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Foreword

It’s flattering that Manlio De Domenico invited me to write the foreword for
this book. After all, the title is “Multilayer Networks: Analysis and Visualiza-
tion,” and that pretty much covers it all you want to know about “Analysis of
multilayer networks”, and “Visualization of multilayer networks” neatly includes
everything else.

Why did I get this task? Partly because I’ve written articles with Manlio
and my scientific respect to him is enormous, and partially because I love this
topic and devoted a huge effort to its development.

Perhaps I should say something about what you’ll find in this book. It be-
gins, aptly enough, with a selection of concepts about network science and its
extension to multilayer networks for beginners. After, the author scrutinizes the
structure, dynamics and analysis of multilayer networks with amazing smooth-
ness given the technical roughness of the topics.

The book finishes with the important aspects of visualizing multilayer net-
works using the tool developed by Manlio, Muxviz. Also some technical notes
are included for the computer installation and running of the software, which
help the reader to enjoy in first person the visualization power of the tool.

To summarize, I just would like the reader to enjoy the book as much as I
did.

Tarragona, July 2021 Alex Arenas

vii



Preface

Networks are mathematical objects widely used in multiple disciplines to model
the structure of complex systems. From the network of neurons in the human
brain to the social networks of humans in our society, Network Science quickly
gained attention in the last two decades, because of its inherently interdisci-
plinary approach to modeling and analysis, and the depth of its novel insights.

Network Science is not new: pioneered by social scientists and biologists, its
development across half a century is the result of a fruitful cross-fertilization
between those disciplines and applied math. Only two decades ago the field
attracted the interest of the most visionary physicists with an interdisciplinary
mindset, whose contributions led to build what it is known as Network Science.
Nowadays, this field is a fundamental part of data science and its application
spans all domains of knowledge, including physical sciences, life sciences, social
sciences and applied sciences. Network Science is, among others, a fundamental
tool for the analysis of complex systems: the physics of such systems, being them
made of particles, molecules, cells or individuals, is one of the most prolific and
active research field of the 21st century.

Almost one decade ago, network scientists recognized that the classical meth-
ods developed by network scientists were not enough to describe and account
for the complexity of a broad spectrum of systems, those ones characterized by
multiple types of simultaneous interactions among units and interdependencies.
Such systems are better known as multilayer networks.

Despite the considerable number of publications and a few volumes dedicated
to this novel framework, a comprehensive text concerning the data science of
multilayer networks is still missing, and this book is a first attempt to fill this
gap. My purpose is to provide recipes to perform, in practice, analysis and
visualization of empirical multilayer networks, with a wide spectrum of appli-
cations, such as in urban transport, human mobility, (computational) social
sciences, neuroscience, molecular medicine and digital humanities, to cite the
most relevant ones.

As a physicist, I am strongly convinced that our discipline has the potential
to play a central role to advance human knowledge. However, as a complex
systems scientist, I am strongly convinced that the methodologies developed
to study complex systems are revolutionizing our approach to the study of the
physical world. This revolution is positively embraced by several disciplines
traditionally not related to physics: from systems biology to social sciences,
emerging fields like network medicine, econophysics and social physics are the
result of intensive interdisciplinary collaborations. Even the most recent ad-
vances in the field of computer science, such as artificial intelligence, are start-
ing to benefit from standard concepts developed by physicists. The same holds
to the other way around: physics is starting to benefit from other disciplines
by employing new methods, such as genetic algorithms or deep learning, to
find (quasi–)optimal solutions to standard problems such as the identification
of critical points in phase transitions and the characterization of collective phe-
nomena.

Network scientists with different backgrounds, from theoretical physics to
applied mathematics, are quickly washing out the traditional borders of knowl-
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edge and, in the next future, my hope is that the new generation of physicists
will have the opportunity of being formally trained in Complexity Science as
they are, nowadays, in Quantum Mechanics or General Relativity.

Since we live in the century of Complexity, as predicted by Stephen Hawking
almost two decades ago, and complexity science requires both theoretical and
computational skills, it is fundamental to rethink academic books from a novel
perspective. The goal of this book is to provide the reader with the basic
theoretical foundations behind the computational tool we are going to use,
as well as practical guidelines and examples to use them for analyzing the real
world. Therefore, the reader interested in a broader theoretical overview about
multilayer network science cannot be satisfied only by this work which, instead,
should be considered as complementary to textbooks dedicated to that specific
purpose.

Accordingly, this book is expected to guide the reader into multilayer net-
work science through developed applications to multiple domains of knowledge.
The computational framework adopted for this purpose is the one of muxViz :
a set of visual tools based on a huge library of functions written in R, developed
for the analysis and the visualization of multilayer systems.

The story behind muxViz deserves a few lines to be explained, because it
perfectly summarizes the interdisciplinary mindset and efforts discussed above.
It was the 2013 and the researchers part of the international project PLEX-
MATH – among the ones funded within the FP7 FET-Proactive Call 8 Dynam-
ics Multi-level Complex Systems (DyMCS) – were meeting to devise a common
research roadmap. At that time, I was a postdoctoral fellow at the Universitat
Rovira i Virgili, hosted in the group led by Alex Arenas.

Alex Arenas (Universitat Rovira i Virgili), Marc Barthelemy (CNRS/CEA),
James Gleeson (University of Limerick), Yamir Moreno (Universidad de Zaragoza-
/BIFI), Mason A. Porter (at that time at Oxford University, now at UCLA),
and part of their labs were attending the meeting. One of the many outcomes
of that meeting was the call for a user-friendly computational tool to at least
visualize multilayer networks and for a library to share with the rest of the aca-
demic community. Several proposals were given, but one in particular attracted
my attention: the fact that networks could be placed on layers and layers could
be arranged in some meaningful way “using some simple projective geometry”,
as commented by Alex Arenas.

It turned out that while the projective geometry to use was relatively sim-
ple, allowing for the flexibility to visualize layers and their networks according
to multiple criteria was a more challenging task. The result of almost one
year of studies and development was the first version of muxViz : a compu-
tational framework based on the language R, with a nice graphical user in-
terface. After its release and the publication of its accompanying research pa-
per, muxViz quickly (and unexpectedly) became a standard tool for analysis
and visualization of multilayer networks, with a fast-growing community of en-
thusiastic users (more than 600 subscribed to the official group, by the end
of December 2020). Nowadays, muxViz is free, open source and about 2000x
faster than its first version and can count on a library with hundreds of func-
tions for creating, manipulating, modeling, analyzing and visualizing multilayer
networks.

Despite the theoretical and computational techniques developed in this new
field are uncountable, muxViz does not include all of them, mostly because
of the lack of publicly available (R) code. Definitively more work is needed
in the future, to account for the several algorithms not (yet) included in this
framework. In the meanwhile, muxViz allows for the generation of multilayer
models, the calculation of the most used centrality descriptors, the detection of
communities, the reduction of multilayer structures, the analysis of triads and
motifs, to mention some features. The future editions of this book will cover
novel theoretical and computational tools, from more sophisticated generative
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models to robustness and percolation analysis: however, note that the current
version of the underlying library allows one to write their own R scripts and, in
principle, can be suitably used to implement existing algorithm, thus extending
the muxViz toolkit.

This book is a short journey through the theoretical background of those
specific features, from the perspective of an interdisciplinary physicist interested
in the analysis of real systems, regardless of their domain. This book requires
an open mindset to be read because it is written with an open mindset, where
principles of social science are coupled with applications to system medicine
or transportation engineering. For a recent work covering more extensively the
theoretical aspects of multilayer network science, I refer to the very recent [1]
and to [2].

Practitioners and researchers in all disciplines where data allow for a mul-
tilayer representation are, in principle, the primary audience for the book. A
non-exhaustive list of disciplines includes: physics, neuroscience, molecular and
system biology, urban transport and engineering, digital humanities, social and
computational social science. The text is accompanied by several code snippets
adequately designed to reproduce specific analyses or visualizations, as well as
by data sets of real multilayer networks, to facilitate the journey of the reader
through the computational aspects of this discipline.

Trento, July 2021, Manlio De Domenico
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Figures and plots

1.1 Graphical representation of complex network. The system con-
sists of entities, named nodes (or vertices), connected with each
other by edges (or links) encoding their interactions or their re-
lationships. Usually, nodes tend to cluster into communities or
modules, encoding the modular organization of the system of-
ten responsible for its function (e.g., think about teams within
a complex company or set of genes and proteins responsible for
biological process and cellular components). Nodes which are
not connected directly by one edge, can communicate with each
other or exchange information through paths consisting of inter-
mediate nodes and edges which connect origin and destination.
Note, however, that there are network where such an exchange
is not possible because nodes are part of disconnected clusters. . . 4

1.2 Zachary’s Karate Club [3] visualized by means of the correspond-
ing weighted adjacency matrix representation (A) and as a net-
work (B). In (A) color codes the weight of social relationships
between club members, whose pseudonym are reported. Mem-
bers are clustered together by applying a complete agglomera-
tion clustering on their Euclidean distance. In (B) color codes
the two observed communities, formed after a conflict between
Mr. Hi and John A. See the text for further details. . . . . . . . . . . . . 5

1.3 A schematic representation of a multilayer transportation system
across several geographic scales. From top to bottom: large-scale
mobility network encoded by distinct airlines (the layers) serving
inter-continental routes; continental transportation (here in the
USA) with respect to domestic flights, long-range bus routes and
rail (the layers); at a lower scale, e.g., in California, one can use
the road network, as well as bus routes and rail (the layers) for
regional movements; at the lowest scale one can use roads, buses
and metros (the layers) to move between distinct parts of a city.
Figure from [4] under Creative Commons Attribution-ShareAlike
4.0 International License. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 A schematic representation of a multilayer biological system
across several biological scales. From top to bottom: a social net-
work of individuals where layers characterize distinct ties (e.g.,
social, family, work); each individual is an organism character-
ized by a network of organs which characterize distinct systems
(e.g., circulatory, respiratory, nervous, so forth and so on); tis-
sues are characterized by cellular networks and, at the bottom,
each cell is characterized by molecular interactions of distinct
type which constitute the genome, the transcriptome, the pro-
teome and the metabolome, for instance. Figure from [4] under
Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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1.5 A schematic representation of a multilayer social system. Lay-
ers here encode distinct type of interactions and actors: phys-
ical individuals interact in the physical world with different
ties (e.g., family and friendship), whereas they can have digi-
tal counterparts – such as accounts on social media platforms –
with other relationships (e.g., following on Twitter, friendship on
Facebook). In the digital layers we can see also the presence of
non-physical actors, such as social bots [5, 6]. This type of struc-
tures allows one to model complex population dynamics, such
as epidemics and behavioral spreading as well as information
diffusion. Figure from [4] under Creative Commons Attribution-
ShareAlike 4.0 International License. . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Bibliometrics analysis from the Web of Knowledge (WoK). Tem-
poral evolution (from right to left) of the number of papers
published about multilayer networks, including more than 2600
publications between 1990 and 2021 (2100+ since 2009 to date).
Obtained by filtering with the words “multiplex network”, “mul-
tilayer network” and “interdependent network” in the title/ab-
stract, while requiring the word “complex” to be within 10 words
and excluding keywords used in other contexts. Data and visu-
alization from webofknowledge.com. . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Same data used in Fig. 1.6 to show the WoK categories where
papers on multilayer networks have been mostly published. Data
and visualization from webofknowledge.com. . . . . . . . . . . . . . . . . . . 10

1.8 Same data used in Fig. 1.6 to show the research domains where
papers on multilayer networks have been mostly published. Data
and visualization from webofknowledge.com. . . . . . . . . . . . . . . . . . . 11

1.9 Same data used in Fig. 1.6 to show the scientific journals where
papers on multilayer networks have been mostly published. Data
and visualization from webofknowledge.com. . . . . . . . . . . . . . . . . . . 11

1.10 Illustration of a typical multilayer network. Layers encode dif-
ferent types of relationships among nodes, occurring simulta-
neously. Nodes can exist in multiple layers, but not necessarily
in all layers: if their identity is related to the a specific layer
they are named state nodes, whereas physical nodes are the ones
whose identity does not depend on any specific layer. Connec-
tivity within each layer is defined by intra-layer edges, whereas
inter-layer edges define connections across layers. Figure from [4]
under Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.11 Basic classification of multilayer network models. All models
can be analyzed and visualized within the muxViz platform (see
Sec. 1.5). Allowed models include both non-interconnected – i.e.,
edge-colored – and interconnected – i.e., multiplex, interdepen-
dent and general multilayer – networks. Figure from [4] under
Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.12 Schematic illustration of how tensorial objects – such as scalar,
vector, matrix and hypermatrix – of increasing order can be used
to encode information about physical objects with increasing
complexity, e.g. a node, a network, a non-interconnected mul-
tiplex and a general interconnected multilayer system. Figure
from [4] under Creative Commons Attribution-ShareAlike 4.0
International License. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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1.13 Representing multilayer networks with supra-adjacency matri-
ces. (A) An interconnected multiplex network (left) with 𝑁 = 4
nodes and 𝐿 = 3 layers (note that not all nodes necessarily exist
on all layers). Each layer is encoded by a different color. The net-
work is directed (encoded by arrows) and weighted (encoded by
edge thickness). The adjacency matrices, corresponding to each
layer separately, are also shown (right). (B) Matricization [7]
is applied to flatten the rank–4 tensor representing the multi-
layer network to a rank–2 supra-adjacency matrix – a block ma-
trix, i.e., a matrix consisting of matrices of lower dimension – in
which: i) the adjacency matrices corresponding to each layer are
placed as blocks on the main diagonal, and ii) inter-layer con-
nectivity is encoded into diagonal matrices that are placed on
the off-diagonal blocks. This representation preserves the topo-
logical information, although some care is necessary to deal with
analysis (see the text for details). Reproduced with permission
from Ref. [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.14 A multilayer network model to integrate social, spatial and be-
havioral information from animals and their environment. Inter-
actions and relationships between animals can be modeled by
multiplex networks which, in turn, are interdependent with a
spatial network of habitat patches. Figure from [4] under Cre-
ative Commons Attribution-ShareAlike 4.0 International License. 14

1.15 Aggregate (top) and multilayer (bottom) representations of a
real seed-dispersal network. Reproduced from Ref. [9] under
Creative Commons Attribution 4.0 International License http:
//creativecommons.org/licenses/by/4.0/ . . . . . . . . . . . . . . . . . . . . . . 15

1.16 Types of dynamics on the top of multilayer structures. In single
dynamics (left) a single dynamical process (dotted line) takes
place on the top of the while multilayer topology. In coupled
dynamics (right), a different dynamical process (dotted lines
with different colors) takes place on the top of each layer sep-
arately, being intertwined by the underlying inter-layer connec-
tivity (vertical, gradient-colored lines). Figure from [4] under
Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.17 Types of dynamics of classical, single-layer networks. The net-
work can grow over time (top) by adding new nodes and edges, or
it can shrink (bottom) because of node and edge failures. Hybrid
dynamics, where the two processes are mixed, can be defined
to model the dynamics of complex adaptive systems such as so-
cial networks, where individuals join and leave groups, establish
new social relationships or cut existing ones. Figure from [4] un-
der Creative Commons Attribution-ShareAlike 4.0 International
License. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.18 Dynamics of growing multilayer networks. The number of physi-
cal nodes (indicated by 𝑁𝑝ℎ) and state nodes (indicated by 𝑁𝑠𝑡),
as well as the number of edges, increases over time to describe the
growth of the system. Figure from [4] under Creative Commons
Attribution-ShareAlike 4.0 International License. . . . . . . . . . . . . . . 17

1.19 Dynamics of shrinking multilayer networks. The number of phys-
ical nodes (indicated by 𝑁𝑝ℎ) and state nodes (indicated by 𝑁𝑠𝑡),
as well as the number of edges and layers (𝐿), decreases over
time to describe the disruption of units and connectivity in the
system. Figure from [4] under Creative Commons Attribution-
ShareAlike 4.0 International License. . . . . . . . . . . . . . . . . . . . . . . . . . 18

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


xx Figures and plots

1.20 Data page in muxViz as rendered by any standard Web browser.
The visualization is interactive and information about each sin-
gle data set can be easily retrieved and reported. . . . . . . . . . . . . . . 20

1.21 The Data page includes a form to navigate through available
data sets and search for specific ones. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Import page in muxViz as rendered by any standard Web browser. 24
2.2 Three layers with a Barabasi-Albert structure, consisting of 100

nodes not necessarily connected in all layers. Colors encode dis-
tinct layers, while node size encode its PageRank versatility. This
type of visualization is available only for the LIB version. . . . . . . . 25

2.3 as in Fig. 2.2, but for a system with an organization in multilayer
groups (top panels). Additionally, here we show the heatmap
corresponding to each layer, to highlight the underlying block
structure. This type of visualization is available only for the LIB
version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Illustration of a random walk typical multilayer network. Ran-
dom walks are used for a wide variety of applications, from
modeling random searches, exploration and navigability of net-
worked systems to modeling information diffusion. Once a ran-
dom walker, i.e. an agent, is placed in one node of a specific
layer, it can perform 4 different actions: stay in the same node,
jump to a neighbor in the same layer, switch to another state
node or jump anywhere else, according to its transition rules,
encoded in the corresponding transition tensor (see the text for
further details). The collection of nodes and edges visited se-
quentially defines the walk, here represented by a dashed line.
Figure from [4] under Creative Commons Attribution-ShareAlike
4.0 International License. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Different aggregate representations of the same multilayer net-
work. See the text for further details. Figure from [4] under Cre-
ative Commons Attribution-ShareAlike 4.0 International License. 33

3.2 Different measures of layer-layer correlations for the analysis of
an empirical multilayer social system. The data encodes online
interactions between users in Twitter during the Conference on
Complex Systems held in Cancun (Mexico) in 2017. The layers
encode different social actions in the system: Reply (who replies
to an existing messages posted by someone else), Mention (who
mentions someone else, regardless of the existence of a previ-
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A wide variety of natural and artificial systems are characterized by
interactions among their units: from biological molecules within a cell
to neurons within the human brain, from individuals in a virtual or

physical society to machines in communication networks like the Internet.
Despite their manifest differences, all these systems have a common feature:

they are organized into a non-trivial web of relationships which define large-
scale structures usually referred to as complex networks. In a complex network,
entities are represented by nodes (e.g., people) and their interactions are repre-
sented by links or edges (e.g., social relationship), as shown in Fig. 1.1. Node
and links are often enriched with additional information, called metadata, al-
lowing to better characterize the system in terms of different types of entities,
their possibly directional interaction or weighted relationships, so forth and so
on.

Network Science is that branch of Complexity Science devoted to analyze
such large-scale structure in order to gain new insights about system: from
the identification of key players (e.g., influencers) to the identification of the
mesoscale organization into groups or communities. However, Network Science
is not limited to the analysis of structural features of a complex system, which
is related to the static description of a network. Very often, for practical ap-
plications one can be interested into the dynamics of such systems and their
response to specific actions or perturbations. A typical example is the analysis
of the spreading of epidemic diseases in social systems, where the underlying
structure and the human intervention usually play a crucial role for the disease
to become endemic or die out within a limited temporal horizon. Similarly,
the analysis of how information spreads across different social groups or from
the physical layer – the network of social relationships in the physical world:
e.g., family, school, business, etc. – to the virtual layer – the network of social
relationships in the online world: e.g., Twitter, Facebook, WhatsApp, etc. –
and viceversa. In fact, one of the most important fields of research in Network
Science concerns the resilience of natural and artificial complex systems to ran-
dom failures (e.g., airport closure or mobile phone communication cut off due
to adverse climate conditions) to targeted perturbations (e.g., terroristic attack
to a specific area of urban environments like a city or removal a specific species
from an ecosystem) of nodes or links.

The science of networks is very old and its roots can be found in the prob-
lem of the seven bridges of Königsberg, solved by the famous mathematician
Leonhard Euler in 1736, who developed the foundations of graph theory to
demonstrate, rigorously, the absence of a solution. In the successive two cen-
turies, applied mathematicians, economists, ecologists, social scientists and bi-
ologists recognized the importance of network modeling in their disciplines,
providing valuable contributions to the development of Network Science. Only
towards the end of the 20th century this topic attracted the interest of physi-
cists, bringing novel theoretical and computational tools for modeling and anal-
ysis of complex networks which led to scientific breakthroughs culminated in
the discovery of the mechanisms behind fundamental features such as small-
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4 CHAPTER 1. INTRODUCTION

worldness by Duncan Watts and Steven Strogatz in 1998 [20] and scale-freeness
by Albert-Lazlo Barabasi and Reka Albert in 1999 [21].

The scope of this book, however, does not concern with modeling and anal-
ysis of such classical complex networks, which has been the subject of excellent
textbooks (see [22], [23] and [24] for an introduction to structure and dynam-
ics, but also [25–28] for both pedagogical and technical books on this topic)
and focused scientific reviews in a variety of applicative domains, such as social
sciences [29–31], cognitive and systems neuroscience [32–37, 37–40], systems bi-
ology and medicine [41–48], physics [49–61] and ecology [62, 63], just to mention
a few.

A thorough review of the most important achievements in Network Science
is well beyond the scope of this book and would deserve one or more dedi-
cated books. In this introductory chapter, it is worth mentioning the efforts
in explaining how come structural properties observed in empirical networks
at intermediate and large scales emerge from simple mechanisms at the micro-
scopic level. Such properties include, for instance, disordered topologies with
nodes separated, on average, by distances much shorter than the size of the
system [64], a high preference towards triadic closure and fast information ex-
change [20], heterogeneous connectivity distribution [21, 65] rather than an
homogeneous one, organization into hierarchies [66–69] – as observed in of eco-
logical, cellular, technological, and social networks [70] – and groups [71–83]
or functional and dynamical modules [13, 84–90]. A crucial role was played
by growth models developed to reproduce features observed in social, biologi-
cal and communication networks [21, 50, 91–97], as well as theoretical tools –
mostly inspired or borrowed by statistical physics – for the analysis of complex
networks with arbitrary degree distributions [65, 98], often based on the max-
imization of an entropy measure subjected to specific topological constraints
for classical [99–101] and multilevel [102] systems. Least, but not for their rele-
vance to our comprehension of natural and artificial complex systems, the tools
for modeling and analysis of system’s critical properties which are useful for
a broad spectrum of applications, from a better understanding of network ro-
bustness to perturbations – from localized static random failures and targeted
attacks, to cascade failures – [58, 103–121], to the identification of influential
spreaders [122, 123].

Figure 1.1: Graphical represen-
tation of complex network. The
system consists of entities, named
nodes (or vertices), connected with
each other by edges (or links) en-
coding their interactions or their
relationships. Usually, nodes tend
to cluster into communities or
modules, encoding the modular or-
ganization of the system often re-
sponsible for its function (e.g.,
think about teams within a com-
plex company or set of genes and
proteins responsible for biological
process and cellular components).
Nodes which are not connected
directly by one edge, can com-
municate with each other or ex-
change information through paths
consisting of intermediate nodes
and edges which connect origin and
destination. Note, however, that
there are network where such an
exchange is not possible because
nodes are part of disconnected
clusters.

Node

Inter-community
Edge

Community
Intra-community

Edge

Path
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Figure 1.2: Zachary’s Karate
Club [3] visualized by means of
the corresponding weighted adja-
cency matrix representation (A)
and as a network (B). In (A) color
codes the weight of social rela-
tionships between club members,
whose pseudonym are reported.
Members are clustered together by
applying a complete agglomeration
clustering on their Euclidean dis-
tance. In (B) color codes the two
observed communities, formed af-
ter a conflict between Mr. Hi and
John A. See the text for further de-
tails.
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Despite these efforts, some properties of complex biological, social and tech-
nological systems continue to elude us. One possible reason might be related to
technical difficulties in dealing with either unavailable or noisy, incomplete or
multidimensional information. In the first case, a variety of solutions based on
Bayesian inference have been proposed [68, 83, 124–127]. In the other case, tra-
ditional approaches based on simple or heuristic aggregation of available topo-
logical data, as well as approaches neglecting or discarding multidimensional
information, often lead to approximate representations of empirical systems,
resulting in poor agreement with observation. The core of this book deals with
this latest case, covering how multilayer modeling and analysis has been able
to cope with theoretical and computational challenges to integrate multiple
sources of available data, instead of aggregating them.

A classical example used to show the predictive power of Network Science is
Zachary’s Karate Club [3]. Wayne Zachary, an anthropologist working at the
Department of Anthropology at Temple University in Philadelphia, studied the
social relationships among people involved in a University karate club between
1970 and 1972. Zachary built a network model of the group that was able to
predict the fission into two smaller groups (see Fig. 1.2) as a consequence of a
conflict between the two administrators of the club (anonymized as Mr. Hi and
John A). The study, published in 1977, released the network data (see Fig. 1.2)
which became a standard benchmark for community detection algorithms in
Network Science11 A joke circulating among

network scientists reports that “if
your method does not work on
this network, then go home”.

and a special prize is assigned to network scientists who,
during their oral presentation at conferences in the field, first mention this
data set2

2

http://networkkarate.tumblr.com/

.
Zachary’s analysis of the network made use of the Ford-Fulkerson method [128],

maximizing flow in a graph where links can be interpreted as information
channels and their weights are proportional to the underlying flow. Using this
method on the original network, Zachary was able to determine – with the
exception of one member – the two subgroups formed after the scission.

However, Zachary had to face a complex data analysis problem. In fact, he
identified eight different “contexts” in which he observed and measured social
relationships, from association in and between academic classes at the Univer-
sity to interactions in different locations or attendance at Karate tournaments.
Without theoretical and computational tools at hand to deal with such an
amount of information, he investigated the possibility to aggregate the data. In
practice, for each pair of members, Zachary was able to build an 8-dimensional
vector encoding their relationships (0 if absent, 1 otherwise) across different
contexts but, due to the lack of an adequate mathematical framework, he even-
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tually summed up the entries, linearly. Despite his attempts to provide argu-
ments to sustain his claim about linearity of data aggregation, 40 years later we
would assess that he had to deal with an edge-colored multigraph – a special
type of multilayer network – and he decided to analyze its aggregate network
representation.

1.1 Mathematical representation of a complex network

From a mathematical point of view, a convenient way to represent a complex
network is to encode the underlying information about adjacent nodes into a
square matrix. If we indicate by W the adjacency matrix of a network with
𝑁 nodes, the entry 𝑤𝑖 𝑗 is usually a real positive number if there is a direct
connection from node 𝑖 to node 𝑗 (𝑖, 𝑗 = 1, 2, ..., 𝑁), otherwise 𝑤𝑖 𝑗 = 0.

The fact that complex networks can be represented by matrices suggested
the possibility to exploit classical linear algebra for their analysis. More re-
cently, a rigorous mathematical formulation in terms of rank–2 tensors has
been introduced [129], which turned out to be extremely useful for generalizing
the algebra classical of complex networks, also named monoplex networks, to
multilayer networks, the subject of this book. In this formalism, the adjacency
matrix W is nothing but a rank–2 tensor 𝑊 𝑖

𝑗
, where 𝑖 and 𝑗 are covariant and

contravariant indices encoding the two dimensions of the adjacency tensor.
The general reader, specially the one less familiar with linear algebra, might

underestimate the importance of using a tensorial representation for com-
plex networks. For sake of completeness, we briefly provide further details in
Box 1.1.1 and Box 1.1.2 as an advanced topic.

Box 1.1.1: What is a tensor?

A tensor is a multilinear mathematical object that, independently on the choice
of the underlying coordinate system, maps tensors in other tensors. Scalars (𝑎),
vectors (𝑎𝑖) and matrices (𝐴𝑖

𝑗
) might be recognized as the simplest tensors of

rank 0, 1 and 2 respectively. It is easy to capture the pattern: the total rank is
given by the number of tensorial indices. In general, tensors are characterized by
multiple indices representing two different types of coordinates, usually named
covariant (bottom) and contravariant (top), which transform differently under
a change of basis. This transformation can be defined by observing that, if
the change of basis is governed by a tensor 𝑄, then the contravariant indices
must change with 𝑄 while covariant indices must change with its inverse, 𝑄−1.
Therefore, a rank–1 tensor can be either a 1–covariant (𝑎𝑖) or a 1–contravariant
(𝑎𝑖) vector, whereas an object like 𝐴

𝑖 𝑗

𝑘𝑙𝑚
is a rank–5 tensor, 2–contravariant and

3–covariant.
To follow the mathematical content of this book, it is sufficient to understand
what a tensor is, why it is important and how to work with it. To this aim, we
present a few basic operations which are widely used in the reminder of this
book.
The outer product – also known as the Kronecker product – between two
tensors 𝐴 and 𝐵 is a new composite tensor 𝐶 with higher rank. The rank of 𝐶
is equal to the sum of the two ranks of 𝐴 and 𝐵. In fact, this property holds for
the number of covariant and contravariant indices. For instance: 𝐴𝑖

𝑗𝑘
𝐵𝑙
𝑚 = 𝐶𝑖𝑙

𝑗𝑘𝑚
.

Another common operation is the inner product, also known as contraction,
where the resulting tensor has a rank which is equal to the sum of the two ranks
reduced by 2. For instance: 𝐴𝑖

𝑗𝑘
𝐵𝑘
𝑚 = 𝐶𝑖

𝑗𝑚
. If there are multiple contractions,

the total rank will be further reduced: 𝐴𝑖
𝑗𝑘
𝐵

𝑗

𝑖
= 𝐶𝑘 . Here, we have implicitly

adopted the Einstein summation convention to repeated indexes, in order to
reduce the notational complexity of our tensorial equations. In fact, the full
notation for contractions is as follows:

𝐴𝑖
𝑖 =

𝑁∑︁
𝑖=1

𝐴𝑖
𝑖 , 𝐴𝑖

𝑗𝐵
𝑗

𝑖
=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐴𝑖
𝑗𝐵

𝑗

𝑖
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whose right-hand sides include the summation signs explicitly and 𝑁 is the size
of the space where the two tensors are defined. When working with tensors, it
is crucial to specify it, because in another notation 𝐴𝑖 𝑗 might simply indicate
the scalar entry of the matrix A corresponding to row 𝑖 and column 𝑗, whereas
in tensorial notation this object would represent a rank–2 tensor.

Box 1.1.2: The adjacency tensor of a complex network

The adjacency tensor 𝑊 𝑖
𝑗

of a network can be represented [129] as a linear
combination of tensors of the canonical basis by

𝑊 𝑖
𝑗 =

𝑁∑︁
𝑎,𝑏=1

𝑤𝑎𝑏𝑒
𝑖 (𝑎)𝑒 𝑗 (𝑏) =

𝑁∑︁
𝑎,𝑏=1

𝑤𝑎𝑏𝐸
𝑖
𝑗 (𝑎𝑏) , (1.1)

where 𝑤𝑎𝑏 encode the weight of the interaction between nodes 𝑎 and 𝑏, 𝐸𝑖
𝑗
(𝑎𝑏) ∈

R𝑁×𝑁 indicates the tensor of the canonical basis corresponding to the tensorial
product of the canonical vectors e(𝑎) ≡ 𝑒𝑖 (𝑎) and e† (𝑏) ≡ 𝑒 𝑗 (𝑏), column and
row respectively, both defined in R𝑁 , assigned to nodes 𝑎 and 𝑏, respectively.
Here, the natural basis is the Euclidean one.
The assignment of the indices as covariant or contravariant may seem arbi-
trary because of the lack of a natural transformation that can be used to guide
us. For monoplex networks, the adjacency tensor 𝑊 𝑖

𝑗
is nothing but a linear

transformation which returns the set of nodes adjacent to a specific one (e.g.,
node 𝑖) when applied to a rank–1 tensor (i.e., a vector) representing that node:
𝑊 𝑖

𝑗
𝑒𝑖 (𝑎) = 𝑤 𝑗 (𝑎). Since complex networks can be directed, the necessity to

distinguish between adjacent nodes with incoming links and adjacent nodes
with outgoing links makes 1–covariant 1–contravariant tensors the only possi-
ble choice.
The knowledge of the order of the adjacency tensor completely determines its
transformation under a change of coordinates. In fact, let

𝑄𝑖
𝑗 =

𝑁∑︁
𝑎=1

𝑒′𝑖 (𝑎)𝑒 𝑗 (𝑎) (1.2)

be the change of basis tensor which transforms the basis vector set {𝑒𝑖 (𝑎) } into
a second set {𝑒′𝑖 (𝑎) }. Since any change of basis should not alter 𝑤𝑎𝑏 we obtain:

𝑊′𝑘
𝑙 =

𝑁∑︁
𝑎,𝑏=1

𝑤𝑎𝑏𝑒
′𝑘 (𝑎)𝑒′𝑙 (𝑏) =

𝑁∑︁
𝑎,𝑏=1

𝑤𝑎𝑏𝑄
𝑘
𝑖 𝑒

𝑖 (𝑎)𝑒 𝑗 (𝑏) (𝑄−1) 𝑗
𝑙

= 𝑄𝑘
𝑖

[
𝑁∑︁

𝑎,𝑏=1

𝑤𝑎𝑏𝑒
𝑖 (𝑎)𝑒 𝑗 (𝑏)

]
(𝑄−1) 𝑗

𝑙
= 𝑄𝑘

𝑖 𝑊
𝑖
𝑗 (𝑄−1) 𝑗

𝑙
, (1.3)

demonstrating the tensorial nature of 𝑊 𝑖
𝑗
. It is worth remarking that the exis-

tence of such a transformation law makes the adjacency tensor an object much
richer than the adjacency matrix, although they can be both represented as
an array of arrays, or equivalently an hypermatrix of order 2. While the com-
ponents of a tensor can be arranged into hypermatrices, the components of
hypermatrices do not necessarily define a tensor.

1.2 Multilayer networks: towards a more realistic model
of complex systems

By the end of the ’60s a few visionary biologists, sociologists, psychologists,
physicists and mathematicians were already convinced that interacting units,
from molecules in the cell to individuals in a society, build an interconnected
network whose emergent behavior – characterized by spontaneously appearing
phenomena – can not be understood from the analysis of its components in
isolation3

3 The reader interested in the
development of system thinking in

the past century might want to
read the book by Capra and

Luisi [130]. .
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Figure 1.3: A schematic rep-
resentation of a multilayer trans-
portation system across several ge-
ographic scales. From top to bot-
tom: large-scale mobility network
encoded by distinct airlines (the
layers) serving inter-continental
routes; continental transportation
(here in the USA) with respect
to domestic flights, long-range bus
routes and rail (the layers); at a
lower scale, e.g., in California, one
can use the road network, as well
as bus routes and rail (the layers)
for regional movements; at the low-
est scale one can use roads, buses
and metros (the layers) to move be-
tween distinct parts of a city. Fig-
ure from [4] under Creative Com-
mons Attribution-ShareAlike 4.0
International License.

Sociologists and biologists, however, were among the first, if not the first
at all, to recognize that natural and social networks are often organized in
structures more complex than classical networks. While multilevel organiza-
tion characterizes living organisms and complex societies, other fundamental
ingredients of complexity are multiplexity and interdependency between dif-
ferent systems. When observed from a wider perspective, Nature seems to be
favor systems of systems : networks consisting of other networks characterized
by non-trivial, and often heterogeneous, interdependencies or simultaneous re-
lationships that can not be either simply neglected or aggregated. Molecules
interact in different ways within cells, cells combine to form tissues, tissues
interact to form organs and organs are complex systems interdependent from
each other forming organisms. Remarkably, organisms interact in different ways
to build multiplex and interdependent social systems and ecosystems.

In 1969, Brian Kapferer defined multiplexity as social engagement in differ-
ent types of exchanges [131], and Mark Granovetter, a few years later, argued
that “the degree of overlap of two individuals’ friendship networks varies di-
rectly with the strength of their tie to one another ”. Social scientists empirically
demonstrated how multiplexity can have a direct impact on how influence and
information are diffused through the system, as well as on how individuals or-
ganize into communities [132]. Almost 40 years later, physicists and applied
mathematicians were fascinated by the same challenges, developing a mathe-
matical theory of multilayer networks that confirmed, analytically, those intu-
itions about diffusive processes [18, 129, 133] and group organization [15, 87].
Lois Verbrugge identified that multiplexity occurs when actors share multiple
bases for interaction in a dyad [134], while John Padgett demonstrated the
role of multiplexity in the rise of the Medici among families in the Renaissance
Florence [135, 136].

On the one hand, social scientists were among the first to recognize the
role of multiplexity in shaping complex societies. On the other hand, system
biologists were among the first to recognize the role of interdependency among
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Figure 1.4: A schematic rep-
resentation of a multilayer bio-
logical system across several bio-
logical scales. From top to bot-
tom: a social network of individuals
where layers characterize distinct
ties (e.g., social, family, work); each
individual is an organism charac-
terized by a network of organs
which characterize distinct systems
(e.g., circulatory, respiratory, ner-
vous, so forth and so on); tissues
are characterized by cellular net-
works and, at the bottom, each cell
is characterized by molecular in-
teractions of distinct type which
constitute the genome, the tran-
scriptome, the proteome and the
metabolome, for instance. Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.

Figure 1.5: A schematic rep-
resentation of a multilayer social
system. Layers here encode dis-
tinct type of interactions and ac-
tors: physical individuals interact
in the physical world with differ-
ent ties (e.g., family and friend-
ship), whereas they can have dig-
ital counterparts – such as ac-
counts on social media platforms –
with other relationships (e.g., fol-
lowing on Twitter, friendship on
Facebook). In the digital layers
we can see also the presence of
non-physical actors, such as social
bots [5, 6]. This type of struc-
tures allows one to model complex
population dynamics, such as epi-
demics and behavioral spreading as
well as information diffusion. Fig-
ure from [4] under Creative Com-
mons Attribution-ShareAlike 4.0
International License.

different systems, from cells to organs within an organism, as remarked in the
famous sentence of Francois Jacob – Nobel Prize in Physiology or Medicine in
1965 –: “Every object that biology studies is a system of systems.” [137].
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Figure 1.6: Bibliometrics anal-
ysis from the Web of Knowl-
edge (WoK). Temporal evolution
(from right to left) of the num-
ber of papers published about mul-
tilayer networks, including more
than 2600 publications between
1990 and 2021 (2100+ since 2009
to date). Obtained by filtering with
the words “multiplex network”,
“multilayer network” and “interde-
pendent network” in the title/ab-
stract, while requiring the word
“complex” to be within 10 words
and excluding keywords used in
other contexts. Data and visualiza-
tion from webofknowledge.com.

Figure 1.7: Same data used in
Fig. 1.6 to show the WoK cat-
egories where papers on multi-
layer networks have been mostly
published. Data and visualization
from webofknowledge.com.

Despite its old roots, the science of multilayer networks flourished only one
decade ago, when it became clear that the robustness of a complex system is
strictly related to its interdependencies, with potentially catastrophic conse-
quences4

4 An emblematic example is given
by the chain of events triggered
by, and contributing to, climate
change – Earth’s surface air
temperature increase,
intensification of its hydrological
cycle and risk of river floods, so
forth and so on – that will
dramatically effect the global
trade network and, consequently,
will cause relevant economic losses
to countries such as China and
United States [138].

triggered by their existence [139, 140]. In parallel, the role of multi-
plexity5

5 Mathematically, systems
changing over time, also known as
time-varying networks [56, 57],
can be described within the
multilayer framework [87, 129],
although more research is needed
to establish a more formal bridge.

in determining critical functional units in social systems was mathe-
matically and computationally formalized [87], defining de facto the new era
for multilayer network science.

In the last decade, multilayer network science [141–145] provided great op-
portunities for more realistic models and meaningful analyses of empirical sys-
tems, being one of the best candidates for a science of integrated systems,
especially biological ones [146, 147]. Figures 1.3, 1.4 and 1.5 show illustrative
examples of how one can use multilayer networks to model a broad class of com-
plex systems, including transportation, biological and social ones, respectively.
Note that such illustrative examples have used to analyze real-world systems in
thousands of scientific papers during the last decade, as show in Fig. 1.6, 1.7,
1.8, and 1.9, highlighting the interdisciplinary and multidisciplinary nature of
multilayer network modeling6 6 For reproducibility, this is the

search query: (((multiplex
NEAR/3 network*) OR
(multilayer NEAR/3 network*)
OR (interdependent NEAR/3
network*) NEAR/10 complex)
NOT (feedforward network OR
feed-forward network OR neural
OR adversarial OR electronic*
OR wavelength OR optical OR
(internet of things) OR microgrid
OR radio OR iron OR supervise*
OR wireless))

.
In the first part of this book we will explore some important tools and con-

cepts developed to account for multiple types of relationships between nodes,
simultaneously. In the remaining parts we will use those tools to analyze em-
pirical systems from a broad spectrum of disciplines and applications.

http://webofknowledge.com
http://webofknowledge.com
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Figure 1.8: Same data used
in Fig. 1.6 to show the research
domains where papers on multi-
layer networks have been mostly
published. Data and visualization
from webofknowledge.com.

Figure 1.9: Same data used in
Fig. 1.6 to show the scientific
journals where papers on multi-
layer networks have been mostly
published. Data and visualization
from webofknowledge.com.

1.3 Structure of multilayer networks

At variance with monoplex systems, where only one type of relationship among
nodes is allowed, a multilayer network is defined by a set of nodes interacting
with each other in multiple ways, simultaneously. Each type of relationship is
encoded by a “color” and the set of all interactions of the same color defines
a layer, as shown in Fig. 1.10. The same node(s) can exist in one or multiple
layers: when the layer information is retained the node is a state node or also
replica node, whereas when we refer to a node regardless of which layer it be-

Figure 1.10: Illustration of a typ-
ical multilayer network. Layers en-
code different types of relationships
among nodes, occurring simultane-
ously. Nodes can exist in multi-
ple layers, but not necessarily in
all layers: if their identity is re-
lated to the a specific layer they
are named state nodes, whereas
physical nodes are the ones whose
identity does not depend on any
specific layer. Connectivity within
each layer is defined by intra-layer
edges, whereas inter-layer edges de-
fine connections across layers. Fig-
ure from [4] under Creative Com-
mons Attribution-ShareAlike 4.0
International License.

Inter-layer
Edge

Intra-layer
Edge

State
Node

Physical
Node

Layer

http://webofknowledge.com
http://webofknowledge.com
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Figure 1.11: Basic classification
of multilayer network models. All
models can be analyzed and visu-
alized within the muxViz platform
(see Sec. 1.5). Allowed models in-
clude both non-interconnected –
i.e., edge-colored – and intercon-
nected – i.e., multiplex, interde-
pendent and general multilayer –
networks. Figure from [4] under
Creative Commons Attribution-
ShareAlike 4.0 International Li-
cense.

longs to, we use the term physical node. Edges of the same color, the ones within
the same layer, define the intra-layer connectivity, whereas edges connecting
state nodes across layers define the inter-layer connectivity.

Despite the exponential increase of scientific studies on multilayer systems,
the efforts for building a general theory of multilayer networks are still ongo-
ing [129, 143]. The simplest classification of multilayer systems identifies two
categories based on the absence or the presence of inter-layer connectivity:

• Non-interconnected networks: often named also edge-colored multi-
graphs, they consists of multiple layers, each one encoding a specific rela-
tionship between nodes. Nodes preserve their identity across layers but their
states are not interconnected with each other (Fig. 1.11). State nodes exist
in at least one layer and their relationships in different layers can be encoded
by different colors.

• Interconnected networks: they consists of multiple layers, each one en-
coding a specific relationship between nodes. Nodes can preserve their iden-
tity across layers and their states can be interconnected with each other
(Fig. 1.11).

– Multiplex interconnected networks: only inter-layer connections among
states of the same physical nodes are allowed. In practice, this corresponds
to the case of an edge-colored multigraph with interconnected layers.

– Interdependent networks: only inter-layer connections among states
of different physical nodes are allowed.

– General interconnected network: no restrictions on inter-layer con-
nections are imposed.

Across this book we will introduce appropriate multilayer models for empirical
networks found in different disciplines, such as Social Sciences, Digital Human-
ities, Engineering, Biology and Biomedicine.

The fine classification of multilayer networks allows for some flexibility in
their representation and data format (see Sec. A.5). However, it is worth noting
that standard matrices and rank–2 tensors, used to represent monoplex net-
works, are inherently limited in the complexity of the relationships that they
can capture, i.e., they do not represent a suitable framework in the case of mul-
tilayer systems, either they are interconnected or not. For instance, this is the
case of increasingly complicated types of relationships —that can also change
in time— between nodes.

The less complex multilayer systems are edge-colored multigraphs, also
known as non-interconnected multiplex networks, which can be represented
by an array of adjacency matrices [148–153]. The corresponding systems can
be mathematically represented by hypermatrices of order 3 and, under some
restrictions, by rank–3 tensors.

When the structure of relationship is very rich, i.e. inter-layer interactions
between pairs of nodes are allowed, a more general model is required to encode

Edge-Colored
Multigraph

Multiplex 
Interconnected

Interdependent General
Interconnected

Non-interconnected Interconnected

Multilayer Networks
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Figure 1.12: Schematic illustra-
tion of how tensorial objects –
such as scalar, vector, matrix and
hypermatrix – of increasing order
can be used to encode informa-
tion about physical objects with
increasing complexity, e.g. a node,
a network, a non-interconnected
multiplex and a general intercon-
nected multilayer system. Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.

all the available information. Intuitively, one might guess that to account for
all possible relationships between a node 𝑖 in a layer 𝛼 with a node 𝑗 in layer
𝛽, a tensorial object with at least 4 indices is required. In fact, it can be shown
that rank–4 tensors, that we will indicate with the notation 𝑀 𝑖𝛼

𝑗𝛽
, are enough

for this purpose (see Box 2.3.1 for details). To avoid confusion, in the following
we will use Latin letters to indicate nodes and Greek letters to refer to layers.

The object 𝑀 𝑖𝛼
𝑗𝛽

is usually referred to as multilayer adjacency tensor and it
accounts for all interconnections among nodes within layers and across layers.
To better understand this complicated object, it is useful to inspect Fig. 1.12,
where an illustration of the “shape” of each tensor corresponding to a specific ob-
ject, from a node to a multilayer network, is shown. While non-interconnected
multiplex systems can be represented by a three-dimensional array, the ge-
ometry corresponding to a multilayer network is inherently four-dimensional.
However, it is possible cope with the complexity of this object by flattening
it to a lower-dimensional object, a rank–2 tensor, by means of the operation
known as matricization [7]. If there are 𝑁 nodes and 𝐿 layers in the system, the
multilayer adjacency tensor is defined in a space with 𝑁 ×𝑁 × 𝐿 × 𝐿 dimensions
while its flattening, referred to as supra-adjacency matrix [133], is defined in a
space with 𝑁𝐿×𝑁𝐿 dimensions (see Fig. 1.13). While the overall number of di-
mension is the same, remarking that the information content of the two object
is the same, the two underlying spaces are clearly different: the advantage of the
second one is that it allows us to work with standard matrix theory provided
that some care is taken when results are obtained and must be interpreted.
In fact, the rank–2 intra-layer adjacency tensors denoted by 𝐶𝑖

𝑗
(𝛼𝛼) = 𝑊 𝑖

𝑗
(𝛼)

(𝛼 = 1, 2, ..., 𝐿), with dimension 𝑁 × 𝑁, represent the single-layer networks of
the system and are placed, conventionally, on the diagonal blocks of the supra-
adjacency matrix. The rank–2 inter-layer adjacency tensors denoted by 𝐶𝑖

𝑗
(𝛼𝛽)

(𝛼, 𝛽 = 1, 2, ..., 𝐿 and 𝛼 ≠ 𝛽), with dimension 𝑁 × 𝑁, represent the interactions
between pairs of nodes across layers and are placed, accordingly, on the off-
diagonal blocks of the supra-adjacency matrix. The careful reader recognizes
that we have defined a total of 𝐿2 rank–2 tensors with dimension 𝑁 × 𝑁.

In practice, the main advantage of the multilayer adjacency tensor is that it
encodes all the information in a single object where the identity of each node is
uniquely defined by the rank–4 tensor, while this is no more the case when the
supra-adjacency representation is used. In fact, in the second case, we must be
careful to the (arbitrary) order in which adjacency matrices of single layers are
placed in the diagonal block and, overall, it must be remarked that if standard
network algorithms are employed they will interpret the supra-adjacency matrix
as the adjacency matrix of a network with 𝑁 × 𝐿 nodes, sometimes known also
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Figure 1.13: Representing
multilayer networks with supra-
adjacency matrices. (A) An
interconnected multiplex network
(left) with 𝑁 = 4 nodes and
𝐿 = 3 layers (note that not all
nodes necessarily exist on all
layers). Each layer is encoded by
a different color. The network
is directed (encoded by arrows)
and weighted (encoded by edge
thickness). The adjacency matri-
ces, corresponding to each layer
separately, are also shown (right).
(B) Matricization [7] is applied to
flatten the rank–4 tensor repre-
senting the multilayer network to
a rank–2 supra-adjacency matrix
– a block matrix, i.e., a matrix
consisting of matrices of lower
dimension – in which: i) the
adjacency matrices corresponding
to each layer are placed as blocks
on the main diagonal, and ii)
inter-layer connectivity is encoded
into diagonal matrices that are
placed on the off-diagonal blocks.
This representation preserves the
topological information, although
some care is necessary to deal with
analysis (see the text for details).
Reproduced with permission from
Ref. [8].

as the expanded representation [15]. However, in this expanded representation
the identity of physical nodes is demultiplexed into the different identities of
the corresponding replica nodes. To cope with this problem of interpretability,
it is possible to demonstrate that a wide spectrum of algorithms and methods
can be still used safely provided that results are combined appropriately by
using tensorial algebra [10, 129] (see Chap. 2–6 for details).

This new framework allows for a natural integration of multiple sources
of information, opening the doors for countless solutions and applications in
several disciplines, especially in biology [146, 147].

For instance, applications to ecology have been recently considered [9, 154–
156]. The way animals are related (e.g., genetically) or interact (e.g., mating)
with each other can influence and is influenced by their habitat and its or-
ganization in spatial patches (Fig. 1.14). Accounting for such a socio-spatial
interdependence has the potential to provide new insights on animal behavior
and the organization of ecological systems (Fig. 1.15).

Figure 1.14: A multilayer net-
work model to integrate social,
spatial and behavioral information
from animals and their environ-
ment. Interactions and relation-
ships between animals can be mod-
eled by multiplex networks which,
in turn, are interdependent with a
spatial network of habitat patches.
Figure from [4] under Creative
Commons Attribution-ShareAlike
4.0 International License.
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Figure 1.15: Aggregate (top)
and multilayer (bottom) repre-
sentations of a real seed-dispersal
network. Reproduced from Ref. [9]
under Creative Commons Attri-
bution 4.0 International License
http://creativecommons.org/
licenses/by/4.0/

Figure 1.16: Types of dynam-
ics on the top of multilayer struc-
tures. In single dynamics (left) a
single dynamical process (dotted
line) takes place on the top of
the while multilayer topology. In
coupled dynamics (right), a differ-
ent dynamical process (dotted lines
with different colors) takes place
on the top of each layer separately,
being intertwined by the underly-
ing inter-layer connectivity (verti-
cal, gradient-colored lines). Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.

1.4 Dynamics on and of multilayer networks

We have seen so far that the multilayer framework allows a natural represen-
tation of interdependent networks in terms of coupled topologies. In fact, a
similar feature characterizes dynamical processes that, in a multilayer frame-
work, can be categorized in two distinct classes [145] characterized by either i)
single dynamics or ii) coupled dynamics on the top of the structure (Fig. 1.16).
Both classes reveal a variety of interesting phenomena [157], such as structural
and dynamical phase transitions, as well as the emergence of enhanced diffusion
or congestion effects with respect to the case where layers are considered sep-
arately, which uniquely characterize multilayer systems (we refer to [142–145]
for a review).

The first class defines dynamical processes such as continuous [133, 158–
161], and discrete [18, 162–164] diffusion, as well as synchronization dynam-
ics [165–169], system control [170, 171], cooperation [172–174], communicable
information [175], epidemics spreading of a single disease [176–180], traffic and
congestion in multimodal communication systems [181–183], opinion dynam-
ics [184–187], innovation diffusion, adoption, simple or complex contagion [188–

Intra-layer
Dynamics

Inter-layer
Dynamics

Single
Dynamics

Intra-layer
Dynamics

Inter-layer
Coupling

Coupled
Dynamics

http://creativecommons.org/licenses/by/4.0/
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Figure 1.17: Types of dynam-
ics of classical, single-layer net-
works. The network can grow over
time (top) by adding new nodes
and edges, or it can shrink (bot-
tom) because of node and edge
failures. Hybrid dynamics, where
the two processes are mixed, can
be defined to model the dynamics
of complex adaptive systems such
as social networks, where individu-
als join and leave groups, establish
new social relationships or cut ex-
isting ones. Figure from [4] under
Creative Commons Attribution-
ShareAlike 4.0 International Li-
cense.

192] such as in viral diffusion of a piece of information (e.g., a meme) or of a
product. The emergence of such effects in diffusive processes and in spreading
process that, at first order, can be described by diffusion dynamics, is mostly
related to the coupling strength between layers. In some special cases, such
as interconnected multiplex networks with identical coupling, it is possible to
show the existence of two distinct regimes as a function of the inter-layer cou-
pling strength [193], highlighting how the multilayer structure can influence the
outcome of several physical processes. Multilayer effects are usually observed
above a critical value which characterizes a structural transition [193], corre-
sponding to a non-negligible coupling strength between layers, whereas below
such a value, the networks corresponding to different layers tend to act in iso-
lation and can be studied separately. The importance of this type of dynamics
for the analysis of multilayer networks will become even more clear in Chap. 2,
where we will show how a variety of structural indicators, from node centrality
to organization in communities or clusters, can be defined or better understood
in terms of specific diffusive processes, such as random walks.

The second class defines the dynamics of different processes – in which each
one runs on top of a given layer – which are eventually coupled together by the
underlying multilayer topology. The existence of the topological coupling be-
tween layers and its strength are responsible for emerging phenomena, of inter-
est for applications in molecular biology, neuroscience, economics, engineering
and social sciences. These phenomena depends on interdependent dynamics,
such as combining cooperative and/or competitive epidemics spreading [194–
198], interplay between epidemics spreading and behavior [199–208], simple and
complex contagion [209], evolutionary game dynamics and social influence [210],
coupled human mobility [211], transport and synchronization dynamics [212],
as well as other collective phenomena [213]. Despite the different contexts, in all
cases the two dynamics can have positive or negative feedbacks: for instance,
behavior (e.g., information awareness) can inhibit the disease spreading; so-
cial mixing between classes and mobility can produce abrupt changes of the
critical properties of the epidemic onset; cooperation emerges when classical
expectation was defection. This leads to the interdependence between the cor-
responding critical points of the dynamics characterized by the existence of a
curve of critical points separating two different regimes: i) one in which the
critical properties of one process do not depend on those of the other, and (ii)
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Figure 1.18: Dynamics of grow-
ing multilayer networks. The num-
ber of physical nodes (indicated by
𝑁𝑝ℎ) and state nodes (indicated
by 𝑁𝑠𝑡), as well as the number of
edges, increases over time to de-
scribe the growth of the system.
Figure from [4] under Creative
Commons Attribution-ShareAlike
4.0 International License.
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in which the critical properties are independent of the other. The two regimes
are separated by a metacritical point, where a crossover occurs.

In fact, there is a rich spectrum of other dynamical processes that, instead
of running on the top of the multilayer structure as the single and coupled
dynamics discussed above, define system’s change under a specific action. In
this framework we can identify i) growth and ii) shrinking dynamics, where the
number of nodes, edges and/or layers usually steadily increases or decreases
over time, respectively. For sake of completeness, it is worth mentioning an-
other class of dynamics, where growth and shrinking might happen together,
causing nodes, edges and layer to be created or to disappear, as in many real
systems which adapt to a changing environment. A schematic illustration of
such dynamics is shown in Fig. 1.17 for a classical network.

The growth dynamics [149] (Fig. 1.18) is of special interest and has been
investigated to better understand how the system’s evolution might induce
strong degree correlations across layers which alter its response to spreading
dynamics and susceptibility to cascade processes [214], identify condensation
phenomena [215] and shed light on the trade-off between efficiency and com-
petition in optimization processes [216].

The study of shrinking dynamics (Fig. 1.19) – better known as percolation
dynamics in the community of physicists – is of paramount importance to better
understand the topological and dynamical robustness of a system, as well as its
resilience, to topological perturbations such as targeted attacks to nodes, edges
and layers, or their failure due to unpredictable circumstances (e.g., random
power outages).

This class of dynamics has attracted the interest of physicists and engineers
almost one decade ago, with the pioneering work concerning the study of the
consequence of failures, occurring on the electrical grid, on a telecommunica-
tion network [217]. The modeling of coupled systems, such as interdependent
infrastructures, in a more general framework has been introduced in 2010 [139],
putting in evidence that mutual dependence introduces a new level of complex-
ity resulting in novel emergent phenomena, such as the fact that this type
of systems are more vulnerable to cascade failures than non-interdependent
ones [140], because perturbations – such as random failure of a finite fraction
of nodes – on one network can propagate the damage, while being amplified,
to nodes in networks that are interdependent, triggering cascade failures which
are able to affect the entire system. This iterative process results in a percola-
tion phase transition which is able to isolate the interdependent networks. This
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Figure 1.19: Dynamics of shrink-
ing multilayer networks. The num-
ber of physical nodes (indicated by
𝑁𝑝ℎ) and state nodes (indicated by
𝑁𝑠𝑡), as well as the number of edges
and layers (𝐿), decreases over time
to describe the disruption of units
and connectivity in the system.
Figure from [4] under Creative
Commons Attribution-ShareAlike
4.0 International License.

breakthrough opened the doors for theoretical and applied research, investi-
gating under which conditions coupled systems disintegrate their structure or
break down their function [141]. It has been shown that by reducing the cou-
pling between networks, the percolation phase transition at the critical point
changes from first to second order, with a scaling law characterized by a specific
critical exponent [218]. Therefore, the usual percolation theory can be obtained
as a limiting case of a more general framework identifying under which condi-
tions cascading failures might be observed and the transition becomes a first-
order percolation transition [219]. When the dynamics is studied in the space
defined by the fraction of failed nodes and the amount of correlation between
high-degree nodes, a triple point is observed, similar to the one separating a
nonfunctional phase from two functional phases in liquids [220]. It has been
shown that when the correlation between intra- and inter-layer degree is be-
low a certain critical value, the system is driven towards a supercritical regime
where dynamical and topological phases are not longer distinguishable [221].
For a class of interdependent networks, hybrid phase transitions depend on di-
rectionality within each sub-system, and the overall robustness increases with
the in-degree and out-degree correlations [222]. In fact, it is possible to reinforce
only a small fraction of nodes to prevent abrupt catastrophic collapses. [223].
Research in this direction is still open and new models are proposed, to account
for more realistic conditions, such as the redistribution of flows due to cascade
failures [224].

From a mathematical perspective, an interdependent system can be either
modeled by a single-layer network with modular structure – where nodes corre-
sponding to different modules are of different type [225] – or by a specific class of
multilayer networks, such as an interconnected multiplex, if i) the sub-systems
have the same size and ii) there is a one-to-one interdependency between state
nodes. In the latter case, the identity of physical nodes is not taken into account
and replicas play the role of different units in different modules. This mathe-
matical similarity allowed to study multiplex networks as a special type of inter-
dependent systems and, in fact, the two terms have been used interchangeably
in many studies, providing further evidence for the fragility of these systems –
facilitated by multiplexity [226, 227] – to avalanche collapse, the emergence of a
mutually connected component not depending on the topology of the network
of networks [228] and the existence of multiple percolation transitions [229–
231]. However, when the physical identity of nodes is taken into account, the
concept of overlapping edges (i.e., connections between pairs of nodes which
exist simultaneously in multiple layers) [150] is taken into account, it is pos-
sible to show that multiplex systems are less fragile than originally thought.
The robustness here is boosted either by inter-layer degree correlations [232]
or by the existence of the redundant connectivity [225], changing the critical
behavior of the percolation in a complex way [233], as well as its structural
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and dynamical robustness under random failures [18], specially in empirical
systems [18, 153, 230].

Capitalizing on these results, it is natural to wonder if, and under which con-
ditions, it is possible to find a minimal set of nodes that, once removed, disman-
tle the system into fragmented, non-extensive, disconnected clusters, unable to
allow information to be exchanged among system’s units. Identification of this
set is of crucial importance for a variety of applications, from the determination
of more effective and less expensive immunization strategies to fight the spread-
ing of epidemic diseases to the maximization of information diffusion from a
few spreaders, known as influencers in (computational) social science. This
question, also known as optimal percolation, is almost two decades old, from
the pioneering work on error and attack tolerance of complex networks [103]
(see [54] for a review) to the more recent dismantling techniques [121, 123], but
only recently the challenge has been tackled for multilayer systems. In fact, it
has been shown that classical approaches such as damaging 2–cores, i.e. de-
cycling, are less effective in destroying the giant connected component than
using strategies which are inherently multilayer [234], e.g., using the multiplex
degree [235].

These studies are relevant also for designing optimal recovery strategies,
such as damage repair [236], or for enhancing the robustness of complex sys-
tems [237]. At variance with interdependent networks, a common feature of
multiplex systems seems to be a higher resilience than their individual layer as
quantified, for instance, by a larger navigability in transportation and commu-
nication networks [18]. Similar techniques are also used to better understand
other real multilayer systems. An interesting example is given by the inter-
dependency between human activity and environment in social-ecological net-
works, altering both the climate and the response of humankind to its dramatic
changes. By considering a variety of plausible scenarios, including the ones re-
lated to global warming, it is possible to quantify the robustness of certain
communities – such as the ones in northern Alaska villages, characterized by
mixed subsistence-cash economy – to the corresponding resource depletion and
to social changes, discovering that the latter play a more fundamental role for
the connectedness of these systems [8].

1.5 muxViz : A tool for data science of multilayer networks

The area of multilayer networks has been rapidly growing in less than a decade
when it attracted the interest of researchers and practitioners in hard science.
Nowadays, the available number of algorithms for modeling and analyzing this
type of system is large.

However, these new analytical tools are often difficult to be used in practice
because of at least one of the following issues:

• The algorithm is difficult to implement and source code is not available;
• Source code is available in a very specific programming language, not a

mainstream one (e.g., R or Python);
• Source code is in a mainstream programming language, but it relies on spe-

cific packages or libraries which are difficult to install or mostly undocu-
mented;

• Source code of different tools are available either in different programming
languages or are based on different packages or libraries.

The most common problem has been the lack of a unified computing frame-
work, where multilayer networks could be represented, manipulated, analyzed
and visualized without too much efforts from the researcher or the practitioner
on porting existing code or merging different codes. muxViz [19] is a free and



20 CHAPTER 1. INTRODUCTION

Figure 1.20: Data page in
muxViz as rendered by any stan-
dard Web browser. The visualiza-
tion is interactive and information
about each single data set can be
easily retrieved and reported.

open source project, publicly available (https://github.com/manlius/muxViz)
under GNU Public License v3 (https://www.gnu.org/licenses/gpl-3.0.en.html),
conceived and developed in 2013 to fill this gap.

Nowadays, muxViz counts on a community of more than 600 researchers
and practitioners, and it is considered as the most complete platform for ana-
lyzing and visualizing multilayer networks. The framework is based on a library
developed in R language7 7 https://www.r-project.org/and is powered by a Graphical User Interface (GUI)
exploiting the Shiny app technology8 8 https://shiny.rstudio.com/. The GUI is user-friendly (Fig. A.2) and
runs in any Web browser to provide access to many customizable graphic and
analytical options to analyze and visualize complex multilayer networks.

The great advantage of muxViz is that it is designed for being used either by
users with coding experience (specifically, R language) able to build complex
data analytics from available functions or by users with no coding skills through
the interface. From muxViz it is possible to explore an online repository of mul-
tilayer networks (Fig. 1.20) with dozens of publicly available fully referenced
data sets (Fig. 1.21). However, a dedicated utility to import downloaded files
and to convert them to muxViz format is not yet available.

In the next chapter we will specify the details about the software environ-
ment required to install muxViz and we will describe how to format multilayer
network data to be imported into the framework.

https://github.com/manlius/muxViz
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.r-project.org/
https://shiny.rstudio.com/
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Figure 1.21: The Data page in-
cludes a form to navigate through
available data sets and search for
specific ones.
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I n the previous chapter, we have provided a very quick introduction to
network models of complex systems, to briefly motivate the needing for
more general models – i.e., multilayer networks – to be used to better

understand the structure and dynamics of empirical systems and systems of
systems.

In this chapter we will focus our attention on the theoretical background of
multilayer analysis and visualization within the framework of muxViz . There-
fore, it is worth remarking that this chapter does not intend to provide an
exhaustive survey of available analytical techniques: instead, it is devoted to
introduce the reader to the several analytical techniques that are available
either through the graphical user interface (GUI) of muxViz or through the
scripting functions which build the accompanying multilayer network library
(LIB).

2.1 Multilayer network models

muxViz allows to import all multilayer network models introduced in the
previous chapter and summarized in Fig. 1.11. The graphical user interface
(Fig. 2.1) is designed to follow a linear workflow:

1. Select the multilayer model to use;
2. Specify the basic properties of the model (is it weighted? Is it directed?);
3. Specify the type of inter-layer connectivity to apply automatically in the

case of edge-colored input9
9 This option is required because

the tensorial framework can be
safely used only to analyze

systems with interconnected or
interdependent layers.

:

• Ordinal: only adjacent layers are interconnected, like in an undirected
chain;

• Categorical: all layers are interconnected with each other, like in an
undirected clique;

• Temporal10

10 In muxViz it is available only
through the standalone library. (acyclic): like ordinal, but only in one direction;

• Temporal1111 In muxViz it is available only
through the standalone library.

(cyclic): like ordinal, but only in one direction, with the
last layer interconnected to the first one.

4. Select the input files of the data and import them.

© Springer Nature Switzerland AG 2022 
M. De Domenico, Multilayer Networks: Analysis and Visualization, https://doi.org/10.1007/978-3-030-75718-2_2
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2.2 Representing multilayer networks

In general, the mathematical representation of multilayer networks is given by
rank–4 tensors. In the previous chapter we have introduced the multilayer ad-
jacency tensor 𝑀 𝑖𝛼

𝑗𝛽
which can be thought as an hypermatrix with four indices.

The tensorial representation of multilayer networks allow to build a powerful
mathematical framework for their analysis, as we will see in the next sections
of this chapter. In practice, this object encodes the interaction strength be-
tween a node 𝑖 in layer 𝛼 and a node 𝑗 in layer 𝛽: note that relationships can
be also directed and weighted, without requiring to change the mathematical
framework [129].

The framework is still valid even if all nodes do not exist in all layers si-
multaneously: this might correspond to the case of a bus stop present where a
nearby tube station is missing in a urban multimodal transportation network,
or to an individual with an account in some social networks (e.g., Twitter) but
not in others (e.g., Facebook). From a practical point of view, the absence of
a node in a specific layer can be encoded by padding that layer with an empty
node, i.e., a node with no edges. The absence of edges is encoded by assigning
the value 0 to the corresponding entries in the multilayer adjacency tensor and,
if this is the case, one should be careful to normalize adequately the network
descriptors to account for this padding procedure [129].

Section A.5 provides details about different ways of storing information con-
tained in a multilayer adjacency tensor: depending on the complexity of the
network model it is possible to use more efficient ways to store multilayer in-
teractions. For instance, a non-interconnected multiplex/edge-colored network
does not require to store inter-layer connectivity information: this reduction
of complexity can be easily exploited to encode relationships using only three
indices, one to identify the layer and two to identify the corresponding pair of
nodes. In fact, this type of networks can be easily stored in edge lists with just
4 columns: one for the layer, two for the nodes and one for the weight of the
connection. This can be further reduced to 3 columns in case of unweighted net-
works. Non-interconnected multiplex networks can be also conveniently stored
in multiple edge lists, each one corresponding to a specific layer and consisting

Figure 2.1: Import page in
muxViz as rendered by any stan-
dard Web browser.
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of 2 or 3 columns, in the case of unweighted and weighted networks, respec-
tively.

▶ Code snippet 2.1
example_plot_edgecolored.R

More generally, multilayer networks are uniquely represented by edge lists
with 5 columns: one for the origin layer and one for the origin node, one for
the destination layer and the destination node, and one for the weight of the
connection.

There are some ways to generate plausible multilayer networks, more or less
sophisticated [238, 239], which account or not for correlations across layers. In
muxViz one can develop her own generative models or use existing generative
algorithms which falls into the class of methods where each layer is generated
independently from the others.

In Fig. 2.2 we show the result of a simple algorithm to generate three highly
correlated layers with a Barabasi-Albert topology. Figure 2.3 shows a similar
example, where the organization into multilayer communities is used instead.

▶ Code snippet 2.2
example_plot_edgecolored

_heatmap_6panels.R 2.3 Fundamental tensors

We have already encountered the first fundamental tensor, namely the mul-
tilayer adjacency tensor 𝑀 𝑖𝛼

𝑗𝛽
, in the previous chapter. This object is a

genuine tensor (see Box 2.3.1) which can be decomposed into four main tensors
(see Box 2.3.2), accounting for:

1. Intra-layer interactions: which can be further distinguished into

a. self-interactions: from a node to itself;
b. endogeneous interactions: between different nodes within the same

layer;

2. Inter-layer interactions: which can be further distinguished into

a. intertwining: from a node to its replicas in other layers;
b. exogenous interactions: between different nodes across different layers.

Box 2.3.1: The adjacency tensor of a multilayer network

In Box 1.1.2 we have shown the tensorial nature of adjacency tensors repre-
senting monoplex networks. In the same spirit, we introduce the vectors 𝑒𝛼 (𝑝)
(𝛼, 𝑝 = 1, . . . , 𝐿) of the canonical basis in the space R𝐿 , being 𝐿 the number
of layers. Note that, for sake of simplicity, here we want to make a notational
difference between components related to nodes and layers: we use Latin letters
for indices related to nodes and Greek letters for indices related to layers. Ad-

Figure 2.2: Three layers with
a Barabasi-Albert structure, con-
sisting of 100 nodes not necessar-
ily connected in all layers. Colors
encode distinct layers, while node
size encode its PageRank versatil-
ity. This type of visualization is
available only for the LIB version.

http://github.com/manlius/muxViz/tree/master/examples-scripts/example_plot_edgecolored.R
http://github.com/manlius/muxViz/tree/master/examples-scripts/example_plot_edgecolored\_heatmap_6panels.R


26 CHAPTER 2. MULTILAYER NETWORKS: OVERVIEW

Figure 2.3: as in Fig. 2.2, but
for a system with an organiza-
tion in multilayer groups (top pan-
els). Additionally, here we show
the heatmap corresponding to each
layer, to highlight the underlying
block structure. This type of visu-
alization is available only for the
LIB version.

ditionally, to indicate the 𝑝–th element of a set, like the 𝑝–th canonical vector,
we use Latin letters.
It follows that the 2nd-order tensors 𝐸𝛼

𝛽
(𝑝𝑞) = 𝑒𝛼 (𝑝)𝑒𝛽 (𝑞) represent the canon-

ical basis of the space R𝐿×𝐿 . Similarly to the case of monoplex networks, it can
be shown [129] that

𝑀𝑖𝛼
𝑗𝛽 =

𝑁∑︁
𝑎,𝑏=1

𝐿∑︁
𝑝,𝑞=1

𝑤𝑎𝑏 (𝑝𝑞)𝑒𝑖 (𝑎)𝑒 𝑗 (𝑏)𝑒𝛼 (𝑝)𝑒𝛽 (𝑞) (2.1)

defines a multilayer object in terms of the Kronecker product of canonical vec-
tors in a higher dimensional space. As in Box 1.1.2, we can show that this object
transforms like a tensor under a change of coordinates:

𝑀′𝑖𝛼
𝑗𝛽 =

𝑁∑︁
𝑎,𝑏=1

𝐿∑︁
𝑝,𝑞=1

𝑤𝑎𝑏 (𝑝𝑞)𝑄𝑖
𝑘𝑒

𝑘 (𝑎) (𝑄−1)𝑙𝑗𝑒𝑙 (𝑏)�̃�𝛼
𝛾 𝑒

𝛾 (𝑝) (�̃�−1) 𝛿𝛽 𝑒𝛿 (𝑞)

= 𝑄𝑖
𝑘�̃�

𝛼
𝛾 𝑀

𝑘𝛾

𝑙𝛿
(𝑄−1)𝑙𝑗 (�̃�−1) 𝛿𝛽 . (2.2)

Box 2.3.2: Structural SNXI decomposition of the multilayer adja-
cency tensor

It is possible to isolate four different tensors from 𝑀𝑖𝛼
𝑗𝛽

, each one corresponding
to a specific set of structural relationships. To avoid any confusion with the
tensorial object, in the following we indicate its components by 𝑚

𝑗𝛽

𝑖𝛼
(𝑖, 𝑗 =

1, 2, . . . , 𝑁 and 𝛼, 𝛽 = 1, 2, . . . , 𝐿). We use 𝛿
𝑗

𝑖
and 𝛿

𝛽
𝛼, respectively, to indicate

the Kronecker delta function for indices corresponding to nodes and layers. The
four different contributions to node–node relationships within and across layers
of the multilayer network can be summarized as

𝑚
𝑗𝛽

𝑖𝛼
= 𝑚

𝑗𝛽

𝑖𝛼
𝛿
𝛽
𝛼 𝛿

𝑗

𝑖
+𝑚

𝑗𝛽

𝑖𝛼
𝛿
𝛽
𝛼 (1 − 𝛿

𝑗

𝑖
)︸                                 ︷︷                                 ︸

intra-layer relationships

+𝑚
𝑗𝛽

𝑖𝛼
(1 − 𝛿

𝛽
𝛼) 𝛿 𝑗

𝑖
+𝑚

𝑗𝛽

𝑖𝛼
(1 − 𝛿

𝛽
𝛼) (1 − 𝛿

𝑗

𝑖
)︸                                                   ︷︷                                                   ︸

inter-layer relationships

= 𝑚𝑖𝛼
𝑖𝛼︸︷︷︸

self-relationships

+ 𝑚
𝑗𝛼

𝑖𝛼︸︷︷︸
endogenous

+ 𝑚
𝑗𝛽

𝑖𝛼︸︷︷︸
exogenous

+ 𝑚
𝑖𝛽

𝑖𝛼︸︷︷︸
intertwining

= S𝑖𝛼 (𝑀) + N 𝑗

𝑖𝛼
(𝑀) + X 𝑗𝛽

𝑖𝛼
(𝑀) + I𝛽

𝑖𝛼
(𝑀) . (2.3)

Equation (2.3) defines the “structural SNXI decomposition” of the multilayer
adjacency tensor 𝑀. Different types of multilayer networks, as the ones shown in
Fig. 1.11, arise from contributions of different SNXI components in the tensorial
representation of a multilayer network.
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Figure 2.4: Illustration of a ran-
dom walk typical multilayer net-
work. Random walks are used for a
wide variety of applications, from
modeling random searches, explo-
ration and navigability of net-
worked systems to modeling infor-
mation diffusion. Once a random
walker, i.e. an agent, is placed in
one node of a specific layer, it can
perform 4 different actions: stay in
the same node, jump to a neigh-
bor in the same layer, switch to an-
other state node or jump anywhere
else, according to its transition
rules, encoded in the correspond-
ing transition tensor (see the text
for further details). The collection
of nodes and edges visited sequen-
tially defines the walk, here rep-
resented by a dashed line. Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.

It is constructive to introduce some tensors with different rank, widely used
in the reminder of this chapter. For instance, we will use 𝑒𝑖 (𝑎) to indicate
the rank–1 canonical tensors in the space of nodes, corresponding to vectors
with dimension 𝑁 with all entries equal to 0 except for the 𝑎–th one, equal to 1.
Similarly, we define 𝑒𝛼 (𝑝) as the rank–1 canonical tensors in the space of layers,
corresponding to vectors with dimension 𝐿. Higher order canonical tensors are
obtained by the product of lower order ones. For instance, we will use 𝐸 𝑖

𝑗
(𝑎𝑏) =

𝑒𝑖 (𝑎)𝑒 𝑗 (𝑏) to indicate rank–2 canonical tensors in the space of nodes, encoding
𝑁 × 𝑁 matrices with all entries equal to 0 except for the one corresponding
to the 𝑎–th row and the 𝑏–th column, which is equal to 1. Similarly, we will
use 𝐸 𝛼

𝛽
(𝑝𝑞) = 𝑒𝛼 (𝑝)𝑒𝛽 (𝑞) to indicate rank–2 canonical tensors in the space of

layers, corresponding to 𝐿×𝐿 matrices. More generally, the multilayer canonical
tensor is a rank–4 object indicated by 𝐸 𝑖𝛼

𝑗𝛽
(𝑎𝑏; 𝑝𝑞) = 𝐸 𝑖

𝑗
(𝑎𝑏)𝐸 𝛼

𝛽
(𝑝𝑞).

Another useful battery of objects is given by the 1–tensors, which are tensors
with all components equal to 1. This is the case of 𝑢𝑖 and𝑈𝑖

𝑗
= 𝑢𝑖𝑢 𝑗 – rank–1 and

rank–2, respectively – in the space of nodes, and, similarly, 𝑢𝛼 and 𝑈𝛼
𝛽
= 𝑢𝛼𝑢𝛽

in the space of layers. The multilayer 1–tensor is 𝑈𝑖𝛼
𝑗𝛽

= 𝑈𝑖
𝑗
𝑈𝛼

𝛽
.

The Kronecker tensor is another widely used object. In the space of nodes
it is indicated by 𝛿𝑖

𝑗
and its components are equal to 1 if 𝑖 = 𝑗 and equal to 0

otherwise. Similarly, in the space of layers we make use of 𝛿𝛼
𝛽
. In the multilayer

space, this object is indicated by 𝛿𝑖𝛼
𝑗𝛽

. An important tensor, defined in terms
of the previous ones, is 𝐹𝑖𝛼

𝑗𝛽
= 𝑈𝑖𝛼

𝑗𝛽
− 𝛿𝑖𝛼

𝑗𝛽
, representing a complete multilayer

network without self-edges: this plays an important role in quantifying triadic
closure in multilayer systems.

2.4 Dynamical processes

Single dynamics (see Fig. 1.16) can be used to define a broad class of mul-
tilayer network descriptors, from centrality measures to system’s organization
in functional modules and navigability. Here, we briefly introduce one of the
simplest dynamics used for this purpose: diffusion.

Diffusive processes have been successfully used in a variety of applications,
from information spreading in socio-technical networks to the spreading of in-
fectious diseases in social systems and the synchronization dynamics of oscilla-
tors (see [145] for a recent review). In the following, we will refer to information
diffusion to indicate the spreading dynamics of an agent, being regardless if it
is a pathogen or a meme.

Multilayer networks allow information to diffuse within or across layers, by
means of intra- and inter-layer connectivity. Let 𝑋𝑖𝛼 (𝑡) indicate the state tensor

1
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4
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of replica nodes – encoding the state of the information at node 𝑖 in layer 𝛼
– at time 𝑡. In our framework, this state tensor can be imagined either as a
rectangular matrix with dimension 𝑁 ×𝐿 or as a (supra-)vector with dimension
1 × 𝑁𝐿. The equation governing the continuous dynamics of changes in this
state tensor is given by

𝑑𝑋 𝑗𝛽 (𝑡)
𝑑𝑡

= 𝑀 𝑖𝛼
𝑗𝛽𝑋𝑖𝛼 (𝑡) − 𝑀 𝑖𝛼

𝑘𝛾𝑈𝑖𝛼𝐸
𝑘𝛾 (𝑖𝛽)𝑋𝑖𝛽 (𝑡)

= −𝐿𝑖𝛼𝑗𝛽𝑋𝑖𝛼 (𝑡) , (2.4)

where 𝑈𝑖𝛼 = 𝑢𝑖𝑢𝛼, 𝐸 𝑘𝛾 (𝑖𝛽) = 𝑒𝑘 (𝑖)𝑒𝛾 (𝛽) and 𝐿𝑖𝛼
𝑗𝛽

is the multilayer Laplacian
tensor. This type of dynamics is suitable to model a continuous diffusion of
information from a node to its neighbors: for instance, like water flowing be-
tween neighbors (nodes) through pipes (edges). It has been extensively shown
that the mathematical properties of the solution of the diffusion equation, given
by 𝑋 𝑗𝛽 (𝑡) = 𝑋𝑖𝛼 (0)𝑒−𝐿

𝑖𝛼
𝑗𝛽
𝑡 , can be characterized from the analysis of the eigen-

value spectrum of the Laplacian tensor, but we refer the interested read to the
relevant literature for further details [129, 133, 158, 161].

More often, the diffusion dynamics of interest for application is discrete in
time. This is the case when information, in a single time step, can be transmit-
ted from a node to one of its replicas or its neighbors only. A canonical example
of such a process is a random walk [240, 241], corresponding to a Markovian
process on the network. Random walks are among the processes most used to
approximate more complex dynamics because of their analytical tractability.
For a thorough discussion about this topic, we refer to the recent review by
Masuda, Lambiotte and Porter [242].

In classical networks, the simplest rule for a random walk is local: a walker
can only jump from a node to another one in its close neighborhood. In multi-
layer networks, the same walker has multiple options: on the one hand it can
jump between nodes within the same layer through intra-layer edges, while on
the other hand it can switch between state nodes through inter-layer edges (see
Fig. 2.4). The combination of jumps and switches allows the walker to explore
the whole multilayer structure. The rules can be even more complicated, al-
lowing to define a broad set of network descriptors as we will see later in this
chapter. It is worth remarking here that such rules can be elegantly encoded
into a specific tensor, named multilayer transition tensor, which governs the
evolution of walk by means of a master equation [18, 129].

Let us indicate the multilayer transition tensor by P𝑖𝛼
𝑗𝛽

: this encodes the
probability that a walker located in node 𝑖 in layer 𝛼 can jump or switch to
node 𝑗 in layer 𝛽 (𝑖, 𝑗 = 1, 2, ..., 𝑁. Let 𝑝𝑖𝛼 (𝑡) denote the probability of finding
the random walker in node 𝑖 of layer 𝛼 at time 𝑡: the master equation, in
compact form and adopting Einstein summation convention, reads

𝑝 𝑗𝛽 (𝑡 + Δ𝑡) = P𝑖𝛼
𝑗𝛽 𝑝𝑖𝛼 (𝑡) , (2.5)

and gives the probability to find the random walker in node 𝑗 of layer 𝛽 at the
next time step 𝑡 +Δ𝑡. Note that, usually, Δ𝑡 = 1. It can be useful to expand this
equation to highlight the contribution of jumps and switches in the dynamics:

𝑝 𝑗𝛽 (𝑡 + Δ𝑡) = P 𝑗𝛽

𝑗𝛽
𝑝 𝑗𝛽 (𝑡)︸       ︷︷       ︸

stay

+
𝐿∑

𝛼=1
𝛼≠𝛽

P 𝑗 𝛼

𝑗𝛽
𝑝 𝑗 𝛼 (𝑡)︸             ︷︷             ︸

switch

+
𝑁∑
𝑖=1
𝑖≠ 𝑗

P𝑖𝛽

𝑗𝛽
𝑝𝑖𝛽 (𝑡)︸          ︷︷          ︸

jump

+
𝐿∑

𝛼=1
𝛼≠𝛽

𝑁∑
𝑖=1
𝑖≠ 𝑗

P𝑖𝛼
𝑗𝛽
𝑝𝑖𝛼 (𝑡)︸                 ︷︷                 ︸

switch and jump

.

The continuous-time approximation of the master equation allows one to
write it as the differential equation
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𝑑𝑝 𝑗𝛽 (𝑡)
𝑑𝑡

= −�̃�𝑖𝛼𝑗𝛽 𝑝𝑖𝛼 (𝑡) , (2.6)

where �̃�𝑖𝛼
𝑗𝛽

= 𝛿𝑖𝛼
𝑗𝛽
−P𝑖𝛼

𝑗𝛽
is known as the normalized multilayer Laplacian tensor.

The solution of this equation is formally equivalent to the one of diffusion equa-
tion, the difference being in the the Laplacian tensor defining the propagator
of the dynamics.

More complex dynamics on the top of multilayer structures can be defined
as well, but they are well beyond the scope of this book. We refer to [56, 57,
142, 143, 145, 243] for reviews and more technical details about more complex
dynamics, as well as to Box 2.4.1.

Box 2.4.1: Dynamical SNXI decomposition of the multilayer adja-
cency tensor

We have seen in Box 2.3.2 that the structure of the multilayer adjacency ten-
sor can be decomposed to highlight the contribution of four different tensors.
Similarly, a broad variety of multilayer dynamical processes can be understood
in terms of a dynamical SNXI decomposition, to describe dynamics on mul-
tilayer networks. The approach is similar in spirit to the one used by Gol-
ubitsky, Stewart and Török to model coupled cell networks [244], where the
difference is that here the structural and dynamical effects are explicitly sep-
arated. Let 𝑥

[ℓ ]
𝑖𝛼

(where ℓ ∈ {1, 2, . . . , 𝐶 }) denote the ℓ–th component of a
𝐶-dimensional vector 𝑥𝑖𝛼 that represents the state of node 𝑖 in layer 𝛼. Indicat-
ing by 𝑋 (𝑡) ≡ (𝑥11, 𝑥21, . . . , 𝑥𝑁1, 𝑥12, 𝑥22, . . . , 𝑥𝑁2, . . . , 𝑥1𝐿 , 𝑥2𝐿 , . . . , 𝑥𝑁𝐿), the
most general (and possibly nonlinear) dynamics governing the evolution of each
state is given by the systems of equations

¤𝑥𝑖𝛼 (𝑡) = 𝐹𝑖𝛼 (𝑋 (𝑡)) =
𝐿∑︁

𝛽=1

𝑁∑︁
𝑗=1

𝑓
𝑗𝛽

𝑖𝛼
(𝑋 (𝑡))

=

𝐿∑︁
𝛽=1

𝑁∑︁
𝑗=1

𝑓
𝑗𝛽

𝑖𝛼
(𝑋 (𝑡)) 𝛿𝛽

𝛼 𝛿
𝑗

𝑖
+

𝐿∑︁
𝛽=1

𝑁∑︁
𝑗=1

𝑓
𝑗𝛽

𝑖𝛼
(𝑋 (𝑡)) 𝛿𝛽

𝛼 (1 − 𝛿
𝑗

𝑖
)︸                                                                         ︷︷                                                                         ︸

intra-layer dynamics

+
𝐿∑︁

𝛽=1

𝑁∑︁
𝑗=1

𝑓
𝑗𝛽

𝑖𝛼
(𝑋 (𝑡)) (1 − 𝛿

𝛽
𝛼) 𝛿 𝑗

𝑖
+

𝐿∑︁
𝛽=1

𝑁∑︁
𝑗=1

𝑓
𝑗𝛽

𝑖𝛼
(𝑋 (𝑡)) (1 − 𝛿

𝛽
𝛼) (1 − 𝛿

𝑗

𝑖
)︸                                                                                           ︷︷                                                                                           ︸

inter-layer dynamics

= 𝑓 𝑖𝛼𝑖𝛼 (𝑋 (𝑡))︸       ︷︷       ︸
self-interaction

+
∑︁
𝑗≠𝑖

𝑓
𝑗𝛼

𝑖𝛼
(𝑋 (𝑡))︸             ︷︷             ︸

endogenous interaction

+
∑︁
𝛽≠𝛼

∑︁
𝑗≠𝑖

𝑓
𝑗𝛽

𝑖𝛼
(𝑋 (𝑡))︸                   ︷︷                   ︸

exogenous interaction

+
∑︁
𝛽≠𝛼

𝑓
𝑖𝛽

𝑖𝛼
(𝑋 (𝑡))︸             ︷︷             ︸

intertwining

= S𝑖𝛼 (𝑋 (𝑡)) + N𝑖𝛼 (𝑋 (𝑡)) + X𝑖𝛼 (𝑋 (𝑡)) + I𝑖𝛼 (𝑋 (𝑡)) , (2.7)

where the different contributions of intra-layer and inter-layer dynamics have
been decoupled. This decomposition allows to classify different dynamical pro-
cesses in terms of the corresponding dynamical SNXI components.
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O nce the connectivity of nodes and layers is appropriately encoded
in the multilayer adjacency tensor, it is possible to define a new set
of descriptors useful to characterize the multilayer structure of a sys-

tem. However, it is worth stressing the fact that naive generalizations of existing
measures can lead to quantitatively different results, often incorrect or mislead-
ing [143]. Here, we are going to describe the measures included in muxViz .

3.1 Descriptive statistics per layer

The rank–2 adjacency tensors corresponding to layers can be obtained by pro-
jecting the multilayer adjacency over adequate canonical rank–2 tensors. Let
us start with an example on problems with lower dimension.

Let 𝑣𝑖 a vector whose components provide some type of information about
nodes in a classical network: this vector has dimension 𝑁 and we are interested
in extracting the single component, i.e. a scalar, which correspond to the 𝑎–th
node. This operation of extraction is obtained by projecting the vector onto
another vector: the canonical one corresponding to the 𝑎–th node, which is
𝑒𝑖 (𝑎). The projection is an internal product and, in fact, it corresponds to
𝑣𝑖𝑒

𝑖 (𝑎).
Similarly, we can act on higher-order tensors, such as the rank–2 adjacency

matrix 𝐴𝑖
𝑗
. Let us assume that we know the 𝑏–th column, which is a vector

encoding the incoming connections from the rest of the network to node 𝑏.
Once again, we project on the corresponding canonical vector: i.e., the result
is the vector 𝐴𝑖

𝑗
𝑒 𝑗 (𝑏).

The same approach holds for even higher dimensions, such in the case of
the multilayer adjacency tensor. If we are interested in extracting the layer 𝑝,
which is now a rank–2 tensor, we need to project on the corresponding rank–2
canonical tensor: 𝑀 𝑖𝛼

𝑗𝛽
𝐸
𝛽
𝛼 (𝑝𝑝) = 𝐺𝑖

𝑗
(𝑝).

Once we obtain the rank–2 adjacency tensor of each layer, we can perform
some standard analysis of the corresponding classical networks, keeping in mind
that no multilayer effects can be discovered by using this approach. A thorough
analysis of single-layer descriptors is beyond the scope of muxViz and this book
(we refer the reader to the excellent books on network science briefly mentioned
in the introductory chapter), therefore we limit here to mention that the GUI
allows one to analyze the density distribution of:

• Nodes: the number of non-isolated nodes per layer;
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• Edges: the number of edges per layer;
• Density: the ratio between the number of edges and nodes to estimate the

average degree per layer12 12 Note that it is common to
define the density by the ratio
between the number of edges and
the maximum possible number of
edges, i.e. 𝑁 (𝑁 − 1)/2 for
undirected networks without
self-loops, 𝑁 (𝑁 − 1) for directed
networks without self-loops and
𝑁2 for directed networks where
self-loops are allowed.

;
• Components: the number of connected components per layer;
• Diameter: the size of the diameter – i.e., the longest shortest path – per

layer;
• Mean Path Length: the average path length – i.e., the sample mean of all

shortest paths – per layer.

Once the adjacency tensor of each layer is available, one can perform any
other type of analysis through the R environment and the LIB. Depending
on the data format, it can be more efficient to use an approach instead of
another one if the interest is in the single-layer analysis. For instance, if each
layer is stored in a separate file, then it is more efficient to import each layer
separately and perform the network analysis without passing through the LIB,
which instead is designed to work with multilayer network data.

3.2 Aggregate network

The aggregate network is, as per its name, an aggregate representation of a
multilayer system [129]. There are multiple ways of aggregating a multilayer
network to a single layer, each one depending on the application of interest.
There are different reasons for using aggregated networks, such as for instance
to: i) reduce the dimensionality of the system to avoid the necessity to work
with large tensors; ii) filter out noisy information.

Very often, aggregation has been used to describe with a static network
the complex structure of a system changing over time. In fact, special cases
of multilayer adjacency tensors are time-dependent (i.e., “temporal") networks
[129, 143], although analyzing this type of systems requires to be very careful
because of the presence of a privileged direction in the structural representation,
due to the arrow of time. Historically, temporal networks have been studied well
before the development of the mathematical formulation of multilayer networks
and can count on a very active community of researchers who introduced a
broad spectrum of network descriptors(see [56, 57] for a review). However,
unifying the methodologies developed for the analysis of temporal and static
multilayer networks is still a challenging problem whose solution is fundamental
to advance network science towards a consistent mathematical theory.

Whatever the reason for aggregating information, it is worth remarking here
that analyzing the aggregate network instead of the whole multilayer system can
lead to spurious and misleading results, especially when layer-layer interactions
are important and correlations can not be neglected. However, this is not always
the case and, as we will see later in this chapter, approaches to reduce the
dimensionality of multilayer networks have been proposed and, sometimes, they
suggest that the aggregate network is representative of the system.

Nevertheless, the comparison between results obtained from multilayer anal-
ysis and the analysis of the aggregate is now considered as a standard bench-
mark in the community, mostly to answer some important questions such as “is
the multilayer representation needed?” or “can I gain the same insights from a
classical analysis of layers separately or of the aggregate network?” .

The simplest operations that can be applied to obtain an aggregate network
are (Fig. 3.1):

• Sum: the rank–2 adjacency tensors corresponding to each layer are summed
up to build a new rank–2 adjacency tensor with the same dimensions (i.e.,
𝑁 × 𝑁) representing a new network where the link between nodes 𝑖 and 𝑗 is
weighted by the sum of the weights of their links across layers;
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Figure 3.1: Different aggregate
representations of the same multi-
layer network. See the text for fur-
ther details. Figure from [4] under
Creative Commons Attribution-
ShareAlike 4.0 International Li-
cense.

M
ul

til
ay

er
 N

et
w

or
k

Sum

1
2

3
4

1

1

3

3

2

4

1
2

3
4

1
2

3
4

1

1

3

3

2

4

1
2

3
4

1
2

3
4

1

1

3

3

2

4

1
2

3
4

A
gg

re
ga

te

Union Intersection

• Average: like in the previous case, but the total weight is divided by the
number of layers 𝐿, providing an average interaction strength instead of a
total one;

• Union: for each pair of nodes 𝑖 and 𝑗 a link exists in the aggregate represen-
tation if they are linked in at least one layer. In this case, it is not evident
how to deal with weighted networks and the result is often an unweighted
network;

• Intersection: like in the previous case, but considering the intersection
across layers, i.e. the link between nodes 𝑖 and 𝑗 exists in the aggregate if
and only if they are linked in all layers simultaneously.

For the analysis, muxViz in general makes use of the representation aggre-
gated by the sum, because it preserves the overall link weight. For the visu-
alization, instead, the operations corresponding to union and intersection are
available and can be useful to build better layouts to visualize the network.

The aggregate network 𝐺𝑖
𝑗

is a monoplex and, in the case of sum, it is
obtained by contracting the layer indexes of the multilayer adjacency tensor,
i.e., 𝐺𝑖

𝑗
= 𝑀 𝑖𝛼

𝑗𝛼
. This type of aggregation washes out the information about

inter-layer connectivity, i.e., the weight of inter-layer links are not accounted
for. When this information is important for the analysis of interest, it is possible
to account for inter-layer connectivity by contracting the multilayer adjacency
tensor with the rank–2 1–tensor 𝑈𝛽

𝛼, to obtain the corresponding aggregate
representation: 𝐺𝑖

𝑗
= 𝑀 𝑖𝛼

𝑗𝛽
𝑈

𝛽
𝛼.

3.3 Layer-layer correlations

The coupling between layers induces dramatic changes in the structural prop-
erties of multilayer networks. This coupling can be of different types, depending
on the presence or absence of inter-layer links, i.e., if our system is intercon-
nected or not. In the case of non-interconnected multiplex systems, many mea-
sures have been introduced to study and quantify correlations among layers
(see, for instance, Refs. [151, 152, 245, 246]). However, here we are more in-
terested in structures characterized by inter-layer connectivity, whose presence
produces several interesting structural and dynamical phenomena. In social
networks, for instance, an inter-layer link allows one to model individual’s self-
reinforcement in opinion dynamics [213]. Another interesting application is in
transportation engineering, where multimodal systems allow to model differ-
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Figure 3.2: Different measures
of layer-layer correlations for the
analysis of an empirical multilayer
social system. The data encodes
online interactions between users
in Twitter during the Conference
on Complex Systems held in Can-
cun (Mexico) in 2017. The lay-
ers encode different social actions
in the system: Reply (who replies
to an existing messages posted by
someone else), Mention (who men-
tions someone else, regardless of
the existence of a previous mes-
sage) and Retweet (who endorses
the message posted by someone
else). The three actions have dif-
ferent social meaning and it is in-
teresting to study their correlation.
Here, all the layer-layer correlation
measures available in muxViz are
used (see the text for details), with
colors encoding the strength of the
correlation (the darker the higher).
Correlation values have been used
to cluster together the layers, to
gain some insight about the hier-
archy of the social actions they en-
code.ent transportation modes serving the same geographical areas (e.g., within

a city or a whole region) and the weight of inter-layer connections can be
tuned encode the cost (e.g., economic, temporal, etc) to switching between two
modes [18, 182].

The relative importance between intra- and inter-layer connectivity deter-
mines most of the structural and dynamical properties of a multilayer network,
which can act either as system which is structurally decoupled – i.e., consist-
ing of independent entities – or as as a interdependent system. The transition
between these two regimes for general topologies is an active research field, al-
though in some cases it is possible to identify the existence of a sharp structural
change [193, 221].

In muxViz it is possible to measure the correlation between layers in several
ways, including [10, 129, 152, 247]:

▶ Code snippet 3.1
layer-layer_corr.R• Mean node overlapping: measure of the number of nodes existing simul-

taneously in a pair of layers 𝛼 and 𝛽 by

𝑜𝑛 (𝛼, 𝛽) = 𝑚 [𝑒(𝑊 𝑖
𝑗 (𝛼)), 𝑒(𝑊 𝑖

𝑗 (𝛽))]𝑢𝑖/𝑁, (3.1)

where 𝑒(·) is a function returning a vector in the space of nodes whose entries
are either 0 or 1 depending if the corresponding node exists or not in a layer,
while 𝑚(·) is a function returning the entrywise minimum of two tensors;

• Mean edge overlapping: measure of the number of relationships replicated
across a pair of layers 𝛼 and 𝛽 by

𝑜𝑒 (𝛼, 𝛽) =
2𝑈

𝑗

𝑖
𝑚 [𝑊 𝑖

𝑗
(𝛼),𝑊 𝑖

𝑗
(𝛽)]

𝑊 𝑖
𝑗
(𝛼)𝑈 𝑗

𝑖
+𝑊 𝑖

𝑗
(𝛽)𝑈 𝑗

𝑖

; (3.2)

• Inter-layer assortativity (Pearson correlation): measure the Pearson
correlation between the degree vectors of a pair of layers, i.e., the average
degree-degree correlations across layers. If 𝑘 𝑖 (𝛼) indicate the (in-, out- or
total) degree vector of layer 𝛼, then this is measured by

𝑟𝑝 (𝛼, 𝛽) =
cov[𝑘 𝑖 (𝛼), 𝑘 𝑖 (𝛽)]
𝜎[𝑘 𝑖 (𝛼)]𝜎[𝑘 𝑖 (𝛽)] , (3.3)

Layers

Layer-Layer Correlations

Node Overlapping Edge Overlapping

TT Assortativity (Pearson) TT Assortativity (Spearman)

Shortest-path distance

IO Assortativity (Spearman)

http://github.com/manlius/muxViz/tree/master/examples-scripts/layer-layer_corr.R
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Figure 3.3: Example of multi-
plex network consisting of 5 layers
with increasing edge overlapping.
Each layer consists of 100 nodes:
layer 1 is obtained from a Barabasi-
Albert model, while layers 2–5 are
obtained from reshuffling its con-
nectivity while keeping an overlap-
ping fraction of links equal to 25%,
50%, 75% and 95%, respectively.

where cov(·, ·) indicates the covariance and 𝜎(·) indicates the standard de-
viation;

• Inter-layer assortativity (Spearman correlation): same as the previous
one, but using Spearman’s 𝜌 instead of Pearson correlation1313 Let us recall here that 𝜌 is

defined as the Pearson coefficient
of the ranks rather than the value

of the variables.

;
• Inter-layer similarity (by shortest-path distance between nodes):

measure the similarity across layers of routes between nodes according to
their shortest path distance. If the entries of 𝐷𝑖

𝑗
(𝛼) indicate the shortest-path

distance between any pair of nodes in layer 𝛼, and Δ𝑖
𝑗
(𝛼, 𝛽) = 𝐷𝑖

𝑗
(𝛼) −𝐷𝑖

𝑗
(𝛽),

the measure is defined by

𝑟𝑠𝑝 =

√︃
Δ𝑖

𝑗
(𝛼, 𝛽)Δ 𝑗

𝑖
(𝛼, 𝛽). (3.4)

▶ Code snippet 3.2
example_overlapping

_generator.R

The measures based on assortativity allow for a variety of options, depending
if the network is directed or not. In fact, for while the total degree (T), the
in-coming (I) degree and the out-going (O) degree of a node does not change in
an undirected network, this is no more the case for directed relationships and,
often, might be interesting to explore layer-layer correlations by considering
different combinations, such as I–I, I–O, O–I and O–O, as well as T–T. Each
combination allows one to gain different insights about the coupling between
layers. For instance, it might be the case that hubs in one layer are usually more
peripherals in another layer, in a statistically significant way. In the case of
directed networks, such as many online social networks, it is possible to assess
the tendency of influencers on Twitter – individuals with a high number of
followers – to be influencers or not in another social network such as Instagram.
This type of analysis can reveal rich structural information about the system
and its actors. An example is shown in Fig. 3.2, where a real social system
is considered. While the correlation between pairs of layers is qualitatively the
same across measures, the case of I–O assortativity is different: interestingly,
this result is telling us that users who reply a lot to other users are more likely
to be endorsed by someone else through retweets, at least for what concerns
this specific data set.

We show in Fig. 3.3 an example of multiplex network consisting of five layers
for increasing edge overlapping between layers. The starting network is the first
layer, a Barabasi-Albert network consisting of 100 nodes: the successive layers
are obtained from reshuffling its connectivity while keeping a fixed fraction of
edges overlapping, respectively to 25%, 50%, 75% and 95%.

▶ Code snippet 3.3
example_configmodel

_generator.R

Another example concerns the generation of multilayer networks which can
be used to validate the existence of significant intra- and inter-layer correlations.
This type of models can be considered the multilayer counterpart of the well-
known configuration model used for the analysis of single-layer networks, with
the difference that here we have two classes of models:

• Type-I: generate random multilayer networks with degree sequence fixed by
the original one, destroying intra-layer correlations while keeping inter-layer
ones;

• Type-II: same as Type-I but destroying inter-layer correlations too.

http://github.com/manlius/muxViz/tree/master/examples-scripts/example_overlapping\_generator.R
http://github.com/manlius/muxViz/tree/master/examples-scripts/example_configmodel\_generator.R
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Figure 3.4: Layer-layer correla-
tions (TT assortativity, Pearson)
for multiplex networks consisting
of 100 nodes and 5 layers (right-
hand side column) and their Type-I
(left-hand side) and Type-II (mid-
dle) configuration models (CM). In
the top panels we have used the
same model considered in Fig. 3.3,
whereas in the bottom panels we
have used ER networks with the
same wiring probability 𝑝 = 0.07.
As expected, the correlation matri-
ces for the original network and its
Type-I CM are the same, whereas
the one for Type-II CM changes.

Figure 3.5: A multilayer net-
work consisting of 6 interdepen-
dent layers and its aggregated
representation showing how lay-
ers are interconnected with each
other. In the latter, the thick-
ness of the links is proportional
to the number of intra- or inter-
layer links they aggregate. Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.

Layers

Multilayer Network Network of Layers

Layers

Intra-layer
connectivity

Inter-layer
connectivity

Figure 3.4 shows the layer-layer correlations for two distinct multiplex net-
works and their corresponding multilayer configuration models. A more inter-
active analysis is available with the accompanying code snippet, where it is
possible to inspect also the values of intra-layer correlations, not only inter-
layer ones.

3.4 Network of layers

We have seen that one way to represent a multilayer network is by means of its
aggregation to a classical network, where the number of nodes is preserved and
edges are given by some rule (e.g, sum, average, union, intersection). However,
this is not the only way to aggregate multilayer networks to obtain a coarse-



3.5. MULTILAYER WALKS, TRAILS, PATHS, CYCLES AND CIRCUITS 37

grained representation of their structure. Another approach is to project the
multilayer adjacency tensor in the space of layers: in the the resulting network,
nodes corresponds to layers, edges encode inter-layer connectivity and self-loops
encode intra-layer connectivity [129] (see Fig. 3.5).

Usually, this network of layers is weighted and it might be directed if inter-
layer connectivity is directional. The result is a rank–2 adjacency tensor with
dimensions 𝐿 × 𝐿, which can be mathematically obtained by

Ψ
𝛾

𝛿
= 𝑀

𝑖𝛾

𝑗 𝛿
𝑈

𝑗

𝑖
(3.5)

3.5 Multilayer walks, trails, paths, cycles and circuits

As in classical networks, we can define some fundamental concepts related to
the exploration of a multilayer system. More specifically, let us start from the
concept of walk : it is defined as a sequence of adjacent nodes and edges visited
by a hypothetical walker, without special constraints. Figure 3.6 shows an
illustration of walk on a multilayer network. The length of the walk is generally
defined by the number of traversed edges.

For classical unweighted networks, represented by binary rank–2 tensors (i.e.,
adjacency matrices whose entries can get only two possible values: either 0 or
1), it is possible to calculate analytically the number of walks of length ℓ from a
node 𝑖 to any other node 𝑗 . If 𝑖 ≠ 𝑗 , the walk is named open, whereas in the case
𝑗 = 𝑖, the calculation gives the number of closed walks of length ℓ that node 𝑖
is part of. If we indicate with W𝑖

𝑗
(ℓ) the rank–2 tensor encoding information

about walk length between any pair of nodes in the network, it is possible to
show that

W𝑖
𝑗 (ℓ) = (𝐴𝑖

𝑗 )ℓ = 𝐴𝑖
𝑗1
𝐴

𝑗1
𝑗2
. . . 𝐴

𝑗ℓ−1
𝑗

(3.6)

i.e., information can be directly obtained by calculating the entries of the ℓ–th
power of the rank–2 adjacency tensor representing the network. If the links are
weighted, it is still possible to use the same formalism by defining the weight
of a walk as the product of the weights of the traversed links. The entries of
W𝑖

𝑗
(ℓ) will give the sum of weights of the walks of length ℓ connecting the

corresponding pair of nodes.
It is possible to use a similar approach to calculate the same information

for more complex structures such as multilayer networks. If 𝑀 𝑖𝛼
𝑗𝛽

is the rank–4
multilayer adjacency tensor representing the system, then the entries of the
ℓ–th power of this tensor provides the number of multilayer walks of length ℓ

between a node 𝑖 in layer 𝛼 and a node 𝑗 in layer 𝛽:

W𝑖𝛼
𝑗𝛽 (ℓ) = 𝑀 𝑖𝛼

𝑗1𝛽1
𝑀

𝑗1𝛽1
𝑗2𝛽2

. . . 𝑀
𝑗ℓ−1𝛽ℓ−1
𝑗𝛽

. (3.7)

This formalism turns out to be extremely useful to highlight the topological
difference between interconnected networks and their aggregated representa-
tions [129, 248]. To show this here, let 𝐺𝑖

𝑗
= 𝑀 𝑖𝛼

𝑗𝛽
𝑈

𝛽
𝛼 be the aggregate network

which accounts for inter-layer links: the corresponding rank–2 walk tensor, then

W̄𝑖
𝑗 (ℓ) = (𝐺𝑖

𝑗 )ℓ = 𝐺𝑖
𝑗1
𝐺

𝑗1
𝑗2
. . . 𝐺

𝑗ℓ−1
𝑗

= 𝑀 𝑖𝛼
𝑗1𝛽1

𝑈
𝛽1
𝛼 𝑀

𝑗1𝛽1
𝑗2𝛽2

𝑈
𝛽2
𝛽1
. . . 𝑀

𝑗ℓ−1𝛽ℓ−1
𝑗𝛽

𝑈
𝛽

𝛽ℓ−1

=

(
𝑀 𝑖𝛼

𝑗1𝛽1
𝑀

𝑗1𝛽1
𝑗2𝛽2

. . . 𝑀
𝑗ℓ−1𝛽ℓ−1
𝑗𝛽

)
︸                                ︷︷                                ︸

W𝑖𝛼
𝑗𝛽

(ℓ)

(
𝑈

𝛽1
𝛼 𝑈

𝛽2
𝛽1
. . . 𝑈

𝛽

𝛽ℓ−1

)
︸                   ︷︷                   ︸

𝑈𝛼
𝛽
𝐿ℓ−1

, (3.8)
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Figure 3.6: Different types of
walks on a multilayer network. A
multilayer walk is the most general
way to traverse nodes and links of
a multilayer system. One can ap-
ply some restrictions on the num-
ber of repeated nodes or links, as
well as the identity of origin and
destination nodes, to define special
types of walks, such as multilayer
trails, paths, cycles and circuits.
In the illustration, a sequence of
nodes and edges corresponding to
each type of walk is shown with a
dashed line, with the correspond-
ing sequence of visited nodes re-
ported in the bottom line. See
the text for further details. Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.

Walk Trail Path Cycle Circuit

4414311 443111 44111 411144 31433211

showing that the number of walks of length ℓ between two nodes in the aggre-
gate network is not a linear function of the number of walks of length ℓ between
the same pair of nodes in the multilayer network.

On can apply some restrictions to a multilayer walk, obtaining more peculiar
ways of traversing edges. For instance, one might be interested in walks where
links can be traversed only one time: this restriction on repeated links defines a
multilayer trail (Fig. 3.6). An open multilayer trail where one further applies
the restriction that repeated nodes are not allowed defines a multilayer path
(Fig. 3.6), whereas a closed trail where only the origin and destination nodes
are repeated, thus closing the walk, is named a multilayer cycle (Fig. 3.6).
If a closed trail allows for more than one repeated node, then we have a mul-
tilayer circuit (Fig. 3.6).

Shortest paths are among the most important walks in a network: they
allow to model, for instance, how information is exchanged between two nodes
by using the smallest number of hops, i.e., the least number of traversed nodes
and links. Among all the paths between two nodes in a multilayer network, the
shortest path is the shortest one and its length is traditionally used to define a
distance between nodes. This notion of geodesic distance is valid if the network
is undirected, because the triangular inequality – one of the three properties
defining a metric distance – is no more satisfied in the case of directed links14 14 Multilayer shortest paths and

descriptors depending on it are
available in the muxVizLIB but
not (yet) in the GUI.

.
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T he ability to identify nodes playing a special role in a complex system
can be crucial for a wide spectrum of applications, from anticipating
urban areas going to be congested by traffic flow to maximizing the

individuals’ engagement during marketing campaigns or devising more effec-
tive containment strategies against the spreading of infectious agent within
structured populations.

As in the case of classical networks, it is possible to define multiple notions
of node importance, influence or relevance, depending on the application of
interest. In general, there are two classes of centrality measures: the ones de-
veloped for non-interconnected multiplex systems and the ones developed for
interconnected multilayer topologies. Despite several multiplex centrality mea-
sures have been recently proposed [151, 175, 249–253], here we mostly focus
on the ones developed for the second class and included in muxViz , which are
naturally derived from their classical counterparts by exploiting the tensorial
framework [10, 129, 162, 254] and are better known as versatility measures.

▶ Code snippet 4.1
versatility_measures.R

4.1 Node centrality in multilayer networks

One might wonder to which extent the calculation of versatilities, in general
more expensive than their classical counterparts, is providing any insight with
respect to:

• calculating the same measure on each layer separately and then aggregate
the results according to some heuristics;

• calculating the same measure on the aggregate network.

The short answer is that considering the layers of coupled systems in isolation
or aggregate them to a classical network might be a provide a very poor model
of network structure and dynamics. The long answer is that in the first scenario
the way one aggregates the results might significantly alter them and, overall,
one is completely neglecting the possibly existing structural correlations which
are usually expected to play a crucial role to define the importance of each node.
In the second scenario, one washes out existing correlations and introduces
spurious paths through which information diffuses, altering the estimation of
node centrality. Moreover, aggregation might introduce a degeneration in local
structures which hinder the identification of central nodes.

An illustration is shown in Fig. 4.1, where a system consisting of scientists
(nodes) collaborating (edges) to produce a scientific paper is considered [10].
Since a scientific study is the result of several interdependent tasks, from con-
ceiving the study itself to make experiments and write the paper, each task can

© Springer Nature Switzerland AG 2022 
M. De Domenico, Multilayer Networks: Analysis and Visualization, https://doi.org/10.1007/978-3-030-75718-2_4
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http://github.com/manlius/muxViz/tree/master/examples-scripts/versatility_measures.R
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https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75718-2_4&domain=pdf
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Figure 4.1: Illustrative example
of a multiplex network of authors
contributing to a research article.
Five authors collaborate in differ-
ent tasks (e.g. “Analyzed the data”
or “Wrote the paper”) – defining
distinct layers – and are connected
by one edge if they work to the
same task. The aggregate network
is also shown: it corresponds to
a clique. Any centrality analysis
of the aggregate representation is
not meaningful, because all authors
will be central in the same way
due to the symmetry of the topol-
ogy. The analysis of layers in iso-
lation produces a ranking for each
task: the 6 different rankings must
be heuristically aggregated into a
single ranking, for instance by us-
ing a consensus rule. The result
in this case suggests all authors
have the same importance, except
Carol who is the less central one:
she contributed to two tasks in-
stead of three, as the other authors,
therefore she is under-represented
and under-ranked by the heuris-
tics. However, Carol is the only au-
thor active in the two tasks with
the largest number of active au-
thors, playing a crucial role for
the exchange of information be-
tween two non-overlapping groups
of authors: the multilayer analy-
sis, in fact, ranks Carol as the
most versatile author, in agree-
ment with expectations [10]. Fig-
ure from [4] under Creative Com-
mons Attribution-ShareAlike 4.0
International License.

be considered as a distinct layer. The specific example shows how applying a
reasonable heuristics – such as consensus – to the results obtained from each
layer separately or calculating centrality from the aggregate representation of
the system leads to misleading results. In fact, single-layer analysis misses to
identify the cross-layer role of Carol, while aggregate analysis is useless due to
the degeneration of the topology into a clique, i.e., a graph where all nodes
are connected with each other and none of them is more important than the
others.

In the following, we will refer to multilayer centrality or versatility to indicate
the same concept.

4.1.1 Multilayer degree and strength centralities

The easiest centrality to measure is the degree. As for its classical counterpart,
the multilayer degree is a local measure quantifying the number of edges inci-
dent to a node [129]. If the network is directed, we usually distinguish between
in-degree – counting edges directed to a node from its neighbors – and out-
degree – counting edges directed from a node to its neighbors. The total degree
is the sum of the two degrees when the network is directed, whereas their half-
sum is used when the network is undirected to avoid double counting edges.
The multilayer degree is usually defined in terms of operation on the multilayer
adjacency tensor: however, in general this tensor can represent weighted net-
works and to avoid ambiguity in the following definitions let us first introduce
the function B(·) which act on each entry of a tensor and returns 1 if the entry
is larger than zero, and zero otherwise. In fact, B(·) is a function that binarizes
a tensor.

There are also two more cases to distinguish, depending on wether or not
one is interested in accounting for inter-layer connectivity or not. If inter-layer
edges should not be accounted for, then the multilayer in-degree is defined by

𝑘 𝑖 = B(𝑀 𝑖𝛼
𝑗𝛼)𝑢 𝑗 = B(𝐺𝑖

𝑗 )𝑢 𝑗 , (4.1)

whereas the multilayer out-degree vector is defined by

𝑘 𝑗 = B(𝑀 𝑖𝛼
𝑗𝛼)𝑢𝑖 = B(𝐺𝑖

𝑗 )𝑢𝑖 . (4.2)

The careful reader has noticed that the difference between the two defini-
tion is based on the 1–tensor used for contracting the multilayer adjacency
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tensor: in-degree is represented by a contravariant vector, whereas out-degree
is represented by a covariant vector. The difference between the two measures
vanishes if the multilayer network is undirected and both of them coincide with
the total degree. Moreover, we have easily shown that this type of multilayer
degree coincides with the degree calculated from the corresponding binarized
aggregate network.

If inter-layer edges should be accounted for, then the multilayer in-degree is
defined by

𝐾 𝑖 = B(𝑀 𝑖𝛼
𝑗𝛽 )𝑈

𝛽
𝛼𝑢

𝑗 = B(𝐺)𝑖𝑗𝑢 𝑗 (4.3)

whereas the multilayer out-degree vector is defined by

𝐾 𝑗 = B(𝑀 𝑖𝛼
𝑗𝛽 )𝑈

𝛽
𝛼𝑢𝑖 = B(𝐺)𝑖𝑗𝑢𝑖 . (4.4)

In practice, it corresponds to first project the multilayer network into its
aggregate network, while adding self-loops to nodes existing in multiple layers.

However, in many applications the information about edge weights can be
important and another set of measures is usually used: multilayer strength cen-
tralities. The definitions are formally identical to the ones defining the degree,
where 𝑀 𝑖𝛼

𝑗𝛽
is used instead of B(𝑀 𝑖𝛼

𝑗𝛽
). If inter-layer connectivity should not be

taken into account, then multilayer in-strength and out-strength centralities
are defined by

𝑠𝑖 = 𝑀 𝑖𝛼
𝑗𝛼𝑢

𝑗 = 𝐺𝑖
𝑗𝑢

𝑗 (4.5)

𝑠 𝑗 = 𝑀
𝑖𝛼
𝑗𝛼𝑢𝑖 = 𝐺

𝑖
𝑗𝑢𝑖 , (4.6)

respectively. Conversely, if inter-layer edges should be accounted for, then the
multilayer in-strength and out-strength centralities are defined by

𝑆𝑖 = 𝑀 𝑖𝛼
𝑗𝛽𝑈

𝛽
𝛼𝑢

𝑗 = 𝐺𝑖
𝑗𝑢

𝑗 (4.7)

whereas the multilayer out-strength vector is defined by

4 x 4

1 x 16 Flattening

Figure 4.2: Flattening a 4 ×
4 rank–2 tensor into a 1 × 16
rank–1 tensor, while preserving in-
formation. Figure from [4] under
Creative Commons Attribution-
ShareAlike 4.0 International Li-
cense.

𝑆 𝑗 = 𝑀
𝑖𝛼
𝑗𝛽𝑈

𝛽
𝛼𝑢𝑖 = 𝐺

𝑖
𝑗𝑢𝑖 . (4.8)
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i

Figure 4.3: Result of flattening
a multilayer adjacency tensor 𝑀𝑖𝛼

𝑗𝛽
,

representing a system with 𝑁 = 2
nodes and 𝐿 = 4 layers into a
(𝑁𝐿) × (𝑁𝐿) supra-adjacency ma-
trix, while preserving information.
Figure from [4] under Creative
Commons Attribution-ShareAlike
4.0 International License.

In this second case, it is worth noticing that the calculation corresponds to
the one made from the corresponding aggregate network, where self-loops are
added to nodes existing in multiple layers with a weigh equal to the sum of the
corresponding inter-layer weights.

4.1.1.1 Multilayer eigenvector centrality

A widely used measure of importance in classical networks is eigenvector cen-
trality, whose calculation is based on finding the leading eigenvector 𝑣𝑖 of the
rank–2 adjacency tensor:

𝑊 𝑖
𝑗𝑣𝑖 = 𝜆𝑣 𝑗 . (4.9)

However, in the case of multilayer networks the same problem is extended to
rank-4 tensors, leading to the problem of finding the leading eigentensor from
the equation

𝑀 𝑖𝛼
𝑗𝛽𝑉𝑖𝛼 = 𝜆1𝑉 𝑗𝛽 , (4.10)

which in general is a hard problem and the solution could not be unique. One
possible largely adopted approach to solve this problem is based on matriciza-
tion – or flattening – of 𝑀 𝑖𝛼

𝑗𝛽
, corresponding to its unfolding to lower rank
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tensors [7]. In fact, we have already discussed in the previous chapter about
the result of this operation: the supra-adjacency matrix (Fig. 1.13).

The flattening can transform, for instance, a 𝑁 ×𝑁 rank–2 tensor such as 𝑊 𝑖
𝑗

into a rank–1 tensor 𝑤𝑘 with 𝑁2 components (Fig. 4.2 and 4.3). Similarly, a
rank–4 𝑁 ×𝑁 × 𝐿× 𝐿 tensor such as 𝑀 𝑖𝛼

𝑗𝛽
can be unfolded into a squared rank–2

tensor like the supra-adjacency matrix �̃� 𝑘
𝑙

with 𝑁𝐿 × 𝑁𝐿 components15 15 There are as many
representations of this flattening
as the number of permutations of
diagonal blocks of size 𝑁2, i.e., 𝐿!.
Unfolding does not alter the
spectral properties, but one
should be very careful when using
the output of algorithms.

.
The unfolded tensors can be used to solve the original eigenvalue problem

for rank–4 tensors. The corresponding leading eigenvector 𝑣𝑙 is the solution of
the equation

�̃�𝑘
𝑙 𝑣𝑘 = 𝜆1𝑣𝑙 , (4.11)

which is a supra-vector with 𝑁𝐿 components corresponding to the flattening of
the eigentensor 𝑉𝑖𝛼. This corresponds to calculate the well known Bonacich’s
eigenvector centrality of each node in each layer, while accounting for the whole
interconnected structure of the layers.

However, the solution is not always compatible with one’s expectation: in
fact, one is often interested in quantifying the centrality of each node with a
single number, rather than a whole vector. If the contribution of each layer
is equivalent, the same weight can be assigned to all layers and the overall
eigenvector versatility is simply obtained by summing up the corresponding
scores across layers as

𝑣𝑖 = 𝑉𝑖𝛼𝑢
𝛼, (4.12)

an approach validated by the calculation of the same score by means of agent-
based simulations [10].

More generally, if layers should not be considered equivalent and one can
reasonably assign different weights, a vector 𝜔𝛼 can be used instead, with 𝜔𝛼 =

𝑢𝛼 in the case of equally contributing layers. The measure is usually normalized
for practical purposes and to allow for the comparison across different networks,
for instance against results obtained from single-layer and aggregate network
analysis.

Box 4.1.1: Comparing versatility against their classical counterpart

The eigenvector centrality calculated from the 𝑝–th layer is given by

𝑣 𝑗 (𝑝) = 𝜆−1
1 (𝑝)𝐺𝑖

𝑗 (𝑝)𝑣𝑖 (𝑝)

= 𝜆−1
1 (𝑝)𝑀𝑖𝛼

𝑗𝛽𝐸
𝛽
𝛼 (𝑝𝑝)𝑣𝑖 (𝑝) . (4.13)

To obtain an overall centrality vector, an heuristics for the aggregation of results
must be used and one of the simplest choices might be to sum up over layers:

𝑣 𝑗 =

𝐿∑︁
𝑝=1

𝜆−1
1 (𝑝)𝑀𝑖𝛼

𝑗𝛽𝐸
𝛽
𝛼 (𝑝𝑝)𝑣𝑖 (𝑝)

= 𝑀𝑖𝛼
𝑗𝛽

𝐿∑︁
𝑝=1

𝜆−1
1 (𝑝)𝐸𝛽

𝛼 (𝑝𝑝)𝑣𝑖 (𝑝) (4.14)

Similarly, the eigenvector centrality obtained from the aggregate network (ac-
counting for inter-layer edges) is given by

𝑣 𝑗 = 𝜆−1
1 �̄�𝑖

𝑗𝑣𝑖

= 𝜆−1
1 𝑀𝑖𝛼

𝑗𝛽𝑢
𝛽 , 𝑉𝑖𝛼 = 𝑣𝑖𝑢𝛼 (4.15)

whereas the multilayer eigenvector centrality is obtained as

𝑣 𝑗 = 𝜆−1
1 𝑀𝑖𝛼

𝑗𝛽𝑉𝑖𝛼𝑢
𝛽 . (4.16)
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The difference between the multilayer measures and its classical counterparts
are given by

𝑣 𝑗 − 𝑣 𝑗 = 𝑀𝑖𝛼
𝑗𝛽𝑢

𝛽 [𝜆−1
1 𝑉𝑖𝛼 − 𝜆−1

1 𝑉𝑖𝛼 ], 𝑉𝑖𝛼 = 𝑣𝑖𝑢𝛼 , (4.17)

and

𝑣 𝑗 − 𝑣 𝑗 = 𝑀𝑖𝛼
𝑗𝛽 [𝜆−1

1 𝑉𝑖𝛼𝑢
𝛽 −

𝐿∑︁
𝑝=1

𝜆−1
1 (𝑝)𝐸𝛽

𝛼 (𝑝𝑝)𝑣𝑖 (𝑝) ]. (4.18)

The above formulas show that the two vectors are non-trivially related with
each other. It is possible to perform the analysis of how their difference varies
with inter-layer coupling, for instance by using eigenvalue perturbation analysis.

4.1.2 Multilayer Katz centrality

Katz originally introduced this centrality descriptor to overcome some limita-
tions of eigenvector centrality, especially in applications to directed networks.
In the context of multilayer analysis, the Katz versatility is obtained by solving
the tensorial equation [10]

Φ 𝑗𝛽 = 𝑎𝑀 𝑖𝛼
𝑗𝛽Φ𝑖𝛼 + 𝑏𝑢 𝑗𝛽 , (4.19)

given by

Φ 𝑗𝛽 = [(𝛿 − 𝑎𝑀)−1]𝑖𝛼𝑗𝛽𝑈𝑖𝛼, (4.20)

where 𝛿𝑖𝛼
𝑗𝛽

= 𝛿𝑖
𝑗
𝛿𝛼
𝛽
, 𝑎 is a constant smaller than the largest eigenvalue and 𝑏

is another constant generally equal to 1. As for the eigenvector versatility, the
Katz versatility across layers is obtained by an appropriate contraction with
the 1–tensor:

𝜙𝑖 = Φ𝑖𝛼𝑢
𝛼, (4.21)

or, more generally, with a vector 𝜔𝛼 accounting for the weight of each layer.

4.1.3 Multilayer HITS centrality

The Hyperlink-Induced Topic Search (HITS) centrality introduced by Jon
Kleinberg, in its original conception, provided a network-based approach to
rank pages of the World Wide Web, released by the European Organization
for Nuclear Research (CERN) in 1991. Like the Katz centrality, this central-
ity overcomes some limitations of the eigenvector centrality and can be safely
applied to directed networks. The method distinguishes two classes of nodes:
authorities, which are nodes pointed by hubs, which are nodes pointing many
other nodes.

The multilayer versatility corresponding to HITS centrality [10] can be ob-
tained by solving, simultaneously, the two eigenvalue problems

(𝑀𝑀⊤)𝑖𝛼𝑗𝛽Γ𝑖𝛼 = 𝜆1Γ 𝑗𝛽 (4.22)

(𝑀⊤𝑀)𝑖𝛼𝑗𝛽Υ𝑖𝛼 = 𝜆1Υ 𝑗𝛽 , (4.23)

where ⊤ denotes the transpose operator. The two solutions, Γ𝑖𝛼 and Υ𝑖𝛼, quan-
tify hub and authority versatility, respectively. As for the other eigenvector-
based versatilities previously considered, these two descriptors provide a score
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per node and per layer which are usually combined as

𝛾𝑖 = Γ𝑖𝛼𝑢
𝛼 (4.24)

𝜐𝑖 = Υ𝑖𝛼𝑢
𝛼, (4.25)

to provide a unique overall versatility vector. More generally, the contraction
can be performed with a vector 𝜔𝛼 accounting for the weight of each layer.

4.1.4 Multilayer PageRank centrality

At the end of the ’90s the problem of ranking Web pages was crucial: the
rapid growth of the World Wide Web made the search for specific information
a technological challenge, potentially solvable by ranking web pages by their
importance with respect to how information flows in the network. Two young
students enrolled in Stanford University, Sergey Brin and Larry Page, had the
great intuition to overcome limitations of eigenvector and Katz centralities by
considering a random walker which, once in a node (a Web page) can either
jump to another Web page in its neighborhood or make a teleportation any-
where in the network – even to disconnected components –, the latter action
corresponding to moving to a Web page chosen randomly with uniform proba-
bility [255]. The new algorithm, named PageRank, is one of the most powerful
method for ranking and it is the core of how Google Inc. (now Google LLC)
discovers the most relevant Web pages out of billions ones.

The natural extension of the original method to multilayer networks [10]
is based on multilayer random walks [18] (see Fig. 2.4) and accounts for the
interplay between jumping on nodes in the local neighborhood, within the same
layer, and switching layer through inter-layer edges. Other variants, based on
specific prescriptions for coupling layers when inter-layer connectivity is not
available, have been proposed [250, 251].

Here, we focus on PageRank versatility, which can be obtained as the steady-
state solution of a special Markov process on the multilayer network. Random
walkers explore the network according to a special multilayer transition tensor
and their dynamics is governed by a master equation identical to Eq. (2.6),
whose solution is formally equivalent to the leading eigenvector of the transition
tensor. In the case of interconnected multilayer networks, this tensor is given
by

𝑅𝑖𝛼
𝑗𝛽 = 𝑟𝑇 𝑖𝛼

𝑗𝛽 + (1 − 𝑟)
𝑁𝐿

𝑢𝑖𝛼𝑗𝛽 , (4.26)

with 𝑟 a constant, generally set to 0.85 like in the original Google algo-
rithm [255], 𝑁 is the number of nodes per layer and 𝐿 is the number of layers.
Here, 𝑅𝑖𝛼

𝑗𝛽
governs the dynamics of a random walk within and across layers

and might be named Google tensor. Similarly to its classical counterpart, the
tensor accounts for two different contributions: i) a transition to multilayer
neighborhood – i.e., all the nodes reachable within one time step by structural
connectivity, either intra- or inter-layer one – with rate 𝑟; ii) a teleportation
with uniform probability to any node in the system, regardless of the layer, with
rate 1− 𝑟. The PageRank versatility per node and per layer Π𝑖𝛼 is obtained by
solving the tensorial equation

𝑅𝑖𝛼
𝑗𝛽Π𝑖𝛼 = Π 𝑗𝛽 , (4.27)

which, as for the other eigenvector-based versatilities previously considered, is
usually combined as

𝜋𝑖 = Π𝑖𝛼𝑢
𝛼 (4.28)
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to provide a unique overall versatility vector. More generally, the contraction
can be performed with a vector 𝜔𝛼 accounting for the weight of each layer.

4.1.5 Multilayer 𝒌–coreness centrality

Figure 4.4: Zachary Karate Club
where nodes are colored and sized
by their 𝑘–coreness [11].

Often, it is useful to characterize the centrality of nodes by their relationship
with tightly interconnected groups acting as cores for the system. One measure
of this relationship is known as coreness [11], quantifying the centrality of nodes
because they are part of a 𝑘–core, the largest group of nodes which have at
least degree 𝑘 within the group. For instance, a node 𝑖 in a 4–core is required
to have at least four edges (ie, 𝑘𝑖 = 4) to all the nodes of that core.

Figure 4.5: K-core decompo-
sition of the large-scale social
network activity on Twitter dur-
ing the discovery of the Higgs
boson. Reproduced from Ref. [12]
under Creative Commons Attri-
bution 4.0 International License
http://creativecommons.org/
licenses/by/4.0/

The coreness of individuals in the Zachary Karate Club is shown in Fig. 4.4,
highlighting the presence of a 4–core, a 3–core and a 2–core of almost the same
size. The identification of 𝑘–cores can be important to identify, for instance,
influential spreaders in complex networks [122] – i.e., those actors who spread
information faster and more efficiently than other ones, such as hubs – or to
decompose communication networks, such as the Internet, in order to better
understand their robustness [256]. 𝐾–core decomposition is especially useful in
analysis of large-scale complex networks, because they allow for a meaningful
mapping of the underlying structure and the characterization of many salient
structural features also from visual inspection (Fig. 4.5).

In the case of multilayer networks, the concept of 𝑘–coreness is extended
to account for coreness in each layer [257]. Let 𝐾𝑖𝛼 indicate the coreness of
each node in each layer: note that, at variance with previous calculations, this
tensor is not the solution of an eigenvalue problem. For a fixed layer, e.g., layer
1, the components of 𝐾𝑖1 correspond to the coreness of all nodes in that layer,
calculated as explained above in the case of single-layer networks. The overall
coreness of a node is obtained by taking the minimum coreness across all layers,
defining the multilayer coreness versatility 𝜅𝑖.

4.1.6 Multilayer Closeness centrality
▶ Code snippet 4.2

example_plot
_edgecolored_paths.R

Often, it can be useful to quantify how each node, on average, is “close” to
all the other nodes in the network. To this aim, a distance measure must be
defined first. Historically, one of the most widely used measures of distance
between pair of nodes is the shortest path to connect them. Once a distance
measure is defined, it is possible to define a new centrality descriptor known
as closeness [258]. However, the original mathematical definition of closeness is
not suitable for general networks, as the ones with disconnected components or
isolated nodes. Tore Opshal and colleagues proposed in 2010 to define closeness
centrality [259] by▶ Code snippet 4.3

example_plot_edgecolored
_paths_coupling.R

𝑐𝑖 =

𝑁∑︁
𝑗=1

1

𝑑𝑖 𝑗
, (4.29)

where 𝑑𝑖 𝑗 is the shortest-path distance between nodes 𝑖 and 𝑗 , and 𝑑𝑖 𝑗 = ∞ if
𝑖 and 𝑗 belongs to disconnected components (see Sec. 5.1 for a description of
multilayer connected components).

Multilayer closeness versatility1616 In muxViz it is available only
through the standalone library.

is defined as its classical counterpart, where
multilayer shortest-path (see Sec. 3.5) distances are considered instead. The
value of this versatility descriptor is 0 if a node is disconnected from all other
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Figure 4.6: Correlation plot
for closeness versatility and cen-
tralities obtained from a non-
interconnected multiplex network
with 3 layers. Layer 1 consists of
three groups of size 20, 30 and
40 nodes respectively, while layers
2 and 3 are obtained from ran-
domly deleting edges from the first
layer, to keep some topological cor-
relations across the whole system.
Further, the edges are weighted
with uniformly random numbers
between 0.5 and 1, to influence
path statistics.

Figure 4.7: Left: as in Fig. 4.6, a
different visualization. Right panel:
the same setup used in Fig. 4.6
with the addition of inter-layer
connectivity with a strong weight,
to put in evidence the effects of
inter-layer coupling on path statis-
tics on correlations between the
multiplex system – which is the
only network affected by inter-layer
connectivity – and the other repre-
sentations.

nodes and can be normalized to get the value of 1 if a node is connected to all
other nodes.

For this specific case, we consider a non-interconnected multiplex network
consisting of 3 layers and calculate path statistics, including closeness, for this
system, its aggregate networks (sum and average are considered) and each layer
separately. The results of the analysis are shown in Fig. 4.6 and Fig. 4.7 (left
panel), and are fully reproducible with the provided code snippets.

From Fig. 4.6 it is clear that closeness versatility correlates with closeness
centrality calculated from the aggregated representations, whereas the correla-
tion degrades with some layers. Overall, the correlation appears to be driven
by the first layer where, in fact, anti-correlations are observed with the other
two layers.
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4.1.7 Application to fictional social networks

We show here a practical implementation of these ideas in the case of two real
multiplex networks obtained from well-known fictional societies: the Game of
Thrones (GoT) series and (part of) the Star Wars (SW) saga.

Figure 4.8: Game of Thrones
multiplex network: layered visual-
ization of the character interac-
tion network (see the text for de-
tails ), where layers encode books
of George R. R. Martin’s “A
Song of Ice and Fire” saga and
nodes are characters. Colors in-
dicate the multilayer community
membership. Figure from [4] under
Creative Commons Attribution-
ShareAlike 4.0 International Li-
cense.

The multiplex GoT is the character interaction networks built from George
R. R. Martin’s “A Song of Ice and Fire” saga. Each layer corresponds to a book
of the series, where a link connects two characters if their names (or nicknames)
appeared within 15 words of one another in one that books. The weight of the
edges corresponds to the number of interactions across the whole book.

Figure 4.9: Game of Thrones
multiplex network: layered visu-
alization as in Fig. 4.8, where
nodes with the top PageRank
versatility are highlighted. Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.

One can calculate the community structure (Fig. 4.8) as well as PageRank
versatility (Fig. 4.9) and plot the resulting non-interconnected multiplex net-
work by coloring nodes accordingly. Interestingly, the PageRank versatility
highlights that the most influential characters are Jon Snow, Tyrion Lannister,
Cersei Lannister, Daenerys Targaryen and Jaime Lannister, a result which is
mostly in agreement with the author’s personal view of the story.

With muxViz it is also possible to perform a thorough analysis to com-
pare different types of versatility descriptors against their single-layer coun-
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Figure 4.10: Game of Thrones
multiplex network: stacked visual-
ization of rankings obtained from
degree, strength and PageRank
versatility and centrality analysis,
respectively. The results obtained
from multilayer analysis can be
easily compared against the results
obtained from the aggregate and
single-layer analyses.

terparts obtained from the aggregate network and from each layer separately.
Figure 4.10 shows the results of this type of analysis in the case of degree,
strength and PageRank versatility and centralities. Remarkably, single-layer
analysis provides only a partial view of the influence of a character across the
whole saga, and the aggregate network is not always a faithful representation,
mixing cross-layer information in an uncontrollable way. It is also worth re-
marking how different measures provide different rankings: Tyrion and Cersei
Lannister are the most social characters (as measured by the degree centrality)
while Daenerys Targaryen is not even in the top 10; PageRank captures influ-
ence beyond the local neighborhood and Jon Snow becomes the most important
character, with Daenerys Targaryen jumping to the fourth position.

Similarly, one can study the character interaction network of the SW saga,
the franchise created by George Lucas. Here, layers correspond to episodes
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Figure 4.11: Star Wars mul-
tiplex network: layered visualiza-
tion of the character interaction
network (see the text for details
), where layers encode episodes
of George Lucas’ franchise and
nodes are characters. Colors in-
dicate the multilayer community
membership. Figure from [4] under
Creative Commons Attribution-
ShareAlike 4.0 International Li-
cense.

(from first to sixth, in this example), nodes are characters and links encode who
speaks to whom within the same scene of the corresponding movie transcript1717 I acknowledge the outstanding

work done by Evelina Gabasova,
who prepared the original data,

here used under Creative
Commons Attribution 4.0

International Public License. The
original data set, not in

muxViz format, is available at
https://github.com/evelinag/

StarWars-social-network/.

.
Figure 4.11 shows a layered visualization of the SW multiplex network,

where nodes are colored by community and sized by their PageRank versatil-
ity, whereas Fig. 4.12 shows the comparison among PageRank versatility and
PageRank centralities obtained from the aggregate and the single-layer analy-
sis. Remarkably, the analysis of the aggregate network suggests that R2-D2 –
a droid playing a very important role in the saga – is the most central charac-
ter: for SW fans this might sound disappointing, despite the crucial role of the
droid in many events. The multiplex analysis suggests that Anakin Skywalker
is the most influential character, with Obi Wan ranked third and other crucial
characters such as Luke Skywalker, Padme Amidala, Han Solo, Leia Organa
and Qui-Gon Jinn in the top ten.

Figure 4.12: As in Fig. 4.10
for the Star Wars multiplex net-
work, where only PageRank is
considered. Figure from [4] under
Creative Commons Attribution-
ShareAlike 4.0 International Li-
cense.

4.2 Multilayer motifs

Many complex systems consists of specific small subnetworks which are ob-
served more frequently than their counterparts in random networks. These
small subnetworks are often considered as the building blocks of complex net-
works and their analysis shed light on several structural and functional prop-
erties, from molecular interactions in biochemistry and synaptic connections in
connectomics to food webs in ecology and World Wide Web [260–263]. Motifs
involving 3 and 4 nodes are shown in Fig. 4.13 and Fig. 4.14. Motifs are able

https://github.com/evelinag/StarWars-social-network/
https://github.com/evelinag/StarWars-social-network/
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Figure 4.13: The 16 motifs that
can be built by directed connec-
tions between 3 nodes.

Figure 4.14: Sample of 32 mo-
tifs, out of 218, that can be built
by directed connections between 4
nodes.

to reveal if specific patterns, such as self-regulation, feed-forward loops, regu-
lating or regulated feedback loops, cascades, bifan, cross-regulation and others
characterize information exchange in a complex system.

(3,3)-motif(3,3)-motif(3,3)-motif (4,3)-motif(4,3)-motif(4,3)-motif

Figure 4.15: Example of mul-
tilayer motifs: 3 layers (colored
edges), 3 (left) and 4 (right)
nodes. This type of motifs is ob-
tained by composing, simultane-
ously, single-layer motifs. Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.

The analysis of motifs is, nowadays, among the most relevant ones in molecu-
lar biology, where they describe small-scale circuits responsible for information
processing and response to stimuli within a cell. However, assessing the signifi-
cance of motifs is computationally expensive, with a computational complexity
that rapidly grows with the size of the system and the size of the subnetworks
considered. Therefore, it is not surprising that this challenge has been mostly
tackled by computer scientists and bioinformaticians, who were among the first
ones to attack the problem of finding motifs in edge-colored and node-colored
networks representing biological and molecular systems [264].

In the multilayer framework, motifs might consist of directed edges from
different layers simultaneously, therefore they are usually indicated as (𝑛, 𝐿)–
motifs, where 𝑛 is the number of nodes in the subnetwork and 𝐿 the number
of layers. Figure 4.15 shows two representative examples of a (3, 3)–motif and
a (4, 3)–motif.

▶ Code snippet 4.4
multi_motifs.R

Up to date, the FANMOD algorithm developed by Sebastian Wernicke and
Florian Rasche is the fastest approach to multilayer motif analysis [264] and it
is the one used in muxViz .

4.3 Multilayer triadic closure

▶ Code snippet 4.5
example_transitivity_new.R

Of special interest in applications are those network motifs corresponding to
triadic closure, cycles of order 3 where any walk starts and ends in the same
node. From this definition, it is clear that not all 3–motifs encode triadic closure
(Fig. 4.13). The analysis of triadic closure is relevant for applications and
it has been used to explain the small-world phenomenon observed in social
and biological systems [20], as well as to understand the stability of social
interactions evolving over time [265], to mention a few representative examples.

Triadic closure is extended to multilayer networks by observing that cycles
can be closed through multilayer walks and, consequently, triangles can be

http://github.com/manlius/muxViz/tree/master/examples-scripts/multi_motifs.R
http://github.com/manlius/muxViz/tree/master/examples-scripts/example_transitivity_new.R
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Figure 4.16: Triadic closure in
a multilayer network consisting
of 3 layers. The aggregate net-
work is not able to distinguish if
the closure happens in only one
layer or because of the coupling
between multiple layers. Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.

closed either in one layer or through the coupling of multiple layers [129, 151,
248] (Fig. 4.16).

In fact, the number of triads 𝑛Δ (𝑎𝑔𝑔𝑟) in the aggregate network is mathe-
matically an upper bound to the number of unique triads 𝑛Δ (𝑠𝑖𝑛𝑔𝑙𝑒) that one
can find from each layer separately and the number 𝑛Δ (𝑚𝑢𝑥) of triads in the
multilayer network. An effective method to find multilayer triads is to first
find triads in each layer separately and in the aggregate network: triads closed
across layers are the ones which are accounted for in the aggregate network but
not in the single layers.

The random expectation can be calculated by considering an Erdös-Rényi
network with the same number of nodes and edges in each layer and in the
aggregate representation. Let 𝑝(ℓ) = 2|𝐸 | (ℓ)/(𝑁 (𝑁 − 1)) be the corresponding
wiring probability1818 This calculation assumes an

undirected network with no
multiple edges and self-loops. If

this is not the case, the definition
should be modified accordingly.

for layer ℓ: the random expectation for the number of triads
is given by

(𝑁
3

)
𝑝3 (ℓ). The same argument holds for the aggregate network, and

the results can be used to quantify the relevance of multilayer triadic closure
with respect to single-layer and aggregate triadic closure.
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O ne of the most important goals of network science, and specifically
of multilayer network analysis, is the identification of the mesoscale
organization of a system in terms of connected components (or clus-

ters) and modules (also known as groups or communities), since it provides a
coarse-graining description of the underlying network in terms of structural or
functional mesoscopic units.

5.1 Multilayer connected components

The analysis of connected components plays an important role in network sci-
ence [23, 24], because they identify clusters of nodes who are able to exchange
information. More technically, two nodes belongs to the same connected compo-
nent if there is a path between them. In the case of directed networks different
types can be considered:

• Strongly connected component: each node is reachable from any other
node in the same component or, equivalently, a directed path exists between
any pair of nodes, even when origin and destination are swapped;

• Weakly connected component: if the undirected representation of the
component is considered nodes are part of the same component. In general,
if a directed path between a pair of nodes exists, the opposite is not be true
for at least one pair.

If the size of the system is finite, the cluster consisting of the largest number
of nodes is defined largest connected component (LCC), whereas it is named
giant connected component if the network has infinite size. In general a network
can have multiple connected components, which are disjoint clusters of nodes:
if there is only one connected component then the network is defined to be
connected.

Historically, the first class of multilayer networks studied by means of con-
nected components is the one of interdependent networks [141]. In this class of
models, two systems 𝐴 and 𝐵 are interconnected with links and the potentially
functional clusters are identified by mutually connected components . If we indi-
cate by A the set of nodes in network 𝐺 (𝐴) and by B the corresponding set of
nodes in network 𝐺 (𝐵), they form a mutually connected component if: i) each
pair of nodes in A is connected by a path consisting of nodes belonging to A
and links of network 𝐺 (𝐴), and ii) each pair of nodes in B is connected by a
path consisting of nodes belonging to B and links of network 𝐺 (𝐵) [139].

In the case of other multilayer networks classes we have seen that a multilayer
path consists of a sequence of state nodes across layers. We can use the definition

© Springer Nature Switzerland AG 2022 
M. De Domenico, Multilayer Networks: Analysis and Visualization, https://doi.org/10.1007/978-3-030-75718-2_5
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Figure 5.1: Example of a mul-
tilayer network represented as an
interconnected multiplex (top-left)
and an edge-colored multigraph
(bottom-left). Multilayer con-
nected components are identified
by paths between state nodes
(see the text for details). The
right-hand side panels highlight
the nodes in the largest connected
component (top), in the largest
intersection component (middle)
and the largest viable component
(bottom). Figure from [4] under
Creative Commons Attribution-
ShareAlike 4.0 International
License.

given in Sec. 3.5 to define a multilayer connected component as a set of nodes
connected by a multilayer path [18]. As for classical networks, it is possible to
define strongly and weekly multilayer connected components if connectivity is
directed.

The above definition allows to identify the connected components of physical
nodes from the aggregate representation of the multilayer network, because it
is sufficient that two physical nodes are connected by a path to be part of the
same cluster and this property is preserved in the aggregate network.

▶ Code snippet 5.1
connected_components.R

However, more restrictive definitions are possible. For instance, one might
be interested in identifying the largest cluster in which nodes are connected
across all layers simultaneously [226]: this cluster is known as the largest in-
tersection component (LIC) and can be identified by intersection the LCC of
each layer separately. This definition provides a more restrictive selection of
nodes than the LCC. Another alternative, recently used to better understand
the emergence of continuous or abrupt percolation phase transitions even in
systems of finite size, is to aggregate the multilayer system with respect to the
intersection of edges and then identify the largest connected component of the
resulting network [230].

An even more restrictive selection is achieved by requiring that nodes are
viable, i.e., they maintain connections in every layer to other viable nodes. In
practice, the largest viable component (LVC) consists of nodes that are con-
nected by a path in each layer simultaneously [226]. As a result, all nodes in
the LVC are essential to the function of the system and to define its struc-
tural core [257, 266, 267]. The more restrictive condition imposed by the LVC
is responsible for a hybrid phase transition which leads to the discontinuous
emergence of the giant viable cluster, at variance with ordinary percolation
where a continuous phase transition is observed [226].

Clearly, the size of the LVC is equal or smaller than the size of the LIC,
which in turn is equal or smaller than the size of LCC (FIg. 5.1), all of them
providing different and complementary information about the structure of a
multilayer network.

Another emblematic example of the the versatility offered by multilayer mod-
eling is given by the integration of social and ecological data to analyze the be-
havior of socio-ecological systems. It has been recently proposed to use layers

Largest Viable Component

Largest Intersection Component

Largest Connected Component

Inside the component

Outside the component

Outside the component

Layered representation

Edge-colored representation

Path

Origin

Destination

Origin

Destination

http://github.com/manlius/muxViz/tree/master/examples-scripts/connected_components.R
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Figure 5.2: Analysis of the vul-
nerability of socio-ecological net-
works to plausible scenarios of
change. Top left: study areas in
northern Alaska. Bottom Left:
Robustness of the multilayer net-
work of the three communities
(band) to random and targeted
perturbations. Bottom right: Ex-
pected vulnerability of the three
communities to the targeted and
random removal due to social shift
(SS), resource depletion (RD), ter-
restrial resource depletion (TRD)
and riverine resource depletion
(RRD), as well as key households
(HHL). Reproduced from Ref. [8]

Figure 5.3: Community detection
on classical networks using the In-
fomap algorithm. (a) The trajec-
tory of a random walk on a net-
work is shown with a solid line. (b)
The trajectory can be efficiently
described by encoding each node
with a codeword – a string defined
by a sequence of zeros and ones
(bits), e.g., 01011 – of the Huff-
man codebook shown in the panel.
For instance, if the walker starts
from the node in the upper left cor-
ner, the corresponding string will
start with 1111100, and if the sec-
ond visited node is the neighbor
on the right-hand side, 1100 is
added. The whole trajectory in (a)
is described by the 314 bits shown
in the bottom of the panel. (c)
When the partition encoded by col-
ors is used to describe the ran-
dom walk dynamics, the trajec-
tory encoded by the corresponding
codebook is described, on average,
by 32% less information, because
the walk within each group in this
partition is more persistent over
time and less bits are required for
its description. (d) This knowledge
can be used to effectively and effi-
ciently coarse-graining the network
into functional modules. Image re-
produced with permission from
Ref. [13], Copyright (2008) Na-
tional Academy of Sciences, U.S.A.
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to encode the unique combinations of ecological resources and social relations,
with the aim of representing community networks [8]. A direct application to
three small geographically isolated communities in Alaska, revealed surpris-
ing results. The study involved two coastal Iñupiat communities, Wainwright
(553 people) and Kaktovik (239 people), whose subsistence depends on bow-
head, beluga, caribou, and other marine and terrestrial species, and one inte-
rior Athabascan Gwich?in community, Venetie (166 people), whose subsistence
centers on moose, caribou, salmon, and other riverine and terrestrial species.
In fact, those communities are exposed to several disturbances caused by ex-
treme climate change and industrial development. Despite their vulnerability
to resource depletion, multilayer analysis (Fig. 5.2) surprisingly revealed that
robustness is mostly undermined by the loss of key households and the erosion
of cultural ties linked to sharing and cooperative social relations [8].

5.2 Multilayer communities and modules

One of the most important problems in network analysis is the identification of
groups of nodes with a special role for the structure or the function of a system.
In fact, many empirical systems represented by classical networks are well or-
ganized into clusters (or modules or groups or communities, all terms that are
used in different disciplines to refer to the same concept). It has been extensively
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Figure 5.4: A schematic illus-
tration of how data from com-
plex systems is processed using
(a) conventional approaches – of-
ten reducing data into unweighted
and undirected networks – and
(b) higher-order approaches based
on flow modeling. Besides being
more accurate, the second class
of methods allows for the detec-
tion of richer functional informa-
tion than standard approaches. Im-
age reproduced with permission
from Ref. [14].

shown that social and biological networks are characterized by this mesoscale
organization with important structural and functional meaning [71, 84] quan-
tified by their modularity. Historically, the first methods for community detec-
tion have been developed in social science and were based on the assumption
that groups and their inter-group connectivity can be modeled by stochastic
blocks [268–270], an hypothesis extensively adopted also in computer science
for machine learning [271–274]. Among the other methods proposed by net-
work scientists, there are the ones based on exploiting how information flows
and is trapped within and between modules [85, 88] or how its compression
from an information-theoretic perspective can be used to identify functional
modules [13, 86, 275]. Even a brief description of all other methods available
in the literature would be well beyond the scope of this book, therefore we
refer the interested reader to the thorough reviews by the outstanding network
scientists who played, with others, a central role for the development of this
field [55, 60, 276].

In this section, instead, we describe multilayer community detection. Several
methods have been proposed to cope with the additional level of complexity
introduced, for instance, by multiplexity of units and their interactions. Chrono-
logically, one of the pioneering work on this topic has been published by Mucha
et al [87], who introduced multi-slice modularity maximization – generalizing
the modularity function [74] widely used for community detection in classical
networks – for applications to interconnected multiplex and temporal networks,
later improved [277, 278]. A different method, based on tensor factorization,
has been introduced for the analysis of time-varying systems and applied in
the context of contact networks [279]. Generative models rooted on statistical
physics and Bayesian inference have been introduced more recently [238, 280] to
generalize another traditional approach – widely used in social science and com-
puter science – based on stochastic block models [268, 269]. Studies have shown
the enhanced detectability of community structure in multilayer networks when
layers are aggregated [281], for instance, by summation, highlighting the possi-
bility to uncover otherwise hidden communities by combining layer aggregation
with thresholding techniques [282].

Here, we focus our attention on another method, based on the analy-
sis of random walk dynamics on the top of the network from the perspec-
tive of information theory, named Infomap [13]. A schematic illustration
of how Infomapworks19

19 An interactive app is available
at the URL
http://www.mapequation.org/
apps/MapDemo.html#applet

is given in Fig. 5.3. Its generalization, known as
MultiplexInfomap 20 20 An interactive app is available

at the URL
http://www.mapequation.org/
apps/sparse-memory-network/
index.html

and distributed with muxViz , has been recently in-
troduced [15] and better understood within the framework of higher-order flow
modeling [14, 283–285] (Fig. 5.4).

As its classical counterpart, MultiplexInfomap is based on the com-
pression of network flow modeled through random walk dynamics: the flow is
compressed when regular structures – i.e., functional multilayer modules – are
present, and the procedure is mathematically described by the map equation21 21 http://www.mapequation.org/.
The generalization is natural, because the same information-theoretic machin-
ery is applied to the non-Markovian flow characterizing higher-order models
with memory, with the memory of the present layer playing a role similar to
memory due to previous steps. In this framework, a multilayer community iden-
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tifies a group of nodes persistently capturing network flows within and across
layers (Fig. 5.5).

In practice, a random walk dynamics with specific properties is defined:
jumping between nodes within the same layer is Markovian, whereas switching
across layers is non-Markovian. The dynamics of random walks in this context
is described, with some detail, in Box 5.2.1.Figure 5.6 shows the typical result
of a mesoscale analysis2222 Note that the version of

InfoMap assumed in the LIB is
the latest one available and it is
different from the one included

with the GUI, which is based on
an older version.

.

Box 5.2.1: Transition tensors used in MultiplexInfomap

In the case of multilayer networks where layers are structurally coupled, the
entries of the rank–4 transition tensor governing the random walk are defined

Figure 5.5: Higher-order flow dy-
namics on a multilayer network
consisting of three layers and four
physical nodes. (a) Structural rep-
resentation of the system. (b) The
trajectory of a random walker on
the multilayer network, jumping
and switching between state nodes,
while its dynamics through phys-
ical nodes is recorded. (c) The
system represented in terms of
the network induced by its state
nodes (encoded by colors); state
nodes exist within the correspond-
ing physical nodes (encoded in
black). (d) The same trajectory
shown in (c) but in the state-node
representation, where only the se-
quence of visited physical nodes is
recorded. Image reproduced with
permission from Ref. [15].
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Figure 5.6: Multilayer commu-
nity detection with regular (top
panels) and hard (bottom panels)
partitions for the whole multilayer
network and its aggregate repre-
sentation.
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by

P𝛼𝛽

𝑖 𝑗
=

𝐷
𝛼𝛽

(𝑖)

𝑆
(𝛼)
𝑖

𝑊
(𝛽)
𝑖 𝑗

𝑠
(𝛽)
𝑖

. (5.1)

Let us remark here that the above equation is not tensorial: this definition is
chosen for its readability and easy interpretability. In fact, 𝑊 (𝛽)

𝑖 𝑗
indicates the

intra-layer adjacency matrix of layer 𝛽 and 𝑠
(𝛽)
𝑖

=
𝑁∑
𝑗=1

𝑊
(𝛽)
𝑖 𝑗

is the out-strength of

node 𝑖 in that layer, while 𝐷
𝛼𝛽

(𝑖) indicates the adjacency matrix of inter-layer links

between any pair of layers from the perspective of node 𝑖 and 𝑆
(𝛼)
𝑖

=
𝐿∑

𝛽=1
𝐷

𝛼𝛽

(𝑖) is

the corresponding inter-layer out-strength [18]. Therefore, the probability of a
transition is given by the product of two independent transition probabilities:
i) the one of changing layer from 𝛼 to 𝛽 and ii) the one to jump from node 𝑖 to
node 𝑗 once in layer 𝛽.
However, when information about inter-layer connectivity is missing or the sys-
tem is represented by a non-interconnected multiplex network, the switching
probability would be undefined. For this reason it is useful to model the dy-
namics across layers by means of a random walker which, with a probability 𝑟

named relax rate, is forced to change layer by switching through replica nodes.
Consequently, with probability 1 − 𝑟 the random walker jumps between nodes
belonging to the same layer. Therefore, the entries of the rank–4 transition
tensor in this case are defined by

P𝛼𝛽

𝑖 𝑗
(𝑟) = (1 − 𝑟) 𝛿𝛼𝛽

𝑊
(𝛽)
𝑖 𝑗

𝑠
(𝛽)
𝑖

+ 𝑟
𝑊

(𝛽)
𝑖 𝑗

𝑆𝑖
, (5.2)

with 𝑆𝑖 =
𝐿∑

𝛽=1
𝑠
(𝛽)
𝑖

the overall out-strength of node 𝑖 and 𝛿𝛼𝛽 the Kronecker delta.

Note that Eq. (5.1) and Eq. (5.2) are equivalent if 𝐷
𝛼𝛽

(𝑖) = (1 − 𝑟) 𝛿𝛼𝛽𝑆𝑖 + 𝑟𝑠
(𝛽)
𝑖

and 𝑆
(𝛼)
𝑖

=
𝐿∑

𝛽=1
𝑠
(𝛽)
𝑖

. We refer the interested reader to Ref. [15] for further details

about the properties of relaxed dynamics.
It is worth remarking that the relax rate 𝑟 is a parameter: changes in the
mesoscale organization, such as community splitting and merging, are expected
for varying 𝑟 . An information-theoretic method to identify the value of the
relax rate for which the corresponding mesoscale structure is the most repre-
sentative has been recently proposed [16]. The method is based on an indepen-
dent cost function known as normalized information loss , corresponding to the
log-likelihood of a stochastic block model. For a specific relax rate 𝑟 , this cost
function is defined by

𝐻𝑟 (𝑋 |𝑌 ) = log2

[
𝑚∏
𝑖=1

𝑚∏
𝑗=1

(
𝑛𝑖𝑛 𝑗

𝑙𝑖 𝑗

) (
𝑤𝑖 𝑗 − 1

𝑙𝑖 𝑗 − 1

)]
, (5.3)

being 𝑛𝑖 the number of nodes in cluster 𝑖, 𝑙𝑖 𝑗 and 𝑤𝑖 𝑗 indicating, respectively,
the number of links and the total weight of links between clusters 𝑖 and 𝑗. The
normalized version of the cost function is used for practical purposes:

𝐻∗
𝑟 (𝑋 |𝑌 ) =

𝐻𝑟 (𝑋 |𝑌 ) − min
0<𝑟≤1

𝐻𝑟 (𝑋 |𝑌 )

max
0<𝑟≤1

𝐻𝑟 (𝑋 |𝑌 ) − min
0<𝑟≤1

𝐻𝑟 (𝑋 |𝑌 ) . (5.4)

It can be shown that, by minimizing the normalized information loss, it is
possible to learn the latent block structure in presence of real-valued weights
through the use of a parametric distribution, as shown in [286], and the optimal
compression of the system is achieved.

▶ Code snippet 5.2
community_detection.R

To better understand how to use MultiplexInfomap with the normalized
information loss (NIL) to select the most representative partition of the system,
we consider four distinct duplex networks (Fig. 5.7) and show how the number
of identified communities and NIL change with the relax rate (Fig. 5.7). Results
show that there exist a type of critical threshold 𝑟𝑡ℎ𝑟 above which information

http://github.com/manlius/muxViz/tree/master/examples-scripts/community_detection.R
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Figure 5.7: Top: Two layers
of distinct duplex networks, rep-
resented as graphs (top panels)
and adjacency matrices (bottom
panels). 128 nodes with a com-
munity structure (Lancichinetti-
Fortunato-Radicchi model) in layer
1 are coupled to (a) topological
noise (Erdős-Rényi model) or a
LFR network with 10% (b) and
50% (c) of nodes belonging to over-
lapping communities. In (d) the
complementary network (cLFR) is
considered. Figure from [16]. Bot-
tom: Number of communities (a)
and normalized information loss
(b) versus the relax rate 𝑟 for the
same multiplex networks. Figure
from [16]

Figure 5.8: Community
structure (obtained from
MultiplexInfomap ) of the
human multiplex proteome for
increasing values of relax rate 𝑟 .
Only modules with more than 100
proteins are shown: the visualiza-
tion provides insights about how
modules split and merge versus 𝑟 .
Figure from [16].

loss becomes non-negligible: until the onset of such a transition one can safely
assume that the found partitioning is representative of the system and choose
the corresponding value of the relax rate.

As a direct application of these ideas to empirical systems, let us consider the
human interactome where nodes are proteins, links encode their interactions
and layers represent different types of interactions (such as physical, chemical
and genetic). When MultiplexInfomap is applied, one has to choose a spe-
cific value of the relax rate or, alternatively, scan over different values of this
parameter to see how the resulting mesoscale organization changes accordingly.

The result of the latter approach is shown in Fig. 5.8, where it is possible to
get a visual understanding about the reorganization of the largest groups for
increasing relax rate. Fig. 5.9 shows the distribution of clusters size for distinct
values of the relax rate, to gain insights about how smaller groups merge into
larger ones for increasing 𝑟.

Figure 5.9: Same analysis of
Fig. 5.8, to show the distribution
of clusters? size versus 𝑟 . When the
relax rate increases the number of
very small clusters decreases. Fig-
ure from [16].

Remarkably, when one considers the partition obtained for the optimal value
of the relax given by the NIL it has been shown that the corresponding func-
tional content – from a biological perspective – is the highest. This analysis,
based on standard enrichment through the Molecular Signatures Database1

1http://software.broadinstitute.org/gsea/msigdb/collections.jsp

http://software.broadinstitute.org/gsea/msigdb/collections.jsp
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(MSigDB), highlights how this method is suitable to gain insights about com-
plex multilayer biological systems.

5.3 Clustering and reducing multilayer structures

Multilayer networks are powerful tools for modeling empirical complex systems
and integrating different sources of information although, in general, it should
be common practice to ask whether or not the multilayer representation is the
most suitable representation for the network under investigation. In fact, there
is mathematical evidence that the layers of interconnected multiplex systems,
for instance, under certain conditions can be analyzed in isolation [193]. The
analysis of the structural and dynamical properties of many empirical systems
suggests that disentangling relationships in social networks [248, 287–289], eco-
logical systems [9, 154–156], transportation systems [18, 290], molecular net-
works [16, 291–294] and human brain [146, 295–300], is often desirable.

Figure 5.10: Partitions of 5
elements into 52 different groups.
Reproduced from Wikipedia
under Creative Commons At-
tribution 3.0 Unported License
https://creativecommons.org/
licenses/by/3.0/

Therefore, for modeling and analytical purposes it is useful to devise a strat-
egy to understand to which extent the multilayer representation is needed or if
single-layer or aggregate representations are valuable alternatives. For instance,
consider the extremal case of a multiplex system with identical layers: it would
be desirable to aggregate structurally redundant layers according to a reduction
strategy. In fact, redundancy, quantified in terms of overlapping edges, is very
common [150, 153]. We wonder if it is possible to account for more complex
redundant topological patterns, not necessarily the one based on edge over-
lapping, and if a procedure preserving relevant topological information while
aggregating redundancies exists. Such a procedure has been formulated for the
first time in 2015, it is known as structural reducibility [301] (see Fig. 5.12)
and consists of a few fundamental steps:

1. Identify layers which are similar according to specific criteria;
2. Devise a strategy to aggregate layers together:
3. Control the procedure by means of a cost function which penalizes the ag-

gregation of structurally different layers and favors the aggregation of layers
characterized by topological redundancy.
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Figure 5.11: The number of par-
titions scales super-exponentially
and it is known as the Bell num-
ber. Exhaustive searches on multi-
layer networks consisting of more
than 10 layers are computationally
prohibitive.

More recently, a procedure for functional reducibility has been proposed:
formally, it is based on the same steps described above while variations apply
to the criteria for aggregating layers and calculating entropies (see Fig. 6.2).

Step 1. requires to define a (dis)similarity measure between any pair of layers.
This task can be achieved by using a distance measure: if two layers are distant
they are also dissimilar, otherwise they are similar and good candidates to
be aggregated without loss of information. In the original approach [301], the
quantum Jensen-Shannon divergence has been used (see Box 5.3.1 and Box 5.3.2
for details).

Box 5.3.1: Information entropy of a complex network

Defining and calculating the information entropy of a complex network is, in
general, a difficult task. Many approaches are based on extracting specific de-
scriptors – e.g., degree – and their (possibly joint) probability distribution and
calculating its Shannon entropy. However, this type of approaches only consid-
ers a few descriptors, providing a limited knowledge of the underlying network
and, consequently, a biased estimation of its information entropy.
An alternative, proposed in 2009 [302], is based on encoding network’s structural
information in a new operator 𝜌𝑖

𝑗
= 𝐿𝑖

𝑗
/2𝐸 – named density matrix, because it

shares the same properties of the well known operator in Quantum Mechanics,
where 𝐿𝑖

𝑗
is the combinatorial Laplacian matrix of the network and 2𝐸 encodes

the total number of edges – and calculate the Von Neumann entropy as

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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𝑆 (𝜌) = −Tr(𝜌𝑖𝑗 log2𝜌
𝑗

𝑘
) = −

𝑁∑︁
𝑖=1

𝜆𝑖log2𝜆𝑖 bits, (5.5)

where 𝜆𝑖 is the 𝑖–th eigenvalue of the density matrix and Tr is the trace operator.
This can be generalized to the case of interconnected multilayer systems [129].
More recently, it has been shown that a more suitable definition for the density
matrix is given by

𝜌𝑖𝑗 =
𝑒
−𝜏𝐿𝑖

𝑗

𝑍𝜏

, 𝑍𝜏 = Tr(𝑒−𝜏𝐿
𝑖
𝑗 ) =

𝑁∑︁
𝑖=1

𝑒−𝜆𝑖 𝜏 , (5.6)

which encodes information entropy in terms of a network discovery process
based on diffusion [303], the parameter 𝜏 playing the same role of a Markov
time.
It has been suggested [301] to define the entropy 𝑆mux of a multilayer systems
in terms of the entropies 𝑆ℓ (ℓ = 1, 2, ..., 𝐿) of each layer in isolation as

𝑆mux =
1

𝐿

𝐿∑︁
ℓ=1

𝑆𝛼 (𝜌𝛼) , (5.7)

corresponding to the average entropy of layers. More recently, it has been show
that this entropy is not suitable to describe the information content of multilayer
systems characterized by strong correlations among layers and a more adequate
definition must be used instead [17] .

Box 5.3.2: Distance between complex networks

Von Neumann entropy and the formalism inspired by quantum computing can
be used to define the quantum Jensen-Shannon divergence between two net-
works consisting of the same number of nodes. This quantity is the generaliza-
tion of the well known Jensen-Shannon divergence widely adopted in informa-
tion theory, because it is symmetric and allows for the definition of a metric
distance, at variance with the Kullback-Leibler divergence. Given two networks
– for instance, the ones corresponding to two distinct layers of a multilayer
system – with density matrices 𝜌𝑖

𝑗
and 𝜎𝑖

𝑗
, respectively, their network Jensen-

Shannon divergence [301] is quantified by

D𝐽𝑆 (𝜌 | |𝜎) = 𝑆

( 𝜌 + 𝜎

2

)
− 𝑆 (𝜌) + 𝑆 (𝜎)

2
bits, (5.8)

whereas the Jensen-Shannon distance is given by

𝑑𝐽𝑆 (𝜌, 𝜎) =
√︁
D𝐽𝑆 (𝜌 | |𝜎) , (5.9)

which is minimum (i.e., 𝑑𝐽𝑆 = 0) when the knowledge of one network is sufficient
to gain maximum information about the other one – or, equivalently, the two
networks are perfectly identical – and maximum (𝑑𝐽𝑆 = 1) otherwise. Remark-
ably, this metric can be used to compare all pairs of layers in a multilayer system
to build a distance map that can be used, for instance, to cluster layers hier-
archically [301, 303] into communities. The same metric has been also used to
compare an empirical system against multiple network models with the purpose
of fitting the corresponding parameters and perform model selection [303].

Step 2. is far from being trivial. In fact, from an algorithmic perspective, one
should compare all possible aggregations of layers in groups of any size, estimate
the redundancy and decide which combination of layers preserves most of the
original information. However, considering all possible aggregations requires
is computationally expensive, since the possible number of groups out of 𝐿
layers is given by the Bell number, which scales super-exponentially with 𝐿

(see Fig. 5.10 and 5.11). In fact, a good greedy strategy is to map layer-layer
similarities into pairwise distances and use the resulting distance matrix to
perform a hierarchical clustering of layers. Closest layers in the hierarchy are
the most likely candidates for the aggregation, resulting in at most 𝐿−1 possible
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Figure 5.12: Schematic illustra-
tion of structural reducibility anal-
ysis of a multilayer network con-
sisting of 𝐿 = 10 layers with
redundant information (here en-
coded by repeated colors). Layers
are hierarchically clustered accord-
ing to their Jensen-Shannon dis-
tance. The clustering is used for
consecutive aggregations of clos-
est layers and the cost function
increases because, in this exam-
ple, no information is loss at each
step. The process continues un-
til the optimal configuration is
reached, i.e., when only 𝐿′ = 3 non-
redundant layers are found. Figure
from [4] under Creative Commons
Attribution-ShareAlike 4.0 Inter-
national License.
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calculations. The aggregation by sum is usually used, but other methods are
possible.

Step 3. is required to understand where to stop aggregating. This is achieved
by introducing the cost function

𝑞(𝑚) = 1 − 𝑆mux (𝑚)
𝑆agg

, (5.10)

where 𝑚 = 0, 1, 2, ..., 𝐿−1 is an index encoding the number of aggregated layers
(𝑚 = 0 corresponds to the whole multilayer network), 𝑆mux (𝑚) is the entropy
of the system at step 𝑚 and 𝑆agg is the entropy of the fully aggregate network.
Since 𝑆mux (𝑚) ≤ 𝑆agg for any 𝑚, the cost function is bounded within [0, 1],
and it can be shown that it reaches a maximum value if and only if the mul-
tilayer network is distinguishable from its full aggregation, i.e., the system is
characterized by structurally redundant layers [301].

▶ Code snippet 5.3
structural_reducibility.R

If the network can be
fully aggregated, the cost function is expected to monotonically decrease for
increasing 𝑚. In fact, aggregations that alter the information content of the un-
derlying topology are disfavored, whereas this is not the case when topologically
redundant layers are aggregated.

http://github.com/manlius/muxViz/tree/master/examples-scripts/structural_reducibility.R
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I n this chapter we briefly mention some dynamical processes defined on
the top of multilayer networks, which are relevant to get insights about
how easy it is to navigate a complex structure and how to obtain func-

tionally reduced representation of a multilayer system. While the topics briefly
discussed in this chapter are not exhaustive, and many others will be added
in future editions of this book, they are available in muxViz or can be easily
implemented.

6.1 Navigability of multilayer systems

In practical applications, from efficient routing of information to fast explo-
ration of a neighborhood, it is often useful to quantify how much a network
is navigable [304, 305]. To this aim, it is possible to exploit random walks to
define the coverage 𝜌(𝑡) of a system, i.e., the average fraction of nodes visited
at least once within a certain time 𝑡. In the case of multilayer networks, a phys-
ical node is considered as visited if among its state nodes at least one has been
visited by walkers [18].

The evolution of the coverage provides useful information about the navi-
gability of the system at different temporal scales. In fact, let 𝑝𝑖𝛼 (𝑡) be the
vector1 encoding the probability to find a random walker in a node 𝑖 of layer
𝛼 and let 𝑝𝑖 (𝑡) = 𝑝𝑖𝛼 (𝑡)𝑢𝛼 indicate the probability to find a random walker in
node 𝑖 at time 𝑡 regardless of its origin and of the layer where the observation
is taken. The master equation is clearly

𝑝𝑖𝛼 (𝑡 + 1) = 𝑝𝑖𝛼 (𝑡)P𝑖𝛼
𝑗𝛽 , (6.1)

The scalar probability to find the walker in node 𝑎 at time 𝑡 + 1, regardless is
given by the projection 𝑝(𝑡 + 1; 𝑎) = 𝑝𝑖𝛼 (𝑡 + 1)𝑒𝑖 (𝑎)𝑢𝛼.▶ Code snippet 6.1

example_coverage.R By assuming that the random walker originated in node 𝑏, let 𝜎(𝑡; 𝑏 → 𝑎)
indicate the probability to not find the walker in node 𝑎 after 𝑡 time steps. It
is possible to show [18] that the equation

1Formally this is not a vector but can be flattened to a supra-vector and, with
the abuse of notation discussed in the previous chapters, the (𝑖, 𝛼)–th entry of this
supra-vector corresponds to the probability of finding the walker in node 𝑖 of layer 𝛼.

© Springer Nature Switzerland AG 2022 
M. De Domenico, Multilayer Networks: Analysis and Visualization, https://doi.org/10.1007/978-3-030-75718-2_6
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Figure 6.2: Schematic illustra-
tion comparing structural against
functional reduction of a multilayer
network consisting of 𝐿 = 4 lay-
ers. The procedure is similar for
both approaches, but the relevant
difference is that while structural
reducibility alters the topology of
the system, the function reducibil-
ity allows to functionally coupling
layers without altering their struc-
ture. Figure from [17].
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𝜎(𝑡 + 1; 𝑏 → 𝑎) = 𝜎(𝑡; 𝑏 → 𝑎) [1 − 𝑝(𝑡 + 1; 𝑎)] (6.2)

is satisfied, provided that 𝜎(0; 𝑏 → 𝑎) = 1 − 𝛿(𝑎, 𝑏), where 𝛿(𝑎, 𝑏) is the Kro-
necker function. Therefore 𝜎(0; 𝑏 → 𝑎) = 1 if origin and destination do not
coincide, and it is zero otherwise, since a walk starting at node 𝑏 cannot be
at the same time at node 𝑎 unless 𝑏 = 𝑎. The solution of the above recursive
equation is given by

𝜎(𝑡; 𝑏 → 𝑎) = 𝜎(0; 𝑏 → 𝑎) exp
[
−𝑒𝑖 (𝑏)𝑒𝛼 (1)P𝑖𝛼𝑗𝛽 (𝑡)𝑒 𝑗 (𝑎)𝑢𝛽

]
, P𝑖𝛼𝑗𝛽 (𝑡) =

𝑡∑︁
𝜏=0

(P𝜏+1)𝑖𝛼𝑗𝛽 ,

(6.3)
where, without loss of generality, the factors 𝑒𝑖 (𝑏)𝑒𝛼 (1) account for the as-
sumption that the walker started in node 𝑏 and in the first layer2 at time 𝑡 = 0.
The tensor P𝑖𝛼

𝑗𝛽
(𝑡) encodes the probability to reach each node through any path

of length 1, 2, . . . , 𝑡 + 1.
The evolution of network coverage can be approximated with remarkable

accuracy by double averaging over all nodes the probability 1 − 𝜎(𝑡; 𝑏 → 𝑎):

𝜌(𝑡) = 1 − 1

𝑁2

𝑁∑︁
𝑎,𝑏=1
𝑎≠𝑏

exp
[
−𝑒𝑖 (𝑏)𝑒𝛼 (1)P𝑖𝛼𝑗𝛽 (𝑡)𝑒 𝑗 (𝑎)𝑢𝛽

]
. (6.4)
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Figure 6.1: Evolution of the cov-
erage of a multilayer system con-
sisting of 3 layers and 100 nodes.
Different layers are characterized
by different combination of topolo-
gies: Barabasi-Albert (BA) and
Erdös-Rényi (ER). Different mod-
els are used: from top to bottom,
respectively, the coverage of the
aggregate, the interconnected mul-
tiplex and the non-interconnected
multiplex networks is shown. Gen-
uine multilayer effects emerge from
the interplay between structure
and dynamics: the navigability of
the overall system depend on how
different layers are coupled to-
gether [17, 18].

The coverage is sensitive to network topology and transition rules used to
navigate the system. In fact, nodes are visited at different time scales: direct
effects include a slower or faster exploration of the system with respect to its
layers separately or its aggregate network (Fig. 6.1).

6.2 Functional reducibility of multilayer systems

In the case of functional reducibility, the coupling between layers is considered
with respect to dynamics, specifically random walks [17] because they provide
a powerful proxy for a broad spectrum of transport properties. This method is
not yet available in muxViz , therefore we limit to mention its existence as a
reference for future development and refer to Fig. 6.2 to illustrate the difference
between functional and structural reducibility methods.

2Remind that 𝑒𝑖 (𝑏) ∈ R𝑁 is the 𝑏–th canonical vector in the space of nodes and
𝑒𝛼 (𝑟) is the 𝑟–th canonical vector in the space of layers.
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A fundamental step for the analysis of multilayer networks is visual in-
spection of the underlying structure, as well as to encode multivariate
information extracted from a system into a simple-yet-effective visual

representation. In this chapter we will briefly describe how to embed nodes and
layers in a three-dimensional space, to visualize a multilayer network in terms
of floating layers, as well as to show the results of multidimensional analysis by
using the annular visualization.

7.1 Embedding nodes and layers in a 3D space

The visualization of multilayer networks is not a trivial task. At variance with
single-layer systems, there is more information to account for and to show, in
principle the same amount for each layer separately. One possibility, when the

Figure 7.1: Different ar-
rangement of layers in a three-
dimensional space. Each square
encodes a distinct layer and
multiple layers are organized to
highlight some underlying multi-
layer pattern. The most adopted
structure is the “one-line layered”.
Figure from [4] under Creative
Commons Attribution-ShareAlike
4.0 International License.
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number of layers is small, is to show each layer independently from the others,
as we have already done in some cases in this book: the obvious drawback is that
in this way it is difficult to identify patterns across the layers, requiring more
cognitive efforts. Another possibility is to plot a heatmap of the corresponding
supra-adjacency representation: also in this case the cognitive effort increases
for increasing network size and number of layers.

A more convenient procedure to visualize multilayer systems is to show their
layered structure in 2.5 dimensions, something in between 2D and 3D. The
advantage of this approach is that when layers are aligned according to specific
criteria (e.g., to favor the alignment of replica nodes across layers) the cognitive
effort to understand the multilayer patterns is dramatically reduced. Of course
there are multiple ways to embed layers in a three-dimensional space, as shown
schematically in Fig. 7.1. Both the GUI and the LIB version of muxVizprovide
simple ways to create this type of visualization, the “one-line layered” structure
being the most widely adopted nowadays.

Figure 7.2: Two distinct methods
– (A-C) one-line layered and (B-
D) 3D edge-colored – to represent
a multilayer network (in this case
an edge-colored multigraph), for
two empirical systems: (A-B) inter-
action and correlation-based net-
work of genes in S. cerevisiae, the
common yeast, and (C-D) different
synaptic junctions – electric (Elec-
trJ), chemical monadic (MonoSyn)
and polyadic (PolySyn) – charac-
terizing the connectome of C. ele-
gans. See the text for details. Fig-
ure from [19].

This approach works quite well if the position of nodes is calculated while
taking advantage of the whole multilayer information. There are some ways
to achieve this goal, the easiest one being based on applying standard force-
directed layout algorithms – such as Kamada-Kawai [306], Fruchterman-Reingold [307]
or distributed recursive layout (DRL) [308] – on some aggregate representation
of the network, e.g., the one obtained by the union or the intersection of edges
across layers.

A valid alternative, when the number of nodes is not too large, is to encode
distinct interactions by the color of links and, accordingly, to color nodes with
the colors of the layers where they are connected: in this case, interesting visu-
alizations can be obtained by applying the force-directed layout algorithms in
three dimension instead of two. We show a representative example in Fig. 7.2,
where multilayer genetic and neuronal networks are considered. On the left-
hand side the one-line layered representation is used, with node colors encod-
ing their organization into groups or functional modules. On the right-hand
side the edge-colored three-dimensional representation is shown, where colors
encode distinct type of interactions. Clearly, both types of representation have
advantages and disadvantages: the topological patterns visibile in the latter
do not allow to disentangle the contribution of each layer, like in the former,
and by using colors to encode the interaction type one has to sacrifice other
types of information that could be shown (e.g., the community membership).
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Note also that in case of inter-layer connectivity, the layered method allows
one to explicitly visualize links, whereas this is not possible in the edge-colored
representation.

Other methods, like the one based on using diffusion geometry to embed a
network into a diffusion space [89], are currently under investigation.

7.2 Annular visualization of multivariate data

Figure 7.3: Annular visualization
for the visual analysis of multivari-
ate information produced by multi-
layer analysis. See the text for fur-
ther details.

Cells 

Position on the radius encode node’s replicas
Colors encode centrality values

Thickness encodes information content 
(thinner rings carry less information entropy)
Order encodes ring similarity in terms of 
correlation and are clustered hierarchically

Rings 

Position encodes different measures/layers

A

B C

Once the multilayer analysis of a complex network is performed, it can be
challenging to represent and visualize the wealth of information obtained. A
way to visualize the multivariate information resulting from this type of analysis
is provided by the annular visualization, which is designed to allow one to easily
capture patterns and deduce qualitative information about the multilayer de-
scriptors produced. More specifically, the annular visualization in muxVizGUI
focuses on the comparison of centrality and versatility descriptors obtained
from the analysis of single layers, the aggregate network and the multilayer
network, respectively, although the underlying approach can be easily general-
ized to visualize and compare other descriptors.

Figure 7.3A shows a typical annular visualization, consisting of concentric
rings – each one encoding a specific vector of information, such as a centrality
or a versatility profile – where each cell is uniquely identified by an angle and
encodes a unique node. The color of a cell is representative of the value of the
descriptor corresponding to a specific node.

The position of rings can encode different types of information. The first
type is to calculate several multilayer versatility descriptors, encode each one
into a ring and compare them (Fig. 7.3B). The second type is to focus on one
descriptor, for instance HITS, and calculate the corresponding centrality profile
in each layer separately, in the aggregate network and in the multilayer network,
defining the rings for comparison (Fig. 7.3C). Both approaches are important
to gain insights about the correlation among different versatility profiles (first
type) or the difference in the role(s) played by nodes when layers are considered
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in isolation, aggregated, or analyzed through the multilayer lens (second type).
The annular visualization is a fundamental tool to gain a broad spectrum of
visual insights including, for instance, to understand if the versatility of a node
is primarily due to its centrality in a specific layer or if a single layer of the
aggregate network might be considered as a good proxy for the whole multilayer
structure.

The thickness of a ring is proportional to the information content it encodes:
if the distribution of values in a ring is strongly peaked around a certain one,
the corresponding information entropy is low and one does not learn much by
visualizing that ring with full size. To reduce visual noise the thickness of that
ring is reduced accordingly, whereas it is maximized when information it carries
is high.

The order of rings is also important and can be customized to maximize the
readability of the visualization. For instance, in muxViz ’s default setting, the
distance between each pair of descriptors is calculated by means of a measure
of correlation (e.g., Pearson, Spearman, or JS divergence) and the result is used
to hierarchically cluster the corresponding rings. This information is used to
arrange less distant vectors into adjacent rings.
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Chapter A | Installing and
Using muxViz

A.1 The “R Universe” of muxViz

muxViz comes with two distinct versions:

• v2.0 allows one to use a GUI and depends on some packages which, in turn,
depends on many other packages which create the R Universe of the software
(Fig A.1). The advantage of this version is that it does not really requires
one to know how to code in R, but it does not allow for low-level control
of functions but it facilitates the analysis and visualization of multilayer
networks.

• v3.1 is a standalone library (LIB) which does not allow to use a GUI. There-
fore it is much easier to install than v2.0 and easy to control from one’s own
scripts: however, it requires the knowledge of R to be used.

The LIB version is strongly recommended, since it is faster to install and
allows one for a broader set of analytical and computational tools. Moreover,
it is the only version that will be maintained in the future.

A.2 Requirements and Installation for v3.1 (LIB)

As mentioned in the previous section, muxViz requires at least R2323 http://www.r-project.org/ v3.2.0 (or
above) to be installed and work properly. However, since some dependencies
might work only with more recent versions of R, also muxViz, in principle,
will require a recent R version. This is true at least for the GUI version (2.0),
whereas the standalone LIB version (3.1) builds on less packages and, conse-
quently, should be compatible with a broader range of versions.

Since the analysis of complex multilayer networks is mostly based on oper-
ations with matrices and vectors, it is strongly recommended to:

• either install the R environment and configure the system to support efficient
linear algebra libraries, such as LAPACK24

24 http://www.netlib.org/lapack/

and BLAS2525 http://www.netlib.org/blas/ ;
• or install the enhanced R environment developed by Microsoft named Mi-

crosoft R Open2626 https:
//mran.microsoft.com/download/

.

Provided that the devtools package is installed, the following step is not
required:

1 install.packages(devtools)

muxVizLIB is available as an open source framework and its source code
can be download for free from Github2727 https:

//github.com/manlius/muxViz/
or, within the R environment, directly

installed by
1 devtools::install_github("manlius/muxViz")

71© Springer Nature Switzerland AG 2022 
M. De Domenico, Multilayer Networks: Analysis and Visualization, https://doi.org/10.1007/978-3-030-75718-2

http://www.r-project.org/
http://www.netlib.org/lapack/
http://www.netlib.org/blas/
https://mran.microsoft.com/download/
https://mran.microsoft.com/download/
https://github.com/manlius/muxViz/
https://github.com/manlius/muxViz/
https://doi.org/10.1007/978-3-030-75718-2


72 APPENDIX A. INSTALLING AND USING muxViz

Figure A.1: Network representa-
tion of dependencies of muxViz 2.0:
theblue markers indicate main di-
rect depedencies, while smaller
markers indicate indirect ones.

In the same repository, the full package1 documentation – with usage tips
and examples – is provided, together with some vignettes on multilayer com-
munity detection, multilayer network motifs and on how to setup the Infomap
and FANMOD routines. Additional scripts with examples are provided.

A.3 Requirements and Installation for v2.0 (GUI)

muxViz requires at least R28 28 http://www.r-project.org/v3.2.0 (or above) to be installed and work prop-
erly. However, since some dependencies might work only with more recent ver-
sions of R, also muxViz, in principle, will require a recent R version. This is
true at least for the GUI version (2.0), whereas the standalone LIB version
(3.1) builds on less packages and, consequently, should be compatible with a
broader range of versions.

Since the analysis of complex multilayer networks is mostly based on oper-
ations with matrices and vectors, it is strongly recommended to:

31 https:
//mran.microsoft.com/download/

Once the R environment is installed, some additional libraries have to be
installed to allow for the installation of the required R packages. Users should
verify that their systems have a working installation of Java32 and GDAL33

1We acknowledge the precious help of Dr. Giulia Bertagnolli to setup and build this
package.

29 http://www.netlib.org/lapack/
30 http://www.netlib.org/blas/

32 https://www.java.com/
33 http://www.gdal.org/

ů either install the R environment and configure the system to support efficient
linear algebra libraries, such as LAPACK29 and BLAS30;

ů or install the enhanced R environment developed by Microsoft named Mi-
crosoft R Open31.

http://www.r-project.org/
http://www.netlib.org/lapack/
http://www.netlib.org/blas/
https://mran.microsoft.com/download/
https://mran.microsoft.com/download/
https://www.java.com/
http://www.gdal.org/


A.4. TROUBLESHOOTING 73

(Geospatial Data Abstraction Library), required for visualization of geograph-
ical networks. Java is required to allow R the automatic installation of rJava
and OpenStreetMap packages, whereas GDAL is required to install sp and
rgdal R packages. More information about possible issues are reported in
troubleshooting file accompanying muxViz .

muxViz is available as an open source framework and its source code can
be download for free from Github3434 https:

//github.com/manlius/muxViz/
. muxViz is able to detect the required R

packages which are still missing and install them automatically: therefore, it is
unlikely that the user will need further action.

Once muxViz has been downloaded, it can be unzipped3535 Note that git can be used
instead.

anywhere in user’s
system, e.g. in /user/path/muxviz. Open the R environment and set the
working directory to muxViz by typing:

1 setwd("/user/path/muxviz")

and then simply type:
1 source("muxVizGUI.R")

to start the framework. While muxViz is loading, messages useful for debugging
anomalous scenarios are printed in the R terminal. Note that only the first time
muxViz is loaded, it will try to install all the missing R packages it requires for
functioning correctly: therefore, on older systems, the first load might require
a few minutes.

If everything has been installed correctly, muxVizwill open a new page on
the default Web browser where a splash screen like the one shown in Fig. A.2
should appear:

Figure A.2: Splash screen of
muxViz as rendered by any stan-
dard Web browser. A visual sum-
mary of available modules is shown
in the middle, as well as infor-
mation about the system (right
panel).

A.4 Troubleshooting

muxViz can count, nowadays, on an online community with more than 600
members. This section is dedicated to some problems and solutions identified
with the help of this community.

https://github.com/manlius/muxViz/
https://github.com/manlius/muxViz/


74 APPENDIX A. INSTALLING AND USING muxViz

A.4.1 Very quick installation on GNU/Linux

If you use a Linux (Ubuntu-like) distribution, you are very lucky, because the
following BASH script will do the job for you:

#download R from their repository
wget http://cran.es.r-project.org/src/base/R-3/R-3.0.3.tar.gz
DIR=$PWD

#install R
sudo apt-get build-dep r-base-core
sudo mv R-3.2.0.tar.gz ~
cd ~
tar xvf R-3.2.0.tar.gz
cd R-3.2.0
./configure
make
sudo make install

#install GDAL
sudo apt-get install libgdal1-dev libproj-dev

A.4.2 Ubuntu 14.04

One user reported the following solution for installation on this system. To load
muxViz 2.0 in R environment, he solved by modifying the muxVizGUI.R file:

Before:
1 devtools::install_github("shiny-incubator", "rstudio")

After:
1 devtools::install_github("rstudio/shiny-incubator", "rstudio")

A.4.3 Multimap or FANMOD not found

muxViz uses an API to external softwares: Multimap (known as multiplex in-
fomap) and FANMOD. The home screen of muxVizwill indicate if the available
binaries are correctly installed and can be used by the platform. If it is not the
case, a WARNING message is generally displayed.

Should one care about missing FANMOD and/or Multimap? It depends. If
Multimap is missing, you will not be able to perform multilayer community
detection based on the generalization of the Infomap algorithm for this type
of networks. If FANMOD is missing, you will not be able to perform multiplex
motif analysis of your network.

If one is interested in using these features, and the default installation shows
a WARNING, one just needs to compile the software on their own machine.
This is an easy task on all OSs.

• Verify that you have a c++ compiler on your machine. On GNU/Linux and
most recent versions of Mac OS X, it is already installed. In Windows, you
might need some extra work (http://www.mingw.org/wiki/howto_install_
the_mingw_gcc_compiler_suite, https://www.youtube.com/watch?v=k3w0igwp-FM).
You might want to take a look at the official web site to installing GCC
(https://gcc.gnu.org/wiki/InstallingGCC, https://gcc.gnu.org/install/specific.
html)

http://www.mingw.org/wiki/howto_install_the_mingw_gcc_compiler_suite
http://www.mingw.org/wiki/howto_install_the_mingw_gcc_compiler_suite
https://www.youtube.com/watch?v=k3w0igwp-FM
https://gcc.gnu.org/wiki/InstallingGCC
https://gcc.gnu.org/install/specific.html
https://gcc.gnu.org/install/specific.html
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• Go into the ‘src‘ folder that is placed inside the muxViz folder
• Unzip the software (‘fanmod_src.zip‘ and/or ‘Multiplex-Infomap_src.zip‘)
• Enter into the software folder from the terminal and run ‘make‘. This step is

expected to go smoothly, because after a few seconds the GCC compiler will
produce binary executables ad hoc for your system. If it is not the case, take
a look at the official web page http://www.gnu.org/software/make/manual/
make.html and if you still can not compile, post on our Google Group

• Copy the produced binaries inside the ‘bin‘ folder that is placed inside the
muxViz folder

• Verify that the software is correctly named as ‘fanmod_linux‘ and/or
‘multiplex-infomap_linux‘

A similar procedure, except for the last point, is required to use the same
tools with the standalone library .

A.4.4 Possible errors when using Motifs

The issue is that there is a conflict between the current version of igraph
and shinyjs. More details can be found at https://github.com/igraph/igraph/
issues/846. While waiting for a new release of igraph, solving the issue, we can
install the dev version:

1 devtools::install_github("igraph/rigraph")

On Mac OS X this could be a bit tricky, because R might use clan instead of
gcc/g++ to compile. A solution is to create the file

~/.R/Makevars

if it does not exist, and set the following parameters:

CFLAGS += -O3 -Wall -pipe -pedantic -std=gnu99
CXXFLAGS += -O3 -Wall -pipe -Wno-unused -pedantic

VER=-4.2
CC=gcc$(VER)
CXX=g++$(VER)
SHLIB_CXXLD=g++$(VER)
FC=gfortran
F77=gfortran
MAKE=make -j8

Restart R and try again to install the dev version of igraph.

A.4.5 Possible errors with rgdal

To work properly with geographical networks, the GDAL (Geospatial Data Ab-
straction Library) is required and should be installed before running muxViz for
the first time. GDAL should be available as an R package and should be easily
installed just by typing

1 install.packages("sp")
2 install.packages("rgdal")

within the R environment. However, in a few cases it can be more compli-
cated and some users reported problems for its installation. If this is also your
case you might want to take a look at some suggestions on Stackoverflow (http:
//stackoverflow.com/questions/15248815/rgdal-package-installation) or on spa-
tial.ly (http://spatial.ly/2010/11/installing-rgdal-on-mac-os-x/).

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html
https://github.com/igraph/igraph/issues/846
https://github.com/igraph/igraph/issues/846
http://stackoverflow.com/questions/15248815/rgdal-package-installation
http://stackoverflow.com/questions/15248815/rgdal-package-installation
http://spatial.ly/2010/11/installing-rgdal-on-mac-os-x/
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In any case, it is highly recommend to visit the GDAL website and follow
the hints provided there (http://trac.osgeo.org/gdal/wiki/BuildHints).

A.4.6 Possible errors with rjava (any OS)

Some users reported that, when using muxViz for the first time, they get the
following error:

Warning: Error in : package or namespace load failed
for ?OpenStreetMap?:
.onLoad failed in loadNamespace() for ’rJava’, details:

One possible solution is to open the terminal and type

R CMD javareconf

to reconfigure java to work correctly within R. You might read about possi-
ble solutions for GNU/Linux (https://stackoverflow.com/questions/3311940/
r-rjava-package-install-failing) and Mac OS X (https://github.com/MTFA/
CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)
-or-10.12-(Sierra)).

A.4.7 Possible errors with rjava (latest MacOSs)

It can happen that newest MacOS generate installation issues with rjava. Ma-
cOS Users should take a look at the following approaches: http://www.owsiak.
org/r-java-rjava-and-macos-adventures/, https://stackoverflow.com/questions/
30738974/rjava-load-error-in-rstudio-r-after-upgrading-to-osx-yosemite, http:
//osxdaily.com/2017/06/29/how-install-java-macos-high-sierra/, https://github.
com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)
-or-10.12-(Sierra).

In general try make sure R is configured with full Java support (including
JDK). Run

sudo R CMD javareconf

to add Java support to R. If you still can’t install it, read below. A possible
solution for MacOS versions *before* Sierra:

sudo ln -f -s
$(/usr/libexec/java_home)/jre/lib/server/libjvm.dylib
/usr/local/lib

But it may happen that your version of MacOS + Java does not have that
path. To find the correct path try

/usr/libexec/java_home

to obtain something like

/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

Look for the dylib file:

find $(/usr/libexec/java_home) -name "libjvm"

If the result is null, then you might need to install (more) Java. Understand
which Java you have installed already and where:

/usr/libexec/java_home -V

http://trac.osgeo.org/gdal/wiki/BuildHints
https://stackoverflow.com/questions/3311940/r-rjava-package-install-failing
https://stackoverflow.com/questions/3311940/r-rjava-package-install-failing
https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)
https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)
https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)
http://www.owsiak.org/r-java-rjava-and-macos-adventures/
http://www.owsiak.org/r-java-rjava-and-macos-adventures/
https://stackoverflow.com/questions/30738974/rjava-load-error-in-rstudio-r-after-upgrading-to-osx-yosemite
https://stackoverflow.com/questions/30738974/rjava-load-error-in-rstudio-r-after-upgrading-to-osx-yosemite
http://osxdaily.com/2017/06/29/how-install-java-macos-high-sierra/
http://osxdaily.com/2017/06/29/how-install-java-macos-high-sierra/
https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)
https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)
https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)
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If you see something like this:

1.8.0_162, x86_64: "Java SE 8" /Library/Java/Java...
1.6.0_65-b14-468, x86_64: "Java SE 6" /Library/Ja...
1.6.0_65-b14-468, i386: "Java SE 6" /Library/Java/J...

/Library/Java/JavaVirtualMachines/jdk1.8.0_162.jdk/...

skip the next two paragraphs, otherwise install Java SE 6 and 8.
For Java SE 6 go to Apple support, download: https://support.apple.com/

downloads/DL1572/en_US/javaforosx.dmg and install.
Oracle website is the not the best user-friendly website around. Check in-

structions at https://docs.oracle.com/javase/8/docs/technotes/guides/install/
mac_jdk.html and download Java SE 8 from http://www.oracle.com/technetwork/
java/javase/downloads/java-archive-javase8-2177648.html.

You should download and install the file

jdk-8u162-macosx-x64.dmg

or similar, for Java SE 8. Note that it will ask you to register an account:
download is free, but you can’t skip the registration phase (2 min required).

If Java SE 6 and SE 8 are installed, run again

/usr/libexec/java_home -V

and hope to see

1.8.0_162, x86_64: "Java SE 8" /Library/Java/Java...
1.6.0_65-b14-468, x86_64: "Java SE 6" /Library/Ja...
1.6.0_65-b14-468, i386: "Java SE 6" /Library/Java/J...

/Library/Java/JavaVirtualMachines/jdk1.8.0_162.jdk/...

so that everything is installed correctly. Then run

java -version

and hope to see something like

java version "1.8.0_162"
Java(TM) SE Runtime Environment (build 1.8.0_162-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.162-b12, mixed mode)

Time to tell R how to use our Java:

sudo R CMD javareconf

and pray to see at the end of the terminal something like

JAVA_HOME : /Library/Java/JavaVirtualMach...
Java library path: $(JAVA_HOME)/lib/server
JNI cpp flags : -I$(JAVA_HOME)/../include -I$(JA..
JNI linker flags : -L$(JAVA_HOME)/lib/server -ljvm
Updating Java configuration in /Library/Frameworks..
Done.

Now, in the terminal, paste the following:

unset JAVA_HOME
R --quiet -e ’install.packages("rJava",
type="source", repos="http://cran.us.r-project.org")’

to install rJava from source with Java 8 JDK. If it works without errors, let’s
check everything is fine:

https://support.apple.com/downloads/DL1572/en_US/javaforosx.dmg
https://support.apple.com/downloads/DL1572/en_US/javaforosx.dmg
https://docs.oracle.com/javase/8/docs/technotes/guides/install/mac_jdk.html
https://docs.oracle.com/javase/8/docs/technotes/guides/install/mac_jdk.html
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html
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R --quiet -e ’library("rJava"); .jinit();
.jcall("java/lang/System",
"S", "getProperty", "java.runtime.version")’

and you should get something like

1.8.0_162-b12

as a result.

A.4.8 Install muxVizwith R 3.3 or higher

muxViz depends on several R packages that, when updated by their developers,
might cause issues on muxViz . In general, it might happen that you use a very
new version of R (muxVizwas developed for R 3.2): you should still be able
to use muxViz by simply patching the initial sanity check it does to ensure full
compatibility. Open muxVizGUI.R and edit:

- Line 1: if(grep("3.3",version$version.string)!=1){
- Line 12: comment it out as
#devtools::install_github("trestletech/ShinyDash")

to avoid the error that package ShinyDash is not available (for R version 3.3.0).
Finally, install Shiny Dash from R console:

1 devtools::install_github("ShinyDash", "trestletech")

Now muxViz should start and work.

A.4.9 Use existing Linear Algebra Library

On Mac and GNU/Linux it is possible to exploit the already existing linear
algebra R packages by forcing R to use a faster BLAS version. On a Mac OS
X this is easily achieved by

sudo ln -sf /System/Library/Frameworks/
Accelerate.framework/Frameworks/
vecLib.framework/Versions/Current/
libBLAS.dylib /Library/Frameworks/
R.framework/Resources/lib/libRblas.dylib

A.5 Preparing the data: allowed formats

The data is generally expected to be saved in plain text files known as edge
lists, where in general muxViz (both the GUI and the LIB versions) expects
to find the information about links starting in one node of a specific layer and
ending in a node of another (or the same) layer. In the following sections we
explain in greater detail the different formats tailored to encode the connectivity
information of specific multilayer models.

For the GUI version, the following subsections are more relevant than the
LIB version, since in the latter more flexibility for the manipulation of the data
structure is allowed. Nevertheless, when using the LIB’s routines to import
data in muxViz format, it is required to follow the standards specified in the
following.
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A.5.1 Edge-colored networks

The configuration file is a ASCII file including the list of layers to be included
in a multiplex, the corresponding labels and the possible layout file to define
node properties (e.g., ID, labels, geographic coordinates, etc). The expected
format of a configuration file is:

path_layer_X;label_layer_X;layout_layer_X

where:

Variable Type MandatoryDescription
path_layer_X String Yes Specify the path and the filename

to the edges list to be used as layer
label_layer_X String No Specify the label to be used in the

rendering for that layer
layout_layer_X String No Specify the path and the filename

to the file containing information
about nodes

Each line in the configuration file indicates one layer, and the network for-
mat for each layer to be defined in a separate file is “standard edges list”, see
Sec. A.5.3.

A.5.2 Non-edge-colored networks

If the multilayer is not edge-colored (i.e., inter-links are allowed), only one line
is specified in the configuration file, with format:

path_multilayer;path_to_layers_info;path_to_layers_layout

where:

Variable Type MandatoryDescription
path_multilayer String Yes Specify the path and the file-

name to the extended edges
list to be used

path_to_layers_info String Yes Specify the path and the file-
name to the file containing
information about layers

path_to_layers_layout String Yes Specify the path and the file-
name to the file containing
information about nodes

In this case the network format required is “extended edges list”, consisting
of a single file. See Sec. A.5.4.

A.5.3 Standard edges list

A typical edges list is expected to be a file with at most three columns, giving
the list of edges from a node (first column) to other nodes (second column),
possibly weighted by an integer or floating number (third column). For instance:
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1 2 0.5
1 3 1.4
...
18 124 0.1

is a typical weighted edges list.
IDs of nodes are expected to be sequential integers (starting from 0 or 1, up

to the number of nodes in the network). Nevertheless, it is possible to import
label-based edges list, where the IDs of nodes are labels (arbitrary integers or
strings): in this case, one should check the appropriate box before importing
the networks, to let muxViz know how to interpret the format. The edges list
should follow the format:

alice bob 0.5
alice charlie 1.4
...
john david 0.1

In this specific case, it is mandatory to provide a layout file (see Sec. A.5.5)
reporting each node label (field nodeLabel). This should look like:

nodeLabel
alice
bob
john
david
...

A.5.4 Extended edges list

An extended edges list is a new format that allows to specify all possible types of
links, intra- and inter-layer. Each line specifies the source node (first column)
and the source layer (second column), the destination node (third column)
and the destination layer (fourth column), possibly weighted by an integer or
floating number (fifth column). For instance:

1 1 2 1 0.5
1 1 3 1 1.4
...
18 2 124 2 0.1

is a typical weighted extended edges list. For label-based extended edges lists,
the same rules of the standard edges lists apply.

A.5.5 Format of a layout file

The first line of the file must specify the name of the corresponding node
attributes. Allowed attributes are:

The order of the columns should not be relevant. If nodeLat and nodeLong
are specified, they will be automatically converted to Cartesian coordinates
(through Mercator projection).

The properties of each node in the multilayer must be specified or default
values will be used (i.e., automatic labeling and layouting). If the number of
nodes in the network is different from the number of nodes provided in the
layout file, it will be assumed that something is wrong with the layout file and
default values will be used.



A.5. PREPARING THE DATA: ALLOWED FORMATS 81

Variable Type MandatoryDescription
nodeID Integer Yes ID to identify each node
nodeLabel String No Label attribute
nodeX Float No Cartesian coordinate x for the lay-

out
nodeY Float No Cartesian coordinate y for the lay-

out
nodeLat Float No Latitude for the geographic layout
nodeLong Float No Longitude for the geographic layout

A.5.6 Format of a layer-info file

The first line of the file must specify the name of the corresponding layer
attributes. Allowed attributes are:

Variable Type MandatoryDescription
layerID Integer Yes ID to identify each layer
layerLabel String No Label attribute

The order of the columns should not be relevant.

A.5.7 Format of a timeline file

This module allows to build nice animated visualizations corresponding to dy-
namical processes on the top of a multilayer network. For instance, one can
visualize the movements of one (or more) individual(s) or random walker(s)
in the network, the spreading of an epidemics or a meme in a social network,
traffic and possible congestions in a transport or communication network, so
forth so on.

The idea is to feed the module with a ’timeline’ file where the change of the
state of nodes and edges in the multilayer network are specified at each time
step. The ’state’ of an object can be altered by changing its color and/or its
size. For instance, in the case of an epidemics spreading in a country, the size
of each node (e.g., a meta-population describing a city) can be proportional to
the population and the color can encode the amount of infected people. This
description allows a wide variety of dynamics to be represented and visualized:
for instance, setting the size of nodes and edges to zero when required, it is
possible to visualize a time-varying multilayer network where nodes and edges
appear or disappear over time.

The first line of the file must specify the name of the corresponding timeline
attributes. Allowed attributes are:

The order of the columns is not relevant. If the network has 𝐿 layers and
you want to include the aggregate network in the visualization, then use 𝐿 + 1
in the layerID field for it.
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Variable Type MandatoryDescription
timeStep Integer Yes ID to identify time steps
labelStep String Yes Snapshot label
entity String Yes Object to modify, can be ’node’ or ’edge’
layerID Integer Yes ID to identify layers
nodeID Integer

or
String

Yes ID. Integer if entity is ’node’ and String
(e.g., ’3-7’, corresponding to the link from
node 3 to node 7) if entity is ’edge’

color String Yes Hex color (e.g. 11DADA) for entity
sizeFactor Float Yes Relative size of the entity, scaling with re-

spect to muxViz default size
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Adjacency matrix : mathematical representation of a complex network, en-
coding information about which node is connected to which other node and with
which intensity. Asymmetric matrices represent directed networks, while sym-
metric matrices represent undirected ones. Binary matrices encode unweighted
networks, while non-binary matrices represent weighted networks.

Aggregate network : monoplex network obtained by aggregating (e.g., pair-
wise sum or other binary matrix operations) the layers of a multilayer network.

Annular visualization : a special type of visualization allowing one to high-
light correlation patterns between measures obtained from multilayer networks.
For instance, it allows one to compare the values of single-layer node centrality
across multiple layers or to compare multiple versatility measures simultane-
ously.

Assortative mixing : see Assortativity.

Assortativity : tendency of nodes to be connected to other nodes of similar
kind.

Authority centrality : see HITS centrality.

Average path length : sample average of the length of all shortest paths in
a network.

Barabasi-Albert model : network growth model characterized by preferential
attachment linking that yields a power-law degree distribution.

Betweenness centrality : centrality descriptor proportional to the number
of shortest paths that cross each node.

Brain networks : networks where nodes are regions of interest within the
human brain and edges indicate the presence of physical or functional (e.g.,
based on statistical correlations) relationships among them.

Centrality : score usually assigned to each node of a network to characterize
their importance with respect to a set of criteria encoded by algorithms (e.g.,
number of links, attraction of information flow, etc.)

Circuit : sequence of nodes and edges traversed by a walker. It is a closed trail
with no repeated edges.

Closeness centrality : centrality descriptor defined as the inverse of the sum
of geodesic (i.e., shortest-path) distances between one node and the other nodes
in a network.

Cluster : a group of nodes within a community (see Group) or within a con-
nected component (see Connected component).

Clustering : referring to triadic closure, it provides a local or global measure
of the tendency of nodes to form triangles.
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Codeword : bit string used to encode a sequence of symbols.

Community : see Group.

Complex network : set of units (nodes) and relationships (edges) organized
into non-trivial connectivity patterns.

Configuration model : random network model used to build uncorrelated
networks with a given degree distributions.

Connected component : subsets of the nodes that are reachable by undi-
rected paths.

Connectome : networks where nodes are neural units (e.g., neurons, brain
areas) and edges indicate their physical or functional relationships. See also
Brain networks.

Coreness centrality : centrality descriptor assigning a score 𝑘 to a node if it
belongs to the 𝑘-core of the network and it does not belong to the (ℓ + 1)-core.
See also 𝑘-core decomposition.

Coupled layers : distinct networks which are connected together by structural
or functional relationships.

Coverage : in a stochastic process on the top of a complex network, it is
defined as the fraction of nodes visited by a random walker at least once within
a certain amount of time.

Critical point : value of the control parameter of a system at which a phase
transition occurs.

Cycle : sequence of nodes and edges traversed by a walker. It is a closed path
with no repeated nodes and edges.

Degree centrality : centrality descriptor counting the number of edges (in-
coming, outgoing, inter-layer, intra-layer) incident on one node.

Degree-degree correlation : Influence that the degree of a node has on the
degree of its neighbors.

Density matrix : in the statistical field theory of information dynamics on
networks, a matrix which encodes the state of a network as obtained from
superposing information streams weighted by their activation probabilities.

Description length : given a data set and a hypothesis to describe it (e.g.,
a mathematical model), the description length is defined as the sum of two
terms, one encoding the number of bits required to describe the data according
to the hypothesis and a second one encoding the number of bits required to
describe the hypothesis.

Diameter : the longest shortest path in a network.

Disassortativity : the opposite of Assortativity.

Diffusion : a special case of dynamics on the top of a network, where (stochas-
tic) rules are used to distribute information (e.g., water, a meme, etc) in the
neighborhood of a node.

Dimensionality reduction : see Reducibility.

Dismantling : Process consisting of the deliberate removal of nodes and/or
links of a network according to a specific mechanistic rule (e.g., according to
scores assigned to nodes).



Glossary 99

Dynamics : used to indicate a dynamical process defined on the top of the
network (e.g., a random walk, synchronization, consensus, etc.) or the rules
governing the growth or shrink of the network.

Ecological networks : networks where nodes are ecological units (e.g., plants,
pollinators, predators, preys, etc.) and edges indicate their relationships (coop-
eration, predation, mutualism, parasitism, etc.).

Edge : connection encoding interaction or any type of relationship between
two nodes in a complex network.

Edge-colored multigraph : multilayer network where layers are not inter-
connected with each other.

Eigenvector centrality : iterative procedure to assign a score to each node in
a network while accounting for the importance of its neighbors, the neighbors
of neighbors, so forth and so on. It is estimated as the dominant eigenvector of
a governing matrix: in the simplest case, such a matrix is the adjacency one.
It is not well defined for directed networks.

Ensemble, network : see Random network model(s).

Emergence : in complex systems, emergent phenomena which are observed at
higher scales than microscopic one, and can not be simply deduced from the
full knowledge of nodes only.

Erdös-Rényi model : random network model constructed by connecting every
pair of nodes independently with the same probability.

Exponential Random Graph model : random network model constructed
by maximizing a functional (specifically, the Gibbs entropy) according to a
set of constraints (e.g., the observed average degree, the degree sequence, etc)
which are encoded within a Hamiltonian function.

Flattening : see Matricization.

Functional network : a complex network where edges encode measures of in-
tensity or relationships, based on statistical correlations or similarities, between
any pair of nodes. See Structural network for comparison.

Giant connected component : order parameter of the percolation phase
transition. It is exactly 0 in the non-percolating phase and becomes proportional
to the system size in the percolating phase.

Group : sub-set of nodes organized to exhibit a denser connectivity (i.e., num-
ber of links, information flow, so forth and so on) among themselves than with
other nodes in a network. Also known as community, cluster, module, the or-
ganization of nodes into groups defines the mesoscale of the system, which is
usually identified by means of community detection methods.

HITS centrality : a type of eigenvector centrality, consisting of two descrip-
tors, hub and authority. The governing matrix is given by the product of the
adjacency matrix by its transpose for the hub score, and by the product of the
transpose of the adjacency matrix by the adjacency matrix for the authority
score.

Hub centrality : see HITS centrality.

Information : amount of uncertainty (or surprise) of a variable outcome. In-
formation is measured in bits, where an information of 1 bit reduces event
uncertainty by half.

Information-theoretic : based on information theory.
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Information stream : in the statistical field theory of information dynamics
on networks, a matrix obtained from the eigen-decomposition of a propagator,
e.g. the diffusion propagator, which drives the flow of information through the
network.

Interactome : see Protein-protein interaction networks.

Interconnected network : see Coupled layers.

Interdependent network : multilayer network where layers are intercon-
nected with each other, and each physical node is defined in only one layer,
thus coinciding with its state node.

Inter-layer : defined across the layers of a multilayer network, e.g. to indicate
correlations or operations involving at least two distinct layers.

Intra-layer : defined within a layer of a multilayer network, e.g. to indicate
correlations or operations involving only one layer.

Jensen-Shannon divergence : symmetric information-theoretic measure
used to quantify the difference between two probability distributions.

Jensen-Shannon distance : Square root of the Jensen-Shannon divergence
allowing one to define an information-theoretic metric.

Katz centrality : a type of eigenvector centrality which overcomes the limi-
tations of eigenvector centrality.

𝑘-core : maximal subgraph consisting of nodes with degree equal to or larger
than 𝑘.

𝑘-core decomposition : procedure to find all 𝑘-cores in a network.

Kullback-Leibler divergence : asymmetric information-theoretic measure
used to quantify the difference between two probability distributions

Information entropy : see Shannon entropy.

Information entropy, network : see Von Neumann entropy.

Lancichinetti-Fortunato-Radicchi model : random network model that
produces synthetic networks with communities whose degree distribution and
community size distribution are both power law.

Laplacian matrix : known also as discrete Laplacian or Kirchhoff matrix,
it provides another matrix representation of a network than adjacency matrix.
There are many Laplacian matrices, which differ in the way they are normalized
and the type of dynamics they govern by means of a master equation. In the
simplest case, the Laplacian matrix governs simple diffusion through a network:
its diagonal entries correspond to degrees (or strengths) of nodes, while its off-
diagonal entries equal -1 (or the negative weight) if two nodes are adjacent and
0 otherwise.

Largest connected component : the largest among the connected compo-
nents in a network. In finite-size simulations, it is used to approximate the giant
connected component.

Largest intersection component : the largest cluster in which nodes are
connected across all layers simultaneously.

Largest viable component : the largest cluster in which nodes are connected
by a path in each layer simultaneously.

Layer : in a multilayer network, it is a sub-system represented by a network
which encodes a specific type of interactions among nodes.
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Layer-layer correlation : topological correlation occurring between at least
two networks within a multilayer system. Usually, it is measured through sta-
tistical correlation of descriptors (e.g., degree, clustering) measured from the
corresponding networks. It can also refer to overlapping topological units, such
as nodes and edges (see Overlapping).

Link : see Edge.

Markovian process : stochastic process whose next state depends only on
the current system state.

Matricization : algebraic operation which transforms a tensor into another
tensor by changing its shape and dimension, without loss of information.

Mean path length : see Average path length.

Mesoscale : organization of nodes into groups.

Metabolic networks : networks where nodes are metabolites and edges indi-
cate their relationships (physical, chemical, etc.).

Metabolome : see Metabolic networks.

Minimum description length (MDL) : a principle which formalizes Oc-
cam’s razor to describe data by using the shortest possible description in terms
of bit strings. It is used as a model selection principle: the shortest descrip-
tion corresponds to the most parsimonious description of the data. See also
Description length.

Modularity : a measure of the organization of a network in modules (or
groups). It quantifies the tendency of modules to be more dense than expected
under the assumption that edges were randomly distributed according to the
network?s configuration model. See also Modularity and Configuration model.

Modularity maximization : optimization procedure, based on modularity,
used in community detection to identify groups or communities in a network.
See also Modularity.

Module : see Group.

Molecular networks : networks where nodes are molecules (e.g., genes, pro-
teins, metabolites, etc.) and edges indicate their relationships (physical, chem-
ical, etc.).

Monoplex network : see Complex network.

Motifs : subgraphs, usually consisting of a few nodes, which significantly recur
within a network.

Multiplex network : multilayer network where layers are interconnected with
each other in such a way that each node in a layer is linked to its own replicas
in other layers.

Multiplexity : feature of a system where nodes exhibit multiple types of pair-
wise interactions. Also referred to single nodes (e.g., node multiplexity) and
edges (e.g., edge multiplexity) in presence of overlapping nodes and edges, re-
spectively.

Multilayer network : a network consisting of networks coupled together by
structural or functional relationships. Also known as a system of systems. Spe-
cial types of multilayer networks are Edge-Colored multigraphs, Multiplex net-
works and Interdependent networks.
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Multilayer adjacency tensor : a self-consistent mathematical representation
of a multilayer network, where entries encode connections between nodes within
and across layers.

Multilayer Laplacian tensor : Laplacian tensor corresponding to a multi-
layer adjacency tensor.

Multimap : information-theoretic method to identify communities in a multi-
layer network. It is based on the multilayer generalization of the map equation,
which in turn is based on multilayer random walks and the compression of their
trajectories. The optimization procedure is based on the minimum description
length principle.

Mutual information : symmetric information-theoretic measure to quantify
the similarity between two probability distributions. It can be obtained as a
special case of the Kullback-Leibler divergence.

Navigability : feature of a complex network describing and quantifying how
easy it is to explore its structure in terms of a specific dynamics (e.g., a random
walk).

Network : Mathematical object composed by a set of nodes and a set of edges,
which are ordered pairs of nodes.

Network of layers : connectivity pattern (i.e., a complex network) describing
how layers within a multilayer network are coupled together.

Node : fundamental unit of a complex network, used for the abstract represen-
tation of an entity (e.g., a protein, a neuron, an individual, a geographic area,
a word, etc.)

Nonlinear dynamics : dynamical process describing a system in which a
change of the output is not proportional to a change of the input.

Non-Markovian process : a stochastic process which is not Markovian.

Normalized information loss : information-theoretic measure used to quan-
tify the goodness of a network partition.

Null network model : network model, often based on stochastic processes,
used as a null model for the statistical analysis of a complex network.

Overlapping, node : a node with more than one replica/state-node in a
multilayer network.

Overlapping, edge : an edge connecting the same pair of nodes across at least
two layers in a multilayer network.

Page-rank centrality : a type of eigenvector centrality which overcomes the
limitations of eigenvector and Katz centralities. It can also be interpreted as
the steady state of a random walk (i.e., a Markov process) governed by a special
transition matrix known as Google matrix.

Partition : in the context of community detection (see Group), it refers to the
assignment of each node to (at least) one community. The set of communities
defines a partition.

Partition function : in the statistical field theory of information dynamics
on networks, it corresponds to the summation of the stream sizes and it is used
to normalize the density matrix.

Path : sequence of nodes and edges traversed by a walker. It is a trail with no
repeated nodes and edges.
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Percolation : Process that consists of removing a fraction of nodes (site per-
colation) and/or links (bond percolation) following a given criterion, to later
compute statistical and geometrical properties of the remaining subsystem.

Phase transition : change in a system from one state to another characterized
by a different microscopic organization. The order parameter characterizes the
system organization and changes with infinitesimal variations of some control
parameters.

Physical node : set of state nodes (or replicas) defining the identity of a node
in a multilayer network. See also Node.

Power law : Relation between two quantities where one varies as a power of
the other. The main properties are the scale invariance and the divergence of
the moments depending on the exponent of the relation.

Protein-protein interaction networks : networks where nodes are protein
and edges indicate their relationships (physical, chemical, genetic, statistical,
etc.).

Quantum Jensen-Shannon divergence : symmetric information-theoretic
measure used to quantify the difference between two density matrices.

Quantum Jensen-Shannon distance : Square root of the Quantum Jensen-
Shannon divergence allowing one to define an information-theoretic metric.

Quantum Kullback-Leibler divergence : asymmetric information-theoretic
measure used to quantify the difference between two density matrices.

Random network model(s) : a class of models used to reproduce one or more
features observed in empirical complex networks. They are based on mech-
anistic assumptions where connectivity is built by means of stochastic rules
(e.g., the rules for growth or for wiring two nodes) defining network ensembles.
Popular examples of random network models are the Erdös-Rényi model, the
Barabasi-Albert model, the Stochastic Block Model (SBM), the Lancichinetti-
Fortunato-Radicchi (LFR) model, the Configuration Model (CM), as well as
the family of Exponential Random Graph Models (ERGM).

Reducibility : procedure devoted to coarse-grain a multilayer network to re-
duce its size and complexity. It usually depends on a cost function, quantifying
the loss of information during the coarse-graining procedure, and can be either
based on structural or functional measures.

Replica, node : see State node.

Random failure : Unpredictable failure occurring in a network, usually mod-
eled as randomly uniform removal of nodes and/or links.

Random walk : a walk where the choice of edges to use (or the choice of nodes
to jump into) is made stochastically, according to some transition rules.

Self-loop : an edge which starts and ends in the same node of a network.

Shannon entropy : average amount of information or surprise a receiver has
with respect to the possible outcomes of a message sent, through a communica-
tion channel, by a sender. Often, it is used to quantify the level of uncertainty
about the value of a stochastic variable with known probability distribution:
to this extent, it can be understood as a measure of flatness, i.e., how such a
distribution is uniform.

Shortest path : among all paths connecting two nodes, it is the one with
shortest length.

Similarity : a measure of correlation between two vectors (or matrices).
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SNXI decomposition, dynamical : special decomposition of a multilayer
dynamics in terms of four different contributions, each one corresponding to a
specific set of dynamical effects: self-relationships, endogenous, exogenous and
intertwining.

SNXI decomposition, structural : special decomposition of a multilayer
adjacency tensor in terms of the contributions of four different tensors, each
one corresponding to a specific set of structural relationships: self-relationships,
endogenous, exogenous and intertwining interactions.

Social networks : networks where nodes are individuals with edges indicating
the presence of a social relationship (e.g., trust, friendship, business, etc) among
them.

Socio-technical networks : networks where nodes are individuals and non-
human units (e.g., machines), or individuals within a technological context
(e.g., online platforms), with edges indicating the presence of a relationship
among them.

Socio-ecological networks : networks where nodes are individuals and eco-
logical units (e.g., species), or individuals within an ecological context, with
edges indicating the presence of a relationship among them.

Spectral entropy, network : see Von Neumann entropy.

State node : node defined within a specific layer of a multilayer network. Also
known as node replica.

Statistical physics : area of physics focused on the study of large ensembles
of interacting entities and whose scope is to explain system-wide properties
based on the local interactions.

Stochastic block model : random network model that produces synthetic
networks with mesoscale structure (e.g., communities, core-periphery, etc) gov-
erned by a specific connectivity matrix fixing the probability that two nodes
are linked within a block (i.e., a group) or across blocks.

Strength centrality : centrality descriptor summing the weights of edges (in-
coming, outgoing, inter-layer, intra-layer) incident on one node. For undirected
networks, it coincides with the degree centrality.

Strongly connected component : in a directed network, subsets of the nodes
that are mutually reachable by directed paths.

Structure : referred to the topology of a complex network.

Structural network : a complex network where edges encode measures of
intensity or relationships, not based on statistical correlations or similarities,
between any pair of nodes. Functional network for comparison.

Supra-adjacency matrix : a possible mathematical representation of a mul-
tilayer network, where entries encode connections between nodes within and
across layers.

Supra-Laplacian matrix : Laplacian matrix corresponding to a supra-
adjacency matrix.

System : set of units characterized by interactions and/or other types of re-
lationships. Usually used as a synonym of complex network, although not all
complex systems admit a complex network representation.

System of systems : see Multilayer network.
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Targeted attacks : Removal of nodes and/or links based on some a priori
knowledge about the network.

Temporal network : a complex network where nodes and links can change
over time.

Time-varying network : see Temporal network.

Topology : see Structure.

Tensor : a fundamental mathematical object able to encode multilinear rela-
tionships between units defined in a vector space.

Trail : sequence of nodes and edges traversed by a walker. It is an open walk
with no repeated edges.

Transitivity : see Clustering.

Transportation networks : networks where nodes are geographic points (e.g.,
stations, airports) and edges indicate the presence of a route among them.

Triadic closure : see Clustering.

Urban networks : networks where nodes are geographic areas within a city
and edges indicate their physical connections (e.g., roads).

Versatility : generalization of the concept of node centrality to the realm of
multilayer networks.

Vertex : see Node.

Von Neumann entropy : mixedness of information streams obtained from
the network density matrix. It is the generalization of Shannon entropy to the
case of quantum systems and complex networks.

Walk : sequence of nodes and edges traversed by a walker. Nodes and edges
can be repeated. If a walk starts and ends at the same node, it is called a closed
walk, otherwise it is an open walk.

Watts-Strogatz model : Network model characterized, simultaneously, by a
high clustering and a low average path length, obtained by rewiring a fraction
of the links of one-dimensional ring lattices.

Weakly connected component : in a directed network, subsets of the nodes
that are reachable by undirected paths.
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