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Chapter 1. Data Engineering
Described

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the first chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at
book_feedback@ternarydata.com.

Since this book is called Fundamentals of Data Engineering, it’s critical
that we clearly define what we mean by data engineering and data engineer.
Terms matter, and there’s a lot of confusion about what data engineering
means, and what data engineers do. Let’s look at the landscape of how data
engineering is described, and develop some nomenclature we can use
throughout this book.

What Is Data Engineering?
So what is data engineering? This is a great question. Though data
engineering has existed in some form since companies have done things
with data—such as data analysis and reports—it came into sharp focus
alongside the rise of data science in the 2010s. But what is data engineering,
exactly? Let’s start with some real talk—there are endless definitions of
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data engineering. A Google exact-match search for “what is data
engineering?” returns over 91,000 unique results.

Let’s look at a few examples to illustrate the different ways data
engineering is defined:

Data engineering is a set of operations aimed at creating interfaces and
mechanisms for the flow and access of information. It takes dedicated
specialists—data engineers—to maintain data so that it remains
available and usable by others. In short, data engineers set up and
operate the organization’s data infrastructure preparing it for further
analysis by data analysts and scientists.

The first type of data engineering is SQL-focused. The work and primary
storage of the data is in relational databases. All of the data processing
is done with SQL or a SQL-based language. Sometimes, this data
processing is done with an ETL tool. The second type of data engineering
is Big Data-focused. The work and primary storage of the data is in Big
Data technologies like Hadoop, Cassandra, and HBase. All of the data
processing is done in Big Data frameworks like MapReduce, Spark, and
Flink. While SQL is used, the primary processing is done with
programming languages like Java, Scala, and Python.

In relation to previously existing roles, the data engineering field could
be thought of as a superset of business intelligence and data warehousing
that brings more elements from software engineering. This discipline also
integrates specialization around the operation of so-called “big data”
distributed systems, along with concepts around the extended Hadoop
ecosystem, stream processing, and in computation at scale.

Data engineering is all about the movement, manipulation, and
management of data.

Wow! That’s only a handful of definitions, and you can see there’s a lot of
variety. Clearly, there is not yet a consensus around what data engineering
means. If you’ve been wondering about the term “data engineering”, your
confusion is understandable.
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This book provides a snapshot of data engineering today. To the fullest
extent, we’re focusing on the “immutables” of data engineering—what
hasn’t changed, and what won’t likely change in the future. There are no
guarantees, as this field is rapidly evolving. That said, we think we’ve
captured a great framework to guide you on your data engineering journey
for many years to come.

Before we define data engineering, you should understand a brief history of
data engineering, how it’s evolved, and where it fits into the general
backdrop of data and technology.

Evolution of the Data Engineer
To understand data engineering today and tomorrow, it helps to have the
context of how the field evolved. This is not a history book, but looking to
the past is invaluable in understanding where we are today, and where
things are going. There’s a common theme that recurs constantly in data
engineering: what’s old is new again.

The early days: 1980 to 2000, from data warehousing to the web
The birth of the data engineer arguably has its roots in data warehousing,
dating as far back as the 1970s, with the “business data warehouse” taking
shape in the 1980s, and Bill Inmon officially coining the term “data
warehouse” in 1990. After the relational database and SQL were developed
at IBM, Oracle popularized the technology. As nascent data systems grew,
businesses needed dedicated tools and data pipelines for reporting and
business intelligence (BI). To help people properly model their business
logic in the data warehouse, Ralph Kimball and Bill Inmon developed their
respective data modeling techniques and approaches, which are still widely
used today.

Data warehousing ushered in the first age of scalable analytics, with new
MPP systems (massively parallel processing databases) coming on the
market and supporting unprecedented volumes of data. Roles such as BI
engineer, ETL developer, and data warehouse engineer addressed the



various needs of the data warehouse. Data warehouse and BI engineering
was a precursor to today’s data engineering, and still play a central role in
the discipline.

Around the mid to late 1990s, the Internet went mainstream, creating a
whole new generation of web-first companies such as AOL, Altavista,
Yahoo, Amazon. The dot-com boom spawned a ton of activity in web
applications, as well as the backend systems to support them—servers,
databases, storage. Much of the infrastructure was expensive, monolithic,
and heavily licensed. The vendors selling these backend systems didn’t
foresee the sheer scale of the data that web applications would produce.

The early 2000s: The Birth of Contemporary Data Engineering
Fast forward to the early 2000s; the dot-com bust of the late 90s left behind
a small cluster of survivors. Some of these companies, such as Yahoo,
Google, Amazon, would grow into powerhouse tech companies. Initially,
these companies continued to rely on the traditional monolithic, relational
databases and data warehouses of the 1990s, pushing these systems to the
limit. As these systems buckled, new solutions and approaches were needed
to handle the growing volume, variety, and velocity of data in a cost-
effective, scalable, reliable, and fault-tolerant manner.

Coinciding with the explosion of data, commodity hardware—servers, ram,
disks, flash drives, etc.—also became cheap and ubiquitous. To handle the
explosion of data, several innovations allowed distributed computation and
storage on massive computing clusters. Without realizing the future
implications, these innovations started decentralizing and breaking apart
traditionally monolithic services. This opened an era of “big data”, which
Oxford Dictionary defines as “extremely large data sets that may be
analyzed computationally to reveal patterns, trends, and associations,
especially relating to human behavior and interactions.”  Another popular
and succinct description of big data are the 3 V’s of data—velocity, variety,
and volume.

In 2003, Google published a paper on the Google File System and shortly
thereafter in 2004, a paper on MapReduce, an ultra-scalable data processing
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paradigm. In truth, big data has earlier antecedents in MPP data warehouses
and data management for experimental physics projects, but Google’s
publications constituted a “big bang” for data technologies and the cultural
roots of data engineering as we know it today.

The Google papers inspired engineers at Yahoo to develop and later open
source Hadoop in 2006.  The impact of Hadoop cannot be overstated.
Software engineers interested in large scale data problems were drawn to
the possibilities of Hadoop and its ecosystem of technologies. As
companies of all sizes and types saw their data grow into many terabytes
and even petabytes, the era of the big data engineer was born.

Around the same time, Amazon  had to keep up with their own exploding
data needs, and created elastic computing environments (Amazon EC2),
infinitely scalable storage systems (Amazon S3), highly scalable NoSQL
databases (DynamoDB), streaming pipelines (Kinesis) and many other core
data building blocks. Amazon elected to offer these services for both
internal and external consumption through Amazon Web Services (AWS),
which would go on to become the first popular public cloud. AWS created
an ultra-flexible pay-as-you-go resource marketplace by virtualizing and
reselling vast pools of commodity hardware. Instead of purchasing
hardware for a data center, developers could simply rent compute and
storage from AWS. Turns out, AWS became a very profitable driver for
Amazon’s growth! Other public clouds would soon follow, such as Google
Cloud, Microsoft Azure, OVH, Digital Ocean. The public cloud is arguably
one of the biggest innovations of the 21st century and spawned a revolution
in the way software and data applications are developed and deployed.

The early big data tools and public cloud laid the foundation upon which
today’s data ecosystem is built. The modern data landscape—and data
engineering as we know it today—would not exist without these
innovations.

The 2000s and 2010s: Big Data Engineering
Open source big data tools in the Hadoop ecosystem quickly matured and
spread from Silicon Valley companies to tech-savvy companies all over the
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world. For the first time, businesses anywhere in the world could use the
same bleeding edge big data tools developed by the top tech companies.
You could choose the latest and greatest—Hadoop, Pig, Hive, Dremel,
HBase, Cassandra, Spark, Presto, and numerous other new technologies that
came on the scene. Traditional enterprise-oriented and GUI-based data tools
suddenly felt outmoded, and code was in vogue with the ascendance of
MapReduce. The authors were around during this time, and it felt like old
dogmas died a sudden death upon the altar of “big data.”

The explosion of data tools in the late 2000s and 2010s ushered in the “big
data engineer”. To effectively use these tools and techniques—namely the
Hadoop ecosystem (Hadoop, YARN, HDFS, Map Reduce, etc)—big data
engineers had to be proficient in software development and low-level
infrastructure hacking, but with a shifted focus. Big data engineers were
interested in maintaining huge clusters of commodity hardware to deliver
data at scale. While they might occasionally submit pull requests to Hadoop
core code, they shifted their focus from core technology development to
data delivery. They also had the responsibility of working with data
scientists to write low-level map-reduce jobs in a variety of languages, but
especially in Java.

Big data quickly became a victim of its own success. As a buzzword, “big
data” gained popularity during the early 2000s through the mid-2010s,
peaking around 2014. Big data captured the imagination of companies
trying to make sense of the ever-growing volumes of data, as well as the
endless barrage of shameless marketing from companies selling big data
tools and services. Due to the immense hype, it was common to see
companies using big data tools for small data problems, sometimes standing
up a Hadoop cluster to process just a few gigabytes. It seemed like
everyone wanted in on the big data action. As Dan Ariely tweeted, “Big
data is like teenage sex: everyone talks about it, nobody really knows how
to do it, everyone thinks everyone else is doing it, so everyone claims they
are doing it.”

To get an idea of the rise and fall of big data, see Figure 1-1 for a snapshot
of Google Trends for the search term ‘big data’.
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Figure 1-1. Google Trends for “big data”

Despite the popularity of the term, big data has lost steam since the mid
2010’s. What happened? One word—simplification. Despite the power and
sophistication of open source big data tools, managing them was a lot of
work, and required a lot of attention. Oftentimes, companies employed
entire teams of “big data engineers”—costing millions of dollars a year—to
babysit these platforms. In addition, this new breed of data engineer had not
been taught to work closely with business stakeholders, so it was a
challenge to deliver insight the business needed.

Open-source developers, clouds, and 3rd parties started looking for ways to
abstract, simplify, and make big data available to all, without the high
administrative overhead and cost of managing their own clusters, installing,
configuring, and upgrading their own open-source code, etc. The term “big
data” is essentially a relic to describe a certain time and approach to
handling large amounts of data. In truth, data is moving at a faster rate than
ever and growing ever larger, but big data processing has become so
accessible that it no longer merits a separate term; every company aims to
solve its data problems, regardless of actual data size. Big data engineers
are now simply data engineers.

The 2020s: Engineering for the Data Life Cycle
At the time of this writing, the data engineering role is evolving rapidly; we
expect this evolution to continue at a rapid clip for the foreseeable future.
Whereas data engineers historically spent their time tending to the low-level
details of monolithic frameworks such as Hadoop, Spark, or Informatica,
the trend is moving toward the use of decentralized, modularized, managed,
and highly abstracted tools. Indeed, data tools have proliferated at an
astonishing rate (see Figure 1-2). New popular trends in the early 2020’s
include “The Modern Data Stack”, which represents a collection of off-the-
shelf open source and 3rd party products assembled to make the lives of
analysts easier. At the same time, data sources and data formats are growing
both in variety and size. Data engineering is increasingly a discipline of



interoperation, of interconnecting numerous technologies like lego bricks to
serve ultimate business goals.

Figure 1-2. Data tools in 2012 vs 2021

In fact, the authors believe that data engineers should focus on the
abstraction of data processing stages in what we term the data engineering
lifecycle (see Figure 1-3).



Figure 1-3. The Data Engineering Lifecycle

The data engineering lifecycle paradigm shifts the conversation away from
technology, toward the data itself and the end goals that it must serve. The
stages of the lifecycle are:



Generation

Ingestion

Transformation

Serving

Storage

We put storage last because it plays a role in all the other stages. We also
have a notion of undercurrents, i.e., ideas that are critical across the full
lifecycle. We will cover the lifecycle more extensively in Chapter 2, but we
outline it here because it is critical to our definition of data engineering.

The data engineer we discuss in this book can be described more precisely
as a data lifecycle engineer. With greater abstraction and simplification, a
data lifecycle engineer is no longer encumbered by the gory details of
yesterday’s big data frameworks. While data engineers maintain skills in
low-level data programming and use these as required, they increasingly
find their role focused on things higher in the value chain—data
management, DataOps,  data architecture, orchestration, and general data
lifecycle management.

As tools and workflows simplify, we’ve seen a noticeable shift in the
attitudes of data engineers. Instead of focusing on who has the “biggest
data”, open-source projects and services are increasingly concerned with
managing and governing data, making it easier to use and discover, and
improving its quality. Data engineers are now conversant in acronyms such
as CCPA and GDPR;  as they engineer pipelines, they concern themselves
with privacy, anonymization, data garbage collection and compliance with
regulations.

What’s old is new again. Now that many of the hard problems of
yesterday’s data systems are solved, neatly productized, and packaged,
technologists and entrepreneurs have shifted focus back to the “enterprisey”
stuff, but with an emphasis on decentralization and agility that contrasts
with the traditional enterprise command-and-control approach. We view the
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present as a golden age of data management. Data engineers managing the
data engineering lifecycle have better tools and techniques at their disposal
than have ever before. We will discuss the data engineering lifecycle, and
its undercurrents, in greater detail in the next chapter.

Data Engineering Defined
Okay, now that we’ve surveyed the recent past, we’re ready to lay out our
definition of data engineering. Let’s unpack the common threads. In
general, a data engineer gets data, stores it, and prepares it for consumption
by data scientists and analysts.

For the purpose of this book, we define data engineering as follows:

Data engineering

The development, implementation, and maintenance of systems and
processes that take in raw data and produce high-quality, consistent
information that supports downstream use cases, such as analysis and
machine learning. Data engineering is the intersection of data
management, DataOps, data architecture, orchestration, and software
engineering.

Data engineers

Manage the data engineering lifecycle (see Figure 1-3) beginning with
ingestion and ending with serving data for use cases, such as analysis or
machine learning.

Put another way, data engineers produce reliable data that serves the
business with predictable quality and meaning. The data engineering
workflow is built atop systems supporting the data model, underpinned by
the management, and configuration of storage and infrastructure. Data
engineering systems and outputs are the backbones of successful data
analytics and data science.



The data engineering workflow is roughly as follows (see Figure 1-4). This
is the general process through which all data in an organization flows. Raw
data is ingested from source systems, stored and processed, and served as
conformed data models and datasets to consumers such as data scientists
and data analysts. We’ll return to the data engineering workflow throughout
the book.

Figure 1-4. The Data Engineering Workflow

Data Engineering and Data Science
Where does data engineering fit in with data science? There’s some debate,
with some arguing data engineering is a subdiscipline of data science. We
believe data engineering is separate from data science and analytics. They
complement each other, but they are distinctly different. Data engineering
sits upstream from data science. Data engineers serve data scientists and
other data customers (Figure 1-5).



Figure 1-5. Data engineering sits upstream from data science

To justify this position, let’s consider the Data Science Hierarchy of
Needs  (see Figure 1-6). In 2017, Monica Rogati wrote an article by this
title that showed where AI/ML sat in proximity to less “sexy” areas such as
data movement/storage, collection, and infrastructure.
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Figure 1-6. The Data Science Hierarchy of Needs (Source: Rogati)

It is now widely recognized that data scientists spend an estimated 70% to
90% of their time on the bottom 3 parts of the hierarchy—gathering data,
cleaning data, processing data—and only a small slice of their time on
analysis and machine learning. Rogati argues that companies need to build a
solid data foundation—the bottom 3 levels of the hierarchy—before
tackling areas such as AI and ML.

Data scientists aren’t typically trained to engineer production-grade data
systems, and they end up doing this work haphazardly because they lack the
support and resources of a data engineer. In an ideal world, data scientists
should spend 90%+ of their time focused on the top layers of the pyramid—
analytics, experimentation, and machine learning. When data engineers
focus on these bottom parts of the hierarchy, they build a solid foundation
upon which data scientists can succeed.

With data science driving advanced analytics and machine learning, data
engineering straddles the divide between getting data and getting value
from data (see Figure 1-7). We believe data engineering will rise to be equal
in importance and visibility to data science, with data engineers playing a
vital role in making data science successful in production.

Figure 1-7. A data engineer gets data and provides value from data

Data Engineering Skills and Activities
The skillset of a data engineer encompasses what we call the
“undercurrents” of data engineering—data management, data ops, data



architecture, and software engineering. It requires an understanding of how
to evaluate data tools, and how they fit together across the data engineering
lifecycle. It’s also necessary to know how data is produced in source
systems, as well as how analysts and data scientists will consume and create
value from data after it is processed and curated. Finally, a data engineer
juggles a lot of complex moving parts, and must constantly optimize along
the axes of cost, agility, simplicity, reuse, and interoperability (Figure 1-8).
We’ll cover these topics in more detail in upcoming chapters.

Figure 1-8. The balancing act of data engineering

As we discussed, in the recent past, a data engineer was expected to know
and understand how to use a small handful of powerful and monolithic
technologies to create a data solution. Utilizing these technologies (Hadoop,
Spark, Teradata, and many others) often required a sophisticated
understanding of software engineering, networking, distributed computing,
storage, or other low-level details. Their work would be devoted to cluster
administration and maintenance, managing overhead, and writing pipeline
and transformation jobs, among other tasks.

Nowadays, the data tooling landscape is dramatically less complicated to
manage and deploy. Modern data tools greatly abstract and simplify
workflows. As a result, data engineers are now focused on balancing the
simplest and most cost-effective, best-of-breed services that deliver value to
the business. The data engineer is also expected to create agile data
architectures that evolve as new trends emerge.

What are some things a data engineer does NOT do? A data engineer
typically does not directly build machine learning models, create reports or
dashboards, perform data analysis, build KPIs, or develop software
applications. That said, a data engineer should have a good functioning
understanding of all of these areas, in order to best serve stakeholders.



Data Maturity and the Data Engineer
The level of data engineering complexity within a company depends a great
deal on the company’s data maturity. This, in turn, has a significant impact
on a data engineer’s day-to-day job responsibilities, and potentially on their
career progression as well. What is data maturity, exactly?

Data maturity is the progression toward higher data utilization, capabilities,
and integration across the organization, but data maturity does not simply
depend on the age or revenue of a company. An early-stage startup can have
greater data maturity than a 100-year-old company with annual revenues in
the billions. What matters is how data is leveraged as a competitive
advantage.

There are many versions of data maturity models, such as Data
Management Maturity (DMM)  and others, and it’s hard to pick one that is
both simple and useful for data engineering. So, we’ll create our own
simplified data maturity model. In our data maturity model (Figure 1-9), we
have three stages—starting with data, scaling with data, and leading with
data. Let’s look at each of these stages, and what a data engineer typically
does at each stage.

Figure 1-9. Our simplified data maturity model for a company
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Stage 1: Starting with data
A company getting started with data is, by definition, in the very early
stages of its data maturity. The company may have fuzzy, loosely defined
goals, or no goals at all. Data architecture is in the very early stages of
planning and development. Adoption and utilization are likely low or
nonexistent. The data team is small, often with a headcount in the single
digits. At this stage, a data engineer is often a generalist, and will typically
play several other roles, such as data scientist or software engineer. A data
engineer’s goal is to move fast, get traction, and add value.

The practicalities of getting value from data are typically poorly
understood, but the desire exists. Reports or analyses lack formal structure,
and most requests for data are ad hoc. Machine learning is rarely successful
at this stage, and so such projects are not recommended. We’ve seen
countless data teams get stuck and fall short when they try to jump to
machine learning without building a solid data foundation. The authors
half-jokingly call themselves “recovering data scientists”, largely from
personal experience with being involved in premature data science projects
without adequate data maturity or data engineering support.

In organizations getting started with data, a data engineer should focus on
the following:

Get buy-in from key stakeholders, including executive
management. Ideally, the data engineer should have a sponsor for
key initiatives to design and build a data architecture to support the
company’s goals.

Define the right data architecture (usually solo, since a data
architect likely isn’t available). This means determining business
goals, and what competitive advantage you’re aiming to achieve
with your data initiative. Work toward a data architecture that
supports these goals. See Chapter 3 for our advice on “good” data
architecture.
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Identify and audit data that will support key initiatives, and operate
within the data architecture that you designed.

Build a solid data foundation upon which future data analysts and
data scientists can generate reports and models that provide
competitive value. In the meantime, you may also have to generate
these reports and models until this team is hired.

Things to watch out for:

This is a delicate stage with lots of pitfalls.

Organizational willpower may wane.

Getting quick wins will establish the importance of data within the
organization. Just keep in mind that quick wins will likely create
technical debt. Have a plan to reduce this debt, as it will otherwise
add friction for future delivery.

Be visible and continue getting support.

Avoid undifferentiated heavy lifting. Don’t get caught in the trap of
boxing yourself in with unnecessary technical complexity. Use off-
the-shelf, turnkey solutions wherever possible.

Build custom solutions and code only where you’re creating a
competitive advantage.

Stage 2: Scaling with data
At this point, a company has moved away from ad-hoc data requests and
has formal data practices. Now the challenge is creating scalable data
architectures and planning for a future where the company is truly data-
driven. Data engineering roles move from generalists to specialists, with
people focusing on particular aspects of the data engineering lifecycle.

In organizations that are in Stage 2 of data maturity, a data engineer’s goals
are to:

Establish formal data practices



Create scalable and robust data architectures

Adopt DevOps and DataOps practices

Build systems that support machine learning

Continue to avoid undifferentiated heavy lifting and customizing
only where there’s a competitive advantage

We will return to each of these goals later in the book.

Things to watch out for:

As we grow more sophisticated with data, there’s a temptation to
adopt bleeding-edge technologies based on social proof from
Silicon Valley companies. This is rarely the best use of your time
and energy. Any technology decisions should be driven by the
value that they’ll deliver to your customers.

The main bottleneck for scaling is not cluster nodes, storage, or
technology, but the data engineering team itself. Focus on solutions
that are simple to deploy and manage to expand your team’s
throughput.

You’ll be tempted to frame yourself as a technologist, as a data
genius who can deliver magical products. Shift your focus instead
to pragmatic leadership—begin transitioning to the next maturity
stage now. Communicate with other teams about the practical
utility of data. Teach the organization how to consume and
leverage data.

Stage 3: Leading with data
At this stage, the company leads with data and is data-driven. The
automated pipelines and systems created by data engineers allow people
within the company to do self-service analytics and machine learning.
Introducing new data sources is seamless and tangible value is derived.
Data engineers implement formal controls and practices to ensure data is



always available to the people and systems that need it. Data engineering
roles continue to specialize more deeply than in Stage 2.

In organizations that are in Stage 3 of data maturity, a data engineer will
continue building on prior stages, plus:

Create automation for the seamless introduction and usage of new
data.

Focus on building custom tools and systems that leverage data as a
competitive advantage.

Focus on the “enterprisey” aspects of data. Data management, data
serving, DataOps, etc. Deploy tools that expose and disseminate
data throughout the organization, including data catalogs, data
lineage tools, metadata management systems, etc.

Collaborate efficiently with software engineers, machine learning
engineers, analysts, etc. Create a community and environment
where people can collaborate and speak openly, no matter what
role or position you’re in.

Things to watch out for:

At this stage, complacency is a significant danger. Once
organizations reach Stage 3, they must focus constantly on
maintenance and improvement or they risk falling back to a lower
stage.

Technology distractions are a bigger danger here than in the other
stages. There’s a temptation to pursue expensive hobby projects
that don’t deliver value to the business. Utilize custom-built
technology only where it provides a competitive advantage.

The Background and Skills of a Data Engineer
Because data engineering is a relatively new discipline, there is little
available in the way of formal training to enter the field. Universities don’t



have a common data engineering path. Although there are a handful of data
engineering boot camps and online tutorials covering random topics, a
common curriculum for the subject doesn’t yet exist. Those entering data
engineering arrive with varying backgrounds in education, career, and
skillset. Everyone entering the field should expect to invest a significant
amount of time in self-study (including reading this book).





Figure 1-10. Data engineering is the fastest-growing tech occupation (2020)

If you’re pivoting your career into data engineering (see Figure 1-10 for
recent growth of the field), we’ve found that the transition is easiest when
moving from an adjacent field, such as software engineering, ETL
development, database administration, data science, and data analysis.
These disciplines tend to be “data aware” and provide good context for data
roles in an organization. They also tend to equip folks with the relevant
technical skills and context to solve data engineering problems.

Despite the lack of a formalized path, there is a requisite body of
knowledge that we believe a data engineer should know in order to be
successful. By definition, a data engineer must understand both data and
technology. With respect to data, this entails knowing about various best
practices around data management. On the technology end, a data engineer
must be aware of various options for tools, their interplay, and their
tradeoffs. This requires a good understanding of software engineering,
DataOps, and data architecture.

Zooming out, a data engineer must also understand the requirements of data
consumers—data analysts and data scientists—as well as the broader
implications of data across the organization. Data engineering is a holistic
practice—the best data engineers view their responsibilities through both
business and technical lenses.

Business Responsibilities
The macro responsibilities we list below aren’t just important for a data
engineer, but for anyone working in a data or technology field. Because a
simple Google search will yield tons of resources to learn about these areas,
we will simply list them for brevity:

Know how to communicate with nontechnical and technical people.

Communication is key, and you need to be able to establish rapport and
trust with people across the organization. We suggest paying close
attention to organizational hierarchies, who reports to whom, how
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people interact with each other, and which silos exist. These
observations will be invaluable to your success.

Understand how to scope, and how to gather business and product
requirements.

Simply put, you need to know what to build and make sure that your
stakeholders agree with your assessment. In addition, develop a sense of
how data and technology decisions impact the business.

Understand the cultural foundations of Agile, DevOps, and DataOps.

Many technologists mistakenly believe these practices are solved
through technology. This is dangerously wrong; in fact, they are
fundamentally cultural, requiring buy-in across the organization.

Cost control.

You’ll be successful when you can keep costs low while providing
outsized value. Know how to optimize for time to value, the total cost of
ownership, and opportunity cost. Learn to monitor costs to avoid
surprises.

Continuously learn.

The data field feels like it’s changing at light speed. People who succeed
in it are great at picking up new things while sharpening their
fundamental knowledge. They’re also good at filtering, determining
which new developments are most relevant to their work, which are still
immature, and which are just fads. Stay abreast of the field and learn
how to learn.

A successful data engineer always zooms out to understand the big picture,
and how to achieve outsized value for the business. Communication is key,
both for technical and non-technical people. We often see data teams
succeed or fail based upon their communication with other stakeholders;
success or failure is very rarely a technology issue. Knowing how to



navigate an organization, scope and gather requirements, control costs, and
continuously learn will set you apart from the data engineers who rely
solely on their technical abilities to carry their career.

Technical Responsibilities
At a high level, you must understand how to build architectures that
optimize performance and cost, whether the components are prepackaged or
homegrown. Ultimately, architectures and constituent technologies are
building blocks to serve the data engineering lifecycle. Recall the stages of
the data engineering lifecycle (Figure 1-3):

Data generation

Data ingestion

Data storage

Data transformation

Serving data

The undercurrents of the data engineering lifecycle are:

Data management

DataOps

Data architecture

Software engineering

Zooming in a bit, we discuss some of the tactical data and technology skills
you’ll need as a data engineer here; we will discuss these in much more
detail in subsequent chapters.

People often ask—should a data engineer know how to code? Short answer
—yes. A data engineer should have production-grade software engineering
chops. We note that the nature of software development projects undertaken
by data engineers has changed fundamentally in the last few years. A great



deal of low-level programming effort previously expected of engineers is
now replaced by fully managed services, managed open-source, and simple
plug-and-play software-as-a-service (SAAS) offerings. For example, data
engineers now focus on high-level abstractions, writing pipelines as code
within an orchestration framework, or using dataframes inside Spark
instead of having to worry about the nitty-gritty of Spark internals.

Even in a more abstract world, software engineering best practices provide
a competitive advantage, and data engineers who can dive into the deep
architectural details of a codebase give their companies an edge when
specific technical needs arise. In short, a data engineer who can’t write
production-grade code will be severely handicapped, and we don’t see this
changing anytime soon. Data engineers remain software engineers, in
addition to their many other roles.

What languages should a data engineer know? We divide data engineering
programming languages into primary and secondary categories. At the time
of this writing, the primary languages of data engineering are SQL, Python,
a JVM language (usually Java or Scala), and Bash:

SQL

The most common interface for databases and data lakes. After briefly
being sidelined by the need to write custom map-reduce code for big
data processing, SQL (in various forms) has reemerged as the lingua
franca of data.

Python

The bridge language between data engineering and data science.
Further, a growing number of data engineer tools are written in Python
or have Python APIs. It’s known as “the second-best language at
everything.” Python underlies popular data tools such as Pandas,
Numpy, Airflow, SKLearn, Tensorflow, Pytorch, PySpark, and
countless others. Python acts as the glue between underlying
components and is frequently a first-class API language for interfacing
with a framework.



JVM languages, such as Java and Scala

Popular for Apache open source projects such as Spark, Hive, Druid,
and many more. The JVM is generally more performant than Python
and may provide access to lower-level features than a Python API (For
example, this is the case for Apache Spark and Beam). If you’re using a
popular open-source data framework, understanding Java or Scala will
be very helpful.

Bash

The command line interface for Linux operating systems. Knowing
Bash commands and being comfortable using CLI’s will greatly
improve your productivity and workflow when you need to script or
perform OS operations. Even today, data engineers frequently use
command line tools like Awk or sed to process files in a data pipeline or
call Bash commands from orchestration frameworks. If you’re using
Windows, feel free to substitute Powershell for Bash.



THE UNREASONABLE EFFECTIVENESS OF SQL
The advent of map reduce and the “Big Data” era relegated SQL to
passé status. Since then, a variety of developments have dramatically
enhanced the utility of SQL in the data engineering life cycle. Spark
SQL, BigQuery, Snowflake, and many other data tools can process
massive amounts of data using declarative, set-theoretic SQL
semantics; SQL is also supported by many streaming frameworks, such
as Flink, Beam, and Kafka. We believe that competent data engineers
should be highly proficient in SQL.

Are we saying that SQL is an end-all-be-all language? Not at all. SQL
is a powerful tool that can quickly solve many complex analytics and
data transformation problems. Given that time is a primary constraint
for data engineering team throughput, a tool that combines simplicity
and high productivity should be embraced. Data engineers also do well
to develop expertise in composing SQL with other operations, either
within frameworks such as Spark and Flink or by using orchestration to
combine multiple tools. Data engineers should also learn modern SQL
semantics for dealing with JSON parsing and nested data, and consider
leveraging a SQL management framework such as DBT (Data Build
Tool).

A proficient data engineer also recognizes when SQL is not the right
tool for the job and can choose and code in a suitable alternative; while
a SQL expert could likely write a query to stem and tokenize raw text in
an NLP (natural language processing) pipeline, coding in native Spark
is a far superior alternative to this masochistic exercise.

Data engineers may also need to develop proficiency in secondary
programming languages including R, Javascript, Go, Rust, C/C++, C#,
Julia, etc. Developing in these languages is often necessary when they are
popular across the company, or to use domain-specific data tools. For
instance, Javascript has proven popular as a language for user-defined
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functions in cloud data warehouses, while C# and Powershell are important
in companies that leverage Azure and the Microsoft ecosystem.

KEEPING PACE IN A FAST-MOVING FIELD

Once a new technology rolls over you, if you’re not part of the
steamroller, you’re part of the road.

—Stewart Brand

How do you keep your skills sharp in a rapidly changing field like data
engineering? Should you focus on the latest tools or deep dive into
fundamentals? Here’s our advice: focus on the fundamentals to
understand what’s not going to change; pay attention to ongoing
developments to understand where the field is going. New paradigms
and practices are introduced all the time, and it’s incumbent on you to
stay current. Strive to understand how new technologies will be useful
in the lifecycle.

The Continuum of Data Engineering Roles, from A to B
Despite job descriptions that paint a data engineer as a “unicorn” who must
possess every data skill imaginable, data engineers don’t all do the same
type of work or have the same skillset. Just as data maturity is a helpful
guide to understand the types of data challenges a company will face as it
grows its data capability, it’s helpful to look at some key distinctions in the
types of work data engineers do. Though these distinctions are simplistic, it
clarifies what data scientists and data engineers do, and avoids lumping
either role into the “unicorn” bucket.

In data science, there’s the notion of Type A and Type B data scientists.
Type A data scientists—where A stands for Analysis—focus on
understanding and deriving insight from data. Type B data scientists—
where B stands for Building—share similar backgrounds as Type A data
scientists, and also possess strong programming skills. The Type B Data
Scientist builds systems that make data science work in production.
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Borrowing from the Type A and Type B data scientist continuum, we’ll
create a similar distinction for two types of data engineers.

Type A data engineers—A stands for Abstraction. In this case, the data
engineer avoids undifferentiated heavy lifting, keeping data architecture as
simple and abstract as possible and not re-inventing the wheel. Type A data
engineers manage the data engineering lifecycle using mostly or completely
off-the-shelf products, managed services, and tools. Type A data engineers
work at companies across industries, and across all levels of data maturity.

Type B data engineers—B stands for Build. Type B data engineers build
data tools and systems that scale and leverage a company’s core
competency and competitive advantage. In the data maturity range, a Type
B data engineer is more commonly found at companies in Stage 2 and 3
(scaling and leading with data), or when an initial data use case is so unique
and mission-critical that custom data tools are required to get started.

Type A and Type B data engineers may work in the same company, and
they may even be the same person! More commonly, a Type A data
engineer is first hired to set the foundation, with Type B data engineer skill
sets either learned or hired as the need arises within a company.

Data Engineers Inside an Organization
Data engineers don’t work in a vacuum. Depending on what they’re
working on, they will interact both with technical and non-technical people,
as well as face different directions (internal and external). Let’s explore
what data engineers do inside an organization, and who they interact with.

Internal-Facing Versus External-Facing Data Engineers
A data engineer serves several end-users and faces many internal and
external directions (Figure 1-11). Since not all data engineering workloads
and responsibilities are the same, it’s important to understand who the data
engineer serves. Depending on the end use cases, a data engineer’s primary
responsibilities are external-facing, internal-facing, or a blend of the two.



Figure 1-11. The directions a data engineer faces

An external-facing data engineer normally aligns with the users of external-
facing applications, such as social media apps, IoT devices, and e-
commerce platforms. This data engineer architects, builds, and manages the
systems that collect, store, and process transactional and event data from
these applications. The systems built by these data engineers have a
feedback loop from the application, to the data pipeline, then back to the
application (see Figure 1-12).

We note that external-facing data engineering comes with a special set of
problems. External facing query engines often handle much larger
concurrency loads than internal-facing systems; engineers also need to
consider putting tight limits on queries that users can run in order to limit
the infrastructure impact of any single user; and security is a much more
complex and sensitive problem for external queries, especially if the data
being queried is multi-tenant, i.e., data from many customers is housed in a
single table.



Figure 1-12. External-facing data engineer systems

An internal-facing data engineer typically focuses on activities crucial to
the needs of the business and internal stakeholders (Figure 1-13). Examples
include the creation and maintenance of data pipelines and data warehouses
for BI dashboards, reports, business processes, data science, and machine
learning models.

Figure 1-13. Internal-facing data engineer



External-facing and internal-facing responsibilities are often blended. In
practice, internal-facing data is usually a prerequisite to external-facing
data. The data engineer has two sets of users, with very different
requirements for query concurrency, security, etc., as mentioned above.

Data Engineers and Other Technical Roles
In practice, the data engineering lifecycle cuts across many different
domains of responsibility. Data engineers sit at the nexus of a variety of
roles, interacting with many organizational units, either directly or through
managers. Let’s look at who a data engineer may impact. We’ll start with a
discussion of technical roles connected to data engineering (Figure 1-14).

Figure 1-14. Key technical stakeholders of data engineering



In a nutshell, the data engineer is a hub between data producers, such as
software engineers and data architects, and data consumers such as data
analysts, data scientists, and machine learning engineers. In addition, data
engineers will interact with those in operational roles, such as DevOps
engineers

Given the pace at which new data roles come into vogue (analytics and
machine learning engineers come to mind), this is by no means an
exhaustive list.

Upstream stakeholders
To be successful as a data engineer, you need to understand the data
architecture you’re using or designing, as well as the source systems
producing the data you’ll need. Below we discuss a few common upstream
stakeholders you’ll encounter, such as data architects, software engineers,
and devops engineers.

Data architects

Data architects function at a level of abstraction one step removed from
data engineers. Data architects design the blueprint for organizational data
management,  mapping out processes, and overall data architecture and
systems. They also serve as a bridge between the technical and non-
technical sides of an organization. Successful data architects generally have
‘battle scars’ from extensive engineering experience, allowing them to
guide and assist engineers, while successfully communicating the
challenges of engineering to non-technical business stakeholders.

Data architects implement policies for managing data across silos and
business units, steer global strategies such as data management and data
governance, and guide major initiatives. Data architects often play a central
role in cloud migrations and greenfield cloud design, which at the time of
this writing are either inflight initiatives or on a roadmap for many
companies.

The advent of the cloud has shifted the boundary between data architecture
and data engineering. Cloud data architectures are much more fluid than on-
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premises systems, so architecture decisions that traditionally involved
extensive study, long lead times, purchase contracts, and hardware
installation are now often made during the implementation process, just one
step in a larger strategy. Nevertheless, data architects will remain important
visionaries in enterprises, working hand in hand with data engineers to
determine the big picture of architecture practices and data strategies.

Depending on the data maturity and size of a company, a data engineer may
overlap with or assume the responsibilities of a data architect. Therefore, a
data engineer should have a good understanding of architecture best
practices and approaches.

Readers will note that we have placed data architects in the upstream
stakeholder’s section. This is because data architects often help to design
application data layers that are source systems for data engineers. In
general, architects may also interact with data engineers at various other
stages of the data engineering lifecycle.

We will cover “good” data architecture in Chapter 3.

Software engineers

Software engineers build the software and systems that run a business; they
are largely responsible for generating the internal data that data engineers
will consume and process. The systems built by software engineers
typically generate application event data and logs, which are a major asset
in their own right. This internal data is in contrast to external data, pulled
from SAAS platforms or partner businesses. In well-run technical
organizations, software engineers and data engineers coordinate from the
inception of a new project to design application data for consumption by
analytics and machine learning applications.

A data engineer should work together with software engineers to
understand the applications that generate data, the volume, frequency, and
format of the data being generated, and anything else that will impact the
data engineering lifecycle, such as data security and regulatory compliance.
In addition, data engineers and architects can coordinate on designing the



data bus that captures data from an application, whether this is a messaging
queue, a log sink, or a batch extraction process.

DevOps engineers

DevOps engineers often produce data through operational monitoring; we
classify them as upstream of data engineers for this reason, but they may
also be downstream, consuming data through dashboards; or they may
interact with data engineers directly in coordinating operations of data
systems.

Downstream stakeholders
The modern data engineering profession exists to serve downstream data
consumers and use cases. In this section, we’ll discuss how data engineers
interact with a variety of downstream roles. We’ll also introduce a few
different service models, including centralized data engineering teams and
cross-functional teams. Chapter 8 will provide an in-depth discussion of
these topics.

Data scientists

Data scientists build forward-looking models to make predictions and
recommendations. These models are then evaluated on live data to provide
value in various ways. For example, model scoring might determine
automated actions in response to real-time conditions, recommend products
to customers based on the browsing history in their current session, or make
live economic predictions used by traders.

According to common industry folklore, data scientists spend between 40
and 80% of their time collecting, cleaning, and preparing data.  In the
authors’ experience, these numbers are representative of poor data science
and engineering practices. In particular, many popular and useful data
science frameworks can become bottlenecks if they are not scaled up
appropriately. Data scientists who work exclusively on a single workstation
force themselves to downsample data, making data preparation significantly
more complicated and potentially compromising the quality of the models
that they produce. Furthermore, locally developed code and environments
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are often difficult to deploy in production, and a lack of automation
significantly hampers data science workflows. If data engineers are doing
their job and collaborating successfully, data scientists shouldn’t spend their
time collecting, cleaning, and preparing data after initial exploratory work;
data engineers should do this work.

The need for production-ready data science is a major driver behind the
emergence of the data engineering profession. Data Engineers should help
data scientists to enable a path to production. In fact, the authors moved
from data science to data engineering in recognition of this fundamental
need. Data engineers work to provide the data automation and scale that
make data science more efficient.

Data analysts

Data analysts (or business analysts) seek to understand business
performance and trends. Whereas data scientists are forward-looking, a data
analyst typically focuses on the past or present. Data analysts usually run
SQL queries in a data warehouse or a data lake. They may also utilize
spreadsheets for computation and analysis, and various business
intelligence tools such as PowerBI, Looker, or Tableau. Data analysts are
domain experts in the data they work with frequently, and therefore become
intimately familiar with data definitions, characteristics, and quality
problems. A data analyst’s typical downstream customers are business
users, management, and executives.

Data engineers work with data analysts to build pipelines for new data
sources required by the business. Data analysts’ subject matter expertise is
invaluable in improving data quality, and they frequently collaborate with
data engineers in this capacity.

Machine learning engineers and AI researchers

Machine learning engineers (ML Engineers) overlap with both data
engineers and data scientists. Machine learning engineers develop advanced
machine learning techniques, train models, and design and maintain the
infrastructure running machine learning processes in a scaled production



environment. ML engineers often have advanced working knowledge of
machine learning and deep learning techniques, as well as frameworks such
as PyTorch or Tensorflow.

Machining learning engineers also understand the hardware, services, and
systems required to run these frameworks both for model training and
model deployment at a production scale. Increasingly, machine learning
flows run in a cloud environment where ML engineers can spin up and
scale infrastructure resources on-demand or rely on managed services.

As mentioned above, the boundaries between ML engineering, data
engineering, and data science are fuzzy. Data engineers may have some
DevOps responsibilities over ML systems, and data scientists may work
closely with ML engineering in designing advanced machining learning
processes.

The world of ML engineering is growing at a rapid pace and parallels a lot
of the same developments occurring in data engineering. Whereas several
years ago the attention of machine learning was focused on how to build
models, ML engineering now increasingly emphasizes incorporating best
practices of ML Operations (MLOps) and other mature practices previously
adopted in software engineering and DevOps.

AI researchers work on new, advanced machine learning techniques. AI
researchers may work inside large technology companies, specialized
intellectual property startups (OpenAI, DeepMind), or academic
institutions. Some practitioners are partially dedicated to research in
conjunction with ML engineering responsibilities inside a company. Those
working inside specialized machine learning labs are often 100% dedicated
to research. Research problems may target immediate practical applications
or more abstract demonstrations of artificial intelligence. AlphaGo and
GPT-3 are great examples of machine learning research projects. We’ve
provided some references in the further reading section at the end of the
chapter.

AI researchers in well-funded organizations are highly specialized and
operate with supporting teams of engineers to facilitate their work. For



example, see job listings for OpenAI or DeepMind. Machine learning
engineers in academia usually have fewer resources, but rely on teams of
graduate students, postdocs, and university staff to provide engineering
support. Machine learning engineers who are partially dedicated to research
often rely on the same support teams for research and production.

Data Engineers and Business Leadership
So far, we’ve discussed technical roles a data engineer interacts with. But
data engineers also operate more broadly as organizational connectors,
often in a non-technical capacity. Businesses have come to rely increasingly
on data as a core part of many products, or as a product in itself. Data
professionals, such as data engineers, now participate in strategic planning
and lead key initiatives that extend beyond the boundaries of IT. Data
engineers often support data architects by acting as the glue between the
business and data science/analytics.

Data in the C-suite
C-level executives are increasingly involved in data and analytics as these
are recognized as central assets for modern businesses. CEOs now concern
themselves with initiatives that were once the exclusive province of IT, such
as major cloud migrations or deployment of a new customer data platform.
This is certainly the case at tech companies such as Google, Amazon, and
Facebook, but also in the wider business world.

Chief executive officer

CEOs at non-tech companies generally don’t concern themselves with the
nitty-gritty of data frameworks and software. Rather, they define a vision in
collaboration with technical C-suite roles and company data leadership.
Data engineers provide a window into what’s possible with data. That is,
data engineers and their managers maintain a map of what data is available
to the organization -- both internally and from third parties -- in what
timeframe. They are also tasked to study major data architectural changes in
collaboration with other engineering roles. For example, data engineers are



often heavily involved in cloud migrations, migrations to new data systems,
or deployment of streaming technologies.

Chief information officer

A chief information officer (CIO) is the senior C-suite executive
responsible for information technology within an organization; it is an
internal-facing role. A CIO must possess deep knowledge of both
information technology and business processes—either alone is insufficient.
CIOs direct the information technology organization, setting ongoing
policies while also defining and executing major initiatives under the
direction of the CEO.

In organizations with well-developed data culture, CIOs often collaborate
with data engineering leadership. If an organization is not very high in its
data maturity, a CIO will typically help shape its data culture. CIOs will
work with engineers and architects to map out major initiatives and make
strategic decisions on the adoption of major architectural elements, such as
ERP and CRM systems, cloud migrations, data systems, and internal-facing
IT.

Chief technology officer

A chief technology officer (CTO) is similar to a CIO but faces outward. A
CTO owns the key technological strategy and architectures for external-
facing applications, such as mobile, web apps, and IoT, all critical data
sources for data engineers. The CTO is likely a skilled technologist and has
a good sense of software engineering fundamentals, system architecture,
and much more. Data engineers often report directly or indirectly through a
CTO.

Chief data officer

The chief data officer (CDO) was created in 2002 at Capital One in
recognition of the growing importance of data as a business asset. The CDO
is responsible for a company’s data assets and strategy. CDOs are focused
on the business utility of data but should have a strong technical grounding.
CDOs oversee data products, strategy, and initiatives, as well as core



functions such as master data management and data privacy. Occasionally,
CDOs oversee business analytics and data engineering.

Chief analytics officer

The chief analytics officer (CAO) is a variant of the CDO role. Where both
roles exist, the CDO focuses on the technology and organization required to
deliver data, where the chief analytics officer is responsible for analytics,
strategy, and decision making for the business. A CAO may oversee data
science and machine learning as well, though this largely depends on
whether or not the company has a CDO or CTO role.

Chief algorithms officer

A chief algorithms officer (CAO-2) is a very recent innovation in the C-
suite, a highly technical role focused specifically on data science and
machine learning. The CAO-2’s typically have experience as individual
contributors and team leads in data science or machine learning projects.
Frequently, they have a background in machine learning research and a
related advanced degree.

CAO-2’s are expected to be conversant in current machine learning
research and have deep technical knowledge of their company’s machine
learning initiatives. In addition to creating business initiatives, they provide
technical leadership, set research and development agendas, build research
teams, etc.

Data engineers and project managers
Data engineers often work on large initiatives, potentially spanning many
years. As we write this book, many data engineers are working on cloud
migrations, migrating pipelines and warehouses to the next generation of
data tools. Other data engineers are starting greenfield, creating new data
architectures from scratch, able to choose from a breathtaking number of
best-of-breed architecture and tooling options.

These large initiatives often benefit from project management (in contrast
to product management, which we discuss below). Where data engineers



function in an infrastructure and service delivery capacity, project managers
direct traffic and serve as gatekeepers. Most project managers operate
according to some variation of Agile and Scrum, with Waterfall still
appearing occasionally. Business never sleeps, and business stakeholders
often have a significant backlog of things they want to be addressed, and
new initiatives they want to launch. Project managers must filter a long list
of requests and prioritize key deliverables to keep projects on track and
better serve the company as a whole.

Data engineers interact with project managers, often in planning sprints for
projects, as well as ensuing standups related to the sprint. Feedback goes
both ways, with data engineers informing project managers and other
stakeholders about progress and blockers, and project managers balancing
the cadence of technology teams against the ever-changing needs of the
business.

Data engineers and product managers
Product managers oversee product development, often owning product
lines. In the context of data engineers, these products are called “data
products”. Data products are either built from the ground up or are
incremental improvements upon existing products. As the broader corporate
world has adopted a data-centric focus, data engineers interact more
frequently with product managers. Similar to project managers, product
managers balance the activity of technology teams against the needs of the
customer and business.

Data engineers and other management roles
Data engineers interact with a variety of managers beyond project and
product managers. However, these interactions usually follow either the
services model or the cross-functional model. That is, data engineers either
serve a variety of incoming requests as a centralized team or work as a
resource assigned to a particular manager, project, or product.

For more information on data teams and how to structure them, we
recommend John Thompson’s “Building Analytics Teams” and Jesse



Anderson’s “Data Teams” (see the further reading section at the end of the
chapter). Both books provide strong frameworks and perspectives on the
roles of executives with data, who to hire, and how to construct the most
effective data team for your company.

Conclusion
This chapter provided you with a brief overview of the data engineering
landscape, including:

Defining data engineering, and describing what data engineers do

Describing the types of data maturity a company may

Type A and Type B data engineers

Who data engineers work with

A stab at the future of data engineering

We hope that the first chapter has whetted the reader’s appetite, whether
they are practitioners of software development, data science, machine
learning engineering, or business stakeholders, entrepreneurs, venture
capitalists, etc. Of course, there is a great deal still to elucidate in
subsequent chapters. In Chapter 2, we will cover the data engineering
lifecycle in detail, followed by architecture in Chapter 3. In subsequent
chapters, we will get into the nitty-gritty of technology decisions for each
part of the lifecycle. The entire data field is in flux, and the aim in each
chapter is to focus on the “immutables,” or at least perspectives that will be
valid for many years to come in the midst of relentless change.
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Chapter 2. The Data
Engineering Lifecycle

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the second chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at
book_feedback@ternarydata.com.

The major goal of this book is to encourage you to move beyond viewing
data engineering as a specific collection of data technologies. The data
landscape is seeing an explosion of new data technologies and practices,
with higher levels of abstraction and ease of use. Some of these
technologies will succeed, and most will fade into obscurity at an ever-
faster rate. Because of increased technical abstraction, data engineers will
increasingly become data lifecycle engineers, thinking and operating in
terms of the principles of data lifecycle management.

In this chapter, you’ll learn about the data engineering lifecycle, which is
the central theme of this book. The data engineering lifecycle is our
framework describing “cradle to grave” data engineering. You will also
learn about the undercurrents of the data engineering lifecycle, which are
key foundations that support all data engineering efforts.

mailto:book_feedback@ternarydata.com


What Is the Data Engineering Lifecycle?
In simple terms, the data engineering lifecycle is the series of stages that
turn raw data ingredients into a useful end product, ready for consumption
by analysts, machine learning engineers, etc. In this chapter, we introduce
the major stages of the data engineering lifecycle, focusing on core
concepts and saving details of each stage to later chapters.

We divide the data engineering lifecycle into the following five stages
(Figure 2-1):

Generation: source systems

Ingestion

Storage

Transformation

Serving data

In general, the data engineering lifecycle starts by getting data from source
systems, storing it, and transforming and serving data to analysts, data
scientists, machine learning engineers, and others. The stages in the middle
—ingestion, storage, transformation—can get a bit jumbled. And that’s ok.
Although we split out the distinct parts of the data engineering lifecycle, it’s
not always a neat, continuous flow. Various stages of the lifecycle may
repeat themselves, occur out of step, or weave together in interesting ways.

Acting as a bedrock are undercurrents (Figure 2-1) that cut across multiple
stages of the data engineering lifecycle—data management, DataOps, data
architecture, orchestration, and software engineering. No part of the data
engineering lifecycle can properly function without each of these
undercurrents.



Figure 2-1. Components and undercurrents of the data engineering lifecycle

The Data Lifecycle Versus the Data Engineering
Lifecycle



You may be wondering what the difference is between the overall data
lifecycle and the data engineering lifecycle. There’s a subtle distinction
between the two. The data engineering lifecycle is a subset of the full data
lifecycle that is owned by data engineers (see Figure 2-2). Whereas the full
data lifecycle encompasses data across its entire lifespan, the data
engineering lifecycle focuses on the stages a data engineer controls, namely
data generation in source systems to serving the data for analytics and
machine learning use-cases.

Figure 2-2. The data engineering lifecycle is a subset of the full data lifecycle

Generation: Source Systems
The data engineer needs to understand how source systems work, how they
generate data, the frequency and velocity of the data, and the variety of data
they generate. A major challenge in modern data engineering is that



engineers must work with and understand a dizzying array of data source
systems. As an illustration, let’s look at two common source systems, one
very traditional and the other a modern example.

Figure 2-3 illustrates a traditional source system, with applications backed
by a database. This source system pattern became popular in the 1980s with
the explosive success of relational databases. The application + database
pattern remains popular today with various modern evolutions of software
development practices. For example, with microservices, applications often
consist of many small service/database pairs rather than a single monolith.
NoSQL databases like MongoDB, CosmosDB, Spanner, and DynamoDB
are compelling alternatives to traditional RDBMS systems.



Figure 2-3. Source system example: an application database.

Let’s look at another example of a source system. Figure 2-4 illustrates an
IoT swarm, where a fleet of devices (circles) sends data messages
(rectangles) to a central collection system. This type of system is



increasingly common as IoT devices—sensors, smart devices, and much
more—proliferate in the wild.

Figure 2-4. Source system example: an IoT Swarm and Messaging Queue

Evaluating source systems: key engineering considerations



Below are some important characteristics of source systems that data
engineers must think about. This is by no means an exhaustive list, but
rather a starting set of evaluation questions:

What are the basic characteristics of the data source? Is it an
application? A swarm of IoT devices?

How does the source handle state?

At what rate is data generated? How many events per second? How
many GB per hour?

What level of consistency can data engineers expect from the
output data? If you’re running data quality checks against the
output data, how often do data inconsistencies occur—nulls where
they aren’t expected, bad formatting, etc—deviate from the norm?

How often do errors occur?

Will the data contain duplicates?

Will some data values arrive late, possibly much later than other
messages produced at the same time?

What is the schema of the ingested data? Will data engineers need
to join across several tables or even several systems to get a full
picture of the data?

If schema changes—say, a new column is added—how is this dealt
with and communicated to downstream stakeholders?

How frequently should data be pulled from the source system?

For stateful systems, e.g. a database tracking customer account
information, is data provided as periodic snapshots or as update
events from change data capture (CDC)? What’s the logic for how
changes are performed, and how are these tracked in the source
database?



Who/what is the data provider that will transmit the data for
downstream consumption?

Will reading from a data source impact its performance?

Does the source system have upstream data dependencies? What
are the characteristics of these upstream systems?

Are data quality checks in place to check for late or missing data?

Sources produce data that is consumed by downstream systems. This
includes human-generated spreadsheets, IOT sensors, web and mobile
applications, and everything in between. Each source has its unique volume
and cadence of data generation. A data engineer should understand how the
source generates data, including relevant quirks or nuances. Data engineers
also need to understand the limits of the source systems they interact with.
For example, will queries to feed analytics cause performance issues with
an application?

One of the most challenging nuances of source data is a schema. The
schema defines the hierarchical organization of data. Logically, we can
think of data at the level of a full source system, drilling down into
individual tables, all the way to the structure of individual fields. The
schema of data shipped from source systems is handled in a variety of
ways. One popular model is schemaless. Schemaless doesn’t mean the
absence of schema—rather, it means that the schema is defined by the
application as data is written, whether to a messaging queue, a flat file, a
blob, or a document database such as MongoDB. A more traditional model
built on relational database storage uses a fixed schema enforced in the
database, which application writes must conform to.

Either of these models presents challenges for data engineers. Schemas
change over time; in fact, schema evolution is encouraged in the agile
approach to software development. Taking raw data input in the source
system schema and transforming this into output useful for analytics is a
key component of the data engineer’s job. This job becomes more
challenging as the source schema evolves.



There are numerous ways to transmit data from a source, including:

Programmatically

Message brokers

APIs

RPC

Streams

Output files

We will dive into source systems in greater detail in Chapter 5.

Ingestion
After you understand the data source and the characteristics of the source
system you’re using, you need to gather the data. The second stage of the
data engineering lifecycle is data ingestion from source systems. In our
experience, source systems and ingestion represent the biggest bottlenecks
of the data engineering lifecycle. The source systems are normally outside
of your direct control, and might randomly become unresponsive or provide
data of poor quality. Or, your data ingestion service might mysteriously stop
working for any number of reasons. As a result, data flow stops or delivers
bad data for storage, processing, and serving. Unreliable source and
ingestion systems have a ripple effect across the data engineering lifecycle.

Assuming you’ve answered the big questions listed above about source
systems, and you’re in good shape, you’re now ready to ingest data. Let’s
cover some key things to think about.

Key engineering considerations for the ingestion phase
When preparing to architect or build a system, here are some primary
questions to ask yourself related to the ingestion stage:

What’s the use case for the data I’m ingesting?



Can I re-use this data, versus having to create multiple versions of
the same dataset?

Where is the data going? What’s the destination?

How frequently will I need to access the data?

In what volume will the data typically arrive?

What format is the data in? Can my downstream storage and
transformation systems handle this format?

Is the source data in good shape for immediate downstream use? If
so, for how long, and what may cause it to be unusable?

If the data is from a streaming source, does the data need to be
transformed before it reaches its destination? If so, would an in-
flight transformation, where the data is transformed within the
stream itself, be appropriate?

These are just a sample of the things you’ll need to think about with
ingestion, and we’ll cover those questions and more in Chapter 6. Before
we leave, let’s briefly turn our attention to two major data ingestion
paradigms—batch versus streaming, and push versus pull.

Batch versus streaming
Virtually all data we deal with is inherently streaming. That is, data is
nearly always produced and updated continually at its source. Batch
ingestion is simply a specialized and convenient way of processing this
stream in large chunks, for example handling a full day’s worth of data in a
single batch.

Streaming ingestion allows us to provide data to downstream systems—
whether other applications, databases, or analytics systems—in a
continuous, real-time fashion. Here, “real-time” (or “near real-time”) means
that the data is available to a downstream system a short time after it is
produced, for example, less than one second later. The latency required to
qualify as real-time varies by domain and requirements.



Batch data is ingested either on a predetermined time interval or as data
reaches a preset size threshold. Batch ingestion is a one-way door—once
data is broken into batches, the latency for downstream consumers is
inherently constrained. Due to factors that limited the ways that data could
be processed, batch was—and still is—a very popular way to ingest data for
downstream consumption, particularly in the areas of analytics and machine
learning. However, the separation of storage and compute in many systems,
as well as the ubiquity of event streaming and processing platforms, make
continuous processing of data streams much more accessible and
increasingly popular. The choice largely depends on the use case and
expectations for data timeliness.

Key considerations for batch versus stream ingestion

Should you go streaming-first? Despite the attractiveness of a streaming-
first approach, there are many tradeoffs to understand and think about.
Below are some questions to ask yourself when determining if streaming
ingestion is an appropriate choice over batch ingestion:

If I ingest the data in real-time, can downstream storage systems
handle the rate of data flow?

Do I need true, to the millisecond real-time data ingestion? Or
would a micro-batch approach work where I accumulate and ingest
data, say every minute?

What are my use cases for streaming ingestion? What specific
benefits do I realize by implementing streaming? If I get data in
real-time, what actions can I take on that data that would be an
improvement upon batch?

Will my streaming-first approach cost more in terms of time,
money, maintenance, downtime, and opportunity cost than simply
doing batch?

Is my streaming pipeline and system reliable and redundant in the
event of infrastructure failure?



What tools are most appropriate for the use case? Should I use a
managed service (Kinesis, Pubsub, Dataflow), or stand up my own
instances of Kafka, Flink, Spark, Pulsar, etc.? If I do the latter, who
will manage it? What are the costs and tradeoffs?

If I’m deploying a machine learning model, what benefits do I
have with online predictions, and possibly continuous training?

Am I getting data from a live production instance? If so, what’s the
impact of my ingestion process on this source system?

As you can see, streaming-first might seem like a good idea, but it’s not
always straightforward; there are inherently extra costs and complexities.
Many great ingestion frameworks do handle both batch and micro-batch
ingestion styles. That said, we think batch is a perfectly fine approach for
many data ingestion very common use-cases such as model training and
weekly reporting, which are inherently batch-oriented. Adopt true real-time
streaming-only after identifying a business use case that justifies the extra
complexity.

Push versus pull
In the push model of data ingestion, a source system writes data out to a
target, whether that be a database, object storage, or a file system. In the
pull model, data is retrieved from the source system. In practice, the line
between the push and pull paradigms can be quite blurry; often data is both
pushed and pulled as it works its way through the various stages of a data
pipeline.

Consider, for example, the ETL (extract, transform, load) process,
commonly used in batch-oriented ingestion workflows. The extract part of
ETL makes it clear that we’re dealing with a pull ingestion model. In
traditional ETL, the ingestion system queries a current table snapshot on a
fixed schedule.

In another example, consider continuous change data capture (CDC), which
is achieved in a few different ways. One common method triggers a



message every time a row is changed in the source database. This message
is pushed to a queue where it is picked up by the ingestion system. Another
common CDC method uses binary logs, which record every commit to the
database. The database pushes to its logs. The ingestion system reads the
logs but doesn’t directly interact with the database otherwise. This adds
little to no additional load to the source database. Some versions of batch
CDC use the pull pattern. For example, in timestamp-based CDC an
ingestion system queries the source database and pulls the rows that have
changed since the previous update.

With streaming ingestion, data bypasses a backend database and is pushed
directly to an endpoint, typically with some kind of data buffering such as a
queue. This pattern is useful with fleets of IoT sensors emitting sensor data.
Rather than relying on a database to maintain the current state, we simply
think of each recorded reading as an event. This pattern is also growing in
popularity in software applications as it simplifies real-time processing,
allows app developers to tailor their messages for the needs of downstream
analytics, and greatly simplifies the lives of data engineers.

We’ll discuss ingestion best practices and techniques in depth in Chapter 6.

Storage
After ingesting data, you need a place to store it. Choosing a storage
solution is key to success in the rest of the data lifecycle, and it’s also one of
the most complicated stages of the data lifecycle for a variety of reasons.
First, modern data architectures in the cloud often leverage several storage
solutions. Second, few data storage solutions function purely as storage,
with many also supporting complex transformation queries; even object
storage solutions may support powerful query capabilities (e.g AWS S3
Select). Third, while storage is a stage of the data engineering lifecycle, it
frequently touches on other stages, such as ingestion, transformation, and
serving.

Storage frequently occurs in multiple places in a data pipeline, with storage
systems crossing over with processing, serving, and ingestion stages. For



example, cloud data warehouses can store data, process data in pipelines,
and serve it to analysts; streaming frameworks such as Kafka and Pulsar
can function simultaneously as ingestion, storage, and query systems for
messages; and object storage is a standard layer for the transmission of data.

In general with storage, data moves and goes somewhere, gets stored
temporarily or permanently, then goes somewhere else, gets stored again,
and so on.

Evaluating storage systems: key engineering considerations
Here are a few key engineering questions to ask when choosing a storage
system for a data warehouse, data lakehouse, database, object storage, etc.:

Is this storage solution compatible with the required write speeds
for the architecture?

Will storage create a bottleneck for downstream processes?

Do you understand how this storage technology works? Are you
utilizing the storage system optimally, or committing unnatural
acts? For instance, are you applying a high rate of random access
updates in an object storage system, an antipattern with significant
performance overhead?

Will this storage system handle anticipated future scale? You
should take into account all capacity limits on the storage system:
total available storage, read operation rate, write volume, etc.

Will downstream users and processes be able to retrieve data in the
required SLA?

Are you capturing metadata about schema evolution, data flows,
data lineage, and so forth? Metadata has a significant impact on the
utility of data. Metadata represents an investment in the future,
dramatically enhancing discoverability and institutional knowledge
to streamline future projects and architecture changes.



Is this a pure storage solution (object storage) or does it support
complex query patterns (i.e., a cloud data warehouse)?

Is the storage system schema-agnostic (object storage)? Flexible
schema? (Cassandra) Enforced schema? (A cloud data warehouse)

For data governance, how are you tracking master data, golden
records data quality, and data lineage? (We’ll have more to say on
these in the data management subsection of this chapter.)

How are you handling compliance and data sovereignty? For
example, can you store your data in certain geographical locations,
but not others?

Data access frequency
Not all data is accessed in the same way. Retrieval patterns will greatly
vary, based upon the type of data being stored and queried. This brings up
the notion of the “temperatures” of data. Data access frequency will
determine what “temperature” your data is. Data that is most frequently
accessed is called hot data. Hot data is commonly retrieved many times per
day, perhaps even several times per second in systems that serve user
requests. This is data that should be stored for fast retrieval, where “fast” is
relative to the use case. Lukewarm data is data that might be accessed every
so often, say every week or month. Cold data is seldom queried and is
appropriate for storing in an archival system. Cold data is often data that is
retained for compliance purposes, or in case of a catastrophic failure in
another system. In the “old days,” cold data would be stored on tapes and
shipped to remote archival facilities. In cloud environments, vendors offer
specialized storage tiers with extremely low monthly storage costs, but high
prices for data retrieval.

Selecting a storage system
What type of storage solution should you use? This depends on your use
cases, data volumes, frequency of ingestion, format, and size of the data
being ingested -- essentially, the key considerations listed above. There is



not a one-size-fits-all universal storage recommendation. Every storage
technology has its tradeoffs. Let’s quickly list some of the common storage
systems that a data engineer will encounter. There are countless varieties of
storage technologies, and it’s easy to be overwhelmed when deciding the
best option for your data architecture. Here are several popular storage
options:

Relational database management systems (RDBMS)

Data lake

Data warehouse

Data lakehouse

Streaming systems with data retention capabilities.

Graph database

In-memory (Redis, Memcached, etc.)

High performance NoSQL databases: RocksDB, etc.

Feature stores

Data catalog

Metadata stores

Spreadsheets

Chapter 7 will cover storage best practices and approaches in greater detail,
as well as the crossover between storage and other lifecycle stages.

Transformation
The next stage of the data engineering lifecycle is transformation. As we
mentioned, data can be ingested in its raw form, with no transformations
performed. In most cases, however, data needs to be changed from its
original form into something useful for downstream use cases. Without



proper transformations, data will not be in an appropriate form for reports,
analysis, or machine learning. Typically, the transformation stage is where
data begins to create value for downstream user consumption.

There are a whole host of data transformation types, which we will cover
extensively in chapter 8. Immediately after ingestion, basic transformations
map data into correct types (changing ingested string data into numeric and
date types for example), put records into standard formats and remove bad
records. Later stages of transformation may transform the data schema and
apply normalization. Downstream, we can apply large scale aggregation for
reporting or featurize data for machine learning processes.

Key considerations for the transformation phase
When thinking about data transformations within the context of the data
engineering lifecycle, it helps to consider the following. We’ll cover
transformations in-depth in Chapter 8.

What’s the cost and ROI of the transformation? All transformations
should have an associated business value attached.

Is the transformation expensive from a time and resource
perspective?

What value will the transformation bring downstream? In other
words, what is the ROI of a transformation?

Is the transformation as simple and self-isolated as possible?

What business rules do the transformations support?

During transformation, am I minimizing data movement between
the transformation and the storage system?

Data can be transformed in batch, or while streaming in-flight. As
mentioned in the section on ingestion, virtually all data starts life as a
continuous stream; batch is just a specialized way of processing a data
stream. Batch transformations are overwhelmingly popular, but given the
growing popularity of stream processing solutions such as Flink, Spark,



Beam, etc., as well as the general increase in the amount of streaming data,
we expect the popularity of streaming transformations to continue growing,
perhaps entirely replacing batch processing in certain domains soon.

Logically, we treat transformation as a standalone area of the data
engineering lifecycle, but the realities of the lifecycle can be much more
complicated in practice. Transformation is often entangled in other phases
of the data engineering lifecycle. Typically, data is transformed in source
systems or during ingestion. For example, a source system may add an
event timestamp to a record before forwarding it to an ingestion process. Or
a record within a streaming pipeline may be “enriched” with additional
fields and calculations before it’s sent to a data warehouse. Transformations
are ubiquitous in various parts of the lifecycle. Data preparation, data
wrangling, and cleaning—all of these transformative tasks add value to end-
consumers of data.

Business logic is a major driver of data transformation. Business logic is
critical for obtaining a clear and current picture of business processes. A
simple view of raw retail transactions might not be useful in itself without
adding the logic of accounting rules so that the CFO has a clear picture of
financial health. In general, ensure a standard approach for implementing
business logic across your transformations.

Data featurization for machine learning is another data transformation
process. Featurization intends to extract and enhance features of data that
will be useful for training machine learning models. Featurization is
something of a dark art, combining domain expertise (to identify which
features might be important for prediction), with extensive experience in
data science. For this book, the main point to take away is that once data
scientists determine how to featurize data, featurization processes can be
automated by data engineers in the transformation stage of a data pipeline.

Transformation is a very deep subject, and we cannot do it justice in this
very brief introduction. Chapter 8 will delve into the various practices and
nuances of data transformations.



Serving Data for Analytics, Machine Learning, and
Reverse ETL
You’ve reached the last stage of the data engineering lifecycle. Now that the
data has been ingested, stored, and transformed into coherent and useful
structures, it’s time to get value from your data. “Getting value” from data
means different things to different users. Data has value when it’s used for
practical purposes. Data that is not consumed or queried is simply inert.
Data vanity projects are a major risk for companies. Many companies
pursued vanity projects in the big data era, gathering massive datasets in
data lakes that were never consumed in any useful way. The cloud era is
triggering a new wave of vanity projects, built on the latest data
warehouses, object storage systems, and streaming technologies. Data
projects must be intentional across the lifecycle. What is the ultimate
business purpose of the data so carefully collected, cleaned, and stored?

Data serving is perhaps the most exciting part of the data engineering
lifecycle. This is where the magic happens. This is where machine learning
engineers can apply the most advanced modern techniques.

For now, let’s take a look at some of the popular uses of data—analytics,
machine learning, and reverse ETL.

Analytics
Analytics is the core of most data endeavors. Once your data is stored and
transformed, you’re ready to generate reports, dashboards, and do ad hoc
analysis on the data. Whereas the bulk of analytics used to encompass
business intelligence (BI), it now includes other facets such as operational
analytics and customer-facing analytics (Figure 2-5). Let’s briefly touch on
these variations of analytics:



Figure 2-5. Types of Analytics

Business intelligence

Business intelligence (BI) marshalls collected data to describe the past
and current state of a business. BI requires the processing of raw data
using business logic. Note that data serving for analytics is yet another
area where the stages of the data engineering lifecycle can get tangled.
As we mentioned earlier, business logic is often applied to data in the
transformation stage of the data engineering lifecycle, but a logic-on-
read approach has become increasingly popular. That is, data is stored in
a cleansed but fairly raw form, with minimal business logic post-
processing. A BI system maintains a repository of business logic and
definitions. This business logic is used to query the data warehouse so
that reports and dashboards accord with business definitions.55

As a company grows its data maturity, it will move from ad hoc data
analysis to self-service analytics, which allows democratized data
access to business users, without the need for IT to intervene. The
capability to do self-service analytics assumes that data is in a good
enough place that people across the organization can simply access the
data themselves, slice and dice it however they choose and get
immediate insights from it. We find that though self-service analytics is
simple in theory, it’s incredibly difficult to pull off in practice. The main
reason is that poor data quality and organizational silos get in the way of



allowing widespread use of analytics, free of gatekeepers such as IT or
reporting departments.

Operational analytics

Operational analytics focuses on the fine-grained details of operations,
promoting actions that a user of the reports can act upon immediately.
For example, operational analytics could be a live view of inventory, or
real-time dashboarding of website health. In this case, data is consumed
in a real-time manner, either directly from a source system, from a
streaming data pipeline such as AWS Kinesis or Kafka, or aggregated in
a real-time OLAP solution like Druid. The types of insights in
operational analytics differ from traditional BI since operational
analytics is focused on the present and doesn’t necessarily concern
historical trends.

Customer-facing analytics

You may wonder why we’ve broken out customer-facing analytics
separately from BI. In practice, analytics provided to customers on a
SAAS (Software as a Service) platform come with a whole separate set
of requirements and complications. Internal BI faces a limited audience
and generally presents a handful of unified views. Access controls are
critical, but not particularly complicated. Access is managed using a
handful of roles and access tiers.

With customer-facing analytics, the request rate for reports, and the
corresponding burden on analytics systems, go up dramatically; access
control is significantly more complicated and critical. Businesses may
be serving separate analytics and data to thousands or more customers.
Each customer must see their data and only their data. Where an internal
data access error at a company would likely lead to a procedural review,
a data leak between customers would be considered a massive breach of
trust, likely leading to media attention and a significant loss of
customers. Minimize your blast radius related to data leaks and security



vulnerabilities. Apply tenant or data level security within your storage,
and anywhere else there’s a possibility of data leakage.

MULTITENANCY
Many modern storage and analytics systems support multi-tenancy in a
variety of ways. Engineers may choose to house data for many
customers in common tables to allow a unified view for internal
analytics and machine learning. This data is presented externally to
individual customers through the use of logical views with
appropriately defined controls and filters. It is incumbent on engineers
to understand the minutiae of multitenancy in the systems they deploy
to ensure absolute data security and isolation.

Machine learning
Machine learning is one of the most exciting technology revolutions of our
time. Once organizations reach a high level of data maturity, they can begin
to identify problems that are amenable to machine learning and start
organizing a machine learning practice.

The responsibilities of data engineers overlap significantly in analytics and
machine learning, and the boundaries between data engineering, machine
learning engineering, and analytics engineering can be fuzzy. For example,
a data engineer may need to support Apache Spark clusters that facilitate
both analytics pipelines and machine learning model training. They may
also need to provide a Prefect or Dagster system that orchestrates tasks
across teams, and support metadata and cataloging systems that track data
history and lineage. Setting these domains of responsibility, and the relevant
reporting structures is a critical organizational decision.

One recently developed tool that combines data engineering and ML
engineering is the feature store (e.g. FEAST and Tecton, among others).
Feature stores are designed to reduce the operational burden for machine
learning engineers, by maintaining feature history and versions, supporting



feature sharing between teams, and providing basic operational and
orchestration capabilities, such as backfilling. In practice, data engineers are
part of the core support team for feature stores to support ML engineering.

Should a data engineer be familiar with machine learning? It certainly
helps. Regardless of the operational boundary between data engineering,
ML engineering, and business analytics, etc., data engineers should
maintain operational knowledge about the teams they work with. A good
data engineer is conversant in the fundamental machine learning techniques
and related data processing requirements (deep learning, featurization, etc.),
in the use cases for models within their company, and the responsibilities of
the organization’s various analytics teams. This helps to maintain efficient
communication and facilitate collaboration. Ideally, data engineers will
build tools in collaboration with other teams that neither team is capable of
building on its own.

This book cannot possibly cover machine learning in-depth. There’s a
growing ecosystem of books, videos, articles, and communities if you’re
interested in learning more; we include a few additional references in the
further reading section at the end of this chapter.

Below are some considerations for the Serving Data phase, specific to
machine learning:

Is the data of sufficient quality to perform reliable feature
engineering? Quality requirements and assessments are developed
in close collaboration with teams consuming the data.

Is the data discoverable? Can data scientists and machine learning
engineers easily find useful data?

Where are the technical and organizational boundaries between
data engineering and machine learning engineering? This
organizational question has major architectural implications.

The dataset properly represents ground truth and isn’t unfairly
biased.



While machine learning is exciting, our experience is that companies often
prematurely dive into it. Before investing a ton of resources into machine
learning, take the time to build a solid data foundation. This means setting
up the best systems and architecture across the data engineering lifecycle,
as well as the machine learning lifecycle. More often than not, get good
with analytics before moving to machine learning. Many companies have
seen their machine learning dreams dashed because they undertook
initiatives without appropriate foundations in place. On the other hand, data
engineers should keep the serving stage of the data engineering lifecycle in
mind at all times as they’re building out the other stages, both as motivation
and to steer and shape their architectures and initiatives.

Reverse ETL
Reverse ETL has long been a practical reality in data, viewed as an
antipattern that we didn’t like to talk about or dignify with a name. Reverse
ETL is the process of taking processed data from the output side of the data
engineering lifecycle and feeding it back into source systems as shown in
Figure 2-6. In reality, this flow is extremely useful, and often necessary;
reverse ETL allows us to take analytics, scored models, etc., and feed these
back into production systems or SAAS platforms. Marketing analysts might
calculate bids in Excel using the data in their data warehouse, then upload
these bids to Google Ads. This process was often quite manual and
primitive.



Figure 2-6. Reverse ETL

As we’ve written this book, several vendors have embraced the concept of
reverse ETL and built products around it, such as Hightouch and Census.
Reverse ETL remains nascent as a field, but we suspect that it is here to
stay.



Reverse ETL has become especially important as businesses rely
increasingly on SAAS and external platforms. For example, businesses may
want to push certain metrics from their data warehouse to a customer data
platform or customer relationship management (CRM) system. Advertising
platforms are another common use case, as in the Google Ads example.
Expect to see more activity in the Reverse ETL, with an overlap in both
data engineering and ML engineering.

The jury is out whether the term reverse ETL will stick. And the practice
may evolve. Some engineers claim that we can eliminate reverse ETL by
handling data transformations in an event stream, and sending those events
back to source systems as needed. Realizing widespread adoption of this
pattern across businesses is another matter. The gist is that transformed data
will need to be returned to source systems in some manner, ideally with the
correct lineage and business process associated with the source system.

The Major Undercurrents Across the Data
Engineering Lifecycle
Data engineering is rapidly maturing. Whereas prior cycles of data
engineering simply focused on the technology layer, the continued
abstraction and simplification of tools and practices have shifted this focus.
Data engineering now encompasses far more than tools and technology. The
field is now moving up the value chain, incorporating traditional
“enterprise” practices such as data management and cost optimization, and
newer practices like DataOps. We’ve termed these practices undercurrents
—data management, DataOps, data architecture, orchestration, and software
engineering—that support every aspect of the data engineering lifecycle
(Figure 2-7). We will give a brief overview of these undercurrents and their
major components, which you’ll see in more detail throughout the book.



Figure 2-7. The major undercurrents of data engineering

Data Management
Data management? You’re probably thinking that sounds very… corporate.
“Old school” data management practices are making their way into data and
machine learning engineering. What’s old is new again. Data management
has been around for decades but didn’t get a lot of traction in data
engineering until recently. We sense the motivation for adopting data
management is because data tools are becoming simpler to use, and a data
engineer needs to manage less complexity. As a result, the data engineer is
moving up the value chain toward the next rung of best practices. Data best
practices once reserved for very large companies—data governance, master
data management, data quality management, metadata management, etc—
are now filtering down into companies of all sizes and maturity levels. As
we like to say, data engineering is becoming “enterprisey”. This is a great
thing!



According to the DAMA-DMBOK, which we consider to be the definitive
book for enterprise data management, “Data management is the
development, execution, and supervision of plans, policies, programs, and
practices that deliver, control, protect, and enhance the value of data and
information assets throughout their lifecycle”. That’s a bit verbose, so let’s
look at how it ties to data engineering, specifically. Data engineers manage
the data lifecycle, and data management encompasses the set of best
practices that data engineers will use to accomplish this task, both
technically and strategically. Without a framework for managing data, data
engineers are simply technicians operating in a vacuum. Data engineers
need the broader perspective of data’s utility across the organization, from
the source systems to the C-Suite, and everywhere in between.

Why is data management important? Data management demonstrates that
data is a vital asset to daily operations, just as businesses view financial
resources, finished goods, or real estate as assets. Data management
practices form a cohesive framework that everyone can adopt to make sure
that the organization is getting value from data and handling it
appropriately.

There are quite a few facets to data management, including the following:

Data governance, including discoverability, security, and
accountability

Data modeling and design

Data lineage

Storage and operations

Data integration and interoperability

Data lifecycle management

Data systems for advanced analytics and ML

Ethics and privacy
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While this book is in no way an exhaustive resource on data management,
let’s briefly cover some salient points from each area, as they relate to data
engineering.

Data governance
According to Data Governance: The Definitive Guide, “Data governance is,
first and foremost, a data management function to ensure the quality,
integrity, security, and usability of the data collected by an organization.”

We can expand on that definition and say that data governance engages
people, processes, and technologies to maximize data value across an
organization, while protecting data with appropriate security controls.
Effective data governance is developed with intention and supported by the
organization. When data governance is accidental and haphazard, the side
effects can range from untrusted data to security breaches, and everything in
between. Being intentional about data governance will maximize the
organization’s data capabilities and value generated from data. It will also
(hopefully) keep a company out of headlines for questionable or downright
reckless data practices.

Think of the typical example where data governance is done poorly. A
business analyst gets a request for a report, but doesn’t know what data to
use to answer the question. He or she may spend hours digging through
dozens of tables in a transactional database, taking wild guesses at what
fields might be useful. The analyst compiles a report that is “directionally
correct,” but isn’t entirely sure that the report’s underlying data is accurate
or sound. The recipient of the report also questions the validity of the data.
In the end, the integrity of the analyst—and all data in the company’s
systems—is called into question. The company is confused about its
performance, making business planning next to impossible.

Data governance is a foundation for data-driven business practices and a
mission-critical part of the data engineering lifecycle. When data
governance is practiced well, people, processes, and technologies are all
aligned to treat data as a key driver of the business. And, if data issues
occur, they are promptly handled and things carry on.
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The core categories of data governance are discoverability, security, and
accountability.  Within these core categories are subcategories, such as data
quality, metadata, privacy, and much more. Let’s look at each core category
in turn.

Discoverability
In a data-driven company, data must be available and discoverable. End
users should have quick and reliable access to the data they need to do their
jobs. They should know where the data comes from (“Golden source”), how
it relates to other data, and what the data means.

There are some key components to data discoverability, including metadata
management and master data management. Let’s briefly describe these
components.

Metadata
Metadata is “data about data,” and it underpins every section of the data
engineering lifecycle. Metadata is exactly the data needed to make data
discoverable and governable.

We divide metadata into two major categories: auto-generated and human
generated. Modern data engineering revolves around automation, but too
often, metadata collection is still a manual, error prone process.

Technology can assist with this process, removing much of the error-prone
work of manual metadata collection. We’re seeing a proliferation of data
catalogs, data lineage tracking systems and metadata management tools.
Tools can crawl databases to look for relationships and monitor data
pipelines to track where data comes from and where it goes. A low-fidelity
manual approach is to use an internally-led effort where metadata collection
is crowdsourced by various stakeholders within the organization. These data
management tools will be covered in-depth throughout the book, as they
undercut much of the data engineering lifecycle.

Metadata becomes a byproduct of data and data processes. However, key
challenges remain. In particular, interoperability and standards are still
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lacking. Metadata tools are only as good as their connectors to data
systems, and their ability to share metadata with each other. In addition,
automated metadata tools should not entirely take humans out of the loop.

Data has a social element—each organization accumulates social capital
and knowledge around processes, datasets, and pipelines. Human-oriented
metadata systems focus on the social aspect of metadata. This is something
that Airbnb has emphasized in their various blog posts on data tools,
particularly their original Data Portal concept.  Such tools should provide a
place to disclose data owners, data consumers, domain experts, etc.
Documentation and internal wiki tools provide a key foundation for
metadata management, but these tools should also integrate with automated
data cataloging as mentioned above. For example, data scanning tools can
generate wiki pages with links to relevant data objects.

Once metadata systems and processes exist, data engineers can consume
metadata in all kinds of useful ways. Metadata becomes a foundation for
designing pipelines and managing data throughout the lifecycle.

DMBOK identifies several main categories of metadata that are useful to
data engineers:

Business metadata

Technical metadata

Operational metadata

Reference metadata

Let’s briefly describe each category of metadata.

Business metadata

Business metadata relates to how data is used in the business, including
business and data definitions, data rules and logic, how and where data is
used, the data owner(s), and so forth.

A data engineer uses business metadata to answer non-technical questions
about “who”, “what”, “where”, and “how”. For example, a data engineer
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may be tasked with creating a data pipeline for customer sales analysis. But,
what is a “customer”? Is it someone who’s purchased in the last 90 days?
Or someone who’s purchased at any time the business has been open? To
use the correct data, a data engineer would refer to business metadata (data
dictionary or data catalog) to look up how a “customer” is defined. Business
metadata provides a data engineer with the right context and definitions to
properly use data.

Technical metadata

Technical metadata describes the data created and used by systems across
the data engineering lifecycle. It includes the data model and schema, data
lineage, field mappings, pipeline workflows, and much more. A data
engineer uses technical metadata to create, connect, and monitor various
systems across the data engineering lifecycle.

Here are some common types of technical metadata that a data engineer
will use:

Pipeline metadata (often produced in orchestration systems)

Data lineage

Schema

Orchestration is a central hub that coordinates workflow across various
systems. Pipeline metadata captured in orchestration systems provides the
details of the workflow schedule, system and data dependencies,
configurations, connection details, and much more.

Data lineage metadata tracks the origin and changes to data, and its
dependencies, over time. As data flows through the data engineering
lifecycle, it evolves through transformations and combinations with other
data. Data lineage provides an audit trail of data’s evolution as it moves
through various systems and workflows.

Schema metadata describes the structure of data that is stored in a system
such as a database, a data warehouse, a data lake, or a file system; it is one
of the key differentiators across different types of storage systems. Object



stores, for example, don’t manage schema metadata—instead, this must be
managed in a system like the Hive Metastore. On the other hand, cloud data
warehouses manage schema metadata for engineers and users.

These are just a few examples of technical metadata that a data engineer
should know about. This is not a complete list, and we’ll cover additional
aspects of technical metadata throughout the book.

Operational metadata

Operational metadata describes the operational results of various systems
and includes statistics about processes, job ids, application runtime logs,
data used in a process, error logs, etc. A data engineer uses operational
metadata to determine whether a process succeeded or failed and the data
involved in the process.

Orchestration systems can provide a limited picture of operational
metadata, but the latter still tends to be scattered across many systems. A
need for better quality operational metadata, and better metadata
management, is a major motivation for next-generation orchestration and
metadata management systems.

Reference metadata

Reference metadata is data used to classify other data. This is also referred
to as “lookup” data. Standard examples of reference data are internal codes,
geographic codes, units of measurement, internal calendar standards. Note
that much of reference data is fully managed internally, but items such as
geographic codes might come from external standard references. Reference
data is essentially a standard for interpreting other data, so if it changes at
all, this change happens slowly over time.

Security
People and organizational structure are always the biggest security
vulnerabilities in any company. When we hear about major security
breaches in the media, it quite often turns out that someone in the company
ignored basic precautions, fell victim to a phishing attack, or otherwise



acted in an irresponsible manner. As such, the first line of defense for data
security is to create a culture of security that pervades the organization. All
individuals who have access to data must understand their responsibility in
protecting the sensitive data of the company and its customers.

Security must be top of mind for data engineers, and those who ignore it do
so at their peril. Data engineers must understand both data and access
security, at all times exercising the principle of least privilege. The principle
of least privilege  means giving a user or system access only to the data and
resources that are essential to perform an intended function. A common
anti-pattern we see with data engineers with little security experience is to
give admin access to all users. Please avoid this! Give users only the access
they need to do their jobs today, nothing more. Don’t operate from a root
shell when you’re just looking for files that are visible with standard user
access. In a database, don’t use the superuser role when you’re just
querying tables visible with a lesser role. Imposing the principle of least
privilege on ourselves can prevent a lot of accidental damage, and also
keeps you into a security-first mindset.

Data security is also about timing—providing data access to only the people
and systems that need to access it, and only for the duration necessary to
perform their work. Data should be protected at all times from unwanted
visibility—both in flight and at rest—using techniques such as encryption,
tokenization, data masking, obfuscation or simple robust access controls.

Data engineers must be competent security administrators, as security falls
in their domain. A data engineer should understand security best practices,
both for cloud and on-prem. Knowledge of user and identity access
management (IAM)—roles, policies, groups, network security, password
policies, and encryption are good places to start.

Throughout the book, we’ll highlight areas where security should be top of
mind in the data engineering lifecycle.

Data accountability
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Data accountability means assigning an individual to be responsible for
governing some portion of data. The responsible person then coordinates
the governance activities of other stakeholders. Fundamentally, it is
extremely difficult to manage data quality if no one is accountable for the
data in question.

Note that people accountable for data need not be data engineers. In fact,
the accountable person might be a software engineer, product manager, or
serve in another role. In addition, the responsible person generally doesn’t
have all the resources necessary to maintain data quality. Instead, they
coordinate with all people who touch the data, including data engineers.

Data accountability can happen at a variety of levels; accountability can
happen at the level of a table or a log stream but could be as fine-grained as
a single field entity that occurs across many tables. An individual may be
accountable for managing a customer ID across many different systems. For
the purposes of enterprise data management, a data domain is the set of all
possible values that can occur for a given field type, such as in this ID
example. This may seem excessively bureaucratic and fastidious, but in
fact, can have significant implications for data quality.

Data quality

Can I trust this data?
—Everyone in the business

Data quality is the optimization of data toward the desired state, and orbits
the question “What do you get compared with what you expect?” Data
should conform to the expectations in the business metadata. Does the data
match the definition agreed upon by the business?

A data engineer is responsible for ensuring data quality across the entire
data engineering lifecycle. This involves performing such tasks as data
quality tests, ensuring data conformance to schema expectations, data
completeness and precision, and much more.

According to Data Governance: The Definitive Guide, data quality is
defined by three main characteristics—accuracy, completeness, timeliness:



Accuracy

Is the collected data factually correct? Are there duplicate values? Are
the numeric values accurate?

Completeness

Are the records complete? Do all required fields contain valid values?

Timeliness

Are records available in a timely fashion?

Each of these characteristics is quite nuanced. For example, when dealing
with web event data, how do we think about bots and web scrapers? If we
intend to analyze the customer journey, then we must have a process that
lets us separate human from machine-generated traffic. Any bot-generated
events misclassified as human present data accuracy issues, and vice versa.

A variety of interesting problems arise concerning completeness and
timeliness. In the Google paper introducing the dataflow model (see further
reading), the authors give the example of an offline video platform that
displays ads. The platform downloads video and ads while a connection is
present, allows the user to watch these while offline, then uploads ad view
data once a connection is present again. This data may arrive late, well after
the ads are watched. How does the platform handle billing for the ads?

Fundamentally, this is a problem that can’t be solved by purely technical
means. Rather, engineers will need to determine their standards for late-
arriving data and enforce these uniformly, possibly with the help of various
technology tools.

In general, data quality sits across the boundary of human and technology
problems. Data engineers need robust processes to collect actionable human
feedback on data quality, while also using technology tools to preemptively
detect quality issues before downstream users ever see them. We’ll cover
these collection processes in the appropriate chapters throughout this book.



MASTER DATA MANAGEMENT (MDM)
Master data is data about business entities such as employees,
customers, products, locations, etc. As organizations grow larger and
more complex through organic growth and acquisitions, and as they
collaborate with other businesses, maintaining a consistent picture of
entities and identities becomes more and more challenging. MDM isn’t
always strictly under the purview of data engineers, but they must
always be aware of it; if they don’t own MDM, they will still
collaborate on MDM initiatives.

Master data management (MDM) is the practice of building consistent
entity definitions known as golden records. Golden records harmonize
entity data across an organization and with its partners. Master data
management is a business operations process that is facilitated by
building and deploying technology tools. For example, a master data
management team might determine a standard format for addresses,
then work with data engineers to build an API to return consistent
addresses and a system that uses address data to match customer
records across divisions of the company.

Master data management reaches across the full data cycle into
operational databases. As such, it may fall directly under the purview of
data engineering, but is often the assigned responsibility of a dedicated
team that works across the organization.

Data modeling and design
To derive business insights from data, through business analytics and data
science, the data must be in a usable form. The process for converting data
into a usable form is known as data modeling and design. Where we
traditionally think of data modeling as a problem for DBAs and ETL
developers, data modeling can happen almost anywhere in an organization.
Firmware engineers develop the data format of a record for an IoT device,



or web application developers design the JSON response to an API call or a
MySQL table schema -- these are all instances of data modeling and design.

Data modeling has become more challenging due to the variety of new data
sources and use cases. For instance, strict normalization doesn’t work well
with event data. Fortunately, a new generation of data tools increases the
flexibility of data models, while retaining logical separations of measures,
dimensions, attributes, and hierarchies. Cloud data warehouses support the
ingestion of enormous quantities of denormalized and semistructured data,
while still supporting common data modeling patterns, such as Kimball,
Inmon, and Data Vault. Data processing frameworks such as Spark can
ingest a whole spectrum of data ranging from flat structured relational
records to raw unstructured text. We’ll discuss these transformation patterns
in greater detail in Chapter 8.

With the vast variety of data that engineers must cope with, there is a
temptation to throw up our hands and give up on data modeling. This is a
terrible idea with harrowing consequences, made evident when people
murmur of the WORN (write once, read never) access pattern or refer to a
‘data swamp’. Data engineers need to understand modeling best practices,
and also develop the flexibility to apply the appropriate level and type of
modeling to the data source and use case.

Data lineage
As data moves through its lifecycle, how do you know what system affected
the data, or what the data is composed of as it gets passed around and
transformed? Data lineage describes the recording of an audit trail of data
through its lifecycle, tracking both the systems that process the data, as well
as what data it depends upon.

Data lineage helps with error tracking, accountability, and debugging of
both data and the systems that process it. It has the obvious benefit of
giving an audit trail for the data lifecycle but also helps with compliance.
For example, if a user would like their data deleted from your systems,
having the data lineage of that user’s data allows you to know where that
data is stored and its dependencies.



Though data lineage has been around for a long time in larger companies
with strict compliance standards for tracking its data, it’s now being more
widely adopted in smaller companies as data management becomes
mainstream. A data engineer should be aware of data lineage, as it’s
becoming a key piece both for debugging data workflows, as well as tracing
data that may need to be removed wherever it resides.

Data integration and interoperability
Data integration and interoperability is the process of integrating data
across tools and processes. As we move away from a single stack approach
to analytics towards a heterogeneous cloud environment where a variety of
tools process data on demand, integration, and interoperability occupy an
ever-widening swath of the data engineer’s job.

Increasingly, integration happens through general-purpose APIs rather than
custom database connections. A pipeline might pull data from the
Salesforce API, store it to Amazon S3, call the Snowflake API to load it
into a table, call the API again to run a query, then export the results to S3
again where it can be consumed by Spark.

All of this activity can be managed with relatively simple Python code that
talks to data systems rather than handling data directly. While the
complexity of interacting with data systems has decreased, the number of
systems and the complexity of pipelines has increased dramatically.
Engineers starting from scratch quickly outgrow the capabilities of bespoke
scripting and stumble into the need for orchestration. Orchestration is one
of our undercurrents, and we discuss it in detail below.

Data lifecycle management
The advent of data lakes encouraged organizations to ignore this data
archival and destruction. Why discard data when you can simply add more
storage and archive it eternally? Two changes have encouraged engineers to
pay more attention to what happens at the end of the data engineering
lifecycle.



First, data is increasingly stored in the cloud. This means pay-as-you-go
storage costs, instead of large block capex expenditures for an on-premises
data lake. When every byte shows up on a monthly AWS statement, CFOs
see opportunities for savings. Cloud environments make data archival a
relatively straightforward process. Major cloud vendors offer archival-
specific object storage classes such as Amazon Glacier and Google Cloud
Coldline Storage that allow long-term data retention at an extremely low
cost, assuming very infrequent access (it should be noted that data retrieval
isn’t so cheap, but that’s for another conversation). These storage classes
also support extra policy controls to prevent accidental or deliberate
deletion of critical archives.

Second, privacy and data retention laws such as GDPR and CCPA now
require data engineers to actively manage data destruction, with
consideration to the “right to be forgotten”. Data engineers must be aware
of what consumer data they retain and must have procedures in place to
destroy data in response to requests and compliance requirements.

Data destruction is straightforward in a cloud data warehouse—SQL
semantics allow deletion of rows conforming to a where clause. Data
destruction was more challenging in data lakes, where write-once, read-
many was the default storage pattern. Tools such as Hive Acid and Delta
Lake now allow easy management of deletion transactions at scale. New
generations of metadata management, data lineage, and cataloging tools
will also streamline the end of the data engineering lifecycle.

Ethics and privacy

Ethical behavior is doing the right thing when no one else is watching.
—Aldo Leopold

The last several years of data breaches, misinformation, and mishandling of
data make one thing clear—data impacts people. Data used to live in the
Wild West, freely collected and traded like baseball cards. Those days are
long gone. Whereas the ethical and privacy implications of data were once
considered a nice-to-have, like security, they’re now central to the general



data lifecycle. Data engineers need to do the right thing when no one else is
watching because someday, everyone will be watching. We hope that more
organizations will encourage a culture of good data ethics and privacy.

How do ethics and privacy impact the data engineering lifecycle? Data
engineers need to ensure that datasets mask personally identifiable
information (PII) and other sensitive information; bias can be identified and
tracked in datasets as they are transformed. Regulatory scrutiny—and
penalties for failing to comply—is only growing for data. Make sure your
data assets are compliant with a growing number of data regulations, such
as GDPR and CCPA. At the time of this writing, the EU is working on a
GDPR for AI. We don’t expect any slowdown in the popularity of ethics,
privacy, or resultant regulation, so please take this seriously.

Because ethics and privacy are top of mind, we will have some tips to
ensure you’re baking ethics and privacy into the data engineering lifecycle.

Orchestration
We think that orchestration matters because we view it as really the
center of gravity of both the data platform as well as the data lifecycle,
the software development lifecycle as it comes to data.

—Nick Schrock, founder of Elementl

While Nick’s definition of the data lifecycle is somewhat different from
ours, we fundamentally agree with his idea. Not only is orchestration a
central DataOps process, but orchestration systems are a critical part of the
engineering and deployment flow for data jobs, just as tools like Jenkins are
critical to the continuous delivery and deployment of software.

So, what is orchestration? Orchestration is the process of coordinating many
jobs to run as quickly and efficiently as possible on a scheduled cadence.
People often mistakenly refer to orchestration tools, like Apache Airflow, as
schedulers. This isn’t quite accurate, and there are key differences. A pure
scheduler, such as cron, is aware only of time. An orchestration engine, on
the other hand, builds in metadata on job dependencies, generally in the
form of a DAG (directed acyclic graph). The DAG can be run once, or be



scheduled to run at a fixed interval of daily, weekly, every hour, every five
minutes, etc.

As we discuss orchestration throughout this book, we assume that an
orchestration system stays online with high availability. This allows the
orchestration system to sense and monitor constantly without human
intervention, and to run new jobs any time they are deployed. An
orchestration system monitors jobs that it manages and kicks off new tasks
as internal DAG dependencies are completed. It can also monitor external
systems and tools to watch for data to arrive and criteria to be met. When
certain conditions go out of bounds, the system also sets error conditions
and sends alerts through email or other channels. Commonly, you might set
an expected completion time for overnight daily data pipelines, perhaps 10
am. If jobs are not done by this time, alerts go out to data engineers and
data consumers.

Orchestration systems typically also build in job history capabilities,
visualization, and alerting. Advanced orchestration engines can backfill
new DAGs or individual tasks as they are added to a DAG. They also
support dependencies over a time range. For example, a monthly reporting
job might check that an ETL job has been completed for the full month
before starting.

Orchestration has long been a key capability for data processing but was not
often top of mind nor accessible to anyone except the largest companies.
Enterprises used a variety of tools to manage job flows, but these were
expensive, out of reach of small startups, and generally not extensible.
Apache Oozie was extremely popular in the 2010s, but it was designed to
work within a Hadoop cluster and was difficult to use in a more
heterogeneous environment. Facebook developed Data Swarm for internal
use in the late 2000s; this inspired popular tools such as Airflow, which
Airbnb open-sourced in 2014.

Airflow was open source from its inception, a key strength to its strong
adoption. The fact that it was written in Python made it highly extensible to
almost any use case imaginable. While there are many other interesting



open-source orchestration projects such as Luigi and Conductor, Airflow is
arguably the mindshare leader for the time being. Airflow arrived just as
data processing was becoming more abstract and accessible, and engineers
were increasingly interested in coordinating complex flows across multiple
processors and storage systems, especially in cloud environments.

At the time of this writing, several nascent open-source projects aim to
mimic the best elements of Airflow’s core design, while improving on it in
key areas. Some of the most interesting examples at the moment are Prefect
and Dagster, which aim to improve the portability and testability of DAGs
to allow engineers to more easily move from local development to
production. There’s also Argo, which is built around Kubernetes primitives,
and Metaflow, an open-source project out of Netflix that aims to improve
data science orchestration. Which framework ultimately wins the mindshare
for orchestration is still to be determined.

We also want to mention one interesting non-open source orchestration
platform, Datacoral. Datacoral has introduced the idea of auto-orchestration
through data definitions. That is, one can define a table in Datacoral by
using a SQL statement; the orchestrator analyzes the source tables in the
query to determine upstream dependencies, then triggers a table refresh as
these dependencies are met. We believe that auto-orchestration will become
a standard feature of orchestration engines in the future.

We also point out that orchestration is strictly a batch concept. The
streaming alternative to orchestrated task DAGs is the streaming DAG.
Streaming DAGs remain challenging to build and maintain, but next-
generation streaming platforms such as Pulsar aim to dramatically reduce
the engineering and operational burden. We will talk more about these
developments in the chapter on transformation.

DataOps
DataOps maps the best practices of Agile methodology, DevOps, and
statistical process control (SPC) to data. Whereas DevOps aims to improve
the release and quality of software products, DataOps does the same thing



for data products. Data products differ from software products because of
how data is used. A software product provides specific functionality and
technical features for end-users. By contrast, a data product is built around
sound business logic and metrics, whose users make decisions or build
models that perform automated actions. A data engineer must understand
both the technical aspects of building software products to provide good
user experiences to downstream users, as well as the business logic, quality,
and metrics that will create excellent data products not just for immediate
downstream users, but for users across the business.

Like DevOps, DataOps borrows much from lean manufacturing and supply
chain, mixing people, processes, and technology to reduce time to value.

As Data Kitchen (the experts in DataOps) describes it, “DataOps is a
collection of technical practices, workflows, cultural norms, and
architectural patterns that enable:

Rapid innovation and experimentation delivering new insights to
customers with increasing velocity

Extremely high data quality and very low error rates

Collaboration across complex arrays of people, technology, and
environments

Clear measurement, monitoring, and transparency of results”

Lean practices (such as lead time reduction, minimizing defects), and the
resulting improvements to quality, and productivity are things we are glad
to see gaining momentum both in software and data operations.

First and foremost, DataOps are a cultural habit, and the data engineering
team needs to adopt a cycle of communicating and collaborating with the
business, breaking down silos, continuously learning from successes and
mistakes, and rapid iteration. Only when these cultural habits are set in
place can the team get the best results from technology and tools. The
reverse is rarely true.
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Depending on a company’s data maturity, a data engineer has some options
to build DataOps into the fabric of the overall data engineering lifecycle. If
the company has no pre-existing data infrastructure or practices, DataOps is
very much a greenfield opportunity that can be baked in from day one. With
an existing project or infrastructure that lacks DataOps, a data engineer can
begin adding DataOps into workflows. We suggest first starting with
observability and monitoring to get a window into the performance of a
system, then adding in automation and incident response. In a data-mature
company, a data engineer may work alongside an existing DataOps team to
improve the data engineering lifecycle. In all cases, a data engineer must be
aware of the philosophy and technical aspects of DataOps.

There are three core technical elements to DataOps—automation,
monitoring and observability, and incident response (see Figure 2-8). Let’s
look at each of these pieces, and how they relate to the data engineering
lifecycle.

Figure 2-8. The three pillars of DataOps

Automation
Automation enables reliability and consistency in the DataOps process and
allows data engineers to quickly deploy new product features and
functionality, as well as changes to existing parts of the workflow. DataOps
automation has a similar framework and workflow to DevOps, consisting of
change management (environment, code, and data version control),
continuous integration/continuous deployment (CI/CD), and configuration
as code (“X as code”). Like DevOps, DataOps practices monitor and
maintain the reliability of technology and systems (data pipelines,



orchestration, etc.), with the added dimension of checking for data quality,
data/model drift, metadata integrity, and much more.

Let’s briefly discuss the evolution of DataOps automation within a
hypothetical organization. An organization with a low level of DataOps
maturity often attempts to schedule data processes using cron jobs. This
works well for a while. As data pipelines become more complicated, several
things are likely to happen. If the cron jobs are hosted on a cloud instance,
the instance may have an operational problem, causing the jobs to stop
running unexpectedly. As the spacing between jobs becomes tighter, a job
will eventually run long, causing a subsequent job to fail or produce out-of-
date data. Engineers may not be aware of job failures until they hear from
analysts that their reports are out of date.

As the organization’s data maturity grows, data engineers will typically
adopt an orchestration framework, perhaps Airflow or Dagster. Data
engineers are aware that Airflow itself presents an operational burden, but
this eventually outweighs the operational difficulties of cron jobs. Engineers
will gradually migrate their cron jobs to Airflow jobs. Now, dependencies
are checked before jobs run. More jobs can be packed into a given time
because each job can start as soon as upstream data is ready rather than at a
fixed, predetermined time.

The data engineering team still has room for operational improvements. For
instance, eventually, a data scientist deploys a broken DAG, bringing down
the Airflow webserver and leaving the data team operationally blind. After
enough such headaches, the data engineering team realizes that they need to
stop allowing manual DAG deployments. In their next phase of operational
maturity, they adopt automated DAG deployment. DAGs are tested before
deployment, and monitoring processes ensure that the new DAGs start
running properly. In addition, data engineers block the deployment of new
Python dependencies until installation is validated. After automation is
adopted, the data team is much happier and experiences far fewer
headaches.



One of the tenets of the DataOps Manifesto is “Embrace Change.” This
does not mean change for the sake of change, but goal-oriented change. At
each stage of our automation journey, there are opportunities for operational
improvement. Even at the high level of maturity that we’ve described here,
there is further room for improvement. Engineers might choose to embrace
a next-generation orchestration framework that builds in better metadata
capabilities. Or they might try to develop a framework that builds DAGs
automatically based on data lineage specifications. The main point is that
engineers constantly seek to implement improvements in automation that
will reduce their workload and increase the value that they deliver to the
business.

Observability and monitoring
As we tell our clients, “data is a silent killer”. We’ve seen countless
examples of bad data lingering in reports for months or years. Executives
may make key decisions from this bad data, only to discover a substantial
time later that the data was wrong. The outcomes are usually bad, and
sometimes catastrophic for the business. Initiatives are undermined and
destroyed, years of work wasted. In some of the worst cases, companies
may be led to financial or technical disaster by bad data.

Another horror story is when the systems that create the data for reports
randomly stop working, resulting in reports being delayed by several days.
The data team doesn’t know until they’re asked by stakeholders why reports
are late or producing stale information. Eventually, different stakeholders
lose trust in the capabilities of the data system and start their quasi-data
team. The result is a ton of different unstable systems, reports, and silos.

If you’re not observing and monitoring your data, and the systems that
produce the data, you’re inevitably going to experience your own data
horror story. Observability, monitoring, logging, alerting, tracing are all
critical to getting ahead of any problems that will occur along the data
engineering lifecycle. We recommend you incorporate statistical process
control (SPC) to understand whether events being monitored are out of line,
and which incidents are worth responding to.



We’ll cover many aspects of monitoring and observability throughout the
data engineering lifecycle in later chapters.

Incident response
A high-functioning data team using DataOps will be able to quickly ship
new data products. But mistakes will inevitably happen. A system may have
downtime, a new data model may break downstream reports, a machine
learning model may become stale and provide bad predictions, and
countless other things may happen that interrupt the data engineering
lifecycle. Incident response is about using the automation and observability
capabilities mentioned above to rapidly identify root causes of an incident,
and resolve the incident as reliably and quickly as possible.

Incident response isn’t just about technology and tools, though they are
immensely useful. It’s also about open and blameless communication, both
on the data engineering team, and across the organization. As Werner
Vogels is famous for saying, “Everything breaks all the time.” Data
engineers must be prepared for disaster, and ready to respond as swiftly and
efficiently as possible. Even better, data engineers should proactively find
issues before the business reports them. Trust takes a long time to build and
can be lost in minutes. In the end, incident response is as much about
retroactively responding to incidents as proactively addressing them before
they happen.

DataOps summary
At this point, DataOps is still a work in progress. Even so, practitioners
have done a good job of adapting the principles of DevOps to the data
domain and mapping out an initial vision through the DataOps Manifesto
and other resources. Data engineers would do well to implement DataOps
practices a high priority in all of their work. The upfront effort will see a
significant long-term payoff through faster delivery of products, better
reliability and accuracy of data, and greater overall value for the business.

The state of operations in data engineering is still quite immature compared
with software engineering. Many data engineering tools, especially legacy



monoliths, are not automation-first. That said, there’s a recent movement to
adopt automation best practices across the data engineering lifecycle. Tools
like Airflow have paved the way for a new generation of automation and
data management tools. Because the landscape is changing so fast, we’ll
take a wait-and-see approach before we suggest specific tools. The general
practices we describe for DataOps are aspirational, and we suggest
companies try to adopt them to the fullest extent possible, given the tools
and knowledge available today.

Data Architecture
A data architecture reflects the current and future state of data systems that
support the long-term data needs and strategy of an organization. Because
the data requirements of an organization will likely change very rapidly, and
new tools and practices seem to arrive on a near-daily basis, data engineers
must understand good data architecture. We will cover data architecture in-
depth in Chapter 3, but we want to highlight how data architecture is an
undercurrent of the data engineering lifecycle.

A data engineer should first understand the needs of the business and gather
requirements for new use cases. Next, a data engineer needs to translate
those requirements to design new ways to capture and serve data, balanced
for cost and operational simplicity. This means knowing the tradeoffs with
design patterns, technologies, and tools in the areas of source systems,
ingestion, storage, transformation, and serving data.

This doesn’t imply that a data engineer is a data architect, as these are
typically two separate roles. If a data engineer works alongside a data
architect, the data engineer should be able to deliver on the data architect’s
designs, as well as provide architectural feedback. Without a dedicated data
architect, however, a data engineer will realistically be entrusted to be the
default data architect. We will deep dive into “good” data architecture in
Chapter 3.

Software Engineering



Software engineering has always been a central skill for data engineers. In
the early days of contemporary data engineering (2000–2010), data
engineers worked on low-level frameworks and wrote map-reduce jobs in
C, C++, and Java. At the peak of the big data era (the mid-2010s), engineers
started using frameworks that abstracted away these low-level details.

This abstraction continues today. Data warehouses support powerful
transformations using SQL semantics. Tools like Spark have become more
user-friendly over time, transitioning away from RDD-based coding
towards easy-to-use dataframes. Despite this abstraction, software
engineering is still a central theme of modern data engineering. We want to
briefly discuss a few common areas of software engineering that apply to
the data engineering lifecycle.

Core data processing code
Though it has become more abstract and easier to manage, core data
processing code still needs to be written and it appears throughout the data
engineering lifecycle. Whether in ingestion, transformation, or data serving,
data engineers need to be highly proficient and productive in frameworks
and languages such as Spark, SQL, or Beam; we reject the notion that SQL
is not code.

It’s also imperative that a data engineer understand proper code testing
methodologies, such as unit, regression, integration, end-to-end, smoke
testing, and others. Especially with the growing number of tools and
modularization, and the automation involved with DataOps, data engineers
need to ensure their systems work end-to-end.

Development of open source frameworks
Many data engineers are heavily involved in the development of open-
source frameworks. They adopt these frameworks to solve specific
problems in the data engineering lifecycle, then continue to develop the
framework code to improve the tools for their use cases and to make a
contribution back to the community.



In the big data era, we saw a Cambrian explosion of data processing
frameworks inside of the Hadoop ecosystem. These tools were primarily
focused on the transformation and serving parts of the data engineering
lifecycle. Data engineering tool speciation has not ceased or even slowed
down, but the emphasis has shifted up the ladder of abstraction, away from
direct data processing. This new generation of open source tools assists
engineers in managing, enhancing, connecting, optimizing, and monitoring
data.

For example, Apache Airflow dominated the orchestration space from 2015
on. Now, a new batch of open source competitors (Prefect, Dagster,
Metaflow, etc) has sprung up to fix perceived limitations of Airflow,
providing better metadata handling, portability, dependency management,
etc.

Before data engineers begin engineering new internal tools, they would do
well to survey the landscape of projects. Keep an eye on the total cost of
ownership (TCO) and opportunity cost associated with implementing a tool.
There is a good chance that some open source project already exists to
address the problem that they’re looking to solve, and they would do well to
collaborate on an existing project rather than reinventing the wheel.

Streaming
Streaming data processing is inherently more complicated than batch, and
the tools and paradigms are arguably less mature. As streaming data
becomes more pervasive in every stage of the data engineering lifecycle,
data engineers face a host of interesting software engineering problems.

For instance, data processing tasks such as joins that we take for granted in
the batch processing world often become more complicated in a real-time
environment, and more complex software engineering is required.
Engineers must also write code to apply a variety of windowing methods.
Windowing allows real-time systems to calculate useful metrics such as
trailing statistics; there are a variety of techniques for breaking data into
windows, all with subtly different nuances. Engineers have many
frameworks to choose from, including various function platforms



(OpenFaaS, AWS Lambda, Google Cloud Functions) for handling
individual events or dedicated stream processors (Apache Spark, Beam, or
Pulsar) for analyzing streams for reporting and real-time actions.

Infrastructure as code
Infrastructure as code (IaC) applies software engineering practices to the
configuration and management of infrastructure. The infrastructure
management burden of the big data era has decreased precipitously as
companies have migrated to managed big data systems (Databricks, EMR)
and cloud data warehouses. When data engineers have to manage their
infrastructure in a cloud environment, they increasingly do this through IaC
frameworks rather than manually spinning up instances and installing
software. Several general-purpose (Terraform, Ansible...) and cloud
platform-specific (AWS Cloudformation, Google Cloud Deployment
Manager...) frameworks allow automated deployment of infrastructure
based on a set of specifications. Many of these frameworks can manage
services as well as infrastructure. For example, we can use CloudFormation
to spin up Amazon Redshift, or Deployment Manager to start Google Cloud
Composer (managed Airflow). There is also a notion of infrastructure as
code with containers and Kubernetes, using tools like Helm.

These practices are a key part of DevOps, allowing version control and
repeatability of deployments. Naturally, these capabilities are extremely
valuable throughout the data engineering lifecycle, especially as we adopt
DataOps practices.

Pipelines as code
Pipelines as code are the core concept of modern orchestration systems,
which touch every stage of the data engineering lifecycle. Data engineers
use code (typically Python) to declare data tasks and dependencies between
them. The orchestration engine interprets these instructions to run steps
using available resources.

General purpose problem solving



In practice, regardless of which high-level tools they adopt, data engineers
will run into corner cases throughout the data engineering lifecycle that
requires them to solve problems outside the boundaries of their chosen
tools, and to write custom code. Even when using frameworks like Fivetran,
Airbyte, or Singer, data engineers will encounter data sources without
existing connectors and need to write something custom. They should be
proficient enough in software engineering to understand APIs, pull and
transform data, handle exceptions, etc.

Conclusion
Most discussions we’ve seen in the past about data engineering involve
technologies but miss the bigger picture of the data lifecycle management.
As technologies become more abstract and do more heavy lifting, a data
engineer has the opportunity to think and act on a higher level. The data
engineering lifecycle—supported by its undercurrents—is an extremely
useful mental model for organizing the work of modern data engineering.

We break the data engineering lifecycle into the following stages:

Generation: source systems

Ingestion

Storage

Transformation

Serving

Several themes cut across the data engineering lifecycle, as well. These are
the undercurrents of the data engineering lifecycle. At a high level, the
undercurrents are:

Data management

DataOps



Data architecture

Software engineering

Orchestration

A data engineer has several top-level goals across the data lifecycle—
produce optimum ROI and reduce costs (financial and opportunity), reduce
risk (security, data quality) and maximize data value and utility. In the next
chapter, we’ll discuss how these elements impact the design of good
architecture. Subsequently, we’ve devoted a chapter to each of the stages of
the data engineering lifecycle.

1  Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, and Jessi
Ashdown, Data Governance: The Definitive Guide (O’Reilly),
https://learning.oreilly.com/library/view/data-governance-the/9781492063483/.

2  Eryurek et al.

3  Eryurek et al.

4  https://medium.com/airbnb-engineering/democratizing-data-at-airbnb-852d76c51770

5  https://en.wikipedia.org/wiki/Principle_of_least_privilege

6  https://datakitchen.io/what-is-dataops/

https://learning.oreilly.com/library/view/data-governance-the/9781492063483/
https://medium.com/airbnb-engineering/democratizing-data-at-airbnb-852d76c51770
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://datakitchen.io/what-is-dataops/


Chapter 3. Choosing
Technologies Across the Data
Engineering Lifecycle

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the fourth chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at
book_feedback@ternarydata.com.

Modern data engineering suffers from an embarrassment of riches. Data
technologies to solve nearly any problem are available as turnkey offerings
consumable in almost every way—open-source, managed open source,
proprietary software, proprietary service, etc. However, it’s easy to get
caught up in chasing bleeding edge technology while losing sight of the
core purpose of data engineering—designing robust and reliable systems to
carry data through the full life cycle and serve it according to the needs of
end-users. Just as structural engineers carefully choose technologies and
materials to realize an architect’s vision for a building, data engineers are
tasked with making appropriate technology choices to shepherd data
through the lifecycle to best serve data applications and users.

mailto:book_feedback@ternarydata.com


In the last chapter, we discussed “good” data architecture, and why it
matters. We now explain how to choose the right technologies to serve this
architecture. Data engineers must choose “good” technologies to make the
best possible data product. We feel the criteria to choose a “good” data
technology is simple: does it add value to a data product and the broader
business?

A lot of people confuse architecture and tools. Architecture is strategic;
tools are tactical. We sometimes hear, “our data architecture are tools X, Y,
and Z”. This is the wrong way to think about architecture. Architecture is
the top-level design, roadmap, and blueprint of data systems that satisfy the
strategic aims for the business. Architecture is the “What”, “Why” and
“When”. Tools are used to make the architecture a reality; tools are the
“How”.

We often see teams going “off the rails” and choosing technologies before
mapping out an architecture. The reasons for this are varied—shiny object
syndrome, resume-driven development, a lack of expertise in architecture—
but in practice, this prioritization of technology often means that they don’t
choose architecture, but instead cobble together a kind of Rube Goldberg
machine of technologies. This is exactly backward. We strongly advise
against choosing technology before getting your architecture right.
Architecture first. Technology second.

This chapter discusses our tactical plan for making technology choices once
we have an architecture blueprint in hand. Below are some considerations
for choosing data technologies across the data engineering lifecycle:

Cost optimization and adding value to the business

Friction to deliver

Team ability and maturity

Speed to market

Today versus the future: immutable versus transitory technologies

Location: cloud, on-premises, hybrid-cloud, multi-cloud



Build versus buy

Monolith versus modular

Serverless versus servers

The undercurrents of the data engineering lifecycle, and how they
impact choosing technologies

Cost Optimization: Total Cost of Ownership
and Opportunity Cost
In a perfect world, we’d get to experiment with all of the latest, coolest
technologies with no consideration of cost, time investment, or value added
for the business. In reality, budgets and time are finite, and cost is a major
constraint for choosing the right data architectures and technologies. Your
organization expects a positive return on investment (ROI) from your data
projects, so it’s critical that you understand the basic costs you can control.
Technology is a major cost driver, so your technology choices and
management strategies will have a significant impact on your budget. We
look at costs through two main lenses—total cost of ownership and
opportunity cost.

Total Cost of Ownership
Total cost of ownership (TCO) is the total estimated cost of an initiative,
including the direct and indirect costs of products and services utilized.
Direct costs are the costs you can directly attribute to an initiative, such as
the salaries of a team working on the initiative, or the AWS bill for all
services consumed. Indirect costs, also known as overhead, are independent
of the initiative and must be paid regardless of where they’re attributed.

Apart from direct and indirect costs, how something is purchased has a big
impact on a budget’s bottom line. These expenses fall into two big groups—
capital expense and operational expense.



Capital expenses, also known as capex, require an upfront investment.
Payment is required today. Before the cloud, companies would typically
purchase hardware and software upfront through large acquisition contracts,
and house this infrastructure in huge server rooms, or pay to house their
servers in a colocation facility. These upfront investments in hardware and
software—commonly in the hundreds of thousands to millions of dollars, or
higher—would be treated as assets, and slowly depreciate over time. From a
budget perspective, capital would need to be available to pay for the entire
purchase upfront or funding secured through a loan vehicle. In addition,
there’s the extra cost of maintaining the hardware and software over the
lifetime of those assets. Capex is generally reserved for long-term
investments, where there’s a well-thought-out plan for achieving a positive
ROI on the effort and expense put forth.

Operational expenses, known as opex, are almost the opposite of capex.
Whereas capex is long-term focused, opex is short-term. Opex can be pay-
as-you-go, or similar, and allows a lot of flexibility. Opex has the added
benefit of potentially being closer to a direct cost, making it easier to
attribute to a data project.

Until recently, opex simply wasn’t an option for large data projects—data
warehouse systems required multimillion dollar contracts. This has all
changed with the advent of the cloud, where data platform services allow
engineers to pay on a consumption based model. In general, we find that
opex allows for a far greater ability for engineering teams to choose both
their software and hardware. Cloud based services allow data engineers to
iterate quickly with different software and technology configurations, often
very inexpensively.

Data engineers need to be pragmatic about flexibility. The data landscape is
changing too quickly to invest in long-term hardware that inevitably goes
stale, can’t easily scale, and potentially hampers a data engineer’s flexibility
to try new things. Given the upside for flexibility and low initial costs, we
urge data engineers to take an opex-first approach centered on the cloud
and flexible technologies.



Opportunity Cost
Data engineers often fail to evaluate opportunity cost when they undertake a
new project. In our opinion, this is a massive blind spot. Opportunity cost is
the cost of choosing one thing at the expense of something else. As it relates
to data engineering, if you choose Data Stack A, that means you’ve chosen
the benefits of Data Stack A over all other options, effectively excluding
Data Stack B through Z. You’re now committed to Data Stack A, and
everything it entails—the team to support it, training, setup, maintenance,
and so forth. But in an incredibly fast-moving field like data, what happens
when Data Stack A becomes obsolete? Can you still move to Data Stack B?

A big question in a world where newer and better technologies arrive on the
scene at an ever-faster rate—how quickly and cheaply can you move to
something newer and better? Does the expertise you’ve built up on Data
Stack A translate to the next wave? Or are you able to swap out components
of Data Stack A and buy yourself some time and options?

The first step to minimizing opportunity cost is evaluating it with eyes wide
open. We’ve seen countless data teams get stuck with technologies that,
while they seemed good at the time, are either not flexible for future
growth, or are simply obsolete. Inflexible data technologies are a lot like
bear traps. They’re easy to get into and extremely painful to escape. Don’t
let this happen to you.

Today Versus the Future: Immutable Versus
Transitory Technologies
Where are you today? What are your goals for the future? Your answers to
these questions should inform the decisions you make about your
architecture, and thus the technologies used within that architecture. Too
often, we see data engineers and architects scoping and building for “the
future” whose date and specific needs are not well defined. These intentions
are noble but often lead to over-architecting and over-engineering. It often
happens that tooling chosen for the future is stale and out of date when this



future arrives; the future frequently looks little like what we envisioned
years before. As many life coaches would tell you, focus on the present;
choose the best technology for the moment and near future, but in a way
that supports future unknowns and evolution. This is done by understanding
what is likely to change, and what tends to stay the same.

There are two classes of tools to consider—immutable and transitory.
Immutable technologies might be components that underpin the cloud, or
languages and paradigms that have stood the test of time. In the cloud,
examples of immutable technologies are object storage, networking,
servers, and security. Object storage such as AWS S3 and Azure Blob
Storage will be around from today until the end of the decade, and probably
much longer. Storing your data in object storage is a wise choice. Object
storage continues to improve in various ways, and constantly offers new
options, but your data will be safe and usable in object storage for the
foreseeable future.

For languages, SQL and Bash have been around for many decades, and we
don’t see them disappearing anytime soon. Immutable technologies benefit
from the Lindy Effect, which says the longer a technology has been
established, the longer it will continue to be used. Think, for example, of
relational databases, C , or the x86 processor architecture. We suggest
applying the Lindy Effect as a litmus test to determine if a technology has
immutable potential.

Transitory technologies are those that come and go. The typical trajectory
begins with a lot of hype, followed by meteoric growth in popularity, then a
slow descent into obscurity. The Javascript frontend landscape is a classic
example of this. How many Javascript frontend frameworks have come and
gone between 2010 and 2020? Backbone, Ember and Knockout were
popular in the early 2010’s, AngularJS in the mid 2010’s, and React and
Vue have massive mindshare today. What’s the popular frontend framework
3 years from now? Who knows.

On the data front, new well-funded entrants and open source projects arrive
on the scene every day. Every vendor will say their product is going to
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change the industry and “make the world a better place.”  Sadly, the vast
majority of these companies and projects won’t ultimately get traction, and
will fade into obscurity. Top VC’s are making big-money bets, knowing that
most of their data tooling investments will fail. How can you possibly know
what technologies to invest in for your data architecture? It’s hard. Just
consider the number of technologies in Matt Turck’s (in)famous depictions
of the machine learning, AI, and data (MAD) landscape  (Figure 3-1).
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Figure 3-1. Matt Turck’s MAD data landscape

Even relatively successful technologies often fade into obscurity quickly
after a few years of rapid adoption, a victim of their success. For instance,
Hive was met with rapid uptake because it allowed both analysts and
engineers to query massive data sets without coding complex MapReduce
jobs by hand. Inspired by the success of Hive, but wishing to improve on its
shortcomings, engineers developed SparkSQL, Presto, and other
technologies. Hive now appears primarily in legacy deployments. This is
the general cycle of data technologies—incumbents reign for a time, then
get disrupted and replaced by new technologies that also reign for a time,
and so on.

Our Advice
Given the rapid pace of tooling and best practice changes, we suggest
evaluating tools on a two-year basis (Figure 3-2). Whenever possible, find
the immutable technologies along the data engineering lifecycle, and use
those as your base. Build transitory tools around the immutables.

Figure 3-2. Use a two-year time horizon to reevaluate your technology choices



Location: On-Premises, Cloud, Hybrid, Multi-
Cloud, and More
Companies now have numerous options when they decide where to run
their technology stacks. A slow shift toward the cloud in the last decade
now culminates in a veritable stampede of companies spinning up
workloads on AWS, Azure, and GCP. Many CTOs now view their decisions
around technology hosting as having existential significance for their
organizations. If they move too slowly, they risk being left behind by their
more nimble competition; on the other hand, a poorly planned cloud
migration could lead to poorly functioning technology and catastrophic
costs. Let’s look at the main places to run your technology stack—on-
premises, the cloud, hybrid-cloud, and multi-cloud.

On-premises
While new startups are increasingly born in the cloud, on-premises systems
are still very much the default for established companies. Essentially, this
means that they own their own hardware, which may live in data centers
that they own, or in leased colocation space. In either case, companies are
operationally responsible for their hardware and the software that runs on it.
As hardware fails, they have to repair or replace it. They also have to
manage upgrade cycles every few years as new, updated hardware is
released and older hardware ages and becomes less reliable. They also must
ensure that they have enough hardware to handle peaks; for an online
retailer, this means hosting enough capacity to handle the load spikes of
Black Friday. For data engineers in charge of on-premises systems, this
means buying large enough systems to allow reasonable performance for
peak load and large jobs without overbuying and spending excessively.

On the one hand, established companies have established operational
practices that have served them well for some time. If a company that relies
on information technology has been in business for some time, this means
that they have managed to juggle the cost and personnel requirements of



running their own hardware, managing software environments, deploying
code from dev teams, running databases, and big data systems, etc.

On the other hand, established companies see their younger, more nimble
competition scaling rapidly and taking advantage of cloud-managed
services. They also see established competitors making forays into the
cloud, allowing them to temporarily scale up to huge clusters for massive
data jobs, or turn on temporary server capacity for Black Friday.

Companies in competitive sectors generally don’t have the option to stand
still. Competition is fierce, and there’s always the threat of being
“disrupted” by more agile competition, often backed by significant venture
capital dollars. Plus, many large incumbent companies are also modernizing
and moving their workloads to the cloud. Every company must keep its
existing systems running efficiently while deciding what moves to make
next. This could involve adopting newer DevOps practices, such as
containers, Kubernetes, microservices, and continuous deployment while
keeping their own hardware running on-premises, or it could involve a full
migration to the cloud, as discussed below.

Cloud
The cloud flips the on-premises model on its head. Instead of purchasing
hardware, you simply rent hardware and managed services from a cloud
provider (AWS, Azure, Google Cloud, etc). These resources can often be
reserved on an extremely short term basis—virtual machines typically spin
up in less than a minute, and subsequent usage is billed in per second
increments. This allows cloud users to dynamically scale resources in a way
that is inconceivable with on-premises servers.

In a cloud environment, engineers can quickly launch projects and
experiment without worrying about long lead time hardware planning—
they can begin running servers as soon as their code is ready to deploy. This
makes the cloud model extremely appealing to startups who are tight on
budget and time.



The early era of cloud was dominated by Infrastructure as a Service (IaaS)
offerings, i.e., products such as virtual machines, virtual disks, etc. that are
essentially rented slices of hardware. Slowly, we’ve seen a shift toward
Platform as a Service (PaaS), while Software as a Service (SaaS) products
continue to grow at a rapid clip.

PaaS includes IaaS products, but adds more sophisticated managed services
to support applications. Examples are managed databases (Amazon RDS,
Google Cloud SQL), managed streaming platforms (Amazon Kinesis and
SQS), managed Kubernetes (Google Kubernetes Engine, Azure AKS), etc.
PaaS services can allow engineers to ignore the operational details of
managing individual machines, and deploying and configuring frameworks
across distributed systems. They often provide turnkey access to complex
systems with simple scaling and minimal operational overhead.

SaaS offerings move one additional step up the ladder of abstraction.
Typically, Software as a Service provides a fully functioning enterprise
software platform with very little operational management. Examples of
SaaS include Salesforce, Google Workspace, Office 365, Zoom, Fivetran,
etc. Both the major public clouds and third parties offer SaaS platforms.
SaaS covers a whole spectrum of enterprise domains, including video
conferencing, data management, ad tech, office applications, CRM systems,
and so on. It can be difficult to define the boundary between PaaS and SaaS
offerings; a CRM platform may be an important component of backend
application systems, and Fivetran functions as a critical piece of data
infrastructure.

We also mention serverless in this section, which is increasingly important
in PaaS and SaaS offerings. Serverless products generally offer fully
automated scaling from 0 up to extremely high usage rates. They are billed
on a pay-as-you-go basis and allow engineers to operate with no operational
awareness of underlying servers. Many people quibble with the term
serverless—after all, the code must run somewhere. In practice, serverless
platforms usually run on highly distributed multi-tenant infrastructure over
many servers. AWS Lambda and Google BigQuery are best in class



serverless offerings in the cloud functions and cloud data warehouse
domains respectively.

Cloud services have become increasingly appealing to established
businesses with existing data centers and IT infrastructure. Dynamic,
seamless scaling is extremely valuable to businesses that deal with
seasonality (i.e. retail business coping with Black Friday load) and web
traffic load spikes. The COVID 19 Global Pandemic has also been a major
driver of cloud adoption, as numerous businesses have had to cope with
substantially increased web traffic, and internal IT infrastructure has
groaned under the load of mass remote work.

Before we discuss the nuances of choosing technologies in the cloud, let’s
first discuss why migration to the cloud requires a dramatic shift in
thinking, specifically on the pricing front. Enterprises that migrate to the
cloud often make major deployment errors by not appropriately adapting
their practices to the cloud pricing model. Let’s take a bit of a detour into
cloud economics.

A brief detour on cloud economics
To understand how to use cloud services efficiently, you need to know how
clouds make money. This is actually an extremely complex concept and one
on which cloud providers offer little transparency. Our guidance in this
section is largely anecdotal, and won’t cover the full scale of what you’ll
likely encounter in your own experience.

Cloud services and credit default swaps

Recall that credit default swaps rose to infamy after the 2007 global
financial crisis. Roughly speaking, a credit default swap was a mechanism
for selling different tiers of risk attached to an asset (i.e. a mortgage.) It is
not our intention to understand this idea in any detail, but rather to present
an analogy wherein many cloud services are similar to financial derivatives;
cloud providers not only slice hardware assets into small pieces through
virtualization, but they also sell these pieces with varying technical
characteristics and risks attached. While providers are extremely tight-



lipped about many details of their internal systems, there are massive
opportunities for optimization and scaling by understanding cloud pricing
and exchanging notes with other users.

Let’s look at the example of cloud archival storage. Google Cloud Platform
openly admits that their archival class storage runs on the same clusters as
standard cloud storage, yet the price per GB per month of archival storage
is roughly 1/17th that of standard storage. How is this possible?

Here, we are giving our best-educated guess. When we purchase cloud
storage, we think in terms of cost per GB, but each disk in a storage cluster
has three different assets that cloud providers and consumers make use of.
First, it has a certain storage capacity, say 10 TB. Second, it supports a
certain number of IOPs (input/output operations per second), say 100.
Third, disks support a certain maximum bandwidth, which is the maximum
read speed for optimally organized files. A magnetic drive might be capable
of reading at 200 MB/s.

For a cloud provider, any of these limits (IOPs, storage capacity,
bandwidth) is a potential bottleneck. For instance, the cloud provider might
have a disk storing 3 TB of data, but hitting maximum IOPS. There’s an
alternative to leaving the remaining 7 TB empty: sell the empty space
without selling IOPs. Or more specifically, sell cheap storage space and
expensive IOPs to discourage reads.

Much like traders of financial derivatives, cloud vendors also deal in risk.
In the case of archival storage, vendors are selling a type of insurance, but
one that pays out for the insurer rather than the policy buyer in the event of
a catastrophe.

Similar considerations apply to nearly any cloud service. To provide
another example, compute is no longer a simple commodity in the cloud as
it is with on-premises hardware. Rather than simply charging for CPU
cores, memory, and features, cloud vendors monetize characteristics such as
durability, reliability, longevity, and predictability; a variety of compute
platforms discount their offerings for workloads that are ephemeral (AWS



Lambda) or can be arbitrarily interrupted when capacity is needed
elsewhere (Google Compute Engine Interruptible Instances).

Cloud ≠ on-premises

This heading may seem like a silly tautology; in reality, the belief that cloud
services are just like familiar on-premises servers is an extremely common
cognitive error that plagues cloud migrations and leads to horrifying bills.

This cognitive error demonstrates a broader issue in tech that we refer to as
the curse of familiarity. Generally, any technology product is designed to
look like something familiar to facilitate ease of use and adoption; but, any
technology product has subtleties and wrinkles that users must learn to
identify and work with/around after the initial adoption phase.

Moving on-premises servers one by one to virtual machines in the cloud—
known as simple lift and shift—is a perfectly reasonable strategy for the
initial phase of cloud migration, especially where a company is facing some
kind of financial cliff, such as the need to sign a significant new lease or
hardware contract if existing hardware is not shut down. However,
companies that leave their cloud assets in this initial state are in for a rude
shock; on a direct comparison basis, long-running servers in the cloud are
significantly more expensive than their on-premises counterparts.

The key to finding value in the cloud is to understand and optimize for the
cloud pricing model. Rather than deploying a set of long-running servers
capable of handling full peak load, use autoscaling to allow workloads to
scale down to minimal infrastructure when loads are light, and up to
massive clusters during peak times. Or take advantage of AWS spot
instances or AWS Lambda to realize discounts through more ephemeral,
less durable workloads.

Data engineers can also realize new value in the cloud not by simply saving
money, but by doing things that were simply not possible in their on-
premises environment. The cloud gives data engineers the opportunity to
spin up massive compute clusters quickly in order to run complex
transformations, at scales that are unaffordable for on-premises hardware.



Data gravity

In addition to basic errors such as following on-premises operational
practices in the cloud, data engineers need to watch out for other aspects of
cloud pricing and incentives that frequently catch users unawares. Vendors
want to lock you into their offerings. For cloud platforms, this means that
getting data onto the platform is cheap or free, but getting data out can be
extremely expensive. Be aware of data egress fees and their long-term
impacts on your business before you get blindsided by a large bill. Data
gravity is real—once data lands in a cloud, the cost to extract it and migrate
processes can be very high.

Hybrid Cloud
As more and more established businesses migrate into the cloud, the hybrid
cloud model is growing in importance. Virtually no business can migrate all
of its workloads overnight. The hybrid cloud model assumes that an
organization will maintain some workloads outside the cloud indefinitely.

There are a variety of reasons to consider a hybrid cloud model.
Organizations may believe that they have achieved operational excellence
in certain areas, for instance with their application stack and associated
hardware. Thus, they may choose to migrate only specific workloads where
they see immediate benefits in the cloud environment. They might choose
to migrate their Hadoop stack to ephemeral cloud clusters, reducing the
operational burden of managing software for the data engineering team and
allowing rapid scaling for large data jobs.

This pattern of putting analytics in the cloud is particularly attractive
because data flows primarily in one direction, minimizing data egress costs
(Figure 3-3). That is, on-premises applications generate event data that can
be pushed to the cloud essentially for free. The bulk of data remains in the
cloud where it is analyzed, while smaller amounts of data might be pushed
back for deploying models to applications, reverse ETL, etc.



Figure 3-3. Hybrid cloud data flow model that minimizes egress costs.

There’s also a new generation of managed hybrid cloud service offerings,
including Google Anthos and AWS Outposts. These services allow
customers to locate cloud-managed servers in their data centers. Thus, they
can take advantage of auto-scaling with the EC2 Management Console, or
spin up Google Cloud Composer, while still realizing low latency and
network access control of having servers within their own walls. These
services integrate seamlessly with the cloud offerings of AWS and GCP
respectively, allowing customers to burst data and application workloads to
the cloud as the need arises.

Multi-cloud
Multi-cloud simply refers to the practice of deploying workloads to
multiple clouds, as opposed to deliberately choosing and using only a single
cloud for the sake of simplicity. Companies may have a variety of
motivations for multi-cloud deployments. SAAS platforms often wish to
offer their services close to existing customer cloud workloads. Snowflake



and Databricks are two organizations that offer multi-cloud services for this
reason. This is especially critical for data-intensive applications, where
network latency and bandwidth limitations hamper performance, and data
egress costs can be prohibitive.

Another common motivation for employing a multi-cloud approach is to
take advantage of the best services across several clouds. Customers might
want to handle their Google Ads and Analytics data on GCP and deploy
Kubernetes through Google GKE. They might adopt Azure specifically for
Microsoft workloads. And AWS has several best-in-class services (i.e.
AWS Lambda) and enjoys huge mindshare, making it relatively easy to hire
AWS proficient engineers.

There are several disadvantages to a multi-cloud methodology. As we just
mentioned, data egress costs and networking bottlenecks are critical. And
going multi-cloud can introduce significant complexity. Companies must
now manage a dizzying array of services across several clouds, and cross-
cloud integration and security present a huge challenge. Among other
things, it may become necessary to integrate virtual networks across several
clouds.

A new generation of “cloud of clouds” services aims to facilitate multi-
cloud with reduced complexity by not only offering services across clouds,
but seamlessly replicating data between clouds, or managing workloads on
several clouds through a single pane of glass. A Snowflake account runs in
a single cloud region, but customers can readily spin up accounts in GCP,
AWS, or Azure; Snowflake provides simple scheduled data replication
between these accounts. In addition, the Snowflake interface is essentially
the same in all of these accounts, removing the training burden associated
with switching between cloud-native services such as Amazon Redshift and
Azure Synapse.

Google BigQuery Omni will deliver similar functionality once it goes into
general availability, extending the GCP native experience to multiple
clouds. In fact, we’re seeing a growing trend of “cloud of clouds” services
offered directly by the public clouds. Google Anthos allows users to run



workloads on AWS/Azure, and Amazon EKS Anywhere offers similar
functionality for Azure/GCP.

The “cloud of clouds” space is evolving rapidly; within a few years of this
book’s publication, there will be far more such services available, and data
engineers and architects would do well to maintain awareness of this
quickly changing landscape.

Decentralized: Blockchain and the Edge
Though not widely used now, it’s worth briefly mentioning a new trend that
might become popular over the next decade—decentralized computing.
Whereas today’s applications mainly run on-premises and in the cloud, the
rise of blockchain, Web 3.0, and edge computing may possibly invert this
paradigm. While there are not a lot of popular examples to point at right
now, it’s worth keeping platform decentralization in the back of your mind
as you consider technologies.

Be Cautious with Repatriation Arguments
As we were writing this book, Sarah Wang and Martin Casado published an
article for Andreesen Horowitz  that generated significant sound and fury in
the tech space. This article was widely interpreted as a call for repatriation
of cloud workloads to on-premises servers. In fact, they make a somewhat
more subtle argument that companies should expend significant resources
to control cloud spend, and should consider repatriation as a possible
option.

We want to take a moment to dissect one part of their discussion. Wang and
Casado cite Dropbox’s repatriation of significant workloads from AWS to
their servers as a case study for companies considering the same move or
assessing retention of existing data centers.

You are not Dropbox, nor are you Cloudflare
We believe that this case study is frequently used without appropriate
context, and is a compelling example of the false equivalence logical
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fallacy. Dropbox provides very specific services where ownership of
hardware and data centers can offer a competitive advantage. Companies
should not rely excessively on Dropbox’s example when assessing cloud
and on-premises deployment options.

First, it’s important to understand that Dropbox stores a vast quantity of
data. The company is tight-lipped about exactly how much data they host,
but they do say that it is many exabytes and that it continues to grow.

Second, Dropbox handles a vast amount of network traffic. We know that
their bandwidth consumption in 2017 was significant enough for the
company to add “hundreds of gigabits of Internet connectivity with transit
providers (regional and global ISPs), and hundreds of new peering partners
(where we exchange traffic directly rather than through an ISP).”  Their
data egress costs would be extremely high in a public cloud environment.

Third, Dropbox is essentially a cloud storage vendor, but one with a highly
specialized storage product that combines characteristics of object and
block storage. Dropbox’s core competence is a differential file update
system that can efficiently synchronize actively edited files between users
while minimizing network and CPU usage. As such, their product is not a
good fit for object storage, block storage or other standard cloud offerings.
Dropbox has instead benefited from building a custom, highly integrated
software and hardware stack.

Fourth, while Dropbox moved their core product to their own hardware,
they continue to build out other workloads on AWS. In effect, this allows
them to focus on building one highly tuned cloud service at extraordinary
scale rather than trying to replace numerous different services; they can
focus on their core competence in cloud storage and data synchronization,
while offloading management of software and hardware in other areas, such
as data analytics.

Other frequently cited success stories where companies have built outside
the cloud include Backblaze and Cloudflare, and these offer similar lessons.
Backblaze began life as a personal cloud data backup product, but has since
begun to offer its own object storage similar to Amazon S3. They currently
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store over an exabyte of data.  Cloudflare claims to provide services for
over 25 million internet properties, with points of presence in over 200
cities and 51 Tbps (terabits per second) of total network capacity.

Netflix offers yet another useful example. Netflix is famous for running its
tech stack on AWS, but this is only partially true. Netflix does run video
transcoding on AWS, accounting for roughly 70% of its compute needs in
2017.  They also run their application backend and data analytics on AWS.
However, rather than using the AWS content distribution network, they
have built out a custom CDN in collaboration with internet service
providers, utilizing a highly specialized combination of software and
hardware. For a company that consumes a substantial slice of all internet
traffic,  building out this critical infrastructure allowed them to cost
effectively deliver high quality video to a huge customer base.

These case studies suggest that it makes sense for companies to manage
their own hardware in very specific circumstances. The biggest modern
success stories of companies building and maintaining hardware involve
extraordinary scale (exabytes of data, Tbps of bandwidth, etc.), and narrow
use cases where companies can realize a competitive advantage by
engineering highly integrated hardware and software stacks. Thus, Apple
might gain a competitive edge by building its own storage system for
iCloud,  but there is less evidence to suggest that general purpose
repatriation efforts will be beneficial.

Our Advice
From our perspective, we are still at the beginning of the transition to cloud,
and thus the evidence and arguments around workload placement and
migration will continue to evolve rapidly. Cloud itself is changing, with a
shift from the IAAS (infrastructure as a service) model built around
Amazon EC2 that drove the early growth of AWS, toward more managed
service offerings such as AWS Glue, Google BigQuery, Snowflake, etc.
We’ve also seen the emergence of new workload placement abstractions.
On-premises services are becoming more cloud-like (Think Kubernetes,
which abstracts away hardware details); And hybrid cloud services such as
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Google Anthos and AWS Outposts allow customers to run fully managed
services within their own walls, while also facilitating tight integration
between local and remote environments. Further, the “cloud of clouds” is
just beginning to take shape, fueled by third party services, and increasingly
the public cloud vendors themselves.

Choose technologies for the present, but look toward the future
In sum, it is a very difficult time to plan workload placements and
migrations. The decision space will look very different in five to ten years.
It is tempting to take into account every possible future architecture
permutation.

We believe that it is critical to avoid this endless trap of analysis. Instead,
plan for the present. Choose the best technologies for your current needs
and concrete plans for the near future. Choose your deployment platform
based on real business needs, while focusing on simplicity and flexibility.

In particular, don’t choose a complex multi-cloud or hybrid-cloud strategy
unless there’s a compelling reason to do so. Do you need to serve data near
customers on multiple clouds? Do industry regulations require you to house
certain data in your own data centers? Do you have a compelling
technology need for specific services on two different clouds? If these
scenarios don’t apply to you, then choose a simple single cloud deployment
strategy.

On the other hand, have an escape plan. As we’ve emphasized before, every
technology—even open-source software—comes with some degree of lock-
in. A single-cloud strategy has significant advantages of simplicity and
integration, but also significant lock-in. In this instance, we’re really talking
about mental flexibility, the flexibility to evaluate the current state of the
world and imagine alternatives. Ideally, your escape plan will remain locked
behind glass, but preparing this plan will help you to make better decisions
in the present, and give you a way out if things do go wrong in the future.

Build Versus Buy



Build versus buy is a very old debate in technology. The argument for
“build” is that you have end-to-end control over the solution, and are not at
the mercy of a vendor or open source community. The argument supporting
“buy” comes down to resource constraints and expertise—do you have the
expertise to build a solution that’s better than something already available?
Either decision comes down to TCO, opportunity cost, and whether the
solution provides a competitive advantage to your organization.

If you’ve caught on to a theme in the book so far, it’s that we suggest
investing in building and customizing when doing so will provide a
competitive advantage. Otherwise, stand on the shoulders of giants and use
what’s already available in the market. Given the number of open source
and paid services—both of which may have communities of volunteers or
highly paid teams of amazing engineers—you’re foolish to try to build
everything yourself.

As we often ask, “When you need new tires for your car, do you get the raw
materials, build the tires from scratch, and install them yourself? Or do you
go to the tire shop, buy the tires, and let a team of experts install them for
you?” If you’re like most people, you’re probably buying tires and having
someone install them. The same argument applies to build vs buy. We’ve
seen teams who’ve built their own database from scratch. Upon closer
inspection, a simple open-source RDBMS would have served their needs
much better. Imagine the amount of time and money invested in this
homegrown database. Talk about low ROI for TCO and opportunity cost.

This is where the distinction between the Type A and Type B data engineer
comes in handy. As we pointed out earlier, Type A and Type B roles are
often embodied in the same engineer, especially in a small organization.
Whenever possible, lean toward Type A behavior—avoid undifferentiated
heavy lifting, and embrace abstraction. Use open-source frameworks, or if
this is too much trouble, look at buying a suitable managed or proprietary
solution. In either case, there are plenty of great, modular services to choose
from.



It’s worth mentioning the shifting reality of how software is adopted within
companies. Whereas in the past, IT used to make most of the software
purchase and adoption decisions in a very top-down manner, these days, the
trend is for bottom-up software adoption in a company, driven by
developers, data engineers, data scientists, and other technical roles.
Technology adoption within companies is becoming an organic, continuous
process.

Let’s look at some options for open source and proprietary solutions.

Open Source Software (OSS)
Open source software (OSS) is a software distribution model where
software—and the underlying codebase—is made available for general use,
typically under certain licensing terms. Oftentimes, OSS is created and
maintained by a distributed team of collaborators. Most of the time, OSS is
free to use, change, and distribute, but with specific caveats. For example,
many licenses require that the source code of open source derived software
be included when the software is distributed.

The motivations for creating and maintaining OSS vary. Sometimes OSS is
organic, springing from the mind of an individual or a small team who
create a novel solution and choose to release it into the wild for public use.
Other times, a company may make a specific tool or technology available to
the public under an OSS license.

There are two main flavors of OSS—community managed, and commercial
OSS.

Community-managed OSS
OSS projects succeed when there’s a strong community and vibrant user
base. Community-managed OSS is a very common path for OSS projects.
With popular OSS projects, the community really opens up high rates of
innovations and contributions from developers all over the world.

Some things to consider with a community-managed OSS project:



Mindshare

Avoid adopting OSS projects that don’t have traction and popularity.
Look at the number of GitHub stars, forks, and commit volume and
recency. Another thing to pay attention to is community activity on
related chat groups and forums. Does the project have a strong sense of
community? A strong community creates a virtuous cycle of strong
adoption. It also means that you’ll have an easier time getting technical
assistance, and finding talent qualified to work with the framework.

Project management

How is the project managed? Look at Git issues and if/how they’re
addressed.

Team

Is there a company sponsoring the OSS project? Who are the core
contributors?

Developer relations and community management

What is the project doing to encourage uptake and adoption? Is there a
vibrant Slack community that provides encouragement and support?

Contributing

Does the project encourage and accept pull requests?

Roadmap

Is there a project roadmap? If so, is it clear and transparent?

Hosting and maintenance

Do you have the resources to host and maintain the OSS solution? If so,
what’s the TCO and opportunity cost versus buying a managed service
from the OSS vendor?



Giving back to the community

If you like the project and are actively using it, consider investing in the
project. You can contribute to the codebase, help fix issues, give advice
in the community forums and chats. If the project allows donations,
consider making one. Many OSS projects are essentially community
service projects, and the maintainers often have full-time jobs in
addition to helping with the OSS project. It’s a labor of love that sadly
doesn’t afford the maintainer a living wage. If you can afford to donate,
please do so.

Commercial OSS
Sometimes OSS has some drawbacks. Namely, you have to host and
maintain the solution in your environment. Depending on the OSS
application you’re using, this may either be trivial or extremely complicated
and cumbersome. Commercial vendors try to solve this management
headache by hosting and managing the OSS solution for you, typically as a
cloud SAAS offering. Some examples of such vendors include Databricks
(Spark), Confluent (Kafka), DBT Labs (dbt), and many, many others.

This model is called Commercial OSS (COSS). Typically, a vendor will
offer the “core” of the OSS for free, while charging for enhancements,
curated code distributions, or fully managed services.

A vendor is often affiliated with the community OSS project. As an OSS
project becomes more popular, the maintainers may create a separate
business for a managed version of the OSS. This typically becomes a cloud
SAAS platform built around a managed version of the open source code.
This is a very common trend—an OSS project becomes very popular, an
affiliated company raises truckloads of VC money to commercialize the
OSS project, and the company scales as a fast-moving rocketship.

At this point, there are two options for a data engineer. You can continue
using the community-managed OSS version, which you need to continue
maintaining on your own (updates, server/container maintenance, pull



requests for bug fixes, etc). Or, you can pay the vendor and let them take
care of the administrative management of the COSS product.

Some things to consider with a commercial OSS project:

Value

Is the vendor offering a better value than if you managed the OSS
technology yourself? Some vendors will add lots of bells and whistles to
their managed offerings that aren’t available in the community OSS
version. Are these additions compelling to you?

Delivery model

How do you access the service? Is the product available via download,
API, or web/mobile UI? Be sure you’re easily able to access the initial
version and subsequent releases.

Support

Support cannot be understated, and it’s sadly often opaque to the buyer.
What is the support model for the product, and is there an extra cost for
support? Oftentimes, vendors will sell support for an additional fee. Be
sure you clearly understand the costs of obtaining support.

Releases and bug fixes

Is the vendor transparent about their release schedule, improvements,
and bug fixes? Are these updates easily available to you?

Sales cycle and pricing

Often, a vendor will offer on-demand pricing, especially for a SAAS
product, and offer you a discount if you commit to an extended
agreement. Be sure to understand the tradeoffs of paying as you go
versus paying upfront. Is it worth it to pay a lump sum, or is your
money better spent elsewhere?

Company finances



Is the company viable? If the company has raised VC funds, you can
check their funding on sites like Crunchbase. How much runway does
the company have, and will they still be in business in a couple of
years?

Logos versus revenue

Is the company focused on growing the number of customers (logos), or
is it trying to grow revenue? You may be surprised by the number of
companies that are primarily concerned with growing their customer
count without the revenue to establish sound finances.

Community support

Is the company truly supporting the community version of the OSS
project? How much are they contributing to the community OSS
codebase? There’s been controversy with certain vendors co-opting
OSS projects, and subsequently providing very little value back to the
community.

Proprietary Walled-Gardens
While OSS is extremely common, there is also a giant market for non-OSS
technologies. Some of the biggest companies in the data industry sell closed
source products. Let’s look at two major types of “proprietary walled-
gardens”—independent companies and cloud-platform offerings.

Independent offerings
The data tool landscape has seen exponential growth over the last several
years. Every day, it seems like there are new independent offerings for data
tools, and there’s no indication of a slowdown anytime soon. With the
ability to raise funds from VCs who are flush with capital, these data
companies can scale, and hire great teams in engineering, sales and
marketing. This presents a situation where users have some great product
choices in the marketplace while having to wade through endless sales and
marketing clutter.



Quite often, a company selling a data tool will not release it as OSS, instead
offering a black box solution. Although you won’t have the transparency of
a pure OSS solution, a proprietary independent solution can work quite
well, especially as a fully managed service in the cloud. For comparison,
Databricks uses the Apache Spark codebase with a proprietary management
layer; Google BigQuery is a proprietary solution, not offering access to the
underlying codebase.

Some things to consider with an independent offering:

Interoperability

Make sure it inter-operates with other tools you’ve chosen—OSS, other
independents, cloud offerings, etc. Interoperability is key, so make sure
you are able to try before you buy.

Mindshare and market share

Is the solution popular? Does it command a presence in the
marketplace? Does it enjoy positive customer reviews?

Documentation and support

Problems and questions will inevitably arise. Is it clear how to solve
your problem, either through documentation or support?

Pricing

Is the pricing clearly understandable? Map out low, medium, and high
probability usage scenarios, with respective costs. Are you able to
negotiate a contract, along with a discount? Is it worth it? If you sign a
contract, how much flexibility do you lose, both in terms of negotiation
and the ability to try new options? Are you able to obtain contractual
commitments on future pricing?

Longevity

Will the company survive long enough for you to get value from its
product? If the company has raised money, check sites like Crunchbase



and see what their funding situation is like. Look at user reviews. Ask
friends and post questions on social networks about other users’
experiences with the product. Make sure you know what you’re getting
into.

Cloud platform service offerings
Cloud vendors develop and sell their own proprietary services for storage,
databases, etc. Many of these solutions are internal tools used by respective
sibling companies. For example, Amazon created the database DynamoDB
to overcome the limitations of traditional relational databases and handle
the large amounts of user and order data as Amazon.com grew into a
behemoth. They later offered the DynamoDB service solely on AWS; it’s
now an extremely popular product used by companies of all sizes and
maturity levels. Clouds will often bundle their products to work well
together. By creating a strong integrated ecosystem, each cloud is able to
create “stickiness” with its user base.

In addition to internal innovations that make their way to end-users, as we
discussed earlier, clouds are also keen followers of strong OSS and
independent offerings. If a cloud vendor sees traction with a particular
product or project, expect that they will offer their own version. The reason
is simple. Clouds make their money through consumption. More offerings
in a cloud ecosystem mean a greater chance of stickiness and increased
spending by customers.

Some things to consider with a proprietary cloud offering:

Performance versus price comparisons

Is the cloud offering substantially better than an independent or OSS
version? What’s the TCO of choosing a cloud’s offering?

Purchase considerations

On-demand pricing can be expensive. Are you able to lower your cost
by purchasing reserved capacity, or entering into a long-term
commitment agreement?



Our Advice
Build versus buy comes back to knowing your competitive advantage, and
where it makes sense to invest resources toward customization. In general,
we favor OSS and COSS by default, which frees you up to focus on
improving those areas where these options are insufficient. Focus on a few
areas where building will add significant value or reduce friction
substantially.

It’s worth mentioning—don’t treat internal operational overhead as a sunk
cost. There’s great value in upskilling your existing data team to build
sophisticated systems on managed platforms rather than babysitting on-
premises servers.

Always think about how a company makes money, especially the sales and
customer experience people. This will generally indicate how you’re treated
during the sales cycle, as well as when you’re a paying customer.

Monolith Versus Modular
Monoliths versus modular systems is another longtime debate in the
software architecture space. Monolithic systems are self-contained, often
performing multiple functions under a single system. The monolith camp
favors the simplicity of having everything in one place. It’s easier to reason
about a single entity, and you can move faster because there are fewer
moving parts. The modular camp leans toward decoupled, best-of-breed
technologies performing tasks at which they are uniquely great. Especially
given the rate of change in products in the data world, the argument is you
should aim for interoperability among an ever-changing array of solutions.

What approach should you take in your data engineering stack? Let’s
explore the tradeoffs of a monolithic vs a modular approach.

Monolith



The monolith (Figure 3-4) has been a technology mainstay for decades. The
old days of waterfall meant that software releases were huge, tightly
coupled, and moved at a slow cadence. Large teams worked together to
deliver a single working codebase. Monolithic data systems continue to this
day, with older software vendors such as Informatica, and open source
frameworks such as Spark.

Figure 3-4. The monolith tightly couples its services

The pros of the monolith are it’s easy to reason about, and there’s lower
cognitive burden and context switching since everything is self-contained.
Instead of dealing with dozens of technologies, you deal with “one”
technology, and typically one principle programming language. Monoliths
are a good option if you want simplicity in reasoning about your
architecture and processes.

Of course, there are cons with the monolith. For one, it’s brittle. Due to the
vast number of moving parts, updates and releases take longer, and tend to
bake in “the kitchen sink”. If there’s a bug in the system (and hopefully the
software’s been thoroughly tested before release!), it can have a deleterious
effect on the entire system.

User-induced problems also happen with monoliths. For example, we saw a
monolithic ETL pipeline that took 48 hours to run. If anything broke



anywhere in the pipeline, the entire process had to restart. Meanwhile,
anxious business users were waiting for their reports, which were already 2
days late by default. Breakages were common enough that the monolithic
system was eventually thrown out.

Multitenancy in a monolithic system can also be a significant problem. It
can be difficult to isolate the workloads of multiple users in a monolithic
system. In an on-prem data warehouse, one user-defined function might
consume enough CPU to slow down the system for other users. In Hadoop,
Spark, and Airflow environments, conflicts between dependencies required
by different users are a frequent source of headaches. (See the distributed
monolith discussion that follows.)

Another con about monoliths—if the vendor or open source project dies,
switching to a new system will be very painful. Because all of your
processes are contained in the monolith, extracting yourself out of that
system, and onto a new platform, will be costly in both time and money.

Modularity
Modularity (Figure 3-5) is an old concept in software engineering, but
modular distributed systems truly came into vogue with the rise of
microservices in the 2010s. Instead of relying on a massive monolith to
handle your needs, why not break apart systems and processes into their
own self-contained areas of concern? Microservices can communicate via
APIs, allowing developers to focus on their domains while making their
applications accessible to other microservices. This is the trend in software
engineering and is increasingly seen in modern data systems as well.

Figure 3-5. Modularity: each service is decoupled



Major tech companies have been key drivers in the microservices
movement. Google engineers invented Linux containers, inspired by other
operating systems such as Solaris, to allow the decomposition of
applications into smaller pieces. The famous Bezos API mandate decreases
coupling between applications, allowing refactoring and decomposition.

Bezos also imposed the two-pizza rule. (No team should be so large that
two pizzas can’t feed the whole group.) Effectively, this means that a team
will have at most 5 members. This cap also limits the complexity of a
team’s domain of responsibility, in particular the codebase that it can
manage. Where a large, monolithic application might entail a team of 100
people, dividing developers into small teams of 5 requires that this large
application be broken into small, manageable, loosely coupled pieces.

In a modular microservice environment, components are swappable; a
service written in Python can be replaced with a Java service. Service
customers need only worry about the technical specifications of the service
API, not behind-the-scenes details of implementation.

Data processing technologies have shifted toward a modular model by
providing strong support for interoperability. In the world of data lakes and
lakehouses, data is stored in object storage in a standard format such as
Parquet. Any processing tool that supports the format can read the data and
write processed results back into the lake for processing by another tool.
Tools such as BigQuery, Snowflake, and Redshift don’t use a data lake
architecture and don’t make data directly accessible to external tools.
However, all of these support interoperation with object storage, through
import/export using standard formats, and external tables, i.e., queries run
directly on data in a data lake.

In today’s data ecosystem, new technologies arrive on the scene at a
dizzying rate, and most get stale and outmoded quickly. Rinse and repeat.
The ability to swap out tools as technology changes are invaluable. In
addition, we view data modularity as a more powerful paradigm than
monolithic data engineering. It allows engineers to choose the best
technology for each job, or even for each step of a pipeline.



The cons of modularity are that there’s more to reason about. Instead of
handling a single system of concern, now you potentially have countless
systems to understand and operate. Interoperability is a potential headache;
hopefully, these systems all play nicely together.

In fact, it is this very problem that led us to break orchestration out as a
separate undercurrent, instead of placing it under “data management.”
Orchestration is also important for monolithic data architectures—witness
the success of Control-M in the traditional data warehousing space. But
orchestrating five or ten tools is dramatically more complex than
orchestrating one. Orchestration becomes the glue that binds these tools
together.

The Distributed Monolith Pattern
The distributed monolith pattern is a distributed architecture that still suffers
from many of the limitations of monolithic architecture. The basic idea is
that one runs a distributed system with separate services to perform
different tasks, but services and nodes share a common set of dependencies
and/or a common codebase.

One standard example is a traditional Hadoop cluster. A standard Hadoop
cluster can host a number of different frameworks simultaneously, such as
Hive, Pig, Spark, etc. In addition, the cluster runs core Hadoop components:
Hadoop common libraries, HDFS, Yarn, Java. In practice, a cluster
generally has one version of each component installed.

Essentially, a standard on-prem Hadoop system entails managing a common
environment that works for all users and all jobs. Managing upgrades and
installations is a significant challenge. Forcing jobs to upgrade
dependencies risks breaking them; maintaining two versions of a
framework entails extra complexity.

Our second example of a distributed monolith pattern is Apache Airflow.
The Airflow architecture is highly decoupled and asynchronous.
Interprocess communications are passed through a backend database, with a



few different services (web server, scheduler, executor) interacting. The
web server and executor can be scaled horizontally to multiple copies.

The problem with this architecture is that every service needs to run the
same Airflow codebase with the same dependencies. Any executor can
execute any task, so a client library for a single task run in one DAG must
be installed on the whole cluster. As a consequence, Google Cloud
Composer (managed Airflow on Google Cloud) has a huge number of
installed dependencies to handle numerous different databases, frameworks,
and APIs out of the box. The pip package manager shows many
dependency conflicts even in the base environment. The installed packages
are essentially a house of cards. Installing additional libraries to support
specific tasks sometimes works, and sometimes breaks the whole
installation.

One solution to the problems of the distributed monolith is ephemeral
infrastructure in a cloud setting. That is, each job gets its own temporary
server or cluster, with its own dependencies installed. Each cluster remains
highly monolithic, but conflicts are dramatically reduced by separating jobs.
This pattern is now quite common for Spark with services like Amazon
EMR and Google Cloud Dataproc.

A second solution is to properly decompose the distributed monolith into
separate software environments using containers. We have more to say on
containers below in our section on Serverless vs Servers.

A third solution is to retain the distributed monolith, but pull functionality
out into microservices. This approach has become common with Airflow;
code with complex dependency requirements is moved into external
containers or cloud functions to keep the core environment simple.

Our Advice
While monoliths are certainly attractive due to ease of understanding and
reduced complexity, this comes at a big cost. The cost is the potential loss
of flexibility, opportunity cost, and high friction development cycles.



Here are some things to consider when evaluating monoliths versus
modular:

Interoperability.

Architect for sharing and interoperability.

Avoid the “bear trap.”

Something that is very easy to get into might be very painful or
impossible to extricate yourself from.

Flexibility.

Things are moving so fast in the data space right now. Committing to a
monolith reduces flexibility and reversible decisions.

Serverless Versus Servers
A big trend for cloud providers is serverless, which allows developers and
data engineers to run applications without managing servers behind the
scenes. For the right use cases, serverless provides a very quick time to
value. In other cases, it might not be a good fit. Let’s look at how to
evaluate whether serverless is right for you.

Serverless
Though serverless has been around for quite some time, the serverless trend
kicked off in full force with AWS Lambda in 2014. With the promise of
executing small chunks of code on an as-needed basis, without having to
run a server, serverless exploded in popularity. The main reasons for the
popularity of serverless are cost and convenience. Instead of paying the cost
of a server, why not just pay when your code is evoked?

There are many flavors of serverless. Though function as a service (FAAS)
is wildly popular, serverless systems actually predate the advent of AWS
Lambda. As an example, Google Cloud’s BigQuery is a serverless data



warehouse, in that there’s no backend infrastructure for a data engineer to
manage. Just load data into the system and start querying. You pay for the
amount of data your query consumes, as well as a small cost to store your
data. This payment model—paying for consumption and storage—is
becoming more and more prevalent, particularly with serverless workloads.
Another example of serverless is Google App Engine, originally released in
2008.

When does serverless make sense? As with many other cloud services, it
depends; and data engineers would do well to understand the details of
cloud pricing to predict when serverless deployments are going to become
expensive. Looking specifically at the case of AWS Lambda, various
engineers have found hacks to run batch workloads at incredibly low
costs.  On the other hand, serverless functions suffer from an inherent
overhead inefficiency. Every invocation involves spinning up some new
resources and running some initialization code, overhead that does not
apply to a long-running service. Handling one event per function call at a
high event rate can be catastrophically expensive. As with other areas of
ops, it’s critical to monitor and model. That is, monitor to determine cost
per event in a real world environment, and model by using this cost per
event to determine overall costs as event rates grow in the future. Similar
considerations apply to understanding costs for other serverless models.

Containers
In conjunction with serverless and microservices, containers are one of the
most significant trending operational technologies as of this writing. In fact,
containers play a role in both.

Containers are often referred to as lightweight virtual machines. Where a
traditional virtual machine wraps up an entire operating system, a container
packages an isolated user space, i.e. a filesystem and one or a few
processes; many such containers can coexist on a single host operating
system. This provides some of the principal benefits of virtualization (i.e.
dependency and code isolation) without the overhead of carrying around an
entire operating system kernel.

13



A single hardware node can host numerous containers with fine grained
resource allocations. At the time of this writing, containers continue to grow
in popularity, along with Kubernetes, a container management system.
Serverless environments typically run on containers behind the scenes;
indeed, Kubernetes is a kind of serverless environment because it allows
developers and ops teams to deploy microservices without worrying about
the details of the machines where they are deployed.

Containers provide a partial solution to problems of the distributed
monolith, mentioned earlier in this chapter. Hadoop now supports
containers, allowing each job to have its own isolated dependencies. And as
we mentioned, many Airflow users extract jobs into containers.

WARNING
Container clusters do not provide the same level of security and isolation offered by full
virtual machines. Container escape—broadly, a class of exploits where code in a
container gains privileges outside the container at the OS level—remains an unsolved
problem. While Amazon EC2 is a truly multi-tenant environment with VMs from many
customers hosted on the same hardware, a Kubernetes cluster should only host code
within an environment of mutual trust, e.g. inside the walls of a single company.

Various flavors of container platforms add additional serverless features.
Containerized function platforms (OpenFaas, Google Cloud Run) run
containers as ephemeral units triggered by events, rather than persistent
services. This gives users the simplicity of AWS Lambda with the full
flexibility of a container environment in lieu of the highly restrictive
Lambda runtime. And services such as AWS Fargate and Google App
Engine run containers without the need to manage a compute cluster as is
required for Kubernetes. These services also fully isolate containers,
preventing the security issues associated with multi-tenancy.

Abstraction will continue working its way across the data stack. Consider
the impact of Kubernetes on cluster management. While you can manage
your Kubernetes cluster—and many engineering teams do so—even
Kubernetes is a managed service. Quite a few commercial SAAS products



use Kubernetes behind the scenes. What you end up with is essentially a
serverless service.

When Servers Make Sense
Why would you want to run a server instead of using serverless? There are
a few reasons. Cost is a big factor. Serverless makes less sense when the
usage and cost exceed the constant cost of running and maintaining a server
(Figure 3-6). However, at a certain scale, the economic benefits of
serverless diminish, and running servers becomes more attractive.

Figure 3-6. Cost of serverless vs using a server

Customization, power, and control are other major reasons to favor servers
over serverless. Some serverless frameworks can be underpowered or
limited for certain use cases. Here are some things to consider when using
servers, particularly when you’re in the cloud, where server resources are
ephemeral:

Expect servers to fail.

Server failure will happen. Avoid using a “special snowflake” server
that is overly customized and brittle, as this introduces a glaring
vulnerability in your architecture. Instead, treat servers as transient
resources that you can create as needed and then delete. If your



application requires specific code to be installed on the server, use a
boot script, or build an image. Deploy code to the server through a
CI/CD pipeline.

Use clusters and auto-scaling.

Take advantage of the cloud’s ability to grow and shrink compute
resources on demand. As your application grows its usage, cluster your
application servers, and use auto-scaling capabilities to automatically
expand your application as demand grows.

Treat your infrastructure as code.

Automation doesn’t just apply to servers and should extend to your
infrastructure whenever possible. Deploy your infrastructure (servers or
otherwise) using deployment managers such as Terraform, AWS Cloud
Formation, Google Cloud Deployment Manager, and others.

Consider using containers.

For more sophisticated or heavy-duty workloads where simple startup
scripts won’t cut it, consider using containers and something like
Kubernetes.

Our Advice
Here are some key considerations to help you determine whether serverless
is right for you:

Workload size and complexity

Serverless works best for simple, discrete tasks and workloads. It’s not
as suitable if you have a lot of moving parts, or if you require a lot of
compute or memory horsepower. In that case, consider using containers
and a container workflow orchestration framework like Kubernetes.

Execution frequency and duration



How many requests per second will your serverless application process?
How long will each request take to process? Cloud serverless platforms
have limits on execution frequency, concurrency, and duration. If your
application can’t function neatly within these limits, it is time to
consider a container-oriented approach.

Requests and networking

Serverless platforms often utilize some form of simplified networking
and don’t support all cloud virtual networking features, such as VPCs
and firewalls.

Language

What language do you typically use? If it’s not one of the officially
supported languages supported by the serverless platform, then you
should consider containers instead.

Runtime limitations

Serverless platforms don’t give you full operating system abstractions.
Instead, you’re limited to a specific runtime image.

Cost

Serverless functions are extremely convenient, but also inefficient when
handling one event per call. This works fine for low event rates, but
costs rise rapidly as the event count increases. This scenario is a
frequent source of surprise cloud bills.

In the end, abstraction tends to win. We suggest looking at using serverless
first, and servers—with containers and orchestration if possible—only after
serverless makes no sense for your use case.

Undercurrents and How They Impact
Choosing Technologies



As we’ve seen in this chapter, there’s a lot for a data engineer to consider
when evaluating technologies. Whatever technology you choose, be sure to
understand how it supports the undercurrents of the data engineering
lifecycle. Let’s briefly review them again.

Data Management
Data management is a broad area, and concerning technologies, it isn’t
always obvious whether a technology adopts data management as a
principal concern. For example, a third-party vendor may use data
management best practices—such as regulatory compliance, security,
privacy, data quality, and governance—behind the scenes, but expose only a
limited UI layer to the customer. In this case, while evaluating the product,
it helps to ask the company about their data management practices. Here are
some sample questions you should ask:

How are you protecting data against breaches, both from the
outside and from within?

What is your product’s compliance with GDPR, CCPA, and other
data privacy regulations?

Do you allow me to host my data to be compliant with these
regulations?

How do you ensure data quality, and that I’m viewing the right
data in your solution?

There are many other questions to ask, and these are just a few of the ways
to think about data management as it relates to choosing the right
technologies. These same questions should also apply to the OSS solutions
you’re considering.

DataOps
Problems will happen. They just will. A server or database may die, a
cloud’s region may have an outage, you might deploy buggy code, bad data



might be introduced into your data warehouse, and any number of
unforeseen problems.

When evaluating a new technology, how much control do you have over the
deployment of new code, how will you be alerted if there’s a problem, and
how are you going to respond when there’s a problem?

The answer to this largely depends on the type of technology you’re
considering. If the technology is OSS, then you’re likely responsible for
setting up monitoring, hosting, and code deployment. How will you handle
issues? What’s your incident response?

If you’re using a managed offering, much of the operations are out of your
control. Consider the vendor’s SLA, how they alert you to issues, and
whether they’re transparent about how they’re addressing the issue, an ETA
to a fix, etc.

Data Architecture
As we discussed in Chapter 3, good data architecture means assessing
tradeoffs and choosing the best tools for the job, while keeping your
decisions reversible. With the data landscape morphing at warp speed, the
best tool for the job is a moving target. The main goals are to avoid
unnecessary lock-in, ensure interoperability across the data stack, and
produce high ROI. Choose your technologies accordingly.

Orchestration
Through most of this chapter, we have actively avoided discussing any
particular technology too extensively. We will make an exception for
orchestration because the space is currently dominated by one open source
technology, Apache Airflow.

Maxime Beauchemin kicked off the Airflow project at Airbnb in 2014.
Airflow was developed from the beginning as a non-commercial open-
source project. The framework quickly grew significant mindshare outside



Airbnb, becoming an Apache Incubator project in 2016, and a full Apache
sponsored project in 2019.

At present, Airflow enjoys many advantages, largely due to its dominant
position in the open-source marketplace. First, the Airflow open source
project is extremely active, with a high rate of commits, and a quick
response time for bugs and security issues; and the project recently released
Airflow 2, a major refactor of the codebase. Second, Airflow enjoys
massive mindshare. Airflow has a vibrant, active community on many
communications platforms, including Slack, Stack Overflow, and GitHub.
Users can easily find answers to questions and problems. Third, Airflow is
available commercially as a managed service or software distribution
through many vendors, including GCP, AWS, and Astronomer.io.

Airflow also has some downsides. Airflow relies on a few core non-scalable
components (the scheduler and backend database) that can become
bottlenecks for performance, scale, and reliability; the scalable parts of
Airflow still follow a distributed monolith pattern. (See Monolith vs.
Modular above.) Finally, Airflow lacks support for many data native
constructs, such as schema management, lineage, and cataloging; and it is
challenging to develop and test Airflow workflows.

We will not attempt an exhaustive discussion of Airflow alternatives here,
but just mention a couple of the key orchestration contenders at the time of
writing. Prefect and Dagster each aim to solve some of the problems
discussed above by rethinking components of the Airflow architecture. We
also mention Datacoral, which intrigues us with its concept of metadata first
architecture; Datacoral allows for automated workflow construction through
analysis of data flows between queries.

We highly recommend that anyone choosing an orchestration technology
study the options discussed here. They should also acquaint themselves
with activity in the space, as there will almost certainly be new
developments by the time you read this.

Software Engineering



As a data engineer, you should strive for simplification and abstraction
across the data stack. Buy or use pre-built open source whenever possible.
Eliminating undifferentiated heavy lifting should be your big goal. Focus
your resources—custom coding and tooling—on areas that give you a
strong competitive advantage. For example, is hand-coding a database
connection between MySQL and your cloud data warehouse a competitive
advantage to you? Probably not. This is very much a solved problem. Pick
an off-the-shelf solution (open source or managed SAAS), versus writing
your own database connector. The world doesn’t need the millionth +1
MySQL to cloud data warehouse connector.

On the other hand, why do customers buy from you? Your business very
likely has something special about the way it does things. Maybe it’s a
particular algorithm that powers your fintech platform, or similar. By
abstracting away a lot of the redundant workflows and processes, you can
continue chipping away, refining, and customizing the things that really
move the needle for the business.

Conclusion
Choosing the right technologies is no easy task, and especially at a time
when new technologies and patterns emerge on a seemingly daily basis,
today is possibly the most confusing time in history for evaluating and
selecting technologies. Choosing technologies is a balance of use case, cost,
build versus buy, and modularization. Always approach technology the
same way as architecture—assess trade-offs and aim for reversible
decisions.

Now that we’re armed with knowledge, let’s dive into the first layer of the
data engineering lifecycle—source systems, and the data they generate.
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Chapter 4. Ingestion

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the seventh chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at
book_feedback@ternarydata.com.

You just learned the various source systems you’ll likely encounter as a data
engineer, as well as ways to store data. Let’s now turn our attention to the
patterns and choices that apply to ingesting data from a variety of source
systems. We will discuss what data ingestion is, the key engineering
considerations for the ingestion phase, the major patterns for both batch and
streaming ingestion, technologies you’ll encounter, who you’ll work with as
you develop your data ingestion pipeline, and how the undercurrents feature
in the ingestion phase (see Figure 4-1).
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Figure 4-1. Data engineering life cycle

What Is Data Ingestion?
Data moves from source systems into storage, with ingestion as an
intermediate step (Figure 4-2). Data ingestion implies data movement and is
a key component of the data engineering lifecycle.

Figure 4-2. Data from System 1 is ingested into System 2

It’s worth quickly contrasting data ingestion with data integration. Whereas
data ingestion is the movement of data from point A to B, data integration
combines data from disparate sources into a new dataset. For example, you
can use data integration to combine data from a CRM system, advertising
analytics data, and web analytics to create a user profile, which is saved to
your data warehouse. Furthermore, using reverse ETL, you can send this
newly created user profile back to your CRM so salespeople can use the
data for prioritizing leads. Data integration will be described more fully in
Chapter 8, where we discuss data transformations; reverse ETL is covered
in Chapter 9. We also point out that data ingestion is different from internal
ingestion within a system, where data stored in a database is copied from
one table to another; we consider this to be another part of the general
process of data transformation covered in Chapter 8.



DATA PIPELINES DEFINED
Data pipelines begin in source systems, but ingestion is the stage where
data engineers begin actively designing data pipeline activities. In the
data engineering space, there is a good deal of ceremony around
different data movement and processing patterns, with older patterns
such as ETL (extract, transform, load), newer patterns such ELT
(extract, load, transform), and new names for long-established practices
(reverse ETL).

All of these concepts are encompassed in the idea of a data pipeline. It
is important to understand the details of these various patterns, but also
know that a modern data pipeline could encompass all of these. As the
world moves away from a traditional monolithic approach with very
rigid constraints on data movement, towards an ecosystem of cloud
services that are assembled like lego bricks to realize that products, data
engineers prioritize using the right tools to accomplish the desired
outcome rather than adhering to a narrow philosophy of data
movement.

In general, here’s our definition of a data pipeline:

A data pipeline is the combination of architecture, systems, and
processes that move data through the stages of the data engineering
lifecycle.

Our definition is deliberately fluid—and intentionally vague—to allow
data engineers to plug in whatever they need to accomplish the task at
hand. A data pipeline could be a traditional ETL system, where data is
ingested from an on-premises transactional system, passed through a
monolithic processor, and written into a data warehouse. Or it could be
a cloud-based data pipeline that pulls data from 100 different sources,
combines data into 20 wide tables, trains five different machine
learning models, deploys them into production, and monitors ongoing
performance. A data pipeline should be flexible enough to fit any needs
along the data engineering lifecycle.



Let’s keep this notion of data pipelines in mind as we proceed through
the ingestion chapter.

Key Engineering Considerations for the
Ingestion Phase
When preparing to architect or build an ingestion system, here are some
primary considerations and questions to ask yourself related to data
ingestion:

What’s the use case for the data I’m ingesting?

Can I reuse this data and avoid ingesting multiple versions of the
same dataset?

Where is the data going? What’s the destination?

Frequency: How often should the data be updated from the source?

What is the expected data volume?

What format is the data in? Can downstream storage and
transformation accept this format?

Is the source data in good shape for immediate downstream use?
That is, is the data of good quality? What post-processing is
required to serve it? What are data quality risks? (e.g. could bot
traffic to a website contaminate the data?)

If the data is from a streaming source, does it require in-flight
processing for downstream ingestion?

These questions undercut both batch and streaming ingestion and apply to
the underlying architecture you’ll create, build, and maintain. Regardless of
how often the data is ingested, you’ll want to consider these factors when
designing your ingestion architecture:



Bounded versus unbounded

Frequency

Synchronous versus asynchronous

Serialization and deserialization

Throughput and elastic scalability

Reliability and durability

Payload

Push versus pull patterns

Let’s look at each of these.

Bounded Versus Unbounded
As you might recall from Chapter 3, bounded and unbounded data
(Figure 4-3), data comes in two forms—bounded and unbounded.
Unbounded data is data as it exists in reality, where events happen when
they happen, either sporadically or continuous, ongoing and flowing.
Bounded data is a convenient way of bucketing data across some sort of
boundary, such as time.





Figure 4-3. Bounded vs unbounded data

Let us adopt this mantra:

All data is unbounded until we bound it.

Like many mantras, this one is not precisely true 100% of the time; the
grocery list that I scribbled this afternoon is truly bounded data. However,
the idea is correct for practical purposes for the vast majority of data that
we handle in a business context. That is, an online retailer will process
customer transactions 24 hours a day until the business fails, the economy
grinds to a halt, or the sun explodes.

Business processes have long imposed artificial bounds on data by cutting
discrete batches, but always keep in mind the true unboundedness of your
data; streaming ingestion systems are simply a tool for preserving the
unbounded nature of data so that subsequent steps in the lifecycle can also
process it continuously.

Frequency
One of the key decisions the data engineers must make in designing data
ingestion processes is the data ingestion frequency. Ingestion processes can
be a batch, micro-batch, or real-time.

Ingestion frequencies vary dramatically, on the spectrum from slow to fast
(Figure 4-4). On the slow end, a business might ship its tax data to an
accounting firm once a year. On the faster side, a change data capture
system could retrieve new log updates from a source database once a
minute. Even faster, a system might ingest events from IoT sensors
continuously, and process these within seconds. In a company, data
ingestion frequencies are often mixed, depending on the use case and
technologies involved.



Figure 4-4. The spectrum of slow to fast ingestion, from batch to real-time

We note that “real-time” ingestion patterns are becoming increasingly
common. We initially put “real-time” in quotes because no ingestion system
is truly real-time. Any database, queue, pipeline, etc. has some inherent
latency in delivering data to a target system. It is more accurate to speak of
near real-time, but we often use the term real-time for the sake of brevity.
The near real-time pattern generally does away with an explicit update
frequency; events are processed in the pipeline either one by one as they
arrive or in micro-batches (i.e. batches over very short time intervals). For
this book, we will use real-time and streaming interchangeably.

Even with a streaming data ingestion process in place, batch processing
downstream is quite common. At the time of this writing, machine learning
models are typically trained on a batch basis, although continuous online
training is becoming more prevalent. Rarely do data engineers have the
option to build a purely near real-time pipeline with no batch components.
Instead, they choose where batch boundaries will occur, i.e., wherein the
data engineering lifecycle data will be broken into batches. Once data
reaches a batch process, the batch frequency becomes a bottleneck for all
downstream processing; you move at the cadence of how the batch moves.

We also note that streaming systems are an organic best fit for many
modern data source types. In IoT applications, the common pattern is for
each sensor to write events or measurements as they happen. While this
data can be written into a database, a streaming ingestion platform such as



Amazon Kinesis or Apache Kafka is a better fit for the application.
Software applications can adopt similar patterns, by writing events to a
message queue as they happen rather than waiting for an extraction process
to pull events and state information from a backend database. This pattern
works extremely well for event-driven architectures that are already
exchanging messages through queues. And again, streaming architectures
generally coexist with batch processing.

Synchronous Versus Asynchronous Ingestion
Ingestion systems can have a series of dependent steps (synchronous
systems), or operate without any dependencies (asynchronous systems).
When we discuss dependencies in this context, we’re describing whether
the completion of one step prevents downstream steps from starting.

With synchronous ingestion, the source, ingestion, and destination have
hard dependencies and are tightly coupled. As you can see in Figure 4-5,
each stage of the data engineering lifecycle has processes A, B, and C that
are directly dependent upon each other. If Process A fails, Processes B and
C cannot start. This type of synchronous workflow is common in older ETL
systems where data extracted from a source system must then be
transformed before being loaded into a data warehouse. If the ingestion or
transformation process fails for any reason, the entire process must be
replayed until it’s successful. We’ve seen instances where the
transformation process itself is a series of dozens of synchronous
workflows, sometimes taking over 24 hours to finish. If any step of that
transformation workflow failed (and it occasionally would fail), the entire
transformation process needed to be restarted from the beginning!



Figure 4-5. Synchronous data ingestion

With asynchronous ingestion, dependencies can now operate at the level of
individual events, much as they would in a software backend built from
microservices (Figure 4-6). For example, take the example of a web
application that emits events into an Amazon Kinesis Data Stream (here
acting as a buffer); the stream is read by Apache Beam, which parses and
enriches events, then forwards them to a second Kinesis Stream; Kinesis
Firehose rolls up events and writes objects to Amazon S3.

The big idea is that rather than relying on asynchronous processing, where a
batch process runs for each stage as the input batch closes and certain time
conditions are met, each stage of the asynchronous pipeline can process
data items as they become available in parallel across the Beam cluster. The
processing rate depends on available resources. The Kinesis Data Stream
acts as the shock absorber, moderating the load so that event rate spikes will
not overwhelm downstream processing. When the event rate is low and any
backlog has cleared, events will move through the pipeline very quickly.
Note that we could modify the scenario and use a Kinesis Data Stream for
storage, eventually extracting events to S3 before they expire out of the
stream.



Figure 4-6. Asynchronous data ingestion

Serialization and Deserialization
Moving data from source to sink involves serialization and deserialization.
Serialization means encoding the data from a source and preparing data



structures for transmission and intermediate storage stages. (See the more
extensive discussion of serialization in the appendix on Serialization and
Compression.)

Throughput and Scalability
In theory, your ingestion should never be a bottleneck. In practice, this is
easier said than done. As your data volumes grow and requirements change,
data throughput and system scalability become extremely critical. Design
your systems to flexibly scale and shrink to match the desired data
throughput.

Monitoring is key, as well as knowledge of the behavior of the upstream
systems you depend upon and how they generate data. You should be aware
of the number of events generated per time interval you’re concerned with
(events/minute, events/second, and so on), as well as the average size of
each event. Your data pipeline should be able to handle both the frequency
and size of the events you’re ingesting.

Where you’re ingesting data from matters a lot. If you’re receiving data as
it’s generated, will the upstream system have any issues that might impact
your downstream ingestion pipelines? For example, suppose a source
database goes down. When it comes back online and attempts to backfill the
lapsed data loads, will your ingestion be able to keep up with this sudden
influx of backlogged data?

Another thing to consider is your ability to handle bursty data ingestion.
Data generation is very rarely done in a constant fashion, and often ebbs
and flows. Built-in buffering is required to collect events during rate spikes
to prevent data from getting lost. Even in a dynamically scalable system,
buffering bridges the time while the system scales. Buffering also allows
storage systems to accommodate bursts.

These days, it’s worth using managed services that handle the throughput
scaling for you. While you can manually accomplish these tasks by adding
more servers, shards, or workers, this isn’t necessarily value add work.



Much of this heavy lifting is now automated. Don’t reinvent the data
ingestion wheel if you don’t have to.

Reliability and Durability
Reliability and durability are especially important in the ingestion stages of
data pipelines. Reliability entails high uptime and appropriate failover for
ingestion systems. Durability entails making sure that data isn’t lost or
corrupted.

Some data sources (e.g., IoT devices) may not retain data if it is not
correctly ingested. Once lost, it is gone for good. In this sense, the
reliability of ingestion systems leads directly to the durability of generated
data. If data is ingested, downstream processes can theoretically run late if
they break temporarily.

Our advice is to evaluate the risks and build an appropriate level of
redundancy and self-healing based on the impact and cost of losing data.
Will your ingestion process continue if an AWS zone goes down? How
about a whole region? How about the power grid or the internet? Reliability
and durability have both direct and indirect costs: building a highly
redundant system can entail big cloud bills while keeping a team on call 24
hours a day takes a toll on your team and resources.

Don’t assume that you can build a system that will reliably and durably
ingest data in every possible scenario. Even the massive budget of the US
federal government can’t guarantee this. In many extreme scenarios,
ingesting data actually won’t matter. For example, if the internet goes down,
there will be little to ingest even if you build multiple data centers in
underground bunkers with independent power. Always evaluate the
tradeoffs and costs of reliability and durability.

Payload
The payload is the dataset you’re ingesting and has characteristics such as
kind, shape, size, schema and data types, and metadata. Let’s look at some
of these characteristics to get an idea of why this matters.



Kind
The kind of data you handle directly impacts how it’s handled downstream
in the data engineering lifecycle. Kind consists of type and format. Data has
a type—tabular, image, video, text, etc. The type directly influences the
format of the data, or how it is expressed in bytes, name, and file extension.
For example, a tabular kind of data may be in formats such as CSV or
Parquet, with each of these formats having different byte patterns for
serialization and deserialization. Another kind of data is an image, which
has a format of JPG or PNG and is inherently binary and unstructured.

Shape
Every payload has a shape that describes its dimensions. Data shape is
critical across the data engineering lifecycle. For instance, an image’s pixel
and RGB dimensions are necessary for deep learning applications. As
another example, if you’re trying to import a CSV file into a database table,
and your CSV has more columns than the database table, you’ll likely get
an error during the import process. Here are some examples of the shapes of
different kinds of data:

Tabular

The number of rows and columns in the dataset, commonly expressed
as M rows and N columns

Semi-structured JSON

The key-value pairs, and depth of nesting that occurs with sub-elements

Unstructured text

Number of words, characters, or bytes in the text body

Images

The width, height, and RGB color depth (e.g., 8 bits per pixel)

Uncompressed Audio



Number of channels (e.g., two for stereo), sample depth (e.g., 16 bits
per sample), sample rate (e.g., 48 kHz), and length (e.g., 10003 seconds)

Size
The size of the data describes the number of bytes of a payload. A payload
may range in size from single bytes to terabytes, and larger. To reduce the
size of a payload, it may be compressed into a variety of formats such as
ZIP, TAR, and so on (See the discussion of compression in the appendix on
Serialization and Compression).

Schema and data types
Many data payloads have a schema, such as tabular and semi-structured
data. As we’ve mentioned earlier in this book, a schema describes the fields
and types of data that reside within those fields. Other types of data such as
unstructured text, images, and audio will not have an explicit schema or
data types, though they might come with technical file descriptions on
shape, data and file format, encoding, size, etc.

You can connect to databases in a variety of ways, i.e. file export, change
data capture, JDBC/ODBC, etc. The connection is the easy part of the
process. The great engineering challenge is understanding the underlying
schema. Applications organize data in a variety of ways, and engineers need
to be intimately familiar with the organization of the data and relevant
update patterns to make sense of it. The problem has been somewhat
exacerbated by the popularity of ORM (object-relational mapping), which
automatically generates schemas based on object structure in languages
such as Java or Python. Structures that are natural in an object-oriented
language often map to something messy in an operational database. Data
engineers may also need to familiarize themselves with the class structure
of application code for this reason.

Schema is not only for databases. As we’ve discussed, APIs present their
schema complications. Many vendor APIs have nice reporting methods that
prepare data for analytics. In other cases, engineers are not so lucky and the
API is a thin wrapper around underlying systems, requiring engineers to



gain a deep understanding of application internals to use the data. This
situation is more challenging than dealing with complex data internal to an
organization because communication is more difficult.

Much of the work associated with ingesting from source schemas happens
in the transformation stage of the data engineering lifecycle, which we
discuss in Chapter 8. We’ve placed this discussion here because data
engineers need to begin studying source schemas as soon they plan to ingest
data from a new source.

Communication is critical for understanding source data, and engineers also
have the opportunity to reverse the flow of communication and help
software engineers improve data where it is produced. We’ll return to this
topic later in this chapter, in the section on Who you’ll work with.

Detecting and handling schema changes in upstream and
downstream systems

Schema changes occur frequently in source systems and often are well out
of the control of data engineers.

Examples of schema changes include the following:

Adding a new column

Changing a column type

Creating a new table

Renaming a column

It’s becoming increasingly common for ingestion tools to automate the
detection of schema changes, and even auto-update target tables.
Ultimately, this is something of a mixed blessing. Schema changes can still
break pipelines downstream of staging and ingestion.

Engineers must still implement strategies to automatically respond to
changes, and alert on changes that cannot be accommodated automatically.
Automation is great, but the analysts and data scientists who rely on this
data should be informed of the schema changes that violate existing



assumptions. Even if automation can accommodate a change, the new
schema may adversely affect the performance of reports and models.
Communication between those making schema changes and those impacted
by these changes is as important as reliable automation that checks for
schema changes.

Schema registries

In streaming data, every message has a schema, and these schemas may
evolve between producers and consumers. A schema registry is a metadata
repository used to maintain schema and data type integrity in the face of
constantly evolving schemas. It essentially describes the data model for
messages, allowing consistent serialization and deserialization between
producers and consumers. Schema registries are used in Kafka, AWS Glue,
and others.

Metadata
In addition to the obvious characteristics we’ve just covered, a payload
often contains metadata, which we first discussed in Chapter 2. Metadata is
data about data. Metadata can be as critical as the data itself. One of the
major limitations of the early approach to the data lake—or data swamp,
which could turn it into a data superfund site—was a complete lack of
attention to metadata. Without a detailed description of the data, the data
itself may be of little value. We’ve already discussed some types of
metadata (e.g. schema) and will address them many times throughout this
chapter.

Push Versus Pull Patterns
We introduced the concept of push vs pull when we introduced the data
engineering lifecycle in Chapter 2. Roughly speaking, a push strategy
(Figure 4-7) involves a source system sending data to a target, while a pull
strategy (Figure 4-8) entails a target reading data directly from a source. As
we mentioned in that discussion, the lines between these strategies are
blurry.



Figure 4-7. Pushing data from source to destination

Figure 4-8. Pushing data from source to destination

We will discuss push versus pull in each subsection on ingestion patterns,
and give our opinionated reasoning on when a pattern is push or pull. Let’s
dive in!

Batch Ingestion Patterns
It is often convenient to ingest data in batches. This means that data is
ingested by either taking a subset of data from a source system, based either
on a time interval or size of accumulated data (Figure 4-9).



Figure 4-9. Time interval batch ingestion

Time interval batch ingestion is extremely common in traditional business
ETL for data warehousing. This pattern is often used to process data once a



day overnight during off-hours to provide daily reporting, but other
frequencies can also be used.

Size-based batch ingestion (Figure 4-10) is quite common when data is
moved from a streaming-based system into object storage—ultimately, the
data must be cut into discrete blocks for future processing in a data lake.
Size-based ingestion systems such as Kinesis Firehose can break data into
objects based on a variety of criteria, such as size bytes of the total number
of events.



Figure 4-10. Size-based batch ingestion

Some commonly used batch ingestion patterns, which we’ll discuss in this
section, include:



Snapshot or differential extraction

File-based export and ingestion

ETL versus ELT

Data migration

Snapshot or Differential Extraction
Data engineers must choose whether to capture full snapshots of a source
system or differential updates. With full snapshots, engineers grab the full
current state of the source system on each update read. With the differential
update pattern, engineers can pull only the updates and changes since the
last read from the source system.

While differential updates are ideal for minimizing network traffic, target
storage usage, etc., full snapshot reads remain extremely common due to
their simplicity.

File-Based Export and Ingestion
Data is quite often moved between databases and systems using files. That
is, data is serialized into files in an exchangeable format, and these files are
provided to an ingestion system. We consider file-based export to be a
push-based ingest pattern. This is because the work of data export and
preparation is done on the source system side.

File-based ingestion has several potential advantages over a direct database
connection approach. For security reasons, it is often undesirable to allow
any direct access to backend systems. With file-based ingestion, export
processes are run on the data source side. This gives source system
engineers full control over what data gets exported and how the data is pre-
processed. Once files are complete, they can be provided to the target
system in a variety of ways. Common file exchange methods are object
storage (i.e. Amazon S3, Azure Blob Storage), SFTP, EDI, or SCP.



ETL Versus ELT
In Chapter 3, we introduced ETL and ELT, which are both extremely
common ingest, storage, and transformation patterns you’ll encounter in
batch workloads. For this chapter, we’ll cover the Extract (E) and the Load
(LO) parts of ETL and ELT; transformations will be covered in Chapter 8:

Extract

Extract means getting data from a source system. While extract seems
to imply pulling data, it can also be push-based. Extraction may also
entail reading metadata and schema changes.

Load

Once data is extracted, it can either be transformed (ETL) before
loading it into a storage destination or simply loaded into storage for
future transformation. When loading data, you should be mindful of the
type of system into which you’re loading, the schema of the data, and
the performance impact of loading.

Transform

We’ll cover transformations in much more detail in Chapter 8. Know
that data can be transformed after it’s been ingested, but before it’s
loaded into storage. This is common in classic ETL systems that do in-
memory transformations as part of a workflow. It’s also common with
event streaming frameworks such as Kafka, which uses the Kafka
Stream API to transform and join data before persisting the output to
storage.

Inserts, Updates, and Batch Size
Batch-oriented systems often perform poorly when users attempt to perform
a large number of small-batch operations rather than a smaller number of
large operations. For example, while it is a common pattern to insert one
row at a time in a transactional database, this is a bad pattern for many
columnar databases as it forces the creation of many small, suboptimal files,



and forces the system to run a high number of create object operations.
Running a large number of small in-place update operations is an even
bigger problem because it forces the database to scan each existing column
file to run the update.

Understanding the appropriate update patterns for the database you’re
working with. Also, understand that certain technologies are purpose-built
for high insert rates. Systems such as Apache Druid and Pinot can handle
high insert rates. SingleStore can manage hybrid workloads that combine
OLAP and OLTP characteristics. BigQuery performs poorly on a high rate
of standard inserts, but extremely well if data is fed in through its stream
buffer. Know the limits and characteristics of your tools.

Data Migration
Migrating data to a new database or a new environment is not usually
trivial, and data needs to be moved in bulk. Sometimes this means moving
data sizes that are 100s of TBs or much larger, often involving not just the
migration of specific tables, but moving entire databases and systems.

Data migrations probably aren’t a regular occurrence in your role as a data
engineer, but it’s something you should be familiar with. As is so often the
case for data ingestion, schema management is a key consideration. If
you’re migrating data from one database system to another, say Teradata to
BigQuery, no matter how closely the two databases resemble each other,
there are nearly always subtle differences in how they handle schema.
Fortunately, it is generally easy to test ingestion of a sample of data and find
schema issues before undertaking a full table migration.

Most modern data systems perform best when data is moved in bulk rather
than as individual rows or events. File or object storage is often a good
intermediate stage for moving data. Also, one of the biggest challenges of
database migration is not the movement of the data itself, but the movement
of data pipeline connections from the old system to the new one.



Streaming Ingestion Patterns
Another way to ingest data is from a stream. This means that data is
ingested continuously. Let’s look at some patterns for ingesting streaming
data.

Types of Time
While time is an important consideration for all data ingestion, it becomes
that much more critical and subtle in the context of streaming, where we
view data as continuous and expect to consume it shortly after it is
produced. Let’s look at the key types of time you’ll run into when ingesting
data—the time the event is generated, and when it’s ingested and processed
(Figure 4-11):

Figure 4-11. Event, ingestion, and process time

Event time

Event time is the time at which an event is generated in a source system,
including the timestamp of the original event itself. Upon event
creation, there will be an undetermined time lag before the event is
ingested and processed downstream. Always include timestamps for
each phase through which an event travels. Log events as they occur,
and at each stage of time—when they’re created, ingested, and
processed. Use these timestamp logs to accurately track the movement
of your data through your data pipelines.



Ingestion time

After data is created, it is ingested somewhere. Ingestion time is the
time at which an event is ingested from source systems, into a message
queue, cache, memory, object storage, a database, or any place else that
data is stored (see Chapter 6). After ingestion, data may be processed
immediately, within minutes, hours, or days, or simply persist in storage
indefinitely. We will cover the details of storage in Chapter 8.

Processing time

Processing time is the time at which data is processed, which is
typically some sort of transformation. You’ll learn more about various
kinds of processing and transformations in Chapter 8.

Late-arriving data

A group of events might occur around the same time frame, but because
of various circumstances, might be late in arriving for ingestion. This is
called late-arriving data and is common when ingesting data. You
should be aware of late-arriving data, and the impact on downstream
systems and uses. For example, if you assume that ingestion or
processing time is the same as the event time, you may get some very
strange results if your reports or analysis depend upon an accurate
portrayal of when events occur.

Key Ideas
We spend a good deal of time on stream processing in Chapter 8, where we
discuss data transformation. We’ll quickly introduce key streaming
ingestion ideas here and present a more extensive discussion there:

Streaming ingestion and storage systems

Streaming storage collects messages, log entries, or events and makes
them available for downstream processing. Typical examples are
Apache Kafka, Amazon Kinesis Data Streams, or Google Cloud



Pub/Sub. Modern streaming storage systems support basic
producer/consumer patterns (publisher/subscriber), but also support
replay, i.e., the ability to playback a time range of historic data.

Producers and consumers

Producers write data into streaming storage, while consumers read from
the stream. In practice, a streaming pipeline may have many consumers
and producers at various stages. The initial producer is usually the data
source itself, whether a web application that writes events into the
stream or a swarm of IoT devices.

Clusters and partition

In general, modern steaming systems distribute data across clusters. In
many cases, data engineers have some control of how the data is
partitioned across the cluster through the use of a partition key.

Choice of ingestion partition key can be critical in preparing data for
downstream consumption, whether for preprocessing that is a key part
of the ingestion stage or more complex downstream processing. Often,
we set upstream processing nodes to align with partitions in the stream
messaging system.

Topics

A topic is simply a data stream; a streaming storage system can support
a large number of separate topics (streams) simultaneously, just as a
relational database supports many tables.

Streaming Change Data Capture
While there are batch versions of change data capture (CDC), we are
primarily interested in streaming change data capture. The primary
approaches are CDC by logging, wherein each writes to the database is
recorded in logs and read for data extraction, and the database trigger
pattern, where the database sends some kind of signal to another system



each time it makes a change to a table. For streaming ingestion, we assume
that the CDC process writes into some kind of streaming storage system for
downstream processing.

Real-time and Micro-batch: Considerations for
Downstream Destinations
While streaming ingestion generally happens in a stream storage system,
the preprocessing part of ingestion (e.g. data parsing) can happen in either a
true stream processor or a micro-batch system. Micro-batch processing is
essentially high-speed batch processing, where batches might happen every
few seconds.

Apache Spark often processes data in micro-batches, though there are
newer more continuous modes as well. The micro-batch approach is
perfectly suitable for many applications. On the other hand, if you want to
achieve operational monitoring that is much closer to real-time, a
continuous approach might be more appropriate.

Ingestion Technologies
Now that we’ve described some of the major patterns that underlie
ingestion in general, we turn our attention to the technologies you’ll use for
data ingestion. We’ll give you a sample of the types of ingestion
technologies you’ll encounter as a data engineer. Keep in mind the universe
of data ingestion technologies is vast and growing daily. Although we will
cite common and popular examples, it is not our intention to provide an
exhaustive list of technologies and vendors, especially given how fast the
discipline is changing.

Batch Ingestion Technologies
To choose appropriate technologies, you must understand your data sources
(see Chapter 5). In addition, you need to choose between full replication
and change tracking. With full replication, we simply drop the old data in



the target and fully reload from the source. Change tracking takes many
forms, but often it entails pulling rows based on update timestamp and
merging these changes into the target.

In addition, preprocessing should be considered a part of ingestion.
Preprocessing is data processing that happens before the data is truly
considered to be ingested. In streaming pipelines, raw events often arrive in
a rather rough form directly from a source application and must be parsed
and enriched before they can be considered fully ingested. In batch
processing scenarios, similar considerations apply, with data often arriving
as raw string data, then getting parsed into correct types.

Also, think about FinOps and cost management early in the design of your
ingestion architecture. FinOps entails designing systems and human
processes to make costs manageable. Think about the implications of
scaling up your solution as data scales, and design for cost efficiency. For
example, instead of spinning up full-priced on-demand EC2 instances in
AWS, instead, build in support for EC2 spot instances where this applies.
Ensure that costs are visible and monitored.

Direct Database Connection
Data can be pulled from databases for ingestion by querying and reading
over a network connection. Most commonly, this connection is made using
ODBC or JDBC.

ODBC 1.0 was released in 1992. ODBC (Open Database Connectivity)
uses a driver hosted by a client accessing the database to translate
commands issued to the standard ODBC API into commands issued to the
database. The database returns query results over the wire, where they are
received by the driver and translated back into a standard form, and read by
the client.

For purposes of ingestion, the application utilizing the ODBC driver is an
ingestion tool. The ingestion tool may pull data through many small queries
or a single large query. The ingestion tool might pull data once a day or
once every five minutes.



JDBC (Java Database Connectivity) was released as a standard by Sun
Microsystems in 1997. JDBC is conceptually extremely similar to ODBC; a
Java driver connects to a remote database and serves as a translation layer
between the standard JDBC API and the native network interface of the
target database. It might seem a bit strange to have a database API
dedicated to a single programming language, but there are strong
motivations for this. The JVM (Java Virtual Machine) is standard, portable
across hardware architectures and operating systems, and provides the
performance of compiled code through a JIT (just in time compiler). The
JVM is far and away from the most popular compiling virtual machine for
running code in a portable manner.

JDBC provides extraordinary database driver portability. ODBC drivers are
shipped as OS and architecture native binaries; database vendors must
maintain versions for each architecture/OS version that they wish to
support. On the other hand, vendors can ship a single JDBC driver that is
compatible with any JVM language (Java, Scala, Clojure, Kotlin, etc.) and
JVM data framework (i.e Spark.) JDBC has become so popular that it is
also used as an interface for non-JVM languages such as Python. The
Python ecosystem provides translation tools that allow Python code to talk
to a JDBC driver running on a local JVM.

Returning to the general concept of direct database connections, both JDBC
and ODBC are used extensively for data ingestion from relational
databases. Various enhancements are used to accelerate data ingestion.
Many data frameworks can parallelize several simultaneous connections
and partition queries to pull data in parallel. On the other hand, nothing is
free—using parallel connections also increases the load on the source
database.

JDBC and ODBC were long the gold standards for data ingestion from
databases. However, these connection standards are beginning to show their
age for many data engineering applications. These connection standards
struggle with nested data, and they send data as rows. This means that
native nested data has to be re-encoded as string data to be sent over the



wire, and columns from columnar databases must be re-serialized as rows.
Many alternatives have emerged for lower friction data export.

As discussed in the section on file-based export, many databases now
support native file export that bypasses JDBC/ODBC and exports data
directly in modern formats. Alternatively, many databases—Snowflake,
BigQuery, ArangoDB, etc.—provide direct REST APIs.

JDBC connections should generally be integrated with other ingestion
technologies. For example, we commonly use a reader process to connect to
a database with JDBC, write the extracted data into multiple objects, then
orchestrate ingestion into a downstream system (see Figure 4-12). The
reader process can run in a fully ephemeral cloud instance or directly in an
orchestration system.



Figure 4-12. An ingestion process reads from a source database using JDBC, then writes objects into
object storage. A target database (not shown) can be triggered to ingest the data with an API call

from an orchestration system.

SFTP
Engineers rightfully cringe at the mention of SFTP (occasionally, we even
hear instances of FTP being used in production.) Regardless, SFTP is still a
practical reality for many businesses. That is, they work with partner
businesses that either consume or provide data using SFTP, and are not
willing to rely on other standards. To avoid data leaks, security analysis is
critical in these situations. If SFTP is required, it can be combined with
extra network security, such as only allowing authorized IP addresses to
access the network, or even passing all traffic over a VPN.

Object storage



In our view, object storage is the most optimal and secure way to handle file
exchange. Public cloud storage implements the latest security standards, has
an extremely robust track record, and provides high-performance movement
of data.

We’ll discuss object storage much more extensively in Chapter 6. At a basic
level, object storage is a multi-tenant system in public clouds, and it
supports storing massive amounts of data. This makes object storage ideal
for moving data in and out of data lakes, moving data between teams, and
transferring data between organizations. You can even provide short-term
access to an object with a signed URL, giving a user short-term permission.

SCP
SCP (secure copy) is a file exchange protocol that runs over an SSH
connection. SCP can be a secure file transfer option if it is configured
correctly. Again, adding additional network access control (defense in
depth) to enhance SCP security is highly recommended.

EDI
Another practical reality for data engineers is EDI (Electronic Data
Interchange). The term is vague enough that it could refer to any method of
data movement. In practice, it is used in modern parlance to refer to rather
archaic means of file exchange, such as by email, or on a flash drive. Data
engineers will find that some of their data sources do not support more
modern means of data transport, often due to archaic IT systems, or human
process limitations. They can at least enhance EDI through automation. For
example, they can set up a cloud-based email server that saves files onto
company object storage as soon as they are received. This can trigger
orchestration processes to ingest and process data. This is much more
robust than an employee downloading the attached file and manually
uploading it to an internal system, something that we still frequently see.

Databases and file export



Engineers should be aware of how the source database systems handle file
export. For many transactional systems, export involves large data scans
that put a significant load on the database. Source system engineers must
assess when these scans can be run without affecting application
performance and might opt for a strategy to mitigate the load. Export
queries can be broken down into smaller exports by querying over key
ranges or one partition at a time. Alternatively, a read-replica can reduce
load. Read replicas are especially appropriate if exports happen many times
a day, and exports coincide with high source system load.

Some modern cloud databases are highly optimized for file export.
Snowflake allows engineers to set up a warehouse (compute cluster) just for
export, with no impact on other warehouses running analytics. BigQuery
handles file exports using a backend service, completely independent of its
query engine. AWS Redshift gives you the ability to issue a SQL UNLOAD
command to dump tables into S3 object storage. In all cases, file export is
the “best practice” approach to data movement, recommended by the
vendor over JDBC/ODBC connections for cost and performance reasons.

Practical issues with common file formats
Engineers should also be aware of the file formats that they’re using to
export. At the time of this writing, CSV is nearly universal, but also
extremely error-prone. Namely, CSV’s default delimiter is also one of the
most common characters in the English language—the comma! But it gets
worse. CSV is by no means a uniform format. Engineers must stipulate
delimiter, quote characters, escaping, etc. to appropriately handle the export
of string data. CSV also doesn’t natively encode schema information, nor
does it directly support modern nested structures. CSV file encoding and
schema information must be configured in the target system to ensure
appropriate ingestion. Auto-detection is a convenience feature provided in
many cloud environments but is not appropriate for production ingestion.
As a best practice, engineers should record CSV encoding and schema
details in file metadata.



More modern export formats include Parquet, Avro, Arrow, and ORC or
JSON. These formats natively encode schema information and handle
arbitrary string data with no special intervention. Many of them also handle
nested data structures natively, so that JSON fields are stored using internal
nested structures rather than simple strings. For columnar databases,
columnar formats (Parquet, Arrow, ORC) allow more efficient data export
because columns can be directly transcoded between formats, a much
lighter operation than pivoting data into rows (CSV, Avro). Modern formats
are also generally more optimized for query engines. The Arrow file format
is designed to map data directly into processing engine memory, providing
high performance in data lake environments.

The disadvantage of these newer formats is that many of them are not
natively supported by source systems. Data engineers are often forced to
work with CSV data, and then build robust exception handling and error
detection to ensure data quality on ingestion.

See the appendix on serialization and compression for a more extensive
discussion of file formats.

SSH
Strictly speaking, SSH is not an ingestion strategy, but a protocol that is
used in conjunction with other ingestion strategies. We use SSH in a few
different ways. First, SSH can be used for file transfer with SCP, as
mentioned earlier. Second, SSH tunnels are used to allow secure, isolated
connections to databases. Application databases should never be directly
exposed on the internet. Instead, engineers can set up a bastion host, i.e., an
intermediate host instance that can connect to the database in question. This
host machine is exposed on the internet, although locked down for
extremely limited access from only specified IP addresses to specified
ports. To connect to the database, a remote machine first opens an SSH
tunnel connection to the bastion host, then connects from the host machine
to the database.

Shell



The shell is the interface by which you may execute commands to ingest
data. In practice, the shell can be used to script workflows for virtually any
software tool, and shell scripting is still used extensively in ingestion
processes. For example, a shell script might read data from a database,
reserialize the data into a different file format, upload it to object storage,
and trigger an ingestion process in a target database. While storing data on a
single instance or server is not highly scalable, many of our data sources are
not particularly large, and such approaches work just fine.

In addition, cloud vendors generally provide robust CLI-based tools. It is
possible to run complex ingestion processes simply by issuing commands to
the AWS CLI. As ingestion processes grow more complicated, and the
service level agreement grows more stringent, engineers should consider
moving to a true orchestration system instead.

APIs

The bulk of software engineering is just plumbing.
—Karl Hughes

As we mentioned in Chapter 5, APIs are a data source that continues to
grow in importance and popularity. A typical organization may have
hundreds of external data sources—SAAS platforms, partner companies,
etc. The hard reality is that there is no true standard for data exchange over
APIs. Data engineers can expect to spend a significant amount of time
reading documentation, communicating with external data owners, and
writing and maintaining API connection code.

Three trends are slowly changing this situation. First, many vendors provide
API client libraries for various programming languages that remove much
of the complexity of API access. Google was arguably a leader in this
space, with AdWords client libraries available in various flavors. Many
other vendors have since followed suit.

Second, there are numerous data connector platforms available now as
proprietary software, open-source, or managed open source. These
platforms provide turnkey data connectivity to many data sources; for
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unsupported data sources, they offer frameworks for writing custom
connectors. See the section below on managed data connectors.

The third trend is the emergence of data sharing (discussed in Chapter 5),
i.e., the ability to exchange data through a standard platform such as Google
BigQuery, Snowflake, Redshift, or Amazon S3. Once data lands on one of
these platforms, it is straightforward to store it, process it, or move it
somewhere else. Data sharing has had a significant and rapid impact in the
data engineering space. For example; Google now supports direct sharing of
data from a variety of its advertising and analytics products (GoogleAds,
Google Analytics, etc.) to BigQuery. Any business that advertises online
can now reallocate software development resources away from Google
product data ingestion and focus instead on everything downstream.

When data sharing is not an option and direct API access is necessary, don’t
reinvent the wheel. While a managed service might look like an expensive
option, consider the value of your time and the opportunity cost of building
API connectors when you could be spending your time on higher-value
work.

In addition, many managed services now support building custom API
connectors. This may take the form of providing API technical
specifications in a standard format, or of writing connector code that runs in
a serverless function framework (e.g. AWS Lambda) while letting the
managed service handle the details of scheduling and synchronization.
Again, these services can be a huge time saver for engineers, both for
development and ongoing maintenance.

Reserve your custom connection work for APIs that aren’t well supported
by existing frameworks—you will find that there are still plenty of these to
work on. There are two main aspects of handling custom API connections:
software development and ops. Follow software development best
practices: you should use version control, continuous delivery, automated
testing, etc. In addition to following DevOps best practices, consider an
orchestration framework, which can dramatically streamline the operational
burden of data ingestion.



Webhooks
Webhooks, as we discussed in Ch. 5, are often referred to as reverse APIs.
For a typical REST data API, the data provider gives engineers API
specifications that they use to write their data ingest code. The code makes
requests and receives data in responses.

With a webhook (Figure 4-13), the data provider documents an API request
specification, but this specification is implemented by the data consumer.
The consumer sets up an endpoint, and the data source calls the endpoint,
delivering data in requests. Typically, webhooks deliver one event at a time;
the consumer is responsible for ingesting each request and handling data
aggregation, storage, processing, etc.

Webhook-based data ingestion architectures can be brittle, difficult to
maintain, and inefficient. Data engineers can build more robust webhook
architectures—with lower maintenance and infrastructure costs—by using
appropriate off-the-shelf tools. A common pattern uses a serverless function
framework (i.e. AWS Lambda) to receive incoming events, a streaming
message bus to store and buffer messages (i.e. AWS Kinesis), a stream
processing framework to handle real-time analytics (i.e. Apache Flink), and
an object store for long term storage (i.e. Amazon S3).

Figure 4-13. A basic webhook ingestion architecture built from cloud services. Using “serverless”
services reduces operational overhead.



You’ll notice that this architecture does much more than simply ingesting
the data. This underscores the fact that ingestion is highly entangled with
the other stages of the data engineering lifecycle—it is often impossible to
define your ingestion architecture without also making decisions about
storage and processing.

We note that this architecture can be simplified if one does not need real-
time analytics. However, trying to simplify too much creates new problems.
For instance, writing directly from a Lambda serverless function to S3
might produce a massive number of objects, with an extremely high request
rate to S3, and potentially high costs. This is where data engineers need to
understand the critical role played by each component in the pipeline. To
simplify the architecture in a more sane way, we could remove the
streaming analytics system, accumulate events into the messaging bus, and
periodically query a large chunk of data over a time range to write it into
S3. Better yet, we could use a serverless tool like Kinesis Firehose, which
automates the process of event rollup to create S3 objects of a reasonable
size.

Legacy data flow management tools
We would be remiss not to mention data flow management tools such as
Informatica and Talend, to name a few. This category of tool is designed to
serve several stages of the data engineering lifecycle, including ingestion,
and processing.

In practice, these systems also integrate some orchestration capabilities.
(See the undercurrents section in this chapter, and corresponding
discussions throughout the book.) Such systems include connectors to a
variety of sources, and allow users to define data pipelines, often using a
visual interface that represents processing stages with icons. Processing can
be set on a schedule. Each processing stage runs once its upstream
dependencies are met. Of course, there are generally ingestion steps at the
beginning of each pipeline.

These systems typically employ two main processing models. We have
already discussed both ETL and ELT. Systems based on the ETL model



ingest data internally, transform it and write it back to external storage, such
as a cloud data warehouse. Tools that employ the ELT model handle most
processing in an external system such as a cloud data warehouse.

Web-interface
Web interfaces for data access remain a practical reality for data engineers.
We frequently run into situations where not all data and functionality in a
SAAS (software as a service) platform is exposed through automated
interfaces such as APIs and file drops. Instead, someone must manually
access a web interface, generate a report and download a file to a local
machine.

Potentially, some automation can be applied by using web interface
simulation frameworks such as simulation, but web interfaces remain an
area of high friction for data ingestion. For example, you might be able to
automate the clicking of a web interface with Selenium. But whenever
possible, find another approach.

Managed Data Connectors
In the section on ingesting data from APIs, we mention the emergence of
managed data connector platforms and frameworks. The goal of these tools
is to provide a standard set of connectors that are available out of the box to
spare data engineers much detailed plumbing to connect to a particular
source.

For now, Fivetran has emerged as a category leader in this space, but there
are many up-and-coming competitors, both proprietary and open source.
Generally, proprietary options in the space allow users to set a target and
source, set permissions and credentials, configure an update frequency, and
begin syncing data. Data syncs are fully managed and monitored—if data
synchronization fails, users will receive an alert.

The open-source options in the space are usually part of a product, and
available in supported and unsupported flavors. Stitch started this trend by
introducing the Singer Python framework. Singer provided a standard set of
abstractions for creating data connectors. Engineers could then use Singer



to manage and run their data synchronization or send their connectors to
Stitch to run within their fully managed platform. Various competitors to
Stitch have emerged. Some utilize the Singer framework; others, such as
Airbyte and Meltano, have introduced new open-source data connector
frameworks.

We note also that even proprietary data connector engines allow the
creation of custom connections with some coding effort. Fivetran allows
this through various serverless function frameworks, including AWS
Lambda and its similar competitors. Engineers write function code that
receives a request, pulls data, and returns it to Fivetran. Fivetran takes care
of orchestration and synchronization to the target database.

These are just a few of many options for managed connectors, and we
expect that this space of SAAS managed services and OSS that support the
development of custom connectors will continue to grow.

Web scraping
Web scraping is another common data source for engineers. Any search
engine must scrape the web to analyze links, build an index, etc. However,
many other businesses also rely on web scraping to survey web content that
may be relevant to their business activities.

A full discussion of web scraping is well beyond the scope of this book.
There are many books specific to the subject. We recommend that readers
look at web scraping books in O’Reilly’s catalog and beyond. There are
also numerous online resources, in video tutorials, blog posts, etc.

Here is some top-level advice to be aware of before undertaking any web
scraping project. First, learn to be a good citizen. Don’t inadvertently create
a denial of service attack, and don’t get your IP address blocked.
Understand how much traffic you’re generating and pace your web
crawling activities appropriately. Just because you can spin up thousands of
simultaneous Lambda functions to scrape doesn’t mean you should; in fact,
excessive web scraping could lead to the disabling of your AWS account.



Second, be aware of the legal implications of your activities. Again,
generating denial of service attacks has legal implications. Activities that
violate terms of service may cause legal headaches for your employer.

Web scraping has interesting implications for the processing stage of the
data engineering lifecycle; there are various things that engineers should
think about at the beginning of a web scraping project. What do you intend
to do with the data? Are you just pulling key fields from the scraped HTML
using Python code, then writing these values to a database? Do you intend
to maintain the full HTML code of the scraped websites and process this
data using a framework like Spark? These decisions may lead to very
different architectures downstream of ingestion.

Transfer appliances for data migration
For truly big data (100 TB or more), transferring data directly over the
internet may be a slow and extremely expensive process—at this scale, the
fastest, most efficient way to move data is not over the wire, but by truck.
Cloud vendors offer the ability to send your data via a physical “box of hard
drives.” Simply order a storage device—called a transfer appliance—load
your data from your servers, then send it back to the cloud vendor who will
upload your data into their cloud. The suggestion is to consider using a
transfer appliance if your data size hovers around 100 TB. On the extreme
end, AWS even offers Snowmobile, a transfer appliance in a semi-trailer.
Snowmobile is intended to lift and shift an entire data center, where data
sizes are in the petabytes or greater.

Transfer appliances are particularly useful for creating hybrid-cloud or
multi-cloud setups. For example, Amazon’s data transfer appliance (AWS
Snowball) supports both import and export. To migrate into a second cloud,
users can export their data into a Snowball device, then import it into a
second transfer appliance to move data into GCP or Azure. This might
sound like an awkward process, but even when it’s feasible to push data
over the internet between clouds, data egress fees make this an extremely
expensive proposition, and physical transfer appliances are a much cheaper
alternative when the data volumes are significant.



Keep in mind that transfer appliances and data migration services are one-
time data ingestion events, and not suggested for ongoing workloads. If
you’ve got workloads that require constant movement of data in either a
hybrid or multi-cloud scenario, your data sizes are presumably batching or
streaming much smaller data sizes, on an ongoing basis.

Streaming Ingestion Technologies
There are a few main technologies for ingestion and temporary storage of
streaming data. As we discuss streaming technologies, it is more useful to
look at the class of all frameworks that collect and buffer messages and
consider them in terms of various features they offer. We’ll describe major
characteristics that data engineers should consider for these systems, and
cite a few examples. This discussion is by no means exhaustive—we
discuss only a few examples and a handful of standard technologies. But
these characteristics are a good framework for research as you choose a
streaming ingestion technology. Decide what characteristics you need for
your data applications and evaluate technologies according to your needs.

We’d like to note that the terminology in the streaming ingestion space can
be confusing. Apache Kafka has variously described itself as a distributed
event streaming platform or a distributed commit log. Per Amazon, Kinesis
Data Streams “is a serverless streaming data service.” RabbitMQ calls itself
a message broker. Apache Kafka may or may not be a message queue
depending on which author you refer to. And so on. Focus on the bigger
picture and context of where various technologies fit in terms of
functionality and utility and take vendor descriptions with a grain of salt.

Horizontal scaling
For our purposes, we’re mostly interested in streaming ingest frameworks
that support horizontal scaling, which grows and shrinks the number of
nodes based on the demand placed upon your system. Horizontal scaling
enhances data scale, reliability, and durability. In some cases, a single node
solution may work just fine for small streams but consider the reliability
and durability implications.



Stream partitions
Kafka and Kinesis partition (shard) streams to support horizontal scaling,
and they allow users to specify an explicit partition key that uniquely
determines which shard a message belongs to. Each consuming server can
consume from a specific shard. Google Cloud Pub/Sub hides all details of
partitioning; subscribers simply read messages at the level of a topic.

Explicit partitioning is a blessing and a curse, entailing engineering
advantages and challenges—see the discussion of stream partitions in
Chapter 8.

Subscriber pull and push
Kafka and Kinesis only support pull subscriptions. That is, subscribers read
messages from a topic and confirm when they have been processed. In
addition, to pull subscriptions, Pub/Sub and RabbitMQ support push
subscriptions, allowing these services to write messages to a listener.

Pull subscriptions are the default choice for most data engineering
applications, but you may want to consider push capabilities for specialized
applications. Note that pull-only message ingestion systems can still push if
you add an extra layer to handle this.

Operational overhead
As with any data engineering technology, operational overhead is a key
consideration. Would you rather manage your streaming data pipelines, or
outsource this work to a team of dedicated engineers? On one end of the
spectrum, Google Cloud Pub/Sub is a fully managed service with no knobs
to turn; just create a topic and a consumer, give a payload, and you’re good
to go. On the other end, Apache Kafka is packaged in a variety of ways, all
the way from raw, hot off the presses open source, to a fully managed
serverless offering from Confluent.

Autoscaling



Autoscaling features vary from platform to platform. Confluent Cloud will
autoscale up to 100MB/s, after which some intervention is required to set
the scale. More effort is required if you run your clusters. Amazon Kinesis
Data Streams recently added a feature that automatically scales the number
of shards. Pub/Sub is fully autoscaling.

Message size
This is an easily overlooked issue: one must ensure that the streaming
framework in question can handle the maximum expected message size. For
example, Amazon Kinesis supports a maximum message size of 1 MB.
Kafka defaults to this maximum size but can be configured for a maximum
of 20 MB or more. (Configurability may vary on managed service
platforms.)

Replay
Replay is a key capability in many streaming ingest platforms. Replay
allows readers to request a range of messages from the history. A system
must support replay for us to truly consider it a streaming storage system.
RabbitMQ deletes messages once they are consumed by all subscribers—
storage capabilities are for temporary buffering only; for long-term storage,
a separate tool is required to consume messages and durably write them.
Replay also essentially lets us hybridize batch and stream processing in one
system.

A key parameter for engineering decisions is maximum message retention
time. Google Cloud Pub/Sub supports retention periods of up to 7 days,
Amazon Kinesis Data Streams retention can be turned up to 1 year, and
Kafka can be configured for indefinite retention, limited by available disk
space. (Kafka also supports the option to write older messages to cloud
object storage, unlocking virtually unlimited storage space and retention.)

Fanout
Fanout entails having more than one consumer per data stream. This is very
useful in the context of complex streaming applications, where we might



want to feed the same data to multiple targets. Note that this is different
from having multiple shards and consuming these on different downstream
servers. Fanout entails multiple consumers per shard, where each consumer
gets its bookmark determining the current position in the stream.

Each streaming ingestion platform has its limits for fanout. For example, a
Kinesis Data Stream supports up to 20 consumers.

Exactly-once delivery
In some cases, streaming ingestion systems such as Pub/Sub may send
events to consumers more than once. This is known as at least once
delivery and is a consequence of consistency challenges in a distributed
system.

Kafka  recently added support for exactly-once delivery. However, before
relying on this feature, make sure that you read the documentation carefully
to understand the exact configuration requirements and performance
implications. Also, it’s important to realize that there are various ways for
records to be processed multiple times in a streaming system even if your
streaming storage system support exactly-once delivery. For example, if a
publisher crashes after writing a record into the stream before receiving
confirmation that the record was consumed, it may write a second copy of
the record when it comes back online. And if a subscriber crashes after
processing a record but before confirming to the storage system that it has
completed processing, the record may get read a second time.

In general, think through the implications of duplicate records in your
stream processing applications. Designing for idempotency  will allow your
system to properly deduplicate records. On the other hand, an occasional
duplicate record may not be an issue in your system.

Record delivery order
The notion of record delivery order is challenging in a distributed system.
Amazon Kinesis orders records in single shards, but this does not provide
any guarantees for behavior across a whole topic, especially as the number
of shards increases. Pub/Sub provides no ordering guarantees; instead,
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engineers are advised to use a tool like Google Cloud Dataflow (Apache
Beam) if they want to order records.

We give essentially the same advice that we gave in the context of at least
once delivery: Understand the ordering characteristics of your streaming
ingest system and think through the implications of data arriving out of
order.

Stream processing
Some streaming storage systems support direct processing without using an
external processing tool. (See Chapter 8.) For example, Kafka supports a
variety of operations with the KSQL query language. Google Cloud
Pub/Sub and Kinesis Data Streams rely on external tools for processing.

Streaming DAGs
Apache Pulsar has introduced an enhanced notion of stream processing that
can be extremely useful for data engineers. With Kafka, engineers can
potentially stitch topics together into a DAG (directed acyclic graph) to
realize complex data processing, but this would also require custom
services and code.

Pulsar builds in streaming DAGs as a core abstraction, supporting complex
processing and transformations without ever exiting the Pulsar system.

Multisite and multiregional
It is often desirable to integrate streaming across several locations for
enhanced redundancy and to consume data close to where it is generated.
For example, it might be desirable to have streaming storage running across
several regions to improve latency and throughput for messages sent by an
IoT swarm with millions of devices.

An Amazon Kinesis Data Stream runs in a single region. Google Cloud
Pub/Sub Global Endpoints allow engineers to create a single endpoint, with
Google automatically storing data in the nearest region. While Kafka
supports a notion of site-to-site replication through Mirror Maker, the core



architecture of Pulsar is designed to specifically support multi-cluster use
cases.

Who You’ll Work With
Data ingestion sits at several organizational boundaries. In the development
and management of data ingestion pipelines, data engineers will work with
both data producers and data consumers.

Upstream Data Producers
In practice, there is often a significant disconnect between those responsible
for generating data—typically software engineers—and the data engineers
who will prepare this data for analytics and data science. Software
engineers and data engineers usually sit in separate organizational silos; if
they think about data engineers at all, they usually see them simply as
downstream consumers of the data exhaust from their application, not as
stakeholders.

We see this current state of affairs as a problem, but also a significant
opportunity. Data engineers can improve the quality of the data that they
ingest by inviting software engineers to be stakeholders in data engineering
outcomes. The vast majority of software engineers are well aware of the
value of analytics and data science but don’t necessarily have aligned
incentives to directly contribute to data engineering efforts.

However, simply improving communication is a great first step. Often,
software engineers have already identified potentially valuable data for
downstream consumption. Opening a channel of communication
encourages software engineers to get data into shape for consumers, and to
communicate about data changes to prevent pipeline regressions.

Beyond communication, data engineers can highlight the contributions of
software engineers to team members, executives, and especially product
managers. Involving product managers in the outcome and treating
downstream data processed as part of a product encourages them to allocate



scarce software development to collaboration with data engineers. Ideally,
software engineers can work partially as extensions of the data engineering
team; this allows them to collaborate on a variety of projects, such as
creating an event-driven architecture to enable real-time analytics.

Downstream Data Consumers
Who is the ultimate customer for data ingestion? Data engineers tend to
focus on data practitioners and technology leaders such as data scientists,
analysts, and chief technical officers. They would do well to also remember
their broader circle of business stakeholders such as marketing directors,
vice presidents over the supply chain, chief executive officers, etc.

Too often, we see data engineers pursuing sophisticated projects (real-time
streaming buses, big data systems) while digital marketing managers next
door are left downloading GoogleAds reports manually. View data
engineering as a business, and recognize who your customers are. Often,
there is significant value in basic automation of ingestion processes,
especially for organizations like marketing that control massive budgets and
sit at the heart of revenue for the business. Basic ingestion work may seem
boring, but delivering value to these core parts of the business will open up
more budget and more exciting opportunities for data engineering in the
long term.

Data engineers can also invite more executive participation in this
collaborative process. For good reason, the notion of data-driven culture is
quite fashionable in business leadership circles, but it is up to data engineers
and other data practitioners to provide executives with guidance on the best
structure for a data-driven business. This means communicating the value
of lowering barriers between data producers and data engineers while
supporting executives in breaking down silos and setting up incentives that
will lead to a more unified data-driven culture.

Once again, communication is the watchword. Honest communication early
and often with stakeholders will go a long way to making sure your data
ingestion adds value.



Undercurrents
Virtually all the undercurrents touch the ingestion phase, but we’ll
emphasize the most salient ones here.

Security
Moving data introduces security vulnerabilities because you have to move
data between locations. The last thing you want is for the data to be
captured or compromised while it is being moved.

Consider where the data lives and where it is going. Data that needs to
move within your VPC should use secure endpoints, and never leave the
confines of the VPC. If you need to send data between the cloud and an on-
premises network, use a VPN or a dedicated private connection. This might
cost money, but the security is a good investment. If your data traverses the
public internet, make sure the transmission is encrypted. Don’t ever send
data unencrypted over the public internet.

Data Management
Naturally, data management begins at data ingestion. This is the starting
point for lineage and data cataloging; from this point on, data engineers
need to think about master data management, ethics, privacy, compliance,
etc.

Schema changes
Schema changes remain, from our perspective, an unsettled issue in data
management. The traditional approach is a careful command and control
review process. Working with clients at large enterprises, we have been
quoted lead times of six months for the addition of a single field. This is an
unacceptable impediment to agility.

On the opposite end of the spectrum is Fivetran, where schema changes are
completely automatic. Any schema change in the source triggers target



tables to be recreated with the new schema. This solves schema problems at
the ingestion stage, but can still break downstream pipelines.

One possible solution, which the authors have ruminated on for a while, is
an approach pioneered by Git version control. When Linus Torvalds was
developing Git, many of his choices were inspired by the limitations of
CVS (Concurrent Versions System). CVS is completely centralized—it
supports only one current official version of the code, stored on a central
project server. To make Git a truly distributed system, Torvalds used the
notion of a tree, where each developer could maintain their processed
branch of the code and then merge to or from other branches.

A few years ago, such an approach to data was unthinkable. Data
warehouse systems are typically operated at close to maximum storage
capacity. However, in big data and cloud data warehouse environments,
storage is cheap. One may quite easily maintain multiple versions of a table
with different schemas and even different upstream transformations. Teams
can maintain multiple “development” versions of a table using orchestration
tools such as Airflow; schema changes, upstream transformation and code
changes, etc. can appear in development tables before official changes to
the main table.

Data ethics, privacy, and compliance
Clients often ask for our advice on encrypting sensitive data in databases.
This generally leads us to ask a very basic question: do you need the
sensitive data that you’re trying to encrypt? As it turns out, in the process of
creating requirements and solving problems, this question often gets
overlooked.

Data engineers should train themselves to always ask this question when
setting up ingestion pipelines. They will inevitably encounter sensitive data;
the natural tendency is to ingest it and forward it to the next step in the
pipeline. But if this data is not needed, why collect it at all? Why not simply
drop sensitive fields before data is stored? Data cannot leak if it is never
collected.



Where it is truly necessary to keep track of sensitive identities, it is
common practice to apply tokenization to anonymize identities in model
training and analytics. But engineers should look at where this tokenization
is applied. If possible, hash data at ingestion time.

In some cases, data engineers cannot avoid working with highly sensitive
data. Some analytics systems must present identifiable sensitive
information. Whenever they handle sensitive data, engineers must act under
the highest ethical standards. In addition, they can put in place a variety of
practices to reduce the direct handling of sensitive data. Aim as much as
possible for touchless production where sensitive data is involved. This
means that engineers develop and test code on simulated or cleansed data in
development and staging environments, but code deployments to
production are automated.

Touchless production is an ideal that engineers should strive for, but
situations inevitably arise that cannot be fully solved in development and
staging environments. Some bugs may not be reproducible without looking
at the live data that is triggering a regression. For these cases, put a broken
glass process in place, i.e., require at least two people to approve access to
sensitive data in the production environment. This access should be tightly
scoped to a particular issue, and come with an expiration date.

Our last bit of advice on sensitive data: be wary of naive technological
solutions to human problems. Both encryption and tokenization are often
treated like privacy magic bullets. Most modern storage systems and
databases encrypt data at rest and in motion by default. Generally, we don’t
see encryption problems, but data access problems. Is the solution to apply
an extra layer of encryption to a single field, or to control access to that
field? After all, one must still tightly manage access to the encryption key.
There are legitimate use cases for single field encryption, but watch out for
ritualistic applications of encryption.

On the tokenization front, use common sense and assess data access
scenarios. If someone had the email of one of your customers, could they
easily hash the email and find the customer in your data? Thoughtlessly



hashing data without salting and other strategies may not protect privacy as
well as you think.

DataOps
Reliable data pipelines are the cornerstone of the data engineering lifecycle.
When they fail, all downstream dependencies come to a screeching halt.
Data warehouses and data lakes aren’t replenished. Data scientists and
analysts can’t effectively do their jobs; the business is forced to fly blind.

Ensuring your data pipelines are properly monitored is a key step toward
reliability and effective incident response. If there’s one stage in the data
engineering lifecycle where monitoring is critical, it’s in the ingestion stage.
Weak or nonexistent monitoring means the pipelines may or may not be
working. In our work, we’ve seen countless examples of reports and
machine learning models being generated from stale data. In one extreme
case, an ingestion pipeline failure wasn’t detected for six months. (One
might question the concrete utility of the data in this instance.) This was
very much avoidable through proper monitoring.

What should you monitor? Uptime, latency, data volumes processed are a
good place to start. If an ingestion job fails, how will you respond? This
also applies to third-party services. In the case of these services, what
you’ve gained in terms of lean operational efficiencies (reduced headcount)
is replaced by systems you depend upon being outside of your control. If
you’re using a third-party service (cloud, data integration service, etc), how
will you be alerted if there’s an outage? What’s your response plan in the
event a service you depend upon suddenly goes offline?

Sadly, there’s not a universal response plan for third-party failures. If you
can failover to other servers (discussed in the data architecture section as
well), preferably in another zone or region, definitely set this up.

If your data ingestion processes are built internally, do you have the correct
testing and deployment automation to ensure the code will function in
production? And if the code is buggy or fails, can you roll back to a
working version?



Data quality tests
We often refer to data as a silent killer. If quality, valid data is the
foundation of success in modern business, using bad data to make decisions
is much worse than having no data at all; bad data has caused untold
damage to businesses.

Data is entropic; it often changes in unexpected ways without warning. One
of the inherent differences between DevOps and DataOps is that we only
expect software regressions when we deploy changes, while data often
presents regressions on its own.

DevOps engineers are typically able to detect problems by using binary
conditions. Has the request failure rate breached a certain threshold? How
about response latency? In the data space, regressions often manifest as
subtle statistical distortions. Is a change in search term statistics a result of
customer behavior? Of a spike in bot traffic that has escaped the net? Of a
site test tool deployed in some other part of the company?

Like systems failures in the world of DevOps, some data regressions are
immediately visible. For example, in the early 2000s, Google provided
search terms to websites when users arrived from search. In 2011, “not
provided” started appearing as a search term in Google Analytics . Analysts
quickly saw “not provided” bubbling to the tops of their reports.

The truly dangerous data regressions are silent and can come from inside or
outside a business. Application developers may change the meaning of
database fields without adequately communicating with data teams.
Changes to data from third-party sources may go unnoticed. In the best-case
scenario, reports break in obvious ways. Often, business metrics are
distorted unbeknownst to decision-makers.

Traditional data testing tools are generally built on simple binary logic. Are
nulls appearing in a non-nullable field? Are new, unexpected items showing
up in a categorical column? Statistical data testing is a new realm, but one is
likely to grow dramatically in the next five years.
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Orchestration
Ingestion generally sits at the beginning of a large and complex data graph;
given that ingestion is the first stage of the data engineering lifecycle,
ingested data will flow into many more data processing steps, and data from
many sources will flow and mingle in complex ways. As we’ve emphasized
throughout this book, orchestration is a key process for coordinating these
steps.

Organizations in an early stage of data maturity may choose to deploy
ingestion processes as simple scheduled cron jobs. However, it is important
to recognize that this approach is brittle and that it can slow the velocity of
data engineering deployment and development.

As data pipeline complexity grows, true orchestration is necessary. By true
orchestration, we mean a system capable of scheduling full task graphs
rather than individual tasks. An orchestration can start each ingestion task at
the appropriate scheduled time. Downstream processing and transform steps
begin as ingestion tasks are completed. Further downstream, processing
steps lead to further processing steps.

Software Engineering
The ingestion stage of the data engineering lifecycle is engineering
intensive. This stage sits at the edge of the data engineering domain and
often interfaces with external systems, where software and data engineers
have to build a variety of custom plumbing.

Behind the scenes, ingestion is incredibly complicated, often with teams
operating open-source frameworks like Kafka or Pulsar, or in the case of
some of the biggest tech companies, running their own forked or
homegrown ingestion solutions. As we’ve discussed in this chapter, various
developments have simplified the ingestion process, such as managed data
ingest platforms like Fivetran and Airbyte, and managed cloud services like
AWS Lambda and Kinesis. Data engineers should take advantage of the
best available tools—especially managed ones that do a lot of the heavy
lifting for you—but also develop high competency in software



development. Even for simple serverless functions, it pays to use proper
version control and code review processes and to implement appropriate
tests.

When writing software, your code needs to be decoupled. Avoid writing
monolithic systems that have tight dependencies on the source or
destination systems. For example, avoid writing GET queries to an RDBMS
with an ORM. This pattern tightly couples your ingestion pull to the ORM,
which is tightly coupled to the RDBMS.

Conclusion
Okay, we’ve made it to the end of ingestion. In your work as a data
engineer, ingestion will likely consume a significant part of your energy and
effort. At heart, ingestion is plumbing, connecting pipes to other pipes,
ensuring that data flows consistently and securely to its destination. At
times, the minutiae of ingestion may feel tedious, but without ingestion, the
interesting applications of data (analytics, machine learning, etc.) cannot
happen.

As we’ve emphasized, we’re also in the midst of a sea change toward
streaming data pipelines. This is an opportunity for data engineers to
discover interesting applications for streaming data, communicate these to
the business and deploy exciting new technologies.

1  https://www.confluent.io/blog/simplified-robust-exactly-one-semantics-in-kafka-2-5/

2  https://discourse.getdbt.com/t/understanding-idempotent-data-transformations/518

3  https://martech.org/dark-google-search-terms-not-provided-one-year-later/

https://www.confluent.io/blog/simplified-robust-exactly-one-semantics-in-kafka-2-5/
https://discourse.getdbt.com/t/understanding-idempotent-data-transformations/518
https://martech.org/dark-google-search-terms-not-provided-one-year-later/
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