detection about the three consecutive 

temperature readings within a certain amount of time. The second function is 

updateAcrossAllRackStatus, which is the callback function that is passed into the 

mapGroupsWithState API. It makes sure the rack temperature readings are processed 

according to the order of their event time. Listing 7-13 is the code.
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Listing 7-13. the Functions for Performing Pattern Detection

import org.apache.spark.sql.streaming.GroupState

// contains the main logic to detect the temperature pattern described above

def updateRackState(rackState:RackState, rackInfo:RackInfo) : RackState = {

   // setup the conditions to decide whether to update the rack state

   val lastTS = Option(rackState.lastTS).getOrElse(rackInfo.ts)

   val withinTimeThreshold = (rackInfo.ts.getTime -

                              lastTS.getTime) <= 60000

   val meetCondition = if (rackState.highTempCount < 1) true

                      else withinTimeThreshold

   val greaterThanEqualTo100 = rackInfo.temperature >= 100.0

  (greaterThanEqualTo100, meetCondition) match {

     case (true, true) => {

        rackState.highTempCount = rackState.highTempCount + 1

        rackState.status = if (rackState.highTempCount >= 3)

                           "Warning" else "Normal"

     }

     case _ => {

       rackState.highTempCount = 0

       rackState.status = "Normal"

     }

   }

   rackState.lastTS = rackInfo.ts

   rackState

}

// call-back function to provide mapGroupsWithState API

def updateAcrossAllRackStatus(rackId:String,

                              inputs:Iterator[RackInfo],

             oldState: GroupState[RackState]) : RackState = {

   //  initialize rackState with previous state if exists, otherwise create 

a new state

   var rackState = if (oldState.exists) oldState.get

                   else RackState(rackId, 5, "", null)
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   // sort the inputs by timestamp in ascending order

   inputs.toList.sortBy(_.ts.getTime).foreach( input => {

     rackState = updateRackState(rackState, input)

   //  very important to update the rackState in the state holder class 

GroupState

     oldState.update(rackState)

   })

   rackState

}

The setup step is now complete, and now you wire the callback function into the 

mapGroupsWithState in the Structured Streaming application in Listing 7-14. The steps 

to simulate the streaming data are similar to previous examples, as shown here.

 1. Create a directory called input under the <path>/chapter7/data 

directory. Remove all files in this directory if it already exists.

 2. Run the code in Listing 7-14.

 3. Copy file1.json to the input directory, then observe the output. 

Repeat this same step with file2.json and file3.json.

Listing 7-14. Using Arbitrary State Processing to Detect Patterns in a Streaming 

Application

import org.apache.spark.sql.streaming.{GroupStateTimeout, OutputMode}

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

// schema for the IoT data

val iotDataSchema = new StructType()

                         .add("rack",StringType, false)

                         .add("temperature", DoubleType, false)

                         .add("ts", TimestampType, false)

val iotSSDF = spark.readStream.schema(iotDataSchema)

                   .json("<path>/chapter7/data/input")

val iotPatDF = iotSSDF.as[RackInfo].groupByKey(_.rack)

                      .mapGroupsWithState[RackState,RackState]

         (GroupStateTimeout.NoTimeout)(updateAcrossAllRackStatus)
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// setup the output and start the streaming query

val iotPatternSQ = iotPatDF.writeStream.format("console")

                           .outputMode("update")

                           .start()

//  after file3.json is copied over to "input" directory, run the line below 

stop the streaming query

iotPatternSQ.stop

// the output after processing file1.json

+--------+---------------------+----------+---------------------+

|  rackId|        highTempCount|    status|               lastTS|

+--------+---------------------+----------+---------------------+

|   rack1|                    1|    Normal|  2017-06-02 08:02:44|

+--------+---------------------+----------+---------------------+

// the output after processing file2.json

+--------+---------------------+-----------+--------------------+

|  rackId|        highTempCount|     status|              lastTS|

+--------+---------------------+-----------+--------------------+

|   rack1|                    0|     Normal| 2017-06-02 08:02:59|

|   rack2|                    3|    Warning| 2017-06-02 08:04:49|

+--------+---------------------+-----------+--------------------+

// the output after processing file3.json

+--------+---------------------+----------+---------------------+

|  rackId|        highTempCount|    status|               lastTS|

+--------+---------------------+----------+---------------------+

|   rack3|                    1|    Normal|  2017-06-02 08:08:53|

|   rack2|                    0|    Normal|  2017-06-02 08:06:40|

+--------+---------------------+----------+---------------------+

rack1 has a few temperature readings with over 100 degrees; however, they are not 

consecutive, and therefore the output status is at a normal level. In the file2.json file, 

rack2 has three consecutive temperature readings with over 100 degrees, and the time 

gap between each one and the one before is less than 60 seconds; therefore, the status of 
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rack2 is at a warning level. rack3 has three consecutive temperature readings with over 

100 degrees; however, the time gap between each one and the one before is more than 60 

seconds; therefore, its status is at a normal level.

 User Sessionization with flatMapGroupsWithState

This use case performs user sessionization using flatMapGroupsWithState API, 

which supports the ability to output more than one row per group. In this example, the 

sessionization processing logic is based on user activities. A session is created when 

the login action is taken. A session ends when the logout action is taken. A session 

is automatically ended when there are no user activities for 30 minutes. You leverage 

the timeout feature to perform this detection. Whenever a session starts or ends, that 

information is sent to the output. The output information consists of user id, session 

start and end times, and the number of visited pages.

The data for this use case is in the <path>/chapter7/data/sessionization directory, 

and it has three files. Their content is shown in Listing 7-15. The file1.json file contains 

the activities of user1, and it includes a login action, but there is no logout action. The 

file2.json file contains all the activities of user2, including both login and logout 

actions. The file3.json file contains only the login action for user3. The timestamp of the 

user activities in three files is set up so that the user1 session times out when file3.json is 

processed. By then, the amount of time user1 has been idled is more than 30 minutes.

Listing 7-15. User Activity Data

// file1.json

{"user":"user1","action":"login","page":"page1", "ts":"2017-09- 06T08:08:53"}

{"user":"user1","action":"click","page":"page2", "ts":"2017-09- 06T08:10:11"}

{"user":"user1","action":"send","page":"page3", "ts":"2017-09-06T08:11:10"}

// file2.json

{"user":"user2","action":"login", "page":"page1", "ts":"2017-09- 06T08:44:12"}

{"user":"user2","action":"view", "page":"page7",  "ts":"2017-09- 06T08:45:33"}

{"user":"user2","action":"view", "page":"page8", "ts":"2017-09- 06T08:55:58"}

{"user":"user2","action":"view", "page":"page6", "ts":"2017-09- 06T09:10:58"}

{"user":"user2","action":"logout","page":"page9", "ts":"2017-09- 06T09:16:19"}

// file3.json

{"user":"user3","action":"login", "page":"page4", "ts":"2017-09- 06T09:17:11"}
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Next, you prepare a few classes and two functions to apply the user sessionization 

logic to the previous data. For this use case, the user activity input data is represented 

by the UserActivity class. The intermediate state of user session data is represented by 

the UserSessionState class, and the UserSessionInfo class represents the user session 

output. The code for all these three classes is shown in Listing 7-16.

Listing 7-16. Scala Case Classes for Input, Intermediate State, and Output

case class UserActivity(user:String, action:String,

                        page:String, ts:java.sql.Timestamp)

//  the lastTS field is for storing the largest user activity timestamp and 

this information is used

// when setting the timeout value for each user session

case class UserSessionState(var user:String, var status:String,

                            var startTS:java.sql.Timestamp,

                            var endTS:java.sql.Timestamp,

                            var lastTS:java.sql.Timestamp,

                            var numPage:Int)

// the end time stamp is filled when the session has ended.

case class UserSessionInfo(userId:String, start:java.sql.Timestamp, 

end:java.sql.Timestamp,  numPage:Int)

Next, you define two functions. The first one is called updateUserActivity, which 

is responsible for updating the user session state based on user activity. It also updates 

the session start or end time based on user action and the latest activity timestamp. The 

second function is called updateAcrossAllUserActivities. It is the callback function 

that is passed into the flatMapGroupsWithState function. This function has two main 

responsibilities. The first one is to handle the timeout of the intermediate session 

state, and it updates the user session end time when such a condition arises. The other 

responsibility is to determine when and what to send to the output. The desired output 

is to emit one row when a user session is started and another one when a user session is 

ended. Listing 7-17 is the logic of these two functions.
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Listing 7-17. the Functions for Performing User Sessionization

import org.apache.spark.sql.streaming.GroupState

import scala.collection.mutable.ListBuffer

def updateUserActivity(userSessionState:UserSessionState, 

userActivity:UserActivity) : UserSessionState = {

    userActivity.action match {

      case "login" => {

        userSessionState.startTS = userActivity.ts

        userSessionState.status = "Online"

      }

      case "logout" => {

        userSessionState.endTS = userActivity.ts

        userSessionState.status = "Offline"

      }

      case _ => {

        userSessionState.numPage += 1

        userSessionState.status = "Active"

      }

    }

    userSessionState.lastTS = userActivity.ts

    userSessionState

}

def updateAcrossAllUserActivities(user:String,

                     inputs:Iterator[UserActivity],

                     oldState: GroupState[UserSessionState]) :

                     Iterator[UserSessionInfo] = {

   var userSessionState = if (oldState.exists) oldState.get

                          else UserSessionState(user, "",

    new java.sql.Timestamp(System.currentTimeMillis), null, null, 0)

   var output = ListBuffer[UserSessionInfo]()
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   inputs.toList.sortBy(_.ts.getTime).foreach( userActivity => {

     userSessionState = updateUserActivity(userSessionState,

                           userActivity)

                           oldState.update(userSessionState)

     if (userActivity.action == "login") {

       output += UserSessionInfo(user, userSessionState.startTS,

                                 userSessionState.endTS, 0)

     }

   })

   val sessionTimedOut = oldState.hasTimedOut

   val sessionEnded = !Option(userSessionState.endTS).isEmpty

   val shouldOutput = sessionTimedOut || sessionEnded

   shouldOutput match {

    case true => {

        if (sessionTimedOut) {

            userSessionState.endTS =

new java.sql.Timestamp(oldState.getCurrentWatermarkMs)

        }

        oldState.remove()

        output += UserSessionInfo(user, userSessionState.startTS,

                                  userSessionState.endTS,

                                  userSessionState.numPage)

    }

    case _ => {

      // extend sesion

      oldState.update(userSessionState)              oldState.setTimeoutTime

stamp(userSessionState.

lastTS.getTime,

"30 minutes")

    }

   }

   output.iterator

}
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Once the setup step is completed, the next step is to wire the callback function into 

the flatMapGroupsWithState function in the Structured Streaming application, as 

shown in Listing 7-18. This example leverages the timeout feature, so it is required to set 

up a watermark and event-time timeout type. The following are the steps to simulate the 

streaming data.

 1. Create a directory called input under the <path>/chapter7/data 

directory. Make sure to remove all existing files in this directory if 

it already exists.

 2. Run the code shown in Listing 7-17.

 3. Copy file1.json to the input directory, then observe the output. 

Repeat these steps for file2.json and file3.json.

Listing 7-18. Using Arbitrary State Processing to Perform User Sessionization in 

a Streaming Application

import org.apache.spark.sql.streaming.{GroupStateTimeout, OutputMode}

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val userActivitySchema = new StructType()

                              .add("user", StringType, false)

                              .add("action", StringType, false)

                              .add("page", StringType, false)

                              .add("ts", TimestampType, false)

val userActivityDF = spark.readStream.schema(userActivitySchema)

                          .json("<path>/chapter7/data/input")

// convert to DataSet of type UserActivity

val userActivityDS = userActivityDF.withWatermark("ts", "30 minutes").

as[UserActivity]

// specify the event-time timeout type and wire in the call-back function

val userSessionDS = userActivityDS.groupByKey(_.user)

     .flatMapGroupsWithState[UserSessionState,UserSessionInfo]

     (OutputMode.Append,GroupStateTimeout.EventTimeTimeout)

     (updateAcrossAllUserActivities)
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// setup the output and start the streaming query

val userSessionSQ = userSessionDS.writeStream

                                 .format("console")

                                 .option("truncate",false)

                                 .outputMode("append")

                                 .start()

// only run this line of code below after done copying over file3.json

userSessionSQ.stop

// the output after processing file1.json

+--------+----------------------------+-----+-------------+

|  userId|              start         | end |      numPage|

+--------+----------------------------+-----+-------------+

|  user1 |         2017-09-06 08:08:53| null|      0      |

+--------+----------------------------+-----+-------------+

// the output after processing file2.json

+--------+------------------------+--------------------+--------+

|  userId|             start      |               end  | numPage|

+--------+------------------------+--------------------+--------+

|  user2 |     2017-09-06 08:44:12| null               |       0|

|  user2 |     2017-09-06 08:44:12| 2017-09-06 09:16:19|       3|

+--------+------------------------+--------------------+--------+

// the output after processing file3.json

+--------+--------------------+--------------------+------------+

|  userId|       start        |              end   |     numPage|

+--------+--------------------+--------------------+------------+

|  user1 | 2017-09-06 08:08:53| 2017-09-06 08:46:19|           2|

|  user3 | 2017-09-06 09:17:11| null               |           0|

+--------+--------------------+--------------------+------------+

After processing the user activities in file1.json, there should be one row in the 

output. This is expected because whenever the updateAcrossAllUserActivities 

function sees a login action in the user activities, it adds an instance of the 

UserSessionInfo class to the ListBuffer output. There are two rows in the output after 
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processing file2.json. One is for the login action, and the other one is for the logout 

action. Now, file3.json contains only one user activity for user3 with action login, 

but the output contains two rows. The row for user1 is the result of detecting the user1 

session has timed out, which means the watermark has passed the timeout value of that 

particular session due to the lack of activities.

As demonstrated in the previous two use cases, the arbitrary stateful processing 

feature in Structured Streaming provides flexible and powerful ways to apply user-

defined processing logic on each group with total control of what and when to send out 

to the output.

 Handling Duplicate Data
Deduplicating data is a common need while processing data, and it is fairly easy to do 

this in batch processing. It is more challenging in stream processing because of the 

unbounded nature of streaming data. The data duplication in streaming data happens 

when the data producers send the same data multiple times to combat the unreliable 

network connection or transmission failures.

Luckily, Structured Streaming makes it easy for streaming applications to perform 

data duplication, and therefore these applications can guarantee exactly-once 

processing by dropping duplicate data as they arrive. The data duplication feature 

Structured streaming provides can work in conjunction with or without watermark. 

One key thing to remember, when performing data duplication without specifying the 

watermark, the state Structured Streaming needs to maintain grow infinitely throughout 

the lifetime of your streaming application, and this may lead to out-of-memory issues. 

With watermarking, the late data that is older than the watermark is automatically 

dropped to avoid duplicates.

The API to instruct Structured Streaming to perform data deduplication is simple. 

It has only one input: a list of column names to use to uniquely identify each row. 

The value of these columns performs duplicate detection, and Structured Streaming 

stores them as a state. The sample data that demonstrates the data deduplication 

feature has the same schema as the mobile event data. The count aggregation is based 

on the  grouping of the id column. Both the id and ts columns are used as the user-

defined keys for deduplication. The data for this example is in <path>/chapter7/data/

deduplication. It contains two files: file1.json and file2.json. The content of these 

files is displayed in Listing 7-19.
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Listing 7-19. Sample Data for the Data Duplication Example

// file1.json - each line is unique in term of id and ts columns

{"id":"phone1","action":"open","ts":"2018-03-02T10:15:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:22:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:23:50"}

//  file2.json - the first two lines are duplicate of the first two lines in 

file1.json above

// the third line is unique

//  the fourth line is unique, but it arrives late, therefore it will not be 

processed

{"id":"phone1","action":"open","ts":"2018-03-02T10:15:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:22:35"}

{"id":"phone4","action":"open","ts":"2018-03-02T10:29:35"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:01:35"}

To simulate the data deduplication, first you create a directory called input under 

the <path>/chapter7/data directory. Then you run the code in Listing 7-20. The next 

step is to copy the file1.json file to the input directory, and examine the output. The 

final step is to copy the file2.json file to the input directory and examine the output.

Listing 7-20. Deduplicating Data Using dropDuplicates API

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType()

                             .add("id", StringType, false)

                             .add("action", StringType, false)

                             .add("ts", TimestampType, false)

// mobileDataSchema is defined in previous example

val mobileDupSSDF = spark.readStream.schema(mobileDataSchema)

                      .json("<path>/chapter7/data/deduplication")

val windowCountDupDF = mobileDupSSDF.withWatermark("ts",

                                                   "10 minutes")

                                    .dropDuplicates("id", "ts")

                                    .groupBy("id").count
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val mobileMemoryDupSQ = windowCountDupDF.writeStream

                                       .format("console")

                                     .option("truncate", "false")

                                     .outputMode("update")

                                     .start()

// output after copying file1.json to input directory

+---------+--------+

|   id    |   count|

+---------+--------+

|   phone3| 1      |

|   phone1| 1      |

|   phone2| 1      |

+---------+--------+

// output after coping file2.json to input directory

+---------+--------+

|   id    |  count |

+---------+--------+

|   phone4| 1      |

+---------+--------+

As expected, after file2.json is copied to the input directory, only one line is 

displayed in the console. The first two lines are duplicates of the first two lines in file1.

json, so they were filtered out. The last line has a timestamp of 10:10, which is considered 

late data since the timestamp is older than the 10-minute watermark threshold. 

Therefore, it was not processed and dropped.

 Fault Tolerance
One of the most important considerations when developing streaming applications 

and deploying them to production is handling failure recovery. According to Murphy’s 

law, anything that can go wrong will go wrong. Machines will fail, and software will 

have bugs.

Luckily, Structured Streaming provides a way to restart or recover your streaming 

application when there is a failure, and it continues where it left off. To take advantage 

of this recovery mechanism, you need to configure your streaming applications to use 
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checkpointing and write-ahead logs by specifying a checkpoint location when setting 

up streaming queries. Ideally, the checkpoint location should be a directory on a 

reliable and fault-tolerant file system such as HDFS or Amazon S3. Structure Streaming 

periodically saves all the progress information, such as the offset details of the data being 

processed and the intermediate state values to the checkpoint location. Specifying a 

checkpoint location for a streaming query is very straightforward. You just need to add 

an option to your streaming query with the name checkpointLocation and the name of 

the directory as the value. Listing 7-21 is an example.

Listing 7-21. Add the checkpointLocation Option to a Streaming Query

val userSessionSQ = userSessionDS.writeStream.format("console")

                                 .option("truncate",false)

               .option("checkpointLocation","/reliable/location")

               .outputMode("append")

               .start()

If you peek into the specified checkpoint location, you should see the following 

subdirectories: commits, metadata, offsets, sources, stats. The information in these 

directories is specific to a particular streaming query; hence, each must use a different 

checkpoint location.

Like most software applications, streaming applications evolve over time because 

of the need to improve the processing logic or performance or fix bugs. It is important 

to keep in mind how this might affect the information saved in the checkpoint location 

and to know what changes are considered safe to make. Broadly speaking, there are two 

categories of changes. One is the change to streaming application code, and the other is 

the change to Spark runtime.

 Streaming Application Code Change
The information in the checkpoint location is designed to be somewhat resilient to the 

changes to streaming applications. There are a few kinds of changes that are considered 

incompatible changes. The first one is about changing the way the aggregation is done, 

such as changing the key column, adding more key columns, or removing one of the 

existing key columns. The second one is changing the class structure used to store the 

intermediate state, for example, when a field is removed, or the type of a field is changed 
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from string to integer. When incompatible changes are detected during a restart, 

Structured Streaming lets you know via an exception. In this case, you must either use a 

new checkpoint location or remove the content in the previous checkpoint location.

 Spark Runtime Change
The checkpoint format is designed to be forward compatible so that streaming 

applications can restart from an old checkpoint across Spark minor patch versions or 

minor versions (i.e., upgrading from Spark 2.2.0 to 2.2.1 or from Spark 2.2.x to 2.3.x). The 

only exception to the rule is when there are critical bug fixes. It is good to know that it is 

clearly documented in the release notes when Spark introduces incompatible changes.

If it is not possible to start a streaming application with an existing checkpoint 

location because of incompatibility issues, you need to use a new checkpoint location. 

You may also need to seed your applications with some information about the offset to 

read data from.

 Streaming Query Metrics and Monitoring
Like other long-running applications such as online services, it is important to have 

some insights into your streaming applications regarding their progress, incoming 

data rate, or the amount of memory consumed by the intermediate state. Structured 

Streaming provides a few APIs to extract recent execution progress and an asynchronous 

way to monitor all streaming queries in a streaming application.

 Streaming Query Metrics
The most basic useful information about a streaming query at any moment in time is 

its current status. You can retrieve and display this information in a human-readable 

format by calling the StreamingQuery.status function. The returned object is of type 

StreamingQueryStatus, and it can easily convert the status information into JSON 

format. Listing 7-22 shows an example of what the status information looks like.

Listing 7-22. Query Status Information in JSON Format

// use a streaming query from the example above

userSessionSQ.status
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// output

res11: org.apache.spark.sql.streaming.StreamingQueryStatus =

{

  "message" : "Waiting for data to arrive",

  "isDataAvailable" : false,

  "isTriggerActive" : false

}

The status provides very basic information about what’s going on in a streaming 

query. To get additional details from recent progress like the incoming data rate, 

processing rate, watermark, the offsets of the data source, and some information about 

the intermediate state, you can call the StreamingQuery.recentProgress function. This 

function returns an array of StreamingQueryProgress instances, which can convert 

the information into JSON format. By default, each streaming query is configured to 

retain 100 progress updates, and this number can be changed by updating the Spark 

configuration called spark.sql.streaming.numRecentProgressUpdates. To see the 

most recent streaming query progress, you can call the StreamingQuery.lastProgress 

function. Listing 7-23 shows a sample of a streaming query progress.

Listing 7-23. Streaming Query Progress Details

{

  "id" : "9ba6691d-7612-4906-b64d-9153544d81e9",

  "runId" : "c6d79bee-a691-4d2f-9be2-c93f3a88eb0c",

  "name" : null,

  "timestamp" : "2018-04-23T17:20:12.023Z",

  "batchId" : 0,

  "numInputRows" : 3,

  "inputRowsPerSecond" : 250.0,

  "processedRowsPerSecond" : 1.728110599078341,

  "durationMs" : {

    "addBatch" : 1548,

    "getBatch" : 8,

    "getOffset" : 36,

    "queryPlanning" : 110,

    "triggerExecution" : 1736,

    "walCommit" : 26

  },
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  "eventTime" : {

    "avg" : "2017-09-06T15:10:04.666Z",

    "max" : "2017-09-06T15:11:10.000Z",

    "min" : "2017-09-06T15:08:53.000Z",

    "watermark" : "1970-01-01T00:00:00.000Z"

  },

  "stateOperators" : [ {

    "numRowsTotal" : 1,

    "numRowsUpdated" : 1,

    "memoryUsedBytes" : 16127

  } ],

  "sources" : [ {

    "description" : "FileStreamSource[file:<path>/chapter7/data/input]",

    "startOffset" : null,

    "endOffset" : {

      "logOffset" : 0

    },

    "numInputRows" : 3,

    "inputRowsPerSecond" : 250.0,

    "processedRowsPerSecond" : 1.728110599078341

  } ],

  "sink" : {

     "description" : "org.apache.spark.sql.execution.streaming.

ConsoleSinkProvider@37dc4031"

  }

}

There are a few important key metrics in this streaming progress status to pay 

attention to. The input rate represents the amount of incoming data flowing into a 

streaming application from an input source. The processing rate tells you how fast your 

streaming application can process the incoming data. In an ideal state, the processing 

rate should be higher than the input rate, and if that is not the case, you need to 

consider scaling up the number of nodes in the Spark cluster. If a streaming application 

is maintaining state either implicitly through the groupBy transformation or explicitly 

through the arbitrary state processing APIs, it is important to pay attention to the metrics 

under the stateOperators section.
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Spark UI provides a rich set of metrics at the job, stage, and task level. Each trigger 

in a streaming application is mapped to a job in Spark UI, where the query plan and task 

durations can be easily inspected.

Note the streaming query status and progress details are available through 
an instance of a streaming query. While you streaming application is running in 
production, you don't have access to those streaming queries. What if you want 
to see that information from a remote host? One option is to embed a small http 
server in your streaming application and expose a few simple UrLs to retrieve that 
information.

 Monitoring Streaming Queries via Callback
Structured Streaming provides a callback mechanism to asynchronously receive 

events and progress of the streaming queries in a streaming application. This is done 

by registering an implementation of the StreamingQueryListener interface. This 

interface defines several callback methods to receive status about your streaming 

query, such as when it started, when there is progress, and when it is terminated. An 

implementation of this interface has total control of what to do with the provided 

information. One example of the implementation is sending this information to a Kafka 

topic or some other publish-subscribe system for offline analysis or another streaming 

application to process. Listing 7-24 contains a very simple implementation of the 

StreamingQueryListener interface. It simply prints the information out to the console.

Listing 7-24. a Simple Implementation of StreamingQueryListener Interface

import org.apache.spark.sql.streaming.StreamingQueryListener

import org.apache.spark.sql.streaming.StreamingQueryListener.{

                       QueryStartedEvent, QueryProgressEvent,

                       QueryTerminatedEvent}

class ConsoleStreamingQueryListener extends StreamingQueryListener {

  override def onQueryStarted(event: QueryStartedEvent): Unit = {

      println(s"streaming query started: ${event.id} -

                                 ${event.name} - ${event.runId}")

  }
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override def onQueryProgress(event: QueryProgressEvent): Unit = {

      println(s"streaming query progress: ${event.progress}")

}

override def onQueryTerminated(event: QueryTerminatedEvent): Unit = {

     println(s"streaming query terminated: ${event.id} -

                                           ${event.runId}")

  }

}

Once you implement StreamingQueryListener, the next step is to register it with 

StreamQueryManager, which can handle multiple listeners. Listing 7-25 shows how to 

register and unregister a listener.

Listing 7-25. Register and Unregister an Instance of StreamingQueryListener 

with StreamQueryManager

Val listener = new ConsoleStreamingQueryListener

// to register

spark.streams.addListener(listener)

// to unregister

spark.streams.removeListener(listener)

One thing to remember is each listener receives the streaming query events of all the 

streaming queries in a streaming application. If there is a need to apply event processing 

logic to a specific streaming query, you can use the streaming query name to identify 

which one is of interest.

 Monitoring Streaming Queries via Visualization UI
Spark 3.0 introduced a new and simple way to monitor all streaming queries via the 

Structured Streaming tab of the Spark UI, as shown in Figure 7-5. The visualization 

UI was designed to help Spark application developers troubleshoot their Structured 

Streaming applications during the development phase and gain insights into the real- 

time metrics. The UI displays two different kinds of statistics.
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• The summary information of each streaming query

• The statistics on each streaming query, including input rate, process 

rate, input rows, and batch duration

 Streaming Query Summary Information
A Structured Streaming application can have more than one streaming query, and 

whenever one of those is started, it is listed in the Structured Streaming tab of the Spark 

UI. The summary information is available for both active and completed streaming 

queries but in a separate section. Figure 7-6 shows the summary information of two 

streaming queries.

The summary information table contains the basic information for each streaming 

query, including query name, status, ID, run ID, start time, query duration, and 

aggregation statistics, like average input rate and average process rate. A streaming query 

can be in one of these statuses: RUNNING, FINISHED, and FAILED. The Error column 

contains useful information about the exception details of a failed query.

You can view the detailed statistics of a particular streaming query by clicking the 

link in the Run ID column.

Figure 7-5. Structured Streaming tab in Spark UI

Figure 7-6. Structured Streaming tab with stream query summary information
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 Streaming Query Detailed Statistics Information
The Streaming Query Statistics page shows useful metrics to gain insights into your 

streaming application’s performance and health and debug issues. Figure 7-7 shows the 

detailed statistics of a sample streaming query.

Figure 7-7. Streaming query statistics example
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The following section describes the metrics shown in Figure 7-7. You can see a brief 

description of each metric by positioning your mouse over the question mark next to the 

metric name.

• Input Rate: The rate of data arriving across all the input sources of 

your streaming query. The rate is displayed as an aggregate, a single 

value to represent the rate of all the input sources.

• Processing Rate: The event processing rate at which the Structured 

Streaming engine is processing the incoming data. Like the preceding 

metric, it is an aggregate across all the input sources.

• Batch Duration: The processing time duration of each micro-batch

• Operation Duration: (in the context of a batch) The amount of time 

in milliseconds taken to perform the various operations.

• addBatch: The time it takes to read, process, and write the batch’s 

output to sink. This should take most of the time in the batch 

duration.

• getBatch: The time it takes to prepare the logical query to read 

the input.

• getOffset: The time it takes to query the input sources whether 

they have new input data.

• walCommit: The time it takes to write the offsets to the  

metadata log.

• queryPlanning: The time it takes to generate the execution plan.

 Troubleshooting Streaming Query
With the availability of the detailed metrics of a streaming query, the next step is to 

leverage them to understand what’s going on and that action to take to improve your 

Structured Streaming application performance. This section discusses two scenarios and 

shares a few suggestions to improve the streaming query performance.
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The first scenario is when the input rate is much higher than the process rate metric. 

This is an indication that your streaming query is falling behind and unable to keep up 

with the data producers. The following are some possible actions to take.

• Add more execution resources such as increasing the number of 

executors

• Or increase the number of partitions to decrease the amount of work 

per partition

The second scenario is when the input rate is roughly the same as the process rate 

metric, but the batch duration metric is fairly high. This indicates that your streaming 

query is stable and able to the data producers, but the latency is high to process each 

batch. The following are some possible actions to take.

• Increase the parallelism of your streaming query

• If the input source is Kafka, then increase the number of Kafka 

partitions

• Increase the number of cores per Spark executor

The new Structured Streaming UI provides both summarized as well as detailed 

statistics about each streaming query. This is helpful for Spark developers to gain 

insights into their Structured Streaming application performance to take appropriate 

actions to address the performance issues.

 Summary
The Spark Structured Streaming engine provides many advanced features and the 

flexibility to build complex and sophisticated streaming applications.

• Any serious streaming processing engine must support the ability 

to process incoming data by the event time. Structured Streaming 

not only supports the ability to do, but it also supports window 

aggregation based on fixed and sliding windows. In addition, it 

automatically maintains the intermediate state in a fault-tolerant 

manner.
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• Maintaining the intermediate state introduces the risk of running 

out of memory as streaming applications process more and 

more data over a long time. Watermark was introduced to make 

it easier to reason about late data and remove no longer needed 

intermediate state.

• Arbitrary stateful processing enables a user-defined way of 

processing the values of each group and to maintain its intermediate 

state. Structured Streaming provides an easy way of doing this via 

callback API, and there is a flexibility in generating one or more rows 

per group to the output.

• Structured Streaming provides end-to-end exactly-once guarantee. 

This is achieved by using the checkpointing and the write ahead 

log mechanisms. Both of them can be turned on easily by providing 

a checkpoint location that resides on a fault-tolerant filesystem. 

Streaming applications can be easily restarted and pick up from 

where it left off before the failure by reading the information saved in 

the checkpoint location.

• Production streaming applications require the ability to have 

insights into the status and metrics of streaming queries. Structured 

Streaming provides a short summary of a streaming query status as 

well as the detailed metrics about incoming data rate, processing 

rate, and some details about the intermediate state memory 

consumption. To monitor the life cycle of streaming queries and 

their detailed progress, you can register one or more instances of 

StreamingQueryListener interface. The new Structure Streaming UI 

introduced in Spark 3.0 provides summarized and detailed statistics 

of each streaming query.
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CHAPTER 8

Machine Learning 
with Spark
There has been a lot of excitement around artificial intelligence (AI), machine learning 

(ML), and deep learning (DL) in recent years. AI experts and researchers have predicted 

AI will radically transform the way humans live, work, and do business in the future. 

For businesses around the world, AI is one of the next steps in their journey of digital 

transformation, and some have made more progress than others in incorporating AI 

into their business strategies. Businesses expect AI to help solve their business problems 

efficiently and quickly and create new business value to increase their competitive 

advantages. Internet giants like Google, Amazon, Microsoft, Apple, and Facebook lead 

the pack in investing in, adopting, and incorporating AI into their product portfolio. In 

2017, over $15 billion of venture capital (VC) money went into investing in AI-related 

start-up companies worldwide, and this trend is expected to continue.

AI is a broad area of computer science that attempts to make machines seem like 

they have intelligence. It is an audacious goal to help advance human mankind. One of 

the subfields within AI is machine learning, which focuses on teaching computers to 

learn without being explicitly programmed. The learning process involves extracting 

patterns from a large number of datasets using algorithms and building a model to 

explain the world. These algorithms can be categorized into different groups based on 

the task they are designed for. One trait these algorithms have in common is they learn 

through an iterative process of refining their internal parameters to achieve an optimal 

outcome.

Deep learning (DL) is one of the machine learning methods inspired by the way the 

human brain works, and it has proven to be good at learning complex patterns from data 

by representing them as a nested hierarchy of concepts. With the combination of the 

availability of large and curated datasets and the advancement in graphical processing 

units (GPUs), DL has proven to be effective at solving problems in areas such as object 
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recognition, image recognition, speech recognition, and machine translation. During 

an ImageNet image classification challenge, a computer system trained using the DL 

method beat a human at classifying images. The implication of this achievement and 

similar ones is that now computer systems can see, recognize objects, and hear at the 

same level as their creator. Figure 8-1 illustrates the relationship between AI, ML, and DL 

as well their timeline.

One of the motivations behind the creation of Spark is to help applications run 

iterative algorithms efficiently at scale. Over the last few versions of Spark, the MLlib 

library has steadily increased its offerings to make practical ML scalable and easy by 

providing a set of commonly used ML algorithms and a set of tools to facilitate the 

process of building and evaluating ML models.

To appreciate the features the MLlib library provides, it is necessary to have a 

fundamental understanding of the process of building ML applications. This chapter 

introduces the features and APIs available in the MLlib library.

 Machine Learning Overview
This section provides a brief overview of machine learning and the ML application 

development process. It is not meant to be exhaustive; feel free to skip if you are already 

familiar with machine learning.

Machine learning is a vast and fascinating field of study, which combines parts of other 

fields of study, such as mathematics, statistics, and computer science. It teaches computers 

to learn patterns and derive insights from historical data, often for making decisions or 

Figure 8-1. Relationship between AI, ML, and DL and their timeline
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predictions. Unlike traditional, hard-coded software, ML gives you only probabilistic 

outputs based on the imperfect data you provide. The more data you can provide to ML 

algorithms, the more accurate the output is. ML can solve much more interesting and 

difficult problems than traditional software can, and these problems are not specific to any 

industry or business domain. Examples of relevant areas are image recognition, speech 

recognition, language translation, fraud detection, product recommendation, robotics, 

autonomous driving car, speeding up the drug discovery process, medical diagnosis, 

customer churn prediction, recommendations, and many more.

Given that the goal of AI is to make machines seem like they have intelligence, one 

of the best ways to measure that is by comparing machine intelligence against human 

intelligence.

In recent decades, there are a few well-known and publicized demonstrations of 

such comparisons. The first was a computer system called Deep Blue that defeated 

the world chess champion in 1997 under strict tournament regulations. This example 

demonstrates that computer machines can think faster and better than humans in the 

game with a vast but limited set of possible moves.

The second one is about a computer system called Watson that competed on a 

Jeopardy game show against two legendary champions in 2011 and won the first prize 

of $1 million. This example demonstrates that computer machines can understand 

human language in a specific question-and-answer structure and then tap into its vast 

knowledge base to develop probabilistic answers.

The third one is about a computer program called AlphGo that defeated a world- 

champion Go player in a historic match in 2016. This example demonstrates a great leap 

in the advancement in the AI field. Go is a complex board game that requires intuition, 

creative and strategic thinking. It is not feasible to perform an exhaustive search move 

because the number of possible moves it has is greater than the number of atoms in the 

universe.

 Machine Learning Terminologies
Before going deeper into ML, it is important to learn a few basic terminologies in this 

field. This is helpful in future sections when these terminologies are referenced. To 

make it easier to understand these terminologies, the explanations are provided in the 

canonical ML example called spam email classification.

Chapter 8  MaChine Learning with Spark



334

• Observation is a term comes from the statistics field. An observation 

is an instance of the entity that is used for learning. For example, 

emails are considered observations.

• Label is a value to label an observation. For example, “spam” or “not 

spam” are two possible values used to label emails.

• Features are important attributes about observations that most likely 

have the strongest influence on the prediction output—for example, 

email sender IP address, the number words, and the number of 

capitalized words.

• Training data is a portion of the observations that train an ML 

algorithm to produce a model. A general practice is to split the 

collected data into three portions: training data, validation data, and 

test data. The test data portion is roughly about 70% or 80% of the 

original dataset.

• Validation data is a portion of the observations that evaluate the 

performance of the ML model during the model tuning process.

• Test data is a portion of the observations that evaluate the 

performance of the ML model after the tuning process is finalized.

• ML algorithm is a collection of steps that run iteratively to extract 

insights or patterns from given test data. The main goal of an ML 

algorithm is to learn a mapping from inputs to outputs. A well- 

known set of ML algorithms is available for you to choose from. The 

challenge is in selecting the right algorithm to solve a particular ML 

problem. For a spam email detection problem, you might pick the 

naïve Bayes algorithm.

• Model: After an ML algorithm learns from the given input data, it 

produces a model. You then use a model to perform predictions 

or make decisions on the new data. A model is represented by a 

mathematical formula. The goal is to produce a generalized model 

that performs well against any new data it has not seen before.

The relationship between an ML algorithm, data, and model is best illustrated in 

Figure 8-2.
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One important point to remember when applying machine learning is to never train 

an ML algorithm with the test data because that defeats the purpose of producing a 

generalized ML model. Another important point to note is ML is a vast field, and as you 

dig deeper into this field, you discover many more terminologies and concepts. Hopefully, 

this basic set of terminologies help you get started in this journey of learning ML.

 Machine Learning Types
ML is about teaching machines to learn patterns from data for making decisions or 

predictions. These tasks are widely applicable to many different types of problems, 

where each problem type requires a different way of learning. There are three types of 

learning, which are depicted in Figure 8-3.

 Supervised Learning

Among the three different learning types, this one is widely used and more popular 

because it can help solve a large class of problems in classification and regression.

Classification is about classifying the observations into one of the discrete or 

categorical classes of the label. Examples of classification problems include predicting 

whether an email is a spam email or not; whether a product review is positive or 

negative; whether an image contains a dog, cat, dolphin, or bird; whether the topic 

of a news article is about sports, medicine, politics, or religion; whether a particular 

handwritten digit is a 1 or 2; and whether the Q4 revenue met expectations. When the 

classification result has exactly two discrete values, that is called binary classification. 

When it has more than two discrete values, that is called multiclass classification.

Figure 8-2. Relationship between ML algorithm, data, and model

Figure 8-3. Different machine learning types
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Regression is about predicting real values from observations. Unlike classification, 

the predicted value is not discrete, but rather it is continuous. Examples of regression 

problems include predicting the house price based on their location and size,  predicting 

the stock price of a company, predicting a person’s income based on the background 

and education of a set of people, and so on.

One key distinguishing factor between this type of learning from the others is 

each observation in the training data must contain a label, whether that is discrete 

or continuous. In other words, the correct answers are provided to the algorithm to 

learn by iterating and incrementally improving its predictions on the training data. It 

stops once the acceptable error margin between the predicted value and actual value 

is achieved.

A simple mental model to distinguish classification from regression is that the former 

is about separating the data into various buckets, and the latter is about fitting the best 

line to the data. Figure 8-4 shows the visual representation of this mental model.

A large collection of algorithms was designed to solve the classification and 

regression machine learning problems. This chapter touches on a few supported in the 

Spark MLlib component, as listed in Table 8-1.

Figure 8-4. Mental model of classification and regression
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 Unsupervised Learning

The name of this learning method implies there is no supervision; in other words, the 

data trains the ML algorithm doesn’t contain the labels. This learning type is designed to 

solve a different class of problems, such as discovering the hidden structure or patterns 

inside the data, and it is up to us, the human, to interpret the meaning behind those 

insights. One of the hidden structures, called clustering, is useful for deriving meaningful 

relationships or similarities between the observations within the clusters. Figure 8-5 

depicts examples of clusters.

Table 8-1. Supervised Learning Algorithms in MLlib

Tasks Algorithms

Classification Logistic regression

Decision tree

random Forest

gradient-boosted tree

Linear Support Vector Machine

naïve Bayes

regression Linear regression

generalized Linear regression

Decision tree regression

random Forest regression

gradient-boosted regression

Figure 8-5. Visualization of clustering
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As it turns out, there are many practical problems that this type of learning method can 

solve. Let’s say there is a large collection of documents and no prior knowledge of which 

topic a particular document belongs to. You can use unsupervised learning to discover 

the clusters of related documents, and from there, you can assign a topic to each cluster. 

Another interesting and common problem that unsupervised learning can help solve is 

credit card fraud detection. After grouping user credit card transactions into clusters, it is 

not too difficult to spot the outliers, representing abnormal credit card transactions after a 

thief stole it. Table 8-2 lists the supported unsupervised learning algorithms in Spark.

 Reinforcement Learning

Unlike the first two types of learning, this one doesn’t learn from data. Instead, it learns 

from interacting with an environment through a series of actions and the feedback 

it receives. Based on the feedback, it makes adjustments to move closer to its goal of 

maximizing some reward. In other words, it learns from its own experience.

Until recently, this type of learning hasn’t gotten as much attention as the first two 

because it has not had significant practical success beyond computer games. In 2016, 

Google DeepMind was able to successfully apply this learning type to play an Atari game 

and then incorporate it into its AlphGo program, which defeated a world champion in 

the game of Go.

At this point, Spark MLlib doesn’t include any reinforcement learning algorithms. 

The next sections focus on the first two types of learnings.

Note the term supervised metaphorically refers to a teacher (human) who 
“supervises” the learner, which is the ML algorithm, by specifically providing the 
answers (labels) along with a set of examples (training data).

Table 8-2. Unsupervised Learning Algorithms in MLlib

Tasks Algorithms

Clustering k-means

Latent Dirichlet allocation

Bisecting k-means

gaussian
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 Machine Learning Development Process
To be effective at applying machine learning to develop intelligent applications, 

you should consider studying and adopting is a set of best practices that most ML 

practitioners follow. It has been said that effectively applying machine learning is a 

craft—half science and half art. Fortunately, a well-known and structured process 

consists of a series of steps to help provide reasonable repeatability and consistency, 

which is depicted in Figure 8-6.

The first step in this process is to clearly understand the business objective or 

challenge you think ML can help you with. It is beneficial to evaluate alternative 

solutions to ML to understand the cost and trade-offs. Sometimes it is faster to go 

with a simple rule-based solution to start with. If there is strong evidence that ML is a 

better choice to deliver valuable business insights efficiently, quickly, then you would 

proceed to the next step, which is to establish a set of success metrics that you and your 

stakeholders agree on.

Success metrics establish successful criteria on an ML project from a business 

perspective. They are measurable as well as directly related to business success. 

Examples of metrics are increasing customer conversion by a certain percentage, 

increasing the advertisement click-through rate by a certain amount, and increasing 

revenue by a certain amount of dollars. Success metrics are also helpful in deciding 

when to abandon an ML project due to cost or if it is not producing the expected gain.

After the success metrics are identified, the next step is to identify and collect the 

appropriate amount of data to train the ML algorithm. The quality and quantity of the 

collected data directly impacts the performance of the trained ML model. One important 

Figure 8-6. Machine learning application development process
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point to keep in mind is to make sure the collected data represents the problem you are 

trying to solve. The phrase “garbage in, garbage out” is still applicable in characterizing a 

key limitation in ML.

Featuring engineering is one of the most important and time-consuming steps in this 

process. It is mainly about data cleaning and using domain knowledge to identify key 

attributes or features in the observations to help the ML algorithms to learn the direct 

relationship between training data and provided labels. The data cleaning task is usually 

done using the exploratory data analysis framework to better understand the data in 

terms of data distribution, correlations, outliers, and so forth. This step is an expensive 

one due to the need to involve humans in the loop and using their domain knowledge. 

DL has shown to be a superior learning method over ML because it can automatically 

extract features without human intervention.

The next step after feature engineering is selecting an appropriate ML model or 

algorithm and training it. Given that there are many available algorithms to solve similar 

ML tasks, the question is, what is the best model to use? Like most things, deciding on the 

best one requires a combination of having a good understanding of the problem at hand, 

having a good working knowledge of the various characteristics of each algorithm, and 

having the experience to apply them to similar problems in the past. In other words, it is 

half science and half art when it comes to selecting the best algorithm. It requires some 

experimentation to arrive at the best algorithm. Once an algorithm is selected, let it learn 

from the features produced in the feature engineering step. The output of the training 

step is a model, which you then proceed to perform a model evaluation to see how 

well it performs. The goal of all the previous steps leading up to this one is to produce a 

generalized model, meaning how well it performs on data it has never seen before.

Another important step in the ML development process is the model evaluation task. 

It is both necessary and challenging. This step aims to not only answer the question of 

how well a model performs but also to know when to stop tuning the model because its 

performance has reached the established success metrics. The evaluation process can be 

done offline or online. The former case refers to evaluating the model using the training 

data, and the latter refers to evaluating the model using production or new data. There is 

a set of commonly used metrics to understand model performance: precision, recalls, F1 

score, and AUC.

The art portion of this step is to understand which metrics are applicable for 

certain ML tasks. The model performance results determine whether to proceed to the 

production deployment step or to go back to the step of collecting more data or different 

types of data.
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This information is meant to provide an overview of the ML development process 

and is not comprehensive. It can easily take a whole chapter to adequately cover the 

inner details of and best practices.

 Spark Machine Learning Library
The remaining sections of this chapter cover the main features in the Spark MLlib 

component and provide examples of applying provided ML algorithms in Spark to each 

of the following ML tasks: classification, regression, clustering, and recommendation.

Note in the python world, scikit-learn is one of the most popular open source 
machine learning libraries. it is built on top of the numpy, Scipy, and matplotlib 
libraries. it provides a set of supervised and unsupervised learning algorithms. 
it is designed to be a simple and efficient library, and it is a perfect one to learn 
and practice machine learning on a single machine. the moment the data size 
exceeds the storage capacity of a single machine, that’s when it is time to 
switch to Spark MLlib.

There are many available ML libraries out there to choose from to train ML models 

in recent years. In the era of big data, there are two reasons to pick Spark MLlib over the 

other options. The first one is ease of use. Spark SQL provides a very user-friendly way 

of performing exploratory data analysis. The MLlib library provides a means to build, 

manage and persist complex ML pipelines. The second reason is about training ML at 

scale. The combination of Spark unified data analytic engine and the MLlib library can 

support training machine learning models with billions of observations and thousands 

of features.

 Machine Learning Pipelines
The ML process is essentially a pipeline consisting of a series of steps that run 

sequentially. The pipeline usually needs to run multiple times to produce an optimal 

model. To make practical machine learning easy, Spark MLlib provides a set of 

abstractions to help simplify the steps of data cleaning, featuring engineering, training 
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model, model tuning, and evaluation, and to organize them into a pipeline to make it 

easy to understand, maintain and repeat. The pipeline concept is inspired by the scikit- 

learn library.

There are four main abstractions to form an end-to-end ML pipeline: transformers, 

estimators, evaluators, and pipelines. They provide a set of standard interfaces to make 

it easy to work with and understand another data scientist’s pipeline. Figure 8-7 depicts 

the similarity between the core steps in the ML process and the main abstractions MLlib 

provides.

The one thing in common across these abstractions is that the type of input and 

output is mostly DataFrames, which means you need to convert the input data into a 

DataFrame to work with these abstractions.

Note Like other components within the Spark unified data analytics engine, 
MLlib is switching to DataFrame-based apis to provide more user-friendly apis and 
take advantage of Spark SQL engine’s optimizations. the new apis are available 
in the org.apache.spark.ml package. the first MLlib version was developed on the 
rDD-based apis, and it is still supported, but it is in maintenance mode only. the 
old apis are available in the org.apache.spark.mllib package. Once the feature 
parity is reached, then the rDD-based apis are deprecated.

Figure 8-7. Similarity between ML main steps and MLlib pipeline main concepts
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 Transformers

Transformers are designed to transform the data in the DataFrame by manipulating 

one or more columns during the feature engineering and model evaluation steps. The 

transforming process is in the context of building features that are consumed by the ML 

algorithm to learn. This process usually involves adding or removing columns (features), 

converting the column values from text to numerical values, or normalizing the values of 

a particular column.

There is a strict requirement about working with ML algorithms in MLlib; they 

require all features to be in Double data type, including the label.

From a technical perspective, a transformer has a transform function that performs 

transformations on the input columns, and the result is stored in the output column. 

The input column and output column names can be specified during the construction 

of a transformer. If they are not specified, the default column names are used. Figure 8-8 

depicts what a transformer looks like; the shaded column in DF1 represents the input 

column. The darker shaded column in DF2 represents the output column.

Each column data type needs a different set of data transformers. MLlib provides 

roughly about 30 transformers. Table 8-3 lists the various transformers for each type of 

data transformation.

Figure 8-8. Transformer input and output
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This section discusses a few common transformers.

The Binarizer transformer simply transforms the values of one or more input 

columns into one or more output columns. The output value is either 0 and 1. The 

values that are less than or equal to the specified threshold are transformed to zero in 

the output column. For the values greater than the specified threshold, their value is 

transformed to one in the output column. The input column type must be double or 

VectorUDT. Listing 8-1 transforms the temperature column values into two buckets.

Listing 8-1. Use Binarizer Transformer Convert Temperature into Two Buckets

import org.apache.spark.ml.feature.Binarizer

val arrival_data = spark.createDataFrame(Seq(

                 ("SFO", "B737", 18, 95.1, "late"),

                 ("SEA", "A319", 5, 65.7, "ontime"),

                 ("LAX", "B747", 15, 31.5, "late"),

Table 8-3. Transformers for Different 

Transformation Types

Type Transformers

general SQL transformer

Vectorassembler

numeric Data Bucketizer

QuantileDiscretizer

StandardScaler

MixMaxScaler

MaxabsScaler

normalizer

text Data indextoString

Onehotencoder

tokenizer, regextokenizer

Stopwordsremover

ngram

hashingtF
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                 ("ATL", "A319", 14, 40.5, "late") ))

                 .toDF("origin", "model", "hour",

                       "temperature", "arrival")

val binarizer = new Binarizer().setInputCol("temperature")

                               .setOutputCol("freezing")

                               .setThreshold(35.6)

binarizer.transform(arrival_data).show

// show the current values of the parameters in binarizer transformer

binarizer.explainParams

inputCol: input column name (current: temperature)

outputCol: output column name (default: binarizer_60430bb4e97f__output, 

current: freezing)

threshold: threshold used to binarize continuous features (default: 0.0, 

current: 35.6)

// show the transformation result

binarizer.transform(arrival_data)

         .select("temperature", "freezing").show

+----------------+----------+

|     temperature|  freezing|

+----------------+----------+

|            95.1|       1.0|

|            65.7|       1.0|

|            31.5|       0.0|

|            40.5|       1.0|

+----------------+----------+

The Bucketizer transformer is a general version of the Binarizer where it can 

transform the column values into buckets of your choice. The way to control the number 

of buckets and the range of values of each bucket is by specifying a list of bucket borders 

in the form of an array of double values. This transformer is useful in the scenario where 

the values of a column are continuous, and you want to transform them into categorical 
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values. For example, you have a column containing the income amount of each person 

who lives in a particular state, and you want to bucket their incomes into the following 

buckets: high income, middle income, and low income.

The value bucket border array must be of type double, and they must abide by the 

following requirements.

• The smallest bucket border value must be less than the minimum 

value in the input column in the DataFrame.

• The largest bucket border value must be greater than the maximum 

value in the input column in the DataFrame

• There must be at least three bucket borders in the input array, which 

creates two buckets.

In a person’s income, it is easy to know the smallest income amount is 0. The 

smallest bucket border value can just be something less than 0. When it is not possible to 

predict the minimum column value, you can specify negative infinity. Similarly, when it 

is not possible to predict the maximum column value, then specify positive infinity.

Listing 8-2 is an example of using this transformer to bucket the temperature column 

into three buckets, which means the bucket border array must contain at least four 

values. It is sorted by the temperature column to make it easier to see.

Listing 8-2. Use Bucketizer Transformer Convert Temperature into Three Buckets

import org.apache.spark.ml.feature.Bucketizer

val bucketBorders = Array(-1.0, 32.0, 70.0, 150.0)

val bucketer = new Bucketizer().setSplits(bucketBorders)

                               .setInputCol("temperature")

                               .setOutputCol("intensity")

val output = bucketer.transform(arrival_data)

                     .output.select("temperature", "intensity")

                     .orderBy("temperature")

                     .show

Chapter 8  MaChine Learning with Spark



347

+----------------+-----------+

|     temperature|  intensity|

+----------------+-----------+

|            31.5|        0.0|

|            40.5|        1.0|

|            65.7|        1.0|

|            95.1|        2.0|

+----------------+-----------+

The OneHotEncoder transformer is commonly used when working with numeric 

categorical values. If the categorical values are of string type, you first apply the 

StringIndexer estimator and convert them to numerical type. OneHotEncoder 

essentially maps a numeric categorical value into a binary vector to purposely remove 

the implicit ranking of the numeric values. Listing 8-3 represents the student majors 

where each major is assigned an ordinal value, which suggests a certain major is higher 

than others. This transformer converts the ordinal value into a vector to remove such 

unintended bias during the ML training step. Listing 8-3 is an example of using this 

transformer.

Listing 8-3. Use OneHotEncoder Transformer the Ordinal Value of the 

Categorical Values

import org.apache.spark.ml.feature.OneHotEncoder

val student_major_data = spark.createDataFrame(

                               Seq(("John", "Math", 3),

                                   ("Mary", "Engineering", 2),

                                   ("Jeff", "Philosophy", 7),

                                   ("Jane", "Math", 3),

                                   ("Lyna", "Nursing", 4) ))

                              .toDF("user", "major", "majorIdx")

val oneHotEncoder = new OneHotEncoder().setInputCol("majorIdx")

                                       .setOutputCol("majorVect")

oneHotEncoder.transform(student_major_data).show()
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+------+---------------+------------+----------------+

|  user|          major|    majorIdx|       majorVect|

+------+---------------+------------+----------------+

|  John|           Math|           3|   (7,[3],[1.0])|

|  Mary|    Engineering|           2|   (7,[2],[1.0])|

|  Jeff|     Philosophy|           7|       (7,[],[])|

|  Jane|           Math|           3|   (7,[3],[1.0])|

|  Lyna|        Nursing|           4|  ( 7,[4],[1.0])|

+------+---------------+------------+----------------+

Another common need when working with string categorical values is to convert 

them into ordinal values, which can be done using the StringIndexer estimator. This 

estimator is described in the “Estimator” section.

There are many interesting machine learning use cases where the input is in free- 

form text. It requires a few transformations to convert free-form text into numerical 

representation such that ML algorithms can consume it. Among them are tokenization 

and counting word frequency.

Most likely, you can guess what the Tokenizer transformer does. It performs the 

tokenization on a string of words separated by space and returns an array of words. If 

the delimiter is not space, then you can use RegexTokenizer with a specified delimiter. 

Listing 8-4 is an example of using the Tokenizer transformer.

Listing 8-4. Use Tokenizer Transformer to Perform Tokenization

import org.apache.spark.ml.feature.Tokenizer

import org.apache.spark.sql.functions._

val text_data = spark.createDataFrame(Seq(

             (1, "Spark is a unified data analytics engine"),

             (2, "It is fun to work with Spark"),

             (3, "There is a lot of exciting sessions at upcoming

                    Spark summit"),

             (4, "mllib transformer estimator evaluator

                    and pipelines"))).toDF("id", "line")

val tokenizer = new Tokenizer().setInputCol("line")

                               .setOutputCol("words")
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val tokenized = tokenizer.transform(text_data)

tokenized.select("words")

         .withColumn("tokens", size(col("words")))

         .show(false)

+-----------------------------------------------------------------+-------+

|        words                                                    | tokens|

+-----------------------------------------------------------------+-------+

|[spark, is, a, unified, data, analytics, engine]                 |      7|

|[spark, is cool, and, it, is, fun, to, work, with,               |     11|

|[there, is, a, lot, of, exciting, sessions, at, upcoming, spark, summit] |      11|

|[mllib, transformer, estimator, evaluator, and, pipelines]           |      6|

+-----------------------------------------------------------------+-------+

Stop words are the commonly used words in a language. In the context of natural 

language processing or machine learning, stop words tend to add unnecessary noise 

and don’t add any meaningful contributions. Therefore, they are usually removed 

immediately after the tokenization step. The StopWordsRemover transformer is designed 

to help with this effort.

As of Spark 2.3 version, the stop words for the following languages are included in 

Spark distribution: Danish, Dutch, English, Finnish, French, German, Hungarian, Italian, 

Norwegian, Portuguese, Russian, Spanish, Swedish, and Turkish. It is designed to be 

flexible so you can provide a set of stop words from a file.

To use the stop words in a particular language, you first call the StopWordsRemover.

loadDefaultStopWords(<language in lower case>) to load them in and provide them 

to an instance of StopWordsRemover. Additionally, you can request this transformer to 

perform stop word filtering with case insensitive. Listing 8-5 is an example of using the 

StopWordsRemover transformer to remove English stop words.
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Listing 8-5. Use StopWordsRemover Transformer to Remove English Stop Words

import org.apache.spark.ml.feature.StopWordsRemover

val enSWords = StopWordsRemover.loadDefaultStopWords("english")

val remover = new StopWordsRemover().setStopWords(enSWords)

                                    .setInputCol("words")

                                    .setOutputCol("filtered")

// use the tokenized from Listing 8-5 example

val cleanedTokens = remover.transform(tokenized)

cleanedTokens.select("words","filtered").show(false)

 

The HashingTF transformer transforms a collection of words into numeric 

representations by computing the frequency of each word. Each word is mapped into 

an index by applying a hash function called MurmurHash 3. This approach is efficient, 

but it suffers from potential hash collisions, meaning multiple words may map into the 

same index. One way to minimize the collision is to specify a large number of buckets in 

the power of 2 to evenly distribute the words. Listing 8-6 feeds the filtered column from 

Listing 8-5 into the HashingTF transformer.

Listing 8-6. Use HashingTF Transformer to Transform Words into Numerical 

Representation Via Hashing and Counting

import org.apache.spark.ml.feature.HashingTF

val tf = new HashingTF().setInputCol("filtered")

                        .setOutputCol("TFOut")

                        .setNumFeatures(4096)
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val tfResult = tf.transform(cleanedTokens)

tfResult.select("filtered", "TFOut").show(false)

 

The last transformer this section covers is VectorAssembler, which combines a set of 

columns into a vector column. In machine learning terminology, that is the equivalent 

of combining individual features into a single-vector feature for ML algorithms to learn. 

The type of the individual input column must be one of the following types: numeric, 

boolean, or vector type. The output vector column contains the values of all the 

columns in the specified order. This transformer is used practically in every single ML 

pipeline, and its output is passed into an estimator. Listing 8-7 is an example of using a 

VectorAssembler transformer.

Listing 8-7. Use VectorAssembler Transformer to Combines Features into a 

Vector Feature

import org.apache.spark.ml.feature.VectorAssembler

val arrival_features  = spark.createDataFrame(Seq(

                                          (18, 95.1, true),

                                           (5, 65.7, true),

                                           (15, 31.5, false),

                                           (14, 40.5, false) ))

                          .toDF("hour", "temperature", "on_time")

val assembler = new VectorAssembler().setInputCols(

                       Array("hour", "temperature", "on_time"))

                                     .setOutputCol("features")

val output = assembler.transform(arrival_features)

output.show
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+-----+-----------------+-----------+-------------------+

| hour|      temperature|    on_time|           features|

+-----+-----------------+-----------+-------------------+

|   18|             95.1|       true|    [18.0,95.1,1.0]|

|    5|             65.7|       true|     [5.0,65.7,1.0]|

|   15|             31.5|      false|    [15.0,31.5,0.0]|

|   14|             40.5|      false|    [14.0,40.5,0.0]|

+-----+-----------------+-----------+-------------------+

To make it easy to transform multiple columns at once, Spark version 3.0 added such 

support for these transformers: Binarizer, StringIndexer, and StopWordsRemover. 

Listing 8-8 shows a small example of transforming multiple columns with the Binarizer 

transformer. You have the option to specify a single threshold or multiple thresholds. If a 

single threshold is specified, then it is used for all the input columns. If multiple thresholds 

are specified, then the first threshold is used for the first input columns, and so on.

Listing 8-8. Transforming Multiple Columns With Binarizer Transformer

import org.apache.spark.ml.feature.Binarizer

val temp_data = spark.createDataFrame(

                      Seq((65.3,95.1),(60.7,99.1),

                          (75.3, 105.3)))

                     .toDF("morning_temp", "night_temp")

val temp_bin = new Binarizer()

           .setInputCols(Array("morning_temp", "night_temp"))

           .setOutputCols(Array("morning_oput","night_out"))

           .setThresholds(Array(65,96))

temp_bin.transform(temp_data).show

+------------+----------+------------+---------+

|morning_temp|night_temp|morning_oput|night_out|

+------------+----------+------------+---------+

|        65.3|      95.1|         1.0|      0.0|

|        60.7|      99.1|         0.0|      1.0|

|        75.3|     105.3|         1.0|      1.0|

+------------+----------+------------+---------+
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Knowing how the transformers work and the available transformers in MLlib plays 

an important role in the feature engineering step of the ML development process. 

Generally, the output of a VectorAssembler transformer is consumed by an Estimator, 

which is covered in the next section.

 Estimators

Estimators are an abstraction for an ML learning algorithm or any other algorithm that 

operates on data. It is rather confusing that an estimator can be one of two kinds of 

algorithms. An example of the first type is the ML algorithm called LinearRegression, 

which is used for a regression task to predict house prices. An example of the second 

algorithm kind is the StringIndexer, which encodes categorical values into indices. The 

index value for each categorical value is based on the frequency it appears in the entire 

input column of a DataFrame. At the high level, this kind of estimator transforms the 

values of a column into another column; however, it requires two passes over the entire 

DataFrame to produce the expected output.

From a technical perspective, an estimator has a fit function that applies an 

algorithm on the input column. The produced result is encapsulated in an object type 

called Model, which is a Transformer type. The input column and output column names 

can be specified during the construction of an estimator. Figure 8-9 depicts what an 

estimator looks like and its input and output.

To give a sense of the two types of estimators, Table 8-4 provides a subset of the 

available estimators in MLlib.

Figure 8-9. Estimator and its input and output
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The following section provides a few examples of commonly used estimators when 

working with text and numeric data.

RFormula is an interesting and general-purpose estimator where the transformation 

logic is expressed declaratively. It can handle both numeric and categorical values, and 

the output it produces is a vector of features. MLlib borrows the idea of this estimator 

from R language, and it supports only a subset of the operators available in R. The 

basic and supported operators are listed in Table 8-5. It takes time to understand 

the  transformation language to take full advantage of the flexibility and power of the 

RFormula estimator.

Table 8-4. Sample of Available Estimators in MLlib

Type Estimators

Machine Learning algorithms Logisticregression

DecisiontreeClassifier

randomForestClassifier

Linearregression

randomForestregressor

kMeans

LDa

BisectingkMeans

Data transformation algorithms iDF

rFormula

Stringindexer

Onehotencoderestimator

StandardScaler

MixMaxScaler

MaxabsScaler

word2Vec
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Listing 8-9 specifies the label in the arrival column and the remaining columns as 

features. In addition, it creates a new feature using the interaction between the hour and 

temperature columns. Since these two columns are of numeric type, their values are 

multiplied.

Listing 8-9. Use RFomula Transformer to Create a Feature Vector

import org.apache.spark.ml.feature.RFormula

val arrival_data = spark.createDataFrame(Seq(

                     ("SFO", "B737", 18, 95.1, "late"),

                     ("SEA", "A319", 5, 65.7, "ontime"),

                     ("LAX", "B747", 15, 31.5, "late"),

                     ("ATL", "A319", 14, 40.5, "late") ))

                         .toDF("origin", "model", "hour",

                               "temperature", "arrival")

val formula = new RFormula().setFormula(

                       "arrival ~ . + hour:temperature")

                            .setFeaturesCol("features")

                            .setLabelCol("label")

// call fit function first, which returns a model (type of transformer), 

then call transform

val output = formula.fit(arrival_data).transform(arrival_data)

Table 8-5. Supported Operators in RFormula Transformer

Operator Description

~ Delimiter between the target and the terms

+ Concatenate terms

- remove a term

: interaction between other terms to create new features. Multiplication is used for 

numeric values and binarized for categorical values.

. all columns except the target
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output.select("*").show(false)

 

One of the commonly used estimators when working with text is the IDF estimator. 

Its name is an acronym for inverse document frequency. This estimator is often used 

right after the text is tokenized and term frequency is computed. The idea behind 

this estimator is to compute the importance or weight of each word by counting the 

number of documents it appears in. The intuition behind this idea is that a word with 

a high occurrence and wide prevalence would be less important; for example, the 

word the. Inversely, a word with a high occurrence in only a few documents indicates 

higher importance; for example, the word classification. In the context of a DataFrame, 

a document is referring to a row. A keen reader would figure out that it requires going 

through every row to compute the importance of each word, and therefore IDF is 

an estimator, not a transformer. Listing 8-10 chains the Tokenizer and HashingTF 

transformers together with the IDF estimator. Unlike transformers, the estimators are 

eagerly evaluated, which means when the fit function is called, it triggers a Spark job.

Listing 8-10. Use IDF Estimator to Compute the Weight of Each Word

import org.apache.spark.ml.feature.Tokenizer

import org.apache.spark.ml.feature.HashingTF

import org.apache.spark.ml.feature.IDF

val text_data = spark.createDataFrame(Seq(

          (1, "Spark is a unified data analytics engine"),

          (2, "Spark is cool and it is fun to work with Spark"),

          (3, "There is a lot of exciting sessions at upcoming

               Spark summit"),

          (4, "mllib transformer estimator evaluator and

               pipelines")  )).toDF("id", "line")
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val tokenizer = new Tokenizer().setInputCol("line")

                               .setOutputCol("words")

// the output column of the Tokenizer transformer is the input to HashingTF

val tf = new HashingTF().setInputCol("words")

                        .setOutputCol("wordFreqVect")

                        .setNumFeatures(4096)

val tfResult = tf.transform(tokenizer.transform(text_data))

// the output of the HashingTF transformer is the input to IDF estimator

val idf = new IDF().setInputCol("wordFreqVect")

                   .setOutputCol("features")

// since IDF is an estimator, call the fit function

val idfModel = idf.fit(tfResult)

// the returned object is a Model, which is of type Transformer

val weightedWords = idfModel.transform(tfResult)

weightedWords.select("label", "features").show(false)

weightedWords.printSchema

 |-- id: integer (nullable = false)

 |-- line: string (nullable = true)

 |-- words: array (nullable = true)

 |    |-- element: string (containsNull = true)

 |-- wordFreqVect: vector (nullable = true)

 |-- features: vector (nullable = true)

//  the feature column contains a vector for the weight of each word, since 

it is long, the output is not included //below

weightedWords.select("wordFreqVect", "features").show(false)

When working with text data that contains categorical values, one commonly used 

estimator is the StringIndexer estimator. It encodes a categorical value into an index 

based on its frequencies such that the most frequent categorical value has an index 

value of 0 and so on. For this estimator to come up with an index value for a categorical 

value, it first must count the frequency of each categorical value and finally assign 
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an index value to each one. To perform the counting and assign the index values, it 

must go through all the values of the input column from the beginning to the end of 

the DataFrame. If the input column is numeric, this estimator casts its string before 

computing its frequency.

Listing 8-11 provides an example of using the StringIndexer estimator to encode 

the movie genre.

Listing 8-11. StringIndex Estimator to Encode Movie Genre

import org.apache.spark.ml.feature.StringIndexer

val movie_data = spark.createDataFrame(Seq(

                                           (1, "Comedy"),

                                           (2, "Action"),

                                           (3, "Comedy"),

                                           (4, "Horror"),

                                           (5, "Action"),

                                           (6, "Comedy"))

                                     ).toDF("id", "genre")

val movieIndexer = new StringIndexer().setInputCol("genre")

                                      .setOutputCol("genreIdx")

// first fit the data

val movieIndexModel = movieIndexer.fit(movie_data)

// use returned transformer to transform the data

val indexedMovie = movieIndexModel.transform(movie_data)

indexedMovie.orderBy("genreIdx").show()

+---+-----------+------------+

| id|      genre|    genreIdx|

+---+-----------+------------+

|  3|     Comedy|         0.0|

|  6|     Comedy|         0.0|

|  1|     Comedy|         0.0|

|  5|     Action|         1.0|
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|  2|     Action|         1.0|

|  4|     Horror|         2.0|

+---+-----------+------------+

This estimator assigns the index based on the descending order of the frequency. 

This default behavior can be easily changed to ascending order of the frequency. It 

supports two other ordering types: descending alphabet and ascending alphabet. To 

change the default ordering type, you simply call the setStringOrderType("<ordering 

type>") function with one of the following values: frequencyDesc, frequencyAsc, 

alphabetDesc, and alphabetAsc.

With Spark version 3.0, the StringIndexer estimator can support encoding multiple 

columns of categorical value in a DataFrame. When there is such a need, you can 

 simply call the setInputCols function to specify the input column names to encode 

and correspondingly specify the output column names by calling the setOutputCols 

function. Listing 8-12 provides an example of using the StringIndexer estimator to 

encode multiple columns.

Listing 8-12. StringIndex Estimator to Encode Multiple Columns

import org.apache.spark.ml.feature.StringIndexer

val movie_data2 = spark.createDataFrame(Seq(

                                        (1, "Comedy", "G"),

                                        (2, "Action", "PG"),

                                        (3, "Comedy", "NC-17"),

                                        (4, "Horror", "PG-13"))

                                  ).toDF("id", "genre", "rating")

val movieIdx2 = new StringIndexer()

                   .setInputCols(Array("genre", "rating"))

                   .setOutputCols(Array("genreIdx", "ratingIdx"))

movieIdx2.fit(movie_data2)

         .transform(movie_data2)

         .orderBy('genreIdx)

         .show()
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+---+------+------+--------+---------+

| id| genre|rating|genreIdx|ratingIdx|

+---+------+------+--------+---------+

|  3|Comedy| NC-17|     0.0|      1.0|

|  1|Comedy|     G|     0.0|      0.0|

|  2|Action|    PG|     1.0|      2.0|

|  4|Horror| PG-13|     2.0|      3.0|

+---+------+------+--------+--------+

In the scenario where a particular categorical value exists in the training dataset but 

doesn’t in the test dataset. By default, the StringIndexer estimator throws an error to 

indicate such a scenario. It provides two additional ways to deal with this situation.

• skip: filter out rows with invalid data

• keep: put the invalid data in a special additional bucket

You can state how you want the StringIndexer estimator to handle this scenario 

by specifying the following parameters to the setHandleInvalid function: keep, skip, 

error.

Another useful estimator when working with categorical values is the 

OneHotEncoderEstimator, which encodes the index of a categorical value into a binary 

vector. The OneHotEncoder transformer has been deprecated starting with Spark version 

2.3.0 due to its limitation in handling unknown categories. This estimator is often used 

in conjunction with the StringIndexer estimator, where the output of StringIndexer 

becomes the input of this estimator. Listing 8-13 demonstrates the usage of both 

estimators.

Listing 8-13. OneHotEncoderEstimator Consumes the Output of the 

StringIndexer Estimator

import org.apache.spark.ml.feature.OneHotEncoderEstimator

//  the input column genreIdx is the output column of StringIndex in  

listing 8-9

val oneHotEncoderEst = new OneHotEncoderEstimator().setInputCols(

                                  Array("genreIdx"))

                          .setOutputCols(Array("genreIdxVector"))

Chapter 8  MaChine Learning with Spark



361

// fit the indexedMovie data produced in listing 8-10

val oneHotEncoderModel = oneHotEncoderEst.fit(indexedMovie)

val oneHotEncVect = oneHotEncoderModel.transform(indexedMovie)

oneHotEncVect.orderBy("genre").show()

+---+--------+------------+--------------------+

|id |  genre |    genreIdx|      genreIdxVector|

+---+--------+------------+--------------------+

| 5 | Action |    1.0     |      (2,[1],[1.0]) |

| 2 | Action |    1.0     |      (2,[1],[1.0]) |

| 3 | Comedy |    2.0     |       (2,[],[])    |

| 6 | Comedy |    2.0     |       (2,[],[])    |

| 1 | Comedy |    2.0     |       (2,[],[])    |

| 4 | Horror |    0.0     |       (2,[0],[1.0])|

+---+--------+------------+--------------------+

The Word2Vec estimator is useful when working with free text. It stands for words to 

vector. This estimator utilizes a well-known word embeddings technique that converts 

word tokens into numeric vector representations such that semantically similar words 

are mapped to nearby points. The intuition behind this technique is that similar words 

tend to occur together and have similar contexts. In other words, when two different 

words have very similar neighboring words, then they are probably quite similar in 

meaning or are related. This technique has proven effective in several natural language 

processing applications such as word analogies, word similarities, entity recognition, 

and machine translation.

The Word2Vec estimator has a few configurations, and the appropriate values need to 

be provided to control the output. Table 8-6 describes the configurations.
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Listing 8-14 demonstrates how to use the Word2Vec estimator and shows how to find 

similar words.

Listing 8-14. Use Word2Vec Estimator to Compute Word Embeddings and Find 

Similar Words

import org.apache.spark.ml.feature.Word2Vec

val documentDF = spark.createDataFrame(Seq(

                "Unified data analytics engine Spark".split(" "),

                "People use Hive for data analytics".split(" "),

                "MapReduce is not fading away".split(" "))

                      .map(Tuple1.apply)).toDF("word")

val word2Vec = new Word2Vec().setInputCol("word")

                             .setOutputCol("feature")

                             .setVectorSize(3)

                             .setMinCount(0)

val model = word2Vec.fit(documentDF)

val result = model.transform(documentDF)

result.show(false)

Table 8-6. Word2Vec Configurations

Name Default Value Description

vectorSize 100 the size of the output vector.

windowSize 5 the number of words to be used as the context.

minCount 5 the minimum number of times a token must 

appear to be included in the output.

maxSentenceLength 1000 interaction between other terms to create new 

features. Multiplication is used for numeric 

values and binarized for categorical values.
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//  find similar words to Spark, the result shows both Hive and MapReduce 

are similar.

model.findSynonyms("Spark", 3).show

+----------------+-----------------------------+

|            word|                   similarity|

+----------------+-----------------------------+

|          engine|           0.9133241772651672|

|       MapReduce|           0.7623026967048645|

|            Hive|           0.7179173827171326|

+----------------+-----------------------------+

// find similar words to Hive, the result shows Spark is similar

model.findSynonyms("Hive", 3).show

+---------+------------------------------+

|     word|                    similarity|

+---------+------------------------------+

|    Spark|            0.7179174423217773|

|   fading|            0.5859972238540649|

|   engine|           0.43200281262397766|

+---------+------------------------------+

The next estimators are about normalizing and standardizing numeric data. The 

reason for using these estimators is to ensure the learning algorithms that use distance 

as a measure don’t place more weight on a feature with large values than another feature 

with smaller values.

Normalizing numeric data is the process of mapping its original range into a range 

from zero to one. This is especially helpful when observations have more than one 

attribute with different ranges. For example, say you have an employee’s salary and 

height. The value for salary is in the thousands. The value for height is in a single digit. 

This is what the MinMaxScaler estimator is designed for. It linearly rescales each feature 

(column) individually to a common range of min and max values using the column 
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summary statistics. For example, if the minimum value is 0.0 and the maximum value 

is 3.0, all the values fall within that range. Listing 8-15 provides an example of working 

with MinMaxScaler using the employee_data with salary and height information. The 

magnitude between the values of these two features is pretty big, but after running 

through the MinMaxScaler, that is not the case anymore.

Listing 8-15. Use MinMaxScaler to Rescale Features

import org.apache.spark.ml.feature.MinMaxScaler

import org.apache.spark.ml.linalg.Vectors

val employee_data = spark.createDataFrame(Seq(

                               (1, Vectors.dense(125400, 5.3)),

                               (2, Vectors.dense(179100, 6.9)),

                               (3, Vectors.dense(154770, 5.2)),

                               (4, Vectors.dense(199650, 4.11))))

                         .toDF("empId", "features")

val minMaxScaler = new MinMaxScaler().setMin(0.0)

                                     .setMax(5.0)

                                     .setInputCol("features")

                                     .setOutputCol("sFeatures")

val scalerModel = minMaxScaler.fit(employee_data)

val scaledData = scalerModel.transform(employee_data)

println(s"Features scaled to range:

          [${minMaxScaler.getMin}, ${minMaxScaler.getMax}]")

Features scaled to range: [0.0, 5.0]

scaledData.select("features", "sFeatures").show(false)

+--------------------+------------------------------------------+

|     features       | scaledFeatures                           |

+--------------------+------------------------------------------+

|     [125400.0,5.3] | [0.0,2.1326164874551963]                 |

|     [179100.0,6.9] | [3.616161616161616,5.0]                  |
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|     [154770.0,5.2] | [1.9777777777777779,1.9534050179211468]  |

|    [199650.0,4.11] | [5.0,0.0]                                |

+--------------------+------------------------------------------+

Besides the numeric data normalization, another operation that is often used for 

working with numeric data is standardization. This operation is especially applicable 

when the numeric data has a bell-shaped curve distribution. The standardization 

operation can help shift the data to a normalized form, where data is in a range of 

negative 1 and –1 with a mean of 0. The reason for doing this is to help certain ML 

algorithms learn better when the data has distribution around the mean of zero. The 

StandardScaler estimator is designed for the standardization operation. Listing 8-16  

uses the same input dataset as in Listing 8-14. The output shows the values of the 

features are now centered around 0 and with one unit of standard deviation.

Listing 8-16. Use StandardScaler to Standard the Features Around the Mean 

of Zero

import org.apache.spark.ml.feature.StandardScaler

import org.apache.spark.ml.linalg.Vectors

val employee_data = spark.createDataFrame(Seq(

                               (1, Vectors.dense(125400, 5.3)),

                               (2, Vectors.dense(179100, 6.9)),

                               (3, Vectors.dense(154770, 5.2)),

                               (4, Vectors.dense(199650, 4.11))))

                         .toDF("empId", "features")

// set the unit standard deviation to true and center around the mean

val standardScaler = new StandardScaler().setWithStd(true)

                                       .setWithMean(true)

                                       .setInputCol("features")

                                       .setOutputCol("sFeatures")

val standardMode = standardScaler.fit(employee_data)

val standardData = standardMode.transform(employee_data)

standardData.show(false)
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+-----+--------------+------------------------------------------+

|empId| feature      |          sFeatures                       |

+-----+--------------+------------------------------------------+

|  1  |[125400.0,5.3]|[-1.2290717420781212,-0.06743742573177587]|

|  2  |[179100.0,6.9]|   [0.4490658767775897,1.3248191055048935]|

|  3  |[154770.0,5.2]|[-0.3112523404805006,-0.15445345893406737]|

|  4  |[199650.0,4.1]|    [1.091258205781032,-1.102928220839048]|

+-----+--------------+------------------------------------------+

There are many more estimators available in MLlib to perform numerous data 

transformations and mappings. They all follow a standard abstraction that fits the input 

data and produces an instance of Model. These examples are meant to illustrate how to 

work with these estimators. Examples of the second kind of estimators, ML algorithms, 

are covered in the following sections.

 Pipeline

In machine learning, it is common to run a sequence of steps to clean and transform 

data, then train one or more ML algorithms to learn from the data, and finally tune 

the model to achieve the optimal model performance. The pipeline abstraction in 

MLlib is designed to make this workflow easier to develop and maintain. From the 

technical perspective, MLlib has a Pipeline class that is designed to manage a series of 

stages. Each one is represented by the PipelineStage class, either a transformer or an 

estimator. The Pipeline abstraction is a type of estimator.

The first step in setting up a pipeline is to create a collection of stages, create an 

instance of the Pipeline class, and configure it with an array of stages. The Pipeline 

class runs those stages in the specified order. If a stage is a transformer, then the 

transform() function is called. If a stage is an estimator, the fit() function is called to 

produce a transformer.

Let’s walk through a small workflow example of processing text using transformers 

and estimators. The small pipeline depicted in Figure 8-10 consists of two transformers 

and one estimator. When the Pipeline.fit() function is called, the raw text of the 

input DataFrame passes to the Tokenizer transformer, and its output is passed into 

the HashingTF transformer, which converts the words into features. The Pipeline class 

recognizes LogisticRegression as an estimator, invoking the fit function with the 

computed features to produce a logistic regression model.
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The code for the Pipeline is depicted in Figure 8-10 is in Listing 8-17. A Pipeline 

abstraction is an estimator. So once an instance of Pipeline is created and configured, 

the fit() function must be called with the training data as the input to trigger the 

execution of the stages. The output is an instance of PipelineModel, which is a type of 

transformer. At this point, you can pass the test data into the transform() function to 

perform predictions.

MLlib provides an ML persistence feature to make it easy to save a pipeline or 

a model to disk and load it later to perform predictions. The nice thing about the 

persistence feature is that it is designed to save the information in a language-neutral 

format. So, when a pipeline or model is persisted in Scala, it can be read back in a 

different language, such as Java or Python.

Many real-life production pipelines consist of many stages. When the number 

of stages is large, it is difficult to understand the flow and maintain. MLlib Pipeline 

abstraction can help with these challenges. Another key point to note is that both 

Pipelines and PipelineModels are designed to ensure the training and test data flow 

through the identical feature processing steps. One common mistake in machine 

learning is not processing the training and test data consistently, which creates a 

discrepancy in the model evaluation results.

Listing 8-17. Using Pipepline to Small a Small Workflow

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.feature.{HashingTF, Tokenizer}

Figure 8-10. Example of a small pipeline
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val text_data = spark.createDataFrame(Seq(

      (1, "Spark is a unified data analytics engine", 0.0),

      (2, "Spark is cool and it is fun to work with Spark", 0.0),

      (3, "There is a lot of exciting sessions at upcoming Spark

          summit", 0.0),

      (4, "signup to win a million dollars", 0.0)  ))

                     .toDF("id", "line", "label")

val tokenizer = new Tokenizer().setInputCol("line")

                               .setOutputCol("words")

val hashingTF = new HashingTF()

                    .setInputCol(tokenizer.getOutputCol)

                    .setOutputCol("features")

                    .setNumFeatures(4096)

val logisticReg = new LogisticRegression().setMaxIter(5)

                                          .setRegParam(0.01)

val pipeline = new Pipeline().setStages(Array(

                              tokenizer, hashingTF, logisticReg))

val logisticRegModel = pipeline.fit(text_data)

// persist model and pipeline

logisticRegModel.write.overwrite()

                .save("/tmp/logistic-regression-model")

pipeline.write.overwrite()

                .save("/tmp/logistic-regression-pipeline")

// load model and pipeline

val prevModel = PipelineModel.load("/tmp/spark-logistic-regression-model")

val prevPipeline = Pipeline.load("/tmp/logistic-regression-pipeline")
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Pipeline Persistence: Saving and Loading

Once a model is trained and evaluated, you can save that model or the pipeline that 

trained that model to further evaluate your model with additional datasets on future 

days or after the Spark cluster was restarted. The later approach is preferred because it 

remembers the model type; otherwise, you must specify it during the loading step.

The main benefit of persisting your model is to save time and skip the training step, 

which might take many hours to complete.

 Model Tuning

The model tuning step aims to train a model using a set of parameters to achieve the 

optimal model performance to meet the objectives defined in the first step of the ML 

development process. This step is usually tedious, repetitive, and time-consuming 

because it requires experimenting with different ML algorithms or a few sets of 

parameters.

This section aims to describe a few tools MLlib provides to help with the laborious 

part of the model tuning step. It is not the intention of this section to show how to 

perform model tuning.

Before going into the details of the tools MLlib provides, it is important to 

understand the following terminologies.

• Model hyperparameters are

• Configurations that govern the ML algorithm training process

• Configurations that are external to the model and can’t be 

learned from the training data

• Configurations that the machine learning practitioners provide 

before the training process starts

• Configurations that are tuned for a given machine learning task 

through an iterative manner

• Model parameters are

• Properties that are not provided by the machine learn 

practitioners

• Properties of the training data that are learned during the  

training process
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• Properties that are optimized during the training process

• Properties of the model that perform predictions

Examples of model hyperparameters include the number of clusters in the k-means 

clustering algorithm, the amount of regularization applied in the logistic regression 

algorithm, and the learning rate.

Examples of the model parameters include the coefficients in a linear regression 

model or the branch locations in the decision tree model.

The two commonly used classes in MLlib to help with model tuning are 

CrossValidator and TrainValidationSplit, and both are of type Estimator. These 

classes are also known as validators, and they require the following input.

• The first input is what needs to be tuned—an ML algorithm or an 

instance of Pipeline. It must be a type of estimator.

• The second input is a set of parameters to use to tune the provided 

estimator. These parameters are also known as a parameter grid 

to search over to find the best model. A convenient utility called 

ParagramGridBuilder is available to use to build the parameter grid.

• The last input is an evaluator to evaluate the performance of a model 

based on the held-out test data. MLlib provides a specific evaluator 

for each machine learning task, which can produce one or more 

evaluation metrics for you to understand the model performance. 

The commonly used machine learning metrics are supported, such 

as root mean square error, precision, recall, and accuracy

At the high level, validators perform the following steps with the given inputs.

 1. The input feature data is split into training and test dataset based 

on the specified ratio.

 2. For each combination in the parameter grid, the given estimator is 

fitted with the training data and the parameter combination.

 3. The specified evaluator evaluates the output model against the 

test data. The performance metric is recorded and compared.

 4. The model that produces the best performance is returned along 

with the set of parameters that were used.
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These steps are illustrated in Figure 8-11, making it easier to visualize what’s going 

on in the validator.

The TrainValidationSplit validator splits the given input data into the training and 

validation dataset based on the specified ratio and then trains and evaluates the dataset 

pair against each parameter combination. For example, if the given parameter set has six 

combinations, the given estimator is trained and evaluated size times, each time with a 

different parameter combination.

Listing 8-18 provides an example of using TrainValidationSplit to tune a linear 

regression estimator with a parameter grid of six parameter combinations. The focus 

of this example is TrainValidationSplit. There is an assumption that the feature 

engineering has already been done, and there is a column called features in the 

DataFrame.

Listing 8-18. Example of TrainValidationSplit

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.feature.{HashingTF, Tokenizer}

import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

val text_data = spark.createDataFrame(Seq(

            (1, "Spark is a unified data analytics engine", 0.0),

            (2, "Spark is cool and it is fun to work with Spark",

                0.0),

Figure 8-11. Inside a validator
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            (3, "There is a lot of exciting sessions at upcoming

                 Spark summit", 0.0),

            (4, "signup to win a million dollars", 0.0)  ))

                     .toDF("id", "line", "label")

val tokenizer = new Tokenizer().setInputCol("line")

                               .setOutputCol("words")

val hashingTF = new HashingTF().setInputCol(

                                    tokenizer.getOutputCol)

                               .setOutputCol("features")

val logisticReg = new LogisticRegression().setMaxIter(5)

val pipeline = new Pipeline().setStages(

                      Array(tokenizer, hashingTF, logisticReg))

// the first parameter has 3 values and second parameter has 2 values,

// therefore the total parameter combinations is 6

val paramGrid = new ParamGridBuilder().addGrid(

                      hashingTF.numFeatures, Array(10, 100, 250))

                 .addGrid(logisticReg.regParam, Array(0.1, 0.05))

                 .build()

// setting up the validator with required inputs - estimator, evaluator, 

parameter grid and train ratio

val trainValSplit = new TrainValidationSplit()

                         .setEstimator(pipeline)

                        .setEvaluator(

                             new BinaryClassificationEvaluator)

                        .setEstimatorParamMaps(paramGrid)

                        .setTrainRatio(0.8)

// train the linear regression estimator

val model = trainValidationSplit.fit(training)

The CrossValidator validator implements a widely known technique in the 

machine learning community to help with the model tuning step. This technique 

maximizes the amount of data for training and test by randomly dividing the 

observations into non-overlapping k groups, or folds, of approximately the same size. 
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Each one is used only once. One fold is used for testing, and the remaining ones are used 

for training. This process is repeated k times, and each time the estimator is trained and 

evaluated against randomly divided training and test folds.

Figure 8-12 illustrates this process with k as the four folds. CrossValidator generates 

four training and test dataset pairs, and one-fourth of the data is for testing, and three- 

fourths of the data is for testing. It is important to select a reasonable k value so that each 

training and testing group is statistically representative of the available observation. Each 

fold has roughly the same amount of sample data.

It is important to be aware of the long completion time when using this validator 

with a large number of parameter combinations. This is because each experiment 

described in Figure 8-12 is performed against each parameter combination. For 

example, if k is 4 and the number of parameter combinations is 6, then the total 

number of times the estimator is trained and evaluated is 24. Listing 8-17 replaces the 

TrainValidationSplit in Listing 8-15 with an instance of CrossValidator, and it is 

configured with 4 as the k value. In practice, the value for k is usually 10 or higher. 

Listing 8-17 ends up training and evaluating the estimator 25 times.

After the model with the best performance is identified, CrossValidator retrains 

or refits your model using the same set of parameters on the entire dataset. That’s the 

reason the model in Listing 8-19 is trained a total of 25 times.

Listing 8-19. Example of CrossValidator

import org.apache.spark.ml.tuning.CrossValidator

val crossValidator = new CrossValidator()

                       .setEstimator(pipeline)

                       .setEvaluator(

                           new BinaryClassificationEvaluator)

Figure 8-12. K-fold example with k=4
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                       .setEstimatorParamMaps(paramGrid)

                        .setNumFolds(4)

val model = crossValidator.fit(text_data)

If there is a need to study or analyze the intermediate models, the CrossValidator 

can retain them during the tuning process. All you need to do is specify a true value 

when calling the setCollectSubmModels function and then access the intermediate 

models by calling the getCollectSubmModels() function.

Speeding Up Model Tuning

The TrainValidationSplit and CrossValidator estimators are designed to take the 

pain out of the model tuning step in the machine learning development process. You 

might find that it takes a while to train and evaluate all the different models due to the 

different parameter combinations. The larger the number of parameter combinations, 

the more time it takes.

By default, the estimators are training and evaluating one model at a time in a 

sequential manner. To speed up this process, you might want to increase the parallelism 

to take advantage of your Spark cluster’s compute and memory resources. This is done 

by setting the parallelism with a value of 2 or greater before initiating the model tuning 

process. As a general guideline from the Spark tuning guide, a value up to 10 is usually 

sufficient. Listing 8-20 sets the parallelism of crossValidator to 6.

Listing 8-20. Setting CrossValidator Parallelism to 6

crossValidator.setParallelism(6).fit(text_data)

Model Evaluators

To understand how well a model performs, you first need to know how to calculate and 

evaluate the model evaluation metrics. Each machine learning task uses a different set 

of metrics, and calculating them is tedious and using math. Luckily, MLlib provides a set 

of tools called an evaluator to calculate the metric so the validator can measure how well 

a fitted model does on test data. Table 8-7 lists out the different supported evaluators in 

MLlib, a subset of the supported metrics, and a short description.
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 Machine Learning Tasks in Action
This section brings together the concepts and tools described in this chapter and 

applies them to the following machine learning tasks: classification, regression, and 

recommendation. Working through the machine learning development process with real 

datasets makes it clearer how all the pieces fit together.

This section is not meant to be comprehensive in covering the hyperparameters of 

each machine learning algorithm, and the model tuning step is left as an exercise for the 

readers.

 Classification
Classification is one of the most widely studied and used machine learning tasks due 

to its ability to help with solving many real-life classification-related problems. For 

example, is this a fraudulent credit card transaction? Is this email spam? Is this an image 

of a cat, a dog, or a bird?

Table 8-7. Supported Evaluators

Name Supported Metrics Description

regressionevaluator rmse, mse, r2, mae, var For regression task

BinaryClassificationevaluator areaUnderrOC, areaUnderpr For classification task 

with only two classes

MulticlassClassificationevaluator weightedprecision, weightedrecall, etc For classification task 

with only more than 

two classes

MultilabelClassificationevaluator subsetaccuracy, accuracy, hammingLos, 

recall, precisionByLabel, recallByLabel, 

f1MeasureByLabel

For multi-label 

classification task

rankingevaluator meanaverageprecisionatk, precisionatk, 

ndcgatk, recallatk

For ranking tasks
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There are three types of classification.

• Binary classification: This is where the label to predict has only two 

possible classes (for example, fraud or not fraud, conference paper is 

accepted or not, the tumor is benign or malignant).

• Multiclass classification: This is where the label to predict has more 

than two possible classes (for example, whether an image is a dog, 

cat, or bird).

• Multilabel classification: This is where each observation can belong 

to more than one class. Movie genres are a good example of this. A 

movie can be classified as both action and comedy. MLlib doesn’t 

natively support this type of classification.

MLlib provides a few machine learning algorithms for the classification tasks.

• Logistic regression

• Decision tree

• Random forest

• Gradient-boosted tree

• Linear support-vector machine

• One-vs-Rest

• Naïve Bayes

 Model Hyperparameters

The logistic regression algorithm is used in this example. The following is a subset of its 

model hyperparameters. Each model hyperparameter has a default value.

• family: The possible values are auto, binomial, and multinomial. 

The default value is auto, which means the algorithm automatically 

selects the family to be either binomial or multinomial based on 

the values in the label column. binomial is for binary classification. 

multinomial is for the multiclass classification.

• regParam: This is the regularization parameter to control the 

overfitting. The default value is 0.0.
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 Example

Listing 8-21 tries to predict which Titanic passengers survived the tragedy. This is a 

binary classification machine learning problem. The example uses the logistic regression 

algorithm. The information and the data are available at www.kaggle.com/c/titanic. 

The data is in CSV format, and there are two files: train.csv and test.csv. The train.

csv file contains the label column.

The provided data contains many interesting features; however, Listing 8-21 uses 

only age, gender, and ticket class as features.

Listing 8-21. Use Logistic Regression Algorithm to Predict the Survival of Titanic 

Passengers

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.feature.StringIndexer

import org.apache.spark.ml.feature.VectorAssembler

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

val titanic_data = spark.read.format("csv")

                        .option("header", "true")

                        .option("inferSchema","true")

                        .load("/<folder>/train.csv")

// explore the schema

titanic_data.printSchema

 |-- PassengerId: integer (nullable = true)

 |-- Survived: integer (nullable = true)

 |-- Pclass: integer (nullable = true)

 |-- Name: string (nullable = true)

 |-- Sex: string (nullable = true)

 |-- Age: double (nullable = true)

 |-- SibSp: integer (nullable = true)

 |-- Parch: integer (nullable = true)

 |-- Ticket: string (nullable = true)

 |-- Fare: double (nullable = true)

 |-- Cabin: string (nullable = true)

 |-- Embarked: string (nullable = true)
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// to start out with, we will use only three features

// filter out rows where age is null

val titanic_data1 = titanic_data.select('Survived.as("label"),

                      'Pclass.as("ticket_class"),

                      'Sex.as("gender"), 'Age.as("age"))

                                .filter('age.isNotNull)

// split the data into training and test with 80% and 20% split

val Array(training, test) = titanic_data1.randomSplit(

                                       Array(0.8, 0.2))

println(s"training count: ${training.count}, test count:

                          ${test.count}")

// estimator:  to convert gender string to numbers

val genderIndxr = new StringIndexer().setInputCol("gender")

                                       .setOutputCol("genderIdx")

// transformer: assemble the features into a vector

val assembler = new VectorAssembler().setInputCols(

                       Array("ticket_class", "genderIdx", "age"))

                                     .setOutputCol("features")

// estimator: the algorithm

val logisticRegression = new LogisticRegression()

                                      .setFamily("binomial")

// set up the pipeline with three stages

val pipeline = new Pipeline().setStages(Array(genderIndxr,

                                  assembler, logisticRegression))

// train the algorithm with the training data

val model = pipeline.fit(training)

// perform the predictions

val predictions = model.transform(test)

// perform the evaluation of the model performance, the default metric is 

the area under the ROC

val evaluator = new BinaryClassificationEvaluator()
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evaluator.evaluate(predictions)

res10: Double = 0.8746657754010692

evaluator.getMetricName

res11: String = areaUnderROC

The metric produced by BinaryClassificationEvaluator has a value of 0.87, which 

is a decent performance for using three features. However, this example doesn’t explore 

the various hyperparameters and training parameters. I highly recommend that you 

experiment with the various hyperparameters to see if your model can perform better 

than 0.87.

 Regression
Another popular machine learning task is called regression, which is designed to predict 

a real number or continuous value. For example, you want to predict the sales revenue 

for the next quarter, or the income of a population, or the amount of rain in a certain 

region of the world.

MLlib provides the following machine learning algorithms for regression tasks.

• Linear regression

• Generalized linear regression

• Decision trees

• Random forest

• Gradient-boosted trees

• Isotonic regression

 Model Hyperparameters

The following example uses linear regression with the following hyperparameters.

• regParam: This regularization parameter controls the overfitting. The 

default value is 0.0.

• fitIntercept: This parameter determines whether to fit the 

intercept. The default value is true.
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 Example

Listing 8-22 tries to predict a house price based on a set of features about the houses. 

The dataset is available at www.kaggle.com/c/house- prices- advanced- regression- 

techniques/data. The data is provided in CSV format, and there are two files, train.

csv, and test.csv. The label column in the train.csv file is called SalePrice.

The provided data contains many interesting features; however, Listing 8-22 uses 

only a subset of them.

Listing 8-22. Use Linear Regression Algorithm to Predict House Price

import org.apache.spark.sql.functions._

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.feature.StringIndexer

import org.apache.spark.ml.feature.VectorAssembler

import org.apache.spark.ml.regression.LinearRegression

import org.apache.spark.ml.feature.RFormula

import org.apache.spark.ml.evaluation.RegressionEvaluator

import org.apache.spark.mllib.evaluation.RegressionMetrics

val house_data = spark.read.format("csv")

                      .option("header", "true")

                      .option("inferSchema","true")

                      .load("<path>/train.csv")

// select columns to use as features

val cols = Seq[String]("SalePrice", "LotArea",  "RoofStyle",

                        "Heating", "1stFlrSF", "2ndFlrSF",

                        "BedroomAbvGr", "KitchenAbvGr",

                        "GarageCars", "TotRmsAbvGrd",

                        "YearBuilt")

val colNames = cols.map(n => col(n))

// select only needed columns

val skinny_house_data = house_data.select(colNames:_*)

//  create a new column called "TotalSF" by adding the value of "1stFlrSF" 

and "2ndFlrSF" columns
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// cast the "SalePrice" column to double

val skinny_house_data1 = skinny_house_data.withColumn("TotalSF",

                              col("1stFlrSF") + col("2ndFlrSF"))

                             .drop("1stFlrSF", "2ndFlrSF")

                             .withColumn("SalePrice",

                                    $"SalePrice".cast("double"))

// examine the statistics of the label column called "SalePrice"

skinny_house_data1.describe("SalePrice").show

+------------+-----------------------------+

|     summary|                    SalePrice|

+------------+-----------------------------+

|       count|                         1460|

|        mean|           180921.19589041095|

|      stddev|            79442.50288288663|

|         min|                      34900.0|

|         max|                     755000.0|

+------------+-----------------------------+

// create estimators and transformers to setup a pipeline

// set the invalid categorical value handling policy to skip to avoid error

// at evaluation time

val roofStyleIndxr = new StringIndexer()

                               .setInputCol("RoofStyle")

                               .setOutputCol("RoofStyleIdx")

                               .setHandleInvalid("skip")

val heatingIndxr = new StringIndexer()

                             .setInputCol("Heating")

                             .setOutputCol("HeatingIdx")

                             .setHandleInvalid("skip")

val linearReg = new LinearRegression().setLabelCol("SalePrice")

// assembler to assemble the features into a feature vector

val assembler = new VectorAssembler().setInputCols(

                        Array("LotArea", "RoofStyleIdx",
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                              "HeatingIdx", "LotArea",

                              "BedroomAbvGr", "KitchenAbvGr",

                              "GarageCars", "TotRmsAbvGrd",

                              "YearBuilt", "TotalSF"))

                                     .setOutputCol("features")

// setup the pipeline

val pipeline = new Pipeline().setStages(Array(roofStyleIndxr,

                      heatingIndxr, assembler, linearReg))

// split the data into training and test pair

val Array(training, test) = skinny_house_data1.randomSplit(

                                     Array(0.8, 0.2))

// train the pipeline

val model = pipeline.fit(training)

// perform prediction

val predictions = model.transform(test)

val evaluator = new RegressionEvaluator().setLabelCol("SalePrice")

                                                                    .

setPredictionCol("prediction")

                                                                    .

setMetricName("rmse")

val rmse = evaluator.evaluate(predictions)

rmse: Double = 37579.253919082395

RMSE stands for the root-mean-square error. In this case, the RMSE value is around 

$37,000, which indicates there is a lot of room for improvement.

 Recommendation
Recommender system is one of the most intuitive and well-known machine learning 

applications. Maybe that is the case because almost everyone has seen examples of 

recommender systems in action on popular websites such as Amazon and Netflix. 

Almost every single popular website or Internet e-commerce company has one or more 

recommender systems on their site. Popular examples of recommender systems are 
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songs you may like on Spotify, people you want to follow on Twitter, courses you may like 

on Coursera or Udacity. The benefits recommender systems bring mutually beneficial 

to the company’s users and itself. Users are delighted to find or discover items that they 

like without spending too much effort. Companies are happy due to the increased user 

engagement, loyalty, and their bottom line. If a recommender system performs well, it is 

a win-win situation.

The common approaches to building recommender systems include content-based 

filtering, collaborative filtering, and a hybrid of the two. The first approach requires 

collecting information about the items being recommended and the profile of each 

user. The second approach requires collecting only user activities or behavior via 

explicit or implicit means. Examples of explicit behavior include rating a movie or an 

item on Amazon. Examples of implicit behavior including viewing the movie trailer or 

description. The intuition behind the second approach is the “wisdom of the crowd” 

concept, where people who agreed in the past tend to agree in the future.

This section focuses on the collaborative filter approach and one of the popular 

algorithms for this approach is called ALS, which stands for alternate-least-square. The 

only input this algorithm needs are the user-item rating matrix, which discovers user 

preferences and item properties through matrix factorization. Once these two pieces 

of information are found, they predict the user’s preference on items not seen before. 

MLlib has an implementation of the ALS algorithm.

 Model Hyperparameters

The ALS algorithm implementation in MLlib has a few important hyperparameters that 

you need to be aware of. The following section contains just a subset. Please consult 

the documentation at https://spark.apache.org/docs/latest/ml- collaborative- 

filtering.html.

• rank: This parameter specifies the number of latent factors or 

properties about users and items learned during the training process. 

An optimal value for rank is usually determined by experimentation 

and an intuition about the number of properties needed to accurately 

describe an item. The default value is 10.

• regParam: The amount of regularization to deal with overfitting. 

An optimal value for this parameter is usually determined by 

experimentation. The default is 0.1
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• implicitPrefs: ALS algorithm supports both explicit and implicit 

user activities or behavior. This parameter tells which one the 

input data represents. The default is false, meaning the activities or 

behavior are explicit.

 Example

This example builds a movie recommender system using the movie ratings dataset 

at https://grouplens.org/datasets/movielens/. The specific dataset is the latest 

MovieLens 100K dataset at http://files.grouplens.org/datasets/movielens/ml- 

latest-small.zip. This dataset contains roughly about 100,000 ratings by 700 users 

across 9000 movies. There are four files included in the zip file: links.csv, movies.csv, 

ratings.csv, and tags.csv. Each row in the ratings.csv file represents one rating of 

one movie by one user. It is in this format: userId, movieId, rating, timestamp. The 

rating is on a scale from 0 to 5 with half-star increments.

Listing 8-23 trains the ALS algorithm with one set of parameters and then evaluates 

the model performance based on the RMSE metric. In addition, it calls a few interesting 

provided APIs in the ALSModel class to get recommendations for movies and users.

Listing 8-23. Building a Recommender System Using ALS Algorithm 

Implementation in MLlib

import org.apache.spark.mllib.evaluation.RankingMetrics

import org.apache.spark.ml.evaluation.RegressionEvaluator

import org.apache.spark.ml.recommendation.ALS

import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}

import org.apache.spark.sql.functions._

// we don't need the timestamp column, so drop it immediately

val ratingsDF = spark.read.option("header", "true")

                          .option("inferSchema", "true")

                          .csv("<path>/ratings.csv")

                          .drop("timestamp")

// quick check on the number of ratings

ratingsDF.count

res14: Long = 100004
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// quick check who are the active movie raters

val ratingsByUserDF = ratingsDF.groupBy("userId").count()

ratingsByUserDF.orderBy($"count".desc).show(10)

+--------+-------+

|  userId|  count|

+--------+-------+

|     547|   2391|

|     564|   1868|

|     624|   1735|

|      15|   1700|

|      73|   1610|

|     452|   1340|

|     468|   1291|

|     380|   1063|

|     311|   1019|

|      30|   1011|

+--------+-------+

println("# of rated movies: " +ratingsDF.select("movieId").distinct().

count)

# of rated movies: 9066

println("# of users: " + ratingsByUserDF.count)

# of users: 671

// analyze the movies largest number of ratings

val ratingsByMovieDF = ratingsDF.groupBy("movieId").count()

ratingsByMovieDF.orderBy($"count".desc).show(10)

+----------+-------+

|   movieId|  count|

+----------+-------+

|       356|    341|

|       296|    324|

|       318|    311|

|       593|    304|
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|       260|    291|

|       480|    274|

|      2571|    259|

|         1|    247|

|       527|    244|

|       589|    237|

+----------+-------+

// prepare data for training and testing

val Array(trainingData, testData) = ratingsByUserDF.randomSplit( 

Array(0.8, 0.2))

// setting up an instance of ALS

val als = new ALS().setRank(12)

                     .setMaxIter(10)

                     .setRegParam(0.03)

                     .setUserCol("userId")

                     .setItemCol("movieId")

                     .setRatingCol("rating")

// train the model

val model = als.fit(trainingData)

// perform predictions

val predictions = model.transform(testData).na.drop

// setup an evaluator to calculate the RMSE metric

val evaluator = new RegressionEvaluator().setMetricName("rmse")

                                                     .setLabelCol("rating")

                                                      .setPredictionCol 

("prediction")

val rmse = evaluator.evaluate(predictions)

println(s"Root-mean-square error = $rmse")

Root-mean-square error = 1.06027809686058
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The ALSModel class provides two sets of useful functions to perform 

recommendations. The first set recommends the top n items to all users or a specific set 

of users. The second set is for recommending top n users to all items or a specific set of 

items. Listing 8-24 provides an example of calling these functions.

Listing 8-24. Using ALSModel to Perform Recommendations

// recommend the top 5 movies for all users

model.recommendForAllUsers(5).show(false)

// active raters

val activeMovieRaters = Seq((547), (564), (624), (15),

                            (73)).toDF("userId")

model.recommendForUserSubset(activeMovieRaters, 5).show(false)

+------+---------------------------------------------------------------------------------------------------+

|userId|             recommendations                                               |

+------+---------------------------------------------------------------------------------------------------+

|  15  | [[363, 5.4706035],   [422, 5.4109325],  [1192, 5.3407555], [1030, 5.329553],  [2467, 5.214414]]   |

| 547  | [[1298, 5.752393],   [1235, 5.4936843], [994, 5.426885],   [926, 5.28749],    [3910, 5.2009006]]  |

| 564  | [[121231, 6.199452], [2454, 5.4714866], [3569, 5.4276495], [1096, 5.4212027], [1292, 5.4203687]]  |

| 624  | [[1960, 5.4001703],  [1411, 5.2505665], [3083, 5.1079946], [3030, 5.0170803], [132333, 5.0165534]]|

|  73  | [[2068, 5.0426316],  [5244, 5.004793],  [923, 4.992707],   [85342, 4.979018], [1411, 4.9703207]]  |

+-------+--------------------------------------------------------------------------------------------------+

// recommend top 3 users for each movie

val recMovies = model.recommendForAllItems(3)
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// read in movies dataset so we can see the movie title

val moviesDF = spark.read.option("header", "true")

                         .option("inferSchema", "true")

                         .csv("<path>/movies.csv")

val recMoviesWithInfoDF = recMovies.join(moviesDF, "movieId")

recMoviesWithInfoDF.select("movieId", "title", "recommendations")

                   .show(5, false)

+--------+----------------------------------+---------------------------------------------------------+

| movieId| title                     | recommendations                              |

+--------+----------------------------------+---------------------------------------------------------+

|  1580  | Men in Black (a.k.a. MIB) (1997) | [[46, 5.6861496],  [113, 5.6780157], [145, 5.3410296]]  |

|  5300  | 3:10 to Yuma (1957)              | [[545, 5.475599],  [354, 5.2230153], [257, 5.0623646]]  |

|  6620  | American Splendor (2003)         | [[156, 5.9004226], [83, 5.699677],   [112, 5.6194253]]  |

|  7340  | Just One of the Guys (1985)      | [[621, 4.5778027], [451, 3.9995837], [565, 3.6733315]]  |

| 32460  | Knockin' on Heaven's Door (1997) | [[565, 5.5728054], [298, 5.00507],   [476, 4.805148]]   |

+--------+----------------------------------+---------------------------------------------------------+

// top rated movies

val topRatedMovies = Seq((356), (296), (318),

                         (593)).toDF("movieId")

// recommend top 3 users per movie in topRatedMovies

val recUsers =  model.recommendForItemSubset(topRatedMovies, 3)

recUsers.join(moviesDF, "movieId")

        .select("movieId", "title", "recommendations")

        .show(false)
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+----------+----------------------------------+-------------------------------------------------------+

| movieId| title                     | recommendations                            |

+----------+----------------------------------+-------------------------------------------------------+

| 296      | Pulp Fiction (1994)              | [[4, 5.8505774],   [473, 5.81865],   [631, 5.588397]] |

| 593      | Silence of the Lambs, The (1991) | [[153, 5.839533],  [586, 5.8279104], [473, 5.5933723]]|

| 318      | Shawshank Redemption, The (1994) | [[112, 5.8578305], [656, 5.8488774], [473, 5.795221]] |

| 356      | Forrest Gump (1994)              | [[464, 5.6555476], [58, 5.6497917],  [656, 5.625555]] |

+---------+----------------------------------+-------------------------------------------------------+

In Listing 8-24, an instance of the ALS algorithm was trained with one set of 

parameters, and the RSME is about 1.06. Let’s try retraining that instance of the ALS 

algorithm with a set of parameter combinations using the CrossValidator to see if you 

can lower the RSME value.

Listing 8-25 sets up a search grid for two hyperparameters with the total of four 

parameter combinations, and a CrossValidator with three folds. This means the ALS 

algorithm is trained and evaluated 12 times, and therefore it takes a minute or two to 

complete.

Listing 8-25. Use CrossValidator to Tune the ALS Model

val paramGrid = new ParamGridBuilder()

                        .addGrid(als.regParam,Array(0.05, 0.15))

                        .addGrid(als.rank, Array(12,20))

                        .build

val crossValidator = new CrossValidator().setEstimator(als)

                           .setEvaluator(evaluator)

                           .setEstimatorParamMaps(paramGrid)

                           .setNumFolds(3)
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// print out the 4 hyperparameter combinations

crossValidator.getEstimatorParamMaps.foreach(println)

{

      als_d2ec698bdd1a-rank: 12,

      als_d2ec698bdd1a-regParam: 0.05

}

{

      als_d2ec698bdd1a-rank: 20,

      als_d2ec698bdd1a-regParam: 0.05

}

{

      als_d2ec698bdd1a-rank: 12,

      als_d2ec698bdd1a-regParam: 0.15

}

{

      als_d2ec698bdd1a-rank: 20,

      als_d2ec698bdd1a-regParam: 0.15

}

// this will take a while to run through more than 10 experiments

val cvModel = crossValidator.fit(trainingData)

// perform the predictions and drop the

val predictions2 = cvModel.transform(testData).na.drop

val evaluator2 = new RegressionEvaluator()

                                 .setMetricName("rmse")

                                 .setLabelCol("rating")

                                 .setPredictionCol("prediction")

val rmse2 = evaluator2.evaluate(predictions2)

rmse2: Double = 0.9881840432547675

You have successfully lowered the RMSE by leveraging the CrossValidator to help 

with tuning the model. It may take a while to train the best model, but MLlib makes it 

easy to experiment with a set of parameter combinations.

Chapter 8  MaChine Learning with Spark



391

 Deep Learning Pipeline
This chapter would be incomplete if there is no reference to the deep learning topic, one 

of the hottest topics in the artificial intelligence and machine learning landscapes. There 

are already many resources available in the form of books, blogs, courses, and research 

papers to explain every aspect of deep learning. In terms of technology, there are many 

innovations from the open source community, universities and large companies like 

Google, Facebook, Microsoft, and others to come up with deep learning frameworks and 

best practices. Here is the current list of Deep Learning frameworks.

• TensorFlow is open source framework created by Google.

• PyTorch is an open source deep learning framework developed by 

Facebook.

• MXNet is a deep learning framework developed by a group of 

universities and companies.

• Caffe is a deep learning framework developed by UC Berkeley.

• CNTK is an open source deep learning framework developed by 

Microsoft.

• Theano is another open deep learning framework developed by the 

University of Montreal.

• BigDL is an open source deep learning framework developed by 

Intel.

On Apache Spark’s side, Databricks is driving the effort of developing a project called 

Deep Learning Pipelines. It is not another deep learning framework, but rather it is 

designed to work on top of the existing popular deep learning frameworks. In the spirit 

of Spark and MLlib, the Deep Learning Pipelines project provides high-level and easy- 

to- use APIs for building scalable Deep Learning applications in Python using Apache 

Spark. This project is currently being developed outside of the Apache Spark open source 

project, and eventually, it will be incorporated into the main trunk. At the time of this 

writing, the Deep Learning Pipelines project provides the following features.

• Common deep learning use cases can be implemented in just a few 

lines of code.

• Working with images in Spark
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• Apply pre-trained deep learning models for scalable predictions

• The ability to do transfer learning, which adapts a model trained for a 

similar task to the current ask

• Distributed hyperparameter tuning

• Make it easy to expose deep learning models so others can use them 

as a function in SQL to make predictions

More information about the exciting Deep Learning Pipelines project is at https://

github.com/databricks/spark- deep- learning.

 Summary
The adoption of artificial intelligence and machine learning is steadily increasing, 

and there are many exciting breakthroughs in the coming years. Building on top of the 

strong foundation of Spark, the MLlib component is designed to help build intelligent 

applications in an easy and scalable manner.

• Artificial intelligence is a broad field whose goal is to make machines 

seem like they have intelligence. Machine learning is one of the 

subfields; it focuses on teaching machines to learn by training them 

with data.

• Building machine learning applications consists of a sequence of 

steps, and it is highly iterative.

• The Spark MLlib component consists of tools and abstractions for 

feature engineering, constructing, evaluating, and tuning machine 

learning pipelines and a set of well-known machine learning 

algorithms such as classification, regression, clustering, and 

collaborative filtering.
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• The core concepts the MLlib component introduces to help with 

building and maintaining complex pipelines are transformer, 

estimator, and pipeline. A pipeline is an orchestrator that ensures 

both training and test data flow through identical feature processing 

steps.

• Model tuning is a critical step in the ML application development 

process. It is tedious and time-consuming because it involves 

training and evaluating models over a set of parameter combinations. 

Combining with the pipeline abstraction, MLlib provides two tools 

that help: CrossValidator and TrainValidationSplit.
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CHAPTER 9

Managing the Machine 
Learning Life Cycle
As companies leverage AI and machine learning to transform their business, they 

soon realize developing and deploying ML applications is not a small task. In 

Chapter 8, you learned that the machine learning development process is a highly 

iterative and scientific process that needs an engineering culture and practice that is 

slightly different from the traditional software development process. As the machine 

learning development community, including data scientist, *ML engineers and 

software engineers, gains more experience developing machine learning applications 

and taking them to production, an apparent theme emerges and has been formalized 

into a discipline called MLOps.

According to Wikipedia, MLOps is a set of practices that aims to reliably and 

efficiently develop, deploy, and maintain machine learning models in production.  

The Google Cloud team defines MLOps as an ML engineering culture and practice that 

aims to unify ML system development and operation.

As a machine learning pioneer with extensive experience in productionalizing ML 

applications, Google shared its experience and insights in this area in a seminal paper 

called “Hidden Technical Debt in Machine Learning Systems” (https://papers.nips.cc/

paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf).

This chapter aims to dive deeper into the challenges of developing, managing, and 

deploying machine learning applications and then shows how an MLflow open source 

project can help with some of the challenges. In addition, it discusses a few common ML 

model deployment options.

https://doi.org/10.1007/978-1-4842-7383-8_9#DOI
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 The Rise of MLOps
MLOps has become one of the hottest topics among ML practitioners, cloud providers, 

and startups providing machine learning solutions. Understanding its benefits, best 

practices, and implementation is real as companies invest in building machine learning 

applications.

 MLOps Overview
MLOps is not a technology or platform. It is an encompassing term for both a set 

of practices and engineering culture that aim to make developing, deploying, and 

maintaining, monitoring production machine learning systems seamless, efficient, and 

reliable. The goal of MLOps is to minimize the technical friction to get the model from an 

idea to production in the shortest possible time with high-quality predictive power and 

with as little risk as possible. For many businesses and ML practitioners, only a model 

running in production can bring value.

At a high level, MLOps advocates for automation and monitoring across the entire 

ML life cycle to address its unique challenges and needs. Although some of the needs 

ML systems are similar to the ones in standard software systems, such as continuous 

integration of source control, unit testing, and continuous delivery, some needs are 

unique.

• The input data to ML models have a large influence on the quality of 

ML model predictions; therefore, it is important to test and validate 

the input data

• Reproducibility. In addition to version control the code to training 

ML models, additional information must be tracked, such as the 

input data used for training, the training hyperparameters, and 

machine learning libraries and their versions.

• ML model quality can degrade easily due to the constant change 

in the data. Therefore, it is imperative to closely monitor the model 

performance and machine learning–specific metrics.
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To address the machine learning unique challenges, the machine learning 

community and practitioners have identified a set of best practices for businesses to 

follow.

• Collaboration

• Successfully realizing the benefits of machine learning requires 

collaboration between the various teams within the organization, 

such as data scientists, ML engineers, data engineers, software 

engineers, and DevOps engineers. Each team brings unique 

skills and knowledge to contribute to the various steps in 

productionalizing machine learning models. Therefore, it 

requires an engineering culture that promotes and facilitates 

close collaboration.

• Continuous and Consistent Pipelines

• Data pipelines that produce the data for the machine learning 

models to consumers need to be version controlled, run 

continuously on a certain cadence, and be monitored closely to 

ensure minimum disruption and high quality.

• The data pipelines might have specific data transformation 

logic to produce the features, and therefore that logic needs to 

be implemented consistently across the training and serving 

machine learning pipeline.

• Reproducibility

• Machine learning development is a scientific endeavor that 

requires iterations, which need reproducibility. It requires 

iterations to adjust to the constant change in data due to changes 

such as customer behavior or business objectives. All the assets, 

artifacts, and metadata that train and evaluate the model must be 

tracked and version controlled to enable reproducibility.

• Testing and Observability

• Machine learning models deployment should go through a 

similar process as standard software deployment, but with some 

specific validations that are specific to the statistical nature 
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of machine learning, such as the distribution and standard 

deviations of the model features and model performance 

evaluation results.

• Once a model is in production to predict new data, it is important 

to closely monitor and alert on model performance degradation.

Following MLOps best practices enable businesses to dramatically increase 

the odds of realizing the benefits machine learning provides. As the appetite for 

leveraging machine learning increases, MLOps make it easier to scale development 

velocity and maintain many machine learning applications. When the flight wheel of 

productionalizing machine learning increases in speed, MLOps helps build trust with 

leadership to reap the benefits through a repeatable process that includes automation, 

validation, reproducibility, and sound monitoring. Additionally, machine learning 

increases the return on the investment that businesses have made in building the big data 

infrastructure over the last decade by capitalizing on the insights from the collected data.

At the time of writing, numerous startups and large cloud providers are racing to 

invent and build MLOps-related solutions. However, it is difficult to imagine a one-size-

fits-all product that can address all MLOps needs.

Companies that have been productionalizing machine learning for a while have 

something in common: investing in building their own solutions, called a machine 

learning platform. For example, Google has TFX, FB has FBLearner, Uber has 

Michelangelo, Twitter has Cortex, and LinkedIn has Pro-ML.

The next part of this chapter covers an open source project called MLflow, an open 

source platform for managing the end-to-end machine learning life cycle.

 MLflow Overview
In the MLOps space, there are not many open source projects yet, but I suspect this will 

change as the ML practitioners and community come together to discuss their needs 

and learn from each other.

One of the popular open source projects in this area is MLflow, created by 

Databricks. Its initial release came out in 2018. The capabilities it provides are extremely 

useful and needed by machine learning practitioners; therefore, its popularity and 

adoption have steadily increased since the initial release. MLflow’s capabilities have 

been maturing and expanding and becoming more sophisticated as more contributions 

come from the community.
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There are a few reasons behind the MLflow popularity.

• Extensibility

• MLflow is designed to be open and extensible, so the open 

source community can easily contribute and extend its core 

functionalities.

• Flexibility

• MLflow is designed to work with any ML library and can be 

used with programming languages in the machine learning 

community.

• Scalability

• MLflow is designed to be useful to small and large organizations.

• Run anywhere

• MLflow can be leveraged and deployed in a company’s 

infrastructure or on most cloud providers or someone’s laptop.

One of the reasons behind the success of Apache Spark is its ease of use. Following 

that recipe, the creators of MLflow wanted to minimize the friction of getting started 

with MLflow, so they designed MLflow with these two principles in mind: APIs first 

and modular design. The APIs first principle encourages working backward from the 

end user’s needs and provides a set of programmatic APIs to satisfy those needs. The 

modular design gives users an easy path to get started and the freedom to incrementally 

adopt the MLflow platform in a manner that best fits their use cases.

More information on MLflow is at https://mlflow.org. The GitHub project is at 

https://github.com/mlflow.

 MLflow Components
Logically, the capabilities MLflow platform offers to manage the end-to-end machine 

learning life cycle can be grouped into four components, as depicted in Figure 9-1. The 

MLflow components are modular, so you have the flexibility and freedom to adopt one 

or more components for your machine learning use cases and needs.
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As noted, machine learning development is a scientific endeavor that requires 

running many experiments with various small tweaks on the input to arrive at an 

optimal model. The Tracking component was designed specifically for this purpose 

by providing the facilities to track an experiment's inputs, metadata, and output. Once 

the data of the various runs of an experiment is collected, they can be easily compared, 

visualized, and shared.

The Projects component defines a standard format for packaging machine learning 

code as a self-contained executable unit to facilitate the machine learning model 

reproducibility on various runtime platforms, such as your local laptop or a cloud 

environment. The ability to easily reproduce machine learning models increases the 

collaboration between data scientists and their productivity.

The Models component defines a standard format for packaging machine learning 

models to easily be deployed to various model serving environments, such as on a local 

machine or cloud providers like Azure, GCP, or AWS.

The Model Registry component provides a centralized way of storing machine 

learning models to enable a collaborative way of managing their life cycle and lineage. 

Once a machine learning model is registered, it can help manage model versioning and 

productionalizing it with an audit trail.

MLflow provides APIs in multiple languages, such as Python, R, Java, and Scala, 

command-line interface, and UI for you to interact with each of its components.

 MLflow in Action
This section goes into more detail about each component to better understand its 

motivation and learn how to interact with them using the provided UI, command-line 

tools, and APIs.

Figure 9-1. MLflow components
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The prerequisites for running the following examples are Python 3.x, scikit-learn 

0.24.2, and MLflow 1.18 or higher. Assuming your computer already has Python 3.x 

installed, you can install the remaining ones using the commands listed in Listing 9-1.

Listing 9-1. Installing MLflow and scikit-learn

pip install scikit-learn

pip install mlflow

mlflow --version   # to test the installation and version

# you should see the output similar to below

mlflow, version 1.18.0

 MLflow Tracking

The motivation behind the MLflow Tracking component is to enable data scientists to 

track all the artifacts that are needed and produced while developing and optimizing 

their models during the model development phase. During this phase, data scientists 

usually need to run many experiments to optimize their model performance by 

tweaking the various input parameters, such as the input features, algorithm, and 

hyperparameters.

Traditionally, data scientists track the details of their experiments using either a 

notepad, a document, or spreadsheet. Unfortunately, this approach is manual and error-

prone, and the experiment results are not easily shared, visualized, and compared with 

other experiments.

Conceptually, the tracking information produced each time the model training code 

runs is organized into a run, and you can record the following information.

• Parameters: Key/value input parameters of your choice, where the 

value is a string. Examples of parameters are hyperparameters like 

learning rate, number of trees, and regularization.

• Metrics: Key/value metrics, where the value is numeric. Each metric 

can be updated throughout a run. You can visualize its full history. 

Examples of metrics include accuracy, RMSE, and F1.

• Artifacts: Output files in any format. Examples of artifacts are the 

image of the accuracy and feature importance.
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• Tags: One or more key/value tags in the currently active run.

• Metadata: General information about the run, such as run date and 

time, name, source code, and code version.

You can optionally organize multiple runs into an experiment, which is usually 

designed for a specific machine learning task. MLflow Tracking component provides 

APIs to record the run, and they are available in multiple languages: Python, R, Java, 

Scala, and REST APIs. The tracking server records the run information, which can run 

locally on the same machine as the application calling the APIs or on a remote machine. 

Essentially, MLflow tracking is a client-server application with the architecture depicted 

in Figure 9-2.

For learning purposes or exploration, it is easier to run the ML tracking server 

locally. In a team environment in which your team wants to centrally track and manage a 

machine learning model life cycle, it makes more sense to configure and run the tracking 

server on a remote host. MLflow provides two easy ways to specify where the tracking 

server is running on. The first way is by setting the MLFLOW_TRACKING_URI environment 

variable with a URI of the tracking server. The second way is to specify such URI using 

the mlflow.set_tracking_uri() in your application. If the tracking server URI is not set, 

the tracking APIs log the run information locally in a mlruns directory wherever you run 

your program.

Once the run information is available in the server, you can access it via the provided 

MLflow tracking UI, use the tracking APIs, or use Spark, as depicted on the right part of 

Figure 9-2.

Figure 9-2. MLflow tracking component architecture
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The run information can be categorized into two types: structured data and 

unstructured data. The artifacts, such as images, models, or data files, are considered 

unstructured and stored in the artifact store. The rest of the run information is 

considered structured data and is stored in the back-end store. The artifact store can be 

a folder on a local file system or one of the cloud providers’ distributed storage, such as 

AWS S3, Azure blob storage, or Google Cloud storage. The back-end store can be a folder 

on a local file system or one of the SQL stores, such as Postgres, MySQL, or SQLite, as 

depicted in Figure 9-3.

In terms of storing the artifacts, it turns out the MLflow client APIs get the artifact 

store URI from the tracking server. Then it is responsible for uploading the artifacts 

directly to the artifact store.

With a good understanding of the MLflow tracking component architecture and 

where the run information is stored, the next part shows how to launch an instance of an 

MLflow tracking server, use the tracking APIs to track the run, and then use the tracking 

UI to visualize the run information.

Figure 9-3. MLflow tracking server back-end store options
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Listing 9-2 uses a local directory as an artifact store and a local SQLite file as the 

back-end store. Before launching the MLflow server to manage the run information and 

the artifacts, you need to create two directories: one is for the database-backend store, 

and the other one is for the artifact store. Listing 9-2 shows the command to start the 

MLflow server.

Note in order to use model registry functionality, you must run your MLflow 
tracking server using a database-backend store

Listing 9-2. Start MLflow Server with SQLlite Database Back End and Local 

Artifact Store

mlflow server --backend-store-uri sqlite:////<directory>/backend-store/

mlflow.db --default-artifact-root <directory>/artifact-store

# you should see the following in the console if the server was started 

successfully

[2021-07-24 08:17:55 -0700] [81975] [INFO] Starting gunicorn 20.0.4

[2021-07-24 08:17:55 -0700] [81975] [INFO] Listening at: 

http://127.0.0.1:5000 (81975)

[2021-07-24 08:17:55 -0700] [81975] [INFO] Using worker: sync

[2021-07-24 08:17:55 -0700] [81978] [INFO] Booting worker with pid: 81978

[2021-07-24 08:17:55 -0700] [81979] [INFO] Booting worker with pid: 81979

[2021-07-24 08:17:55 -0700] [81980] [INFO] Booting worker with pid: 81980

[2021-07-24 08:17:55 -0700] [81981] [INFO] Booting worker with pid: 81981

Now that the MLflow tracking server is up and running, point your browser at 

http://localhost:500 to see the MLflow UI. It looks something like in Figure 9-4.

Chapter 9  Managing the MaChine Learning Life CyCLe



405

The first example demonstrates the usage of the various tracking APIs to track 

the different pieces of information of a run. The source code of this example is in the 

chapter9/simple-tracking.py file. By default, this example sets the MLflow tracking 

URI to http://localhost:5000, so before you execute this Python script using the 

command in Listing 9-3, make sure your MLflow tracking server is already up and 

running.

Listing 9-3. Executing simple-tracking.py

python simple-tracking.py

# the output would looking something like below

starting a run with experiment_id 1

done logging artifact

Done tracking on run

experiment_id: 1

run_id: cb17324d40764a428b3d983e8ac4d1dd

The simple-tracking.py script shown in Listing 9-4 is written in a safe way to run 

multiple times, and each time it creates a new run under the same experiment called 

simple-tracking-experiment. If you run it five times, the MLflow tracking UI would 

look something like Figure 9-5, which shows the runs in a table format with information 

such as the start time of each run, the user who logs the run information, and so on.

Figure 9-4. MLflow UI
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Listing 9-4. Content of simple-tracking.py

import os

import mlflow

import numpy as np

import matplotlib.pyplot as plt

from random import random, randint

from mlflow import log_metric, log_param, log_params, log_artifacts

if __name__ == "__main__":

      #mlflow.set_tracking_uri("http://localhost:5000")

      experiment_name = "simple-tracking-experiment"

      experiment = mlflow.get_experiment_by_name(experiment_name)

      experiment_id = experiment.experiment_id if experiment else None

      if experiment_id is None:

      print("INFO: '{}' does not exist. Creating a new experiment

                         experiment".format(experiment_name))

      experiment_id = mlflow.create_experiment(experiment_name)

      print("starting a run with experiment_id

                               {}".format(experiment_id))

      with mlflow.start_run(experiment_id=experiment_id) as run:

      # Log a parameter (key-value pair)

      log_param("mlflow", "is cool")

      log_param("mlflow-version", mlflow.version.VERSION)

      params = {"learning_rate": 0.01, "n_estimators": 10}

      log_params(params)

      # Log a metric; metrics can be updated throughout the run

      log_metric("metric-1", random())

      for x in range(1,11):

            log_metric("metric-1", random() + x)

      # Log an artifact (output file)

      if os.path.exists("images"):

            log_artifacts("images")

            print("done logging artifact")
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      else:

            print("images directory does not exists")

      image = np.random.randint(0, 256, size=(100, 100, 3),

                              dtype=np.uint8)

      mlflow.log_image(image, "random-image.png")

      fig, ax = plt.subplots()

      ax.plot([0, 2], [2, 5])

      mlflow.log_figure(fig, "figure.png")

      experiment = mlflow.get_experiment(experiment_id)

      print("Done tracking on run")

      print("experiment_id: {}".format(experiment.experiment_id))

      print("run_id: {}".format(run.info.run_id))

One very useful feature in MLflow UI is to compare the metrics across multiple runs. 

You simply select two or more runs by clicking the check box of those runs and then click 

the Compare button to compare them side by side, as depicted in Figure 9-6.

Figure 9-5. MLflow tracking UI after five runs
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Let’s take a closer look at what’s going on in the simple-tracking.py script. It 

first sets the tracking URI of the tracking server. Then it determines whether to create 

an experiment called simple-tracking-experiment, if it doesn’t already exist. Next, it 

uses MLflow, a high-level fluent API, to start a run using the Python with block and 

automatically terminate the run at the end of the with block. The with block contains 

examples of various tracking APIs to log parameters, metrics, artifacts, images, and 

figures. I highly recommend you visit the MLflow API documentation website, such as 

https://mlflow.org/docs/latest/python_api/index.html, to learn about the various 

APIs and their usage.

If you comment out the line that sets tracking URI and runs the command in Listing 9-3, 

MLflow tracking APIs log the run information in a local directory called mlruns. To view 

the run information in that local directory, run the mlflow ui command and then point 

your browser to http://localhost:5000.

Each run belongs to a specific experiment, so when starting a run without specifying 

an experiment ID, MLflow creates it in the default experiment.

To examine the detailed information about each run, simply click the link of the run 

start time. You see something like Figure 9-7.

Figure 9-6. Comparing runs side by side
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The general metadata about a run is displayed at the top, and then each type of 

tracking information is displayed in separate sections. For each metric that was updated 

multiple times, you can see the visualization of each metric by clicking the link of the 

metric name. A graph of metric-1 is depicted in Figure 9-8.

Figure 9-7. Detailed information of a run
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One way to integrate the MLflow tracking into your ML model training script is to 

start a tracking run and log parameters used at the beginning of the model training logic. 

Then, add calls to log model evaluation metrics, the model, and any artifacts after it. 

Listing 9-5 is an example.

Listing 9-5. Integrate MLflow Tracking into Model Training Logic

with mlflow.start_run(experiment_id=experiment_id) as run:

     mlflow.log_param("MLflow version", mlflow.version.VERSION)

     params = {'n_estimators': n_estimators,

               'max_depth': max_depth,

               'min_samples_split': min_samples_split,

               'learning_rate': learning_rate, 'loss': 'ls'}

     mlflow.log_params(params)

     gbr = ensemble.GradientBoostingRegressor(**params)

     gbr.fit(X_train, y_train)

     y_pred = gbr.predict(X_test)

     # calculate error metrics

     mae = metrics.mean_absolute_error(y_test, y_pred)

     mse = metrics.mean_squared_error(y_test, y_pred)

Figure 9-8. Visualization of a metric
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     rsme = np.sqrt(mse)

     r2 = metrics.r2_score(y_test, y_pred)

     # Log model

     mlflow.sklearn.log_model(gbr, "GradientBoostingRegressor")

     # Log metrics

     mlflow.log_metric("mae", mae)

     mlflow.log_metric("mse", mse)

     mlflow.log_metric("rsme", rsme)

     mlflow.log_metric("r2", r2)

     experiment = mlflow.get_experiment(experiment_id)

     print("Done training model")

     print("experiment_id: {}".format(experiment.experiment_id))

     print("run_id: {}".format(run.info.run_id))

As it turns out, the need for logging metrics, parameters, and models are common 

when training machine learning models using the various machine learning libraries, 

such as scikit-learn, TensorFlow, Spark, and Keras. The MLflow Tracking component 

goes one step further to simplify this process by providing an API called mlflow.

autlog(). Adding this line of code before your model training code automatically logs all 

the common information without the need for explicit log statements. Listing 9-6 is an 

example.

Listing 9-6. MLflow Automatic Logging

# enable auto logging

mlflow.autolog()

# prepare training data

X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])

y = np.dot(X, np.array([1, 2])) + 3

# train a model

model = LinearRegression()

with mlflow.start_run() as run:

    model.fit(X, y)
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At the time of writing this book, support for autologging was in an experimental state. 

Please consult the documentation at https://mlflow.org/docs/latest/tracking.

html#automatic-logging for the latest information on each supported library.

 MLflow Projects

The MLflow Projects component standardizes the project packaging format to be 

reusable and reproducible on multiple platforms.

Several innovations around machine learning libraries train the models, such as 

TensorFlow, PyTorch, Spark MLlib, and XGBoost. Data scientists tend to favor the library 

that can help them produce optimized machine learning models for their business use 

cases. Nowadays, numerous computing resources are available to data scientists to train 

small to large machine learning models, such as local machines, Docker, on the cloud, 

and so forth.

The Projects component organizes and defines machine learning projects to capture 

code, configuration, dependencies, and data in an executable unit. As a result, data 

scientists can easily use any machine learning library in their projects and run their 

projects on any computing platform (see Figure 9-9).

Each MLflow project is simply a directory of files or a Git repository. Although it is 

optional, it is highly recommended that your project contains a file called MLproject, 

which specifies the environment, parameters, and entry points to control the execution 

of your project. A project supports the following type of environments, and each one 

requires its own way of defining it.

Figure 9-9. MLFlow project details
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• Conda: Uses the Conda package management system, which can 

support Python packages and native libraries, execute your MLflow 

project on

• Docker: Uses a Docker container environment that can support 

almost any type of dependencies to execute your MLflow project on

• System: Your current system environment to execute your MLflow 

project on

For more information about the various supported environments in MLflow, refer to 

the MLflow projects documentation at https://mlflow.org/docs/latest/projects.

html#specifying-projects.

In addition to the MLproject file, an MLflow project usually includes a file to define 

the environment and another one that contains the model training logic. Listing 9-7 

shows the content of a sample MLproject file and conda.yml file in an MLflow project 

that uses the Conda environment. It is a good practice to set up the parameters in the 

MLproject like Listing 9-7, so they can be easily overwritten from the command line so 

data scientists can easily try out different values in their model optimization process.

Listing 9-7. An Example of MLproject File with Conda Environment

# MLproject file

name: boston-housing-price

conda_env: conda.yaml

entry_points:

  main:

     parameters:

       run_name: {type: str, default: "run_name"}

       n_estimators: {type: int, default: 100}

       max_depth: {type: int, default: 4}

       min_samples_split: {type: int, default: 2}

       learning_rate: {type: float, default: 0.01}

     command: |

       python train.py \
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         --n_estimators={n_estimators} \

         --max_depth={max_depth} \

         --min_samples_split={min_samples_split} \

         --learning_rate={learning_rate}

# conda.yaml

channels:

- conda-forge

dependencies:

- python=3.7.6

- pip

- pip:

  - mlflow

  - scikit-learn==0.24.2

  - cloudpickle==1.6.0

Now that you know how to put together an MLflow project, the next part is learning 

how to run them. MLflow Projects component provides two ways to run projects 

programmatically: the mlflow run command-line tool and the mlflow.projects.run() 

API. Both ways take similar parameters and work similarly. Listing 9-8 runs an MLflow 

project using the command-line tool. You can display its usage by issuing the mlflow 

run --help command.

The first and important parameter is the project URI, which is either a directory on 

the local file system or a Git repository path. Listing 9-8 contains several examples of 

running an MLflow project that exists in a local directory.

Listing 9-8. Run MLflow Project from Local Directory

# run the boston-housing-price MLflow project with creating a

# new conda environment and using default parameter values and

# add run under the boston-housing-price experiment.

mlflow run <chapter9>/boston-housing-price --experiment-name=boston-

housing-price
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# similar to the one above, except without creating a

# new conda environment

mlflow run <chapter9>/boston-housing-price --no-conda --experiment-

name=boston-housing-price

# to overwrite one or more parameter value, specify them using -P # format

mlflow run <chapter9>/boston-housing-price --no-conda -P learning_rate=0.06  

--experiment-name=boston-housing-price

When running an MLflow project that uses a Conda environment, MLflow first 

creates a new Conda environment and then downloads all dependencies specified in the 

conda.yaml file, therefore it might take a while to complete all the steps. This is useful 

when trying to reproduce the model from someone else’s MLflow project or validate an 

MLflow project’s reproducibility. Specifying the --no-coda command parameter skips 

the Conda creation step, which speeds up the project building process. This is very 

useful when you are putting together your MLproject.

To accommodate the various application development infrastructures, MLflow 

projects support other environments such as Docker and Kubernetes. They provide 

more flexibility but are a bit more complex to set up.

 MLflow Models

The motivation behind MLflow Models component is to promote model interoperability 

by standardizing the ML model packaging format so that they can be developed using 

any of the popular machine learning libraries and deployed to a diverse set of execution 

environments, as depicted in Figure 9-10. For example, you could develop a model in 

PyTorch, and deploy it and perform inference on your local Docker, Spark, or one of the 

cloud provider ML platforms. The solution MLflow Models uses is by defining a unified 

model abstraction that captures the flavor of the model.
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Flavors are the key concept that makes the MLflow Models component versatile 

and useful. Essentially, flavors are a convention that deployment tools can decipher to 

understand the model; therefore, it is possible to develop tools that work with models 

trained using any ML library without integrating each tool with each specific library. Out 

of the box, MLflow defines several supported flavors that all its built-in deployment tools 

support.

Similar to an MLflow project, an MLflow model is a directory containing a set of 

files. Among them is a file called MLmodel, which contains a few pieces of metadata 

about the model and defines the flavors that the model can be viewed in. If your 

model training script logs the model using API log_model or saves a model using 

API save_model, a model directory is automatically created with all the appropriate 

files that contain information about the environment and dependencies to load and 

serve it. Figure 9-10 shows an example of an MLflow model directory and its content 

from the boston-housing-price project. Navigate to one of the runs under the boston-

housing-price experiment and then scroll down to the artifacts section. You see 

something like Figure 9-11.

Figure 9-10. MLflow model abstraction
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The MLmodel file captures some of the model’s metadata, such as when it was 

created and run. More importantly, it also contains the model signature and flavors. 

Listing 9-9 shows the content of MLmodel file generated by the mlflow.autoLog API in 

the chapter9/airbnb-price/train.py.

Listing 9-9. Content of MLmodel

artifact_path: model

flavors:

  python_function:

      env: conda.yaml

      loader_module: mlflow.sklearn

      model_path: model.pkl

      python_version: 3.7.6

  sklearn:

      pickled_model: model.pkl

      serialization_format: cloudpickle

      sklearn_version: 0.24.2

run_id: fc9bf6efeff74752812debc131b6c369

signature:

  inputs: '[{"name": "bedrooms", "type": "double"},

            {"name": "beds", "type": "double"},

             {"name": "bathrooms", "type": "double"}]'

Figure 9-11. MLFlow model directory and its content

Chapter 9  Managing the MaChine Learning Life CyCLe



418

  outputs: '[{"type": "tensor",

              "tensor-spec": {"dtype": "float64",

              "shape": [-1]}}]'

utc_time_created: '2021-07-28 20:14:17.612140'

The model signature defines the schema of the model’s input and output. The 

model input schema specifies what features are needed to perform model inference. An 

example of specifying the features is shown in an upcoming section.

Listing 9-9 shows two flavors: python_function and sklearn. The python_function 

flavor defines a generic and self-contained filesystem model format, specifically for 

Python models. This enabled the MLflow provided model deployment and serving 

tools to work with any Python model regardless of which ML library trained the model. 

As a result, any Python model can be easily productionalized in a variety of runtime 

environments.

conday.yaml and requirements.txt capture the dependencies and environment 

information, respectively, so a similar environment can easily be created at the 

deployment time.

The MLflow built-in model persistence utilities take care of packaging models for 

the various popular ML libraries, such as PyTorch, TensorFlow, scikit-learn, LightGBM, 

and XGBoost. If your model requires special handling, MLflow supports persisting and 

loading custom model format.

In addition to providing a set of APIs to manage the model life cycle, MLflow’s 

Models component provides command-line tools to deploy, load, and serve models.

To demonstrate the usage of command-line tools, the next section uses the airbnb-

price MLflow project, which is a simple MLflow project to predict the price of an Airbnb 

listing using the scikit-learn Random Forest algorithm. For simplicity’s sake, it uses only 

three features: number of bedrooms, number of beds, and number of bathrooms. This 

project is located in the chapter9/airbnb-price folder, and the train.py training script 

uses the mlflow.autoLog API to automatically log the parameters, metrics, and model. 

To train the model, you can issue one of the commands listed in Listing 9-10. This 

example assumes the MLflow has already started and is running on port 5000 on your 

local machine.
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Listing 9-10. Run airbnb-price MLflow Project

# make sure to set the MLFLOW tracking server URI first

export MLFLOW_TRACKING_URI=http://localhost:5000

# run airbnb-price project

# with the default 100 estimators and max depth of 4

mlflow run ./airbnb-price --no-conda  --experiment-name=airbnb-price

# with the 300 estimators and max depth of 9

mlflow run ./airbnb-price --no-conda  --experiment-name=airbnb-price -P 

n_estimators=300 -P max_depth=9

Next, navigate to the latest run logged under the airbnb-price experiment in 

MLflow Tracking UI, and locate run_id in the MLmodel file under the Artifacts section. 

Next, you use the mlflow serve command-line tool to serve the model associated with 

the provided run id by launching a web server on your local machine. The mlflow serve 

command in Listing 9-11 launches a web server running with port 7000 and instructs 

MLflow to use the python_function flavor.

Listing 9-11. Launch Webserver to Perform Model Inference

# replace run id with the real run id

# the command below will launch the webserver that

# listens on port 7000.

mlflow models serve --model-uri runs:/<run id>/model -p 7000 --no-conda

# the output of the above command looks something like below

2021/07/28 19:50:25 INFO mlflow.models.cli: Selected backend for flavor 

'python_function'

2021/07/28 19:50:25 INFO mlflow.pyfunc.backend: === Running command 

'gunicorn --timeout=60 -b 127.0.0.1:7000 -w 1 ${GUNICORN_CMD_ARGS} -- 

mlflow.pyfunc.scoring_server.wsgi:app'

[2021-07-28 19:50:26 -0700] [36709] [INFO] Starting gunicorn 20.0.4

[2021-07-28 19:50:26 -0700] [36709] [INFO] Listening at: 

http://127.0.0.1:7000 (36709)

[2021-07-28 19:50:26 -0700] [36709] [INFO] Using worker: sync

[2021-07-28 19:50:26 -0700] [36712] [INFO] Booting worker with pid: 36712

[2021-07-28 19:54:24 -0700] [36709] [INFO] Handling signal: winch
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To perform inference using the airbnb-price Random Forest model, you send 

HTTP requests using the curl command-line tool to the invocations REST endpoint. 

Listing 9-12 contains a few examples to predict Airbnb listing prices.

Listing 9-12. Perform Model Inferencing Using HTTP Requests

# single prediction

curl http://127.0.0.1:7000/invocations -H 'Content-Type: application/json' 

-d '{"columns": ["bedrooms","beds","bathrooms"], "data": [[1,1,1]]}'

# multiple predictions

curl http://127.0.0.1:7000/invocations -H 'Content-Type: application/json' 

-d '{"columns": ["bedrooms","beds","bathrooms"], "data": [[1,1,1], [2,2,1], 

[2,2,2], [3,2,2]]}'

# The HTTP request response contains a single value, which is the predicted 

price of an Airbnb listing with the specified features.

You can also perform the model inference programmatically using the predicted API 

in the mlflow.model module.

The MLflow Model component provides many other capabilities. More information 

is at www.mlflow.org/docs/latest/models.html.

 MLflow Model Registry

The motivation behind the MLflow Registry component is to provide means for 

managing the complete life cycle of an MLflow model, as depicted in Figure 9-12. This 

life cycle consists of the lineage information about the MLflow experiment and runs that 

produced the model, the model registration and versioning, and a workflow to transition 

the model from one stage to another in the deployment process with audit trail and 

notes. This component is the most recent and was introduced in MLflow 1.7.
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Note to use model registry functionality, you must run your MLflow tracking 
server using a database back-end store.

Like the other MLflow components, this one also provides UI, APIs, and command-

line tools for you to interact with. The next section provides examples of managing the 

model's life cycle produced from one of the runs in experiment airbnb-price.

The first step in the MLflow model life cycle is model registration. Before you can add 

an MLflow model to the Model Registry, you must log in using log_model API or via the 

autolog API. Each registered model can have one or more versions. This model name 

and version combination makes it easy to perform inference and track A/B testing before 

fully launching it to production. When a model is registered with the Model Registry, a 

name must be provided. If the model name doesn’t already exist, then it is added as of 

version 1. Otherwise, a new model version is automatically created.

To register a model produced by a certain run from the UI, you first navigate to the 

detail page of the run, scroll down to the Artifacts section, select the top-level folder, and 

click the Register Model button (see Figure 9-13).

Figure 9-12. MLflow model life cycle
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The Register Model dialog box pops up for you to enter a model name, as depicted in 

Figure 9-14. If the model name already existed, then you see a drop-down list for you to 

select.

To view the registered model once the model registration is completed, navigate to 

the Registered Models page to see all the registered models by clicking the Models link at 

the top of MLflow UI. You see something like Figure 9-15.

Figure 9-13. Model registration

Figure 9-14. Register model dialog box
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Each model has an overview page to show the various active model versions. To see 

the Airbnb SF-A model’s overview page, click the model name. You see something like 

Figure 9-16.

Figure 9-16. Registered model details page

Figure 9-15. Registered model list page
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The built-in stages of a registered model are staging, production, and archived. You 

can transition a model and version to a particular stage by navigating to the model 

version page and clicking the Stage drop-down menu (see Figure 9-17). The current 

model stage shows you the possible stages that a particular model version can transition 

to. Once you select a stage, the Stage Transition confirmation dialog box is displayed to 

confirm, as depicted in Figure 9-18.

Figure 9-18. Model stage transition

Figure 9-17. Transition a model version
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If a registered model has multiple versions and is in different stages, the model 

overview page gives you a great bird’s eye view of what’s going on. An example of this is 

depicted in Figure 9-19.

The preceding examples use MLflow Model Registry UI to manage the life cycle of 

models, from registration to transition them to various stages. You can programmatically 

perform the same tasks by using the provided APIs. The APIs, listed in Table 9-1, make it 

easy to integrate the model management life cycle with a CI/CD system. For example, if a 

model is trained continuously by a CI/CD pipeline at a regular cadence, and if the model 

performance passes the predetermined criteria, the CI/CD pipeline can easily transition 

to the next appropriate stage for data scientists to analyze and determine the next step.

Figure 9-19. Bird’s-eye view of the stage of model versions
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Table 9-1. APIs to Interact with Model Registry

Name Description

mlflow.register_model add a model to the registry using run Uri and model 

name. Version 1 is created if the provide model name 

doesn’t already exist; otherwise, a new version is 

created.

MlflowClient.create_registered_model to register a brand-new empty model with the 

provided model name. if such a name already exists, 

an exception is thrown.

MlflowClient.create_model_version Creates a new version of a model with the provided 

name, source and run_id.

mlflow.<model flavor>.load_model fetch a registered model from the model registry with 

a model Uri. for example, "models:/{model name}/

{model version}"

MlflowClient.update_model_version Update the model description of a particular version 

using the provided model name, version, and new 

description.

MlflowClient.rename_registered_model rename the existing registered model name.

MlflowClient.transition_model_version_

stage

transition a registered model to one of the stages: 

staging, production, or archived

MlflowClient.list_registered_models fetch all the registered models in the registry.

MlflowClient.search_model_versions Search for a list of model versions using a registered 

model name.

MlflowClient.delete_model_version Delete a specific version of a registered model name.

MlflowClient.delete_registered_model_

version

Delete a registered model and all its versions.

For a comprehensive list of Model Registry APIs, please read the MLflow Model 

Registry API workflow documentation at https://mlflow.org/docs/latest/model-

registry.html#api-workflow.

Chapter 9  Managing the MaChine Learning Life CyCLe

https://mlflow.org/docs/latest/model-registry.html#api-workflow
https://mlflow.org/docs/latest/model-registry.html#api-workflow


427

 Model Deployment and Prediction
The model deployment strategy is largely dependent on the model prediction needs, and 

these two tend to go hand in hand. Different machine learning use cases have different 

needs and requirements when it comes to the model prediction. Some of the standard 

requirements are latency, throughput, and cost. Up until recent times, the model 

deployment topic is usually left out of machine learning research papers.

When applying machine learning to business use cases, it is important to understand 

the different deployment options and when to use them. This section describes two 

common model deployment strategies and model prediction scenarios and where Spark 

can fit in.

The two common model prediction scenarios are online prediction and offline 

prediction. Table 9-2 compares these two scenarios in terms of the standard 

requirements.

Online prediction scenario is used when machine learning model prediction is a part 

of an online system to perform a certain user activity, which usually means it needs to be 

fast. Therefore, the latency needs to be in milliseconds. Examples of online predictions 

are online advertisement, fraud detection, search and recommendation, and many 

more. The deployment strategy for online prediction involves building and managing a 

prediction service that supports REST or gRPC protocol to perform model predictions 

concurrently and support at a high request rate. The response latency must be low—in 

tens of milliseconds. In other words, the prediction service must be scalable and reliable. 

The prediction service usually is a stateless service that sits behind a load balancer and 

runs on a cluster of machines or Kubernetes nodes. The cost associated with online 

prediction is a function of the latency requirement and the scale at which the prediction 

request rate will be.

Table 9-2. Online Prediction vs. Offline Prediction

Scenario Latency Throughput Cost

Online Milliseconds Low Vary

Offline Seconds to days high Vary
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The model prediction provided by the Spark MLlib component cannot meet the low 

latency requirement. Therefore, you either train your machine learning models using 

a machine learning library such as PyTorch, TensorFlow, and XGBoost or export your 

MLlib trained model outside of Spark using the tools from ONNX (http://onnx.ai).

The offline prediction scenario is very useful when the model prediction needs to be 

performed in large batches at a certain cadence. It is not an integral part of the online 

user flow. Examples of offline predictions are movie recommendations generated per 

user, user churn propensity predictions, market demand forecasting, and customer 

segmentation analysis. These offline predictions are usually written out to a persistent 

distributed storage or low latency distributed database for downstream systems to access 

the predictions or serve online user traffic. This is the easiest and cheapest deployment 

strategy in terms of complexity and cost because the offline predictions are made using 

batch jobs, and the cost is comparatively low due to low overhead. It is incurred only 

while those jobs are running.

Spark is a great choice for this scenario due to its scalable and distributed computing 

framework, well-integrated MLlib component for model training and evaluation, 

and the ease of integration between the MLflow Model Registry component for 

model life cycle management and batch jobs. One important consideration in offline 

prediction is the frequency of generating predictions. The answer depends on how 

important the prediction freshness is to your machine learning use case. For the movie 

recommendation use case, probably the closer to real-time, the better, but maybe it 

is sufficient that the frequency can be in hours. One small optimization the offline 

prediction can make for this use case is to skip generating recommendations for users 

that haven’t been active in the last few months.

 Summary
• MLOps brings best practices and an engineering mindset to 

productionalizing machine learning applications so businesses 

worldwide can reap the benefits machine learning brings to business 

use cases.

• MLflow is an open source platform for managing the machine 

learning life cycle. It provides four components to help with steps in 

the machine learning development process
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• The Tracking component enables data scientists to track all the 

artifacts needed and produced while developing and optimizing 

their model during the model development phase.

• The Projects component standardizes the packaging format of 

machine learning projects to be reusable and reproducible on 

multiple platforms.

• The Models component standardizes the packaging format of 

machine learning models to be developed using any popular 

machine learning libraries and be deployed to a diverse set of 

execution environments.

• The Model Registry component provides a mechanism to 

manage model life cycle and lineage using a central repository 

to host the registered models, a workflow to transition models 

through its life cycle, and UI and APIs to interact with registered 

models.

• Model deployment and prediction go hand in hand. The two 

common model prediction scenarios are online and offline, and each 

is appropriate for a different set of use cases.
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