O'REILLY"

Apache

laris
The Def

Po

itive Guide

IN

ing Apache Iceberg Data Lakehouses

Enrich

with an Open Source Catalog

Alex Merced,
Andrew Madson

& Tomer Shiran
Foreword by JB Onofré

“This comprehensive guide captures both the technical depth and
practical insights that teams need to successfully implement and
leverage Apache Polaris in production environments.”

Casey Karst
Principal product manager, Fivetran

Apache Polaris: The Definitive Guide

Revolutionize your understanding of modern data management

with Apache Polaris (incubating), the open source catalog

designed for data lakehouse industry standard Apache Iceberg.

This comprehensive guide takes you on a journey through the

intricacies of Apache Iceberg data lakehouses, highlighting the

pivotal role of Iceberg catalogs.

Authors Alex Merced, Andrew Madson, and Tomer Shiran
explore Apache Polaris’s architecture and features in detail,
equipping you with the knowledge needed to leverage its full
potential. Data engineers, data architects, data scientists, and
data analysts will learn how to seamlessly integrate Apache
Polaris with popular data tools like Apache Spark, Snowflake,
and Dremio to enhance data management capabilities,
optimize workflows, and secure datasets.

* Getacomprehensive introduction
to Iceberg data lakehouses

¢ Understand how catalogs facilitate efficient
data management and querying in Iceberg

* Explore Apache Polaris's unique architecture
and its powerful features

* Deploy Apache Polaris locally, and deploy managed
Apache Polaris from Snowflake and Dremio

» Perform basic table operations on Apache Spark,
Snowflake, and Dremio

DATA

US $79.99 CAN $99.99
ISBN: 979-8-341-60814-6

9 ‘798341 608146

T

Alex Merced, head of developer
relations at Dremio, is a developer,
instructor, and coauthor of Apache
Iceberg: The Definitive Guide. He's
spoken at Data Day Texas and
Data Council, and shares his tech
expertise through blogs, podcasts,
and open source libraries in
JavaScript and Python.

Andrew Madson is an experienced
data leader with nearly 20 years of
experience leading technical teams.
He is the head of evangelism and
education at Tobiko Data. Andrew
is also a professor of data science

in several graduate programs.

Tomer Shiran is the founder and
chief product officer of Dremio, an
open data lakehouse platform that
enables companies to run analytics
in the cloud.

O'REILLY"

Apache Polaris:
The Definitive Guide

Enriching Apache Iceberg Data Lakehouses with
an Open Source Catalog

Alex Merced, Andrew Madson, and Tomer Shiran

O'REILLY"

Apache Polaris: The Definitive Guide
by Alex Merced, Andrew Madson, and Tomer Shiran

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA 95401.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Aaron Black Indexer: Krsta Technology Solutions
Development Editor: Gary O’Brien Cover Designer: Susan Brown
Production Editor: Aleeya Rahman Cover lllustrator: José Marzan Jr.
Copyeditor: Piper Content Partners Interior Designer: David Futato
Proofreader: Helena Stirling Interior lllustrator: Kate Dullea

September 2025: First Edition

Revision History for the First Edition
2025-09-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9798341608146 for release details.

The O’Reilly logo is a registered trademark of O'Reilly Media, Inc. Apache Polaris: The Definitive Guide,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Dremio. See our statement of editorial
independence.

979-8-341-60814-6
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9798341608146
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

[0 (=311 (o S Xi

o <] [Xiii

Partl. DataLakehouses and Apache Iceberg Fundamentals

1. Data Lakehouse and Apachelceberg..........ccovvvniiiiiiiiiiiiiiiiiiine 3
Modern Data Challenges 3
The World of Data Warehouses 4
Moving Forward with Data Lakes 6
The Cloud Revolution 8
File-Based Analytics with Apache Parquet 9
The Data Lakehouse Solution 12
The Key Benefits of a Data Lakehouse 12
The Path Forward: Data Lakehouse Table Formats 14
The Role of Table Formats 14
The Benefits of Table Formats 14
Existing Table Formats 15
Apache Iceberg 16
What Is Apache Iceberg? 17
Metadata File (metadata.json) 17
Manifest List 18
Manifest Files 18
Data Files 19
Delete Files 19

Conclusion 20

2. The Role of Apache Iceberg Catalogs.ccvevveiiiiriiinreininnnenn. 21
What Is and Isn’t an Apache Iceberg Catalog 22
The Mechanics of Apache Iceberg Catalogs 22
Types of Apache Iceberg Catalogs 23
File-System Catalogs 24
Service Catalogs 25
Challenges of Diverse Catalog Options 27
Client-Side Complexity 28
Configuration Challenges 28
Authorization Challenges 29
The Need for a Unified Approach 29
The Apache Iceberg REST Catalog Specification 29
Key Benefits of the REST Catalog Specification 30
The Evolution of REST Catalog Implementations 31
Apache Polaris 32
The Birth of Apache Polaris 33
Polaris: A New Era of Lakehouse Catalogs 33
Conclusion 34
Partll. Apache Polaris

3. The Apache Polaris Security Model.oovviiiiiiiiiiiiiiiiiiiiines 37
What Is Polaris? 37
Catalogs 38
Key Features of Polaris Catalogs 39
Benefits of Multi-Catalog Architecture 40
Principals 40
What Are Principals? 40
Managing Principals 41
Principal Lifecycle 41
Catalog Roles 41
Defining Permissions in Catalog Roles 43
Assigning Catalog Roles to Principals 46
Best Practices for Catalog Roles 47
Principal Roles 47
What Are Principal Roles? 47
Benefits of Principal Roles 48
Best Practices for Principal Roles 48
Polaris Security Best Practices 49
Multi-Tenant Environments 50
Cross-Team Collaboration 50

iv

Table of Contents

Compliance and Sensitive Data Governance
Cloud-Native Deployments
Conclusion

. External Catalogs.oovvieii i e

Nessie

What Makes Nessie Unique?

Why Use Nessie with Polaris?

Example: Nessie and Polaris in Action
Gravitino

What Makes Gravitino Unique?

Why Use Gravitino with Polaris?

Example: Distributed Metadata Governance
Lakekeeper

What Makes Lakekeeper Unique?

Why Use Lakekeeper with Polaris?

Example: Multi-Tenant Metadata Governance
AWS Glue

Why Use the AWS Glue Catalog?

Why Use Glue with Polaris?

Example: Hybrid Team Collaboration
Conclusion

c POIArIS REST APL. ettt it ettt ettt it eeeneenenennenens

Catalog Operations
List Catalogs
Create a Catalog
Get Catalog Details
Update a Catalog
Delete a Catalog
Principal Operations
List Principals
Create a Principal
Get Principal Details
Update a Principal
Delete a Principal
Rotate Principal Credentials
Managing Roles
Create a Catalog Role
Create a Principal Role
List Catalog Roles
List Roles Assigned to a Principal

51
51
52

53
55
55
56
56
56
57
57
57
58
58
58
59
59
60
60
61
61

63
64
64
65
66
66
67
68
68
69
70
71
72
73
73
74
74
75
75

Table of Contents

v

List All Principal Roles 75
List Principals Assigned to a Principal Role 75
Get Catalog Roles Mapped to a Principal Role 76
Get Details of a Principal Role 76
Add a Grant to a Catalog Role 76
Revoke a Grant from a Catalog Role 77
Assign a Catalog Role to a Principal Role 77
Assign a Role to a Principal 77
Update a Principal Role 78
Revoke a Role from a Principal 78
Revoke a Catalog Role from a Principal Role 79
Delete a Principal Role 79
Delete a Catalog Role 79
Apache Iceberg REST Catalog Endpoints 79
Configuration API 80
OAuth2 API 81
Table API 82
View API 101
Conclusion 109
Partlll. Hands-on with Apache Polaris
6. Working with Apache Polaris 0SS...........cooviiiiiiiiiiiiiiiiiiinnenns. 113
Deploying Locally with Docker 113
Prerequisites 114
Step 1: Clone the Repository 114
Step 2: Configure Environment Variables 114
Step 3: Understand the Docker Compose File 115
Step 4: Starting the Environment 117
Step 5: Stopping the Environment 118
Creating Catalogs 119
When to Create a Catalog 120
Creating Catalog Roles 121
When to Create Catalog Roles 122
Creating Principals 124
Creating Principal Roles 124
When to Create a Principal Role 124
Assigning the Catalog Role to the Principal Role and Setting Permissions on
the Catalog 126
Summary 127

vi

Table of Contents

7. Using Apache Polaris with Apache Spark............ccovviiiiiiiiiiiiiiinnnns, 129

Connecting Your Apache Polaris Catalog to Apache Spark 129
Using Spark Dataframe API with Apache Polaris (Incubating) 132
Creating a Table 132
Querying a Table 133
Updating a Table 133
Deleting Rows 134
Appending Data 134
Reading Metadata Tables 134
Using SparkSQL with Apache Polaris 135
Creating a Table 135
Querying a Table 135
Inserting Data 136
Updating Data 136
Deleting Data 136
Merging Data 136
Reading Metadata Tables 137
Time Travel Queries 137
Using Spark Streaming with Apache Polaris 138
Setting Up Spark Streaming with Polaris 138
Streaming Reads from Polaris 138
Streaming Writes to Polaris 139
Handling Deletes and Overwrites 140
Using Partitioned Tables 140
Maintaining Streaming Tables 140
Conclusion 141
8. Using Apache Polaris with Snowflake................ccooviiiiiiiiiiiiint, 143
Establishing Connectivity Between Snowflake and Polaris 143
Configuring an External Volume 144
Creating a Polaris Catalog Integration 145
Querying Iceberg Tables via Snowflake and Polaris 150
Registering an Existing Polaris Table in Snowflake 150
Querying the External Iceberg Table 152
Using Snowflake Open Catalog (Managed Polaris) 155
Polaris-Backed Tables vs. Native Snowflake Tables 157
Conclusion 159
9. Using Apache Polaris with Dremio...........ccovviiiiiiiiiiiiiiiiiiniennne 161
Connecting Dremio to an Apache Polaris Catalog 162
Connecting Polaris Using the REST Catalog Connector 162
Connecting Snowflake’s Open Catalog to Dremio 165

Table of Contents | vii

10.

1.

Why Disable Use Vended Credentials?
Using Dremio SQL with Apache Polaris
Querying Iceberg Tables via Polaris
Querying the Iceberg Metadata Tables
Creating Tables and CTAS in Polaris via Dremio

Adding Data from Files to a Table Using Copy Into

Maintaining Your Iceberg Tables with Dremio
Dremio Automates Optimization
Conclusion

Advanced Polaris Configuration and CLI Management
Using the Polaris CLI
CLI Structure, Authentication, and Profiles
Managing Entities with the CLI
Understanding Realms
Observability: Metrics, Tracing, and Logging
Metrics with Micrometer and Prometheus
Tracing with OpenTelemetry
Logging and Debugging with Quarkus
Configuring Polaris for Production
Security and Authentication Configuration
Durable Metadata with Metastores
Hardening Defaults and Managing Feature Flags
Scaling, Concurrency, and Rate Limits
Finalizing and Verifying Your Production Setup
Conclusion

Looking to the Future of Apache Polaris.

Managed Polaris

The REST Catalog Ecosystem
Data Processing Engines
Streaming and Ingestion Platforms
Other Data-Stack Tools

The Apache Polaris Roadmap
Generic Table Support
Policy Store
Table Maintenance Framework
SQL and NoSQL Persistence
S3-Compatible Storage Support
Catalog Ul
Federated Catalogs
Federated Role Support

168
169
169
169
172
173
175
177
179

181
181
182
183
186
188
189
190
192
194
194
196
198
199
201
202

203
203
204
205
206
207
208
208
210
212
215
216
218
219
221

viii

Table of Contents

Polaris Event Listeners
Unstructured Data in Polaris
Conclusion

Table of Contents

ix

Foreword

The lakehouse ecosystem has matured significantly over the last few years. Apache
Iceberg emerged as the main table format, especially for analytics.

Apache Iceberg brings the reliability and simplicity of SQL queries on top of data
files. To achieve this, Apache Iceberg materialized the data files as tables. This opens
many new possibilities: ACID transaction, schema evolution, partitioning, and time
travel. A table is essentially a set of data files and metadata. This means that we need
a way to access the metadata describing a table. That’s the primary role of a catalog: to
act as a reference and to provide a pointer to the metadata for a table, thus providing
atomicity.

The Iceberg Catalog is now a key component, telling where the tables are located and
how to access them safely. The catalog is the keystone of data governance, managing
table accesses, auditing and tracking, and atomic operations on metadata.

The Apache Iceberg REST Catalog specification has dramatically changed the catalog
ecosystem by providing an interoperable approach for Iceberg, where any language
or tool can use the same API. But Iceberg doesn’t provide an implementation of this
specification.

That’s the purpose of Apache Polaris (incubating): an Iceberg Catalog REST imple-
mentation first but with additional features like multi-catalog support and fine-
grained access control at the catalog level.

Apache Polaris: The Definitive Guide is a timely, well-written book that perfectly
presents Iceberg REST Catalog concepts and the Apache Polaris (incubating) catalog.
The book provides everything you need to know to master Apache Polaris, from its
core values (interoperability, run anywhere, and security) to specific features in detail
(generic tables, federated catalogs, and more). It covers every aspect of Polaris, from
how to run Polaris in a minute through advanced security and access configuration.

Xi

This book is a must have for anyone interested in using the Iceberg Catalog ecosystem
and understanding Apache Polaris (incubating) in detail.

— JB Onofré
Director of The Apache Software Foundation

xi | Foreword

Preface

Welcome to Apache Polaris: The Definitive Guide. This book is designed to guide
you through the journey of building and managing scalable, secure, and flexible data
lakehouses with Apache Polaris™, an innovative, community-driven catalog project.
As data lakehouses continue to evolve, Polaris represents the next generation of
catalog solutions, offering unified data management, role-based access control, and
multi-catalog support, all while promoting open standards and interoperability across
cloud and on-premise environments.

The story of Apache Polaris begins with the data lakehouse architecture and the
critical role that Apache Iceberg™ plays in making data lakehouses performant, relia-
ble, and accessible. In the first part of this book, we'll dive deep into the origins
and architecture of data lakehouses, explore the challenges they were designed to
solve, and walk through the capabilities that Apache Iceberg brings to modern data
lakes. As data becomes increasingly central to all aspects of business operations,
Iceberg’s robust table format has emerged as an essential tool for managing data
at scale, providing essential features like ACID transactions, schema evolution, and
efficient querying. We'll also look at how Iceberg catalogs originally developed to
bring this table format to life, allowing data lakehouses to become more accessible
and consistent.

Apache Polaris is an effort undergoing incubation at The Apache
Software Foundation (ASF), sponsored by the Apache Incubator.
Incubation is required of all newly accepted projects until a fur-
ther review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent
with other successful ASF projects. While incubation status is not
necessarily a reflection of the completeness or stability of the code,
it does indicate that the project has yet to be fully endorsed by the
ASE.

xXiii

But even with the power of Iceberg, the need for a new generation of catalogs
has grown clearer. Chapter 2 introduces the diverse world of Iceberg catalogs, high-
lighting their unique advantages and the challenges that come with having multiple
catalog options. From file-based catalogs to service-driven solutions, you'll see how
each catalog provides unique features but also introduces complexity, especially when
deployed across diverse environments and data tools. This leads us to the Apache Ice-
berg REST Catalog Specification, which was developed to streamline client interactions
across catalog implementations, making cross-language support and integration with
managed services simpler and more consistent.

The foundation of Polaris builds on this REST specification, taking it further by tack-
ling some of the most pressing challenges in data management today. In Part II, we'll
explore Apache Polaris as a new kind of Iceberg catalog. Polaris brings a multi-catalog
architecture, enabling organizations to maintain multiple catalogs with distinct roles
and access controls, ensuring that each catalog serves its specific purpose while being
centrally governed. Additionally, Polaris allows users to connect external catalogs
that support the REST Spec, creating a unified environment where Iceberg tables are
discoverable across catalog systems. In this part, you'll gain a deeper understanding
of Polaris’s security model, including role-based access control (RBAC), and learn
best practices for managing permissions at scale. We'll also delve into Git-for-Data,
a unique ecosystem feature that allows for versioned data operations, branching,
and tagging—powerful capabilities that make data versioning as straightforward as
software versioning.

In Part III, we take a hands-on approach to working with Polaris, starting with
deployment and configuration in Chapter 6. Here, you'll learn how to set up Polaris
locally, manage multiple catalogs, configure access roles, and integrate security con-
trols. The following chapters provide practical guides on using Polaris with popular
data tools, including Apache Spark™, Snowflake, and Dremio. These chapters will
walk you through setting up connections, executing queries, managing data, and
utilizing each tool’s unique capabilities, demonstrating how Polaris can serve as the
backbone of a robust, tool-agnostic data lakehouse environment.

Keep in mind that Apache Polaris, like any technology, will evolve. As things change,
we will aim to reflect those updates in the book’s companion GitHub repository:

https://github.com/developer-advocacy-dremio/apache-polaris-the-definitive-guide

If you have Polaris content youd like to submit to the repo, such as tutorials or new
integrations, please submit a pull request.

By the end of this book, you'll be well-equipped to leverage the full power of Apache
Polaris in your data lakehouse architecture. You'll understand the theory and archi-
tecture behind catalogs and the practical steps needed to deploy Polaris as a central,
scalable, and secure solution for data management. Whether youre a data engineer,

xiv | Preface

https://github.com/developer-advocacy-dremio/apache-polaris-the-definitive-guide

architect, or analyst, Apache Polaris: The Definitive Guide will provide the insights and
tools you need to take your data lakehouse to the next level.

If youd like to take your learning further, here are some additional resources to
consider:

« Apache Polaris Documentation

o Apache Iceberg Documentation

« Directory of Apache Iceberg Resources

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Preface | xv

https://polaris.apache.org
https://iceberg.apache.org
https://oreil.ly/TPOP6

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/developer-advocacy-dremio/apache-polaris-the-definitive-guide.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless youre reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Apache Polaris: The
Definitive Guide by Alex Merced, Andrew Madson, and Tomer Shiran (O’Reilly).
Copyright 2025 O’Reilly Media, Inc., 979-8-341-60814-6.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

xvi | Preface

https://github.com/developer-advocacy-dremio/apache-polaris-the-definitive-guide
mailto:support@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

141 Stony Circle, Suite 195

Santa Rosa, CA 95401

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata and any additional informa-
tion. You can access this page at https://oreil.ly/apache-polaris-definitive-guide.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

Alex Merced, Andrew Madson, and Tomer Shiran would like to extend their heartfelt
gratitude to their families for their unwavering support and encouragement through-
out the process of writing this book. Their patience and understanding have been
invaluable as we dedicated countless hours to bring Apache Polaris: The Definitive
Guide to life.

We would also like to thank the exceptional team at O’Reilly, who consistently make
the publishing process both smooth and enjoyable. Their professionalism and dedica-
tion are truly appreciated. Special thanks go out to our technical reviewers: Robert
Stupp, Bhargavi Reddy, Michal Gancarski, Saurav Varma, Dmitiri Bourlatchkov, and
Alex Dutra and the forward writer, JB Onofré, whose insights and feedback have
helped make this book the best it can be. Thank you all for your contributions to this
journey.

Preface | xvii

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/apache-polaris-definitive-guide
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

PARTI

Data Lakehouses and Apache Iceberg
Fundamentals

Before diving into the specifics of Apache Polaris, it’s essential to understand the
broader context in which it operates: the world of data lakehouses and Apache
Iceberg. The lakehouse architecture that turns data lakes into flexible data warehouses
combines the scalability and cost-effectiveness of data lakes with the performance
and reliability of data warehouses. Apache Iceberg is at the core of this architecture,
a table format designed to bring structure, consistency, and efficiency to massive
datasets stored in data lakes. This section lays the foundation for understanding how
Polaris fits into this ecosystem by exploring the challenges that led to the rise of
lakehouses, the pivotal role of Iceberg in enabling them, and the critical need for
robust cataloging solutions to manage and govern data effectively.

CHAPTER 1
Data Lakehouse and Apache Iceberg

Organizations are generating massive amounts of information, making it crucial to
store, manage, and analyze that data efficiently. The sheer volume and variety of data
pose unique challenges, from ensuring accessibility to maintaining performance at
scale. This is where modern data architectures come into play. To fully grasp the
value of Apache Polaris, an open source data lakehouse catalog, it’s essential first
to understand the origins of the Data Lakehouse concept and the role that Apache
Iceberg plays in enabling scalable, high-performance data management.

This chapter aims to lay the foundation for those concepts, beginning with an explo-
ration of the modern data challenges that led to the evolution of the lakehouse
architecture. We will then dive into the role of table formats in simplifying data
management and ensuring consistency across systems, focusing on Apache Iceberg,
a table format designed for the cloud data era. By the end of this chapter, you'll have
a solid understanding of the data lakehouse and Iceberg’s pivotal role in creating
scalable, manageable, and cost-effective data solutions, setting the stage for a deeper
dive into the unique contributions of Apache Polaris.

Modern Data Challenges

The explosion of data in the digital age brought about the need for systems opti-
mized to handle large-scale analytics. Traditional databases designed for transactional
processing were simply not equipped to meet the demands of modern analytical
workloads. This led to the rise of data warehouses—systems purpose-built to deliver
high performance for querying structured data. Over time, as organizations needed
to store and analyze more diverse forms of data, data lakes emerged as a solution,
allowing the storage of vast amounts of structured, semistructured, and unstructured
data at a lower cost.

However, as data volumes surged into the petabyte range, both data warehouses and
data lakes began to show their limitations. Data warehouses, while powerful, came
with high storage costs and lacked the flexibility needed to handle unstructured data.
On the other hand, data lakes, while flexible and scalable, suffered from performance
issues when it came to delivering the speed and reliability needed for real-time
analytics.

Further innovation came with cloud-based deployment, allowing organizations to
scale their infrastructure more flexibly and cost effectively. In addition, the rise of
analytics-optimized file formats such as Apache Parquet and ORC (Optimized Row
Columnar) improved data processing efficiency by making storage formats better
suited for large-scale query workloads.

Yet, even with these advances, the challenge remained: how to bring the best of
both worlds together—combining the flexibility and scalability of data lakes with the
performance and structure of data warehouses. This challenge led to the creation of
the data lakehouse, a unified architecture designed to address the evolving needs of
modern data management.

We will explore how these systems evolved and how their limitations eventually
paved the way for the data lakehouse, setting the stage for the innovations that
followed—including Apache Iceberg and, ultimately, Apache Polaris.

The World of Data Warehouses

Traditional relational databases, designed for transactional workloads, struggled to
deliver the speed and efficiency needed for analytical queries significantly as data
volumes grew. Data warehouses were built to solve this problem by optimizing data
storage and query execution for online analytical processing (OLAP). This allowed
organizations to generate reports, run business intelligence (BI) tools, and make data-
driven decisions faster and more effectively.

Data warehouses were architecturally distinct from online transaction processing
(OLTP) systems, which were designed to handle high volumes of short, transactional
queries, like inserting, updating, or deleting a few records at a time. OLTP databases
optimized for these fast, row-based operations focused on consistency and the ability
to support many users making frequent, small changes to the data. In contrast,
data warehouses were built specifically for OLAP, where the goal is to analyze large
volumes of historical data to extract trends, patterns, and insights. Architecturally,
this meant that data warehouses were optimized for batch processing and complex
read-heavy queries that spanned large datasets, rather than handling individual
transactions.

4 | Chapter 1: Data Lakehouse and Apache Iceberg

Key differences under the hood included the use of columnar storage, where data is
stored in columns rather than rows (illustrated in Figure 1-1). This made data ware-
houses much more efficient at querying specific fields across large datasets because
only the relevant columns needed to be loaded into memory. Data warehouses often
employ techniques like denormalization and materialized views, which involve pre-
computing and storing aggregates or summary tables to speed up analytical queries.
Unlike OLTP systems, which are designed for frequent updates, data warehouses
emphasize read performance by reducing the complexity of joins and grouping oper-
ations, enabling them to handle complex analytical workloads far more effectively.

[ID NAME AGE] D || NAME || AGE
1 Alex 39

[1 Aex 39] 2 || Bob || 25
3 Joe 68

[2 Bob 45]

[3 Joe 68]

Figure 1-1. The differences between row-based and columnar data

However, as the volume and variety of data increased over time, some significant
limitations of data warehouses began to surface:

Cost
Storing large amounts of data in a data warehouse was expensive, particularly as
data storage costs were tied to premium, high-performance hardware. This made
it impractical to store all business data within a data warehouse, especially as the
data grew into the terabyte and petabyte ranges.

Lack of flexibility
Data warehouses were designed primarily for structured data, meaning data that
fits neatly into tables with defined rows and columns. This made it difficult to
handle semistructured or unstructured data, such as logs, multimedia, and sensor
data, which became increasingly important for modern business analytics.

Scaling issues
Scaling a data warehouse was no easy task. As more data needed to be ingested
and queried, performance could degrade without significant hardware invest-
ment and optimization efforts. This rigidity made it hard to accommodate rap-
idly changing business needs.

Modern Data Challenges | 5

ETL bottlenecks
Moving data into a data warehouse required extract, transform, load (ETL)
processes that were often time consuming and error prone. The need to clean,
structure, and format data before loading it into a warehouse meant there were
delays between when data was generated and when it became usable for analytics.

While data warehouses were revolutionary for their time and solved many early data
management challenges, these limitations began to hinder their effectiveness in a
world that was producing increasingly large and diverse datasets. As organizations
sought more scalable, flexible solutions, the era of data lakes began, offering a way to
manage growing volumes of varied data more affordably—but with their own set of
trade-offs, as we will explore in the next section.

Moving Forward with Data Lakes

As the limitations of data warehouses became more apparent—particularly around
cost, scalability, and the rigidity of their schema requirements—organizations needed
a more flexible and cost-effective way to handle the increasing diversity and volume
of data. This need gave rise to the data lake, a system designed to store vast amounts
of data in its raw form, whether structured, semistructured, or unstructured. The
introduction of Hadoop in the mid-2000s was a key innovation that made data
lakes practical and accessible for organizations looking to manage growing datasets
without the constraints of traditional data warehouses.

Hadoop, an open source framework, revolutionized data storage and processing by
introducing a distributed storage system and a distributed computing engine. This
allowed organizations to store data across a cluster of inexpensive, commodity hard-
ware, drastically reducing the cost of storing large amounts of data compared to data
warehouses, which relied on high-performance, expensive hardware.

Hadoop’s architecture

At its core, Hadoop is composed of two primary components: the Hadoop Distributed
File System (HDFS) and the MapReduce processing framework.

Hadoop Distributed File System (HDFS)
HDES is a highly scalable file system designed to store data across multiple
machines in a distributed manner. Data is broken into blocks, typically 128MB
or 256MB in size, and stored across the cluster, with redundancy to ensure fault
tolerance. This architecture allowed organizations to scale their storage needs by
adding more inexpensive servers to the cluster, addressing the storage cost issue
that data warehouses struggled with.

6 | Chapter 1: Data Lakehouse and Apache Iceberg

MapReduce
MapReduce is a programming model that enables large-scale data processing
by distributing computational tasks across multiple nodes in the Hadoop clus-
ter. The Map function processes data by breaking it into key-value pairs, and
the Reduce function aggregates those results to produce a final output. This
distributed computing approach allowed Hadoop to process massive datasets in
parallel, making it possible to analyze petabytes of data efficiently.

The evolution of the Hadoop ecosystem saw the introduction of several key technol-
ogies that addressed some of Hadoop’s initial shortcomings and contributed to the
growth of the data lake. Apache Hive was one of the first major developments,
introducing a SQL-like interface for Hadoop. Hive allowed users to query large
datasets stored in HDFS without needing to write complex MapReduce jobs, which
was a significant step forward in making Hadoop more accessible to a broader range
of users, particularly data analysts accustomed to SQL. The Hive Metastore played a
crucial role in managing metadata within Hive, serving as a centralized catalog to
track information about data stored in HDFS, such as table structures, partitions, and
data types. This helped to bring more structure and organization to the otherwise
schemaless world of data lakes, making it easier to manage and query large datasets.

As the need for faster, more flexible data processing grew, Apache Spark emerged
as a key player in the Hadoop ecosystem, offering an in-memory processing engine
that was much faster than MapReduce for many types of analytical workloads. Spark
not only supported batch processing but also enabled real-time stream processing,
machine learning, and iterative computations, all of which were limitations of Map-
Reduce. SparK’s integration with the Hadoop ecosystem allowed it to work seamlessly
with HDFS and Hive Metastore, while providing a more powerful and flexible toolset
for data processing and analytics.

Together, these technologies—Hive, Hive Metastore, and Spark—helped shape the
modern data lake by improving accessibility, metadata management, and processing
performance, making it easier for organizations to harness the power of big data.
However, even with these innovations, the complexity of managing and optimizing
large data lakes remained a challenge.

Challenges with data lakes

While data lakes solved many of the challenges posed by data warehouses, they
introduced their own set of problems. One of the primary issues was that, unlike the
carefully structured environments of data warehouses, data lakes could easily turn
into “data swamps”—vast pools of raw data that were difficult to manage, curate, or
query effectively. This lack of structure led to several challenges:

Modern Data Challenges | 7

Lack of data governance
Because data lakes stored raw data without strict schema enforcement, maintain-
ing data quality, consistency, and governance became difficult. Organizations
struggled to ensure that data in the lake was trustworthy and usable, particularly
as the lake grew in size.

Performance issues
While Hadoops distributed architecture made it cost effective to store large
amounts of data, the performance of analytical queries on these datasets often
lagged behind that of traditional data warehouses. Hadoop’s MapReduce frame-
work, while powerful for batch processing, was not optimized for real-time
analytics, which limited its use in scenarios requiring fast insights.

Complexity of access
Accessing and using data stored in a data lake often required specialized skills in
distributed computing and programming. This meant that business users or data
analysts couldn’t easily interact with the data in a self-service manner. In many
cases, the data stored in lakes remained underutilized due to the complexity
involved in querying and processing it.

While Hadoop and the data lake addressed key limitations of traditional data ware-
houses—namely cost, flexibility, and scalability—these challenges revealed the need
for further innovation. As organizations continued to evolve, they began exploring
cloud-based solutions that offered the best of both worlds: the flexibility and low-cost
storage of data lakes combined with the performance and structure of data ware-
houses. This evolution led to the next phase of data management, which we’ll cover in
the following section.

The Cloud Revolution

As organizations grappled with data managements growing scale and complexity,
the next significant shift came with the move to the cloud. Both data warehouses
and data lakes found new life in the cloud, where they could use scalable, elastic
infrastructure. This shift addressed many limitations of on-premise systems, offering
unprecedented flexibility, reduced operational overhead, and cost efficiency. With
cloud-based solutions, organizations no longer needed to invest in and maintain
expensive hardware. Instead, they could store and process data on demand, paying
only for their used resources.

For data warehouses, cloud providers introduced fully managed services like Amazon
Redshift, Google BigQuery, and Snowflake, which delivered the performance of tra-
ditional data warehouses with the added benefits of cloud elasticity and scalability.
This meant that organizations could scale their computing and storage resources
independently, ensuring they had the power to handle large analytical queries
without overprovisioning their infrastructure. Furthermore, the cloud allowed for

8 | Chapter 1: Data Lakehouse and Apache Iceberg

near-limitless storage, alleviating one of the key cost concerns of on-premise data
warehouses.

Similarly, data lakes in the cloud allow organizations to store vast amounts of struc-
tured, semistructured, and unstructured data at a meager cost. Services like Amazon
S3, Azure Data Lake Storage, and Google Cloud Storage provide highly durable,
scalable storage with pay-per-use pricing models. This shift to the cloud also made it
easier to manage data lakes, as cloud providers handled many operational challenges
that previously burdened on-premise Hadoop clusters. Cloud data lakes offered the
flexibility of storing raw data and the ability to layer various processing frameworks
on top, from Spark to Dremio, further expanding their use cases.

Despite the massive benefits of moving data warehouses and data lakes to the cloud,
several issues persisted. One of the primary challenges was data performance. While
cloud data lakes offered low-cost storage, retrieving and processing large volumes of
data was still slow, particularly for real-time analytics. Additionally, the absence of
a standardized format for organizing and querying data in data lakes led to fragmen-
tation and inefficiencies. As organizations stored data in various formats, querying
across these disparate sources became cumbersome, especially when performance
and optimization were key considerations.

The cloud revolution needed a data format optimized for both storage efficiency and
query performance, something that could work natively within the cloud data lake
and bridge the gap between the raw flexibility of data lakes and the high-performance
querying capabilities of data warehouses.

File-Based Analytics with Apache Parquet

The introduction of Apache Parquet was a turning point for data lakes, transforming
them into much more viable environments for large-scale analytics. Parquet, a colum-
nar storage format, was explicitly designed to address many performance challenges
when querying large datasets in data lakes in less analytics-optimized formats like
CSV and JSON. Its efficient design allowed for faster analytics by minimizing the
amount of data that needed to be read from storage, optimizing query performance
and storage efficiency.

How Apache Parquet works

Parquet stores data in columns rather than rows, unlike traditional row-based storage
formats (such as CSV or JSON). This columnar design means that when a query only
needs to access a few specific fields or columns from a dataset, Parquet can read just
the relevant columns without loading the entire row into memory. This is particularly
advantageous in analytical queries, which often aggregate or filter data across several
columns over large datasets. By reading only what is necessary, Parquet dramatically

Modern Data Challenges | 9

reduces the I/O overhead and the amount of data transferred from disk, leading to
faster query execution and lower storage costs.

Parquet also employs several techniques to improve performance further and reduce
storage costs:

Compression
Parquet natively supports a variety of compression algorithms—like Snappy and
Gzip—allowing it to store data in a much smaller footprint than uncompressed
formats. This reduces storage costs and speeds up queries by reducing the
amount of data that needs to be read from disk.

Encoding
Parquet uses advanced encoding techniques like run-length encoding (RLE) and
dictionary encoding, which further compress the data and improve query perfor-
mance by reducing the amount of data scanned during a query.

Metadata and statistics
Parquet files store metadata and min/max statistics for each column, which allows
query engines to skip over irrelevant portions of the dataset. This optimization,
called predicate pushdown, helps further reduce the I/O required to answer quer-
ies, particularly when filtering large datasets.

These design choices made Parquet a game changer for data lakes, significantly
improving the efficiency of reading, writing, and querying data at scale (Figure 1-2
illustrates the Parquet format). For organizations storing petabytes of data in cloud-
based data lakes, Parquet enabled much faster and more cost-effective analytics,
bridging some of the gap between the performance of data lakes and traditional data
warehouses.

10 | Chapter 1: Data Lakehouse and Apache Iceberg

\.

,
J

Header metadata

\

2 Ya

IA

Row group
Column || Column || Column
data data data

Metadata

)
—

,
J

,
\

Row group

Column
data

Column
data

Column
data

)
——
)
—
—_—
S

Metadata

\

,
IA;I

Row group

Column
data

Column
data

Column
data

—
—
—
—
—_—
—

Metadata

,
A;I

\

Footer metadata

-

Figure 1-2. The design of an Apache Parquet file

Challenges with multi-file datasets

While Apache Parquet brought significant performance gains, it didn’t solve all the
challenges of managing large datasets in a data lake. One of the major issues with

data lakes, even when using Parquet, was the complexity of managing multi-file

datasets. As datasets grew, they were often broken into thousands or even millions

of individual Parquet files. This fragmentation made it difficult to manage and query

datasets efficiently.

Modern Data Challenges

n

For example, when adding new data to a Parquet-based dataset, there was no built-in
mechanism to merge new files with existing ones or to optimize the dataset for
future queries. Additionally, large datasets in data lakes lacked a transactional layer,
which meant that operations like updates, deletions, or concurrent writes could lead
to inconsistencies. Managing multi-file datasets became error prone and complicated
without a way to handle schema evolution, data versioning, and atomic transactions.

These challenges highlighted the need for a higher level of abstraction that could sit
on top of Parquet files, managing datasets as cohesive units rather than collections of
independent files. This abstraction must address issues like file management, schema
enforcement, and query optimization while providing the transactional guarantees
necessary for reliable data operations.

The Data Lakehouse Solution

As organizations began to embrace the benefits of data lakes for storing vast amounts
of raw data, they quickly encountered a significant challenge: data lakes lacked the
transactional guarantees central to traditional data warehouses. Without the ability
to manage data updates, enforce schemas, or reliably handle concurrent writes,
data lakes could not support the same level of data integrity and consistency that
organizations had come to expect from data warehouses. This gap presented a crucial
opportunity for innovation, leading to the concept of the data lakehouse.

The data lakehouse architecture aims to combine the best of both data lakes and data
warehouses by layering transactional capabilities on top of the flexible storage offered
by a data lake. If data lakes could provide the same Atomicity, Consistency, Isolation,
Durability (ACID) guarantees that make data warehouses so reliable for complex
analytics, it would allow organizations to use their data lake for raw storage and fast,
reliable analytics. By creating a transactional layer on top of file formats like Apache
Parquet, data lakehouses enable data to be treated like a table in a data warehouse,
with a structured, schema-driven interface that analysts, engineers, and data scientists
can work with confidently.

The Key Benefits of a Data Lakehouse

Let’s examine some of the most crucial benefits of leveraging data lake storage using a
data lakehouse strategy, making your data lake behave more like a data warehouse.

Unified data storage
One of the primary values of the data lakehouse is its ability to serve as a single
source of truth for all data. Organizations no longer need to maintain separate
systems for raw data (in a data lake) and structured, query-ready data (in a data
warehouse). With a lakehouse, data can be stored once and used for both opera-

12 | Chapter 1: Data Lakehouse and Apache Iceberg

tional and analytical purposes without needing to create costly, time-consuming
copies of the data.

ACID transactions
By introducing a transactional layer, the data lakehouse ensures that data opera-
tions—such as writes, updates, and deletes—are executed in a transactionally safe
manner. This means that even if multiple users or processes are interacting with
the data concurrently, the lakehouse can maintain data consistency and prevent
issues such as partial writes or corrupted datasets, which were common problems
in early data lakes.

Schema enforcement and evolution

Another essential feature of a data lakehouse is the ability to enforce schemas
at the table level. Lakehouses take what is possible via metadata tracking at the
file level with formats like Parquet and applies it over multiple files using table
formats like Apache Iceberg. Unlike traditional data lakes, where data could be
dumped into storage without structure, a data lakehouse ensures that the data
adheres to a defined schema. At the same time, it supports schema evolution,
allowing changes to the data structure (such as adding new columns) without
breaking existing pipelines or queries.

Performance optimization

With the transactional layer, a lakehouse can optimize data storage and retrieval
in ways that traditional data lakes could not. For example, compaction processes
can combine small files into larger ones to improve query performance. At the
same time, data pruning techniques can automatically exclude irrelevant data
during query execution, significantly speeding up analytics. This makes it possi-
ble to perform real-time analytics on data stored in a lakehouse, which was often
a challenge in raw data lakes. Lakehouse tables also maintain a list of data files,
enabling users to pinpoint the specific files needed for a query without expensive
file listing.

Cost efficiency
Since a data lakehouse builds on top of distributed storage like object storage
or HDFS, it retains the cost benefits of data lakes while reducing the need to
maintain separate, expensive data warehouses. This unified approach minimizes
data sprawl and eliminates the need to replicate data across multiple systems. In
essence, the lakehouse provides the performance benefits of a warehouse without
the associated storage costs.

Support for streaming and batch processing
Lakehouses are designed to handle both real-time streaming data and batch
processing seamlessly. This makes them a versatile solution for handling a wide

The Data Lakehouse Solution | 13

range of use cases, from real-time business intelligence dashboards to historical
data analysis.

Open standards and flexibility
By building on open file formats like Parquet and using open source frameworks,
the data lakehouse can avoid the vendor lock-in often associated with proprietary
data warehouse solutions. This open architecture allows organizations to use
a variety of tools and processing engines—such as Spark, Presto, or Dremio—
without being tied to a single platform.

The Path Forward: Data Lakehouse Table Formats

The concept of the data lakehouse rests on the ability to treat data in the lake with
the same structure and reliability as a traditional warehouse. Achieving this requires
more than just file formats like Parquet—it needs table formats that can provide the
necessary abstraction and transactional guarantees on top of the raw data. These table
formats bring the structure and control needed to make data lakehouses practical and
performant at scale.

The Role of Table Formats

As organizations adopted data lakehouse architecture, the need for better manage-
ment, performance, and reliability of large-scale datasets became increasingly clear.
While efficient, simply storing files in a format like Apache Parquet was not enough
to meet the transactional, performance, and schema requirements of modern ana-
lytics workloads. This gap led to the rise of table formats, which add a layer of
abstraction on top of raw files, transforming them into manageable, queryable tables
with transactional guarantees.

The Benefits of Table Formats

Table formats are the key to unlocking the full potential of data lakehouses. They
provide several critical benefits:

ACID transactions
Table formats ensure ACID compliance, meaning that complex data operations
(such as concurrent reads and writes) are handled safely without risking data
corruption or partial updates. This was a major challenge in traditional data
lakes, which lacked these guarantees.

Schema enforcement and evolution
Users can enforce and evolve schemas over time with table formats. This means
that data can be validated against a defined structure before being written,

14 | Chapter 1: Data Lakehouse and Apache Iceberg

ensuring consistency while also allowing changes to the schema (e.g., adding,
dropping, or modifying columns) without the need to rewrite the table.

Data versioning
Table formats allow for time travel or the ability to query historical versions of a
dataset. This makes debugging, auditing, and rolling back data changes within a
single table easier.

Efficient query performance
Table formats optimize query performance by managing metadata, handling file
compaction, and providing advanced partitioning strategies, significantly speed-
ing up analytical workloads.

Partition management
They offer powerful partitioning mechanisms that help query engines skip irrel-
evant data, reduce the data scanned, and improve query performance. Some for-
mats also introduce innovations like partition evolution, which allows partitions
to change over time without restructuring the dataset.

Existing Table Formats

Several table formats have emerged to solve these challenges, each with its own
strengths and features:

Apache Iceberg
Originally developed at Netflix, Iceberg is a powerful table format designed for
handling petabyte-scale data in data lakes with high-performance analytics. It
provides strong ACID guarantees, schema evolution, and unique features such as
partition evolution and hidden partitioning, making it one of the most flexible
and scalable options for building data lakehouses.

Apache Hudi
Hudi, created at Uber, is another open source table format focused on transac-
tional updates and streaming data. It offers ACID guarantees and real-time inges-
tion of data, which makes it useful for streaming use cases. Hudi is particularly
strong in incremental data processing and ensuring up-to-date data for real-time
analytics.

Delta Lake
Delta Lake, developed at Databricks, focuses on improving the reliability and
performance of data lakes by offering ACID transactions and schema enforce-
ment. While initially focused on Spark-based workloads, Delta Lake has grown in
popularity and usage due to its tight integration with the Databricks platform.

The Role of Table Formats | 15

Apache Paimon
Formerly known as Flink Table Store, Paimon is a table format designed to inte-
grate deeply with stream processing frameworks like Apache Flink. It supports
both streaming and batch data, making it a powerful option for real-time and
low-latency workloads.

Apache Iceberg

Apache Iceberg has become a staple for data lakehouse architectures. Its flexibility,
performance, and open governance have led to widespread adoption across the data
ecosystem. Several factors have contributed to Iceberg’s adoption:

Broad ecosystem support
Apache Iceberg was built to be tool-agnostic and boasts a vast ecosystem of
tools and platforms that have built first-class support for Iceberg tables. These
include Dremio, Snowflake, AWS, Google Cloud, Upsolver, and many more.
This broad adoption represents Iceberg’s versatility and reliability across various
environments, making it a go-to solution for data lakehouses.

Databricks acquisition of Tabular
In a significant industry move, Databricks, the creators of Delta Lake, acquired
Tabular, a company founded by Ryan Blue, Daniel Weeks, and Jason Reid, who
created and led the development of Iceberg while at Netflix. This acquisition
highlights the growing importance of Iceberg.

Transparent, community-driven project
Apache Iceberg operates as a community-driven, open source project, unlike
other formats that single vendors tightly control. It has a public mailing list,
regular development meetings, and multiple channels for transparent feedback.
This open governance model encourages collaboration from across the industry,
allowing players from various organizations to contribute to and influence the
project’s direction.

Unique features
Iceberg’s advanced features set it apart from other table formats. Partition evolu-
tion allows partitions to change without having to rewrite entire datasets, solving
a common challenge in large data lakes. Iceberg’s hidden partitioning abstracts
away the complexities of managing partitions, allowing for more flexible and
efficient data organization. These innovations make Iceberg highly adaptable and
easy to use for teams managing large-scale, complex datasets.

With strong transactional guarantees, flexibility in handling complex data layouts,
and a vast ecosystem of support, Apache Iceberg has become a fixture in modern data
lakehouses.

16 | Chapter 1: Data Lakehouse and Apache Iceberg

What Is Apache Iceberg?

Apache Iceberg is a modern, open table format designed to manage large-scale
datasets within data lakes, providing the functionality and performance of traditional
data warehouses. Iceberg introduces powerful capabilities such as ACID transactions,
schema evolution, time travel, and partition evolution, allowing organizations to
efficiently query, manage, and evolve their data over time.

At its core, Apache Iceberg leverages a metadata-driven architecture that enables fast,
reliable data management (see Figure 1-3). This architecture revolves around several
key metadata files that track the state of the dataset, ensuring seamless handling of
operations like queries, updates, and deletions.

Iceberg catalog

s N\ "

[v].metadata.json] v2.metadata.json v3.metadata.json

Manifest list Manifest list
(snapshot 1) (snapshot 2)

Manifest Manifest Manifest
(list of data files) (list of data files) (list of data files)

J U J

A AAAAAAAAMAAAAAA LA AL A4 Al

Data Y Delete Y| Data)Y Delete Y| Data Y Delete Y Data
file file file file file file file

Figure 1-3. The Structure of an Apache Iceberg Table

In the following sections we'll break down the main types of Iceberg metadata files
and explain their roles in the format.

Metadata File (metadata.json)

The metadata file, also known as metadata.json, is the central file that manages the
overall state of the table. Think of it as the brain of the Iceberg table, tying together

What Is Apache Iceberg? | 17

the structure and history of the dataset. Each Iceberg table has one primary metadata
file that tracks critical information, including:

Table schema
The table’s structure, including column names, data types, and any schema
changes that have occurred over time.

Snapshots
The metadata file tracks all the table’s historical versions (snapshots), enabling
time travel so users can query the table as it existed at previous points in time.

Current snapshot
A reference to the latest snapshot, representing the current state of the table.

Partitioning
Details about how the table is partitioned and partition evolution—any changes
to partitioning over time.

Table properties
Configuration details such as file formats used, compression settings, and other
optimization-related settings.

The metadata file is updated with each table modification (such as adding or deleting
data), ensuring that Iceberg maintains an accurate, up-to-date view of the entire
dataset.

Manifest List

The manifest list is a higher-level metadata file that references all the manifest files
associated with a table. It is a table of contents that Iceberg consults when determin-
ing which manifest files to scan for a query or operation. This structure allows
Iceberg to efficiently manage large datasets by scanning only relevant data sections.

Using the manifest list, Iceberg can quickly locate the manifest files containing the
data needed for a particular query. This helps reduce the amount of data read from
storage, leading to faster query performance and lower I/O costs, especially when
dealing with petabyte-scale datasets.

Manifest Files

Each manifest file contains detailed metadata about a group of data files in the
dataset. It records information such as:

File paths
The locations of the actual data files in the storage system (e.g., Object Storage or
HDES)

18 | Chapter 1: Data Lakehouse and Apache Iceberg

Partition values
The partitioning information for each file, which allows Iceberg to perform
partition pruning—filtering out unnecessary partitions to reduce query scope

File statistics
Min/max values for each column, enabling predicate pushdown (filtering rows
before reading them) for more efficient querying

The manifest files are the key to Iceberg’s ability to scale across large datasets, as they
allow the system to manage groups of data files in an organized and optimized way.
By storing metadata about the data files separately, Iceberg also supports partition
evolution—the ability to adjust partitioning schemes over time without rewriting the
entire dataset.

Data Files

The data files are where the actual records in the dataset are stored. These files are
typically in columnar formats like Apache Parquet or ORC, optimized for analytical
queries. Data files contain the raw data that is processed during reads and writes, and
the manifest files reference them.

Iceberg abstracts the complexity of managing these files, allowing users to interact
with their datasets through high-level table interfaces. When new data is added, Ice-
berg writes it into new data files and updates the associated metadata, ensuring that
the latest state of the table is always accessible. Data files are the core storage units
that Iceberg manages through its metadata layers, enabling efficient data operations.

Delete Files

Delete files are a particular type of file in Apache Iceberg that track row-level deletions
within a dataset. Iceberg stores deletion markers in separate delete files rather than
physically removing rows from a data file. These markers reference rows in existing
data files, marking them as “deleted” without needing to rewrite the data file itself.
This approach significantly reduces the cost and complexity of managing large data-
sets, especially when deletions are frequent.

There are two types of delete files in Iceberg:

Position deletes
These files store each deleted row’s path and row position within the data files.

Equality deletes
These files store row-level conditions (e.g., “delete rows where customer_id =
123”) that indicate which rows should be considered deleted.

What Is Apache Iceberg? | 19

Delete files allow Iceberg to maintain fast query performance by applying deletions
dynamically at query time, without needing to rewrite entire data files. This also
supports Iceberg’s ability to perform time travel queries, as previous versions of the
data remain intact and deletions can be applied selectively.

Conclusion

The modern data landscape is characterized by the exponential growth of data vol-
umes, the diversification of data types, and the increasing demand for real-time
analytics. Traditional architectures, such as data lakes and data warehouses, often
struggle to meet these evolving requirements due to scalability limitations or high
operational costs. Adopting a lakehouse architecture—in particular, using Apache
Iceberg—has emerged in response to these challenges.

Apache Iceberg’s architecture brings a new level of control and optimization to
data lakes, transforming them into true data lakehouses that can handle the scale,
complexity, and performance demands of modern analytics. By introducing a series
of metadata files—such as the metadata.json, manifest list, manifest files, and special-
ized delete files—Iceberg provides powerful capabilities such as ACID transactions,
schema evolution, and time travel. This architecture allows data engineers and ana-
lysts to work with massive datasets efficiently without being overwhelmed by the
complexities of managing thousands of underlying data files and to easily revert to
previous states if needed.

However, as organizations scale their data lakehouses, it becomes critical to have a
centralized way of tracking and organizing the growing number of Iceberg tables.
Managing each table’s metadata, snapshots, and schema versions across a distributed
environment requires a robust system that can act as a central catalog for all
tables, providing visibility and governance across the organization’s entire data infra-
structure.

In the next chapter, we will explore how Iceberg catalogs provide this crucial func-
tionality, enabling organizations to manage their Iceberg tables easily. Whether oper-
ating in the cloud or on-premise, catalogs ensure that every table is discoverable,
version-controlled, and accessible, while also supporting integrations with a wide
range of query engines and data tools. With a catalog in place, Iceberg truly becomes
the backbone of a modern, scalable, and efficient data lakehouse architecture.

20 | Chapter 1: Data Lakehouse and Apache Iceberg

CHAPTER 2
The Role of Apache Iceberg Catalogs

As we've seen in the previous chapter, Apache Iceberg brings powerful table man-
agement capabilities to data lakehouses, enabling reliable, scalable data operations
with features like ACID transactions, schema evolution, and time travel. But to fully
unlock the potential of Iceberg tables, we need a way to manage and organize them
across the vast and diverse ecosystem of lakehouse tools. This is where Apache
Iceberg catalogs come in, providing the final piece of the lakehouse puzzle.

Iceberg catalogs act as a centralized layer that tracks, organizes, and governs the
growing number of tables in a lakehouse environment. They make tables discoverable
by different tools and frameworks, ensuring that data engineers, analysts, and other
users can easily access the latest state of any table, regardless of where the data resides.
Without catalogs, managing large-scale datasets across different query engines and
environments would become chaotic and error prone, resulting in a lack of a unified
view of table metadata, versions, and schema changes.

More than just a tracking system, Iceberg catalogs provide a governance layer that
enforces access controls and auditability across your lakehouse. Iceberg catalogs
can ensure that the right users have the appropriate access to the correct data, all
while providing the transparency needed for regulatory compliance and operational
security. In this chapter, we will explore how Iceberg catalogs enable these capabilities
and examine the different types of catalogs available, along with the challenges that
come with diverse catalog options. Finally, we will delve into the Apache Iceberg
REST Catalog specification, which provides a flexible, scalable approach to managing
Iceberg tables across any environment.

21

What Is and Isn’t an Apache Iceberg Catalog

The term catalog has long been used in data architecture, but it can refer to many
different things depending on the context. Before the rise of technologies like Apache
Iceberg, the word “catalog” primarily referred to enterprise metadata catalogs. Tools
such as Collibra, Alation, and others served as platforms for data consumers—busi-
ness users, data analysts, and data scientists—to discover datasets across an organiza-
tion. These catalogs were designed to document data, providing descriptions, lineage,
and access policies to ensure that users could locate the data they needed, understand
its context, and request access from data stewards or owners. In this sense, enterprise
metadata catalogs act as gateways for human discoverability and management of data.

In contrast, Apache Iceberg catalogs, which we'll refer to as lakehouse catalogs, serve
a different but equally important purpose. Instead of being a tool for end users to
find datasets, lakehouse catalogs act as a backbone for the tools that those users rely
on. They provide machine-driven discoverability of data, enabling various engines, like
Spark, Dremio, Snowflake, or Flink, to know which datasets exist in your lakehouse.
Without a lakehouse catalog, these tools would only see files in storage—a raw,
unstructured data view. By leveraging a lakehouse catalog, tools can treat the data as
tables, allowing for easy access, querying, and management as though the data were
housed in a traditional data warehouse. Figure 2-1 summarizes the differences.

User looking to Engines looking

understand available for table metadata
data for queries and writes

Metadata catalog Lakehouse catalog

Documentation, Mapping of locations

lineage, data of metadata files for
marketplace lakehouse tables

Figure 2-1. The difference between enterprise data catalogs and lakehouse catalogs

The Mechanics of Apache Iceberg Catalogs

The need for a lakehouse catalog stems from how Apache Iceberg manages data. Each
Iceberg table generates a new metadata.json file every time the table is updated. This
file contains essential information about the table’s schema, partitions, snapshots, and
more, making it the central source of truth for the current state of the table. However,
without a catalog to manage these files, there would be no mechanism for tools to
determine which version of the metadata.json is the correct one to use. Every query
engine, processing tool, or user would potentially see different versions of the table,
leading to inconsistencies.

22 | Chapter2: The Role of Apache Iceberg Catalogs

This is where the lakehouse catalog comes into play. The catalog serves as the source
of truth, providing a consistent way for tools to discover and access the correct
metadata.json file for any given table, as illustrated in Figure 2-2. By having all tables
and views registered in the lakehouse catalog, all tools querying the table are working
with the current and correct version of the data. This prevents issues like tools
accessing outdated metadata files or reading stale data.

s3://catalog/TableA/metadata

vl.metadata.json

v2.metadata.json

Cata_llc_) fb?gzy i v3.metadata.json

\. J

Figure 2-2. The catalog as the source of truth for the table metadata

Moreover, the catalog plays the central role in enabling safe concurrent transactions.
When a write operation begins, the tool checks the current state of the table, as
recorded in the catalog. After the operation is complete, the catalog verifies that no
conflicting changes have occurred in the meantime before committing the new data.
If another write operation has modified the table during this time, the transaction
will fail and likely be retried, ensuring data consistency and preventing conflicts.

By acting as a global registry for Iceberg tables, lakehouse catalogs ensure that all
users and tools in the data ecosystem have access to the same, up-to-date view of each
table, paving the way for consistent and reliable operations.

In the next section, we will explore the various types of Apache Iceberg catalogs
available and their implementation across different environments, ranging from
cloud-native solutions to on-premise systems.

Types of Apache Iceberg Catalogs

When Apache Iceberg was initially developed, it offered several methods for manag-
ing and tracking datasets through various types of catalogs. These Iceberg catalogs
can be broadly categorized into two main types: file-system catalogs and service cata-
logs. Each type has its strengths and weaknesses, particularly in terms of scalability,
consistency, and ease of integration with various environments. In this section, we'll
explore both types of catalogs and discuss how they operate under the hood, as well
as the challenges they may encounter in production environments.

Types of Apache Iceberg Catalogs | 23

File-System Catalogs

File-system catalogs manage Iceberg tables by storing metadata references directly
in the underlying file system. The file-system catalog, also known as the Hadoop
catalog, maintains metadata for each Iceberg table within a directory structure on a
distributed file system, such as HDFS, Amazon S3, or Google Cloud Storage.

How the Hadoop Catalog works

In the Hadoop catalog, each Iceberg table has its directory, and the metadata for the
table (such as the metadata.json file and the table’s snapshots) is stored within that
directory. The catalog relies on the file system’s structure to organize and reference
tables. When a query engine or other tool needs to interact with an Iceberg table, it
consults the directory to find the metadata.json file, which contains the latest schema
and partitioning information.

One of the key components in the Hadoop catalog is the VERSION-HINT.TEXT file.
This file serves as a pointer to the most recent version of the metadata.json file. Each
time a table is updated, a new metadata file is created, and the VERSION-HINT.TEXT
file is updated to reflect the latest version. When a tool queries a table, it reads
the VERSION-HINT.TEXT file to know which version of the metadata to use, as
illustrated in Figure 2-3.

s3://catalog/TableA/metadata

vl.metadata.json

\.

v2.metadata.json

I: v3.metadata.json

‘ Engine ’ VERSION-HINTTEXT

Figure 2-3. How the Hadoop (File-System) catalog works

The challenges with file-system catalogs

While the Hadoop catalog works well for smaller-scale or test environments, it
introduces some significant challenges when used in production settings. One of the
key issues is consistency. Not all file systems provide the same guarantees when it
comes to updating and reading files, and in particular, the update of the VERSION-
HINT.TEXT file may not always be atomic. For instance, in some cloud storage
systems, there may be a delay between when a file is updated and when that change
is visible to other clients (eventual consistency). This can lead to situations where the

24 | Chapter2: The Role of Apache Iceberg Catalogs

query engine reads the old version of the VERSION-HINT.TEXT file, causing it to
reference an outdated metadata file and leading to inconsistencies in the data that is
accessed.

Additionally, file-system catalogs often lack the built-in locking mechanisms neces-
sary for managing concurrent writes and reads. As a result, production environments
that require high levels of consistency, reliability, and scalability may find that file-
system catalogs are not robust enough to meet their needs.

Service Catalogs

To address the challenges faced by file-system catalogs, service catalogs exist. Unlike
file-system catalogs, service catalogs rely on an external service—typically a database
or specialized catalog service—to store metadata and manage transactions. These
services can leverage locking mechanisms and other features to ensure data consis-
tency and handle concurrent operations safely, making them much more reliable for
large-scale production environments. Figure 2-4 shows how service catalogs work.

) [Catalog
Engine service f)
L s3://catalog/TableA/metadata

vl.metadata.json

Backing
database

v2.metadata.json

Catalog entry for

TableA v3.metadata.json

\. J

Figure 2-4. How service catalogs deliver the location of metadata to engines

Hive catalog

The Hive catalog is one of the earliest service catalogs for Apache Iceberg. Built on
top of the Apache Hive Metastore, this catalog stores Iceberg metadata in a relational
database (such as MySQL or PostgreSQL) through Hive’s table management system.
The Hive catalog integrates well with query engines that already rely on Hive for
metadata management, such as Apache Spark and Apache Flink.

Hive provides a more consistent and transactionally safe environment compared
to file-system catalogs. Its relational database backend allows it to lock tables dur-
ing updates, ensuring that changes are correctly handled and reducing the risk of
inconsistencies. However, Hive’s metastore was not initially designed for the scale of
modern data lakes, and this can become a limiting factor as the number of tables and
datasets grows. Hive can also be challenging to deploy and manage.

Types of Apache Iceberg Catalogs | 25

JDBC catalog

The JDBC catalog works similarly to the Hive catalog, but instead of relying on
Hive, it uses a direct connection to a relational database via the JDBC interface.
This provides organizations with more flexibility in selecting their database system to
serve as the Iceberg catalog. For example, organizations can use MySQL, PostgreSQL,
or even cloud-based managed databases to store metadata for Iceberg tables.

The JDBC catalog provides the same benefits as the Hive catalog in terms of consis-
tency and transactional safety. By leveraging the locking capabilities of relational
databases, it ensures that concurrent writes and reads are handled properly, avoiding
issues like partial updates or stale data being read by query engines. It’s an ideal
choice for organizations that prefer a lightweight, relational database-driven approach
to catalog management.

Nessie catalog

The Nessie catalog is a service catalog designed for catalog-level version control and
multi-branch data management. It operates similarly to Git, allowing data engineers
to create branches, tags, and commits for their Iceberg tables. This makes Nessie
particularly useful in environments where collaboration and versioning are critical,
such as data science and data engineering teams that need to work on multiple
versions of a dataset simultaneously.

Nessie stores its metadata in a versioned key-value store, which can be backed by
a variety of storage systems, including relational databases or cloud-native solutions
like DynamoDB. The Nessie catalog provides ACID transactions and concurrent
write safety, while also allowing teams to roll back to previous versions of their tables
or branch off to experiment with new transformations without affecting the main
production dataset.

AWS Glue catalog

The AWS Glue catalog is a fully managed service for tracking metadata for data stored
in Amazon S3. Originally designed to manage metadata for a variety of AWS analyt-
ics services (like Athena, Redshift Spectrum, and EMR), Glue now supports Apache
Iceberg tables as well. The Glue catalog integrates tightly with the AWS ecosystem,
making it an ideal choice for organizations that run their data infrastructure on AWS.

Glue provides serverless metadata management, meaning that AWS handles the scal-
ing, availability, and operational aspects of the catalog. It supports schema versioning,
concurrent operations, and partition discovery—all of which are critical for manag-
ing large datasets in production environments. As a managed service, AWS Glue is
particularly appealing for organizations that don’t want to manage the operational
complexity of running their own catalog service.

26 | Chapter2: The Role of Apache Iceberg Catalogs

Challenges of Diverse Catalog Options

As Apache Iceberg adoption grew, so did the number of catalog implementations
designed to manage Iceberg tables. While having multiple catalog options—ranging
from file-system-based solutions to service-driven catalogs like Hive, JDBC, Nessie,
and AWS Glue—provided flexibility, it also introduced a new set of challenges. Each
catalog had its own way of managing metadata and transactions, and integrating
these catalogs with different data processing engines became increasingly complex
and error prone.

One of the most significant challenges was that each catalog required a dedicated
client class to be implemented in every language that used the Iceberg API. Whether
you were working in Java, Python, Rust, or Go, you needed a specialized client that
could interact with the chosen catalog, as illustrated in Figure 2-5.

Java

—

Python

—/

Hive
catalog

Rust

—
=¥}
<
=%}

|
i

Python

—
—/

Glue
catalog

Rust

Java

|
i

_ v]
Nessie [Python

ot
—

Figure 2-5. The challenges of maintaining all the client libraries for a single catalog

Challenges of Diverse Catalog Options | 27

This requirement created significant overhead for catalog maintainers and develop-
ers, as each catalog had to ensure compatibility across multiple programming lan-
guages and environments. The lack of standardization across these implementations
also meant that bugs, inconsistencies, or mismatches between catalog versions and
client libraries could easily arise.

Client-Side Complexity

Much of the catalog logic was handled on the client side, meaning that the responsi-
bility for correctly managing metadata, interacting with table snapshots, and ensuring
consistent reads and writes were placed on the application or processing engine using
the catalog. This client-side approach led to issues with version mismatches. For
example, if an organization upgraded their catalog server but failed to update the
corresponding catalog client library in their data processing tools, inconsistencies or
errors could occur when querying or updating tables.

In addition, each catalog had its own specific way of handling metadata and interact-
ing with storage, leading to further compatibility concerns. It became essential to
ensure that the correct version of the catalog client was being used for the version
of the catalog server that was running. If a client was out of sync with the catalog, it
could lead to unexpected behaviors or outright failures during data operations.

Configuration Challenges

Another significant challenge was the configuration required when working with
Iceberg catalogs. Different processing engines (like Spark, Flink, or Dremio) needed
to be configured with the correct catalog credentials plus the object storage configu-
ration and the storage credentials to access both the metadata and the data stored in
the underlying storage system. This meant that every tool or engine interacting with
an Iceberg table needed to be configured with multiple layers of credentials, leading
to a tedious and error-prone setup process. As the number of tools and catalogs used
in an organization grew, this became increasingly difficult to manage.

For organizations using managed services, the situation was even more complicated.
Managed platforms would have to build, test, and support each catalog individually.
This led to confusion about which catalogs were supported on which platforms,
and differences in catalog implementations between services meant that transitioning
from one managed platform to another could require significant reconfiguration or
even a complete overhaul of how the catalog was managed.

28 | Chapter2: The Role of Apache Iceberg Catalogs

Authorization Challenges

Governing access privileges to data, as well as metadata, is critical for many organi-
zations. While some Iceberg catalog implementations provided some access control
to the tables, views and namespaces, access to the actual data had to be separately
managed via the object storage configuration and storage credentials, forcing users to
manage two different authorization systems for the same thing, the tables” data.

The Need for a Unified Approach

These challenges—the proliferation of client libraries, the complexity of client-side
logic, version mismatches, tedious configuration, access privilege concerns, and frag-
mented managed service support—highlighted the need for a different server-client
paradigm. Organizations required a standardized way of interacting with Iceberg
catalogs that would simplify integration, ensure compatibility across different envi-
ronments, and reduce the operational burden of managing metadata and governing
data access.

The Apache Iceberg REST Catalog Specification

The Apache Iceberg REST Catalog Specification was created to address the growing
complexities and challenges associated with managing Apache Iceberg catalogs. This
specification is designed to simplify the interaction between Iceberg tables and the
diverse range of catalogs by establishing a uniform client interface that would work
seamlessly across multiple programming languages. At the core of this effort is an
OpenAPI Spec, which provides a blueprint for building a RESTful catalog service. By
adhering to this specification, any catalog can implement the necessary endpoints,
ensuring compatibility with Iceberg while solving many of the issues faced by earlier
catalog implementations, as illustrated in Figure 2-6.

This approach moves the complexity and specialties of each catalog from all the
different client libraries to the service. Access privileges to metadata and data are
governed by the catalog service, allowing integration with organization IdPs running,
for example, Keycloak, Authelia or Okta and leveraging IAM policies for table level
data access control.

The Apache Iceberg REST Catalog Specification | 29

— ()
Java client library
Polaris
catalog
S
= o
— | 8 [Python client library]
—
(4]
o
b=
]
Nessie 2
catalog 20
=
(4]
o
—
— [Rust client library
— o=
Gravitino
catalog
Go client library

Figure 2-6. The simplification enabled by the REST catalog specification

Key Benefits of the REST Catalog Specification

By providing a uniform way to talk to catalogs for read/write operations on Apache
Iceberg tables, the REST catalog interface provides the following key benefits:

Server-side logic handling

One of the most significant improvements the REST catalog specification brings
is that it shifts much of the catalog-specific logic from the client to the server.
Instead of the client managing intricate details such as metadata, snapshots, and
transactions, these operations are now handled directly by the catalog service
itself. This move reduces the versioning issues that previously arose when catalog
clients and servers were out of sync. Since the catalog service takes responsibility
for most operations, the client-side implementation becomes much lighter and
simpler.

Unified client across catalogs
The REST catalog specification standardizes how clients interact with catalogs.
Once a catalog supports the REST specification, it can be accessed using the same
REST catalog client. Data processing engines, query tools, or any service inter-

30 | Chapter2: The Role of Apache Iceberg Catalogs

acting with the catalog no longer need custom, catalog-specific clients. Instead,
they can use a single, standardized client, making it much easier to connect to
multiple catalogs without needing to adapt to different APIs or implementations.

Cross-language simplicity

By introducing a common interface, the REST catalog specification eliminates
the need for separate client classes for each catalog in different programming
languages. Now, a single REST client can be implemented for each language
(Java, Python, Rust, Go, etc.), and that client will work with any catalog that
implements the REST specification. This significantly reduces the complexity
of maintaining cross-language compatibility and ensures that future updates or
improvements can be rolled out consistently across all supported environments.

Simplified support for managed services

For managed services, the REST catalog specification offers substantial benefits.
Previously, managed platforms needed to build and test support for each individ-
ual catalog, leading to confusion and fragmented catalog support across different
services. With the REST catalog, managed services only need to implement the
REST catalog client. Once this client is in place, the platform can automatically
support any catalog that complies with the REST specification. This opens the
door to a much wider range of catalogs being available for users on managed
platforms, all while reducing the operational overhead for service providers.

The Evolution of REST Catalog Implementations

When the REST catalog specification was first introduced, the only option available
was a commercial catalog service from Tabular. Founded by the original creators of
Apache Iceberg, Tabular was the first to implement the REST specification, offering
enterprises a fully managed Iceberg catalog with all the benefits of the specification.
This provided early adopters with a robust solution. Still, it remained a commercial
offering that closed off its availability after Tabular was purchased by Databricks,
which closed registration and sunsetted the product after the acquisition.

As the value of the REST catalog specification became clear, the open source commu-
nity began to implement the specification, leading to the creation of several open
source catalog services that supported REST-based interactions, catalogs that can
be self-managed into perpetuity without the need to worry about corporate actions
leading to a need to migrate. Today, several open source catalogs have adopted the
REST specification, including:

Nessie
The original open source catalog was explicitly made for modern post-Hive lake-
houses, which was initially created at Dremio. Nessie provides a Git-like catalog
that allows for catalog-level data versioning, branching, and tagging, enabling
these kinds of semantics across multiple tables.

The Apache Iceberg REST Catalog Specification | 31

Apache Gravitino
Gravitino is an open source project working to provide a robust REST-based
catalog service that meets the needs of modern data lakehouses. Gravitino aims
to be a metadata catalog not just for tables, but also a schema and ML model
registry that can be geo-distributed, initially created and donated to the Apache
Software Foundation by Datastrato.

Apache Polaris
Polaris is an Iceberg REST catalog implementation designed to become the
center of your lakehouse, providing robust role-based access controls (RBAC),
integration with organizations” IdPs, and the ability to connect external catalogs,
thereby unifying the catalog ecosystem. Polaris, with contributors from Dremio,
Snowflake, AWS, Google, Microsoft, Confluent, LanceDB, and many more, was
initially created and donated to the Apache Software Foundation by Snowflake.

These open source implementations of the REST catalog specification have made
it easier for organizations to adopt Iceberg and leverage its advanced features in a
standardized way. The REST catalog specification ensures a consistent, scalable, and
manageable approach to organizing and interacting with Iceberg tables in modern
data lakehouses.

Apache Polaris

With the rise of the data lakehouse, many of the significant challenges in data
management—such as maintaining data consistency across fragmented teams and
tools—have been addressed, especially with the introduction of open source catalogs
like Nessie, Gravitino, and others. These catalogs, each with unique features such as
Nessie’s versioning and Gravitino’s geo-distributed availability, have provided flexibil-
ity and engine interoperability. However, a few key issues remained that the current
ecosystem of catalogs hadn’t quite solved.

One major limitation was that while different catalogs had their own strengths,
organizations often found themselves forced to center their entire lakehouse architec-
ture around a single catalog. Choosing one catalog meant forgoing the benefits of
others. For instance, if a team wanted to use Nessie’s versioning capabilities, theyd
be locked into Nessie’s catalog, unable to leverage Gravitino’s geo-distribution. This
created a siloed effect, where the choice of catalog dictated the entire structure of the
lakehouse, thus reducing flexibility.

Another critical challenge was governance. In many cases, access controls and secu-
rity were implemented at the engine level, meaning each tool interacting with Apache
Iceberg tables had to implement its own access rules. This approach led to inconsis-
tency and operational overhead, as teams had to manage multiple layers of access

32 | Chapter2: The Role of Apache Iceberg Catalogs

control across different tools, and these access rules weren’t portable from one tool to
another.

The Birth of Apache Polaris

Recognizing these limitations, Snowflake announced the development of a new cat-
alog called Polaris. With collaboration from major players such as Dremio, AWS,
Google, and Microsoft, Polaris quickly gained momentum. The project was accepted
into the Apache Software Foundation Incubator, officially becoming a community-
driven project guided by developers from various companies and organizations. The
creation of Polaris was a major step forward in addressing the remaining challenges
of data lakehouse catalogs, pushing the boundaries of what catalogs could do in a
multi-tool, multi-cloud environment.

Polaris: A New Era of Lakehouse Catalogs

Polaris introduced several innovative features that helped position it at the center of
the Iceberg catalog ecosystem. Figure 2-7 illustrates how some of these features fit in.

e \

Polaris catalog

Internal catalogs External catalogs

[Marketing][Finance][Product] [Nessie][Gravitino]

[Role-based access controls]

REST catalog interface

3
e)

Figure 2-7. Unifying the Iceberg lakehouse catalog ecosystem with Apache Polaris

Multi-catalog support

One of the most innovative features of Polaris is its ability to create and manage
multiple catalogs within a single system. Each catalog in Polaris can have its
own set of catalog roles, allowing fine-grained control over access to tables,
namespaces, and views. This means that organizations no longer have to choose a
single catalog to manage their entire lakehouse. Instead, Polaris allows for flexible
cataloging, where different catalogs can serve different purposes, each with its
own security and governance structure.

Apache Polaris | 33

External connectivity

Perhaps the most powerful feature of Polaris is its ability to connect to external
catalogs that support the Apache Iceberg REST Specification. This allows Polaris
to serve as a central point of discoverability for all Iceberg tables, even if they
are managed by other catalogs like Nessie or Gravitino. By integrating external
catalogs, Polaris enables users to leverage the unique features of other catalog
implementations while still viewing and managing all their tables from a single,
unified interface.

RBAC (role-based access control)

Polaris also provides robust role-based access control (RBAC), ensuring that
data access is handled at the catalog level. Users, referred to as principals, can
be assigned roles, which consist of collections of catalog-specific permissions.
These roles determine the level of access each user has across the various catalogs
within Polaris, ensuring consistent, centralized security across the entire data
environment. With RBAC built into Polaris, access control no longer depends
on individual tools or engines but is instead portable and consistent across the
lakehouse.

Conclusion

With features like multi-catalog support, external connectivity, and RBAC, Polaris
has quickly become a central player in the Iceberg catalog ecosystem. Its ability to
unify and simplify the management of Iceberg tables while providing flexibility in
choosing which catalog features to leverage makes it a powerful tool for organizations
building modern data lakehouses. Backed by the largest names in the cloud and data
space, Polaris is poised to redefine how catalogs operate in distributed, multi-cloud
environments.

As we explore the capabilities of Polaris in greater detail throughout this book, you'll
gain a deeper understanding of how this powerful catalog can help solve some of the
most complex data management challenges in the lakehouse paradigm.

34

| Chapter 2: The Role of Apache Iceberg Catalogs

PART II
Apache Polaris

With the foundational concepts of data lakehouses, Apache Iceberg, and catalogs
established, it's time to explore the next frontier in catalog innovation: Apache
Polaris. As a new-generation catalog in the Apache ecosystem, Polaris addresses
key challenges in the lakehouse architecture, offering groundbreaking solutions for
governance, security, and multi-catalog integration.

In this section, well look closer at Polaris’s unique features and role in advancing
the lakehouse paradigm. Chapter 3 begins with an in-depth exploration of Polaris’s
security model, a cornerstone of its architecture. Here, you’ll learn how Polaris
implements catalog-level access controls through roles, principals, and permissions,
ensuring robust and scalable governance for even the most complex data ecosystems.
You'll also gain insights into best practices for managing access and security in
Polaris-powered lakehouses, enabling you to maintain compliance while empowering
data consumers.

Chapter 4 focuses on one of Polaris’s most innovative capabilities: external catalog
integration. Polaris is designed to connect with other catalogs, allowing you to unify
datasets across systems while still leveraging the unique features of each catalog. We'll
explore integrations with prominent catalogs like Nessie, Gravitino, Lakekeeper, and
Unity, highlighting how Polaris simplifies data discoverability and governance across
diverse environments.

By the end of this section, you'll have a comprehensive understanding of Polaris’s
role in solving critical challenges in lakehouse management and enabling seamless
integration across the data ecosystem.

CHAPTER 3
The Apache Polaris Security Model

This chapter explores the security model of Apache Polaris, focusing on how it
enables fine-grained access control, ensures compliance, and facilitates seamless col-
laboration across teams. Through a combination of principals, principal roles and
catalog roles, Polaris empowers organizations to enforce access control policies that
are both flexible and scalable. You'll also discover best practices for implementing
Polaris’s security model, ensuring that your lakehouse remains secure across different
tooling.

What Is Polaris?

Apache Polaris is a catalog designed to address the challenges of managing and gov-
erning data in modern lakehouse environments. As data becomes more distributed
across systems, tools, and platforms, Polaris provides a unified cataloging solution
that simplifies data discoverability, enhances governance, and ensures security across
the entire data ecosystem.

At its core, Polaris is built around a multi-catalog architecture, allowing organiza-
tions to create and manage multiple catalogs under a single system. Each catalog
operates independently, with its own catalog roles, permissions, and namespaces,
providing unparalleled flexibility for managing diverse datasets. This architecture is
particularly valuable in complex environments where different teams, regions, or use
cases require distinct data governance policies.

Polaris’s security model is one of its defining features, centralizing access controls to
ensure that governance policies are applied consistently across all connected tools
and engines. By implementing role-based access control (RBAC) at the catalog level,
Polaris allows administrators to define precise permissions for users and groups,

37

ensuring that sensitive data remains protected while enabling authorized users to
access the datasets they need.

Another feature of Polaris is its external catalog integration. Organizations can con-
nect Polaris to other catalogs supporting the Apache Iceberg REST specification,
enabling centralized management and governance while leveraging the unique capa-
bilities of external catalogs like Nessie and Gravitino.

As we move through this chapter, we'll explore how Polaris catalogs, principals,
principal roles, and catalog roles interact to create a secure and governable environ-
ment for your lakehouse and provide practical guidance on deploying these features
effectively. These elements make Polaris a powerful tool for balancing security, collab-
oration, and accessibility in modern data systems.

Catalogs

At the heart of the Apache Polaris security model lies the concept of catalogs. A
catalog in Polaris serves as a logical grouping of tables, namespaces, and views and is
the foundation upon which access control and governance policies are built. Unlike
traditional data catalog systems that are often tied to a single data engine or service,
Polaris introduces a multi-catalog architecture that allows organizations to create
and manage multiple catalogs within the same system, as seen in Figure 3-1. This
architecture provides unparalleled flexibility in managing diverse data needs while
maintaining centralized governance.

Sales Orders Ingest AWS
(internal catalog) (internal catalog) (external Nessie catalog) || (external Glue catalog)

Apache Polaris

(Governance, catalog federation)

Engine
(Spark, Dremio, Snowflake)

Figure 3-1. Apache Polaris’s multi-catalog architecture

Each catalog in Polaris is an independent entity with its metadata, roles, and access
policies. This independence enables the design of catalogs tailored to specific use
cases, teams, business units, or geographic regions. For example, an organization

38 | Chapter3: The Apache Polaris Security Model

might create separate catalogs for marketing, sales, and compliance-critical data, each
with its access controls tailored to the needs and sensitivities of the data it contains.

Polaris catalogs are more than just containers for tables—they are governance units
that enforce RBAC at the catalog level. This ensures that only authorized users can
access or modify the data within a given catalog/namespace/table/view, making it eas-
ier to meet compliance requirements and maintain data security across the lakehouse.

Key Features of Polaris Catalogs

Apache Polaris provides various features to make it easier to organize, manage, and
govern your data lakehouse datasets:

Namespace management
Within a catalog, Polaris organizes tables and views into namespaces, which act
as subdirectories for structuring data (think of it as a folder on your laptop’s
filesystem). This hierarchical organization makes it easy to manage large datasets,
enforce granular access controls, and align the data structure with business
domains.

Catalog roles
Each catalog has its own set of catalog roles, which define the permissions for
accessing and managing the tables, namespaces, and views within a catalog. Roles
can be as granular or broad as needed, allowing administrators to fine-tune
access for different user groups.

Isolation and independence
Catalogs in Polaris are isolated from one another, meaning that changes or
permissions applied in one catalog do not affect other catalogs. This isolation
provides a level of security and control that is essential for managing diverse
datasets in multi-tenant or multi-use environments.

Multi-catalog integration
Polaris allows for the creation of multiple catalogs under a single system. This
multi-catalog approach simplifies the management of large-scale, distributed data
environments by providing a unified governance framework while allowing each
catalog to serve its specific purpose.

Integration with external catalogs
Polaris catalogs are not limited to internal datasets. With support for the Apache
Iceberg REST specification, Polaris can integrate with external catalogs such as
Nessie or Gravitino, making it a central hub for managing all your Iceberg tables
across various platforms.

Catalogs | 39

Benefits of Multi-Catalog Architecture

The multi-catalog design of Polaris offers several benefits for modern data
lakehouses:

Flexibility
Organizations can design catalogs to align with their unique business, opera-
tional, or regulatory requirements.

Scalability
As datasets grow in complexity, multiple catalogs allow for better organization
and performance by isolating metadata and access controls.

Security
Isolated catalogs reduce the risk of accidental or unauthorized access to sensitive
data by limiting the scope of permissions to specific catalogs.

Collaboration
Teams working on different projects or datasets can operate independently
within their catalogs, while administrators maintain centralized oversight and
governance.

Polaris catalogs are the cornerstone of its governance model, providing a robust,
scalable framework for organizing and securing data in the lakehouse.

Principals

In Apache Polaris, principals are unique identities representing users or services
interacting with the system. These principals are the foundational entities assigned
to access permissions, enabling secure and governed access to Polaris catalogs, name-
spaces, tables, and views. Whether a data engineer is running jobs through Apache
Spark, a data analyst is serving a dashboard from Dremio, or a data scientist is
training models using Polaris-managed data, each user or service is mapped to a
distinct principal.

What Are Principals?

A principal in Polaris can represent either a user or a service:

User
An individual accessing Polaris directly or through an application.

Service
An automated process or tool that requires access to Polaris for operations like
querying, transforming, or cataloging data.

40 | Chapter3:The Apache Polaris Security Model

Each principal operates within Polaris’s security and governance framework, which
ensures that every interaction adheres to the organization’s access policies.

Managing Principals

Principals in Polaris are assigned specific principal roles to determine their access
rights within the system. These principal roles serve as groups of catalog roles, ena-
bling administrators to manage access efficiently without having to handle individual
privileges for each principal. This role-based approach simplifies security manage-
ment and aligns with industry standards for governance, for example:

o A data_engineer principal role might grant permissions to create, update, and
query tables in different catalogs.

o A data_scientist principal role might allow querying and reading data only from
specific catalogs to different catalogs.

Principal Lifecycle

Principals represent those who will access your data lakehouse datasets, and each
principal goes through a three-stage lifecycle:

Creation
Principals are created to represent users or services requiring access to Polaris.

Assignment
Each principal is assigned one or more principal roles, granting them specific
access permissions.

Revocation
When a user leaves the organization or a service is decommissioned, their princi-
pal and associated roles can be revoked, ensuring security and compliance.

This lifecycle helps you think through things that you will want to verify when doing
regular audits of your access roles:
o Are all the principals I need created?

o Are they assigned the roles they require?

« Did retired or updated principals have their access revoked?

Catalog Roles

Catalog roles in Apache Polaris are another building block of its RBAC model,
enabling fine-grained control over who can access or manage data within a catalog.
These roles define a set of permissions that determine what actions a principal role

CatalogRoles | 41

assigned the catalog role can perform on the resources—such as tables, namespaces,
and views—contained within a specific catalog. By assigning catalog roles to principal
roles (which are then assigned to principals/users), administrators can ensure that
access is secure and aligned with organizational policies. An illustration of Apache
Polaris’s RBAC framework is in Figure 3-2.

Principals
Principal , L
roles Shipping partner

Catalog

Sales reader
roles

Log reader Log writer

[Sales writer] [Cust reader] [Cust writer]

Catalogs

Figure 3-2. Overview of Apache Polaris’s RBAC architecture

A catalog role is a collection of permissions that grant specific operations within a
catalog. Permissions can range from basic read access to more advanced privileges,
such as creating new tables, modifying schemas, or managing namespaces. Catalog
roles are highly flexible, allowing administrators to tailor access policies to the unique
needs of their organization, business units, or teams, for example:

o A data analyst role might include permissions for querying tables and reading
metadata but restrict the ability to modify schemas or delete data.

o A data engineer role might include permissions for creating and managing tables,
updating schemas, and organizing namespaces.

o A catalog admin role might have full control over all catalog resources, including
assigning roles and managing access policies.

These roles would then be assigned to principal roles that would inherit these privi-
leges, and then those principal roles would be assigned to individual principals.

42 | Chapter3: The Apache Polaris Security Model

Defining Permissions in Catalog Roles

Catalog roles in Apache Polaris are constructed using a comprehensive set of permis-
sions that define specific actions a user or service can perform within a catalog. These
permissions allow for fine-grained control over tables, views, namespaces, and the
catalog itself. Next, we delve into the key types of permissions and their associated
privileges.

Table Privileges

Table permissions manage interactions with the data tables within a catalog. These
privileges include:

TABLE_CREATE
Allows registering a new table within the catalog

TABLE_DROP
Permits deleting a table from the catalog

TABLE_LIST
Enables listing all tables in the catalog

TABLE_READ_PROPERTIES
Grants access to read the properties and metadata of a table, such as schema
details and partition information

TABLE_WRITE_PROPERTIES
Allows modifying the properties of a table, including updating configurations.

TABLE_READ_DATA
Provides read-only access to the table data by issuing short-lived read-only
storage credentials.

TABLE_WRITE_DATA
Grants permission to write data to a table by issuing short-lived read+write
storage credentials

TABLE_FULL_METADATA
Includes all table-related privileges except TABLE_READ_DATA and
TABLE_WRITE_DATA, which must be granted individually.

These privileges ensure precise control over how data tables are created, modified,
accessed, or removed within a catalog.

CatalogRoles | 43

View Privileges

Views allow users to create and manage virtual representations of data. The privileges
associated with views include:

VIEW_CREATE
Allows registering a new view within the catalog

VIEW_DROP
Enables dropping an existing view from the catalog

VIEW_LIST
Grants the ability to list all views in the catalog

VIEW_READ_PROPERTIES
Provides access to read the properties and metadata of a view

VIEW_WRITE_PROPERTIES
Allows updating the properties and configurations of a view

VIEW_FULL_METADATA
Grants all privileges related to views, including creation, deletion, and property
management

These permissions enable users to create and manage virtual datasets effectively while
maintaining governance controls.

Namespace Privileges

Namespaces serve as logical groupings of tables and views, often corresponding to
schemas or databases in other systems (the hierarchy being catalog - namespaces -
tables/views). Namespace privileges include:

NAMESPACE_CREATE
Grants the ability to create new namespaces within a catalog

NAMESPACE_DROP
Permits deleting namespaces from a catalog

NAMESPACE_LIST
Enables listing objects (e.g., tables, views) within a namespace, including nested
namespaces

NAMESPACE_READ_PROPERTIES
Provides access to read properties and metadata associated with namespaces

44 | Chapter3: The Apache Polaris Security Model

NAMESPACE_WRITE_PROPERTIES
Allows configuring properties for namespaces, such as defining organizational
structures

NAMESPACE_FULL_METADATA
Grants all privileges for managing namespaces, including creation, deletion, and
property updates

These privileges allow for structured organization and management of datasets,
ensuring a clear hierarchy within catalogs.

Catalog Privileges

Catalog-level privileges control overarching actions and governance across the cata-
log. These include:

CATALOG_MANAGE_ACCESS
Allows granting or revoking permissions on objects within a catalog and assign-
ing catalog roles to principal roles

CATALOG_MANAGE_CONTENT
Provides full control over catalog content, including managing metadata, tables,
namespaces, and views. This privilege encompasses:

o CATALOG_MANAGE_METADATA

o TABLE_FULL_METADATA

o NAMESPACE_FULL_METADATA

o VIEW_FULL_METADATA

o TABLE_WRITE_DATA

« TABLE_READ_DATA

o CATALOG_READ_PROPERTIES

o CATALOG_WRITE_PROPERTIES
CATALOG_MANAGE_METADATA

Grants full control over metadata and roles within the catalog, including tables,
namespaces, and views

CATALOG_READ_PROPERTIES
Enables listing catalogs and reading catalog properties

CATALOG_WRITE_PROPERTIES
Allows modifying catalog-wide settings and configurations

CatalogRoles | 45

These privileges ensure secure and centralized management of the catalog and
its associated resources, enabling administrators to enforce governance policies
effectively.

By defining permissions at multiple levels—tables, views, namespaces, and catalogs—
Apache Polaris offers a highly flexible, granular security model. This structure enables
organizations to govern their data lakehouses with precision, ensuring that users
and services have the exact level of access required to perform their roles while
safeguarding sensitive resources.

Assigning Catalog Roles to Principals

In Polaris, catalog roles are assigned to principal roles, which grant privileges to
individual users or groups. This assignment process ensures that each principal’s
access to the resources within a catalog is governed by the permissions defined in
their assigned roles. A single principal can have multiple principal roles with multiple
catalog roles, allowing for complex and nuanced access policies.

For example, a compliance officer and a user working as a data engineer might
be assigned roles that grant them write access to tables for engineering tasks and
read-only access to compliance-critical datasets.

Benefits of catalog roles in Polaris

Catalog roles provide several benefits in the Polaris architecture such as:

Granular control
By defining roles at the catalog level, Polaris allows for particular access policies
tailored to an organization’s needs.

Centralized governance
Roles ensure consistent access controls across all resources within a catalog,
reducing the risk of misconfiguration or accidental data exposure.

Relationship between principal roles and catalog roles
Principal roles and catalog roles are tightly integrated in Polaris's RBAC model:
Catalog roles

Define the permissions for a specific catalog (e.g., Catalog Reader, Catalog
Contributor)

Principal roles
Aggregate catalog roles, assigning them to principals based on their responsibili-
ties

This relationship enables fine-grained control over access to Polaris resources.

46 | Chapter3:The Apache Polaris Security Model

Best Practices for Catalog Roles

Here are some principles to apply to maximize the manageability and security pro-
vided by your catalog roles:

Proper planning
Collect the requirements and needs before creating the first role. Play around
with multiple ideas, consider how things may evolve, and plan for the future.

Least privilege principle
Assign roles that grant the minimum access required for a user’s responsibilities.
Avoid overly broad permissions to reduce security risks.

Role-naming conventions
Use clear, consistent naming conventions for roles to simplify administration and
reduce confusion.

Regular reviews
Regularly review roles and their assigned permissions to ensure they align with
current business needs and compliance requirements.

Testing and validation
Test roles in a nonproduction environment to validate that permissions are
applied correctly and do not inadvertently grant excess privileges.

Catalog roles are central to the governance framework of Apache Polaris, providing
the structure and flexibility needed to secure data lakehouses at scale.

Principal Roles

While principals define who interacts with Polaris, principal roles define what they
can do. Principal roles act as a grouping of catalog roles, abstracting away the com-
plexities of managing permissions for individual users or services for each catalog.
This abstraction allows administrators to enforce access policies consistently across
multiple principals.

What Are Principal Roles?

A principal role in Polaris is a collection of permissions granted through catalog
roles. By assigning a principal role to a principal, Polaris ensures that the user or
service inherits the permissions associated with that role across the specified catalogs,
namespaces, tables, or views, for example:

o The data engineer role might be granted catalog roles like Catalog Contributor,
which includes permissions to write data, create namespaces, and update tables.

Principal Roles | 47

o The data scientist role might be granted a Catalog Reader role, allowing read-
only access to data.

Benefits of Principal Roles

Principal roles allow you to group the different access roles across catalogs for
multiple principles and provide these benefits:

Logical grouping
Principal roles enable administrators to group permissions based on job func-
tions, making assigning access rights to new users or services easier.

Scalability
A single principal role can be assigned to multiple principals, reducing the
administrative overhead of managing access for large teams or services.

Consistency
Roles ensure consistent access policies across the organization, minimizing the
risk of accidental overpermission.

Best Practices for Principal Roles

Best practices to apply when designing your principal roles for best results include:

Proper planning
Collect the requirements and needs before creating the first role. Play around
with multiple ideas, consider how things may evolve, and plan for the future.

Define clear roles
Create principal roles that align with organizational roles and responsibilities
(e.g., data_engineer, data_scientist, compliance_oftficer).

Least privilege principle
Follow the principle of least privilege, granting only the access necessary for a
principal to perform their job.

Review regularly
Periodically audit principal roles to ensure they align with current business needs
and compliance requirements.

Use naming conventions
Adopt clear, consistent naming conventions for roles to reduce confusion and
improve maintainability.

Polaris provides a scalable, secure framework for managing access in complex lake-
house environments by integrating principals and principal roles. These entities work
seamlessly with catalog roles to ensure every user and service interacts with data

48 | Chapter3: The Apache Polaris Security Model

according to defined governance policies. In the next section, we'll explore best prac-
tices for combining these elements to optimize security and operational efficiency in
Polaris.

Polaris Security Best Practices

Apache Polaris provides a flexible security model tailored to fit various organizational
use cases. The key to effective governance and access control lies in structuring cata-
logs, catalog roles, and principal roles to align with your organization’s operational
and security needs. This section will explore everyday use cases and recommend best
practices for setting up catalogs and principal roles for each scenario.

When implementing these different use cases, follow these best practices:

Align roles with business functions
Define catalog and principal roles that closely mirror your organizational struc-
ture and workflows. This simplifies administration and ensures that access poli-
cies align with business needs.

Apply the principle of least privilege
Assign roles that grant only the permissions required for a principal’s responsibil-
ities. Avoid overly broad privileges to minimize security risks.

Use hierarchical namespace structures
Organize datasets into namespaces to group related data and simplify access
control within catalogs.

Assign privileges via roles on namespaces
Prefer assigning catalog roles to namespaces, leveraging inheritance instead of
individual tables and views. This drastically reduces the number of role assign-
ments and thus the overall complexity of your security model.

Regularly audit roles and permissions
Review roles and assignments regularly to ensure they remain aligned with
organizational needs and compliance requirements.

Leverage multi-catalog architecture
Use Polaris’s multi-catalog capabilities to segment data based on sensitivity, use
case, or organizational unit, to simplify management and improve security.

Now let’s explore some of these Polaris use cases.

Polaris Security Best Practices | 49

Multi-Tenant Environments

In multi-tenant environments, where multiple teams or business units share the same
data lakehouse infrastructure, isolating data access while maintaining centralized
governance is critical.

Setup recommendations for multi-tenant environments include:

Catalogs
Create separate catalogs for each team or business unit (e.g., marketing, finance,
engineering). Each catalog serves as an isolated workspace for the respective
team’s data.

Catalog roles
Define catalog roles specific to each team, such as:

o Marketing_Admin: Full access to manage tables and views within the market-
ing catalog.

o Marketing_Analyst: Read-only access to marketing datasets.

Principal roles
Assign principal roles to users or services based on their team and job function,
for example:

o Marketing_Data_Engineer: Map to Marketing_Admin.
o Marketing_Analyst: Map to Marketing_Analyst.

This structure ensures that teams have access only to their data while enabling
centralized management of roles and permissions. You can also leverage the “realms”
feature in Polaris that allows you to create isolated environments with their catalogs
and principles. This feature will be discussed in a later chapter.

Cross-Team Collaboration

When multiple teams need to collaborate on shared datasets, you can configure
shared access to specific catalogs or namespaces while limiting access to other
resources.

Setup recommendations for cross-team collaboration include:

Catalogs
Create a shared catalog for collaborative datasets (e.g., cross_team_data) while
maintaining separate catalogs for each team’s private data.

Catalog roles
Define roles for shared access, for example:

50 | Chapter3: The Apache Polaris Security Model

o Shared_Contributor: Grants read and write access to collaborative datasets.

o Shared_viewer: Grants read-only access.

Principal roles
Assign shared access roles to specific users or teams:

« A data engineer from one team might have both Shared_Contributor and a
team-specific admin role.

o Analysts from multiple teams might have Shared_Viewer roles.

This approach promotes collaboration while maintaining clear boundaries around
private data.

Compliance and Sensitive Data Governance

Organizations handling sensitive data—such as personally identifiable information
(PII) or financial records—need governance to comply with regulations like GDPR or
HIPAA.

Setup recommendations for handling sensitive data include:

Catalogs
Create separate catalogs for sensitive and nonsensitive data (e.g., sensitive_data,
public_data).

Catalog roles
Sensitive_Data_Admin grants full access to manage sensitive data, limited to
trusted personnel

Sensitive_Data_Viewer grants restricted read-only access for auditors or com-
pliance teams

Principal roles
Assign compliance teams Sensitive_Data_Viewer roles.

Ensure sensitive data roles are assigned only to trusted users with proper creden-
tials and monitoring.

By segregating sensitive data and using role-based access controls, you can meet
compliance requirements while minimizing the risk of unauthorized access.

Cloud-Native Deployments

In cloud-native deployments, where data is distributed across multiple storage pro-
viders, access control must account for resource distribution and external catalog
integration.

Polaris Security Best Practices | 51

Setup recommendations for cloud-native deployments include:

Catalogs
Create catalogs for each cloud provider or storage type (e.g., AWS_S3,
Azure_Blob).

Catalog roles
Cloud_Storage_Admin grants full access to manage resources in a specific storage
catalog.

Cloud_Storage_Viewer grants read-only access for monitoring or cost analysis.

Principal roles
Assign roles to cloud operations teams based on their provider focus, e.g.,
AWS_Admin, Azure_Viewer.

External catalog integration
Use Polaris’s ability to integrate external catalogs to centralize visibility while
delegating catalog-specific permissions to the external systems.

This setup provides clear boundaries and governance while leveraging Polaris as a
unifying interface across multi-cloud deployments.

Organizations can create a secure, scalable, and collaborative environment with
Apache Polaris while maintaining robust governance and flexibility by tailoring cata-
log and principal role configurations to specific use cases.

Conclusion

Apache Polaris’s robust security model provides a scalable, flexible framework for
managing access control in modern data lakehouses. By leveraging catalog roles,
principal roles, and RBAC, Polaris enables governance across catalogs, namespaces,
tables, and views. This architecture allows organizations to meet diverse use cases,
from multi-tenant environments to compliance-driven data governance, while sim-
plifying role management and ensuring consistent enforcement of access policies.

However, the true power of Polaris extends beyond its internal capabilities. Organ-
izations often rely on multiple catalog implementations in todays complex data
ecosystems, each with unique features and benefits. Polaris addresses this challenge
by acting as a unifying layer that integrates with external catalogs through the Apache
Iceberg REST Specification. This capability enables centralized discoverability of all
Iceberg tables, regardless of their underlying catalog, making Polaris a pivotal tool
for unifying the catalog ecosystem. In the next chapter, we'll explore how Polaris
connects with external catalogs like Nessie, Gravitino, and others to bring cohesion
to distributed data environments and maximize the flexibility of your lakehouse
architecture.

52 | Chapter3: The Apache Polaris Security Model

CHAPTER 4
External Catalogs

Organizations sometimes manage multiple Iceberg catalogs, each tailored to specific
workloads, teams, regulatory requirements, or operational needs. While this diverse
array of catalogs allows organizations to optimize their data strategies, it also introdu-
ces challenges in unifying access and ensuring seamless integration. Apache Polaris
addresses this problem by enabling connections to external Iceberg catalogs by
integrating those using the Apache Iceberg REST Catalog Specification. This innova-
tive feature enables Polaris to serve as a central access point for all Iceberg tables,
regardless of the underlying catalog, thereby simplifying multi-catalog use cases and
enhancing operational flexibility.

With Polaris, users can query and manage Iceberg tables from external catalogs as if
they were part of Polaris. By connecting their Polaris catalog to their favorite engines,
end users gain unified access to datasets across multiple catalogs without managing
separate credentials or interfaces (Figure 4-1). This capability makes it significantly
easier to leverage the best features of different catalogs while maintaining a cohesive
and user-friendly experience.

53

Sales internal Nessie AWS Glue
catalog external catalog external catalog

| [|
v

Apache Polaris

User

Figure 4-1. Access to Polaris can be access to all catalogs on the lakehouse

Organizations across industries often find themselves managing multiple Iceberg
catalogs, sometimes due to regional compliance, sometimes because of tooling pref-
erences, and often simply as a result of organic growth. Polaris simplifies this com-
plexity by enabling cross-catalog access through a unified interface. Here are several
common scenarios where external catalog integration with Polaris proves especially
valuable for data engineers and architects:

Gradual migration
If you've been using other catalogs and are transitioning to Polaris, you can
maintain access to all your Iceberg tables during the migration process. This
ensures minimal disruption to users and workflows while centralizing manage-
ment under Polaris over time.

Partner data integration
For organizations accessing data from external partners, connecting an external
catalog enables seamless use of partner datasets alongside internal data. This uni-
fied access, playing hand-in-hand with a good role/privilege model, streamlines
collaboration and enhances data-driven decision-making.

Workload optimization
Some catalogs offer specialized features for specific workloads. For example, Nes-
sie’s versioning capabilities are ideal for isolating data changes during ingestion.
Polaris allows you to use these features without sacrificing a centralized user
experience.

Regulatory compliance
In scenarios where regulatory requirements mandate separate catalog deploy-
ments in different regions, Polaris’s external catalog connections ensure users

54 | Chapter4: External Catalogs

can work with all data while maintaining proper security boundaries without
juggling multiple catalog credentials or interfaces.

In this chapter, we'll explore several key external catalogs that implement the Apache
Iceberg REST Catalog Specification. We'll highlight their unique features and capabil-
ities, providing insight into how they can be integrated into a multi-catalog strategy
with Polaris as the unifying layer. By leveraging Polaris’s external catalog connections,
organizations can achieve a balance of flexibility, scalability, and centralized gover-
nance, making it easier than ever to manage diverse and distributed data ecosystems.

Nessie

Nessie is often described as “Git-for-data” as it brings the familiar concepts of ver-
sion control to the world of data. By implementing branches, tags, and commits to
changes at the catalog level, Nessie enables organizations to isolate changes, track
history, and manage data lifecycles with a level of granularity previously only seen in
source code repositories.

What Makes Nessie Unique?

Nessie introduces a “data-as-code” approach to data lake management, solving several
challenges inherent to traditional data lake operations:

Branching and merging
Nessie allows users to create branches for specific workloads, such as staging,
development, or analytics experiments. These branches isolate changes from the
main data branch until they are ready to be merged. For example:

o A data engineer can perform transformations on a staging branch without
affecting production data.

o Analytics jobs can create temporary branches to aggregate data and merge
only the finalized results.

Commit history and tags
Nessie tracks every change through commits, which can be tagged for easier
reference. This provides a complete audit trail of modifications, enabling repro-
ducibility and regulatory compliance.

Multi-table transactions
Nessie supports transactional updates across multiple tables, allowing related
changes to be committed simultaneously. This capability is invaluable for com-
plex data workflows.

Nessie | 55

Why Use Nessie with Polaris?

Integrating Nessie with Apache Polaris allows organizations to unify their data lake-
house ecosystems while leveraging Nessie’s unique versioning capabilities. Here’s why
you might want to use Nessie alongside Polaris:

Seamless migration
The external catalog integration feature ensures you can continue accessing
Nessie-managed tables through Polaris if you're migrating from Nessie to Polaris.
This reduces disruption and provides a central access point for all your data
during the transition.

Data change isolation
Nessie’s branching and versioning capabilities make it worthwhile for data inges-
tion work while using Polaris to enable end-user access for use cases where data
changes need to be isolated, such as:

« Data ingestion: Use branches to safely test and validate data ingestion pro-
cesses before merging changes into production.

o Analytics workloads: Run experiments on data branches without affecting
live datasets.

Example: Nessie and Polaris in Action

Consider a scenario where an organization ingests daily sales data into a data lake.
With Nessie, a data engineer creates a branch specifically for the ingestion job,
allowing raw data to be processed and validated without affecting production data..
Once the job is complete, the branch is merged into the main branch, ensuring a
consistent and accurate update to production datasets.

At the same time, Polaris’s external catalog integration enables analysts to query the
sales data using their preferred tools without needing to understand the complexities
of branching and merging. This unified approach improves productivity, minimizes
errors, and retains consistency across all tables and views.

Nessies features, such as branching, versioning, and multi-table transactions, make it
a unique tool for managing data lakes. With Polaris, you can unify data that leverage
Nessies features with all your other data for your data consumers.

Gravitino

Apache Gravitino is a federated metadata management system designed to manage
metadata in a geo-distributed, multi-regional environment. By providing a Single
Source of Truth (SSOT) for metadata across diverse sources and regions, Gravitino
offers unified metadata access for both data and Al assets.

56 | Chapter4: External Catalogs

What Makes Gravitino Unique?

Gravitino is built to manage metadata across various systems, regions, and data types.
Here are some of its features:

Geo-distributed metadata management
Gravitino’s architecture supports deployments across multiple regions or clouds,
enabling seamless metadata synchronization and access. Users gain a global view
of metadata across disparate environments, which is useful for organizations
operating in multiple geographic locations with distinct regulatory or operational
requirements.

Unified metadata models
Gravitino abstracts metadata from various sources—such as relational databases
(Hive, MySQL, PostgreSQL) and file systems (HDFS, S3)—into a unified meta-
data model. This abstraction allows users and tools to interact with metadata
consistently, regardless of its origin.

Direct metadata management
Unlike traditional systems that collect metadata through periodic synchroniza-
tion, Gravitino interacts with underlying systems directly. Changes made in
Gravitino are immediately reflected in the source systems, and vice versa, ensur-
ing up-to-date metadata without manual intervention.

Centralized security
Gravitino centralizes metadata governance, including access control, discovery,
and auditing. This centralized security model simplifies compliance and ensures
consistent governance across regions and sources.

Why Use Gravitino with Polaris?

Integrating Gravitino with Apache Polaris creates a powerful combination for man-
aging metadata across distributed environments. Gravitino’s geo-distributed architec-
ture ensures that metadata stays synchronized and accessible across regions, which is
essential for global organizations dealing with regulatory boundaries or operational
silos. By connecting Gravitino as an external catalog in Polaris, data teams gain a
centralized interface for discovering and managing metadata regardless of where it
originates, reducing friction and improving visibility across the entire ecosystem.

Example: Distributed Metadata Governance

Consider an enterprise with operations in North America, Europe, and Asia. Each
region has its own data governance requirements, necessitating separate deployments
of metadata systems. By deploying Gravitino in each region and connecting these
deployments to Polaris, the organization can achieve:

Gravitino | 57

o Localized metadata control to meet regulatory requirements.
o A unified global view of all metadata for simplified discovery and auditing.

o Centralized access for end users through Polaris, eliminating the need to manage
multiple credentials or interfaces.

Apache Gravitino is a solution for geo-distributed metadata management, providing
unified access and governance across regions, sources, and data types. Gravitinos
capabilities are enhanced when integrated with Polaris, offering organizations a cen-
tralized, flexible, and secure metadata ecosystem.

Lakekeeper

Written in Rust, Lakekeeper is a solution for managing Iceberg metadata, offering
features such as fine-grained access control, soft deletion of tables, and built-in
support for authentication protocols. Its focus on secure and fast metadata manage-
ment makes it an option for organizations operating in distributed and multi-tenant
environments.

What Makes Lakekeeper Unique?

Lakekeeper’s architecture and feature set address many challenges organizations face
when managing metadata in large-scale data lakehouses. Key features include:

Rust-based design
As a Rust-based implementation, Lakekeeper provides a single, lightweight
binary that eliminates the need for external runtimes and the performance over-
head of code interpretation.

Multi-tenancy and role-based access control
A single Lakekeeper instance can serve multiple projects, each with distinct con-
figurations and access controls. Projects can contain multiple warehouses, name-
spaces, and roles, efficiently supporting complex multi-tenant setups. Polaris can
achieve this natively through multiple internal catalogs.

Soft deletion
Lakekeeper supports soft deletion for tables and views, allowing accidental dele-
tions to be reversed within a configurable time frame. This feature enhances
operational safety in production environments.

Why Use Lakekeeper with Polaris?

While Lakekeeper is a robust standalone solution, integrating it with Apache Polaris
unlocks even greater potential by centralizing access and governance for Iceberg
tables. Here’s why you might want to use Lakekeeper alongside Polaris:

58 | Chapter4: External Catalogs

Real-time metadata visibility
Lakekeeper’s built-in change events and approval workflows allow organizations
to monitor and manage metadata updates in real time.
These capabilities complement Polaris’s role as a central catalog, enabling real-
time updates to be reflected across the broader ecosystem. There is currently a
proposal to bring this functionality to Apache Iceberg more broadly in the future.

Disaster recovery and table management
Lakekeeper’s soft deletion feature adds a safety net for metadata operations,
ensuring recoverability in case of accidental changes.

Example: Multi-Tenant Metadata Governance

Imagine an organization with multiple data teams working on isolated projects, each
with its metadata and storage requirements. Using Lakekeeper, the organization can:

o Create separate projects for each team, each containing dedicated warehouses
and namespaces.

» Manage permissions using Lakekeeper’s fine-grained access control and roles.
By integrating Lakekeeper with Polaris, the organization gains:

o A unified view of all metadata across projects.

o Centralized access for querying and governance, ensuring consistency across
tools and teams.

o The ability to monitor changes and enforce data contracts through Lakekeeper’s
change event system.

When integrated with Polaris, Lakekeeper’s capabilities are amplified, offering organ-
izations centralized governance, real-time metadata updates, and enhanced security
for multi-tenant and distributed deployments.

AWS Glue

The AWS Glue Catalog, a central metadata repository in the AWS ecosystem, has
recently added support for the Apache Iceberg REST Catalog interface. This enhance-
ment allows the Glue Catalog to function as an Iceberg-compatible catalog, enabling
connecting and managing your Iceberg tables directly from Apache Polaris. For
teams deeply embedded in the AWS ecosystem, this integration bridges the gap
between AWS-native tools and a unified, cross-environment Iceberg catalog.

AWSGlue | 59

Why Use the AWS Glue Catalog?

AWS Glue Catalog has long been a cornerstone for data management in the AWS
ecosystem, offering seamless integration with services such as Amazon S3, Athena,
Redshift Spectrum, and AWS Glue ETL. With its Iceberg REST Catalog support,
Glue now extends its capabilities to include transactional metadata for Iceberg tables,
enabling ACID compliance, schema evolution, and time travel.

Key benefits of using the Glue Catalog include:

Deep AWS integration
Glue is tightly integrated with AWS services, making it easy to manage and
analyze metadata alongside your AWS workloads. Tools like Athena and Redshift
Spectrum can natively query Iceberg tables managed in the Glue Catalog.

Managed infrastructure
As a fully managed service, Glue reduces the operational overhead associated
with maintaining metadata systems. Glue automates tasks like schema inference,
metadata updates, and data crawling, simplifying Iceberg table management.

Security and compliance
Glue leverages AWS Identity and Access Management (IAM) for robust, fine-
grained access control. AWS-native encryption and compliance features ensure
that sensitive metadata is protected.

Serverless flexibility
Glue’s serverless model allows you to scale metadata management dynamically
without worrying about infrastructure limits.

Why Use Glue with Polaris?

While the AWS Glue Catalog excels in AWS-centric environments, its utility can be
enhanced by integrating it with Polaris. This combination enables organizations to
unify metadata access across AWS and non-AWS environments, ensuring consistent
governance and discoverability. Here’s why you might leverage both:

Centralized metadata across environments
AWS-heavy teams can continue to use Glue for their Iceberg metadata while
using Polaris as a central interface for managing and accessing these tables across
other tools and platforms.

Cross-team collaboration
Polaris allows teams outside the AWS ecosystem to access Glue-managed Iceberg
tables without additional configuration or AWS-specific knowledge. This facili-
tates cross-team workflows, enabling seamless collaboration between teams using
AWS and those in other environments.

60 | Chapter4: External Catalogs

Hybrid and multi-cloud strategies
In hybrid or multi-cloud architectures, Glue’s metadata can be unified with other
catalogs through Polaris, enabling organizations to work with all their Iceberg
tables in one place without duplicating metadata or creating silos.

Leverage AWS tools without lock-in
Teams can continue to use Glue for AWS-native tools like Athena and Redshift
Spectrum while ensuring metadata remains accessible and governable across the
broader data ecosystem through Polaris.

Example: Hybrid Team Collaboration

Consider an enterprise where one team works primarily in AWS, using S3 for storage
and Glue for metadata management, while another team operates on a non-AWS
environment. By integrating Glue with Polaris:

o The AWS team can continue leveraging Glue’s deep integration with AWS serv-
ices for their workflows.

+ The non-AWS team can query and manage the same Iceberg tables via Polaris,
using their preferred tools and environments.

» Governance policies defined in Polaris ensure consistent security and access
control across both teams.

Adding Apache Iceberg REST Catalog support to the AWS Glue Catalog marks a
significant milestone for Iceberg adoption in the AWS ecosystem. Organizations
can unify their metadata management by connecting Glue to Polaris, enabling
seamless collaboration across AWS and non-AWS environments. This integration
ensures teams can benefit from Glue’s tight AWS integrations while maintaining cen-
tralized governance, discoverability, and flexibility across their entire data landscape.
Whether youre running workloads entirely on AWS or adopting a hybrid approach,
Glue and Polaris together create a powerful solution for managing Iceberg metadata
in modern data lakehouses.

Conclusion

The rise of interoperable catalogs using the Iceberg REST Catalog interface—like Nes-
sie, Gravitino, Lakekeeper, and AWS Glue—highlights the growing need for flexible
and unified metadata management in modern data lakehouses. By integrating these
catalogs with Apache Polaris, organizations can consolidate their metadata ecosystem
into a single, centralized interface while leveraging the unique strengths of each
catalog. Whether it's Nessie’s version control, Gravitinos geo-distributed architecture,
Lakekeeper’s security-focused design, or Glue’s deep integration with AWS, Polaris
provides the tools to unify these diverse capabilities seamlessly.

Conclusion | 61

This ability to manage and access data across multiple catalogs isn't just a win for
organizational governance; it directly impacts how data engineers, architects, and
analysts work every day. Instead of wrangling credentials for separate environments,
writing brittle integrations, or waiting on metadata sync jobs to complete, teams
can use Polaris as a single point of discovery and access across all Iceberg tables,
regardless of where they live. For example, an engineer building ingestion pipelines
in AWS can continue using Glue to manage metadata, while Polaris exposes those
same tables to downstream users in other environments, without duplicating logic
or compromising access control. This streamlines collaboration across teams, reduces
redundant engineering work, and makes debugging and auditing far more manage-
able. In a landscape where data platforms are increasingly hybrid and distributed,
Polaris doesn't just unify metadata—it unblocks workflows, accelerates delivery, and
gives practitioners confidence that they’re building on consistent, governed ground.

In the next chapter, we'll dive into Polaris’s Catalog Management REST API, which
is the foundation for configuring and managing catalogs, roles, principals, and name-
spaces in a Polaris deployment. Understanding these APIs will empower you to
design and implement robust metadata strategies that scale with your organization’s
needs. Let’s explore leveraging Polariss API to efficiently set up and manage your
lakehouse environment.

62 | Chapter4: External Catalogs

CHAPTER 5
Polaris REST API

In this chapter, we will delve into the REST API provided by Apache Polaris for man-
aging catalogs, roles, namespaces, tables, and views. The Polaris REST API enables
seamless and programmatic interaction with the catalog layer of your data lakehouse,
making it easier to orchestrate complex operations across distributed environments.

Whether adding a new catalog, defining access control through roles and principals,
or performing granular namespace and table operations, the Polaris REST API pro-
vides the flexibility to handle these tasks efficiently. By leveraging this API, teams can
automate catalog management tasks, ensuring scalability, consistency, and improved
governance within their data platform.

We will break down each endpoint, exploring its purpose and showcasing its usage
with cURL and Python’s requests library. By the end of this chapter, you will have
a solid understanding of how to programmatically manage your Polaris deployment
and integrate it into your workflows.

The following sections examine the Polaris Management REST API endpoints specif-
ically, grouped by functionality (this differs from the Apache Icicle REST catalog spec
and endpoints). There is also a Python CLI built into the Polaris Repo that can be
used to execute most of the tasks without having to write custom scripts or use an
HTTP client like cURL, Postman, or Insomnia.

You can always find the latest version of this REST Spec here:
https://github.com/apache/polaris/blob/main/spec/polaris-management-service.yml

All endpoints in sections 5.1-5.3 are prefixed with /api/management/v1. For exam-
ple, the /catalogs endpoint becomes /api/management/v1/catalogs.

63

https://github.com/apache/polaris/blob/main/spec/polaris-management-service.yml

Catalog Operations

The Polaris REST API provides endpoints for performing Create, Read, Update,
and Delete (CRUD) operations on catalogs. These operations form the foundation
of catalog management, enabling you to define, query, update, and remove catalogs
programmatically.

List Catalogs
Retrieve a list of all catalogs in the Polaris deployment.
Endpoint:
GET /catalogs
Sample cURL request:

curl -X GET https://polaris.example.com/api/management/vi/catalogs \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json"

Sample Python request:

import requests
url = "https://polaris.example.com/api/management/v1/catalogs"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"
}
response = requests.get(url, headers=headers)
print(response.json())

Sample response:

{
"catalogs": [
{
"type": "INTERNAL",
"name": "example_catalog",
"properties": {
"default-base-location": "s3://bucket/path"
3
"createTimestamp": 1622547800000,
"lastUpdateTimestamp": 1622547900000,
"entityVersion": 1,
"storageConfigInfo": {
"storageType": "S3",
"allowedLocations": "For AWS [s3://bucketname/prefix/],
for AZURE [abfss://container@storageaccount.blob.core.windows.net
/prefix/],
for GCP [gs://bucketname/prefix/]"
}
}

64 | Chapter5:Polaris REST API

]
}

Create a Catalog

Add a new catalog to the Polaris deployment. Catalogs can be internal or external.

Endpoint:
POST /catalogs
Sample cURL request:

curl -X POST https://polaris.example.com/api/management/vl/catalogs \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \

-d '

"catalog": {
"type": "INTERNAL",
"name": "example_catalog",
"properties": {

"default-base-location": "s3://bucket/path"

}

}

} |l

Sample Python request:

import requests
url = "https://polaris.example.com/api/management/v1l/catalogs"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"catalog": {
"type": "INTERNAL",
"name": "example_catalog",
"properties": {
"default-base-location": "s3://bucket/path"
}
}
}

response = requests.post(url, headers=headers, json=payload)
print(response.status_code, response.json())

Sample response:

{
"catalog": {
"type": "INTERNAL",
"name": "example_catalog",
"properties": {

Catalog Operations

65

"default-base-location": "s3://bucket/path"
1,
"createTimestamp": 1533547800000,
"lastUpdateTimestamp": 1627647800000,
"entityVersion": 1
}
}

Get Catalog Details
Retrieve detailed information about a specific catalog by name.
Endpoint:
GET /catalogs/{catalogName}
Sample cURL request:

curl -X GET https://polaris.example.com/api/management/vi
/catalogs/example_catalog \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json"

Sample Python request:

import requests
url = "https://polaris.example.com/api/management/v1/catalogs/example_catalog"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>",
"Content-Type": "application/json"
}
response = requests.get(url, headers=headers)
print(response.json())

Sample response:

{

"type": "INTERNAL",

"name": "example_catalog",

"properties": {
"default-base-location": "s3://bucket/path",
"property1": "valuel",
"property2": "value2"

1.

"createTimestamp": 143547800000,

"lastUpdateTimestamp": 1538547900000,

"entityVersion": 1

}

Update a Catalog

Update the details of an existing catalog. The request must include the current
entityVersion of the catalog.

66 | Chapter5:Polaris REST API

Endpoint:
PUT /catalogs/{catalogName}
Sample cURL request:

curl -X PUT https://polaris.example.com/api/management/vi1
/catalogs/example_catalog \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json" \

-d '{
"currentEntityversion": 1,
"properties": {
"default-base-location": "s3://new_bucket/path"
}
} 1l

Sample Python request:

import requests

url = "https://polaris.example.com/api/management/vl/catalogs/example_catalog"

headers = {
"Authorization": "Bearer <ACCESS_TOKEN>",
"Content-Type": "application/json"

}
payload = {
"currentEntityVersion": 1,
"properties": {
"default-base-location": "s3://new_bucket/path"
}
}

response = requests.put(url, headers=headers, json=payload)
print(response.status_code, response.json())

Sample response:

{

"type": "INTERNAL",

"name": "example_catalog",

"properties": {
"default-base-location": "s3://new_bucket/path",
"propertyl": "valuel",
"property2": "value2"

}s

"createTimestamp": 1622547800000,

"lastUpdateTimestamp": 1622548000000,

"entityVersion": 2

}

Delete a Catalog

Remove an existing catalog. The catalog must be empty before deletion.

Catalog Operations

67

Endpoint:
DELETE /catalogs/{catalogName}
Sample cURL request:

curl -X DELETE https://polaris.example.com/api/management/vil/catalogs
/example_catalog \

-H "Authorization: Bearer <ACCESS_TOKEN>" '\

-H "Content-Type: application/json"

Sample Python request:
import requests

url = "https://polaris.example.com/api/management/v1/catalogs/example_catalog"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>",
"Content-Type": "application/json"
}
response = requests.delete(url, headers=headers)
print(response.status_code)

Sample response:

Empty response if successful.

Principal Operations

Principals in Apache Polaris represent entities (such as users or services) that interact
with the system. The REST API provides CRUD (Create, Read, Update, Delete)
operations for managing principals and the ability to rotate credentials. This section
covers each of these endpoints with sample requests and responses.

List Principals
Retrieve all the principals currently available in the Polaris catalog.
Endpoint:
GET /principals
Sample cURL request:

curl -X GET \
https://polaris.example.com/api/management/v1/principals \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Sample Python request:

import requests
url = "https://polaris.example.com/api/management/v1/principals"
headers = {"Authorization": "Bearer <ACCESS_TOKEN>"}

68 | Chapter5:Polaris REST API

response = requests.get(url, headers=headers)
print(response.json())

Sample response:

{

"principal”: {
"name": "string",
"clientId": "string",

"properties": {
"propertyl": "string",
"property2": "string"

1,

"createTimestamp": 0,
"lastUpdateTimestamp": 0,
"entityVersion": 0

1,

"credentials": {
"clientId": "string",
"clientSecret": "pa$Sword"
}

}

Create a Principal
Create a new principal for interacting with the Polaris system.
Endpoint:
POST /principals
Sample cURL request:

curl -X POST \
https://polaris.example.com/api/management/v1l/principals \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \

-d '{
"principal”: {
"name": "data_analyst",
"clientId": "analyst321",
"properties": {
"team": "analytics",
"region": "us-west"
}
1,
"credentialRotationRequired": true
}l

Sample Python request:

import requests
url = "https://polaris.example.com/api/management/v1/principals"

Principal Operations

headers = {
"Authorization": "Bearer <ACCESS_TOKEN>",
"Content-Type": "application/json"

}
data = {
"principal”: {
"name": "data_analyst",
"clientId": "analyst321",
"properties": {
"team": "analytics",
"region": "us-west"
}
1,
"credentialRotationRequired": True
}

response = requests.post(url, headers=headers, json=data)
print(response.json())

Sample response:

{
"principal": {
"name": "data_analyst",
"clientId": "analyst321",
"properties": {
"team": "analytics",
"region": "us-west"
1,
"createTimestamp": 1694372200000,
"lastUpdateTimestamp": 1694372200000,
"entityVersion": 1
}s
"credentials": {
"clientId": "analyst321",
"clientSecret": "secure$Password123"
}
}

Get Principal Details
Fetch details of a specific principal by name.
Endpoint:

GET /principals/{principalName}
Sample cURL request:

curl -X GET \
https://polaris.example.com/api/management/v1/principals/data_analyst \
-H "Authorization: Bearer <ACCESS_TOKEN>"

70 | Chapter5:Polaris REST API

Sample Python request:

import requests
url = "https://polaris.example.com/api/management/v1/principals/data_analyst"
headers = {"Authorization": "Bearer <ACCESS_TOKEN>"}

response = requests.get(url, headers=headers)
print(response.json())

Sample response:

{
"name": "data_analyst",
"clientId": "analyst321",
"properties": {
"team": "analytics",
"region": "us-west"
}s
"createTimestamp": 1694372200000,
"lastUpdateTimestamp": 1694378400000,
"entityVersion": 1

}

Update a Principal
Update details of an existing principal, such as properties or version.
Endpoint:
PUT /principals/{principalName}
Sample cURL request:

curl -X PUT \
https://polaris.example.com/api/management/v1l/principals/data_analyst \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \

-d '{
"currentEntityVersion": 1,
"properties": {

"team": "analytics",
"region": "us-east",
"project": "forecasting"
}
} ll

Sample Python request:

import requests
url = "https://polaris.example.com/api/management/v1/principals/data_analyst
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

Principal Operations |

n

data = {
"currentEntityversion": 1,
"properties": {

"team": "analytics",
"region": "us-east",
"project": "forecasting"

}

response = requests.put(url, headers=headers, json=data)
print(response.json())

Sample response:

{

"name": "data_analyst",
"clientId": "analyst321",
"properties": {

"team": "analytics",

"region": "us-east",

"project": "forecasting"
1,
"createTimestamp": 1694372200000,
"lastUpdateTimestamp": 1694378400000,
"entityVersion": 2

}

Delete a Principal
Delete an existing principal from the system.
Endpoint:

DELETE /principals/{principalName}
Sample cURL request:

curl -X DELETE \
https://polaris.example.com/api/management/v1l/principals/data_analyst \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Sample Python request:

import requests
url = "https://polaris.example.com/api/management/v1/principals/data_analyst
headers = {"Authorization": "Bearer <ACCESS_TOKEN>>"}

response = requests.delete(url, headers=headers)
print(response.status_code)

If successful, this request will have an empty response.

72 | Chapter5:Polaris REST API

Rotate Principal Credentials
Rotate credentials for a specific principal and return the new credentials.
Endpoint:
POST /principals/{principalName}/rotate
Sample cURL request:

curl -X POST \
https://polaris.example.com/api/management/v1l/principals/data_analyst/rotate \
-H "Authorization: Bearer <YOUR_ACCESS_TOKEN>"

Sample Python request:

import requests

url = "https://polaris.example.com/api/management/v1/principals
/data_analyst/rotate"

headers = {"Authorization": "Bearer <ACCESS_TOKEN>"}

response = requests.post(url, headers=headers)
print(response.json())

Sample response:

{
"principal": {
"name": "data_analyst",
"clientId": "analyst321",
"properties": {
"team": "analytics",
"region": "us-east",
"project": "forecasting"
1,
"createTimestamp": 1694372200000,
"lastUpdateTimestamp": 1694378400000,
"entityVersion": 2
1,
"credentials": {
"clientId": "analyst321",
"clientSecret": "new$Password456"
}
}

These endpoints provide everything needed to create, update, delete and list princi-
pals in Apache Polaris.

Managing Roles

Apache Polaris provides a set of APIs to manage permissions between catalogs and
principals. These APIs allow you to grant, list, and revoke privileges, ensuring secure

Managing Roles | 73

and efficient access management across your data lakehouse. This section outlines
each endpoint with detailed descriptions, sample requests, and responses.

Create a Catalog Role
Create a new role within a catalog.
Endpoint:
POST /catalogs/{catalogName}/catalog-roles
Sample cURL request:

curl -X POST \
https://polaris.example.com/api/management/v1l/catalogs/finance_catalog
/catalog-roles \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \

-d '{
"catalogRole": {
"name": "viewer",
"properties": {
"permissions": "read_only"
}
}
} ll

Create a Principal Role
Create a new principal role.
Endpoint:

POST /principal-roles
Sample cURL request:

curl -X POST \

https://polaris.example.com/api/management/v1/principal-roles \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \

-d '
"principalRole": {
"name": "report_viewer",
"properties": {
"access_scope": "read_only"
}
}
} 1l

74 | Chapter5:Polaris REST API

List Catalog Roles
List all roles within a catalog.
Endpoint:
GET /catalogs/{catalogName}/catalog-roles
Sample cURL request:

curl -X GET \
https://polaris.example.com/api/management/v1/catalogs/finance_catalog
/catalog-roles \
-H "Authorization: Bearer <ACCESS_TOKEN>"

List Roles Assigned to a Principal
Retrieve all roles assigned to a specific principal.
Endpoint:

GET /principals/{principalName}/principal-roles
Sample cURL request:

curl -X GET \
https://polaris.example.com/api/management/v1l/principals/john_doe
/principal-roles \
-H "Authorization: Bearer <ACCESS_TOKEN>"

List All Principal Roles
Retrieve a list of all principal roles in the system.
Endpoint:
GET /principal-roles
Sample cURL request:

curl -X GET \
https://polaris.example.com/api/management/v1/principal-roles \
-H "Authorization: Bearer <ACCESS_TOKEN>"

List Principals Assigned to a Principal Role
Retrieve a list of principals who are assigned a specific principal role.
Endpoint:

GET /principal-roles/{principalRoleName}/principals

Managing Roles

75

Sample cURL request:

curl -X GET \
https://polaris.example.com/api/management/v1/principal-roles/report_viewer
/principals \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Get Catalog Roles Mapped to a Principal Role
Retrieve catalog roles mapped to a specific principal role for a catalog.
Endpoint:

GET /principal-roles/{principalRoleName}/catalog-roles/{catalogName}
Sample cURL request:

curl -X GET \
https://polaris.example.com/api/management/v1l/principal-roles/report_viewer
/catalog-roles/finance_catalog \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Get Details of a Principal Role
Retrieve details of a specific principal role.
Endpoint:

GET /principal-roles/{principalRoleName}
Sample cURL request:

curl -X GET \
https://polaris.example.com/api/management/vl/principal-roles/report_viewer \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Add a Grant to a Catalog Role

Add a permissions grant to a catalog, determining the kind of access to the catalog’s
assets.

Endpoint:
PUT /catalogs/{catalogName}/catalog-roles/{catalogRoleName}/grants
Sample cURL request:

curl -X PUT "https://polaris.example.com/api/management/v1l/catalogs/finance
/catalog-roles/analyst/grants" \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \
-d '{
"grant": {
"type": "catalog",

76 | Chapter5:Polaris REST API

"privilege": "CATALOG_MANAGE_CONTENT"
}
} 1

Revoke a Grant from a Catalog Role
Revoke permissions from a particular Catalog Role.
Endpoint:
DELETE /catalogs/{catalogName}/catalog-roles/{catalogRoleName/grants
Example cURL Request:

curl -X DELETE "https://polaris.example.com/api/management/v1/catalogs/finance
/catalog-roles/analyst/grants?cascade=true" \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \
-d '{
"grant": {
"type": "catalog",
"privilege": "CATALOG_MANAGE_CONTENT"
}
} 1

Assign a Catalog Role to a Principal Role
Assign a catalog role to a principal role within a catalog.
Endpoint:
PUT /principal-roles/{principalRoleName}/catalog-roles/{catalogName}

Sample cURL request:

curl -X PUT \
https://polaris.example.com/api/management/vl/principal-roles/report_viewer
/catalog-roles/finance_catalog \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \

-d '{
"catalogRole": {
"name": "editor",
"properties": {
"edit_scope": "limited"
}
}
} |l

Assign a Role to a Principal

Assign a specific role to a principal.

Managing Roles |

77

Endpoint:
PUT /principals/{principalName}/principal-roles
Sample cURL request:

curl -X PUT \
https://polaris.example.com/api/management/v1/principals/john_doe
/principal-roles \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \

-d '{
"principalRole": {
"name": "data_admin",
"properties": {
"access_level": "full"
}
}
} ll

Update a Principal Role
Update the details of an existing principal role.
Endpoint:

PUT /principal-roles/{principalRoleName}
Sample cURL request:

curl -X PUT \

https://polaris.example.com/api/management/v1/principal-roles/report_viewer \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \
-d '{

"currentEntityVersion": 2,

"properties": {

"access_scope": "write_enabled"
}
} ll

Revoke a Role from a Principal
Remove a specific role from a principal.
Endpoint:
DELETE /principals/{principalName}/principal-roles/{principalRoleName}

Sample cURL request:

curl -X DELETE \
https://polaris.example.com/api/management/v1/principals/john_doe
/principal-roles/data_admin \
-H "Authorization: Bearer <ACCESS_TOKEN>"

78 | Chapter5: Polaris REST API

Revoke a Catalog Role from a Principal Role
Remove a catalog role from a principal role within a catalog.
Endpoint:
DELETE /principal-roles/{principalRoleName}/catalog-roles/{catalogName}/{catalogRoleName}
Sample cURL request:

curl -X DELETE \
https://polaris.example.com/api/management/v1l/principal-roles/report_viewer
/catalog-roles/finance_catalog/editor \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Delete a Principal Role
Delete an existing principal role.
Endpoint:
DELETE /principal-roles/{principalRoleName}
Sample cURL request:

curl -X DELETE \
https://polaris.example.com/api/management/v1l/principal-roles/report_viewer \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Delete a Catalog Role
Delete an existing catalog role.
Endpoint:
DELETE /catalogs/{catalogName}/catalog-roles/{catalogRoleName}
Sample cURL request:

curl -X DELETE \
https://polaris.example.com/api/management/v1l/catalogs/finance_catalog
/catalog-roles/viewer \
-H "Authorization: Bearer <ACCESS_TOKEN>"
These are the endpoints for managing catalog and principal roles, ensuring users can
handle their access control effectively in Apache Polaris.

Apache Iceberg REST Catalog Endpoints

This section covers the endpoints provided by Apache Polaris that implement the
Apache Iceberg REST Catalog Specification. These endpoints allow clients to interact
with catalogs, namespaces, tables, and views in a standardized and interoperable way.

Apache Iceberg REST Catalog Endpoints | 79

https://oreil.ly/g7Zgv

Each endpoint is prefixed by /api/catalog/ in Polaris. For example, the Iceberg
spec’s /v1/config would be accessed as /api/catalog/v1/config in Polaris.

These APIs are designed for compatibility with tools and engines that speak the Ice-
berg REST standard, enabling advanced catalog operations like schema management,
table creation, and view control. While Polaris also provides its own management
API (covered in Sections 5.1 through 5.3), the Iceberg REST Catalog endpoints enable
broader ecosystem interoperability and integration with external engines.

The following subsections describe each group of endpoints, beginning with a short
summary of its purpose, followed by the corresponding API definitions.

The latest version of Apache Iceberg REST Catalog Spec can be found here:

https://github.com/apache/iceberg/blob/main/open-api/rest-catalog-open-api.yaml

Configuration API

Retrieve server-supplied default and override configuration properties for initializing
and managing Iceberg catalog clients.

Endpoint:
GET /v1/config

Clients should call this endpoint first to obtain default and override properties that
determine how the catalog client should behave. The response includes:

Defaults
Settings applied before client configuration

Overrides
Settings applied after client configuration

Optional endpoints list
Enumerates which Iceberg REST routes are supported

These values guide client behavior such as pooling size, endpoint routing, and ware-
house location. Learn more in the Iceberg documentation on catalog properties.

Sample cURL request:

curl -X GET https://polaris.example.com/api/catalog/vl/config \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json"

80 | Chapter5:Polaris REST API

https://github.com/apache/iceberg/blob/main/open-api/rest-catalog-open-api.yaml
https://oreil.ly/xDqBj

Sample Python request:

import requests
url = "https://polaris.example.com/api/catalog/vl/config"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>",
"Content-Type": "application/json"

}

response = requests.get(url, headers=headers)
print(response.json())

Sample response:

{
"defaults": {
"client.pool.size": "4",
"catalog.name": "main"

}

verrides": {
"warehouse": "s3://bucket/warehouse/"

1

"endpoints": [
"GET /v1/{prefix}/namespaces",
"POST /vi1/{prefix}/namespaces",
"GET /v1/{prefix}/namespaces/{namespace}",
"DELETE /v1/{prefix}/namespaces/{namespace}",
"GET /v1/{prefix}/namespaces/{namespace}/tables"

OAuth2 API

Exchange credentials or tokens using the OAuth 2.0 client credentials or token
exchange flows.

This endpoint is deprecated and will be removed; it is not recom-
mended for new implementations. Use the oauth2-server-uri
configuration property instead to integrate with external identity
providers.

Endpoint:

POST /vi1/oauth/tokens

Apache Iceberg REST Catalog Endpoints | 81

This endpoint was originally designed to support three flows:

Client Credentials Flow
Exchange client ID and secret for an access token.

Token Exchange Flow (Actor + Subject)
Exchange a client token and identity token for a new access token with user
context.

Token Refresh Flow
Exchange an expiring token for a new one with a refreshed expiration.

These capabilities are being phased out in favor of more secure, explicitly configured
OAuth integration patterns.

Sample cURL Request (Client Credentials Flow):

curl -X POST https://polaris.example.com/api/catalog/vi/oauth/tokens \
-H "Content-Type: application/x-www-form-urlencoded" \
-d 'grant_type=client_credentials&client_id=your-client-
id&client_secret=your-client-secret'

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/v1l/oauth/tokens"
headers = {

"Content-Type": "application/x-www-form-urlencoded"
}
payload = {

"grant_type": "client_credentials",

"client_id": "your-client-id",

"client_secret": "your-client-secret"
}

response = requests.post(url, headers=headers, data=payload)
print(response.json())

Sample response:

{
"access_token": "eyJhbGci01JIUzIIN1ISINR5cCI6IkpXVCI9...",
"token_type": "Bearer",
"expires_in": 3600

}

Table API

Perform operations to create, register, update, load, delete, and rename Iceberg tables
in the catalog.

82 | Chapter5:Polaris REST API

Base Endpoint Prefix:
/v1/{prefix}/namespaces/{namespace}/tables

The Table API allows clients to manage the full lifecycle of Iceberg tables program-
matically. This includes creating new tables, registering existing ones by metadata
location, committing schema or snapshot changes, and retrieving table metadata.
These endpoints enable automation and integration with ingestion pipelines, CI/CD
workflows, and schema management tools.

List Table Identifiers

Retrieve all table identifiers under a specified namespace.
Endpoint:
GET /vi1/{prefix}/namespaces/{namespace}/tables

This endpoint returns a list of all Iceberg tables within the given namespace. It is
useful for discovery and inventory tasks, such as enumerating datasets for a team
or validating ingestion pipelines. Results may be paginated using page-size and
page-token query parameters.

Sample cURL request:

curl -X GET https://polaris.example.com/api/catalog/vl/dev_team/namespaces
/analytics/tables \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json"

Sample Python request:

import requests
url = "https://polaris.example.com/api/catalog/vl/dev_team/namespaces
/analytics/tables"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>",
"Content-Type": "application/json"

}

response = requests.get(url, headers=headers)
print(response.json())

Sample response:

{
"identifiers": [
{
"namespace": ["analytics"],
"name": "monthly_sales"
1
{

"namespace": ["analytics"],

Apache Iceberg REST Catalog Endpoints | 83

"name": "user_events"

1,

{
"namespace": ["analytics"],
"name": "product_catalog"

}

]
}

Create a Namespace
Create a new namespace with optional metadata properties.
Endpoint:

POST /vi/{prefix}/namespaces

This endpoint creates a new logical namespace for organizing tables and views within
the catalog. Namespaces can represent teams, domains, or business units. You may
optionally supply metadata properties (such as owner or description). If the name-
space already exists, the request will fail with a conflict response.

Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vl/dev_team/namespaces \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \

-d '
"namespace": ["analytics"],
"properties": {
"owner": "data.platform@company.com",
"created_by": "automation_pipeline"
}
} |l

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev_team/namespaces"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"namespace": ["analytics"],
"properties": {
"owner": "data.platform@company.com",
"created_by": "automation_pipeline"
}
}

response = requests.post(url, headers=headers, json=payload)

84 | Chapter5:Polaris REST API

print(response.json())

Sample response:

{
"namespace": ["analytics"],
"properties": {
"owner": "data.platform@company.com",
"created_by": "automation_pipeline",
"last_modified_time": "2025-06-20T13:45:00Z"

}
}

Load Namespace Properties
Retrieve all stored metadata properties for a given namespace.
Endpoint:

GET /vi1/{prefix}/namespaces/{namespace}

This endpoint fetches metadata properties associated with a specific namespace.
Properties may include custom fields, such as owner, description, creation metadata,
or system-managed values, like the last modified time. This is useful for managing
schema boundaries, auditing ownership, or integrating namespace metadata into
external tooling.

Sample cURL request:

curl -X GET https://polaris.example.com/api/catalog/v1l/dev_team/namespaces
/analytics \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json"

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev_team/namespaces/analytics"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"
}

response = requests.get(url, headers=headers)
print(response.json())

Sample response:

{
"namespace": ["analytics"],
"properties": {
"owner": "data.platform@company.com",

Apache Iceberg REST Catalog Endpoints | 85

"description": "Namespace for analytics tables and dashboards",
"last_modified_time": "2025-06-20T14:10:00Z"

}
}

Check Namespace Existence
Verify whether a specific namespace exists in the catalog.
Endpoint:

HEAD /v1/{prefix}/namespaces/{namespace}

This lightweight endpoint allows you to check if a namespace exists without retriev-
ing its metadata. It returns HTTP 204 No Content if the namespace exists or 404
Not Found if it does not. This is useful for validation steps in automation scripts or
provisioning workflows.

Sample cURL request:

curl -I -X HEAD https://polaris.example.com/api/catalog/vl/dev_team/namespaces
/analytics \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev_team/namespaces/analytics"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>"
}

response = requests.head(url, headers=headers)
print(response.status_code) # 204 if exists, 404 if not

Sample response:

e 204 No Content: Namespace exists

o 404 Not Found: Namespace does not exist

Drop a Namespace

Remove a namespace from the catalog. The namespace must be empty before
deletion.

Endpoint:
DELETE /vi/{prefix}/namespaces/{namespace}

This endpoint deletes a namespace and its associated metadata. The namespace must
not contain any tables, views, or child namespaces. Attempting to delete a non-empty

86 | Chapter5:Polaris REST API

namespace will result in a conflict error. This operation is typically used for cleanup
or when decommissioning a data domain.

Sample cURL request:

curl -X DELETE https://polaris.example.com/api/catalog/vl/dev_team/namespaces
/analytics \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json"

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev_team/namespaces/analytics"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"
}

response = requests.delete(url, headers=headers)
print(response.status_code) # 204 if successful, 409 if namespace not empty

Sample response:

o 204 No Content: Namespace successfully deleted
o 404 Not Found: Namespace does not exist

» 409 Conflict: Namespace is not empty

Set or Remove Namespace Properties
Update or delete properties on an existing namespace.
Endpoint:

POST /vi/{prefix}/namespaces/{namespace}/properties

This endpoint allows clients to modify metadata for a namespace by setting new
key-value pairs and/or removing existing ones. Only the properties specified in the
request will be changed; unspecified properties remain untouched. This is useful for
updating ownership, lifecycle tags, or automation-related flags.

Not all catalog implementations are required to support namespace properties.
Sample cURL request:
curl -X POST https://polaris.example.com/api/catalog/vl/dev_team/namespaces
/analytics/properties \

-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \

Apache Iceberg REST Catalog Endpoints | 87

-d '

"updates": {
"owner": "dataops@company.com",
"environment": "production"

1,

"removals": ["created_by"]
Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/v1l/dev_team/namespaces
/analytics/properties"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"updates": {
"owner": "dataops@company.com",
"environment": "production"
1,
"removals": ["created_by"]
}

response = requests.post(url, headers=headers, json=payload)
print(response.json())

Sample response:

{
"namespace": ["analytics"],
"properties": {
"owner": "dataops@company.com",
"environment": "production"
}
}

Create a Table
Create a new Iceberg table within the specified namespace.
Endpoint:

POST /vi/{prefix}/namespaces/{namespace}/tables

This endpoint creates a new Iceberg table with an initial schema and optional config-
uration properties. You can either make the table immediately (stage-create: false) or
initiate a staged transaction for committing later (stage-create: true).

Use staged creation if your workflow involves multiple operations (e.g., schema, sort
order, partitioning) that should be committed atomically. The response includes the

88 | Chapter5:Polaris REST API

metadata needed to complete the transaction using the “Commit Updates to a Table”
endpoint.

Sample cURL Request (Immediate Creation):

curl -X POST https://polaris.example.com/api/catalog/vi/dev/namespaces
/analytics/tables \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json" \

-d '{
"name": "customer_profiles",
"schema": {
"type": "struct",
"fields": [
{ "id": 1, "name": "customer_id", "required": true, "type":
"long" 1},
{ "id": 2, "name": "email", "required": false, "type":
"string" },
{ "id": 3, "name": "created_at", "required": true, "type":
"timestamp" }
1
1,
"spec": { "fields": [{ "source-id": 3, "transform": "day", "name":
"day_created" }] },
"stage-create": false
}|

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/v1l/dev/namespaces/analytics
/tables"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"name": "customer_profiles",
"schema": {
"type": "struct",
"flelds": [
{ "id": 1, "name": "customer_id", "required": True, "type": "long" },
{ "id": 2, "name": "email", "required": False, "type": "string" },
{ "id": 3, "name": "created_at", "required": True, "type":
"timestamp" }
1
1,
"spec": {
"fields": [
{ "source-id": 3, "transform": "day", "name": "day_created" }
1
1,

Apache Iceberg REST Catalog Endpoints | 89

"stage-create": False

}

response = requests.post(url, headers=headers, json=payload)
print(response.json())

Sample response:

{
"metadata-location": "s3://warehouse/analytics/customer_profiles
/metadata/00000.metadata. json",
"table-uuid": "9bde37b3-fc9e-4b32-9b9e-abc123def456"

}

Register a Table
Register an existing Iceberg table in the catalog using its metadata location.
Endpoint:

POST /vi/{prefix}/namespaces/{namespace}/register

This endpoint allows clients to register a preexisting Iceberg table by specifying
the full path to its metadata JSON file. This is commonly used when migrating or
recovering tables from storage that were created outside of the catalog, such as those
bootstrapped manually or recovered after system failure.

Once registered, the table becomes fully managed and queryable via the catalog.
Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vi/dev/namespaces
/analytics/register \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \
-d '
"name": "recovered_events",
"metadata-location": "s3://warehouse/analytics/recovered_events
/metadata/00000.metadata. json"
} |l
Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/v1l/dev/namespaces
/analytics/register"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>",
"Content-Type": "application/json"
}
payload = {
"name": "recovered_events",

90 | Chapter5:Polaris REST API

"metadata-location": "s3://warehouse/analytics/recovered_events
/metadata/00000.metadata. json"
}

response = requests.post(url, headers=headers, json=payload)
print(response.json())

Sample response:

{
"metadata-location": "s3://warehouse/analytics/recovered_events
/metadata/00000.metadata. json",
"table-uuid": "52f7ab2e-47d1-4d96-9f5c-d6el2a77de2a"

}

Load Table Metadata
Retrieve the full metadata and optional configuration for a specific Iceberg table.
Endpoint:

GET /vi/{prefix}/namespaces/{namespace}/tables/{table}

This endpoint loads the metadata of an Iceberg table, including its schema, partition
specification, properties, and configuration overrides. The returned metadata can
be used for planning queries, validating schema versions, or understanding a table’s
structure and lifecycle.

Clients may optionally include an If-None-Match header to return HTTP 304 Not
Modified if the metadata hasnt changed since the last load. You may also use the
snapshots query parameter to control which snapshots are returned (all or refs).

Sample cURL request:

curl -X GET https://polaris.example.com/api/catalog/v1l/dev/namespaces
/analytics/tables/customer_profiles \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json"

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/namespaces/analytics
/tables/customer_profiles"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>",
"Content-Type": "application/json"
}

response = requests.get(url, headers=headers)
print(response.json())

Apache Iceberg REST Catalog Endpoints | 91

Sample response:

{
"metadata-location": "s3://warehouse/analytics/customer_profiles
/metadata/00001.metadata. json",
"table-uuid": "9bde37b3-fc9e-4b32-9b9e-abc123def456",

"schema": {
"type": "struct",
"fields": [
{ "id": 1, "name": "customer_id", "required": true, "type": "long" },
{ "1id": 2, "name": "email", "required": false, "type": "string" },
{ "id": 3, "name": "created_at", "required": true, "type": "timestamp" }
1
}s
"spec": {
"fields": [
{ "source-id": 3, "transform": "day", "name": "day_created" }
1
1,

"last-sequence-number": 7,
"last-snapshot-id": 7452913019,
"snapshots": [
{
"snapshot-id": 7452913019,
"timestamp-ms": 1721234567890,
"operation": "append",
"manifest-list": "s3://.../manifests/manifest-1list.avro"
}
]
}

Commit Updates to a Table

Commit changes to an Iceberg table, such as appending data files, updating schemas,
or completing staged creation.

Endpoint:
POST /vi/{prefix}/namespaces/{namespace}/tables/{table}

This endpoint applies changes to an existing table, including new snapshots (e.g.,
appends or overwrites), updated schemas, or updated table metadata. It is also used
to finalize a staged table created earlier using stage-create: true. The request must
include the current table metadata location and a new version of the metadata file
that reflects the desired changes.

Concurrency is managed via optimistic locking: the commit will succeed only if the
provided base metadata location matches the current state of the table.

92 | Chapter5:Polaris REST API

Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vi/dev/namespaces
/analytics/tables/customer_profiles \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json" \

-d '{

"updates": {
"metadata-location": "s3://warehouse/analytics
/customer_profiles/metadata/00002.metadata.json",
"base": "s3://warehouse/analytics/customer_profiles
/metadata/00001.metadata. json"

}

} 1l

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/namespaces/analytics/tables
/customer_profiles"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"updates": {
"metadata-location": "s3://warehouse/analytics/customer_profiles
/metadata/00002.metadata. json",
"base": "s3://warehouse/analytics/customer_profiles/metadata
/00001 .metadata. json"
}
}

response = requests.post(url, headers=headers, json=payload)
print(response.status_code)

Sample response:

{
"metadata-location": "s3://warehouse/analytics/customer_profiles
/metadata/00002.metadata. json",
"table-uuid": "9bde37b3-fc9e-4b32-9b9e-abc123def456"

Drop a Table
Delete an Iceberg table from the catalog, with the option to purge data.
Endpoint:

DELETE /vi/{prefix}/namespaces/{namespace}/tables/{table}

Apache Iceberg REST Catalog Endpoints | 93

This endpoint removes a table from the catalog. By default, this deletes only the cata-
log entry, preserving the underlying data files. To also purge the data (e.g., metadata
files, manifests, and data files), include the query parameter purgeRequested=true.

Use this operation with care in production environments, especially when using
purgeRequested=true, as it will permanently delete storage assets managed by the
table.

Sample cURL Request (catalog only):

curl -X DELETE https://polaris.example.com/api/catalog/vl/dev/namespaces
/analytics/tables/customer_profiles \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Sample cURL Request (catalog + data purge):

curl -X DELETE "https://polaris.example.com/api/catalog/vl/dev/namespaces
/analytics/tables/customer_profiles?purgeRequested=true" \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Sample Python Request (with purge):

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/namespaces/analytics
/tables/customer_profiles?purgeRequested=true"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>"
}

response = requests.delete(url, headers=headers)
print(response.status_code)

Sample response:

e 204 No Content: Table deleted successfully
o 404 Not Found: Table not found

o 409 Conflict: Table cannot be deleted (e.g., in use or write conflict)

Check Table Existence
Verify whether a specific table exists in the catalog.
Endpoint:

HEAD /v1/{prefix}/namespaces/{namespace}/tables/{table}

This lightweight endpoint checks whether a given Iceberg table exists in the specified
namespace. It does not return any metadata or payload; it only returns an HTTP
status code. This is useful for validation in automation workflows, such as confirming
table creation before inserting data or avoiding accidental overwrites.

94 | Chapter5:Polaris REST API

Sample cURL request:

curl -I -X HEAD https://polaris.example.com/api/catalog/vi/dev/namespaces
/analytics/tables/customer_profiles \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/v1l/dev/namespaces/analytics
/tables/customer_profiles"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>"

}

response = requests.head(url, headers=headers)
if response.status_code == 204:
print("Table exists.")
elif response.status_code == 404:
print("Table not found.")
else:
print(f"Unexpected status: {response.status_code}")

Sample response:

e 204 No Content: Table exists
e 404 Not Found: Table does not exist

Rename a Table

Change the name of an existing Iceberg table within the same namespace or across
namespaces.

Endpoint:
POST /vi/{prefix}/rename

This endpoint renames an Iceberg table by moving it from its current identifier to
a new one. The source and destination identifiers can refer to the same namespace
or different namespaces. The operation updates the catalog reference; the underlying
metadata and data files remain unchanged.

If the target table name already exists, the request will fail with a 409 Conflict status.
Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vi/dev/rename \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \
-d '{
"source": {
"namespace": ["analytics"],

Apache Iceberg REST Catalog Endpoints | 95

"name": "customer_profiles"

1

"destination": {
"namespace": ["analytics"],
"name": "customer_profiles_archive"

}

} 1l
Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/rename"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"source": {
"namespace": ["analytics"],
"name": "customer_profiles"
1,
"destination": {
"namespace": ["analytics"],
"name": "customer_profiles_archive"
}
}

response = requests.post(url, headers=headers, json=payload)
print(response.status_code)

Sample response:

» 200 OK: Table successfully renamed
e 404 Not Found: Source table does not exist

» 409 Conflict: Destination table already exists

Submit Metrics for a Table
Submit performance, access, or operational metrics associated with a table.
Endpoint:

POST /vi/{prefix}/namespaces/{namespace}/tables/{table}/metrics

This endpoint allows clients to submit custom metrics related to an Iceberg table.
These can include statistics like query latency, row counts, file sizes, or domain-
specific metrics relevant to governance and optimization. Submitted metrics may be
stored, monitored, or visualized depending on the catalog’s capabilities.

96 | Chapter5:Polaris REST API

This feature enables integration with monitoring systems and observability tooling to

track table health and usage patterns over time.
Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vi/dev/namespaces
/analytics/tables/customer_profiles/metrics \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json" \

-d '{
"metrics": {
"row_count": 1823947,
"last_query_duration_ms": 231,
"fragmentation_score": 0.75
}
} 1l

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/namespaces/analytics
/tables/customer_profiles/metrics"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"metrics": {
"row_count": 1823947,
"last_query_duration_ms": 231,
"fragmentation_score": 0.75
}
}

response = requests.post(url, headers=headers, json=payload)
print(response.status_code)

Sample response:

e 200 OK: Metrics successfully submitted
+ 404 Not Found: Table does not exist

e 400 Bad Request: Invalid metric format

Send Table Notifications
Send a lightweight custom notification event for a table.
Endpoint:

POST /vi/{prefix}/namespaces/{namespace}/tables/{table}/notifications

Apache Iceberg REST Catalog Endpoints

97

This endpoint allows systems or users to send implementation-specific notification
events related to a table. These events may be used to trigger downstream processes,
communicate lifecycle changes (e.g., compaction complete), or signal state transitions
to observability tools.

The catalog implementation determines how notifications are handled, storing them,
forwarding them to consumers, or using them for auditing or orchestration purposes.

Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vi/dev/namespaces
/analytics/tables/customer_profiles/notifications \

-H "Authorization: Bearer <ACCESS_TOKEN>" \

-H "Content-Type: application/json" \

-d '{

"notification": {
"event_type": "compaction_complete",
"summary": "Compaction job finished for June partition",
"timestamp": "2025-06-20T13:45:00Z2"

}

} |l
Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/v1l/dev/namespaces
/analytics/tables/customer_profiles/notifications"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"notification": {
"event_type": "compaction_complete",
"summary": "Compaction job finished for June partition",
"timestamp": "2025-06-20T13:45:00Z"
}
}

response = requests.post(url, headers=headers, json=payload)
print(response.status_code)

Sample response:

o 200 OK: Notification accepted
o 404 Not Found: Table not found
» 400 Bad Request: Malformed or unsupported notification payload

98 | Chapter5:Polaris REST API

Commit Updates to Multiple Tables

Atomically commit metadata updates across multiple Iceberg tables using a single
transaction.

Endpoint:
POST /vi/{prefix}/transactions/commit

This endpoint performs a multi-table commit operation, allowing you to update
the metadata of multiple Iceberg tables in a single atomic transaction. This ensures
that either all updates succeed together or none are applied, preventing partial state
changes and preserving catalog consistency.

This operation is ideal for orchestrated schema updates, partitioning adjustments, or
any workflow where consistency across tables is critical.

Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vi/dev/transactions/commit \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \
-d '{
"updates": [
{
"{dentifier": {
"namespace": ["analytics"],
"name": "customer_profiles"”
1.
"base": "s3://warehouse/analytics/customer_profiles
/metadata/00001.metadata. json",
"metadata-location": "s3://warehouse/analytics/customer_profiles
/metadata/00002.metadata. json"
s
{
"{dentifier": {
"namespace": ["analytics"],
"name": "sales_summary"
1.
"base": "s3://warehouse/analytics/sales_summary
/metadata/00005.metadata. json",
"metadata-location": "s3://warehouse/analytics/sales_summary
/metadata/00006.metadata. json"
}
1
} |l
Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/transactions/commit"
headers = {

Apache Iceberg REST Catalog Endpoints | 99

"Authorization": "Bearer <ACCESS_TOKEN>",
"Content-Type": "application/json"
}
payload = {
"updates": [
{
"{dentifier": {
"namespace": ["analytics"],
"name": "customer_profiles"
1,
"base": "s3://warehouse/analytics/customer_profiles
/metadata/00001.metadata. json",
"metadata-location": "s3://warehouse/analytics/customer_profiles
/metadata/00002.metadata. json"

"{dentifier": {

"namespace": ["analytics"],

"name": "sales_summary"
1,
"base": "s3://warehouse/analytics/sales_summary
/metadata/00005.metadata. json",
"metadata-location": "s3://warehouse/analytics/sales_summary
/metadata/00006.metadata. json"

}

response = requests.post(url, headers=headers, json=payload)
print(response.json())

Sample response:

{

"results": [
{
"identifier": {
"namespace": ["analytics"],
"name": "customer_profiles"
1,
"metadata-location": "s3://warehouse/analytics/customer_profiles/metadata
/00002 .metadata. json",
"table-uuid": "9bde37b3-fc9e-4b32-9b9e-abc123def456"

1,
{
"{dentifier": {
"namespace": ["analytics"],
"name": "sales_summary"
}s
"metadata-location": "s3://warehouse/analytics/sales_summary/metadata

/00006 .metadata.json",
"table-uuid": "2c51aa91-13fd-4404-874c-bodf41ec83d8"

100 | Chapter5: Polaris REST API

]
}

Error Handling:

o 409 Conflict: One or more updates failed validation (e.g., base metadata no
longer matches); entire transaction aborted

+ 400 Bad Request: Malformed request payload
o 200 OK: All updates applied successfully and atomically

View API

The View API provides endpoints for managing SQL-based views within a Polaris
catalog namespace.

Views in Apache Iceberg are named, versioned objects that encapsulate SQL query
logic. They can reference tables or other views and are stored in the catalog alongside
physical datasets. These endpoints enable clients to list, create, inspect, and delete
views programmatically.

Each view has a unique identifier consisting of a namespace and view name. Views
are immutable once created and can be replaced atomically to create new versions
with updated definitions. This enables safe evolution of business logic without dis-
rupting dependent consumers.

The endpoints in this section mirror the structure of the Table API and include
support for standard operations like checking existence, retrieving metadata, and
managing lifecycle.

List View Identifiers
Retrieve a list of all views in a given namespace.
Endpoint:

GET /vi/{prefix}/namespaces/{namespace}/views

This endpoint returns a list of all views defined within the specified namespace.
The response includes the identifiers (namespace and name) for each view, allowing
clients to enumerate existing view objects in the catalog. This is useful for user
interfaces, discovery tools, or orchestration systems that need to browse available
views.

Sample cURL request:
curl -X GET https://polaris.example.com/api/catalog/v1l/dev/namespaces

/analytics/views \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Apache Iceberg REST Catalog Endpoints | 101

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/namespaces/analytics/views"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>"
}

response = requests.get(url, headers=headers)
print(response.json())

Sample response:

{
"{dentifiers": [
{
"namespace": ["analytics"],
"name": "customer_summary"
1,
{
"namespace": ["analytics"],
"name": "daily_revenue"
}
1
}
Error Handling:

¢ 404 Not Found: Namespace does not exist

o 200 OK: List of views returned successfully

Create a View
Define or update an SQL-based view in the specified namespace.
Endpoint:

POST /vi/{prefix}/namespaces/{namespace}/views

This endpoint creates a new view or replaces an existing one in the specified name-
space. An SQL SELECT statement defines a view, and clients must provide both the
view’s identifier and its SQL definition in the request body. If a view with the same
name already exists, it will be atomically replaced.

Each view is versioned internally by the catalog, enabling safe updates to analytical
logic over time without disrupting consumers.

Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vl/dev/namespaces
/analytics/views \

102 | Chapter5: Polaris REST API

-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \
-d '{
"view-version": {
"version-id": "vi1",
"schema-id": 1,
"sql": "SELECT customer_id, COUNT(*) AS orders FROM orders
GROUP BY customer_1id"
1,
"identifier": {
"namespace": ["analytics"],
"name": "customer_order_summary"
}
} 1l
Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/namespaces/analytics/views"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"view-version": {
"version-id": "v1",
"schema-1d": 1,
"sql": "SELECT customer_id, COUNT(*) AS orders FROM orders
GROUP BY customer_id"
1,
"identifier": {
"namespace": ["analytics"],
"name": "customer_order_summary"
}
}

response = requests.post(url, headers=headers, json=payload)
print(response.status_code)

Sample response:

o 200 OK: View created or replaced successfully
+ 400 Bad Request: Invalid SQL or missing required fields

¢ 409 Conflict: View version conflict (e.g., immutable update violation)

Load View Metadata

Retrieve metadata for a specific view, including its SQL definition and version.

Apache Iceberg REST Catalog Endpoints | 103

Endpoint:
GET /vi/{prefix}/namespaces/{namespace}/views/{view}

This endpoint fetches the full metadata for a given view, including its SQL definition,
schema ID, and version identifier. It can be used by query engines, UI clients, or
orchestration tools to display or process the view definition. The response includes
the SQL query text that defines the view and other metadata associated with the
current version.

Sample cURL request:

curl -X GET https://polaris.example.com/api/catalog/v1l/dev/namespaces
/analytics/views/customer_order_summary \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/v1l/dev/namespaces/analytics
/views/customer_order_summary"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>"
}

response = requests.get(url, headers=headers)
print(response.json())

Sample response:

{
"{dentifier": {
"namespace": ["analytics"],
"name": "customer_order_summary"
1,
"view-version": {
"version-id": "v1",
"schema-id": 1,
"sql": "SELECT customer_id, COUNT(*) AS orders FROM orders
GROUP BY customer_id"
}
}
Error Handling:

e 404 Not Found: View does not exist

o 200 OK: View metadata returned successfully

Replace a View

Atomically replace an existing view with a new SQL definition.

104 | Chapter5: Polaris REST API

Endpoint:
POST /vi/{prefix}/namespaces/{namespace}/views

This endpoint is used to replace an existing view by providing a new SQL definition.
It uses the same request structure as view creation, and if the view already exists, the
new version will overwrite the current one atomically.

Replacing a view allows teams to evolve their business logic or analytical models
safely while preserving the view’s name and identity. Each replacement should
include a new version-1id to track changes over time. (Note: If the view does not
exist, this call will create it.)

Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vi/dev/namespaces
/analytics/views \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \
-d '{
"view-version": {
"version-id": "v2",
"schema-id": 1,
"sql": "SELECT customer_id, COUNT(*) AS orders, MAX(order_date)
AS last_order FROM orders GROUP BY customer_id"
1,
"{dentifier": {
"namespace": ["analytics"],
"name": "customer_order_summary"
}
} 1l
Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/namespaces/analytics/views"
headers = {

"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"view-version": {
"version-id": "v2",
"schema-id": 1,
"sql": "SELECT customer_1id, COUNT(*) AS orders, MAX(order_date)
AS last_order FROM orders GROUP BY customer_id"
1,
"{dentifier": {
"namespace": ["analytics"],
"name": "customer_order_summary"
}
}

Apache Iceberg REST Catalog Endpoints | 105

response = requests.post(url, headers=headers, json=payload)
print(response.status_code)

Sample response:

+ 200 OK: View replaced successfully
+ 400 Bad Request: SQL is invalid or missing required fields

o 409 Conflict: Conflicting version or schema constraints

Drop a View
Delete a view from the specified namespace.
Endpoint:
DELETE /v1/{prefix}/namespaces/{namespace}/views/{view}

This endpoint deletes a view by name from the given namespace. Once deleted, the
view and its associated SQL definition will no longer be available to consumers. This
operation is irreversible and should be used with caution, especially in environments
where dashboards, pipelines, or downstream systems reference views.

The request does not require a body, and the server will return a success response if
the view is successfully removed.

Sample cURL request:

curl -X DELETE https://polaris.example.com/api/catalog/vl/dev/namespaces
/analytics/views/customer_order_summary \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/namespaces/analytics
/views/customer_order_summary"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>"
}

response = requests.delete(url, headers=headers)
print(response.status_code)

Sample response:

o 204 No Content: View deleted successfully
» 404 Not Found: View does not exist

« 403 Forbidden: Insufficient permissions to delete the view

106 | Chapter5: Polaris REST API

Check View Existence
Determine whether a view exists in the specified namespace.
Endpoint:

HEAD /vi/{prefix}/namespaces/{namespace}/views/{view}

This endpoint allows clients to check if a view exists without retrieving its full
metadata. It returns a 200 OK status if the view is present and a 404 Not Found
if the view does not exist. This is useful for lightweight validation in orchestration
pipelines, UT navigation, or before attempting updates or deletions.

No response body is returned.
Sample cURL request:

curl -I https://polaris.example.com/api/catalog/vi/dev/namespaces/analytics
/views/customer_order_summary \
-H "Authorization: Bearer <ACCESS_TOKEN>"

Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/namespaces/analytics
/views/customer_order_summary"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>"
}

response = requests.head(url, headers=headers)
print(response.status_code)

Sample Response Status Codes:

e 200 OK: View exists
e 404 Not Found: View does not exist

o 403 Forbidden: Insufficient permissions to access the view

Rename a View
Change the name of a view within or across namespaces.
Endpoint:

POST /vi/{prefix}/views/rename

This endpoint renames a view by specifying the current identifier and the new
desired identifier. The operation can also move the view to a different namespace.
This is useful when evolving naming conventions or organizing views by domain.

Apache Iceberg REST Catalog Endpoints | 107

The rename is atomic and preserves the underlying view version and SQL definition.
If the destination view name already exists, the operation will fail with a conflict
error.

Sample cURL request:

curl -X POST https://polaris.example.com/api/catalog/vi/dev/views/rename \
-H "Authorization: Bearer <ACCESS_TOKEN>" \
-H "Content-Type: application/json" \
-d '{
"from": {
"namespace": ["analytics"],
"name": "customer_order_summary"
1,
"to": {
"namespace": ["sales"],
"name": "customer_summary"
}
} 1l
Sample Python request:

import requests

url = "https://polaris.example.com/api/catalog/vl/dev/views/rename"
headers = {
"Authorization": "Bearer <ACCESS_TOKEN>",

"Content-Type": "application/json"

}
payload = {
"from": {
"namespace": ["analytics"],
"name": "customer_order_summary"
1,
"to": {
"namespace": ["sales"],
"name": "customer_summary"
}
}

response = requests.post(url, headers=headers, json=payload)
print(response.status_code)

Sample response:

¢ 200 OK: View renamed successfully
o 404 Not Found: Source view does not exist
o 409 Conflict: Destination view already exists

« 400 Bad Request: Invalid identifier format or namespace

108 | Chapter5: Polaris REST API

These endpoints provide robust capabilities for managing catalogs, namespaces,
tables, and views within the Polaris platform, ensuring administrators have the flexi-
bility to effectively control resources.

Conclusion

In this chapter, we explored the comprehensive set of Polaris REST API endpoints
that enable seamless management of catalogs, namespaces, tables, views, and more.
These APIs provide the foundation for advanced catalog operations. Now that you
understand the capabilities of Polaris and how it streamlines data governance and
access, it’s time to see it in action. The following section will delve into hands-on
examples, integrating Polaris with powerful tools such as Apache Spark, Dremio, and
Snowflake.

Conclusion | 109

PART Il
Hands-on with Apache Polaris

In the first two sections of this book, we laid the groundwork of exploring the
core concepts of lakehouses, Apache Iceberg, and Apache Polaris. We delved into
the architecture, the principles of open table formats, and how Polaris serves as a
cutting-edge catalog solution for managing metadata at scale. With this foundational
knowledge in place, it’s time to roll up our sleeves and put these concepts into action.

Part III focuses on the practical application of Apache Polaris and its integration with
modern data tools. We'll start by learning how to deploy Polaris locally, enabling you
to get hands-on experience with its open source version. From there, we'll explore
how Polaris interacts with powerful tools such as Apache Spark, Snowflake, and Dre-
mio. Each chapter will provide step-by-step guides to configure, query, and manage
catalogs, helping you connect the theoretical concepts covered earlier to real-world
workflows.

By the end of this section, you'll not only have deployed Polaris but also integrated
it into a broader data ecosystem, giving you a comprehensive understanding of how
lakehouse architectures operate in practice. Whether you're building an on-premise
lakehouse, experimenting with open table formats, or evaluating Polaris for produc-
tion use, these chapters will equip you with the skills and insights to confidently
manage your data landscape.

Lets begin by setting up Polaris in your local environment and gaining a firsthand
understanding of its inner workings!

Reminder that a lot of the supporting code in this chapter can be found in
the Git repository: https://github.com/developer-advocacy-dremio/apache-polaris-the-
definitive-guide.

https://github.com/developer-advocacy-dremio/apache-polaris-the-definitive-guide
https://github.com/developer-advocacy-dremio/apache-polaris-the-definitive-guide

CHAPTER 6
Working with Apache Polaris 0SS

In the previous chapters, we explored Apache Polaris, its key features, and its API in
depth. Now, it’s time to move beyond theory and dive into the practical aspects of
deploying and working with Apache Polaris locally. This hands-on approach will help
you understand how the different components work together, enabling you to apply
these concepts in real-world scenarios.

While managed Polaris offerings like Snowflake Open Catalog and Dremio Catalog
provide a streamlined experience for production environments—eliminating the
need to deploy and maintain your own Polaris infrastructure—it’s still invaluable
to have a hands-on understanding of its mechanics. By deploying Apache Polaris
locally, you'll gain direct insights into how catalogs, roles, and access management
come together, giving you a solid foundation to appreciate and optimize managed
solutions fully.

In this chapter, we'll walk through deploying Apache Polaris using Docker, setting up
catalogs, creating roles, and configuring access controls. Whether you’re evaluating
Polaris for your organization or sharpening your understanding of its internals, this
guide will give you the tools to confidently explore its potential.

Deploying Locally with Docker

Before we dive into deploying Apache Polaris locally, it's worth noting the distinction
between development and production environments. In this chapter, we'll focus on
spinning up Polaris using Docker for hands-on learning and experimentation—a
great way to explore how Polaris works under the hood. However, when it comes
time to deploy Polaris in a production setting, several additional considerations
come into play: secure authentication with OAuth2, durable metadata persistence,
and proper bootstrapping of service credentials. While local deployment relies on

13

simplified defaults, such as in-memory storage and test authenticators, production
environments should follow the best practices outlined in the Polaris deployment
documentation to ensure stability, security, and scalability. Think of this local setup as
your Polaris lab—an essential step before rolling out the real thing.

Prerequisites

Before proceeding, ensure you have the following installed on your system:

Docker
A containerization platform

Docker Compose

A tool for defining and running multi-container Docker applications
Git

To clone the repository with the deployment setup

Step 1: Clone the Repository

Start by cloning the Apache Polaris Educational Environment repository, which con-
tains the necessary Docker Compose file and setup instructions.

git clone https://github.com/AlexMercedCoder/quick-test-polaris-environment
Then change directories into the cloned repository.
cd quick-test-polaris-environment

This repository includes everything you need to deploy Polaris and Spark locally,
including the docker-compose.yml file.

Step 2: Configure Environment Variables

The deployment can utilize AWS credentials and other environment-specific configu-
rations as applicable. These settings are defined through the environment variables
on your host so make sure they are represented if you are using the S3 storage.

Bash/ZSH

export AWS_REGION=us-east-1

export AWS_ACCESS_KEY_ID=your-aws-access-key
export AWS_SECRET_ACCESS_KEY=your-aws-secret-key
CMD/Windows

set AWS_REGION=us-east-1

set AWS_ACCESS_KEY_ID=your-aws-access-key

set AWS_SECRET_ACCESS_KEY=your-aws-secret-key

Powershell Windows

Senv:AWS_REGION = "us-east-1"
$env:AWS_ACCESS_KEY_ID = "your-aws-access-key"
Senv:AWS_SECRET_ACCESS_KEY = "your-aws-secret-key"

114 | Chapter 6: Working with Apache Polaris 0SS

https://oreil.ly/d8bZ5

If you are not using S3 storage, you can skip this step. If this is your first time, its
better to walk through these steps with your local file system first, then try with S3.

Step 3: Understand the Docker Compose File

The docker-compose.yml file provided in the repository defines the services required
to run Apache Polaris and Spark locally. It ensures that both services can communi-
cate with each other seamlessly and share data through a common volume.

Here is the full content of the docker-compose.yml file:

services:
polaris:
image: apache/polaris:1.1.0-incubating-SNAPSHOT
container_name: polaris
ports:
- "8181:8181"
- "8182"
networks:
polaris-quickstart:
volumes:
- ./icebergdata:/data
environment:
AWS_REGION: $AWS_REGION
AWS_ACCESS_KEY_ID: $AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY: $AWS_SECRET_ACCESS_KEY
POLARIS_BOOTSTRAP_CREDENTIALS: POLARIS,root_user,my_secret_id
polaris.realm-context.realms: POLARIS
quarkus.log.file.enable: "false"
quarkus.otel.sdk.disabled: "true"
polaris.features."DROP_WITH_PURGE_ENABLED": "true"
polaris.features."ALLOW_INSECURE_STORAGE_TYPES": "true"
polaris.features."SUPPORTED_CATALOG_STORAGE_TYPES": "[\"FILE\",\"S3\",
\"GCS\",\"AZURE\"]"
polaris.readiness.ignore-severe-issues: "true"

spark:
platform: 1inux/x86_64
image: alexmerced/spark35nb:latest
ports:
- "8080:8080" # Master Web UI
- "7077:7077" # Master Port
- "8888:8888" # Jupyter Notebook
volumes:
- ./icebergdata:/data
environment:
- AWS_REGION=us-east-1
- AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID
- AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY
contailner_name: spark
networks:
polaris-quickstart:

Deploying Locally with Docker | 115

networks:
polaris-quickstart:

This file defines two services, Polaris and Spark, which are connected via a shared
Docker network and utilize a standard data volume for interoperability.

Polaris service

The Polaris service acts as our Iceberg Catalog.

» Image:

— Uses apache/polaris:1.1.0-1incubating-SNAPSHOT, an official snapshot
build of Apache Polaris.

« Ports:

— 8181:8181: Exposes Polaris’s primary REST APL.

— 8182: An internal port used by Polaris; no external mapping is needed.
o Volumes:

— Mounts the local ./icebergdata directory to /data in the container, serving as
the shared location for catalog data and metadata.

« Environment variables:
— Reads AWS credentials and region from the host environment (or .env file).

— Configures Polaris bootstrap credentials, enables support for multiple storage
backends, including FILE, and disables telemetry and file-based logging.

o Configuration:

— Polaris is bootstrapped with the POLARIS_BOOTSTRAP_CREDENTIALS
and runs wusing its default internal configuration. Features like
DROP_WITH_PURGE_ENABLED and ALLOW_INSECURE_STORAGE_TYPES are explic-
itly enabled to facilitate local experimentation with the FILE storage type.

Spark service
The Spark service acts as our environment for running queries against our Iceberg
Catalog.

» Image:

— alexmerced/spark35nb:latest, a custom Docker image that includes Spark
3.5, Iceberg, PySpark, JupyterLab, and additional data tools.

116 | Chapter 6: Working with Apache Polaris 0SS

o Ports:
— 8080:8080: Spark Master Web UL
— 7077:7077: Spark Master port for worker communication.
— 8888:8888: Jupyter Notebook interface for interactive use.
o Volumes:

— Shares the ./icebergdata directory with Polaris, allowing Spark to read/write
from the same physical storage path, which is essential when using local FILE
storage catalogs.

« Environment variables:
— Sets the AWS region and credentials for accessing object storage, if needed.
o Platform:

— The linux/x86_64 platform flag ensures compatibility in environments
requiring a specific architecture.

Shared network

Both services are attached to the polaris-quickstart Docker network, which ena-
bles internal communication between containers using their service names (polaris
and spark).

Step 3 summary

This setup enables Apache Polaris to function as a REST-based Iceberg catalog,
while Spark serves as the processing engine. They share a standard file system (./
icebergdata), making it easy to experiment with Iceberg tables in a self-contained
environment.

This configuration is designed for educational and development use cases. For pro-
duction or cloud-based environments, consider adapting it to use secure object stor-
age (e.g., S3, GCS) and managed authentication mechanisms.

Step 4: Starting the Environment

To deploy the Polaris learning environment, start the services defined in the docker-
compose.yml file. The docker-compose command starts, stops, and manages the
environment.

Open a terminal in the directory where the docker-compose.yml file is located. Run
the following command to start the environment:

docker compose up

Deploying Locally with Docker | 117

The docker compose up command:
e Builds and starts the services (polaris and spark) defined in the docker-

compose.yml file.

o Outputs logs from the running containers directly to your terminal.

Once the environment is running, verify that both services are up by running:
docker ps

This will list all running containers, including polaris and spark.

Step 5: Stopping the Environment

When you are done using the Polaris learning environment, it's important to stop and
clean up the running containers to free up system resources.

To stop the services but keep the containers and their states intact, run:

docker compose stop

This command halts the containers but keeps them in a paused state, so they can be
restarted quickly with docker compose start.

To stop and remove the containers thoroughly, use the following command:
docker compose down

This command stops the services and removes the containers, networks, and any
other resources defined in the docker-compose.yml file.

If you also want to remove the associated volumes (including the ./icebergdata direc-
tory), add the - -volumes flag:

docker compose down --volumes

Be cautious with this command, as it deletes all persistent data stored in the volumes.
The different commands for starting Docker Compose environments can be seen in
Table 6-1.

Table 6-1. Docker commands for starting and stopping Docker Compose environments

docker compose up Starts the services and outputs logs to the terminal

docker compose up -d Starts the services in detached mode (runs in the background)

docker compose stop Stops the containers but retains their state, making it faster to restart

docker compose down Stops and removes the containers, networks, and other resources defined in the
docker-compose.yml file

docker compose down -- Stopsand removes containers along with their volumes, deleting any stored data

volumes

118 | Chapter 6: Working with Apache Polaris 0SS

Creating Catalogs

Now that the Polaris environment is running, the first step is to create a catalog.
Catalogs are the foundation of Polaris, as they store metadata about tables and other
resources. We will use set names for our catalogs, principles, and roles. While you can
name these whatever you want, we'll name them so they can match the Apache Spark
code snippets in the next chapter.

This particular environment has your root credentials preconfigured via environ-
mental variables:

POLARIS_BOOTSTRAP_CREDENTIALS: POLARIS,root_user,my_secret_id

For the “POLARIS” realm, the root user’s ID is “root_user” and the secret is
“my_secret_id”. In this environment, there is a Python file that will run all the
bootstrapping requests for you, and in the Polaris repo, there is a CLI you can use
as well. To get acquainted with the Polaris Catalog management API, let’s make raw
requests to the Polaris server.

Next, use the root credentials provided in the container logs to generate a bearer
token:

curl -1 -X POST \
http://localhost:8181/api/catalog/vl/oauth/tokens \
-d 'grant_type=client_credentials&client_id=<ID>&client_secret=
<SECRET>&scope=PRINCIPAL_ROLE:ALL'

The response will include a bearer token. Copy this token for use in subsequent
requests. Use the bearer token to send a POST request to create a catalog. You
can choose between using the local file system or S3 storage. If this is your first
time working with Polaris, for educational purposes we suggest choosing a local file
system:

curl -1 -X POST -H "Authorization: Bearer <YOUR_TOKEN>" \
-H 'Accept: application/json' -H 'Content-Type: application/json' \
http://localhost:8181/api/management/v1/catalogs \
-d '"{"name": "polariscatalog", "type": "INTERNAL", "properties": {
"default-base-location": "file:///data"
},"storageConfigInfo": {
"storageType": "FILE",
"allowedLocations": [
"file:///data"
1
Y
For S3 storage, replace the placeholder values with your AWS configuration:
curl -1 -X POST -H "Authorization: Bearer <YOUR_TOKEN>" \
-H 'Accept: application/json' -H 'Content-Type: application/json' \

http://localhost:8181/api/management/v1/catalogs \
-d '"{"name": "polariscatalog", "type": "INTERNAL", "properties": {

Creating Catalogs | 119

"default-base-location": "s3://my/s3/path"
},"storageConfigInfo": {
"roleArn": "arn:aws:iam::xxxxxxxxx:role/polaris-storage",
"storageType": "S3",
"allowedLocations": [
"s3://my/s3/path"
1
Y
Make sure to replace “xxxxxxxxx~ with your actual AWS account number if using
AWS.

Verify that the catalog was created successfully:

curl -X GET "http://localhost:8181/api/management/v1/catalogs" \
-H "Authorization: Bearer <YOUR_TOKEN>" \
-H "Accept: application/json"

When to Create a (atalog

While creating a catalog in Polaris is a straightforward operation, deciding when
to make a catalog and how to organize datasets across catalogs requires more strate-
gic thinking. Catalogs are the highest level of isolation within a Realm in Polaris.
Each catalog has its own set of namespaces, tables, views, and associated security
controls. Making wise choices about catalog boundaries early on can lead to better
performance, more effective governance, and easier operations at scale.

When to create a new catalog

You should consider creating a new catalog when:

You need hard security boundaries between datasets or teams.
Catalog-level access control prevents users from even listing what exists in a
catalog unless explicitly granted permission.

You are managing staging and production environments within the same Polaris
deployment.
Separate catalogs for each environment reduce the risk of accidental data access
or privilege escalation.

You need to enforce different storage backends or IAM roles.
Each catalog defines its own storage configuration, making it the correct bound-
ary for differing file systems or authentication models.

120 | Chapter 6: Working with Apache Polaris 0SS

When not to create a new catalog

Avoid creating unnecessary catalogs if:

You simply want to group related tables.
Use namespaces instead. Namespaces offer a more lightweight form of logical
organization within a catalog.

You are managing datasets that share the same governance and storage policies.
Creating too many catalogs can lead to administrative overhead without provid-
ing real benefits.

Recommended catalog strategies

By department or business unit
When working in large enterprises, it often makes sense to map one catalog to
each business unit (e.g., sales, marketing). This aligns governance boundaries
with organizational structure.

By environment
Create separate catalogs for dev, staging, and prod to isolate workloads and
simplify deployment pipelines.

By use case
For data platforms serving different user personas, separate catalogs for analytics,
data science, and ML feature stores can help clarify ownership and policy models.

Long-term considerations

Catalogs are relatively static. They are not designed for frequent creation and dele-
tion. As such, make catalog design a deliberate architectural decision rather than a
convenience for short-term organization. It is easier to manage and evolve namespa-
ces and roles within a catalog than to migrate entities between catalogs later.

By designing catalogs thoughtfully, you ensure that Polaris remains scalable, secure,
and easy to govern as your lakehouse grows.

Creating Catalog Roles

Catalog roles control access to catalogs and their contents. Use the bearer token
created earlier to create a catalog role within the previously created catalog:

curl -X POST "http://localhost:8181/api/management/v1/catalogs/polariscatalog
/catalog-roles" \

-H "Authorization: Bearer <YOUR_TOKEN>" \

-H "Content-Type: application/json" \

-d '{"catalogRole": {"name": "polariscatalogrole"}}'

Creating Catalog Roles | 121

List the catalog roles to ensure the role was created:

curl -X GET "http://localhost:8181/api/management/vil/catalogs/polariscatalog
/catalog-roles" \

-H "Authorization: Bearer <YOUR_TOKEN>" \

-H "Accept: application/json"

When to Create Catalog Roles

Catalog roles in Polaris act as the main access control unit within a catalog, determin-
ing what operations users and services can perform. While creating catalog roles is
technically straightforward, designing them with long-term usability and governance
in mind can make a substantial difference in how scalable, secure, and understanda-
ble your access model becomes.

This section outlines best practices for creating and managing catalog roles effec-
tively, with a focus on clarity, security, and maintainability.

Use roles to reflect real-world responsibilities

The most effective catalog roles mirror the responsibilities of actual personas in your
organization. Instead of assigning privileges directly to individual users (principals),
define catalog roles that describe what a user should be able to do—then grant those to
principal roles. This keeps your permissions model modular and easier to audit. For
example:

« A data_reader role may be granted table and view read privileges.

o A data_engineer role might have broader permissions, including table creation,
update, and delete.

o A catalog_admin role may include privileges to manage schemas, views, and
catalog-level configurations.

This alignment ensures that when team responsibilities change or expand, access
can be updated centrally by adjusting catalog roles rather than updating individual
permissions.

Favor least privilege

When in doubt, grant fewer privileges. Catalog roles should only include the exact set
of actions needed for a user or service to complete their task. This reduces the risk of
accidental changes, data exposure, or abuse of access.

Start with minimal roles (e.g., read-only), and layer on additional permissions as nec-
essary. Avoid giving CATALOG_MANAGE_PRIVILEGES or TABLE_DELETE unless required
by the use case.

122 | Chapter 6: Working with Apache Polaris 0SS

Reuse and generalize where possible

Avoid creating overly specific catalog roles for one-off use cases. If every user or
dataset is assigned a unique role, your governance model becomes challenging to
manage and audit. Instead:

« Create reusable roles for typical access patterns.

» Use namespace-specific privilege grants to restrict access without needing new
roles.

o Tag roles with properties (e.g., env=prod, purpose=analytics) to help you iden-
tify intent and scope over time.

Limit catalog roles by scope and policy

While catalog roles are defined per catalog, they should not necessarily have access
to everything within it. Use privilege grants at the namespace, table, or view level to
constrain what a role can see or modify.

Document ownership and purpose

Take advantage of catalog role properties to store metadata about each role. For
example:

--property owner=finance_team
--property sensitivity=internal_only

This helps automate governance workflows, enhances discoverability, and supports
internal audits or reviews.

Periodically review and rotate
Catalog roles aren’t static. Over time, roles may become obsolete, overly permissive,
or redundant. Build regular access reviews into your governance process:
o Identify roles that are no longer used.
o Audit which principal roles are attached to high-privilege catalog roles.
» Remove or refactor overly broad or duplicative roles.
By applying these best practices, you ensure your access model remains robust,

understandable, and secure, without slowing down the agility that Polaris is designed
to deliver.

(reating Catalog Roles | 123

Creating Principals

A principal represents a user or a service account that can access Polaris resources.
Use the bearer token to create a principal:

curl -X POST "http://localhost:8181/api/management/v1/principals" \
-H "Authorization: Bearer <YOUR_TOKEN>" \
-H "Content-Type: application/json" \
-d '{"name": "polarisuser", "type": "user"}'

Confirm the principal was created:

curl -X GET "http://localhost:8181/api/management/v1/principals" \
-H "Authorization: Bearer <YOUR_TOKEN>" \
-H "Accept: application/json"

Creating Principal Roles

Principal roles define access privileges for a principal.

1. Create a role for the polarisuser principal:

curl -X POST "http://localhost:8181/api/management/v1/principal-roles" \
-H "Authorization: Bearer <YOUR_TOKEN>" \
-H "Content-Type: application/json" \
-d '{"principalRole": {"name": "polarisuserrole"}}'

2. Assign the principal role to the principal:

curl -X PUT "http://localhost:8181/api/management/v1/principals
/polarisuser/principal-roles"” \

-H "Authorization: Bearer <YOUR_TOKEN>" \

-H "Content-Type: application/json" \

-d '{"principalRole": {"name": "polarisuserrole"}}'

3. Verify the role assignment:

curl -X GET "http://localhost:8181/api/management/v1/principals
/polarisuser/principal-roles" \

-H "Authorization: Bearer <YOUR_TOKEN>" \
-H "Accept: application/json"

When to Create a Principal Role

Principal roles in Polaris serve as a scalable mechanism for managing access across
users, service accounts, and automated processes. Rather than granting catalog roles
or privileges to each principal individually, you will assign them to principal roles,
creating a reusable and auditable layer of abstraction.

124 | Chapter 6: Working with Apache Polaris 0SS

Designing principal roles well ensures that your access model is easier to manage,
secure, and adaptable as your team and architecture evolve.

When to create a new principal role

You should create a new principal role when:

« A distinct group of users or services needs the same set of privileges across one or
more catalogs.

» You want to separate duties between job functions—for example, analysts vs. data
engineers.

o A team, department, or business unit operates in its own domain and needs
clearly scoped access.

 You're introducing automation or third-party integrations that require program-
matic access under defined security constraints.

» Compliance or governance policies require explicit access tracking by function or

region.

Each principal role becomes a single point of truth about what that group can access,
making it easier to rotate credentials, revoke access, or understand the blast radius of
a permission change.

Map roles to real organizational units
Align principal roles with actual teams or responsibilities in your organization. This
improves clarity and simplifies onboarding. For example:

» data_engineers_team_a

e analytics_readonly

e etl_jobs

e third_party_integration_salesforce

Using a naming convention that reflects function or ownership makes it easier to
audit and manage over time.

Reuse roles across environments

Rather than duplicating roles for dev, staging, and prod, consider designing roles
to be environment-agnostic, then use environment-specific catalogs to scope access
appropriately. This approach simplifies governance while maintaining separation
between environments.

Creating Principal Roles | 125

Keep roles manageable

Avoid role sprawl. If every principal gets a custom role, you'll lose the benefits of
abstraction. Instead:

o Create roles for shared access patterns.

o Use metadata tags (--property team=finance, --property env=prod) to cap-
ture additional detail.

o Revisit existing roles periodically to consolidate or deprecate as needs evolve.

Audit and review

Make principal role management part of your regular security and governance
process:

+ Review who has which roles.
o Track usage and rotate credentials as needed.

 Revoke roles that are no longer necessary.

A well-maintained set of principal roles becomes a powerful tool for securing and
scaling access in Polaris, especially as the number of users, services, and catalogs
grows. By following these best practices, you can ensure your access model remains
clear, consistent, and compliant.

Assigning the Catalog Role to the Principal Role and
Setting Permissions on the Catalog

Once you have created the catalog, catalog role, principal, and principal role, the
next step is to assign the catalog role to the principal role. This step ensures that
the principal can interact with the catalog. Additionally, you’ll set the necessary
permissions on the catalog role to define what actions the assigned principal can
perform.

1. Assign the catalog role to the principal role using the bearer token:

curl -X PUT "http://localhost:8181/api/management/v1/principal-roles
/polarisuserrole/catalog-roles/polariscatalog" \

-H "Authorization: Bearer <YOUR_TOKEN>" \

-H "Content-Type: application/json" \

-d '{"catalogRole": {"name": "polariscatalogrole"}}'

2. Grant privileges to the catalog role. Define the permissions that the catalog role
has over the catalog. For example, you can grant the CATALOG_MANAGE_CONTENT
privilege:

126 | Chapter 6: Working with Apache Polaris 0SS

curl -X PUT "http://localhost:8181/api/management/v1/catalogs
/polariscatalog/catalog-roles/polariscatalogrole/grants" \
-H "Authorization: Bearer <YOUR_TOKEN>" \
-H "Content-Type: application/json" \
-d '{"grant": {"type": "catalog", "privilege": "CATALOG_MANAGE_CONTENT"}}'
3. Verify the granted permissions and check that the permissions have been suc-
cessfully applied to the catalog role:
curl -X GET "http://localhost:8181/api/management/v1/catalogs
/polariscatalog/catalog-roles/polariscatalogrole/grants" \
-H "Authorization: Bearer <YOUR_TOKEN>" \
-H "Accept: application/json"

Summary

By assigning the catalog role to the principal role and setting permissions, you've
completed the foundational access hierarchy in Polaris. This setup ensures secure and
organized management of catalogs and resources, creating a robust framework for
collaboration and data governance. With this environment now configured, youre
ready to move beyond setup and into application. In the next chapter, we'll integrate
this Polaris environment with a Python Spark environment, enabling you to query
and interact with your data programmatically. This hands-on exploration will bring
everything together, showcasing the power of Polaris in real-world scenarios.

Summary | 127

CHAPTER7
Using Apache Polaris with Apache Spark

With your experimental Apache Polaris environment successfully set up on your
laptop, youre now ready to start exploring its integration with Apache Spark. If
you've followed the previous chapter, you should have your environment running
and be able to access Jupyter Notebook at http://localhost:8888. While we will be
working in this local setup, the steps and concepts covered in this chapter are equally
applicable to any Spark environment, whether its a local cluster or a cloud-based
setup.

Apache Spark is a powerful, open source, unified analytics engine for processing
large-scale data. Its in-memory computation and distributed architecture make it
incredibly fast and efficient for handling complex workloads, from batch processing
to real-time analytics and machine learning tasks.

In this chapter, we'll dive into the practical steps to connect your Polaris catalog to
Spark, explore the Spark DataFrame API, execute SQL queries on Polaris-managed
data, and even use Spark Streaming to interact with Polaris in real-time. By the end
of this chapter, you'll have a comprehensive understanding of how to harness the
combined power of Apache Polaris and Apache Spark in your data workflows. Let’s
get started!

You can see all these code snippets as well in the book’s GitHub repository:

https://github.com/developer-advocacy-dremio/apache-polaris-the-definitive-guide.

Connecting Your Apache Polaris Catalog to Apache Spark

To use Apache Polaris with Apache Spark, you must configure your Spark session
to recognize Polaris as a catalog. This setup involves configuring how Spark commu-

129

https://github.com/developer-advocacy-dremio/apache-polaris-the-definitive-guide

nicates with your Polaris catalog. These configurations include the catalog type, UR],
credentials, and other related properties.

The following is a step-by-step guide to configure Apache Spark for using Polaris as
an Iceberg catalog.

To connect Spark to Polaris, you need to set several configuration properties. These
properties specify the catalog implementation, credentials, and other details required
to access Polaris.

Here’s a Python script that illustrates how to configure the Spark session for Polaris:

import pyspark
from pyspark.sql import SparkSession

Define sensitive variables

POLARIS_URI = 'http://polaris:8181/api/catalog’

POLARIS_CATALOG_NAME = 'polariscatalog'

POLARIS_CREDENTIALS = '<principal_clientId>:<principal_clientSecret>'
POLARIS_SCOPE = 'PRINCIPAL_ROLE:ALL'

This PySpark snippet initializes some key configuration values needed to connect to
a Polaris data catalog. It begins by importing the necessary PySpark modules and
creating a SparkSession, which is the entry point for using DataFrame and SQL
functionality in Spark. The script then defines several variables that hold sensitive
information required to access the Polaris catalog API. POLARIS_URI specifies the
endpoint where the Polaris API can be reached, while POLARIS_CATALOG_NAME desig-
nates the name of the target catalog. POLARIS_CREDENTIALS contains the client ID
and secret for authentication, and POLARIS_SCOPE defines the access scope for the
principal.

Set up Spark configuration
conf = (
pyspark.SparkConf()
.setAppName('PolarisSparkApp')
Add necessary JARs
.set('spark.jars.packages', 'org.apache.iceberg:iceberg-spark-runtime-
3.5.2.12:1.5.2,0rg.apache.hadoop:hadoop-aws:3.4.0') @
Enable Iceberg SQL extensions
.set('spark.sql.extensions', 'org.apache.iceberg.spark.extensions.
IcebergSparkSessionExtensions') @
Configure the Polaris catalog
.set('spark.sql.catalog.polaris’,
'org.apache.iceberg.spark.SparkCatalog') ©
.set('spark.sql.catalog.polaris.warehouse', POLARIS_CATALOG_NAME) @
.set('spark.sql.catalog.polaris.catalog-impl’',
'org.apache.iceberg.rest.RESTCatalog') @
.set('spark.sql.catalog.polaris.uri', POLARIS_URI) @
.set('spark.sql.catalog.polaris.credential', POLARIS_CREDENTIALS) @
.set('spark.sql.catalog.polaris.scope', POLARIS_SCOPE) ©

130 | Chapter7: Using Apache Polaris with Apache Spark

.set('spark.sql.catalog.polaris.token-refresh-enabled', 'true') ©
)

Here’s an explanation of the key configuration properties used in the script:

9]

spark. jars.packages specifies the required dependencies for Iceberg integra-
tion with Spark. This includes the Iceberg runtime library and Hadoop AWS
library (if using S3).

spark.sql.extensions enables the Iceberg SQL extensions to work with Iceberg
tables and namespaces.

spark.sql.catalog.polaris defines the catalog name used in SQL queries (e.g.,
polaris).

Spark.sql.catalog.polaris.warehouse stores the data that is tracked in the
catalog. We will pass the catalog name as the value.

spark.sql.catalog.polaris.catalog-impl indicates the catalog implementa-
tion type, which is org.apache.iceberg.rest.RESTCatalog for Polaris since it is
a REST Catalog supporting catalog.

spark.sql.catalog.polaris.uri is the REST API endpoint of the Polaris
catalog.

spark.sql.catalog.polaris.credential is the credentials to authenticate with
Polaris. These are principal credentials given in the API response when you
create a principal.

spark.sql.catalog.polaris.scope specifies the access scope for the creden-
tials.

spark.sql.catalog.polaris.token-refresh-enabled automatically refreshes
the authentication token as needed.

This portion of the code kicks off the actual execution environment by initializing the
Spark session using a predefined configuration object (conf). This configuration
likely includes all the necessary settings, such as the Polaris URI, credentials, and
catalog name, that were previously set up.

Start the Spark session
spark = SparkSession.builder.config(conf=conf).getOrCreate()
print("Spark session configured for Polaris is running.")

Test the connection

Connecting Your Apache Polaris Catalog to Apache Spark | 131

print("Listing all available namespaces:")
spark.sql("SHOW NAMESPACES IN polaris").show()

By calling .getOrCreate(), it either starts a new session or reuses an existing one.
Once the session is active, the script prints a confirmation message to indicate that
Spark is ready and configured to work with Polaris. To validate the connection, it
runs a simple SQL command to list all available namespaces (similar to databases or
schemas) within the Polaris catalog, displaying the results in the console. This serves
as a quick, effective check to ensure the integration is working correctly.

After starting the Spark session, you can verify the connection to Polaris by running
basic SQL commands:

Show all namespaces in the Polaris catalog
spark.sql("SHOW NAMESPACES IN polaris").show()

Create a new namespace
spark.sql("CREATE NAMESPACE IF NOT EXISTS polaris.db").show()

List tables in a namespace

spark.sql("SHOW TABLES IN polaris.db").show()
If the configuration is correct, these commands will interact with the Polaris catalog
and display the corresponding results.

Your Spark session is now connected to Apache Polaris. You can use the Spark
DataFrame API and SparkSQL to interact with Polaris-managed data. In the next
section, we'll explore how to leverage the Spark DataFrame API for data processing
with Polaris.

Using Spark Dataframe API with Apache Polaris
(Incubating)

The Spark DataFrame API is a powerful tool for working with structured data, ena-
bling you to create, read, update, and delete tables programmatically. With Apache
Polaris configured as a catalog, the DataFrame API makes it easy to interact with your
Polaris-managed Iceberg tables. This section walks through these key operations step
by step.

Creating a Table

You can create a table programmatically using the DataFrame API. This method lets
you define the schema, specify partitioning, and optionally include table properties.

Example: Creating a table using Spark DataFrameWriterV2 API
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, lit

132 | Chapter7: Using Apache Polaris with Apache Spark

... code for initializing spark session
& configuring catalog

Define a DataFrame
data = [
(1, "Alice", "2023-01-01"),
(2, "Bob", "2023-01-02"),
(3, "Charlie", "2023-01-03"),
1
columns = ["1d", "name", "event_date"]
df = spark.createDataFrame(data, columns)

Write the DataFrame to create a new table in Polaris

df.writeTo("polaris.db.events") \
.partitionedBy("event_date") \
.tableProperty("write.format.default", "parquet") \
.create()

This code creates a new table, events in the db namespace, partitioned by the
event_date column. Data is written in Parquet format by default, as specified in the
table properties.

Querying a Table

After creating a table, you can query it using the DataFrame API to perform analytics
or retrieve data.

Example: Querying a table
df = spark.table("polaris.db.events")

Perform operations on the DataFrame
df.show()

Filter rows based on a condition
filtered_df = df.filter(col("event_date") > 1it("2023-01-01"))
filtered_df.show()

The spark.table method loads the table as a DataFrame, enabling you to apply
filters, transformations, and aggregations.

Updating a Table

You can use the MERGE INTO operation to update rows in a table. This operation
enables row-level updates and inserts based on a condition.

Example: Updating a table with MERGE INTO
updates = [

(1, "Alice Updated", "2023-01-01"),

(4, "David", "2023-01-04"),
1

updates_df = spark.createDataFrame(updates, columns)

Using Spark Dataframe APl with Apache Polaris (Incubating) | 133

updates_df.createOrReplaceTempView("updates")

Perform MERGE INTO operation
spark.sql("""
MERGE INTO polaris.db.events t
USING updates u
ON t.id = u.id
WHEN MATCHED THEN UPDATE SET t.name = u.name
WHEN NOT MATCHED THEN INSERT (id, name, event_date) VALUES (u.id, u.name,
u.event_date)

"

In this example, existing rows are updated, and new rows are inserted if no match is
found.

Deleting Rows

Iceberg supports row-level deletion, allowing you to delete rows based on a
condition.

Example: Deleting rows from a table
spark.sql("""
DELETE FROM polaris.db.events
WHERE event_date < '2023-01-02'
niy

This deletes all rows where event_date is earlier than January 2, 2023.

Appending Data
To add new rows to an existing table, use the append method of the DataFrame API.

Example: Appending data to a table
new_data = [

(5, "Eve", "2023-01-05"),

(6, "Frank", "2023-01-06"),
1

new_df = spark.createDataFrame(new_data, columns)

new_df.writeTo("polaris.db.events").append()

This appends new rows to the events table without modifying existing data.

Reading Metadata Tables

Iceberg tables expose rich metadata through special metadata tables. These can be
queried using the DataFrame API for insights into table snapshots, history, and more.

Example: Querying the snapshots metadata table
snapshots_df = spark.table("polaris.db.events.snapshots")
snapshots_df.show()

134 | Chapter7: Using Apache Polaris with Apache Spark

Example: Querying the history metadata table
history_df = spark.table("polaris.db.events.history")
history_df.show()

Following these examples, you can effectively manage your Polaris-backed Iceberg
tables using the Spark DataFrame API. These operations demonstrate the flexibility
and ease of handling data in a Spark environment with a Polaris catalog.

Using SparkSQL with Apache Polaris

SparkSQL provides a declarative way to interact with Apache Polaris-backed Iceberg
tables, allowing you to run SQL queries to create, update, delete, and query tables. In
this section, we'll explore using the spark.sql function in Python to perform various
SQL operations with your Polaris catalog.

Creating a Table

You can create a table in Polaris using the CREATE TABLE SQL statement. This allows
you to define a table’s schema, partitioning, and table properties.

Example: Creating a table with SparkSQL
spark.sql("""
CREATE TABLE polaris.db.events (
id BIGINT,
name STRING,
event_date DATE
)
USING iceberg
PARTITIONED BY (event_date)
TBLPROPERTIES ('write.format.default' = 'parquet')
"""

This creates a table events in the db namespace, partitioned by the event_date
column and stored in Parquet format.

Querying a Table

With SparkSQL, you can easily query tables to retrieve and analyze data. Use the
SELECT statement to fetch data from your Polaris-backed tables.

Example: Querying a table
spark.sql("""

SELECT *

FROM polaris.db.events
"""y, show()

Example: Querying with filters and aggregations
spark.sql("""
SELECT event_date, COUNT(*) AS event_count

Using SparkSQL with Apache Polaris | 135

FROM polaris.db.events
WHERE event_date > '2023-01-01'
GROUP BY event_date
ORDER BY event_date
"""y, show()

The show() method displays the query results in the console.

Inserting Data
You can insert data into a table using the INSERT INTO statement.

Example: Inserting data into a table
spark.sql("""
INSERT INTO polaris.db.events
VALUES
(1, 'Alice', '2023-01-01'),
(2, 'Bob', '2023-01-02'),
(3, 'Charlie', '2023-01-03')
"""

This appends the specified rows to the events table.

Updating Data
To modify existing rows, use the UPDATE statement with a condition.

Example: Updating rows in a table
spark.sql("""
UPDATE polaris.db.events
SET name = 'Alice Updated'
WHERE id = 1
"""

This updates the name column for the row where id = 1.

Deleting Data
To remove specific rows from a table, use the DELETE statement.

Example: Deleting rows from a table
spark.sql("""
DELETE FROM polaris.db.events
WHERE event_date < '2023-01-02'

"

This deletes all rows where event_date is earlier than January 2, 2023.

Merging Data

The MERGE INTO statement allows you to perform upserts by updating or inserting
rows based on a condition.

136 | Chapter7: Using Apache Polaris with Apache Spark

Example: Merging data into a table

spark.sql("""
MERGE INTO polaris.db.events t
USING (
SELECT 1 AS id, 'Alice Updated' AS name, '2023-01-01' AS event_date
UNION ALL
SELECT 4, 'David', '2023-01-04'
) u

ON t.id = u.1id

WHEN MATCHED THEN UPDATE SET t.name = u.name

WHEN NOT MATCHED THEN INSERT (id, name, event_date) VALUES (u.id, u.name,
u.event_date)

")

This updates rows with matching 1d values and inserts new rows where no match is
found.

Reading Metadata Tables

Polaris-backed Iceberg tables expose metadata tables that provide insights into the
table’s snapshots, history, lists of data files, partitions and more.

Example: Querying the snapshots metadata table
spark.sql("""

SELECT *

FROM polaris.db.events.snapshots
"y show()

Example: Querying the history metadata table
spark.sql("""

SELECT *

FROM polaris.db.events.history
"y show()

These queries allow you to inspect the tables historical changes and snapshots.

Time Travel Queries

Iceberg supports time travel queries, enabling you to access data as it existed at a
specific point in time or snapshot.

Example: Querying a table at a specific timestamp
spark.sql("""

SELECT *

FROM polaris.db.events

TIMESTAMP AS OF '2023-01-02 12:00:00'
"""y show()

Example: Querying a table at a specific snapshot
spark.sql("""

SELECT *

FROM polaris.db.events

Using SparkSQL with Apache Polaris | 137

VERSION AS OF 10963874102873
"y show()

By using SparkSQL with Polaris, you can leverage the full power of SQL to interact
with your Iceberg-backed tables. SparkSQL offers a concise, expressive way to work
with your data, whether you're creating tables, querying data, or managing snapshots.

Using Spark Streaming with Apache Polaris

Apache Spark Streaming allows you to process and analyze data in real time. With
Apache Polaris (incubating) backing your Iceberg tables, you can ingest streaming
data and write it to your Polaris catalog for efficient storage and querying. This sec-
tion will explore using Spark Structured Streaming with Polaris to perform streaming
reads and writes.

Setting Up Spark Streaming with Polaris

To enable Spark Streaming with Polaris, you need to configure the streaming Data-
FrameReader and DataFrameWriter appropriately as illustrated in the following code
snippets. The configurations will point to your Polaris catalog and specify how
streaming data is read and written.

Streaming Reads from Polaris

Iceberg supports incremental data reads from tables, allowing you to process
appended data in real time. Use the readStream method to set up a streaming query.

Example: Streaming reads from a Polaris-backed table
from pyspark.sql import SparkSession

Start a streaming query to read incremental data
streaming_df = (
spark.readStream
.format("iceberg")
.option("stream-from-timestamp", "1640995200000") @
Start from a specific timestamp (epoch in milliseconds)

.load("polaris.db.events") @

)

Process the streaming data
query = (
streaming_df

.select("id", "name", "event_date")
.writeStream
.format("console") ©
.outputMode("append")
.start()

138 | Chapter7: Using Apache Polaris with Apache Spark

2]
©

query.awaitTermination()

stream-from-timestamp specifies the starting point for the stream in epoch

milliseconds.

The streaming DataFrame processes appended data in the events table.

The results are displayed in the console.

Streaming Writes to Polaris

Iceberg allows streaming writes to append data to a table. Use the writeStream
method with the appropriate configuration to persist the data into a Polaris-backed
Iceberg table.

© The writeStream method appends the processed data into the events table.

Example: Streaming writes to a Polaris-backed table
from pyspark.sql import SparkSession
from pyspark.sql.functions import current_timestamp

Generate a streaming DataFrame with simulated data
input_stream = (
spark.readStream
.format("rate") @
Simulate 10 rows per second
.option("rowsPerSecond", 10)
.load()
.withColumn("name", lit("Simulated Name"))
.withColumn("event_date", current_timestamp())

)

Write the streaming data to a Polaris-backed table
query = (
input_stream

.selectExpr("value AS id", "name", "event_date")
.writeStream @
.format("iceberg")
.outputMode("append")
.option("checkpointLocation", "/tmp/checkpoints/events") ©
.toTable("polaris.db.events")

)

query.awaitTermination()

rate is used to simulate a streaming data source, generating rows at a specified

rate.

Using Spark Streaming with Apache Polaris

| 139

© checkpointlLocation ensures fault tolerance by storing the streaming job’s state.

Handling Deletes and Overwrites

By default, Iceberg does not support processing delete or overwrite snapshots in
streaming jobs. However, you can configure Spark to skip these operations by setting
specific options:

Example: Handling overwrite and delete snapshots in streaming reads
streaming_df = (
spark.readStream

.format("iceberg")
.option("stream-from-timestamp", "1640995200000")
.option("streaming-skip-overwrite-snapshots", "true")
.option("streaming-skip-delete-snapshots", "true")
.load("polaris.db.events")

)

These options ensure that the stream processes only append snapshots, avoiding
overwrite or delete operations conflicts.

Using Partitioned Tables

For partitioned Iceberg tables, Spark requires that data is sorted by partition before
being written. This ensures efficient storage and metadata handling. You can enable
fanout writing to simplify partition management in streaming workloads.

Example: Streaming writes to a partitioned table with fanout
query = (
input_stream

.selectExpr("value AS 1d", "name", "event_date")
.writeStream
.format("iceberg")
.outputMode("append")
.option("fanout-enabled", "true") # Automatically handle partitions
.option("checkpointLocation", "/tmp/checkpoints/partitioned_events")
.toTable("polaris.db.partitioned_events")

)

query.awaitTermination()

Maintaining Streaming Tables

Streaming writes can generate many small files, leading to metadata bloat and
decreased query performance. To mitigate this, you should:

Compact small files
Use the rewrite_data_files procedure to merge small files.

140 | Chapter7: Using Apache Polaris with Apache Spark

Expire old snapshots
Regularly clean up unnecessary snapshots using snapshot expiration.

Optimize metadata
Use the rewrite_manifests procedure to compact manifest files.

Conclusion

By leveraging Spark Structured Streaming with Polaris, you can seamlessly process
and store real-time data in Iceberg-backed tables.

In the next chapter, we'll explore the usage of Apache Polaris with Snowflake whether
connecting an externally managed Polaris table or using Snowflake’s managed Polaris
service, Open Catalog.

Conclusion | 141

CHAPTER 8
Using Apache Polaris with Snowflake

In this chapter, we explore how to integrate Apache Polaris with Snowflake to query
Iceberg tables from Snowflake’s platform. We'll walk through setting up Snowflake
to connect to a Polaris catalog (either a self-hosted Polaris OSS instance or Snow-
flake’s managed Polaris service, Open Catalog), configuring the necessary external
resources, running SQL queries on Polaris-managed Iceberg tables from Snowflake,
and understanding the differences between Polaris-backed tables and native Snow-
flake tables. By the end, you will be able to query Iceberg tables via Snowtflake using
Polaris as the metadata catalog. You can also appreciate the trade-offs between this
approach and Snowflake’s native table storage.

You should have a running Apache Polaris service with an Iceberg catalog and at least
one table available. This can be a self-hosted Polaris instance (as set up in previous
chapters) or the Snowflake Open Catalog. You will also need a Snowflake account
with appropriate permissions (ACCOUNTADMIN or ORGADMIN role to create
integrations) and access to the cloud storage where the Iceberg data resides.

Establishing Connectivity Between Snowflake and Polaris

To allow Snowflake to query data managed by Apache Polaris, it needs to connect to
Polaris's REST Catalog API. Snowflake treats Polaris as an external Iceberg catalog,
retrieving table metadata and reading data files from cloud storage. This integration
is achieved via two Snowflake objects:

External volume
An object configuring access to the external cloud storage (e.g., an S3 bucket
or Azure Blob container) where the Iceberg table’s data and metadata files are
stored. The external volume holds the storage location URL and any necessary
cloud IAM roles or credentials for Snowflake to access that storage.

143

Catalog integration
An object that tells Snowflake how to reach the external catalog’s REST endpoint
and how to authenticate to it. In our case, this integration will point to the Polaris
REST API and use OAuth credentials (a client ID and client secret) for a Polaris
service principal. The integration also specifies an -*/allowed scope for the OAuth
token, which in Polaris defines what access roles the token grants.

Before creating these objects, it is critical to ensure network connectivity from Snow-
flake to your Polaris service. If you are using Snowflake Open Catalog, Snowflake’s
Polaris is hosted on Snowflake’s infrastructure, so connectivity is handled internally.
But if you are connecting to a self-managed Polaris OSS instance, Snowflake must
be able to reach Polaris's REST endpoint. This typically means your Polaris API
must be accessible over the public internet (e.g., a public EC2 IP or domain or via
a public API Gateway). Snowflake cannot directly reach into a private VPC without
special networking setups. Some users employ AWS PrivateLink endpoints or similar
mechanisms for private connectivity. Still, as of 2025, Snowflake’s external catalog
integrations generally require a public endpoint unless using SigV4 with an API
Gateway for AWS-hosted Polaris. For simplicity, we assume your Polaris API (port
8181) is publicly reachable over HTTPS.

Configuring an External Volume

The first step is to create an external volume in Snowflake. This object represents the
cloud storage location of your Iceberg table’s data and metadata. You will need the
URI of the storage and the appropriate cloud IAM role or keys that Snowflake can
use to access it. For example, if your Iceberg data (managed by Polaris) is stored in an
Amazon S3 bucket, you might have an AWS IAM role that grants read access to that
bucket.

The following code is an example of an S3 bucket (for other clouds, the syntax is
similar but uses storage integration or container names as needed). This example
requires ACCOUNTADMIN or similar privileges.

CREATE OR REPLACE EXTERNAL VOLUME my_1iceberg_ext_volume
STORAGE_LOCATIONS = (

(

NAME = 'polaris_s3_storage',
STORAGE_PROVIDER = 'S3',

STORAGE_BASE_URL = 's3://<your-bucket-name>/<optional-path-prefix>/"',

STORAGE_AWS_ROLE_ARN = '<ARN-of-IAM-role-with-access>'

144 | Chapter 8: Using Apache Polaris with Snowflake

)
);
This creates an external volume named my_1iceberg_ext_volume (names are case-
insensitive but usually uppercase in Snowflake). The STORAGE_BASE_URL points
Snowflake to the root folder of the Iceberg dataset in the bucket. The STOR
AGE_AWS_ROLE_ARN is an IAM role Snowflake will assume to access that bucket
(Snowflake must have been configured as a trusted principal in that role). On Azure
or GCS, you would specify STORAGE_PROVIDER = 'AZURE' or 'GCS' and the corre-
sponding credentials (such as SAS tokens or service account keys) as needed.

Once this is created, you can verify the external volume with a DESCRIBE command or
by listing it.

DESC EXTERNAL VOLUME my_iceberg_ext_volume;

SHOW EXTERNAL VOLUMES;

Make sure the status of the external volume is valid. A common issue is a misconfig-
ured cloud role or a bucket name containing dots (“”), which Snowflake does not
support in S3 bucket names due to SSL limitations. Double-check the bucket name

and IAM role if you encounter an error at this stage.

Creating a Polaris Catalog Integration

Next, create a catalog integration in Snowflake to connect to the Polaris REST Catalog.
The integration will store the Polaris endpoint URL and the OAuth client credentials
for authentication. You should have the following information from your Polaris
setup:

The Catalog REST URI for Polaris
If you are using Snowflake Open Catalog, this will be a Snowflake domain
like https://<org>.<account>.snowflakecomputing.com/polaris/api/catalog. If you
are using self-hosted Polaris it will be your server’s URL (e.g., https://<your-
host>:8181/api/catalog). Always use HT'TPS in production for security.

The Client ID and Client Secret of a Polaris principal that Snowflake will use
In Snowflake Open Catalog, the client ID/secret corresponds to a service
connection you create in the Open Catalog Ul for Snowflake to use. When
self-hosted Polaris starts in dev mode, it prints a root principal’s credentials
<client-id>:<client-secret> in the logs. Creating a dedicated service principal
in Polaris for Snowflake with limited privileges is recommended.

The OAuth scopes that Snowflake should request
Polaris uses OAuth 2.0 client credentials flow. The scopes determine what
privileges the issued token will have. In Polaris, scopes often tie to principal
roles. For example, 'PRINCIPAL_ROLE: ALL' is a special scope that grants all

Establishing Connectivity Between Snowflake and Polaris | 145

roles assigned to that principal. Using ALL allows full access to the principal,
which is convenient for a read-write service principal. You could also specify
a particular principal role name to restrict scope. For our example, we'll use
'"PRINCIPAL_ROLE:ALL' to ensure Snowflake can read all tables the Polaris princi-
pal is allowed to.

(Optional) The catalog name or namespace in Polaris that you want Snowflake to use
Polaris can host multiple catalogs internally. If your Polaris server has a single
catalog (as in our local OSS setup from Chapter 6), you might not need to specify
a name (the integration can default to the namespace level).

However, Snowflake’s integration supports specifying both CATALOG_NAME and
CATALOG_NAMESPACE

CATALOG_NAME
This is the Polaris catalog identifier (if Polaris has named catalogs).

CATALOG_NAMESPACE

This is the default namespace (like a database or schema path) within that
catalog to scope operations. If a default is not provided, Snowflake requires fully
qualified table names when referencing tables.

CREATE OR REPLACE CATALOG INTEGRATION polaris_catalog_int

CATALOG_SOURCE = POLARIS
TABLE_FORMAT = ICEBERG

CATALOG_NAMESPACE = 'default'
-- If your Polaris has a specific catalog name, you can include:

-- REST_CONFIG = (CATALOG_URI = 'https://<polaris-host>/api/catalog',
CATALOG_NAME = '<yourCatalogName>')

REST_CONFIG = (
CATALOG_URI = 'https://<polaris-host>/api/catalog' -- Polaris REST endpoint

-- If using Snowflake Open Catalog, your URI would be
'https://<org>.<account>.snowflakecomputing.com/polaris/api/catalog’

-- For Snowflake Open Catalog, also include
CATALOG_NAME = '<OpenCatalogName>' as provided by Snowflake.

)
REST_AUTHENTICATION = (

TYPE = OAUTH,

146

Chapter 8: Using Apache Polaris with Snowflake

OAUTH_CLIENT_ID = '<Polaris_client_ID>',
OAUTH_CLIENT_SECRET = '<Polaris_client_secret>',
OAUTH_ALLOWED_SCOPES = ('PRINCIPAL_ROLE:ALL"')

)

ENABLED = TRUE;

A few things to note in this command:

» We set CATALOG_SOURCE = POLARIS to indicate this integration uses Apache
Polaris (Iceberg REST) as the source. Snowflake recognizes Polaris specifically as
a type of Iceberg REST catalog.

o TABLE_FORMAT = ICEBERG confirms we are dealing with Iceberg table format.

o We provided a CATALOG_URI pointing to Polaris. If you are not using the
Snowflake-hosted Open Catalog, ensure this is a publicly reachable URL for
your Polaris service. Suppose Polaris is running locally (e.g., localhost:8181). In
that case, Snowflake will not be able to reach that: it needs an address to which
Snowflake’s cloud can connect (consider deploying Polaris on a cloud VM with a
public IP or using a tunneling solution for testing).

o We left CATALOG_NAMESPACE = 'default' as an example. If your Polaris catalog
organizes tables under specific top-level namespaces (like a database name), you
could put that here. Otherwise, you can omit CATALOG_NAMESPACE and specify
the namespace when registering tables (we will show an example in the section
Querying Iceberg Tables via Snowflake and Polaris). If using Snowflake Open
Catalog, you might set this to the top-level namespace of your Open Catalog
(which could be your organization or project name as configured).

o The OAUTH_CLIENT_ID and OAUTH_CLIENT_SECRET are the credentials Snowflake
will use to obtain an OAuth token from Polaris. Snowflake will automatically call
Polaris’s token endpoint (/oauth/tokens) using these credentials to get a bearer
token. It will include the OAUTH_ALLOWED_SCOPES in that request, so Polaris knows
which scopes to grant. Ensure the principal (client) on the Polaris side is config-
ured with the necessary roles and privileges to read the catalog. For read-only
access to all tables, the principal should have a Polaris role with TABLE_LIST and
TABLE_READ_DATA privileges on the catalog.

After running the above, you will create a Snowflake integration object. Users with
the ACCOUNTADMIN or a custom role with a CREATE INTEGRATION privilege can
do this. Once created, grant usage on the integration to the role that will query the
tables. For example, if you plan to use the SYSADMIN role for querying, run:

GRANT USAGE ON INTEGRATION polaris_catalog_int TO ROLE SYSADMIN;

Establishing Connectivity Between Snowflake and Polaris | 147

Without this grant, if a lesser role tries to use the integration, you might encounter an
"SQL access control error: Insufficient privileges to operate on integra
tion 'POLARIS_CATALOG_INT'". Granting usage ensures Snowflake roles can utilize
the credentials in the integration to access Polaris.

At this point, Snowflake has what it needs to connect to Polaris: knowledge of where
the Polaris API is and how to authenticate it, as well as knowledge of where the data
files are stored (the external volume). Now, we can proceed to query Iceberg tables
through this setup.

A note about security in production: Never use or document development mode cre-
dentials in production. When Polaris runs in development mode with the in-memory
metastore, it prints root credentials as [client-id]:[client-secret]. These cre-
dentials are for testing only and pose a security risk if used in production.

Follow these steps to configure Polaris for production.

1. Replace Development Defaults to align with production best practices:

Metastore (REQUIRED - replace in-memory)
metaStoreManager:
type: eclipse-link # or relational-jdbc

Storage
defaultRealms:
- name: production-realm
allowedLocations:
- type: s3 # Only S3, GCS, or AZURE
allowed-locations: ["s3://your-bucket"]

Authentication
authenticator:
class: org.apache.polaris.service.auth.DefaultPolarisAuthenticator

OAuth2
oauth2:
type: default

2. Create a dedicated service principal for Snowflake:

Create service principal
./polaris principals create snowflake_service

Create roles and grant minimal required privileges

./polaris principal-roles create snowflake_reader

./polaris catalog-roles create --catalog prod_catalog catalog_reader

./polaris privileges --catalog prod_catalog --catalog-role catalog_reader \
catalog grant TABLE_LIST TABLE_READ_DATA

148 | Chapter 8: Using Apache Polaris with Snowflake

3. Configure Snowflake integration:

CREATE CATALOG INTEGRATION polaris_integration

CATALOG_SOURCE = POLARIS

TABLE_FORMAT = ICEBERG

REST_CONFIG = (
CATALOG_URI = 'https://your-polaris-api.com/api/catalog'
CATALOG_NAME = 'production_catalog'

)

REST_AUTHENTICATION = (
TYPE = OAUTH
OAUTH_CLIENT_ID = 'snowflake_service_clientid'
OAUTH_CLIENT_SECRET = 'secure_client_secret'
OAUTH_ALLOWED_SCOPES = ('PRINCIPAL_ROLE:snowflake_reader')

)

ENABLED = TRUE;

Next, you need to configure network security. In this case, we'll use the default public
internet access.
1. Get Snowflake IP ranges:
SELECT * FROM TABLE(SYSTEM$ALLOWLIST());
2. Configure firewall rules:
o Allow inbound HTTPS (port 443) from Snowflake IPs
o Implement rate limiting
o Use valid TLS certificates
3. Monitor changes:
o Snowflake IP ranges are dynamic and region-specific
o Regularly update firewall rules
Secure credential management is crucial in production. Make sure to follow these
practices:
1. Store credentials in secure vaults (AWS Secrets Manager, Azure Key Vault)

2. Enable credential rotation: = ENFORCE_PRINCIPAL_CREDENTIAL_ROTATION_
REQUIRED_CHECKING: true

3. Never log OAuth secrets or bearer tokens

4. Use unique service principals per external service

Finally, you need to configure OAuth2:

featureConfiguration:
ENFORCE_PRINCIPAL_CREDENTIAL_ROTATION_REQUIRED_CHECKING: true
TOKEN_EXPIRATION_SECONDS: 3600 # 1 hour

Establishing Connectivity Between Snowflake and Polaris | 149

tokenBroker:
type: symmetric-key # or asymmetric for RSA

Congratulations! You've successfully configured the catalog.

Querying Iceberg Tables via Snowflake and Polaris

With the external volume and catalog integration in place, we can create Iceberg table
references in Snowtflake that use Polaris for metadata. Snowflake’s CREATE ICEBERG
TABLE command will create a new table or register an existing Iceberg table. In our
scenario, we assume the Iceberg tables already exist and are managed by Polaris
(Polaris is the source of truth for the metadata). Thus, we will create Snowflake
objects pointing to Polaris’s tables.

Before creating the table in Snowflake, ensure you have selected a database and
schema where the Snowflake table reference will live:

USE ROLE SYSADMIN;
USE DATABASE MY_POLARIS_DB;
CREATE SCHEMA IF NOT EXISTS POLARIS_DEMO;

USE SCHEMA POLARIS_DEMO;

The database and schema here are in Snowflake and serve as a container for the
external Iceberg table reference. You can name them to reflect the Polaris catalog or
project you are working with (in this example, MY_POLARIS_DB.POLARIS_DEMO).

Registering an Existing Polaris Table in Snowflake

Lets say the Polaris catalog we connected via the integration contains a table of
events in namespace db (as we created in Chapter 7’s Spark examples). We want to
query this events table in Snowflake. Because Polaris manages this table, Snowflake
must know how to access it. We do this by creating an Iceberg table in Snowflake with
the CATALOG = 'polaris_catalog_int' (our integration) and linking it to the actual
table name in Polaris.

CREATE OR REPLACE ICEBERG TABLE events_external

CATALOG = 'POLARIS_CATALOG_INT' -- use the Polaris
catalog integration

EXTERNAL_VOLUME = 'MY_ICEBERG_EXT_VOLUME' -- use the external volume for
storage access

CATALOG_TABLE_NAME = 'db.events';

150 | Chapter 8: Using Apache Polaris with Snowflake

In this command, events_external is the name of the Snowflake table we create
(under MY_POLARIS_DB.POLARIS_DEMO as set by our USE schema). We could also
make it with the same name as the Polaris table (e.g., events), but we use the
suffix _external to distinguish it here. The crucial part is CATALOG_TABLE_NAME =
'db.events'. This string should match the namespace and table name in the Polaris
catalog.

In Polaris, fully qualified table names are typically <namespace>.<table>. If Polaris’s
catalog has multiple levels of namespace (like analytics.db.events), include the full
path. If we had specified a CATALOG_NAMESPACE in the integration, that namespace
would be prepended or assumed. For example, since we used CATALOG_NAMESPACE =
'default’ in the integration, Snowflake will look for default.db.events in Polaris
unless the default was a top namespace already. To avoid confusion, you can omit
CATALOG_NAMESPACE in the integration and instead provide the full path here.

Snowflake will contact Polaris via the integration to fetch the table’s metadata
(schema, partition info, etc.) when this statement runs. It will also verify that the
EXTERNAL_VOLUME points to the correct storage. If everything is configured correctly,
the table will be created quickly. If there is a mismatch or another issue, you may get
errors. Some possible errors include:

Table not found
Snowflake might report it cannot find the specified table in the external
catalog. This means either the name is wrong or the Polaris principal
used by Snowflake doesn’t have access to that table. Double-check the CATA
LOG_TABLE_NAME and Polaris permissions. Using functions like SYSTEMSLIST_ICE
BERG_TABLES_FROM_CATALOG(' POLARIS_CATALOG_INT') can help list what Polaris
tables Snowflake can see.

Region or connectivity errors
If the external volume’s region doesn't match Snowflakes region (Snowflake
currently requires the cloud storage to be in the same cloud region for Iceberg
tables), creation can fail. Similarly, if the Polaris API is not reachable due to
network issues, Snowflake will timeout or error out.

Duplicate or invalid data files
If Polaris’s metadata contains any inconsistencies (such as duplicate data file
entries in a manifest), Snowflake may throw an error upon table creation. In such
cases, youd need to fix the data on the Polaris side.

Once the CREATE ICEBERG TABLE succeeds, Snowflake will register the external table.
No data is copied into Snowflake; it’s simply a pointer. You can verify the table in
Snowflake:

SHOW TABLES LIKE 'EVENTS_EXTERNAL';

Querying Iceberg Tables via Snowflake and Polaris | 151

Or, you can check that its table type is Iceberg and externally managed:
DESCRIBE TABLE events_external;

The output will indicate its an Iceberg table and list the catalog integration and
external volume in the table properties.

Querying the External Iceberg Table

Now comes the fun part: running queries. Since the table is now a first-class table in
Snowflake (albeit externally managed), you can run standard SQL queries on it:

SELECT
FROM events_external

LIMIT 5;

This query will cause Snowflake to plan a query on the Iceberg table. Behind the
scenes, Snowflake uses the metadata from Polaris to determine which Parquet files
to read, then reads them from the S3 bucket via the external volume. If this is the
first query, Snowflake will scan the data from S3. Subsequent queries may benefit
from Snowflake’s SSD cache of remote data, meaning the performance can improve
for repeated access (Snowflake’s “use of warehouse cache” is supported for both
Snowflake-managed and externally managed Iceberg tables).

You can filter, aggregate, and join external Iceberg tables just like any Snowflake table,
as long as the operations are supported. For example:

SELECT event_date, COUNT() AS num_events
FROM events_external

WHERE event_date >= '2025-01-01'

GROUP BY event_date

ORDER BY event_date;

Snowflake will push down predicates and read only necessary data thanks to Iceberg’s
metadata (file pruning via manifests). The results are computed by Snowflake’s ware-
house and returned to you as usual.

One powerful feature to highlight is time travel. You can query historical data because
Iceberg and Polaris maintain snapshots. For Snowflake-managed Iceberg tables,
Snowflake maintains snapshots itself. Snowflake will know about new snapshots
for externally managed tables only when you refresh the table (more on refresh
below). If Polaris has snapshots that Snowflake hasn’t seen yet, Snowflake can’t time
travel to them until a refresh syncs them. However, for demonstration, if the table

152 | Chapter 8: Using Apache Polaris with Snowflake

had multiple snapshots and we registered it after several commits, we can do the
following.

Suppose we know the snapshot ID or timestamp from Polaris:

SELECT

FROM events_external AT (OFFSET => <snapshot-id>);

This would retrieve data as it existed in the Iceberg snapshot (if available). If you
attempt to time travel to a snapshot that predates Snowflake’s knowledge (e.g., older
than when you created the table in Snowflake and not yet refreshed), Snowflake
might error or return no data.

Automated versus manual metadata refresh

By default, an externally managed Iceberg table in Snowflake does not automatically
know about new data appended outside of Snowflake. For example, suppose a Spark
job writes new events into the Polaris events table after we create the Snowflake
reference. In that case, Snowflake’s events_external table will not see those rows
until we refresh the metadata. You can refresh manually:

ALTER ICEBERG TABLE events_external REFRESH;

This tells Snowflake to call Polaris and update the table metadata (pull any new
snapshots, schema changes, etc.). After a refresh, new data becomes visible to quer-
ies. Snowflake has also introduced an AUTO_REFRESH = TRUE table property to let
Snowflake periodically refresh the external table in the background, sparing you from
manual intervention. This is useful for keeping data in sync, but be mindful of the
slight lag and potential cost of repeated metadata fetches.

Read-only behavior of external tables

Understanding that Snowflake cannot modify data in a Polaris-managed table is
crucial. Any Iceberg table using an external catalog (Polaris, Glue, etc.) is read-only
from Snowflake’s perspective. No INSERT, UPDATE, MERGE, or DELETE SQL statements
are allowed on events_external. If you try, you'll get an error. For example:

INSERT INTO events_external VALUES (999, 'Test User', '2025-04-01');
This will fail with an error:
SQL compilation error: Cannot perform DML on an externally managed Iceberg table.

This limitation exists because Snowflake is not the system of record for this table’s
metadata— Polaris is. Allowing Snowflake to write could create inconsistencies.
Therefore, treat events_external as a read-only mirror of the Polaris table. All writes
must happen through Polaris or another engine using Polaris. Once new data is
written via Polaris, use REFRESH in Snowflake to see it.

Querying Iceberg Tables via Snowflake and Polaris | 153

Snowflake’s documentation explicitly notes that externally managed Iceberg tables
provide limited Snowflake platform support with read access only. In contrast, Iceberg
tables that use Snowflake as the catalog (managed Iceberg tables) allow full read/write
and integrate with Snowflake features.

Querying Polaris metadata from Snowflake

Besides reading the data, you can also list catalog contents via Snowflake. As men-
tioned, Snowflake provides special table functions to inspect the remote catalog:

SYSTEMSLIST_ICEBERG_TABLES_FROM_CATALOG('POLARIS_CATALOG_INT'")
Returns a list of tables Snowflake can see in the Polaris catalog

SYSTEMSLIST_NAMESPACES_FROM_CATALOG('POLARIS_CATALOG_INT'):
Returns namespaces in the Polaris catalog

These can be useful for discovering tables or verifying dynamic connectivity. For
example:

SELECT

FROM TABLE(SYSTEMSLIST_ICEBERG_TABLES_FROM_CATALOG('POLARIS_CATALOG_INT'));

This might output rows with columns like CATALOG_NAME, NAMESPACE, TABLE_NAME,
etc., showing each Iceberg table in Polaris that Snowflake has privileges to list.

Another nuance: if Polaris has multiple catalogs and you didn’t specify CATALOG_NAME
in the integration, Snowflake might only target a default one. If needed, you can
create multiple integrations, each pointing at different Polaris catalogs (with different
URISs or different credentials if separate).

Handling permissions and errors

When integrating across systems, permission issues can arise in multiple places. Let’s
recap a few and how to address them:

Snowflake integration usage
As covered in “Creating a Polaris Catalog Integration” on page 145, ensure
the Snowflake role used for queries has USAGE on both the external volume
and the catalog integration. For example: GRANT USAGE ON EXTERNAL VOLUME
my_iceberg_ext_volume TO ROLE SYSADMIN; and GRANT USAGE ON INTEGRA
TION polaris_catalog_int TO ROLE SYSADMIN;. If you forget these, errors like
“SQL access control error” appear.

Polaris OAuth 2.0 scopes and roles
The Polaris principal’s allowed scopes should correspond to a Polaris princi-
pal role that has been granted appropriate catalog roles. In Polaris, a catalog
role defines privileges (like TABLE_READ_DATA, TABLE_LIST, etc.) at the catalog

154 | Chapter 8: Using Apache Polaris with Snowflake

level. The principal role that the service connection (Client ID) uses should
have a catalog role granting read access to the desired tables. We used PRINCI
PAL_ROLE:ALL to simplify, which means “grant all privileges of the principal’s
roles” in the token. In a production setting, you might use a narrower scope
like PRINCIPAL_ROLE:reader_role if your Polaris admin defined a role only with
read permissions.

Cloud storage access
If queries fail with storage errors, it could be that Snowflake’s external volume
doesn’'t have permission to read the files. Check that the IAM role can list and get
objects on the bucket path. Snowflake provides error details if it can’t open files
(for example, an AWS AccessDentied error).

Data compatibility
Queries might error or return wrong results if the Iceberg table uses features
not yet supported by Snowflake (e.g., Iceberg v2 features like row-level deletes or
exotic Parquet types). Snowflake currently does not support Icebergs row-level
delete files (position/equality deletes) on external tables. If your Polaris table has
such deletes, Snowflake may ignore them or throw an error. Keep an eye on
Snowflake release notes for improvements in Iceberg support.

By resolving these issues proactively, you can achieve a smooth integration.

Using Snowflake Open Catalog (Managed Polaris)

Snowflake Open Catalog is essentially Snowflake’s hosted version of Polaris, which
is offered as a service. If you opt to use Open Catalog instead of running Polaris
yourself, the process of integration is similar, with a few differences in setup:

» You would create your Open Catalog account and a catalog within it using
Snowflake’s UI or APIs. When making a catalog in Open Catalog, you can
specify whether it’s External (managed by another system’s metadata, e.g., syncing
Snowflake-managed tables to Polaris) or Internal (Polaris manages the metadata).
In most cases, for new usage, you'll create an Internal catalog in Open Catalog to
manage Iceberg metadata centrally.

+ Snowflake Open Catalog provides a Ul to create Service Connections. Each ser-
vice connection in Open Catalog corresponds to a set of OAuth 2.0 Client ID/
Client secret credentials (with an associated principal role). For Snowflake itself,
you would create a service connection (for example, named snowflake_engti
neer) that Snowflake will use to interface with that catalog. The credentials
from this service connection are what you put in the Snowflake integration’s
OAUTH_CLIENT_ID and OAUTH_CLIENT_SECRET.

Using Snowflake Open Catalog (Managed Polaris) | 155

o The CATALOG_URI for Open Catalog will be a Snowflake domain, as shown earlier,
and you will include CATALOG_NAME, which is the name of your Open Catalog
catalog resource. Also, ensure the <orgname> and account name in the URI are
correct (these are found via Snowflake’s org and account info).

« One convenient aspect of this service is if Snowflake Open Catalog is in the same
Snowflake organization as your main account, network access is not an issue.
Snowflake handles it internally. If it’s a different region or cloud, you need to set
it up accordingly (Open Catalog currently must be in AWS regions for GA).

+ Snowflake Open Catalog has a credential vending feature where external engines
(such as Spark and Trino) can retrieve temporary credentials to access the catalog
using Snowflake as an identity broker. This is beyond our scope, but if you have
data scientists who want to use Spark on the same Polaris catalog, they can get
credentials without handling long-term secrets. We have already seen Snowflake
using an OAuth client flow. Snowflake basically “vends” itself as a token for
Polaris using the integration.

From a usage perspective in Snowflake, once the integration is set up, querying
an Open Catalog table is identical to the steps in the Querying Iceberg Tables
via Snowflake and Polaris section. Youd create an Iceberg table in Snowflake with
CATALOG = '<open_catalog_integration>' and appropriate EXTERNAL_VOLUME. The
only difference is that you might make new tables via Snowflake in Open Catalog
scenarios and have them appear in Polaris (the reverse of read-only). For instance,
Snowflake can create an Iceberg table with CATALOG_SYNC property to push it into
Polaris (Open Catalog). However, Snowflake cannot directly create tables in an exter-
nal catalog unless it’s syncing a Snowflake-managed table. In Open Catalog, a com-
mon pattern is:

o Create a Snowflake-managed Iceberg table using Snowflake as a catalog, so its
writable in Snowflake.

« Alter the table to set CATALOG_SYNC = '<your_open_catalog_integration>'.

» Any changes Snowflake makes to that table will also appear in the Polaris catalog
(Open Catalog). This effectively publishes the table to Polaris so other engines
can see it.

 Conversely, suppose you want Snowflake to consume a table primarily managed
by Open Catalog (like other engines). In that case, you create it as an externally
managed table in Snowflake.

Open Catalog’s significant advantage is simplifying governance and sharing. You have
one centralized catalog (Polaris) where all Iceberg tables are registered, and Snowtflake
is just one of the clients (albeit a first-class one). This enables use cases like cross-
engine analytics and data sharing more seamlessly. For example, an organization can

156 | Chapter 8: Using Apache Polaris with Snowflake

produce data in Snowflake, sync it to Open Catalog, and a partner can consume
it with Spark or Dremio, all while everyone is looking at the same table data and
snapshots.

One thing to note: Snowflake Open Catalog (Polaris) has its own RBAC system (the
Polaris roles we discussed). This is separate from Snowflake’s internal RBAC. When
Snowflake queries Polaris, it does so as a service principal with specific Polaris roles.
Polaris can enforce different permissions if another engine uses a different service
principal. This means data access control can be managed within Polaris itself across
all engines.

However, Snowflake’s role-based policies (like row access policies or data masking)
do not automatically apply to data when read outside Snowflake. And vice versa,
Polaris’s access rules won't apply within Snowflake beyond what tables Snowflake can
see. Remember this “dual security layer” Snowflake controls who can create or query
an external table object, and Polaris controls which table external catalog credentials
can access.

The steps to query are nearly the same, and the limitations (read-only for external
tables) still apply when Snowflake is not the catalog. The benefit is ease of setup and
integrated management if youre a Snowflake customer.

Polaris-Backed Tables vs. Native Snowflake Tables

Snowflake now supports multiple ways to manage data: the traditional Snowflake
tables (with data in Snowflake’s proprietary storage format), Snowflake-managed Ice-
berg tables, and externally managed Iceberg tables (Polaris-backed or other catalogs).
It’s essential to understand how Polaris-backed Iceberg tables differ from Snowflake’s
native tables so you can choose the right approach for your use case.

Data storage and control

In Snowflake native tables, data is stored inside Snowflake’s compressed propri-
etary micro-partition format. With Polaris-backed tables, data lives in an open
format (Parquet) in your cloud storage. This gives you control and portability:
multiple engines can read/write that data outside Snowflake. It also decouples
storage from Snowflake, which can be cost-effective and avoids vendor lock-in
for the data files. The tradeoff is that you are responsible for the data lifecycle
(compaction, retention) since Snowflake won’t manage that for external data.

Metadata catalog
Snowflake native tables use Snowflake’s internal metadata store with all the rich
time-travel and optimization features Snowflake offers. A Polaris-backed table
uses the Polaris catalog for metadata. You get Iceberg’s capabilities (schema
evolution, hidden partitioning, snapshot isolation) and Polaris’s multi-engine
visibility. However, Snowflake’s additional features may not be supported at all.

Polaris-Backed Tables vs. Native Snowflake Tables | 157

For instance, Snowflake Time Travel (AS OF queries up to 90 days) and zero-copy
cloning are not supported on external Iceberg tables. You rely on Iceberg’s time
travel via snapshots instead. Features like Dynamic Tables (materialized views)
and database replication currently do not support external Iceberg tables. Essen-
tially, feature parity is not 100%. Snowflake-managed tables have the edge in
integration with Snowflake’s ecosystem.

Write capabilities

The most significant difference is that Polaris-backed tables are read-only from
Snowflake. If your workflow requires Snowflake to insert or update data rou-
tinely, an external table won’t suffice. You would use Snowflake-managed Iceberg
tables, which allow Snowflake to write, or write via another engine, into Polaris.
This is a key factor in deciding whether to use Polaris integration. If you need a
two-way street (Snowflake both reads and writes), consider Snowflake-managed
Iceberg tables with CATALOG_SYNC to Polaris. That way, Snowflake can write and
then share those writes via Polaris for others to read. You can also simply stick to
Snowflake’s native storage for heavy DML use cases.

Performance

Query performance for Polaris-backed Iceberg tables in Snowflake has been sur-
prisingly strong. Snowflake can leverage local caching and its optimized engine
to query Parquet nearly as fast as its storage in many cases. Native tables still have
an advantage for small point queries and scenarios where Snowflake’s optimizer
can use clustering or other data statistics that external formats dont provide.
Also, the first query on external data may be slower due to cold reads from cloud
storage, whereas native data might already be optimized in SSD.

Maintenance and consistency

Snowflake native tables are fully managed. Snowflake handles vacuuming deleted
data, clustering, and consistency. With an external Polaris catalog, you must
maintain the Iceberg data (expire old snapshots to free space and compact small
files if needed). Polaris provides APIs to manage these, but it’s a DIY effort
or requires running maintenance jobs. Additionally, with multiple writers (say
Spark and Snowflake both writing to the same Polaris table via different means),
you need to consider transaction isolation. Iceberg is ACID compliant, but each
engine must use proper commit protocols through Polaris to avoid conflicts.
Snowflake doesn’t use multi-writers on an external catalog; it’s essentially read-
only, so consistency is primarily external.

Use cases
Use Polaris-backed tables when interoperability is a top priority, e.g., sharing
lakehouse storage between Snowflake and other platforms (Spark, Flink, Presto,
etc.). It shines in data-sharing scenarios across organizations using open formats
and when you want to offload specific workloads from Snowflake to other

158 | Chapter 8: Using Apache Polaris with Snowflake

engines (for cost or specialization reasons) while still querying the same source
of truth. On the other hand, use Snowflake native tables when you need the full
suite of Snowflake features and high concurrency of writes within Snowflake.

Apache Polaris integration brings Snowflake into the open data ecosystem: youre no
longer siloed into Snowflake’s storage. You can maintain an open lakehouse where
Snowflake is one of many consumers and producers of data. The decision boils down
to flexibility vs. simplicity. Polaris offers flexibility and openness, while Snowflake
native tables offer simplicity and deeper feature integration.

Conclusion

This chapter demonstrated how to connect Snowflake with Apache Polaris (incubat-
ing) to query Iceberg tables. We covered configuring Snowflake’s external volume and
catalog integration for Polaris, creating external Iceberg table references, and running
queries. We also touched on using Snowflake’s Open Catalog service, which simplifies
the setup by hosting Polaris for you. Finally, we compared Polaris-backed tables with
Snowflake’s native tables to clarify when each approach makes sense.

By integrating Polaris with Snowflake, you unlock open data architecture possibilities:
data can be ingested by one system and analyzed by another without cumbersome
export/import, all thanks to Iceberg’s open format and Polaris’s REST catalog. You can
leverage Snowflake’s powerful query engine on data that lives outside its walled gar-
den, achieving interoperability without sacrificing performance. This is a significant
step toward the lakehouse vision of unified data across platforms.

As Apache Polaris continues to evolve and Snowflake expands its Iceberg support,
we expect even more capabilities to become available, such as write support, broader
feature compatibility, and richer cross-engine collaboration features.

In the next chapter, we will explore using Apache Polaris with Dremio, examin-
ing how Polaris enables a consistent experience across different tools in the data
ecosystem.

Conclusion | 159

CHAPTER9
Using Apache Polaris with Dremio

In this chapter, we explore how to integrate Apache Polaris with Dremio, a high-
performance intelligent data lakehouse platform. Dremio has robust support for
Apache Polaris, being one of the co-creators of the project along with Snowflake.
By connecting Dremio to Polaris, you can query and create Apache Iceberg tables
managed by Polaris as the metadata authority, while Dremio serves as the execution
engine accessing data on cloud storage. This enables a seamless lakehouse architec-
ture where Polaris handles table metadata (schemas, snapshots, partition info, etc.)
and Dremio handles query processing and query federation, allowing you to join
your Iceberg tables with data in other databases, data lakes, and data warehouses in
a governed semantic layer (as illustrated in Figure 9-1). We will cover setting up the
connection in Dremio, configuring authentication and storage properties, and using
Dremio SQL to work with Polaris-managed Iceberg tables. All examples assume you
have a Polaris service running with a catalog created and accessible via its REST
API and Dremio Enterprise Edition version 26.0 or later. You can try Dremio by
visiting https://www.dremio.com/get-started. Dremio Enterprise Edition also has its
own integrated Iceberg catalog powered by Apache Polaris, making it another option
for a managed Polaris catalog along with the Snowflake Open Catalog.

161

https://www.dremio.com/get-started

Apache Snowflake] Postgres
[Polaris] [tables] [Unltycatalog] [tables]

Dremio
(Federated query engine, governed semantic layer)

[REST][JDBC/ODBC][Arrow flight][MCP]

o

Figure 9-1. Dremio enables you to federate queries between your Polaris managed tables
with data in databases, data warehouses and data lakes into a governed semantic layer
accessible to all workloads

Connecting Dremio to an Apache Polaris Catalog

A key benefit of Dremio’s open lakehouse architecture is its ability to openly integrate
seamlessly with the vast ecosystem of Iceberg catalogs along with its own integrated
Iceberg catalog. This allows Dremio to act as a powerful, high-performance query
engine unifying your Apache Iceberg catalogs along with other data in databases, data
warehouses and data lakes.

In this section, we'll explore how to connect Dremio to Apache Polaris in two ways,
via the Apache Iceberg REST Catalog connector for self-managed Polaris and the
Snowflake Open Catalog connector specifically for Snowflake’s Open Catalog. These
integrations enable Dremio to discover, query, and even write Iceberg tables governed
by an external catalog—opening the door to federated analytics across cloud object
stores, databases, and lakehouse systems. Whether youre working with Polaris OSS
or Snowflake’s enterprise catalog service, Dremio provides native connectors that
simplify configuration and allow you to bring your Iceberg tables into a unified SQL
interface.

Connecting Polaris Using the REST Catalog Connector

Before using Dremio with Polaris, ensure you have the following prerequisites ready:

Polaris service URL
The URL where your Polaris service is running (for example, http://<polaris-
host>:8181/api/catalog).

162 | Chapter9: Using Apache Polaris with Dremio

Polaris credentials
A Polaris principal (client) with access to the catalog, including its Client ID and
Client Secret for authentication. Dremio will use these to authenticate to Polaris’s
REST API.

Cloud storage access
The Iceberg tables managed by Polaris reside in cloud object storage (e.g., AWS
S3). If Polaris is not configured to vend temporary credentials for storage, you
will need the storage access keys (for S3, an AWS Access Key and Secret Key) that
allow Dremio to read/write the data files.

With these in hand, we can configure Dremio to connect to Polaris. Dremio introdu-
ces a generic Iceberg REST Catalog connector (there is also a dedicated connector for
Snowflake’s Open Catalog). This connector is found under the Lakehouse Catalogs
category in Dremio’s Add Source dialog.

The following sections describe how to set up the connection.

Add a new source

In the Dremio web UI, navigate to the Datasets page. Click the Add Source button
(usually a + icon next to “Sources”). In the Add Data Source dialog, select Iceberg
REST Catalog under the Lakehouse Catalogs section. This will open the New Iceberg
REST Catalog Source configuration screen.

General settings

On the General tab, provide a Name for this source. Choose a unique, descriptive
name (for example, PolarisCatalog). This name will be used as the reference in
SQL queries. Next, for the Endpoint URI, enter the Polaris catalog service URL
(e.g., http://localhost:8181/api/catalog). This URL should point to the base API
endpoint of Polaris. Leave “Use vended credentials” unchecked for Polaris OSS. By
default, Dremio enables “Use vended credentials’, which attempts to obtain tempo-
rary storage credentials from the catalog service.

Advanced Options

Switch to the Advanced Options tab. Here we will supply the necessary catalog
properties and credentials for Polaris and S3. In the Catalog Properties section, add
the following key-value pairs:

o warehouse = Polaris Catalog Name (the name of your Polaris catalog, e.g.,
my_catalog). This tells Dremio which Polaris catalog to use for table metadata.

Connecting Dremio to an Apache Polaris Catalog | 163

o scope = PRINCIPAL_ROLE:ALL. This property ensures Polaris grants the client full
access scope. It is required by Polaris’s security model to authorize the principal’s
role(s) for all operations.

e fs.s3a.aws.credentials.provider = org.apache.hadoop.fs.s3a.

+ SimpleAWSCredentialsProvider. This setting instructs Dremios Iceberg connec-
tor to use a simple AWS key/secret authentication for S3. It’s a required property
when providing static S3 keys if choosing not to use credential vending.

Advanced options: Catalog credentials
Still in Advanced Options, under Catalog Credentials, add the sensitive keys:

o fs.s3a.access.key = Your AWS Access Key ID (for the S3 bucket that houses
the Iceberg data). Needed only if not using credential vending.

« fs.s3a.secret.key = Your AWS Secret Access Key. Needed only if not using
vended credentials.

e credential = Polaris Client ID and Secret in the format <client_id>:
<client_secret>.

Dremio uses this combined credential string to authenticate with
the Polaris REST Catalog. For example, if your Polaris client
ID is polaris_user and the secret is ABC123, you would enter
polaris_user:ABC123 as the credentials. This will typically be sent
as an authorization header to Polaris, such as Basic Auth or Bearer
token, depending on Polaris’s implementation.

Save the source

After filling in the above, click Save or Add. Dremio will attempt to connect to
the Polaris service using the provided endpoint and credentials. If the configuration
is correct, the source will be created successfully. You should see the new source
(e.g., PolarisCatalog) in the Sources list, and you can expand it to browse the data-
bases/namespaces and tables within the Polaris catalog.

While you can use the REST Catalog connector to connect to Snowflake Open
Catalog as well, there is a dedicated connector that eliminates many of these steps.
You can find more detail on this option in the Dremio documentation.

Here is a summary example of the key Advanced settings for a Polaris OSS catalog on
S3 (for illustration if you are not using vended credentials):

164 | Chapter9: Using Apache Polaris with Dremio

http://org.apache.hadoop.fs
https://oreil.ly/KcAXe

Example Advanced Options for Dremio Iceberg REST Catalog (Polaris 0SS on S3)

Polaris catalog name
warehouse=my_catalog

Polaris security scope for the principal
scope=PRINCIPAL_ROLE:ALL

use access/secret keys
fs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.
SimpleAWSCredentialsProvider

fs.s3a.access.key=AKIA...

AWS Access Key ID (replace with yours)
AWS Secret Key (replace with yours)
fs.s3a.secret.key=wlJalrXUtnF...

Polaris client_id:client_secret for auth
credential=polaris_user:ABC123

Click “Test Connection” to ensure that the catalog is successfully added.

Make sure to replace the example values (catalog name, keys, IDs, etc.) with those
from your environment. Once this configuration is saved, Dremio will establish the
connection to Polaris. If Polaris requires HTTPS and valid certificates (for instance,
Snowflake’s managed Polaris Open Catalog requires TLS), ensure your endpoint URI
and Polaris setup meet those requirements. In our example with Dremio and Polaris
0SS, alocal or HTTP endpoint is used for simplicity.

Connecting Snowflake’s Open Catalog to Dremio

In addition to Apache Polaris, Dremio also supports connecting to Snowflake Open
Catalog, Snowflake’s managed Polaris service. This enables you to query Iceberg
tables registered in internal or external Snowflake catalogs and write to external
catalogs directly from Dremio. This integration extends the open lakehouse approach
by letting you work with Iceberg metadata managed by Snowflake using Dremio’s
SQL interface.

Before you begin, make sure you have the following from your Snowtflake

environment:

o The Catalog Service URI (the REST API endpoint of the catalog)
+ A Client ID and Client Secret for authentication
+ (Optional) Cloud storage credentials if youre not using Snowflake’s vended cre-

dentials feature

Use the steps in the following sections to connect Dremio to the Snowflake Open
Catalog.

Connecting Dremio to an Apache Polaris Catalog | 165

Add a new source

In the Dremio UI, navigate to the Datasets page. Under the Sources panel on the
left, click the Add Source icon (typically a + symbol). In the Add Data Source dialog,
choose Snowflake Open Catalog from the Lakehouse Catalogs section.

General settings

In the General tab of the configuration dialog:

Provide a unique and descriptive name for the source, such as SnowflakeO
Catalog. This name will be used in SQL to reference tables.

Specify the Endpoint URI, which is the catalog service URI provided by
Snowflake.

Enter the Client ID and Client Secret. These are used for OAuth-style authentica-
tion to the Snowflake Open Catalog.

By default, “Use vended credentials” is enabled. When enabled, Dremio requests
short-lived storage access tokens from Snowflake, removing the need to manually
manage cloud storage credentials.

Optionally, you can configure Allowed Namespaces to limit which parts of the
catalog Dremio will expose. Namespaces can be nested, and you can choose to
include all sub-namespaces.

Advanced options

In the Advanced Options tab, you can supply catalog properties and credentials if
you’re not using vended credentials.

Depending on your cloud provider, use one of the supported storage authentication
methods:

Amazon S3 (static keys)

— fs.s3a.aws.credentials.provider = org.apache.hadoop.fs.s3a.Simple
AWSCredentialsProvider

— fs.s3a.access.key = <your_access_key>
— fs.s3a.secret.key = <your_secret_key>

Amazon S3 (assumed role)

— fs.s3a.assumed.role.arn = arn:aws:iam::...:role/
— fs.s3a.aws.credentials.provider = com.dremio.plugins.s3.store.STS
CredentialProvidervi

166

| Chapter9: Using Apache Polaris with Dremio

o Azure Storage (OAuth)
— fs.azure.account.auth.type = OAuth
— fs.azure.account.oauth2.client.id = <your_client_id>

— fs.azure.account.oauth2.client.endpoint = https://login.microsoft
online.com/<tenant_id>/oauth2/token

— fs.azure.account.oauth2.client.secret = <your_client_secret>
+ Google Cloud Storage (GCS)
— To use default credentials: dremio.gcs.use_keyfile = false

— To use keyfile authentication, provide values such as dremio.gcs.privateKey,
projectId, clientEmail, and others.

These credentials enable Dremio to read and write data files in your cloud object
store if vended credentials are not used.

You can also adjust caching behavior here. Enabling asynchronous and local cach-
ing improves performance for large Parquet scans by reducing roundtrips to cloud
storage.

Reflection refresh settings

Use this tab to configure Reflection refresh policies—settings that control how
Dremios Reflections are maintained. Reflections are Dremio’s intelligent, query-
accelerating materializations: they are physically optimized representations of your
datasets (such as Iceberg tables) that Dremio uses to speed up query execution behind
the scenes. Unlike traditional materialized views, Reflections are decoupled from
your SQL and automatically substituted into queries by Dremio’s optimizer when
they match the logical intent of the query.

In this tab, you can define how often Reflections should be refreshed to ensure they
stay up to date with the underlying data, set expiration times after which they are
considered stale and purged, and configure custom schedules that align with your
data update cycles. Tuning these settings helps balance performance gains from faster
queries with the operational cost of maintaining fresh materializations.

Metadata settings

This tab allows you to configure metadata discovery intervals and dataset detail
refresh timing. You can define how often Dremio checks for new tables or updates
schema information. By default, Dremio fetches object names every hour and expires
metadata after three hours.

Connecting Dremio to an Apache Polaris Catalog | 167

Privileges

Optionally, grant privileges to specific users or roles. This defines who can query or
manage the Snowflake Open Catalog source in Dremio. Use the UT to add users or
roles and assign the appropriate checkboxes for access control.

Save and validate

Once all the required fields are filled in, click Save. Dremio will attempt to connect to
the catalog using the provided credentials. If successful, the Snowflake Open Catalog
will appear in the list of sources. You can now expand it to browse namespaces and
query Iceberg tables using SQL. For example:

SELECT *
FROM SnowflakeOCatalog.analytics.customers
LIMIT 10;

Note that Dremio requires fully qualified table references: <Source>.<Name
space>.<Table>.

Updating and deleting a source

To update the configuration, right-click the source name in the Sources panel and
choose Settings, or open the source and click the gear icon. You can modify most
settings except the source name.

To delete a source, right-click it and choose Delete. Be aware that deleting a source
breaks any views or dashboards that reference its tables.

Using Snowflake Open Catalog with Dremio allows you to bring governed Iceberg
metadata from Snowflake into your federated lakehouse environment. This setup
promotes interoperability, lets you read and write Iceberg tables via a common REST
interface, and ensures consistent data access across engines like Dremio, Spark, and
others.

For more details, see the official Dremio documentation on Snowflake Open Catalog.

Why Disable Use Vended Credentials?

When Dremio v26 or later connects to a Polaris OSS catalog, leave the use vended
credentials setting turned on. In that mode, Polaris follows the Iceberg REST spec-
ification and returns two things in the same API call: the table’s metadata and a
short-lived, table-scoped storage token (for example, an AWS STS credential). Dre-
mio consumes this token to read the data files, then discards it when it expires,
eliminating any need to store long-term S3 keys in the engine. The switch should
be disabled only when you must work with a client or operation that does not yet
understand vended tokens.

168 | Chapter9: Using Apache Polaris with Dremio

https://oreil.ly/ExM3_

Using Dremio SQL with Apache Polaris

After successfully adding Polaris as an Iceberg REST Catalog source in Dremio,
you can interact with Polaris-managed tables through Dremios SQL interface. In
the Dremio UI, the Polaris source will appear much like any other source: you can
expand it to see namespaces and the tables within them. This section covers how
to work with your Polaris managed Apache Iceberg tables in Dremio SQL. We will
emphasize the importance of fully qualified names and clarify what operations are
supported.

Querying Iceberg Tables via Polaris

Once connected, Dremio can query Iceberg tables registered in Polaris just as it
would query any other table, with one key difference: you must reference the table
by a fully qualified identifier that includes the Polaris source and namespace. Dremio
does not assume a default catalog for SQL commands, so every table reference should
start with the source name you gave (e.g., PolarisCatalog), followed by the Polaris
namespace (database) and table name. The general form is:

<SourceName>.<Namespace>.<TableName>

For example, if you have an Iceberg table customers in namespace sales inside the
Polaris catalog, and your Dremio source is named PolarisCatalog, you would query
it as:

SELECT *

FROM PolarisCatalog.sales.customers
LIMIT 10;

This query will fetch data via Dremio from the customers table. Under the hood,
Dremio asks Polaris for the table’s metadata (schema, snapshot pointers, etc.) over
the REST API, then reads the actual data files (Parquet/ORC) from the cloud storage
location indicated by that metadata. Polaris acts purely as the metadata authority,
while Dremio is the execution engine scanning the files.

You can join Polaris tables with other data sources in Dremio as well. For instance,
if you have another source (say, a CSV or a different database), you could do a join
between a Polaris-backed table and that source. Dremio will handle query planning
and execution across these sources, giving you the ability to combine Iceberg tables
with other datasets.

Querying the Iceberg Metadata Tables

While querying table data is a core part of most analytics workflows, understanding
what’s happening under the hood can be just as important, especially when working
with Iceberg tables in a lakehouse architecture. Fortunately, Dremio provides built-in

Using Dremio SQL with Apache Polaris | 169

support for querying Iceberg metadata tables using special functions, allowing you to
inspect snapshots, file layouts, partition stats, manifest lists, and more. This is partic-
ularly useful for debugging, optimizing query performance, auditing table history, or
simply understanding how your data is evolving over time.

When using Dremio with an Apache Polaris catalog, you can take advantage of these
metadata queries by referencing the Polaris-backed Iceberg tables via fully qualified
names, just as you would in standard queries. The key difference is that instead of
selecting from the table directly, you use Dremio’s TABLE() function with one of
the Iceberg metadata inspection functions like table_files(), table_history(), or
table_snapshot().

The following are several metadata views you can query, along with practical exam-
ples using a Polaris table.

Inspecting data files with table_files()

This function allows you to see every data file that makes up the current state of
a table, including file paths, sizes, record counts, and min/max statistics for each
column:

SELECT *
FROM TABLE(table_files('PolarisCatalog.sales.orders'))

This can be helpful for understanding how data is partitioned and distributed, espe-
cially when investigating skew or performance bottlenecks.

Viewing table history with table_history()

If you want to trace how a table evolved over time, use the table_history() func-
tion. It shows a list of all snapshots that were committed to the table, including
timestamps and snapshot lineage:

SELECT *
FROM TABLE(table_history('PolarisCatalog.sales.orders'))

You can filter on snapshot_id or made_current_at to see when major updates occur-
red, which is useful when comparing different versions of a table or implementing
time travel.

Getting snapshot metadata with table_snapshot()

The table_snapshot() function returns detailed metadata for each snapshot, includ-
ing what operation was performed (e.g., append, overwrite), and the associated mani-
fest list:

SELECT *
FROM TABLE(table_snapshot('PolarisCatalog.sales.orders'))

170 | Chapter9: Using Apache Polaris with Dremio

Pair this with AT SNAPSHOT or AT TIMESTAMP queries to perform reproducible point-
in-time analytics on Polaris-managed Iceberg tables.

Listing manifest files with table_manifests()

To go one level deeper and inspect how data files are grouped and referenced in the
table’s metadata, use the table_manifests() function:

SELECT *
FROM TABLE(table_manifests('PolarisCatalog.sales.orders'))

Manifest files are the building blocks of Iceberg metadata trees, and analyzing them
helps reveal how incremental changes (like new inserts or deletes) affect metadata
size and structure.

Analyzing partitions with table_partitions()

Use this function to get record counts, file counts, and partition values for each
partition in the table. It’s helpful for assessing data distribution and whether partition
pruning is likely to be effective during query execution:

SELECT *
FROM TABLE(table_partitions('PolarisCatalog.sales.orders'))

You can use this to identify imbalanced partitions, unused partition columns, or
unnecessary small files.

Monitoring table clustering with clustering_information()

For Iceberg tables that have been optimized with clustering, Dremio can report on
clustering health using this function:

SELECT *
FROM TABLE(clustering_information('PolarisCatalog.sales.orders'))

This output includes clustering keys and a clustering depth metric, which reflects
how well the data aligns with your clustering strategy. Lower values (approaching 1)
suggest more efficient clustering.

Together, these metadata functions allow you to treat Iceberg tables not just as
sources of data but also as transparent, inspectable objects. WithPolaris managing
your table metadata and Dremio acting as the query engine, the resulting level of
observability makes it easier to diagnose issues, monitor table health, and tune your
data layout for performance—all using SQL.

In practice, these queries are especially useful for:

o Auditing changes and understanding snapshot lineage

o Identifying problematic files or skewed partitions

Using Dremio SQL with Apache Polaris | 171

» Debugging unexpected query performance issues
o Validating creating tables as the result of a query or ingestion workflows

o Implementing time travel or rollback logic

Because Polaris is Iceberg REST-compliant, Dremio’s metadata query support applies
seamlessly, offering the same metadata inspection tools you would expect from any
Iceberg-native environment.

Creating Tables and CTAS in Polaris via Dremio

One of the powerful features of Dremio is that it reads not only Polaris-managed
tables but also creates new tables in the Polaris catalog. Dremio supports creating
empty tables and creating tables as the result of a query when using an Iceberg REST
Catalog source. You can use Dremios SQL to define new Iceberg tables in Polaris or
ingest data from other sources into Polaris-managed Iceberg format.

Creating an empty table

You can create an Iceberg table in Polaris by running a standard CREATE TABLE
command in Dremio, with the fully qualified name of the target table. For example,
to create a new table called new_orders in the sales namespace of Polaris:

CREATE TABLE PolarisCatalog.sales.new_orders (
order_id BIGINT,
customer_1id INT,
order_date DATE,
total_amount DOUBLE
);
This will instruct Polaris to create a new Iceberg table named new_orders with
the specified schema. No data is inserted yet—the table is empty. You should see
this table appear in the Dremio source browser under PolarisCatalog > sales
> new_orders. The metadata for new_orders lives in Polaris (and its backing meta-
store/database), and if you check your S3 bucket, Polaris will have created a directory
for this table’s data and metadata (even though no data files exist yet, there will be an
Iceberg metadata file and folder structure).

Create Table as Select (CTAS)

Dremio also allows creating a new Polaris table from the results of a query. This is
done with the CREATE TABLE ... AS SELECT ... syntax. For instance, suppose you
have an existing dataset called orders in Polaris (or even in another Dremio source)
and you want to create a summarized table in Polaris. You could run:

CREATE TABLE PolarisCatalog.sales.high_value_orders AS
SELECT customer_1id, COUNT(*) as order_count, MAX(total_amount) as max_order

172 | Chapter9: Using Apache Polaris with Dremio

FROM PolarisCatalog.sales.orders
WHERE total_amount > 1000
GROUP BY customer_id;

This single SQL statement will perform a query filtering orders for high-value orders
and aggregating by customer and write the results into a new Iceberg table called
high_value_orders in the sales namespace, managed by Polaris. Under the covers,
Dremio executes the SELECT portion, then commits the output as a new Iceberg
table via Polaris’s REST API. The new table’s files (Parquet data files and Iceberg
metadata) will be written to the cloud storage location defined by Polaris for the
sales.high_value_orders table. After completion, high_value_orders is an Iceberg
table fully tracked in Polaris—any engine connected to the same Polaris catalog
(Spark, Trino, etc.) could now also see this new table and query it.

Dremio’s support for CTAS on Iceberg REST catalogs means you can use it to ingest
data into your Polaris catalog from a variety of sources. For example, you might use
Dremio to pull data from an external SQL database or a JSON file and then use CTAS
to land it as an Iceberg table via Polaris. This can be a convenient way to populate
your data lakehouse tables.

Adding Data from Files to a Table Using Copy Into

In many data lakehouse workflows, raw files, whether CSVs from partners, JSON logs
from applications, or Parquet files from upstream processes, must be ingested into
structured Iceberg tables. With Dremio, you can use the COPY INTO SQL command
to load data directly into Iceberg tables in any catalog from files cloud object storage.
This eliminates the need for external Spark jobs or ETL tools for simple data loading
tasks.

The COPY INTO command works with any Iceberg table registered in a REST catalog,
including those managed by Apache Polaris. You specify the target table, the source
location (within a Dremio-connected source), and optional file-level filters, format
declarations, or transformation clauses.

Let’s see an example:

COPY INTO PolarisCatalog.sales.my_table

FROM '@MySource/path/to/files/"’

FILE_FORMAT 'csv'
This will scan all files in the specified directory and attempt to insert the data into
the my_table table registered in the Polaris catalog. You can also specify file names,
regular expression (regex) patterns, format-specific options, and transformation logic
to fine-tune the ingestion process.

Using Dremio SQL with Apache Polaris | 173

Practical examples

The following sections provide some practical examples.

Load all filesin a folder (e.g., JSON logs). In this example we see all JSON files in a par-
ticular folder get loaded into the web_events table:

COPY INTO PolarisCatalog.logs.web_events
FROM '@CloudSource/logs/2024-01/"'
FILE_FORMAT 'json'

Load a subset of files using aregex. You don’t always need to load every file in a folder
into a table; you can specify only certain files by using a regular expression (regex) to
allow Dremio to know which files to use based on the filename pattern:

COPY INTO PolarisCatalog.sales.daily_orders
FROM '@S3Data/orders/2023/'

REGEX '.*_2023-12-.*\\.csv'

FILE_FORMAT 'csv'

Specify (SV format options and error handling. CSV files can have diverse delimiters or
inconsistent formatting. To deal with this, the COPY INTO command has different
commands to customize how CSV files are read such as “what is the delimiter?” and
how to handle errors in the file formatting:

COPY INTO PolarisCatalog.hr.employees

FROM '@S3Bucket/hr_data/'

FILES ('new_hires.csv')

(FILE_FORMAT 'csv', FIELD_DELIMITER '|', ON_ERROR 'continue', NULL_IF ('NA'))

Transform and reorder fields during ingest. This example parses a CSV file and maps
columns to the target Iceberg table’s schema, performing inline transformations using
standard SQL expressions:

COPY INTO PolarisCatalog.sales.transactions(city, zip, sale_date, price)
FROM (

SELECT SUBSTR(t.$2, 1, 20), t.S$1, t.$5, CAST(t.$4 AS DOUBLE)

FROM '@S3Bucket/sales/jan2024/sales.csv' t

)
FILE_FORMAT 'csv'

Supported file formats and options

Dremio supports ingesting data from files in CSV, JSON, or Parquet formats. The
file format can be auto-detected from extensions or explicitly defined using the
FILE_FORMAT clause. Each format supports its own set of parsing and error-handling
options, such as:

174 | Chapter9: Using Apache Polaris with Dremio

o FIELD_DELIMITER, QUOTE_CHAR, and ESCAPE_CHAR for CSV
« NULL_IF, EMPTY_AS_NULL, and TRIM_SPACE for both CSV and JSON
 ON_ERROR behavior for all formats (abort, continue, or skip_file)

These options let you gracefully handle messy or inconsistent data files without
failing the entire ingestion job.

Monitoring and debugging COPY INTO jobs

After running a COPY INTO command, Dremio will report the number of rows
inserted and any rejected records. You can view the ingestion job history and error
details using Dremio’s built-in system tables.

To inspect rejected records, query the job history for errors:

SELECT *

FROM sys.copy_errors_history

WHERE table_name = 'sales.transactions'

Then, drill into a specific job using the copy_errors() function:

SELECT *

FROM TABLE(copy_errors('PolarisCatalog.sales.transactions', 'job_id here'))

This ability to easily view failed records helps troubleshoot ingest problems without
rerunning large loads or manually parsing log files.

Maintaining Your Iceberg Tables with Dremio

Like any data system, Apache Iceberg tables require regular maintenance to stay
performant and cost efficient. Over time, as tables accumulate new snapshots and
increasing numbers of small files, queries can slow down and storage usage can grow
unnecessarily. Dremio provides two SQL-based commands, VACUUM and OPTIMIZE, to
help you manage the lifecycle and layout of your Iceberg tables directly from within
your SQL interface.

If youre using a self-managed Polaris catalog or connecting to Snowflake Open
Catalog, you can manually run these maintenance operations at any time. How-
ever, if your table is managed through Dremio’s integrated catalog (powered by
Polaris), these tasks can be automated behind the scenes, making maintenance nearly
effortless.

Reclaiming storage with VACUUM

Icebergs design as an append-only format means that every change (e.g., inserts,
overwrites) creates a new snapshot. While this enables powerful features like time
travel and rollback, old snapshots and their associated metadata can accumulate
quickly, resulting in unused files and increased storage costs.

Using Dremio SQL with Apache Polaris | 175

Dremios VACUUM TABLE command helps you clean up by expiring old snapshots
and removing unreferenced data files. You can control the expiration policy based
on snapshot age and retention count. Following are examples of different options
available using VACUUM TABLE.

Remove snapshots selectively. In this example we expire all snapshots earlier than a
particular snapshot (in this case, older than April 20, 2023) but retain the last 20
snapshots regardless of their age:

VACUUM TABLE PolarisCatalog.sales.orders
EXPIRE SNAPSHOTS older_than '2023-04-20 00:00:00.000' retain_last 20;

Retain most recent snapshots. In this example, we maintain the last 100 snapshots,
regardless of age, and expire all others:

VACUUM TABLE PolarisCatalog.sales.orders
EXPIRE SNAPSHOTS retain_last 100;

Use default settings. This example uses the default settings, which expire any snap-
shots over than 5 days but always makes sure to maintain at least 1 snapshot:

VACUUM TABLE PolarisCatalog.sales.orders
EXPIRE SNAPSHOTS;
These operations reduce the clutter in your S3 or cloud storage layer while preserving
the table’s integrity and rollback capabilities.

Improving query performance with OPTIMIZE

Another common performance issue in Iceberg tables is file fragmentation, many
small data files resulting from streaming ingest, CTAS operations, or COPY INTO
jobs. These small files can slow down scans and increase query planning overhead.

The OPTIMIZE TABLE command rewrites data and manifest files to a more optimal
size using a bin-packing strategy, combining small files or splitting overly large
ones. It also supports clustering, ensuring that records are physically reordered along
defined clustering keys.

Default optimization with bin-packing. This uses the default settings, compacting the
entire table. This process can be time consuming for very large tables and is fine if
compaction is periodic. For more frequent compaction, in particular for streaming
data, trying to define the narrowest compactions possible will allow them to complete
quickly and avoid collisions with streaming ingestion:

OPTIMIZE TABLE PolarisCatalog.sales.orders

Tune file sizes and thresholds manually. One way to tune the scope of an OPTIMIZE job
is determining which files are considered for being rewritten. For streaming ingestion

176 | Chapter9: Using Apache Polaris with Dremio

you may want to tolerate a lower minimum file size so fewer files are rewritten and
only the smallest files will be rewritten, thus balancing performance improvement
with the length of the compaction jobs:

OPTIMIZE TABLE PolarisCatalog.sales.orders
REWRITE DATA USING BIN_PACK (
TARGET_FILE_SIZE_MB = 256,
MIN_FILE_SIZE_MB = 100,
MAX_FILE_SIZE_MB = 1000,
MIN_INPUT_FILES = 10
);

Optimize only specific partitions. When you know new data and updates have occurred
only in particular partitions, you can run a better scoped OPTIMIZE job by targeting
just those partitions:

OPTIMIZE TABLE PolarisCatalog.sales.orders
REWRITE DATA USING BIN_PACK
FOR PARTITIONS order_date >= '2024-01-01'

Rewrite manifest files to control metadata bloat. Sometimes the issue isn't the file sizes of
your data files but the number of manifests that track all these data files. Sometimes
you may want to rewrite only the manifests so more files can be tracked per manifest:

OPTIMIZE TABLE PolarisCatalog.sales.orders
REWRITE MANIFESTS

The OPTIMIZE TABLE operation improves query efficiency by reducing the number
of files scanned during query execution and shrinking the size of manifest lists. It’s
especially beneficial after bulk ingests or large updates.

Dremio Automates Optimization

If youre using Dremio’s integrated catalog—such as when creating tables via the
Dremio UT or SQL without explicitly pointing to an external catalog—Dremio can
automatically manage optimization in the background.

This means that for many common use cases—like running a CTAS or COPY INTO
into a Polaris-backed table—you don’t need to manually run OPTIMIZE or VACUUM
unless you want to force a specific policy or optimize on demand.

Maintaining your Iceberg tables is crucial to keeping your lakehouse performant and
cost-effective. With Dremio’s VACUUM and OPTIMIZE commands, you have full control
when needed, and you can automate table hygiene if this high level of control is
not necessary. Whether youre working in a self-managed Polaris setup or leveraging
Dremio’s integrated catalog, these operations make it easy to keep your Iceberg tables
clean, efficient, and fast.

Using Dremio SQL with Apache Polaris | 177

Showing table properties

Understanding how an Iceberg table is configured can be critical when diagnosing
behavior, tuning performance, or validating ingestion and optimization settings. For-
tunately, Dremio supports the SHOW TBLPROPERTIES command, which allows you to
inspect all the metadata properties associated with a given Iceberg table.

Table properties in Iceberg control a variety of behaviors, from how deletes are han-
dled, to snapshot retention policies, to optimization thresholds. When your table is
managed by Apache Polaris, these properties are stored as part of the table’s metadata
and surfaced through the REST catalog interface. Using Dremio, you can view these
settings directly via SQL.

Here is the basic syntax to pull up the properties of an Iceberg table in Dremio:
SHOW TBLPROPERTIES <table_name>

Here, <table_name> must be the fully qualified name of your table in the form
of <Source>.<Namespace>.<Table>. This is especially important when querying
Polaris-managed tables, as Dremio does not assume a default catalog.

To view the properties of a Polaris table named high_value_orders in the sales
namespace:

SHOW TBLPROPERTIES PolarisCatalog.sales.high_value_orders;

This command returns a result set with two columns.

table_property_name table_property_value

write.metadata.delete-after-commit.enabled true
read.split.target-size 134217728
commit.retry.num-retries 3

Each row corresponds to a property set on the table, either explicitly by the user or
inherited from defaults. These properties are typically set during table creation or
updated through operations like ALTER TABLE.

Common use cases for SHOW TBLPROPERTIES include:

o Auditing table configuration before ingesting or querying
o Verifying optimization thresholds such as target file sizes

» Debugging time-travel or snapshot retention issues by checking snapshot-related
properties

178 | Chapter9: Using Apache Polaris with Dremio

o Checking for clustering settings if using the OPTIMIZE command with clustering
keys

« Ensuring compatibility across engines (e.g., when using Spark, Trino, and Dre-
mio with the same Polaris catalog)

Keep in mind that SHOW TBLPROPERTIES returns only Iceberg-level
table properties. It does not show Dremio-specific configurations
like Reflections or catalog-level storage settings. For those, you'll
need to consult the source configuration UI or system tables.

Conclusion

Bringing together the power of Apache Iceberg and Apache Polaris with Dremio
creates a foundation for building an open, flexible, and high-performance lakehouse
architecture. In this chapter, we walked through how to connect Dremio to Polaris,
whether youre running a self-managed OSS catalog or working with Snowflake’s
Open Catalog, and we explored the full lifecycle of working with Iceberg tables in that
environment. From querying and creating tables to inspecting metadata, ingesting
files, and maintaining performance through VACUUM and OPTIMIZE, Dremio
empowers data teams to manage their lakehouse with ease and transparency.

One thing to note is Dremio’s integrated Polaris catalog, which is built directly into
the platform. This gives users the option to leverage a fully managed Iceberg REST
catalog without any external dependencies, offering all the benefits of Polaris while
simplifying deployment. Whether you're integrating with external catalogs or using
Dremio’s native one, you get the same standards-based experience backed by Iceberg’s
table format and Polaris’s robust metadata model.

Perhaps even Dremio more powerful is how Dremio extends beyond simply query-
ing Polaris-backed tables. With its semantic layer, Dremio enables teams to define
business-friendly views and access controls across multiple sources, including data-
bases, data warehouses, data lakes, and Polaris-managed Iceberg tables, all in one
place. This unified abstraction not only democratizes access to data for BI and Al
workloads, but it also enforces governance and performance optimizations through
features like Reflections, caching, and federated execution planning.

Conclusion | 179

CHAPTER 10

Advanced Polaris Configuration and
CLI Management

As you've seen in earlier chapters, Apache Polaris offers a powerful foundation for
managing Iceberg table metadata in distributed, multi-tenant data lakehouse environ-
ments. But as with any production-grade system, truly unlocking its potential—and
running it reliably at scale— requires a deeper understanding of its advanced features
and operational tools.

This chapter goes beyond day-to-day usage and explores how to manage Polaris
effectively in real-world deployments. We'll start by introducing the Polaris
command-line interface (CLI), a flexible tool for scripting and automation. From
there, we’ll cover critical administrative concepts like realms, observability, logging,
and production configuration. Whether youre spinning up new environments,
debugging permission issues, or integrating with enterprise infrastructure, this chap-
ter will equip you with the knowledge and tools to operate Polaris with confidence.

Well also take a close look at how Polaris handles metadata persistence via meta-
stores, the various options for metrics and tracing, and how to configure Polaris in
containerized or cloud-native environments. By the end, you’ll have a complete view
of what it takes to run Polaris securely and efficiently in production.

Using the Polaris CLI

While much of Polaris’s functionality is exposed via its REST API, the Polaris
command-line interface (CLI) offers a more approachable and scriptable way to
interact with the system, especially for administrators and data engineers managing
metadata workflows, debugging issues, or automating catalog operations. The CLI

181

wraps many common API calls into concise, human-friendly commands that support
managing catalogs, principals, roles, privileges, and more.

In this section, we'll walk through the core structure of the Polaris CLI, how authenti-
cation works, and how to use it effectively in both local and remote environments.
Whether you're quickly creating a catalog, rotating credentials, or granting privileges
across logical boundaries, the CLI provides a flexible and efficient way to interact
with Polaris, without writing raw HTTP requests or custom scripts. You'll also
see how commands can be scoped to specific realms, which Polaris uses to isolate
tenants, teams, or environments within a single deployment.

CLI Structure, Authentication, and Profiles

The Polaris CLI is designed for flexibility and ease of use, mirroring the structure
of the REST API while offering a more compact and user-friendly interface. Every
command begins with the polaris keyword, followed by one or more commands and
subcommands, with optional flags and arguments.

Here’s a quick look at the basic pattern:
polaris [global-options] <command> <subcommand> [action] [options and arguments]
For example:

polaris principals list
polaris catalogs create --storage-type s3 --default-base-location
s3://my-bucket my_catalog
Authentication options
The CLI supports multiple methods for authentication. At a minimum, you’ll need to
authenticate using either:
o A client ID and secret:
polaris --client-id <your-client-id> --client-secret <your-client-secret> ...
o Or a bearer access token:

polaris --access-token <your-access-token> ...

You cannot use both --client-id/--client-secret and --
access-token in the same command.

N

182 | Chapter 10: Advanced Polaris Configuration and CLI Management

If you omit credentials on the command line, the CLI will fall back to environment
variables (to avoid the command being part of your shell command history, start the
command with a space):

export CLIENT_ID=<your-client-id>
export CLIENT_SECRET=<your-client-secret>
Profiles for convenience

To simplify repeated use, Polaris supports CLI profiles that store authentication and
connection settings. This is especially useful when working with multiple environ-
ments or switching between realms.

To create a profile, use:
polaris profiles create dev

You can then use the - -profile flag to invoke it:
polaris --profile dev catalogs list

Alternatively, set it as an environment default:
export CLIENT_PROFILE=dev

Profiles store information like the host, port, access token, or client credentials, so
you don’t have to re-enter them every time. This is especially useful when automating
tasks or using the CLI in scripts or CI pipelines.

Connecting to Polaris

By default, the CLI connects to localhost:8181. If your Polaris server is running on
a different host or port, you can set it manually using the following:

--host my.polaris.server --port 8181
Or you can use the - -base-url flag instead to supply a full URL path:
--base-url https://my-polaris.example.com/api/catalog/v1

You should only provide one of - -host/--port or --base-url per command.

Managing Entities with the CLI

At its core, Polaris is a metadata platform built around a handful of key entities:
catalogs, principals, roles, namespaces, and privileges. The CLI exposes intuitive
commands to manage each of these, making it easy to create and inspect metadata
structures or automate governance tasks. This section walks through how to work
with each of these entity types using real examples.

Using the Polaris CLI | 183

(atalogs

Catalogs are the foundation of Polaris—they define where Iceberg tables live and how
they’re organized. With the CLI, you can create, list, update, and delete catalogs.

To create a simple file-backed catalog:

polaris catalogs create \
--storage-type file \
--default-base-location file:///tmp/polaris \
my_catalog
For cloud storage, specify the relevant credentials:
polaris catalogs create \
--storage-type s3 \
--default-base-location s3://my-bucket/polaris-data \
--role-arn arn:aws:iam::1234567890:role/my-polaris-role \
my_cloud_catalog

To list all catalogs:
polaris catalogs list
And to update a catalog’s properties:

polaris catalogs update my_catalog --property environment=dev

Principals

Principals represent users or service accounts. You'll typically create one for each data
user or application that needs access to Polaris.

To create a principal:
polaris principals create data_engineer_1
You can also attach metadata to principals using properties:
polaris principals create --property team=analytics data_scientist_1
To rotate credentials:
polaris principals rotate-credentials data_engineer_1
List or inspect principals:
polaris principals list
polaris principals get data_engineer_1
Roles: principal and catalog

Roles in Polaris come in two flavors: principal roles, which define high-level access
policies across catalogs, and catalog roles, which govern access within a specific
catalog.

184 | Chapter 10: Advanced Polaris Configuration and CLI Management

To create a principal role:
polaris principal-roles create analyst_role
Then assign it to a user:
polaris principal-roles grant --principal data_scientist_1 analyst_role
To create a catalog role within a catalog:
polaris catalog-roles create --catalog my_catalog limited_reader
Then grant it to a principal role:

polaris catalog-roles grant \
--catalog my_catalog \
--principal-role analyst_role \
limited_reader

These layers let you decouple identity (who the user is) from access scope (what they
can see or modify), making access policies easier to manage at scale.

Namespaces

Namespaces act like folders within a catalog. Use them to hierarchically organize
tables.

To create a namespace:

polaris namespaces create --catalog my_catalog analytics.ql
To list them:

polaris namespaces list --catalog my_catalog

Privileges

Once roles are assigned, you can grant or revoke fine-grained privileges—on catalogs,
namespaces, tables, or views.

Example: granting catalog-level content management:

polaris privileges catalog grant \
--catalog my_catalog \
--catalog-role limited_reader \
CATALOG_MANAGE_CONTENT

Or granting read access to a specific table:

polaris privileges table grant \
--catalog my_catalog \
--catalog-role limited_reader \
--namespace analytics.ql \
--table sales_data \
TABLE_READ_DATA

Using the Polaris CLI | 185

Use the revoke subcommand with - -cascade to remove dependent permissions:

polaris privileges table revoke \
--catalog my_catalog \
--catalog-role limited_reader \
--namespace analytics.ql \
--table sales_data \
--cascade \
TABLE_READ_DATA

Each of these commands maps closely to the REST API, but with syntax thats
friendlier for human operators and automation scripts. In the next section, we'll

explore how Polaris uses realms to provide multi-tenant isolation and how to manage
that context from the CLI and configuration.

Understanding Realms

Polaris supports multi-tenant isolation out of the box through a construct called a
realm. A realm is a logical partition of Polaris’s metadata layer that allows different
teams, business units, or environments (e.g., dev, staging, prod) to operate in com-
plete isolation, even if they share the same Polaris server instance. Understanding
how realms work is essential for anyone deploying Polaris at scale, especially in
organizations with strict data boundaries or compliance requirements.

What is a realm?

A realm in Polaris is a top-level boundary that encapsulates its catalogs, roles, princi-
pals, and metadata. When a user authenticates into a realm, typically by including the
realm name in a configuration file or API request header, all subsequent actions (such
as creating catalogs, assigning roles, or querying metadata) are scoped strictly within
that realm. This ensures complete separation of privileges and data across tenants or
environments. Administrators define realms during deployment or bootstrap; they
are not created dynamically through the API. Identifiers like my_team_realm must be
explicitly configured in Polaris’s startup settings (e.g., in application.properties)
to be recognized and used.

Think of realms as lightweight, secure sandboxes within Polaris:

+ Multiple business units can share infrastructure but manage their own policies.

o Service providers can host Polaris for customers without cross-contamination.

How realm context works

In Polaris, realm context refers to how the system determines which realm a request
belongs to. This context is critical for enforcing isolation and ensuring that metadata
operations, such as catalog creation, role assignments, or table queries, are executed

186 | Chapter 10: Advanced Polaris Configuration and CLI Management

within the correct security and governance boundary. Every request to Polaris must
include enough information for the server to resolve the appropriate realm.

Determining realm using the Polaris-Realm HTTP header (default)

By default, Polaris resolves realm context using a special HTTP header. Clients
include the name of the target realm in the request using the Polaris-Realm header.
This approach is common when interacting with Polaris through its REST APL

For example:
Polaris-Realm: my_team_realm

This tells Polaris that the request, whether it’s to list catalogs or grant privileges,
should be scoped to the my_team_realm realm. If this header is omitted and no
default realm is configured, the request will fail with a realm resolution error.

Realm-aware authentication and bootstrapping

Authentication in Polaris is realm-scoped. Each realm has its own root principal,
whose credentials are required to bootstrap and manage the realm. When setting up a
realm in a production environment, you'll usually:

o Configure the realm in your application.properties or via environmental
variables.
« Bootstrap the realm using the CLI or java -jar command.
« Issue tokens specific to that realm’s root principal.
Example environment variables to set root credentials (the initial user you can use to
create initial principals and catalogs):

export POLARIS_BOOTSTRAP_MY_REALM_ROOT_CLIENT_ID=my-client-id
export POLARIS_BOOTSTRAP_MY_REALM_ROOT_CLIENT_SECRET=my-secret

Then bootstrap the realm:
java -jar runtime/admin/build/quarkus-app/quarkus-run.jar bootstrap --help
To specify the credentials to be created in the command would look like this:

java -jar runtime/admin/build/quarkus-app/quarkus-run.jar bootstrap
-r my_realm -c my_realm,client-id,my-secret

The -r flag specifies which realm to bootstrap and -c specifies the credentials.

Once bootstrapped, the realm is fully operational and ready for catalog provisioning
and role setup.

Using the Polaris CLI | 187

Realm isolation in practice

Behind the scenes, Polaris uses realm context to enforce a higher level of isolation
that sits above individual catalogs. While Chapter 3 discussed how catalogs are iso-
lated from one another, meaning metadata, roles, and permissions within one catalog
do not affect another, realms introduce a broader boundary. A realm isolates entire
groups of catalogs, along with their associated principals, roles, grants, and metadata,
into a logically separate domain. This allows different teams, business units, or ten-
ants to operate independently within the same Polaris deployment, without any risk
of cross-access or configuration leakage. Realm isolation is enforced through scoped
authentication, separate database connections, and realm-specific context resolution
at runtime, providing a strong multi-tenancy model that complements catalog-level
boundaries.

Polaris uses the realm context to isolate metadata at multiple levels:

Metastore
Separate storage backends or schemas per realm.

Security
Distinct principals, roles, and policies.

Logging and tracing
Realm identifiers are attached to log entries and telemetry spans, making it easier
to debug and audit activity per realm.

This isolation makes realms ideal for SaaS-style multi-tenancy, hybrid cloud envi-
ronments, and any scenario where firm boundaries between users or systems are
required, compared to the isolation of governance and logical organization of cata-
logs within a realm (if you are a company providing catalogs as a Saa$, each customer
would have a realm, while that customer maintains many catalogs within that Realm).

Next, we'll explore how to observe and troubleshoot Polaris using built-in metrics,
traces, and logs—critical tools for production deployments and root-cause analysis.

Observability: Metrics, Tracing, and Logging

Running Polaris in production means more than just standing it up—it requires
visibility into what’s happening under the hood. Whether you're tracking API perfor-
mance, debugging a failed request, or auditing access across realms, observability is
key to operating Polaris with confidence and control.

Polaris provides a robust observability layer out of the box, including:

Metrics
Exposed via Micrometer and ready to be scraped by Prometheus

188 | Chapter 10: Advanced Polaris Configuration and CLI Management

Distributed traces
Published using OpenTelemetry for deep request-level visibility

Structured logging
Powered by Quarkus and enriched with context like request IDs, trace IDs, and
realm identifiers

Tracing
To help make troubleshooting much easier

In this section, you'll learn how to configure and consume Polaris’s observability
signals in both development and production environments. We'll walk through how
to expose and customize metrics, enable traces for distributed debugging, and tailor
logging behavior to fit your operational workflows. If you're responsible for running
Polaris at scale—or need to troubleshoot complex behaviors—this is where you’ll find
the tools to do it effectively.

Metrics with Micrometer and Prometheus

Polaris exposes a comprehensive set of runtime metrics using Micrometer, a vendor-
neutral instrumentation library that integrates seamlessly with monitoring tools like
Prometheus, Datadog, and others. These metrics provide in-depth visibility into sys-
tem health and behavior, including request volumes, response latencies, error rates,
and resource utilization. For example, you can track API request counts by HTTP
status code, monitor memory consumption and garbage collection performance, or
set alerts when request latencies exceed defined thresholds. Polaris also supports
custom metric tags, allowing you to filter and aggregate metrics by realm, region,
catalog, or deployment environment, making it easier to pinpoint issues and analyze
trends in complex, multi-tenant deployments.

Accessing metrics

Polaris publishes metrics through its management interface, typically served on port
8282. You can access them via a browser or use a Prometheus-compatible scraper:
http://<your-polaris-host>:8282/q/metrics

If you're running Polaris locally, that might look like: http://localhost:8282/q/metrics

This endpoint returns a plaintext stream of metrics in Prometheus format, including
system stats (CPU, memory, HTTP response codes) as well as Polaris-specific coun-
ters and gauges.

Scraping with Prometheus

To integrate with Prometheus, just add Polaris as a scrape target in your Prometheus
configuration:

Observability: Metrics, Tracing, and Logging | 189

scrape_configs:
- job_name: 'polaris'
metrics_path: '/q/metrics'
static_configs:
- targets: ['localhost:8282']
You can now create Grafana dashboards or alerts based on Polaris’s performance and

usage.

Customizing metric tags

You can enrich your Polaris metrics with custom tags to distinguish between services,
environments, or deployments. Polaris supports tagging via configuration properties

like:

polaris.metrics.tags.environment=prod
polaris.metrics.tags.service=metadata-api
polaris.metrics.tags.region=us-west-2

These tags are automatically appended to every metric, making it easy to break down
metrics across environments or filter them in dashboards.

By default, Polaris includes:
polaris.metrics.tags.application=Polaris
You can override it by setting:
polaris.metrics.tags.application=my-polaris-instance
The /q/metrics endpoint should be exposed only to trusted infra-
structure, such as internal monitoring systems, especially in pro-

duction environments. Use a firewall, reverse proxy, or Kubernetes
ingress rules to control access.

Tracing with OpenTelemetry

While metrics offer a broad overview of Polaris’s health and performance, tracing
provides a more detailed, request-level view of what's happening inside the system.
With distributed tracing via OpenTelemetry, Polaris can emit spans that help you fol-
low individual requests as they move through components, services, and realms. This
level of visibility is beneficial when debugging high-latency requests, investigating
intermittent timeouts, or understanding behavior across multi-realm or multi-service
environments. Tracing also becomes essential when coordinating with external sys-
tems, such as Spark, Kafka, or cloud-native services, that emit their own OpenTele-
metry traces. By default, tracing is disabled in Polaris, so you’ll need to explicitly
enable it and configure an OTLP (OpenTelemetry Protocol) collector to capture and
analyze these signals.

190 | Chapter 10: Advanced Polaris Configuration and CLI Management

Enabling tracing

To enable tracing, set the following property in your Polaris configuration (e.g., in
application.properties or via environment variables):

quarkus.otel.sdk.disabled=false

Then, specify the collector endpoint where traces should be sent. This must be a valid
HTTP or HTTPS URL pointing to a compatible OpenTelemetry collector:

quarkus.otel.exporter.otlp.traces.endpoint=http://otlp-collector:4317

The endpoint must support the OTLP gRPC protocol, and the default port is typically
4317.

Customizing trace metadata

Polaris automatically attaches helpful metadata to every trace:

service.name
Defaults to Apache Polaris Server (incubating)

service.version
The current Polaris release version

polaris.realm
The realm ID for the request

polaris.request.id
If the client provides a Polaris-Request-Id header

You can override or extend these attributes using:
quarkus.otel.resource.attributes=service.name=polaris,deployment.environment=prod
Alternatively, you can use the indexed syntax:

quarkus.otel.resource.attributes[0]=service.name=polaris
quarkus.otel.resource.attributes[1]=deployment.environment=prod

This is useful when running multiple Polaris services (e.g., per team or region) and
you want to break down trace data by context.

Troubleshooting trace export
If Polaris fails to send traces, you may see logs like:

SEVERE [10.ope.exp.int.grp.OkHttpGrpcExporter] ... Failed to export spans.
The request could not be executed. Full error message: Failed to connect
to localhost:4317

Observability: Metrics, Tracing, and Logging | 191

This typically means:

« The collector isn’t running
o The endpoint URL is incorrect

o The port is blocked or misconfigured

Double-check your configuration and ensure the OpenTelemetry collector is reacha-
ble from the Polaris container or host.

With Polaris emitting structured, span-level traces, you can plug into any OTEL-
compatible backend like Jaeger, Grafana Tempo, or Honeycomb to get full visibility
into your lakehouse metadata layer.

Logging and Debugging with Quarkus

Logging is the foundation of any good observability stack—and Polaris offers a flexi-
ble, extensible logging system built on top of Quarkus. Whether you're troubleshoot-
ing a failed request, auditing user behavior across realms, or tuning performance,
Polaris’s logs give you detailed insight into what the system is doing and why.

By default, Polaris logs to both the console and a rotating file in the ./logs directory.
You can customize everything from log format and level to contextual metadata like
request IDs and realms.

Basic logging behavior

Polaris outputs logs in a human-readable format and rotates log files daily. Each file
is capped at 10MB with a maximum of 14 backups retained. This default setup works
well for development, but production environments will typically want to forward
logs to a centralized logging solution (e.g., Fluentd, Logstash, or cloud-native log
services).

Setting log levels

You can globally adjust the log verbosity, which controls how much detail is included
in the logs, using:

quarkus.log.level=INFO
To fine-tune specific components, define per-package log levels:
quarkus.log.category."org.apache.polaris".level=DEBUG

This is especially helpful when debugging Polaris internals or observing authentica-
tion flows.

192 | Chapter 10: Advanced Polaris Configuration and CLI Management

Debugging configuration issues

To troubleshoot startup or configuration problems, increase verbosity for the config
loader:

quarkus.log.console. level=DEBUG

quarkus.log.category."io.smallrye.config".level=DEBUG

Increasing the verbosity for the config loader may expose sensitive
values such as credentials or tokens. Do not enable verbosity in
production unless absolutely necessary.

Enabling JSON logs

If youre ingesting Polaris logs into a structured logging system (e.g., Elasticsearch),
enable JSON-formatted output:

quarkus.log.console. json=true
quarkus.log.file.json=true

JSON logs make it easier to parse, search, and correlate logs across services and time
windows.

Using MDC for contextual logging

Polaris automatically includes Mapped Diagnostic Context (MDC) entries in every
log message, enriching them with request-level context:

requestId
From the Polaris-Request-Id header

realmId
The realm in which the request is operating

traceld, parentId, and spanld
From OpenTelemetry, if tracing is enabled

sampled
Whether the trace was sampled

Log output includes these fields in the default pattern:

%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c{3.}] [%¥X{requestId},%X{realmId}]
[%X{traceld},%X{parentId},%X{spanld},%X{sampled}] (%t) %s%e%n

Observability: Metrics, Tracing, and Logging | 193

Adding custom MDC keys

You can add your own contextual metadata to every log by setting additional MDC
properties:

polaris.log.mdc.environment=prod

polaris.log.mdc.region=us-west-2

These tags appear in every log line and are especially useful in multi-region or
multi-realm deployments where filtering by environment or location is critical.

Together with metrics and traces, Polaris’s logging system forms a complete observa-
bility stack that supports both real-time monitoring and in-depth forensic analysis.
With flexible formats, structured context, and easy integration into your existing
tools, logs become a first-class tool for operating your data lakehouse infrastructure.

Configuring Polaris for Production

Deploying Polaris in production requires more than just standing up the service—
you’ll need to think through security, durability, multi-tenancy, and scalability from
the ground up. While Polaris provides a streamlined developer experience out of
the box, its default configuration is specifically designed for local experimentation
and testing. To safely run Polaris in a real-world environment, you'll need to replace
in-memory components, harden authentication flows, and carefully configure persis-
tence and network settings.

In this section, we'll walk through the key areas youll want to review and adjust
before moving to production. These include:

+ Enabling secure authentication and OAuth2 token brokers

« Configuring durable metadata storage using relational metastores
« Bootstrapping realms and root principals safely

o Disabling test features and tightening default privileges

o Setting concurrency and rate limits to protect against overload

By the end, you'll have a clear roadmap for turning Polaris from a local development
sandbox into a secure, robust, and multi-tenant production catalog service.

Security and Authentication Configuration

In production environments, robust authentication is essential. Polaris provides
flexible, pluggable mechanisms for securing access to metadata APIs; however, its
default development configuration utilizes a test authenticator that’s not intended for
real-world use. Transitioning to a secure authentication setup is one of the first and
most critical steps in preparing Polaris for production.

194 | Chapter 10: Advanced Polaris Configuration and CLI Management

Configure OAuth2 and token brokers

Polaris supports OAuth2-based authentication flows, which allow service accounts
or users to request access tokens tied to a specific principal and realm. You can
configure Polaris to issue tokens via a token broker, which can use either symmetric
keys or asymmetric RSA key pairs.

To configure the token broker with symmetric key encryption:

polaris.authentication.token-broker.type=symmetric-key
polaris.authentication.token-broker.symmetric-key.file=/secrets/symmetric.key

Or, configure the token broker using RSA keys:

polaris.authentication.token-broker.type=rsa-key-pair
polaris.authentication.token-broker.rsa-key-pair.public-key-file=
/secrets/public.key
polaris.authentication.token-broker.rsa-key-pair.private-key-file=
/secrets/private.key

The token-broker settings must match in both the oauth2
and authenticator configurations. Mismatched values will cause
authentication failures.

N

Bootstrap root credentials for a realm

When deploying Polaris with persistent metadata (e.g., using a metastore), you’ll need
to bootstrap the system to initialize realm-level credentials and infrastructure. As part
of the bootstrap process, you can provide a custom client_id and client_secret
for the realm’s root principal.

Set these via environment variables:

export POLARIS_BOOTSTRAP_MY REALM_ROOT_CLIENT_ID=my-client-id
export POLARIS_BOOTSTRAP_MY REALM_ROOT_CLIENT_SECRET=my-client-secret

Then run:

java -jar polaris-service-all.jar bootstrap polaris-server.yml
For Docker-based deployments:

bin/polaris-service bootstrap config/polaris-server.yml

This process creates the root principal and stores hashed credentials in the metastore
backend.

Configuring Polaris for Production | 195

For bootstrapping the default realm, environment variables must be prefixed exactly
as shown:

env POLARIS_BOOTSTRAP_DEFAULT-REALM_ROOT_CLIENT_ID=my-client-id \
POLARIS_BOOTSTRAP_DEFAULT-REALM_ROOT_CLIENT_SECRET=my-secret \
<bootstrap command>

Token issuance example. Once bootstrapping is completed, you can request a token:

curl -X POST http://localhost:8181/api/catalog/vl/oauth/tokens \
-d "grant_type=client_credentials&client_id=my-client-id
&client_secret=my-secret&scope=PRINCIPAL_ROLE:ALL"

For non-default realms, include the realm HTTP header:

-H 'realm: my_custom_realm'

Best practices for production. Here are some best practices for when in production:

Store secrets securely
Never hardcode credentials or keys in source code or container images.

Rotate credentials periodically
Polaris supports credential rotation via CLI.

Scope tokens tightly
Use specific scopes (e.g., CATALOG_LIST, TABLE_READ_DATA) rather than blanket
access.

Durable Metadata with Metastores

In development, Polaris defaults to an in-memory metastore for fast iteration and
simplicity. But in production, this setup is not suitable—it’s ephemeral and non-
durable. Using an in-memory metastore means:

» Metadata is lost on restart
o There’s no way to persist configuration between sessions

+ Multiple nodes can’t coordinate access to shared state

In production, these limitations are unacceptable. Durable metadata is essential for
long-term stability, auditing, multi-node deployment, and compliance. For real-world
use, Polaris must persist metadata like catalogs, roles, grants, and principals to a
relational backend that ensures data integrity and durability.

Polaris supports two options for metastores: Relational JDBC (recommended) and
NoSql Databases (in development). EclipseLink is deprecated; it should not be used
for new development.

196 | Chapter 10: Advanced Polaris Configuration and CLI Management

Using relational JDBC (recommended)

The preferred backend for production is the relational JDBC implementation. This
approach leverages Quarkus’s native support for database connections and integrates
with PostgreSQL or H2 (for non-prod scenarios).

First, set your persistence type to relational-jdbc:
POLARIS_PERSISTENCE_TYPE=relational-jdbc
Next, configure the datasource using Quarkus environment variables or properties:

QUARKUS_DATASOURCE_DB_KIND=postgresql
QUARKUS_DATASOURCE_USERNAME=my_user
QUARKUS_DATASOURCE_PASSWORD=my_password
QUARKUS_DATASOURCE_JDBC_URL=jdbc:postgresql://mydb:5432/{realm}
The {realm} token in the JDBC URL allows Polaris to isolate metadata per realm,
creating physical separation at the database level.

It’s important to note that:

o+ Databases must be created manually—Polaris does not auto-create them.

o Each realm connects to its own schema or database.

You can also define the persistence backend using Polaris’s application config file
application.properties:

polaris.persistence.type=relational-jdbc
quarkus.datasource.db-kind=postgresql

quarkus.datasource. jdbc.url=jdbc:postgresql://localhost:5432/production_realm
quarkus.datasource.username=admin

quarkus.datasource.password=secret

Deprecated: EclipseLink metastore

While still available, the EclipseLink persistence option is deprecated and should
not be used for new deployments. It requires a persistence.xml file to configure
connection properties, which must be located at least two directories deep (e.g., /
deployments/config/persistence.xml).

An example EclipseLink persistence configuration looks like this:

polaris.persistence.type=eclipse-link
polaris.persistence.eclipselink.configuration-file=/path/to/persistence.xml
polaris.persistence.eclipselink.persistence-unit=polaris

This setup is useful for legacy compatibility or custom use cases, but it lacks the
flexibility and maintainability of the JDBC-based approach.

Configuring Polaris for Production | 197

If youre moving from EclipseLink to JDBC, you may need to
export and re-import metadata to align with schema expectations.

With a durable metastore in place, Polaris can now safely persist your metadata
across restarts, deployments, and environments.

Hardening Defaults and Managing Feature Flags

Once you've configured secure authentication and a persistent metastore, the next
step in productionizing Polaris is to review and harden its default behaviors. Out of
the box, Polaris includes several features meant to simplify development and testing,
but many of these should be disabled or tightened before going live. In production,
you'll want to ensure that metadata operations are governed, storage locations are
controlled, and test shortcuts are removed.

Polaris provides a flexible feature-flag system to control behavior at both global and
realm-specific levels.

Disable test catalog initialization

By default, Polaris may automatically initialize a default catalog using local file-based
storage. This is helpful in local testing but should be explicitly disabled in production
environments to avoid accidental exposure of ungoverned storage paths.

To disable automatic catalog creation:
polaris.features.realm-overrides."my-realm"."INITIALIZE_DEFAULT
_CATALOG_FILEIO_FOR_TEST"=false

Restrict supported storage types

In development, Polaris allows catalogs to use any supported storage backend—
including local file systems (FILE)—which are not suitable for production. To enforce
stricter policies, use the following flag to allow only explicitly permitted catalog
storage types:

polaris.features.defaults."SUPPORTED_CATALOG_STORAGE_TYPES"=S3,GCS,AZURE

Omit FILE entirely to ensure developers don't accidentally create catalogs with inse-
cure or non-durable storage backends.

Enforce credential rotation policies

Credential hygiene is critical in multi-tenant environments. Polaris includes an
optional flag to enforce that principals regularly rotate their credentials:

198 | Chapter 10: Advanced Polaris Configuration and CLI Management

polaris.features.defaults."ENFORCE_PRINCIPAL_CREDENTIAL_
ROTATION_REQUIRED_CHECKING"=true
This prevents long-lived, unmanaged secrets and encourages teams to treat Polaris
credentials like any other secure infrastructure credential.

Realm-specific overrides

Feature flags can be applied globally or on a per-realm basis, giving you fine-grained
control over different tenants, teams, or environments.

For example, if you want to disable a feature just for the analytics realm:

polaris.features.realm-overrides."analytics"."SKIP_CREDENTIAL_
SUBSCOPING_INDIRECTION"=false
This level of control is particularly useful in hybrid setups, where some realms may be
experimental or isolated, while others are tightly regulated.

Review logs for flag behavior

If you'e unsure which flags are active, or you want to confirm that test defaults
are disabled, enable debug logging for Polaris’s configuration subsystem as noted in
“Debugging configuration issues” on page 193:

quarkus.log.category."io.smallrye.config".level=DEBUG

This may expose sensitive configuration values. Use with caution
and only in trusted environments.

By locking down permissive defaults and activating relevant feature flags, you make
Polaris safer, more predictable, and easier to operate in a compliance-sensitive pro-
duction setting.

Scaling, Concurrency, and Rate Limits

With security configured and metadata durability ensured, the final step in preparing
Polaris for production is tuning its performance characteristics. While earlier sections
focused on setting up secure authentication and persistent metastores, they also laid
the groundwork for governance, including defining realms, setting up role-based
access control, and applying privilege-based restrictions at the catalog, namespace,
and table levels. These governance features ensure that users can only interact with
the data they’re authorized to access, and that metadata operations are traceable and
auditable.

Configuring Polaris for Production | 199

Polaris is designed to serve metadata requests at scale, from multiple compute
engines, concurrent users, and across many realms and catalogs. To maintain pre-
dictable performance and protect against overload, Polaris provides configuration
options for managing concurrency, task queues, and request rate limits. These set-
tings are especially important in multi-tenant or cloud-native environments, where
sudden traffic surges or uneven usage patterns can strain shared infrastructure.

Task concurrency

Polaris processes metadata operations (such as creating tables or listing namespaces)
as internal tasks. By default, it supports up to 100 concurrent tasks and queues up to
1,000 additional tasks.

You can tune these thresholds to match your deployment size and workload:

polaris.tasks.max-concurrent-tasks=200
polaris.tasks.max-queued-tasks=1000

Increase limits if you expect high throughput from multiple compute engines (e.g.,
Spark, Dremio, Snowflake). Decrease them to constrain resource usage on small or
shared infrastructure.

Monitor queue depth and task latency via metrics to help deter-
mine optimal values.

Rate limiting with token buckets

To further protect Polaris from overload or abuse (intentional or accidental), you can
enable rate limiting via a token bucket algorithm. This approach allows short bursts
of traffic but limits the average request rate over time.

Enable token bucket rate limiting:
polaris.rate-limiter.filter.type=token-bucket
Then define the rate-limiting behavior:

polaris.rate-limiter.token-bucket.requests-per-second=1000
polaris.rate-limiter.token-bucket.window=PT10S

This configuration allows a maximum of 10,000 requests every 10 seconds (on aver-
age). You can fine-tune these settings based on expected usage and load testing. To
disable rate limiting entirely (not recommended for production), set:

polaris.rate-limiter.filter.type=no-op

200 | Chapter 10: Advanced Polaris Configuration and CLI Management

Scaling considerations

Polaris can scale horizontally behind a load balancer, especially when used with
a shared metastore like PostgreSQL. If youre deploying Polaris in a containerized
environment (e.g., Kubernetes), consider:

+ Running multiple replicas with a shared external metastore
« Using externalized configuration (via ConfigMaps or mounted volumes)
o Scaling based on CPU or request latency metrics

» Monitoring thread pool and connection pool sizes, especially under heavy meta-
data workloads

Polaris is stateless from a service perspective, so scaling is largely a matter of infra-
structure sizing and backend capacity.

By tuning concurrency limits, enforcing rate policies, and scaling your deployment
appropriately, you can ensure that Polaris remains responsive and stable under real-
world production conditions, even as workloads grow and new teams onboard.

Finalizing and Verifying Your Production Setup

At this point, you've laid the groundwork for a secure, durable, and scalable Polaris
deployment. But before onboarding users or integrating compute engines, it’s critical
to validate that all the key components are functioning as expected. A properly
configured deployment should not only serve metadata requests but also enforce
access policies, persist state across restarts, and expose visibility through logs, metrics,
and traces.

Here’s a checklist you can use to verify your production setup:

O Issue an OAuth2 token using your realm’s client_id and client_secret via
the /oauth/tokens endpoint.

O Create a catalog and confirm metadata is durably stored in your configured
metastore (e.g., PostgreSQL).

O Bootstrap a realm and use the CLI to create and assign roles, then test access with
scoped credentials.

O Check the /q/metrics endpoint to ensure Prometheus-compatible metrics are
exposed and tagged correctly.

O Validate that OpenTelemetry traces are reaching your configured collector and
include realm and request IDs.

O Inspect logs to confirm they are structured, contain MDC fields, and rotate as
expected.

Configuring Polaris for Production | 201

O Confirm test defaults (like file-based storage and default catalog initialization) are
disabled.

If all of the above checks pass, you've successfully transitioned Polaris from a devel-
opment tool into a production-ready metadata platform. You now have a secure
foundation for cross-team collaboration, multi-tenant data governance, and scalable
catalog management.

Conclusion

Polaris is more than just a catalog; it's a foundation for building reliable, governed,
and multi-tenant data platforms on Apache Iceberg. While earlier chapters intro-
duced its architectural concepts and hands-on usage, this chapter focused on what it
takes to run Polaris in the real world.

We explored how to secure a Polaris deployment with robust authentication, how
to persist metadata durably using production-grade metastores, and how to harden
system behavior through configurable feature flags. We also covered how to monitor
and debug Polaris using a rich observability stack—metrics, traces, and logs—all
designed to help operators understand what’s happening and why.

Beyond its internal configuration, Polaris also provides a powerful command-line
interface for managing catalogs, principals, roles, and privileges. This makes it easy
to automate administration, integrate with CI/CD workflows, or maintain consistent
governance across environments.

With these capabilities in hand, you're equipped to deploy Polaris with confidence—
securely, at scale, and with the observability required to support production-grade
data operations. Whether youre building for internal teams, external customers, or
both, Polaris offers the flexibility and control to serve as the metadata backbone of
your lakehouse architecture.

202 | Chapter 10: Advanced Polaris Configuration and CLI Management

CHAPTER 11
Looking to the Future of Apache Polaris

As Apache Polaris continues to evolve as a key part of the Iceberg ecosystem, its
trajectory reflects both the maturity of open table formats and the growing demand
for flexible, interoperable data catalogs.

This chapter looks ahead to what’s next for Polaris. We begin by examining the
broader Polaris ecosystem, including how Polaris is offered as a managed service by
vendors such as Dremio and Snowflake. We then examine how Polaris integrates into
the landscape of REST-compatible catalogs, facilitating seamless collaboration across
engines and vendors. Finally, we delve into the Apache Polaris project roadmap,
highlighting key features under development and the direction of community-led
innovation. Understanding where Polaris is headed is essential for practitioners plan-
ning for the future of their Iceberg-based infrastructure.

Apache Polaris is a community-driven, open source project. The features and func-
tionalities mentioned in this chapter are not part of Apache Polaris at the time of
writing. There is no guarantee on whether, when, how, and to what extent these
features and functionalities will be implemented. Only features and functionalities
that are part of an official, binary release and not marked as experimental or the like
are considered stable.

Managed Polaris

The Polaris ecosystem is rapidly expanding, supported by a vibrant community and
significant contributions from Dremio and Snowflake. Apache Polaris’s implementa-
tion of the Iceberg REST Catalog specification makes it an ideal foundation for
managed catalog offerings that prioritize openness, governance, and interoperability.
Both Dremio and Snowflake offer managed catalog services—Dremio Catalog and

203

Snowflake Open Catalog—that simplify the process of adopting Polaris in production
environments.

As we introduced in Chapter 9, Dremio Catalog, powered by Apache Polaris, is an
enterprise-grade solution that eliminates much of the operational overhead tradition-
ally associated with managing Iceberg catalogs. Dremio Catalog supports on-premise
and hybrid cloud deployments, an essential capability for organizations with diverse
infrastructure needs. It also incorporates built-in automation for table optimization,
including compaction and vacuuming, which helps users avoid performance pitfalls
caused by small files or outdated metadata.

Additionally, tDremio has introduced features such as autonomous performance
management and automatic clustering for Iceberg tables, making Polaris-backed
catalogs easier to manage and more responsive to workload patterns.

Snowflake Open Catalog, which we introduced in Chapter 8, is also based on Apache
Polaris. It provides centralized access to Iceberg tables for Snowflake customers while
maintaining compatibility with a range of Iceberg-aware engines through the REST
interface. Snowflake’s implementation is integrated within its platform—including
role-based access control (RBAC) and storage credential management—in order to
maintain strong data governance without sacrificing openness.

Managed Polaris implementations lower the barrier to entry for organizations explor-
ing Polaris, allowing them to adopt a production-ready REST catalog with mini-
mal setup. By reducing the operational complexity and providing enterprise-grade
enhancements, these solutions ensure that Polaris is open, interoperable, highly
accessible, and reliable for modern data architectures.

The REST Catalog Ecosystem

The Apache Iceberg REST Catalog Specification is a standardized interface that
enables decoupled, cross-platform interaction with Iceberg tables.

As we have noted throughout the book, the significance of the REST Catalog speci-
fication cannot be overstated. It eliminates the need for tight coupling between pro-
cessing engines and specific metastore implementations, enabling users to build open
and flexible lakehouse solutions that scale across teams, tools, and infrastructures.
Polaris’s full support for the REST API makes it a plug-and-play, highly interoperable
catalog for any engine or service that supports the REST Catalog API. A growing
number of tools natively support this standard, allowing you to use your preferred
tools with zero friction.

204 | Chapter 11: Looking to the Future of Apache Polaris

Data Processing Engines

Data processing engines are at the heart of the analytics and data engineering work-
flows that interact with Apache Polaris. These systems are responsible for ingesting,
transforming, querying, and serving data at various scales—from real-time event
pipelines to large-scale batch processing and interactive business intelligence (BI)
workloads. Because Apache Polaris implements the Iceberg REST Catalog specifica-
tion, all of these engines and more can interact with it directly by using a standard,
vendor-neutral API.

Apache Spark

Apache Spark is one of the most widely adopted engines for both batch and
micro-batch processing. Its support for the Iceberg REST Catalog spec enables
seamless interaction with Polaris-managed tables. Spark is frequently used for
ETL pipelines, feature engineering, and training machine learning models, all
of which benefit from Iceberg’s versioned, schema-evolving table format. Polaris
brings Spark users a robust, REST-accessible metastore that eliminates the com-
plexity of traditional Hive-based catalogs.

Apache Flink
Flink is the go-to engine for real-time, low-latency stream processing. It inte-
grates with Polaris through the REST Catalog interface, allowing Flink jobs
to write directly into Iceberg tables for use cases such as change data capture
(CDC), real-time ETL, and streaming analytics. Polaris ensures that even rapidly
changing data can be captured and governed using a consistent catalog, enabling
Flink to participate in a unified lakehouse architecture.

Dremio

Dremio is a SQL engine designed for self-service analytics and data lake accel-
eration. It is deeply integrated with Apache Polaris in multiple ways. First, it
can connect to any REST-compatible catalog, including Polaris, enabling federa-
tion across multiple Iceberg catalogs, as well as federation with databases, data
warehouses, and data lakes. Second, Dremio offers a built-in, fully managed
Polaris catalog, eliminating the need for users to provision or operate an external
metastore. This integrated Polaris catalog works out of the box and is deployable
in cloud, hybrid, or on-prem environments.

Dremio also introduces autonomous performance management features for Ice-
berg tables, including automatic clustering, automated maintenance tasks (such
as compaction and vacuuming), and query acceleration. These capabilities ensure
that data remains optimized without requiring manual intervention, delivering
consistent performance for BI tools, dashboards, and data products.

The REST Catalog Ecosystem | 205

Trino
Trino is a distributed SQL engine known for its ability to federate queries across
heterogeneous data sources. Through support for the Iceberg REST Catalog spec,
Trino can connect to Polaris and execute high-performance analytical queries
on Iceberg tables, while simultaneously accessing other sources such as object
stores, JDBC-compatible databases, and more. Polaris provides a consistent and
versioned metadata layer that enhances Trino’s reliability and governance.

Presto
Like Trino, Presto offers distributed query capabilities for large-scale data analy-
sis. It connects to Polaris using the REST Catalog interface, enabling read access
to Iceberg tables for interactive and batch SQL workloads. Presto’s integration
with Polaris enables it to efficiently leverage Icebergs schema evolution, time
travel, and partition pruning features.

StarRocks
StarRocks is a massively parallel processing (MPP) analytical engine designed
for real-time and multi-dimensional analytics. With native support for Iceberg
via the REST Catalog interface, StarRocks can query Polaris-managed tables with
high throughput and low latency. Its focus on sub-second analytics makes it ideal
for operational dashboards and complex OLAP workloads.

Streaming and Ingestion Platforms

In modern data architectures, real-time data ingestion is a crucial capability, enabling
use cases ranging from operational analytics to anomaly detection and personalized
experiences. Apache Polaris, with its support for the Apache Iceberg REST Catalog
specification, can serve as the destination for streaming data ingested through various
event-driven platforms. These platforms enable the writing of change data capture
(CDC) events and real-time updates into Iceberg tables governed by Polaris, provid-
ing a unified, consistent, and up-to-date lakehouse.

Kafka Connect

Kafka Connect is a widely used framework for integrating Apache Katka with
external systems. It provides a declarative and scalable way to capture and push
streaming data into data lakes, warehouses, and other storage systems. Through
Iceberg sink connectors that support the REST Catalog spec, Kafka Connect can
write streaming records directly into Polaris-managed Iceberg tables. This is ideal
for use cases such as log ingestion, CDC pipelines, and IoT data collection, where
event data needs to be captured and queried with strong consistency and schema
control.

206 | Chapter 11: Looking to the Future of Apache Polaris

Confluent

Confluent—the commercial distribution of Apache Kafka—builds on Kafka
Connect and adds robust enterprise capabilities including governance, schema
registry, security, and monitoring. With support for Iceberg and REST-
compatible catalogs, Confluent pipelines can ingest streaming data into Polaris
with minimal configuration. Organizations using Confluent gain operational
reliability and visibility while leveraging Polaris’s table versioning, time travel,
and access controls for downstream analytics and compliance.

Redpanda

Redpanda is a Kafka-compatible, high-performance event streaming platform
built from the ground up in C++. Known for its low latency, durability, and
operational simplicity, Redpanda can integrate with Polaris via REST-compliant
Iceberg sinks. This allows Redpanda to serve as a drop-in Kafka alternative for
real-time data delivery into the Polaris catalog. Use cases such as financial tick
data, observability streams, and high-frequency logging benefit from Redpanda’s
performance characteristics when paired with Polaris for governed table storage.

Estuary

Estuary is a real-time data integration and pipeline platform that specializes in
CDC and streaming ETL. It provides an intuitive interface and rich connectors
for syncing data across operational databases, SaaS tools, and data lakes. With
native Iceberg support through the REST Catalog interface, Estuary enables
users to ingest fresh data into Polaris-managed tables in near-real time. This is
particularly useful for powering up-to-date analytics, machine learning features,
and dashboarding with strong data consistency and minimal lag.

Other Data-Stack Tools

Beyond processing engines and streaming platforms, Apache Polaris is supported
by a broad and evolving set of tools that enhance metadata management, analytics,
governance, and developer productivity. These tools leverage the Iceberg REST Cata-
log specification to integrate seamlessly with Polaris, enabling a rich, interconnected
ecosystem. This section highlights additional notable tools that work with Polaris,
expanding its utility across the modern data stack.

DuckDB
DuckDB is an in-process OLAP database designed for local analytics and proto-
typing. With support for reading Iceberg tables via REST-compatible catalogs,
DuckDB can be used to explore Polaris-managed datasets directly from a develo-
per’s laptop or notebook environment. It's particularly valuable for data scientists
and analysts performing rapid experimentation, ad hoc queries, or local valida-
tion of production datasets.

The REST Catalog Ecosystem | 207

Polars
Polars is a DataFrame library implemented in Rust with bindings for Python. It
offers powerful data manipulation capabilities and is well-suited for use in data
science and machine learning pipelines. Through its support for Iceberg and
REST Catalogs, Polars can access Polaris-registered tables efficiently, bringing
structured and versioned data into advanced analytical workflows with minimal
friction.

DataHub
DataHub is an open source metadata platform that provides centralized search,
lineage tracking, and governance. It integrates with Polaris via the Iceberg REST
Catalog specification, allowing teams to visualize and manage metadata for Ice-
berg tables in a unified user interface. DataHub helps organizations answer key
questions about data provenance, schema evolution, and usage patterns, thereby
strengthening governance and enabling trusted analytics.

The Apache Polaris Roadmap

Apache Polaris is evolving rapidly, with an ambitious and community-driven road-
map that reflects the priorities of a broad set of contributors, including users, ven-
dors, and engine developers. The roadmap aims to solidify Polaris as a foundational
catalog in the open data ecosystem, while continuously expanding its capabilities
across governance, performance, security, and interoperability.

The roadmap is not a rigid release schedule but rather a transparent articulation of
the project’s long-term vision and current focus areas. Features are grouped into
categories, including core catalog functionality, security and governance, catalog
federation, observability, and AI/ML support. Many enhancements are already gener-
ally available (GA), while others are in active development or planned for future
milestones.

In this section, we examine the most significant roadmap items that will shape the
future of Apache Polaris. Each subsection highlights what the feature is, why it
matters, and how it fits into the broader data platform strategy.

Generic Table Support

One of the most impactful and forward-looking additions to the Apache Polaris road-
map is support for Generic Tables (Initial Feature release in 1.0). This foundational
capability expands Polaris beyond its current scope, which is currently limited to
Iceberg. Until now, Polaris has operated solely as a catalog for Apache Iceberg tables
via the Iceberg REST Catalog API. However, many organizations rely on multiple
table formats across their data ecosystems, notably Delta Lake and Apache Hudi, and
require a unified governance and cataloging layer that is not tied to a single format.

208 | Chapter 11: Looking to the Future of Apache Polaris

Generic Table Support addresses this need by allowing Polaris to register non-Iceberg
tables, such as Delta, Hudi, or raw file-based tables, alongside Iceberg tables within
a shared namespace and governance model. This creates new opportunities for inter-
operability across engines, without requiring all workloads to conform to Iceberg.

The primary motivation for introducing Generic Tables is interoperability. Engines
like Apache Spark, Trino, and Snowflake often interact with a mix of table formats. By
enabling Polaris to manage these diverse formats, users gain a centralized, consistent,
and format-agnostic catalog, which reduces operational overhead and promotes data
governance best practices.

Key goals of the initial implementation include:

« Support for registering and managing non-Iceberg tables as first-class entities in
Polaris

o A REST API for basic operations: create, load, drop, and list Generic Tables

o A dedicated Spark Catalog plugin to allow Spark 3.5+ to interact with Polaris-
managed Generic Tables

o Clear separation of REST endpoints between Iceberg and Generic Table opera-
tions to maintain API integrity

API and architecture overview

Generic Tables in Polaris are managed through a new set of REST endpoints (/
generic-tables) that exist in parallel to the Iceberg REST endpoints. These APIs
support basic operations:

CreateGenericTable
Registers a table with a given name, format (e.g., “delta”), and metadata proper-
ties like location

LoadGenericTable
Retrieves metadata for a Generic Table

DropGenericTable
Removes a registered Generic Table

ListGenericTables
Lists all Generic Tables in a namespace

The design avoids overloading the Iceberg APIs to preserve the semantic clarity of
each specification. For example, a loadTable call must explicitly target either the
Iceberg or Generic Table endpoint, ensuring engines and users receive predictable
behavior.

The Apache Polaris Roadmap | 209

Spark integration

A notable component of the Generic Table initiative is the Polaris Spark Catalog
Plugin. This plugin allows Spark to interact with both Iceberg and Generic Tables in
Polaris through a unified interface. It can:

» Route create, drop, and load operations to the appropriate REST endpoint.
« Construct Spark table objects using returned metadata.

o Defer schema inference and transformation logic to the client (e.g., Spark).

Initial support focuses on Spark 3.5, with a runtime package (polaris-spark-
runtime-3.5_2.12) and configuration options for easy deployment.

Governance and identity model

Generic Tables integrate with Polaris’s existing governance model. They support
standard table-level privileges (e.g., TABLE_CREATE, TABLE_DROP) and are organized
within namespaces alongside Iceberg tables and views. Name uniqueness is enforced
within a namespace, ensuring no conflicts across different entity types.

Looking ahead

While the MVP focuses on basic lifecycle management, the roadmap includes plans
to extend Generic Table support with:

o Metadata converters to dynamically generate Iceberg-compatible metadata from
Delta or file-based tables

» Enhanced read capabilities via the Iceberg REST API (e.g., reading Delta tables
after conversion)

 Expanded engine integrations beyond Spark

This feature lays the groundwork for proper multi-format governance within Polaris,
unlocking robust hybrid lakehouse architectures where Iceberg, Delta, and other
formats coexist under unified control.

In essence, Generic Table support transforms Polaris from an Iceberg-only catalog
into a format-flexible metadata platform, reflecting the diverse realities of production
data environments and Polaris’s commitment to openness and extensibility.

Policy Store

As organizations scale their use of lakehouse architectures, governance becomes a
critical pillar, not just for security and compliance but also for operational efficiency.
In line with this need, the Apache Polaris roadmap introduces a powerful Policy
Store, which positions Polaris as more than just a metadata catalog. It becomes a

210 | Chapter 11: Looking to the Future of Apache Polaris

centralized, versioned repository for declarative policy definitions governing access
control, data lifecycle, and operational behavior across the lakehouse.

The vision behind the Polaris Policy Store is to enable centralized policy definition
and lifecycle management while delegating enforcement to the execution engines
(e.g., Spark, Snowflake, Dremio). This clear separation of concerns ensures that
Polaris remains lightweight and scalable, while engines efficiently apply policies at
query or processing time.

This design caters to a wide range of governance use cases, such as:

« Snapshot retention enforcement for compliance
 Automated compaction policies for optimizing performance

» Row-level access policies for secure data access control

Each policy is tied to tangible data assets—such as catalogs, namespaces, tables, and
views—and can be inherited across entity hierarchies to simplify administration and
promote consistency.

Architecture and key capabilities

Policies are first-class entities within Polaris, grouped under namespaces and gov-
erned by fine-grained privileges. Core capabilities of the Policy Store include:

Flexible policy types and custom schemas
Polaris supports predefined policy types such as system.compaction, system
.snapshot_retention, and system.row_access_policy, each with its own
schema and versioning. It also allows custom policy types (e.g., custom
.myorg.data_masking) to address domain-specific requirements.

Policy inheritance
Policies can be defined at the catalog, namespace, or table level. Inheritance rules
ensure that global governance can be enforced broadly, while still allowing for
granular overrides. For example, a namespace-wide retention policy can apply to
all tables unless superseded by a more specific policy at the table level.

CRUD and versioning APIs
Polaris introduces REST APIs to create, retrieve, update, and delete policies,
attach them to resources, and manage policy versions. Versioning enables roll-
back to prior policy states, allowing for safe experimentation and change control.

Secure, privilege-based access control
Management of policies is governed by a detailed privilege model. Polaris dis-
tinguishes between privileges to read, write, delete, attach, and detach policies,

The Apache Polaris Roadmap | 211

ensuring that responsibilities can be clearly distributed across teams (e.g., gover-
nance vs. platform ops).

Engine integration and policy evaluation
Policies are stored and versioned in Polaris, but enforcement occurs in trusted
engines. For example, Snowflake can evaluate a row-level access policy defined
in Polaris at query runtime. The roadmap includes mechanisms for synchronous
policy-table loading to prevent discrepancies in policy enforcement during reads.

Validation and pluggability
Polaris includes schema validation to prevent invalid policies from being created
or attached. It also supports a pluggable validator framework, allowing organiza-
tions to enforce custom rules for specific policy types.

Looking ahead

The Policy Store roadmap sets the foundation for enterprise-grade governance within
Polaris. Future expansions may include:

o Tag-based policy assignments (e.g., apply retention to all tables tagged “PII”)
» Deeper integrations with external policy systems like Apache Ranger

o Support for policy languages such as Rego or Cedar for advanced logic
expression

By embedding policy definitions directly into the catalog layer, Apache Polaris pro-
vides a single source of truth for both data and governance, streamlining security,
compliance, and operational consistency in Iceberg-based lakehouses. As organiza-
tions seek to unify policy management across multiple engines and environments,
this feature positions Polaris as a cornerstone of open data governance.

Table Maintenance Framework

As Iceberg adoption grows, so does the need for automated, scalable table mainte-
nance. Apache Polaris is evolving to meet this challenge with the introduction of
a Table Maintenance Framework, a major roadmap item designed to streamline the
configuration, inheritance, and enforcement of operational policies across large-scale
data environments.

This framework does not aim to run maintenance jobs itself; instead, it establishes
Polaris as a metadata coordination layer for maintenance tasks executed by external
Table Maintenance Systems (TMS), such as those running in Spark or Flink. This
architecture ensures that Polaris remains lightweight while still playing a critical role
in policy management, configuration, and governance visibility.

212 | Chapter 11: Looking to the Future of Apache Polaris

The Table Maintenance Framework provides:

o A centralized place to define and manage table maintenance policies (e.g., com-
paction, snapshot retention)

o Granular control over which tables are subject to maintenance and under what
conditions

o A communication model between Polaris and external TMSs that supports loose
coupling, scalability, and asynchronous coordination

o Support for inherited policies across catalog, namespace, and table levels, ensur-
ing consistent operational behavior
Metadata-driven maintenance coordination

Polaris enables TMS integration by exposing essential metadata and configuration
values. This includes:

o Table schemas, partition specs, and Iceberg-native statistics (e.g., snapshot sum-
maries, partition stats)

» Maintenance policies (e.g., compaction thresholds, retention windows)

+ Enablement flags that indicate whether maintenance is active on a specific table

TMS systems then read this information and autonomously decide when and how
to perform maintenance jobs. This separation of concerns ensures that the compu-
tationally intensive logic of optimization remains outside Polaris, while policy gover-
nance remains within the catalog.

Flexible policy definition
The maintenance framework supports defining policies at various levels:
Catalog level

For universal policies such as snapshot expiration or default compaction
behavior

Namespace level
To scope operational policies across logical groupings of tables (e.g., all analytics
datasets)

Table level
For precise performance tuning or lifecycle configurations

Plans include support for tag-based grouping, allowing users to apply a policy to all
tables tagged with a given label (e.g., env=prod or data_type=1log).

The Apache Polaris Roadmap | 213

Policy configuration is expressed in JSON format and uses standardized keys such as:

e polaris.maintenance.data-rewrite.policy
e polaris.maintenance.snapshot-retention.policy
e polaris.maintenance.metadata-rewrite.policy

These configurations can be embedded in entity properties or defined as first-class
policy objects with clear privilege boundaries and versioning.

Inheritance and governance

Polaris implements policy inheritance and override logic, ensuring that table-level
settings always take precedence over namespace or catalog-level defaults. This model
enables administrators to define general rules globally, while allowing teams to fine-
tune policies for specific datasets.

To support governance and operational safety, Polaris introduces dedicated privileges
for managing maintenance policies. This allows site reliability engineering (SRE)
teams or platform operators to manage these settings without requiring full write
access to table content, reducing risk and promoting best practices.

Integration model with TMS

Polaris and TMS interact through an asynchronous event-driven model. Polaris emits
events on entity changes (e.g., table created or updated), which are consumed by one
or more TMS systems to trigger maintenance workflows. Required API touchpoints
include:

loadTable and listTable
To fetch metadata and understand current policies

GetApplicablePolicies
To retrieve inherited or assigned maintenance rules

GetTablesPerPolicy
To enable batch coordination of tables grouped by a shared policy

This architecture ensures high scalability and flexibility, supporting multiple TMS
implementations and catalogs concurrently without tight coupling.

Looking ahead

The Table Maintenance Framework lays the foundation for intelligent, automated
data optimization within the Polaris ecosystem. Looking ahead, we expect to see:

o Richer policy evolution features, such as time- or metric-based switching

214 | Chapter 11: Looking to the Future of Apache Polaris

» Multiple policies per entity with prioritization logic

« Tighter integration with governance features, including audit trails and enforce-
ment controls

o Unified policy language and APIs shared across access control, retention, and
optimization settings

By enabling Polaris to act as the authoritative source for operational policy meta-
data, this roadmap item makes Polaris indispensable for maintaining performant,
cost-effective, and compliant Iceberg-based data lakes at scale.

SQL and NoSQL Persistence

One of the core strengths of Apache Polaris is its ability to manage metadata for
large-scale, distributed data lakehouses. To meet the demands of diverse deployment
environments—from ephemeral testing clusters to enterprise-grade, multi-region sys-
tems—the Polaris roadmap includes a major architectural enhancement: support for
SQL and NoSQL persistence backends.

This initiative decouples the core business logic of Polaris from its underlying storage
engine, allowing deployments to choose the most suitable metastore, whether it’s a
relational database like PostgreSQL or a NoSQL system like DynamoDB.

The default Polaris implementation currently uses an in-memory store (based on
PolarisTreeMapMetaStoreSessionImpl) for fast development and testing. However,
production-grade environments require durable, scalable, and transactional storage
systems. The new persistence architecture aims to:

o Support relational stores (via JDBC) for structured, ACID-compliant deploy-
ments

+ Enable NoSQL backends like MongoDB for flexible, cloud-native persistence

+ Improve modularity by separating business logic from data access layers

This evolution is critical for making Polaris truly adaptable to any enterprise environ-
ment—whether deployed in the cloud, on-premises, or in hybrid configurations.

Deployment flexibility
With this enhancement, users will be able to choose the most appropriate storage

backend based on their operational requirements:

PostgreSQL and H2
Ideal for environments requiring ACID transactions, strong consistency, and
well-established tooling

The Apache Polaris Roadmap | 215

MongoDB, more NoSQL DBs possible
Suited for cloud-native, high-availability architectures that prioritize scalability
and fault tolerance over strict transactionality

This opens the door for Polaris to be used in high-availability, distributed deploy-
ments and better aligns it with modern platform-as-a-service and multi-tenant
requirements.

Looking ahead

This decoupling effort sets the stage for additional innovations:

« Pluggable store backends via community-contributed implementations

o Easier scaling and HA, as metadata can now live in battle-tested distributed
datastores

+ Seamless upgrades and migrations, with a clean abstraction layer between the
catalog and storage

By unifying the catalog’s persistence interface across storage paradigms, Polaris is tak-
ing a significant step toward becoming a truly backend-agnostic, cloud-ready catalog
service, adaptable to a broad spectrum of organizational needs and environments.

$3-Compatible Storage Support

One of the most practical and highly anticipated roadmap features for Apache Polaris
is its support for S3-compatible object stores. While Polaris already integrates with
Amazon S3, enterprises increasingly operate in on-premises or hybrid environments
using S3-compatible solutions such as MinIO, Ceph, Backblaze B2, NetApp Storage-
GRID, and Dell ECS. This enhancement makes Polaris significantly more versatile
by enabling deployment in private clouds or air-gapped environments without sacri-
ficing Iceberg compatibility or open architecture.

Many organizations require the flexibility to manage data across diverse environ-
ments that don't involve AWS infrastructure. Polaris’s initial tight coupling with
AWS-specific services and assumptions, particularly around Identity and Access
Management (IAM) and Security Token Service (STS), posed limitations for these
use cases. By extending its storage layer to support generic S3-compatible endpoints,
Polaris breaks those constraints and opens the door to broader adoption.

This capability is crucial for:
« On-prem deployments that rely on MinlO, Ceph, or other S3-compatible
appliances

 Regulated industries where data residency or sovereignty prohibits public cloud
usage

216 | Chapter 11: Looking to the Future of Apache Polaris

» Multi-cloud strategies where different regions or teams may operate under differ-
ent infrastructure stacks

Implementation overview

Polaris will introduce a new storage type to access on-prem S3 setups like MinIO and
S3 appliances. Users can configure catalogs to use this storage type with a custom set
of parameters.

Polaris respects the same dynamic credential scoping and vending behavior as AWS
integration but introduces a flag (skipCredentialSubscopingIndirection) for envi-
ronments that do not support STS or IAM. This ensures minimal disruption and
maximum interoperability with simpler authentication models.

Deployment simplicity

Catalogs can be created using standard REST APIs, with the S3_COMPATIBLE type
and associated fields configured during provisioning. This makes it easy for users to
register internal catalogs that point to MinlO, Ceph, or other supported backends,
while leveraging Polaris’s cataloging and governance capabilities on top.

{

"name": "my-s3compatible-catalog”,

"type": "INTERNAL",

"storageConfigInfo": {
"storageType": "S3_COMPATIBLE",
"region": "eu-central-1",
"s3.endpoint": "https://localhost:9000",
“s3.stsEndpoint”: "https://localhost:9000",
"s3.pathStyleAccess": true

}
}

This enhancement will be tested and validated with multiple S3-compatible systems,
confirming its effectiveness across varied enterprise setups.

This feature enables:

o Full Polaris functionality on self-managed object stores
o Credential vending and policy enforcement for private clouds
o Deployment in disconnected or security-sensitive environments
o Support for open lakehouse architectures across cloud and on-prem
Although the initial PR proposing this feature encountered prolonged review cycles

and was eventually closed, the design has garnered broad community support. Future
iterations may incorporate:

The Apache Polaris Roadmap | 217

https://localhost:9000

+ Expanded test coverage and Helm integrations
« Enhanced secrets management for catalog-level credentials

o Streamlined fallback behavior when IAM features are not available

By supporting S3-compatible backends, Polaris reaffirms its role as an open and
adaptable metadata platform that can thrive in any infrastructure setting. This mile-
stone greatly enhances its appeal to enterprises seeking to modernize their data
architectures without being bound to a specific cloud provider.

Catalog Ul

To ensure that Apache Polaris can be adopted by a broader range of users—including
data analysts, governance teams, and platform administrators—the project roadmap
includes a dedicated web-based Catalog UI. While Polaris already exposes compre-
hensive REST APIs and Swagger documentation for developers, a graphical interface
will dramatically enhance usability and accessibility across the organization.

The Catalog Ul is envisioned as a central control plane for metadata operations and
governance within Polaris. It provides an intuitive, browser-accessible interface that
lowers the barrier to entry for users who may not be comfortable interacting directly
with APIs or command-line interface (CLI) tools.

Goals for the UI include:

« Visual browsing of catalog entities such as namespaces, tables, and views
+ Creation and deletion of metadata entities through interactive forms

« Inspection of catalog configurations, including both internal and federated cata-
logs

o Visibility into policy management, such as applied maintenance or governance
policies

This feature aligns closely with Polaris’s ambitions to support not just platform
engineers but also data stewards, compliance officers, and operational SRE teams.

The Catalog UI is more than a convenience; it’s a key enabler of governance at scale.
By giving non-engineering teams a self-service interface to Polaris, organizations
can distribute responsibility for metadata hygiene, compliance tracking, and policy
auditing across multiple roles.

Furthermore, in environments with multiple catalogs and namespaces—especially in
federated or multi-tenant deployments—the UI provides critical transparency and
discoverability for complex metadata topologies.

218 | Chapter 11: Looking to the Future of Apache Polaris

Feature scope

The first iteration of the Catalog UT is expected to support:

Entity browsing
Navigate through catalog, namespace, and table hierarchies.

Entity management
Create or delete catalogs, namespaces, and tables directly from the interface.

Policy visibility
Display TMS and access control policies applied at various levels.

Catalog federation support
View and manage external catalogs federated into Polaris.

Over time, the UI may evolve to include:

o RBAC role and permission visualization and management
o Integration with OpenLineage or other metadata visualization tools

o Search, filtering, and tagging support for large-scale catalog navigation

Looking ahead

While the initial work on this feature is still in its early stages, it has strong back-
ing from the Polaris community. As Apache Polaris matures into a full-fledged,
enterprise-grade metadata platform, a rich, interactive UI will be essential for driv-
ing adoption and accelerating productivity among both technical and non-technical
users.

By unifying metadata management, governance visibility, and policy introspection
under one interface, the Catalog UI brings Polaris closer to becoming the single pane
of glass for the modern lakehouse.

Federated Catalogs

As enterprise data platforms increasingly span multiple regions, storage systems, and
organizational domains, federation of metadata catalogs becomes critical. Apache
Polaris is introducing Catalog Federation to unify disparate Iceberg REST catalogs
under a single control plane while retaining robust governance, RBAC, and metadata
management. This capability not only simplifies multi-catalog integration but also
positions Polaris as a foundational layer for cross-catalog governance and migration
strategies.

The Apache Polaris Roadmap | 219

The Catalog Federation roadmap in Polaris aims to:

o Enable read-through and passthrough access to remote Iceberg REST Catalogs

o Introduce just-in-time (JIT) facade creation of entities such as namespaces,
tables, and views

o Support Polaris-native RBAC and policy evaluation even when metadata resides
in external systems

o Provide a smooth pathway for catalog consolidation and migration through
intermediate federated states
Federation modes and facade types
Polaris classifies federated entities into three conceptual types:

Implicit entities
No local metadata is available; entities are resolved on the fly.

Static facades
A read-only snapshot of the remote entity is retained in Polaris.

Passthrough facades
Fully dynamic proxies for remote entities, supporting both reads and writes, and
JIT-creation when accessed.

By default, Polaris federation will begin with catalog-level facades, with deeper levels
(namespaces, tables, and views) introduced via JIT creation and optional JIT refresh.

Milestone 1 scope

The first implementation milestone includes:

o Static catalog facades pointing to remote Iceberg REST Catalogs.

« No Polaris persistence for subordinate entities (namespaces, tables).

« RBAC is controlled at the catalog level.

» Remote reads and writes are passed through the Polaris server transparently.

This design ensures Polaris remains the gatekeeper for access control, while deferring
execution to the source-of-truth catalog.

Milestone 2: JIT-creation of entity facades

A significant enhancement following the MVP is the envisioned support for the JIT
creation of namespaces, tables, and views during access. This unlocks:

» RBAC granularity beyond the catalog level

220 | Chapter 11: Looking to the Future of Apache Polaris

« Entity-specific policy attachment within Polaris

 Seamless integration of federated metadata into Polaris Uls and governance
tooling

Entities can be promoted from JIT-in-memory to persisted objects as needed (e.g.,
during a grant operation or as part of a migration).

Use cases

Use cases for catalog federation include:

Hybrid cloud governance
Manage on-prem and cloud-based catalogs centrally with Polaris.

Enterprise catalog migration
Use federated access as a transitional step before fully onboarding legacy catalogs
into Polaris.

Looking ahead

The federation framework is designed for extensibility:

Non-Iceberg catalogs
While the MVP targets Iceberg REST, future support may include other possible
connection targets.

Policy federation
Integration with external policy engines (e.g., Apache Ranger) is a natural evolu-
tion of the current access-control design.

(atalog Federation summary

Catalog Federation in Polaris brings together data unification, governance, and scala-
bility. With support for dynamic facades, JIT metadata creation, and secure credential
management, Polaris is evolving into a federated governance layer that can sit atop
any number of Iceberg-compatible catalogs. This not only simplifies architecture
for organizations operating in complex environments but also opens the door to
centralized policy enforcement and catalog observability at scale.

Federated Role Support

Large-scale organizations often manage tens of thousands of users and rely on cen-
tralized services, such as Okta, LDAP, Entra ID, or Google, to control authentication
and role-based access. With dynamic group membership and immediate privilege
revocation needs, Federated User and Role Support is an essential capability for
Polaris to provide scalable, secure, and enterprise-ready governance.

The Apache Polaris Roadmap | 221

The goals for federated role support are:

Centralized identity management
Enterprises require a single point of control for users and roles, ensuring that
changes in IdP group membership are reflected instantly across all dependent
systems.

Dynamic provisioning
Automatically populate role entities in Polaris as users authenticate, aligning
with System for Cross-Domain Identity Management (SCIM) and Single Sign-on
(SSO) best practices.

The key design principles for the project are:

Pluggable identity providers
Polaris supports multiple identity providers (e.g., Okta, Google, LDAP [via
OAuth/OIDC]), using a flexible authenticator framework and token broker
model.

Federated entities
Roles provisioned via an IdP will be marked as federated=true, preventing
unauthorized local modifications or credential assignments.

Architecture overview
Federated support in Polaris will follow these core mechanics:
Authentication

Tokens presented to Polaris will be validated using pluggable token brokers per
identity realm.

Provisioning
Polaris dynamically creates PrincipalRole entities based on claims.

No entity is persisted unless it is needed for grants (PrincipalRoles must be
persisted for CatalogRole assignments).

Grant restrictions
Grants cannot be assigned to or from federated entities via the Polaris API.

Federated PrincipalRoles are exclusively controlled by the external IdP.

Token scopes dictate access—roles not present in the token are not effective, even
if they were previously granted.

Security enforcement
APIs such as /oauth/tokens and /rotateSecrets are disabled for federated
users.

222 | Chapter 11: Looking to the Future of Apache Polaris

Federated Principals cannot assume or be granted non-federated roles, and vice
versa.

SCIM and future synchronization

While the MVP centers around just-in-time (JIT) provisioning, Polaris is designed to
support SCIM for push-based synchronization of users and groups. This enables:

o Pre-population of users and roles
« Easier visibility into role membership

o Support for compliance audits and entitlement tracking

Though SCIM is not part of the initial release, persistence of federated principals lays
the foundation for future support.

Practical implications

Here are some of the results of this architecture when it comes to governance.

Token-driven access
A token issued by the IdP serves as the sole source of truth for current roles, with
no local grant overrides.

Immutable role membership
Ensures firm security boundaries, where only the IdP governs access.

Safe delegation
Prevents scenarios where leaked credentials or misconfigured grants could give
unintended access to sensitive data.

Federated User and Role Support in Polaris establishes a secure, scalable identity
integration framework that aligns with enterprise SSO and governance needs. By
enforcing strict boundaries between Polaris-managed and IdP-managed identities,
the platform ensures both real-time access control and strong compliance guarantees
while laying the groundwork for future features like SCIM synchronization and
fine-grained multi-IdP federation.

The Apache Polaris Roadmap | 223

Polaris Event Listeners

As Polaris matures into a platform supporting varied use cases across large-scale
deployments, extensibility becomes a key requirement. While configuration flags
and dependency injection can handle a subset of customizations, these approaches
quickly become unmanageable for dynamic, runtime-specific needs or for fine-
grained internal process visibility. To address this, Polaris is planning to introduce
a first-class event listener framework to support safe, pluggable hooks at key lifecycle
stages.

The goal of Polaris Event Listeners is to expose well-defined “event hooks” at critical
execution points within the platform, allowing users to:

o Observe or react to internal state transitions

+ Augment behavior in a modular, non-intrusive way

« Avoid forking Polaris or performing brittle dependency injections
These event listeners will support observability, analytics, auditing, and custom policy
enforcement while maintaining core stability.
Event hooks will only be introduced where:

o The behavior cannot be achieved with existing configuration or dependency

injection.
o There’s a tangible use case that benefits users or downstream systems.
o The event is distinct enough not to be addressed by existing listeners.

This approach encourages deliberate and thoughtful extensibility, rather than blanket
instrumentation.

Initial event set

The initial implementation proposes the event hooks shown in Table 11-1.

Table 11-1. Polaris event listeners

Event Name Trigger Use Case

OnBeforeRequestRate Prior to applying request rate limiting Observability, dynamic throttling adjustments
Limited

OnBeforeCommitTable Before committing table metadata Anomaly detection, pre-commit validation
OnAfterCommitTable After successful table commit Audit logging, metrics capture
OnBeforeCommitView Before committing view metadata Anomaly detection, pre-commit validation
OnAfterCommitView After successful view commit Audit logging, metrics capture

224 | Chapter 11: Looking to the Future of Apache Polaris

Event Name Trigger Use Case

OnBeforeRefreshTable Before internal table metadata refresh Monitor refresh patterns or cache invalidation
logic

OnAfterRefreshTable After table metadata refresh Metadata validation, metrics capture

OnBeforeRefreshview Before view metadata refresh Monitor refresh patterns or cache invalidation
logic

OnAfterRefreshview After view metadata refresh Metadata validation, metrics capture

OnBeforeAttemptTask Before Polaris launches an asynchronous Workflow tracking, task filtering

task
OnAfterAttemptTask After an async task finishes Audit trails, error analysis

These form the foundation for a future in which all major Polaris lifecycle steps are
optionally observable or interceptable.

Implementation options
Two implementation strategies are under consideration:
Jakarta events
These use the Jakarta EE standard event system. They are simple and familiar

but lack support for modifying event payloads (e.g., altering metadata before
commit).

Custom listener interface
This provides richer functionality, including bi-directional hooks that allow the
event handler to modify the object being processed (e.g., intercept and change
table metadata before commit).

While Jakarta offers immediate integration benefits, the custom interface provides
greater flexibility and power, significant in the Polaris context where metadata muta-
tion and validation are essential.

Looking ahead

As Polaris evolves, the event system will likely expand to include:

o Security-sensitive actions (e.g., before/after authorization checks)

o Integration events for external systems (e.g., lineage tracking, observability
platforms)

« Extension points for data governance workflows

A registry of active listeners, error-handling strategies, and performance isolation
mechanisms will also be part of future discussions.

The Apache Polaris Roadmap | 225

The addition of Event Listeners represents a strategic enhancement to Polaris’s
extensibility. It aligns Polaris with other mature platforms that offer runtime hooks
for advanced users while preserving the OSS project’s maintainability and stability.
This feature will empower platform engineers, observability teams, and governance
administrators to customize Polaris with confidence and precision.

Unstructured Data in Polaris

As the data landscape evolves with the surge of AI/ML and multimedia applications,
managing unstructured data (such as logs, images, and videos) has become a core
need for modern data platforms. Polaris is extending its architecture to accommodate
this by introducing first-class support for unstructured data within the same gover-
nance and access control fabric as structured Iceberg tables.

Traditional catalogs, such as Polaris, have excelled at managing structured tabular
data via Iceberg but have had limited capabilities in organizing and governing
unstructured data. Users typically interact with object stores directly for files, limiting
governance, access control, and query capabilities. The proposed Volume abstraction
in Polaris addresses this by introducing a new table-like entity designed explicitly for
unstructured file metadata.

A Volume in Polaris is a logical container within a namespace that represents a group
of unstructured data files. It enables:

o Logical grouping of related unstructured files
o Access control enforcement and credential vending using Polaris’ privilege model
» Queryable metadata for files (e.g., size, timestamps, checksums)

» Asynchronous metadata sync via a backing directory table

Volumes allow file management (add/update/delete) using standard object store
operations, such as aws s3 cp or gsutil, without the need for Polaris-specific upload
APIs.

Architectural overview

Each volume can optionally be backed by a directory table, implemented as a read-
only Iceberg table maintained by Polaris. This table provides query capabilities across
volume file metadata, such as:

CREATE TABLE dir_table (
relative_path STRING,
size BIGINT,
last_modified TIMESTAMP,
md5 STRING,
file_url STRING

226 | Chapter 11: Looking to the Future of Apache Polaris

Directory tables are automatically refreshed in the background, either:

« By delegation to a remote engine
o A Polaris-integrated TMS job (similar to compaction or snapshot expiration
workflows)

These directory tables reside in a reserved path under the catalog’s location and
enable users to run SQL analytics or scans over file metadata.

Volume properties and behavior
Here are some details regarding the possible properties and behavior and properties
that exist in this proposed feature:

+ Belongs to a Polaris namespace

o Inherits the catalog’s storage type (S3, GCS, Azure Blob, or local filesystem)

« Can include optional metadata like file format

o Supports metadata refresh intervals

Users do not need to register files manually; Polaris automatically detects and reflects
changes during its scheduled refresh cycles.

API design

To support this new functionality, Polaris may introduce a dedicated set of REST
APIs:

Create Volume
POST /v1/{prefix}/namespaces/{namespace}/volume/

Drop Volume (with optional purge)
DELETE /vi/{prefix}/namespaces/{namespace}/volume/{volume}

List/Filter Files in a Volume
GET/POST /vi/{prefix}/namespaces/{namespace}/volume/{volume}

These APIs enable seamless creation and management of volumes while providing

visibility into the files they contain.

Limitations and looking ahead

Here are some of the limitations of this early proposed version of this feature:

o This initial feature does not provide transactional guarantees—no versioning,
branching, or rollback of files.

The Apache Polaris Roadmap | 227

« Sharding or partitioning within a volume is not supported. Files are managed as
flat lists.

+ Cross-catalog syncing of volumes is not a design goal, unlike Iceberg table
federation.

o Open questions include whether to unify directory tables with standard Iceberg
table listings and how to separate or denote them in the Ul visually.

With the introduction of Volumes and directory tables, Polaris is extending its
reach into unstructured data management, bridging the gap between traditional data
lakes and modern, multimodal AI/ML data ecosystems. This architecture provides
a scalable, secure, and queryable interface over files, natively integrated into Polaris’
governance model, positioning Polaris as a complete data catalog solution for all data
modalities.

Conclusion

The future of Apache Polaris is incredibly promising. As organizations increasingly
adopt open, interoperable lakehouse architectures, Polaris is emerging as a corner-
stone for secure, scalable, and multi-engine data cataloging. With the rise of managed
Polaris services, such as Dremio Enterprise Catalog and Snowflake’s Open Catalog,
enterprises no longer need to choose between flexibility and operational simplicity.
The expanding ecosystem of tools supporting the Iceberg REST Catalog specification
ensures that Polaris can serve as a neutral foundation for a wide variety of engines,
including Spark, Flink, Dremio, Trino, DuckDB, and beyond.

The Polaris roadmap reflects a forward-thinking and community-driven vision.
Innovations such as generic table support, federated catalogs, policy-based gover-
nance, metadata-driven table maintenance, and unstructured data management all
point toward a robust, extensible platform ready to meet the evolving demands of the
data lakehouse landscape.

We hope this book has helped deepen your understanding of Polaris and the broader
lakehouse ecosystem. Together, we explored:

 The foundational concepts behind data lakehouses

o What makes Apache Iceberg a modern table format

o The role and architecture of a lakehouse catalog

o The purpose and design of the Iceberg REST Catalog specification

« How Apache Polaris brings modern governance and interoperability to Iceberg
« Polaris’s built-in access control and fine-grained privilege model

o The ability to onboard existing data via external catalogs

228 | Chapter 11: Looking to the Future of Apache Polaris

» How to work locally with Polaris and Spark
» How to integrate Polaris OSS with Snowflake Open Catalog

o How Dremio’s integration with Polaris provides unified experience via the Enter-
prise Catalog

o A look at the future roadmap of Polaris, where the project is headed, and how it
is positioned to shape the future of open data architectures

Thank you for joining us on this journey. Whether you're a platform engineer, data
architect, or open data enthusiast, we hope Polaris empowers you to build a more
open, interoperable, and governed data platform.

Conclusion | 229

A

ACID transactions (see Atomicity, Consistency,
Isolation, Durability (ACID) transactions)
Al (see artificial intelligence (AI))
Apache Flink, 205
Apache Gravitino, 31, 56-58
geo-distributed metadata management, 57
Apache Hive, 7
(see also Hive Metastore)
Apache Hudi, 15
Apache Iceberg, 16-20
architecture of, 17
data files, 19
delete files, 19
manifest files, 18
manifest list, 18
metadata file, 17, 22
catalogs, 21-23
challenges with diverse options, 27-29
(see also Apache Iceberg REST Cata-
log Specification)
distinction from enterprise metadata cat-
alogs, 22
file-system catalogs, 24-25
role in concurrent transactions, 23
service catalogs, 25-26
hidden partitioning, 16
partition evolution, 16
Apache Iceberg REST Catalog Specification,
29-32, 53,204
benefits of, 30
evolution of implementation, 31
Apache Paimon, 16
Apache Parquet, 9-12

Index

(see also columnar storage)
file, design of, 10
performance features of, 10
(see also predicate pushdown)
Apache Polaris, 32-34, 37
catalogs in, 38-40
(see also multi-catalog architecture)
creation strategies for, 120-121
key features of, 39
configuration, 116
feature flags, 116
external catalog connectivity, 34
Iceberg catalogs, unification of, 33
multi-catalog support, 33
catalog roles, 33
flexible cataloging, 33
roadmap, 208-228
catalog UI, 218-219
event listeners, 224-226
federated catalogs, 219-221
federated role support, 221-223
generic table support, 208-210
policy store, 210-212
S3-compatible storage support, 216-218
SQL and NoSQL persistence, 215-216
table maintenance framework, 212-215
unstructured data support (Volumes),
226-228
role-based access control (RBAC), 34
security model, 37-52
Apache Polaris Educational Environment, 114
Apache Spark, 7, 22, 116, 129-141, 205
configuration properties for Polaris,
131-131

231

connecting to Apache Polaris, 129-132
DataFrame API, 132-135
appending data, 134
creating tables, 132-133
deleting rows, 134
querying tables, 133
updating tables, 133
metadata tables, reading, 134, 137
Spark Streaming, 138-141
checkpointing, 140
fanout writes, 140
handling deletes and overwrites, 140
streaming reads, 138
streaming writes, 139
table maintenance, 140
SparkSQL, 135-138
creating tables, 135
deleting data, 136
inserting data, 136
querying tables, 135
updating data, 136
artificial intelligence (AI), 179, 226
asynchronous event-driven model, 214
(see also Apache Polaris, roadmap, table
maintenance framework)
atomic transactions, 12
Atomicity, Consistency, Isolation, Durability
(ACID) transactions, 12
AWS Glue Catalog, 26, 59-61
(see also Apache Iceberg, catalogs, service
catalogs)

B

bearer tokens, 119
BI (see business intelligence (BI))
bin-packing strategy, 176
(see also Dremio, SQL operations, table
maintenance)
business intelligence (BI), 4, 179, 205

C
catalog roles, 41-47, 121-123, 154, 184
(see also principal roles)
benefits of, 46
best practices for, 47, 122-123
permissions in, 43-46
catalog privileges, 45
namespace privileges, 44
table privileges, 43

view privileges, 44
catalogs, 119-121, 184
change data capture (CDC), 205
client class, 27
(see also Apache Iceberg, catalogs, chal-
lenges with diverse options)
cloud computing, in data architecture, 8-9
columnar storage, 5, 9
(see also Apache Parquet)
command-line interface (CLI), 181-186
authentication, 182
connecting to remote server, 183
managing entities, 183-186
profiles, 183
compression algorithms, 10
Gzip, 10
Snappy, 10
Confluent, 206
Create, Read, Update, Delete (CRUD) opera-
tions, 64

D
data lakehouse, 12-14
(see also data lakes, data warehouses)
benefits of, 12
data lakes, 6-8
(see also data warehouses, data lakehouse,
data swamps)
challenges with, 7-8
data management, evolution of, 3-12
(see also data warehouses, data lakehouse)
data swamps, 7
(see also data lakes)
data versioning, 12
data warehouses, 4-6
(see also data lakes, data lakehouse)
limitations of, 5-6
transactional guarantees, 12
Datadog, 189
DataHub, 208
Delta Lake, 15
deployment, local (with Docker), 113-118
(see also Docker)
deployment, production, 194-202
authentication, 194-196
OAuth2 configuration, 195
best practices for, 196
feature flags, 198-199
metastores, 196-198

232 | Index

scaling, 199-201
horizontal scaling, 201
rate limiting, 200
verification checklist, 201
Docker, 113-119
Docker Compose, 114
commands for, 118
configuration file, 115-117
Dremio, 161-179, 205
connecting to Apache Polaris, 162-168
Iceberg REST Catalog connector,
162-165
Snowflake Open Catalog connector (see
Snowflake Open Catalog, connecting
from Dremio)
integrated catalog, 161, 179
SQL operations, 161-179
creating tables, 172-173
ingesting data from files, 173-175
inspecting table properties, 177-179
querying metadata tables, 169-172
table maintenance, 175-177
Dremio Catalog, 113, 203
automated table optimization, 204
compaction and vacuuming, 204
automatic clustering, 204
autonomous performance management, 204
dual security layer, 157
(see also Snowflake Open Catalog, role-
based access control (RBAC))
DuckDB, 207

E

ecosystem (for Apache Polaris), 203-208
data processing engines, 205-206
managed Polaris offerings, 203-204
(see also Dremio Catalog, Snowflake
Open Catalog)
other data-stack tools, 207-208
streaming and ingestion platforms, 206-207
entityVersion, 66
(see also optimistic locking)
Estuary, 207
ETL (see extract, transform, load (ETL))
external catalogs, 53-62
AWS Glue Catalog (see AWS Glue Catalog)
Gravitino (see Apache Gravitino)
Lakekeeper (see Lakekeeper)
Nessie (see Nessie)

use cases for, 54
extract, transform, load (ETL), 6

F

fine-grained access control (see Apache Polaris,
security model)
fully qualified names, 169

G

Grafana, 190

H
Hadoop, 6
architecture of, 6-7
Hadoop catalog, 24
(see also Apache Iceberg, catalogs, file-
system catalogs)
Hadoop Distributed File System (HDFS), 6
Hive catalog, 25
(see also Apache Iceberg, catalogs, service
catalogs)
Hive Metastore, 7

Input/Output (I/0), 10

J
JDBC catalog, 26
(see also Apache Iceberg, catalogs, service
catalogs)
just-in-time (JIT) facade creation, 220
(see also Apache Polaris, roadmap, federated
catalogs)

K

Kafka Connect, 206

L
Lakekeeper, 58-59
least privilege principle, 47, 48, 122
logging, 192-194
(see also Quarkus)
log levels, 192
log rotation, 192

M

machine learning (ML), 7, 129

Index | 233

machine-driven discoverability, 22
Mapped Diagnostic Context (MDC), 193-194
MapReduce, 7
(see also Apache Spark)
MDC (see Mapped Diagnostic Context
(MDCQ))
metrics, 189-190
(see also Micrometer, Prometheus)
Micrometer, 189
ML (see machine learning (ML))
multi-catalog architecture, 40
multi-file datasets, challenges with, 11
multi-tenant isolation (see realms)

N

namespaces (in Polaris), 39, 185
as organizational hierarchy, 44
Nessie, 26, 55-56
(see also Apache Iceberg, catalogs, service
catalogs)
branching and merging, 55
as Git-for-data, 55
multi-table transactions, 55

0
observability, 188-194

(see also metrics, tracing, logging)
online analytical processing (OLAP), 4
online transaction processing (OLTP), 4
OpenTelemetry, 190
OpenTelemetry Protocol (OTLP), 190
optimistic locking, 92

(see also entityVersion)
OTLP (see OpenTelemetry Protocol (OTLP))

P

partition evolution, 15

Polars (DataFrame library), 208

predicate pushdown, 10

Presto, 205

principal credentials, 131

principal roles, 47-49, 124-126, 145, 184
(see also principals, catalog roles)
benefits of, 48
best practices for, 48, 124-126

principals, 34, 40, 68, 124, 163, 184
lifecycle of, 41
types of, 40

Prometheus, 189
PySpark, 130

(see also Apache Spark)
Python CLI, 63

Quarkus, 192, 197
query federation, 161
(see also Dremio)

R
RBAC (see role-based access control (RBAC))
realms, 119, 186-188
authentication, 187
bootstrapping, 187
context, 186
context resolution, 187
via HTTP header, 187
definition of, 186
multi-tenant isolation with, 186-188
Redpanda, 206
Reflections (in Dremio), 167
(see also Dremio)
refresh policies for, 167
REST API, 63-109
endpoint prefixes, 63, 80
Iceberg Catalog Specification endpoints,
79-109
(see also REST API, management end-
points)
Configuration API, 80
multi-table commits, 98-99
Namespace API, 84-87
OAuth2 API (deprecated), 81
staged creation of tables, 88
Table API, 82-99
View API, 101-109
management endpoints, 63-79
(see also REST API, Iceberg Catalog
Specification endpoints)
catalog operations, 63-68
credential rotation, 72
principal operations, 68-72
(see also principals)
role management, 73-79
RLE (see run-length encoding (RLE))
role-based access control (RBAC), 34
run-length encoding (RLE), 10

234 | Index

S

schema evolution, 12, 13
SCIM (see System for Cross-Domain Identity
Management (SCIM))
security, best practices, 49-52
for cloud-native deployments, 51
for compliance and sensitive data, 51
for cross-team collaboration, 50
for multi-tenant environments, 50
semantic layer, 179
(see also Dremio)
Single Sign-on (SSO), 222
Single Source of Truth (SSOT), 56
Snowflake, 143-159
comparison of Polaris-backed and native
tables, 157-159
write capabilities, 158
connecting to Apache Polaris, 143-150
catalog integrations, 145-148
external volumes, 144-145
networking requirements, 144
production security considerations, 148-150
querying Iceberg tables, 150-155
metadata refresh, 153
permission issues and errors, handling
of, 154
read-only behavior, 153
registering existing tables, 150-152
Time Travel, 158
Snowflake Open Catalog, 113, 155-157, 203
connecting from Dremio, 165-168

allowed namespaces, 166
role-based access control (RBAC), 157
service connections, 155
SSO (see Single Sign-on (SSO))
SSOT (see Single Source of Truth (SSOT))
StarRocks, 205
System for Cross-Domain Identity Manage-
ment (SCIM), 222

T
table formats, 14-16
Apache Hudi (see Apache Hudi)
Apache Iceberg (see Apache Iceberg)
Apache Paimon (see Apache Paimon)
benefits of, 14
Delta Lake (see Delta Lake)
Table Maintenance Systems (TMS), 212
time travel, 15, 18, 137, 152
TMS (see Table Maintenance Systems)
tracing, 190-192
(see also OpenTelemetry)
transactional layer, 12
Trino, 205

U

unstructured data support, 226-228

v

vended credentials, 168
vendor lock-in, 157

Index |

235

About the Authors

Alex Merced is head of DevRel at Dremio with experience as a developer and instruc-
tor. His professional journey includes roles at GenEd Systems, Crossfield Digital,
CampusGuard, and General Assembly. He co-authored Apache Iceberg: The Definitive
Guide published by O’Reilly and has spoken at notable events such as Data Day Texas
and Data Council. Alex is passionate about technology, sharing his expertise through
blogs, videos, podcasts like Datanation and Web Dev 101, and contributions to the
JavaScript and Python communities with libraries like SencilloDB and Coquito]S.

Andrew Madson is an experienced data leader with 17 years of experience leading
technical teams. Currently the head of evangelism and education at Tobiko—the
creators of SQLMesh and SQLGlot—Andrew has held senior leadership positions
at institutions such as JP Morgan, LPL Financial, MassMutual, and Arizona State
University. In addition to leading data teams, Andrew is a professor of data science
and analytics at several universities, where he teaches graduate courses in machine
learning, statistics, SQL, R, Python, Tableau, and Power BI.

Tomer Shiran is the founder and chief product officer of Dremio, an open data
lakehouse platform that enables companies to run analytics in the cloud without the
cost, complexity, and lock-in of data warehouses. As the company’s founding CEO,
Tomer built a world-class organization that has raised over $400M and now serves
hundreds of the world’s largest enterprises, including three of the Fortune 5. Prior
to Dremio, Tomer was the fourth employee and VP product of MapR, a big data
analytics pioneer. He also held numerous product management and engineering roles
at Microsoft and IBM Research, founded several websites that have served millions
of users and hundreds of thousands of paying customers, and is a successful author
and presenter on a wide range of industry topics. He holds an MS in computer
engineering from Carnegie Mellon University and a BS in computer science from
Technion — Israel Institute of Technology.

Colophon

The animal on the cover of Apache Polaris: The Definitive Guide is a walrus (Odobe-
nus rosmarus). This remarkable, fin-footed mammal is a relative to seals and sea lions
and can be found in the Arctic and subarctic regions in the Northern Hemisphere,
specifically in the Atlantic and Pacific oceans.

Walruses are known for their incredible size. Their body lengths typically range from
7 feet to 11 feet 10 inches. While most males weigh between 1,800 and 3,700 pounds,
those found in the Pacific can weigh as much as 4,400 pounds. Females weigh about
two-thirds as much, with Atlantic females averaging between 880 and 1,230 pounds;
females found in the Pacific weigh around 1,800. Blubber (a thick, fatty tissue) is the
main cause of this high body weight, but it serves an important purpose: it keeps
walruses warm and serves as a source of energy for the mammals.

Walruses are also famous for their incredible tusks, a feature that is present in both
males and females. Males primarily use their tusks for fighting and establishing dom-
inance within social groups. Since walruses spend about two-thirds of their lives in
the water, their tusks serve as useful tools for keeping breathing holes in the ice open
and are also used to haul their heavy bodies onto ice floes, which they sometimes ride
during migration.

A walrus’s diet usually consists of soft-bodied invertebrates from the seafloor, such
as sea cucumbers, snails, mollusks, and clams. Adult walruses eat about 3% to 6% of
their total body weight per day, with some eating as much as 6,000 clams in a single
feeding session. Walruses might also consume seals, though this is very rare.

Due to their formidable size, walruses do not have many predators, aside from orcas
and polar bears. Despite this, walruses are unfortunately listed as a vulnerable species
by the International Union for Conservation of Nature due to loss of sea ice from
climate change and warming oceans. Commercial fishing and bottom trawling also
threaten these wonderful mammals, since these activities break up sea ice and destroy
their feeding grounds.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by José Marzan Jr., based on an antique line engraving from
Brehms Thierleben. The series design is by Edie Freedman, Ellie Volckhausen, and
Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

O'REILLY"

Learn from experts.
Become one yourself.

60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O'Reilly learning platform free for 10 days.

©2025 O'Reilly Media, Inc. O'Reilly is a registered trademark of O'Reilly Media, Inc. 718900_7x9.1875

https://www.oreilly.com/start-trial/?utm_medium=content+synd&utm_source=general+ad&utm_campaign=tria

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Data Lakehouses and Apache Iceberg Fundamentals
	Chapter 1. Data Lakehouse and Apache Iceberg
	Modern Data Challenges
	The World of Data Warehouses
	Moving Forward with Data Lakes
	The Cloud Revolution
	File-Based Analytics with Apache Parquet

	The Data Lakehouse Solution
	The Key Benefits of a Data Lakehouse
	The Path Forward: Data Lakehouse Table Formats

	The Role of Table Formats
	The Benefits of Table Formats
	Existing Table Formats
	Apache Iceberg

	What Is Apache Iceberg?
	Metadata File (metadata.json)
	Manifest List
	Manifest Files
	Data Files
	Delete Files

	Conclusion

	Chapter 2. The Role of Apache Iceberg Catalogs
	What Is and Isn’t an Apache Iceberg Catalog
	The Mechanics of Apache Iceberg Catalogs

	Types of Apache Iceberg Catalogs
	File-System Catalogs
	Service Catalogs

	Challenges of Diverse Catalog Options
	Client-Side Complexity
	Configuration Challenges
	Authorization Challenges
	The Need for a Unified Approach

	The Apache Iceberg REST Catalog Specification
	Key Benefits of the REST Catalog Specification
	The Evolution of REST Catalog Implementations

	Apache Polaris
	The Birth of Apache Polaris
	Polaris: A New Era of Lakehouse Catalogs
	Conclusion

	Part II. Apache Polaris
	Chapter 3. The Apache Polaris Security Model
	What Is Polaris?
	Catalogs
	Key Features of Polaris Catalogs
	Benefits of Multi-Catalog Architecture

	Principals
	What Are Principals?
	Managing Principals
	Principal Lifecycle

	Catalog Roles
	Defining Permissions in Catalog Roles
	Assigning Catalog Roles to Principals
	Best Practices for Catalog Roles

	Principal Roles
	What Are Principal Roles?
	Benefits of Principal Roles
	Best Practices for Principal Roles

	Polaris Security Best Practices
	Multi-Tenant Environments
	Cross-Team Collaboration
	Compliance and Sensitive Data Governance
	Cloud-Native Deployments

	Conclusion

	Chapter 4. External Catalogs
	Nessie
	What Makes Nessie Unique?
	Why Use Nessie with Polaris?
	Example: Nessie and Polaris in Action

	Gravitino
	What Makes Gravitino Unique?
	Why Use Gravitino with Polaris?
	Example: Distributed Metadata Governance

	Lakekeeper
	What Makes Lakekeeper Unique?
	Why Use Lakekeeper with Polaris?
	Example: Multi-Tenant Metadata Governance

	AWS Glue
	Why Use the AWS Glue Catalog?
	Why Use Glue with Polaris?
	Example: Hybrid Team Collaboration

	Conclusion

	Chapter 5. Polaris REST API
	Catalog Operations
	List Catalogs
	Create a Catalog
	Get Catalog Details
	Update a Catalog
	Delete a Catalog

	Principal Operations
	List Principals
	Create a Principal
	Get Principal Details
	Update a Principal
	Delete a Principal
	Rotate Principal Credentials

	Managing Roles
	Create a Catalog Role
	Create a Principal Role
	List Catalog Roles
	List Roles Assigned to a Principal
	List All Principal Roles
	List Principals Assigned to a Principal Role
	Get Catalog Roles Mapped to a Principal Role
	Get Details of a Principal Role
	Add a Grant to a Catalog Role
	Revoke a Grant from a Catalog Role
	Assign a Catalog Role to a Principal Role
	Assign a Role to a Principal
	Update a Principal Role
	Revoke a Role from a Principal
	Revoke a Catalog Role from a Principal Role
	Delete a Principal Role
	Delete a Catalog Role

	Apache Iceberg REST Catalog Endpoints
	Configuration API
	OAuth2 API
	Table API
	View API

	Conclusion

	Part III. Hands-on with Apache Polaris
	Chapter 6. Working with Apache Polaris OSS
	Deploying Locally with Docker
	Prerequisites
	Step 1: Clone the Repository
	Step 2: Configure Environment Variables
	Step 3: Understand the Docker Compose File
	Step 4: Starting the Environment
	Step 5: Stopping the Environment

	Creating Catalogs
	When to Create a Catalog

	Creating Catalog Roles
	When to Create Catalog Roles

	Creating Principals
	Creating Principal Roles
	When to Create a Principal Role

	Assigning the Catalog Role to the Principal Role and Setting Permissions on the Catalog
	Summary

	Chapter 7. Using Apache Polaris with Apache Spark
	Connecting Your Apache Polaris Catalog to Apache Spark
	Using Spark Dataframe API with Apache Polaris (Incubating)
	Creating a Table
	Querying a Table
	Updating a Table
	Deleting Rows
	Appending Data
	Reading Metadata Tables

	Using SparkSQL with Apache Polaris
	Creating a Table
	Querying a Table
	Inserting Data
	Updating Data
	Deleting Data
	Merging Data
	Reading Metadata Tables
	Time Travel Queries

	Using Spark Streaming with Apache Polaris
	Setting Up Spark Streaming with Polaris
	Streaming Reads from Polaris
	Streaming Writes to Polaris
	Handling Deletes and Overwrites
	Using Partitioned Tables
	Maintaining Streaming Tables

	Conclusion

	Chapter 8. Using Apache Polaris with Snowflake
	Establishing Connectivity Between Snowflake and Polaris
	Configuring an External Volume
	Creating a Polaris Catalog Integration

	Querying Iceberg Tables via Snowflake and Polaris
	Registering an Existing Polaris Table in Snowflake
	Querying the External Iceberg Table

	Using Snowflake Open Catalog (Managed Polaris)
	Polaris-Backed Tables vs. Native Snowflake Tables
	Conclusion

	Chapter 9. Using Apache Polaris with Dremio
	Connecting Dremio to an Apache Polaris Catalog
	Connecting Polaris Using the REST Catalog Connector
	Connecting Snowflake’s Open Catalog to Dremio
	Why Disable Use Vended Credentials?

	Using Dremio SQL with Apache Polaris
	Querying Iceberg Tables via Polaris
	Querying the Iceberg Metadata Tables
	Creating Tables and CTAS in Polaris via Dremio
	Adding Data from Files to a Table Using Copy Into
	Maintaining Your Iceberg Tables with Dremio
	Dremio Automates Optimization

	Conclusion

	Chapter 10. Advanced Polaris Configuration and CLI Management
	Using the Polaris CLI
	CLI Structure, Authentication, and Profiles
	Managing Entities with the CLI
	Understanding Realms

	Observability: Metrics, Tracing, and Logging
	Metrics with Micrometer and Prometheus
	Tracing with OpenTelemetry
	Logging and Debugging with Quarkus

	Configuring Polaris for Production
	Security and Authentication Configuration
	Durable Metadata with Metastores
	Hardening Defaults and Managing Feature Flags
	Scaling, Concurrency, and Rate Limits
	Finalizing and Verifying Your Production Setup

	Conclusion

	Chapter 11. Looking to the Future of Apache Polaris
	Managed Polaris
	The REST Catalog Ecosystem
	Data Processing Engines
	Streaming and Ingestion Platforms
	Other Data-Stack Tools

	The Apache Polaris Roadmap
	Generic Table Support
	Policy Store
	Table Maintenance Framework
	SQL and NoSQL Persistence
	S3-Compatible Storage Support
	Catalog UI
	Federated Catalogs
	Federated Role Support
	Polaris Event Listeners
	Unstructured Data in Polaris

	Conclusion

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

