
Valliappa Lakshmanan

2nd Edition

Data Science
on the Google
Cloud Platform
Implementing End-to-End
Real-Time Data Pipelines:
From Ingest to
Machine Learning

Valliappa Lakshmanan

Data Science on the
Google Cloud Platform

Implementing End-to-End Real-Time
Data Pipelines: From Ingest to Machine Learning

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11895-2

LSI

Data Science on the Google Cloud Platform, Second Edition
by Valliappa Lakshmanan

Copyright © 2022 Google LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Jessica Haberman
Development Editor: Michele Cronin
Production Editor: Katherine Tozer
Copyeditor: Tom Sullivan
Proofreader: Piper Editorial Consulting, LLC

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

January 2018: First Edition
April 2022: Second Edition

Revision History for the Second Edition
2022-03-29: First Release
2022-04-22: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098118952 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data Science on the Google Cloud Plat‐
form, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098118952

Table of Contents

Preface. xi

1. Making Better Decisions Based on Data. 1
Many Similar Decisions 4
The Role of Data Scientists 5

Scrappy Environment 7
Full Stack Cloud Data Scientists 8
Collaboration 9

Best Practices 10
Simple to Complex Solutions 10
Cloud Computing 11
Serverless 12

A Probabilistic Decision 13
Probabilistic Approach 14
Probability Density Function 15
Cumulative Distribution Function 16

Choices Made 18
Choosing Cloud 19
Not a Reference Book 19
Getting Started with the Code 20

Agile Architecture for Data Science on Google Cloud 22
What Is Agile Architecture? 23
No-Code, Low-Code 23
Use Managed Services 24

Summary 25
Suggested Resources 26

iii

2. Ingesting Data into the Cloud. 29
Airline On-Time Performance Data 29

Knowability 31
Causality 31
Training–Serving Skew 32
Downloading Data 33
Hub-and-Spoke Architecture 34
Dataset Fields 35

Separation of Compute and Storage 37
Scaling Up 39
Scaling Out with Sharded Data 41
Scaling Out with Data-in-Place 43

Ingesting Data 46
Reverse Engineering a Web Form 46
Dataset Download 48
Exploration and Cleanup 50
Uploading Data to Google Cloud Storage 51

Loading Data into Google BigQuery 55
Advantages of a Serverless Columnar Database 55
Staging on Cloud Storage 57
Access Control 57
Ingesting CSV Files 61
Partitioning 62

Scheduling Monthly Downloads 63
Ingesting in Python 65
Cloud Run 71
Securing Cloud Run 72
Deploying and Invoking Cloud Run 74
Scheduling Cloud Run 75

Summary 76
Code Break 77
Suggested Resources 78

3. Creating Compelling Dashboards. 81
Explain Your Model with Dashboards 83

Why Build a Dashboard First? 84
Accuracy, Honesty, and Good Design 86

Loading Data into Cloud SQL 88
Create a Google Cloud SQL Instance 89
Create Table of Data 91
Interacting with the Database 95

Querying Using BigQuery 96

iv | Table of Contents

Schema Exploration 96
Using Preview 97
Using Table Explorer 99
Creating BigQuery View 100

Building Our First Model 101
Contingency Table 101
Threshold Optimization 103

Building a Dashboard 106
Getting Started with Data Studio 107
Creating Charts 109
Adding End-User Controls 110
Showing Proportions with a Pie Chart 112
Explaining a Contingency Table 117

Modern Business Intelligence 119
Digitization 119
Natural Language Queries 120
Connected Sheets 122

Summary 123
Suggested Resources 123

4. Streaming Data: Publication and Ingest with Pub/Sub and Dataflow. 125
Designing the Event Feed 126

Transformations Needed 127
Architecture 128
Getting Airport Information 129
Sharing Data 132

Time Correction 133
Apache Beam/Cloud Dataflow 135
Parsing Airports Data 136
Adding Time Zone Information 139
Converting Times to UTC 141
Correcting Dates 144
Creating Events 146
Reading and Writing to the Cloud 148
Running the Pipeline in the Cloud 150

Publishing an Event Stream to Cloud Pub/Sub 153
Speed-Up Factor 154
Get Records to Publish 155
How Many Topics? 156
Iterating Through Records 157
Building a Batch of Events 158
Publishing a Batch of Events 159

Table of Contents | v

Real-Time Stream Processing 160
Streaming in Dataflow 160
Windowing a Pipeline 162
Streaming Aggregation 162
Using Event Timestamps 165
Executing the Stream Processing 166
Analyzing Streaming Data in BigQuery 168

Real-Time Dashboard 169
Summary 170
Suggested Resources 171

5. Interactive Data Exploration with Vertex AI Workbench. 173
Exploratory Data Analysis 174

Exploration with SQL 177
Reading a Query Explanation 179

Exploratory Data Analysis in Vertex AI Workbench 184
Jupyter Notebooks 185
Creating a Notebook 186
Jupyter Commands 188
Installing Packages 188
Jupyter Magic for Google Cloud 189

Exploring Arrival Delays 190
Basic Statistics 191
Plotting Distributions 191
Quality Control 194
Arrival Delay Conditioned on Departure Delay 199

Evaluating the Model 204
Random Shuffling 204
Splitting by Date 205
Training and Testing 206

Summary 210
Suggested Resources 210

6. Bayesian Classifier with Apache Spark on Cloud Dataproc. 211
MapReduce and the Hadoop Ecosystem 211

How MapReduce Works 212
Apache Hadoop 214

Google Cloud Dataproc 214
Need for Higher-Level Tools 216
Jobs, Not Clusters 217
Preinstalling Software 219

Quantization Using Spark SQL 221

vi | Table of Contents

JupyterLab on Cloud Dataproc 222
Independence Check Using BigQuery 223
Spark SQL in JupyterLab 225
Histogram Equalization 227

Bayesian Classification 231
Bayes in Each Bin 231
Evaluating the Model 232
Dynamically Resizing Clusters 233
Comparing to Single Threshold Model 235

Orchestration 237
Submitting a Spark Job 238
Workflow Template 238
Cloud Composer 239
Autoscaling 239
Serverless Spark 240

Summary 242
Suggested Resources 243

7. Logistic Regression Using Spark ML. 245
Logistic Regression 246

How Logistic Regression Works 246
Spark ML Library 249
Getting Started with Spark Machine Learning 250

Spark Logistic Regression 251
Creating a Training Dataset 252
Training the Model 256
Predicting Using the Model 259
Evaluating a Model 260

Feature Engineering 263
Experimental Framework 263
Feature Selection 267
Feature Transformations 271
Feature Creation 274
Categorical Variables 278
Repeatable, Real Time 280

Summary 281
Suggested Resources 282

8. Machine Learning with BigQuery ML. 283
Logistic Regression 283

Presplit Data 285
Interrogating the Model 286

Table of Contents | vii

Evaluating the Model 287
Scale and Simplicity 289

Nonlinear Machine Learning 290
XGBoost 290
Hyperparameter Tuning 292
Vertex AI AutoML Tables 294

Time Window Features 296
Taxi-Out Time 296
Compounding Delays 298
Causality 299

Time Features 300
Departure Hour 300
Transform Clause 302
Categorical Variable 303
Feature Cross 303

Summary 305
Suggested Resources 306

9. Machine Learning with TensorFlow in Vertex AI. 309
Toward More Complex Models 310

Preparing BigQuery Data for TensorFlow 314
Reading Data into TensorFlow 315

Training and Evaluation in Keras 317
Model Function 317
Features 318
Inputs 320
Training the Keras Model 320
Saving and Exporting 322
Deep Neural Network 322

Wide-and-Deep Model in Keras 323
Representing Air Traffic Corridors 323
Bucketing 324
Feature Crossing 325
Wide-and-Deep Classifier 326

Deploying a Trained TensorFlow Model to Vertex AI 327
Concepts 328
Uploading Model 328
Creating Endpoint 330
Deploying Model to Endpoint 330
Invoking the Deployed Model 331

Summary 332
Suggested Resources 333

viii | Table of Contents

10. Getting Ready for MLOps with Vertex AI. 335
Developing and Deploying Using Python 336

Writing model.py 337
Writing the Training Pipeline 338
Predefined Split 340
AutoML 341

Hyperparameter Tuning 343
Parameterize Model 344
Shorten Training Run 345
Metrics During Training 347
Hyperparameter Tuning Pipeline 347
Best Trial to Completion 349

Explaining the Model 350
Configuring Explanations Metadata 350
Creating and Deploying Model 352
Obtaining Explanations 352

Summary 354
Suggested Resources 355

11. Time-Windowed Features for Real-Time Machine Learning. 357
Time Averages 357

Apache Beam and Cloud Dataflow 358
Reading and Writing 360
Time Windowing 362

Machine Learning Training 367
Machine Learning Dataset 367
Training the Model 373

Streaming Predictions 376
Reuse Transforms 377
Input and Output 379
Invoking Model 380
Reusing Endpoint 381
Batching Predictions 384

Streaming Pipeline 385
Writing to BigQuery 385
Executing Streaming Pipeline 386
Late and Out-of-Order Records 387
Possible Streaming Sinks 393

Summary 400
Suggested Resources 401

Table of Contents | ix

12. The Full Dataset. 403
Four Years of Data 403

Creating Dataset 404
Training Model 409
Evaluation 411

Summary 417
Suggested Resources 417

Conclusion. 419

Considerations for Sensitive Data Within Machine Learning Datasets. 423

Index. 431

x | Table of Contents

Preface

In my current role at Google, I get to work alongside data scientists and data engi‐
neers in a variety of industries as they move their data processing and analysis meth‐
ods to the public cloud. Some try to do the same things they do on premises, the
same way they do them, just on rented computing resources. The visionary users,
though, rethink their systems, transform how they work with data, and thereby are
able to innovate faster.

As early as 2011, an article in Harvard Business Review recognized that some of cloud
computing’s greatest successes come from allowing groups and communities to work
together in ways that were not previously possible. This is now much more widely
recognized. An MIT survey in 2017 found that more respondents (45%) cited
increased agility rather than cost savings (34%) as the reason to move to the public
cloud. However, it is still not widely achieved. McKinsey estimated in 2021 that com‐
panies are leaving behind nearly $1 trillion of value by not looking at the public cloud
as a source of transformative value. Therefore, being able to work on a data science
project in the cloud is a skill well worth investing in.

In this book, we walk through an example of a cloud-native, transformative, collabo‐
rative way of doing data science. You will learn how to implement an end-to-end data
pipeline—we will begin with ingesting the data in a serverless way and work our way
through data exploration, dashboards, relational databases, and streaming data all the
way to training and making an operational machine learning model. I cover all these
aspects of data-based services because data engineers will be involved in designing the
services, developing the statistical and machine learning models, and implementing
them in large-scale production and in real time.

Who This Book Is For
If you use computers to work with data, this book is for you. You might go by the title
of data analyst, database administrator, data engineer, data scientist, or systems
programmer today. Although your role might be narrower today (perhaps you do

xi

https://oreil.ly/vaQlk
https://oreil.ly/tlk6B
https://oreil.ly/sDRJR

only data analysis, or only model building, or only DevOps), you want to stretch your
wings a bit—you want to learn how to create data science models as well as how to
implement them at scale in production systems.

Google Cloud Platform is designed to make you forget about infrastructure. The
marquee data services—Google BigQuery, Cloud Dataflow, Cloud Pub/Sub, and Ver‐
tex AI—are all serverless and autoscaling. When you submit a query to BigQuery, it is
run on thousands of nodes, and you get your result back; you don’t spin up a cluster
or install any software. Similarly, in Cloud Dataflow, when you submit a data pipeline,
and in Vertex AI, when you submit a machine learning job, you can process data at
scale and train models at scale without worrying about cluster management or failure
recovery. Cloud Pub/Sub is a global messaging service that autoscales to the through‐
put and number of subscribers and publishers without any work on your part. Even
when you’re running open source software like Apache Spark that’s designed to oper‐
ate on a cluster, Google Cloud Platform makes it easy with job-specific clusters and
serverless Spark. Because of this job-specific infrastructure, there’s no need to fear
overprovisioning hardware or running out of capacity to run a job when you need it.
Plus, data is encrypted, both at rest and in transit, and kept secure. As a data scientist,
not having to manage infrastructure is incredibly liberating.

These autoscaled, fully managed services make it easier to implement data science
models at scale—which is why data scientists no longer need to hand off their models
to data engineers. Instead, they can write a data science workload, submit it to the
cloud, and have that workload executed automatically in an autoscaled manner. At
the same time, data science packages are becoming simpler and simpler. So, it has
become extremely easy for an engineer to slurp in data and use a canned model to get
an initial (and often very good) model up and running. With well-designed packages
and easy-to-consume APIs, you don’t need to know the esoteric details of data science
algorithms—only what each algorithm does and how to link algorithms together to
solve realistic problems. This convergence between data science and data engineering
is why you can stretch your wings beyond your current role.

Rather than simply read this book cover-to-cover, I strongly encourage you to follow
along with me by trying out the code. The full source code for the end-to-end pipe‐
line I build in this book is on GitHub. Create a Google Cloud Platform project, and
after reading each chapter, try to repeat what I did by referring to the code and to the
README.md file in each folder of the GitHub repository.

Follow the instructions in the README.md files in GitHub to try
out the code. The code snippets in the book are often incomplete—
for example, I may omit some arguments to cloud commands for
clarity or conciseness.

xii | Preface

https://github.com/GoogleCloudPlatform/data-science-on-gcp
https://cloud.google.com

Note that this is not a reference book—the best reference to Google Cloud is its docu‐
mentation, and there is very little value to be had by simply reproducing that in a
book. Instead, this book shows you how to use a variety of tools together to solve a
problem. My goal here is to teach you how to think about a problem in order to solve
it using Google Cloud, not to comprehensively cover any particular product.

If you find yourself fascinated by a topic in this book and want to dive deeper, you
can find a few selected resources at the end of every chapter that provide a deeper
dive into topics covered in the chapter. Don’t feel obligated to watch every video or
read every article.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xiii

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/GoogleCloudPlatform/data-science-on-gcp.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Data Science on the Google Cloud
Platform by Valliappa Lakshmanan (O’Reilly). Copyright 2022 Google LLC,
978-1-098-11895-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

xiv | Preface

https://github.com/GoogleCloudPlatform/data-science-on-gcp
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/data-science-on-gcp.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on Facebook: https://facebook.com/oreilly.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://www.youtube.com/oreillymedia.

Acknowledgments
When I took the job at Google in 2014, I had used the public cloud simply as a way to
rent infrastructure—so I was spinning up virtual machines, installing the software I
needed on those machines, and then running my data processing jobs using my usual
workflow. Fortunately, I realized that Google’s big data stack was different, and so I set
out to learn how to take full advantage of all the data and machine learning tools on
Google Cloud Platform.

The way I learn best is to write code, and so that’s what I did. When a Python meetup
group asked me to talk about Google Cloud Platform, I did a show-and-tell of the
code that I had written. It turned out that a walk-through of the code to build an end-
to-end system while contrasting different approaches to a data science problem was
quite educational for the attendees. I wrote up the essence of my talk as a book pro‐
posal and sent it to O’Reilly Media.

A book, of course, needs to have a lot more depth than a 60-minute code walk‐
through. Imagine that you come to work one day to find an email from a new
employee at your company, someone who’s been at the company less than six months.
Somehow, he’s decided he’s going to write a book on the pretty sophisticated platform
that you’ve had a hand in building and is asking for your help. He is not part of your
team, helping him is not part of your job, and he is not even located in the same office
as you. What is your response? Would you volunteer?

What makes Google such a great place to work is the people who work here. It is a
testament to the company’s culture that so many people—engineers, technical leads,
product managers, solutions architects, data scientists, legal counsel, directors—
across so many different teams happily gave of their expertise to someone they had

Preface | xv

https://oreil.ly/data-science-on-gcp
mailto:bookquestions@oreilly.com
https://oreilly.com
https://facebook.com/oreilly
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

never met (in fact, I still haven’t met many of these people in person). This book, thus,
is immeasurably better because of (in alphabetical order of last names) William
Brockman, Mike Dahlin, Tony DiLoreto, Bob Evans, Roland Hess, Brett Hesterberg,
Dennis Huo, Chad Jennings, Puneith Kaul, Dinesh Kulkarni, Manish Kurse, Reuven
Lax, Jonathan Liu, James Malone, Dave Oleson, Mosha Pasumansky, Kevin Peterson,
Olivia Puerta, Reza Rokni, Karn Seth, Sergei Sokolenko, and Amy Unruh. In particu‐
lar, thanks to Mike Dahlin, Manish Kurse, and Olivia Puerta for reviewing every sin‐
gle chapter. When the first edition of the book was in early access, I received valuable
error reports from Anthonios Partheniou and David Schwantner. Needless to say, I
am responsible for any errors that remain.

A few times during the writing of the book, I found myself completely stuck. Some‐
times, the problems were technical. Thanks to (in alphabetical order) Ahmet Altay,
Eli Bixby, Ben Chambers, Slava Chernyak, Marián Dvorský, Robbie Haertel, Felipe
Hoffa, Amir Hormati, Qiming (Bradley) Jiang, Kenneth Knowles, Nikhil Kothari, and
Chris Meyers for showing me the way forward. At other times, the problems were
related to figuring out company policy or getting access to the right team, document,
or statistic. This book would have been a lot poorer had these colleagues not
unblocked me at critical points (again alphabetically): Louise Byrne, Apurva Desai,
Rochana Golani, Fausto Ibarra, Jason Martin, Neal Mueller, Philippe Poutonnet, Brad
Svee, Jordan Tigani, William Vampenebe, and Miles Ward. Thank you all for your
help and encouragement.

Five years on, I continue to be humbled by the incredible talent and collaboration of
my colleagues. Sagar Baliyara, Filipe Gracio, Polong Lin, and Krishnan Saidapet (in
alphabetical order of last names) brought a close eye to the second edition and made
many great suggestions.

Thanks also to the O’Reilly team—Marie Beaugureau, Kristen Brown, Ben Lorica,
Tim McGovern, Rachel Roumeliotis, and Heather Scherer for believing in me and
making the process of moving from draft to the first edition of the book painless.
Producing the second edition was greatly streamlined by Katherine Tozer, Michele
Cronin, and Tom Sullivan.

The second edition has also greatly benefited from fresh outside perspectives. Colin
Dietrich verified much of the code in the book and made numerous pull requests to
the GitHub repository. Joy Payton suggested many improvements to make the book
more accessible to beginners in data science. Michael Hopkins and Margaret
Maynard-Reid scrutinized the book for areas that needed updating. Thanks also to
readers of the first edition who left reviews of the book on Amazon, filed issues on
GitHub, and reached out to me via email and on Twitter. Your feedback has greatly
improved this edition of the book.

xvi | Preface

Finally, and most important, thanks to Abirami, Sidharth, and Sarada for your under‐
standing and patience even as I became engrossed in writing and coding. You make it
all worthwhile.

I am donating 100% of the royalties from this book to United Way of King County,
where I live. I strongly encourage you to get involved with a local charity to give, vol‐
unteer, and take action to help solve your community’s toughest challenges.

Preface | xvii

https://www.uwkc.org

CHAPTER 1

Making Better Decisions Based on Data

The primary purpose of data analysis is to make better decisions. There is rarely any
need for us to spend time analyzing data if we aren’t under pressure to make a deci‐
sion based on the results of that analysis. When you are purchasing a car, you might
ask the seller what year the car was manufactured and the odometer reading. Know‐
ing the age of the car allows you to estimate the potential value of the car. Dividing
the odometer reading by the age of the car allows you to discern how hard the car has
been driven, and whether it is likely to last the five years you plan to keep it. Had you
not cared about purchasing the car, there would have been no need for you to do this
data analysis.

In fact, we can go further—the purpose of collecting data is, in many cases, only so
that you can later perform data analysis and make decisions based on that analysis
(see Figure 1-1). When you asked the seller the age of the car and its mileage, you
were collecting data to carry out your data analysis. But it goes beyond your data col‐
lection. The car has an odometer in the first place because many people, not just
potential buyers, will need to make decisions based on the mileage of the car. The
odometer reading needs to support many decisions—should the manufacturer pay
for a failed transmission? Is it time for an oil change? The analysis for each of these
decisions is different, but they all rely on the fact that the mileage data has been
collected.

1

1 The classic paper on this is George Akerlof ’s 1970 paper titled “The Market for Lemons”. Akerlof, Michael
Spence (who explained signaling), and Joseph Stiglitz (who explained screening) jointly received the 2001
Nobel Prize in Economics for describing this problem. In a transaction that involves asymmetric information,
the party with good information signals, whereas the party with poor information screens. For example, the
seller of a car (who has good information) might signal that they have a great car by publishing the repair
record of the car. The buyer (who has poor information) might screen cars by rejecting any cars from cities
that recently experienced a flood.

Figure 1-1. The purpose of collecting data is to make decisions with it.

If you are in the business of making a lot of decisions using car mileage, it makes
sense to store the data that you have collected so that future decisions are easier to
make. Collecting data takes time and effort, whereas storing it is relatively inexpen‐
sive. Of course, you have to plan on storing the data in a way that you will know what
it means when you need it later. This is called capturing the semantics of the data and
is an important aspect of data governance, to ensure that data is useful for decision
making.

Collecting data in a form that enables decisions to be made places requirements on
the collecting infrastructure and the security of such infrastructure. How does the
insurance company that receives an accident claim and needs to pay its customer the
car’s value know that the odometer reading is accurate? How are odometers calibra‐
ted? What kinds of safeguards are in place to ensure that the odometer has not been
tampered with? What happens if the tampering is inadvertent, such as installing tires
whose size is different from what was used to calibrate the odometer? The auditability
of data is important whenever there are multiple parties involved, and ownership and
use of the data are separate. When data is unverifiable, markets fail, optimal decisions
cannot be made, and the parties involved need to resort to signaling and screening.1

2 | Chapter 1: Making Better Decisions Based on Data

https://www.jstor.org/stable/1879431

2 The odometer itself might not be all that expensive, but collecting that information and ensuring that it is
correct has considerable costs. The last time I sold a car, I had to sign a statement that I had not tampered
with the odometer, and that statement had to be notarized by a bank employee with a financial guarantee.
This was required by the company that was loaning the purchase amount on the car to the buyer. Every auto
mechanic is supposed to report odometer tampering, and there is a state government agency that enforces
this rule. All of these costs are significant. Even if you disregard all these external costs, and assume that the
hardware and infrastructure exists such that each car has an odometer, there is still a significant cost associ‐
ated with streaming that data from cars into a central location so that you have real-time odometer readings
from all the cars in your fleet. The cost of securing that data to respect the privacy of the drivers can also be
quite significant.

Not all data is as expensive to collect and secure as the odometer reading of a car.2

The cost of sensors has dropped dramatically in recent decades, and many of our
daily processes produce so much data that we find ourselves in possession of data that
we had no intention of explicitly collecting. Because the hardware to collect, ingest,
and store the data has become cheaper, we often default to retaining the data indefi‐
nitely, keeping it around for no discernible reason. As the size of data within an orga‐
nization increases, it becomes more and more essential to organize and catalog it
carefully. So, if we’re to perform analysis on all of this data that we somehow managed
to collect and store, we better have a purpose for it. Labor remains expensive.

Another reason to be purposeful about the data we collect and store is that a lot of it
is about people. Knowing the mileage of the car that someone drives gives us a lot of
information about them, and this is information that they may not want to share
other than for the specific purpose of estimating the market price of their car. Privacy
and confidentiality need to be considered even before any data is collected, so that
appropriate decisions can be made about what data to collect, how to control access
to it, and how long to retain it. This is even more important when the data is pro‐
vided at significant cost, risk, and/or loss of bodily autonomy, as is the case for much
biomedical patient data. Having a data privacy expert examine your schema and data
protection practices is an investment that will pay for itself manyfold in terms of reg‐
ulatory compliance and public relations.

Data analysis is usually triggered because a decision needs to be made. To move into a
market or not? To pay a commission or not? How high to bid up the price? How
many bags to purchase? Whether to buy now or wait a week? The decisions keep
multiplying, and because data is so ubiquitous now, we no longer need to make those
decisions based on heuristics or simple rules of thumb. We can now make those deci‐
sions in a data-driven manner.

Of course, we don’t need to create the systems and tools to make every data-driven
decision ourselves. The use case of estimating the value of a car that has been driven a
certain distance is common enough that there are several companies that provide this
as a service—they will verify that an odometer is accurate, confirm that the car hasn’t
been in an accident, and compare the asking price against the typical selling price of

Making Better Decisions Based on Data | 3

3 Providing it as a service is often the only way to meet the mission of your organization—whether it is to mon‐
etize it, support thousands of users, or provide it at low cost to decision makers.

4 Contrary to what you may hear, it is not about whether you use SQL or Python! You can do data science in
SQL—we will see BigQuery ML later on in the book, and you can use Python for one-off data analysis.

cars in your market. The real value, therefore, comes not in making a data-driven
decision once, but in being able to do it systematically and provide it as a service.3

This also allows companies to specialize in different business areas and continuously
improve the accuracy and value of the decisions that can be made.

Many Similar Decisions
Because of the low costs associated with sensors and storage, there are many indus‐
tries and use cases that have the potential to support data-driven decision making. If
you are working in such an industry, or you want to start a company that will address
such a use case, the possibilities for supporting data-driven decision making have just
become wider. In some cases, you will need to collect the data. In others, you will
have access to data that was already collected, and, in many cases, you will need to
supplement the data you have with other datasets that you will need to hunt down. In
all these cases, being able to carry out data analysis to support decision making sys‐
tematically on behalf of users is one of the most important skills to possess.

In this book, I will take a decision that needs to be made and apply different statistical
and machine learning methods to gain insight into making that decision. However,
we don’t want to make that decision just once, even though we might occasionally
pose it that way. Instead, we will look at how to make the decision in a systematic
manner so that we use the same algorithm to make the decision many, many, many
times. Our ultimate goal will be to provide this decision-making capability as a ser‐
vice to our customers—they will tell us the things they reasonably can be expected to
know, and we will either know or infer the rest (because we have been systematically
collecting data). Based on this data, we will suggest the optimal decision.

Whether or not a decision is a one-off is the primary difference between data analyt‐
ics and data science. Data analytics is about manually analyzing data to make a single
decision or answer a single question. Data science is about developing a technique
(called a model or algorithm) so that similar decisions can be made in a systematic
way. Often, data science is about automating and optimizing the decision-making
process that was first determined through data analysis.4

When we are collecting the data, we will need to look at how to make the data secure.
This will include how to ensure not only that the data has not been tampered with but
also that users’ private information is not compromised—for example, if we are sys‐
tematically collecting odometer mileage and know the precise mileage of the car at

4 | Chapter 1: Making Better Decisions Based on Data

5 In 2014, New York City officials released a public dataset of New York City taxi trips in response to a Freedom
of Information request. However, because it was improperly anonymized, a brute force attack was able to find
out the trips associated with any specific driver. It got worse. Privacy researchers were able to cross-reference
paparazzi photos (which revealed the exact location of celebrities at specific times) and figure out which
celebrities don’t tip. It got even worse. By looking at people who picked up a taxi cab at the same location
every morning, and correlating it with the location from where they got dropped back, they were able to iden‐
tify New Yorkers who frequented strip clubs.

any point in time, this knowledge becomes extremely sensitive information. Given
enough other information about the customer (such as the home address and traffic
patterns in the city in which the customer lives), the mileage is enough to be able to
infer that person’s location at all times.5 So, the privacy implications of hosting some‐
thing as seemingly innocuous as the mileage of a car can become enormous. Security
implies that we need to control access to the data, and we need to maintain immuta‐
ble audit logs on who has viewed or changed the data.

It is not enough to simply collect the data or use it as-is. We must understand the
data. Just as we needed to know the kinds of problems associated with odometer tam‐
pering to understand the factors that go into estimating a vehicle’s value based on
mileage, our analysis methods will need to consider how the data was collected in real
time and the kinds of errors that could be associated with that data. Intimate knowl‐
edge of the data and its quirks is invaluable when it comes to doing data science—
often the difference between a data-science startup idea that works and one that
doesn’t is whether the appropriate nuances have all been thoroughly evaluated and
taken into account.

When it comes to providing the decision-support capability as a service, it is not
enough to simply have a way to do it in some offline system somewhere. Enabling it
as a service implies a whole host of other concerns. The first set of concerns is about
the quality of the decision itself—how accurate is it typically? What are the typical
sources of errors? In what situations should this system not be used? The next set of
concerns, however, is about the quality of service. How reliable is it? How many quer‐
ies per second can it support? What is the latency between some piece of data being
available and it being incorporated into the model that is used to provide systematic
decision making? In short, we will use this single use case as a way to explore many
different facets of practical data science.

The Role of Data Scientists
“Wait a second,” I imagine you saying, “I never signed up for queries-per-second of a
web service. We have people who do that kind of stuff. My job is to write SQL queries
and create reports. I don’t recognize this thing you are talking about. It’s not what I do
at all.” Or perhaps the first part of the discussion was what puzzled you. “Decision
making? That’s for the business people. Me? What I do is to design data processing

The Role of Data Scientists | 5

https://oreil.ly/Xvflt
https://oreil.ly/8v8Sy
https://oreil.ly/F3SGD
https://oreil.ly/F3SGD

systems. I can provision infrastructure, tell you what our systems are doing right now,
and keep it all secure. Data science sure sounds fancy, but I do engineering. When
you said Data Science on the Google Cloud Platform, I was thinking that you were
going to talk about how to keep the systems humming and how to offload bursts of
activity to the cloud.” A third set of people are wondering, “How is any of this data
science? Where’s the discussion of different types of models and of how to make stat‐
istical inferences and evaluate them? Where’s the math? Why are you talking to data
analysts and engineers? Talk to me, I’ve got a PhD.” These are fair points—I seem to
be mixing up the jobs done by different sets of people in your organization.

In other words, you might agree with the following:

• Data analysis is there to support decision making.
• Decision making in a data-driven manner can be superior to heuristics.
• The accuracy of the decision models depends on your choice of the right statisti‐

cal or machine learning approach.
• Nuances in the data can completely invalidate your modeling, so understanding

the data and its quirks is crucial.
• There are large market opportunities in supporting decision making systemati‐

cally and providing it as a service.
• Such services require ongoing data collection and model updates.
• Ongoing data collection implies robust security and auditing.
• Customers of the service require reliability, accuracy, and latency assurances.

What you might not agree with is whether these aspects are all things that you, per‐
sonally and professionally, need to be concerned about. Instead, you might think of
yourself as a data analyst, a data engineer, or a data scientist and not care about how
the other roles do whatever it is that they do.

There are three answers to this objection:

• In any situation where you have small numbers of people doing ambitious
things—a scrappy company, an innovative startup, an underfunded nonprofit, or
an overextended research lab—you will find yourself playing all these roles, so
learn the full lifecycle.

• The public cloud makes it relatively easy to learn all the roles, so why not be a full
stack data scientist?

• Even if you work in a large company where these tasks are carried out by differ‐
ent roles, it is helpful to understand the end-to-end process and concerns at each
stage. This will help you collaborate with other teams better.

6 | Chapter 1: Making Better Decisions Based on Data

6 Google invented the role of Site Reliability Engineers (SREs)—these are folks in charge of keeping systems
running. Unlike traditional IT, though, they know the software they are operating and are quite capable of
making changes to it.

Let’s take these answers one by one.

Scrappy Environment
At Google, we look at the role of a data engineer quite expansively. Just as we refer to
all our technical staff as engineers, we look at data engineers as an inclusive term for
anyone who can “shape business outcomes by performing data analysis.” To perform
data analysis, you begin by preparing the data so that you can analyze it at scale. It is
not enough to simply count and sum and graph the results using SQL queries and
charting software—you must understand the nuances of the data and the statistical
framework within which you are interpreting the results. This ability to prepare the
data and carry out statistically valid data analysis to solve specific business problems
is of paramount importance—the queries, the reports, and the graphs are not the end
goal. A verifiably accurate decision is.

Of course, it is not enough to do one-off data analysis. That data analysis needs to
scale. In other words, an accurate decision-making process must be repeatable and be
capable of being carried out by many users, not just you. The way to scale up one-off
data analysis is to make it automated. After a data engineer has devised the algorithm,
they should be able to make it systematic and repeatable. Just as it is a lot easier when
the folks in charge of systems reliability can make code changes themselves,6 it is con‐
siderably easier when people who understand statistics and machine learning can
code those models themselves. A data engineer, Google believes, should be able to go
from building statistical and machine learning models to automating them. They can
do this only if they are capable of designing, building, and troubleshooting data pro‐
cessing systems that are secure, responsible, reliable, fault-tolerant, scalable, and
efficient.

This desire to have engineers who know data science and data scientists who can code
is not Google’s alone—it’s common at technologically sophisticated organizations and
at small companies. When a scrappy company advertises for data engineers or for
data scientists, what they are looking for is a person who can do all the three tasks—
data preparation, data analysis, and automation—that are needed to make repeatable,
scalable decisions on the basis of data.

How realistic is it for companies to expect a Renaissance person, a virtuoso in differ‐
ent fields? Can they reasonably expect to hire data engineers who can do data sci‐
ence? How likely is it that they will find someone who can design a database schema,
write SQL queries, train machine learning models, code up a data processing pipe‐
line, and figure out how to scale it all up? Surprisingly, this is a very reasonable

The Role of Data Scientists | 7

https://oreil.ly/X6XH6

expectation because the amount of knowledge you need in order to do these jobs has
become a lot less than what you needed a few years ago.

Full Stack Cloud Data Scientists
Because of the ongoing movement to the cloud, data scientists can do the job that
used to be done by several people with different sets of skills. With the advent of
autoscaling, serverless, managed infrastructure that is easy to program, there are
more and more people who can build scalable systems. Therefore, it is now reason‐
able to expect to be able to hire data scientists who are capable of creating holistic
data-driven solutions to your thorniest problems. You don’t need to be a polymath to
be a full stack data scientist—you simply need to learn how to do data science on the
cloud.

Saying that the cloud is what makes full stack data scientists possible seems like a very
tall claim. This hinges on what I mean by “cloud”—I don’t mean simply migrating
workloads that run on premises to infrastructure that is owned by a public cloud ven‐
dor. I’m talking, instead, about truly autoscaling, managed services that automate a
lot of the infrastructure provisioning, monitoring, and management—services such
as Google BigQuery, Vertex AI, Cloud Dataflow, and Cloud Run on Google Cloud
Platform. When you consider that the scaling and fault-tolerance of many data analy‐
sis and processing workloads can be effectively automated, provided the right set of
tools is being used, it is clear that the amount of IT support that a data scientist needs
dramatically reduces with a migration to the cloud.

At the same time, data science tools are becoming simpler and simpler to use. The
wide availability of frameworks like Spark, Pandas, and Keras has made data science
and data science tools extremely accessible to the average developer—no longer do
you need to be a specialist in data science to create a statistical model or train a ran‐
dom forest. This has opened up the field of data science to people in more traditional
IT roles.

Similarly, data analysts and database administrators today can have completely differ‐
ent backgrounds and skill sets because data analysis has usually involved serious SQL
wizardry, and database administration has typically involved deep knowledge of data‐
base indices and tuning. With the introduction of tools like BigQuery, in which tables
are denormalized and the administration overhead is minimal, the role of a database
administrator is considerably diminished. The growing availability of turnkey visuali‐
zation tools like Tableau and Looker that connect to all the data stores within an
enterprise makes it possible for a wider range of people to directly interact with enter‐
prise warehouses and pull together compelling reports and insights.

The reason that all these data-related roles are merging together, then, is because the
infrastructure problem is becoming less intense and the data analysis and modeling
domain is becoming more democratized.

8 | Chapter 1: Making Better Decisions Based on Data

7 The words “need to know” are important here. It can sometimes be intimidating to see the breadth and depth
of data science and despair of ever understanding everything. Here’s the truth: there is no one who knows the
entire field in-and-out. Everyone is, at some level, glossing over some areas. Which areas? Areas that are not
important to the problems that they are currently working on. This then gives you a strategy to approach data
science—rather than try to learn topics (“I will learn RNNs this month”) or learn how to solve problems (“I
will learn how to use AI to complete phrases”). Start with simple approaches, and stop once things become
difficult and unintelligible. In most fields of AI, the simple approaches will get you quite far. Also, a deep
understanding of the underlying mathematics is usually not required to implement a complex approach using
frameworks like Keras.

If you think of yourself today as a data scientist, or a data analyst, or a database
administrator, or a systems programmer, this is either totally exhilarating or totally
unrealistic. It is exhilarating if you can’t wait to do all the other tasks that you’ve con‐
sidered beyond your ken if the barriers to entry have fallen as low as I claim they
have. If you are excited and raring to learn the things you will need to know in this
new world of data, welcome!7 This book is for you.

If my vision of a blend of roles strikes you as an unlikely dystopian future, hear me
out. The vision of autoscaling services that require very little in the form of infra‐
structure management might be completely alien to your experience if you are in an
enterprise environment that is notoriously slow moving—there is no way, you might
think, that data roles are going to change as dramatically as all that by the time you
retire.

Well, maybe. I don’t know where you work or how open to change your organization
is. What I believe, though, is that more and more organizations and more and more
industries are going to be like digital natives. There will be increasingly more open‐
ings for full stack data scientists, and data engineers will be as sought after as data
scientists are today. This is because data engineers will be people who can do data sci‐
ence and know enough about infrastructure so as to be able to run their data science
workloads on the public cloud. It will be worthwhile for you to learn data science ter‐
minology and data science frameworks, and make yourself more valuable for the next
decade.

Collaboration
Even if you work in a company with strict separation of responsibilities, it can be
helpful to know how the other teams do their work. This is because there are many
artifacts that they create that you will use, or that you will create and they will use.
Knowing their requirements and constraints will help you be more effective at com‐
municating across organizational boundaries.

The various job roles related to data and machine learning are shown in Figure 1-2.
All these roles collaborate in creating a production machine learning model. Between
data ingestion and the end-user interface, there are multiple handoffs. Every such

The Role of Data Scientists | 9

handoff presents an opportunity for misunderstanding the requirements of the next
stage or for an inability to take over what’s been created at the previous stage.

Figure 1-2. There are many job roles that need to collaborate to take a data science solu‐
tion from idea to production. Every handoff carries a risk of failure.

Understanding the adjacent roles, the tools they work with, and the infrastructure
that they use can help you reduce the chances of the baton getting dropped.

That said, it is very difficult to get a clean separation of responsibilities—the best
organizations that I know, the ones that have hundreds to thousands of machine
learning models in production, employ full stack data scientists that work on a prob‐
lem from inception to production. They may have specialist data analysts, data engi‐
neers, data scientists, or ML engineers, but mostly in a maintenance capacity—the
innovation tends to be done by the full stack folks. Even the full stack data scientists
have areas in which they are stronger and areas where they collaborate with
specialists.

Best Practices
This entire book consists of an extended case study. Solving a real-world, practical
problem will help cut through all the hype that surrounds big data, machine learning,
cloud computing, and so on. Pulling a case study apart and putting it together in
multiple ways illuminates the capabilities and shortcomings of the various big data
and machine learning tools that are available to you. A case study can help you iden‐
tify the kinds of data-driven decisions that you can make in your business and illumi‐
nate the considerations behind the data you need to collect and curate, as well as the
kinds of statistical and machine learning models you can use. I will attempt, through‐
out this book, to apply current best practices.

Simple to Complex Solutions
One of the ways that this book mirrors practice is that I use a real-world dataset to
solve a realistic scenario and address problems as they come up. So, I will begin with a

10 | Chapter 1: Making Better Decisions Based on Data

8 This goes by the name Principle of Parsimony or Occam’s Razor and holds that the simplest explanation, with
the fewest assumptions, is best. This is because simpler models are likely to fail less often because they depend
on fewer assumptions. In engineering terms, another advantage of simpler models is that they tend to be less
costly to implement.

decision that needs to be made and apply different statistical and machine learning
methods to gain insight into making that decision in a data-driven manner. This will
give you the ability to explore other problems and the confidence to solve them from
first principles. As with most things, I will begin with simple solutions and work my
way to more complex ones. Starting with a complex solution will only obscure details
about the problem that are better understood when solving it in simpler ways. Of
course, the simpler solutions will have drawbacks, and these will help to motivate the
need for additional complexity.

One thing that I do not do, however, is to go back and retrofit earlier solutions based
on knowledge that I gain in the process of carrying out more sophisticated
approaches. In your practical work, however, I strongly recommend that you main‐
tain the software associated with early attempts at a problem, and that you go back
and continuously enhance those early attempts with what you learn along the way.
Parallel experimentation is the name of the game. Due to the linear nature of a book,
I don’t do it, but I heartily recommend that you continue to actively maintain several
models. Given the choice of two models with similar accuracy measures, you can
then choose the simpler one—it makes no sense to use more complex models if a
simpler approach can work with some modifications.8 Another reason to have multi‐
ple models is that a drop-in replacement is useful to have if you discover that the cur‐
rent production model drops in accuracy or is discovered to have unwanted
behaviors.

Cloud Computing
Before I joined Google, I was a research scientist working on machine learning algo‐
rithms for weather diagnosis and prediction. The machine learning models involved
multiple weather sensors, but were highly dependent on weather radar data. A few
years ago, when we undertook a project to reanalyze historical weather radar data
using the latest algorithms, it took us four years to do. However, more recently, my
team was able to build rainfall estimates off the same dataset, but were able to traverse
the dataset in about two weeks. You can imagine the pace of innovation that results
when you take something that used to take four years and make it doable in two
weeks.

Four years to two weeks. The reason was that much of the work as recently as five
years ago involved moving data around. We’d retrieve data from tape drives, stage it
to disk, process it, and move it off to make way for the next set of data. Figuring out

Best Practices | 11

https://oreil.ly/8HPoR

9 For your organization, any time you save translates to budget savings. You get more accomplished with a
smaller budget.

what jobs had failed was time consuming, and retrying failed jobs involved multiple
steps including a human in the loop. We were running it on a cluster of machines that
had a fixed size. The combination of all these things meant that it took incredibly
long periods of time to process the historical archive. After we began doing every‐
thing on the public cloud, we found that we could store all of the radar data on cloud
storage and, as long as we were accessing it from virtual machines (VMs) in the same
region, data transfer speeds were fast enough. We still had to stage the data to disks,
carry out the computation, and bring down the VMs, but this was a lot more man‐
ageable. Simply lowering the amount of data movement between tape and disk and
running the processes on many more machines enabled us to carry out processing
much faster; to the credit of elasticity (the ability to seamlessly increase the number of
resources we can assign to a job in the public cloud.

Was it more expensive to run the jobs on 10 times more machines than we did when
we did the processing on premises? No, because the economics are usually in favor of
renting on demand rather than buying the processing power outright, especially if
you will not be using the machines 24-7. Whether you run 10 machines for 10 hours
or 100 machines for 1 hour, the cost remains the same. Why not, then, get your
answers in an hour rather than 10 hours?

In this book, we will do all our data science on Google Cloud in order to take advan‐
tage of the near-infinite scale that the public cloud offers.

Serverless
When we did our weather data preparation using cloud-based VMs, we were still not
taking full advantage of what the cloud has to offer. We should have completely fore‐
gone the process of spinning up VMs, installing software on them, and looking for
failed jobs—what we should have done was to use an autoscaling data processing
framework such as BigQuery or Cloud Dataflow. Had we done that, we would have
been able to run our jobs on thousands of machines and might have brought our pro‐
cessing time from two weeks to a few hours. Not having to manage any infrastructure
is itself a huge benefit when it comes to trawling through terabytes of data. Having
the data processing, analysis, and machine learning autoscale to thousands of
machines is a bonus.

The key benefit of performing data engineering in the cloud is the amount of time
that it saves you.9 You shouldn’t need to wait days or months—instead, because many
jobs are embarrassingly parallel, you can get your results in minutes to hours by hav‐
ing them run on thousands of machines. You might not be able to afford permanently

12 | Chapter 1: Making Better Decisions Based on Data

10 For a word that gets bandied about quite a lot, there is not much agreement on what exactly serverless means.
In this book, I’ll call a service serverless if users of the service have to supply only code and not have to man‐
age the lifecycle of the machines that the code runs on.

owning so many machines, but it is definitely possible to rent them for minutes at a
time. These time savings make autoscaled services on a public cloud the logical
choice to carry out data processing.

Running data jobs on thousands of machines for minutes at a time requires fully
managed services. Storing the data locally on the virtual machines or persistent disks
as with the Apache Hadoop cluster doesn’t scale unless you know precisely what jobs
are going to be run, when, and where. You will not be able to downsize the cluster of
machines if you don’t have automatic retries for failed jobs and more importantly,
shuffle the data around in remaining data nodes (assuming there is enough free
space). The total computation time will be the time taken by the most overloaded
worker unless you have dynamic task shifting among the nodes in the cluster. All of
these point to the need for autoscaling services that dynamically resize the cluster,
split jobs down into tasks, move tasks between compute nodes, and can rely on highly
efficient networks to move data to the nodes that are doing the processing.

On Google Cloud Platform, the key autoscaling, fully managed, “serverless” services
are BigQuery (for data analytics), Cloud Spanner (for databases), Cloud Dataflow (for
data processing pipelines), Cloud Pub/Sub (for message-driven systems), Cloud Big‐
table (for high-throughput ingest), Cloud Run or Cloud Functions (for applications,
tasks), and Vertex AI (for machine learning).10 Using autoscaled services like these
makes it possible for a data engineer to begin tackling more complex business prob‐
lems because they have been freed from the world of managing their own machines
and software installations whether in the form of bare hardware, virtual machines, or
containers. Given the choice between a product that requires you to first configure a
container, server, or cluster, and another product that frees you from those considera‐
tions, choose the serverless one. You will have more time to solve the problems that
actually matter to your business.

A Probabilistic Decision
Imagine that you are about to take a flight and, just before the flight takes off from the
runway (and you are asked to switch off your phone), you have the opportunity to
send one last text message. It is past the published departure time and you are a bit
anxious. Figure 1-3 presents a graphic view of the scenario.

A Probabilistic Decision | 13

11 Perhaps I’m simply rationalizing my own behavior—if I’m getting to the departure gate with more than 15
minutes to spare at least once in about five flights, I decide that I must be getting to the airport too early and
adjust accordingly. Fifteen minutes and 20% tend to capture my risk aversion. If you are wondering why my
risk aversion threshold is not simply 15 minutes but includes an associated probabilistic threshold, read on.

Figure 1-3. A graphic illustration of the case study: if the flight departs late, should the
road warrior cancel the meeting?

The reason for your anxiety is that you have scheduled an important meeting with a
client at its offices. As befits a rational data scientist,11 you scheduled things rather
precisely. You have taken the airline at its word with respect to when the flight would
arrive, accounted for the time to hail a taxi, and used an online mapping tool to esti‐
mate the time to the client’s office. Then, you added some leeway (say 30 minutes)
and told the client what time you’d meet them. And now, it turns out that the flight is
departing late. So, should you send a text informing your client that you will not be
able to make the meeting because your flight will be late or should you not?

This decision could be made in many ways, including by gut instinct and using heu‐
ristics. Being very rational people, we (you and I) will make this decision informed by
data. Also, we see that this is a decision made by many of the road warriors in our
company day in and day out. It would be a good thing if we could do it in a systematic
way and have a corporate server send out an alert to travelers about anticipated delays
if we see events on their calendar that they are likely to miss. Let’s build a data frame‐
work to solve this problem.

Probabilistic Approach
If we decide to make the decision in a data-driven way, there are several approaches
we can take. Should we cancel the meeting if there is greater than a 30% chance that

14 | Chapter 1: Making Better Decisions Based on Data

you will miss it? Or should we assign a cost to postponing the meeting (the client
might go with our competition before we get a chance to demonstrate our great prod‐
uct) versus not making it to a scheduled meeting (the client might never take our calls
again) and minimize our expected loss in revenue? The probabilistic approach trans‐
lates to risk, and many practical decisions hinge on risk. In addition, the probabilistic
approach is more general because if we know the probability and the monetary loss
associated with missing the meeting, it is possible to compute the expected value of
any decision that we make. For example, suppose the chance of missing the meeting
is 20% and we decide to not cancel the meeting (because 20% is less than our decision
threshold of 30%). But there is only a 25% chance that the client will sign the big deal
(worth a cool million bucks) for which you are meeting them. Because there is an
80% chance that we will make the meeting, the expected upside value of not canceling
the meeting is 0.8 × 0.25 × 1 million, or $200,000. The downside value of not cancel‐
ing is that we do miss the meeting. Assuming that the client is 90% likely to blow us
off in the future if we miss a meeting with them, the expected downside is 0.2 × 0.9 ×
0.25 × 1 million, or $45,000. This yields an expected value of $155,000 in favor of not
canceling the meeting. We can adjust these numbers to come up with an appropriate
probabilistic decision threshold.

Another advantage of a probabilistic approach is that we can directly take into
account human psychology. You might feel frazzled if you arrive at a meeting only
two minutes before it starts and, as a result, might not be able to perform at your best.
It could be that arriving only two minutes early to a very important meeting doesn’t
feel like being on time. This obviously varies from person to person, but let’s say that
this time interval that you need to settle down is 15 minutes. You want to cancel a
meeting for which you cannot arrive 15 minutes early. You could also treat this time
interval as your personal risk aversion threshold, a final bit of headroom if you will.
Thus, you want to arrive at the client’s site 15 minutes before the meeting and you
want to cancel the meeting if there is a less than 70% chance of doing that. This, then,
is our decision criterion:

Cancel the client meeting if the probability of arriving 15 minutes early is 70% or less.

I’ve explained the 15 minutes, but I haven’t explained the 70%. Surely, you can use the
aforementioned model diagram (Figure 1-3, in which we modeled our journey from
the airport to the client’s office), plug in the actual departure delay, and figure out
what time you will arrive at the client’s offices. If that is less than 15 minutes before
the meeting starts, you should cancel! Where does the 70% come from?

Probability Density Function
It is important to realize that the model diagram (Figure 1-3) of times is not exact.
The probabilistic decision framework gives you a way to treat this in a principled way.
For example, although the airline company says that the flight duration is 127

A Probabilistic Decision | 15

12 To integrate a function is to compute the area under the curve of that function up to a specific x-value, as
shown in Figure 1-5.

minutes and publishes an arrival time, not all flights are exactly 127 minutes long. If
the plane happens to take off with the wind, catch a tail wind, and land against the
wind, the flight might take only 90 minutes. Flights for which the winds are all pre‐
cisely wrong might take 127 minutes (i.e., the airline might be publishing worst-case
scenarios for the route). Google Maps predicts journey times based on historical data,
and the actual journeys by taxi will be centered around those times. Your estimate of
how long it takes to walk from the airport gate to the taxi stand might be predicated
on landing at a specific gate, and actual times may vary. So, even though the model
depicts a certain time between airline departure and your arrival at the client site, this
is not an exact number. The actual time between departure and arrival might have a
distribution that looks like that shown in Figure 1-4.

Figure 1-4. There are many possible values for the time differences between aircraft
departure and your arrival at a client site, and the distribution of that value is called the
probability density function.

The curve in Figure 1-4 is referred to as the probability density function (abbreviated
as the PDF). In fact, the PDF can be (and often is) greater than one. In order to get a
probability, you will need to integrate the probability density function.12 A simple way
to do this integration is provided by the cumulative distribution function (CDF).

Cumulative Distribution Function
The cumulative probability distribution function of a value x is the probability that
the observed value X is less than the threshold x. For example, you can get the

16 | Chapter 1: Making Better Decisions Based on Data

13 This is a simplifying assumption—if the flight was supposed to arrive at 2 p.m., and instead arrives at 4 p.m.,
the traveler is more likely to hit rush hour traffic.

cumulative distribution function (CDF) for 227 minutes by finding the fraction of
flights for which the time difference is less than 227 minutes, as shown in Figure 1-5.

Figure 1-5. The CDF is the area under the curve of the PDF. It is easier to understand
and keep track of than the PDF. In particular, it is bounded between 0 and 1, whereas
the PDF could be greater than 1.

Let’s interpret the graph in Figure 1-5. What does a CDF (227 minutes) = 0.8 mean? It
means that 80% of flights will arrive such that we will make it to the client’s site in less
than 227 minutes—this includes both the situation in which we can make it in 100
minutes and the situation in which it takes us 226 minutes. The CDF, unlike the PDF,
is bounded between 0 and 1. The y-axis value is a probability, just not the probability
of an exact value. It is, instead, the probability of observing all values less than that
value.

Because the time to get from the arrival airport to the client’s office is unaffected by
the flight’s departure delay,13 we can ignore it in our modeling. We can similarly
ignore the time to walk through the airport, hail the taxi, and get ready for the meet‐
ing. So, we need only to find the probability of the arrival delay being more than 15
minutes. If that probability is 0.3 or more, we will need to cancel the meeting. In
terms of the CDF, that means that the probability of arrival delays of less than 15
minutes has to be at least 0.7, as presented in Figure 1-6.

Thus, our decision criteria translate to the following:

Cancel the client meeting if the CDF of an arrival delay of 15 minutes is less than 70%.

A Probabilistic Decision | 17

Figure 1-6. Our decision criterion is to cancel the meeting if the CDF of an arrival delay
of 15 minutes is less than 70%. Loosely speaking, we want to be 70% sure of the aircraft
arriving no more than 15 minutes late.

The rest of this book is going to be about building data pipelines that enable us to
compute the CDF of arrival delays using statistical and machine learning models.
From the computed CDF of arrival delays, we can look up the CDF of a 15-minute
arrival delay and check whether it is less than 70%.

Choices Made
What data do we need to predict the probability of a specific flight delay? What tools
shall we use? Should we use Hadoop? BigQuery? Should we do it on my laptop or
should we do it in the public cloud? The question about data is easily answered—we
will use historical flight arrival data published by the US Bureau of Transportation
Statistics, analyze it, and use it to inform our decision. Often, a data scientist would
choose the best tool based on their experience and just use that one tool to help make
the decision, but here, I will take you on a tour of several ways that we could carry out
the analysis. This will also allow us to model best practice in the sense of picking the
simplest tool and analysis that suffices.

18 | Chapter 1: Making Better Decisions Based on Data

https://oreil.ly/Dk3jc

14 Yes, this is the second edition of the book, published in 2022. The first edition of the book used only 2015
data. Here, I’ll use 2015–2019. I stopped with 2019 because 2020 was the year of the COVID-19 pandemic,
and flights were rather spotty.

Choosing Cloud
On a cursory examination of the data, we discover that there were more than 30.6
million flights in 2015–2019.14 My laptop, nice as it is, is not going to cut it. We will
do the data analysis on the public cloud. Which cloud? We will use the Google Cloud
Platform (GCP). Although some of the tools we use in this book (notably Hadoop,
Spark, Beam, TensorFlow, etc.) are available on other cloud platforms, the managed
services I use (BigQuery, Cloud Dataproc, Cloud Dataflow, Vertex AI, etc.) are spe‐
cific to GCP. Using GCP will allow me to avoid fiddling around with virtual machines
and machine configuration and focus solely on the data analysis. Also, I do work at
Google, so this is the platform I know best.

Not a Reference Book
This book is not an exhaustive look at data science—there are other books (often
based on university courses) that do that. It is also not a reference book on Google
Cloud—the documentation is much more timely and comprehensive. Instead, this
book allows you to look over my shoulder as I solve one particular data science prob‐
lem using a variety of methods and tools. I promise to be quite chatty and tell you
what I am thinking and why I am doing what I am doing. Instead of presenting you
with fully formed solutions and code, I will show you intermediate steps as I build up
to a solution.

This learning material is presented to you in three forms:

• This book that you are reading.
• The code referenced throughout the book on GitHub. Note in particular, the

README.md file in each folder of the GitHub repository.
• Labs with instructions that allow you to try the code of this book in a sandbox

environment, available at https://qwiklabs.com.

Rather than simply read this book cover to cover, I strongly encourage you to follow
along with me by also taking advantage of the code. After reading each chapter, or
major section in each chapter, try to repeat what I did, referring to the code if some‐
thing’s not clear.

Choices Made | 19

https://github.com/GoogleCloudPlatform/data-science-on-gcp
https://qwiklabs.com

Getting Started with the Code
To begin working with the code, follow these steps:

• Sign up for the free trial if you haven’t already done so. Otherwise, use your exist‐
ing GCP account.

• Create a new project and give it any name you want. I suggest calling it ds-on-
gcp. GCP will assign a unique project ID to your project (see Figure 1-7). You
will need to provide this unique ID whenever you do anything that is billable.
Once you are finished working through this book, simply delete the project to
stop getting billed.

Figure 1-7. When you create a new project, GCP will assign it a unique project
identifier. Use this unique identifier whenever a script or program asks for a project
ID. You will also be able to get the unique identifier from the dashboard (see
Figure 1-8).

• Open Cloud Shell, your terminal access to GCP. To open Cloud Shell, on the
menu bar, click the Activate Cloud Shell icon, as shown in Figure 1-8. Even
though the web console is very nice, I typically prefer to script things rather than
go through a GUI. To me, web GUIs are great for occasional and/or first-time
use, but for repeatable tasks, nothing beats the terminal.

20 | Chapter 1: Making Better Decisions Based on Data

https://console.cloud.google.com

Figure 1-8. Activate Cloud Shell by clicking on the highlighted icon in the top right
corner of the GCP web console. Note that the unique project identifier can be
obtained at any time from the dashboard.

Cloud Shell is a micro-VM that is alive for the duration of the
browser window and gives you terminal access to the micro-
VM. Close the browser window, and the micro-VM goes away.
The Cloud Shell VM is free and comes loaded with many of
the tools that developers on Google Cloud Platform will need.
For example, it has Python, Git, the Google Cloud SDK, and
Orion (a web-based code editor) installed on it. Although the
Cloud Shell VM is ephemeral, it is attached to a persistent disk
that is tied to your user account. Files that you store in your
home directory are saved across different Cloud Shell sessions.

• In the Cloud Shell window, git clone my repository by typing the following:
git clone \
 https://github.com/GoogleCloudPlatform/data-science-on-gcp
 cd data-science-on-gcp

Because the Git repository was checked out to the home directory of the Cloud
Shell micro-VM, it will be persistent across browser sessions.

• Note that there is a directory corresponding to each chapter of this book (other
than Chapters 1 and 12). In each directory, you will find a README.md file with
directions on how to replicate the steps in that chapter.

Choices Made | 21

Do not copy-paste code snippets from the book. Read the
chapters and then try out the code by following the steps in
each chapter’s README.md using the code in the repository. I
recommend that you not copy-paste from electronic versions
of this book.

• The book is written for readability, not for completeness. Some flags to cloud
tools may be omitted so that we can focus on the key aspect being discussed. The
GitHub code will have the full command.

• The GitHub repo will be kept up to date with new versions of cloud tools,
Python, etc.

• When following along in the book, it’s easy to miss a step.
• Copy-paste of special characters from PDF is problematic.

Developing Locally
If you prefer to do development on your local machine (rather than in Cloud Shell),
you will need to install three pieces of software (all three are already present on Cloud
Shell, so this is only if you wish to develop on your own laptop):

1. Python version 3.6 or higher
2. The Google Cloud SDK
3. The version control software Git

That’s it. You are now ready to follow along with me. As you do, remember that you
need to change my project ID to the ID of your project (you can find this on the
dashboard of the Google Cloud web console, as shown in Figure 1-8) and my bucket-
name to your bucket on Cloud Storage (you will create this in Chapter 2; we’ll intro‐
duce buckets at that time).

Agile Architecture for Data Science on Google Cloud
I will introduce Google Cloud products and technologies as we go along. In this sec‐
tion, I will provide a high-level overview of why I choose what I choose. Do not
worry if you don’t recognize the names of these technologies (e.g., data warehouse) or
products (e.g., BigQuery) since we will cover them in detail as we go along.

22 | Chapter 1: Making Better Decisions Based on Data

https://oreil.ly/eRUX6

What Is Agile Architecture?
One of the principles of Agile software is that simplicity, by which we mean maximiz‐
ing the amount of work not done, is essential. Another is that requirements change
frequently, and so flexibility is important. An Agile architecture, therefore, is one that
gives you:

• Speed of development. You should be able to go from idea to deployment as
quickly as possible.

• Flexibility to quickly implement new features. Sometimes speed comes at the
expense of flexibility—the architecture might shoehorn you into a very limited
set of use cases. You don’t want that.

• Low-maintenance. Don’t spend your time managing infrastructure.
• Autoscaling and resiliency so that you are not spending your time monitoring

infrastructure.

What does such an architecture look like on Google Cloud when it comes to Data
Analytics and AI? It will use low-code and no-code services (pre-built connectors,
automatic replication, ELT [extract-load-transform], AutoML) so that you get speed
of development. For flexibility, the architecture will allow you to drop down to
developer-friendly, powerful code (Apache Beam, SQL, TensorFlow) whenever
needed. These will run on serverless infrastructure (Pub/Sub, Dataflow, BigQuery,
Vertex AI) so that you get low-maintenance, autoscaling, and resiliency.

No-Code, Low-Code
When it comes to architecture, choose no-code over low-code and low-code over
writing custom code. Rather than writing ETL (extract-transform-load) pipelines to
transform the data you need before you land it into BigQuery, use pre-built connec‐
tors to directly land the raw data into BigQuery (see Figure 1-9). Then, transform the
data into the form you need using SQL views directly in the data warehouse. You will
be a lot more agile if you choose an ELT approach over an ETL approach.

Agile Architecture for Data Science on Google Cloud | 23

https://oreil.ly/95PKa

Figure 1-9. Agile architecture for most use cases.

Another place is when you choose your ML modeling framework. Don’t start with
custom TensorFlow models. Start with AutoML. That’s no-code. You can invoke
AutoML directly from BigQuery, avoiding the need to build complex data and ML
pipelines. If necessary, move on to pre-built models from TensorFlow Hub and pre-
built containers on Vertex AI. That’s low-code. Build your own custom ML models
only as a last resort.

Use Managed Services
You will want to be able to drop down to code if the low-code approach is too restric‐
tive. Fortunately, the no-code architecture described previously is a subset of the full
architecture, shown in Figure 1-10, that gives you all the flexibility you need.

Figure 1-10. Agile architecture for analytics and AI.

24 | Chapter 1: Making Better Decisions Based on Data

When the use case warrants it, you will have the full flexibility of Apache Beam, SQL,
and TensorFlow. This is critical—for use cases where the ELT + AutoML approach is
too restrictive, you have the ability to drop to a ETL/Dataflow + Keras/Vertex
approach.

Best of all, the architecture is unified, so you are not maintaining two stacks. Because
the first architecture is a subset of the second, you can accomplish both easy and hard
use cases in a unified way.

It is this architecture that we build in this book.

Summary
A key goal of data analysis is to be able to provide data-driven guidance toward mak‐
ing accurate decisions systematically. Ideally, this guidance can be provided as a ser‐
vice, and providing as a service gives rise to questions of service quality—both in
terms of the accuracy of the guidance and the reliability, latency, and security of the
implementation.

A data engineer needs to be able to go from designing data-based services and build‐
ing statistical and machine learning models to implementing them as reliable, high-
quality services. This has become easier with the advent of cloud services that provide
an autoscaling, serverless, managed infrastructure. Also, the wide availability of data
science tools has made it so that you don’t need to be a specialist in data science to
create a statistical or machine learning model. As a result, the ability to work with
data has spread throughout an enterprise—no longer is it a restricted skill.

Our case study involves a traveler who needs to decide whether to cancel a meeting
depending on whether the flight they are on will arrive late. The decision criterion is
that the meeting should be canceled if the probability of an arriving within 15
minutes of the scheduled time is less than 70%. To estimate the probability of this
arrival delay, we will use historical data from the US Bureau of Transportation
Statistics.

To follow along with me throughout the book, create a project on Google Cloud Plat‐
form and a clone of the GitHub repository of the source code listings in this book.
Alternatively, try the code of this book in a sandbox environment using Qwiklabs.
The folder for each of the chapters in GitHub contains a README.md file that lists
the steps to be able to replicate what I do in the chapters. So, if you get stuck, refer to
those README files.

Summary | 25

Incidentally, the footnotes in this book are footnotes because they
break the flow of the chapter. Some readers of the first edition
noted that they realized only toward the middle of the book that
many of the footnotes contained useful information. So, this might
be a good time to read the footnotes if you have been skipping
them.

Suggested Resources
What is data science on Google Cloud? What does the toolkit consist of? The data
science website in Google Cloud contains a set of whitepapers and reference guides
that address these topics. Bookmark this page and use it as a starting point for every‐
thing data science on GCP.

There are five key autoscaling, fully managed, serverless products for data analytics
and AI on Google Cloud. We’ll cover them later in the book, but these videos and
articles are a great starting point if you want to dive deeper immediately:

• BigQuery is the serverless data warehouse that forms the heart of most data
architectures built in Google Cloud. I recommend watching “Google BigQuery
Introduction by Jordan Tigani”, one of the founding engineers of BigQuery, even
though it is a few years old now.

• Dataflow is the execution service for batch and streaming pipelines written using
Apache Beam. Start with “What Is Dataflow?” by Google Cloud Tech, a 5-minute
video that introduces what Dataflow is and how it works. This is part of the Goo‐
gle Cloud Drawing Board series of videos—they are quick and informative ways
to learn about various topics on Google Cloud.

• Pub/Sub is the global messaging service that can be used for use cases ranging
from user interaction and real-time event distribution to refreshing distributed
caches. Start from the overview documentation page. All Google Cloud products
have an overview page that can serve as a launching point to learning not only
what a product does but also what it can be used for and how to choose between
it and other alternatives.

• Cloud Run provides an autoscaling, serverless platform for containerized appli‐
cations. You can use it for all kinds of automation and lightweight data transfor‐
mation. The best way to learn Cloud Run is to try it out, and Qwiklabs provides a
great set of hands-on labs in a sandbox environment. While you are there, check
out the Catalog for other quests and labs on the topic of choice.

• Vertex AI is the end-to-end ML development, deployment, and automation plat‐
form on Google Cloud. A good place to learn about it is to watch the video that

26 | Chapter 1: Making Better Decisions Based on Data

https://oreil.ly/UbRIB
https://oreil.ly/UbRIB
https://oreil.ly/NYP5H
https://oreil.ly/NYP5H
https://oreil.ly/eyeW1
https://oreil.ly/6a1t1
https://oreil.ly/6a1t1
https://oreil.ly/5X1ys
https://oreil.ly/r6rFM

accompanied its announcement at Google I/O, “Build End-to-End Solutions with
Vertex AI”, by the Google Cloud Tech YouTube channel.

There are two key fully managed transaction processing databases on Google Cloud:

• Bigtable is a distributed NoSQL database. You could, of course, learn about it
from Google Cloud Tech’s overview video, “What Is Cloud Bigtable?”, or the Big‐
table documentation, but I recommend you read the famous research paper that
introduced the idea to the world: Fay Chang et al., “Bigtable: A Distributed Stor‐
age System for Structured Data”, 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), USENIX (2006): 205–218.

• Spanner is a distributed SQL database that provides global strong consistency
and five nines (99.999%) availability—something that greatly simplifies your
architecture if you are in a domain like banking or gaming where you have con‐
current users all over the world. “Why You Should Use Google’s Cloud Spanner
for Your Next Game”, a 2019 blog post by Miles Ward, CTO of Google’s partner
SADA, is a great starting point for Spanner and Spanner best practices.

For more on probability as applied in information theory and artificial intelligence,
read either Chapter 3 of Deep Learning, “Probability and Information Theory,” by Ian
Goodfellow et al. (MIT Press) or a summary of that chapter by William Green on
Medium. The foundation of information theory was laid by Claude Shannon in a clas‐
sic 1948 paper. He is also famous for perhaps the most influential masters thesis in
history—showing how to use Boolean algebra to test circuit designs without even
building the circuits in the first place.

Suggested Resources | 27

https://oreil.ly/MRZy9
https://oreil.ly/MRZy9
https://oreil.ly/V6z5j
https://oreil.ly/cJZjq
https://oreil.ly/cJZjq
https://research.google/pubs/pub27898
https://research.google/pubs/pub27898
https://oreil.ly/TiImw
https://oreil.ly/TiImw
https://oreil.ly/c90dI
https://oreil.ly/hd899
https://oreil.ly/Lw7Hg
https://oreil.ly/Lw7Hg
https://oreil.ly/b6jdc
https://oreil.ly/b6jdc

1 See, for example, this US Senate committee report on the proposed Airline Customer Service Improvement
Act. The bill referenced in the report was not enacted into law, but it illustrates Congress’s monitoring func‐
tion based on the statistics collected by the Department of Transportation.

CHAPTER 2

Ingesting Data into the Cloud

In Chapter 1, we explored the idea of deciding whether to cancel a meeting in a data-
driven way. We decided on a probabilistic decision criterion: to cancel the meeting
with a client if the probability of the flight arriving within 15 minutes of the sched‐
uled arrival time was less than 70%. To model the arrival delay given a variety of
attributes about the flight, we need historical data that covers a large number of
flights. Historical data that includes this information from 1987 onward is available
from the US Bureau of Transportation Statistics (BTS). One of the reasons that the
government captures this data is to monitor the fraction of flights by a carrier that are
on-time (defined as flights that arrive less than 15 minutes late), so as to be able to
hold airlines accountable.1 Because the key use case is to compute on-time perfor‐
mance, the dataset that captures flight delays is called Airline On-Time Performance
Data. That’s the dataset we will use in this book.

All of the code snippets in this chapter are available in the folder
02_ingest of the book’s GitHub repository. See the last section of
Chapter 1 for instructions on how to clone the repository, and see
the README.md file in the 02_ingest directory for instructions on
how to do the steps described in this chapter.

Airline On-Time Performance Data
For nearly 40 years, all major US air carriers have been required to file statistics about
each of their domestic flights with the BTS. The data they are required to file includes

29

https://oreil.ly/IfJNo
https://oreil.ly/g03E2
https://oreil.ly/91or5
https://oreil.ly/91or5
https://github.com/GoogleCloudPlatform/data-science-on-gcp

2 For example, weather radar data from before 2000 had timestamps assigned by a radar engineer. Essentially,
the engineers would look at their wristwatches and enter a time into the radar products generator. Naturally,
this was subject to all kinds of human errors—dates could be many hours off. The underlying problem was
fixed by the introduction of network clocks to ensure consistent times between all the radars on the US
weather radar network. When using historical weather data, though, time correction is an important prepro‐
cessing step.

3 The shortest path between two points on the globe is an arc that passes through the two points and whose
focus point is the center of the globe.

the scheduled departure and arrival times as well as the actual departure and arrival
times. From the scheduled and actual arrival times, the arrival delay associated with
each flight can be calculated. Therefore, this dataset can give us the true value or
“label” for building a model to predict arrival delay.

The actual departure and arrival times are defined rather precisely, based on when the
parking brake of the aircraft is released and when it is later reactivated at the destina‐
tion. The rules even go as far as to define what happens if the pilot forgets to engage
the parking brake—in that case, the time that the passenger door is closed or opened
is used instead. Because of the precise nature of the rules, and the fact that they are
enforced, we can treat arrival and departure times from all carriers uniformly. Had
this not been the case, we would have to dig deeper into the quirks of how each car‐
rier defines “departure” and “arrival,” and do the appropriate translations.2 Good data
science begins with such standardized, repeatable, trustable data collection rules; you
should use the BTS’s very well-defined data collection rules as a model when creating
standards for your own data collection, whether it is log files, web impressions, or
sensor data that you are collecting. The airlines report this particular data monthly,
and it is collated by the BTS across all carriers and published as a free dataset on the
web.

In addition to the scheduled and actual departure and arrival times, the data includes
information such as the origin and destination airports, flight numbers, and nonstop
distance between the two airports. It is unclear from the documentation whether this
distance is the distance taken by the flight in question or whether it is simply a pre‐
computed distance—if the flight needs to go around a thunderstorm, is the distance
in the dataset the actual distance traveled by the flight or the great-circle distance
between the airports?3 This is something that we will need to examine—it should be
easy to ascertain whether the distance between a pair of airports remains the same or
changes. In addition, a flight is broken into three parts (Figure 2-1)—taxi-out dura‐
tion, air time, and taxi-in duration—and all three time intervals are reported.

30 | Chapter 2: Ingesting Data into the Cloud

Figure 2-1. A flight is broken into three parts: taxi-out duration, air time, and taxi-in
duration.

Knowability
Before we get started with ingesting data, we need to decide what it is that we have to
ingest into our model. There are two potential traps—causality and training–serving
skew (I’ll define them shortly). We should take care to avoid these problems during
the ingest phase, in order to save us a lot of heartburn later.

Causality
The causality principle boils down to this key question: what data will we be able to
provide to the model at the time that we need to make predictions? If we won’t know
some piece of information about the flight during prediction, we cannot use that
information as an input during training.

Some of the fields in the dataset could form the inputs to our model to help us predict
the arrival delay as a function of these variables. Some, but not all. Why? It should be
clear that we cannot use taxi-in duration or actual flight distance because at the time
the aircraft is taking off, which is when we want to make our decision on whether to
cancel the meeting, we will not know either of these things. The in-air flight time
between two airports is not known a priori given that pilots have the ability to speed
up or slow down. Thus, even though we have these fields in our historical dataset, we
should not use them in our prediction model. This is called a causality constraint.

The causality constraint is one instance of a more general principle. Before using any
field as input to a model, we should consider whether the data will be known at the
time we want to make the decision. It is not always a matter of logic as with the taxi-
in duration. Sometimes, practical considerations such as security (is the decision
maker allowed to know this data?), the latency between the time the data is collected
and the time it is available to the model, and the cost of obtaining the information
also play a part in making some data unusable. At the same time, it is possible that
approximations might be available for fields that we cannot use because of causality—
even though, for example, we cannot use the actual flight distance, we should be able
to use the great-circle distance between the airports in our model.

Airline On-Time Performance Data | 31

Similarly, we might be able to use the data itself to create approximations for fields
that are obviated by the causality constraint. Even though we cannot use the actual
taxi-in duration, we can use the mean taxi-in duration of this flight at this airport on
previous days, or the mean taxi-in duration of all flights at this airport over the past
hour, to approximate what the taxi-in duration might be. Over the historical data, this
could be a simple batch operation after grouping the data by airport and hour. When
predicting in real time, though, this will need to be a moving average on streaming
data. Indeed, approximations of unknowable data will be an important part of our
models.

Training–Serving Skew
A training–serving skew is the condition in which you use a variable that’s computed
differently in your training dataset than in the production model. For example, sup‐
pose that you train a model with the distance between cities in miles, but when you
predict, the distance that you receive as input is actually in kilometers. That is obvi‐
ously a bad thing and will result in a bad result from the model because the model
will be providing predictions based on the distances being 1.6 times their actual
value. Although it is obvious in clear-cut cases such as unit mismatches, the same
principle (that the training dataset has to reflect what is done to inputs at prediction
time) applies to more subtle scenarios as well.

For example, suppose we determine whether the flight is on a weekday or a weekend
and use it as an input to the model. We need to ensure that this calculation is carried
out precisely the same way during both training and prediction. For example, if we
use the wheels-off time during training but the departure time during prediction, we
will suffer from training–serving skew. If the time library we use during training
treats the timestamp as being local time, but the library we use during prediction
treats the timestamp as being in Coordinated Universal Time (UTC), we will run into
training–serving skew.

As our models become increasingly sophisticated—and more and more of a black
box—it will become extremely difficult to troubleshoot errors that are caused by a
training–serving skew. This is especially true if the code bases for computing inputs
for training and during prediction are different and begin to diverge over time. We
will always attempt to design our systems in such a way that the possibilities of a
training–serving skew are minimized. In particular, we will gravitate toward solutions
in which we can use the same code in training (building a model) as in prediction.

The dataset includes codes for the airports (such as ATL for Atlanta) from which and
to which the flight is scheduled to depart and land. Planes might land at an airport
other than the one they are scheduled to land at if there are in-flight emergencies or if
weather conditions cause a deviation. In addition, the flight might be canceled. It is
important for us to ascertain how these circumstances are reflected in the dataset—

32 | Chapter 2: Ingesting Data into the Cloud

4 Indeed, scripting the field selection and download is what I did in the first edition of the book. If interested,
see the select-and-download code in GitHub in the branch edition1_tf2—the key thing is that the web
request sends the selected fields inside the POST request and handles the resulting client-side redirect to
obtain the ZIP file that is created on demand.

although they are relatively rare occurrences, our analysis could be adversely affected
if we don’t deal with them in a reasonable way. The way we deal with these out-of-
the-ordinary situations also must be consistent between training and prediction.

The dataset also includes airline codes (such as AA for American Airlines), but it
should be noted that airline codes can change over time (for example, United Airlines
and Continental Airlines merged and the combined entity began reporting as United
Airlines in 2012). If we use airline codes in our prediction, we will need to cope with
these changes in a consistent way, too.

Downloading Data
As of August 2021, there were nearly 200 million records in the on-time performance
dataset, with records starting in 1987. The last available data was June 2021, indicat‐
ing that there is more than a month’s delay in updating the dataset—this is going to be
important when we automate the process of getting new data.

This is not the most helpful way to provide data for download. For one thing, the data
can be downloaded only one month at a time. For another, going through a web form
is pretty error-prone. Imagine that you want to download all of the data for 2015. In
that scenario, you’d painstakingly select the fields you want for January 2015, submit
the form, and then have to repeat the process for February 2015. If you forgot to
select a field in February, that field would be missing, and you wouldn’t know until
you began analyzing the data!

Obviously, we can script the download to make it less tiresome and ensure consis‐
tency.4 However, it is better to download all the raw data, not just a few selected fields.
Why? Won’t the files be larger if we ask for all the fields? Won’t larger files take longer
to download?

In this book, our model will use input fields drawn mostly from this dataset, but
where feasible and necessary, we will include other datasets such as airport locations
and weather. We can download the on-time performance data from the BTS website
as comma-separated value (CSV) files. The web interface requires you to filter by
geography and period, as illustrated in Figure 2-2. The data itself is offered in two
ways: one with all the data in a zipped file and the other containing just the fields that
we select in the form.

Airline On-Time Performance Data | 33

https://oreil.ly/GmcNu

5 Over the last 5 years, I have observed that the BTS server that does this ZIP file creation is frequently down. I
know, I know. Ideally, they’d use a public cloud to host their website and/or data, but you try telling the US
government what to do.

6 Another thing I am doing to limit the dependence on the BTS website is to host the ZIP files on Google Cloud
and have my code hit the Google Cloud server. The code by default will not hit the BTS server anymore. The
original BTS URL is still present in the code, just commented out, so change it back if you want to try it out.

Figure 2-2. The BTS web interface to download the flights on-time arrival dataset.

Hub-and-Spoke Architecture
Yes, the files will be larger if we download all the fields using the static link. But there
is a significant drawback to doing preselection. In order to support the interactive
capability of selecting fields, the BTS does server-side processing—it extracts the
fields we want, creates a custom ZIP file, and makes the ZIP file available for down‐
load. This would make our code reliant on the BTS servers having the necessary
uptime and reliability.5 Avoiding the server-side processing should help reduce this
dependency.6

34 | Chapter 2: Ingesting Data into the Cloud

An even more salient reason is that best practice in data engineering now is to build
ELT (extract-load-transform) pipelines, rather than ETL (extract-transform-load)
pipelines. What this means is that we will extract the data from BTS and immediately
load the data into a data warehouse rather than rely on the BTS server to do transfor‐
mation for us before loading it into Google Cloud. This point is important. The rec‐
ommended modern data architecture is to minimize the preprocessing of data—
instead, land all available data as-is into the enterprise data warehouse (EDW) and
then carry out whatever transformations are necessary for different use cases (see
Figure 2-3). This is called a hub-and-spoke architecture, with the EDW functioning
as the hub.

Figure 2-3. The recommended data architecture, whenever you can make it work, is the
hub-and-spoke architecture.

Dataset Fields
Even though I’m going to download all the fields, it’s worthwhile reading through the
column descriptions provided by BTS to learn more about the dataset and get a pre‐
liminary idea about what fields are relevant to our problem and whether there are any
caveats. For example, Table 2-1 shows three ways in which the airline is recorded.
Which of these should we use?

Table 2-1. The airline operating the flight is recorded in three separate columns

Column name Description (copied from BTS website)
Reporting_Airline Unique Carrier Code. When the same code has been used by multiple carriers, a numeric suffix

is used for earlier users; for example, PA, PA(1), PA(2). Use this field for analysis across a range
of years.

DOT_ID_Report

ing_Airline

An identification number assigned by the US Department of Transportation (DOT) to identify a
unique airline (carrier). A unique airline (carrier) is defined as one holding and reporting under
the same DOT certificate regardless of its Code, Name, or holding company/corporation.

IATA_CODE_Report

ing_Airline

Assigned by the International Air Transport Association (IATA) and commonly used to identify a
carrier. Because the same code might have been assigned to different carriers over time, the
code is not always unique. For analysis, use the Unique Carrier Code.

Airline On-Time Performance Data | 35

https://oreil.ly/EE9MH

7 Normally, you will also have to verify the description since data dictionaries are quite often outdated. The BTS
documentation doesn’t have this problem—it is correct and corresponds to the version of the data that BTS
publishes.

It’s clear that we could use either the Reporting_Airline or the DOT_ID_Report
ing_Airline since they are both unique. Ideally, we’d use whichever one of these cor‐
responds to the common nomenclature (for example, UA or United Airlines).
Fortunately, the BTS provides an Analysis link for the columns (see Figure 2-4), so we
don’t have to wait until we explore the data to make this decision. It turns out that the
Reporting_Airline is what we want—the IATA code consists of the number 19977
for United Airlines whereas the Reporting_Airline is UA as we would like.

Figure 2-4. The BTS provides an Analysis link for some of the columns. These provide a
handy way to learn what values a field can take.

The first thing to do in any real-world problem where we are fortunate enough to be
provided documentation is to read it!7 After reading through the descriptions of the
100-plus fields in the dataset, there are a few fields that appear relevant to the prob‐
lem of training, predicting, or evaluating flight arrival delay. Table 2-2 presents the
fields I shortlisted.

Table 2-2. Selected fields from the airline on-time performance dataset downloaded from the
BTS (there is a separate table for each month)

Column name Description (copied from BTS website)
FlightDate Flight date (yyyymmdd)

Reporting_Airline Unique Carrier Code. When the same code has been used by multiple carriers, a numeric suffix is
used for earlier users; for example, PA, PA(1), PA(2). Use this field for analysis across a range of
years.

Origin Origin airport

36 | Chapter 2: Ingesting Data into the Cloud

Column name Description (copied from BTS website)
Dest Destination airport

CRSDepTime Computerized reservation system (CRS) departure time (local time: hhmm)

DepTime Actual departure time (local time: hhmm)

DepDelay Difference in minutes between scheduled and actual departure time. Early departures show
negative numbers.

TaxiOut Taxi-out duration, in minutes

WheelsOff Wheels-off time (local time: hhmm)

WheelsOn Wheels-on time (local time: hhmm)

TaxiIn Taxi-in duration (minutes)

CRSArrTime CRS arrival time (local time: hhmm)

ArrTime Actual arrival time (local time: hhmm)

ArrDelay Difference in minutes between scheduled and actual arrival time. Early arrivals show negative
numbers.

Cancelled Cancelled flight indicator (1 = Yes)

CancellationCode Specifies the reason for cancellation

Diverted Diverted flight indicator (1 = Yes)

Distance Distance between airports (miles)

Separation of Compute and Storage
There are essentially three options when it comes to processing large datasets (see
Table 2-3), and all three are possible on GCP. Which one you use depends on the
problem—in this book, we’ll use the third option because it is the most flexible. How‐
ever, this option requires a bit of preplanning on our part—we will have to store our
data in Google Cloud Storage and in Google BigQuery. To see why we choose this,
let’s consider the other two options also.

Table 2-3. How to choose between scaling up, scaling out with data sharding, or scaling out
with data in situ

Option Performance and cost Required platform
capabilities

How to implement
on Google Cloud
Platform

Example use case

Scaling up Expensive on both compute
and storage; fast, but
limited to capability of most
powerful machine

Very powerful
machines; ability to
rent machines by
the minute;
attachable
persistent SSDs

Compute Engine with
persistent SSDs
Vertex AI Notebooks

Job that requires rereading of
data (e.g., training an ML
model)

Separation of Compute and Storage | 37

8 Public internet as opposed to traffic traveling on private fiber. For example, communication between
machines in Google Cloud travels on Google’s own cables.

Option Performance and cost Required platform
capabilities

How to implement
on Google Cloud
Platform

Example use case

Scaling out
with
sharding

High storage costs;
inexpensive compute; add
machines to achieve desired
speed, but limited to ability
to preshard the data on a
cluster of desired size

Data local to the
compute nodes;
attachable
persistent SSDs

Cloud Dataproc (with
Spark) and Hadoop
Distributed File
System (HDFS)

Light compute on a splittable
dataset (e.g., creating a search
index from thousands of
documents). Many data
analytics use cases used to be in
this segment.

Scaling out
with data
in situ

Inexpensive storage,
compute; add machines to
achieve desired speed

Extremely fast
networking, cluster-
wide filesystem

Cloud Dataproc +
Spark on Cloud
Storage, BigQuery,
Cloud Dataflow,
Vertex AI Training,
etc.

Any use case where we can
configure datasets so that I/O
keeps up with computation.
Data analytics use cases are
increasingly falling into this
segment.

Even if you are used to downloading data to your laptop for data analysis and devel‐
opment, you should realize that this is a suboptimal solution. Wouldn’t it be great to
directly ingest the BTS files into our data analysis programs without having to go
through a step of downloading them? Having a single source of truth has many
advantages, ranging from security (providing and denying access) to error correction
(no need to worry about stale copies of the data lying around). Of course, the reason
we don’t do this is that we’d have to read the BTS data over the internet, and the pub‐
lic internet typically has speeds of 3 to 10 MBps.8 If you are carrying out analysis on
your laptop, accessing data via the internet every time you need it will become a seri‐
ous bottleneck.

Downloading the data has the benefit that subsequent reads happen on the local drive
and this is both inexpensive and fast (see Figure 2-5). For small datasets and short,
quick computation, it’s perfectly acceptable to download data to your laptop and do
the work there. This doesn’t scale, though. What if our data analysis is very complex
or the data is so large that a single laptop is no longer enough? We have two options:
scale up or scale out.

38 | Chapter 2: Ingesting Data into the Cloud

Figure 2-5. Comparison of data access speeds if data is accessed over the public internet
versus from a disk drive.

Scaling Up
One option to deal with larger datasets or more difficult computation jobs is to use a
larger, more powerful machine with many CPUs/GPUs, lots of RAM, and many tera‐
bytes of drive space. This is called scaling up, and it is a perfectly valid solution. How‐
ever, such a computer is likely to be quite expensive. Because we are unlikely to be
using it 24 hours a day, we might choose to rent an appropriately large computer
from a public cloud provider. In addition, the public cloud offers persistent drives
that can be shared between multiple instances and whose data is geo-replicated to
guard against data loss. In short, then, if you want to do your analysis on one large
machine but keep your data permanently in the cloud, a good solution would be to
marry a powerful, high-memory Compute Engine instance with a persistent drive,
download the data from the external data center (BTS’s computer in our case) onto
the persistent drive, and start up compute instances on demand, as depicted in
Figure 2-6 (cloud prices in Figure 2-6 are estimated monthly charges; actual costs
may be higher or lower than the estimate).

Separation of Compute and Storage | 39

https://oreil.ly/wlKNY
https://oreil.ly/wlKNY

9 You could also just stop (and not delete) the Google Compute Engine instance. Stopping the instance stops
the bill associated with the compute machine, but you will continue to pay for storage. In particular, you will
continue to pay for the SSD associated with the Compute Engine instance. The key advantage of a stopped
instance is that you get to resume exactly where you left off, but this might not be important if you always
start from a clean (known) state each time.

Figure 2-6. One solution to cost-effective and fast data analysis is to store data on a per‐
sistent disk that is attached to an ephemeral, high-memory Compute Engine instance.

When you are done with the analysis, you can delete the Compute Engine instance.9

Provision the smallest persistent drive that adequately holds your data—temporary
storage (or caches) during analysis can be made to an attached SSD that is deleted
along with the instance, and persistent drives can always be resized if your initial size
proves too small. This gives you all the benefits of doing local analysis but with the
ability to use a much more powerful machine at a lower cost. I will note here that this
recommendation assumes several things: the ability to rent powerful machines by the
minute, to attach resizeable persistent drives to compute instances, and to achieve
good-enough performance by using solid-state persistent drives. These are true of
Google Cloud and other public cloud providers, but are unlikely to be true on
premises.

Scaling up is a common approach whenever you have a job that needs to read the
data multiple times. This is quite common when training machine learning models,
and so scaling up is a common approach in machine learning, especially machine
learning on images and video. Indeed, Google Cloud offers special Compute Engine
instances, called Deep Learning VM, that have accelerators like GPUs and come pre‐
installed with the libraries that are needed for machine learning. Jupyter Notebook
instances are also frequently scaled up as necessary to fit the job. You’d create a Deep
Learning VM, and attach to it a network-based persistent disk containing the training
data or use local SSD for improved performance.

40 | Chapter 2: Ingesting Data into the Cloud

https://oreil.ly/WXaZW

10 To shard a large database is to partition it into smaller, more easily managed parts. Whereas normalization of
a database table places the columns of a database into different tables, sharding splits the rows of the database
and uses different database server instances to handle each part. For more information, go to the Wikipedia
entry for the Shard database architecture.

Scaling Out with Sharded Data
The solution of using a high-memory Compute Engine instance along with persistent
drives and caches might be reasonable for jobs that can be done on a single machine,
but it doesn’t work for jobs that are bigger than that. Configuring a job into smaller
parts so that processing can be carried out on multiple machines is called scaling out.
One way to scale out a data processing job is to shard the data and store the pieces on
the drives attached to multiple compute instances or persistent drives that will be
attached to multiple instances.10 Then, each compute instance can carry out analysis
on a small chunk of data at high speeds—these operations are called the map opera‐
tions. The results of the analysis on the small chunks can be combined, after some
suitable collation, on a different set of compute nodes—these combination operations
are called the reduce operations. Together, this model is known as MapReduce. This
approach also requires an initial download of the data from the external data center
to the cloud. In addition, we also need to split the data onto preassigned drives or
nodes.

Whenever we need to carry out analysis, we will need to spin up the entire cluster of
nodes, reattach the persistent drives, and carry out the computation. Fortunately, we
don’t need to build the infrastructure to do the sharding or cluster creation ourselves.
We could store the data on the Hadoop Distributed File System (HDFS), which will
do the sharding for us, spin up a Cloud Dataproc cluster (which has Hadoop, Presto,
Spark, etc., preinstalled on a cluster of Compute Engine VMs), and run our analysis
job on that cluster. Figure 2-7 presents an overview of this approach.

Separation of Compute and Storage | 41

https://oreil.ly/OSw9s
https://oreil.ly/OSw9s

Figure 2-7. For larger datasets, one potential solution is to store data on the HDFS and
use an ephemeral Dataproc cluster to carry out the analysis.

A MapReduce framework like the Hadoop ecosystem requires data to be presharded.
Because the presharded data must be stored on drives that are attached to compute
instances, the scheme can be highly wasteful unless all the data happens to get used all
the time by those compute instances. In essence, whenever you need to run a job, the
framework ships the code to whichever nodes happen to be storing the data. What
the framework should be doing, however, is try to find a machine that has free
capacity. Shipping the analysis code to run on storage nodes regardless of their com‐
putational load leads to poor efficiency because it is likely that there are long periods
during which a node might have nothing to do, and other periods when it is subject
to resource contention.

In summary, we have two options to work with large datasets: keep the data as-is and
scale up by using a large-enough computer, or scale out by sharding the data and
shipping code to the nodes that store the data. Both of these options have some draw‐
backs. Scaling up is subject to the limitations of whatever the most powerful machine
available to you can do. Scaling out is subject to the inefficiencies of resource alloca‐
tion. Is there a way to keep data-in-place and scale out?

42 | Chapter 2: Ingesting Data into the Cloud

11 The blog on Google’s networking infrastructure is worth a read. One petabit is 1 million gigabits, so the 1
Pbps quoted in the article works out to 125,000 GBps. Networking has only gotten better since 2015, of
course.

Scaling Out with Data-in-Place
Recall that much of the economics of our case for downloading the data onto nodes
on which we can do the compute relied on the slowness of an internet connection as
compared to drive speeds—it is because the public internet operates at only 3 to 10
MBps, whereas drives offer two orders of magnitude faster access, that we moved the
data to a large Compute Engine instance (scaling up) or sharded it onto persistent
drives attached to Compute Engine instances (scaling out).

What if, though, you are operating in an environment in which networking speeds
are higher, and files are available to all compute instances at those high speeds? For
example, what if you had a job that uses 100,000 servers and those servers could com‐
municate with one another at 1 GBps? This is seriously fast—it is twice the speed of
SSDs, 10 times the speed of a local hard drive, and 100 times faster than the public
internet. What if, in addition, you have a cluster-level filesystem (not node-by-node)
whose metadata is sharded across the data center and replicated on write for durabil‐
ity? Because the total bisection bandwidth of Google’s Andromeda and Jupiter net‐
works in Google’s data centers is 125,000 GBps,11 and because Google’s next-
generation Colossus filesystem operates at the cluster level, this is the scenario that
operates if your data is available in Google Cloud Storage and your jobs are running
on Compute Engine instances in the same data center as the file. At that point, it
becomes worthwhile to treat the entire data center as a single computer. The speed of
the network and the design of the storage make both compute and data fungible
resources that can be allocated to whichever part of the data center is most free.
Scheduling a set of jobs over a single large data center provides much higher utiliza‐
tion than scheduling the same set of jobs over many smaller clusters. This resource
allocation can be automatic—there is no need to preshard the data, and if we use an
appropriate computation framework (such as BigQuery, Cloud Dataflow, or Vertex
AI), we don’t even need to instantiate a Compute Engine instance ourselves.
Figure 2-8 presents this framework, in which compute and storage are separate.

Therefore, choose between scaling up, scaling out with data sharding, or scaling out
with data-in-place depending on the problem that you are solving (see Table 2-3).

Separation of Compute and Storage | 43

https://oreil.ly/y60F5
https://oreil.ly/sRQqU
https://oreil.ly/sRQqU

Figure 2-8. On the Google Cloud Platform, the speed of the networking within a data
center allows us to store the data persistently and cheaply on Cloud Storage and access it
as needed from a variety of ephemeral managed services. This is called separation of
compute and storage.

Google Cloud Data Centers Are Different
Google data centers, unlike most other data centers, are optimized for total bisection
bandwidth. They are optimized to maximize the network bandwidth between nodes
on the backend (“East-West communications” in networking parlance). Most other
data centers are optimized to minimize the network time with an outside client send‐
ing, for example, a web request (“North-South communications”).

Why would anybody design a data center for East-West communications? Aren’t most
applications web applications? You would design a data center for East-West network‐
ing only if the amount of network calls you do on the backend in response to a user
request is several times the traffic of the request itself. That is true of Google Search
(very simple user interface, very complex business logic). Fortunately, this design also
comes in extremely useful for data science because it is not necessary to preshard the
data.

What’s presharding? The Google File System (or GFS, on which the HDFS is based)
was built for batch operations and involves storing data in shards close to processing
nodes. Colossus (GFS’s successor that is in use in Google data centers) was designed
for real-time updates. Although GFS/HDFS suffices for batch processing operations
that happen over a few days, Colossus is required to update Google’s search index in

44 | Chapter 2: Ingesting Data into the Cloud

12 Head-of-line blocking is a condition in which network packets need to be delivered in order; thus, a slow
packet holds up delivery of later packets.

13 Microsoft Azure seems to involve a centralized host layer, for example, while AWS S3 seems to prioritize net‐
work latency. You’d design your software for such infrastructure differently.

real time—this is why Google Search can now reflect current events. There are several
other innovations that were necessary to get to this data processing architecture in
which data does not need to be presharded. For example, when performing large fan-
out operations, you must be tolerant of latency and design around it. This involves
slicing up requests to reduce head-of-line blocking,12 creating hundreds of partitions
per machine to make it easy to move partitions elsewhere, making replicas of heavily
used data chunks, using backup requests, and canceling other requests as soon as one
is completed, among other strategies. To build a cluster-wide filesystem with high
throughput speeds to any compute instance within the data center, it is necessary to
minimize the number of network hops within the data center by changing the net‐
work definitions through software. Within the Google Cloud Platform, any two
machines in the same zone are only one network hop away.

The innovation in networking, compute, and storage at Google and elsewhere is by
no means over. Even though the Jupiter network provides bisection bandwidths of
125,000 GBps (the last time Google published this number publicly was in the
mid-2010s and it’s probably higher now), engineers estimate that 600,000 GBps is
what’s required to match the performance of local disks. Moreover, jobs are not being
sliced finely enough—because I/O devices have response times on the order of micro‐
seconds, decisions should be scheduled even more finely than the current milli‐
seconds. Next-generation flash storage is still largely untapped within the data center.
Colossus addresses the issue of building a cluster-level filesystem, but there are appli‐
cations that need global consistency, not just consistency within a single-region clus‐
ter. The challenge of building a globally distributed database is being addressed by
Cloud Spanner. The ongoing innovations in computational infrastructure promise
exciting times ahead.

All of this is in the way of noting (again!) that your mileage will vary if you do your
data processing on other infrastructure—there is a reason why the title of this book
includes the words “on the Google Cloud Platform.” The hardware optimizations if
you implement your data pipelines on premises or in a different cloud provider will
typically target different things.13 The APIs might look the same, and in many cases,
you can run the same software as I do, but the performance characteristics will be dif‐
ferent. Google TensorFlow, Apache Beam, and others are open source and portable to
on-premises infrastructure and across different cloud providers, but the execution
frameworks that make Vertex AI and Cloud Dataflow so powerful may not translate
well to infrastructure that is not built the same way as Google Cloud Platform.

Another way to see this is that multicloud software works faster on Google Cloud
than on other cloud platforms. BigQuery Omni, although available on Amazon Web

Separation of Compute and Storage | 45

https://oreil.ly/X5E5w
https://oreil.ly/qDXKp
https://oreil.ly/qDXKp

14 The BTS website is frequently down. Do not be alarmed if you get an error here. You will not need the website
to work in order to go through the remaining chapters. If the BTS server is down, you can copy the necessary
files from my bucket. Consult the README.md file in the GitHub repository for details.

Services (AWS) and Azure, does not get the performance of BigQuery on GCP. This
performance difference is not limited to multicloud software developed by Google.
Databricks notes that startup and certain Spark workloads are faster on GCP than on
other clouds. Actian Avalanche notes that their implementation on GCP is 20% faster
than on other cloud platforms.

Ingesting Data
To carry out our data analysis on the on-time performance dataset, we will need to
download the monthly data from the BTS website and then upload it to Google
Cloud Storage. Doing this manually will be tedious and error-prone, so let’s script this
operation.

Reverse Engineering a Web Form
How would you script filling out the BTS web form shown in Figure 2-2? First, verify
that the website’s terms of use do not bar you from automated downloads! Then, use
the Chrome browser’s developer tools to find what web calls the form makes. Once
you know that, you can repeat those web calls in a script.

The BTS web form is a simple HTML form with no dynamic behavior. This type of
form collects all the user selections into a single GET or POST request. If we can create
that same request from a script, we will be able to obtain the data without going
through the web form.

We can find out the exact HTTP command sent by the browser after we make our
selections on the BTS website. You can do this while on the BTS download website in
the Chrome web browser—in the upper-right menu bar of the browser, navigate to
the Developer Tools menu, as shown in Figure 2-9.

Now, on the BTS website, select the Prezipped File option, select 2015 and January in
the drop-down boxes, and click Download.14 The Developer tools menu shows us
that the browser is now making a GET request for https://transtats.bts.gov/PREZIP/
On_Time_Reporting_Carrier_On_Time_Performance_1987_present_2015_1.zip.

46 | Chapter 2: Ingesting Data into the Cloud

https://oreil.ly/VNIZu
https://oreil.ly/8WOeh
https://oreil.ly/quDJ7

Figure 2-9. Navigating to the Developer Tools menu in Chrome.

It is pretty obvious what the pattern here is. If we issue an HTTP GET for a file with the
pattern:

${BASEURL}_${YEAR}_${MONTH}.zip

we should get the data corresponding to a single month. Let’s try it from the com‐
mand line of Cloud Shell:

BTS=https://transtats.bts.gov/PREZIP
BASEURL="${BTS}/On_Time_Reporting_Carrier_On_Time_Performance_1987_present"
YEAR=2015
MONTH=3
curl -k -o temp.zip ${BASEURL}_${YEAR}_${MONTH}.zip

We see the data for March 2015 starting to get downloaded. Once the file is downloa‐
ded, we can unzip it:

unzip temp.zip

We then notice that the ZIP file contains a comma-separated values (CSV) file. Peek‐
ing at the first few lines of the file using:

head -5 *.csv

confirms that the file contains flight data from the month of January 2015.

Ingesting Data | 47

15 See the script 02_ingest/download.sh in the course repository.

Dataset Download
In the data exploration phase, I’ll do most of my processing interactively with Linux
command-line tools. I will assume that this is what you are using as well. Adapt the
commands as necessary if you are working locally in some other environment (e.g.,
where I ask you to do a sudo apt-get install, you might use the appropriate install
command for your Linux-like environment). When we have settled on the processing
to be done, we’ll look at how to make this more automated.

Instead of calling the downloaded file temp.zip, let’s call it 201501.zip and place it into
a temporary directory. To pad the month 1 to be 01, we can use the printf command
in bash:15

MONTH2=$(printf "%02d" $MONTH)

To create a temporary directory, we can use the Linux command mktemp:

TMPDIR=$(mktemp -d)

Then, to download the file to the temporary directory, we can do:

ZIPFILE=${TMPDIR}/${YEAR}_${MONTH2}.zip
curl -o $ZIPFILE ${BASEURL}_${YEAR}_${MONTH}.zip

Now, we can unzip the file, extract the CSV file to the current directory (./), and blow
out the remaining contents of the ZIP file:

unzip -d $TMPDIR $ZIPFILE
mv $TMPDIR/*.csv ./${YEAR}${MONTH2}.csv
rm -rf $TMPDIR

I put the preceding commands into a file called download.sh, and then in the script
ingest.sh, I call it from within a for loop:

for MONTH in `seq 1 12`; do
 bash download.sh $YEAR $MONTH
done

On running this, we get a set of CSV files, one for each month in 2015 (see
Figure 2-11).

The complete download script is on GitHub—if you want to follow along with me,
perform these steps:

• Go to https://console.cloud.google.com.
• Select the GCP project that you will be working on. This is accomplished by

using the drop-down box next to “Example Project” in Figure 2-10.

48 | Chapter 2: Ingesting Data into the Cloud

https://oreil.ly/Kjrm1
https://console.cloud.google.com

• On the top strip, activate Cloud Shell using the button shown in Figure 2-10.

Figure 2-10. The Cloud Shell button on the Google Cloud Platform web console.

• In Cloud Shell, type the following:
git clone \
 https://github.com/GoogleCloudPlatform/data-science-on-gcp

This downloads the GitHub code to your Cloud Shell home directory.
• Navigate into the flights folder:

cd data-science-on-gcp

• Make a new directory to hold the data, and then change into that directory:
mkdir data

cd data

• Run the code to download the files:
for MONTH in `seq 1 12`; do
 bash download.sh 2015 $MONTH
done

• When the script completes, run ls -lrt to view the downloaded ZIP files,
shown in Figure 2-11.

Figure 2-11. The ls -lrt command shows details of the downloaded files.

This looks quite reasonable—all the files have different sizes and the sizes are robust
enough that one would assume they are not just error messages.

Ingesting Data | 49

Exploration and Cleanup
At this point, I have 12 CSV files. Let’s look at the first two lines of one of them to
ensure the data matches what we think it ought to be:

head -2 201503.csv

The result is shown in Figure 2-12.

Figure 2-12. The first two lines of the CSV file containing March 2015 data.

There is a header in each CSV file, and the second line looks like data. Some of the
fields are enclosed by quotes (perhaps in case the strings themselves have commas),
and there are some fields that are missing (there is nothing between successive com‐
mas toward the end of the line). There seems to be a pesky extra comma at the end as
well.

How many fields are there? Because the second line doesn’t have any commas
between the quotes, we can check using:

head -2 201503.csv | tail -1 | sed 's/,/ /g' | wc -w

The number of words is 81, so there are 81 columns (remember there’s a comma at
the end of the line). Here’s how the command works. It first gets the first two lines of
the data file (with head -2), and the last line of that (with tail -1) so that we are
looking at the second line of 201503.csv. Then, we replace all the commas by spaces
and count the number of words with wc -w.

How much data is there? A quick shell command (wc for word count, with an -l
[lowercase letter L] to display only the line count) informs us that there are between
~43,000 and ~52,000 flights per month:

$ wc -l *.csv
 469969 201501.csv
 429192 201502.csv
 504313 201503.csv
 485152 201504.csv
 496994 201505.csv

50 | Chapter 2: Ingesting Data into the Cloud

16 Software Carpentry provides a good intro to Unix and shell scripting.

 503898 201506.csv
 520719 201507.csv
 510537 201508.csv
 464947 201509.csv
 486166 201510.csv
 467973 201511.csv
 479231 201512.csv
 5819091 total

This adds up to nearly six million flights in 2015! The slowness of this command
should tell us that any kind of analysis that involves reading all the data is going to be
quite cumbersome. You can repeat this for other years (2016–2019), but let’s wait
until we have the whole process complete for one year before we add more years.

You might have realized by now that knowing a little Unix Shell scripting can come in
very handy at this initial stage of data analysis.16

Uploading Data to Google Cloud Storage
For durability of this raw dataset, let’s upload it to Google Cloud Storage. To do that,
you first need to create a bucket, essentially a namespace for binary large objects
(blobs) stored in Cloud Storage that you typically want to treat similarly from a per‐
missions perspective. You can create a bucket from the Google Cloud Platform Con‐
sole. For reasons that we will talk about shortly, make the bucket a single-region
bucket.

Setting Up a Cost Budget
It is likely that when you create a bucket, you will be prompted to enable billing or
connect to a billing account. This is because storage is chargeable. I suggest that you
create a brand new Google Cloud project for this book and delete the project once
you are done to stop all billing. If you want total peace of mind, you can set up a cost
budget and ask Google Cloud to cap resource usage once you exceed that budget.

Bucket names must be globally unique (i.e., unique not just within your project or
organization, but across Google Cloud Platform). This means that bucket names are
globally knowable even if the contents of the bucket are not accessible. This can be
problematic. For example, if you created a bucket named acme_gizmo, a competitor
might later try to create a bucket also named acme_gizmo, but fail because the name
already exists. This failure can alert your competitor to the possibility that Acme
Corp. is developing a new Gizmo. It might seem like it would take Sherlock Holmes–
like powers of deduction to arrive at this conclusion, but it’s simply best that you

Ingesting Data | 51

https://oreil.ly/M3cet
https://oreil.ly/09lCP
https://oreil.ly/09lCP
https://oreil.ly/k6a8s
https://oreil.ly/k6a8s
https://oreil.ly/i5dUG

17 You can get your unique project ID from the Cloud Platform Console dashboard; it could be different from
the common name that you assigned to your project. By default, Google Cloud Platform tries to give you a
project ID that is the same as your project name, but if that name is already taken, you will get an autogener‐
ated, unique project ID. Because of this default, you should be similarly careful about giving projects sensitive
names.

18 In an object store, we don’t have random access to data in the middle (technically, this is called a seek), as we
would in a filesystem. Rather, we have to download an entire object in order to work with it. Tools such as
GCS FUSE allow you to treat the object store, in certain ways, like a filesystem, but the abstraction is not per‐
fect. There is no seek capability.

avoid revealing sensitive information in bucket names. A common pattern to create
unique bucket names is to use suffixes on the project ID. Project IDs are globally
unique,17 and thus a bucket name such as projectid-dsongcp will also tend to be
unique. In my case, my project ID is cloud-training-demos and my bucket name is
cloud-training-demos-ml.

You can create a unique bucket on the command line using:

PROJECT=$(gcloud config get-value project)
BUCKET=${PROJECT}-dsongcp
REGION=us-central1 #See https://cloud.google.com/storage/docs/locations
gsutil mb -l $REGION gs://$BUCKET

where the first line retrieves the project ID and the second line uses it to form a
bucket name that is hopefully unique.

Cloud Storage will also serve as the staging ground to many of the GCP tools and
enable collaborative sharing of the data with our colleagues. In my case, to upload the
files to Cloud Storage, I type the following in Cloud Shell:

gsutil -m cp *.csv gs://cloud-training-demos-ml/flights/raw/

This uploads the files to Cloud Storage, specifically to my bucket cloud-training-
demos-ml in a multithreaded manner (-m) and makes me the owner. If you are work‐
ing locally, another way to upload the files would be to use the Cloud Platform
Console.

It is better to keep these as separate files instead of concatenating them into a single
large file because Cloud Storage is a blob store, not a regular filesystem. In particular,
it is not possible to append to a file on Cloud Storage; you can only replace it. There‐
fore, although concatenating all 12 files into a single file containing the entire year of
data will work for this batch dataset, it won’t work as well if we want to later add to
the dataset one month at a time, as new data becomes available. Second, because
Cloud Storage is blob storage,18 storing the files separately will permit us to more
easily process parts of the entire archive (for example, only the summer months)
without having to build slicing into our data processing pipeline. Third, it is generally
a good idea to keep ingested data in as raw a form as possible.

52 | Chapter 2: Ingesting Data into the Cloud

https://oreil.ly/yKyA8
https://oreil.ly/dzVgF
https://oreil.ly/dzVgF
https://oreil.ly/WzTBl

It is preferable that this bucket to which we upload the data is a single-region bucket.
There are four reasons: first, we will create Compute Engine instances in the same
region as the bucket and access it only from this one region. A multiregion bucket
would be overkill because we don’t need global availability. Second, a single-region
bucket is less expensive than a multiregion one. Third, single-region buckets are opti‐
mized for low latency and high throughput for data consumers, whereas dual-region
and multiregion buckets are optimized for high availability, serving content outside
of the Google network (think data analytics versus web traffic). All three of the pre‐
ceding factors point to using single region buckets for data analytics and machine
learning. The fourth reason is helpful here, although it won’t come into play for “real-
world” uses: at the time of writing, certain US single regions (us-east1, us-west1, and
us-central1) offer 5 GB of storage free.

Note that both single-region and multiregion buckets in Google Cloud Platform offer
strong consistency, so this does not seem like a consideration to choose one over the
other. However, the speed differences inherent in being able to offer strong consis‐
tency on global buckets points to using single-region buckets if you can. What exactly
is strong versus eventual consistency, and why does it matter? Suppose that a worker
in a distributed application updates a piece of data, and another worker views that
piece of data immediately afterward. Does the second worker always see the updated
value? Then, what you have is strong consistency. If, on the other hand, there could be
a potential lag between an update and availability (i.e., if different viewers can see
potentially different values of the data at the same instant in time), what you have is
eventual consistency. Eventually, all viewers of the data will see the updated value, but
that lag will be different for different viewers. Strong consistency is an implicit
assumption that is made in a number of programming paradigms. However, to ach‐
ieve strong consistency, we have to make compromises on scalability and perfor‐
mance (this is called Brewer’s theorem). For example, we might need to lock readers
out of the data while it is being updated so that simultaneous readers always see a
consistent and correct value.

Ingesting Data | 53

https://oreil.ly/tsncz

Brewer’s theorem, also called the CAP theorem, states that no com‐
puter system can simultaneously guarantee consistency, availability,
and partition resilience. Consistency is the guarantee that every
reader sees the latest written information. Availability is the guar‐
antee that a response is sent to every request (regardless of whether
it is the most current information or not). Partition resilience is the
guarantee that the system continues to operate even if the network
connecting readers, writers, and storage drops an arbitrary number
of messages. Because network failures are a fact of life in dis‐
tributed systems, the CAP theorem essentially says that you need to
choose between consistency and availability. Neither multiregion
buckets nor Cloud Spanner change this: they essentially make
choices during partitioning—Cloud Spanner is always consistent
and achieves five nines (99.999%, but not perfect) availability
despite operating over a wide area. For more details, see this 2017
research paper by Eric Brewer.

If you need the performance of a regional bucket, but need to be tolerant to failure
(for example, you want to be able to carry out your workload even if a region goes
down), there are two options: eventual consistency and dual-region buckets. As an
example of eventual consistency consider how DNS servers cache values and have
their values replicated across many DNS servers all over the internet. If a DNS value
is updated, it takes some time for this modified value to become replicated at every
DNS server. Eventually, this does happen, though. Having a centralized DNS server
that is locked whenever any DNS value is modified would have led to an extremely
brittle system. Because the DNS system is based on eventual consistency, it is highly
available and extremely scalable, enabling name lookups for/to millions of internet-
capable devices. The other option is to have a dual-region bucket in a multiregion
location, so that the metadata remains the same. If, for whatever reason, one region is
not available for analytics, computation can be migrated to the other region in a mul‐
tiregion location (US, EU, Asia). Dual-region buckets are more expensive than either
single-region buckets or multiregion buckets, but offer both high performance and
reliability.

This being public data, I will ensure that my colleagues can use this data without hav‐
ing to wait on me:

gsutil acl ch -R -g google.com:R \
 gs://cloud-training-demos-ml/flights/raw/

That changes the access control list (acl) recursively (-R), applying to the group goo‐
gle.com read permission (:R) on everything starting from the Cloud Storage URL
supplied. You’d of course replace google.com with your company’s domain in order to
share data with your own colleagues. Had there been sensitive information in the
dataset, I would have to be more careful. We’ll discuss fine-grained security, by

54 | Chapter 2: Ingesting Data into the Cloud

https://oreil.ly/qGX93
https://oreil.ly/qGX93

providing views with different columns to different roles in my organization, when
we talk about putting the data in BigQuery.

Loading Data into Google BigQuery
On Google Cloud, the best place for structured and semi-structured data is BigQuery,
a serverless data warehouse and SQL engine.

Advantages of a Serverless Columnar Database
Most relational database systems, whether commercial or open source, are row ori‐
ented in that the data is stored row by row. This makes it easy to append new rows of
data to the database and allows for features such as row-level locking when updating
the value of a row. For example, if you have an inventory table, you’d lock the row
corresponding to the item being purchased so that you can ensure the item is shipped
to the person who paid for it.

The drawback is that queries that involve table scans (i.e., any aggregation that
requires reading every row in the entire table) can be expensive. For example, if we
want to find the number of times an item was purchased by someone living in Bel‐
gium, that will involve a table scan. Indexing counteracts this expense by creating a
lookup table to map rows to column values, so that SELECT queries that involve
indexed columns do not have to load unnecessary rows from storage into memory—
we might index the country column, for example, if purchases by country is a com‐
mon query. If you can rely on indexes for fast lookup of your data, a traditional rela‐
tional database management system (RDBMS) works well. For example, if your
queries tend to come from software applications, you will know the queries that will
come in (and the columns they are likely to access). So, you can create the appropri‐
ate indexes beforehand. This is not an option for use cases like business intelligence
for which human users are writing ad hoc queries; therefore, a different architecture
is needed.

BigQuery, unlike an RDBMS, is a columnar database—data is stored column by col‐
umn and each column’s data is stored in a highly efficient compressed format that
enables fast querying. Because of the way data is stored, many common queries can
be carried out such that the query processing time is linear on the size of the relevant
data. For applications such as data warehousing and business intelligence for which
the predominant operations are read-only SELECT queries requiring full table scans,
columnar databases are a better fit. BigQuery, for example, can scan terabytes of data
in a matter of seconds. The trade-off is that INSERT, UPDATE, and DELETE statements,
although possible in BigQuery, are significantly more expensive to process than
SELECT statements. BigQuery is tuned toward analytics use cases.

Loading Data into Google BigQuery | 55

https://oreil.ly/UgK1w
https://oreil.ly/YALB2
https://oreil.ly/YALB2
https://oreil.ly/QVVoQ

BigQuery is serverless, so you don’t actually spin up a BigQuery server in your
project. You simply submit a SQL query, and it’s executed on the cloud. SQL queries
that you submit to BigQuery are executed on a large number of compute nodes
(called slots) in parallel. These slots do not need to be statically allocated beforehand
—instead, they are “always on” available on demand, and scale to the size of your job.
Because data is kept in-place and not sharded (i.e., not broken into small chunks that
are attached to individual compute instances), the total power of the data center can
be brought to bear on the problem. Because these resources are elastic and used only
for the duration of the query, BigQuery is more powerful and less expensive than a
statically preallocated cluster because preallocated clusters will typically be provi‐
sioned for the average use case—BigQuery can bring more resources to bear on the
above-average computational jobs and utilize fewer resources for below-average ones.

In addition, because you don’t need to reserve any compute resources for your data
when you are not querying your data, it is extremely cost effective to just keep your
data in BigQuery (you’ll pay for storage, but storage is inexpensive). Whenever you
do need to query the data, the data is immediately available—you can query it
without the need to start project-specific compute resources. This on-demand,
autoscaling of compute resources is incredibly liberating.

BigQuery Pricing
If an on-demand cost structure (you pay per query) concerns you because costs can
fluctuate month over month, you can specify a billing cap for users. For even more
cost predictability, it is possible to pay a fixed monthly price for BigQuery—flat-rate
pricing means you get a predictable cost regardless of the number of queries run or
data processed by those queries. The fixed monthly price essentially buys you access
to a specific number of slots.

In short, BigQuery has two pricing models for analysis: an on-demand pricing model
in which your cost depends on the quantity of data processed, and a flat-rate model in
which you pay a fixed amount per month for an unlimited number of queries that will
run on a specific set of compute resources. You can augment either with flex slots you
pay for by the minute. In all these cases, storage is a separate cost and depends on
data size.

In summary, BigQuery is a columnar database, making it particularly effective for
read-only queries that process all of the data. Because it is serverless, can autoscale to
thousands of compute nodes, and doesn’t require clusters to be preallocated, it is also
very powerful and quite inexpensive.

56 | Chapter 2: Ingesting Data into the Cloud

https://oreil.ly/NXnDT
https://oreil.ly/h8Ytl

Staging on Cloud Storage
Although it is possible to ingest files from on-premises hardware directly into Big‐
Query using the bq command-line tool that comes with the Google Cloud Software
Development Kit (SDK), aka gcloud, you should use that capability only for small
datasets. To ingest data from outside Google Cloud Platform to BigQuery, it is pref‐
erable to first load it into Cloud Storage and use Cloud Storage as the staging ground
for BigQuery, as demonstrated in Figure 2-13.

Figure 2-13. Use Cloud Storage as a staging ground to ingest data into BigQuery.

For larger files, it is better to ingest the files into Cloud Storage using gsutil first
because gsutil takes advantage of multithreaded, resumable uploads and is better
suited to the public internet. In our case, this is what we did in the previous section
when we used gsutil to copy the extracted flights CSV files to Cloud Storage. Now
that we have the CSV files in Cloud Storage, we can load them into BigQuery.

Cloud Storage or BigQuery?
When should you save your data in Cloud Storage, and when should you store it in
BigQuery? First, if the data is not tabular-like (that is: images, videos, and other arbi‐
trary file types), then Google Cloud Storage (GCS) is the right choice. For tabular-like
data, the answer boils down to what you want to do with the data and the kinds of
analyses you want to perform. If you’ll mostly be running custom code that expects to
read plain files, or your analysis involves reading the entire dataset, use Cloud Stor‐
age. On the other hand, if your desired access pattern is to run interactive SQL quer‐
ies on the data, store your data in BigQuery. To summarize, if in the pre-cloud world
you would use flat files, use Cloud Storage. If you’d put the data in a relational data‐
base, put it in BigQuery.

Access Control
The first step to ingest data into BigQuery is to create a BigQuery dataset—a dataset
is a container for tables. You can have multiple datasets within a project. Go to the
web console and choose the Create Dataset option. Then, create a dataset called
dsongcp.

You can also do this from the command line:

bq mk dsongcp

Loading Data into Google BigQuery | 57

https://oreil.ly/gwVzC
https://oreil.ly/JOPN5

Datasets in BigQuery are mostly just an organizational convenience—tables are
where data resides, and it is the columns of the table that dictate the queries we write.
Besides providing a way to organize tables, though, datasets also serve as a convenient
access control point. You can conveniently provide view or edit access at the dataset
level to control access to all the tables in the dataset. Cloud Identity and Access Man‐
agement (Cloud IAM) on Google Cloud Platform provides a mechanism to control
who can carry out what actions on which resource (Figure 2-14).

The “who” can be specified in terms of an individual user (identified by their Google
account such as a gmail.com address, or company email address if the company is a
Google Workspace customer), a Google Group (i.e., all current members of the
group), or a Google Workspace or Google Identity domain (anyone with a Google
account in that domain). Google Groups and Google Identity/Workspace domains
provide a convenient mechanism for aggregating a number of users and providing
similar access to all of them.

Figure 2-14. Cloud IAM provides a mechanism to control access to resources.

In addition, different logical parts of an application can be assigned separate identities
(linked to email addresses) called service accounts. Service accounts are a very power‐
ful concept because they allow different parts of a codebase to have permissions that
are independent of the access level of the person running that application. For exam‐
ple, you might want an application to be able to query a table but not delete it even if
the developer who created the application and the person running the application
have that authority.

Careful with Service Accounts
You should use service accounts with care for scenarios in which audit records are
mandatory. Providing access at the Google Groups level provides more of an audit
trail; because Google Groups don’t have login credentials (only individual users do),
the user who made a request or action is always recorded, even if their access is pro‐
vided at the level of a Google Group or Google Workspace domain. However, service
accounts are themselves login credentials, and so the audit trail turns cold if you

58 | Chapter 2: Ingesting Data into the Cloud

https://oreil.ly/uKVDD

19 A service account is tied to a project, but project membership evolves over time. So, even the subset of users
who could have invoked the action might not be known unless you have strict governance over who is
allowed to be an owner/editor/viewer of a project.

provide access to service accounts—you will no longer know which user initiated the
application request unless that application in turn logs this information.19 Keep this in
mind when granting access to service accounts.

Try to avoid providing service account access to resources that require auditability. If
you do provide service account access, you should ensure that the application to
which you have provided access itself provides the necessary audit trail by keeping
track of the user on behalf of whom it is executing the request. The same considera‐
tions apply to service accounts that are part of Google Groups or Google Workspace
domains. Because audit trails go cold with service accounts, you should restrict Goo‐
gle Groups and Google Workspace domains to only human users and service
accounts that belong to applications that provide any necessary legal auditability
guarantees.

Creating single-user projects is another way to ensure that service accounts map
cleanly to users, but this can lead to significant administrative overhead associated
with shared resources and departing personnel. Essentially, you would create a
project that is billed to the same company billing account, but each individual user
would have their own project in which they work. You can use the gcloud command
to script the creation of such single-user projects in which the user in question is an
editor (not an owner).

In addition to specific users, groups, domains, and service accounts, there are two
wildcard options available. Access can be provided to allAuthenticatedUsers, in
which case anyone authenticated with either a Google account or a service account is
provided access. Because allAuthenticatedUsers includes service accounts, it
should not be used for resources for which a clear audit trail is required. The other
wildcard option is to provide access to allUsers, in which case anyone on the inter‐
net has access—a common use case for this is to provide highly available static web
resources by storing them on Cloud Storage. Be careful about doing this indiscrimin‐
ately—egress of data from Google Cloud Platform is not free, so you will pay for the
bandwidth consumed by the download of your cloud-hosted datasets.

The “what” actions depend on the resource access that is being controlled. The
resources themselves fall into a policy hierarchy.

Policies can be specified at an organization level (i.e., to all projects in the organiza‐
tion), at the project level (i.e., to all resources in the project), or at the resource level
(i.e., to a Compute Engine instance or a BigQuery dataset). As Figure 2-15 shows,

Loading Data into Google BigQuery | 59

policies specified at higher levels are inherited at lower levels, and the policy in effect
is the union of all the permissions granted—there is no way to restrict some access to
a dataset to a user who has that access inherited from the project level. Moving a
project from one organization to another automatically updates that project’s Cloud
IAM policy and ends up affecting all the resources owned by that project.

Figure 2-15. Policies specified at higher levels are inherited at lower levels.

What type of actions can be carried out depends on the resource in question. Before
Cloud IAM was introduced on the Google Cloud Platform, there were only three
roles: owner, editor, and viewer/reader for all resources. Cloud IAM brought with it
finer-grained roles, but the original three roles were grandfathered in as primitive
roles. Table 2-4 lists some of the roles that are possible for BigQuery datasets. Cloud
IAM roles for BigQuery (and by extension for all GCP products) are continuously
updated to cater to new use cases. Please refer to BigQuery access control for the cur‐
rent roles and permissions.

Table 2-4. Some of the available roles in BigQuery

Role Capabilities Inherits from
Project Viewer Execute a query

List datasets
Project Editor Create a new dataset Project Viewer
Project Owner List/delete datasets

View jobs run by other project users
Project Editor

bigquery.user Execute a query
List datasets

bigquery.dataViewer Read, query, copy, export tables in the dataset
bigquery.dataEditor Append, load data into tables in the dataset Project Editor

bigquery.dataViewer

60 | Chapter 2: Ingesting Data into the Cloud

https://oreil.ly/0EtiW

20 If this is your first time working in BigQuery for the project, you might have to authorize the proper API.
That’s expected behavior.

Role Capabilities Inherits from
bigquery.dataOwner Update, delete on tables in the dataset Project Owner

bigquery.dataEditor
bigquery.admin All

Ingesting CSV Files
We can load the data directly into BigQuery’s native storage using the command-line
utility bq that comes with the gcloud SDK:

BUCKET=${PROJECT}-dsongcp
bq load --autodetect --source_format=CSV \
 dsongcp.flights_auto \
 gs://${BUCKET}/flights/raw/201501.csv

Here, we are asking BigQuery to autodetect the schema from the CSV file and load
the January data into a table named flights_auto (if you are following along with
me, make sure to change the bucket to reflect the bucket that your files are in).20 Since
we are asking BigQuery to autodetect the schema using --autodetect, it will read the
header line of the CSV and use them as column names. However, the CSV header
doesn’t specify the column types (string, integer, float, etc.), and so BigQuery will
sample a few hundred lines and attempt to guess at the type. This guess will not be
perfect, and we might have to fix it.

If you now go to the BigQuery web console and examine the dataset dsongcp, you
will see that there is a table named flights_auto in it. You can examine the autode‐
tected schema and preview the contents of the table.

We can try querying the data to find the average departure and arrival delays at the
busiest airports:

SELECT
 ORIGIN,
 AVG(DEP_DELAY) AS dep_delay,
 AVG(ARR_DELAY) AS arr_delay,
 COUNT(ARR_DELAY) AS num_flights
 FROM
 dsongcp.flights_auto
 GROUP BY
 ORIGIN
ORDER BY num_flights DESC
LIMIT 10

The result (see Table 2-5) starts with Atlanta (ATL), Dallas (DFW), and Chicago
(ORD), which is what we would expect.

Loading Data into Google BigQuery | 61

https://oreil.ly/jPapd

Table 2-5. Average arrival and departure delays in January 2015 at the busiest 10 airports

Row ORIGIN dep_delay arr_delay num_flights

1 ATL 7.265885087329549 1.0802479706819135 29,197
2 DFW 11.761812240572308 9.37162730937924 22,571
3 ORD 19.96205128205128 17.016131923283645 22,316
4 LAX 7.476340878516738 5.542057719380547 17,048
5 DEN 15.506798076352176 11.842324888226543 16,775
6 IAH 9.07378596782721 5.353498597528596 13,191
7 PHX 8.066722908198505 6.197786998616902 13,014
8 SFO 10.328127477406069 9.038424821002382 12,570
9 LAS 8.566096692995435 5.0543525523958595 11,499
10 MCO 9.887440638577354 5.820512820512793 9,867

Autodetection is hit-and-miss, though. This is because the way it works is that Big‐
Query samples about a hundred rows of data in order to determine what the data
type needs to be. If the arrival delay was an integer for all one hundred rows that it
saw, but there turns out to be a string (NA) somewhere else in the file, the loading will
fail. Autodetection may also fail if many of the fields are empty.

Partitioning
Because of this, autodetection is okay during initial exploration, but we should
quickly pivot to actually specifying the schema. At that time, it may be worthwhile to
also consider whether this table should be partitioned by date—if most of our queries
will be not on the full table, but only a few days, then partitioning will lead to cost
savings. If that were the case, we would create the table first, specifying that it should
be partitioned by date (don’t do this—we have already created the table and we don’t
need daywise partitioning):

bq mk --time_partitioning_type=DAY dsongcp.flights_auto

When loading the data, we’d need to load each partition separately (partitions are
named flights_auto$20150101, for example). We can also partition by a column in
the data (FlightsDate, for example).

Currently, we don’t know much about the fields, so we can ask BigQuery to treat all
the columns except the FlightDate as a string:

SCHEMA=Year:STRING,...,FlightDate:DATE,Reporting_Airline:STRING,...

Putting all these together, the loading becomes (see bqload.sh in the book’s repo):

for MONTH in `seq -w 1 12`; do
 CSVFILE=gs://${BUCKET}/flights/raw/${YEAR}${MONTH}.csv
 bq --project_id $PROJECT \
 load --time_partitioning_field=FlightDate \

62 | Chapter 2: Ingesting Data into the Cloud

21 Let’s ignore 2020 and 2021 because those were the years of the COVID-19 pandemic and historical data would
not be very helpful in predicting arrival delays in 2020 or 2021.

22 A shortened form of a misspelling of chronos, Greek for time, cron is the name of the Unix daemon process
that executes scheduled jobs at specific times.

 --time_partitioning_type=MONTH \
 --source_format=CSV --ignore_unknown_values \
 --skip_leading_rows=1 --schema=$SCHEMA \
 ${PROJECT}:dsongcp.flights_raw\$${YEAR}${MONTH} $CSVFILE
done

At this point, we have the CSV files in Cloud Storage and the raw data in BigQuery.
We have successfully ingested the 2015 flights data into GCP! If you want, you can
repeat this for years 2016–2019 by changing the for loop in ingest.sh to:21

for YEAR in `seq 2016 2019`; do

Cloud Shell comes with a text editor. You can use it to edit files. Alternatively, use a
Unix editor tool such as nano or vim. However, don’t do it just yet—let’s develop the
code in this book with just 2015 data so that we can move faster. In Chapter 12, we’ll
expand the analysis and ML models to 2015–2019 data. In Chapter 3, we will start to
look at the 2015 data and do useful things with it.

But before we move on, let’s digress a little and consider automation.

Scheduling Monthly Downloads
Now that we have some historical flight data in our Cloud Storage bucket, it is natural
to wonder how to keep the bucket current. After all, airlines didn’t stop flying in 2021,
and the BTS continues to refresh its website on a monthly basis. It would be good if
we could schedule monthly downloads to keep ourselves synchronized with the BTS.

There are two scenarios to consider here. The BTS could let us know when it has new
data, and we could then proceed to ingest the data. The other option is that we peri‐
odically monitor the BTS website and ingest new data as it becomes available. The
BTS doesn’t offer a mechanism by which we can be notified about data updates, so we
will need to resort to polling. We can, of course, be smart about how we do the poll‐
ing. For example, if the BTS tends to update its website around the 5th of every
month, we could poll at that time.

Where should this ingest program be executed? Realizing that this is a program that
will be invoked only once a month (more often if retries are needed if an ingest fails),
we realize that this is not a long-running job, but is instead something that should be
scheduled to run periodically. The traditional way to do this is to schedule a cron job
in Unix/Linux.22 To schedule a cron job, you add a line to a crontab file and then

Scheduling Monthly Downloads | 63

23 Shortened form of cron table.

register it with a Unix daemon that takes care of the scheduling.23 For example,
adding this line:

1 2 10 * * /etc/bin/ingest_flights.py

to crontab will cause the Python program /etc/bin/ingest_flights.py (that would carry
out the same steps to ingest the flights data that we did on the command line in the
previous section) to be run by the system at 02:01 on the 10th of every month.

Although cron jobs are a straightforward solution, there are several problems that all
come down to resilience and repeatability:

• The cron job is scheduled on a particular server. If that server happens to be
rebooted around 2 a.m. on April 10, the ingest might never take place that
month.

• The environment that cron executes in is very restricted. Our task will need to
download data from BTS, uncompress it, clean it up, and upload it to the cloud.
These impose a variety of requirements in terms of memory, space, and permis‐
sions, and it can be difficult to configure cron appropriately. In practice, system
administrators configure cron jobs on particular machines and find it difficult to
port them to other machines that do not have the same system paths.

• If the ingest job fails (if, for example, the network is down), there is no way to
retry it. Retries and other such failure-recovery efforts will have to be explicitly
coded in our Python program.

• Remote monitoring and one-time, ad hoc executions are not part of the cron
interface. If you need to monitor, troubleshoot, and restart the ingest from a
mobile device, good luck.

This litany of drawbacks is not unique to cron. They are implicit in any solution that
is tied to specific servers. So, how would you do it on the cloud? What you should not
do is to create a Compute Engine VM and schedule a cron job on it—that will be sub‐
ject to some of the same problems!

For resilience and reliability, we need a serverless way to schedule ingest jobs. Obvi‐
ously, the ingest job will need to be run on some machine somewhere. However, we
shouldn’t need to manage that machine at all. This is a job that needs perhaps two
minutes of compute resources a month. We should be looking for a way to write the
ingest code and let the cloud infrastructure take care of provisioning resources, mak‐
ing retries, and providing for remote monitoring and ad hoc execution.

On Google Cloud Platform, Cloud Scheduler provides a way to schedule periodic
jobs in a serverless manner. These jobs can involve hitting an HTTP endpoint (which

64 | Chapter 2: Ingesting Data into the Cloud

24 Docker containers are lightweight wrappers around a piece of software (here, the Flask endpoint main.py)
that contain everything needed to run that software—code (e.g., ingest_flights.py), runtime (Python depen‐
dencies, etc.), configuration files, and system libraries (here, a specific Linux distribution). Unlike a virtual
machine, different containers running on the same machine can share layers of operating system
dependencies.

is what we will do), but can also send a message via Cloud Pub/Sub or trigger a Goo‐
gle Kubernetes Engine or Cloud Dataflow job. Figure 2-16 presents our architecture
for the monthly ingest job.

Figure 2-16. The architecture of the monthly ingest job.

First, we will write a standalone ingest_flights.py application that is capable of down‐
loading the data for a specific year/month and uploading the data to Cloud Storage.
We will invoke the ingest code from a Python Flask application making sure to
explicitly capture our dependencies in a Dockerfile which describes a Docker con‐
tainer. Cloud Run will run our container.24

The way scheduling works in Cloud Scheduler is that we must specify a URL that will
be invoked or a Cloud Pub/Sub topic that must be monitored. Whereas in the previ‐
ous Linux cron example we specified a script on the server that was running the cron
daemon, the Cloud Scheduler endpoint will be a URL that will be visited according to
the schedule that we specify (this can be any URL; it doesn’t need to be a service that
we write). Because our ingest code is a standalone Python program, we will wrap that
ingest code into a Python Flask application (main.py) so that we can invoke it by
using a URL (Flask is a web application framework).

Ingesting in Python
While exploring the data, we carried out the ingest on the command line in Bash. We
saved our commands as we went along in the form of Bash scripts. We created our

Scheduling Monthly Downloads | 65

https://www.docker.com

ingest program by simply making a Bash script (02_ingest/ingest.sh) that invokes
those intermediate steps:

#!/bin/bash
for MONTH in `seq 1 12`; do
 bash download.sh $YEAR $MONTH
done

upload the raw CSV files to our GCS bucket
bash upload.sh

load the CSV files into BigQuery as string columns
bash bqload.sh

This is the sort of decision that leads to spaghetti-like code that is difficult to unravel
and to maintain. There are many assumptions made by this set of Bash scripts in
terms of what to download, where the temporary storage resides, and where to
upload it. Changing any of these will involve changing multiple scripts. Using Bash to
quickly get a handle on the data is a good idea, as is the idea of saving these scripts so
as to continue the exploration. But when it comes to making the ingest more system‐
atic and routine, you do not want to use a shell scripting language; a more formal
programming language is better.

In this book, we will use Python wherever we can because of its ability to span a wide
range of computing tasks, from systems programming to statistics and machine
learning. Python is currently the best choice if you need to pick a single language in
which to do most of your work. Java is typesafe and performant. Its object-orientation
and packaging architectures are suitable for large, multideveloper programs, but it
makes the code too verbose. Moreover, the lack of a read–eval–print loop (REPL)
interpreter makes Java unwieldy for quick experimentation. C++ is numerically very
efficient, but standard libraries for nonnumerical computing are often nonexistent.
Scala combines the benefits of Python (easy scriptability, conciseness) with the bene‐
fits of Java (type safety, speed), but the tooling for Scala (such as for statistics and vis‐
ualization) is not as pervasive as it is for Python. Today, therefore, the best choice of
programming language is Python. For certain use cases for which speed is important
and Python is not performant enough, it might be necessary to use Java.

The ingest program in Python goes through the same four steps as before when we
did it manually on the command line:

• Download data from the BTS website to a local file.
• Unzip the downloaded ZIP file and extract the CSV file it contains.
• Upload the CSV file to Google Cloud Storage.
• Load the CSV data into a BigQuery partitioned table.

66 | Chapter 2: Ingesting Data into the Cloud

Whereas our download Bash script got all 12 months of a hardcoded year (2015), our
download subroutine in Python will take as input the year and month:

def download(YEAR, MONTH, destdir):
 url = os.path.join("https://transtats.bts.gov/PREZIP",
 "_{}_{}.zip".format(YEAR, int(MONTH)))

 filename = os.path.join(destdir, "{}{}.zip".format(YEAR, MONTH))
 with open(filename, "wb") as fp:
 response = urlopen(url)
 fp.write(response.read())
 return filename

Another thing to note is that our Bash script simply downloaded the ZIP file from
BTS to the current working directory of the user. However, since our Python script is
meant to be executed on demand by the scheduler service, we cannot make assump‐
tions about the directory in which the script will be run. In particular, we don’t know
whether that directory will be writable and have enough space. Hence, we ask the
caller of the function to provide an appropriate destination directory in which to
store the downloaded ZIP file.

Here’s how to unzip the file and extract the CSV contents:

def zip_to_csv(filename, destdir):
 zip_ref = zipfile.ZipFile(filename, 'r')
 cwd = os.getcwd()
 os.chdir(destdir)
 zip_ref.extractall()
 os.chdir(cwd)
 csvfile = os.path.join(destdir, zip_ref.namelist()[0])
 zip_ref.close()

Unzipping explodes the size of the file. We can optimize things slightly. Rather than
upload the text file, we can gzip it because BigQuery knows how to load gzipped CSV
files:

 gzipped = csvfile + ".gz"
 with open(csvfile, 'rb') as ifp:
 with gzip.open(gzipped, 'wb') as ofp:
 shutil.copyfileobj(ifp, ofp)
 return gzipped

Here’s the code to upload the CSV file for a given month to Cloud Storage:

def upload(csvfile, bucketname, blobname):
 client = storage.Client()
 bucket = client.get_bucket(bucketname)
 blob = Blob(blobname, bucket)
 blob.upload_from_filename(csvfile)
 gcslocation = 'gs://{}/{}'.format(bucketname, blobname)
 print ('Uploaded {} ...'.format(gcslocation))
 return gcslocation

Scheduling Monthly Downloads | 67

25 Hopefully, you know what the required packages are because you installed them using a package manager
such as conda or pip. To find the packages in your development environment, you can use pip freeze.

The code asks for the bucketname (the single-region bucket that was created during
our exploration) and a blobname (e.g., flights/201501.csv) and carries out the upload
using the Cloud Storage Python library. Although it can be tempting to simply use
the subprocess module in Python to invoke gsutil operations, it is better not to do
so. If you go the subprocess route, you will then need to ensure that the Cloud SDK
(which gsutil comes with) is installed on whichever machine this is going to run on.
This won’t be a problem in Cloud Run, but might pose problems if you switch the
way you provide URL access later (to, say, Google App Engine or Cloud Functions). It
is preferable to use pure Python modules when possible and add those modules to
requirements.txt, as follows:25

Flask
google-cloud-storage
google-cloud-bigquery
gunicorn==20.1.0

The Flask library will help us handle HTTP requests (covered shortly), and Google
Cloud Storage is needed so as to invoke the get_bucket() and upload_from_file
name() operations. While using the latest version of libraries is okay, it poses the
problem that an upgrade to those dependencies might break our code. For produc‐
tion code, it is better to pin the library versions to the ones with which the code has
been tested:

Flask==2.0.1
google-cloud-storage==1.42.0
google-cloud-bigquery==2.25.1
gunicorn==20.1.0

If you do pin libraries, though, you will have to have a process in place to periodically
test and upgrade to the latest stable version of your dependencies. Otherwise, your
code might go stale or, worse, be insecure because it’s using library versions with
known vulnerabilities.

We can now write an ingest() method that calls the four major steps, plus the verifi‐
cation, in order:

def ingest(year, month, bucket):
 '''
 ingest flights data from BTS website to Google Cloud Storage
 return cloud-storage-blob-name on success.
 raises DataUnavailable if this data is not on BTS website
 '''
 tempdir = tempfile.mkdtemp(prefix='ingest_flights')
 try:

68 | Chapter 2: Ingesting Data into the Cloud

26 The full program is available as ingest_flights.py in the book’s GitHub repository—try it out.

 zipfile = download(year, month, tempdir)
 bts_csv = zip_to_csv(zipfile, tempdir)
 gcsloc = f'flights/raw/{year}{month}.csv.gz'
 gcsloc = upload(bts_csv, bucket, gcsloc)
 return bqload(gcsloc, year, month)
 finally:
 print ('Cleaning up by removing {}'.format(tempdir))
 shutil.rmtree(tempdir)

The destination directory that we use to stage the downloaded data before uploading
to Cloud Storage is obtained using the tempfile package in Python. This ensures that
if, for whatever reason, there are two instances of this program running at the same
time, they will not cause contention issues.

We can try out the code by writing a main() that is executed if this program is run on
the command line:26

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser(
 description='ingest flights data from BTS website to GCS')
 parser.add_argument('--bucket', help='GCS bucket to upload data to',
 required=True)
 parser.add_argument('--year', help='Example: 2015.', required=True)
 parser.add_argument('--month', help='01 for Jan.', required=True)
 try:
 args = parser.parse_args()
 gcsfile = ingest(args.year, args.month, args.bucket)
 print (f'Success ... ingested to {gcsfile}')
 except DataUnavailable as e:
 print ('Try again later: {}'.format(e.message))

Specifying a valid month ends with a new (or replaced) file on Cloud Storage:

$./ingest_flights.py --bucket cloud-training-demos-ml \
 --year 2015 --month 01
...
Success ... ingested to gs://cloud-training-demos-ml/flights/201501.csv

Trying to download a month that is not yet available results in an error message:

$./ingest_flights.py --bucket cloud-training-demos-ml \
 --year 2029 --month 01
...
HTTP Error 403: Forbidden

On Cloud Scheduler, this will result in the call failing and being retried subject to a
maximum number of retries. Retries will also happen if the BTS web server cannot be
reached.

Scheduling Monthly Downloads | 69

27 Our decision earlier to name the files as <YYYYMM.csv> (with zero padding month) was a good data engi‐
neering choice. By doing that, we can reliably count the number of months in our archive and check if the
data for a specific month has already been downloaded.

At this point, we have the equivalent of our exploratory Bash scripts, but with some
additional resilience, repeatability, and fault tolerance built in. Our Python program
expects us to provide a year, month, and bucket. However, if we are doing monthly
ingests, we already know which year and month we need to ingest. No, not the cur‐
rent month—recall that there is a time lag between the flight events and the data
being reported by the carriers to the BTS. Instead, it is simply the month after what‐
ever files we already have on Cloud Storage!27 So, we can automate this, too:

def next_month(bucketname):
 '''
 Finds which months are on GCS, and returns next year,month to download
 '''
 client = storage.Client()
 bucket = client.get_bucket(bucketname)
 blobs = list(bucket.list_blobs(prefix='flights/raw/'))
 files = [blob.name for blob in blobs if 'csv' in blob.name] # csv files only
 lastfile = os.path.basename(files[-1]) # e.g. 201503.csv
 year = lastfile[:4]
 month = lastfile[4:6]
 dt = datetime.datetime(int(year), int(month), 15) # 15th of month
 dt = dt + datetime.timedelta(30) # will always go to next month
 return '{}'.format(dt.year), '{:02d}'.format(dt.month)

To get the next month given that there is a file, say 201503.csv, on Cloud Storage, we
add 30 days to the Ides of March—this gets around the fact that there can be any‐
where from 28 days to 31 days in a month, and that timedelta requires a precise
number of days to add to a date.

By changing the year and month to be optional parameters, we can try out the ingest
program’s ability to find the next month and ingest it to Cloud Storage. We simply
add:

if args.year is None or args.month is None:
 year, month = next_month(args.bucket)
else:
 year = args.year
 month = args.month
gcsfile = ingest(year, month, args.bucket)

Having ingested the data, it is a good idea to verify that the end-to-end pipeline
worked as intended. We could count the number of rows in the CSV file and assert
that this is appropriately large (at least 10,000, for example) and equal to the number
of rows corresponding to the month in BigQuery.

70 | Chapter 2: Ingesting Data into the Cloud

Now that we have an ingest program that is capable of updating our Cloud Storage
bucket one month at a time, we can move on to building the scaffolding to have it be
executed in a serverless way.

Cloud Run
Cloud Run is a serverless framework that provides an autoscaling, resilient runtime
for containerized code. The container (see Figure 2-16) will consist of code that lis‐
tens for requests or events. Cloud Run abstracts away all the infrastructure manage‐
ment that would otherwise be needed.

Now that we have a Python function that will do the ingest, we will wrap it inside a
web application. To write the web application, we will use Flask, which is a light‐
weight Python web application framework, and as a web server, we will use Gunicorn.
Flask provides the ability to invoke Python code in response to an HTTP request,
while Gunicorn will listen to HTTP requests and send them to the Flask app. Our
container will consist of the Gunicorn server, Flask application, and its dependencies.
This is expressed in the form of a Dockerfile:

FROM python:3.8-slim

Copy local code to the container image.
ENV APP_HOME /app
WORKDIR $APP_HOME
COPY . ./

Install production dependencies.
RUN pip install --no-cache-dir -r requirements.txt

Run the web service on container startup.
Timeout is set to 0 to disable the timeouts of
the workers to allow Cloud Run to handle instance scaling.
CMD exec gunicorn --bind :$PORT --workers 1 \
 --threads 8 --timeout 0 main:app

In our main.py, we have a function that gets invoked in response to the URL trigger:

import logging
from flask import escape
from ingest_flights import *

app = Flask(__name__)

@app.route("/", methods=['POST'])
def ingest_flights(request):
 try:
 json = request.get_json()

 year = escape(json['year']) if 'year' in json else None

Scheduling Monthly Downloads | 71

https://oreil.ly/mUpzR
https://oreil.ly/WS0xk
https://gunicorn.org

 month = escape(json['month']) if 'month' in json else None
 bucket = escape(json['bucket']) # required

 if year is None or month is None or len(year) == 0 or len(month) == 0:
 year, month = next_month(bucket)
 tableref, numrows = ingest(year, month, bucket)
 ok = 'Success ... ingested {} rows to {}'.format(numrows, tableref)
 return ok
 except Exception as e:
 logging.exception('Try again later')

Essentially, main.py has a single function that receives a Flask request object, from
which we can extract the JSON (JavaScript Object Notation) payload of the HTTP
POST by which the Cloud Run will be triggered. We get the next month by looking to
see what months are already in the bucket and then ingest the necessary data using
the existing code in the module ingest_flights. We can deploy the our codebase as
a container to Cloud Run using:

NAME=ingest-flights-monthly
REGION=us-central1

gcloud run deploy $NAME --region $REGION --source=$(pwd) \
 --platform=managed --timeout 12m

But there are a couple of serious security and governance problems if we do this.

Securing Cloud Run
What are the security problems?

• Anyone can invoke the URL and cause our dataset to get updated. We have to
disallow unauthenticated users.

• Allowing this code to run with our user account’s permissions will pollute any
audit logs since we are not actually running the ingest interactively. We need to
create a separate account so that the Cloud Run service can run with that identity.

• Allowing this code to run with our user account’s permissions is also quite dan‐
gerous because our user account will typically have very broad permissions. We’d
like to restrict the tasks that this automated service can do: we want it to be able
to write only to specific Cloud Storage buckets and BigQuery tables.

The way to address the first point is to disallow unauthenticated users. The way to
accomplish the second requirement is to specify that the Cloud Run service will have
to run as a service account. A service account is an account whose identity is meant to
be taken on by automated services. Like any identity, it can be configured to have spe‐
cific and limited permissions. Therefore, before we can deploy the Cloud Run service,
we will need to create a service account. Service accounts have email addresses of the
form ${service-account-name}@${project-id}.iam.gserviceaccount.com. In our

72 | Chapter 2: Ingesting Data into the Cloud

28 See 02_ingest/monthlyupdate/01_setup_svc_acct.sh.
29 See the instructions in README.md in 02_ingest.

case, the service name is svc-monthly-ingest@cloud-training-demos. iam. gser
viceaccount.com.

You can create a service account by going to the IAM area in the web console, but as
usual, I prefer to script things:28

SVC_ACCT=svc-monthly-ingest
PROJECT_ID=$(gcloud config get-value project)
BUCKET=${PROJECT_ID}-cf-staging
REGION=us-central1
SVC_PRINCIPAL=serviceAccount:${SVC_ACCT}@${PROJECT_ID}.iam.gserviceaccount.com

gcloud iam service-accounts create $SVC_ACCT \
 --display-name "flights monthly ingest"

Then, we make the service account the admin of the staging GCS bucket so that it can
read, write, list, delete, etc., on this bucket (and only this bucket):

gsutil mb -l $REGION gs://$BUCKET
gsutil uniformbucketlevelaccess set on gs://$BUCKET
gsutil iam ch ${SVC_PRINCIPAL}:roles/storage.admin gs://$BUCKET

We will also allow the service account to create and delete partitions on tables in just
the BigQuery dataset dsongcp (and no other datasets):

bq --project_id=${PROJECT_ID} query --nouse_legacy_sql \
 "GRANT \`roles/bigquery.dataOwner\` ON SCHEMA dsongcp TO '$SVC_PRINCIPAL' "

gcloud projects add-iam-policy-binding ${PROJECT_ID} \
 --member ${SVC_PRINCIPAL} \
 --role roles/bigquery.jobUser

Are these permissions sufficient to carry out all the steps of our data processing pipe‐
line? One way to check is to try to ingest a month of data when running as this ser‐
vice account. To do so, we will have to impersonate the service account:29

• Visit the Service Accounts section of the GCP Console.
• Select the newly created service account svc-monthly-ingest and click Manage

Keys.
• Add key (Create a new JSON key) and download it to a file named tempkey.json.

Transfer this key file to your Cloud Shell instance.

Scheduling Monthly Downloads | 73

https://oreil.ly/V7U1L

30 See 02_ingest/monthlyupdate/02_deploy_cr.sh.
31 See 02_ingest/monthlyupdate/03_call_cr.sh.

• Run:
gcloud auth activate-service-account \
 --key-file tempkey.json

• Try ingesting one month:
./ingest_flights.py --bucket $BUCKET \
 --year 2015 --month 03 --debug

Once you have ensured that the service account has all the necessary permissions, go
back to running commands as yourself using gcloud auth login.

Deploying and Invoking Cloud Run
Now that we have the code for the Flask application and a service account with the
right permissions, we can deploy the code to Cloud Run to run as this service
account:30

NAME=ingest-flights-monthly
SVC_ACCT=svc-monthly-ingest
PROJECT_ID=$(gcloud config get-value project)
REGION=us-central1
SVC_EMAIL=${SVC_ACCT}@${PROJECT_ID}.iam.gserviceaccount.com

gcloud run deploy $NAME --region $REGION --source=$(pwd) \
 --platform=managed --service-account ${SVC_EMAIL} \
 --no-allow-unauthenticated --timeout 12m

Recall that we started the discussion on securing the Cloud Run instance by saying
that we would disallow unauthenticated users and have the Cloud Run service run as
a service account. Note how we are turning on both these options when we deploy to
Cloud Run.

Once the application has been deployed to Cloud Run, we can try accessing the URL
of the service with our authentication details in the header of the web request and a
JSON message as its POST:31

Feb 2015
echo {\"year\":\"2015\"\,\"month\":\"02\"\,\"bucket\":\"${BUCKET}\"\}\
 > /tmp/message

curl -k -X POST $URL \
 -H "Authorization: Bearer $(gcloud auth print-identity-token)" \
 -H "Content-Type:application/json" --data-binary @/tmp/message

74 | Chapter 2: Ingesting Data into the Cloud

But what is the URL? Cloud Run generates the URL when we deploy the container,
and we can obtain it using:

gcloud run services describe ingest-flights-monthly \
 --format 'value(status.url)')

Changing the message to provide only the bucket (no year or month) will make the
service get the next month:

echo {\"bucket\":\"${BUCKET}\"\} > /tmp/message
curl -k -X POST $URL \
 -H "Authorization: Bearer $(gcloud auth print-identity-token)" \
 -H "Content-Type:application/json" --data-binary @/tmp/message

Scheduling Cloud Run
Our intent is to automatically invoke CloudRun once a month. We can do that using
Cloud Scheduler, which is also serverless and doesn’t require us to manage any infra‐
structure. We simply specify the schedule and the URL to hit. This URL is what came
from the output of the Cloud Run deployment command in the previous section:

echo {\"bucket\":\"${BUCKET}\"\} > /tmp/message
cat /tmp/message

gcloud scheduler jobs create http monthlyupdate \
 --description "Ingest flights using Cloud Run" \
 --schedule="8 of month 10:00" \
 --time-zone "America/New_York" \
 --uri=$SVC_URL --http-method POST \
 --oidc-service-account-email $SVC_EMAIL \
 --oidc-token-audience=$SVC_URL \
 --max-backoff=7d \
 --max-retry-attempts=5 \
 --max-retry-duration=2d \
 --min-backoff=12h \
 --headers="Content-Type=application/json" \
 --message-body-from-file=/tmp/message

The preceding parameters would make the first retry happen after 12 hours. Subse‐
quent retries are increasingly farther apart, up to a maximum of 2 days between
attempts. We fail the task permanently if it fails five times within a defined time
period and the task is more than 7 days old (both limits must be passed for the task to
fail).

To try out the Cloud Scheduler, we could wait for the 8th of the month to roll around.
Or we could go to the GCP web console and click on Run Now. Unfortunately, when
I tried it, it wouldn’t work because Cloud Scheduler wanted to run as the service
account while I was logged in as myself. So, I gave myself the ability to impersonate
the service account by going to the Service Accounts part of the web console. Once I
did that, I was able to get Run Now to work.

Scheduling Monthly Downloads | 75

The monthly update mechanism works if you have the previous month’s data on
Cloud Storage. If you start out with only 2015 data, updating it monthly means that
you will inevitably be many months behind. So, you will need to run it ad hoc until
your data is up-to-date and then let the cron service take care of things after that.
Alternatively, you can take advantage of the fact that the ingest task is cheap and non‐
intrusive when there is no new data. So, you can change the schedule to be every day
instead of every month. A better solution is to change the ingest task so that if it is
successful in ingesting a new month of data, it immediately tries to ingest the next
month. This way, your program will crawl month-by-month to the latest available
month and then keep itself always up-to-date.

At this point, it is worth reflecting a bit on what we have accomplished. We are able to
ingest data and keep it up-to-date by doing just these steps:

• Write some Python code.
• Deploy that Python code to the Google Cloud Platform.

We did not need to manage any infrastructure in order to do this. We didn’t install
any OS, manage accounts on those machines, keep them up-to-date with security
patches, maintain failover systems, and so on—a serverless solution that consists sim‐
ply of deploying code to the cloud is incredibly liberating. Not only is our ingest con‐
venient, it is also very inexpensive—everything scales down to zero when it is not
being used. All this falls comfortably within the free tier or might cost less than 5¢ a
month.

Summary
The US BTS collects, and makes publicly available, a dataset of flight information. It
includes nearly a hundred fields, including scheduled and actual departure and
arrival times, origin and destination airports, and flight numbers of every domestic
flight scheduled by every major carrier. We will use this dataset to estimate the likeli‐
hood of an arrival delay of more than 15 minutes of the specific flight whose outcome
needs to be known in order for us to decide whether to cancel the meeting.

There are three possible data processing architectures on the cloud for large datasets:
scaling up, scaling out with sharded data, and scaling out with data in situ. Scaling up
is very efficient, but is limited by the size of the largest machine you can get a hold of.
Scaling out is very popular but requires that you preshard your data by splitting it
among compute nodes, which leads to maintaining expensive clusters unless you can
hit sustained high utilization. Keeping data in situ is possible only if your data center
supports petabits per second of bisectional bandwidth so that any file can be moved
to any compute node in the data center on demand. Because Google Cloud Platform
has this capability, we will upload our data to Google Cloud Storage (a blob storage

76 | Chapter 2: Ingesting Data into the Cloud

that is not presharded) and to BigQuery, which will allow us to carry out interactive
exploration on large datasets.

To automate the ingest of the files, we reverse engineered the BTS’s web form and
obtained the format of the POST request that we need to make. With that request in
hand, we were able to write a Bash script to pull down 12 months of data, uncom‐
press the ZIP file, and load the data into BigQuery. It is quite straightforward to
change this script to loop through multiple years.

We discussed the difference between strong consistency and eventual consistency and
how to make the appropriate trade-off imposed by Brewer’s CAP theorem. In this
case, we wanted strong consistency and did not need global availability. Hence, we
chose to use a single-region bucket. We then uploaded the downloaded, unzipped,
and cleaned CSV files to Google Cloud Storage.

To schedule monthly downloads of the BTS dataset, we made our download and
cleanup Python program and made it callable from Cloud Run so that it was com‐
pletely serverless. We used Cloud Scheduler to periodically request the Cloud Run
application to download BTS data, unzip it, and upload it to both Cloud Storage and
BigQuery.

Code Break
This is the point at which you should put this book off to the side and attempt to
repeat all the things I’ve talked about. All the code snippets in this book have corre‐
sponding code in the GitHub repository.

I strongly encourage you to play around with the code in 02_ingest with the goal of
understanding why it is organized that way and being able to write similar code your‐
self. At minimum, though, you should do the following:

• Open Cloud Shell and git clone the book’s code repository as explained in
Chapter 1.

• Go to the 02_ingest folder of the repository.
• Go to the Storage section of the GCP web console and create a new regional

bucket—choose the region (such as us-central1) that is closest to where you live.
• Run ./ingest.sh providing the name of the bucket that you just created. This

will populate your bucket and BigQuery dataset with data from 2015. Although
you can change the year loop in this file to download all the data corresponding
to 2015–2019, I recommend that you hold off on downloading all the data until
Chapter 12 because processing 5 years of data will make every subsequent thing
in this book take five times longer.

Code Break | 77

• Because software changes, an up-to-date list of the preceding steps is available in
the course repository in 02_ingest/README.md. This is true for all the following
chapters.

Suggested Resources
A key aspect of cloud-native architectures is reliance on fully managed, autoscaling
services. That is Principle 3 from Tom Grey’s short, but informative 2019 blog post,
“5 Principles for Cloud-Native Architecture”. How do you think the other principles
apply to data analytics and AI?

When every department in your organization uses a hub-and-spoke architecture, and
provides data access to other departments, the architecture you will have across the
entire organization is a data mesh. This 2020 article from Medium.com, “Building a
Data Platform to Enable Analytics and AI-Driven Innovation”, describes the journey
to get there.

Cloud Storage is a blob store. This 2020 article from Netapp, “Storage Options in
Google Cloud: Block, Network File, and Object Storage” by Bruno Almeida, is a great
introduction to the various storage options available on Google Cloud.

This handy flowchart summarizes the key considerations when deciding where to
store your data. While you are there, take a look at some of the other flowcharts.

Google BigQuery is the heart of data analytics and AI architectures on Google Cloud.
The O’Reilly Media book BigQuery: The Definitive Guide by Valliappa Lakshmanan
and Jordan Tigani is a great place to learn about BigQuery.

Cloud Run is a serverless execution environment for containerized applications.
Cloud Scheduler provides a serverless way to invoke services on a schedule. Having
Cloud Scheduler trigger Cloud Run is a common pattern that is documented. There
is a list of guides for Cloud Run and a list of guides for Cloud Storage. Do you see the
pattern? Try to find the list of guides for BigQuery.

A lot of data wrangling and early exploration involves Unix tools. A good introduc‐
tion to the Unix shell and tools is this online tutorial. How to use command-line tools
to do data science is the focus of Data Science at the Command Line by Jeroen Jans‐
sens (O’Reilly).

“Scaling up” and “scaling out” seem very easy when we say the words or draw neat
pictures. However, they are extremely hard problems to solve. As described in this
2018 CIO article by Stephen Watts, scaling up requires being able to design
application-specific integrated circuits (ASICs) when running into limits on how
many transistors we can pack into a chip. The fundamental algorithm that underlies
scaling out is the Paxos consensus protocol, which is fiendishly complicated to get

78 | Chapter 2: Ingesting Data into the Cloud

https://oreil.ly/WtRO6
https://oreil.ly/v8ihb
https://oreil.ly/v8ihb
https://oreil.ly/8EJrL
https://oreil.ly/8EJrL
https://oreil.ly/1ULUq
https://cloud.google.com/bigquery
https://oreil.ly/w2led
https://oreil.ly/TaKkD
https://oreil.ly/CQs50
https://oreil.ly/waw1P
https://oreil.ly/OsU1I
https://oreil.ly/a05aj
https://oreil.ly/cwyaB
https://oreil.ly/sc8dZ
https://oreil.ly/9Unyh

right (see Deniz Altınbüken’s website, Paxos Made Moderately Complex). This is
another reason to choose a public cloud.

Suggested Resources | 79

https://oreil.ly/3ft5y

CHAPTER 3

Creating Compelling Dashboards

In Chapter 2, we ingested on-time performance data from the US Bureau of Trans‐
portation Statistics (BTS) so as to be able to model the arrival delay given various
attributes of an airline flight—the purpose of the analysis is to cancel a meeting if the
probability of the flight arriving within 15 minutes of the scheduled arrival time is
less than 70%.

Before we delve into building statistical and machine learning models, it is important
to explore the dataset and gain an intuitive understanding of the data—this is called
exploratory data analysis, and it’s covered in more detail in Chapter 5. You should
always carry out exploratory data analysis for any dataset that will be used as the basis
for decision making. In this chapter, though, I talk about a different aspect of depict‐
ing data—of depicting data to end users and decision makers so that they can under‐
stand the recommendation that you are making. The audience of these visual
representations, called dashboards, that we talk about in this chapter is not other data
scientists, but is instead the end users. Keep the audience in mind as we go through
this chapter, especially if you come from a data science background—the purpose of a
dashboard is to explain an existing model, not to develop it. A dashboard is an end-
user report that is interactive, tailored to end users, and continually refreshed with
new data. See Table 3-1.

Table 3-1. A dashboard is different from exploratory data analysis

For decision makers For data scientists
Usage
pattern

Dashboards Exploratory data analysis

Kinds of
depictions

Current status, gauges, trendlines Model fits with error bars, kernel density estimates

What does
it explain?

Model recommendations and confidence Input data, feature importance, model performance,
etc.

81

For decision makers For data scientists
Data
represented

Subset of dataset, tailored to user’s context Aggregate of historical data

Typical tools Data Studio, Tableau, Qlik, Looker, plotly, D3, shiny
apps, etc.

Jupyter, Python, R Studio, S-plus, matplotlib, seaborn,
Matlab, etc.

Mode of
interaction

GUI-driven Code-driven

Update Real time Not real time
Covered in Chapter 3 , Chapter 4 Chapter 5
Example

From AAA fuel gage report, May 2013

From AAA safety and educational foundation

Very often, this step of creating end-user visual depictions goes by the anodyne name
of “visualization,” as in visualizing data. However, I have purposefully chosen not to
call it by that name because there is more to this than throwing together a few bar
graphs and charts. Dashboards are highly visual, interactive reports that have been
designed to depict data and explain models. When used in this way, dashboards pro‐
vide business intelligence (BI).

All of the code snippets in this chapter are available in the folder
03_sqlstudio of the book’s GitHub repository. See the README.md
file in that directory for instructions on how to do the steps
described in this chapter.

82 | Chapter 3: Creating Compelling Dashboards

https://oreil.ly/YMeHv
https://github.com/GoogleCloudPlatform/data-science-on-gcp

1 When Amazon built a hiring tool to help select resumes using machine learning, they were able to use
explainability to recognize what the model was keying off—apparently, the machine learning model penalized
resumes that included terms more commonly found in women’s resumes. Amazon was able to catch this error
and not use the ML model to actually evaluate candidates. Had explainability not been part of the workflow,
many women would have been unfairly not considered for jobs at Amazon.

Explain Your Model with Dashboards
The purpose of this step in the modeling process is not simply to depict the data but
to improve your users’ understanding of how the model behaves. Whenever you are
designing the display of a dataset, evaluate the design in terms of three aspects:

• Does it accurately and honestly depict the data? This is important when the raw
data itself can be a basis for decision making.

• How well does it help envision not just the raw data, but the information content
embodied in the data? Will the typical user know whether they need to take
action after looking at the graphic? This is crucial for the cases when you are rely‐
ing on human pattern recognition and interaction to help reveal insights about
the environment in which the data was collected.

• Is it constructed in such a way that it explains the model being used to provide
recommendations?

You want to build displays that are always accurate and honest. At the same time, the
displays need to be interactive so as to provide viewers with the ability to play with
the data and gain insights. Insights that users have gained should be part of the dis‐
play of that information going forward in such a way that those insights can be used
to explain the data.

The last point, that of explanatory power, is very important. The idea is to dissemi‐
nate data understanding throughout your company. A statistical or machine learning
model that you build for your users will be considered a black box, and while you
might get feedback on when it works well and when it doesn’t, you will rarely get
pointed suggestions on how to actually improve that model in the field. In many
cases, your users will use your model at a much more fine-grained level than you ever
will because they will use your model to make a single decision, whereas in both
training and evaluation, you would have been looking at model performance as a
whole. Explainability is also critical to catch situations where the model is amplifying
unfair bias.1

Although this holistic overview is useful for statistical rigor, you need people taking a
close look at individual cases, too. Because users are making decisions one at a time,
they are analyzing the data one scenario at a time. If you provide your users not just
with your recommendation, but also with an explanation of why you are

Explain Your Model with Dashboards | 83

https://oreil.ly/wCxIV
https://oreil.ly/wCxIV

2 When I worked on developing machine learning algorithms for weather prediction, nearly every one of the
suggestions and feature requests that I received emerged when the person in question was looking at the real-
time radar feed. There would be a storm, my colleague would watch it go up on radar, observe that the track‐
ing of the storm was patchy, and let me know what aspect of the storm made it difficult to track. Or, someone
would wake up, look at the radar image, and discover that birds leaving to forage from their roost had been
wrongly tagged as a mesocyclone. It was all about real-time data. No matter how many times I asked, I never
ever got anyone to look at how the algorithms performed on historical data. It was also often about Oklahoma
(where our office was) because that’s what my colleagues would concentrate on. Forecasters from around the
country would derisively refer to algorithms that had been hypertuned to Oklahoma supercells.

recommending it, they will begin to develop insights into your model. However, your
users will only be able to develop such insights into the problem and your recom‐
mendations if you give them ways to observe the data that went into your model.
Give enough users ways to view and interact with your data, and you will have
unleashed a never-ending wave of innovation as users suggest improvements and fac‐
tors the model should be considering.

Your users have other activities that require their attention. Why would they spend
their time looking at your data? One of the ways to entice them to do that is by mak‐
ing the depiction of the information compelling. In my experience,2 the most compel‐
ling displays are displays of real-time information in context. You can show people
the average airline delay at JFK on January 12, 2012, and no one will care. But show a
traveler in Chicago the average airline delay at ORD right now and you will have their
interest—the difference is that the data is in context (O’Hare Airport, or ORD, for a
traveler in Chicago) and that it is real-time information.

In this chapter, therefore, we will look at building dashboards that combine accurate
depictions with explanatory power and interactivity in a compelling package. This
seems to be a strange time to be talking about building dashboards—shouldn’t the
building of a dashboard wait until after we have built the best possible predictive
model?

Why Build a Dashboard First?
Building a dashboard when building a machine learning model is akin to building a
form or survey tool to help you build the machine learning model. To build powerful
machine learning models, you need to understand the dataset and devise features that
help with prediction. By building a dashboard, you get to rope in the eventual users
of the predictive model to take a close look at your data. Their fine-grained look at
the data (remember that everyone is looking at the data corresponding to their con‐
text) will complement your overarching look at it. As they look at the data and keep
sending suggestions and insights about the data to your team, you will be able to
incorporate them into the machine learning model that you actually build.

84 | Chapter 3: Creating Compelling Dashboards

In addition, when presented with a dataset, you should be careful that the data is the
way you imagine it to be. There is no substitute for exposing and exploring the data
to ensure that. Doing such exploratory data analysis with an immediately attainable
milestone—building a dashboard from your dataset—is a fine way to do something
real with the data and develop awareness of the subtleties of your data. Just as you
often understand a concept best when you explain it to someone, building an
explanatory display for your data is one of the best ways to develop your understand‐
ing of a dataset. The fact that you have to visualize the data in order to do basic pre‐
processing such as outlier detection makes it clear that building visual representations
is work you will be doing anyway. If you are going to be doing it, you might as well do
it well, with an eye toward its eventual use in production.

Eventual use in production is the third reason why you should develop the dashboard
first instead of leaving it as an afterthought. Building explanatory power should be
constantly on your mind as you develop the machine learning model. Giving users
just the machine learning model will often go down poorly—they have no insight
into why the system is recommending whatever it does. Adding explanations to the
recommendations is more likely to succeed. For example, if you accompany your
model prediction with five of the most salient features presented in an explanatory
way, it will help make the model output more believable and trustworthy.

Even for cases in which the system performs poorly, you will receive feedback along
the lines of “the prediction was wrong, but it is because Feature #3 was fishy. I think
maybe you should also look at Factor Y.” In other words, shipping your machine
learning model along with an explanation of its behavior gets you more satisfied
users, and users whose criticism will be a lot more constructive. It can be tempting to
ship the machine learning model as soon as it is ready, but if there is a dashboard
already available (because you were building it in parallel), it is easier to counsel that
product designers consider the machine learning model and its explanatory dash‐
board as the complete product.

Finally, creating a dashboard is fun. It will help you build a user base quickly and
show end users what’s in it for them.

Explain Your Model with Dashboards | 85

Explanations can be a double-edged sword because humans are not
fully rational beings. Explanations can be the result of apophenia—
the tendency of humans to see meaningful patterns even when
there are none. This can lead to motivated reasoning—the tendency
of humans to create justifications for decisions that are more desir‐
able at an emotional level. The combination of apophenia and
motivated reasoning can lead to just-so stories that attempt to jus‐
tify whatever the state of the world is on the basis of spurious
explanations. As data scientists, we should realize that we too are
human. We need to be careful to set aside these biases, consider
counterfactuals, and be willing to revise our initial judgments. Eas‐
ier said than done, of course.

Where should these dashboards be implemented? Find out the environment that gets
the largest audience of experts and eventual users and build your dashboard to target
that environment.

Your users might already have a visualization interface with which they are familiar.
Especially when it comes to real-time data, your users might spend their entire work‐
day facing a visualization program that is targeted toward power users—this is true of
weather forecasts, air traffic controllers, and options traders. If that is the case, look
for ways to embed your visualizations into that interface. In other cases, your users
might prefer that your visualizations be available from the convenience of their web
browser. If this is the case, look for a visualization tool that lets you share the report
as an interactive, commentable document (not just a static web page). In many cases,
you might have to build multiple dashboards for different sets of users (don’t shoe‐
horn everything into the same dashboard).

Accuracy, Honesty, and Good Design
Because the explanatory power of a good dashboard is why we are building visualiza‐
tions, it is important to ensure that our explanations are not misleading. In this
regard, it is best not to do anything too surprising. Although modern-day visualiza‐
tion programs are chock-full of types of graphs and palettes, it is best to pair any
graphic with the idiom for which it is appropriate. For example, some types of graph‐
ics are better suited to relational data than others, and some graphics are better suited
to categorical data than to numerical data.

Broadly, there are four fundamental types of graphics: relational (illustrating the rela‐
tionship between pairs of variables), time series (illustrating the change of a variable
over time), geographical maps (illustrating the variation of a variable by location),
and narratives (to support an argument). Narrative graphics are the ones in magazine
spreads, which win major design awards. The other three are more worker-like.

86 | Chapter 3: Creating Compelling Dashboards

3 If you are not familiar with design principles, I recommend The Visual Display of Quantitative Information by
Edward Tufte (Graphics Press).

4 The Economist is published weekly as an 80-page booklet stapled in the center, and each page is about the size
of a letter paper. However, for historical reasons, the company refers to itself as a newspaper rather than a
magazine.

You have likely seen enough graphical representations to realize intuitively that the
graph is somehow wrong when you violate an accuracy, honesty, or aesthetic princi‐
ple,3 but this section of the book lists a few of the canonical ones. For example, it is
advisable to choose line graphs or scatter plots for relational graphics and to ensure
that autoscaling of the axes doesn’t portray a misleading story about your data. A
good design principle is that your time series graphs should be more horizontal than
vertical, and that it is the data lines and not “chart junk” (grid lines, labels, etc.) that
ought to dominate your graphics. Maximizing the ratio of data to space and ink is a
principle that will stand you in good stead when it comes to geographical data—
ensure that the domain is clipped to the region of interest, and go easy on place
names and other text labels.

Just as you probably learned to write well by reading good writers, one of the best
ways to develop a feel for accurate and compelling graphics is to increase your expo‐
sure to good exemplars. The Economist newspaper has a Graphic Detail blog4 that is
worth following—they publish a chart, map, or infographic every weekday, and these
run the gamut of the fundamental graphics types. Figure 3-1 shows a graphic from
the blog published on Nov. 25, 2016.

The graphic depicts the increase in the number of coauthors on scientific papers over
the past two decades. The graphic itself illustrates several principles of good design. It
is a time series, and as you’d expect of this type of graphic, the time is on the horizon‐
tal axis and the time-varying quantity (number of authors per article or the number
of articles per author) is on the vertical axis. The vertical axis values start out at zero,
so that the height of the graphs is an accurate indicator of magnitude. Note how min‐
imal the chart junk is—the axes labels and gridlines are very subtle and the title
doesn’t draw attention to itself. The data lines, on the other hand, are what pop out.
Note also the effective use of repetition—instead of all the different disciplines (Eco‐
nomics, Engineering, etc.) being on the same graph, each discipline is displayed on its
own panel. This serves to reduce clutter and makes the graphs easy to interpret. Each
panel has two graphs, one for authors per article and the other for articles per author.
The colors remain consistent across the panels for easy comparison, and the place‐
ment of the panels also encourages such comparisons. We see, for example, that the
increase in number of authors per article is not accompanied by an increase in arti‐
cles per author in any of the disciplines, except for Physics & Astronomy. Perhaps the
physicists and astronomers are gaming the system?

Explain Your Model with Dashboards | 87

https://oreil.ly/Fmt0s
https://oreil.ly/AnPgC
https://oreil.ly/YipcK

Figure 3-1. This graphic from The Economist shows an increase in the number of
authors of papers in various academic disciplines over time.

The graphic does, however, subtly mislead viewers who are in a hurry. Take a
moment and try to critique the graphic—figure out how a viewer might have been
misled. It has to do with the arrangement of the panels. It appears that the creator of
the graphic has arranged the panels to provide a pleasing upward trend between the
panels, but this upward trend is misleading because there is no relationship between
the number of authors per article in Economics in 2016 and the same quantity in
Engineering in 1996. This misdirection is concerning because the graph is supposed
to support the narrative of an increasing number of authors, but the increase is not
from one author to six authors over two decades—the actual increase is much less
dramatic (for example, from four to six in Medicine). However, a viewer who only
glances at the data might wrongly believe that the increase in the number of authors is
depicted by the whole graph and is therefore much more than it really is.

Loading Data into Cloud SQL
To create dashboards to allow interactive analysis of the data, we will need to store the
data in a manner that permits fast random access and aggregations. Because our flight
data is tabular, SQL is a natural choice, and if we are going to be using SQL, we
should consider whether a relational database meets our needs. Relational databases
are a mature technology and remain the tool of choice for many business problems.
Relational database technology is well known and comes with a rich ecosystem of

88 | Chapter 3: Creating Compelling Dashboards

interoperable tools. The problem of standardized access to relational databases from
high-level programming languages is pretty much solved.

PostgreSQL is a very popular open source relational database that is used in produc‐
tion at many enterprises. In addition to its high performance, PostgreSQL is easy to
program against—it supports ANSI SQL, geographic information system (GIS) func‐
tionality, client libraries in a variety of programming languages, and standard con‐
nector technologies such as Open Database Connectivity (ODBC) and Java Database
Connectivity (JDBC).

Create a Google Cloud SQL Instance
Google Cloud SQL offers a managed database service that supports PostgreSQL,
MySQL, and SQL Server. Cloud SQL manages backups, patches, updates, and even
replication while providing for global availability, automatic failover, and high
uptime. For best performance, choose a machine whose RAM is large enough to hold
your largest table in memory—as of this writing, available machine types range from
a single CPU with less than 4 GB of memory all the way to a 96 CPU machine with
624 GB of memory. Balance this desire for speed with the monthly cost of a machine,
of course.

Let’s configure a Cloud SQL instance, create a database table in it, and load the table
with the data we ingested into Cloud Storage. You can do all these things on the com‐
mand line using gcloud, but let’s begin by using the SQL section of Cloud Platform
Console and select Create Instance. Choose PostgreSQL and then fill out the form as
follows (see Figure 3-2):

• Call the instance “flights.”
• Generate a strong password by clicking on the GENERATE button.
• Choose the default PostgreSQL version.
• Choose the region where your bucket of CSV data exists.
• Choose a single zone instance since we are just trying it out. We won’t take this to

production.
• Choose a Standard machine type with 2 vCPU.
• Click Create Instance, accepting all the other defaults.

Loading Data into Cloud SQL | 89

https://www.postgresql.org
https://cloud.google.com/sql
https://oreil.ly/Q4OaT
https://oreil.ly/Q4OaT

Figure 3-2. Creating a PostgreSQL instance using the web console.

Interacting with Google Cloud Platform
Instead of filling out the dialog box by hand, we could have used the command-line
tool gcloud from Cloud Shell (or any other machine that has gcloud installed); here’s
how to do that:

gcloud sql instances create flights \
 --database-version=POSTGRES_13 --cpu=2 --memory=8GiB \
 --region=us-central1 --root-password=somestrongpassword

In the rest of the book, I will show you just the gcloud commands, but you don’t need
to memorize them. You can use --help at any time on gcloud to get a list of options.
For example:

gcloud sql instances create --help

90 | Chapter 3: Creating Compelling Dashboards

5 I looked up the URL and the format of the message from the REST API reference documentation. All the
other methods of interacting with a service (web console, gcloud command line, Cloud Client Library) end
up invoking the REST API.

will give you all the options available to create Cloud SQL instances (the database-
version, its zone, etc.), whereas:

gcloud sql instances --help

will give you all the ways in which you can work with Cloud SQL instances (create,
delete, restart, export, etc.).

In general, everything you can do on the command line is doable using the Cloud
Platform Console, and vice versa. In fact, both the Cloud Platform Console and the
gcloud command invoke representational state transfer (REST) API actions. You can
invoke the same REST APIs from your programs (the APIs are documented on the
Google Cloud Platform website). Here is the REST API call to create an instance from
Bash:5

ACCESS_TOKEN="$(gcloud auth application-default print-access-token)"
curl --header "Authorization: Bearer ${ACCESS_TOKEN}" \
 --header 'Content-Type: application/json' \
 --data '{"name":"flights", "settings":
 {"database-version":"POSTGRES_13", ...}' \
 https://www.googleapis.com/sql/v1beta4/projects/[PROJECT-ID]/instances \
 -X POST

Alternatively, you can use the Cloud Client Library (available for a variety of pro‐
gramming languages) to issue the REST API calls. We saw this in Chapter 2 when we
used the google.cloud.storage Python package to interact with Cloud Storage.

In summary, there are three ways to interact with Google Cloud Platform:

1. The web console:
The gcloud command from the command line in Cloud Shell
or a machine that has the gcloud SDK installed

2. Directly invoke the REST API
3. Google Cloud Client Library (available as of this writing for Go, Java, Node.js,

Python, Ruby, PHP, and C#)
In this book, I use primarily Option 2 (from the shell) and Option 4 (from
Python programs).

Create Table of Data
In order to import data into a Postgres table, we first have to create an empty database
and a table with the correct schema.

Loading Data into Cloud SQL | 91

https://oreil.ly/jD7RC
https://oreil.ly/ZUpit
https://oreil.ly/ZUpit

In the Cloud (web) console, navigate to the databases section of Cloud SQL, select
instance “flights,” and create a new database called bts. This will be where we load
our data.

Next, we have to create a file with the following syntax, to create a column for every
field in the CSV file:

drop table if exists flights;

CREATE TABLE flights (
 "Year" TEXT,
 "Quarter" TEXT,
 "Month" TEXT,
 "DayofMonth" TEXT,
 "DayOfWeek" TEXT,
 "FlightDate" DATE,
 "Reporting_Airline" TEXT,
 "DOT_ID_Reporting_Airline" TEXT,
 "IATA_CODE_Reporting_Airline" TEXT,
...

For your convenience, the file I created is already in the Git repository, so just go to
Cloud Shell, change into the 03_sqlstudio directory, and do the following steps:

• Stage the file into Google Cloud Storage (changing the bucket to one that you
own):

gsutil cp create_table.sql \
 gs://cloud-training-demos-ml/flights/ch3/create_table.sql

• In the web console, navigate to the flights instance of Cloud SQL and select
IMPORT. In the form, specify the location of create_table.sql and specify that you
want to create a table in the database bts (see Figure 3-3).

92 | Chapter 3: Creating Compelling Dashboards

Figure 3-3. Creating an empty table.

A few seconds later, the empty table will be created.

We can now load the CSV files into this table. Start by loading the January data by
browsing to 201501.csv in your bucket and specifying CSV as the format, bts as the
database, and flights as the table (see Figure 3-4).

Loading Data into Cloud SQL | 93

Figure 3-4. Populating the table with data from January.

Note that the user interface doesn’t provide a way to skip the first
line, so the header will also get loaded as a row in the table. Fortu‐
nately, our schema calls all the fields as text, so this doesn’t pose a
problem—after loading the data, we can delete the row corre‐
sponding to the header. If we have a more realistic schema, we will
have to remove the header line before loading the file.

94 | Chapter 3: Creating Compelling Dashboards

6 If your organization has set up a security policy to allow access only from authorized networks, you might
have to use a SQL proxy to connect to the instance. At the time of writing, this is available only in the beta
version, so use the following command: gcloud beta sql connect flights --user=postgres.

Interacting with the Database
We can connect to the Cloud SQL instance from Cloud Shell using:6

gcloud sql connect flights --user=postgres

In the prompt that comes up, we connect to the bts database:

\c bts;

Then, we can run a query to obtain the five busiest airports:

SELECT "Origin", COUNT(*) AS num_flights
FROM flights GROUP BY "Origin"
ORDER BY num_flights DESC
LIMIT 5;

While this is performant because the dataset is relatively small (only January!), as I
added more months, the database started to slow down.

Relational databases are particularly well suited to smallish datasets on which we wish
to do ad hoc queries that involve searching and that return small subsets of data. For
larger datasets, we can tune the performance of a relational database by indexing the
columns of interest. Further, because relational databases typically support transac‐
tions and guarantee strong consistency, they are an excellent choice for data that will
be updated often.

However, a relational database is a poor choice if your data is primarily read-only, if
your dataset sizes go into the terabyte range, if you have a need to scan the full table
(such as to compute the maximum value of a column), or if your data streams in at
high rates. This describes our flight delay use case. So, let’s switch from a relational
database to an analytics data warehouse—BigQuery. The analytics data warehouse
will allow us to use SQL and is much more capable of dealing with large datasets and
ad hoc queries (i.e., doesn’t need the columns to be indexed).

Loading Data into Cloud SQL | 95

https://oreil.ly/cdXyL

7 Considering that we were using BigQuery and we are going to use BigQuery, what was the point of this
detour into Cloud SQL? In many cases, your data will originally be in a relational database management sys‐
tem (RDBMS). If that dataset is small, you can power the dashboard off the RDBMS. Even though BigQuery
is the better choice for the flights delay dataset, it won’t always be the best choice for all the projects you will
work on in Google Cloud. Part of my philosophy in this book is to “show,” not “tell.” So, the reason for this
section was to show this trade-off between RDBMS and a data warehouse. This will be true later on in the
book as well. I’ll do a Spark ML model in Chapter 7, but it won’t scale once we add categorical columns—in
that sense, that entire chapter is a digression! I’ll stream into Bigtable in Chapter 11 and show that the result‐
ing performance improvement is overkill. In summary, the point of the Cloud SQL detour was to explore the
possibilities, show what the problems are, and help you develop the intuition for the trade-offs involved.

If you are following along with me, delete the Cloud SQL instance. We won’t need it
any further in this book.7

Querying Using BigQuery
In Chapter 2, we loaded the CSV data into BigQuery into a table named flights_raw
in the dataset dsongcp. Let’s explore that dataset a bit—this is not a full exploratory
data analysis, which I will do in Chapter 5.

My goal here is to do “just enough” analysis on the data and then quickly pivot to
building my first model. Once I have the model, I will be able to build a dashboard to
explain that model. The idea is to get a first iteration out in front of users as quickly as
possible. Going from ingested data to minimum viable outputs (model, dashboard,
etc.) quickly is what agile development in data science looks like.

Teams that wait until they build a fully capable model before incorporating it into
decision tools often build the wrong model (i.e., they solve the wrong problem
because of misunderstanding how the decision will be used) or choose unviable tech‐
nology (that is hard to get into production). Avoid these traps by testing your work
with real users as quickly as possible!

Schema Exploration
Navigate to the BigQuery section of the Google Cloud (web) console and select the
flights_raw table. On the right side of the window, select Schema (see Figure 3-5).
Which fields do you think are relevant to predicting flight arrival delays?

96 | Chapter 3: Creating Compelling Dashboards

https://oreil.ly/vyCns

Figure 3-5. The schema of the flights_raw table that we loaded into BigQuery in
Chapter 2.

Just looking at the schema is not enough. For example, do we really need the Year,
Month, DayofMonth, and so on? Isn’t FlightDate enough? It’s best to not have dupli‐
cative data—the more columns we have, the more work we have to do to keep analy‐
sis consistent.

Similarly, which of the various Airline columns do we need? For the Airline columns,
we did read the description on the BTS website in Chapter 2, and will probably follow
their recommendation that Reporting_Airline be the one that we use. Still, it’s
worth verifying why that is.

To make decisions like this, we can use two features—the Preview tab and the Table
Explorer tab (see Figure 3-6).

Using Preview
The best way to quickly look at a BigQuery table is to use the Preview functionality.
The Preview is free, whereas doing a SELECT * FROM … LIMIT 10 will incur a query‐
ing cost.

Querying Using BigQuery | 97

Looking at the preview (see Figure 3-6), the Year, Month, etc., columns do seem to be
redundant. (If you are following along with me, you may see different rows because
the Preview just picks whatever is most handy.)

Figure 3-6. Preview of the flights_raw table that we loaded into BigQuery in
Chapter 2.

Let’s check whether we can resurrect the FlightDate from the other columns and
extract the date pieces from the FlightDate. We can do that with SQL:

SELECT
 FORMAT("%s-%02d-%02d",
 Year,
 CAST(Month AS INT64),
 CAST(DayofMonth AS INT64)) AS resurrect,
 FlightDate,
 CAST(EXTRACT(YEAR FROM FlightDate) AS INT64) AS ex_year,
 CAST(EXTRACT(MONTH FROM FlightDate) AS INT64) AS ex_month,
 CAST(EXTRACT(DAY FROM FlightDate) AS INT64) AS ex_day,
FROM dsongcp.flights_raw
LIMIT 5

The result appears to bear this out:

Row resurrect FlightDate ex_year ex_month ex_day

1 2015-02-19 2015-02-19 2015 2 19

2 2015-02-20 2015-02-20 2015 2 20

3 2015-02-22 2015-02-22 2015 2 22

4 2015-02-23 2015-02-23 2015 2 23

5 2015-02-25 2015-02-25 2015 2 25

But we have to be sure. Let’s print out rows where the extracted data from FlightDate
is not identical:

WITH data AS (
SELECT
 FORMAT("%s-%02d-%02d",
 Year,
 CAST(Month AS INT64),

98 | Chapter 3: Creating Compelling Dashboards

 CAST(DayofMonth AS INT64)) AS resurrect,
 FlightDate,
 CAST(EXTRACT(YEAR FROM FlightDate) AS INT64) AS ex_year,
 CAST(EXTRACT(MONTH FROM FlightDate) AS INT64) AS ex_month,
 CAST(EXTRACT(DAY FROM FlightDate) AS INT64) AS ex_day,
FROM dsongcp.flights_raw
)
SELECT * FROM data
WHERE resurrect != CAST(FlightDate AS STRING)

This query returns an empty result set, so we are sure that we can safely keep only the
FlightDate column.

Using Table Explorer
How about the Airline code? Switch to the Table Explorer tab and select the three air‐
line columns as shown in Figure 3-7.

Figure 3-7. Selecting fields for Table Explorer.

BigQuery analyzes the full dataset and shows the unique values in the table, as shown
in Figure 3-8.

Figure 3-8. Distinct values for the three Airline fields.

Querying Using BigQuery | 99

It is clear from the Table Explorer that we want to use either the Reporting_Airline
or the IATA_CODE_Reporting_Airline. As before, checking to see if there are rows
where these are different indicates that Reporting_Airline is sufficient.

Creating BigQuery View
Based on such analysis on the remaining fields, I came up with the following sets of
operations I want to do to the raw data to make it more usable. For example, the
Departure Delay should be a floating point number and not a string. The Cancella‐
tion Code should be a boolean and not 1.00:

CREATE OR REPLACE VIEW dsongcp.flights AS

SELECT
 FlightDate AS FL_DATE,
 Reporting_Airline AS UNIQUE_CARRIER,
 OriginAirportSeqID AS ORIGIN_AIRPORT_SEQ_ID,
 Origin AS ORIGIN,
 DestAirportSeqID AS DEST_AIRPORT_SEQ_ID,
 Dest AS DEST,
 CRSDepTime AS CRS_DEP_TIME,
 DepTime AS DEP_TIME,
 CAST(DepDelay AS FLOAT64) AS DEP_DELAY,
 CAST(TaxiOut AS FLOAT64) AS TAXI_OUT,
 WheelsOff AS WHEELS_OFF,
 WheelsOn AS WHEELS_ON,
 CAST(TaxiIn AS FLOAT64) AS TAXI_IN,
 CRSArrTime AS CRS_ARR_TIME,
 ArrTime AS ARR_TIME,
 CAST(ArrDelay AS FLOAT64) AS ARR_DELAY,
 IF(Cancelled = '1.00', True, False) AS CANCELLED,
 IF(Diverted = '1.00', True, False) AS DIVERTED,
 DISTANCE
FROM dsongcp.flights_raw;

In order to avoid repeating these casts in all queries from here on out, I am creating a
view that consists of the SELECT statement (see the first line in the preceding listing).
A view is a virtual table—we can query the view just as if it were a table:

SELECT
 ORIGIN,
 COUNT(*) AS num_flights
FROM dsongcp.flights
GROUP BY ORIGIN
ORDER BY num_flights DESC
LIMIT 5

Any queries that happen on the view are rewritten by the database engine to happen
on the original table—conceptually, a view works as if the SQL corresponding to the
view was to be inserted into every query that uses the view.

100 | Chapter 3: Creating Compelling Dashboards

What if the view includes a WHERE clause so that the number of rows is much less? In
such cases, it would be far more efficient to export the results into a table and query
that table instead:

CREATE OR REPLACE TABLE dsongcp.flights AS

SELECT

But what if you export the results into a table and then the original table has a new
month of data added to it? We’d have to rerun the table creation statement to make
the extracted table up-to-date. In the case of a view, we wouldn’t have to do anything
special—all new queries would automatically be querying the entire raw table and
thus include the new month of data.

Can we have our cake and eat it too? Can we get the “live” nature of a view, but the
query efficiency of a table? Yes. It’s called a materialized view:

CREATE MATERIALIZED VIEW dsongcp.flights AS

SELECT

The view is materialized into a table and kept up-to-date by BigQuery. While views
are free, materialized views carry an extra cost because of the extra storage and com‐
pute overhead they involve.

In this book, I’ll use a regular view during development, since it’s easy to come back
and add new columns, etc. Later on, once we go to production, it’s quite simple to
change it over to a materialized view—none of the client code will need to change.

Building Our First Model
Intuitively, we feel that if the flight departure is delayed by 15 minutes, it will also
tend to arrive 15 minutes late. So, our model could be that we cancel the meeting if
the departure delay of the flight is 15 minutes or more. Of course, there is nothing
here about the probability (recall that we wanted to cancel if the probability of an
arrival delay of 15 minutes was greater than 30%). Still, it will be a quick start and
give us something that we can ship now and iterate upon.

Contingency Table
Suppose that we need to know how often we will be making the right decision if our
decision rule is the following:

If DEP_DELAY ≥ 15, cancel the meeting; otherwise, go ahead.

There are four possibilities in the contingency table or the confusion matrix, which you
can see in Table 3-2.

Building Our First Model | 101

Table 3-2. Confusion matrix for the decision to cancel the meeting

Arrival delay < 15 minutes Arrival delay ≥ 15 minutes
We did not cancel meeting (departure delay < 15 min) Correct (true positive) False positive
We canceled meeting
(departure delay ≥ 15 min)

False negative Correct (true negative)

If we cancel the meeting and it turns out that the flight arrived on time (let’s call that a
“positive”), it is clear that we made a wrong decision. It is arbitrary whether we refer
to it as a false positive (treating the on-time arrival as a positive event) or as a false
negative (treating the late arrival as a negative event). Because the dataset is called
“on-time arrivals,” let’s term on-time arrival the positive event. How do we find out
how often the decision rule of thresholding the departure delay at 15 minutes will
tend to be correct? We can evaluate the first box in the confusion matrix using
BigQuery:

SELECT
 COUNT(*) AS true_positives
FROM dsongcp.flights
WHERE dep_delay < 15 AND arr_delay < 15

There are 4,430,885 such flights.

To compute all four values in a single statement, move the WHERE clause into the
SELECT itself:

SELECT
 COUNTIF(dep_delay < 15 AND arr_delay < 15) AS true_positives,
 COUNTIF(dep_delay < 15 AND arr_delay >= 15) AS false_positives,
 COUNTIF(dep_delay >= 15 AND arr_delay < 15) AS false_negatives,
 COUNTIF(dep_delay >= 15 AND arr_delay >= 15) AS true_negatives,
 COUNT(*) AS total
FROM dsongcp.flights
WHERE arr_delay IS NOT NULL AND dep_delay IS NOT NULL

Each of the COUNTIF statements counts the number of rows that match the given cri‐
terion, and COUNT(*) counts all rows. This way, we get to scan the table just once, and
still manage to collect the four numbers that form the confusion matrix:

Row true_positives false_positives false_negatives true_negatives total

1 4430885 232701 219684 830738 5714008

Recall that these numbers assume that we are making a decision by thresholding the
departure delay at 15 minutes. But is that the best threshold?

102 | Chapter 3: Creating Compelling Dashboards

Threshold Optimization
Ideally, we want to try out different values of the threshold and pick the one that pro‐
vides the best results. To do so, we can declare a variable called THRESH and use it in
the query. This way, there is just one number to change when we want to try out a
different threshold:

DECLARE THRESH INT64;
SET THRESH = 15;

SELECT
 COUNTIF(dep_delay < THRESH AND arr_delay < 15) AS true_positives,
 COUNTIF(dep_delay < THRESH AND arr_delay >= 15) AS false_positives,
 COUNTIF(dep_delay >= THRESH AND arr_delay < 15) AS false_negatives,
 COUNTIF(dep_delay >= THRESH AND arr_delay >= 15) AS true_negatives,
 COUNT(*) AS total
FROM dsongcp.flights
WHERE arr_delay IS NOT NULL AND dep_delay IS NOT NULL

Still, I’d rather not run the query several times, once for each threshold. It’s not about
the drudgery of it—I could avoid the manual work by using a for loop in a script.
What I’m objecting to is scanning the table four times. The better way to do this in
SQL is to declare an array of possible thresholds and then group by them:

SELECT
 THRESH,
 COUNTIF(dep_delay < THRESH AND arr_delay < 15) AS true_positives,
 COUNTIF(dep_delay < THRESH AND arr_delay >= 15) AS false_positives,
 COUNTIF(dep_delay >= THRESH AND arr_delay < 15) AS false_negatives,
 COUNTIF(dep_delay >= THRESH AND arr_delay >= 15) AS true_negatives,
 COUNT(*) AS total
FROM dsongcp.flights, UNNEST([5, 10, 11, 12, 13, 15, 20]) AS THRESH
WHERE arr_delay IS NOT NULL AND dep_delay IS NOT NULL
GROUP BY THRESH

This way, we get to run a single query, which scans the table just once and still man‐
ages to create contingency tables for all the thresholds we want to try. The result con‐
sists of the four contingency table values for each of the seven values of the threshold:

Row THRESH true_positives false_posi

tives

false_nega

tives

true_negatives total

1 5 3931979 144669 718590 918770 5714008

2 10 4242286 184944 408283 878495 5714008

3 11 4288279 193912 362290 869527 5714008

4 12 4329146 203068 321423 860371 5714008

5 13 4366641 212498 283928 850941 5714008

6 15 4430885 232701 219684 830738 5714008

7 20 4542475 291791 108094 771648 5714008

Building Our First Model | 103

Learn SQL. You’ll thank me later.

This is all well and good, but recall that our goal (see Chapter 1) is to cancel the client
meeting if the probability of arriving 15 minutes late is 30% or more. How close do
we get with each of these thresholds?

To know this, we need to compute the fraction of times a decision is wrong. We can
do this by calling the preceding result the contingency table, and then computing the
necessary ratios:

WITH contingency_table AS (
 SELECT
 THRESH,
 COUNTIF(dep_delay < THRESH AND arr_delay < 15) AS true_positives,
 COUNTIF(dep_delay < THRESH AND arr_delay >= 15) AS false_positives,
 COUNTIF(dep_delay >= THRESH AND arr_delay < 15) AS false_negatives,
 COUNTIF(dep_delay >= THRESH AND arr_delay >= 15) AS true_negatives,
 COUNT(*) AS total
 FROM dsongcp.flights, UNNEST([5, 10, 11, 12, 13, 15, 20]) AS THRESH
 WHERE arr_delay IS NOT NULL AND dep_delay IS NOT NULL
 GROUP BY THRESH
)

SELECT
 ROUND((true_positives + true_negatives)/total, 2) AS accuracy,
 ROUND(false_positives/(true_positives+false_positives), 2) AS fpr,
 ROUND(false_negatives/(false_negatives+true_negatives), 2) AS fnr,
 *
FROM contingency_table ORDER BY accuracy ASC

The result now includes the accuracy, false positive rate, and false negative rate:

Row accu

racy

fpr fnr THRESH true_posi

tives

false_pos

itives

false_neg

atives

true_nega

tives

total

1 0.85 0.04 0.44 5 3931979 144669 718590 918770 5714008

2 0.9 0.04 0.32 10 4242286 184944 408283 878495 5714008

3 0.9 0.04 0.29 11 4288279 193912 362290 869527 5714008

4 0.91 0.04 0.27 12 4329146 203068 321423 860371 5714008

5 0.91 0.05 0.25 13 4366641 212498 283928 850941 5714008

6 0.92 0.05 0.21 15 4430885 232701 219684 830738 5714008

7 0.93 0.06 0.12 20 4542475 291791 108094 771648 5714008

104 | Chapter 3: Creating Compelling Dashboards

8 If this argument surprises you, imagine that we are talking about a threshold of 0.1 versus a threshold of 0.11.
It’s the same principle—don’t use thresholds that have a misleading number of significant digits. This is
important because I’m going to show the threshold to end users in a dashboard. If I were not showing the
threshold, then I could use arbitrary precision. But when showing numbers to end users, keep the number of
significant digits in mind.

We want to cancel the meeting whenever we think the flight will be late. Our decision
will not be perfect. There are times that the decision will be wrong. What is our toler‐
ance for error? It’s 30%. This means that:

• Flights should arrive on time (when we cancel the meeting) less than 30% of the
time. So, we want the false positive rate to be 0.3 or less.

• Flights should arrive late (when we go ahead with the meeting) less than 30% of
the time. So, we want the false negative rate 0.3 or less.

Looking at the preceding contingency table, which of these criteria looks like it could
be a problem? That’s right—the false negative rate. The false positive rate, at 0.04 or
so, is comfortably within our error tolerance.

If we are going to make the decision based on the departure delay, our choice of
departure delay threshold will have to be such that the false negative rate is 0.3.

It is clear from the preceding table that if we want our decision to have a false nega‐
tive rate of 30%, the departure delay threshold needs to be 10 or 11 minutes (in the
dataset, departure delay is an integer, so an intermediate threshold like 10.6 minutes
does not make sense). We could choose 11 minutes on the grounds that, at 11
minutes, the FNR is less than 0.3. Or we could choose 10 minutes on the grounds that
it’s a nice, round number and our model is not so sophisticated that we can make
decisions at a 1 minute precision.8

If we choose a threshold of 10 minutes, we will make the correct decision 96% of the
time when we don’t cancel the meeting and 68% of the time when we cancel the
meeting. Overall, we are correct 90% of the time.

Note that 10 minutes is not the threshold that maximizes the overall accuracy. Had
we chosen a threshold of 20 minutes, we’d cancel far fewer meetings (108,000 versus
408,000) and be correct more often overall (93%). However, that would be very con‐
servative. Since it is not our goal to be correct 88% of the times we cancel the
meeting—we only want to be correct 70% of the time—10 minutes is the right thres‐
hold.

However, we could also consider that if we can increase the threshold to 20 minutes,
we would be correct far more often with very little impact on the false negative rate.
Until we looked at the data, we didn’t know what was achievable, and it is possible
that the original target was set in a fog of uncertainty. It might be worthwhile asking

Building Our First Model | 105

our stakeholders whether they are really wedded to the 30% false negative rate and
whether we have leeway to change the trade-offs available to users of our application
—a dashboard that shows the impact of a threshold is an excellent way to gauge this.
If the stakeholders don’t know, it might be worth doing an A/B test with a focus
group, and that’s what we are about to do next.

Is This Machine Learning?
What we did here—trying different thresholds—is at the heart of machine learning.
Our model is a simple rule that has a single parameter (the departure delay thres‐
hold), and we can tune it to maximize some objective measure (here, the desired pre‐
cision). We can (and will) use more complex models, and we can definitely make our
search through the parameter space a lot more systematic, but this process of devising
a model and tuning it is the gist of machine learning. We haven’t evaluated the model
(we can’t take the 70% we got on the 12 months of 2015 data and claim that to be our
model performance—we need an independent dataset to do that), and that is a key
step in machine learning. However, we can plausibly claim that we have built a simple
machine learning model to provide guidance on whether to cancel a meeting based
on historical flight data.

Building a Dashboard
Even this simple model is enough for us to begin getting feedback from end users.
Recall that my gut instinct at the beginning of the previous section was that I needed
to use a 15-minute threshold on the departure delay. Analysis of the contingency
table, however, indicated that the right threshold to use was 10 minutes. I’m satisfied
with this model as a first step, but will our end users be? Let’s go about building a
dashboard that explains the model recommendations to end users. Doing so will also
help clarify what I mean by explaining a model to end users.

There are a large number of business intelligence and visualization tools available,
and many of them connect with data sources like BigQuery and Cloud SQL on Goo‐
gle Cloud Platform. In this chapter, we build dashboards using Data Studio, which is
free and comes as part of Google Cloud Platform, but you should be able to do simi‐
lar things with Tableau, QlikView, Looker, and so on.

Looker or Data Studio?
Google Cloud has two business intelligence tools—Looker and Data Studio. Data Stu‐
dio is free and much more suitable for self-service use. Looker is much more capable
and more suitable for enterprise use.

106 | Chapter 3: Creating Compelling Dashboards

What do I mean by enterprise use? Here are a few examples of things that Looker can
do that Data Studio can’t:

Consistency
It is possible for one team to define a semantic layer consisting of standard
nomenclature for columns and ways of computing key performance metrics. The
rest of the organization then builds dashboards starting from the semantic layer
rather than from the raw data.

Multicloud
Looker can access data in BigQuery, Amazon Redshift, Azure SQL Data Ware‐
house, and Snowflake simultaneously in the same report.

Embedded analytics
Have you been to a website where you can see charts and graphs of your activity?
This is provided by a lot of B2B applications, such as marketplaces allowing sell‐
ers to visualize their own data. Looker allows you to embed analytics in another
website.

Alerts and updates
Data Studio requires the user to visit the Data Studio web page and refresh the
graphics. With Looker, you can push reports on a schedule or whenever an event
happens.

That said, in our case, all we want is a self-serve dashboard, and Data Studio fits
the bill perfectly.

For those of you with a data science background, I’d like to set expectations here—a
dashboard is a way for end users to quickly come to terms with the current state of a
system and is not a full-blown, completely customizable, statistical visualization pack‐
age. Think about the difference between what’s rendered in the dashboard of a car
versus what would be rendered in an engineering visualization of the aerodynamics
of the car in a wind tunnel—that’s the difference between what we will do in Data
Studio versus what we will use Vertex AI Notebooks for in later chapters. Here, the
emphasis is on providing information effectively to end users—thus, the key aspects
are interactivity and collaboration. With Data Studio, you can share reports similarly
to Google Workspace documents; that is, you can give different colleagues viewing or
editing rights, and colleagues with whom you have shared a visualization can refresh
the charts to view the most current data.

Getting Started with Data Studio
To work with Data Studio, navigate to the Data Studio home page. There are two key
concepts in Data Studio: reports and data sources. A report is a set of charts and com‐
mentary that you create and share with others. The charts in the report are built from

Building a Dashboard | 107

https://oreil.ly/EJq0N

9 Graphical user interfaces are often the fastest-changing parts of any software. So, if the user interface has
changed from these screenshots by the time this book gets into your hands, please hunt around a bit. There
will be some way to add a new data source.

data that is retrieved from a data source. The first step, therefore, is to set up a data
source. Because our data is in BigQuery, the data source we need to set up is for Data
Studio to connect to BigQuery.

On the Data Studio home page, click on the Create button, click the Data Source
menu item, and choose the BigQuery button, as illustrated in Figure 3-9.9

Figure 3-9. Choose BigQuery from the Data Source menu item in Data Studio.

Select your project, the dsongcp dataset, and flights as the table. Then, click on the
Connect button. Recall that flights is the view that we have set up with the stream‐
lined set of fields.

A list of fields in the table displays, with Data Studio inferring something about the
fields based on a sampling of the data in that table. We’ll come back and correct some
of these, but for now, just click Create Report, accepting all the prompts.

108 | Chapter 3: Creating Compelling Dashboards

Creating Charts
On the top ribbon, select the scatter chart icon from the “Add a chart” pulldown (see
Figure 3-10) and draw a rectangle somewhere in the main window; Data Studio will
draw a chart. The data that is rendered is pulled from some rather arbitrary columns.

Figure 3-10. Initial chart rendered by Data Studio.

Ignoring the Date Range Dimension for now, there are three columns being used: the
Dimension is the quantity being plotted; Metric X is along the x-axis; and Metric Y is
along the y-axis. Change (if necessary) Dimension to UNIQUE_CARRIER, Metric X
to DEP_DELAY, Metric Y to ARR_DELAY, and change the aggregation metric for
both Metric X and Metric Y to Average. Ostensibly, this should give us the average
departure delay and arrival delay of different carriers. Click the Style tab and add in a
linear trendline and show the data labels. Figure 3-11 depicts the resulting chart.

Building a Dashboard | 109

10 Or whatever the last month that you downloaded is. Just so that you don’t have to wait a long time for the data
to be available in your Google Cloud project, the ingest.sh script in Chapter 2, by default, downloads only 2015
data. Change the YEAR loop in that script to download 2015 to 2019.

Figure 3-11. Chart after changing Metric, Dimension, and Style.

Adding End-User Controls
So far, our chart is static—there is nothing for end users to interact with. They get to
see a pretty picture, but do not get to change anything about our graph. To permit the
end user to change something about the graph, we should add controls to our graph.

Let’s give our end users the ability to set a date range. On the top icon ribbon, click
the “Date range control” button, as illustrated in Figure 3-12.

On your chart, place the rectangle where you’d like the control to appear. Change the
time window to be Fixed and set the Start Date to Jan. 1, 2015, and end date to Dec.
31, 2019.10 This is how the report will initially appear to users.

In the upper-right corner, change the toggle to switch to the View mode. This is the
mode in which users interact with your report. Change the data range to Jan 1, 2015
to May 31, 2015 (see Figure 3-13) and you should see the chart immediately update.

110 | Chapter 3: Creating Compelling Dashboards

Figure 3-12. The Date range control on the top icon ribbon.

Figure 3-13. The chart in View mode.

Building a Dashboard | 111

11 An alternative way to show proportions, especially of a time-varying whole, is a stacked column chart.

Pause a bit here and ask yourself what kind of a model the chart in Figure 3-13 would
explain. Because there is a line, it strongly hints at a linear model. If we were to rec‐
ommend meeting cancellations based on this chart, we’d be suggesting, based on the
linear trend of arrival delay with departure delay, that departure delays of more than
20 minutes lead to arrival delays of more than 15 minutes. That, of course, was not
our model—we did not do linear regression, and certainly not airline by airline.
Instead, we picked a departure threshold based on a contingency table over the entire
dataset. So, we should not use the preceding graph in our dashboard—it would be a
misleading description of our actual model.

Showing Proportions with a Pie Chart
How would you explain our contingency table–based thresholds to end users in a
dashboard? Recall that the choice comes down to the proportion of flights that arrive
more than 15 minutes after their scheduled time. That is what our dashboard needs
to show.

One of the best ways to show a proportion is to use a pie chart.11 Switch back to the
Edit mode, and from the pull-down menu, select the Donut Chart button (this is a
type of pie chart), and then, on your report, draw a square where you’d like the donut
chart to appear (it is probably best to delete the earlier scatter plot from it). As we did
earlier, we need to edit the dimensions and metrics to fit what it is that we want to
display. Perhaps things will be clearer if you see what the end product ought to look
like. Figure 3-14 gives you a glimpse.

Figure 3-14. Desired end result is a chart that shows the proportion of flights that are
late versus on time.

112 | Chapter 3: Creating Compelling Dashboards

https://oreil.ly/T51MW

In this chart, we are displaying the proportion of flights that arrived late versus those
that arrived on time. The labeled field ON TIME versus LATE is the Dimension. The
number of flights is the metric that will be apportioned between the labels. So, how do
you get these values from the BigQuery view?

It is clear that there is no column in the database that indicates the total number of
flights. However, Data Studio has a special value Record Count that we can use as the
metric, after making sure to change the aggregate from the default Sum to Count.

The “islate” value, though, will have to be computed as a formula. Conceptually, we
need to add a new calculated field to the data that looks like this:

CASE WHEN
(ARR_DELAY < 15)
THEN
"ON TIME"
ELSE
"LATE"
END

Click on the current Dimension column and click on “Create Field.” Give the field the
name is_late, enter the preceding formula, and change the type to Text (see
Figure 3-15).

Figure 3-15. How to set up the is_late definition.

The pie chart is now complete and reflects the proportion of flights that are late ver‐
sus those that are on time. You can switch over to the Style tab if you’d like to change
the appearance of the pie chart to be similar to mine.

Building a Dashboard | 113

https://oreil.ly/fWZvf

Because the proportion of flights that end up being delayed is the quantity on which
we are trying to make decisions, the pie chart translates quite directly to our use case.
However, it doesn’t tell the user what the typical delay would be. To do that, let’s create
a bar (column) chart that looks like the one shown in Figure 3-16.

Figure 3-16. Typical delay for each carrier.

Here, the labeled quantity (or Dimension) is the Carrier. There are two metrics
being displayed: the DEP_DELAY and ARR_DELAY, both of which are aggregated to
their averages over the dataset. Figure 3-17 shows the specifications.

Note the Sort column at the end—it is important to have a reliable sort order in dash‐
boards so that users become accustomed to finding the information they want in a
known place. Also, the default is to use different axes for the two variables.

114 | Chapter 3: Creating Compelling Dashboards

Figure 3-17. How to set the bar chart properties to generate the desired chart.

Switch over to the Style tab and change this to use a single axis. Finally, Data Studio
defaults to 10 bars. In the Style tab, change this to reflect that we expect to have up to
20 unique carriers (Figure 3-18).

Building a Dashboard | 115

Figure 3-18. How to set the bar chart properties to generate the desired chart.

Of course, we can now add in a date control as we did earlier to end up with the
report in Figure 3-19 (“All flights” in the diagram is just a text label that I added).

Figure 3-19. Resulting dashboard consisting of a pie chart and bar chart.

It appears that, on average, about 80% of flights are on time and that the typical
arrival delay varies between airlines but lies in a range of 0 to 15 minutes.

116 | Chapter 3: Creating Compelling Dashboards

Explaining a Contingency Table
Even though the dashboard we just created shows users the decision-making crite‐
rion (proportion of flights that will be late) and some characteristics of that decision
(the typical arrival delay), it doesn’t actually show our model. Recall that our model
involved a threshold on the departure delay. We need to show that. Figure 3-20 shows
what we want the dashboard to look like.

Figure 3-20. Dashboard consisting of three pairs of pie charts and bar charts along with
a date control.

In other words, we want to show the same two charts, but for the decision thresholds
that we considered—departure delays of 10, 15, and 20 minutes or more.

Building a Dashboard | 117

12 Data Studio does support a BigQuery query as a data source, but it is preferable to read from a view because
views are more reusable.

13 Road warriors know this well. Ten minutes in, and they whip out their phones to try to get on a different
flight.

To get there, we need to change our data source. No longer can we populate the chart
from the entire table. Instead, we should populate it from a query that pulls only
those flights whose departure delay is greater than the relevant threshold. In Big‐
Query, we can create the views we need and use those views as data sources.12 Here’s
how:

CREATE OR REPLACE VIEW dsongcp.delayed_10 AS
SELECT * FROM dsongcp.flights WHERE dep_delay >= 10;

CREATE OR REPLACE VIEW dsongcp.delayed_15 AS
SELECT * FROM dsongcp.flights WHERE dep_delay >= 15;

CREATE OR REPLACE VIEW dsongcp.delayed_20 AS
SELECT * FROM dsongcp.flights WHERE dep_delay >= 20;

Alternatively, we can add a filter on the departure delay and allow the end user to try
out different thresholds. However, because we want to explain the decision model, it
is better to ensure that the 10-minute threshold is explicitly present in the dashboard.

Looking at the resulting pie chart for a 10-minute threshold (Figure 3-20), we see that
it comes quite close to our target of 30% on-time arrivals. The bar chart for the 10-
minute delay explains why the threshold is important. Hint: it is not about the exact
numeric value of 10 minutes. It is about what the 10-minute delay is indicative of.
Can you decipher what is going on? Still stuck? Look at the y-axis of the three bar
charts.

Although the typical departure delay of a flight is only about 5 minutes (see the chart
corresponding to all flights that we created earlier), flights that are delayed by more
than 10 minutes fall into a separate statistical regime. The typical departure delay of
an aircraft that departs more than 10 minutes late is around 50 minutes! A likely
explanation is that a flight that is delayed by 10 minutes or more typically has a seri‐
ous issue that will not be resolved quickly. If you are sitting in an airplane and it is
more than 10 minutes late in departing, you might as well cancel your meeting—you
are going to be sitting at the gate for a while.13

At this point, we have created a very simple model and created dashboards to explain
the model to our end users. Our end users have a visual, intuitive way to see how
often our model is correct and how often it is wrong. The model might be quite sim‐
ple, but the explanation of why the model works is a satisfying one.

118 | Chapter 3: Creating Compelling Dashboards

There is one teeny, tiny thing missing, though. Context. The dashboard that we have
built so far is all about historical data, whereas real dashboards need to be timely. Our
dashboard shows aggregates of flights all over the country, but our users will probably
care only about the airport from which they are departing and the airport to which
they are going. We have a wonderfully informative dashboard, but without such time
and location context, few users would care. In Chapter 4, we look at how to build
real-time, location-aware dashboards—unfortunately, however, there is a problem
with our dataset that prevents us from doing so immediately. So, we’ll spend the first
part of Chapter 4 doing some data wrangling.

Before we move on to Chapter 4, let’s expand our discussion of business intelligence
beyond dashboards.

Modern Business Intelligence
Modern business intelligence (BI) is more than dashboards. BI is data science for
business users. As such, the trends in BI are toward digitization (there is data on
more and more things), democratization (more and more people can get insights
from data), and integration (access to sophisticated insights from familiar tools).

Let’s look at these trends.

Digitization
The release notes of Data Studio are a great way to stay up-to-date with product
updates and new visualization options. All Google Cloud products have release notes
that are published online—take a look at the release notes for BigQuery, for example.

Once upon a time, release notes were nothing more than pages of text. But now, they
are digitized and queryable. As befits a Data Cloud, the release notes for BigQuery
(and all other Google Cloud products) are available as a public dataset in BigQuery.
Let’s query it:

SELECT
 product_name,
 DATE_TRUNC(published_at, MONTH) AS month,
 COUNT(*) AS releases
FROM `bigquery-public-data.google_cloud_release_notes.release_notes`
GROUP BY product_name, month

The result looks like this:

Row product_name month releases

1 BigQuery 2012-05-01 8

2 BigQuery 2012-07-01 5

3 BigQuery 2012-08-01 5

Modern Business Intelligence | 119

https://oreil.ly/nFLeM
https://oreil.ly/mKo2i
https://oreil.ly/ItWZp

Row product_name month releases

4 Dataflow 2017-10-01 6

5 Dataflow 2019-02-01 3

Natural Language Queries
We can explore the data with Data Studio, of course, but let’s try using natural lan‐
guage queries. At the time of writing, this was still in alpha and one could only query
one’s own tables (not a public dataset). So let’s export the preceding query to a table in
our own project:

CREATE OR REPLACE TABLE dsongcp.monthly_releases AS

SELECT
 product_name,
 DATE_TRUNC(published_at, MONTH) AS month,
 COUNT(*) AS releases
FROM `bigquery-public-data.google_cloud_release_notes.release_notes`
GROUP BY product_name, month

Now, select the option to “Ask Question.” The UI immediately proposes a few ques‐
tions (see Figure 3-21).

Figure 3-21. Some of the questions automatically generated based on the dataset.

Let’s pick a different question, though: “top three products by total releases.” The UI
generates the following SQL query automatically (see Figure 3-22):

SELECT
 product_name AS product_name,
 (SUM(releases)) AS SUM_releases
FROM
 `ai-analytics-solutions.dsongcp.monthly_releases`

120 | Chapter 3: Creating Compelling Dashboards

GROUP BY product_name
ORDER BY SUM_releases DESC
LIMIT 3;

Isn’t that something? Notice that even though I said “top three products,” the engine
was smart enough to pick up the product_name column. The result, in case you are
curious, is:

Row product_name SUM_releases

1 Google Kubernetes Engine 749

2 Dataproc 625

3 App Engine standard environment Java 472

Figure 3-22. Natural language querying in BigQuery.

Modern Business Intelligence | 121

14 Make sure you are using the same Google account as the one you are using for your Google Cloud project. At
the time of writing, this capability is only available to Enterprise Google Workspace accounts. If you are trying
this section in a personal Google Account, you likely won’t have the Data Connectors option in the Data
menu.

Connected Sheets
Try this. Open up a new Google Sheet (you can do so by visiting https://sheets.new)
and select Data > Data Connectors > Connect to BigQuery using the menu.14

Connect to the monthly_releases table in your project. What we now have is a Con‐
nected Sheet—all operations we carry out in the sheet are actually executed in Big‐
Query! This allows us to interact with tables and query results that may have millions
of rows!

Select “Discover Data Insights” and follow the prompts to create a chart of Google
Cloud releases over time (see Figure 3-23). The machines are getting smarter, and the
pace of change is increasing!

Figure 3-23. Google Cloud releases over time.

122 | Chapter 3: Creating Compelling Dashboards

15 No, not a typo. It’s not $14.95. It’s $1495.

Summary
In this chapter, we discussed the importance of bringing the insights of our end users
into our data modeling efforts as early as possible. Bringing their insights is possible
only if you make it a point to explain your models in context from the get-go.

We tried using Cloud SQL, a transactional, relational database whose management is
simplified by virtue of it running on the cloud and being managed by Google Cloud
Platform. However, it stopped scaling once we got to millions of flights. Transactional
databases are not built for queries that involve scanning the entire table. For such
queries, we want to use an analytics data warehouse. Hence, we switched to using
BigQuery.

Within BigQuery, we previewed the table, selected a subset of columns, and created a
view to make downstream analysis simpler.

The first model that we built was to suggest that our road warriors cancel their imme‐
diately scheduled meeting if the departure delay of the flight was more than 10
minutes. At this threshold, flights arrive late (when we go ahead with the meeting)
less than 30% of the time. This would enable them to make 70% of their meetings
with 15 minutes to spare.

We then built a dashboard in Data Studio to explain the contingency table model.
Because our choice of threshold was driven by the proportion of flights that arrived
late given a particular threshold, we illustrated the proportion using a pie chart for
two different thresholds. We also depicted the average arrival delay given some depar‐
ture delay—this gives users an intuitive understanding of why we recommend a 10-
minute threshold.

Finally, we looked at trends in business intelligence.

Suggested Resources
An influential three-part series on business intelligence (BI) by Forrester Analyst
Boris Evelson recommends a “layer-cake” model for modernizing BI. Unfortunately,
at the time of writing, it’s behind a $1,495 paywall.15 So, perhaps read a summary of
that article in Forbes by Shant Hovsepian. Accordion to Hovsepian, Evelson suggests
that organizations modernize their use of BI by:

• Bringing BI to the data, rather that doing BI on extracts of the data (don’t do
“data cubes”)

• Infusing AI such as natural language into BI

Summary | 123

https://oreil.ly/qEH9y
https://oreil.ly/qEH9y
https://oreil.ly/YfkXm
https://oreil.ly/YfkXm
https://oreil.ly/LuE4P
https://oreil.ly/EiKHP

• Moving BI to the public cloud to take advantage of elasticity and separation of
compute and storage

Data Studio is great as a self-service dashboard, but enterprises are often short of SQL
experts. Looker provides a self-service business intelligence workflow by interposing
a level of indirection, called LookML. This 2021 article by Clay Porter, “Using Big‐
Query & Data Studio? You Should Check Out Looker”, provides an excellent explana‐
tion. There is an online course if you want to learn how to create dashboards in
Looker.

Once you create a dashboard, you might want to embed the graphics within a web‐
site. This is called embedded analytics—it can be done through iframes or using
Looker’s application programming interface. See the 2020 Google blog post “A Step-
by-Step Guide to Building and Delivering Embedded Analytics” by Sharon Zhang for
more information.

124 | Chapter 3: Creating Compelling Dashboards

https://oreil.ly/bi3Vs
https://oreil.ly/bi3Vs
https://oreil.ly/2hqDh
https://oreil.ly/alZ2L
https://oreil.ly/alZ2L

CHAPTER 4

Streaming Data: Publication and Ingest
with Pub/Sub and Dataflow

In Chapter 3, we developed a dashboard to explain a contingency table–based model
of suggesting whether to cancel a meeting. However, the dashboard that we built
lacked immediacy because it was not tied to users’ context. Because users need to be
able to view a dashboard and see the information that is relevant to them at that
point, we need to build a real-time dashboard with location cues.

How would we add context to our dashboard? We’d have to show maps of delays in
real time. To do that, we’ll need locations of the airports, and we’ll need real-time
data. Airport locations can be obtained from the US Bureau of Transportation Statis‐
tics (BTS; the same US government agency from which we obtained our historical
flight data). Real-time flight data, however, is a commercial product. If we were to
build a business out of predicting flight arrivals, we’d purchase that data feed. For the
purposes of this book, however, let’s just simulate it.

Simulating the creation of a real-time feed from historical data has the advantage of
allowing us to see both sides of a streaming pipeline (production as well as consump‐
tion). In the following section, we look at how we could stream data into the database
if we were to receive it in real time.

All of the code snippets in this chapter are available in the folder
04_streaming of the book’s GitHub repository. See the
README.md file in that directory for instructions on how to do
the steps described in this chapter.

125

https://github.com/GoogleCloudPlatform/data-science-on-gcp

Designing the Event Feed
Let’s assume that we wish to create an event feed, not with all 100 fields in the raw
BTS dataset, but with only the few fields that we selected in Chapter 3 as being rele‐
vant to the flight delay prediction problem (see Figure 4-1).

Figure 4-1. In Chapter 3, we created a view in BigQuery with the fields relevant to the
flight delay prediction problem. In this chapter, we will simulate a real-time stream of
this information.

To simulate a real-time stream of the flight information shown in Figure 4-1, we can
begin by using the historical data in the flights view in BigQuery but will need to
transform it further. What kinds of transformations are needed?

126 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

1 This is a common situation. It is only as you start to explore a dataset that you discover you need ancillary
datasets. Had I known beforehand, I would have ingested both datasets. But you are following my workflow,
and as of this point, I knew that I needed a dataset of time zone offsets but hadn’t yet searched for it!

Transformations Needed
Note that FL_DATE is a Date while DEP_TIME is a STRING. This is because FL_DATE is of
the form 2015-07-03 for July 3, 2015, whereas DEP_DATE is of the form 1406 for 2:06
p.m. local time. This is unfortunate. I’m not worried about the separation of date and
time into two columns—we can remedy that. What’s unfortunate is that there is no
time zone offset associated with the departure time. Thus, in this dataset, a departure
time of 1406 in different rows can be different times depending on the time zone of
the origin airport.

The time zone offsets (there are two, one for the origin airport and another for the
destination) are not present in the data. Because the offset depends on the airport
location, we need to find a dataset that contains the time zone offset of each airport
and then mash this data with that dataset.1 To simplify downstream analysis, we will
then put all the times in the data in a common time zone—Coordinated Universal
Time (UTC) is the traditional choice of common time zone for datasets. We cannot,
however, get rid of the local time—we will need the local time in order to carry out
analysis, such as the typical delay associated with morning flights versus evening
flights. So, although we will convert the local times to UTC, we will also store the time
zone offset (e.g., −3,600 minutes) to retrieve the local time if necessary.

Therefore, we are going to carry out two transformations to the original dataset. First,
we will convert all the time fields in the raw dataset to UTC. Second, in addition to
the fields present in the raw data, we will add three fields to the dataset for the origin
airport and the same three fields for the destination airport: the latitude, longitude,
and time zone offset. These fields will be named:

DEP_AIRPORT_LAT, DEP_AIRPORT_LON, DEP_AIRPORT_TZOFFSET
ARR_AIRPORT_LAT, ARR_AIRPORT_LON, ARR_AIRPORT_TZOFFSET

The third transformation that we will need to carry out is that, for every row in the
historical dataset, we will need to publish multiple events. This is because it would be
too late if we wait until the aircraft has arrived to send out a single event containing
all the row data. If we do this at the time the aircraft departs, our models will be vio‐
lating causality constraints. Instead, we will need to send out events corresponding to
each state the flight is in. Let’s choose to send out five events for each flight: when the
flight is first scheduled, when the flight departs the gate, when the flight lifts off, when
the flight lands, and when the flight arrives. These five events cannot have all the
same data associated with them because the knowability of the columns changes dur‐
ing the flight. For example, when sending out an event at the departure time, we will

Designing the Event Feed | 127

not know the arrival time. For simplicity, we can notify the same structure, but we
will need to ensure that unknowable data is marked by a null and not with the actual
data value.

Architecture
Table 4-1 lists when those events can be sent out and the fields that will be included in
each event.

Table 4-1. Fields that will be included in each of the five events that will be published.
Compare the order of the fields with those in the schema in Figure 4-1.

Event Sent at (UTC) Fields included in event message
Scheduled CRS_DEP_TIME minus

7 days
FL_DATE, UNIQUE_CARRIER, ORIGIN_AIRPORT_SEQ_ID, ORIGIN,
DEST_AIRPORT_SEQ_ID, DEST, CRS_DEP_TIME [nulls],
CRS_ARR_TIME [nulls], DISTANCE

Departed DEP_TIME All fields available in scheduled message, plus:

• DEP_TIME, DEP_DELAY CANCELLED
• CANCELLATION_CODE

• DEP_AIRPORT_LAT, DEP_AIRPORT_LON, DEP_AIRPORT_TZOFFSET
Wheelsoff WHEELS_OFF All fields available in departed message, plus: TAXI_OUT and WHEELS_OFF
Wheelson WHEELS_ON All fields available in wheelsoff message, plus:

• WHEELS_ON

• DIVERTED

• ARR_AIRPORT_LAT, ARR_AIRPORT_LON, ARR_AIRPORT_TZOFFSET
Arrived ARR_TIME All fields available in wheelson message, plus: ARR_TIME and ARR_DELAY

We will carry out the transformations needed and then store the transformed data in
a database so that it is ready for the event simulation code to use. Figure 4-2 shows
the steps we are about to carry out in our extract-transform-load (ETL) pipeline and
the subsequent steps to simulate an event stream from these events, and then create a
real-time dashboard from the simulated event stream.

128 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

Figure 4-2. Steps in our ETL (extract-transform-load) pipeline to (a) transform the raw
data into events, (b) simulate the event stream, and (c) process the event stream to popu‐
late a real-time dashboard.

Getting Airport Information
In order to do the time correction, we need to obtain the latitude and longitude of
each airport. The BTS has a dataset that contains this information, which we can use
to do the lookup. For convenience, I’ve downloaded the data and made it publicly
available at gs://data-science-on-gcp/edition2/raw/airports.csv.

Let’s examine the data to determine how to get the latitude and longitude of the air‐
ports. In Chapter 2, when I needed to explore the flights data to create the first
delays model, I loaded the data into BigQuery.

Do we have to import all the data that is shared with us into our BigQuery dataset in
order to do exploration? Of course not. We can query BigQuery datasets in other
projects without having to make our own copies of the data. In the FROM clause of the

Designing the Event Feed | 129

https://oreil.ly/ijlv2

BigQuery query, all that we have to do is to specify the name of the project that the
dataset lives in:

SELECT
 airline,
 AVG(departure_delay) AS avg_dep_delay
 FROM `bigquery-samples.airline_ontime_data.flights`
 GROUP BY airline
 ORDER by avg_dep_delay DESC

What if someone shares a comma-separated values (CSV) file with us, though? Do we
have to load the data into BigQuery in order to see what’s in the file? No.

BigQuery allows us to query data in Cloud Storage through its federated query capa‐
bilities. This is the ability of BigQuery to query data that is not stored within the data
warehouse product, but instead operate on data sources such as Google Sheets (a
spreadsheet on Google Drive) or files on Cloud Storage. Thus, we could leave the files
as CSV on Cloud Storage, define a table structure on it, and query the CSV files
directly. Recall that we suggested using Cloud Storage if your primary analysis pat‐
tern involves working with your data at the level of flat files—this is a way of occa‐
sionally applying SQL queries to such datasets.

The first step is to get the schema of these files. Let’s look at the first line:

gsutil cat gs://data-science-on-gcp/edition2/raw/airports.csv | head -1

We get:

"AIRPORT_SEQ_ID","AIRPORT_ID","AIRPORT","DISPLAY_AIRPORT_NAME",
"DISPLAY_AIRPORT_CITY_NAME_FULL","AIRPORT_WAC_SEQ_ID2","AIRPORT_WAC",
"AIRPORT_COUNTRY_NAME","AIRPORT_COUNTRY_CODE_ISO","AIRPORT_STATE_NAME",
"AIRPORT_STATE_CODE","AIRPORT_STATE_FIPS","CITY_MARKET_SEQ_ID","CITY_MARKET_ID",
"DISPLAY_CITY_MARKET_NAME_FULL","CITY_MARKET_WAC_SEQ_ID2","CITY_MARKET_WAC",
"LAT_DEGREES","LAT_HEMISPHERE","LAT_MINUTES","LAT_SECONDS","LATITUDE",
"LON_DEGREES","LON_HEMISPHERE","LON_MINUTES","LON_SECONDS","LONGITUDE",
"UTC_LOCAL_TIME_VARIATION","AIRPORT_START_DATE","AIRPORT_THRU_DATE",
"AIRPORT_IS_CLOSED","AIRPORT_IS_LATEST"

Use this header to write a BigQuery schema string of the format (specify STRING for
any column you are not sure about, since you can always CAST it to the appropriate
format when querying the data):

AIRPORT_SEQ_ID:INTEGER,AIRPORT_ID:STRING,AIRPORT:STRING, ...

Alternately, if you have a similar dataset lying around, start from its schema and edit
it:

bq show --format=prettyjson dsongcp.sometable > starter.json

130 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

2 See 04_streaming/design/mktbl.sh for the actual syntax; we’ve made adjustments here for printing purposes.

Once we have the schema of the GCS files, we can make a table definition for the fed‐
erated source:2

bq mk --external_table_definition= \
./airport_schema.json@CSV=gs://data-science-on-gcp/edition2/raw/airports.csv \
dsongcp.airports_gcs

If you visit the BigQuery web console now, you should see a new table listed in the
dsongcp dataset (reload the page if necessary). This is a federated data source in that
its storage remains the CSV file on Cloud Storage. Yet you can query it just like any
other BigQuery table:

SELECT
AIRPORT_SEQ_ID, AIRPORT_ID, AIRPORT, DISPLAY_AIRPORT_NAME,
LAT_DEGREES, LAT_HEMISPHERE, LAT_MINUTES, LAT_SECONDS, LATITUDE
FROM dsongcp.airports_gcs
WHERE DISPLAY_AIRPORT_NAME LIKE '%Seattle%'

In the preceding query, I am trying to find in the file which airport column and
which latitude column I need to use. The result indicates that AIRPORT and LATITUDE
are the columns of interest, but that there are several rows corresponding to the air‐
port SEA:

Row AIR

PORT_

SEQ_ID

AIR

PORT_

ID

AIR

PORT

DISPLAY_AIR

PORT_NAME

LAT_

DEGREES

LAT_

HEMI

SPHERE

LAT_

MINUTES

LAT_

SEC

ONDS

LATITUDE

1 1247701 12477 JFB Seattle 1st

National.Bank

Helipad

47 N 36 25 47.60694444

2 1474701 14747 SEA Seattle Inter

national

47 N 26 50 47.44722222

3 1474702 14747 SEA Seattle/

Tacoma Inter

national

47 N 26 57 47.44916667

4 1474703 14747 SEA Seattle/

Tacoma Inter

national

47 N 27 0 47.45

Fortunately, there is a column that indicates which row is the latest information, so
what I need to do is:

SELECT
 AIRPORT, LATITUDE, LONGITUDE
FROM dsongcp.airports_gcs
WHERE AIRPORT_IS_LATEST = 1 AND AIRPORT = 'DFW'

Designing the Event Feed | 131

Don’t get carried away by federated queries, though. The most appropriate uses of
federated sources involve frequently changing, relatively small datasets that need to
be joined with large datasets in BigQuery native tables. Because the columnar storage
in BigQuery is so fundamental to its performance, we will load most data into Big‐
Query’s native format.

Sharing Data
Now that we have the airports.csv in Cloud Storage and the airports’ dataset in Big‐
Query, it is quite likely that our colleagues will want to use this data too. Let’s share it
with them—one of the benefits of bringing your data to the cloud (and more specifi‐
cally into a data warehouse) is to allow the mashing of datasets across organizational
boundaries. So, unless you have a clear reason not to do so, like security precautions,
try to make your data widely accessible.

Costs of querying are borne by the person submitting the query to the BigQuery
engine, so you don’t need to worry that you are incurring additional costs for your
division by doing this. It is possible to make a GCS bucket “requester-pays” to get the
same sort of billing separation for data in Cloud Storage.

Sharing a Cloud Storage dataset

To share some data in Cloud Storage, use gsutil:

gsutil -m acl ch -r -u abc@xyz.com:R gs://$BUCKET/data

In the preceding command, the -m indicates multithreaded mode, the -r provides
access recursively starting with the top-level directory specified, and the -u indicates
that this is a user being granted read (:R) access.

We could provide read access to the entire organization or a Google Group using -g:

gsutil -m acl ch -r -g xyz.com:R gs://$BUCKET/data

Sharing a BigQuery dataset
BigQuery sharing can happen at the granularity of a column, a table, or a dataset.
None of our BigQuery tables hold personally identifiable or confidential information.
Therefore, there is no compelling access-control reason to control the sharing of
flight information at a column or table level. So, we can share the dsongcp dataset that
was created in Chapter 2, and we can make everyone in the organization working on
this project a bigquery.user so that they can carry out queries on this dataset. You
can do this from the BigQuery web console from the dataset menu.

In some cases, you might find that your dataset or table contains certain columns that
have personally identifying or confidential information. You might need to restrict
access to those columns while leaving the remainder of the table accessible to a wider

132 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

3 Or make a copy or view of the table with anonymized column values—we cover safeguarding personally iden‐
tifiable information in Chapter 7 and in the Appendix.

4 For example, the time zone of Sevastopol changed in 2014 from Eastern European Time (UTC+2) to Moscow
Time (UTC+4) after the annexation of Crimea by the Russian Federation.

audience.3 Whenever you need to provide access to a subset of a table in BigQuery
(whether it is specific columns or specific rows), you can use views. Put the table itself
in a dataset that is accessible to a very small set of users. Then, create a view on this
table that will pull out the relevant columns and rows and save this view in a separate
dataset that has wider accessibility. Your users will query only this view, and because
the personally identifying or confidential information is not even present in the view,
the chances of inadvertent leakage are lowered.

Another way to restrict access at the level of a BigQuery table is to use Cloud IAM. To
control access at the level of a column, you’d use policy tags and Data Catalog.

Dataplex and Analytics Hub
Once you get into the habit of sharing data widely, governance can become problem‐
atic. It is better if you can administer data across Cloud Storage in a consistent man‐
ner and track lineage, etc. That’s what Dataplex is for.

It can be rather cumbersome to share tables and datasets one at a time with one user
or one group at a time. To implement sharing at scale and get statistics on how people
are using the data you have shared, use Analytics Hub.

Time Correction
Correcting times reported in local time to UTC is not a simple endeavor. There are
several steps:

• Local time depends on, well, the location. The flight data that we have records
only the name of the airport (e.g., ALB for Albany). We, therefore, need to obtain
the latitude and longitude given an airport code. The BTS has a dataset that con‐
tains this information, which we can use to do the lookup.

• Given a latitude/longitude pair, we need to look up the time zone from a map of
global time zones. For example, given the latitude and longitude of the airport in
Albany, we would need to get back America/New_York. There are several web
services that do this, but the Python package timezonefinder is a more efficient
option because it works completely offline. The drawback is that this package
does not handle oceanic areas and some historical time zone changes,4 but that’s a
trade-off that we can make for now.

Time Correction | 133

https://oreil.ly/JfQLH
https://oreil.ly/788TL
https://oreil.ly/khmoN
https://oreil.ly/khmoN
https://oreil.ly/BVjVn

• The time zone offset (from Greenwich Mean Time [GMT/UTC]) at a location
changes during the year due to daylight savings corrections. In New York, for
example, it is six hours in summer and five hours in winter behind UTC. Given
the time zone (America/New_York), therefore, we also need the local departure
date and time (say Jan. 13, 2015, 2:08 p.m.) in order to find the corresponding
time zone offset. The Python package pytz provides this capability by using the
underlying operating system.

The problem of ambiguous times still remains—every instant between 01:00 and
02:00 local time occurs twice on the day that the clock switches from daylight savings
time (summer time) to standard time (winter time). So, if our dataset has a flight
arriving at 01:30, we need to make a choice of what time that represents. In a real-
world situation, you would look at the typical duration of the flight and choose the
one that is more likely. For the purposes of this book, I’ll always assume the winter
time (i.e., is_dst is False) on the dubious grounds that it is the standard time zone
for that location.

The complexity of these steps should, I hope, convince you to follow best practices
when storing time.

Best Practices When Storing Time
Always try to store two columns for every timestamp:

1. The timestamp in UTC so that you can merge data from across the world if
necessary.

2. The currently active time zone offset so that you can carry out analysis that
requires the local time. For example, is there a spike associated with traffic
between 5 p.m. and 6 p.m. local time?

134 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

5 The Java API is much more mature and performant, but Python is easier and more concise. In this book, we
will use Python.

Apache Beam/Cloud Dataflow
The canonical way to build data pipelines on Google Cloud Platform is to use Cloud
Dataflow. Cloud Dataflow is an externalization of technologies called Flume and Mill‐
Wheel that have been in widespread use at Google for several years. It employs a pro‐
gramming model that handles both batch and streaming data in a uniform manner,
thus providing the ability to use the same codebase both for batch and continuous
stream processing. The code itself is written in Apache Beam, either in Java, Python,
or Go,5 and it is portable in the sense that it can be executed on multiple execution
environments, including Apache Flink and Apache Spark. On GCP, Cloud Dataflow
provides a fully managed (serverless) service that is capable of executing Beam pipe‐
lines. Resources are allocated on demand, and they autoscale so as to achieve both
minimal latency and high resource utilization.

Beam programming involves building a pipeline (a series of data transformations)
that is submitted to a runner. The runner will build a graph and then stream data
through it. Each input dataset comes from a source and each output dataset is sent to
a sink. Figure 4-3 illustrates the Beam pipeline that we are about to build.

Compare the steps in Figure 4-2 with the block diagram of the ETL (extract-
transform-load) pipeline in Figure 4-3. Let’s build the data pipeline piece by piece.

Time Correction | 135

https://oreil.ly/Ai2qC
https://oreil.ly/K9m2s
https://oreil.ly/K9m2s
http://beam.apache.org
https://oreil.ly/hBexq
https://oreil.ly/gF8lQ

Figure 4-3. The Dataflow pipeline that we are about to build.

Parsing Airports Data
You can download information about the location of airports from the BTS website. I
selected all of the fields, downloaded the CSV file to my local hard drive, extracted it,
and compressed it with gzip. The gzipped airports file is available in the GitHub
repository for this book.

136 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

https://oreil.ly/k5SWh
https://oreil.ly/AKsBs
https://oreil.ly/AKsBs

6 If you are using an ephemeral shell like Cloud Shell, you will have to run the activate line every time you start
a new session. This will load up the virtual environment that you were using earlier. This way, you will not
need to reinstall the Python packages every time.

7 This code is in 04_streaming/transform/df01.py of the GitHub repository of this book.

In order to use Apache Beam from Cloud Shell, we need to install it into our Python
environment. Go ahead and install the time zone packages also at this time:6

virtualenv ~/beam_env
source ~/beam_env/bin/activate
python3 -m pip install --upgrade \
 timezonefinder pytz \
 'apache-beam[gcp]'

The Read transform in the Beam pipeline that follows reads in the airports file line by
line:7

with beam.Pipeline('DirectRunner') as pipeline:
 airports = (pipeline
 | beam.io.ReadFromText('airports.csv.gz')
 | beam.Map(lambda line: next(csv.reader([line])))
 | beam.Map(lambda fields: (fields[0], (fields[21], fields[26])))
)

Apache Beam Python Syntax
The Apache Beam code may look nothing like any Python you have seen before. Let’s
break it down.

The first line creates a Beam pipeline that will be executed on the local machine
(“DirectRunner”):

with beam.Pipeline('DirectRunner') as pipeline:
 # some code here

Next, all the lines within the with block are executed. However, those lines of code
only create the execution graph. Conceptually, you can think of it as the pipeline get‐
ting compiled. It is only when the graph corresponding to the full with block has been
created that the pipeline is executed.

Let’s look at the lines of code within the with block. These consist of data transforma‐
tion methods executed one after the other, with the output of one transform being fed
in as the input to the next transform. For example, these two lines:

 beam.io.ReadFromText('airports.csv.gz')
 | beam.Map(lambda line: next(csv.reader([line])))

mean that the file airports.csv.gz should be read. ReadFromText reads the input file
line-by-line. Each line is then sent to the Map transform. The pipe symbol (|) is what

Time Correction | 137

https://oreil.ly/gul4e
https://oreil.ly/FP3CO

says that the output of ReadFromText has to be sent in as the input to Map. You might
be familiar with this idiomatic use of the pipe symbol in the Linux command line.

The Map transform applies some user-specified function to the data. What function
are we applying? We could have written:

 | beam.Map(parse_line)

and defined the function parse_line as follows:

def parse_line(line):
 return next(csv.reader([line]))

But doing this would have involved writing a whole bunch of small functions. The
lambda syntax in Python allows us to define a function in-line without giving the
function a name:

 | lambda line: some_code_with(line))

The last strange thing might be the function body itself:

 next(csv.reader([line]))

We are invoking the reader() function in the Python module called csv and passing
it an array of lines. The array here has only one item ([line]). The reader() will give
us back an iterator to an array of parsed rows. When we call next() in Python, we are
asking the iterator to get us the next item. By calling next(), therefore, we get the first
parsed row.

This is all quite terse, but quite idiomatic. Pick up a Python book if any of this syntax
was new to you.

For example, suppose that one of the input lines read out of the text file source is the
following:

1000401,10004,"04A","Lik Mining Camp","Lik, AK",101,1,"United
States","US","Alaska","AK","02",3000401,30004,"Lik,
AK",101,1,68,"N",5,0,68.08333333,163,"W",10,0,-163.16666667,"",2007-07-01,,0,1,

The first Map takes this line and passes it to a CSV reader that parses it (taking into
account fields like Lik, AK that have commas in them) and pulls out the fields as a
list of strings. These fields are then passed to the next transform. The second Map
takes the fields as input and outputs a tuple of the form (the extracted fields are
shown in bold in the previous example):

(1000401, (68.08333333,-163.16666667))

The first number is the unique airport code (we use this, rather than the airport’s
three-letter code, because airport locations can change over time), and the next two
numbers are the latitude/longitude pair for the airport’s location. The variable air
ports, which is the result of these three transformations, is not a simple in-memory

138 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

list of these tuples. Instead, it is an immutable collection, termed a PCollection, that
you can take out-of-memory and distribute.

We can write the contents of the PCollection to a text file to verify that the pipeline
is behaving correctly:

(airports
 | beam.Map(lambda airport_data: '{},{}'.format(airport_data[0], ',' \
 .join(airport_data[1])))
 | beam.io.WriteToText('extracted_airports')
)

Try this out: the code, in 04_streaming/transform/df01.py, is just a Python program
that you can run from the command line. First, install the Apache Beam package if
you haven’t yet done so and then run the program df01.py while you are in the direc‐
tory containing the GitHub repository of this book:

cd 04_streaming/simulate
./install_packages.sh
python3 ./df01.py

This runs the code in df01.py locally. Later, we will change the pipeline line to:

with beam.Pipeline('DataflowRunner') as pipeline:

and get to run the pipeline on the Google Cloud Platform using the Cloud Dataflow
service. With that change, simply running the Python program launches the data
pipeline on multiple workers in the cloud. As with many distributed systems, the out‐
put of Cloud Dataflow is potentially sharded to one or more files. You will get a file
whose name begins with “extracted_airports” (mine was extracted_airports-00000-
of-00001), a few of whose lines might look something like this:

1000101,58.10944444,-152.90666667
1000301,65.54805556,-161.07166667

The columns are AIRPORT_SEQ_ID, LATITUDE, and LONGITUDE—the order of the rows
you get depends on which of the parallel workers finished first, so it could be
different.

Adding Time Zone Information
Let’s now change the code to determine the time zone corresponding to a latitude/
longitude pair. In our pipeline, rather than simply emitting the latitude/longitude
pair, we emit a list of three items: latitude, longitude, and time zone:

airports = (pipeline
 | beam.Read(beam.io.ReadFromText('airports.csv.gz'))
 | beam.Map(lambda line: next(csv.reader([line])))
 | beam.Map(lambda fields: (fields[0], addtimezone(fields[21], fields[26])))
)

Time Correction | 139

8 This code is in 04_streaming/transform/df02.py of the GitHub repository of this book.

9 See the answer to the question “How do I handle NameErrors?” in the Google documentation.
10 Saving Python objects is called pickling.
11 Chicago’s airport didn’t pack up and move on June 30. Most likely, a new terminal or runway was opened at

that time, and this changed the location of the centroid of the airport’s aerial extent. Notice that the change is
just 0.0036 in latitude degrees. At Chicago’s latitude, this translates to about 400 meters.

The lambda keyword in Python sets up an anonymous function. In the case of the
first use of lambda in the preceding snippet, that method takes one parameter (line)
and returns the stuff following the colon. We can determine the time zone by using
the timezonefinder package:8

def addtimezone(lat, lon):
 import timezonefinder
 tf = timezonefinder.TimezoneFinder()
 lat = float(lat)
 lon = float(lon)
 return (lat, lon, tf.timezone_at(lng=lon, lat=lat))

The location of the import statement in the preceding example might look strange
(most Python imports tend to be at the top of the file), but this import-within-the-
function pattern is recommended by Cloud Dataflow so that,9 when we submit it to
the cloud, pickling of the main session doesn’t end up pickling imported packages
also.10

For now, though, we are going to run this (df02.py) locally. This will take a while
because the time zone computation involves a large number of polygon intersection
checks and because we are running locally, not (yet!) distributed in the cloud. So, let’s
speed it up by adding a filter to reduce the number of airport locations we have to
look up:

 | beam.io.ReadFromText('airports.csv.gz')
 | beam.Filter(lambda line: "United States" in line
 and line[-2:] == '1,')

The BTS flight delay data is only for US domestic flights, so we don’t need the time
zones of airports outside the United States. The reason for the second check is that
airport locations change over time, but we are interested only in the current location
of the airport. For example, here are the airport locations for ORD (or Chicago):

1393001,...,"ORD",...,41.97805556,...,-87.90611111,...,1950-01-01,2011-06-30,0,0,
1393002,...,"ORD",...,41.98166667,...,-87.90666667,...,2011-07-01,2013-09-30,0,0,
1393003,...,"ORD",...,41.97944444,...,-87.90750000,...,2013-10-01,2015-09-30,0,0,
1393004,...,"ORD",...,41.97722222,...,-87.90805556,...,2015-10-01,,0,1,

The first row captures the location of Chicago’s airport between 1950 and June 30,
2011.11 The second row is valid from July 1, 2011, to September 30, 2013. The last

140 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

https://oreil.ly/bqoB2
https://oreil.ly/2kQpa

12 Normally, the recommended way to sample a BigQuery table is to do SELECT * FROM dsongcp.flights
WHERE TABLESAMPLE SYSTEM (0.001) because table sampling isn’t cached, so we will get different results each
time. However, at the time of writing, table sampling works only on tables and flights is a View. Besides, in our
current use case, we don’t care whether or not we get different samples each time we run the query. That’s why
I’m using rand().

13 See the file 04_streaming/transform/bqsample.sh.

row, however, is the current location and this is marked by the last column (the AIR
PORT_IS_LATEST field) being 1.

That’s not the only line we are interested in, however! Flights before 2015-10-01 will
report the ID of the second to last row. We could add a check for this, but this looks
rather dicey for a slight bit of optimization. So, I’ll remove that last check, so that we
have only:

 | beam.io.ReadFromText('airports.csv.gz')
 | beam.Filter(lambda line: "United States" in line)

Once I do this and run df02.py, the extracted information for the airports looks like
this:

1672301,62.03611111,-151.45222222,America/Anchorage
1672401,43.87722222,-73.41305556,America/New_York
1672501,40.75722222,-119.21277778,America/Los_Angeles

The last column in the extracted information has the time zone, which was deter‐
mined from the latitude and longitude of each airport.

Converting Times to UTC
Now that we have the time zone for each airport, we are ready to tackle converting
the times in the flights data to UTC. At the time that we are developing the pro‐
gram, we’d prefer not to process all the months we have in BigQuery—waiting for the
query each time we run the program will be annoying. Instead, we will create a small
sample of the flights data in BigQuery against which to develop our code:12

SELECT *
FROM dsongcp.flights
WHERE RAND() < 0.001

This returns about 6,000 rows. We can use the BigQuery web UI to save these results
as a JavaScript Object Notation (JSON) file. However, I prefer to script things out:13

bq query --destination_table dsongcp.flights_sample \
 --replace --nouse_legacy_sql \
 'SELECT * FROM dsongcp.flights WHERE RAND() < 0.001'

bq extract --destination_format=NEWLINE_DELIMITED_JSON \
 dsongcp.flights_sample \

Time Correction | 141

14 This code is in 04_streaming/transform/df03.py of the GitHub repository of this book.

 gs://${BUCKET}/flights/ch4/flights_sample.json

gsutil cp gs://${BUCKET}/flights/ch4/flights_sample.json

This creates a file named flight_sample.json, a row of which looks similar to this:

{"FL_DATE":"2015-04-28","UNIQUE_CARRIER":"EV","ORIGIN_AIRPORT_SEQ_ID":"1013503",
"ORIGIN":"ABE","DEST_AIRPORT_SEQ_ID":"1039705","DEST":"ATL",
"CRS_DEP_TIME":"1600","DEP_TIME":"1555","DEP_DELAY":-5,"TAXI_OUT":7,
"WHEELS_OFF":"1602","WHEELS_ON":"1747","TAXI_IN":4,"CRS_ARR_TIME":"1809",
"ARR_TIME":"1751","ARR_DELAY":-18,"CANCELLED":false,"DIVERTED":false,
"DISTANCE":"692.00"}

Reading the flights data starts out similar to reading the airports data:14

flights = (pipeline
 | 'flights:read' >> beam.io.ReadFromText('flights_sample.json')
 | 'flights:parse' >> beam.Map(lambda line: json.loads(line))

This is the same code as when we read the airports.csv.gz file, except that I am also
giving a name (flights:read) to this transform step and using a JSON parser instead
of a CSV parser. Note the syntax here:

 | 'name-of-step' >> transform_function()

The next step, though, is different because it involves two PCollections. We need to
join the flights data with the airports data to find the time zone corresponding to each
flight. To do that, we make the airports PCollection a “side input.” Side inputs in
Beam are like views into the original PCollection, and are either lists or dicts (dic‐
tionaries). In this case, we will create a dict that maps airport ID to information about
the airports:

flights = (pipeline
 |'flights:read' >> beam.io.ReadFromText('flights_sample.json')
 | 'flights:parse' >> beam.Map(lambda line: json.loads(line))
 |'flights:tzcorr' >> beam.FlatMap(tz_correct,
 beam.pvalue.AsDict(airports))
)

The fact that the PCollection has to be a Python list or a Python
dict means that side inputs have to be small enough to fit into
memory. If you need to join two large PCollections that will not
fit into memory, use a CoGroupByKey.

142 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

https://oreil.ly/Kiz6x

The FlatMap() method calls out to a method tz_correct(), which takes the parsed
content of a line from flights_sample.json (containing a single flight’s information)
and a Python dictionary (containing all the airports’ time zone information):

def tz_correct(fields, airport_timezones):
 try:
 # convert all times to UTC
 # ORIGIN_AIRPORT_SEQ_ID is the name of JSON attribute
 dep_airport_id = fields["ORIGIN_AIRPORT_SEQ_ID"]
 arr_airport_id = fields["DEST_AIRPORT_SEQ_ID"]
 # airport_id is the key to airport_timezones dict
 # and the value is a tuple (lat, lon, timezone)
 dep_timezone = airport_timezones[dep_airport_id][2]
 arr_timezone = airport_timezones[arr_airport_id][2]

 for f in ["CRS_DEP_TIME", "DEP_TIME", "WHEELS_OFF"]:
 fields[f] = as_utc(fields["FL_DATE"], fields[f], dep_timezone)
 for f in ["WHEELS_ON", "CRS_ARR_TIME", "ARR_TIME"]:
 fields[f] = as_utc(fields["FL_DATE"], fields[f], arr_timezone)

 yield json.dumps(fields)
 except KeyError as e:
 logging.exception(" Ignoring " + line +
 " because airport is not known")

Why FlatMap() instead of Map to call tz_correct()? A Map is a 1-to-1 relation
between input and output, whereas a FlatMap() can return 0–N outputs per input.
The way it does this is with a Python generator function (i.e., the yield keyword—
think of the yield as a return that returns one item at a time until there is no more
data to return). Using FlatMap here allows us to ignore any flight information corre‐
sponding to unknown airports—even though this doesn’t happen in the historical
data we are processing, a little bit of defensive programming doesn’t hurt.

The tz_correct() code gets the departure airport ID from the flight’s data and then
looks up the time zone for that airport ID from the airport’s data. After it has the time
zone, it calls out to the method as_utc() to convert each of the datetimes reported in
that airport’s time zone to UTC:

def as_utc(date, hhmm, tzone):
 try:
 if len(hhmm) > 0 and tzone is not None:
 import datetime, pytz
 loc_tz = pytz.timezone(tzone)
 loc_dt = loc_tz.localize(datetime.datetime.strptime(date,'%Y-%m-%d'),
 is_dst=False)
 loc_dt += datetime.timedelta(hours=int(hhmm[:2]),
 minutes=int(hhmm[2:]))
 utc_dt = loc_dt.astimezone(pytz.utc)
 return utc_dt.strftime('%Y-%m-%d %H:%M:%S')
 else:

Time Correction | 143

 return '' # empty string corresponds to canceled flights
 except ValueError as e:
 print('{} {} {}'.format(date, hhmm, tzone))
 raise e

As before, you can run this locally. To do that, run df03.py. A line that originally (in
the raw data) looked like:

{"FL_DATE":"2015-11-05","UNIQUE_CARRIER":"DL","ORIGIN_AIRPORT_SEQ_ID":"1013503",
"ORIGIN":"ABE","DEST_AIRPORT_SEQ_ID":"1039705","DEST":"ATL",
"CRS_DEP_TIME":"0600","DEP_TIME":"0556","DEP_DELAY":-4,"TAXI_OUT":12,
"WHEELS_OFF":"0608","WHEELS_ON":"0749","TAXI_IN":10,"CRS_ARR_TIME":"0818",
"ARR_TIME":"0759","ARR_DELAY":-19,"CANCELLED":false,
"DIVERTED":false,"DISTANCE":"692.00"}

now becomes:

{"FL_DATE": "2015-11-05", "UNIQUE_CARRIER": "DL",
"ORIGIN_AIRPORT_SEQ_ID": "1013503", "ORIGIN": "ABE",
"DEST_AIRPORT_SEQ_ID": "1039705", "DEST": "ATL",
"CRS_DEP_TIME": "2015-11-05 11:00:00", "DEP_TIME": "2015-11-05 10:56:00",
"DEP_DELAY": -4, "TAXI_OUT": 12, "WHEELS_OFF": "2015-11-05 11:08:00",
"WHEELS_ON": "2015-11-05 12:49:00", "TAXI_IN": 10,
"CRS_ARR_TIME": "2015-11-05 13:18:00", "ARR_TIME": "2015-11-05 12:59:00",
"ARR_DELAY": -19, "CANCELLED": false, "DIVERTED": false, "DISTANCE": "692.00"}

All the times have been converted to UTC. For example, the 0759 time of arrival in
Atlanta has been converted to UTC to become 12:59:00.

Correcting Dates
Look carefully at the following line involving a flight from Honolulu (HNL) to Dal‐
las–Fort Worth (DFW). Do you notice anything odd?

{"FL_DATE": "2015-03-06", "UNIQUE_CARRIER": "AA",
"ORIGIN_AIRPORT_SEQ_ID": "1217302", "ORIGIN": "HNL",
"DEST_AIRPORT_SEQ_ID": "1129803", "DEST": "DFW",
"CRS_DEP_TIME": "2015-03-07 05:30:00", "DEP_TIME": "2015-03-07 05:22:00",
"DEP_DELAY": -8, "TAXI_OUT": 40, "WHEELS_OFF": "2015-03-07 06:02:00",
"WHEELS_ON": "2015-03-06 12:32:00", "TAXI_IN": 7,
"CRS_ARR_TIME": "2015-03-06 12:54:00", "ARR_TIME": "2015-03-06 12:39:00",
"ARR_DELAY": -15, "CANCELLED": false, "DIVERTED": false, "DISTANCE": "3784.00"}

Examine the departure time in Honolulu and the arrival time in Dallas—the flight is
arriving the day before it departed! That’s because the flight date (2015-03-06) is the
date of departure in local time. Add in a time difference between airports, and it is
quite possible that it is not the date of arrival. We’ll look for these situations and add
24 hours if necessary. This is, of course, quite a hack (have I already mentioned that
times ought to be stored in UTC?!):

def add_24h_if_before(arrtime, deptime):
 import datetime

144 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

15 This code is in 04_streaming/transform/df04.py of the GitHub repository of this book.

 if len(arrtime) > 0 and len(deptime) > 0 and arrtime < deptime:
 adt = datetime.datetime.strptime(arrtime, '%Y-%m-%d %H:%M:%S')
 adt += datetime.timedelta(hours=24)
 return adt.strftime('%Y-%m-%d %H:%M:%S')
 else:
 return arrtime

The 24-hour hack is called just before the yield in tz_correct.15 Now that we have
new data about the airports, it is probably wise to add it to our dataset. Also, as
remarked earlier, we want to keep track of the time zone offset from UTC because
some types of analysis might require knowledge of the local time. Thus, the new
tz_correct code becomes the following:

def tz_correct(line, airport_timezones):
 fields = json.loads(line)
 try:
 # convert all times to UTC
 dep_airport_id = fields["ORIGIN_AIRPORT_SEQ_ID"]
 arr_airport_id = fields["DEST_AIRPORT_SEQ_ID"]
 dep_timezone = airport_timezones[dep_airport_id][2]
 arr_timezone = airport_timezones[arr_airport_id][2]

 for f in ["CRS_DEP_TIME", "DEP_TIME", "WHEELS_OFF"]:
 fields[f], deptz = as_utc(fields["FL_DATE"], fields[f], dep_timezone)
 for f in ["WHEELS_ON", "CRS_ARR_TIME", "ARR_TIME"]:
 fields[f], arrtz = as_utc(fields["FL_DATE"], fields[f], arr_timezone)

 for f in ["WHEELS_OFF", "WHEELS_ON", "CRS_ARR_TIME", "ARR_TIME"]:
 fields[f] = add_24h_if_before(fields[f], fields["DEP_TIME"])

 fields["DEP_AIRPORT_TZOFFSET"] = deptz
 fields["ARR_AIRPORT_TZOFFSET"] = arrtz
 yield json.dumps(fields)
 except KeyError as e:
 logging.exception(" Ignoring " + line + " because airport is not known")

When I run df04.py, which has these changes applied to it, the flight from Honolulu
to Dallas becomes:

{"FL_DATE": "2015-03-06", "UNIQUE_CARRIER": "AA",
"ORIGIN_AIRPORT_SEQ_ID": "1217302", "ORIGIN": "HNL",
"DEST_AIRPORT_SEQ_ID": "1129803", "DEST": "DFW",
"CRS_DEP_TIME": "2015-03-07 05:30:00", "DEP_TIME": "2015-03-07 05:22:00",
"DEP_DELAY": -8, "TAXI_OUT": 40, "WHEELS_OFF": "2015-03-07 06:02:00",
"WHEELS_ON": "2015-03-07 12:32:00", "TAXI_IN": 7,
"CRS_ARR_TIME": "2015-03-07 12:54:00", "ARR_TIME": "2015-03-07 12:39:00",
"ARR_DELAY": -15, "CANCELLED": false, "DIVERTED": false, "DISTANCE": "3784.00",
"DEP_AIRPORT_TZOFFSET": -36000.0, "ARR_AIRPORT_TZOFFSET": -21600.0}

Time Correction | 145

As you can see, the dates have now been corrected (see the bolded parts).

Creating Events
After we have our time-corrected data, we can move on to creating events to publish
into Pub/Sub. For now, we’ll limit ourselves to just the departed and arrived mes‐
sages—we can rerun the pipeline to create the additional events if and when our
modeling efforts begin to use other events:

def get_next_event(fields):
 if len(fields["DEP_TIME"]) > 0:
 event = dict(fields) # copy
 event["EVENT_TYPE"] = "departed"
 event["EVENT_TIME"] = fields["DEP_TIME"]
 for f in ["TAXI_OUT", "WHEELS_OFF", "WHEELS_ON",
 "TAXI_IN", "ARR_TIME", "ARR_DELAY", "DISTANCE"]:
 event.pop(f, None) # not knowable at departure time
 yield event
 if len(fields["ARR_TIME"]) > 0:
 event = dict(fields)
 event["EVENT_TYPE"] = "arrived"
 event["EVENT_TIME"] = fields["ARR_TIME"]
 yield event

Essentially, we pick up the departure time and create a departed event at that time
after making sure to remove the fields (such as arrival delay) we cannot know at the
departure time. Similarly, we use the arrival time to create an arrived event, as
shown in Figure 4-4.

In the pipeline, the event creation code is called on the flights PCollection after
the conversion to UTC has happened:

flights = (pipeline
 |'flights:read' >> beam.io.ReadFromText('flights_sample.json')
 |'flights:tzcorr' >> beam.FlatMap(tz_correct,
 beam.pvalue.AsDict(airports))
)
events = flights | beam.FlatMap(get_next_event)

146 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

16 This code is in 04_streaming/transform/df05.py of the GitHub repository of this book.

Figure 4-4. Events, when they are published, and some of the fields present in those
events.

If we now run the pipeline,16 we will see two events for each flight:

{"FL_DATE": "2015-04-28", "UNIQUE_CARRIER": "EV",
"ORIGIN_AIRPORT_SEQ_ID": "1013503", "ORIGIN": "ABE",
"DEST_AIRPORT_SEQ_ID": "1039705", "DEST": "ATL",
"CRS_DEP_TIME": "2015-04-28 20:00:00", "DEP_TIME": "2015-04-28 19:55:00",
"DEP_DELAY": -5, "CRS_ARR_TIME": "2015-04-28 22:09:00", "CANCELLED": false,
"DIVERTED": false, "DEP_AIRPORT_TZOFFSET": -14400.0,
"ARR_AIRPORT_TZOFFSET": -14400.0, "EVENT_TYPE": "departed",
"EVENT_TIME": "2015-04-28 19:55:00"}
{"FL_DATE": "2015-04-28", "UNIQUE_CARRIER": "EV",
"ORIGIN_AIRPORT_SEQ_ID": "1013503", "ORIGIN": "ABE",
"DEST_AIRPORT_SEQ_ID": "1039705", "DEST": "ATL",
"CRS_DEP_TIME": "2015-04-28 20:00:00", "DEP_TIME": "2015-04-28 19:55:00",
"DEP_DELAY": -5, "TAXI_OUT": 7, "WHEELS_OFF": "2015-04-28 20:02:00",
"WHEELS_ON": "2015-04-28 21:47:00", "TAXI_IN": 4,
"CRS_ARR_TIME": "2015-04-28 22:09:00", "ARR_TIME": "2015-04-28 21:51:00",
"ARR_DELAY": -18, "CANCELLED": false, "DIVERTED": false, "DISTANCE": "692.00",
"DEP_AIRPORT_TZOFFSET": -14400.0, "ARR_AIRPORT_TZOFFSET": -14400.0,
"EVENT_TYPE": "arrived", "EVENT_TIME": "2015-04-28 21:51:00"}

The first event is a departed event and is to be published at the departure time, while
the second event is an arrived event and is to be published at the arrival time. The

Time Correction | 147

departed event has a number of missing fields corresponding to data that is not
known at that time.

Once we have this code working, let’s add a third event that will be sent when the
plane takes off:

 if len(fields["WHEELS_OFF"]) > 0:
 event = dict(fields) # copy
 event["EVENT_TYPE"] = "wheelsoff"
 event["EVENT_TIME"] = fields["WHEELS_OFF"]
 for f in ["WHEELS_ON", "TAXI_IN",
 "ARR_TIME", "ARR_DELAY", "DISTANCE"]:
 event.pop(f, None) # not knowable at departure time
 yield event

At this point, we haven’t created a wheelsdown event yet.

Reading and Writing to the Cloud
So far, we have been reading and writing local files. However, once we start to run our
code in production, in a serverless environment, the concept of a local drive no
longer makes sense. We have to read and write from Cloud Storage. Also, because this
is structured data, it is preferable to read and write to BigQuery—recall that we
loaded our full dataset into BigQuery in Chapter 2. Now, we’d like to put the trans‐
formed (time-corrected) data there as well.

Fortunately, all this involves is changing the source or the sink. The rest of the pipe‐
line stays the same. For example, in the previous section (see 04_streaming/transform/
df05.py), we read the airports.csv.gz as:

| 'airports:read' >> beam.io.ReadFromText('airports.csv.gz')

Now, in order to read the equivalent file from Cloud Storage, we change the corre‐
sponding code in 04_streaming/transform/df06.py to be:

airports_filename = 'gs://{}/flights/airports/airports.csv.gz'.format(
 bucket)
...
| 'airports:read' >> beam.io.ReadFromText(airports_filename)

Of course, we’ll have to make sure to upload the file to Cloud Storage and make it
readable by whoever is going to run this code. Having the data file be available in our
GitHub repository was not going to scale anyway—Cloud Storage (or BigQuery) is
the right place for data.

In df05.py, I had to read a local file that contained the JSON export of a smart part of
the dataset and use a JSON parser to obtain a dict:

 | 'flights:read' >> beam.io.ReadFromText('flights_sample.json')
 | 'flights:parse' >> beam.Map(lambda line: json.loads(line))

148 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

In df06.py, the corresponding code becomes simpler because the BigQuery reader
returns a dict where the column names of the result set are the keys:

'flights:read' >> beam.io.ReadFromBigQuery(
 query='SELECT * FROM dsongcp.flights WHERE rand() < 0.001',
 use_standard_sql=True)

Of course when we run it for real, we’ll change the query to remove the sampling
(rand() < 0.001) so that we can process the entire dataset.

Similarly, where before we wrote to a local file using:

 | 'flights:tostring' >> beam.Map(lambda fields: json.dumps(fields))
 | 'flights:out' >> beam.io.textio.WriteToText('all_flights')

we’ll change the code to write to Cloud Storage using:

 flights_output = 'gs://{}/flights/tzcorr/all_flights'.format(bucket)
...
 | 'flights:tostring' >> beam.Map(lambda fields: json.dumps(fields))
 | 'flights:gcsout' >> beam.io.textio.WriteToText(flights_output)

We can write the same data to a BigQuery table also:

flights_schema = \
 'FL_DATE:date,UNIQUE_CARRIER:string,...CANCELLED:boolean'
...
 | 'flights:bqout' >> beam.io.WriteToBigQuery(
 'dsongcp.flights_tzcorr', schema=flights_schema,
 write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE,
 create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED
)

Note that we need to provide a schema when writing to BigQuery, and specify what
to do if the table already exists (we ask for the table to be truncated and contents
replaced) and if the table doesn’t already exist (we ask for the table to be created).

We can try running this code, but the pipeline will require a few extra parameters. So
where we used to have:

 with beam.Pipeline('DirectRunner') as pipeline:

we now need:

 argv = [
 '--project={0}'.format(project),
 '--staging_location=gs://{0}/flights/staging/'.format(bucket),
 '--temp_location=gs://{0}/flights/temp/'.format(bucket),
 '--runner=DirectRunner'
]
 with beam.Pipeline(argv=argv) as pipeline:

The reason is that when we read from BigQuery, we are providing a query:

Time Correction | 149

'flights:read' >> beam.io.ReadFromBigQuery(
 query='SELECT * FROM dsongcp.flights WHERE rand() < 0.001',
 use_standard_sql=True)

So, we need to provide the project that needs to be billed. In addition, and this is an
implementation detail, some temporary data needs to be staged and cached in Cloud
Storage, and we need to provide the pipeline a place to store this temporary data—we
will never be sure which operations will require staging or caching, so it’s a good idea
to always specify a scratch location in Cloud Storage for this purpose.

We can run df06.py and then check that new tables are created in BigQuery. So far, we
have been running the code locally, either on your laptop or in Cloud Shell.

Next, let’s look at how to run this in Cloud Dataflow, which is the GCP managed ser‐
vice for running Apache Beam pipelines.

Running the Pipeline in the Cloud
That last run took a few minutes on the local virtual machine (VM), and we were
processing only a thousand lines! Let’s change the code (see df07.py) to process all the
rows in the BigQuery view:

'flights:read' >> beam.io.ReadFromBigQuery(
 query='SELECT * FROM dsongcp.flights',
 use_standard_sql=True)

Now that we have much more data, we need to distribute the work, and to do that, we
will change the runner from DirectRunner (which runs locally) to DataflowRunner
(which lobs the job off to the cloud and scales it out):

 argv = [
 '--project={0}'.format(project),
 '--job_name=ch04timecorr',
 '--save_main_session',
 '--staging_location=gs://{0}/flights/staging/'.format(bucket),
 '--temp_location=gs://{0}/flights/temp/'.format(bucket),
 '--setup_file=./setup.py',
 '--max_num_workers=8',
 '--region={}'.format(region),
 '--runner=DataflowRunner'
]

 pipeline = beam.Pipeline(argv=argv)

Notice that there are a few extra parameters now:

• The job name provides the name by which this job will be listed in the GCP con‐
sole. This is so that we can troubleshoot the job if necessary.

• We ask the Dataflow submission code to save our main session. This is needed
whenever we have global variables in our Python program.

150 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

• The file setup.py should list the Python packages that we needed to install (time
zonefinder and pytz) as we went along—Cloud Dataflow will need to install
these packages on the Compute Engine instances that it launches behind the
scenes:

REQUIRED_PACKAGES = [
 'timezonefinder',
 'pytz'
]

• By default, Dataflow autoscales the number of workers based on throughput—the
more lines we have in our input data files, the more workers we need. This is
called Horizontal Autoscaling. To turn off autoscaling, we can specify --
autoscaling_algorithm=NONE, and to constrain it somewhat, we can specify the
maximum number of workers.

• We specify the region in which the Dataflow pipeline needs to run.
• The runner is no longer DirectRunner (which runs locally). It is now Dataflow
Runner.

Running the Python program submits the job to the cloud. Cloud Dataflow auto‐
scales each step of the pipeline based on throughput, and streams the events data into
BigQuery (see Figure 4-3). You can monitor the running job on the Cloud Platform
Console in the Cloud Dataflow section.

Even as the events data is being written out, we can query it by browsing to the Big‐
Query console and typing the following:

SELECT
 ORIGIN,
 DEP_TIME,
 DEST,
 ARR_TIME,
 ARR_DELAY,
 EVENT_TIME,
 EVENT_TYPE
FROM
 dsongcp.flights_simevents
WHERE
 (DEP_DELAY > 15 and ORIGIN = 'SEA') or
 (ARR_DELAY > 15 and DEST = 'SEA')
ORDER BY EVENT_TIME ASC
LIMIT
 5

Time Correction | 151

https://oreil.ly/htqWw

This returns:

Row ORI

GIN

DEP_TIME DEST ARR_TIME ARR_DELAY EVENT_TIME EVENT_TYPE

1 SEA 2015-01-01

08:21:00 UTC

IAD null null 2015-01-01

08:21:00 UTC

departed

2 SEA 2015-01-01

08:21:00 UTC

IAD null null 2015-01-01

08:38:00 UTC

wheelsoff

3 SEA 2015-01-01

08:21:00 UTC

IAD 2015-01-01

12:48:00 UTC

22.0 2015-01-01

12:48:00 UTC

arrived

4 KOA 2015-01-01

10:11:00 UTC

SEA 2015-01-01

15:45:00 UTC

40.0 2015-01-01

15:45:00 UTC

arrived

5 SEA 2015-01-01

16:43:00 UTC

PSP null null 2015-01-01

16:43:00 UTC

departed

As expected, we see three events for the SEA-IAD flight, one at departure, the next at
wheelsoff, and the third at arrival. The arrival delay is known only at arrival.

BigQuery is a columnar database, so a query that selects all fields:

SELECT
 *
FROM
 dsongcp.flights_simevents
ORDER BY EVENT_TIME ASC

will be inefficient. However, we do need all of the event data in order to send out
event notifications. Therefore, we traded off storage for speed by adding an extra col‐
umn called EVENT_DATA to our BigQuery table and populated it in our Dataflow pipe‐
line as follows:

def create_event_row(fields):
 featdict = dict(fields) # copy
 featdict['EVENT_DATA'] = json.dumps(fields)
 return featdict

Then, our query to pull the events could simply be as follows:

SELECT
 EVENT_TYPE,
 EVENT_TIME,
 EVENT_DATA
FROM
 dsongcp.flights_simevents
WHERE
 EVENT_TIME >= TIMESTAMP('2015-05-01 00:00:00 UTC')
 AND EVENT_TIME < TIMESTAMP('2015-05-03 00:00:00 UTC')
ORDER BY
 EVENT_TIME ASC

152 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

LIMIT
 2

The result looks like this:

Row EVENT_TYPE EVENT_TIME EVENT_DATA

1 wheelsoff 2015-05-01

00:00:00 UTC

{"FL_DATE": "2015-04-30", "UNIQUE_CARRIER": "DL",

"ORIGIN_AIRPORT_SEQ_ID": "1295302", "ORIGIN":

"LGA", "DEST_AIRPORT_SEQ_ID": "1330303", "DEST":

"MIA", "CRS_DEP_TIME": "2015-04-30T23:29:00",

"DEP_TIME": "2015-04-30T23:35:00", "DEP_DELAY":

6.0, "TAXI_OUT": 25.0, "WHEELS_OFF":

"2015-05-01T00:00:00", "CRS_ARR_TIME":

"2015-05-01T02:53:00", "CANCELLED": false, "DIVER

TED": false, "DEP_AIRPORT_TZOFFSET": -14400.0,

"ARR_AIRPORT_TZOFFSET": -14400.0, "EVENT_TYPE":

"wheelsoff", "EVENT_TIME": "2015-05-01T00:00:00"}

2 departed 2015-05-01

00:00:00 UTC

{"FL_DATE": "2015-04-30", "UNIQUE_CARRIER": "DL",

"ORIGIN_AIRPORT_SEQ_ID": "1295302", "ORIGIN":

"LGA", "DEST_AIRPORT_SEQ_ID": "1320402", "DEST":

"MCO", "CRS_DEP_TIME": "2015-04-30T23:55:00",

"DEP_TIME": "2015-05-01T00:00:00", "DEP_DELAY":

5.0, "CRS_ARR_TIME": "2015-05-01T02:45:00", "CANCEL

LED": false, "DIVERTED": false, "DEP_AIRPORT_TZOFF

SET": -14400.0, "ARR_AIRPORT_TZOFFSET": -14400.0,

"EVENT_TYPE": "departed", "EVENT_TIME":

"2015-05-01T00:00:00"}

This table will serve as the source of our events; it is from such a query that we will
simulate streaming flight data.

Publishing an Event Stream to Cloud Pub/Sub
Now that we have the source events from the raw flight data, we are ready to simulate
the stream. Streaming data in Google Cloud Platform is typically published to Cloud
Pub/Sub, a serverless real-time messaging service. Cloud Pub/Sub provides reliable
delivery and can scale to more than a million messages per second. Unless you are
using Cloud Pub/Sub Lite (which is a single-zone service that is built for low-cost
operation), Pub/Sub stores copies of messages in multiple zones to provide “at least
once” guaranteed delivery to subscribers, and there can be many simultaneous
subscribers.

Our simulator will read from the events table in BigQuery (populated in the previous
section) and publish messages to Cloud Pub/Sub. Essentially, we will walk through
the flight event records, getting the notification time from each, and simulate publish‐
ing those events as they happen.

Publishing an Event Stream to Cloud Pub/Sub | 153

https://oreil.ly/1G8PI

Speed-Up Factor
However, we’ll also use a mapping between the event notification time (arrival or
departure time based on event) and the current system time. Why? Because it is inef‐
ficient to always simulate the flight events at real-time speeds. Instead, we might want
to run through a day of flight data in an hour (as long as the code that processes these
events can handle the increased data rate). At other times, we may be running our
event-processing code in a debugging environment that is slower and so we might
want to slow down the simulation. I will refer to this ratio between the actual time
and simulation time as the speed-up factor—the speed-up factor will be greater than 1
if we want the simulation to be faster than real time and less than 1 if we want it to be
slower than real time.

Based on the speed-up factor, we’ll have to do a linear transformation of the event
time to system time. If the speed-up factor is 1, a 60-minute difference between the
start of the simulation in event time and the current record’s timestamp should be
encountered 60 minutes after the start of the simulation. If the speed-up factor is 60, a
60-minute difference in event time translates to a 1-minute difference in system time,
and so the record should be published a minute later. If the event time clock is ahead
of the system clock, we sleep for the necessary amount of time so as to allow the sim‐
ulation to catch up.

The simulation consists of four steps (see also Figure 4-5):

• Run the query to get the set of flight event records to publish.
• Iterate through the query results.
• Accumulate events to publish as a batch.
• Publish accumulated events and sleep as necessary.

Even though this is an ETL pipeline, the need to process records in strict sequential
order and sleep in between makes this ETL pipeline a poor fit for Cloud Dataflow.
Instead, we’ll implement this as a pure Python program. The problem with this
choice is that the simulation code is not fault tolerant—if the simulation fails, it will
not automatically restart and definitely will not start from the last successfully noti‐
fied event.

154 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

Figure 4-5. The four steps of simulation.

The simulation code that we are writing is only for quick experimentation with
streaming data. Hence, I will not take the extra effort needed to make it fault-tolerant.
If we had to do so, we could make the simulation fault-tolerant by starting from a
BigQuery query that is bounded in terms of a time range with the start of that time
range automatically inferred from the last-notified record in Cloud Pub/Sub. Then,
we could launch the simulation script from a Docker container and use Cloud Run or
Google Kubernetes Engine to automatically restart the simulation if the simulation
code fails.

Get Records to Publish
The BigQuery query is parameterized by the start and end time of the simulation and
can be invoked through the Google Cloud API for Python (see 04_streaming/simu‐
late/simulate.py in the GitHub repository):

 bqclient = bq.Client(args.project)
 querystr = """
SELECT
 EVENT_TYPE,
 EVENT_TIME AS NOTIFY_TIME,
 EVENT_DATA
FROM
 dsongcp.flights_simevents
WHERE
 EVENT_TIME >= TIMESTAMP('{}')
 AND EVENT_TIME < TIMESTAMP('{}')
ORDER BY
 EVENT_TIME ASC
"""
 rows = bqclient.query(querystr.format(args.startTime,
 args.endTime))

This, however, is a bad idea. Do you see why?

It’s because we are getting the start time and end time from the command line of the
simulation script and directly passing it into BigQuery. This is called SQL injection,

Publishing an Event Stream to Cloud Pub/Sub | 155

17 It opens a door to someone passing in queries that could, for example, delete a table. This XKCD cartoon is
famous for highlighting the issue.

which can lead to security problems.17 A better approach is to use parameterized quer‐
ies—the BigQuery query contains the parameters marked as @startTime, etc., and the
Python query function takes the definitions via the job configuration parameter:

 bqclient = bq.Client(args.project)
 querystr = """
SELECT
 EVENT_TYPE,
 EVENT_TIME AS NOTIFY_TIME,
 EVENT_DATA
FROM
 dsongcp.flights_simevents
WHERE
 EVENT_TIME >= @startTime
 AND EVENT_TIME < @endTime
ORDER BY
 EVENT_TIME ASC
"""
 job_config = bq.QueryJobConfig(
 query_parameters=[
 bq.ScalarQueryParameter("startTime", "TIMESTAMP", args.startTime),
 bq.ScalarQueryParameter("endTime", "TIMESTAMP", args.endTime),
]
)
 rows = bqclient.query(querystr, job_config=job_config)

The query function returns an object (called rows in the preceding snippet) that we
can iterate through:

 for row in rows:
 # do something

What do we need to do for each of the rows? We’ll need to iterate through the
records, build a batch of events, and publish each batch. Let’s see how each of these
steps is done.

How Many Topics?
As we walk through the query results, we need to publish events to Cloud Pub/Sub.
We have three choices in terms of the architecture:

• We could publish all the events to a single topic. However, this can be wasteful of
network bandwidth if we have a subscriber that is interested only in the wheels
off event. Such a subscriber will have to parse the incoming event, decode the
EVENT_TYPE file in the JSON, and discard events in which they are not interested.

156 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

https://xkcd.com/327

18 See 04_streaming/simulate/simulate.py in the GitHub repository.

• We could publish all the events to a single topic, but add attributes to each mes‐
sage. For example, to publish an event with two attributes event_type and
carrier, we’d do:

 publisher.publish(topic, event_data,
 event_type='departed', carrier='AA')

Then, the subscriber could ask for server-side filtering based on an attribute or
combination of attributes when creating the subscription:

 subscriber.create_subscription(request={..., "filter":
 "attributes.carrier='AS' AND attributes.event_type='arrived'"})

• Create a separate topic per event type (i.e., an arrived topic, a departed topic,
and a wheelsoff topic).

Option 1 is the simplest, and should be your default choice unless you will have many
subscribers that are interested only in subsets of the event stream. If you will have
subscribers that are interested in subsets of the event stream, choose between Options
2 and 3.

Option 2 adds software complexity. Option 3 adds infrastructure complexity. I sug‐
gest choosing Option 3 when you have only one attribute, and that attribute has only
a handful of options. This limits infrastructure complexity while keeping publisher
and subscriber code simple. Choose Option 2 when you have many attributes each
with many possible values because Option 3 in such a scenario will lead to an explo‐
sion in the number of topics.

Iterating Through Records
We will choose to have a separate topic per event type (i.e., an arrived topic, a
departed topic, and a wheelsoff topic), so we create three topics:18

for event_type in ['wheelsoff', 'arrived', 'departed']:
 topics[event_type] = publisher.topic_path(args.project, event_type)
 try:
 publisher.get_topic(topic=topics[event_type])
 logging.info("Already exists: {}".format(topics[event_type]))
 except:
 logging.info("Creating {}".format(topics[event_type]))
 publisher.create_topic(name=topics[event_type])

After creating the topics, we call the notify() method passing along the rows read
from BigQuery:

notify about each row in the dataset
programStartTime = datetime.datetime.utcnow()

Publishing an Event Stream to Cloud Pub/Sub | 157

https://oreil.ly/KBXKj

simStartTime = datetime.datetime.strptime(args.startTime,
 TIME_FORMAT).replace(tzinfo=pytz.UTC)
notify(publisher, topics, rows, simStartTime,
 programStartTime, args.speedFactor)

Building a Batch of Events
The notify() method consists of accumulating the rows into batches, publishing a
batch, and sleeping until it is time to publish the next batch:

def notify(publisher, topics, rows, simStartTime, programStart, speedFactor):
 # sleep computation
 def compute_sleep_secs(notify_time):
 time_elapsed = (datetime.datetime.utcnow() -
 programStart).seconds
 sim_time_elapsed = (notify_time - simStartTime).seconds / speedFactor
 to_sleep_secs = sim_time_elapsed - time_elapsed
 return to_sleep_secs

 tonotify = {}
 for key in topics:
 tonotify[key] = list()

 for row in rows:
 event, notify_time, event_data = row

 # how much time should we sleep?
 if compute_sleep_secs(notify_time) > 1:
 # notify the accumulated tonotify
 publish(publisher, topics, tonotify, notify_time)
 for key in topics:
 tonotify[key] = list()

 # recompute sleep, since notification takes a while
 to_sleep_secs = compute_sleep_secs(notify_time)
 if to_sleep_secs > 0:
 logging.info('Sleeping {} seconds'.format(to_sleep_secs))
 time.sleep(to_sleep_secs)

 tonotify[event].append(event_data)
 # left-over records; notify again
 publish(publisher, topics, tonotify, notify_time)

There are a few points to be made here. First is that we work completely in UTC so
that the time difference computations make sense. Second, we always compute
whether to sleep by looking at the time difference since the start of the simulation. If
we simply keep moving a pointer forward, errors in time will accumulate. Finally,
note that we check whether the sleep time is more than a second the first time, so as
to give records time to accumulate. If, when you run the program, you do not see any
sleep, your speed-up factor is too high for the capability of the machine running the
simulation code and the network between that machine and Google Cloud Platform.

158 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

19 At 60 times real-time speed, the 3 days of flight data will take over an hour to complete. Hopefully, that’s
enough time to complete the rest of the chapter. If not, just restart the simulator. If you get done early, hit
Ctrl-C to stop the simulator.

Slow down the simulation, get a larger machine, or run it behind the Google firewall
(such as in Cloud Shell or on a Compute Engine instance).

Publishing a Batch of Events
The notify() method that we saw in the previous code example has accumulated the
events in between sleep calls. Even though it appears that we are publishing one event
at a time, the publisher actually maintains a separate batch for each topic:

def publish(publisher, topics, allevents):
 for key in topics: # 'departed', 'arrived', etc.
 topic = topics[key]
 events = allevents[key]
 logging.info('Publishing {} {} events'.format(len(events), key))
 for event_data in events:
 publisher.publish(topic, event_data.encode())

Note that Cloud Pub/Sub does not guarantee the order in which messages will be
delivered, especially if the subscriber lets a huge backlog build up. Out-of-order mes‐
sages will happen, and downstream subscribers will need to deal with them. Cloud
Pub/Sub guarantees “at least once” delivery and will resend the message if the sub‐
scriber does not acknowledge a message in time. I will use Cloud Dataflow to ingest
from Cloud Pub/Sub, and Cloud Dataflow deals with both these issues (out-of-order
and duplication) transparently.

We can try out the simulation by typing the following:

python3 simulate.py --startTime '2015-05-01 00:00:00 UTC' \
 --endTime '2015-05-04 00:00:00 UTC' --speedFactor=60

This will simulate three days of flight data (the end time is exclusive) at 60 times real-
time speed and stream the events into three topics on Cloud Pub/Sub.19 Because the
simulation starts off from a BigQuery query, it is quite straightforward to limit the
simulated events to just a single airport or to airports within a latitude/longitude
bounding box.

In this section, we looked at how to produce an event stream and publish those events
in real time. Throughout this book, we can use this simulator and these topics for
experimenting with how to consume streaming data and carry out real-time
analytics.

Publishing an Event Stream to Cloud Pub/Sub | 159

20 For an example, see the reference architecture to analyze games on mobile devices.
21 See 04_streaming/realtime/avg01.py in the GitHub repository.

Real-Time Stream Processing
Now that we have a source of streaming data that includes location information, let’s
look at how to build a real-time dashboard. Figure 4-6 presents the reference archi‐
tecture for many solutions on Google Cloud Platform.20

Figure 4-6. Reference architecture for data processing on Google Cloud Platform.

In the previous section, we set up a real-time stream of events into Cloud Pub/Sub
that we can aggregate in Cloud Dataflow and write to BigQuery. Data Studio can con‐
nect to BigQuery and provide a real-time, interactive dashboard. Let’s get started.

Streaming in Dataflow
When we carried out the time correction of the raw flight data, we were working off a
complete BigQuery flights table, processing them in Cloud Dataflow, and writing the
events table into BigQuery. Processing a finite, bounded input dataset is called batch
processing.

Here, though, we need to process events in Cloud Pub/Sub that are streaming in. The
dataset is unbounded. Processing an unbounded set of data is called stream processing.
Fortunately, the code to do stream processing in Apache Beam is identical to the code
to do batch processing.

We could simply receive the events from Cloud Pub/Sub similarly to how we read
data from a CSV file:21

topic_name = "projects/{}/topics/arrived".format(project)
events = (pipeline
 | 'read' >> beam.io.ReadFromPubSub(topic=topic_name)

160 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

https://oreil.ly/j86HQ

 | 'parse' >> beam.Map(lambda s: json.loads(s))
)

The only change we have to do is to turn on the streaming flag in the Dataflow
options:

argv = [
 ...
 '--streaming',
]

We can stream the read-in events to BigQuery using code similar to what we used in
batch processing:

schema = 'FL_DATE:date,...,EVENT_TYPE:string,EVENT_TIME:timestamp'
(events
 | 'bqout' >> beam.io.WriteToBigQuery(
 'dsongcp.streaming_events', schema=schema,
 create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED
)
)

In the preceding code, we subscribe to a topic in Cloud Pub/Sub and begin reading
from it. As each message streams in, we parse the message, convert it to a TableRow
in BigQuery, and then write it out. Indeed, if this is all we need, we can simply use the
Google-provided Dataflow template that goes from Pub/Sub to BigQuery.

But let’s say that we want to read both the arrived events and the departed events and
write them to the same BigQuery table. We can do that quite simply in Beam:

events = {}
for event_name in ['arrived', 'departed']:
 topic_name = "projects/{}/topics/{}".format(project, event_name)
 events[event_name] = (pipeline
 | 'read:{}'.format(event_name) >>
 beam.io.ReadFromPubSub(topic=topic_name)
 | 'parse:{}'.format(event_name) >> beam.Map(
 lambda s: json.loads(s))
)

all_events = (events['arrived'], events['departed']) | beam.Flatten()

Flattening the two sets of events concatenates them into a single collection. We then
write out all_events to BigQuery.

To try this code out, we need to run the simulator we wrote in the previous section so
that the simulator can publish events to the Pub/Sub topics. To start the simulation,
start the Python simulator that we developed in the previous section:

python simulate.py --startTime '2015-05-01 00:00:00 UTC'
--endTime '2015-05-04 00:00:00 UTC' --speedFactor 30

Real-Time Stream Processing | 161

https://oreil.ly/7hz4x

22 If you wanted to write the raw data that is received to BigQuery, you could do that, too, of course—that is
what is shown in the previous code snippet. In this section, I assume that we need only the aggregate statistics
over the past hour.

The simulator will send events from May 1, 2015, to May 3, 2015, at 30 times real-
time speed, so that an hour of data is sent to Cloud Pub/Sub in two minutes. You can
do this from Cloud Shell or from your local laptop. (If necessary, run install_pack
ages.sh to install the necessary Python packages and gcloud auth application-
default login to give the application the necessary credentials to execute queries.)

In another terminal, start avg01.py to read the stream of events and write them out to
BigQuery. We can then query the dataset in BigQuery even as the events are stream‐
ing in. The BigQuery UI may not even show this streaming table yet, but it can be
queried:

SELECT * FROM dsongcp.streaming_events
ORDER BY EVENT_TIME DESC
LIMIT 5

Windowing a Pipeline
Although we could do just a straight data transfer, I’d like to do more. When I popu‐
late a real-time dashboard of flight delays, I’d like the information to be aggregated
over a reasonable interval—for example, I want a moving average of flight delays and
the total number of flights over the past 60 minutes at every airport. So, rather than
simply take the input received from Cloud Pub/Sub and stream it out to BigQuery, I’d
like to carry out time-windowed analytics on the data as I’m receiving it and write
those analytics to BigQuery.22 Cloud Dataflow can help us do this.

While we may be averaging over 60 minutes, how often should we compute this 60-
minute average? It might be advantageous, for example, to use a sliding window and
compute this 60-minute average every five minutes.

Streaming Aggregation
The key difference between batch aggregation and streaming aggregation is the
unbounded nature of the data in stream processing. What does an operation like
“max” mean when the data is unbounded? After all, whatever our maximum at this
point in time, a large value could come along in the stream at a later point.

A key concept when aggregating streaming data is that of a window that becomes the
scope for all aggregations. Here, we apply a time-based sliding window on the pipe‐
line. From now on, all grouping, aggregation, and so on is within that time window
and there is a separate maximum, average, etc. in each time window:

162 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

stats = (all_events
 | 'byairport' >> beam.Map(by_airport)
 | 'window' >> beam.WindowInto(
 beam.window.SlidingWindows(60 * 60, 5 * 60))
 | 'group' >> beam.GroupByKey()
 | 'stats' >> beam.Map(lambda x: compute_stats(x[0], x[1]))
)

Let’s walk through the preceding code snippet carefully.

The first thing we do is to take all the events and apply the by_airport transforma‐
tion to the events:

 | 'byairport' >> beam.Map(by_airport)

What this does is to pull out the origin airport for departed events and destination
airport for arrival events:

def by_airport(event):
 if event['EVENT_TYPE'] == 'departed':
 return event['ORIGIN'], event
 else:
 return event['DEST'], event

Next, we apply a sliding window to the event stream. The window is of 60 minutes
duration, applied every 5 minutes:

 | 'window' >> beam.WindowInto(
 beam.window.SlidingWindows(60 * 60, 5 * 60))

Then, we apply a GroupByKey:

 | 'group' >> beam.GroupByKey()

What’s the key?

In the by_airport function mentioned previously, we made the airport the key and
the entire event object the value. So, the GroupByKey groups events by airport.

But the GroupByKey is not just by airport. Because we have already applied a sliding
window, there is a separate group created for each time window. So, each group now
consists of 60 minutes of flight events that arrived or departed at a specific airport.

It is on these groups that we call the compute_stats function in the last Map of the
snippet:

 | 'stats' >> beam.Map(lambda x: compute_stats(x[0], x[1]))

The compute_stats function takes the airport and list of events at that airport, and
then computes some statistics:

def compute_stats(airport, events):
 arrived = [event['ARR_DELAY'] for event in events
 if event['EVENT_TYPE'] == 'arrived']

Real-Time Stream Processing | 163

 avg_arr_delay = float(np.mean(arrived))
 if len(arrived) > 0 else None

 departed = [event['DEP_DELAY'] for event in events
 if event['EVENT_TYPE'] == 'departed']
 avg_dep_delay = float(np.mean(departed))
 if len(departed) > 0 else None

 num_flights = len(events)
 start_time = min([event['EVENT_TIME'] for event in events])
 latest_time = max([event['EVENT_TIME'] for event in events])

 return {
 'AIRPORT': airport,
 'AVG_ARR_DELAY': avg_arr_delay,
 'AVG_DEP_DELAY': avg_dep_delay,
 'NUM_FLIGHTS': num_flights,
 'START_TIME': start_time,
 'END_TIME': latest_time
 }

In the preceding code, we pull out the arrived events and compute the average arrival
delay. Similarly, we compute the average departure delay on the departed events. We
also compute the number of flights in the time window at this airport and return all
these statistics.

The statistics are then written out to BigQuery using code that should look familiar
by now:

stats_schema = ','.join(
 ['AIRPORT:string,AVG_ARR_DELAY:float,AVG_DEP_DELAY:float',
 'NUM_FLIGHTS:int64,START_TIME:timestamp,END_TIME:timestamp'])
(stats
 | 'bqout' >> beam.io.WriteToBigQuery(
 'dsongcp.streaming_delays', schema=stats_schema,
 create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED
)
)

As with the previous section, we can start the simulator, and then start avg02.py.
When I did this, the resulting aggregations were getting produced every 5 minutes,
but within each 5 minute period, the events being notified about covered a 150
minute range (because the 30x simulation processes 150 minutes of data in 5
minutes).

The stream processing engine was applying the sliding windows based on the time on
a wall clock. We, however, want it to apply the window based on the timestamp
within the images.

How do we do that?

164 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

Using Event Timestamps
We have to add an attribute at the time we publish the events (in simulate.py):

publisher.publish(topic, event_data.encode(), EventTimeStamp=timestamp)

Then, in our Beam pipeline, when read from Pub/Sub, we should tell the pipeline to
disregard the publish time in Pub/Sub and use this attribute of the message as the
timestamp instead:

| 'read:{}'.format(event_name) >> beam.io.ReadFromPubSub(
 topic=topic_name, timestamp_attribute='EventTimeStamp')

With this change, when I run the query:

SELECT * FROM dsongcp.streaming_delays
WHERE AIRPORT = 'ATL'
ORDER BY END_TIME DESC

I get rows approximately 5 minutes apart as expected:

Row AIR

PORT

AVG_ARR_DELAY AVG_DEP_DELAY NUM_FLIGHTS START_TIME END_TIME

1 ATL 35.72222222222222 13.666666666666666 48 2015-05-01

02:24:00

UTC

2015-05-01

03:21:00

UTC

2 ATL 35.25 8.717948717948717 59 2015-05-01

02:15:00

UTC

2015-05-01

03:12:00

UTC

3 ATL 38.666666666666664 9.882352941176471 52 2015-05-01

02:19:00

UTC

2015-05-01

03:12:00

UTC

4 ATL 38.473684210526315 5.916666666666667 55 2015-05-01

02:15:00

UTC

2015-05-01

03:08:00

UTC

5 ATL 35.111111111111114 5.53125 50 2015-05-01

02:15:00

UTC

2015-05-01

03:03:00

UTC

The reported times are not exactly 5 minutes apart because the reported times corre‐
spond to the earliest/latest flight in Atlanta within the time window. Note also that the
length of the time window is approximately an hour.

It is likely, however, that Cloud Shell or your local laptop will struggle to keep up with
the event stream. We need to be executing this pipeline in Dataflow in a serverless
way.

Real-Time Stream Processing | 165

Executing the Stream Processing
To run the Beam pipeline in Cloud Dataflow, all I have to do is to change the runner
(see avg03.py in the GitHub repository):

argv = [
 '--project={0}'.format(project),
 '--job_name=ch04avgdelay',
 '--streaming',
 ...
 '--runner=DataflowRunner'
]

Before we start this pipeline, though, it is a good idea to delete the rows already writ‐
ten to the BigQuery table by avg02.py in the previous section. The easiest way to do
this is to run the following SQL DML command to truncate the table:

TRUNCATE TABLE dsongcp.streaming_delays

Running avg03.py will launch off a Dataflow job. If you now browse to the Cloud
Platform console, to the Cloud Dataflow section, you will see that a new streaming
job has started and that the pipeline looks like that shown in Figure 4-7.

The pipeline processes flight events as they stream into Pub/Sub, aggregates them
into time windows, and streams the resulting statistics into BigQuery.

166 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

Figure 4-7. The streaming pipeline to compute delay statistics in real time at each
airport.

Real-Time Stream Processing | 167

23 Recall that we are computing aggregates over 60 minutes every 5 minutes. Cloud Dataflow treats the first
“full” window as happening 65 minutes into the simulation. Because we are simulating at 30 times speed, this
is two minutes on your clock.

Analyzing Streaming Data in BigQuery
Two minutes after the launch of your program,23 the first set of data will make it into
BigQuery. You can query for the statistics for a specific airport from the BigQuery
console using the same query as before:

SELECT * FROM dsongcp.streaming_delays
WHERE AIRPORT = 'ATL'
ORDER BY END_TIME DESC

The cool thing is that we can do this querying even as the data is streaming! How
would we get the latest data for all airports? We could get all the data for each airport,
order it by time, and take the latest:

SELECT
 AIRPORT,
 ARRAY_AGG(
 STRUCT(AVG_ARR_DELAY, AVG_DEP_DELAY, NUM_FLIGHTS, END_TIME)
 ORDER BY END_TIME DESC LIMIT 1) AS a
FROM dsongcp.streaming_delays d
GROUP BY AIRPORT

The results look something like this:

Row AIRPORT a.AVG_ARR_DELAY a.AVG_DEP_DELAY a.NUM_FLIGHTS a.END_TIME

1 BUR -6.8 -5.666666666666667 8 2015-05-01

03:26:00 UTC

2 HNL 17.11111111111111 -3.7777777777777777 18 2015-05-01

03:46:00 UTC

3 CVG -7.75 null 4 2015-05-01

03:48:00 UTC

4 PHL 5.636363636363637 16.5 13 2015-05-01

03:48:00 UTC

5 IND 40.6 null 5 2015-05-01

03:45:00 UTC

Queries like these on streaming data will be useful when we begin to build our dash‐
board. For example, the first query will allow us to build a time series chart of delays
at a specific airport. The second query will allow us to build a map of average delays
across the country.

168 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

Real-Time Dashboard
Now that we have streaming data in BigQuery and a way to analyze it as it is stream‐
ing in, we can create a dashboard that shows departure and arrival delays in context.
Two maps can help explain our contingency table–based model to end users: current
arrival delays across the country and current departure delays across the country.

To pull the data to populate these charts, we need to add a BigQuery data source in
Data Studio. Although Data Studio supports specifying the query directly in the user
interface, it is much better to create a view in BigQuery and use that view as a data
source in Data Studio. BigQuery views have a few advantages over queries that you
type into Data Studio: they tend to be reusable across reports and visualization tools,
there is only one place to change if an error is detected, and BigQuery views map bet‐
ter to access privileges (Cloud Identity and Access Management roles) based on the
columns they need to access.

Here is the query that I used to create the view:

CREATE OR REPLACE VIEW dsongcp.airport_delays AS
WITH delays AS (
 SELECT d.*, a.LATITUDE, a.LONGITUDE
 FROM dsongcp.streaming_delays d
 JOIN dsongcp.airports a USING(AIRPORT)
 WHERE a.AIRPORT_IS_LATEST = 1
)

SELECT
 AIRPORT,
 CONCAT(LATITUDE, ',', LONGITUDE) AS LOCATION,
 ARRAY_AGG(
 STRUCT(AVG_ARR_DELAY, AVG_DEP_DELAY, NUM_FLIGHTS, END_TIME)
 ORDER BY END_TIME DESC LIMIT 1) AS a
FROM delays
GROUP BY AIRPORT, LONGITUDE, LATITUDE

This is slightly different from the second query in the previous section in that it also
adds the location of the airport by joining against the airports table.

Having saved the view in BigQuery, we can create a data source for the view in Data
Studio, just as we did in the previous chapter:

• Visit https://datastudio.google.com.
• Create a BigQuery data source, point it to the airport_delays view, and connect

to it.
• Change the location field from Text to a Geo | Latitude, Longitude, then click

Create Report.
• Add a Geo Chart to the report.

Real-Time Dashboard | 169

https://datastudio.google.com

• Specify the location field as the geo dimension (see Figure 4-8).
• Specify average departure delay as the dimension and United States as the zoom

level.
• Change the style so that the color bar includes all areas.
• Repeat for the arrival delay.

Figure 4-8. Dashboard of latest flight data from across the United States.

It is worth reflecting on what we did in this section. We processed streaming data in
Cloud Dataflow, creating 60-minute moving averages that we streamed into Big‐
Query. We then created a view in BigQuery that would show the latest data for each
airport, even as it was streaming in. We connected that to a dashboard in Data Studio.
Every time the dashboard is refreshed, it pulls new data from the view, which in turn
dynamically reflects the latest data in BigQuery.

Summary
In this chapter, we discussed how to build a real-time analysis pipeline to carry out
streaming analytics and populate real-time dashboards. In this book, we are using a
dataset that is not available in real time. Therefore, we simulated the creation of a
real-time feed so that I could demonstrate how to build a streaming ingest pipeline.
Building the simulation also gives us a handy test tool—no longer do we need to wait
for an interesting event to happen. We can simply play back a recorded event!

In the process of building out the simulation, we realized that time handling in the
original dataset was problematic. Therefore, we improved the handling of time in the
original data and created a new dataset with UTC timestamps and local offsets. This
is the dataset that we will use going forward.

We also looked at the reference architecture for handling streaming data in Google
Cloud Platform. First, receive your data in Cloud Pub/Sub so that the messages can

170 | Chapter 4: Streaming Data: Publication and Ingest with Pub/Sub and Dataflow

be received asynchronously. Process the Cloud Pub/Sub messages in Cloud Dataflow,
computing aggregations on the data as needed, and stream either the raw data or
aggregate data (or both) to BigQuery. We worked with all three Google Cloud prod‐
ucts (Cloud Pub/Sub, Cloud Dataflow, and BigQuery) using the Google Cloud client
libraries in Python. However, in none of these cases did we ever need to create a vir‐
tual machine ourselves—these are all serverless and autoscaled offerings. We thus
were able to concentrate on writing code, letting the platform manage the rest.

Suggested Resources
The Apache Beam website has interactive coding exercises, called Katas, that provide
an excellent hands-on way to learn streaming concepts and how to implement them
using Beam.

Dataflow templates are prewritten Apache Beam pipelines that are handy for data
migration. In the chapter, we mentioned the Dataflow template for ingesting data
from Pub/Sub into BigQuery. Dataflow templates also exist for non-Google sources.
For example, there is a Dataflow connector from SAP HANA to BigQuery, as
described in the 2017 Google blog post “Using Apache Beam and Cloud Dataflow to
Integrate SAP HANA and BigQuery” by Babu Prasad Elumalai and Mark Shalda.
That particular connector is written in Java.

This tutorial walks you through the process of creating your own Dataflow template.
Any Dataflow pipeline can be made into a template for easy sharing and convenient
launch.

In this 2021 article, “Processing Billions of Events in Real Time at Twitter,” Twitter
engineers Lu Zhang and Chukwudiuto Malife describe how Twitter processes 400 bil‐
lion events in real time using Dataflow.

Suggested Resources | 171

https://oreil.ly/nBsvI
https://oreil.ly/l6XNl
https://oreil.ly/l6XNl
https://oreil.ly/CBg0O
https://oreil.ly/bQEke
https://oreil.ly/bQEke

1 See this Wikipedia article for an excellent overview of statistical hypotheses testing.
2 John Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

CHAPTER 5

Interactive Data Exploration with
Vertex AI Workbench

In every major field of study, there is usually a towering figure who did much of the
seminal work and blazed the trail for what that particular discipline would evolve
into. Classical physics has Newton, relativity has Einstein, game theory has John
Nash, and so on. When it comes to computational statistics (the field of study that
develops computationally efficient methods for carrying out statistical operations),
the towering figure is John W. Tukey. At Bell Labs, he collaborated with John von
Neumann on early computer designs soon after World War II—famously, Tukey was
responsible for coining the word bit. Later, at Princeton (where he founded its statis‐
tics department), Tukey collaborated with James Cooley to develop the fast Fourier
transform, one of the first examples of using divide-and-conquer to address a formi‐
dable computational challenge.

While Tukey was responsible for many “hard science” mathematical and engineering
innovations, some of his most enduring work is about the distinctly softer side of sci‐
ence. Unsatisfied that most of statistics overemphasized confirmatory data analysis
(i.e., statistical hypothesis testing such as paired t-tests),1 Tukey developed a variety of
approaches to do what he termed exploratory data analysis (EDA)2 and many practi‐
cal statistical approximations. It was Tukey who developed the box plot, jack-knifing,
range test, median-median regression, and so on and gave these eminently practical
methods a solid mathematical grounding by motivating them in the context of simple
conceptual models that are applicable to a wide variety of datasets. In this chapter, we
follow Tukey’s approach of carrying out exploratory data analysis to identify

173

https://oreil.ly/62pYc

important variables, discover underlying structure, develop parsimonious models,
and use those models to identify unusual patterns and values.

All of the code snippets in this chapter are available in the folder
05_bqnotebook of the book’s GitHub repository. See the
README.md file in that directory for instructions on how to do
the steps described in this chapter.

Exploratory Data Analysis
Ever since Tukey introduced the world to the value of EDA in 1977, the traditional
first step for any data scientist has been to analyze raw data by using a variety of
graphical techniques. This is not a fixed set of methods or plots; rather, it’s an
approach meant to develop insight into a dataset and enable the development of
robust statistical models. Specifically, as a data scientist, you should do the following:

• Test any underlying assumptions, such as that a particular value will always be
present or will always lie within a certain range. For example, as discussed in
Chapter 2, the distribution of the distance between any pair of airports might
help verify whether the distance is the same across the dataset or whether it
reflects the actual flight distance.

• Use intuition and logic to identify important variables. Verify that these variables
are, indeed, important as expected. For example, plotting the relationship
between departure delay and arrival delay might validate assumptions about the
recording of these variables.

• Discover underlying structures in the data (i.e., relationships between important
variables and situations such as the data falling into specific statistical regimes). It
might be useful to examine whether the season (summer versus winter) has an
impact on how often flight delays can be made up.

• Develop a parsimonious model—a simple model with explanatory power, that
you can use to hypothesize about what reasonable values in the data look like. If
there is a simple relationship between departure delay and arrival delay, values of
either delay that are far off the trendline might warrant further examination.

• Detect outliers, anomalies, and other inexplicable data values. This depends on
having that parsimonious model. Thus, further examination of outliers from the
simple trend between departure and arrival delays might lead to the discovery
that such values off the trendline correspond to rerouted flights.

• Discover any potential overarching data quality problems such as the issues we
found in Chapter 3 with time being recorded without being UTC.

174 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

https://github.com/GoogleCloudPlatform/data-science-on-gcp

3 James Shore. The Art of Agile Development, 2nd ed. With Diana Larsen, Gitte Klitgaard, and Shane Warden.
O’Reilly Media, 2021.

4 I did confirm with the BTS via email that the times in the dataset were, indeed, in the local time zone of the
corresponding airport. The BTS being a government agency that was making the data freely available, I didn’t
broach the matter of them producing a separate dataset with UTC timestamps. In a contractual relationship
with a vendor, however, this is the type of change you might request as a result of EDA.

5 A violin plot is a way of visualizing probability density functions. See the seaborn documentation for exam‐
ples of violin plots.

To carry out exploratory data analysis, it is necessary to load the data in a form that
makes interactive analysis possible. In this chapter, we load data into Google Big‐
Query, explore the data in Vertex AI Workbench, carry out quality control based on
what we discover about the dataset, build a new model, and evaluate the model to
ensure that it is better than the model we built in Chapter 4. As we go about loading
the data and exploring it and move on to building models and evaluating them, we’ll
discuss a variety of considerations that come up, from security to pricing.

Both exploratory data analysis and the dashboard creation discussed in Chapter 3
involve the creation of graphics. However, the steps differ in two ways—in terms of
the purpose and in terms of the audience. The aim of dashboard creation is to crowd‐
source insight into the working of models from end users and is, therefore, primarily
about presenting an explanation of the models to end users. In Chapter 3, I recom‐
mended doing it very early in your development cycle, but that advice was more
about Agile development and getting feedback early than about statistical rigor.3 The
aim of EDA is for you, the data engineer, to develop insights about the data before
you delve into developing sophisticated models. The audience for EDA is typically
other members of your team and yourself, not end users. In some cases, especially if
you uncover strange artifacts in the data, the audience could be the data engineering
team that produces the dataset you are working with. For example, when we discov‐
ered the problem that the times were being reported in local time, with no UTC off‐
sets, we could have relayed that information back to the US Bureau of Transportation
Statistics (BTS).4 In any case, the assumption is that the audience for an EDA graphic
is statistically sophisticated. Although you probably would not include a violin plot in
a dashboard meant for end users,5 you would have no compunctions about using it in
an EDA chart that is meant for data scientists.

Doing exploratory data analysis on large datasets poses a few challenges. To test that a
particular value will always be present, for example, you would need to check every
row of a tabular dataset, and if that dataset is many millions of rows, these tests can
take hours. An interactive ability to quickly explore large datasets is indispensable.
On Google Cloud Platform, BigQuery provides the ability to run Cloud SQL queries
on unindexed datasets (i.e., your raw data) in a matter of seconds even if the datasets

Exploratory Data Analysis | 175

https://oreil.ly/BT3nv

are in the terabyte scale. Therefore, in this chapter, we load the flight data into
BigQuery.

Anscombe’s Quartet
The statistician Francis Anscombe illustrated that graphs are essential to good statisti‐
cal analysis using a very powerful example. All four of the datasets shown in
Figure 5-1 have the same mean, variance, linear fit, and correlation (to two decimal
places) but are obviously quite different from one another.

Figure 5-1. Ansombe’s Quartet. Figure from “Graphs in Statistical Analysis” by Francis
Anscombe in American Statistician 27, no. 1 (1973): 17–21 as recreated in the seaborn
documentation.

Anscombe used the quartet to emphasize that summary statistics are not a substitute
for graphic data—it’s particularly important to graph outliers to develop a holistic
understanding of the data.

176 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

6 A univariate graph is a graph of just one variable. For example, we might plot the histogram of arrival delays.
A bivariate graph is a graph of two variables. For example, we might plot the median taxi-out time by airport.

7 Special general purpose graphics processing unit (GPU) instances exist that are used for high-performance
computing applications, but for generating the graphs in this chapter, CPU instances are sufficient.

Identifying outliers and underlying structure typically involves using univariate and
bivariate plots.6 The graphs themselves can be created using Python plotting
libraries—I use a mixture of Matplotlib and seaborn to do this. The networking over‐
head of moving data between storage and the graphics engine can become prohibitive
if I carry out data exploration on my laptop—for exploration of large datasets to be
interactive, we need to bring the analytics closer to the data. Therefore, we will want
to use a cloud computer (not my laptop) to carry out graph generation. Generating
graphics on a cloud computer poses a display challenge because the graphs are being
generated on a Compute Engine instance that is headless—that is, it has no input or
output devices. A Compute Engine instance has no keyboard, mouse, or monitor, and
frequently has no graphics card.7 Such a machine is accessed purely through a net‐
work connection. Fortunately, desktop programs and interactive read–eval–print
loops (REPLs) are no longer necessary to create visualizations. Instead, notebook
servers such as Jupyter have become the standard way that data scientists create
graphs and disseminate executable reports. On Google Cloud Platform, Vertex AI
Workbench provides a fully managed way to run Jupyter notebooks that connect to
Google Cloud Platform services.

Exploration with SQL
Let’s start in the BigQuery console by exploring the time-corrected dataset that we
created in BigQuery in Chapter 4:

SELECT
 ORIGIN,
 AVG(DEP_DELAY) AS dep_delay,
 AVG(ARR_DELAY) AS arr_delay,
 COUNT(ARR_DELAY) AS num_flights
 FROM
 dsongcp.flights_tzcorr
 GROUP BY
 ORIGIN

Exploratory Data Analysis | 177

https://oreil.ly/oeNQp
https://matplotlib.org
http://seaborn.pydata.org
https://jupyter.org

The result consists of 322 airports (the order you get might be different):

Row ORIGIN dep_delay arr_delay num_flights

1 OTZ 5.209103840682787 6.562952243125903 691

2 HPN 11.782807151007983 9.087898089171965 7850

3 SJU 9.8362379921783 2.506036485508635 26257

4 ANC 3.2497373643048966 –0.4801384732734849 17043

5 CVG 8.826792206581548 5.244408048666357 21370

Let’s look at just the major airports, which we can define as airports that have on aver‐
age more than 10 flights a day. To do this we can filter by airports that have a suffi‐
cient number of flights:

WITH all_airports AS (
 SELECT
 ORIGIN,
 AVG(DEP_DELAY) AS dep_delay,
 AVG(ARR_DELAY) AS arr_delay,
 COUNT(ARR_DELAY) AS num_flights
 FROM
 dsongcp.flights_tzcorr
 GROUP BY
 ORIGIN
)

SELECT * FROM all_airports WHERE num_flights > 3650
ORDER BY dep_delay DESC

We are thresholding the number of flights at 3,650 because there are 365 days in the
dataset. The result, when I did it, was:

Row ORIGIN dep_delay arr_delay num_flights

1 ORD 13.305085522847 7.596119952650316 304120

2 EWR 13.182294215975096 3.9227994696288535 107849

3 BWI 12.893989460498512 6.768316724436742 92320

4 LGA 12.764120915158792 5.043357442317552 103281

5 IAD 12.23048266485387 4.505307971508886 36643

It makes sense that airports that serve major American cities experience the worst
departure delays (ORD serves Chicago, EWR and LGA serve New York City, and
BWI and IAD serve Washington, DC).

What if we restrict this analysis to January, reducing the number of flights threshold
to 310 since there are 31 days in January?

WITH all_airports AS (
 SELECT

178 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

 ORIGIN,
 AVG(DEP_DELAY) AS dep_delay,
 AVG(ARR_DELAY) AS arr_delay,
 COUNT(ARR_DELAY) AS num_flights
 FROM
 dsongcp.flights_tzcorr
 WHERE EXTRACT(MONTH FROM FL_DATE) = 1
 GROUP BY
 ORIGIN
)

SELECT * FROM all_airports WHERE num_flights > 310
ORDER BY dep_delay DESC

Now, we get a somewhat stranger set of airports:

Row ORIGIN dep_delay arr_delay num_flights

1 ASE 20.86779661016949 16.988095238095244 588

2 ORD 19.96205128205124 17.016131923283723 22316

3 JAC 18.787172011661802 16.096209912536445 343

4 SBN 18.491891891891886 16.326975476839234 367

5 FAT 18.12554744525547 17.63823529411766 680

I don’t recognize four of the five airports on this list, and I’m a rather frequent trav‐
eler. A short Google Search later, I learned that ASE is a ski resort (Aspen, Colorado)
as is JAC (Jackson Hole, Wyoming). This makes sense—ski resorts are open only in
winter, have to load up bulky baggage, and probably suffer more weather-related
delays.

Using the average delay to characterize airports is not ideal, though. What if most
flights to Aspen were actually on time but a few highly delayed flights (perhaps flights
delayed by several hours) are skewing the average? I’d like to see a distribution func‐
tion of the values of arrival and departure delays. BigQuery itself cannot help us with
graphs—instead, we need to tie the BigQuery backend to a graphical, interactive
exploration tool. Data scientists tend to use Jupyter Notebooks for EDA, so I’ll use
Vertex AI Workbench, which offers fully managed Jupyter Notebooks.

Reading a Query Explanation
Before I move on to Notebooks, though, we want to see if there are any red flags
regarding query performance on our table in BigQuery. In the BigQuery console,
there is a tab (next to Results) labeled “Execution details.” Figure 5-2 shows the
explanation of the January query.

Exploratory Data Analysis | 179

Figure 5-2. The explanation of a query in BigQuery.

Our query has been executed in three stages. Expand each of the stages to see their
details:

• The first stage (see Figure 5-3) pulls the origin, departure delay, arrival delay, and
date for each flight and filters the result by looking at the month. Then, it groups
them by origin, computes averages on each shard of data, and writes them to
__stage00_output. __stage00_output is organized by the hash of the ORIGIN.

• The second stage (see Figure 5-4) reads the fields organized by ORIGIN, computes
the average delays and count (but starting from the SHARD averages), and filters
the result to ensure that the count is greater than 310. Note that the query has
been optimized a bit—my WHERE clause was actually outside the WITH statement,
but it has been moved here so as to minimize the amount of data written out to
__stage01_output.

• The third stage (see Figure 5-5) simply sorts the rows by departure delay and
writes to the output.

180 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

Figure 5-3. The first stage.

Figure 5-4. The second stage.

Figure 5-5. The third stage.

Exploratory Data Analysis | 181

Based on the preceding second-stage optimization, is it possible to write the query
itself in a better way? Yes, by using the HAVING keyword:

 SELECT
 ORIGIN,
 AVG(DEP_DELAY) AS dep_delay,
 AVG(ARR_DELAY) AS arr_delay,
 COUNT(ARR_DELAY) AS num_flights
 FROM
 dsongcp.flights_tzcorr
 WHERE EXTRACT(MONTH FROM FL_DATE) = 1
 GROUP BY
 ORIGIN
 HAVING num_flights > 310
 ORDER BY dep_delay DESC

In the rest of this chapter, I will use this form of the query that avoids the WITH state‐
ment. By using the HAVING keyword, we are not relying on the query optimizer to
minimize the amount of data written to __stage01_output.

What do the times in the graphics mean? Each stage (see Figure 5-6) is broken into
four steps: wait, read, compute, and write. The average and maximum time spent in
each of these steps by the BigQuery workers is reported. So, in another example
shown in Figure 5-6, BigQuery spends an average of 353 milliseconds (37 + 115 + 195
+ 6) in this stage. A worker could spend as much as 608 milliseconds (49 + 308 + 242
+ 9) in it, though.

Figure 5-6. Average and maximum time spent by BigQuery workers by steps. Each part
of each stage in the query explanation is depicted by a color bar that represents the frac‐
tion of time spent in that part.

The length of the bar is the time taken by the most time-consuming step in the
stage—so the length of the bar corresponds to 308 ms and the color in each bar is the
fraction of that time spent in this step. In other words, the bars are all normalized to
the time taken by the longest step (wait, read, compute, or write). A large difference
between the average and the maximum (as in the read step of Figure 5-6) indicates a

182 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

8 Reducing the skew is not just about reducing the time taken by the workers who have a lot to do. You should
also see if you can rework the query to combine the work carried out by the underworked workers, so that
you have fewer workers overall.

9 BigQuery supports UDFs in JavaScript, but the excessive use of UDFs can slow down your query, and certain
UDFs can be high-compute queries.

skew—there are some workers who are doing a lot more work than others. Some‐
times, it is inherent to the query, but at other times, it might be possible to rework the
storage or partitions to reduce such skew.8

The wait time is the time spent waiting for the necessary compute resources to
become available—a very high value here indicates a job that could not be immedi‐
ately scheduled on the cluster. A high wait time could occur if you are using the Big‐
Query flat-rate plan and someone else in your organization is already consuming all
of the paid-for capacity. The solution would be to run your job at a different time,
make your job smaller, or negotiate with the group that is using the available
resources. The read step reads the data required at this stage from the table or from
the output of the previous stage. A high value of read time indicates that you might
consider reworking the query so that most of the data is read in the initial stages. The
compute step carries out the computation required—if you run into high values here,
consider whether you can carry out some of the operations in postprocessing or if
you could omit the use of user-defined functions (UDFs).9 The write step writes to
temporary storage or to the response and is mainly a function of the amount of data
being written out in each stage—optimization of this step typically involves moving
filtering options to occur in the innermost query (or earliest stage), although as we
saw earlier, the BigQuery optimizer can do some of this automatically.

For all three stages in our query, the read step is what takes the most amount of time,
indicating that our query is I/O bound and that the basic cost of reading the data is
what dominates the query. It is clear from the numbers in the input column (6 mil‐
lion to 936 to 135) that we are already doing quite well at funneling the data through
and processing most of the data in earlier stages. We also noticed from the explana‐
tion that BigQuery has already optimized things by moving the filtering step to the
earliest possible stage—there is no way to move it any earlier because it is not possible
to filter on the number of flights until that value is computed. On the other hand, if
this is a frequent sort of filter, it might be helpful to add a table indicating the traffic at
each airport and join with this table instead of computing the aggregate each time. It
might also be possible to achieve an approximation to this by adding a column indi‐
cating some characteristic (such as the population) of the metropolitan area that each
airport serves. For now, without any idea of the kinds of airports that the typical user
of this dataset will be interested in, there is little to be done. We are determined to
process all the data, and processing all the data requires time spent reading that data.

Exploratory Data Analysis | 183

https://oreil.ly/NnsNW

10 Jupyter Notebooks are a realization of the literate programming concept envisioned by Donald Knuth in 1984.
By allowing data scientists to interweave statistical and business logic in code and the output of that code
within a literate statistical programming paradigm, notebooks foster replicability and reuse.

11 If you are interested in the gory details: Figure 5-7 was created by running the methods in question (PRJ, CST,
etc.) on a large dataset of weather radar imagery and computing various evaluation metrics (VIL error in the
graphic). For performance reasons, this was done in C++. The metric for each pair of images was written out
to a text file (a different text file for each method), and it is the aggregates of those metrics that are reported in
Figure 5-7. The text files had to be wrangled from the cluster of machines on which they were written out,
combined by key (the method used to track storms), and then aggregated. This code, essentially a MapReduce
operation, was written in Java. The resulting aggregate files were read by an R program that ranked the meth‐
ods, determined the appropriate shading, and wrote out an image file in PNG format. These PNG images
were incorporated into a LaTeX report, and a compiler run to create a shareable document in PDF from the
LaTeX and PNG sources. It was this PDF of the paper that we could disseminate to interested colleagues.
If the colleague then suggested a change, we’d go through the process all over again. The ordering of the pro‐
grams—C++, followed by Java, followed by R, followed by LaTeX, followed by attaching the PDF to an email
—was nontrivial, and there were times when we skipped something in between, resulting in incorrect graph‐
ics or text that didn’t match the graphs.

If we don’t need statistics from all the data, we could consider sampling the data and
computing our statistics on that sample instead.

Exploratory Data Analysis in Vertex AI Workbench
Data scientists have moved en masse to using notebooks because notebooks greatly
streamline the workflow of developing, visualizing, collaborating, and publishing in
science.10 The contrast between the user experience of a Jupyter Notebook and the
way exploratory data analysis was carried out a few years ago is stark. Take, for exam‐
ple, Figure 5-7, which appears in one of my papers about different ways to track
storms in weather radar images. Just this single graphic required wrangling multiple
languages (C++, R, Java), concepts (distributed programming, statistics), data formats
(CSV, PNG, LaTeX, PDF), and collaboration mechanisms (FTP, email)!11 Today, I’d do
it all in a Jupyter Notebook with the big data analysis carried out in BigQuery or
Dataflow.

Figure 5-7. Graph created using a complex workflow.

184 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

https://oreil.ly/6pcZF
https://oreil.ly/6pcZF

Jupyter Notebooks
JupyterLab is open source software that provides an interactive scientific computing
experience in a variety of languages, including Python, R, Julia, and Scala. The key
unit of work is a Jupyter Notebook, which is a document that contains code, visuali‐
zations, and explanatory text. The code in the document is executed on and served
from a web server that runs JupyterLab.

A key issue with notebooks is how to manage the web servers that serve them. Run‐
ning the notebook server on our laptop will work, but is not ideal. Instead, we want
the notebook server to run on a cloud machine for the following reasons:

• Because the code is executed on the notebook server, we want the notebook
server to be able to handle bigger datasets. It is easier to get a more powerful
machine on the public cloud than it is to upgrade one’s laptop. You can simplify
managing the provisioning of notebook servers by running them on demand in
the public cloud. This way, we can stop the machines when we leave for the day,
instead of paying for machines even when we are not at work.

• Data science workloads such as machine learning require heavy, repetitive com‐
putation—typically, we scale up such workloads using GPUs. However, GPUs are
expensive and become superseded by better hardware rather quickly. Ideally, you
want to be able to add/remove GPUs on demand from these machines, rather
than pay for GPUs all the time that we are using notebooks.

• A common pattern is to develop on small datasets and basic hardware and then,
once we have the code working, to execute the code on large datasets on a more
powerful machine. This ability to change the infrastructure is possible on the
public cloud.

• We might even schedule the execution of these jobs periodically, or in response to
an event such as the arrival of new data.

Once we say that we are going to run notebooks ephemerally on hardware that
depends on the computations that we are doing, lifecycle management becomes quite
important. Vertex AI Workbench on Google Cloud gives us a fully managed note‐
book experience.

To start a fully managed notebook in Google Cloud, visit the GCP web console, navi‐
gate to Vertex AI Workbench, and choose the tab for a Google-managed notebook.
Then, create a notebook with the name dsongcp-ch5. Look at the Advanced settings
and note that it’s possible to add a GPU if we want (see Figure 5-8). Note also there is
a default time period after which the notebook server will automatically shut down.
We can always restart it by opening the notebook from the GCP console.

Vertex AI Workbench provides a hosted version of JupyterLab on Google Cloud; it
knows how to authenticate against Google Cloud so as to provide easy access to

Exploratory Data Analysis in Vertex AI Workbench | 185

https://jupyter.org

Cloud Storage, BigQuery, Cloud Dataflow, Vertex AI Training, and so on. A few
minutes after you launch a managed notebook, the console shows you a JupyterLab
link. When you are done using the Notebooks instance, you can manually delete the
instance from the web console. You can also stop the instance when you are not using
it—you won’t be charged for the CPU resources, which are the bulk of the cost,
although resources like disks will continue to be charged for. As shown in Figure 5-8,
this shutdown can be made to happen automatically after an idle time period that you
specify.

Figure 5-8. Options when creating a managed notebook in Vertex AI Workbench.

Creating a Notebook
After you have launched the Notebooks instance and navigated to JupyterLab, you
can create a new Python notebook from the launcher menu that it starts up with.
Alternately, navigate to the folder in which you want this notebook to appear and
select File > New Notebook.

186 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

12 The README.md files in the repository are another example of markdown files. Markdown is ubiquitous
enough that it is worth learning the key syntax from a cheat sheet.

A notebook contains two key types of cells: a markdown cell is a cell with text con‐
tent,12 whereas a code cell has source code. When you run a markdown cell, the cell
contents are formatted nicely, whereas when you run a code cell, the notebook dis‐
plays the output of print statements from that cell.

For example, suppose that you type into a notebook the contents of Figure 5-9 (with
the first cell a markdown cell, and the second cell a Python cell).

You can run the cell your cursor is in by clicking Run (or use the keyboard shortcut
Ctrl/Cmd + Shift + Enter). You could also run all cells by clicking “Run all cells.”
When you click this, the cells are evaluated, and the results rendered.

Figure 5-9. What you type into the notebook (top) and what is rendered (bottom).

Exploratory Data Analysis in Vertex AI Workbench | 187

https://oreil.ly/QTXnS

Note that the markdown has been converted into a visual document, the Python code
has been evaluated, and the resulting output printed out.

Jupyter Commands
You can git clone the repository for this book within the notebook environment by
typing:

!git clone https://github.com/GoogleCloudPlatform/data-science-on-gcp

You could have also used the git icon in Vertex AI Workbench or run the preceding
command from a terminal. Regardless of how you interact with git, get into the habit
of practicing source-code control on changed notebooks.

The use of the exclamation point (when you type !git into a code cell) is an indica‐
tion to Jupyter that the line is not Python code, but is instead a shell command. If you
have multiple lines of a shell command, you can start a cell with %%bash, for example:

%%bash
wget tensorflow ...
pip install ...

Installing Packages
Which Python packages are already installed in Notebooks, and which ones will we
have to install? One way to check which packages are installed is to type the
following:

%pip freeze

This lists the Python packages installed. Another option is to add in imports for pack‐
ages and see if they work. Let’s do that with packages that I know that we’ll need:

import matplotlib.pyplot as plt
import seaborn as sb
import pandas as pd
import numpy as np

NumPy is the canonical numerical Python library that provides efficient ways of
working with arrays of numbers. Pandas is an extremely popular data analysis library
that provides a way to do operations such as group by and filter on in-memory data‐
frames. Matplotlib is a Matlab-inspired module to create graphs in Python. seaborn
provides extra graphics capabilities built on top of the basic functionality provided by
Matplotlib. All these are open source packages that are installed in Vertex AI Work‐
bench by default.

Had I needed a package that was not already installed, I could have installed it using
pip. For example, to install the pytz package that we used in Chapter 4, execute this
code within a cell:

188 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

13 Magics use a syntax element that is not valid in the underlying language. In the case of notebooks in Python,
this is the % symbol.

%pip install pytz

Often, you will need to restart the Python kernel for the new package to be picked up
(you can do this using the Restart Kernel button on the notebook ribbon user
interface).

Jupyter Magic for Google Cloud
When we used %%bash in the previous section, we were using a Jupyter magic, a syn‐
tactic element that marks what follows as special.13 This is how Jupyter can support
multiple interpreters or engines. Jupyter knows what language a cell is in by looking
at the magic at its beginning. For example, try typing the following into a code cell:

%%html
This cell will print out a HTML string.

You should see the HTML rendering of that string being printed out on evaluation, as
depicted in Figure 5-10.

Figure 5-10. Jupyter magic for HTML rendering.

Jupyter magics provide a mechanism to run a wide variety of languages and ways to
add some more. The BigQuery Python package has added a few magics to make the
interaction with Google Cloud Platform convenient.

For example, you can run a query on your BigQuery table using the %%bigquery
magic environment that comes with Vertex AI Workbench:

%%bigquery
SELECT
 COUNTIF(arr_delay >= 15)/COUNT(arr_delay) AS frac_delayed
FROM dsongcp.flights_tzcorr

If you get the fraction of flights that are delayed, as shown in Figure 5-11, all is well.

If not, look at the error message and carry out appropriate remedial actions. You
might need to authenticate yourself, set the project you are working in, or change
permissions on the BigQuery table.

Exploratory Data Analysis in Vertex AI Workbench | 189

14 See GitHub for the Python code being wrapped.
15 See 05_bqnotebook/exploration.ipynb in the GitHub repository.

Figure 5-11. The %%biqquery magic environment that comes with Vertex AI
Workbench.

The fact that we refer to %%bigquery as a Jupyter magic should indicate that this is
not pure Python—you can execute this only within a notebook environment. The
magic, however, is simply a wrapper function for Python code.14 If there is a piece of
code that you’d ultimately want to run outside a notebook (perhaps as part of a sched‐
uled script), it’s better to use the underlying Python and not the magic pragma:15

sql = """
SELECT
 COUNTIF(arr_delay >= 15)/COUNT(arr_delay) AS frac_delayed
FROM dsongcp.flights_tzcorr
"""
from google.cloud import bigquery
bq = bigquery.Client()
df = bq.query(sql).to_dataframe()
print(df)

One way to use the underlying Python is to use the google.cloud.bigquery package
—this allows us to use code independent of the notebook environment. This is, of
course, the same bigquery package in the Cloud Client Library that we used in Chap‐
ters 2 and 4. The client library includes interconnections between BigQuery results
and NumPy/Pandas to simplify the creation of graphics.

Exploring Arrival Delays
Now that we have a notebook up and running, let’s use it to do exploratory analysis of
arrival delays because this is the variable we want to be able to predict.

190 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

https://oreil.ly/YCxiW

Basic Statistics
To pull the arrival delays corresponding to the model created in Chapter 3 (i.e., of the
arrival delay for flights that depart more than 10 minutes late), we can do the
following:

%%bigquery df
SELECT ARR_DELAY, DEP_DELAY
FROM dsongcp.flights_tzcorr
WHERE DEP_DELAY >= 10

This code uses the %%bigquery magic to run the SQL statement and stores the result
set into a Pandas dataframe named df. Recall that in Chapter 4, we did this using the
Google Cloud Platform API.

After we have the dataframe, getting fundamental statistics about the two columns
returned by the query is as simple as this:

df.describe()

This gives us the mean, standard deviation, minimum, maximum, and quartiles of
the arrival and departure delays given that departure delay is more than 10 minutes,
as illustrated in Figure 5-12 (see the WHERE clause of the query):

Figure 5-12. Getting the fundamental statistics of a Pandas dataframe.

Plotting Distributions
Beyond just the statistical capabilities of Pandas, we can also pass the Pandas data‐
frames and underlying NumPy arrays to plotting libraries like seaborn. For example,
to plot a violin plot of our decision surface from Chapter 3 (i.e., of the arrival delay
for flights that depart more than 10 minutes late), we can do the following:

Exploring Arrival Delays | 191

16 A kernel density plot is just a smoothed histogram—the challenge lies in figuring out how to smooth the his‐
togram while balancing interpretability against the loss of information. Here, I’m just letting seaborn use its
default settings for the smoothing bandwidth.

17 See the discussion of the PDF in Chapter 1.

sns.set_style("whitegrid")
ax = sns.violinplot(data=df, x='ARR_DELAY', inner='box', orient='h')
ax.axes.set_xlim(-50, 300);

This produces the graph shown in Figure 5-13.

Figure 5-13. Violin plot of arrival delay.

A violin plot is a kernel density plot;16 that is, it is an estimate of the probability distri‐
bution function (PDF).17 We see that, even though the distribution peaks around 10
minutes (which is the mode), deviations around this peak are skewed toward larger
delays than smaller ones. Importantly, we also notice that there is only one peak—the
distribution is not, for example, bimodal.

Let’s compare the violin plot for flights that depart more than 10 minutes late with the
violin plot for flights that depart less than 10 minutes late and zoom in on the x-axis
close to our 15-minute threshold. First, we pull all of the delays using the following:

%%bigquery df
SELECT ARR_DELAY, DEP_DELAY
FROM dsongcp.flights_tzcorr

In this query, I have dropped the WHERE clause. Instead, we will rely on Pandas to do
the thresholding. I can now create a new column in the Pandas dataframe that is
either True or False depending on whether the flight departed less than 10 minutes
late:

df['ontime'] = df['DEP_DELAY'] < 10

We can graph this new Pandas dataframe using seaborn:

192 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

https://oreil.ly/za47l

ax = sns.violinplot(data=df, x='ARR_DELAY', y='ontime',
 inner='box', orient='h')
ax.set_xlim(-50, 200)

The difference between the previous violin plot and this one is the inclusion of the
ontime column. This results in a violin plot (see Figure 5-14) that illustrates how dif‐
ferent flights that depart 10 minutes late are from flights that depart early.

Figure 5-14. Difference between violin plots of all late flights (top) versus on-time flights
(bottom).

The angular peak of the top violin plot indicates that the seaborn
default smoothing was too coarse. You can fix this by passing in a
gridsize parameter:

ax = sns.violinplot(data=df, x='ARR_DELAY', y='ontime',
inner='box', orient='h', gridsize=1000)

But doing so will make the computation take much longer. The
notebook in the GitHub repository shows what the result looks like
with greater smoothing.

As we discussed in Chapter 3, it is clear that the 10-minute threshold separates the
dataset into two separate statistical regimes, so that the typical arrival delay for flights
that depart more than 10 minutes late is skewed toward much higher values than for
flights that depart more on time. We can see this in Figure 5-14, both from the shape
of the violin plot and from the box plot that forms its center. Note how centered the

Exploring Arrival Delays | 193

https://oreil.ly/CmzHa

18 I created this second, zoomed-in violin plot by adding ax.set_xlim(-50, 50).

on-time flights are versus the box plot (the dark line in the center) for delayed
flights.18

However, the extremely long, skinny tail of the violin plot is a red flag—it is an indi‐
cation that the dataset might pose modeling challenges. Let’s investigate what is going
on.

Quality Control
We can continue writing queries in the notebook, but doing so on the BigQuery con‐
sole gives me immediate feedback on syntax and logic errors. So, I switch over to the
BigQuery console and type in my first query:

SELECT
 AVG(ARR_DELAY) AS arrival_delay
FROM
 dsongcp.flights_tzcorr
GROUP BY
 DEP_DELAY
ORDER BY
 DEP_DELAY

This should give me the average arrival delay associated with every value of departure
delay (which, in this dataset, is stored as an integer number of minutes). I got back
more than one thousand rows. Are there really more than one thousand unique val‐
ues of DEP_DELAY? What’s going on?

Oddball values
To look at this further, let’s add more elements to my initial query:

SELECT
 DEP_DELAY,
 AVG(ARR_DELAY) AS arrival_delay,
 COUNT(ARR_DELAY) AS numflights
FROM
 dsongcp.flights_tzcorr
GROUP BY
 DEP_DELAY
ORDER BY
 DEP_DELAY

The resulting table explains what’s going on. The first few rows have only a few flights
each:

194 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

https://oreil.ly/cgJIR
https://oreil.ly/cgJIR

Row DEP_DELAY arrival_delay numflights

1 null null 0

2 -82.0 -80.0 1

3 -68.0 -87.0 1

4 -61.0 -77.0 1

5 -56.0 -26.0 1

However, departure delay values of a few minutes have hundreds of thousands of
flights:

56 0.0 -5.100334305600409 328442

57 1.0 -4.188285855693881 159619

58 2.0 -3.2246696399075128 121080

59 3.0 -2.1957821784079146 104177

60 4.0 -1.2101860730716607 92813

Oddball values that are such a small proportion of the data can probably be ignored.
Moreover, if the flight does really leave 82 minutes early, I’m quite sure that you won’t
be on the flight, and if you are, you know that you will make the meeting. There is no
reason to complicate our statistical modeling with such odd values.

Outlier removal: Big data is different
How can you remove such outliers? There are two ways to filter the data: one would
be based on the departure delay variable itself, keeping only values that met a condi‐
tion such as this:

WHERE dep_delay > -15

A second method would be to filter the data based on the number of flights:

WHERE numflights > 300

The second method—using a quality-control filter that is based on removing data for
which we have insufficient examples—is preferable.

This is an important point that gets at the key difference between statistics on “nor‐
mal” datasets and statistics on big data. Although I agree that the term big data has
become completely hyped, people who claim that big data is just data are missing a
key point—the fundamental approach to problems becomes different when datasets
grow sufficiently large. The way we detect outliers is just one such example.

For a dataset that numbers in the hundreds to thousands of examples, you would fil‐
ter the dataset and remove values outside, say, μ ± 3σ (where μ is the mean and σ the

Exploring Arrival Delays | 195

19 In a Gaussian distribution, 99.7% of values lie within three standard deviations of the mean. It’s a handy way
to identify outliers.

standard deviation).19 We can find out what the range would be by running a Big‐
Query query on the table:

SELECT
 AVG(DEP_DELAY) - 3*STDDEV(DEP_DELAY) AS filtermin,
 AVG(DEP_DELAY) + 3*STDDEV(DEP_DELAY) AS filtermax
FROM
 dsongcp.flights_tzcorr

This yields the range [−102, 121] minutes so that the WHERE clause would become as
follows:

WHERE dep_delay BETWEEN -102 AND 121

Of course, a filter that retains values in the range μ ± 3σ is based on an implicit
assumption that the distribution of departure delays is Gaussian. We can avoid such
an assumption by using percentiles, perhaps by omitting the top and bottom 5% of
values:

SELECT
 APPROX_QUANTILES(DEP_DELAY, 20)
FROM
 dsongcp.flights_tzcorr

This would lead us to retain values in the range [−9, 66]. Regardless of how we find
the range, though, the range is based on an assumption that unusually high and low
values are outliers.

On datasets that number in the hundreds of thousands to millions of examples,
thresholding your input data based on value is dangerous because you can very well
be throwing out valuable nuance—if there are sufficient examples of a delay of 150
minutes, it is worth modeling such a value regardless of how far off the mean it is.
Customer satisfaction and “long-tail” business strategies might hinge on our systems
coping well with usually small or large values. There is, therefore, a world of differ‐
ence between filtering our data using:

WHERE dep_delay > -15

versus filtering it using:

WHERE numflights > 370

The first method imposes a threshold on the input data and is viable only if we are
sure that a departure delay of less than −15 minutes is absurd. The second method,
on the other hand, is based on how often certain values are observed—the larger our
dataset grows, the less unusual any particular value becomes.

196 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

20 In this dataset, floating-point numbers have already been discretized. For example, arrival delays have been
rounded to the nearest minute. If this is not the case, you will have to discretize continuous data before com‐
puting the frequency of occurrence.

The term outlier is, therefore, somewhat of a misnomer when it comes to big data. An
outlier implies a range within which values are kept, with outliers being values that lie
outside that range. Here, we are keeping data that meets a criterion involving fre‐
quency of occurrence—any value is acceptable as long as it occurs often enough in
our data.20

How Far Can You Trust Quality Flags in Datasets?
Many datasets include metadata about their data quality. These might even be on a
row-by-row basis. Should you discard any rows whose quality is marked as being
bad?

The quality flags that you find in many datasets are themselves highly suspect. Many
of them are set with no basis on a holistic understanding of the environment (“the
instrument was left unshielded”) but simply based on statistical analysis of the data
values. The statistical techniques used are often carried over from the days of small
datasets. So, if you can do your own analysis based on frequency of occurrence, you
should.

Of course, if you don’t have time to examine the data, the quality flag in the dataset is
better than nothing. Take it into consideration! However, the way to take it into con‐
sideration is to treat it as one more input to your model and not to discard the sup‐
posedly bad values.

In our flights dataset, we will trust flags such as whether the flight was canceled or
diverted (those reflect an understanding of the environment) but carry out our own
statistical analysis of values such as departure delay based on occurrence frequency.

Filtering data on occurrence frequency
To filter the dataset based on frequency of occurrence, we first need to compute the
frequency of occurrence and then threshold the data based on it. We can accomplish
this by using a HAVING clause:

SELECT
 DEP_DELAY,
 AVG(ARR_DELAY) AS arrival_delay,
 STDDEV(ARR_DELAY) AS stddev_arrival_delay,
 COUNT(ARR_DELAY) AS numflights
FROM
 dsongcp.flights_tzcorr
GROUP BY

Exploring Arrival Delays | 197

21 For a normal distribution (at each departure delay, the number of flights is in the hundreds to thousands, so
usual statistical thinking applies), 68.27% of values lie in the μ ± σ range, 95.45% of values lie in the μ ± 2σ
range, and 99.73% of values lie in the μ ± 3σ range. That last range is termed the three-sigma rule. For more
information, see the Encyclopedia of Mathematics entry for the three-sigma rule.

22 Traditions, of course, are different in different fields and often depend on how much data you can reasonably
collect in that field. In business statistics, this three-sigma rule is quite common. In the social sciences and in
medicine, two-sigma is the typical significance threshold. Meanwhile, when the Higgs boson discovery
announcement was made, the significance threshold to classify it as a true discovery and not just a statistical
artifact was five-sigma or 1 in 3.5 million (see the blog at Scientific American).

23 It might appear fishy that this number is independent of the size of the dataset, but if you think about it, this
rule of thumb has to be such that we are less likely to discard outliers the more data we have. The larger the
dataset, the more likely it is that there will be 370 instances of any particular condition. Corner cases on small
datasets will have enough company on very large datasets.

 DEP_DELAY
HAVING
 numflights > 370
ORDER BY
 DEP_DELAY

Why threshold the number of flights at 370? This number derives from a guideline
called the three-sigma rule,21 which is traditionally the range within which we con‐
sider “nearly all values”22 to lie. If we assume (for now; we’ll verify it soon) that at any
departure delay, arrival delays are normally distributed, we can talk about things that
are true for “almost every flight” if our population size is large enough. Because
99.73% of values in a Gaussian distribution lie within the three-sigma bounds, filter‐
ing our dataset so that we have at least 1 / (1 – 0.9973) = 370 examples of each input
value is a rule of thumb that achieves this.23

How different would the results be if we were to choose a different threshold? We can
look at the number of flights that are removed by different quality-control thresholds
by looking at the slope of a linear model between arrival delay and departure delay
using this query:

CREATE TEMPORARY FUNCTION linear_fit(NUM_TOTAL INT64, THRESH INT64)
RETURNS STRUCT<thresh INT64, num_removed INT64, lm FLOAT64>
AS ((
 SELECT AS STRUCT
 THRESH,
 (NUM_TOTAL - SUM(numflights)) AS num_removed,
 AVG(arrival_delay * numflights) / AVG(dep_delay * numflights) AS lm
 FROM
 (
 SELECT
 DEP_DELAY,
 AVG(ARR_DELAY) AS arrival_delay,
 STDDEV(ARR_DELAY) AS stddev_arrival_delay,
 COUNT(ARR_DELAY) AS numflights
 FROM

198 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

https://oreil.ly/Da4Xp
https://oreil.ly/zDo6O

 dsongcp.flights_tzcorr
 GROUP BY
 DEP_DELAY
)
 WHERE numflights > THRESH
))
;

Running this function for various different thresholds on numflights (see explora‐
tion.ipynb in the GitHub repository), we get the following results:

Row stats.thresh stats.num_removed stats.lm

1 1000 175873 0.25

2 500 143801 0.34

3 370 (three-sigma rule) 135518 0.36

4 300 129835 0.38

5 200 123640 0.40

6 100 115471 0.43

7 22 (two-sigma rule) 108247 0.45

8 10 106958 0.46

9 5 106319 0.46

As you can see, the slope varies extremely slowly as we remove fewer and fewer
flights by decreasing the threshold. Thus, the differences in the model created for
thresholds of 300, 370, or 500 are quite minor. However, that model is quite different
from that created if the threshold were 5 or 10. The order of magnitude of the thres‐
hold matters, but perhaps not the exact value.

Arrival Delay Conditioned on Departure Delay
Now that we have a query that cleans up oddball values of departure delay from the
dataset, we can take the query over to the Jupyter Notebook to continue our explora‐
tory analysis and to develop a model to help us make a decision on whether to cancel
our meeting.

In Chapter 3, we built a simple model based on simply thresholding the departure
delay. Here, however, we see that there are many flights for each value of departure
delay. Given a certain departure delay, what arrival delays are likely?

Distribution of arrival delays
I simply copy and paste from the BigQuery console to the notebook and give the Pan‐
das dataframe a name, as shown here:

%%bigquery depdelay
SELECT

Exploring Arrival Delays | 199

 DEP_DELAY,
 AVG(ARR_DELAY) AS arrival_delay,
 STDDEV(ARR_DELAY) AS stddev_arrival_delay,
 COUNT(ARR_DELAY) AS numflights
FROM
 dsongcp.flights_tzcorr
GROUP BY
 DEP_DELAY
HAVING numflights > 370
ORDER BY DEP_DELAY

We can display the first five rows of the dataframe using [:5]:

depdelay[:5]

The result is:

Row DEP_DELAY arrival_delay stddev_arrival_delay numflights

1 -23.0 -23.888646288209607 11.432163250582196 458

2 -22.0 -23.22748815165877 12.590133374822704 633

3 -21.0 -22.29978118161926 11.558312559289162 914

4 -20.0 -21.40782122905028 12.066489232808147 1432

5 -19.0 -20.430769230769243 11.910133697086701 1950

Let’s plot this data to see what insight we can get. Even though we have been using
seaborn so far, Pandas itself has plotting functions built in:

ax = depdelay.plot(kind='line', x='DEP_DELAY',
 y='arrival_delay', yerr='stddev_arrival_delay')

This yields the plot shown in Figure 5-15.

Figure 5-15. Relationship between departure delay and arrival delay.

It certainly does appear as if the relationship between departure delay and arrival
delay is quite linear. The width of the standard deviation of the arrival delay is also
pretty constant, on the order of 10 minutes.

200 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

Applying a probabilistic decision threshold
Recall from Chapter 1 that our decision criteria are 15 minutes and 30%. If the plane
is more than 30% likely to be delayed (on arrival) by more than 15 minutes, we want
to send a text message asking to postpone the meeting. At what departure delay does
this happen?

By computing the standard deviation of the arrival delays corresponding to each
departure delay, we implicitly assumed that arrival delays are normally distributed.
For now, let’s continue with that assumption. I can examine a complementary cumu‐
lative distribution table and find where 0.3 happens. From the table, this happens at
Z = 0.52.

Let’s now go back to Jupyter to plug this number into our dataset:

Z_30 = 0.52
depdelay['arr_delay_30'] = (Z_30 * depdelay['stddev_arrival_delay']) \
 + depdelay['arrival_delay']
ax = plt.axes()
depdelay.plot(kind='line', x='DEP_DELAY', y='arr_delay_30',
 ax=ax, ylim=(0,30), xlim=(0,30), legend=False)
ax.set_xlabel('Departure Delay (minutes)')
ax.set_ylabel('> 30% prob of this Arrival Delay (minutes)');

x = np.arange(0, 30)
y = np.ones_like(x) * 15
ax.plot(x, y, 'r');

The plotting code yields the plot depicted in Figure 5-16.

Figure 5-16. Choosing the departure delay threshold that results in a 30% probability of
an arrival delay of < 15 minutes.

Looking up the x-axis value corresponding to the decision threshold of 15 minutes
(see dotted lines in Figure 5-16). It appears that our decision criteria translate to a
departure delay of 13 minutes. If the departure delay is 13 minutes or more, the air‐
craft is more than 30% likely to be delayed by 15 minutes or more.

Exploring Arrival Delays | 201

https://oreil.ly/JEb7T
https://oreil.ly/JEb7T

24 This function computes the approximate quantiles because computing the exact quantiles on large datasets,
especially of floating-point values, can be very expensive in terms of space. Instead, most big data databases
use some variant of Greenwald and Khanna’s algorithm to compute approximate quantiles.

25 Had I used ORDINAL instead of OFFSET, it would have been 1-based.

Empirical probability distribution function
The analysis in the previous section used the number 0.52, which assumes that the
distribution of flights at each departure delay is normally distributed. What if we
drop that assumption? We then will need to empirically determine the 30% likelihood
at each departure delay. Happily, we do have at least 370 flights at each departure
delay (the joys of working with large datasets!), so we can simply compute the 30th
percentile for each departure delay.

We can compute the 30th percentile in BigQuery by discretizing the arrival delays
corresponding to each departure delay into 100 bins and picking the arrival delay that
corresponds to the 70th bin:

SELECT
 DEP_DELAY,
 APPROX_QUANTILES(ARR_DELAY, 101)[OFFSET(70)] AS arrival_delay_30th,
 COUNT(ARR_DELAY) AS numflights
FROM
 dsongcp.flights_tzcorr
GROUP BY
 DEP_DELAY
HAVING numflights > 370
ORDER BY DEP_DELAY

The function APPROX_QUANTILES() takes the ARR_DELAY and divides it into N + 1 bins
(here we specified N = 101).24 The first bin is the approximate minimum, the last bin
the approximate maximum, and the rest of the bins are what we’d traditionally con‐
sider the bins. Hence, the 70th percentile is the 71st element of the result. The []
syntax finds the nth element of that array—OFFSET(70) will provide the 71st element
because OFFSET is zero-based.25 Why 70 and not 30? Because we want the arrival delay
that could happen with 30% likelihood and this implies the larger value.

The results of this query provide the empirical 30th percentile threshold for every
departure delay:

Row DEP_DELAY arrival_delay_30th numflights

1 -23.0 -20.0 458

2 -22.0 -19.0 633

…
39 15.0 14.0 38835

40 16.0 15.0 35771

202 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

https://oreil.ly/qIksk
https://oreil.ly/4BuOU

Row DEP_DELAY arrival_delay_30th numflights

41 17.0 16.0 33964

…

Plugging the query back into the Jupyter Notebook, we can avoid the Z-lookup and
Z-score calculation associated with Gaussian distributions. We get the chart shown in
Figure 5-17.

Figure 5-17. Departure delay threshold that results in a 30% likelihood of an arrival
delay of < 15 min.

The answer is...
From the chart in Figure 5-16, our decision threshold, without the assumption of
normal distribution, is 16 minutes. If a flight is delayed by more than 16 minutes,
there is a greater than 30% likelihood that the flight will arrive more than 15 minutes
late.

Recall that the aforementioned threshold is conditioned on rather conservative
assumptions—you are going to cancel the meeting if there is more than 30% likeli‐
hood of being late by 15 minutes. What if you are a bit more audacious in your busi‐
ness dealings, or if this particular customer will not be annoyed by a few minutes’
wait? What if you won’t cancel the meeting unless there is a greater than 70% chance
of being late by 15 minutes? The good thing is that it is easy enough to come up with
a different decision threshold for different people and different scenarios out of the
same basic framework.

Another thing to notice is that the addition of the actual departure delay in minutes
has allowed us to make a better decision than going with just the contingency table.
Using just the contingency table, we would cancel meetings whenever flights were
just 10 minutes late. Using the actual departure delay and a probabilistic decision
framework, we were able to avoid canceling our meeting unless flights were delayed
by 16 minutes or more.

Exploring Arrival Delays | 203

26 By the time we get to Chapter 10, I will have based so many decisions on 2015–2018 data that I will get 2019
data to act as a truly independent test set.

Evaluating the Model
But how good is this advice? How many times will my advice to cancel or not cancel
the meeting be the correct one? Had you asked me that question, I would have hem‐
med and hawed—I don’t know how accurate the threshold is because we have no
independent sample. Let’s address that now—as our models become more sophistica‐
ted, an independent sample will be increasingly required.

There are two broad approaches to finding an independent sample:

• Collect new data. For example, we could go back to BTS and download 2016 data
and evaluate the recommendation on that dataset.

• Split the 2015 data into two parts. Create the model on the first part (called the
training set), and evaluate it on the second part (called the test set).

The second approach is more common because datasets tend to be finite. In the inter‐
est of being practical here, let’s do the same thing even though, in this instance, we
could go back and get more data.26

When splitting the data, we must be careful. We want to ensure that both parts are
representative of the full dataset (and have similar relationships to what you are pre‐
dicting), but at the same time we want to make sure that the testing data is independ‐
ent of the training data. To understand what this means, let’s take a few reasonable
splits and talk about why they won’t work.

Random Shuffling
We might split the data by randomly shuffling all the rows in the dataset and then
choosing the first 70% as the training set, and the remaining 30% as the test set. In
BigQuery, you could do that using the RAND() function:

SELECT
 ORIGIN, DEST,
 DEP_DELAY,
 ARR_DELAY
FROM
 dsongcp.flights_tzcorr
WHERE
 RAND() < 0.7

The RAND() function returns a value between 0 and 1, so approximately 70% of the
rows in the dataset will be selected by this query. However, there are several problems
with using this sampling method for machine learning:

204 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

• It is not nearly as easy to get the 30% of the rows that were not selected to be in
the training set to use as the test dataset.

• The RAND() function returns different things each time it is run, so if you run the
query again, you will get a different 70% of rows. In this book, we are experi‐
menting with different machine learning models, and this will play havoc with
comparisons between models if each model is evaluated on a different test set.

• The order of rows in a BigQuery result set is not guaranteed—it is essentially the
order in which different workers return their results. So, even if you could set a
random seed to make RAND() repeatable, you’ll still not get repeatable results.
You’d have to add an ORDER BY clause to explicitly sort the data (on an ID field, a
field that is unique for each row) before doing the RAND(). This is not always
going to be possible.

Further, on this particular dataset, random shuffling is problematic for another rea‐
son. Flights on the same day are probably subject to the same weather and traffic fac‐
tors. Thus, the rows in the training set and test sets will not be independent if we
simply shuffle the data. This consideration is relevant only for this particular
dataset—shuffling the data and taking the first 70% will work for other datasets that
don’t have this interrow dependence, as long as you have an id field.

We could split the data such that Jan–Sep 2015 is training data and Oct–Dec is testing
data. But what if delays can be made up in summer but not in winter? This split fails
the representativeness test. Neither the training dataset nor the test dataset will be
representative of the entire year if we split the dataset by months.

Splitting by Date
The approach that we will take is to find all the unique days in the dataset, shuffle
them, and use 70% of these days as the training set and the remainder as the test set.
For repeatability, I will store this division as a table in BigQuery.

The first step is to get all the unique days in the dataset:

SELECT
 DISTINCT(FL_DATE) AS FL_DATE
FROM
 dsongcp.flights_tzcorr
ORDER BY
 FL_DATE

The next step is to select a random 70% of these to be our training days:

SELECT
 FL_DATE,
 IF(ABS(MOD(FARM_FINGERPRINT(CAST(FL_DATE AS STRING)), 100)) < 70,
 'True', 'False') AS is_train_day

Evaluating the Model | 205

27 See the Google Open Source Blog for a description and GitHub for the code.

FROM (
 SELECT
 DISTINCT(FL_DATE) AS FL_DATE
 FROM
 dsongcp.flights_tzcorr)
ORDER BY
 FL_DATE

In the preceding query, the hash value of each of the unique days from the inner
query is computed using the FarmHash library and the is_train_day field is set to
True if the last two digits of this hash value are less than 70:27

Row FL_DATE is_train_day

1 2015-01-01 True

2 2015-01-02 False

3 2015-01-03 False

4 2015-01-04 True

5 2015-01-05 True

The final step is to save this result as a table in BigQuery:

CREATE OR REPLACE TABLE dsongcp.trainday AS
...

We can join with this table whenever we want to pull out training rows. For your con‐
venience, the preceding query is in the GitHub repository in the file trainday.txt, so
you can simply do:

cat trainday.txt | bq query --nouse_legacy_sql

In some chapters, we won’t be using BigQuery. Just in case we aren’t using BigQuery, I
will also export the table as a CSV file—we can do this on the web console, but we can
also script it:

bq extract dsongcp.trainday gs://${BUCKET}/flights/trainday.csv

Training and Testing
Now, I can go back and edit my original query to carry out the percentile using only
data from my training days. To do that, I will change this string in my original query:

FROM
 dsongcp.flights_tzcorr

to:

206 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

https://oreil.ly/3KDFA
https://oreil.ly/r9x0I

FROM
 dsongcp.flights_tzcorr
JOIN dsongcp.trainday USING(FL_DATE)
WHERE is_train_day = 'True'

Now, the percentile is computed out only on days for which is_train_day is True.

The code to create the plot remains the same. On running it, the threshold (the x-axis
value of the intersection point) remains consistent, as depicted in Figure 5-18.

Figure 5-18. The departure delay threshold remains consistent with earlier methods.

This is gratifying because we get the same answer—16 minutes—after creating the
empirical probabilistic model on just the training data.

Let’s formally evaluate how well our recommendation of 16 minutes does in terms of
predicting an arrival delay of 15 minutes or more. To do that, we have to find the
number of times that we would have wrongly canceled a meeting or missed a meet‐
ing. We can compute these numbers using this query on days that are not training
days:

SELECT
 SUM(IF(DEP_DELAY < 16
 AND arr_delay < 15, 1, 0)) AS correct_nocancel,
 SUM(IF(DEP_DELAY < 16
 AND arr_delay >= 15, 1, 0)) AS wrong_nocancel,
 SUM(IF(DEP_DELAY >= 16
 AND arr_delay < 15, 1, 0)) AS wrong_cancel,
 SUM(IF(DEP_DELAY >= 16
 AND arr_delay >= 15, 1, 0)) AS correct_cancel
FROM (
 SELECT
 DEP_DELAY,
 ARR_DELAY
 FROM
 dsongcp.flights_tzcorr
 JOIN dsongcp.trainday USING(FL_DATE)
 WHERE is_train_day = 'False'
)

Evaluating the Model | 207

Note that unlike when I was computing the decision threshold, I am not removing
outliers (i.e., thresholding on 370 flights at a specific departure delay) when evaluat‐
ing the model—outlier removal is part of my training process, and the evaluation
needs to be independent of that. The second point to note is that this query is run on
days that are not in the training dataset. Running this query in BigQuery, I get:

Row correct_nocancel wrong_nocancel wrong_cancel correct_cancel

1 1259740 66081 52827 217669

We will cancel meetings corresponding to a total of 52,827 + 217,669 or around 270k
flights. What fraction of the time are these recommendations correct? We can do the
computation in the notebook (assuming that the dataframe is named eval):

print(eval['correct_nocancel'] /
 (eval['correct_nocancel'] + eval['wrong_nocancel']))
print(eval['correct_cancel'] /
 (eval['correct_cancel'] + eval['wrong_cancel']))

Figure 5-19 presents the results.

Figure 5-19. Computing accuracy on independent test dataset.

It turns out when I recommend that you not cancel your meeting, I will be correct
95% of the time, and when I recommend that you cancel your meeting, I will be cor‐
rect 82% of the time.

Why is this not 70%? Because the populations are different. In creating the model, we
found the 70th percentile of arrival delay given a specific departure delay. In evaluat‐
ing the model, we looked at the dataset of all flights. One’s a marginal distribution,
and the other’s the full one. Another way to think about this is that the 95% figure is
padded by all the departure delays of more than 20 minutes when canceling the meet‐
ing is an easy call.

We could evaluate right at the decision boundary by changing our scoring function:

SELECT
 SUM(IF(DEP_DELAY = 15
 AND arr_delay < 15, 1, 0)) AS correct_nocancel,

208 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

 SUM(IF(DEP_DELAY = 15
 AND arr_delay >= 15, 1, 0)) AS wrong_nocancel,
 SUM(IF(DEP_DELAY = 16
 AND arr_delay < 15, 1, 0)) AS wrong_cancel,
 SUM(IF(DEP_DELAY = 16
 AND arr_delay >= 15, 1, 0)) AS correct_cancel
...

If we do that, evaluating only at departure delays of 15 and 16 minutes, the contin‐
gency table and ratios look like those in Figure 5-20.

Figure 5-20. Evaluating only at marginal decisions.

As expected, we are correct to not cancel the meeting 72% of the time, close to our
target of 70%. We chose the departure delay threshold of 16 minutes on the training
dataset because we expected to be 70% correct in not canceling if we do so, and now
we’ve proved on an independent dataset that this is the case. This model achieves the
70% correctness measure that was our target but does so by canceling fewer flights
than the contingency table–based model of Chapter 3.

Evaluating the Model | 209

Summary
In this chapter, we began to carry out exploratory data analysis. To be able to interac‐
tively analyze our large dataset, we loaded the data into BigQuery, which gave us the
ability to carry out queries on millions of rows in a matter of seconds. We required
sophisticated statistical plotting capabilities, and we obtained that by using a Jupyter
Notebook in the form of Vertex AI Workbench.

In terms of the model itself, we were able to use nonparametric estimation of the 30th
percentile of arrival delays, at each departure delay, to pick the departure delay thres‐
hold. We discovered that doing this allows us to cancel fewer meetings while attaining
the same target correctness. We evaluated our decision threshold on an independent
set of flights by dividing our dataset into two parts—a training set and a testing set—
based on randomly partitioning the distinct days that comprise our dataset.

Suggested Resources
To learn how to carry out EDA using Python libraries like Matplotlib, NumPy, and
Pandas, read the O’Reilly Media book Hands-On Exploratory Data Analysis with
Python by Suresh Kumar Mukhiya and Usman Ahmed. For a more theoretically
grounded introduction to the topic, consider taking the online course on EDA from
Johns Hopkins.

Peruse and work through the gallery of seaborn plots so that you are familiar with the
different ways of visualizing data that are available.

While Jupyter is great for EDA, it is not a great environment for developing stand‐
alone Python programs. Ultimately, you will want to refactor your notebook code
into functions and move them into a Python package. At that point, use a proper inte‐
grated development environment like PyCharm or Visual Studio Code. This is exactly
what we will do in this book. To learn this workflow, read this 2018 article by Florian
Wilhelm, “Working Efficiently with JupyterLab Notebooks”. You don’t need to install
Jupyter because Vertex AI Workbench manages that for you, but the rest of Florian’s
advice applies.

210 | Chapter 5: Interactive Data Exploration with Vertex AI Workbench

https://www.oreilly.com/library/view/hands-on-exploratory-data/9781789537253/
https://www.oreilly.com/library/view/hands-on-exploratory-data/9781789537253/
https://oreil.ly/Swjj0
https://oreil.ly/XkazV
https://oreil.ly/1vWEK
https://oreil.ly/teQf4
https://oreil.ly/xjevC

CHAPTER 6

Bayesian Classifier with Apache Spark
on Cloud Dataproc

Having become accustomed to running queries in BigQuery where there were no
clusters to manage, I’m dreading going back to configuring and managing Hadoop
clusters. But I did promise you a tour of data science on the cloud, and in many com‐
panies, Hadoop plays an important role in that.

In this chapter, we tackle the next stage of our data science problem, by creating a
Bayes model to predict the likely arrival delay of a flight. We will do this through an
integrated workflow that involves BigQuery and Spark SQL.

All of the code snippets in this chapter are available in the folder
06_dataproc of the book’s GitHub repository. See the README.md
file in that directory for instructions on how to do the steps
described in this chapter.

MapReduce and the Hadoop Ecosystem
MapReduce was described in a paper by Jeff Dean and Sanjay Ghemawat as a way to
process large datasets on a cluster of machines. They showed that many real-world
tasks can be decomposed into a sequence of two types of functions: map functions that
process key-value pairs to generate intermediate key-value pairs, and reduce func‐
tions that merge all the intermediate values associated with the same key. A flexible
and general-purpose framework can run programs that are written following this
MapReduce model on a cluster of commodity machines. Such a MapReduce frame‐
work will take care of many of the details that make writing distributed system appli‐
cations so difficult—the framework, for example, will partition the input data

211

https://github.com/GoogleCloudPlatform/data-science-on-gcp
https://oreil.ly/oMGK8

1 In Chapter 2, we discussed scaling up, scaling out, and data in situ from the perspective of data center tech‐
nologies. This background is useful to have here.

appropriately, schedule running the program across a set of machines, and handle job
or machine failures.

How MapReduce Works
Imagine that you have a large set of documents and you want to compute word fre‐
quencies on that dataset. Before MapReduce, this was an extremely difficult problem.
One approach you might take would be to scale up—that is, to get an extremely large,
powerful machine.1 The machine will hold the current word frequency table in mem‐
ory, and every time a word is encountered in the document, this word frequency table
will be updated. Here it is in pseudocode:

wordcount(Document[] docs):
 wordfrequency = {}
 for each document d in docs:
 for each word w in d:
 wordfrequency[w] += 1
 return wordfrequency

We can make this a multithreaded solution by having each thread work on a separate
document, sharing the word frequency table between the threads, and updating this
in a thread-safe manner. You will at some point, though, run into a dataset that is
beyond the capabilities of a single machine. At that point, you will want to scale out,
by dividing the documents among a cluster of machines. Each machine on the cluster
then processes a fraction of the complete document collection. The programmer
implements two methods, map and reduce:

map(String docname, String content):
 for each word w in content:
 emitIntermediate(w, 1)

reduce(String word, Iterator<int> intermediate_values):
 int result = 0;
 for each v in intermediate_values:
 result += v;
 emit(result);

The framework manages the orchestration of the maps and reduces and interposes a
group-by-key in between (i.e., it’s the framework that makes these calls—not the
programmer):

wordcount(Document[] docs):
 for each doc in docs:
 map(doc.name, doc.content)
 group-by-key(key-value-pairs)

212 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

2 See Slide 6 of Dean and Ghemawat’s original presentation—the MapReduce architecture they proposed
assumes that the cluster has limited bisection bandwidth and local, rather slow drives.

 for each key in key-values:
 reduce(key, intermediate_values)

To improve speed in an environment in which network bisection bandwidth (see
Chapter 2) is low,2 the documents are stored on local drives attached to the compute
instance. The map operations are then scheduled by the MapReduce infrastructure in
such a way that each map operation runs on a compute instance that already has the
data it needs (this assumes that the data has been presharded on the cluster), as
shown in Figure 6-1.

Figure 6-1. MapReduce is an algorithm for distributed processing of datasets in which
the data are presharded onto compute instances such that each map operation can access
the data it needs using a local filesystem call.

As the diagram indicates, there can be multiple map and reduce jobs assigned to a
single machine. The key capability that the MapReduce framework provides is the
orchestration and massive group-by-key after the map tasks complete and before the
reduce jobs can begin.

MapReduce and the Hadoop Ecosystem | 213

https://oreil.ly/8EOyd

3 Now, research papers from Google are often accompanied by open source implementations—Kubernetes,
Apache Beam, TensorFlow, and Inception are examples.

Apache Hadoop
When Dean and Ghemawat published the MapReduce paper, they did not make Goo‐
gle’s MapReduce implementation open source.3 Hadoop is open source software that
was created from parts of Apache Nutch, an open source web crawler created by
Doug Cutting based on a couple of Google papers. Cutting modeled the distributed
file system in his crawler on Google’s descriptions of the Google File System (a prede‐
cessor of the Colossus filesystem that is in use within Google Cloud Platform today)
and the data processing framework on Dean and Ghemawat’s MapReduce paper.
These two parts were then factored out into Hadoop in 2006 as the Hadoop Dis‐
tributed File System (HDFS) and the MapReduce engine.

Hadoop today is managed by the Apache Software Foundation. It is a framework that
runs applications using the MapReduce algorithm, enabling these applications to pro‐
cess data in parallel on a cluster of commodity machines. Apache Hadoop provides
Java libraries necessary to write MapReduce applications (i.e., the map and reduce
methods) that will be run by the framework. In addition, it provides a scheduler,
called YARN, and a distributed file system (HDFS). To run a job on Hadoop, the pro‐
grammer submits a job by specifying the location of the input and output files (typi‐
cally, these will be in HDFS) and uploading a set of Java classes that provide the
implementation of the map and reduce methods.

Google Cloud Dataproc
Normally, the first step in writing Hadoop jobs is to get a Hadoop installation going.
This involves setting up a cluster, installing Hadoop on it, and configuring the cluster
so that the machines all know about one another and can communicate with one
another in a secure manner. Then, you’d start the YARN and MapReduce processes
and finally be ready to write some Hadoop programs.

On Google Cloud, Google Cloud Dataproc makes it convenient to spin up a Hadoop
cluster that is capable of running MapReduce, Pig, Hive, Presto, and Spark.

If you are using Spark, Dataproc offers a fully managed, serverless Spark
environment—you can simply submit a Spark program and Dataproc will execute it.
In this way, Dataproc is to Apache Spark what Dataflow is to Apache Beam. In fact,
Dataproc and Dataflow share backend services. At the time I’m writing this chapter
(December 2021), this serverless execution environment in Dataproc supports only
Spark, although there are plans to expand it to other frameworks commonly used in
Hadoop clusters.

214 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

https://oreil.ly/Ozqzy
https://oreil.ly/Q2UnK
https://oreil.ly/3bx4I
https://oreil.ly/lFUq0
https://oreil.ly/Z8d48

4 As discussed in Chapter 3, the gcloud command makes a REST API call, so this can be done programmati‐
cally. You could also use the Google Cloud Platform web console. This command is available in the GitHub
repository as 05_dataproc/create_cluster.sh.

Even if you are not using Spark, Dataproc will still reduce the toil associated with
running Hadoop workloads in several ways:

• Dataproc ties into Cloud identity and access management (IAM), Cloud Logging,
etc., so that you don’t have to manage security or logging on a cluster-by-cluster
basis.

• It is autoscaling and will shrink or grow to accommodate your workloads, so you
don’t have to manage and provision machines yourself.

• It reads directly off Cloud Storage, so you don’t have to manage the storage
yourself.

• It offers a metadata service so that, even if you run clusters only for the duration
of the job, Hive jobs can have persistent metadata.

We can create a fully configured Dataproc cluster by using the following single
gcloud command:4

gcloud dataproc clusters create ch6cluster \
 --enable-component-gateway \
 --region us-central1 --zone us-central1-a \
 --master-machine-type n1-standard-4 \
 --master-boot-disk-size 500 --num-workers 2 \
 --worker-machine-type n1-standard-4 \
 --worker-boot-disk-size 500 --image-version 2.0 \
 --properties dataproc:dataproc.personal-auth.user=$EMAIL \
 --optional-components JUPYTER --project $PROJECT \
 --scopes https://www.googleapis.com/auth/cloud-platform

A minute or so later, the Cloud Dataproc cluster is created, all ready to go. The --
num-workers, --worker-machine-type, and --master-machine-type parameters
specify the hardware configuration of the cluster. The scopes parameter indicates
what Cloud IAM roles this cluster’s service account should have. For example, to cre‐
ate a cluster that will run programs that will need to administer Cloud Bigtable and
invoke BigQuery queries, you could specify the scope as follows:

--scopes=https://www.googleapis.com/auth/bigtable.admin,bigquery

Here, I’m allowing the cluster to work with all Google Cloud Platform products.
Cloud Dataproc allows you to specify an image version, so that any work you carry
out is repeatable. Leave out --image-version to use the latest stable version. The
--enable-component-gateway parameter creates readily accessible, but secure, https
proxy endpoints for various services running on the cluster. Besides the standard

Google Cloud Dataproc | 215

5 To find the name of the staging bucket created by Cloud Dataproc, run gcloud dataproc clusters
describe.

Hadoop services, we also want Jupyter, and so we specify it as an optional compo‐
nent. If your data (that will be processed by the cluster) is in a single-region bucket on
Google Cloud Storage, you should create your cluster in that same zone to take
advantage of the high bisection bandwidth within a Google data center; that’s what
the --zone specification does.

Although the cluster creation command supports a --bucket option to specify the
location of a staging bucket to store such things as configuration and control files,
best practice is to allow Cloud Dataproc to determine its own staging bucket. This
allows you to keep your data separate from the staging information needed for the
cluster to carry out its tasks. Cloud Dataproc will create a separate bucket in each
geographic region, choose an appropriate bucket based on the zone in which your
cluster resides, and reuse such Cloud Dataproc–created staging buckets between clus‐
ter create requests if possible.5

Because we specified --enable-component-gateway, we can verify that Hadoop is
running by visiting the Cloud Dataproc section of the Google Cloud Platform web
console and accessing the HDFS NameNode web interface (from the Web Interfaces
section of the cluster details). You should be able to see the list of data nodes.

If you want to use Secure Shell (SSH) to connect to the cluster, you
can, but you’d have to give the master node an external IP in order
to do so. This is generally not a good idea. Instead, interact with the
cluster through the available web interfaces. Later in this chapter,
I’ll show you how to install software on startup so that you don’t
need to SSH into the cluster to install software.

Need for Higher-Level Tools
The word count example is embarrassingly parallel, and therefore trivial to imple‐
ment in terms of a single map and a single reduce operation. However, it is nontrivial
to cast more complex data processing algorithms into sequences of map and reduce
operations. Higher-level solutions are called for, and as different organizations imple‐
mented add-ons to the basic Hadoop framework and made these additions available
as open source, the Hadoop ecosystem was born.

Apache Pig provided one of the first ways to simplify the writing of MapReduce pro‐
grams to run on Hadoop. Apache Pig requires you to write code in a language called
Pig Latin; these programs are then converted to sequences of MapReduce programs,
and these MapReduce programs are executed on Apache Hadoop. Because Pig Latin

216 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

http://pig.apache.org

6 Hive has been sped up in recent years through the use of a new application framework (Tez) and a variety of
optimizations for long-lived queries.

(sometimes just referred to as Pig) comes with a command-line interpreter, it is very
conducive to interactive creation of programs meant for large datasets. At the same
time, it is possible to save the interactive commands and execute the script on
demand. This provides a way to achieve both embarrassingly parallel data analysis
and data flow sequences consisting of multiple interrelated data transformations. Pig
can optimize the execution of MapReduce sequences, thus allowing the programmer
to express tasks naturally without worrying about efficiency.

Apache Hive provides a mechanism to project structure onto data that is already in
distributed storage. With the structure (essentially a table schema) projected onto the
data, it is possible to query, update, and manage the dataset using SQL. Typical inter‐
actions with Hive use a command-line tool or a Java Database Connectivity (JDBC)
driver.

Pig and Hive both rely on the distributed storage system to store intermediate results.
Apache Spark, on the other hand, takes advantage of in-memory processing and a
variety of other optimizations. Because many data pipelines start with large, out-of-
memory data, but quickly aggregate it to something that can be fit into memory,
Spark can provide dramatic speedups when compared to Pig and as well as speedups
for Spark SQL when compared to Hive.6 In addition, because Spark (like Pig and Big‐
Query) optimizes the directed acyclic graph (DAG) of successive processing stages, it
can provide gains over handwritten Hadoop operations. With the growing popularity
of Spark, a variety of machine learning, data mining, and streaming packages have
been written for it. Hence, in this chapter, we focus on Spark solutions. Cloud Data‐
proc, though, provides an execution environment for Hadoop jobs regardless of the
abstraction level (i.e., whether you submit jobs in Hadoop, Pig, Hive, or Spark). All
these software packages are installed by default on Cloud Dataproc.

Jobs, Not Clusters
We will look at how to submit jobs to the Cloud Dataproc clusters shortly, but after
you are done with the cluster, delete it by using the following:

gcloud dataproc clusters delete ch6cluster

You can even set the cluster up so that it is automatically deleted if it’s idle for a spe‐
cific time duration.

This is not the typical Hadoop workflow—if you are used to an on-premises Hadoop
installation, you might have set up the cluster a few months ago and it has remained
up since then. The better practice on Google Cloud Platform, however, is to delete the
cluster after you are done. The reasons are twofold. First, it typically takes less than

Google Cloud Dataproc | 217

https://oreil.ly/zHGQP
https://oreil.ly/T8n0V
https://hive.apache.org
http://spark.apache.org

7 For a tool to estimate costs quickly, go to the Google Cloud Pricing Calculator.

two minutes to start a cluster. Because cluster creation is fast and can be automated, it
is wasteful to keep unused clusters around—you are paying for the cluster regardless
of whether you are running anything useful on them. Second, one reason that on-
premises Hadoop clusters are kept always on is because the data is stored on HDFS.
Although you can use HDFS in Cloud Dataproc (recall that we looked at HDFS
NameNode to get the status of the Hadoop cluster), it is not recommended. Instead, it
is better to keep your data on Google Cloud Storage and directly read from Cloud
Storage in your MapReduce jobs—the original MapReduce practice of assigning map
processes to nodes that already have the necessary data came about in an environ‐
ment in which network bisection speeds were low. On the Google Cloud Platform, for
which network bisection speeds are on the order of a petabit per second, the best
practice has changed. Instead of sharding your data onto HDFS, keep your data on
Cloud Storage and read the data into an ephemeral cluster, as demonstrated in
Figure 6-2.

Because of the high network speed that prevails within the Google data center, read‐
ing from Cloud Storage is competitive with HDFS in terms of speed for sustained
reads of large files (the typical Hadoop use case). If your use case involves frequently
reading small files, reading from Cloud Storage could be slower than reading from
HDFS. However, even in this scenario, you can counteract this lower speed by simply
creating more compute nodes—because storage and compute are separate, you are
not limited to the number of nodes that happen to have the data. Because Hadoop
clusters tend to be underutilized, you will often save money by creating an ephemeral
cluster many times the size of an always-on cluster with an HDFS filesystem. Getting
the job done quickly with a lot more machines and deleting the cluster when you are
done is often the more frugal option (you should measure this on your particular
workflow, of course, and estimate the cost of different scenarios).7 This method of
operating with short-lived clusters is also quite conducive to the use of preemptible
instances—you can create a cluster with a given number of standard instances and
many more preemptible instances, thus getting a lower cost for the full workload.

218 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

https://oreil.ly/osWqs
https://oreil.ly/8gF35
https://oreil.ly/8gF35

Figure 6-2. Because network bisection speeds on Google Cloud are on the order of a
petabit per second, best practice is to keep your data on Cloud Storage and simply spin
up short-lived compute nodes to perform the map operations. These nodes will read the
data across the network. In other words, there is no need to preshard the data.

Preinstalling Software
Creating and deleting clusters on demand is fine if you want a plain, vanilla Hadoop
cluster, but what if you need to install specific software on the individual nodes?

There are two approaches. One is to create your own custom Docker images and ask
Dataproc to use those:

gcloud dataproc clusters create --image=...

You can create these images starting from an existing Dataproc base image and
adding any other packages you require in your Dockerfile.

Google Cloud Dataproc | 219

8 One efficient use of initialization actions is to preinstall all the third-party libraries you might need, so that
they don’t have to be submitted with the job. This script is 06_dataproc/install_on_cluster.sh.

9 This script is in the GitHub repository of this book as 06_dataproc/create_cluster.sh.

The second option is to use initialization actions. These are simply startup executa‐
bles, stored on Cloud Storage, that will be run on the nodes of the cluster. For exam‐
ple, suppose that we want a specific Python package:

• Create a script to carry out whatever software we want preinstalled:8

#!/bin/bash

Things to do on both Master and Worker
apt-get -y update
apt-get install python-dev
apt-get install python-pip
pip install --upgrade google-api-python-client

ROLE=$(/usr/share/google/get_metadata_value attributes/dataproc-role)
if [["${ROLE}" == 'Master']]; then
 cd home/dataproc
 git clone https://github.com/GoogleCloudPlatform/data-science-on-gcp
fi

Now, when the cluster is created, the specified packages will exist on all the nodes
and the GitHub repository will exist on the Master node.

• Save the script on Cloud Storage:
#!/bin/bash
BUCKET=cloud-training-demos-ml
ZONE=us-central1-a
INSTALL=gs://$BUCKET/flights/dataproc/install_on_cluster.sh

upload install file
gsutil cp install_on_cluster.sh $INSTALL

• Supply the script to the cluster creation command:9

gcloud dataproc clusters create \
 --num-workers=2 \
 ...
 --initialization-actions=$INSTALL \
 ch6cluster

Some components, like Jupyter, are already available for installation in Cloud Data‐
proc. For Jupyter, we could get away with just specifying it as one of the --optional-
components to be installed.

220 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

10 For a good, intuitive introduction to conditional probability, see Statistics How To.

Quantization Using Spark SQL
So far, we have used only one variable in our dataset—the departure delay—to make
our predictions of the arrival delay of a flight. However, we know that the distance the
aircraft needs to fly must have some effect on the ability of the pilot to make up for
delays en route. The longer the flight, the more likely it is that small delays in depar‐
ture can be made up in flight. So, let’s build a statistical model that uses two variables
—the departure delay and the distance to be traveled.

One way to do this is to put each flight into one of several bins, as shown in Table 6-1.

Table 6-1. Quantizing distance and departure delay to carry out Bayesian classification over
two variables

< 10 min 10–12 min 12–15 min > 15 min
< 100 miles For example:

• Arrival Delay ≥ 15 min: 150 flights
• Arrival Delay < 15 min: 850 flights
• 85% of flights have arrival delay < 15 minutes

100–500 miles
> 500 miles

For each bin, I can look at the number of flights within the bin that have an arrival
delay of more than 15 minutes and the number of flights with an arrival delay of less
than 15 minutes, and then determine which category is higher. The majority vote
then becomes our prediction for that entire bin. Because our threshold for decisions
is 70% (recall that we want to cancel the meeting if there is a 30% likelihood that the
flight will be late), we’ll recommend canceling the meeting for flights that fall into a
bin if the fraction of arrival delays of less than 15 minutes is less than 0.7. This
method is called Bayesian classification, and the statistical model is simple enough
that we can build it from scratch with a few lines of code.

The probability that the flight will be late given that the distance x0 is 120 miles and
the departure delay x1 is 8 minutes is called the conditional probability,10 written as
P(Clate | x0,xi). Within each bin, we are calculating the conditional probability
P(Contime | x0, x1) and P(Clate | x0, x1) where (x0, x1) is the pair of predictor vari‐
ables (mileage and departure delay) and Ck is one of two classes depending on the
value of the arrival delay of the flight. Because the probability of a specific value of a
continuous variable is zero, we need to estimate the probability over an interval, and,
in this case, the intervals are given by the bins. Thus, to estimateP(Contime | x0, x1),

Quantization Using Spark SQL | 221

https://oreil.ly/gwqcb

11 The exact calculation involves dividing by a scaling factor so that the outcome is the probability. See the Wiki‐
pedia entry on the Naive Bayes classifier for more details on the mathematics.

we find the bin that (x0, x1) falls into and use that as the estimate of P(Contime). If this
is less than 70%, our decision will be to cancel the meeting.

Of all the ways of estimating a conditional probability, the way we are doing it—by
divvying up the dataset based on the values of the variables—is the easiest, but it will
work only if we have large enough populations in each of the bins. This method of
directly computing the probability tables works with two variables, but will it work
with 20 variables? How likely is it that there will be enough flights for which the
departure airport is TUL, the distance is about 350 miles, the departure delay is about
10 minutes, the taxi-out time is about 4 minutes, and the hour of day that the flight
departs is around 7 a.m?

As the number of variables increases, we will need more sophisticated methods in
order to estimate the conditional probability. A scalable approach that we can employ
if the predictor variables are independent is a method called Naive Bayes. In the Naive
Bayes approach, we compute the probability tables by taking each variable in isola‐
tion (i.e., computing P(Contime | x0) and P(Contime | x1) separately) and then multi‐
plying them to come up with P(Ck | xi).11 However, for just two variables, for a
dataset this big, we can get away with binning the data and directly estimating the
conditional probability.

JupyterLab on Cloud Dataproc
Developing the Bayesian classification from scratch requires being able to interac‐
tively carry out development. Although we could spin up a Cloud Dataproc cluster,
connect to it via SSH, and do development on the Spark read–eval–print loop
(REPL), it would be better to use JupyterLab and get a notebook experience similar to
how we worked with BigQuery in Chapter 5.

Among the web interfaces that we enabled with --enable-component-gateway was
that for JupyterLab. Hence, we can connect to it similar to the way we connected to
the HDFS NameNode, from the Google Cloud web console, in the Web Interfaces
part of the cluster details section.

In Jupyter, use the File Browser on the left to navigate to /home/dataproc on the local
disk and open the notebook 06_dataproc/quantization.ipynb in the clone of the
course repository that you find there.

222 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

https://oreil.ly/4BdyQ
https://oreil.ly/4BdyQ

Independence Check Using BigQuery
Before we can get to computing the proportion of delayed flights in each bin, we need
to decide how to quantize the delay and distance. What we do not want are bins with
very few flights—in such cases, statistical estimates will be problematic. In fact, if we
could somehow spread the data somewhat evenly between bins (using quantization),
it would be ideal.

For simplicity, we would like to choose the quantization thresholds for distance and
for departure delay separately, but we can do this only if they are relatively independ‐
ent. Let’s verify that this is the case. Cloud Dataproc is integrated with the managed
services on Google Cloud Platform, so even though we have our own Hadoop cluster,
we can still call out to BigQuery from the notebook that is running on Cloud Data‐
proc. Using BigQuery, Pandas, and seaborn as we did in Chapter 5, here’s what the
query looks like:

sql = """
SELECT DISTANCE, DEP_DELAY
FROM dsongcp.flights_tzcorr
WHERE RAND() < 0.001 AND dep_delay > -20
 AND dep_delay < 30 AND distance < 2000
"""
df = bq.query(sql).to_dataframe()sns.set_style("whitegrid")
g = sns.jointplot(x=df['DISTANCE'], y=df['DEP_DELAY'], kind="hex",
 height=10, joint_kws={'gridsize':20})

The query samples the full dataset, pulling in 1/1,000 of the flights’ distance and
departure delay fields (that lie within reasonable ranges) into a Pandas dataframe.
This sampled dataset is sent to the seaborn plotting package and a hexbin plot is cre‐
ated. The resulting graph is shown in Figure 6-3.

Each hexagon of a hexagonal bin plot is colored based on the number of flights in
that bin, with darker hexagons indicating more flights. It is clear that at any distance,
a wide variety of departure delays is possible and for any departure delay, a wide vari‐
ety of distances is possible. The distribution of distances and departure delays in turn
is similar across the board. There is no obvious trend between the two variables—in
Figure 6-3, note that the Pearson correlation coefficient is 0.07. This indicates that we
can treat the two variables as independent.

The distribution plots at the top and right of the center panel of the graph show how
the distance and departure delay values are distributed. This will affect the technique
that we can use to carry out quantization. Note that the distance is distributed rela‐
tively uniformly until about 1,000 miles, beyond which the number of flights begins
to taper off. The departure delay, on the other hand, has a long tail and is clustered
around −5 minutes. We might be able to use equispaced bins for the distance variable
(at least in the 0- to 1,000-mile range), but for the departure delay variable, our bin

Quantization Using Spark SQL | 223

size must be adaptive to the distribution of flights. In particular, our bin size must be
wide in the tail areas and relatively narrow where there are lots of points.

Figure 6-3. The hexbin plot shows the joint distribution of departure delay and the dis‐
tance flown. You can use such a plot to verify whether the fields in question are
independent.

There is one issue with the hexbin plot in Figure 6-3: we have used data that we are
not allowed to use. Recall that our model must be developed using only the training
data. While we used it only for some light exploration, it is better to be systematic
about excluding days that will be part of our evaluation dataset from all model devel‐
opment. To do that, we need to join with the traindays table and retain only days for
which is_train_day is True. We could do that in BigQuery, but even though Cloud
Dataproc is integrated with other Google Cloud Platform services, invoking
BigQuery from a Hadoop cluster feels like a cop-out. So, let’s try to recreate the same

224 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

12 Just as an example, the Google Cloud Dataflow job that wrote out this code could have ordered the JSON file
by date, and in that case, this file will contain only the first 14 days of the year.

plot as before, but this time using Spark SQL, and this time using only the training
data.

Spark SQL in JupyterLab
A Spark session can be created by typing the following into a code cell:

from pyspark.sql import SparkSession
spark = SparkSession \
 .builder \
 .appName("Bayes classification using Spark") \
 .getOrCreate()

With the spark variable in hand, we can read in the time-corrected JavaScript Object
Notation (JSON) files that we wrote to Google Cloud Storage in Chapter 4:

inputs = 'gs://{}/flights/tzcorr/all_flights-*'.format(BUCKET))
flights = spark.read.json(inputs)

Even though we do want to ultimately read all the flights and create our model from
all of the data, we will find that development goes faster if we read a fraction of the
dataset. So, let’s change the input from all_flights-* to all_flights-00000-*:

inputs = 'gs://{}/flights/tzcorr/all_flights-00000-*'.format(BUCKET))

Because I had 26 JSON files, doing this change means that I will be processing just the
first file, and we will notice an increase in speed of 26 times during development. Of
course, we should not draw any conclusions from processing such a small sample
other than that the code works as intended.12 After the code has been developed on
4% of the data, we’ll change the string so as to process all the data and increase the
cluster size so that this is also done in a timely manner. Doing development on a
small sample on a small cluster ensures that we are not underutilizing a huge cluster
of machines while we are developing the code.

With the flights dataframe created as shown previously, we can employ SQL on the
dataframe by creating a temporary view (it is available only within this Spark
session):

flights.createOrReplaceTempView('flights')

Quantization Using Spark SQL | 225

Now, we can employ SQL to query the flights view, for example by doing this:

results = spark.sql('SELECT COUNT(*) FROM flights WHERE dep_delay >
-20 AND distance < 2000')
results.show()

On my development subset, this yields the following result:

+--------+
|count(1)|
+--------+
| 59665 |
+--------+

This is just about right to comfortably fit in memory, but even if it were somewhat
larger I dare not go any smaller than 2%–3% of the data, even in development.

To create the traindays dataframe, we can follow the same steps, but for a CSV file
this time:

traindays = spark.read \
 .option("header", "true") \
 .option("inferSchema", "true") \
 .csv('gs://{}/flights/trainday.csv'.format(BUCKET))
traindays.createOrReplaceTempView('traindays')

A quick check illustrates that traindays has been read, and the column names and
types are correct:

results = spark.sql('SELECT * FROM traindays')
results.head(5)

This yields the following:

[Row(FL_DATE='2015-01-01', is_train_day=True),
 Row(FL_DATE='2015-01-02', is_train_day=False),
 Row(FL_DATE='2015-01-03', is_train_day=False),
 Row(FL_DATE='2015-01-04', is_train_day=True),
 Row(FL_DATE='2015-01-05', is_train_day=True)]

To restrict the flights dataframe to contain only training days, we can do a SQL join:

statement = """
SELECT
 f.FL_DATE AS date,
 CAST(distance AS FLOAT) AS distance,
 dep_delay,
 IF(arr_delay < 15, 1, 0) AS ontime
FROM flights f
JOIN traindays t
ON f.FL_DATE == t.FL_DATE
WHERE
 t.is_train_day AND
 f.dep_delay IS NOT NULL
ORDER BY

226 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

13 For examples of histogram equalization applied to improve the contrast of images, go to OpenCV.org.
14 Photograph by the author.

 f.dep_delay DESC
"""
flights = spark.sql(statement)

Now, we can use the flights dataframe for the hexbin plots after clipping the x-axis
and y-axis to reasonable limits:

df = flights[(flights['distance'] < 2000) & \
 (flights['dep_delay'] > -20) & \
 (flights['dep_delay'] < 30)]

When we drew the hexbin plot in the previous section, we sampled the data to
1/1,000, but that was because we were passing in a Pandas dataframe to seaborn. This
sampling was done so that the Pandas dataframe would fit into memory. However,
whereas a Pandas dataframe must fit into memory, a Spark dataframe does not. As of
this writing (i.e., December 2021), though, there is no way to directly plot a Spark
dataframe either—you must convert it to a Pandas dataframe; therefore, we will still
need to sample it, at least when we are processing the full dataset.

Because there are about 50,000 rows on 1/25 of the data, we expect the full dataset to
have about 6 million rows. Let’s sample this down to about 100,000 records, which
would be about 0.02 of the dataset:

pdf = df.sample(False, 0.02, 20).toPandas()
g = sns.jointplot(x=pdf['distance'], y=pdf['dep_delay'], kind="hex",
 height=10, joint_kws={'gridsize':20})

This yields a hexbin plot that is not very different from the one we ended up with in
the previous section. The conclusion—that we need to create adaptive-width bins for
quantization—still applies. Just to be sure, though, this is the point at which I’d repeat
the analysis on the entire dataset to ensure our deductions are correct had I done only
the Spark analysis. However, we did do it on the entire dataset in BigQuery, so let’s
move on to creating adaptive bins.

Histogram Equalization
To choose the quantization thresholds for the departure delay and the distance in an
adaptive way (wider thresholds in the tails and narrower thresholds where there are a
lot of flights), we will adopt a technique from image processing called histogram
equalization.13

Low-contrast digital images have histograms of their pixel values distributed such
that most of the pixels lie in a narrow range. Take, for example, the photograph in
Figure 6-4.14

Quantization Using Spark SQL | 227

https://oreil.ly/IhYKh

Figure 6-4. Original photograph of the pyramids of Giza used to demonstrate histogram
equalization.

As depicted in Figure 6-5, the histogram of pixel values in the Pyramids image is
clustered around two points: the dark pixels in the shade, and the bright pixels in the
sun.

Figure 6-5. Histogram of pixel values in photograph of the pyramids.

Let’s remap the pixel values such that the full spectrum of values is present in the
image, so that the new histogram looks like that shown in Figure 6-6.

Figure 6-6. Histogram of pixels after remapping the pixels to occupy the full range.

The remapping is of pixel values and has no spatial component. For example, all pixel
values of 125 in the old image might be changed to a pixel value of 5 in the new image

228 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

15 Not the tallest, though. Khufu’s pyramid (the tall pyramid in the forefront) is taller and larger, but has been
completely stripped of its alabaster topping and is situated on slightly lower ground.

regardless of where they are in terms of horizontal and vertical position. Figure 6-7
presents the remapped image.

Figure 6-7. Note that after the histogram equalization, the contrast in the image is
enhanced.

What we implicitly did was to remap the pixel values, such that each section of the
spectrum from black to white now has approximately the same number of pixels
(whereas previously they were all in the gray middle). Histogram equalization has
helped to enhance the contrast in the image and bring out finer details. Look, for
example, at the difference in the rendering of the sand in front of the pyramid or of
the detail of the midsection of Khafre’s pyramid (the tall one in the middle).15

How is this relevant to what we want to do? We are also looking to remap values
when we seek to find quantization intervals. In the image case, the output had the
same range as the input. But in our flight example, we’d like to remap a distance value
of 422 miles to a quantized value of perhaps 3. As in histogram equalization, we want
the bin values to be uniformly distributed. We can, therefore, apply the same techni‐
que as is employed in the image processing filter to achieve this.

What we want to do is to divide the spectrum of distance values into, say, five bins.
The first bin will contain all values in [0, d0), the second will contain values in [d0, d1],
and so on, until the last bin contains values in [d4, ∞). Histogram equalization
requires that d0, d1, and so on be such that the number of flights in each bin is approx‐
imately equal—that is, for the data to be uniformly distributed after quantization. As
in the example photograph of the pyramids, it won’t be perfectly uniform because the

Quantization Using Spark SQL | 229

16 If, for example, there is a newfangled technological development that enables pilots to make up time in the air
better or, more realistically, if new regulations prompt airline schedulers to start padding their flight-time
estimates.

input values are also discrete. However, the goal is to get as close to an equalized his‐
togram as possible.

With histogram equalization, at any specific departure delay, the number of flights at
each distance and delay bin should remain large enough that our conclusions are stat‐
istically valid. Assuming independence and 6 million total flights, if we divvy up the
data into 100 bins (10 bins per variable), we will have about 60,000 flights in each bin.
That’s probably still okay, but let’s be safe and divvy up the data into just five bins
each. Divvying up the data into five bins implies a probability range of 0, 0.2, ..., 0.8 or
five probabilistic thresholds:

np.arange(0, 1.0, 0.2)

Finding thresholds that make the two quantized variables uniformly distributed is
quite straightforward using the approximate quantiles method discussed in Chap‐
ter 5. There is an approxQuantile() method available on the Spark dataframe also:

distthresh = flights.approxQuantile('distance',
 list(np.arange(0, 1.0, 0.2)), 0.02)
delaythresh = flights.approxQuantile('dep_delay',
 list(np.arange(0, 1.0, 0.2)), 0.02)

On the development dataset, here’s what the distance thresholds turn out to be:

[130.0, 370.0, 621.0, 1009.0]

The zeroth percentile is essentially the minimum. The next ones are the 25th percen‐
tile, median, and 75th percentile. In order to have have all bin boundaries, we can
tack on infinity at the end:

distthresh[-1] = float('inf')

Other than setting the policy (histogram equalization), we don’t need to be in the
business of choosing distance thresholds. This automation is important because it
allows us to dynamically update thresholds if necessary on the most recent data,16

taking care to use the same set of thresholds in prediction as was used in training.

We can similarly quantize the departure delay thresholds into equal boundaries, and
we get:

[-22.0, -5.0, -3.0, 0.0, inf]

Unfortunately, this variable is not as well-behaved as the distance—more than 75% of
flights depart on-time or early, so the really interesting delayed departures are all hid‐
den in the last bin. This is going to be a problem that we will fix shortly.

230 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

Bayesian Classification
Now that we have the quantization thresholds, what we need to do is find out the rec‐
ommendation (whether to cancel the meeting) for each bin based on whether 70% of
flights in that bin are on time or not.

Bayes in Each Bin
We can find the flights that belong to the mth distance bin and nth delay bin by slicing
the full set of flights:

bdf = flights[(flights['distance'] >= distthresh[m])
 & (flights['distance'] < distthresh[m+1])
 & (flights['dep_delay'] >= delaythresh[n])
 & (flights['dep_delay'] < delaythresh[n+1])]

Once we do that, we can compute the fraction of flights that arrive on time for this
bin:

ontime_frac = (bdf.agg(F.sum('ontime')).collect()[0][0] /
 bdf.agg(F.count('ontime')).collect()[0][0])

Looping through the first on-time fractions for the first few bins, we immediately
notice a problem:

m n ontime_frac
0 0 0.9853403141361257
0 1 0.9847756410256411
0 2 0.9753028890959925
0 3 0.6346045989904655
1 0 0.9721913236929922
1 1 0.9650856389986825
1 2 0.9711299153807864
1 3 0.5715380684721513

The on-time fraction is nearly 100% for all the delay bins except the largest value for
n. This makes perfect sense because only the last departure delay bin has any delayed
flights.

We’ll have to fix this—one way to do so is to hand-select the departure delay bins.
Because we already looked at thresholding the departure delay in Chapter 3, we know
that the interesting range is between 10 and 20 minutes and that departure delays are
reported in integer minutes. So, we simply need to try delay variables of 10, 11, 12, …,
20 minutes.

So, let’s change the delay thresholds and look at them in increments of one minute:

delaythresh = range(10, 20)

To find the delay threshold for each distance threshold where the value is closest to
the 0.70 decision boundary (see quantization.ipynb in the GitHub repository):

Bayesian Classification | 231

df['score'] = abs(df['frac_ontime'] - 0.7)
bayes = (df.sort_values(['score']).groupby('dist_thresh')
 .head(1).sort_values('dist_thresh'))

The resulting model is a lookup table that consists of a delay threshold for each dis‐
tance bin:

Distance bin delay_thresh

[130, 370] 17

[370, 621] 13

[621, 1009] 17

[1009, inf] 18

If the departure delay is greater than the threshold corresponding to how far the
flight is, then we will cancel the meeting because we expect the flight to be late. We
are finding the delay beyond which we need to cancel flights for each distance and
saving just that threshold. This makes it quite easy to productionize the model—just
write out the preceding table as a CSV file, perhaps, and ask the developer of the
application to apply the appropriate threshold based on the lookup table.

For example, what is the appropriate decision for a flight with a distance of 800 miles
that departs 16 minutes late? The flight falls into the [621, 1009] bin. For such flights,
we need to cancel the meeting only if the flight departs 17 or more minutes late—a
shorter departure delay is something that can be made up en route.

Evaluating the Model
How well does this model do? To evaluate the model, we have to look at flights that
were not used in creating the model. The held-out days are obtained by looking for:

t.is_train_day == 'False'

We can compute the contingency table values for any given bin using:

SELECT
ROUND(SUM(IF(dep_delay < {2:f} AND arr_delay < 15, 1, 0))/COUNT(*), 2)
 AS correct_nocancel,
ROUND(SUM(IF(dep_delay >= {2:f} AND arr_delay < 15, 1, 0))/COUNT(*), 2)
 AS false_positive,
ROUND(SUM(IF(dep_delay < {2:f} AND arr_delay >= 15, 1, 0))/COUNT(*), 2)
 AS false_negative,
ROUND(SUM(IF(dep_delay >={2:f} AND arr_delay >= 15, 1, 0))/COUNT(*), 2)
 AS correct_cancel,
COUNT(*) AS total_flights
FROM flights f
JOIN traindays t
ON f.FL_DATE == t.FL_DATE
WHERE
 t.is_train_day == 'False' AND

232 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

 f.distance >= {0:f} AND f.distance < {1:f}
""".format(distthresh[m], distthresh[m+1],
 bayes[
 bayes['dist_thresh'] == distthresh[m]
]['delay_thresh'].values[0])

When I did this, I got the results shown in Figure 6-8. We can not put too much stock
in this model, though, because it was trained on just 1/25 of the data. Let’s fix that
next.

Figure 6-8. Results of evaluating the Bayes model.

Dynamically Resizing Clusters
The thresholds in the previous section have been computed on about 1/25 of the data
(recall that our input was only one shard: all-flights-00000-of-*). So, we should
find the actual thresholds that we will want to use by repeating the processing on all
of the training data at hand. To do this in a timely manner, we will also want to
increase our cluster size. Fortunately, we don’t need to bring down our Cloud Data‐
proc cluster in order to add more nodes.

Bayesian Classification | 233

17 Trying to increase the number of workers might have you hitting against (soft) quotas on the maximum num‐
ber of CPUs, drives, or addresses. If you hit any of these soft quotas, request an increase from the Google
Cloud Platform console’s section on Compute Engine quotas. Besides the necessary CPU quota, you may need
to ask for an increase in Persistent Disk and In-use IP addresses. Because a Cloud Dataproc cluster is in
a single region, these are regional quotas. See the documentation on resource quotas in Compute Engine for
details. In Chapter 7, I had to ask for additional CPUs, and the process of getting a quota increased is
explained there as well. If you are in an organization where increasing the quota is a bureaucratic process, ask
for the larger quota you will need for Chapter 7 now.

18 Less than a minute’s notice as of this writing in December 2021.
19 If the preemptible instances cost 20% of a standard machine (as they do as of this writing in December 2021),

the 15 extra machines cost us only as much as three standard machines.

Let’s add machines to the cluster so that it has 20 workers, 15 of which are secondary
and so are heavily discounted in price:17

gcloud dataproc clusters update ch6cluster\
 --num-secondary-workers=15 --num-workers=5 --region=us-central1

The secondary machines are preemptible. These machines are provided by Google
Cloud Platform at a large (fixed) discount to standard Google Compute Engine
instances in return for users’ flexibility in allowing the machines to be taken away at
very short notice.18 They are particularly helpful on Hadoop workloads because
Hadoop is fault-tolerant and can deal with machine failure—it will simply reschedule
those jobs on the machines that remain available. Using preemptible machines on
your jobs is a frugal choice—here, the five standard workers are sufficient to finish
the task in a reasonable time. However, the availability of 15 more machines means
that our task could be completed four times faster and much more inexpensively than
if we have only standard machines in our cluster.19

We can navigate to the Google Cloud Platform console in a web browser and check
that our cluster now has 20 workers, as illustrated in Figure 6-9.

Figure 6-9. The cluster now has 20 workers.

Now, go to the JupyterLab Notebook and change the input variable to process the full
dataset. Next, in the JupyterLab Notebook, click Kernel > “Restart Kernel and Clear

234 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

https://oreil.ly/NMXtu
https://oreil.ly/3KHNQ

All Outputs” to avoid mistakenly using a value corresponding to the development
dataset. Then, click on Run > “Run all Cells.”

All the graphs and charts are updated. After we have the results, we can resize the
cluster back to something smaller so that we are not wasting cluster resources:

gcloud dataproc clusters update ch6cluster\
 --num-secondary-workers=0 --num-workers=2

On the full dataset, the lookup table is:

Distance bin delay_thresh

[31, 328] 14

[328, 541] 15

[541, 802] 15

[802, inf] 17

Note that the thresholds changed (the quantiles are different once we add the remain‐
ing 95% of information). The delay threshold also changes quite smoothly as the dis‐
tance increases. The behavior matches our intuition that we can be tolerant of longer
delays on longer flights.

Comparing to Single Threshold Model
Yes, but is this better than the single, universal threshold that we used in Chapter 5?
How well does this new two-variable model perform? We can modify the evaluation
BigQuery query from Chapter 5 to add in a distance criterion and supply the appro‐
priate threshold for that distance:

SELECT
 SUM(IF(DEP_DELAY = 14
 AND arr_delay < 15,
 1,
 0)) AS wrong_cancel,
 SUM(IF(DEP_DELAY = 14
 AND arr_delay >= 15,
 1,
 0)) AS correct_cancel
 FROM (
 SELECT
 DEP_DELAY,
 ARR_DELAY
 FROM
 dsongcp.flights_tzcorr f
 JOIN
 dsongcp.trainday t
 ON
 f.FL_DATE = t.FL_DATE
 WHERE

Bayesian Classification | 235

 t.is_train_day = 'False'
 AND f.DISTANCE < 328)

In this query, 14 minutes is the newly determined threshold for distances under 328
miles and the WHERE clause is now limited to flights over distances of less than 328
miles. The result is:

Row wrong_cancel correct_cancel

1 1244 582

This indicates that we cancel meetings when it is correct to do so 582 / (582 + 1,244)
or 32% of the time—remember that our goal was 30%. Similarly, we can do the other
four distance categories. Both with this model and with a model that took into
account only the departure delay (as in Chapter 5), we are able to get reliable predic‐
tions—canceling meetings when the flight has more than a 30% chance of being
delayed.

When we have two models that perform equally well on the primary metric, it is pos‐
sible that we can see if they differ on a secondary metric that also matters to us. Even
if two models have the same reliability (of 30%), a model that allows us to achieve
that reliability while canceling fewer meetings would be preferable. Or perhaps there
is a certain category of meetings that are more important than others. The more com‐
plex model is worthwhile if we end up canceling fewer important meetings or if we
can be more fine-grained in our decisions (i.e., change which meetings we cancel). If
our secondary metric is the total number of meetings canceled, we can compute the
sum of correct_cancel and wrong_cancel over all flights. In the case of using only
the departure delay variable, we used a threshold of 16 minutes, and we would have
canceled 270k meetings. How about now? Let’s look at the total number of flights in
the test set that would cause us to cancel our meetings:

SELECT
 SUM(IF(DEP_DELAY >= 14 AND DISTANCE < 328, 1, 0)) +
 SUM(IF(DEP_DELAY >= 15 AND DISTANCE >= 328 AND DISTANCE < 541, 1, 0)) +
 SUM(IF(DEP_DELAY >= 15 AND DISTANCE >= 541 AND DISTANCE < 802, 1, 0)) +
 SUM(IF(DEP_DELAY >= 17 AND DISTANCE >= 802, 1, 0))
 AS cancel
FROM (
 SELECT
 DEP_DELAY,
 ARR_DELAY,
 DISTANCE
 FROM
 dsongcp.flights_tzcorr f
 JOIN
 dsongcp.trainday t
 ON
 f.FL_DATE = t.FL_DATE

236 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

20 Occam’s razor suggests that we should pick the simpler model whenever its performance is comparable to a
more complex model—it costs money and time to collect the data corresponding to additional features and
keep them quality-controlled. Famously, although Netflix paid out $1 million to a team that developed a bet‐
ter recommendation algorithm, it also announced that it had no plans to put that algorithm into production
because of the combination of additional engineering effort and changes to Netflix’s business model. We have
to balance this desire for simplicity against the additional expressive power offered by the more complex
model. For example, greater granularity might raise interesting questions to get you greater performance later
—perhaps we can investigate the reason behind the dip in the second quartile, identify the city pairs driving
this degradation, and impose rules that address the scenario.

 WHERE
 t.is_train_day = 'False')

This turns out to be 275k. It appears, then, that our simpler univariate model got us
pretty much the same results as this more complex model using two variables.20 How‐
ever, the decision surfaces are different—in the single-variable threshold, we cancel
meetings whenever the flight is delayed by 16 minutes or more. However, when we
take into account distance, we cancel more meetings corresponding to shorter flights
(threshold is now 14–15 minutes) and cancel fewer meetings corresponding to longer
flights (threshold is now 17 minutes). One reason to use this two-variable Bayes
model over the one-variable threshold determined empirically is to make such finer-
grained decisions. This might or might not be important—it comes down to whether
longer flights are typically those corresponding to more important meetings.

Why did we not get an improvement in the number of canceled meetings? Perhaps
the round-off in the delay variables (they are rounded off to the nearest minute) has
hurt our ability to locate more precise thresholds. Also, maybe the extra variable
would have helped if I’d used a more sophisticated model—direct evaluation of con‐
ditional probability on relatively coarse-grained quantization bins is a very simple
method. In Chapter 7, we explore a more complex approach.

Orchestration
So far, in this chapter, we have developed and run the Spark jobs interactively. Once
you have done so, you will want to operationalize the job and run it routinely.
Although you can productionize a Jupyter Notebook using tools such as Papermill, I
recommend that you convert the code into a Python program that you can execute in
a standalone way.

Orchestration | 237

https://oreil.ly/zDsC9
https://oreil.ly/t05D8

Although you can just copy-paste the code cells out of a Jupyter
Notebook into a Python file, a more systematic way is to convert
the Jupyter Notebook to a Python program using a tool called
nbconvert. After that, we can do minor editing to get rid of the dis‐
play cells (such as plotting the hexbin plots). The Python program
corresponding to the Jupyter Notebook that we’ve developed so far
is in the GitHub repository as bayes_in_spark.py.

Submitting a Spark Job
We already have a Dataproc cluster that we have been using during development—
our Jupyter Notebook is running on a Dataproc cluster. We can submit our Python
program to this cluster from Cloud Shell:

gcloud dataproc jobs submit pyspark \
 --cluster ch6cluster --region $REGION \
 bayes_in_spark.py \
 -- \
 --bucket $BUCKET --debug

This is the approach you’d take if you have an already running cluster and wish to
submit Spark jobs to it. However, this will require ensuring that the cluster has
enough resources to handle your job. If you happen to submit your job at the same
time as some other team that is already utilizing the cluster, your job might run very
slowly. The solution for this problem is to use job-specific clusters.

Workflow Template
I recommend that you create ephemeral clusters, run jobs on them, and then delete
them when you are done. Instead of doing them manually, you can automate it using
a workflow template:

TEMPLATE=ch6eph
MACHINE_TYPE=n1-standard-4
CLUSTER=ch6eph

gcloud dataproc --quiet workflow-templates create $TEMPLATE

The first step of the template will be to create a cluster of the appropriate size and set
it to be a managed cluster so that it gets deleted once all the steps in the template are
complete:

gcloud dataproc workflow-templates set-managed-cluster $TEMPLATE \
 --master-machine-type $MACHINE_TYPE \
 --worker-machine-type $MACHINE_TYPE \
 --initialization-actions $STARTUP_SCRIPT \
 --num-preemptible-workers=3 --num-workers 2 \

238 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

https://oreil.ly/U50EE

 --image-version 2.0 \
 --cluster-name $CLUSTER

Then, you can add jobs to the template. For example, to run a Pig program, we’d do:

gcloud dataproc workflow-templates add-job \
 pig gs://$BUCKET/bayes_final.pig \
 --step-id create-report \
 --workflow-template $TEMPLATE \
 -- --bucket=$BUCKET

Finally, instantiate the template to run the jobs and delete the cluster once done:

gcloud dataproc workflow-templates instantiate $TEMPLATE

One key change that we have to make to our program is to ensure that the output of
the Spark program goes to a Cloud Storage location (rather than a local file on disk)
because the cluster will be deleted once the job is complete:

bayes.to_csv('gs://${BUCKET}/flights/bayes.csv'.format(BUCKET),
 index=False)

Cloud Composer
If your Dataproc job is part of a larger data pipeline, you will typically write the data
pipeline in Apache Airflow. Cloud Composer provides a fully managed experience for
Airflow on Google Cloud.

Within your Airflow graph, you can launch the workflow template using an Airflow
operator:

start_template_job = DataprocInstantiateWorkflowTemplateOperator(
 …
)

Your considerations might change, however, if your company owns a Hadoop cluster
on premises. In that case, you will submit Spark jobs to that long-lived cluster and
will typically be concerned with ensuring that the cluster is not overloaded.

For the scenario in which you own an on-premises cluster, you might want to con‐
sider using a public cloud as a spillover in those situations for which there are more
jobs than your cluster can handle. You can achieve this by monitoring YARN jobs
and sending such spillover jobs to Cloud Dataproc. Cloud Composer provides the
necessary plug-ins to be able to do this, but discussing how to set up such a hybrid
system is beyond the scope of this book.

Autoscaling
When we created the workflow template, we specified the number of workers in the
cluster. When we were developing the Spark program, we resized the cluster to add
workers when we were ready to create the model on the full dataset. In both scenar‐

Orchestration | 239

https://oreil.ly/tkMHJ

ios, we have to know what size of cluster we need. This can be difficult for new work‐
loads and for spiky jobs.

On a production system, it is possible to tell Dataproc to autoscale—the autoscaler
monitors the cluster and, when it sees that the machines are getting maxed out, it
adds more workers. When it sees machines on the cluster being idle, it shuts down a
few workers. To do this, specify an autoscaling policy when creating the Dataproc
cluster:

gcloud dataproc clusters create ch6cluster \
 --autoscaling-policy=ch6policy \
 …

The autoscaling policy is specified in a YAML file with the syntax:

workerConfig:
 minInstances: 3
 maxInstances: 10
 weight: 1
secondaryWorkerConfig:
 minInstances: 0
 maxInstances: 20
 weight: 1
basicAlgorithm:
 cooldownPeriod: 2m
 yarnConfig:
 scaleUpFactor: 0.05
 scaleDownFactor: 1.0
 scaleUpMinWorkerFraction: 0.0
 scaleDownMinWorkerFraction: 0.0
 gracefulDecommissionTimeout: 1h

Note how the range of the number of primary and secondary workers is specified, as
is the rate by which workers are scaled up. Once the autoscaling policy is specified, it
is registered using gcloud:

gcloud dataproc autoscaling-policies import ch6policy \
 --source=filepath/filename.yaml \
 --region=region

Then, submit jobs to the cluster as and when you need them to be run:

gcloud dataproc jobs submit pyspark \
 --cluster=ch6cluster bayes_final.py \
 -- --bucket=$BUCKET

The cluster will be autoscaled based on the resources needed by the job subject to the
limits specified in the policy.

Serverless Spark
However, even autoscaling requires a cluster to be running.

240 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

An even better approach would be if we can simply submit a Spark program to a
Dataproc service, and the service starts the cluster, runs the job, autoscales it if neces‐
sary, and deletes the cluster. We’d like our Spark job to be serverless.

To do so, we put the script itself on Cloud Storage:

gsutil cp bayes_on_spark.py gs://$BUCKET/

and submit the job using gcloud:

gcloud beta dataproc batches submit pyspark \
 --project=$(gcloud config get-value project) \
 --region=$REGION \
 gs://${BUCKET}/bayes_on_spark.py \
 -- \
 --bucket ${BUCKET} --debug

See submit_serverless.sh in the GitHub repository for details.

Once we do this, Dataproc takes care of all the infrastructure details. It runs our job
and puts the lookup table in Cloud Storage. We can see the status of the job and
examine its logs using the GCP console (see Figure 6-10).

Figure 6-10. To view the status of the serverless Spark job, visit the Dataproc section of
the GCP web console.

Orchestration | 241

21 One-minute increments in the range (10, 20).

When I did this, I got:

dist_thresh,delay_thresh,frac_ontime,score
31.0,14.0,0.6874006359300477,0.012599364069952212
328.0,15.0,0.6958465263550009,0.004153473644999073
544.0,15.0,0.7054307116104869,0.005430711610486916
802.0,17.0,0.6874393150322182,0.012560684967781732

This matches the lookup table that we got when we ran the notebook on the full
dataset:

Distance bin delay_thresh

[31, 328] 14

[328, 541] 15

[541, 802] 15

[802, inf] 17

Because running the job involves only a single gcloud command, it is possible to
schedule the Spark program to run every month, or whenever a new month of data is
received by updating the Cloud Run and Cloud Scheduler solution that we created in
Chapter 2.

Summary
In this chapter, we explored how to create a two-variable Bayes model to provide
insight as to whether to cancel a meeting based on the likely arrival delay of a flight.
We quantized the two variables (distance and departure delay), created a conditional
probability lookup table, and examined the on-time arrival percentage in each bin.
We carried out the quantization using histogram equalization and on-time arrival
percentage computations in Spark.

Upon discovering that equalizing the full distribution of departure delays resulted in
a very coarse sampling of the decision surface, we chose to go with the highest possi‐
ble resolution in the crucial range of departure delay.21 However, to ensure that we
would have statistically valid groupings, we also made our quantization thresholds
coarser in distance. On doing this, we discovered that the probability of the arrival
delay being less than 15 minutes varied rather smoothly. Because of this, our condi‐
tional probability lookup reduced to a table of thresholds that could be applied
cleanly using IF-THEN rules.

On evaluating the two-variable model, we found that we would be canceling about
the same number of meetings as with the single-variable model while retaining the

242 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

same overall accuracy. We hypothesize that the improvement isn’t higher because the
departure delay variable has already been rounded off to the nearest minute, limiting
the scope of any improvement we can make.

In terms of tooling, we created a three-node Cloud Dataproc cluster for development
and resized it on the fly to 20 workers when our code was ready to be run on the full
dataset. Cloud Dataproc goes a long way toward making this a low-touch endeavor—
we saw that it is possible to create and schedule ephemeral jobs because Dataproc
provides a serverless experience for Spark. The reason that Dataproc can create,
resize, and delete the clusters for our job is that our data is held not in HDFS, but on
Google Cloud Storage. We carried out development in JupyterLab, which gives us an
interactive notebook experience. We also found that we were able to integrate Big‐
Query and Spark SQL into our workflow on the Hadoop cluster.

Finally, we converted the notebook into a Python Spark program that can be run rou‐
tinely in production. We explored different ways of doing this: submitting the Spark
to an already running cluster, creating a Workflow template, using Cloud Composer,
and running Spark in a serverless way. Of these, serverless Spark involves the least
amount of fiddling around with infrastructure. If you can do serverless, do serverless.

Suggested Resources
The most common reason that organizations use Dataproc today is that they used to
have Hadoop clusters on premises. On-premises Hadoop workloads are typically
lifted-and-shifted to Dataproc, optimized to take advantage of cloud computing (for
example, using ephemeral clusters), and then modernized over time to BigQuery and
Dataflow. This technical guide steps you through the considerations in moving the
data, migrating the jobs, and connecting various types of clients and security tools.

One common question is whether to use Dataflow or Dataproc—both these products
support data ingest and data processing. The flowchart in Figure 6-11, from the Goo‐
gle Cloud documentation, suggests that this depends on whether you want to use
Hadoop tools like Spark.

As the flowchart suggests, the second common reason that organizations use Data‐
proc is that they wish to have some degree of control over their infrastructure. Per‐
haps they have tasks that have to be carried out on premises for regulatory reasons.
When doing so it is important to adopt best practices for storage, compute, and oper‐
ations. I would add a third consideration here—Dataflow is much better at streaming
than any alternative on Hadoop. My colleague Grace Mollison has collected these
flow charts on her website.

Suggested Resources | 243

https://oreil.ly/2lcEG
https://oreil.ly/nOnsX
https://oreil.ly/nyhmH
https://oreil.ly/nyhmH

Figure 6-11. Choosing between Dataproc and Dataflow.

244 | Chapter 6: Bayesian Classifier with Apache Spark on Cloud Dataproc

1 We also put our thumb on the scale a little. Recall that we quantized the distance variable quite coarsely. Had
we quantized distance into many more bins, there would have been fewer flights in each bin.

CHAPTER 7

Logistic Regression Using Spark ML

In Chapter 6, we created a model based on two variables—distance and departure
delay—to predict the probability that a flight will be more than 15 minutes late. We
found that we could get a finer-grained decision if we used a second variable (dis‐
tance) instead of using just one variable (departure delay).

Why not use all the variables in the dataset? Or at least many more of them? In par‐
ticular, I’d like to use the TAXI_OUT variable—if it is too high, the flight will be stuck
on the runway waiting for the airport tower to allow the plane to take off, and so the
flight is likely to be delayed. The Naive Bayes approach in Chapter 6 was quite limit‐
ing in terms of being able to incorporate additional variables. As we add variables, we
would need to continue slicing the dataset into smaller and smaller bins. We would
then find that many of our bins would contain very few samples, resulting in decision
surfaces that would not be well behaved. Remember that, after we binned the data by
distance, we found that the departure delay decision boundary was quite well
behaved—departure delays above a certain threshold were associated with the flight
not arriving on time. Our simplification of the Bayesian classification surface to a
simple threshold that varied by bin would not have been possible if the decision
boundary had been noisier.1 The more variables we use, the more bins we will have,
and this good behavior will begin to break down. This sort of breakdown in good
behavior as the number of variables (or dimensions) increases is called the curse of
dimensionality; it affects many statistical and machine learning techniques, not just
the quantization-based Bayesian approach of Chapter 6.

245

All of the code snippets in this chapter are available in the folder
07_sparkml of the GitHub repository. See the README.md file in
that directory for instructions on how to do the steps described in
this chapter.

Logistic Regression
One way to address the breakdown in behavior as the number of variables increases is
to change the approach from that of directly evaluating the probability based on the
input dataset. Instead, we could attempt to fit a smooth function on the variables in
the dataset (a multidimensional space) to the probability of a flight arriving late (a
single-dimensional space) and use the value of that function as the estimate of the
probability. In other words, we could try to find a function f, such that:

P Y ≈ f x0, x1, . . . , xn − 1

In our case, x0 could be the departure delay, x1 the taxi-out time, x2 the distance, and
so on. Each row will have different values for the x’s and represent different flights.
The idea is that we have a function that will take these x’s and somehow transform
them to provide a good estimate of the probability that the flight corresponding to
that row’s input variables is on time.

How Logistic Regression Works
One of the simplest transformations of a multidimensional space to a single-
dimensional one is to compute a weighted sum of the input variables, as demon‐
strated here:

L = w0x0 + w1x1 + . . . + wn − 1xn − 1 + b

The w’s (called the weights) and the constant b (called the intercept) are constants, but
we don’t initially know what they are. We need to find “good” values of the w’s and b
such that the weighted sum for any row closely approximates either 1 (when the flight
is on time) or 0 (when the flight is late). Because this process of finding good values is
averaged over a large dataset, the value L is the prediction that flights with a specific
departure delay, taxi-out time, and so on will arrive on time. If that number is 0.8, we
would like it to be that 80% of such flights would arrive on time and 20% would be
late. In other words, rather than L being simply 1 or 0, we’d like it to be the probability
that the flight will arrive on time.

246 | Chapter 7: Logistic Regression Using Spark ML

https://github.com/GoogleCloudPlatform/data-science-on-gcp

There is a problem, though. The preceding weighted sum cannot function as a proba‐
bility. This is because the linear combination (L) can take any value, whereas a
probability will need to lie between 0 and 1. One common solution for this problem
is to transform the linear combination using the logistic function:

P Y = 1

1 + e−L

Fitting a logistic function of a linear combination of variables to binary outcomes
(i.e., finding “good” values for the w’s and b such that the estimated P(Y) are close to
the actual recorded outcome of the flight being on time) is called logistic regression.

In machine learning, the original linear combination, L, which lies between −∞ and
∞, is called the logit. You can see that if the logit adds up to ∞, e–L will be 0 and so,
P(Y) will be 1. If the original linear combination adds up to −∞, then e–L will be ∞ and
so, P(Y) will be 0. Therefore, Y could be an event such as the flight arriving on time
and P(Y), the probability of that event happening. Because of the transformation, P(Y)
will lie between 0 and 1 as required for anything to be a probability.

If P(Y) is the probability, the logit, L, is given by the following:

loge
P Y

1 − P Y

The odds is the ratio of the probability of the event happening, P(Y), to the probabil‐
ity of the event not happening, 1 − P(Y). Therefore, the logit can also be interpreted as
the log-odds where the base of the logarithm is e.

Figure 7-1 depicts the relationship between the logit, the probability, and the odds.

Figure 7-1. The relationships among the probability, the logit, and the odds.

Logistic Regression | 247

2 Answers (but don’t take my word for it): (1) At equal odds, the probability is ½ and the logit is zero. If the
odds are predominantly in favor of the flight being on time, the probability of on-time arrival is nearly 1.0 and
the logit has a very large positive value. (2) The logit function changes fastest at probabilities near zero and
one. (3) The gradient of the logit function is slowest near a probability of ½. (4) The change from 2 to 1 will
result in a greater change in probability. Near probabilities of zero and one, larger logit changes are required
to have the same impact on probability. As you get nearer to a probability of ½, smaller logit changes suffice.
(5) The intercept directly impacts the value of the logit, so it moves the first curve upwards or downwards. (6)
The logit doubles. (7) If the original probability is near zero or one, doubling of the logit has negligible impact
(look at what happens if the logit changes from 4 to 8, for example). If the original probability is between
about 0.3 and 0.7, the relationship is quite linear: doubling of the logit ends up causing a proportional
increase in probability. (8) About 3, and about 5. (9) Doubling of the logit value at 0.95 is required to reach
0.995. Lots of “energy” in the input variables is required to move the probability needle at the extremes.

Spend some time looking at the graphs in Figure 7-1 and gaining an intuitive under‐
standing for what the relationships mean. For example, see if you can answer this set
of questions (feel free to sketch out the curves as you do your reasoning):2

• At equal odds (i.e., the flight is as likely to be late as not), what is the logit? How
about if the odds are predominantly in favor of a flight being on time?

• At what probability does the logit function change most rapidly?
• Where is the gradient (rate of change) of the logit function slowest?
• Which logit change, from 2 to 3 or from 2 to 1, will result in a greater change in

probability?
• How does the value of the intercept, b, affect the answer to Question 4?
• Suppose the intercept is zero. If all the input variables double, what happens to

the logit?
• If the logit value doubles, what happens to the probability? How does this depend

on the original value of the logit?
• What logit value does it take to provide a probability of 0.95? How about 0.995?
• How extreme do the input variables have to be to attain probabilities that are

close to zero or one?

Many practical considerations in classification problems in machine learning derive
from this set of relationships. So, as simple as these curves are, it is important that you
understand their implications.

The name logistic regression is a little confusing—regression is normally a way of fit‐
ting a real-valued number, whereas classification is a way of fitting to a categorical
outcome. Here, we fit the observed variables (the x’s) to a logit (which is real-valued)
—this is the regression that is being referred to in the name. However, we then use
the logistic function that has no free parameters (no weights to tune) to transform the

248 | Chapter 7: Logistic Regression Using Spark ML

real-valued number to a probability. Overall, therefore, logistic regression functions
as a classification method.

Spark ML Library
Given a multivariable dataset, Spark has the ability to carry out logistic regression
and give us the optimal weight for each variable. Spark’s logistic regression module
will give us the w’s and b if we show it a bunch of x’s and the corresponding Y’s. The
logistic regression module is part of Apache Spark’s machine learning library, MLlib,
which you can program against in Java, Scala, Python, or R. Spark MLlib (colloquially
known as Spark ML) includes implementations of many canonical machine learning
algorithms: decision trees, random forests, alternating least squares, k-means cluster‐
ing, association rules, support vector machines, and so on. Spark can execute on a
Hadoop cluster; thus, it can scale to large datasets.

The problem we are solving—to find a set of weights that optimizes model predic‐
tions based on known outcomes—is an instance of a supervised learning problem. In
supervised learning problems, the actual answers, called labels, need to be known for
some dataset. As illustrated in Figure 7-2, first you ask the machine (here, Spark) to
learn (the w’s) from data (the x’s) that has labels (the Y’s). This is called training.

Figure 7-2. In supervised learning, the machine (here, Spark) learns a set of parameters
(the w’s and b’s) from training data that consists of inputs (x’s) and their corresponding
labels (Y’s).

The learned set of weights, along with the original equation (the logistic function of a
linear combination of x’s), is called a model. After you have learned a model from the
training data, you can save it to a file. Then, whenever you want to make a prediction
for a new flight, you can re-create the model from that file, pass in the x’s in the same
order, and compute the logistic function and obtain the estimate P(Y). This process,
called prediction, might be carried out in real time in response to a request that
includes the input variables, whereas the training of the model might happen less fre‐
quently, as shown in Figure 7-3.

Logistic Regression | 249

3 See logistic_regression.ipynb in the GitHub repository for this book.

Figure 7-3. You can use the learned set of weights to predict the value of Y for new data
(x’s).

Of course, the prediction can be carried outside of Spark—all that we’d need to do is
compute the weighted sum of the inputs and the intercept, and then compute the
logistic function of the weighted sum. In general, though, you should seek to use the
same libraries for prediction as you use for training. This helps to mitigate training–
serving skew, the situation that we talked about in Chapter 2 in which the input vari‐
ables in prediction are subtly different from those used in training and which leads to
poorly performing models.

Getting Started with Spark Machine Learning
To run Spark conveniently, I will continue to use the Cloud Dataproc cluster that I
launched in the previous chapter. In case you deleted it, start a new one using:

cd 06_dataproc
./create_cluster.sh bucketname region

Even though we are going to develop the logistic regression code in a Jupyter Note‐
book, we should keep in mind that our end goal is to run the machine jobs routinely.
To achieve that goal, it is important to keep a notebook with the final machine learn‐
ing workflow and export this notebook into a standalone program. You can submit
the standalone program to the cluster whenever the machine learning needs to be
repeated on new datasets.

As in Chapter 6, we open the notebook from the Web Interfaces section of the Google
Cloud console. Within the notebook, we start out creating a SparkContext variable
sc and the SparkSession variable spark:3

from pyspark.sql import SparkSession
from pyspark import SparkContext
sc = SparkContext('local', 'logistic')
spark = SparkSession \

250 | Chapter 7: Logistic Regression Using Spark ML

4 The L stands for low-memory—this is a limited-memory variant of the BFGS algorithm.
5 See the section on loss functions in the Spark documentation.

 .builder \
 .appName("Logistic regression w/ Spark ML") \
 .getOrCreate()

After we do this, any line that works in the interactive shell will also work when
launched from the notebook logistic_regression.ipynb or the script logistic.py. The
application name (logistic) will show up in logs when the script is run.

Spark Logistic Regression
The logistic regression implementation, L-BFGS, is in pyspark.mllib and is named for
the initials of the independent inventors (Broyden, Fletcher, Goldfarb, and Shanno)4

of a popular, iterative, fast-converging optimization algorithm. The L-BFGS algo‐
rithm is used by Spark to find the weights that minimize the logistic loss function:

Σlog 1 + e−yL

over the training dataset, where y, the training label, is either −1 or 1 and L is the logit
computed from the input variables, the weights, and the intercept.

So, let’s begin by adding import lines for the Python classes that we’ll need:

from pyspark.mllib.classification import LogisticRegressionWithLBFGS
from pyspark.mllib.regression import LabeledPoint

Knowing the details of the logistic formulation and loss function used by Spark is
important. This is because different machine learning libraries use equivalent (but
not identical) versions of these formulae. For example, another common approach
taken by machine learning frameworks is to minimize the cross-entropy:

Σ − ylogP Y − 1 − y log 1 − P Y

Here, y is the training label, and P(Y) is the probabilistic output of the model. In that
case, the training label will need to be 0 or 1. I won’t go through the math, but even
though the two loss functions look very different, minimizing the logistic loss and
minimizing the cross-entropy loss turn out to be equivalent.

Rather confusingly, the Spark documentation notes that “a binary label y is denoted
as either +1 (positive) or −1 (negative), which is convenient for the formulation.
However, the negative label is represented by 0 in spark.mllib instead of −1, to be con‐
sistent with multiclass labeling.”5 In other words, Spark ML uses the logistic loss

Spark Logistic Regression | 251

https://oreil.ly/W3JDv

function, but requires that the labels we provide be 0 or 1. There really is no substi‐
tute for reading the documentation!

To summarize, the preprocessing that you might need to do to your input data
depends on the formulation of the loss function employed by the machine learning
framework you are using. Suppose that we decide to do this:

y = 0 if arrival delay ≥ 15 minutes
y = 1 if arrival delay < 15 minutes

Because we have mapped on-time flights to 1, the machine learning algorithm (after
training) will predict the probability that the flight is on time.

Creating a Training Dataset
First, let’s read in the list of training days. To do that, we need to read trainday.csv
from Cloud Storage, remembering that the comma-separated value (CSV) file has a
header that will help with inferring its schema:

traindays = spark.read \
 .option("header", "true") \
 .csv('gs://{}/flights/trainday.csv'.format(BUCKET))

For convenience, I’ll make this a Spark SQL view, as well:

traindays.createOrReplaceTempView('traindays')

We can print the first few lines of this file:

spark.sql("SELECT * from traindays LIMIT 5").show()

This obtains the following eminently reasonable result:

+----------+------------+
| FL_DATE|is_train_day|
+----------+------------+
2015-01-01	True
2015-01-02	False
2015-01-03	False
2015-01-04	True
2015-01-05	True
+----------+------------+

While we’re developing the code (on my minimal Hadoop cluster that is running
Jupyter), it would be easier to read only a small part of the dataset. Hence, we define
the inputs variable to be just one of the shards:

inputs = 'gs://{}/flights/tzcorr/all_flights-00000-*'.format(BUCKET)

After we have developed all of the code, we can change the inputs to the full dataset:

#inputs = 'gs://{}/flights/tzcorr/all_flights-*'.format(BUCKET) # FULL

252 | Chapter 7: Logistic Regression Using Spark ML

For now, though, let’s leave the latter line commented out. We can read in the
flights dataset as we did in Chapter 6:

flights = spark.read.json(inputs)
flights.createOrReplaceTempView('flights')

Training will need to be carried out on the flights that were on days for which
is_train_day is True:

trainquery = """
SELECT
 f.*
FROM flights fJOIN traindays t
ON f.FL_DATE == t.FL_DATE
WHERE
 t.is_train_day == 'True'
"""
traindata = spark.sql(trainquery)

Dealing with corner cases

Let’s verify that traindata does contain the data we need. We can look at the first few
(here, the first two) rows of the dataframe using the following:

traindata.head(2)

The result seems quite reasonable:

[Row(ARR_AIRPORT_LAT=33.43416667, ARR_AIRPORT_LON=-112.01166667,
ARR_AIRPORT_TZOFFSET=-25200.0, ARR_DELAY=-16.0, ARR_TIME='2015-07-28T18:20:00',
CANCELLED=False, CRS_ARR_TIME='2015-07-28T18:36:00',
CRS_DEP_TIME='2015-07-28T17:05:00', DEP_AIRPORT_LAT=33.9425,
DEP_AIRPORT_LON=-118.40805556, DEP_AIRPORT_TZOFFSET=-25200.0, DEP_DELAY=-3.0,
DEP_TIME='2015-07-28T17:02:00', DEST='PHX', DEST_AIRPORT_SEQ_ID='1410702',
DISTANCE='370.00', DIVERTED=False, FL_DATE='2015-07-28', ORIGIN='LAX',
ORIGIN_AIRPORT_SEQ_ID='1289203', TAXI_IN=6.0, TAXI_OUT=14.0,
UNIQUE_CARRIER='AA', WHEELS_OFF='2015-07-28T17:16:00',
WHEELS_ON='2015-07-28T18:14:00'),

Date fields are dates, and airport codes are reasonable, as are the latitudes and longi‐
tudes. But eyeballing is no substitute for truly verifying that all of the values exist.

So, let’s restrict the query to fields we want:

SELECT
 DEP_DELAY, TAXI_OUT, ARR_DELAY, DISTANCE
FROM flights f
…

Knowing that the four variables we are interested in are all floats, we can ask Spark to
compute simple statistics over the full dataset:

traindata.describe().show()

Spark Logistic Regression | 253

6 Your results might be different because the actual flight records held in your first shard (recall that the input is
all_flights-00000-*) are possibly different.

The describe() method computes column-by-column statistics, and the show()
method causes those statistics to be printed. We now get the following:6

+-------+----------+---------+----------+---------+
|summary| DEP_DELAY| TAXI_OUT| ARR_DELAY| DISTANCE|
+-------+----------+---------+----------+---------+
count	259692	259434	258706	275062
mean	13.178	16.9658	9.7319	802.3747
stddev	41.8886	10.9363	45.0384	592.254
min	-61.0	1.0	-77.0	31.0
max	1587.0	225.0	1627.0	4983.0
+-------+----------+---------+----------+---------+

Notice anything odd?

Notice the count statistic. There are 275,062 DISTANCE values, but only 259,692
DEP_DELAY values, and even fewer TAXI_OUT values. What is going on? This is the sort
of thing that you will need to chase down to find the root cause. In this case, the rea‐
son has to do with flights that are scheduled but never leave the gate and flights that
depart the gate but never take off. Similarly, there are flights that take off (and have a
TAXI_OUT value) but are diverted and do not have an ARR_DELAY. In the data, these are
denoted by NULL, and Spark’s describe() method doesn’t count NULLs.

We don’t want to use canceled and diverted flights for training either. One way to
tighten up the selection of our training dataset would be to simply remove NULLs, as
shown here:

trainquery = """
SELECT
 DEP_DELAY, TAXI_OUT, ARR_DELAY, DISTANCE
FROM flights f
JOIN traindays t
ON f.FL_DATE == t.FL_DATE
WHERE
 t.is_train_day == 'True' AND
 f.dep_delay IS NOT NULL AND
 f.arr_delay IS NOT NULL
"""

traindata = spark.sql(trainquery)
traindata.describe().show()

Running this gets us a consistent value of the count across all the columns:

|summary| DEP_DELAY| TAXI_OUT| ARR_DELAY| DISTANCE|
| count| 258706| 258706| 258706| 258706|

254 | Chapter 7: Logistic Regression Using Spark ML

However, I strongly encourage you not to do this. Removing NULLs is merely fixing
the symptom of the problem. What we really want to do is to address the root cause.
In this case, you’d do that by removing flights that have been canceled or diverted,
and fortunately, we do have this information in the data. So, we can change the query
to be the following:

trainquery = """
SELECT
 DEP_DELAY, TAXI_OUT, ARR_DELAY, DISTANCE
FROM flights f
JOIN traindays t
ON f.FL_DATE == t.FL_DATE
WHERE
 t.is_train_day == 'True' AND
 f.CANCELLED == 'False' AND
 f.DIVERTED == 'False'
"""

traindata = spark.sql(trainquery)
traindata.describe().show()

This, too, yields the same counts as when we threw away the NULLs, thereby demon‐
strating that our diagnosis of the problem was correct.

Discovering corner cases and problems with an input dataset at the time we begin
training a machine learning model is quite common. In this case, I knew this prob‐
lem was coming and was careful to select the CANCELLED and DIVERTED columns to be
part of my input dataset (in Chapter 2). In real life, you will need to spend quite a bit
of time troubleshooting this, potentially adding new logging operations to your ingest
code to uncover the reason that underlies a simple problem. What you should not do
is to simply throw away bad values.

Bad values (like NULL) are usually a symptom of a problem. Inves‐
tigate the issue. Don’t simply discard bad values.

Creating training examples
Now that we have the training data, we can look at the documentation for
LogisticRegressionModel to determine the format of its input. The documentation
indicates that each row of the training data needs to be transformed to a Labeled
Point whose documentation in turn indicates that its constructor requires a label and
an array of features, all of which need to be floating-point numbers.

Let’s create a method that will convert each data point of our dataframe into a training
example (an example is a combination of the input features and the true answer):

Spark Logistic Regression | 255

7 Because of random seeds used in the optimization process, and different data in shards, your results will be
different.

def to_example(raw_data_point):
 return LabeledPoint(
 float(raw_data_point['ARR_DELAY'] < 15), # on-time?
 [
 raw_data_point['DEP_DELAY'],
 raw_data_point['TAXI_OUT'],
 raw_data_point['DISTANCE'],
])

Note that we have created a label and an array of features. Here, the features consist of
three numeric fields that we pass in as-is. It is good practice to create a separate
method that takes the raw data and constructs a training example because this allows
us to fold in other operations as well. For example, we can begin to do preprocessing
of the feature values, and having a method to construct training examples allows us to
reuse the code between training and evaluation.

After we have a way to convert each raw data point into a training example, we need
to apply this method to the entire training dataset. We can do this by mapping the
dataset row by row:

examples = traindata.map(to_example)

Training the Model
Now that we have a dataframe in the requisite format, we can ask Spark to fit the
training dataset to the labels:

lrmodel = LogisticRegressionWithLBFGS.train(examples, intercept=True)

We’d have specified intercept = False if we believed that when all x = 0, the predic‐
tion needed to be 0. We have no reason to expect this, so we ask the model to find a
value for the intercept.

When the train() method completes, the lrmodel will have the weights and inter‐
cept, and we can print them out:

print lrmodel.weights,lrmodel.intercept

This yields the following:7

[-0.164,-0.132,0.000294] 5.1579

The weights is an array, one for each variable. These numbers, plus the formula for
logistic regression, are enough to set up code for the model in any language we
choose. Remember that in our labeled points, 0 indicated late arrivals and 1 indicated

256 | Chapter 7: Logistic Regression Using Spark ML

on-time arrivals. So, applying these weights to the departure delay, taxi-out time, and
flight distance of a flight will yield the probability that the flight will be on time.

In this case, it appears that the departure delay has a weight of −0.164. The negative
sign indicates that the higher the departure delay, the lower the probability that the
flight will be on time (which sounds about right). On the other hand, the sign on the
distance is positive, indicating that higher distances are associated with more on-time
behavior. Even though we are able to look at the weights and reason with them on
this dataset, such reasoning will begin to break down if the variables are not inde‐
pendent. If you have highly correlated input variables, the magnitudes and signs of
the weights are very hard to interpret.

Let’s try out a prediction:

lrmodel.predict([6.0,12.0,594.0])

The result is 1—that is, the flight will be on time when the departure delay is 6
minutes, the taxi-out time is 12 minutes, and the flight is for 594 miles. Let’s change
the departure delay from 6 minutes to 36 minutes:

lrmodel.predict([36.0,12.0,594.0])

The result now is 0—the flight won’t arrive on time.

But wait a minute. We want the output to be a probability, not 0 or 1 (the final label).
To do that, we can remove the implicit threshold of 0.5:

lrmodel.clearThreshold()

With the thresholding removed, we get probabilities. The probability of arriving late
increases as the departure delay increases.

By keeping two of the variables constant, it is possible to study how the probability
varies as a function of one of the variables. For example, at a departure delay of 20
minutes and a taxi-out time of 10 minutes, this is how the distance affects the proba‐
bility that the flight is on time:

dist = np.arange(10, 2000, 10)
prob = [lrmodel.predict([20, 10, d]) for d in dist]
plt.plot(dist, prob)

Figure 7-4 shows the plot.

Spark Logistic Regression | 257

Figure 7-4. How the distance of the flight affects the probability of on-time arrival.
According to our model, longer flights tend to have higher likelihoods of arriving on
time, but the effect (0.63 to 0.76) is rather minor.

As you can see, the effect is relatively minor. The probability increases from about
0.63 to about 0.76 as the distance changes from a very short hop to a cross-
continental flight. On the other hand, if we hold the taxi-out time and distance con‐
stant and examine the dependence on departure delay, we see a more dramatic
impact (see Figure 7-5):

delay = np.arange(-20, 60, 1)
prob = [lrmodel.predict([d, 10, 500]) for d in delay]
ax = plt.plot(delay, prob)

Although the probabilities are useful to be able to plot the behavior of the model in
different scenarios, we do want a specific decision threshold. Recall that we want to
cancel the meeting if the probability of the flight arriving on time is less than 70%. So,
we can change the decision threshold:

lrmodel.setThreshold(0.7)

Now, the predictions are 0 or 1, with the probability threshold set at 0.7.

258 | Chapter 7: Logistic Regression Using Spark ML

Figure 7-5. How the departure delay of the flight affects the probability of on-time
arrival. The effect of the departure delay is rather dramatic.

Predicting Using the Model
Now that we have a trained model, we can save it to Cloud Storage and retrieve it
whenever we need to make a prediction. To save the model, we provide a location on
Cloud Storage:

MODEL_FILE='gs://' + BUCKET + '/flights/sparkmloutput/model'
lrmodel.save(sc, MODEL_FILE)

To retrieve the model, we load it from the same location:

from pyspark.mllib.classification import LogisticRegressionModel
lrmodel = LogisticRegressionModel.load(sc, MODEL_FILE)
lrmodel.setThreshold(0.7)

Note that we must take care to set the decision threshold; it is not part of the model.

Now, we can use the lrmodel variable to carry out predictions:

print lrmodel.predict([36.0,12.0,594.0])

Obviously, this code could be embedded into a Python web application to create a
prediction web service or API.

A key point to realize is that whereas model training in Spark is distributed and
requires a cluster, model prediction is a pretty straightforward mathematical compu‐
tation. Model training is a batch operation that requires the ability to scale out to
multiple processors, but online prediction requires fast computation on a single pro‐
cessor. When the machine learning model is relatively small (as in our logistic

Spark Logistic Regression | 259

8 Very large deep neural networks, such as those used for image classification, are another story. Such models
can have hundreds of layers, each with hundreds of weights. Here, we have three weights—four if you count
the intercept.

regression workflow),8 hardware optimizations (like graphics processing units
[GPUs]) are not needed in the training stage. Thus, when choosing how to resize the
cluster to run our machine learning training job over the full dataset, it is more cost-
effective to simply add more CPUs.

When would you need GPUs in machine learning? GPUs are potentially needed in
the prediction stage for small models. GPUs become useful in prediction even for
small models if the system needs to provide for low latency and a high number of
queries per second (QPS). Of course, had we been training a deep learning model for
image classification with hundreds of layers, GPUs would have been called for both in
training and in prediction.

Evaluating a Model
Now that we have a trained model, we can evaluate its performance on the test days, a
set of days that were not used in training (we created this test dataset in Chapter 5).
To do that, we change the query to pull out the test days:

testquery = trainquery.replace(\
 "t.is_train_day == 'True'","t.is_train_day == 'False'")
print testquery

Here is the resulting query:

SELECT
 DEP_DELAY, TAXI_OUT, ARR_DELAY, DISTANCE
FROM flights f
JOIN traindays t
ON f.FL_DATE == t.FL_DATEWHERE
 t.is_train_day == 'False' AND
 f.CANCELLED == 'False' AND
 f.DIVERTED == 'False'

We then carry out the same ML pipeline as we did during training:

testdata = spark.sql(testquery)
examples = testdata.map(to_example)

Note that we are able to reuse the function to_example to go from the raw data to the
training examples.

As soon as we have the dataframe examples, we can have the model predict the label
given the set of features for each row:

labelpred = examples.map(lambda p: \
 (p.label, lrmodel.predict(p.features)))

260 | Chapter 7: Logistic Regression Using Spark ML

The map function applies the predict method to each row of features and creates a
dataframe that contains the true label and the model prediction for each row.

To evaluate the performance of the model, we first find out how many flights we will
need to cancel and how accurate we are in terms of flights we cancel and flights we
don’t cancel:

def eval(labelpred):
 cancel = labelpred.filter(lambda (label, pred): pred == 1)
 nocancel = labelpred.filter(lambda (label, pred): pred == 0)
 corr_cancel = cancel.filter(lambda (label, pred): \
 label == pred).count()
 corr_nocancel = nocancel.filter(lambda (label, pred): \
 label == pred).count()
 return {'total_cancel': cancel.count(), \
 'correct_cancel': float(corr_cancel)/cancel.count(), \
 'total_noncancel': nocancel.count(), \
 'correct_noncancel': float(corr_nocancel)/nocancel.count()\
 }

Here’s what the resulting statistics turn out to be:

{'correct_cancel': 0.7917474551623849, 'total_noncancel': 115949,
'correct_noncancel': 0.9571363271783284, 'total_cancel': 33008}

As discussed in Chapter 5, the reason the correctness percentages are not 70% is
because the 70% threshold is on the marginal distribution—the accuracy percentages
here are computed on the total distribution and so are padded by the easy decisions.
However, let’s go back and modify the evaluation function to explicitly print out sta‐
tistics around the decision threshold—this is important to ensure that we are, indeed,
making a probabilistic decision.

We should clear the threshold so that the model returns probabilities and then carry
out the evaluation twice: once on the full dataset, and next on only those flights that
fall near the decision threshold of 0.7:

lrmodel.clearThreshold() # so it returns probabilities
labelpred = examples.map(lambda p: \
 (p.label, lrmodel.predict(p.features)))
print eval(labelpred)
keep only those examples near the decision threshold
labelpred = labelpred.filter(lambda (label, pred):\
 pred > 0.65 and pred < 0.75)
print eval(labelpred)

Of course, we must change the evaluation code to work with probabilities instead of
with categorical predictions. The four variables now become as follows:

cancel = labelpred.filter(lambda (label, pred): pred < 0.7)
nocancel = labelpred.filter(lambda (label, pred): pred >= 0.7)
corr_cancel = cancel.filter(lambda (label, pred): \
 label == int(pred >= 0.7)).count()

Spark Logistic Regression | 261

9 See logistic.py in 07_sparkml.
10 The script submit_spark.sh in 07_sparkml uses the serverless Spark approach.

corr_nocancel = nocancel.filter(lambda (label, pred): \
 label == int(pred >= 0.7)).count()

When run, the first set of results remains the same, and the second set of results now
yields this:

{'correct_cancel': 0.30886504799548276, 'total_noncancel': 2224,
'correct_noncancel': 0.7383093525179856, 'total_cancel': 1771}

Note that we are correct about 74% of the time in our decision to go ahead with a
meeting (our target was 70%). Although useful to verify that the code is working as
intended, the actual results are meaningless because we are not running on the entire
dataset, just one shard of it. Therefore, the final step is to export the code from the
notebook, remove the various show() and plot() functions, and create a submittable
script.9

We can submit the script to the Cloud Dataproc cluster from a laptop with the Cloud
SDK installed, from Cloud Shell, or from the Cloud Dataproc section of the Google
Cloud Platform web console. Before we submit the script, we need to resize the clus‐
ter, so that we can process the entire dataset on a larger cluster than the one on which
we did development. So, what we need to do is to increase the size of the cluster, sub‐
mit the script, and decrease the size of the cluster after the script is done. Alterna‐
tively, we can use an autoscaling Dataproc cluster or serverless Spark as discussed in
Chapter 6.10

Running logistic.py on a more powerful cluster, we create a model and then evaluate it
on the test days. We obtain these results from the logs:

All flights: {'total_cancel': 291895, 'correct_cancel': 0.8122920913342127,
'total_noncancel': 1304422, 'correct_noncancel': 0.9642401002129679}

Looking at these overall results, notice that we are canceling about 292k meetings. We
are accurate 96.4% of the time we don’t cancel a meeting and 81.2% of the time when
we decide to cancel. Remember that we canceled 275k meetings when using the Baye‐
sian classifier in Chapter 6 and were correct 83% of the time that we decided to can‐
cel. Based on our secondary criterion, the Naive Bayes approach in Chapter 6 with
only two variables is better than the logistic regression approach in this chapter with
three variables! There is, in machine learning, no substitute for experimentation to
see what works.

How about the results on the marginal distribution (i.e., on flights for which our
probability is near 0.7)? These, too, are in the logs. They indicate that we are, indeed,
making an appropriately probabilistic decision—our decision to go ahead with a
meeting is correct 73% of the time:

262 | Chapter 7: Logistic Regression Using Spark ML

https://oreil.ly/JF3wn
https://oreil.ly/JF3wn

11 William of Ockham (later spelled Occam), who was a friar in medieval England, actually wrote “Pluralitas non
est ponenda sine necessitate,” which translates to “Entities should not be multiplied unnecessarily.”

Flights near decision threshold: {'total_cancel': 15084,
'correct_cancel': 0.3325377883850438, 'total_noncancel': 18441,
'correct_noncancel': 0.7279431701100808}

A close examination of the preceding numbers indicates what is going on—we are
correct to cancel 33% of the time while in Chapter 6, we were correct to cancel only
30% of the time. This extra 3% allows us to cancel more meetings. It is clear, then,
that simply looking at the number of meetings we cancel is not a good secondary cri‐
terion of model performance. Instead, we will find a different criterion by comparing
the performance of the model against ideal performance across all thresholds. We will
do that in the next section.

Feature Engineering
Still, it is unclear whether we really needed all three variables in the logistic regression
model. Any variable you include in a machine learning model brings with it an
increased danger of overfitting. Known as the principle of parsimony (often referred
to as Occam’s razor),11 the idea is that it is preferable to use a simpler model to a more
complex model that has similar accuracy—the fewer variables we have in our model,
the better it is.

One manifestation of the principle of parsimony is that there are practical considera‐
tions involved with every new variable in a machine learning model. A hand-coded
system of rules can deal with the presence or absence of values (for example, if the
variable in question was not collected) for specific variables relatively easily—simply
write a new rule to handle the case. On the other hand, machine learning models
require the presence of enough data when that variable value is absent. Thus, a
machine learning model will often be unusable if all of its variable values are not
present in the data. Even if a variable value is present in some new data, it might be
defined differently or computed differently, and we might have to go through an
expensive retraining effort in order to use it. Thus, extra variables pose issues around
the applicability of a machine learning model to new situations. We should attempt to
use as few variables as possible.

Experimental Framework
It is also unclear whether the three variables we chose are the ones that matter most.
Perhaps we could use more variables from the dataset besides the three we are using.
In machine learning terminology, the inputs to the model are called features. The fea‐
tures could be different from the raw input variables because the input variables
could be transformed in some way before being provided to the model. The process

Feature Engineering | 263

https://oreil.ly/F5VF3

of designing the transforms that are carried out on the raw input variables is called
feature engineering.

To test whether a feature provides value to the model, we need to build an experi‐
mental framework. We could begin with one feature (departure delay, for example)
and test whether the incorporation of a new feature (perhaps the distance) improves
model performance. If it does, we keep it and try out one more feature. If not, we
discard it and try the next feature on our list. This way, we get to select a subset of
features and ensure that they do matter. Another approach is to train a model with all
possible features, remove a feature, and retrain. If performance doesn’t go down, leave
the feature out. At the end, as before, we will be left with a subset of features that mat‐
ter. The second approach is preferable because it allows us to capture interactions—
perhaps a feature by itself doesn’t matter, but its presence alongside another is power‐
ful. Choosing the set of features through a systematic process is called feature
selection.

For both feature engineering and feature selection, it is important to devise an experi‐
mental framework to test out our hypotheses as to whether a feature is needed. On
which dataset should we evaluate whether a feature is important? We cannot evaluate
how much it improves accuracy on the training dataset itself because the model
might be fitting noise in the training data. Instead, we need an independent dataset in
order to carry out feature selection. However, we cannot use the test dataset because if
we use the test dataset in our model creation process, it is no longer independent and
cannot be used as a good indicator of model performance. Therefore, we will split the
training dataset itself into two parts—one part will be used for training, whereas the
other will be held out and used to evaluate different models.

Figure 7-6 shows what our experimentation framework is going to look like.

Figure 7-6. We often split a dataset into three parts. The training dataset is used to tune
the weights of a model, and the held-out dataset is used to evaluate the impact of model
changes, such as feature selection. The independent test dataset is used only to gauge the
performance of the final, selected model.

264 | Chapter 7: Logistic Regression Using Spark ML

12 The Machine Learning Crash Course from Google has a good explanation of these metrics. Remember that
we need to threshold the probabilistic output of the model to get the entries in the contingency table. A cor‐
rect cancel, for example, is the situation that the flight arrived more than 15 minutes late and the predicted
probability of on-time arrival was less than 0.7. The metrics evaluated on the contingency table are extremely
sensitive to this choice of threshold. Different models will be different at thresholds of 0.65, 0.68, or 0.70,
especially for models whose performance is quite comparable. If, for example, we want the overall correct
cancel percentage to be 80%, we can change the threshold to get this. We can also change the threshold to get
an overall correct cancel percentage of 20% if that is what we desire.

First, we break the full dataset into two parts and keep one part of it for the final eval‐
uation of models (we did this in Chapter 6 when we created the traindays dataset).
This part is called the test dataset and is what we have been using for end-of-chapter
evaluations. However, when we are creating several models and need to choose
among them, we cannot use the test dataset. Therefore, we will split our original
training dataset itself into two parts. We’ll retain the larger part of it for actual train‐
ing and use the held-out portion to evaluate the model. In Figure 7-6, for example, we
are deciding whether to use the third input variable. We do this based on whether
that feature improves model performance enough.

Choosing a metric
What metric should we evaluate in order to choose between two models? Not the
number of canceled flights! It is easy to game metrics computed from the contingency
table because it is possible to change the probability threshold to get a wide range of
accuracy, precision, or recall metrics.12 A contingency table–based metric is a good
way to understand the performance of a model, but not to choose between two mod‐
els unless care is taken to ensure that the measure is not tunable by changing the
threshold. One way to do this would be to, for example, compare precision at a fixed
recall rate, but you should do this only if that fixed recall is meaningful. In our prob‐
lem, however, it is the probability that is meaningful, not the precision or recall.

Hence, it is not possible to fix either of them, and we are left comparing two pairs of
numbers.

Another way to avoid the problem that the metric can be gamed is to use a measure
that uses the full distribution of probabilities that are output by the model. When car‐
rying out feature selection or any other form of hyperparameter tuning, we could use
a measure such as the logistic loss or cross-entropy that conveys this full distribution.
As a simpler, more intuitive measure that nevertheless uses the full distribution of
probabilities, let’s use the root mean squared error (RMSE) between the true labels
and the probabilistic predictions:

totsqe = labelpred.map(
 lambda data: (data[0] - data[1]) * (data[0] - data[1])
).sum()
rmse = np.sqrt(totsqe / float(cancel.count() + nocancel.count()))

Feature Engineering | 265

https://oreil.ly/NgJyo

13 Recall that we stored the training versus test days both as a BigQuery table and as a CSV file on Cloud Stor‐
age. We had to save the traindays dataset to persistent storage because otherwise we would have run into the
problem of different hash function implementations in Spark, Pig, and Tensorflow. There would have been no
way to evaluate model performance on the same dataset.

14 See experimentation.ipynb and experiment.py in 07_sparkml.

What is “enough” of an improvement when it comes to RMSE? There are no hard-
and-fast rules. We need the model performance to improve enough to outweigh the
drawbacks involved with additional inputs and the loss of agility and model runtime
speed that additional input features entail. Here, I will choose to use 0.5% as my
threshold. If the model performance, based on some metric we decide upon, isn’t
reduced by at least 0.5% by removing a variable, I won’t use the extra variable.

Creating the held-out dataset
Because the held-out dataset is going to be used only for model evaluation and only
within Spark, we do not need to create the held-out dataset the same way we created
the test dataset in Chapter 5. For example, we do not need to store the held-out days
as a separate dataset that can be read from multiple frameworks.13 However, the prin‐
ciple of repeatability still applies—every time we run our Spark program, we should
get the same set of held-out days. Otherwise, it will not be possible to compare the
performance of different models (because evaluation metrics depend on the dataset
on which they are evaluated).

After I read the traindays dataset, I will add in a new temporary column called hold
out that will be initialized from a random array:14

from pyspark.sql.functions import rand
SEED = 13
traindays = traindays.withColumn("holdout", rand(SEED) > 0.8) # 20%
traindays.createOrReplaceTempView('traindays')

I am passing in a seed so that I get the exact same array (and hence the same set of
held-out days) every time I run this Spark code.

The first few rows of the traindays table are now as follows:

Row(FL_DATE=u'2015-01-01', is_train_day=u'True', holdout=False),
Row(FL_DATE=u'2015-01-02', is_train_day=u'False', holdout=True),
Row(FL_DATE=u'2015-01-03', is_train_day=u'False', holdout=False),
Row(FL_DATE=u'2015-01-04', is_train_day=u'True', holdout=False),
Row(FL_DATE=u'2015-01-05', is_train_day=u'True', holdout=True),

Note that we have both is_train_day and holdout—obviously, we are not going to
be holding out any test data, so the query to pull training samples is as follows:

SELECT
 *

266 | Chapter 7: Logistic Regression Using Spark ML

FROM flights f
JOIN traindays t
ON f.FL_DATE == t.FL_DATE
WHERE
 t.is_train_day == 'True' AND
 t.holdout == False AND
 f.CANCELLED == 'False' AND
 f.DIVERTED == 'False'

After we have trained the model, we evaluate it not on the test data as before, but on
the held-out data:

evalquery = trainquery.replace("t.holdout == False",
 "t.holdout == True")

After we have developed this code, we can export it out of the notebook into a stand‐
alone script so that it can be submitted conveniently.

Feature Selection
Let’s use this experimental framework and the held-out dataset to decide whether all
three input variables are important. As explained earlier, we will remove one variable
at a time and check the RMSE on the evaluation dataset. Conveniently, this involves
changing only the to_example() method from:

def to_example(raw_data_point):
 features = [
 fields['DEP_DELAY'],
 fields['DISTANCE'],
 fields['TAXI_OUT'],
]
 return LabeledPoint(
 float(fields['ARR_DELAY'] < 15), #ontime
 features)

to:

def to_example(raw_data_point):
 features = [
 # fields['DEP_DELAY'],
 fields['DISTANCE'],
 fields['TAXI_OUT'],
]
 return LabeledPoint(
 float(fields['ARR_DELAY'] < 15), #ontime
 features)

Creating a large cluster
In the last chapter, running the logistic regression program script with serverless
Spark took 15 minutes. Of this, nearly two minutes were for the cluster to start and
an additional three minutes for it to autoscale to a sufficient size.

Feature Engineering | 267

15 See create_large_cluster.sh.

We are going to run many variations of this job, and because we don’t quite know
what possibilities we want to try, we want jobs that start immediately and finish
quickly. Saving five minutes by having an already sized cluster ready to go will speed
up our experimentation by 33% for our use case.

Therefore, let’s create a cluster consisting of 50 machines that have 8 vCPUs each:15

#!/bin/bash
gcloud dataproc clusters create ch7cluster \
 --enable-component-gateway \
 --region ${REGION} --zone ${REGION}-a \
 --master-machine-type n1-standard-4 \
 --master-boot-disk-size 500 \
 --num-workers 30 --num-secondary-workers 20 \
 --worker-machine-type n1-standard-8 \
 --worker-boot-disk-size 500 \
 --project $PROJECT \
 --scopes https://www.googleapis.com/auth/cloud-platform

Unfortunately, when I tried it, the script immediately exited with an error:

ERROR: (gcloud.dataproc.clusters.create) INVALID_ARGUMENT:
Insufficient 'CPUS' quota. Requested 404.0, available 67.0.

I didn’t have the necessary quota—I needed 404 CPUs, but had only 67 available.

Increasing quota
The number of CPUs that I’m allowed to use in a region is an example of a soft quota.
Soft quotas are meant to guard against human error and billing surprises. They are
quite easy to change.

To increase my quota, I visited the Quotas page on the GCP web console and found
the Compute Engine CPUs quota for the region I am interested in:

My quota is 72, but I must already be using 5, which is why the error indicated that
only 67 are available.

I then clicked on “Edit quotas,” requested 500, and explained why:

268 | Chapter 7: Logistic Regression Using Spark ML

https://oreil.ly/g7N4s

Amazingly enough, the approval for my quota increase arrived in my email inbox
within a minute of my requesting it. However, the email asked me to wait 15 minutes
for the quota increase to get propagated throughout.

Once the quotas page showed that my quota increase had gone through, I was able to
rerun the cluster creation command successfully.

Autoscale up and down
A 400-CPU machine cluster feels a bit dangerous, though—what if we forget and
leave it running for months on end? Let’s add an autoscaling policy to this cluster (we
could have done it when creating the cluster too, but creating the cluster first and
then adding the autoscaling policy allows us to verify that we have the quota to go as
high as needed).

First, I create a policy file:

workerConfig:
 minInstances: 2
 maxInstances: 30
secondaryWorkerConfig:
 maxInstances: 20
basicAlgorithm:
 cooldownPeriod: 15m
 yarnConfig:
 scaleUpFactor: 0.05
 scaleDownFactor: 1.0
 gracefulDecommissionTimeout: 1h

Then, I update the policy of the cluster that I just created:

Feature Engineering | 269

gcloud dataproc autoscaling-policies import experiment-policy \
 --source=autoscale.yaml --region=$REGION

gcloud dataproc clusters update ch7cluster \
 --autoscaling-policy=experiment-policy --region=$REGION

The difference between this and serverless Spark is that once this cluster is started, we
can simply submit jobs to it. There is no need to wait for the cluster to start at the
beginning of each experiment. At the same time, the cluster will remain at the auto‐
scaled size, and as long as we submit the next job to it within 15 minutes, we can con‐
tinue using the machines already spun up. After an hour of no activity, the cluster is
decommissioned.

Yes, this is all a bit hacky. BigQuery and its near-instantaneous spin-up, autoscaling,
and spin-down are so much nicer! Still, we are in Spark world here, and this is pretty
flexible for being in Spark world.

When you’re using a large cluster and submitting jobs one after the other, it is a good
idea to monitor the Hadoop nodes to ensure that all the machines are available and
that jobs are being spread over the entire cluster. You can access the monitoring
details from the Dataproc section of the GCP web console. You should see an uptick
in CPU usage during the regression part of the code and use of all 50 node managers
as demonstrated in Figure 7-7.

Figure 7-7. Monitor the CPU usage and use of all the nodes during the regression phase
to ensure that all the machines are being used effectively.

In my case, monitoring revealed that simply increasing the number of workers didn’t
actually spread out the processing to all the nodes. This is because Spark estimates the
number of partitions based on the raw input data size (here just a few gigabytes), so

270 | Chapter 7: Logistic Regression Using Spark ML

that estimate is probably too low for our 50-worker cluster. Hence, I modified the
reading code to add in an explicit repartitioning step:

traindata = spark.sql(trainquery).repartition(1000)

And similarly, when reading the evaluation data:

evaldata = spark.sql(evalquery).repartition(1000)

After this bit of optimization, I am able to run an experiment in about 10 minutes, as
I expected, by backing out the startup and upscaling time from the serverless Spark
runtime. The longer the experiment, the less of a benefit all this fine tuning provides.
We are better off leaving it to serverless Spark.

Removing features
Now that we have a faster way of running the job, we can carry out our experiment of
removing one variable at a time (i.e., in Experiment 3, we use DEP_DELAY and
TAXI_OUT as input features):

Experiment # Variables RMSE Percent increase in RMSE
1 DEP_DELAY

DISTANCE

TAXI_OUT

0.205 N/A

2 Remove DEP_DELAY 0.361 76%
3 Remove DISTANCE 0.207 1%
4 Remove TAXI_OUT 0.227 11%

It is clear that some variables are dramatically more important than others, but also
that all three variables do carry information and you should not discard them. Con‐
trary to my assumption in Chapter 6, the distance has the least amount of impact—
had I known this earlier, Chapter 6 might have involved Bayesian selection of depar‐
ture delay and taxi-out time!

Feature Transformations
In the previous section, we carried out feature selection to determine that the distance
variable was the least important of the variables included in the model. However,
there is another possibility why including the distance variable did not affect the
RMSE greatly—it could be that the distance variable ranges over a wider range (thou‐
sands of miles), whereas the time intervals range to only a few minutes. Therefore,
the distance variable might be overpowering the other variables—assuming that both
variables are given equal weights, the impact of the distance variable will be magni‐
fied 1,000-fold over that of the time interval. In an effort to reduce the impact of dis‐
tance on both the sum and the gradient, the optimization process might move the
distance weight to 0. And thus, the distance might end up not playing much of a role.

Feature Engineering | 271

16 This presupposes that you have done exploratory data analysis, and understand your data. If you don’t know
what a reasonable range is, then you could use the 5th and 95th percentiles of the column values in the train‐
ing data.

This is less likely in the case of logistic regression because it is a linear model, and
gradients in linear models can be scaled more effectively. However, having all the
variables have similar magnitudes will become important as our models become
more complex.

Scaling
Another reason we’d like to scale all the input values so that they all have similar (and
small) magnitudes is that the initial, random weights in optimization routines are
often set to be in the range −1 to 1, and this is where the optimizer starts to search.
Thus, starting with all the variables having less than unit magnitude can help the
optimizer converge more efficiently and effectively. Following are common choices
for scaling functions:

• To map the minimum value of the variable to −1 and the maximum to 1. This
involves scanning the dataset to find the minimum and maximum within each
column—Spark has a class called AbsScaler that will do this for us (but it
requires an extra pass through the data). However, the choices of the minimum
and maximum need not be exact, so we can use the data exploration that we car‐
ried out in previous chapters to do an approximate scaling. As long as we scale
the variables the same way during training and during prediction (for example, if
we scale linearly such that a distance of 30 maps to −1.0 and a distance of 6,000
maps to 1.0 both in training and during prediction), the precise minimum and
maximum don’t matter.

• To map the mean of the variable within the column to 0 and values one standard
deviation away to −1 or 1. The tails of the distribution will map to quite large val‐
ues, but such values will also be rarer. This serves to emphasize unusual values
while linearly scaling the common ones.

Let’s use Option 1, which is to do linear scaling between an approximate minimum
and maximum. Let’s assume that departure delays are in the range (−30, 30), distance
in the range (0, 2,000), and taxi-out times in the range (0, 20). These are approximate,
but quite reasonable, and using these reasonable values helps us to avoid being overly
affected by outliers in the data.16 To map these ranges to (−1, 1), this is the transfor‐
mation we would carry out on the input variables inside the to_example() function
that converts a row into a training example:

def to_example(raw_data_point):
 return LabeledPoint(\

272 | Chapter 7: Logistic Regression Using Spark ML

 float(raw_data_point['ARR_DELAY'] < 15), #ontime \
 [\
 raw_data_point['DEP_DELAY'] / 30, \
 (raw_data_point['DISTANCE'] / 1000) - 1, \
 (raw_data_point['TAXI_OUT'] / 10) - 1, \
])

After making these changes to scale the three variables, and running the experiment
again, I see that the RMSE is unaffected—scaling doesn’t make a difference:

Experiment # Variables RMSE Percent improvement
1 (values from experiment #1 repeated for
convenience)

Raw values of
DEP_DELAY

DISTANCE

TAXI_OUT

0.20537 N/A

5 Scaled values of the three variables 0.20537 0

Clipping
Another possible preprocessing that we could carry out is called clipping. Values that
are beyond what we would consider reasonable are clamped to the bounds. For exam‐
ple, we could treat distances of more than 2,000 miles as 2,000 miles, and departure
delays of more than 30 minutes as 30 minutes. This allows the optimization algo‐
rithm to focus on the part of the data where the majority of the data lies, and not be
pulled off the global minimum by outliers. Also, some error metrics can be suscepti‐
ble to outliers, so it is worth doing one more experiment after clipping the input
variables.

Adding clipping to scaled variables is straightforward:

def to_example(raw_data_point):
 def clip(x):
 if x < -1:
 return -1
 if x > 1:
 return 1
 return x
 return LabeledPoint(\
 float(raw_data_point['ARR_DELAY'] < 15), #ontime \
 [\
 clip(raw_data_point['DEP_DELAY'] / 30), \
 clip((raw_data_point['DISTANCE'] / 1000) - 1), \
 clip((raw_data_point['TAXI_OUT'] / 10) - 1), \
])

Carrying out the experiment on clipped variables, and adding in the RMSE to the
table, we see these results:

Feature Engineering | 273

17 For example, you cannot add and multiply employee ID numbers even if they are numeric. Employee ID
numbers are not continuous.

18 The reason that we stratify our dataset into training and validation is to catch nonobvious instances of overfit‐
ting. If the training loss is very low, but the validation error is high, it is likely that the model has overfit. It is
then up to you to diagnose the reason!

Experiment # Transform RMSE Percent improvement Keep transform?
1 (repeated for convenience) Raw values of

DEP_DELAY

DISTANCE

TAXI_OUT

0.20537 N/A N/A

6 Scaled 0.20537 None No
7 Clipped 0.20538 Negative No

It turns out that neither scaling nor clipping matters for this algorithm (logistic
regression) in this framework (Spark ML). In general, though, experimenting with
different preprocessing transforms should be part of your workflow. It could have a
dramatic impact.

Feature Creation
So far, we have tried out the three numeric predictors in our dataset. Why did I pick
only the numeric fields in the dataset? Because the logistic regression model is, at
heart, just a weighted sum. We can quite easily multiply and add numeric values
(actually not all numeric values but those that are continuous),17 but what does it
mean to use a timestamp such as 2015-03-13-11:00:00 as an input variable to the
logistic regression model?

We cannot simply convert such a timestamp to a numeric quantity, such as the day
number within the year, and then add it to the model. One rule of thumb is that to
use a value as input to a model, you should have at least 5 to 10 instances of that value
appearing in the data. Columns that are too specific to a particular row or handful of
rows can cause the model to become overfit—an overfit model is one that will per‐
form extremely well on the training dataset (essentially, it will memorize exactly what
happened at each historical timestamp—for example, that flights in the Midwest were
delayed on May 11, 2015) but then not work well on new data. It won’t work well on
new data because the timestamps in that data (such as May 11, 2018) will not have
been observed.18

Therefore, we need to do smarter things with attributes such as timestamps so that
they are both relevant to the problem and not too specific. We could, for example, use
the hour of day as an attribute in the model. The hour of day might matter—most
airports become busy in the early morning and early evening because many flights

274 | Chapter 7: Logistic Regression Using Spark ML

19 The time zone offset is a float, and must be added to the schema as such.

are scheduled around the daily work schedules of business travelers. In addition,
delays accumulate over the day because an aircraft that is delayed in arriving is also
delayed on takeoff.

Suppose that we extract the hour of day from the timestamp. Given a timestamp such
as 2015-03-13-11:00:00, what is the hour? It’s 11, of course, but the 11 is in the time
zone corresponding to the UTC time zone. On the other hand, we care about the
time zone at the American airport because many airports are busier early in the
morning and late in the evening. This is one instance for which it is local time that
matters. Thus, to extract the hour of day, we will need to correct by the time zone
offset and then extract the hour of day. The feature hour of day is computed from two
input variables—the departure time and the time zone offset.

It is worth pausing here and clarifying that I am making a distinction between the
words input and feature—the timestamp is the input, the hour of day is the feature.
What the client application provides when it wants a prediction is the input, but what
the ML model is trained on is the feature. The feature could be (as in the case of scal‐
ing of input variables) a transformation of an input variable. In other cases, as with
the hour of day, it could be a combination of multiple input variables. The to_exam
ple() method is the method that converts inputs (raw_data_point) to examples
(where each example is a tuple of features and a label). Different machine learning
APIs will ask for inputs, features, or examples, and it is good to be clear on what
exactly the three terms mean.

Given a departure timestamp and a time zone offset,19 we can compute the hour in
local time using the time-handling code we discussed in Chapter 4:

def to_example(raw_data_point):
 def get_local_hour(timestamp, correction):
 import datetime
 TIME_FORMAT = '%Y-%m-%dT%H:%M:%S'
 t = datetime.datetime.strptime(timestamp, TIME_FORMAT)
 d = datetime.timedelta(seconds=correction)
 t = t + d
 return t.hour
 return LabeledPoint(\
 float(raw_data_point['ARR_DELAY'] < 15), #ontime \
 [\
 raw_data_point['DEP_DELAY'], \
 raw_data_point['TAXI_OUT'], \
 get_local_hour(raw_data_point['DEP_TIME'], \
 raw_data_point['DEP_AIRPORT_TZOFFSET'])
])

Feature Engineering | 275

20 The distribution of hours in the dataset, we assume, follows the Fisher–von Mises distribution, which
describes points distributed on an n-dimensional sphere. If n = 2, this reduces to points on a unit circle. An
hour hand is just that.

There is one potential problem with treating the hour of day as a straightforward
number. Hour 22 and hour 2 are only 4 hours apart, and it would be good to capture
this somehow. An elegant way to work with periodic variables in machine learning is
to convert them to two features—sin(theta) and cos(theta), where theta in this case
would be the angle of the hour hand in a 24-hour clock:20

def to_example(raw_data_point):
 def get_local_hour(timestamp, correction):
 import datetime
 TIME_FORMAT = '%Y-%m-%dT%H:%M:%S'
 t = datetime.datetime.strptime(timestamp, TIME_FORMAT)
 d = datetime.timedelta(seconds=correction)
 t = t + d
 theta = np.radians(360 * t.hour / 24.0)
 return [np.sin(theta), np.cos(theta)]

 features = [\
 raw_data_point['DEP_DELAY'], \
 raw_data_point['TAXI_OUT'], \
]
 features.extend(get_local_hour(raw_data_point['DEP_TIME'],
 raw_data_point['DEP_AIRPORT_TZOFFSET']))
 return LabeledPoint(\
 float(raw_data_point['ARR_DELAY'] < 15), #ontime \
 features)

This encoding of a periodic variable using the sin and cos makes it two features.
These two features capture the information present in the periodic variable, but do
not distort the distance between two values.

Another approach would be to bucketize the hour. For example, we could group
hours 20 to 23 and hours 0 to 5 as “night,” hours 6 to 9 as “morning,” and so on. Obvi‐
ously, bucketizing takes advantage of what human experts know about the problem.
We suspect that the behavior of flight delays changes depending on the time of day—
long taxi-out times during busy hours are probably built into the scheduled arrival
time, but a plane that experiences a long taxi-out because the towing vehicle broke
down and had to be replaced will almost definitely arrive late. Hence, our bucketizing
of the hour of day relies on our intuition of what the busy hours at an airport are:

def get_category(hour):
 if hour < 6 or hour > 20:
 return [1, 0, 0] # night
 if hour < 10:
 return [0, 1, 0] # morning
 if hour < 17:

276 | Chapter 7: Logistic Regression Using Spark ML

 return [0, 0, 1] # mid-day
 else:
 return [0, 0, 0] # evening
def get_local_hour(timestamp, correction):
 ...
 return get_category(t.hour)

You might find two things odd about the preceding snippet:

• We are returning binary numbers, for example [1, 0, 0]. The first number in the
triplet captures whether the hour is at night or not. The second captures whether
it is in the morning or not. In essence, we convert the hour variable which is
numeric and continuous into four independent variables, each of which is 1 or 0.

• But we don’t have four binary numbers, one for each class. We have only three!
Note that the vector corresponding to the last category is [0, 0, 0] and not [0, 0, 0,
1], as you might have expected. This is because we don’t want the four features to
always add up to one—that would make them linearly dependent. This trick of
dropping the last column keeps the values independent. Assuming that we have N
categories, bucketizing will make the hour variable into N − 1 features.

How do we know which of these methods—the raw value, the sin/cos trick, or bucke‐
tizing—works best for the hour of day? We don’t, so we need to run an experiment
and choose (note that we are using the departure delay, distance, and taxi-out, and
now adding a new variable to see if it helps):

Experiment # Transform RMSE
1 (repeated for convenience) Without hour 0.20537
8 raw hour 0.20536
9 sin(theta)

cos(theta)
0.20535

10 bucketize 0.20538

The fact that we aren’t able to reduce the RMSE by adding the hour information sug‐
gests that the hour of day is already adequately captured by the scheduling rules used
by the airlines. It can be tempting to simply throw away the hour information, but we
should follow our systematic process of keeping all our variables and then discarding
one variable at a time—it is possible that the hour of day doesn’t matter now, but it
might after we include some other variables. So, for now, let’s pick one of the possibil‐
ities arbitrarily—I will use the bucketed hour as the way to create a feature from the
timestamp. Of course, I could have created additional features from the timestamp
input variable—day of week, season, and so on.

Spark ML supports a rich set of feature transforms—it is a good idea to go through
that list and learn the types of variables for which they are meant. Knowing the tools

Feature Engineering | 277

https://oreil.ly/P3gSM

21 It is not the case that all strings are categorical and all numeric columns are continuous. To use my previous
example, an employee ID might be numeric but is categorical. On the other hand, student grades (A+, A, A–,
B+, B, etc.) are strings but can easily be translated to a continuous variable.

available to you is a prerequisite to be able to call on them when appropriate. If this is
the first time you are encountering machine learning, you might be surprised by how
much we are relying on our experimental framework. Running experiments like this,
though, is the unglamorous work that lies behind most machine learning applica‐
tions. Although my approach in this chapter has required careful record keeping, a
better way would be if our machine learning framework would provide structure
around experiments, not just single training operations. Spark ML provides this func‐
tionality via the CrossValidator tool, but even that still requires quite a bit of
scaffolding.

There is another problem, though. The runtime increased from 10 minutes to 15
minutes with the addition of the hour variable. This doesn’t bode well—we have a lot
more features we want to try to include.

Categorical Variables
How about using the airport code as a predictor? What we are doing when using the
airport code as a predictor is that we are asking the ML algorithm to learn the
idiosyncrasies of each airport. I remember, for example, sitting on the taxiway at New
York’s LaGuardia airport for nearly 45 minutes and then being surprised when the
flight arrived in Dallas a few minutes ahead of schedule! Apparently, a 45-minute
taxi-out time in New York is quite common and nothing to be worried about.

To use timestamp information, we extracted a numeric part of the timestamp—the
hour—and used it in our model. We tried using it in raw form, as a periodic variable,
and as a bucketized set of categories. We cannot use that approach here because there
is no numeric component to the letters DFW or LGA. So how can we use the airport
code as an input to our model?

The trick here is to realize that bucketizing the hour was a special case of making the
variable categorical. A more bludgeon-like, but often effective, approach is to do one-
hot encoding. Essentially, the hour variable is made into 24 features. The 11th feature
is 1.0 and the rest of the features 0.0 when the hour is 11, for example. One-hot
encoding is the standard way to deal with categorical features (i.e., features for which
there is no concept of magnitude or ranking between different values of the variable).
21 This is the way we’ll need to encode the departure airport if we were minded to
include it in our model—we’d essentially have one feature per airport, so that the
DFW feature would be 1, and the rest of the features 0 for flights that departed
from DFW.

278 | Chapter 7: Logistic Regression Using Spark ML

https://oreil.ly/3XSXz
https://oreil.ly/3XSXz

22 See experiment.py.

Unlike bucketing hours, though, we need to find all the possible airport codes (called
the vocabulary) and assign a specific binary column to them. For example, we might
need to assign DFW to the 143rd column. Fortunately, we don’t need to write the
code. One-hot encoding is available as a prebuilt feature transformation in Spark; we
can add a new column of vectors to the traindata dataframe using this code:

def add_categorical(df):
 from pyspark.ml.feature import OneHotEncoder, StringIndexer
 indexer = StringIndexer(inputCol='ORIGIN',
 outputCot='origin_index')
 index_model = indexer.fit(df) #
 indexed = index_model.transform(df) #
 encoder = OneHotEncoder(inputCol='origin_index',
 outputCot='origin_onehot')
 return encoder.transform(indexed) #
traindata = add_categorical(traindata)

Create an index from origin airport codes (e.g., DFW) to an origin index (e.g.,
143).

Transform the dataset so that all flights with ORIGIN=DFW have ori

gin_index=143.

One-hot encode the index into a binary vector that is used as input to training.

During evaluation, the same change needs to be made to the dataset, except that the
index model will need to be reused from training (so that DFW continues to map to
143). In other words, we need to save the index_model and carry out the last three
lines before prediction. So we modify the add_categorical() method to:22

index_model = 0
def add_categorical(df, train=False):
 from pyspark.ml.feature import OneHotEncoder, StringIndexer
 if train:
 indexer = StringIndexer(inputCol='ORIGIN',
 outputCol='origin_index')
 index_model = indexer.fit(df)
 indexed = index_model.transform(df)
 encoder = OneHotEncoder(inputCol='origin_index',
 outputCol='origin_onehot')
 return encoder.transform(indexed)
traindata = add_categorical(traindata, train=True)
...
evaldata = add_categorical(evaldata)

Feature Engineering | 279

23 You can check, as I did, by running SELECT DISTINCT(ORIGIN) FROM dsongcp.tzcorr on the BigQuery
console.

This is bookkeeping to which we need to pay careful attention because doing this sort
of thing incorrectly will result in training–serving skew. Spark provides a Pipeline
mechanism to help you record which operations you carried out on the dataset so
that you can repeat them when evaluating, but it introduces yet another level of
abstraction into an already complex topic.

During prediction, things become even more complicated. No longer is it simply a
matter of calling lrmodel.predict(). Instead, you will need to first construct a data‐
frame out of your raw input data, apply these transforms, and finally invoke the
actual model.

All this is academic, however. If you are wondering why there was no RMSE stated
after I added the one-hot encoded airports, it’s because my program ran out of
resources. Adding the airport variable completely overwhelmed the cluster. I got
memory errors and disk swapping:

WARN org.apache.spark.storage.memory.MemoryStore: Not enough space to cache
rdd_46_403 in memory! (computed 5.6 MiB so far)

I put the program out of its misery after about an hour.

The problem is the large quantity of input features one-hot encoding creates. Because
there are about 300 distinct airports in our dataset,23 the airport variable will now
become about 300 separate features. The flights dataset is about 21 million rows
with the training data being about 65% of it, or about 14 million rows, and we used
only one categorical column with about 300 unique values. Yet, this brought down
the machines. Real-world business datasets are larger. The “small clicks” Criteo ads
data used in a Kaggle competition and demonstrated in Vertex AI, for example, is 45
million rows (the full ads dataset contains four billion rows). Nearly all of its columns
are categorical, and some of them have thousands of unique values.

Repeatable, Real Time
In the previous section, we discussed that one-hot encoding leads to a large quantity
of input features. One way of reducing the explosion of input features caused by one-
hot encoding is to carry out dimensionality reduction. The idea is to pass in the one-
hot encoded set and ask the machine learning algorithm itself to come up with
weights to combine these columns into, say, four features that are used downstream
in the model. This is called creating an embedding. This embedding model itself will
be part of the full model, and so the embedding weights can be discovered at the same
time. We look at creating embeddings in Chapter 10, when we discuss TensorFlow.

280 | Chapter 7: Logistic Regression Using Spark ML

24 One approach is to convert the Spark ML model to ONNX and then use ONNX runtime for serving.

One of the side effects of having complex library code to carry out feature transfor‐
mations is that it adds a dependency on the program that makes the predictions. That
program needs to run Spark in order to carry out the one-hot encoding correctly—an
extremely difficult situation if the program that actually makes the predictions runs
on mobile phones or outside of your company’s firewall. Building a realistic machine
learning pipeline with Spark, as we have seen, requires a fair bit of tooling and frame‐
work building.24 It is easy to get started, but difficult to productionize. One way to
ensure repeatability is to store the necessary transformations in the model itself.

BigQuery ML, which we will cover in Chapter 8, addresses the scalability issue. Ver‐
tex AI, which we use in Chapter 10, resolves this problem by being able to deploy an
autoscaling, low-latency prediction model that is accessed via a REST API.

Finally, we could improve the way we use taxi-out times. Flight arrival times are
scheduled based on the average taxi-out time experienced at the departure airport at
that specific hour. For example, at peak hours in New York’s JFK airport, taxi-out
times on the order of an hour are quite common, so airlines take that into account
when publishing their flight schedules. It is only when the taxi-out time exceeds the
average that we ought to be worried. To augment the training dataset with an aggre‐
gate feature that is computed in real time like this, we will need the same code that
processes batch data to also process streaming data in real time. One way to do this is
to use Apache Beam. We do this in Chapter 11.

Summary
In this chapter, we took our first foray into machine learning using Apache Spark.
Spark ML is an intuitive, easy-to-use package, and running Spark on Cloud Dataproc
gives us the ability to quickly build machine learning models on moderately sized
datasets.

We created a dataset using Spark SQL and discovered that there were problems with
missing values for some of the columns. Rather than simply remove the missing data,
though, we found the root cause to be canceled or diverted flights and removed such
flights from the dataset. We employed logistic regression, a machine learning model
that provides probabilistic outputs, to predict the probability that the flight will be on
time. Setting the probability threshold at 0.70 allows us to make a decision as to
whether to cancel a scheduled meeting that depends on us arriving at the airport
within 15 minutes of the scheduled arrival time.

We carried out feature selection and feature engineering and explored categorical fea‐
tures. To choose the features systematically, we devised an experimental framework in

Summary | 281

https://oreil.ly/bliID

which the training dataset itself was broken into two parts and the second part used
to decide whether to keep the feature or transformation in question. We also discov‐
ered some pain points when building a production machine learning system on large
datasets in Spark. Primarily, these had to do with the ability to deal with scale, of car‐
rying out more complex models, of getting low-latency predictions outside of the
development framework, and of being able to use features computed in real-time
windows.

Suggested Resources
I am hesitant to recommend too many resources here. Ultimately, Spark is not the
best framework for machine learning. You are better off using XGBoost, Pytorch, or
TensorFlow in Vertex AI.

If you are planning to use Spark MLlib, read the concise yet complete documentation
from start to finish. Definitely try out pipelines and different types of models, but
before you make your decision, make sure to compare against more modern
alternatives.

Spark pipelines do not have all the capabilities such as metadata tracking that one
expects out of a proper pipelines framework. A better approach to operationalize
Spark MLlib is to use Vertex AI Pipelines and have it delegate to Dataproc, as
described in the 2021 Medium blog post “Sparkling Vertex AI Pipelines” by Ivan
Nardini. Even though we will cover Vertex Pipelines in the context of TensorFlow in
Chapter 10, Vertex AI Pipelines works on any containerized code.

While you can use Spark for basic regression, classification, and recommendation
problems, it is not capable of doing advanced machine learning. A better approach is
to use Spark for data preparation, but use distributed TensorFlow for machine learn‐
ing. This is the approach that was used at Yahoo, where they ran both Spark and
TensorFlow on the same Hadoop cluster. Avoid having to install and manage Tensor‐
Flow yourself by delegating TensorFlow training tasks to Vertex AI. See the 2017 blog
post “Using Apache Spark with TensorFlow on Google Cloud Platform” by Bill Prin
and Neeraj Kashyap for more details.

282 | Chapter 7: Logistic Regression Using Spark ML

https://oreil.ly/gSbx1
https://oreil.ly/TkcyY
https://oreil.ly/TkcyY
https://oreil.ly/tRNFm
https://oreil.ly/Mjv5V

CHAPTER 8

Machine Learning with BigQuery ML

BigQuery is a serverless, highly scalable data warehouse. Amazingly enough, it is also
an excellent machine learning platform. This combination is very convenient since
you can do machine learning without having to extract data out of the data ware‐
house. If your organization has a lot of privacy-sensitive or confidential data, not hav‐
ing extracts of data floating around in people’s projects is important for security. The
auditability that BigQuery provides out of the box means that you know exactly who
created the model and which data was used in which model.

Given the scalability, power, ease-of-use, and security of BigQuery ML, I recommend
using it, rather than Spark, for the first machine learning model you should build
when working with tabular data. In fact, as you will see in this chapter, you can get
best-in-class accuracy, explainability, and prediction capabilities using BigQuery ML.
Because of its connections to Vertex AI, it can be your production machine learning
framework also.

All of the code snippets in this chapter are available in the folder
08_bqml of the book’s GitHub repository. See the README.md file
in that directory for instructions on how to do the steps described
in this chapter.

Logistic Regression
Let’s start where we left off in Chapter 7—recall that we trained a logistic regression
model, added the airport code, and overwhelmed Spark in the process. So, let’s start
by replicating the last working model that we had. We trained the logistic regression
model on three features: departure delay, taxi-out time, and distance.

283

https://github.com/GoogleCloudPlatform/data-science-on-gcp

1 See bqml_logistic.ipynb in the GitHub repository of this book. You can run this in Vertex Workbench.

The first step in BigQuery ML is to create the training dataset. We want the three fea‐
tures and the label, so let’s use SQL to craft the dataset just the way we want it:

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance,
FROM dsongcp.flights_tzcorr f
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False
LIMIT 5

The SELECT statement pulls the required fields, taking care to not train on flights that
were canceled or diverted. The result consists of the four columns we care about:

Row ontime dep_delay taxi_out distance

1 ontime -5.0 10.0 399.0

2 late 33.0 13.0 1046.0

3 ontime -3.0 8.0 95.0

4 ontime 5.0 9.0 201.0

5 ontime -4.0 5.0 204.0

Creating a logistic regression model in BigQuery ML is as simple as running the fol‐
lowing query:1

CREATE OR REPLACE MODEL dsongcp.arr_delay_lm
OPTIONS(input_label_cols=['ontime'],
 model_type='logistic_reg')AS
SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance,
FROM dsongcp.flights_tzcorr f
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False

We are creating a logistic regression model where the label column is called ontime,
and the remaining columns will be used as input features to the model. BigQuery ML
will take care of splitting the data (randomly) and carrying out evaluation on the
withheld dataset.

284 | Chapter 8: Machine Learning with BigQuery ML

The resulting model parameters will be stored in a BigQuery model object called
arr_delay_lm in the dataset dsongcp.

Presplit Data
In Chapter 5, we discussed why we don’t want to randomly split the flight data—we
need to avoid having correlated flights on the same day split between training and test
datasets. That’s why we presplit the data and created a table that specifies which days
should be used for training and which days for evaluation.

We can explicitly tell BigQuery ML to use one of our columns in the training dataset
to split the data. Let’s add that column to our SELECT statement as a Boolean value by
joining the flight data against the table of prespecified training days:

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance,
 IF(is_train_day = 'True', False, True) AS is_eval_day
FROM dsongcp.flights_tzcorr f
JOIN dsongcp.trainday t
ON f.FL_DATE = t.FL_DATE
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False
LIMIT 5

It returns:

Row ontime dep_delay taxi_out distance is_eval_day

1 ontime -5.0 10.0 399.0 true

2 late 33.0 13.0 1046.0 false

3 ontime -3.0 8.0 95.0 false

4 ontime 5.0 9.0 201.0 true

5 ontime -4.0 5.0 204.0 false

The fifth column can now be used to tell BigQuery which rows to withhold for evalu‐
ation, i.e., when this column is TRUE the corresponding row is reserved for evalua‐
tion and not used for training. This involves specifying a custom data split method:

CREATE OR REPLACE MODEL dsongcp.arr_delay_lm
OPTIONS(input_label_cols=['ontime'],
 model_type='logistic_reg',
 data_split_method='custom',
 data_split_col='is_eval_day')
AS

Logistic Regression | 285

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance,
 IF(is_train_day = 'True', False, True) AS is_eval_day
...

Interrogating the Model
When we run the preceding query, BigQuery trains a logistic regression model and
puts the weights into the model arr_delay_lm. We can obtain the training error
(called the loss) as the model is being trained, or even afterwards by querying the
result of the special function ML.TRAINING_INFO:

SELECT * FROM ML.TRAINING_INFO(MODEL dsongcp.arr_delay_lm)

This retrieves the loss on the training dataset and on the evaluation dataset iteration-
by-iteration:

training_run iteration loss eval_loss learning_rate duration_ms

0 19 0.000003 0.000004 104857.6 3306

0 18 0.000007 0.000007 52428.8 3350

0 17 0.000013 0.000012 26214.4 2941

0 16 0.000027 0.000020 13107.2 2921

We can obtain the weights themselves by calling ML.WEIGHTS:

SELECT * FROM ML.WEIGHTS(MODEL dsongcp.arr_delay_lm)

Because logistic regression is a linear model, we get one weight for each input, plus an
intercept term:

processed_input weight

dep_delay -0.132984

taxi_out -0.121715

distance 0.000223

__INTERCEPT__ 4.762572

However, there is usually no point to getting just the weights. Instead, what we want
is the predicted value for some set of inputs. To carry out prediction, we could
directly call ML.PREDICT:

286 | Chapter 8: Machine Learning with BigQuery ML

SELECT * FROM ML.PREDICT(MODEL dsongcp.arr_delay_lm,
 (
SELECT 12.0 AS dep_delay, 14.0 AS taxi_out, 1231 AS distance
))

While we can use ML.PREDICT to actually carry out predictions, the predictions will
be subject to the typical BigQuery latency of a second or so. So, ML.PREDICT is typi‐
cally used for batch predictions over large datasets. For online prediction (i.e., expos‐
ing the prediction service to a microservice using REST), we can extract the model as
a TensorFlow model and deploy it into Vertex AI.

Evaluating the Model
We can look at the model evaluation by going to the BigQuery Evaluation tab and
moving the threshold slider bar as close to 0.7 as possible (see Figure 8-1).

Alternatively, we can evaluate the model by calling ML.EVALUATE in SQL. BigQuery
will evaluate the model on the withheld data (where is_train_day is False), but use a
threshold of 0.5:

SELECT *
FROM ML.EVALUATE(MODEL dsongcp.arr_delay_lm)

Unfortunately, in order to change the threshold to 0.7, we have to also explicitly pro‐
vide the data to evaluate over. So we do:

SELECT *
FROM ML.EVALUATE(MODEL dsongcp.arr_delay_lm,
 (

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance
FROM dsongcp.flights_tzcorr f
JOIN dsongcp.trainday t
ON f.FL_DATE = t.FL_DATE
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False AND
 is_train_day = 'False'

),
 STRUCT(0.7 AS threshold))

Logistic Regression | 287

The resulting evaluation statistics are:

precision recall accuracy f1_score log_loss roc_auc

0.964337 0.956535 0.935174 0.96042 0.167233 0.956248

Figure 8-1. Model Evaluation tab in the BigQuery console.

The precision is how often the model is right when it reports a flight as being on time,
while the recall is the fraction of on-time flights correctly classified. The receiver

288 | Chapter 8: Machine Learning with BigQuery ML

operating characteristic (ROC) is a threshold-independent measure of classifier
performance.

We can use ML.PREDICT to actually carry out predictions in case we want to compute
some other metric. For example, the root mean squared error (RMSE) can be
computed as:

WITH predictions AS (
SELECT
 *
FROM ML.PREDICT(MODEL dsongcp.arr_delay_lm,
 ...)

SELECT
 SQRT(SUM((IF(ontime = 'ontime', 1, 0) - p.prob) *
 (IF(ontime = 'ontime', 1, 0) - p.prob))
 /COUNT(*)) AS rmse
FROM predictions, UNNEST(predicted_ontime_probs) p
WHERE p.label = 'ontime'

The preceding query pulls out the probability field from the predictions (it’s an array,
one for each category, hence the UNNEST) and uses it to compute the RMSE. The
resulting RMSE was 0.2131.

Note that we cannot compare this number 0.2131 against the RMSE numbers from
the previous chapter because they are computed on different datasets. In Spark, we
did not compute the RMSE on the independent evaluation dataset because it would
have been too slow to load in two datasets, one for training and the other for
evaluation.

Scale and Simplicity
We ended Chapter 7 by saying that the Spark model could not handle the addition of
a categorical variable corresponding to an airport because one-hot encoding the air‐
port results in hundreds of new features. To showcase the scalability of BigQuery, let’s
add two such fields, the origin and destination airport:

CREATE OR REPLACE MODEL dsongcp.arr_delay_airports_lm
OPTIONS(input_label_cols=['ontime'],
 model_type='logistic_reg',
 data_split_method='custom',
 data_split_col='is_eval_day') AS
SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance,
 origin,
 dest,

Logistic Regression | 289

2 The code for this section is in bqml_nonlinear.ipynb.

 IF(is_train_day = 'True', False, True) AS is_eval_day
FROM dsongcp.flights_tzcorr f
JOIN dsongcp.trainday t
ON f.FL_DATE = t.FL_DATE
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False

The model that includes the airport information has an RMSE of 0.2098, which is an
improvement over the original model.

BigQuery handles the airport fields without any issues. Had I not tried this in Spark
and failed, I wouldn’t even have known that including the airport as an input is a
challenging undertaking. Notice also that including the airport field didn’t require me
to do any of the careful handling of one-hot variables and vocabularies that we
needed in Spark. With the help of BigQuery, using a categorical variable was as trans‐
parent and straightforward as using a numeric variable.

The scale and simplicity of BigQuery ML make it one of my favorite products in Goo‐
gle Cloud.

Nonlinear Machine Learning
What’s the point of a scalable, simple machine learning service if it limits you to just
linear models? Fortunately, BigQuery ML is not limited to just linear regression and
classification models. You can train deep neural networks, forecast time series, and
create recommender systems. You can also use gradient boosted trees.

XGBoost
When it comes to classification models on structured data, one of the best perform‐
ing techniques is XGBoost (see sidebar). To use this method instead of logistic regres‐
sion, all that we have to do is to change the model_type in the CREATE MODEL

statement:2

CREATE OR REPLACE MODEL dsongcp.arr_delay_airports_xgboost
OPTIONS(input_label_cols=['ontime'],
 model_type='boosted_tree_classifier',
 data_split_method='custom',
 data_split_col='is_eval_day')
AS

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,

290 | Chapter 8: Machine Learning with BigQuery ML

 taxi_out,
 distance,
 origin,
 dest,
 IF(is_train_day = 'True', False, True) AS is_eval_day
FROM dsongcp.flights_tzcorr f
JOIN dsongcp.trainday t
ON f.FL_DATE = t.FL_DATE
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False

That’s it! No other changes are needed. Ten minutes later, we have a shiny new ML
model. The underlying model is now much more complex, but we can use it in the
same way that we used the linear model—by calling ML.EVALUATE and ML.PREDICT.

What Is XGBoost?
XGBoost is a gradient boosting algorithm that creates an ensemble of decision trees.
That’s quite a word salad, so let’s unpack it a bit.

A decision tree is a set of if-then statements. For example, the rule: if the departure
delay is 10 minutes or more, then if the distance is 1,000 miles or more, whether the
flight will be on time can be represented as part of a decision tree (see Figure 8-2).

Figure 8-2. Decision tree based on two variables (departure delay and distance).

The preceding decision tree consists of three such if-then rules, one for each of the
leaves of the tree:

• If the departure delay is less than 10 minutes, the flight will be on time.

Nonlinear Machine Learning | 291

https://oreil.ly/jmQLH

• If the departure delay is 10 minutes or more, then if the distance is less than
1,000 miles, the flight will be late.

• If the departure delay is 10 minutes or more, then if the distance is 1,000 miles or
more, the flight will be on time.

A machine learning algorithm tunes the variables (dep_delay, distance) and thresh‐
olds (10 and 1,000) for the decision tree based on the data. The more if-then state‐
ments there are, the greater the depth of the tree.

It is possible to create multiple such trees by choosing different variables and thresh‐
olds. Thus, it is possible to create an ensemble of decision trees. We can then average
the result of all these trees to come up with a final output. Why is this useful? Because
some decision trees might be especially useful for nighttime flights, other decision
trees may be very accurate for flights from New York, and so on. Getting a fuller pic‐
ture of what various decision trees would say for a given flight can give us more opin‐
ions and the possibility of a more accurate decision in the end.

Can we employ a strategy in choosing the trees that form this ensemble? Yes. One
approach is called boosting. The idea is to choose a tree and find the examples that the
tree classifies incorrectly. The next decision tree is then trained so that it does better
on the misclassified examples—we can do this by artificially boosting their
importance.

Mathematically, boosting misclassified examples is equivalent to weighting the gradi‐
ent associated with those examples. Hence, we end up with a gradient boosting algo‐
rithm that creates an ensemble of decision trees: XGBoost.

The training takes longer than logistic regression (12 minutes rather than 6 minutes)
because it’s a more complex model. The RMSE that we now get is 0.2072, an improve‐
ment over the logistic regression score of 0.2098.

Hyperparameter Tuning
One of the reasons that BigQuery ML is so nice is that it hides a lot of the knobs or
hyperparameters of the model. The default choices usually work pretty well, but there
is usually some room for improvement if we are willing to expend compute cycles
searching for potentially better choices.

There are two hyperparameters that I’m particularly interested in exploring:

• BigQuery reduces the impact of outliers by imposing a penalty on large weight
values. This is called L2 regularization, and the intuition underlying the techni‐
que is as follows: when you have a very complex model with lots and lots of free
parameters (“weights”) and you have an outlier, the model can force the outlier to
have the correct label by twisting and warping the optimization space in the

292 | Chapter 8: Machine Learning with BigQuery ML

vicinity of the outlier. This twisting and warping leads to large weight values (the
mathematics behind this gets a little hairy, so let’s take this on trust). By imposing
a penalty on large weights, the model avoids getting drawn into this trap. How‐
ever, the relative amount of L2 regularization that works is highly dependent on
the dataset and how significant and prevalent these outliers are. BigQuery uses a
default value of 1.0, but that is by no means the authoritative value. I’d like to try
out values between 0.5 and 3.0. Maybe some other L2 value will work better.

• Boosted trees work by creating an ensemble of weak learners. Each of the deci‐
sion trees in the ensemble is pretty bad by itself, but when you average all these
weak learners in a special way (called boosting), the ensemble turns out to be bet‐
ter than any single tree. But how weak can each individual tree be? Can we have
just two IF-THEN rules? Or should we allow 10? By default, BigQuery uses a
maximum tree depth of 6. This is by no means an authoritative value that works
on all problems. I’d like to try out values between 2 and 10.

We can do a grid search of the hyperparameter space. If we try L2 regularization val‐
ues between 0.5 and 3.0 in increments of 0.1 and tree depths between 2 and 10 in
increments of 1, we’d need to try out 25 × 8 = 200 possible values. At 10 minutes a
training run, that’s 2,000 minutes or 1.4 days. Even though I could parallelize these
somewhat, I don’t have that kind of patience.

Fortunately, there’s a better way that employs Bayesian methods to choose the optimi‐
zation path. We can specify a budget (five trials, for example) and have a Vertex AI
optimizer called Vizier do the selection of the five most promising possibilities. To do
this, instead of specifying a single value for the L2_reg and max_tree_depth, we spec‐
ify a range of values:

CREATE OR REPLACE MODEL dsongcp.arr_delay_airports_xgh
OPTIONS(input_label_cols=['ontime'],
 model_type='boosted_tree_classifier',
 num_trials=5,
 l2_reg=hparam_range(0.5, 3.0),
 max_tree_depth=hparam_range(2, 10),
 data_split_method='custom',
 data_split_col='is_eval_day')

However, there is a small hitch. When BigQuery does hyperparameter tuning, what
independent dataset should it test out the models on? It cannot use the nontraining-
days dataset because that is meant for final testing. So, we need to change the SELECT
statement slightly:

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance,
 origin,

Nonlinear Machine Learning | 293

 dest,
 IF(is_train_day = 'True',
 IF(RAND() < 0.8, 'TRAIN', 'EVAL'),
 'TEST') AS is_eval_day
FROM dsongcp.flights_tzcorr f
JOIN dsongcp.trainday t
ON f.FL_DATE = t.FL_DATE
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False

The is_eval_day column used to be a Boolean column. Now, it is a string with three
possible values: TRAIN, EVAL, and TEST. The old training dataset has been broken into
TRAIN and EVAL datasets, and the old withheld data is now called the TEST dataset—
the TEST dataset is the one that consists of days where is_train_day is not True.

Once the hyperparameter job is complete (it will take a couple of hours), we can
query for the trials that were run:

SELECT
 hyperparameters.l2_reg,
 hyperparameters.max_tree_depth,
 eval_loss
FROM ML.TRIAL_INFO(MODEL dsongcp.arr_delay_airports_xgh)
ORDER BY eval_loss ASC LIMIT 3

This returns:

Row l2_reg max_tree_depth eval_loss

1 2.5 10 0.152403

2 1.8827838728344135 8 0.154935

3 2.9999853271420043 6 0.156696

We learn that the lowest evaluation loss is for a tree depth of 10 and L2 regularization
of 2.5. This can now be our final model.

The RMSE that we now get is 0.2043, an improvement over the score of 0.2072 that
we got with the default values. It is noteworthy that this improvement is more than
the improvement (0.2098 to 0.2072) we got when we replaced the logistic regression
with XGBoost.

Vertex AI AutoML Tables
The fact that doing hyperparameter tuning gave us a large improvement gives me a
bit of pause. Is XGBoost really the best model? These days, deep neural networks
(DNNs) do well, even on structured data. Should I not be trying them? If I use deep
neural networks, how many layers and nodes do I need? Do I really want to do hyper‐
parameter tuning of the DNN also?

294 | Chapter 8: Machine Learning with BigQuery ML

3 AutoML supports a custom data split method. We’ll use it in Chapter 9. It’s AutoML as invoked in SQL
through BigQuery ML that doesn’t.

Instead of trying out a variety of models and hyperparameter tuning each model type,
I can call out to Vertex AI’s AutoML service from BigQuery. This, too, is as simple as
changing the model type in the SQL command:

CREATE OR REPLACE MODEL dsongcp.arr_delay_airports_automl
OPTIONS(input_label_cols=['ontime'],
 model_type='automl_classifier')
AS

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance,
 origin,
 dest
FROM dsongcp.flights_tzcorr f
JOIN dsongcp.trainday t
ON f.FL_DATE = t.FL_DATE
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False AND
 is_train_day = 'True'

Unfortunately, at the time of writing, AutoML as invoked from BigQuery ML doesn’t
support a custom data split method, so I had to go with the default random split.3

This training now takes longer. Considerably longer, over an hour.

Computing the evaluation also takes longer (12 minutes), whereas it was nearly
instantaneous with XGBoost. Although the result is heartening—I got an RMSE of
0.1998—it is not really comparable because I was not able to use a custom split
method.

The experiments so far are summarized in Table 8-1.

Table 8-1. BigQuery ML experiments

Method RMSE
Logistic regression 0.2131
Add origin, destination airport 0.2098
XGBoost 0.2072
XGBoost with hparam (10, 2.5) 0.2043
AutoML tables 0.1998 (note: not comparable)

Nonlinear Machine Learning | 295

4 The code is in the notebook bqml_timewindow.ipynb.

While hyperparameter tuning and AutoML were tempting, this was not a good time
to do them. I should have waited because I have more ideas about features that I can
bring in to improve the model. More data beats a better model, and so I should
exhaust the data before I try more sophisticated models.

AutoML can be the final step after we have determined what features to use. I jumped
the gun a bit. Sorry. Let’s go back to the main program.

Time Window Features
One of the data ideas I have is that we could improve the way we use taxi-out times.

I remember a flight from New York to Dallas. My flight sat on the runway at New
York’s LGA airport for nearly an hour before finally taking off. Yet, it arrived early in
Dallas! At peak hours, taxi-out times on the order of an hour are quite common in
New York area airports. So, airlines take that into account when publishing their
flight schedules. It is only when the taxi-out time exceeds the average of the airport
that we ought to be worried.

Taxi-Out Time
My one anecdote does not make the average taxi-out time an important factor. Let’s
validate my intuition from the data.

Does taxi-out time vary by airport? Is the same value of taxi-out associated with late
arrivals in one airport, but with on-time arrivals in another? To check, we can com‐
pute the average taxi-out for all airports that start with the letter D (this should give
us a small, but random sample):4

%%bigquery txout

SELECT
 ORIGIN,
 IF (arr_delay < 15, True, False) AS is_on_time,
 AVG(taxi_out) AS taxi_out
FROM dsongcp.flights_tzcorr
WHERE SUBSTR(ORIGIN, 1, 1) = 'D'
GROUP BY ORIGIN, is_on_time

The BigQuery magic in the first line of the Vertex AI Workbench notebook ensures
that the result of the query is stored in the Pandas dataframe called txout. From
there, we can plot the data:

txout = txout.sort_values(by='ORIGIN')
sns.barplot(data=txout, x='ORIGIN', y='taxi_out', hue='is_on_time');

296 | Chapter 8: Machine Learning with BigQuery ML

The result is shown in Figure 8-3. It is clear that there is a significant difference
between late and on-time flights when it comes to the amount of time they spend on
the taxiway.

Figure 8-3. The average taxi-out time associated with late and on-time flights at various
airports.

It’s also clear that any threshold we impose on taxi-out delay in our model will vary
between airports. At airports like Washington DC (DCA), Denver (DEN), and Dallas
(DFW), on-time flights have a 15-minute taxi-out time on average. In smaller air‐
ports like DAL (Dallas Love Field) and DBO (Dubbo City), this is more than the
average taxi-out time associated with delayed flights.

It seems that the average taxi-out times associated with the airport are worth know‐
ing. We can add it to our training dataset by modifying the SELECT statement used.
First, we compute the average taxi-out times by airport:

WITH taxiout_by_airport AS (
 SELECT
 ORIGIN, AVG(taxi_out) AS avg_taxi_out
 FROM
 dsongcp.flights_tzcorr
 GROUP BY ORIGIN
)

Then, we join the original data against the average taxi-out times using the origin
airport:

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 avg_taxi_out,
 distance,
 origin,
 dest,
 IF(is_train_day = 'True', False, True) AS is_eval_day
FROM dsongcp.flights_tzcorr f
JOIN dsongcp.trainday t
ON f.FL_DATE = t.FL_DATE

Time Window Features | 297

JOIN taxiout_by_airport USING(ORIGIN)
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False
LIMIT 5

The dataset now contains the average taxi-out times in each row:

Row ontime dep_delay taxi_out avg_taxi_out dis

tance

ori

gin

dest is_eval_day

1 ontime -1.0 4.0 7.507122507122507 548.0 OTZ ANC true

2 ontime -8.0 13.0 16.184090332402953 1056.0 HPN PBI false

3 ontime -2.0 21.0 13.344790914960695 1046.0 SJU FLL false

4 late 91.0 15.0 16.184090332402953 1097.0 HPN FLL false

5 ontime -10.0 8.0 12.900537006770952 1192.0 ANC ADK false

In the third row, the plane departed 2 minutes early and spent 8 minutes longer than
usual on the taxiway. Therefore, it took off 6 minutes later than usual. This will surely
have an impact on the arrival delay. So, it makes sense that the taxi-out times associ‐
ated with late and on-time flights are different.

Compounding Delays
The delays of flights that take off ten minutes apart are correlated. If a couple of run‐
ways are unavailable due to prevailing winds, for example, delays will start to com‐
pound. Looking at the average departure delay over the previous hour is potentially a
good indicator of how well the airport is clearing these delays.

To compute the moving average, we can use the window functionality of SQL:

SELECT
 dep_time,
 AVG(dep_delay) OVER time_window AS dep_delay,
 AVG(arr_delay) OVER time_window AS arr_delay
FROM dsongcp.flights_tzcorr
WHERE
 ORIGIN = 'DFW' AND FL_DATE = '2015-03-02'
WINDOW time_window AS (ORDER BY UNIX_SECONDS(dep_time)
 RANGE BETWEEN 3600 PRECEDING AND 1 PRECEDING)

The preceding statement computes the average departure and arrival delays over a
time window. The time window is defined in the SQL statement as consisting of the
rows 3,600 seconds to 1 second before the current row’s departure time. For plotting
purposes, I’m limiting the query to flights from Dallas on March 2, 2015. The result is
shown in Figure 8-4.

298 | Chapter 8: Machine Learning with BigQuery ML

Figure 8-4. The average departure and arrival delays increased over the course of Mar 2,
2015.

Adding the rolling average feature to the training dataset involves code similar to the
code used for plotting previously, except that we make sure to partition the window
by the origin airport (so that the moving average is computed only on flights that
depart from the same airport):

...
SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 AVG(dep_delay) OVER (origin_time_window) AS avg_dep_delay,
 taxi_out,
 ...
FROM dsongcp.flights_tzcorr f
...
WINDOW origin_time_window AS (PARTITION BY ORIGIN
 ORDER BY UNIX_SECONDS(dep_time)
 RANGE BETWEEN 3600 PRECEDING AND 1 PRECEDING)

Causality
Adding these two time-based features and training the model with BigQuery defaults,
we get an RMSE of 0.2040 compared to the 0.2072 we got without these features. The
additional data gives us a boost on par with hyperparameter tuning. And we still have
hyperparameter tuning in our back pocket!

However, this is not strictly correct. I cheated a bit. Did you notice where I cheated?

The mischief started with this line:

WITH taxiout_by_airport AS (
 SELECT
 ORIGIN, AVG(taxi_out) AS avg_taxi_out
 FROM
 dsongcp.flights_tzcorr
 GROUP BY ORIGIN
)

Time Window Features | 299

What am I computing the average of? The average taxi-out at each airport over all the
training flights? No, I am using the evaluation flights too! Oops. That’s relatively easy
to fix. I could add a WHERE clause. But there is another problem. Suppose I am evalu‐
ating the prediction that happened on May 5, 2015. Am I allowed to use the average
delay of flights that happened in December 2015 just because they are in the training
data? How would I provide this value in production? Shouldn’t the global average be
kept up-to-date, so that predictions on May 5, 2015, use the average delay of flights
from the start of the dataset until May 2015 (or maybe the average delay of flights that
happened in the 12 months preceding May 2015?).

We used the average departure delay at the origin airport. What if we also want to
include the average arrival delay at the destination airport? How would we partition
the time window? Not based on the time window of the current flight—it hasn’t
arrived yet! I suppose it is possible to do this in SQL, but it requires greater SQL skills
than I have. Also, I don’t trust myself to not make causality mistakes like the ones in
the previous paragraph.

The moment we start including time-based averages in our ML models, we have to be
very careful about causality. In Chapter 11, we’ll look at how to compute time-
windowed features in a less error-prone way by using a stream analytics system.

Time Features
Time windows introduce a lot of complexity, but time-based features are quite impor‐
tant for this problem. Is there a simpler approach to incorporate time?

Departure Hour
What if, instead of computing hourly averages, we use the hour as an input field? If
we have sufficiently large data, the model will learn to associate different behavior
with different hours. Thus, for example, the model might be able to learn that high
taxi-out times are common during rush hour and infer that the flight would still be
able to arrive on-time.

But we did try adding the hour as an input in Chapter 7 and found that it didn’t
improve the performance. Trying out the same action a second time and expecting a
different result might seem strange. However, it’s not quite the same thing that we are
trying. A linear model might not be able to easily differentiate between 5 p.m. in New
York and 5 p.m. in a smaller airport. The nonlinear XGBoost model that we are using
here has more expressive power and might be able to learn the difference. So, it is
worth giving the hour feature another try.

300 | Chapter 8: Machine Learning with BigQuery ML

5 The code is in bqml_timetxf.ipynb.

The hour is not the only part of the timestamp that matters. Flights tend to be more
delayed on weekdays than on weekends. So, let’s also add the day of the week as an
input. To do so, we can adapt the query that creates the training dataset to be:5

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance,
 origin,
 dest,
 EXTRACT(hour FROM dep_time) AS dep_hour,
 EXTRACT(dayofweek FROM dep_time) AS dep_day,
 IF(is_train_day = 'True', False, True) AS is_eval_day
FROM dsongcp.flights_tzcorr f
JOIN dsongcp.trainday t
ON f.FL_DATE = t.FL_DATE
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False

This creates a dataset that looks like this:

Row ontime dep_delay taxi_out dis

tance

ori

gin

dest dep_hour dep_day is_eval_day

1 ontime -5.0 10.0 399.0 ANC BET 3 5 true

2 late 33.0 13.0 1046.0 FLL SJU 14 7 false

3 ontime -3.0 8.0 95.0 SIT JNU 13 5 false

4 ontime 5.0 9.0 201.0 LIH OGG 22 6 true

5 ontime -4.0 5.0 204.0 BRW SCC 4 4 false

There is a problem with simply extracting features and adding them to the dataset.
When we want the prediction for a flight, we will need to provide the departure hour
and departure day because that’s what the model was trained on (see Figure 8-5).
However, it is unclear to a programmer who’s coding up the client program how the
hour needs to be provided. Should 7 a.m. be 07 or 7? Should this hour be in local time
or in UTC? Similarly, should the day of the week be Thu or 5 or 05? What is the first
day of the week? All the questions that we successfully resolved in Chapter 4 will
again raise their heads.

Time Features | 301

Figure 8-5. The model is trained with hour and day-of-week as features, but they are not
directly present in the input data feed. Instead, they are extracted from the departure
timestamp.

Transform Clause
Ideally, the machine learning model takes, as input, the timestamp (which is what is
present in the datafeed) and internally knows how to transform the departure time
into hour and day-of-week. This transformation can be carried out identically both
during training and during inference.

The way to specify such transformations in BigQuery ML is to use the TRANSFORM
clause:

CREATE OR REPLACE MODEL dsongcp.arr_delay_airports_timefeatures
TRANSFORM(
 * EXCEPT(dep_time),
 EXTRACT(hour FROM dep_time) AS dep_hour,
 EXTRACT(dayofweek FROM dep_time) AS dep_day
)
OPTIONS(input_label_cols=['ontime'],
 model_type='boosted_tree_classifier',
 ...)

AS

SELECT
 IF(arr_delay < 15, 'ontime', 'late') AS ontime,
 dep_delay,
 taxi_out,
 distance,
 origin,
 dest,
 dep_time,
 IF(is_train_day = 'True', False, True) AS is_eval_day
...

Note that the training dataset (the SELECT statement) has the dep_time column as-is.
The TRANSFORM clause pulls in all the columns from the SELECT statement but replaces
the dep_time column with two columns extracted from the departure time.

At this time, I will take advantage of the hyperparameter tuning that I have already
done and change the L2 regularization and maximum tree depth from their default
values to be the value that was best:

302 | Chapter 8: Machine Learning with BigQuery ML

OPTIONS(input_label_cols=['ontime'],
 model_type='boosted_tree_classifier',
 data_split_method='custom',
 data_split_col='is_eval_day',
 l2_reg=2.5,
 max_tree_depth=10)

On training an XGBoost model with these settings, I get a model whose RMSE on the
evaluation dataset is 0.2043. This is quite close to the value that we got from using
time windows. It’s also a lot simpler because there is no need to build real-time infra‐
structure that computes moving averages. Of course, we don’t know whether using
time windows will provide an additional improvement. Let’s defer this discussion to
Chapter 11.

In large-scale ML, you can get much of the benefit of time-
windowed averages by using time features. Time features are a lot
simpler from an engineering perspective than real-time pipelines.

Categorical Variable
Although we got pretty good performance from using the departure hour and day of
the week as-is, there is a small problem. By default, BigQuery ML treats all numbers
as numeric features and all strings as categorical features. The day of the week as
extracted from the timestamp is not a string (e.g., Thursday), but is a number (5).
Therefore, BigQuery ML would have treated it as a numeric input. This is usually
okay, but it is not the case that Saturday is greater than Monday.

Let’s try treating the day of the week as categorical. While we could simply cast the
integer into a string, let’s try adding a bit of prior knowledge, that days 1 and 7 are
weekends:

TRANSFORM(
 * EXCEPT(dep_time),
 EXTRACT(hour FROM dep_time) AS dep_hour,
 IF(EXTRACT(dayofweek FROM dep_time) BETWEEN 2 and 6,
 'weekday', 'weekend') AS dep_day
)

On training with the day of the week as categorical, we get an RMSE of 0.2042, a very
slight improvement over treating it as numeric. We’ll stick with this because it is a
better representation.

Feature Cross
There is a difference between 5 p.m. on Friday in New York versus 5 p.m. on Friday in
a smaller airport such as Columbus, Ohio. The way to capture this important

Time Features | 303

6 It is quite likely that the BigQuery ML team will read this and will have added support for embeddings by the
time you read this book. The general principle still holds though.

combination is to concatenate the three fields (hour, day of week, and origin airport)
and treat them as a single categorical variable. This is called a feature cross, and it can
be expressed in BigQuery ML as:

TRANSFORM(
 * EXCEPT(dep_time),
 ML.FEATURE_CROSS(STRUCT(
 ML.BUCKETIZE(EXTRACT(hour FROM dep_time),
 [0, 4, 8, 12, 16, 20]) AS dep_hour,
 IF(EXTRACT(dayofweek FROM dep_time) BETWEEN 2 and 6,
 'weekday', 'weekend') AS dep_day,
 origin
)) AS day_hour
)

On training with the feature cross, we get an RMSE of 0.2043—the feature cross
hasn’t helped. This might be because of sparsity—one of the problems with a feature
cross is that it greatly increases the number of possible values. There are 24 possible
hours, 2 possible values for dep_day (weekday and weekend), and more than 300 val‐
ues for the origin airport. Because we are combining the possibilities, and treating
each unique combination independently, the feature cross results in a categorical
variable with 24 × 2 × 300 values. Bucketizing the hour into 6 buckets of 4 hours each
helps reduce the number of combinations. Obviously, that wasn’t enough. In Chap‐
ter 9, we will look at a machine learning concept called embedding that will help with
this sparsity problem (see sidebar).

Another thing to consider is that we don’t have the hour or day-of-week by itself any‐
more. Perhaps the feature cross needs to be an additional feature, instead of replacing
the individual columns.

The last few changes we have tried have had minimal impact on the performance of
the model. At some point, with feature engineering, we hit diminishing returns. So,
this seems as good a time as any to stop.

When to Use Low-Code and No-Code Systems
What we observed with sparsity and the need for an embedding is a pretty common
scenario in software tools and frameworks—whether the framework is for building
mobile applications or user interfaces, websites, or machine learning models.6

A no-code tool is the easiest to use. Point-and-click and you are done. AutoML on
Google Cloud is a no-code system for creating and deploying machine learning mod‐
els (we will encounter it in Chapter 10). It is completely GUI-driven.

304 | Chapter 8: Machine Learning with BigQuery ML

A low-code system is one where there is a library or framework that provides com‐
mon use cases via simple APIs. BigQuery ML is a low-code system. All we need is
SQL to do a wide variety of use cases, ranging from regression and classification to
time-series forecasting, k-means clustering, and product recommenders. Even though
we write SQL, BigQuery ML delegates the actual work to C++ code running on Big‐
Query slots or to TensorFlow code running in Vertex AI. All this is abstracted away
from us.

Low-code systems are easier to use than the sophisticated underlying software that
actually does the work. At some point, however, you will need a capability that has
not been wrapped around by the designer of the low-code or no-code framework. At
that point, you will want to directly use the more sophisticated framework. The need
for an embedding is when we reached that point with BigQuery ML, but every low-
code and no-code tool eventually reaches a breaking point.

When you are choosing tooling for your data science platform, low-code and no-code
tools can be tempting, but you should always verify that, if needed, you can drop
down to code. Also verify that the code that you then write is portable, can be
version-controlled, and uses standard and popular APIs.

Use AutoML and BigQuery ML whenever you can, confident that you can drop down
to Vertex AI and TensorFlow if necessary. Don’t overcorrect and use only TensorFlow
code—you will be sacrificing a lot of productivity if you thumb your nose at low-code
and no-code tools.

Summary
BigQuery ML provides a simple and powerful SQL interface for doing machine learn‐
ing. We created a classifier model for predicting flight delays using BigQuery ML. We
were able to evaluate this model and use it for batch predictions with just SQL.

We then created a more sophisticated model using gradient boosted trees and saw an
improvement over the simple logistic regression model we used earlier. The scale and
simplicity of BigQuery allowed us to add additional features like airport codes. We
saw that the addition of these features resulted in improved performance.

We also saw that we could get a worthwhile performance boost using hyperparameter
tuning and AutoML. Because of how time-consuming these two options are, we
should be using them at the end of our experimentation process, after we have
exhausted all the data improvements.

We experimented with adding time-windowed moving averages. Although the SQL
syntax is quite straightforward, the semantics of causality are hard to keep track of.
It’s better to compute time averages in a stream analytics system—we will do this in
Chapter 10.

Summary | 305

Considering the difficulty of including time-windowed features, we explored whether
directly using different parts of time would be a good alternative. We found that we
could match the performance improvement of the time-windowed moving average
by including the hour and day of week as input features.

Carrying out transformation like this is hard to keep track of, and so we put all our
transformations into the TRANSFORM clause. That way, they are automatically applied
to the input data during prediction.

We finally hit diminishing returns with feature engineering, so we stopped.

Suggested Resources
BigQuery ML is one of my favorite go-to products in Google Cloud. So, I’ve written a
large number of blogs about BigQuery ML features. Here are a few of the superpow‐
ers of BigQuery ML that we didn’t have time to cover in this chapter:

• Time-series forecasting models. See Lak Lakshmanan, “How To Do Time Series
Forecasting in BigQuery”, Towards Data Science (blog), March 30, 2020.

• Recommendation models. See Lak Lakshmanan, “Training a Recommendation
Model for Google Analytics Data Using BigQuery ML”, Towards Data Science
(blog), April 20, 2020.

• K-means clustering. See Lak Lakshmanan, “How to Use K-Means Clustering in
BigQuery ML to Understand and Describe Your Data Better”, Towards Data Sci‐
ence (blog), April 10, 2019.

• Anomaly detection. See Lak Lakshmanan, “Anomaly Detection in Time Series
Data Using BigQuery ML”, Medium (blog), July 14, 2021.

• Export trained models to Vertex AI for online prediction. See Lak Lakshmanan,
“How to Export a BigQuery ML Model and Deploy It for Online Prediction”,
Towards Data Science (blog), May 17, 2020.

• Import trained TensorFlow models for batch prediction. See Lak Lakshmanan,
“How to Do Batch Predictions of TensorFlow Models Directly in BigQuery”,
Towards Data Science (blog), April 10, 2019

• Explaining a BigQuery ML model. See Lak Lakshmanan, “Explaining a BigQuery
ML Model”, Towards Data Science (blog), July 29, 2021.

How about specific use cases? Many common use cases in BigQuery ML are often
just a web search away:

• Propensity to buy. See Damodar Panigrahi, “How to Build an End-to-End Pro‐
pensity to Purchase Solution Using BigQuery ML and Kubeflow Pipelines”, Goo‐
gle Cloud - Community (blog), September 8, 2020.

306 | Chapter 8: Machine Learning with BigQuery ML

https://oreil.ly/7IKFZ
https://oreil.ly/7IKFZ
https://oreil.ly/VDsOj
https://oreil.ly/VDsOj
https://oreil.ly/vuBaX
https://oreil.ly/vuBaX
https://oreil.ly/QCe2N
https://oreil.ly/QCe2N
https://oreil.ly/jrG4T
https://oreil.ly/bHsw0
https://oreil.ly/KRLEE
https://oreil.ly/KRLEE
https://oreil.ly/PpYa0
https://oreil.ly/PpYa0

• E-commerce recommendations. See Polong Lin, “How to Build a Recommenda‐
tion System on E-Commerce Data Using BigQuery ML”, Google Cloud - Commu‐
nity (blog), July 13, 2020.

• Audience segmentation. See Tai Conley, “How to Build Audience Clusters With
Website Data Using BigQuery ML”, Google Cloud - Community (blog), November
4, 2020.

If there is only one Google Cloud data product you can learn, it should be BigQuery.
Fortunately, there is an excellent book on BigQuery by your favorite author, Google
BigQuery: The Definitive Guide by Valliappa Lakshmanan and Jordan Tigani
(O’Reilly).

Suggested Resources | 307

https://oreil.ly/UenSu
https://oreil.ly/UenSu
https://oreil.ly/Vwz83
https://oreil.ly/Vwz83
https://www.oreilly.com/library/view/google-bigquery-the/9781492044451/
https://www.oreilly.com/library/view/google-bigquery-the/9781492044451/

CHAPTER 9

Machine Learning with TensorFlow
in Vertex AI

In Chapter 7, we built a machine learning model in Spark but ran into problems
when trying to scale it out and make it operational. We were able to address the scala‐
bility challenge by using BigQuery ML in Chapter 8, but the operationalization chal‐
lenges still remain. In addition, although BigQuery ML was scalable, we were not able
to build the most expressive ML model possible. Briefly, there are four challenges that
we identified:

• One-hot encoding of categorical columns caused an explosion in the size of the
dataset because of the increased size of the columns. BigQuery ML was able to
handle this, but Spark wasn’t.

• Embeddings would have involved special bookkeeping in Spark, and this was not
an option in BigQuery ML.

• Putting the model into production requires the machine learning library to be
portable to environments beyond the Hadoop cluster or BigQuery data ware‐
house on which the model is trained.

• Preventing training–serving skew when using a time-windowed aggregate feature
requires being able to use the same data preparation code for both historical data
(which is batch) and real-time data (which is streaming).

We will solve the fourth problem, of time-windowed aggregates, in Chapter 11 by
using Apache Beam and its ability to employ the same code for both batch and
stream.

The solution to the first three problems requires a portable machine learning library
that is (1) powerful enough to carry out training using accelerators such as GPUs and

309

1 Heng-Tze Cheng et al., “Wide & Deep Learning for Recommender Systems,” arXiv, June 24, 2016. https://
arxiv.org/abs/1606.07792.

Tensor Processing Units (TPUs) in a distributed manner, (2) flexible enough to sup‐
port the latest machine learning research such as wide-and-deep networks,1 and (3)
portable enough to support both massively parallel prediction on custom application-
specific integrated circuits (ASICs) and prediction carried out on handheld devices.
TensorFlow, the open source machine learning library developed at Google, meets all
these objectives.

If you skipped ahead to this chapter without reading Chapters 7 and 8, please go back
and read them. Those two chapters look at logistic regression using Spark and using
BigQuery ML, and I introduce a number of machine learning concepts that are essen‐
tial to understanding this one. In particular, understanding the limitations of the
approaches presented in Chapters 7 and 8 will help you to understand the architec‐
ture of the TensorFlow/Keras model that we develop here.

All of the code snippets in this chapter are available in the folder
09_vertexai of the GitHub repository. See the README.md file in
that directory for instructions on how to do the steps described in
this chapter.

Toward More Complex Models
Normally, when you want a computer to do something for you, you need to program
the computer to do it by using an explicit set of rules. For example, if you want a
computer to look at an image of a screw on a manufacturing line and figure out
whether the screw is faulty or not, you need to code up a set of rules: Is the screw
bent? Is the screw head broken? Is the screw discolored? With machine learning, you
turn the problem around on its head. Instead of coming up with all kinds of logical
rules for why a screw might be bad, you show the computer a whole bunch of data.
Maybe you show it 5,000 images of good screws and 5,000 images of faulty screws
that your (human) operators discarded for one reason or the other. Then, you let the
computer learn how to identify a bad screw from a good one. The computer is the
“machine” and it’s “learning” to make decisions based on data. In this particular case,
the “machine” is learning a discriminant function from the manually labeled training
data, which separates good screws from bad screws. This kind of machine learning is
called “supervised” because there is a ground truth supplied by an expert—in this
analogy, the human quality inspectors function as the supervisors of the machine
learning algorithm.

310 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

https://tensorflow.org
https://github.com/GoogleCloudPlatform/data-science-on-gcp

2 If you come from a statistics background, training a machine learning model is the same thing as fitting a
statistical model or function to data.

3 In this context, dense inputs are those where small differences in numeric values are meaningful—that is,
where the inputs are continuous numbers.

Our approach in Chapters 6–8 involved machine learning. We took all of the data,
chose a model (Bayesian classification in Chapter 6, logistic regression in Chapter 7,
and boosted tree classification in Chapter 8), and asked the computer to figure out
the parameters in the model (the empirical probabilities in Bayes, the weights in
logistic regression, breakpoints in boosted trees). We then could use the “trained”
model to make predictions on new data points.

Even plain old linear regression, in this view, can be thought of as machine learning—
that is, if the model is effective at capturing the nuances of the data. Many real-world
problems are much more complex than can be adequately captured by linear regres‐
sion or similarly simple models. When people talk of machine learning, they are usu‐
ally thinking of more complex models with many more parameters.

Tell a statistician about complex models with lots of parameters, and you’ll get back a
lecture on the dangers of overfitting, of building a model that (instead of capturing
the nuances of the problem) is simply fitting observation noise in the data. So,
another aspect of machine learning is that you need to counteract the dangers of
overfitting when using very complex models by training the model on extremely
large and highly representative datasets.2 Additionally, even though these complex
models may be more accurate, the trade-off is that you cannot readily analyze them to
retroactively derive logical rules and reasoning. When people think of machine learn‐
ing, they think of complex models like random forests, support vector machines, and
neural networks.

For our problem, we could use random forests, support vector machines, or neural
networks, and I suspect that we will get very similar results. This is true of many real-
world problems—the biggest return for your effort is going to be in terms of finding
additional data to provide to the training model or in devising better input features
using the available data. In contrast, changing the machine learning model doesn’t
provide as much benefit. However, for a specific class of problems—those with
extremely dense and highly correlated inputs such as audio and images,3 deep neural
networks begin to shine. In general, you should try to use a linear model if you can
and reserve the use of more complex models (deep neural networks, convolutional
networks, transformers, recurrent neural networks, etc.) only if the particular prob‐
lem warrants it. For the flight delay use case, I will use a wide-and-deep model that
consists of two parts: a wide or linear part for input features that are sparse and a part
consisting of deep layers for input features that are continuous.

Toward More Complex Models | 311

To train the model, we will use TensorFlow, an open source software library devel‐
oped at Google to carry out numerical computation for machine learning research.
The guts of the library are written in C++ to permit you to deploy computation to
one or more CPUs or GPUs in a desktop or the cloud. Come prediction time, the
trained model can be run on CPUs, GPUs, a server that uses Google’s custom ASIC
chips for machine learning (called Tensor Processing Units or TPUs), or even a
mobile device. However, it is not necessary to program in C++ to use TensorFlow
because the programming paradigm is to build a data flow graph and then stream
data into that graph. It is possible to control the graph creation and streaming from
Python without losing the efficiency of C++, or the ability to do GPU and ASIC com‐
putations. Nodes in the graph represent mathematical operations (such as the sum‐
mation and sigmoid function that we used in logistic regression), whereas the graph
edges represent the multidimensional data arrays (tensors) communicated between
these nodes.

In fact, we could have expressed logistic regression as a simple neural network con‐
sisting of a single node and done the training using TensorFlow rather than Spark, as
illustrated in Figure 9-1.

Figure 9-1. Logistic regression can be expressed as a simple neural network with only one
node. The X’s are the model inputs (the features) and the W’s are the weights of the
model.

For comparison purposes, the first neural network that we will build in this chapter
will be precisely this. We will then be able to examine the impact of the additional
input features while keeping the model (logistic regression) the same as what was
used in Chapter 7.

Having done the comparison, though, we will move on to building a neural network
that will have many more nodes and will be distributed in more layers. We’ll keep the
output node a sigmoid so that the output is restricted to lie in [0,1] but add in inter‐
mediate layers and nodes with other activation functions. The number of nodes and
layers is something that we must determine via experimentation. At some point,
increasing the number of nodes and layers will begin to result in overfitting, and the
exact point is dependent on the size of your dataset (both the number of labeled

312 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

4 Using ReLU rather than sigmoidal (or tanh) activation functions is a trade-off—the sigmoid activation func‐
tion saturates between 0 and 1 (see the graphs in Chapter 7), and therefore the output won’t blow up. How‐
ever—and this is where the trade-off comes in—the outputs of neurons with ReLU activation functions can
reach really large, positive magnitudes. Some of the theoretical advances in machine learning over the past
few years have been on how to initialize and train ReLUs without having the intermediate outputs of the neu‐
ral network go flying off the handle.

examples and the number of predictor variables), the extent to which the predictor
variables do predict the label, and the extent to which the predictors are independent.
This problem is hairy enough that there is no real way to know beforehand how big
and large you can afford your neural network to be. If your neural network is too
small, it won’t fit all the nuances of the problem adequately and your training error
will be large. Again, you won’t know that your neural network is too small unless you
try a slightly larger neural network. The relationship is not going to be nice and
smooth because there are random seeds involved in all the optimization methods that
you will use to find the weights and biases. Because of that, machine learning is going
to have to involve many, many runs. The best advice is to try out different numbers of
nodes and layers and different activation functions (different ones work better for dif‐
ferent problems) and see what works well for your problem. Having a cloud platform
that supports this sort of experimentation to be carried out on your complete dataset
in a timely manner is very important. When it’s time to run our experiment on the
full dataset, we will use Vertex AI.

Every node in a neural network adds up all the weighted inputs and then applies an
activation function to the weighted sum. In a classifier, the activation function of the
output node is the sigmoid (or s-shaped) function that we saw earlier in logistic
regression. For the intermediate layers, we will use Rectified Linear Units (ReLUs)4 as
the activation functions. The ReLU has a linear activation function that is clamped to
nonnegative values. Essentially the input of the node is passed through to the output
after thresholding it at 0—so if the weighted sum of the inputs is 3, the output is 3,
but if the weighted sum of the inputs is −3, the output is 0.

Figure 9-2. A typical neural network node in the intermediate (hidden) layers of a neu‐
ral network consists of the weighted sum of its inputs transformed by a nonlinear
function.

Toward More Complex Models | 313

https://oreil.ly/7nHXR

5 As opposed to the approaches in #1 and #3 where we query the data only once.

Preparing BigQuery Data for TensorFlow
There are four approaches that we can take in order to train a TensorFlow model on
data that is in BigQuery:

• Use the BigQuery client library to load the data from BigQuery into an in-
memory Pandas dataframe. Then, we can use tf.convert_to_tensor to read the
Pandas data frame into TensorFlow. You should use this approach only on data‐
sets that will fit comfortably into memory.

• Use BigQueryReader to iterate through a BigQuery table (or a subset of it) into a
TensorFlow dataset. The BigQueryReader uses BigQuery’s Storage API and is
therefore very efficient and can be invoked in parallel if we are doing distributed
training. However, the Storage API is not free, and so we will end up paying to
read the data each time.5 Use this for quick experimentation, but this approach
can get expensive because training an ML model involves reading data multiple
times. Nevertheless, you should use this approach for fast-changing data.

• Export the subset of BigQuery data you need to files on Google Cloud Storage
(GCS), and read these files from the ML pipeline.

• Train the model in BigQuery ML using model_type=dnn_classifier or
model_type=automl_classifier and then export the trained model for use in
Vertex AI. These model types train a TensorFlow model in Vertex AI. However,
you are restricted to the model types supported by BigQuery ML.

I’m going to take the third approach because it is the least expensive option that will
work for large datasets and allow me to create a custom TensorFlow model. I will cre‐
ate a temporary table in BigQuery to contain the data we need, export the table to
CSV files on Google Cloud Storage, and delete the temporary table (see
flights_model_tf2.ipynb in the code repository):

CREATE OR REPLACE TABLE dsongcp.flights_train_data AS

SELECT
 IF(arr_delay < 15, 1.0, 0.0) AS ontime,
 dep_delay,
 taxi_out,
 distance,
 origin,
 dest,
 EXTRACT(hour FROM dep_time) AS dep_hour,
 IF (EXTRACT(dayofweek FROM dep_time) BETWEEN 2 AND 6, 1, 0) AS is_weekday,
 UNIQUE_CARRIER AS carrier,
 dep_airport_lat,

314 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

https://oreil.ly/fmseF
https://oreil.ly/XaWF7

 dep_airport_lon,
 arr_airport_lat,
 arr_airport_lon
FROM dsongcp.flights_tzcorr f
JOIN dsongcp.trainday t
ON f.FL_DATE = t.FL_DATE
WHERE
 f.CANCELLED = False AND
 f.DIVERTED = False AND
 is_train_day = 'True'

Then, I extract it to a CSV file using:

for dataset in "train" "eval" "all"; do
 TABLE=dsongcp.flights_${dataset}_data
 CSV=gs://${BUCKET}/ch9/data/${dataset}.csv
 bq extract --destination_format=CSV $TABLE $CSV
 bq rm -f $TABLE
done

Note that my data now includes a few more parameters that I used in the previous
chapter. There is one more categorical variable (the airline company, or carrier) and
the location of the departure and arrival airports.

Note also that my label is 1.0 if the flight is on time (arrives less than 15 minutes after
the scheduled time) and 0.0 if it is not.

Reading Data into TensorFlow
To read the CSV files from GCS into TensorFlow, we use a method from the tf.data
package:

training_data_uri = 'gs://{}/ch9/data/train*'.format(BUCKET)
dataset = tf.data.experimental.make_csv_dataset(
 training_data_uri, batch_size=5)

Let’s write a read_dataset() function that reads the training data, yielding
batch_size examples each time, which allows us to stop iterating once a certain
number of examples have been read. This is the function that we want:

def read_dataset(pattern, batch_size,
 mode, truncate):

The reason for the mode parameter is that the function needs to behave differently
when reading the training versus when reading the evaluation data. During evalua‐
tion, we need to read the entire dataset only once. During training, though, we need
to read the dataset and pass it through the model several times. In addition, if we are
training on multiple workers, we want the workers to see different examples. We can
achieve this by calling shuffle() with a large enough buffer. Finally, it’s efficient to

Toward More Complex Models | 315

6 I encourage you to read Machine Learning Design Patterns by Valliappa Lakshmanan, Sara Robinson, and
Michael Munn (O’Reilly) for many tips on applying ML in real-world scenarios.

7 Mu Li et al., “Scaling Distributed Machine Learning with the Parameter Server,” Operating Systems Design
and Implementation (OSDI), USENIX (2014): 583–98. https://research.google.com/pubs/pub44634.html.

prefetch a batch of data using the CPU while the GPU is busy crunching the data.
Putting these concepts together, we have:6

if mode == tf.estimator.ModeKeys.TRAIN:
 dataset = dataset.shuffle(batch_size*10)
 dataset = dataset.repeat()
dataset = dataset.prefetch(1)
if truncate is not None:
 dataset = dataset.take(truncate)

Shuffling the order in which the sharded input data is read each time is important for
distributed training. The way distributed training is carried out is that each of the
workers is assigned a batch of data to process. The workers compute the gradient on
their batch and send it to parameter servers that maintain a shared state of the train‐
ing run.7 For reasons of fault tolerance, the results from very slow workers might be
discarded. If there was a consistently slow worker and the same data was always
assigned to the same worker, that data might always be discarded and never used.
Therefore, it is important that the same batch of data not be assigned to the same
slow worker in each run. Shuffling the data before it gets assigned to each worker
helps mitigate this possibility.

The dataset contains all the columns in the CSV file, named according to the header
line. The data consists of both features and the label. It’s better to separate them to
make the later code easier to read. Hence, we’ll apply a map() function to the dictio‐
nary and return a tuple of features and labels:

def features_and_labels(features):
 label = features.pop('ontime')
 return features, label

dataset = dataset.map(features_and_labels)

At this point, a batch that is read will consist of a tuple. The first item of the tuple will
be a dictionary of features. The second item of the tuple will be a tensor of labels. (A
tensor is just an array of arbitrary dimensions.) Assuming the batch size is 2, the
labels tensor will be of shape (2,) as will each of the feature tensors:

[
(OrderedDict([
 ('dep_delay',
 <tf.Tensor: shape=(2,), dtype=int32,
 numpy=array([-11, 9], dtype=int32)>),
 ('taxi_out',

316 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

https://www.oreilly.com/library/view/machine-learning-design/9781098115777/

 <tf.Tensor: shape=(2,), dtype=int32,
 numpy=array([10, 10], dtype=int32)>),
 … ,
 ('arr_airport_lon',
 <tf.Tensor: shape=(2,), dtype=float32,
 numpy=array([-149.99806 , -72.683334], dtype=float32)>)
]),
<tf.Tensor: shape=(2,), dtype=int32,
 numpy=array([1, 1], dtype=int32)>)
]

Every time the TensorFlow model needs a new batch of data, it is a tuple like this that
it will get.

Now that we have set up the data pipeline, let’s move on to implementing the model
itself.

Training and Evaluation in Keras
Keras is an open source library that simplifies the writing of machine learning models
and can work with a variety of backends, including TensorFlow. We first create a
Keras model and then call fit() on the model to train it, passing it the training data‐
set. Once the model is trained, we can also call evaluate() and predict() on the
model.

To create a Keras model, we need to specify the inputs, the feature engineering to be
performed, the model function, the optimization algorithm, and the evaluation
metrics.

Model Function
In Chapter 7, we built a logistic regression model based on three continuous vari‐
ables: departure delay, taxi-out time, and distance. We then tried to add one more
variable—the origin airport—and because the origin is a categorical variable, it
needed to be one-hot encoded. One-hot encoding the origin airport ended up creat‐
ing more than a hundred new columns, making the model two orders of magnitude
more complex. Thus, the addition of this fourth variable caused the Spark ML model
to collapse (although BigQuery ML was able to handle this just fine).

Here, let’s build a logistic regression model in Keras, but because we do have many
more columns now, let’s use them all. As discussed earlier in this chapter, logistic
regression is simply a linear model with a sigmoidal output node:

output = tf.keras.layers.Dense(1,
 activation='sigmoid', name='pred')(inputs)
model = tf.keras.Model(inputs, output)

Training and Evaluation in Keras | 317

The model contains a single layer that is fully connected (dense) to its inputs, has one
output, and has a sigmoid activation function.

But how do we get the input layer?

Recall from Chapter 8 that there is a difference between inputs and features—a struc‐
tured data model takes raw data as input, and then creates new features from those
inputs. It’s these features that are actually used by the model for training. So, what we
need is to create features from the inputs and pass those features to the model:

inputs = …
features = tf.keras.layers.DenseFeatures(…)(inputs)

output = tf.keras.layers.Dense(1,
 activation='sigmoid', name='pred')(features)
model = tf.keras.Model(inputs, output)

This is because we cannot pass the input values as-is into the neural network. We will
have to convert all the inputs into a single vector of floating point values. The process
of converting the raw inputs into floating point values that are amenable to being
input into a machine learning model is called feature engineering. In Keras, the raw
inputs are Input layers, and the conversion is carried out by feature columns and a
special layer called DenseFeatures. Let’s look at those next.

Features
We typically create one feature for every column in our tabular data. Keras has sup‐
port for feature columns, opening up the ability to represent structured data using
standard feature engineering techniques like embedding, bucketizing, and feature
crosses.

We know that numeric data can be passed in directly to the ML model. So, let’s keep
the real-valued columns separate from the sparse (or string) columns:

real = {
 colname : numeric_column(colname)
 for colname in
 (
 'dep_delay,taxi_out,distance,dep_hour,is_weekday,' +
 'dep_airport_lat,dep_airport_lon,' +
 'arr_airport_lat,arr_airport_lon'
).split(',')
}
sparse = {
 'carrier': categorical_column_with_vocabulary_list(
 'carrier',
 vocabulary_list=(
 'AS,VX,F9,UA,US,WN,HA,EV,MQ,DL,OO,B6,NK,AA'
 .split(','))),
 'origin' : categorical_column_with_hash_bucket(

318 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

8 A hash function is a function that maps input values as evenly as possible over its output range. Python has a
built-in hash function called hash() that returns an integer—it is common to override the hash() function in
classes to take into account some unique combination of attributes (called the keys) of the object.

 'origin', hash_bucket_size=1000),
 'dest' : categorical_column_with_hash_bucket(
 'dest', hash_bucket_size=1000),
}

Features that are discrete (and have to be one-hot encoded [see Chapter 7]) are repre‐
sented by categorical_column. The airline carrier can be one of the following
strings:

AS,VX,F9,UA,US,WN,HA,EV,MQ,DL,OO,B6,NK,AA

Thus, it is represented by a sparse column with those specific keys. This is called the
vocabulary of the column; to find the vocabulary of the carrier codes, I used Big‐
Query:

SELECT
 DISTINCT UNIQUE_CARRIER
FROM
 flights.tzcorr

Although I could have done the same thing for the origin and destination airport
codes (most likely by saving the airport codes from the BigQuery result set to a file
and reading that file from Python), I decided to use a shortcut by mapping the airport
codes to hashed buckets; rather than find all the origin airports in the dataset, I ask
TensorFlow to create a deterministic hash of the airport code and then discretize the
hash number into one thousand buckets (a number larger than the number of unique
airports).8 Provided the hash works as intended, the airports will be uniformly discre‐
tized into one thousand bins. For any bucket with only one airport in it, this is equiv‐
alent to one-hot encoding. However, there is likely to be some small amount of
collision, and so using the hash rather than explicitly specifying the keys will be
somewhat worse.

The hashed feature design pattern also helps when the categorical
features have an incomplete vocabulary. This will help if a new air‐
port gets built, for example. See Machine Learning Design Patterns
by Valliappa Lakshmanan, Sara Robinson, Michael Munn
(O’Reilly) for details. Summarized notes from the book are avail‐
able in a 2021 Geek Culture blog post, “Data Representation Design
Patterns”, by Manoj Kumar Patra.

Training and Evaluation in Keras | 319

https://oreil.ly/5THuF
https://oreil.ly/5THuF

9 The default option—MirroredStrategy—works for zero or more GPUs on a single machine. Since that’s what
I’m doing, you will not see the strategy referenced explicitly in the code.

Inputs
All these features come directly from the input file (and will have to be provided by
any client that wants a prediction for a flight). Because the Input layers map 1:1 to the
input features and their types, rather than repeat the column names, I can create an
Input layer for each of these columns, specifying the right data type (either a float or a
string):

inputs = {
 colname : tf.keras.layers.Input(
 name=colname, shape=(), dtype='float32')
 for colname in real.keys()
}
inputs.update({
 colname : tf.keras.layers.Input(
 name=colname, shape=(), dtype='string')
 for colname in sparse.keys()
})

At this point, we have an Input layer for each of the feature columns in the training
data file.

The feature columns are applied to the inputs using DenseFeatures, and the resulting
features are passed to the subsequent Dense layer:

features = tf.keras.layers.DenseFeatures(
 list(sparse) + list(real), name='features')(inputs)

output = tf.keras.layers.Dense(1,
 activation='sigmoid', name='pred')(features)
model = tf.keras.Model(inputs, output)

At this point, the model has been created. Let’s move on to training the model.

Training the Keras Model
Once we have created the Keras model, we can call methods such as fit(), evalu
ate(), and predict() on the model. The distribution strategy will take care of calling
the optimizer for the model in a distributed way (i.e., across several accelerators or
across machines) to adjust the weights of the model every time a batch of training
examples is read.9

Before we can train the model, though, we have to compile it, specifying the opti‐
mizer, the loss metric, and any evaluation metrics that we want to report during
training:

320 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

10 See the full context on GitHub.

model.compile(optimizer='adam',
 loss='binary_crossentropy',
 metrics=['accuracy'])

Then, we call fit() to train the model, passing in the training dataset and the valida‐
tion dataset on which to report metrics as the model is being trained:

train_dataset = read_dataset('gs://…/train*',
 train_batch_size)
eval_dataset = read_dataset('gs://…/valid*',
 eval_batch_size,
 tf.estimator.ModeKeys.EVAL,
 num_eval_examples)

history = model.fit(train_dataset,
 validation_data=eval_dataset,
 epochs=epochs,
 steps_per_epoch=steps_per_epoch,
 validation_steps=10)

The history object will contain the training loss and evaluation metrics after each
epoch. We can plot it using:

for idx, key in enumerate(['loss', 'accuracy']):
 ax = fig.add_subplot(nrows, ncols, idx+1)
 plt.plot(history.history[key])
 plt.plot(history.history['val_{}'.format(key)])
 plt.title('model {}'.format(key))
 plt.ylabel(key)
 plt.xlabel('epoch')
 plt.legend(['train', 'validation'], loc='upper left');

In Chapter 7, we discussed the need for a metric that is independent of threshold and
captures the full spectrum of probabilities. For comparison purposes, therefore, it
would be good to also compute the RMSE. We can do this by adding an evaluation
metric to the model definition:10

metrics=['accuracy', rmse]

The rmse() function is defined as follows:

def rmse(y_true, y_pred):
 return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true)))

Training and Evaluation in Keras | 321

https://github.com/GoogleCloudPlatform/data-science-on-gcp/blob/main/10_mlops/model.py

Saving and Exporting
In order for us to be able to deploy the model to serve requests, we need to save it in a
format that can be deployed:

export_dir = os.path.join(OUTPUT_DIR,
 'export/flights_{}'.format(
 time.strftime("%Y%m%d-%H%M%S")))
tf.saved_model.save(model, export_dir)

With all the components in place, we are now ready to run the code.

Deep Neural Network
Making sure that the Vertex AI Workbench notebook that I’m working on has a GPU
attached to it, I can now launch off the training job. The model being trained is a sim‐
ple one, of course—a linear regression model. Even though I’ve added several new
features (carrier, airport locations), the resulting RMSE hasn’t budged from when we
did linear regression in BigQuery ML. This is not surprising—there is a limit to the
expressiveness of linear models. We should try a more complex model.

What happens if we change our model from a linear model to a deep neural network?
In Keras, if we want two hidden layers with 64 and 8 nodes, we would insert a couple
of Dense layers that have a relu activation function:

features = tf.keras.layers.DenseFeatures(
 list(sparse) + list(real), name='features')(inputs)
h1 = tf.keras.layers.Dense(
 64, activation='relu', name='pred')(features)h2 = tf.keras.layers.Dense(
 8, activation='relu', name='pred')(h1)
output = tf.keras.layers.Dense(
 1, activation='sigmoid', name='pred')(h2)
model = tf.keras.Model(inputs, output)
model.compile(optimizer='adam',
 loss='binary_crossentropy',
 metrics=['accuracy'])

In BigQuery ML, we could achieve this by changing the model type:

CREATE OR REPLACE MODEL dsongcp.arr_delay_airports_dnn
OPTIONS(input_label_cols=['ontime'],
 model_type='dnn_classifier',
 hidden_units=[64, 8],

The result with a deep neural network is an RMSE of 0.205, which is not a meaning‐
ful difference. But let’s not give up just yet!

Now that we have more data, TensorFlow/Keras in our tool chest, and the ability to
train machine learning models on the larger dataset, why not also improve our
machine learning modeling?

322 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

11 Heng-Tze Cheng et al., “Wide & Deep Learning for Recommender Systems.”

Wide-and-Deep Model in Keras
An influential paper suggests using a hybrid model that the authors call a wide-and-
deep model on structured data.11 In the wide-and-deep model, there are two parts.
One part directly connects the inputs to the outputs; in other words, it is a linear
model. The other part connects the inputs to the outputs via a deep neural network.
The modeler places the sparse columns in the linear part of the model, and the real-
valued columns in the deep part of the model.

Representing Air Traffic Corridors
Recall that we have two Python dictionaries of features: one is a dict of real-valued
columns, and the other is a dict of sparse columns. Among the real-valued columns
are the latitude and longitude of the departure and arrival airports. The precise lati‐
tudes themselves should not have much of an impact on a flight being early or late,
but rather the general location of the airport and the flight path between pairs of cities
do play a part. For example, flights along the West Coast of the United States are
rarely delayed, whereas flights that pass through the high-traffic area between Chi‐
cago and New York tend to experience a lot of delays. This is true even if the flight in
question does not originate in Chicago or New York.

Indeed, the Federal Aviation Administration in the United States manages airplanes
in flight in terms of air traffic corridors or areas (see Figure 9-3). We could make the
machine learning problem easier for the model if there were a way to provide this
human insight directly, instead of expecting it to be learned directly from the raw lati‐
tude and longitude data.

Wide-and-Deep Model in Keras | 323

Figure 9-3. Air traffic in the USA is managed by the US Federal Aviation Administra‐
tion (FAA) in terms of separate traffic corridors, shown here as boxes. Image courtesy
FAA.

Bucketing
Real-valued columns whose precision is overkill (thus, likely to cause overfitting) can
be discretized and made into categorical columns. For example, if we have a column
for the age of the aircraft, we might discretize into just three bins—less than 5 years
old, 5 to 20 years old, and more than 20 years old.

Even though we could explicitly program in the air traffic corridors, let’s use the dis‐
cretization shortcut: we can discretize the latitudes and longitudes (the thick arrows
in Figure 9-4) and cross the buckets—this will result in breaking up the country into
grids and yield the grid point into which a specific latitude and longitude falls.

324 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

Figure 9-4. Bucketizing latitude and longitude essentially separates out the space into
grid boxes.

The following code takes the real-valued latitude and longitude columns and discreti‐
zes them into nbuckets each:

latbuckets = np.linspace(20.0, 50.0, NBUCKETS).tolist() # USA
lonbuckets = np.linspace(-120.0, -70.0, NBUCKETS).tolist() # USA
disc = {}
disc.update({
 'd_{}'.format(key) : tf.feature_column.bucketized_column(real[key],
 latbuckets)
 for key in ['dep_lat', 'arr_lat']
})
disc.update({
 'd_{}'.format(key) : tf.feature_column.bucketized_column(real[key],
 lonbuckets)
 for key in ['dep_lon', 'arr_lon']
})

The dictionary disc at this point contains four discretized columns: d_dep_lat,
d_arr_lat, d_dep_lon, and d_arr_lat.

Feature Crossing
Finally, we apply feature crossing to categorical features that work well in combina‐
tion. As discussed in Chapter 8, we can think of a feature cross as being an AND condi‐
tion. If you have a column for colors and another column for sizes, the feature cross
of colors and sizes will result in sparse columns for color-size combinations such as
red-medium.

We can take the discretized columns corresponding to the lats and lons and cross
them to create two sparse columns: one for the box within which the departure lat-
lon falls, and another for the box within which the arrival lat-lon falls:

Wide-and-Deep Model in Keras | 325

12 If we feature cross the airports as categorical variables, what extra information could there be in the categori‐
cal variable that is the feature cross between the departure box and the arrival box? Answer: feature crossing
the airports gives us the precise airport pair, whereas feature crossing the boxes gives us general neighbor‐
hoods. Thus, the latter helps us treat all airports in Alaska or New York City similarly.

sparse['dep_loc'] = tf.feature_column.crossed_column(
 [disc['d_dep_lat'], disc['d_dep_lon']], NBUCKETS*NBUCKETS)
sparse['arr_loc'] = tf.feature_column.crossed_column(
 [disc['d_arr_lat'], disc['d_arr_lon']], NBUCKETS*NBUCKETS)

We can also create a feature cross of the pair of departure and arrival grid cells, essen‐
tially capturing flights between two boxes. In addition, we can also feature cross the
departure and arrival airport codes (e.g., ORD–JFK for flights that leave Chicago’s
O’Hare airport and arrive at New York’s John F. Kennedy airport):12

sparse['dep_arr'] = tf.feature_column.crossed_column(
 [sparse['dep_loc'], sparse['arr_loc']], NBUCKETS ** 4)
sparse['ori_dest'] = tf.feature_column.crossed_column(
 ['origin', 'dest'], hash_bucket_size=1000)

Even though we want to use the sparse columns directly in the linear part of the
model, we would also like to perform dimensionality reduction on them and use
them in the deep part of the model:

embed = {
 'embed_{}'.format(colname) :
 tf.feature_column.embedding_column(col, dimension=10)
 for colname, col in sparse.items()
}
real.update(embed)

An embedding is a learnable data representation that maps high-
cardinality data (e.g., there are 300 unique airports) to a low-
dimensional space (say, 10 dimensions). Unlike one-hot encoding,
which would treat all airports as independent, embeddings allow us
to capture similarities between airports. For more on the Embed‐
ding Design Pattern, please see (you guessed it) the O’Reilly Media
book Machine Learning Design Patterns.

Wide-and-Deep Classifier
With the sparse and real feature columns thus enhanced beyond the raw inputs, we
can create a wide_and_deep_classifier passing in the linear and deep feature col‐
umns separately:

def wide_and_deep_classifier(inputs,
 linear_feature_columns, dnn_feature_columns, dnn_hidden_units):
 deep = tf.keras.layers.DenseFeatures(

326 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

 dnn_feature_columns, name='deep_inputs')(inputs)
 for layerno, numnodes in enumerate(dnn_hidden_units):
 deep = tf.keras.layers.Dense(numnodes,
 activation='relu', name='dnn_{}'.format(layerno+1))(deep)
 wide = tf.keras.layers.DenseFeatures(
 linear_feature_columns, name='wide_inputs')(inputs)
 both = tf.keras.layers.concatenate([deep, wide], name='both')
 output = tf.keras.layers.Dense(
 1, activation='sigmoid', name='pred')(both)
 model = tf.keras.Model(inputs, output)
 model.compile(optimizer='adam',
 loss='binary_crossentropy',
 metrics=['accuracy'])
 return model

The model function that results is shown in Figure 9-5.

Figure 9-5. The wide-and-deep Keras model.

This wide-and-deep model with feature crosses that match human intuition yielded
an RMSE of 0.196, which is the best yet.

Deploying a Trained TensorFlow Model to Vertex AI
Now that we have trained a TensorFlow model and exported it, how do we deploy the
model so that any client can get predictions from it? We use Vertex AI, the managed
service for training, deploying, monitoring, and orchestrating machine learning
models in Google Cloud Platform.

Deploying a Trained TensorFlow Model to Vertex AI | 327

Concepts
There are a few important concepts here, so refer to Figure 9-6 as we go along. The
code snippets are in the notebook flights_model_tf2.ipynb in the code repository.

Figure 9-6. Steps to deploy a model to Vertex AI.

The basic idea is that clients access an endpoint. Every endpoint is associated with a
URL. The clients send a HTTP POST request with a JSON payload that contains the
input to the prediction method.

The endpoint contains a number of Vertex AI Model objects among which it splits
traffic. Figure 9-6 depicts 80% of traffic going to Model 1, 10% to Model 2, and the
remainder to Model 3.

A Vertex AI Model is an object that references models built in a wide variety of
frameworks (TensorFlow, PyTorch, XGBoost, etc.). There are pre-built container
images for each framework. You can also bring in your containers if you are using an
ML framework that is not directly supported by Vertex AI.

The TensorFlow container image looks for SavedModel files, the format that Keras/
TensorFlow 2.0 models are exported into by default when you call model.save(…) or
tf.saved_models.save() from your training code.

Deploying a model involves uploading the model artifacts to Vertex AI, creating an
endpoint, and deploying the model to the endpoint.

Uploading Model
The first step is to upload the saved model files, specifying the pre-built Vertex con‐
tainer for your ML framework. Here, I’m using the TensorFlow 2.6 container built for
serving using CPUs:

328 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

https://oreil.ly/3zH67
https://oreil.ly/3zH67

CONTAINER=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-6:latest
gcloud ai models upload --region=$REGION \
 --display-name=$MODEL_NAME \
 --container-image-uri=$CONTAINER \
 --artifact-uri=$EXPORT_PATH

What’s the MODEL_NAME?

I recommend that you use a unique display name for every model (Vertex AI does
assign a unique model ID, but it’s an opaque number that is not human readable):

Name ID
flights-20211102-064051 3935868997391613952

An easy way is to append a timestamp to the name that you want to use, so each time
you upload a model you have a new name:

TIMESTAMP=$(date +%Y%m%d-%H%M%S)
MODEL_NAME=flights-${TIMESTAMP}

BigQuery ML Models in Vertex AI
BigQuery supports exporting trained models in TensorFlow SavedModel format.
Here’s how to export the BigQuery ML model we trained in Chapter 8 into a Saved‐
Model:

EXPORT_PATH=gs://${BUCKET}/bqml_model_export/
bq extract -m dsongcp.arr_delay_lm $EXPORT_PATH

Use the EXPORT_PATH as the artifact URI when uploading the model to Vertex AI:

CONTAINER=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-6:latest
gcloud ai models upload --region=$REGION \
 --display-name=$MODEL_NAME \
 --container-image-uri=$CONTAINER \
 --artifact-uri=$EXPORT_PATH

Nearly all BigQuery ML models—AutoML, DNN, KMeans, Matrix Factorization,
PCA, and linear models—can be exported in TensorFlow SavedModel format.

The exception is that boosted tree models are written out as .bst files in XGBoost 0.82
format. Fortunately, Vertex AI also provides pre-built containers for XGBoost. All we
have to do is to change the container that is being used from the TensorFlow one to
the one for XGBoost 0.82:

CONTAINER=us-docker.pkg.dev/vertex-ai/prediction/xgboost-cpu.0-82:latest

The rest of the steps remain the same.

Deploying a Trained TensorFlow Model to Vertex AI | 329

https://oreil.ly/ulXJD

Creating Endpoint
We need a unique name for the endpoint as well, but we will not be creating multiple
endpoints. Just one. This is because the URL at which the model predictions can be
accessed will be based on the endpoint ID. So you want to reuse the endpoint so that
you can update models without breaking existing clients. Therefore, there is no need
for a timestamp. Just verify that the endpoint doesn’t exist before you create it:

ENDPOINT_NAME=flights
if [[$(gcloud ai endpoints list --region=$REGION \
 --format='value(DISPLAY_NAME)' --filter=display_name=${ENDPOINT_NAME})]]; then
 echo "Endpoint $ENDPOINT_NAME already exists"
else
 # create model
 echo "Creating Endpoint $ENDPOINT_NAME for $MODEL_NAME"
 gcloud ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}
fi

Deploying Model to Endpoint
Now that we have a model and an endpoint, we can deploy the model to the
endpoint:

gcloud ai endpoints deploy-model $ENDPOINT_ID \
 --region=$REGION \
 --model=$MODEL_ID \
 --display-name=$MODEL_NAME \
 --machine-type=n1-standard-2 \
 --min-replica-count=1 \
 --max-replica-count=1 \
 --traffic-split=0=100

Note how I am making sure to specify the traffic split and the machine type I need (I
could add GPUs at this point, but I don’t need GPUs to serve predictions for a tabular
data model). Because this is the first model, we send 100% of the traffic to this one
with:

--traffic-split=0=100

If we had an older model, we’d specify the relative split between two models. To send
10% of the traffic to this new model and 90% to an older model, we’d do:

--traffic-split=0=10,OLD_DEPLOYED_MODEL_ID=90

Note that all these commands require the model ID and endpoint ID (not the model
name and endpoint name). To get the ID from the name (assuming you are using
unique names as I recommended):

MODEL_ID=$(gcloud ai models list --region=$REGION \
 --format='value(MODEL_ID)' \
 --filter=display_name=${MODEL_NAME})
ENDPOINT_ID=$(gcloud ai endpoints list --region=$REGION \

330 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

 --format='value(ENDPOINT_ID)' \
 --filter=display_name=${ENDPOINT_NAME})

If necessary, you can get the ID of the most recently deployed model or endpoint by
adding a sort:

ENDPOINT_ID=$(gcloud ai endpoints list --region=$REGION \
 --format='value(ENDPOINT_ID)'\
 --filter=display_name=${ENDPOINT_NAME} \
 --sort-by=creationTimeStamp | tail -1)

Invoking the Deployed Model
Here’s how client programs can invoke the model that we have deployed. Assume that
they have the input data in a JSON file called example_input.json:

{"instances": [
 {"dep_hour": 2, "is_weekday": 1, "dep_delay": 40, "taxi_out": 17,
 "distance": 41, "carrier": "AS", "dep_airport_lat": 58.42527778,
 "dep_airport_lon": -135.7075, "arr_airport_lat": 58.35472222,
 "arr_airport_lon": -134.57472222, "origin": "GST", "dest": "JNU"},
 {"dep_hour": 22, "is_weekday": 0, "dep_delay": -7, "taxi_out": 7,
 "distance": 201, "carrier": "HA", "dep_airport_lat": 21.97611111,
 "dep_airport_lon": -159.33888889, "arr_airport_lat": 20.89861111,
 "arr_airport_lon": -156.43055556, "origin": "LIH", "dest": "OGG"}
]}

They can send an HTTP POST request:

curl -X POST\
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token)\
-H "Content-Type: application/json; charset=utf-8"\
-d @example_input.json\
"https://...${PROJECT}/locations/${REGION}/endpoints/${ENDPOINT_ID}:predict"

Of course, you need to tell them the region, project, and endpoint ID at which the
model is deployed. Many times, it’s easier to hide this URL behind a simpler URL that
redirects to this. Such a level of indirection also helps with throttling and with charg‐
ing for each invocation. On Google Cloud, you can do this using Apigee.

Clients who send the HTTP POST request will get the result back as JSON:

{
 "predictions": [
 [
 0.228779882
],
 [
 0.766132474
]
],
 "deployedModelId": "2339101036930662400",
 "model": "projects/379218021631/locations/us-central1/models/39358689973916",

Deploying a Trained TensorFlow Model to Vertex AI | 331

https://oreil.ly/cCxSB

 "modelDisplayName": "flights-20211102-064051"
}

Of course, it’s a REST API, so you can invoke it from pretty much any language.
There are also client API libraries available.

Vertex AI provides a fully managed, autoscaling, serverless environment for machine
learning models. You get the benefits of paying for any compute resources (such as
CPUs or GPUs) only when you are using them. Because the models are containerized,
dependency management is taken care of. The endpoints take care of traffic splits,
allowing you to do A/B testing in a convenient way.

The benefits go beyond not having to manage infrastructure. Once your model is
deployed to Vertex AI, you get a lot of neat capabilities without any additional code—
explainability, drift detection, monitoring, etc.

At this point, we have written the model in Python in a Jupyter Notebook and
deployed the model using gcloud commands that you can run from a Unix shell.
This sort of hybrid language and environment is hard to automate.

Much better would be if we could do it all from plain Python programs—following a
clean separation of responsibility between model code and operations code will also
make the MLOps teams happy. Let’s look at how to do that next.

Summary
In this chapter, we extended the machine learning approach that we started in Chap‐
ter 7, but using the TensorFlow library instead of Spark MLlib. Realizing that catego‐
rical columns result in an explosion of the dataset features, we used TensorFlow to
carry out GPU-accelerated training. Another advantage that TensorFlow provides is
that its design allows a computer scientist to go as low-level as they need to, and so
many machine learning research innovations are implemented in TensorFlow. As
machine learning practitioners, therefore, using TensorFlow allows us to use innova‐
tive machine learning research soon after it is published rather than wait for a reim‐
plementation in some other framework. Finally, using TensorFlow allows us to deploy
the model rather easily into our data pipelines regardless of where they are run
because TensorFlow is portable across a wide variety of hardware platforms.

We trained a logistic regression model on all of the input values and learned that the
model was unable to effectively use the new features like airport locations.

We discussed that, intuitively, the nodes in a deep neural network help provide deci‐
sion hyperplanes, and that successive layers help to combine individual hyperplanes
into more complex decision surfaces. Using a deep neural network instead of logistic
regression didn’t provide any benefit with our inputs, though. However, bringing in
human insight in the form of additional features that bucketed some of the

332 | Chapter 9: Machine Learning with TensorFlow in Vertex AI

continuous features, creating feature crosses, and using a wide-and-deep model yiel‐
ded a further reduction in the RMSE. We deployed this model and invoked it using
REST APIs to do online prediction.

Suggested Resources
The most important skill in machine learning is being able to formulate the problem
in such a way that ML can be successful at solving it. That is the focus of the course
“Managing Machine Learning Projects with Google Cloud” by Google Cloud Train‐
ing on Coursera.

To learn more about being an ML practitioner, check out these books:

• Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Auré‐
lien Géron (O’Reilly).

• Machine Learning Design Patterns by Lakshmanan, Robinson, and Munn
(O’Reilly).

The Vertex AI samples GitHub repository is a gold mine of examples.

Suggested Resources | 333

https://oreil.ly/q2Dme
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/machine-learning-design/9781098115777/
https://oreil.ly/wMNeD

CHAPTER 10

Getting Ready for MLOps with Vertex AI

In Chapter 9, we developed a TensorFlow model in a Jupyter Notebook. We were able
to train the model, deploy it to an endpoint, and get predictions from it from the
notebook environment. While that worked for us during development, it is not a scal‐
able workflow.

Taking a TensorFlow model that you trained in your Jupyter Notebook and deploying
the SavedModel to Vertex AI doesn’t scale to hundreds of models and large teams.
Retraining is going to be difficult because the ops team will have to set up all of the
ops and monitoring and scheduling on top of something that is really clunky and
totally nonminimal.

In order for a machine learning model to be placed into production, it needs to meet
the following requirements:

• The model should be under version control. Source code control systems such as
git work much better with text files (such as .py files) than with mixtures of text
and binaries (which is what .ipynb files are).

• The entire process—from dataset creation to training to deployment—has to be
driven by code. This is so that it is easy to automatically retrigger a training run
using GitHub Actions or GitLab Continuous Integration whenever new changed
code is checked in.

• The entire process should be invokable from a single entry point, so that the
retraining can be triggered by noncode changes such as the arrival of new data in
a Cloud Storage bucket.

• It should be easy to monitor the performance of models and endpoints and take
measures to fix some subset of issues that arise without having to modify the
model code. For example, if GPUs are getting saturated, it should be easy to add
extra resources for training or serving. It should be possible to continuously

335

evaluate the model, and if the distribution of an input feature changes or if the
evaluation metric falls below a specific threshold, it should be possible to trigger
model retraining.

Together, these criteria go by the name MLOps. Google Cloud, in general, and Vertex
AI, in particular, provide a number of MLOps capabilities. However, in order to take
advantage of these inbuilt capabilities, it is better if we clearly separate out the model
code from the ops code and express everything in Python rather than in notebooks.

Developing and Deploying Using Python
Jupyter Notebooks are great for development, but I strongly recommend against
putting those notebooks directly into production, even though Vertex AI will allow
you to do this.

What I recommend is that you convert your initial prototyping model code into a
Python file and then continue all development in it. Throw away the Jupyter Note‐
book. The Python files will be what’s in your code repository, and will be the main‐
tained codebase from now onwards.

Look at the code in the files model.py and train_on_vertexai.py in the code repository
of this book, and use them to follow along.

Using Local Python Module from JupyterLab
If you throw away the Jupyter Notebook in which you did development, how can you
do future ad-hoc work and demos? What I recommend is that you invoke the extrac‐
ted (and maintained) Python code from a new notebook for future experimentation,
ad-hoc data analytics, or demos. For example, supposing you extract the code to a file
named model.py, you can invoke functions in that file from JupyterLab:

import model
trainds = model.read_dataset(...)

If you find yourself changing model.py as you write code in your new notebook, make
sure to add this magic at the top of your notebook:

%autoreload

This automatically reloads the module whenever you change model.py so that you are
not running older code.

336 | Chapter 10: Getting Ready for MLOps with Vertex AI

https://oreil.ly/bEDD2

1 URIs or Uniform Resource Identifiers are strings that identify information resources on a network. URIs are a
broader category than URLs in that we can also use identifiers such as gs://….

Writing model.py
I created the file model.py by extracting all the Keras model code from the Jupyter
Notebook I wrote in the previous section (flights_model_tf2.ipynb). Much of the note‐
book code has been extracted into a function called train_and_evaluate.py:

def train_and_evaluate(train_data_pattern, eval_data_pattern, test_data_pattern,
 export_dir, output_dir):
 ...
 train_dataset = read_dataset(train_data_pattern, train_batch_size)
 eval_dataset = read_dataset(eval_data_pattern, eval_batch_size,
 tf.estimator.ModeKeys.EVAL, num_eval_examples)

 model = create_model()
 history = model.fit(train_dataset,
 validation_data=eval_dataset,
 epochs=epochs,
 steps_per_epoch=steps_per_epoch,
 callbacks=[cp_callback])
 # export
 logging.info('Exporting to {}'.format(export_dir))
 tf.saved_model.save(model, export_dir)

There are three key things to note:

• The data is read from URIs specified by train_data_pattern,1 eval_data_pat
tern, and test_data_pattern for training, validation, and test datasets,
respectively.

• The model creation code is extracted out to a function called create_model.
• The model is written out to export_dir, and any other intermediate outputs are

written to output_dir.

I get the data patterns and output directories in model.py using environment
variables:

 OUTPUT_MODEL_DIR = os.getenv("AIP_MODEL_DIR")
 TRAIN_DATA_PATTERN = os.getenv("AIP_TRAINING_DATA_URI")
 EVAL_DATA_PATTERN = os.getenv("AIP_VALIDATION_DATA_URI")
 TEST_DATA_PATTERN = os.getenv("AIP_TEST_DATA_URI")

These environment variables form the contract between my code and Vertex AI and
are needed in order for all the automagical things to happen.

I will, however, also want to run this code outside Vertex AI (for example, during
development). In such a case, the environment variable will not be set, and so the

Developing and Deploying Using Python | 337

variables will all be None. I look for that case and set them to values in my develop‐
ment environment:

 if not OUTPUT_MODEL_DIR:
 OUTPUT_MODEL_DIR = os.path.join(OUTPUT_DIR,
 'export/flights_{}'.format(
 time.strftime("%Y%m%d-%H%M%S")))
 if not TRAIN_DATA_PATTERN:
 TRAIN_DATA_PATTERN = 'gs://{}/ch9/data/train*'.format(BUCKET)
 if not EVAL_DATA_PATTERN:
 EVAL_DATA_PATTERN = 'gs://{}/ch9/data/eval*'.format(BUCKET)

These files can be very small because they are only for development. Actual produc‐
tion runs will run inside Vertex AI where the environment variables will be set.

Once I finish extracting the code into model.py, I make sure it works:

 python3 model.py --bucket <bucket-name> --develop

I can also run it on the full dataset by dropping the develop flag (I suggest you visit
the accompanying code to understand the model.py script and its arguments). The
results are the same as my Jupyter Notebook, so I can move on to invoking this from
a Vertex AI pipeline.

Writing the Training Pipeline
The training pipeline (See train_on_vertexai.py) needs to do five things in code:

• Load up a managed dataset in Vertex AI.
• Set up training infrastructure to run model.py.
• Train the model by invoking functions in model.py on the managed dataset.
• Find the endpoint to which to deploy the model.
• Deploy the model to the endpoint.

Let’s look at them one by one.

First, I load up a tabular dataset (options exist for image, text, and other datasets, and
for tabular data in BigQuery):

 data_set = aiplatform.TabularDataset.create(
 display_name='data-{}'.format(ENDPOINT_NAME),
 gcs_source=['gs://{}/ch9/data/all.csv'.format(BUCKET)]
)

Note that I am passing in all of the data. Vertex AI will take care of splitting the data
into train, validate, and test datasets and sending it to the training program. By
default, the split will be random, whereas we want to split based on the daywise split
that we have set up. I’ll get back to this.

338 | Chapter 10: Getting Ready for MLOps with Vertex AI

Second, I create a training job passing in model.py, the training container image, and
the serving container image:

model_display_name = '{}-{}'.format(ENDPOINT_NAME, timestamp)
job = aiplatform.CustomTrainingJob(
 display_name='train-{}'.format(model_display_name),
 script_path="model.py",
 container_uri=train_image,
 requirements=[], # any extra Python packages
 model_serving_container_image_uri=deploy_image
)

Just as we did when we did it with bash scripts, we are assigning a timestamped name
to the model.

The third step is to run the job. This involves running model.py on the managed data‐
set on some hardware:

model = job.run(
 dataset=data_set,
 model_display_name=model_display_name,
 args=['--bucket', BUCKET],
 replica_count=1,
 machine_type='n1-standard-4',
 accelerator_type=aip.AcceleratorType.NVIDIA_TESLA_T4.name,
 accelerator_count=1
)

I get back a model that I wish to deploy to a preexisting endpoint. To find an existing
endpoint or create one, I then do:

 endpoints = aiplatform.Endpoint.list(
 filter='display_name="{}"'.format(ENDPOINT_NAME),
 order_by='create_time desc',
 project=PROJECT, location=REGION,
)
 if len(endpoints) > 0:
 endpoint = endpoints[0] # most recently created
 else:
 endpoint = aiplatform.Endpoint.create(
 display_name=ENDPOINT_NAME, project=PROJECT, location=REGION
)

Finally, I deploy the model to the endpoint using:

model.deploy(
 endpoint=endpoint,
 traffic_split={"0": 100},
 machine_type='n1-standard-2',
 min_replica_count=1,
 max_replica_count=1
)

Developing and Deploying Using Python | 339

That’s it! Now, we have a Python program that we can run anytime we want to retrain
and/or deploy the trained model. Of course, the MLOps person will typically not
replace the model wholesale, but send only a small fraction of the traffic to the model.
They’ll probably also set up monitoring and continuous evaluation on the endpoint
in Vertex AI. But we’ve made it easy for them to do that.

We can try out the training pipeline:

python3 train_on_vertexai.py --project <project> \
 --bucket <bucket-name> –develop

This time, though, the training happens in the managed service. The GCP web con‐
sole shows me GPU utilization and the job’s logs show up in Cloud Logging.

Predefined Split
By default, Vertex AI does a fractional split of the data (80% to training, 10% each for
validation and testing). Here, however, we want to explicitly assign each row to a data
split. To do this, we need to add a column to our dataset that controls the split. We
can do this when creating the data:

CREATE OR REPLACE TABLE dsongcp.flights_all_data AS
SELECT
 IF(arr_delay < 15, 1.0, 0.0) AS ontime,
 dep_delay,
 taxi_out,
 ...
 IF (is_train_day = 'True',
 IF(ABS(MOD(FARM_FINGERPRINT(CAST(f.FL_DATE AS STRING)), 100)) < 60,
 'TRAIN', 'VALIDATE'),
 'TEST') AS data_split
FROM dsongcp.flights_tzcorr f
...

Basically, there is a column that I’m calling data_split that takes the values TRAIN,
VALIDATE, or TEST. So, every row in the managed dataset is assigned to one of these
three splits.

Then, when I’m training the job, I specify what the predefined splitting column is:

model = job.run(
 dataset=data_set,
 predefined_split_column_name='data_split',
 model_display_name=model_display_name,

Vertex AI will take care of the rest, including assigning all the necessary metadata to
the models being trained.

340 | Chapter 10: Getting Ready for MLOps with Vertex AI

AutoML
What changes should I make in the preceding pipeline if I want to use AutoML
instead of my custom training job? Well, I don’t need my own model.py of course. So,
instead of the CustomTrainingJob, I’ll use AutoML.

Setting and running the training job (Steps 3 and 4 in “Writing the Training Pipeline”
on page 338) now become:

def train_automl_model(data_set, timestamp):
 # train
 model_display_name = '{}-{}'.format(ENDPOINT_NAME, timestamp)
 job = aiplatform.AutoMLTabularTrainingJob(
 display_name='train-{}'.format(model_display_name),
 optimization_prediction_type='classification'
)
 model = job.run(
 dataset=data_set,
 target_column='ontime',
 model_display_name=model_display_name,
 budget_milli_node_hours=(300 if develop_mode else 2000),
 disable_early_stopping=False
)
 return job, model

That’s the only change! The rest of the pipeline stays the same. Vertex AI provides a
unified platform for ML development regardless of the ML technique you use. In fact,
we can similarly change the ML framework to PyTorch or to sklearn or XGBoost and,
as far as the MLOps people are concerned, there are only minimal changes.

In my train_on_vertexai.py, I switch between custom Keras code and AutoML with a
command-line parameter.

How well does AutoML do? Does it beat our custom Keras model with the latitude
and longitude feature crosses? Unfortunately (see Figure 10-1), AutoML reports pre‐
cision, recall, area under the curve, and several other metrics. However, it does not
report RMSE (as of this writing in January 2022).

Looking at the feature importance graph that is part of the GCP console for AutoML
models (see Figure 10-2), it appears that AutoML didn’t take much advantage of the
latitude and longitude of the airports.

Developing and Deploying Using Python | 341

Figure 10-1. Performance metrics from AutoML do not include RMSE.

In order to compute custom evaluation metrics, we can ask AutoML to dump the
evaluation data and predictions to a table in BigQuery. In order to do so, I added the
following to the AutoML job:

model = job.run(
 dataset=data_set,
 predefined_split_column_name='data_split',
 target_column='ontime',
 model_display_name=model_display_name,
 budget_milli_node_hours=(300 if develop_mode else 2000),
 disable_early_stopping=False,
 export_evaluated_data_items=True,
 export_evaluated_data_items_bigquery_destination_uri=(
 '{}:dsongcp.ch9_automl_evaluated'.format(PROJECT)),
 export_evaluated_data_items_override_destination=True
)

Now, when I rerun the AutoML training job, a table is created in BigQuery and I can
compute the RMSE in SQL:

SELECT
 SQRT(SUM(
 (CAST(ontime AS FLOAT64) - predicted_ontime.scores[OFFSET(0)])*
 (CAST(ontime AS FLOAT64) - predicted_ontime.scores[OFFSET(0)])
)/COUNT(*))
FROM dsongcp.ch9_automl_evaluated

342 | Chapter 10: Getting Ready for MLOps with Vertex AI

The result? AutoML Tables on the dataset achieved an RMSE of 0.199. So, our custom
model with the feature crosses is better than AutoML (0.196), but AutoML came
really close.

Figure 10-2. The GCP web console for AutoML provides feature importance.

Hyperparameter Tuning
Our custom model is better than AutoML, but could it be even better? There are a
number of hyperparameters—learning rate, batch size, number of layers/nodes in the
neural network, number of buckets, number of embedding dimensions, etc. that I
essentially just guessed.

For example, the number of layers and the number of hidden nodes was essentially
arbitrary. As discussed earlier, more layers help the model learn more complex input
spaces, but it is difficult to have an intuition about how difficult this particular prob‐
lem (predicting flight delays) is. However, the choice of model architecture does

Hyperparameter Tuning | 343

matter—choosing too few layers will result in a suboptimal classifier, whereas choos‐
ing too many layers might result in overfitting. We need to select an appropriate
number of layers and nodes.

The optimizer uses gradient descent, but computes the gradients on small batches.
We used a batch size of 64, but that choice was arbitrary. The larger the batch size, the
quicker the training run will complete because the network overhead scales with the
number of batches—with larger batches, we have fewer batches to complete an epoch,
and so the training will complete faster. However, if the batch size is too large, the
sensitivity of the optimizer to specific data points reduces and hurts the ability of the
optimizer to learn the nuances of the problem. Even in terms of efficiency, too large a
batch will cause matrix multiplications to spill over from more efficient memory to
less efficient memory (such as from a GPU to a CPU or thrashing from RAM to
HDD). Thus, the choice of batch size matters.

There are other arbitrary choices that are specific to our model. For example, we dis‐
cretized the latitude and longitude into five buckets each. What should this number
of buckets actually be? Too low a number, and we will lose the discrimination ability;
too high a number, and we will begin to overfit.

As a final step in improving the model, we’ll carry out an experiment with different
choices for these three parameters: number of hidden units, batch size, and number
of buckets. Even though we could laboriously carry out these experiments one-by-
one, we will use a capability of Vertex AI called Vizier that allows for a nonlinear
hyperparameter tuning approach. We’ll specify ranges for these three parameters,
specify a maximum number of trials we want to try out, and have Vizier carry out a
search in hyperparameter space for the best set of parameters.

To add this capability to our Python code, this is what I have to do:

• Parameterize the model in model.py.
• Implement a shorter training run.
• Write out metrics during training.
• Implement a hyperparameter tuning pipeline.
• Run the best trial to completion.

Recall that the model training file exists as model.py in the code repository of this
book and the pipeline orchestrator is train_on_vertexai.py. Use the code in the two
files to follow along.

Parameterize Model
The first step is to make the hyperparameters as command-line parameters to your
model. For example, in model.py, we might do:

344 | Chapter 10: Getting Ready for MLOps with Vertex AI

parser.add_argument(
 '--nembeds',
 help='Embedding dimension for categorical variables',
 type=int,
 default=3
)

Note that the initial guess for the variable is the default value. This allows your train‐
ing script to continue working as it did before. Then, you set the variable from the
command-line parameters for use by the training script:

args = parser.parse_args()
...
NEMBEDS = args.nembeds

It’s a good idea to do this for all the hyperparameters we might ever want to tune. A
good practice is to never have any hardcoded values in model.py—everything there
needs to be an input parameter.

Shorten Training Run
Our training run so far has involved training on the full dataset and then evaluating
on the full test dataset. Doing a complete training run like that for hyperparameter
tuning is expensive, wasteful, and wrong. Why?

Expensive
The point of hyperparameter tuning is to obtain the best set of parameters, not to
obtain the best possible model. Once we find the best set of parameters, we can
then train a model with those parameters to completion. Therefore, there is no
need to carry out a trial to completion. We just need to train it until you know
which trial is likely to end up better (see Figure 10-3).

Figure 10-3. Doing a complete training run for hyperparameter tuning is expensive,
wasteful, and wrong.

Hyperparameter Tuning | 345

Wasteful
Under the assumption that your training curves won’t cross each other, a better
set of parameters will be better throughout the training process, and you can stop
the training well before it starts to converge. Use your training budget to do more
trials, not to run those trials longer.

Wrong
You don’t want to evaluate the hyperparameter tuning on the test dataset. You
want to compare performance on the validation dataset. Just make sure that the
validation dataset is large enough for you to do this comparison between trial
models meaningfully.

The way I do these modifications is to add two options to my model.py: one to train
for a shorter time and another to skip the full evaluation:

NUM_EXAMPLES = args['num_examples']
SKIP_FULL_EVAL = args['skip_full_eval']
...
steps_per_epoch = NUM_EXAMPLES // train_batch_size
epochs = NUM_EPOCHS
eval_dataset = read_dataset(eval_data_pattern, eval_batch_size,
 tf.estimator.ModeKeys.EVAL, num_eval_examples)
model.fit(train_dataset,
 validation_data=eval_dataset,
 epochs=NUM_EPOCHS,
 steps_per_epoch=steps_per_epoch,
 callbacks=[cp_callback, HpCallback()])
...
if not SKIP_FULL_EVAL:
 test_dataset = read_dataset(test_data_pattern, eval_batch_size,
 tf.estimator.ModeKeys.TEST, None)
 final_metrics = model.evaluate(test_dataset)
 ...
else:
 logging.info("Skipping evaluation on full test dataset")

What’s the deal with steps_per_epoch and NUM_EXAMPLES? Note the x-axis in
Figure 10-3. It’s not epochs—it’s the number of examples. While it’s pretty wasteful to
train on the full dataset, it can be helpful to get the same number of intermediate met‐
rics that you would get with the full amount of training (I’ll explain why in the next
step). Because you will also be hyperparameter tuning the batch size, the best way to
do this is to use Virtual Epochs (see the Checkpoints pattern in Machine Learning
Design Patterns by Valliappa Lakshmanan, Sara Robinson, and Michael Munn
[O’Reilly] for details). Steps-per-epoch is how we get virtual epochs on large datasets.

346 | Chapter 10: Getting Ready for MLOps with Vertex AI

https://www.oreilly.com/library/view/machine-learning-design/9781098115777/
https://www.oreilly.com/library/view/machine-learning-design/9781098115777/

Metrics During Training
The next modification is to write out metrics during the training process. We don’t
want to just wait until the end before writing out the entire history. If we do this, then
Vertex AI will also help us save costs by cutting short unproductive trials.

In Keras, to write out metrics during training we can define and use a callback:

METRIC = 'val_rmse'
hpt = hypertune.HyperTune()

class HpCallback(tf.keras.callbacks.Callback):
 def on_epoch_end(self, epoch, logs=None):
 if logs and METRIC in logs:
 logging.info("Epoch {}: {} = {}".format(
 epoch, METRIC, logs[METRIC]))
 hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag=METRIC, metric_value=logs[METRIC], global_step=epoch)

...
history = model.fit(train_dataset,
 ...
 callbacks=[cp_callback, HpCallback()])

I’m using the cloudml-hypertune package to simplify the writing of metrics in a
form that the TensorFlow ecosystem (TensorBoard, Vizier, etc.) can understand.

Hyperparameter Tuning Pipeline
Now that we have modified model.py to make it easy to do hyperparameter tuning,
we could build an MLOps pipeline to tune our model anytime we notice it drifting.

But now, back to the hyperparameter tuning: there are two steps in the orchestration
code (in train_on_vertexai.py).

First, we create a Vertex AI CustomJob to call the model.py with the right parameters:

 tf_version = '2-' + tf.__version__[2:3]
 train_image = (
 "us-docker.pkg.dev/vertex-ai/training/tf-gpu.{}:latest"
 .format(tf_version))
 model_display_name = '{}-{}'.format(ENDPOINT_NAME, timestamp)
 trial_job = aiplatform.CustomJob.from_local_script(
 display_name='train-{}'.format(model_display_name),
 script_path="model.py",
 container_uri=train_image,
 args=[
 '--bucket', BUCKET,
 '--skip_full_eval', # no need to evaluate on test data
 '--num_epochs', '10',
 '--num_examples', '500000' # 1/10 actual size
],

Hyperparameter Tuning | 347

2 Geoffrey Hinton, “A Practical Guide to Training Restricted Boltzmann Machines,” University of Toronto
Department of Computer Science, August 2, 2010. https://oreil.ly/hkiUn.

 requirements=['cloudml-hypertune'],
 replica_count=1,
 machine_type='n1-standard-4',
 accelerator_type=aip.AcceleratorType.NVIDIA_TESLA_T4.name,
 accelerator_count=1,
)

Next, we create and run a hyperparameter tuning job that will use the custom job as
an individual trial:

 hparam_job = aiplatform.HyperparameterTuningJob(
 display_name='hparam-{}'.format(model_display_name),
 custom_job=trial_job,
 metric_spec={'val_rmse': 'minimize'},
 parameter_spec={
 "train_batch_size": hpt.IntegerParameterSpec(
 min=16, max=256, scale='log'),
 "nbuckets": hpt.IntegerParameterSpec(
 min=5, max=10, scale='linear'),
 "dnn_hidden_units": hpt.CategoricalParameterSpec(
 values=["64,16", "64,16,4", "64,64,64,8", "256,64,16"])
 },
 max_trial_count=4 if develop_mode else 10,
 parallel_trial_count=2,
 search_algorithm=None, # Bayesian
)

Note that I am specifying the metric here to match the METRIC in my model.py and
that I’m specifying ranges for the parameters.

The parameter train_batch_size is an integer; we ask for it to look for values in the
interval [16, 256]—the logarithmic scale instructs the tuner that we would like to try
more values at the smaller end of the range rather than the larger end of the range.
This is because long-standing experience suggests that smaller batch sizes yield more
accurate models.2 And also because I expect the effect of going from 16 to 32 to be
bigger than going from 216 to 232, for example.

The nbuckets parameter is also an integer, but linearly distributed between 5 and 10.
The FAA seems to have about 36 grid boxes into which it divides up the airspace (see
Figure 9-3). This argues for nbuckets = 6 (since 6 × 6 = 36), but the corridors are
significantly narrower in the Northeast part of the United States, and so perhaps we
need more fine-grained grid cells. By specifying nbuckets in the range 5 to 10, we are
asking the tuner to explore having between 25 and 100 grid cells into which to divide
up the United States.

348 | Chapter 10: Getting Ready for MLOps with Vertex AI

As for dnn_hidden_units, we explicitly specify a few candidates—a two-layer net‐
work, a three-layer network, and a four-layer network, and a network with many
more nodes. If it turns out that any optimal parameter is near the extrema, we will
repeat the hyperparameter tuning with a different range. For example, if it turns out
that nbuckets = 10 is best, we should repeat the tuning, but trying out nbuckets in
the range 10 to 15 the next time. Similarly, if a four-layer network turns out to be best,
we will need to also try a five-layer and a six-layer network.

By default, the hyperparameter tuning service in Vertex AI (called Vizier) will use
Bayesian optimization, but we can change the algorithm to GridSearch if we want.

Best Trial to Completion
Once we launch the hyperparameter tuning job, we can look at the Vertex AI section
of the GCP console to see the parameters come in (see Figure 10-4).

Figure 10-4. Results of hyperparameter tuning in the GCP Vertex AI web console.

Once we determine the best set of parameters, we can take the best set of parameters
and then run the training job to completion. That will give us the model to deploy.

We can automate this as well, of course:

 best = sorted(hparam_job.trials,
 key=lambda x: x.final_measurement.metrics[0].value)[0]
 logging.info('Best trial: {}'.format(best))
 best_params = []
 for param in best.parameters:
 best_params.append('--{}'.format(param.parameter_id))
 best_params.append(param.value)
 # run the best trial to completion

Hyperparameter Tuning | 349

3 See the Jupyter Notebook flights_model_tf2.ipynb.

 model = train_custom_model(data_set, timestamp, develop_mode,
 extra_args=best_params)

On doing this, I got a model whose RMSE was 0.195. The improvement (0.196 to
0.195) is relatively minimal. It appears that our initial guesses were not that bad.

Explaining the Model
Why does the model believe that a certain flight will be late with a probability of 0.83?
An active area of research in machine learning is to provide the reasoning that under‐
lies a specific model production in a form that humans can understand.

One of the advantages of deploying a model into Vertex AI is that explainability is
easy to add. Several techniques of explainability are supported. The one I like for tab‐
ular data is Shapley, which apportions the credit for the prediction among the input
features.

To add explainability capabilities, we will have to deploy the model with a configura‐
tion file that specifies the input and output tensors. Sending the normal prediction
request to the endpoint to which the model is deployed will return a response that
contains feature attributions.

Configuring Explanations Metadata
When we create a model in Vertex AI, we can specify that it should be able to explain
its predictions. Broadly speaking, explaining a prediction is more expensive than sim‐
ply making the prediction because the model has to be invoked with small variants of
the original request in order to estimate the affect of different parameters.

Because the model needs to be invoked with variants, we need to configure the model
with information from the serving input signature. We can get the serving signature
of a TensorFlow/Keras model by using the command-line tool saved_model_cli:

saved_model_cli show --tag_set serve \
 --signature_def serving_default --dir $model_dir

Doing this on our flights model yields the following signature:3

 inputs['arr_airport_lat'] tensor_info:
 dtype: DT_FLOAT
 shape: (-1)
 name: serving_default_arr_airport_lat:0
 inputs['arr_airport_lon'] tensor_info:
 dtype: DT_FLOAT
 shape: (-1)
 name: serving_default_arr_airport_lon:0

350 | Chapter 10: Getting Ready for MLOps with Vertex AI

https://oreil.ly/GWzQQ

 ...
The given SavedModel SignatureDef contains the following output(s):
 outputs['pred'] tensor_info:
 dtype: DT_FLOAT
 shape: (-1, 1)
 name: StatefulPartitionedCall_2:0
Method name is: tensorflow/serving/predict

Based on the preceding, we can write a file that I’ll call explanations-metadata.json:

{
 "inputs": {
 ...
 "arr_airport_lat": {
 "inputTensorName": "arr_airport_lat"
 },
 "arr_airport_lon": {
 "inputTensorName": "arr_airport_lon"
 },
 ...
 },
 "outputs": {
 "pred": {
 "outputTensorName": "pred"
 }
 }
}

Rather than hand-crafting the file, I created it using a short Python program and sup‐
plying the names of the columns:

cols = ('dep_delay,taxi_out,distance,dep_hour,is_weekday,' +
 'dep_airport_lat,dep_airport_lon,' +
 'arr_airport_lat,arr_airport_lon,' +
 'carrier,origin,dest')
inputs = {x: {"inputTensorName": "{}".format(x)}
 for x in cols.split(',')}
expl = {
 "inputs": inputs,
 "outputs": {
 "pred": {
 "outputTensorName": "pred"
 }
 }
}
print(expl)
with open('explanation-metadata.json', 'w') as ofp:
 json.dump(expl, ofp, indent=2)

Now that we have the configuration file that specifies what inputs the model needs
when it is invoked on variants of the original query, we can create and deploy the
model.

Explaining the Model | 351

Creating and Deploying Model
When creating the model, we specify three more options: the explanation method,
how many variants of the original query to perform, and the location of the metadata
configuration file we created in the previous section:

gcloud ai models upload ... \
 --explanation-method=sampled-shapley \
 --explanation-path-count=10 \
 --explanation-metadata-file=explanation-metadata.json

Of course, we could do this in Python as well. The Python SDK to create the model
supports the first two parameters. Instead of passing in a metadata file, we’d pass in
the metadata object itself.

Deploying the model is identical to before:

gcloud ai endpoints deploy-model $ENDPOINT_ID \
 --region=$REGION \
 --model=$MODEL_ID \
 --display-name=$MODEL_NAME \
 --machine-type=n1-standard-2 \
 --min-replica-count=1 \
 --max-replica-count=1 \
 --traffic-split=0=100

Note that we did not have to make any changes to the model code itself in order to
add explainability to it.

Obtaining Explanations
Once the explainability-enhanced model has been deployed, any client can request an
explanation. The format of the JSON request doesn’t change. Instead of sending the
request to the predict method, the request has to be sent to the explain method:

PROJECT=$(gcloud config get-value project)
ENDPOINT_NAME=flights_xai
ENDPOINT_ID=$(gcloud ai endpoints list --region=$REGION \
 --format='value(ENDPOINT_ID)' --filter=display_name=${ENDPOINT_NAME})

curl -X POST\
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token)\
-H "Content-Type: application/json; charset=utf-8"\
-d @example_input.json\
"https://...${PROJECT}/locations/${REGION}/endpoints/${ENDPOINT_ID}:explain"

When I did it on a flight from GST to JNU, I got the following result:

{
 "explanations": [
 {

352 | Chapter 10: Getting Ready for MLOps with Vertex AI

https://oreil.ly/Ki02v

 "attributions": [
 {
 "baselineOutputValue": 0.48559775948524475,
 "instanceOutputValue": 0.98635220527648926,
 "featureAttributions": {
 "dep_hour": -0.0019751578569412228,
 "distance": 0.02608233392238617,
 "origin": 0.00673377513885498,
 "arr_airport_lat": 0.065238907933235168,
 "dest": 0.0031582355499267579,
 "taxi_out": 0.017888876795768741,
 "is_weekday": -0.0054439753293991089,
 "dep_airport_lon": 0.15576429069042211,
 "carrier": 0.0063359200954437259,
 "arr_airport_lon": 0.32970959544181822,
 "dep_airport_lat": -0.070850974321365362,
 "dep_delay": -0.03188738226890564
 },
 "outputIndex": [
 0
],
 "approximationError": 0.008536300316499771,
 "outputName": "pred"
 }
]
 }
],
 "deployedModelId": "48598413947699200",
 "predictions": [
 [
 0.986352205
]
]
}

The two most important features are the longitudes of the arrival and departure air‐
port, respectively. This is particularly surprising when we consider (see Figure 10-2)
that the AutoML model doesn’t consider the airport locations particularly important.
This highlights the important difference between global importance (what we saw in
Figure 10-2) and local explanation (explaining an individual prediction). There are
features that are unimportant in the aggregate but make a lot of difference on specific
instances. Because this flight has a departure delay almost identical to the baseline,
the model might be making more nuanced predictions based on the remaining
features.

What makes the longitude of the airport important for a flight from GST to JNU?
Well, GST is Gustavus airport in Alaska and JNU is the airport in Juneau, Alaska. In
other words, this is a flight within Alaska. Alaska is a large state, and the distance
between the airports (41 miles) is rather unusual. Remember that one of the reasons

Explaining the Model | 353

for gridding the airport locations was to learn nuances like flights within a state. It
appears that the model has learned it!

Summary
In this chapter, we learned how to automate the entire process by creating a Vertex
training pipeline. We created a single entry point for the end-to-end training run. At
this point, it is easy to make this entry point be the thing that is triggered whenever
new code is checked in, when new data is received, or when changes in feature distri‐
bution or model evaluation are detected.

After we had a viable machine learning model and features, we carried out hyper‐
parameter tuning to find optimal values of batch size, learning rate, number of buck‐
ets, and neural network architecture. We discovered that our initial, default choices
were themselves quite good, but that increasing the number of layers provided a
minute improvement.

For speed of experimentation, we had trained and hyperparameter-tuned the model
on a sample of the full dataset. So, next, we trained the model with the chosen fea‐
tures and hyperparameters on the full dataset.

Finally, we also added explainability to the model and were able to get the contribu‐
tion of each feature on the predicted outcome.

Remember, however, we briefly explored time-windowed aggregated features (like the
average taxi-out time at an airport). However, it was unclear how we could compute it
on behalf of online prediction clients. Instead, we used features such as the day of the
week and hour of the day extracted from the departure time. In the next chapter, we
will look at how to do machine learning, where the input features (like moving aver‐
ages) have to be computed in real-time.

354 | Chapter 10: Getting Ready for MLOps with Vertex AI

Suggested Resources
In this chapter, we discussed how to get ready for MLOps. Implementing MLOps
requires knowledge of how to do continuous build and continuous integration with
GitHub or GitLab:

• To learn more about continuous build, see this tutorial on GitOps-style continu‐
ous delivery with Cloud Build.

• To learn more about continuous integration for data processing workflows, see
this article on setting up a CI/CD pipeline.

• Watch the video “MLOps Best Practices on Google Cloud (Cloud Next ’19)” on
YouTube.

The Google Cloud whitepaper on MLOps, “Practitioners Guide to MLOps” by Khalid
Salama et al., is very comprehensive.

Suggested Resources | 355

https://oreil.ly/ASFrn
https://oreil.ly/ASFrn
https://oreil.ly/vIEhm
https://oreil.ly/cLlbs
https://oreil.ly/gsjSA

CHAPTER 11

Time-Windowed Features for Real-Time
Machine Learning

In Chapter 8, we briefly explored incorporating time-windowed features, such as the
moving average of taxi-out delay at the originating airport, as an input to the model.
We found that the time-windowed features reduced the model error. However, it was
unclear how clients (who know only about the flight they are on) would be able to
provide the correct value. Because of that, we decided to drop the time-windowed
features. In this chapter, we will address that shortcoming by implementing a real-
time, streaming machine learning pipeline that uses Cloud Dataflow and Vertex AI.

All of the code snippets in this chapter are available in the folder
11_realtime of the GitHub repository. See the README.md file in
that directory for instructions on how to do the steps described in
this chapter.

Time Averages
What time-windowed aggregate features did we want to use, but couldn’t? Flight
arrival times are scheduled based on the average taxi-out time at the departure air‐
port at that specific hour. The machine learning model will learn this average quite
easily because we are showing the entire dataset and telling the ML model the name
of the origin airport. For example, at peak hours in New York’s JFK airport, taxi-out
times on the order of an hour are quite common, so airlines take that into account
when publishing their flight schedules. It is only when the taxi-out time exceeds the
average that we ought to be worried. Such a global average is typically not a feature
that we need to incorporate into the model (although it is not harmful if we do).

357

https://github.com/GoogleCloudPlatform/data-science-on-gcp

On the other hand, there are time averages that need to be computed over recent
flights. For example, we have an intuition that the average departure and taxi-out
delays being experienced at the origin airport will have an impact on whether we are
likely to arrive on time. This is even if the flight we are on happens to leave on time.
Lots of flights from an airport experiencing delays are typically associated with run‐
way closures due to weather or other reasons. This leads to a congested airspace, and
so subsequent flights will also be affected both because the weather delays might per‐
sist and because the number of runways might be limited. Unlike the global average
taxi-out time, a recent average of departure delay is something that needs to be com‐
puted in real time. On historical data, we’d compute it over the hour previous to the
departure time of the aircraft. In real time, this computation would be carried out
over streaming data.

Apache Beam and Cloud Dataflow
We will solve the issue of augmenting the dataset with time-windowed aggregate fea‐
tures using Apache Beam.

Why Apache Beam?
Apache Beam allows us to use the same code for both batch and stream processing—
for example, to compute aggregate features on historical data, and then to compute
the same aggregate features in real time at prediction time (see Figure 11-1).

Figure 11-1. The same transform code is used to transform BigQuery rows in the histori‐
cal data and Pub/Sub events in real time into the features used by the ML model.

358 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

1 Of course, Cloud SQL provides for millisecond-latency transactions while BigQuery is an analytics data ware‐
house that scales to petabytes. The reasons you’d use the two products are different. I’m just comparing
explicit control of the lifecycle of machines in one versus the other.

Why Dataflow?
Cloud Dataflow is a fully managed service for executing data processing pipelines
written using Apache Beam. What does fully managed mean? Think BigQuery
instead of Cloud SQL. Both allow for SQL queries on the data, but where Cloud SQL
was simply a hosted version of MySQL on a cloud virtual machine, BigQuery was
totally serverless. This allowed for dramatically larger-scale, instantly available SQL
processing with BigQuery.1 Cloud Dataflow provides a similar, serverless, autoscaling
service for programmatic data pipelines.

With Cloud Dataflow, unlike with Cloud Dataproc, we don’t need to spin up a cluster
in order to carry out data processing. Instead, we simply submit the code and it will
get executed and autoscaled to as many machines as needed to accomplish the task
effectively. We will get charged for the amount of computational resources that our
job involves. Why am I using Cloud Dataflow rather than serverless Spark? Serverless
Spark now gives us many of the advantages that only Dataflow used to provide. So,
for the majority of use cases, use either serverless Spark or Beam-on-Dataflow
depending on which API (Spark or Beam) you are more familiar with. However, in
this chapter, we are doing real-time computations and because Apache Beam was
designed from the ground up with streaming concepts (Beam stands for Batch and
Stream), Beam is the better choice.

When the model is invoked, the client will know the departure delay of the aircraft
that they are on, but how will they know the average departure delay at their airport
over the past hour? So, the serving system needs to be routinely computing the aver‐
age departure and taxi-out delays at all airports. That average needs to be added to
the data about the individual flight before the model is asked to make predictions.
This is accomplished as shown in Figure 11-1 by invoking the same Apache Beam
transform code in both the historical and real-time Dataflow pipelines. The averages
can then be used as features in the model.

Starting points
See Chapter 4 for a gentle introduction to Apache Beam. In Chapter 4, I used Beam
Python to move data from Pub/Sub to Cloud Storage (transform/df07.py) and com‐
pute real-time averages (realtime/avg03.py) that were used to drive a dashboard.
Those two files are what I’ll use as a starting point for developing the Beam pipeline.
In that chapter, I skimmed through the streaming code and focused more on visuali‐
zation concepts. In this chapter, I will remedy that by going through the mechanics of
developing a streaming pipeline in more detail.

Time Averages | 359

Similarly, see Chapter 9 for a gentle introduction to TensorFlow and Vertex AI. In
Chapter 9, I developed a wide-and-deep model in Vertex AI code in a Workbench
notebook and then exported the code into standalone Python files (see model.py and
train_on_vertexai.py in Chapter 9 of the code repository) for operationalization. In
this chapter, we’ll continue our ML modeling code starting from those two files.

Although I have been recommending that you edit the Python files and do develop‐
ment in Cloud Shell, you might prefer to develop in a Python IDE on your local lap‐
top instead. I use PyCharm on Mac as my Python IDE. To follow along with me:

• Install PyCharm using its installer.
• In PyCharm, create a new virtual environment, selecting Python3 as your

interpreter.
• In the virtual environment setup.py, install the following packages:

— tensorflow

— apache-beam[gcp]

— farmhash

— google-cloud-aiplatform

— cloudml-hypertune

Now you will be able to develop and run the Beam and TensorFlow programs from
your laptop.

Reading and Writing
The Beam pipeline code in transform/df07.py in Chapter 4 gives us the boilerplate for
a Beam pipeline that will run in Dataflow (see create_traindata.py):

argv = [
 '--project={0}'.format(project),
 '--job_name=ch11traindata',
 '--save_main_session',
 '--staging_location=gs://{0}/flights/staging/'.format(bucket),
 '--temp_location=gs://{0}/flights/temp/'.format(bucket),
 '--setup_file=./setup.py',
 '--autoscaling_algorithm=THROUGHPUT_BASED',
 '--max_num_workers=20',
 '--region={}'.format(region),
 '--runner=DataflowRunner'
]

with beam.Pipeline(argv=argv) as pipeline:
 ...

360 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

https://oreil.ly/4d1VR
https://oreil.ly/rvCd4

Reading from BigQuery

This pipeline will need to read events from the BigQuery table flights_tzcorr that
we wrote out in Chapter 4 and write features to a training CSV file in Cloud Storage:

input_table = 'dsongcp.flights_tzcorr'
flights_output = 'gs://{}/ch11/data/'.format(bucket)
events = (
 pipeline
 | 'read_input' >> beam.io.ReadFromBigQuery(table=input_table)
)

(events
 | 'to_string' >> beam.Map(
 lambda f: ','.join([str(x) for x in f.values()]))
 | 'to_gcs' >> beam.io.textio.WriteToText(
 os.path.join(flights_output, 'all'),
 file_name_suffix='.csv')
)

This is good, but running things on Dataflow and waiting minutes for the workers to
spin up and the pipeline to start is no way to develop. I need a smaller local file so that
I can develop the transformation code piecemeal. To run locally, I’ll need to use
DirectRunner instead of DataflowRunner:

 if input == 'local':
 argv = [
 '--runner=DirectRunner'
]

Local JSON input
In order to have an input file in the right format, let’s sample the BigQuery table to a
local file:

bq query --nouse_legacy_sql --format=json \
 "SELECT * FROM dsongcp.flights_tzcorr WHERE DEP_TIME BETWEEN
 '2015-03-10T10:00:00' AND '2015-03-10T14:00:00' " \
 | sed 's/\[//g' | sed 's/\]//g' | sed s'/\},/\}\n/g' \
 > alldata_sample.json

Note that I make sure to extract the data as JSON and remove the extra array brackets
because I want a new-line delimited JSON file. This is the file format that we will get
from Pub/Sub in the real-time code—we will get back a JSON string corresponding
to a single message. Also, rather conveniently, a BigQuery row shows up as a Python
dict, which is almost (but not quite) the same format as the JSON string correspond‐
ing to what is now in each line of the input file.

Then, we can change the code to read from the sampled file and write to a local file:

Time Averages | 361

...

 if input == 'local':
 input_file = './alldata_sample.json'
 flights_output = '/tmp/'
 events = (
 pipeline
 | 'read_input' >> beam.io.ReadFromText(input_file)
 | 'parse_input' >> beam.Map(lambda line:
 json.loads(line))
)

At this point, events is a PCollection of dictionaries, the same as we would have
gotten if we’d read it from BigQuery.

Run this code to make sure it works and the events in the input file are being written
to a CSV file. Now that reading and writing are done, we can turn our attention to the
transformations that are needed.

Filtering
Most data pipelines process a data stream, selecting the data of interest and trans‐
forming it in some way. Choosing which data to continue processing is called
filtering.

Recall that throughout Chapters 7 to 9, we discarded canceled or diverted flights
because they are not associated with an arrival delay. When creating the training data‐
set in Beam, we have to filter the set of events to contain only those flights that corre‐
spond to flights operating normally:

def is_normal_operation(event):
 for flag in ['CANCELLED', 'DIVERTED']:
 if flag in event:
 s = str(event[flag]).lower()
 if s == 'true':
 return False; # cancelled or diverted
 return True # normal operation

events = (events
 | 'remove_cancelled' >> beam.Filter(is_normal_operation))

Time Windowing
We would like to compute hourly averages every 5 minutes. There are three steps:

• Assign a timestamp to the events.
• Pass sliding windows across the event stream.

362 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

2 Obviously we don’t want to assign all the rows the time at which we read the data!

• Compute moving averages within each time window.

Assigning a timestamp
In order to proceed we first have to ensure that all our wheels-off events are time‐
stamped. This will not be a problem in real time—events get assigned to the time that
they are inserted into the Pub/Sub topic. However, this doesn’t happen to rows read
from BigQuery or lines read from a file.2 Also, even in real time, the time at which the
event gets inserted into Pub/Sub is not the right timestamp. Imagine a message that
gets delayed due to network outages or machine failure is re-sent many hours later,
and is finally inserted into Pub/Sub. We obviously don’t want to include such late-
arriving records in our averages, which is what would happen if we use the time of
insertion into Pub/Sub.

The way to fix this is to assign the timestamp of the wheels-off event (to be the time at
which the aircraft finishes taxiing the runway and its wheels are off the ground):

def assign_timestamp(event):
 try:
 event_time = dt.datetime.strptime(event['WHEELS_OFF'],
 DATETIME_FORMAT)
 yield beam.window.TimestampedValue(event,
 event_time.timestamp())
 except:
 pass

events = events | 'assign_time' >> beam.FlatMap(assign_timestamp)

Note that the timestamp that is assigned is the Unix timestamp that we get by parsing
the JSON string using strptime.

Sliding windows
We want to compute hourly averages every 5 minutes. To do that, we apply a sliding
window onto the event stream:

WINDOW_DURATION = 60 * 60
WINDOW_EVERY = 5 * 60

event = (events
 | 'window' >> beam.WindowInto(beam.window.SlidingWindows(
 WINDOW_DURATION, WINDOW_EVERY))

At this point, we have assigned to each event the hourly time window (“between
05:00 and 06:00”) within which it lies. But if we run the pipeline at this point, the

Time Averages | 363

results will stay the same. It’s only when we compute an aggregate value (such as the
average) that the windowing starts to show its effect. The average will be computed
on each time window separately, and we will end up with a moving average.

Computing moving average
We don’t want a single average departure delay value at 05:00 and another at 05:05.
We want the averages to be computed separately for each airport. In order to do that,
we need to group by the airport before computing the stats:

 | 'window' >> beam.WindowInto(beam.window.SlidingWindows(
 WINDOW_DURATION, WINDOW_EVERY))
 | 'by_airport' >> beam.Map(lambda x: (x['ORIGIN'], x))
 | 'group_by_airport' >> beam.GroupByKey()

This is an idiom you should get familiar with. To group a collection of items, convert
them into a couple of tuples where the first element of the tuple is the key to group by
(here, we are using ORIGIN), and the second element of the tuple is the item itself:

 | 'by_airport' >> beam.Map(lambda x: (x['ORIGIN'], x))

Then, group by the key. The result will be a collection each item of which is a tuple:

 DFW, (x1, x2, x3, ...)
 DUL, (x1, x2, x3, ...)

In this GroupBy tuple, the first element is the key (the origin airport) and the second
element is a list of events from that airport in this time window.

We can process the tuple to compute aggregate statistics in a function that I’ll call
add_stats:

def add_stats(element):
 # all averages here are by airport
 airport = element[0]
 events = element[1]

 # how late are flights leaving?
 values = [float(event['DEP_DELAY']) for event in events]
 avg_dep_delay = float(np.mean(values))

 # similar for taxi_out

Because the event is just a Python dictionary, we can add the computed statistics to it.
However, we have to make sure to add it to a copy of the dictionary because Beam
doesn’t allow you to modify the input values to a transform function:

 for event in events:
 event_plus_stat = event.copy()
 event_plus_stat['AVG_DEP_DELAY'] = avg_dep_delay
 event_plus_stat['AVG_TAXI_OUT'] = avg_taxiout
 yield event_plus_stat

364 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

The reason we “yield” the event_plus_stat rather than returning it is that there will
be multiple events per airport, and so multiple values generated by the add_stats
function. Because the input to output mapping is not 1:1, the events_and_stats
transform has to be applied with a FlatMap rather than simply a Map:

| 'group_by_airport' >> beam.GroupByKey()
| 'events_and_stats' >> beam.FlatMap(add_stats)

At this point, we will expect to have exactly as many events as we started with, except
that each of the events will have two extra fields—the average departure delay and the
average taxi-out time experienced at the airport the flight is departing from over the
past hour.

Removing duplicates
The results on Cloud Storage seem correct, but on closer examination turn out to
have repeated flight information:

1.0,...,TWF,SLC,...
1.0,...,TWF,SLC,...
1.0,...,TWF,SLC,...
1.0,...,TWF,SLC,...
1.0,...,TWF,SLC,...

Why? This has to do with our use of sliding windows. Recall that our sliding window
is computed over an hour every 5 minutes. So, every flight is part of several overlap‐
ping panes, starting from the second one in Figure 11-2, and therefore, each flight is
repeated each time it falls into the pane. We would like the flight to be only part of the
second window here.

Figure 11-2. A flight event is part of several hourly time windows. A flight at 12:03 will
be part of 11:05 to 12:05, 11:10 to 12:10, 11:15 to 12:15, …, 12:00 to 1:00.

This is because the second window is the first window that includes the flight, and
we’d like to write the flight event out at the end of that time window. Doing so in sub‐
sequent windows will result in duplicate flight objects.

Time Averages | 365

3 Look at the size, not the number of elements in the collection—the number of elements is the number of
unique airports within each time window. It’s hard to compare the number of flights (the input) to the num‐
ber of airports (the output), but because the data does include (airport, list-of-flights), we can verify that the
list of flights is much larger than the flights that we started out with.

You can clearly see this if you are running it in Dataflow when you look at the size of
the input and output of the group-by-airport transform (see Figure 11-3)3—but at
this point, we are not yet running in Dataflow, so we don’t have this information.

Figure 11-3. Because a flight event is part of twelve hourly time windows, the size of the
collection greatly expands after grouping, from 6 GB to 57 GB.

The average delay does need to be computed once for every pane (this is why we have
a sliding window), but each flight object should be output only once. In order to do
that, we should ask Beam to inject the time window being used, and verify that we are
in the latest slice:

def add_stats(element, window=beam.DoFn.WindowParam):
 ...
 emit_end_time = window.start + WINDOW_EVERY
 for event in events:
 event_time = to_datetime(event['WHEELS_OFF']).timestamp()
 if event_time < emit_end_time:
 event_plus_stat = event.copy()
 event_plus_stat['AVG_DEP_DELAY'] = avg_dep_delay

366 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

 event_plus_stat['AVG_TAXI_OUT'] = avg_taxiout
 yield event_plus_stat

Once we do this, the duplicates go away, and we get the same number of flights in the
output as we had in the input (after removing canceled and diverted flights).

Machine Learning Training
We don’t want to train the ML model with all the raw input values. Instead, we want
to use only those features that we used in Chapter 9—those were the features that we
determined through experimentation were important. As in earlier chapters, we will
also want to add in the data split (train, validate, test) by having different days in dif‐
ferent splits.

Once the dataset is created, we can use the code from Chapter 9 (appropriately modi‐
fied) to train the model and evaluate it.

Machine Learning Dataset
We start by adding a transform method to convert the raw event data into features:

 features = (events
 ...
 | 'events_and_stats' >> beam.FlatMap(add_stats)
 | 'events_to_features' >> beam.FlatMap(create_features_and_label)
)

Label
In the transform method, we compute the label, which should be 1.0 if the flight is
on-time and zero otherwise:

 def create_features_and_label(event):
 try:
 model_input = {
 'ontime': 1.0 if float(event['ARR_DELAY']) < 15 else 0,

Then, we extract the data that we used in Chapter 9, naming the variables the same as
the SQL query did:

 # same as in ch9
 'dep_delay': event['DEP_DELAY'],
 'taxi_out': event['TAXI_OUT'],
 'distance': event['DISTANCE'],
 'origin': event['ORIGIN'],
 'dest': event['DEST'],
...
 'arr_airport_lat': event['ARR_AIRPORT_LAT'],
 'arr_airport_lon': event['ARR_AIRPORT_LON'],

Machine Learning Training | 367

The parts of time we used (the hour of day and day of week) require us to use
Python’s time library rather than SQL’s EXTRACT function, but we do have the equiva‐
lent functionality:

 'dep_hour': to_datetime(event['DEP_TIME']).hour,
 'is_weekday': 1.0 if to_datetime(event['DEP_TIME']
).isoweekday() < 6 else 0.0,
 'carrier': event['UNIQUE_CARRIER'],

Finally, we add in the two time averages we computed in the previous section:

 'avg_dep_delay': event['AVG_DEP_DELAY'],
 'avg_taxi_out': event['AVG_TAXI_OUT'],
 }
 yield model_input

Finally, what do we do if any of the features is not present in the data? A missing key
exception is thrown, and we ignore that row:

 except Exception as e:
 # if any key is not present, don't use for training
 logging.warning('Ignoring {} because: {}'.format(event, e),
 exc_info=True)
 pass

Data split
Recall that we don’t want to use a random split of the rows between training, valida‐
tion, and test. Instead, we want to use a deterministic method that ensures a date used
in training will never be used for testing even in future iterations of the training pro‐
gram. In order to do that in BigQuery SQL, we used the FARM_FINGERPRINT function
on the airport code.

Fortunately, this function is available in the Python package farmhash, and we can
use it to determine the data split for each row:

def get_data_split(date_value):
 # Use farm fingerprint just like in BigQuery
 x = np.abs(np.uint64(farmhash.fingerprint64(str(date_value))
).astype('int64') % 100)
 if x < 60:
 data_split = 'TRAIN'
 elif x < 80:
 data_split = 'VALIDATE'
 else:
 data_split = 'TEST'
 return data_split

'data_split': get_data_split(event['FL_DATE'])

368 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

The managed dataset in Vertex AI will use this column to split the data. However, in
case we are training in other frameworks, we want to create separate training, valida‐
tion, and testing files. We can do this with Beam by filtering the data:

 for split in ['ALL', 'TRAIN', 'VALIDATE', 'TEST']:
 feats = features
 if split != 'ALL':
 feats = feats | 'only_{}'.format(split) >> beam.Filter(
 lambda f: f['data_split'] == split)
 (feats
 | '{}_to_string'.format(split) >> beam.Map(
 lambda f: ','.join([str(x) for x in f.values()]))
 | '{}_to_gcs'.format(split) >> beam.io.textio.WriteToText(
 os.path.join(flights_output, split.lower())
)

While we can write only the CSV data, it is probably better if we add a header to the
files and name them with a .csv suffix. This makes it much easier to use these files for
AutoML since we can have AutoML simply parse the file for column names. To do so,
we define a CSV header and change the output function:

CSV_HEADER = 'ontime,dep_delay,taxi_out,...,avg_taxi_out,data_split'

...
 | '{}_to_gcs'.format(split) >> beam.io.textio.WriteToText(
 os.path.join(flights_output, split.lower(),
 file_name_suffix='.csv', header=CSV_HEADER)

Distance bug
On running the pipeline at this point, I encountered a problem—all the files were
empty.

The logs indicated an exception about a missing key. The key? DISTANCE.

It turns out that in Chapter 4, I had decided that the wheels-off event would not
include the distance on the grounds that at the time the flight is taking off, we don’t
know whether it is going to get diverted to a different airport:

 if len(fields["WHEELS_OFF"]) > 0:
 event = dict(fields) # copy
 event["EVENT_TYPE"] = "wheelsoff"
 event["EVENT_TIME"] = fields["WHEELS_OFF"]
 for f in ["WHEELS_ON", "TAXI_IN",
 "ARR_TIME", "ARR_DELAY", "DISTANCE"]:
 event.pop(f, None) # not knowable at departure time

Unfortunately, I forgot about this, and in subsequent chapters, I did use the nominal
distance to the intended destination as an ML feature. We even found that it was a
useful feature to use.

Machine Learning Training | 369

4 Besides, it’s Chapter 11, and the editor is getting impatient! I’ll fix this in the 3rd edition.

There are two ways to address this problem. I can go back and fix the Chapter 4 pipe‐
line that creates the time-corrected data to include the distance field in the wheels-off
event. This is the better solution.

Alternatively, I can compute the distance since I know the latitude and longitude of
the origin and intended destination. This is simpler, and so, that’s what I’m going to
do:4

 def approx_miles_between(lat1, lon1, lat2, lon2):
 # convert to radians
 lat1 = float(lat1) * np.pi / 180.0
 lat2 = float(lat2) * np.pi / 180.0
 lon1 = float(lon1) * np.pi / 180.0
 lon2 = float(lon2) * np.pi / 180.0

 # apply Haversine formula
 d_lat = lat2 - lat1
 d_lon = lon2 - lon1
 a = (pow(np.sin(d_lat / 2), 2) +
 pow(np.sin(d_lon / 2), 2) *
 np.cos(lat1) * np.cos(lat2));
 c = 2 * np.arcsin(np.sqrt(a))
 return 6371 * c * 0.621371 # miles

...

 'distance': approx_miles_between(event['DEP_AIRPORT_LAT'],
 event['DEP_AIRPORT_LON'],
 event['ARR_AIRPORT_LAT'],
 event['ARR_AIRPORT_LON']),

Monitoring and verification
With this done, we can run the Beam pipeline on the full dataset using the Dataflow
Runner (see create_traindata.py and flights_transforms.py in the code repository for
full code):

 python3 create_traindata --input bigquery \
 --project ... --bucket ... --region ...

While the pipeline is running, we can use the GCP console, as shown in Figure 11-4,
to monitor the progress of the job and examine the logs.

370 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

Figure 11-4. Steps of the Dataflow pipeline to the machine learning dataset with time
averages.

The pipeline took 2 hours and 50 minutes to complete and autoscaled to 20 workers
(see Figure 11-5).

Machine Learning Training | 371

Figure 11-5. The Dataflow pipeline autoscales and processes the dataset in parallel.

The number of elements processed at each step is reported, and we can verify that all
the data was correctly processed (see Figure 11-6). I started with 5.819 million flights.
It became 5.714 million flights after removing canceled/diverted flights. That was the
exact number of rows written out in all *.csv.

Note, however, that the reduction in the number of flights is not from 5.819 to 5.714
million in one fell swoop. Instead, we go down to 5.730 million when we assign a
timestamp and then lose a further 15,000 flights when we remove canceled or diver‐
ted flights. Why did we lose flights when we assigned a timestamp? It’s because we
skipped any rows where one of the feature values was missing. Also because it takes
an hour to fill up an hourly time window, and so we lost any flights from 00:00 UTC
to 01:00 UTC on the first day of our dataset.

372 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

Figure 11-6. Examine the number of elements in the input and output collections to
ensure that no data has been dropped.

Training the Model
We can use the same code as we used in Chapter 10. There are just a handful of
changes to make.

Changes from Chapter 10

The code in Chapter 10 reads and writes to paths that contain the string ch9. Here,
we’ll change it to read and write to paths that contain the string ch11. Instead of
deploying to the endpoint flights, let’s deploy to a new endpoint named flights-
ch11. Also, there are now two extra numeric features.

Machine Learning Training | 373

In order to avoid maintaining two similar files, I automated these changes:

 CHANGES = [
 ("ch10", "ch11"),

 # train_on_vertexai.py
 ("ENDPOINT_NAME = 'flights'", "ENDPOINT_NAME = 'flights-ch11'"),

 # model.py
 ("arr_airport_lat,arr_airport_lon",
 "arr_airport_lat,arr_airport_lon,avg_dep_delay,avg_taxi_out")
]

for filename in ['train_on_vertexai.py', 'model.py']:
 in_filename = os.path.join('../10_vertexai', filename)
 with open(in_filename, "r") as ifp:
 with open(filename, "w") as ofp:
 for line in ifp.readlines():
 for change in CHANGES:
 line = line.replace(change[0], change[1])
 ofp.write(line)

These are the only changes that need to be made to model.py and train_on_ver‐
texai.py. Apply these changes by running:

 python3 change_ch10_files.py

AutoML model
Training the AutoML Tables model involves launching the trainer:

 python3 train_on_vertexai.py --automl \
 --project ... --bucket ... --region ...

As in Chapter 9, the trainer writes evaluation data to a table in BigQuery. I can evalu‐
ate the resulting model by running the SQL query to compute the RMSE:

 SELECT
 SQRT(SUM(
 (CAST(ontime AS FLOAT64) - predicted_ontime.scores[OFFSET(0)])*
 (CAST(ontime AS FLOAT64) - predicted_ontime.scores[OFFSET(0)])
)/COUNT(*))
FROM dsongcp.ch11_automl_evaluated

The model took a little over 4 hours to train and resulted in an RMSE of 0.198,
whereas the AutoML model in Chapter 9 had an RMSE of 0.199. It appears that the
time averages add only a miniscule improvement. Indeed, when we look at the feature
importance graph (see longer arrows in Figure 11-7), it appears that the averages do
play a role, but not a significant one.

374 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

Figure 11-7. The average delays at the origin airport are not as significant as other fea‐
tures more directly related to the flight itself.

However, real-time averages may be more useful than the global averages (shown by
the shorter arrows in Figure 11-7)—once we have a real-time understanding of what’s
happening at the airport, the global averages that can be learned from the extracts of
time become less important.

Machine Learning Training | 375

Custom model
In Chapter 10, we also built a custom model using feature crosses of locations. How
does that model do with the two additional features?

All we did was to include the two features as additional numeric features:

def create_model():
 real = {
 colname: tf.feature_column.numeric_column(colname)
 for colname in
 (
 'dep_delay,taxi_out,distance,dep_hour,is_weekday,' +
 'dep_airport_lat,dep_airport_lon,' +
 'arr_airport_lat,arr_airport_lon,avg_dep_delay,avg_taxi_out'
).split(',')
 }

The rest of the model remains the same. The resulting RMSE is 0.195, which is pretty
much what we got without the two moving averages.

As stated earlier, don’t let this discourage you from including time aggregate features
in your models. They can be useful in other contexts, and you won’t know until you
try. However, whether the increased complexity will be worth it is a fair point that
you will want to consider.

Streaming Predictions
In Chapter 9, we ingested historical flight data and used it to train a machine learning
model capable of predicting whether or not a flight will be late. We deployed the
trained model and demonstrated that we could get the prediction for an individual
flight by sending input variables to the model in the form of a representational state
transfer (REST) call.

The input variables to the model include information about the flight whose on-time
performance is desired. Most of these variables—the departure delay of the flight, the
distance the flight is to travel, and the time taken to taxi out to the runway—are spe‐
cific to the flight itself. However, the inputs to the ML model also included two time
aggregates—the average departure delay and taxi-out time at the specific departure
airport—that require more effort to compute. In the previous sections of this chapter,
we wrote an Apache Beam pipeline to compute these averages on the training dataset
so as to be able to train the machine learning model. Then, we trained a TensorFlow
model capable of using the input variables to predict whether or not the flight would
be late.

The ML pipeline that we wrote deployed this model to a Vertex AI endpoint. Similar
to what we did in Chapter 9, we can invoke the service to make predictions. However,

376 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

5 I am assuming that the number of users of our flight delay prediction service will be a factor of magnitude
more than the number of flights. This is optimistic, of course, but it is good to design assuming that we will
have a successful product.

the model now expects to see the two time averages in its input. The way we address
this is shown in Figure 11-1.

In this section, we will build the real-time Beam pipeline depicted at the bottom of
Figure 11-1. The pipeline listens to flight events, computes the time averages, and
passes the enriched flight info to the model. It can add the predicted on-time perfor‐
mance of the flight to the flight data and write it out to a database. The resulting table
can then be queried by user-facing applications that need to provide information to
users of the system interested in their specific flight. Although we could do prediction
on behalf of individual users of the service as and when they request the status of
their specific flight, this will probably end up being wasteful. It is far more efficient to
compute the on-time arrival probability once, at flight takeoff, and then simply look
up the flight information as required for specific users.5 It is worth noting that we are
making predictions for a flight only at the time of takeoff (and not updating it as the
flight is en route) because we trained our ML model only on flight data at the time of
takeoff.

Reuse Transforms
The advantage of using Apache Beam to compute time averages is that the program‐
ming model is the same for both historical data and for real-time data. Therefore, we
will be able to reuse most of our training pipeline code in real time.

The pipeline to create the training dataset carries out the following transformations
that can be refactored into a method:

def transform_events_to_features(events):
 events = events | 'assign_time' >> beam.FlatMap(assign_timestamp)
 events = events | 'remove_cancelled' >> beam.Filter(
 is_normal_operation)

 # compute stats by airport, and add to events
 features = (
 events
 | 'window' >> beam.WindowInto(
 beam.window.SlidingWindows(WINDOW_DURATION, WINDOW_EVERY))
 | 'by_airport' >> beam.Map(lambda x: (x['ORIGIN'], x))
 | 'group_by_airport' >> beam.GroupByKey()
 | 'events_and_stats' >> beam.FlatMap(add_stats)
 | 'events_to_features' >> beam.FlatMap(
 lambda x: create_features_and_label(x))
)

Streaming Predictions | 377

 return features

For this method to be callable from both the training and prediction pipelines, we’ll
put the code in a Python package (look at the file flights_transforms.py in the folder
flightstxf in the code repository) and move all the methods called here—assign_time

stamp, is_normal_operation, and so on—to that file as well.

We can invoke this method from create_traindata.py as follows:

from flightstxf import flights_transforms as ftxf
...

features = ftxf.transform_events_to_features(events)

There is just one small change that we have to make. The training dataset contains
the label and the data_split, which we won’t have during prediction. Let’s protect
that code with a boolean flag so that those two fields aren’t created during prediction:

def create_features_and_label(event, for_training):
 model_input = {}

 if for_training:
 model_input.update({
 'ontime': 1.0 if float(event['ARR_DELAY']) < 15 else 0,
 })

 # features for both training and prediction
 model_input.update({
 # same as in ch9
 'dep_delay': event['DEP_DELAY'],
 'taxi_out': event['TAXI_OUT'],
 ...
 # newly computed averages
 'avg_dep_delay': event['AVG_DEP_DELAY'],
 'avg_taxi_out': event['AVG_TAXI_OUT'],

 })

 if for_training:
 model_input.update({
 # training data split
 'data_split': get_data_split(event['FL_DATE'])
 })

 yield model_input

378 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

Input and Output
The transform code is the same between training and prediction, so we were able to
move it into a common module called from both pipelines. The pipeline input, how‐
ever, is different. When creating the training dataset, we read the time-corrected Big‐
Query dataset that contains all the fields.

When doing predictions, though, the streaming pipeline will have to make do with
only the data in the wheelsoff event. The way that the overall architecture will work
is that the streaming pipeline will listen to the wheelsoff topic and write predictions
for every flight to a database. Client programs (such as the mobile application that a
traveler uses) will query the database for the status of the flight that they are on. We
have to do it this way because the mobile application will need flight predictions on-
demand, whereas the streaming pipeline (and the ML model) cannot operate until
the time averages are available. We show the solution architecture in Figure 11-8.

Figure 11-8. The streaming pipeline writes out predictions for all flights to a database.
The mobile application that provides flight information to users queries the database
about specific flights.

Streaming Predictions | 379

Recall from Chapter 4 that the simulator publishes events into a Pub/Sub topic. We
can subscribe to this topic and read the events as they stream in using:

input_topic = "projects/{}/topics/wheelsoff".format(project)
events = (pipeline
 | 'read_input' >> beam.io.ReadFromPubSub(topic=input_topic,
 timestamp_attribute='EventTimeStamp')
 | 'parse_input' >> beam.Map(lambda s: json.loads(s))
)

As before, however, we want to be able to develop the pipeline locally. An easy way to
do this is to remember that we have a historical archive of all the events in
flights_simevents in BigQuery. We can sample this dataset, create a local file, and
use it to develop the pipeline:

bq query --nouse_legacy_sql --format=sparse \
 "SELECT EVENT_DATA FROM dsongcp.flights_simevents
 WHERE EVENT_TYPE = 'wheelsoff' AND EVENT_TIME BETWEEN
 '2015-03-10T10:00:00' AND '2015-03-10T14:00:00' " \
 | grep FL_DATE \
 > simevents_sample.json

The output of the model should go to a database (see Figure 11-8), and Apache Beam
supports writing to Cloud SQL or Cloud Bigtable, in addition to BigQuery. Again, for
simplicity of development, we’ll simply write to Cloud Storage for now. We can
change the output sink once development is complete.

At this point, we have read the events and converted them into the features that the
model requires. We now need to invoke the model to get the predicted on-time prob‐
ability—that is what the end user wants to know!

Invoking Model
In Chapter 9, we used Vertex AI to deploy the trained TensorFlow model to an end‐
point as a web service. We demonstrated that we could invoke the model by sending a
correctly formatted JSON request to the endpoint (see call_predict.py in Chapter 10 of
the repository).

The first step was to get a stub that can connect to the endpoint:

 endpoint = aiplatform.Endpoint.list(
 filter='display_name="{}"'.format(ENDPOINT_NAME),
 order_by='create_time desc'
)[0]

In networking parlance, a stub is a local proxy for a remote object. Here, the ML
model is deployed and made available as a web application accessible through the
endpoint URL. That web application is the remote object. A stub is an object (in
Python, Java, JavaScript, etc.) that abstracts away the details of HTTPS invocation—
parameter serialization, transport encryption, authentication, and so on—so as to

380 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

present a simple invocation interface to the client program. The endpoint class pro‐
vided by the Vertex AI client library is the stub.

The next step was to call predict() on the endpoint stub (which will take care of the
communication details):

 preds = endpoint.predict(input_data)
 probs = [p[0] for p in preds.predictions]

In the preceding code snippet, input_data is a correctly formatted JSON request:

input_data = [
 {"dep_hour": 2, "is_weekday": 1, "dep_delay": 40, "taxi_out": 17,
 "distance": 41, "carrier": "AS",
 "dep_airport_lat": 58.42527778, "dep_airport_lon": -135.7075,
 "arr_airport_lat": 58.35472222,
 "arr_airport_lon": -134.57472222, "origin": "GST", "dest": "JNU"},
 {"dep_hour": 22, "is_weekday": 0, "dep_delay": -7, "taxi_out": 7,
 "distance": 201, "carrier": "HA",
 "dep_airport_lat": 21.97611111, "dep_airport_lon": -159.33888889,
 "arr_airport_lat": 20.89861111,
 "arr_airport_lon": -156.43055556, "origin": "LIH", "dest": "OGG"}
]

We need to repeat these steps to obtain the probability for every flight. However, we
would ideally like to reuse endpoint stubs, instead of looking them up again and
again, once for every flight.

Also, as the preceding sample code illustrates, it is possible to send multiple flights to
the model endpoint. Sending the flights one-by-one is wasteful. We should batch
them up and send in a list of flights.

Reusing Endpoint
There are two ways that we can reuse the endpoint stub—a shared endpoint stub or a
per-worker endpoint stub.

Shared handle
One way is to create a single endpoint stub and use it from all workers. This is accom‐
plished by using a shared handle that is shared between workers:

class FlightsModelInvoker(beam.DoFn):
 def __init__(self, shared_handle): #
 self._shared_handle = shared_handle #

 def process(self, input_data):
 def create_endpoint(): #
 from google.cloud import aiplatform
 endpoint_name = 'flights-ch11'
 endpoint = aiplatform.Endpoint.list(

Streaming Predictions | 381

 filter='display_name="{}"'.format(endpoint_name),
 order_by='create_time desc'
)[0]

 # call predictions and pull out probability
 endpoint = self._shared_handle.acquire(create_endpoint) #
 predictions = endpoint.predict(input_data).predictions #
 for idx, input_instance in enumerate(input_data):
 result = input_instance.copy()
 result['prob_ontime'] = predictions[idx][0]
 yield result

...

handle = beam.utils.shared.Shared() #

preds = features | 'pred' >> beam.ParDo(FlightsModelInvoker(handle))

In the main pipeline, create a handle of the type beam.utils.shared.Shared and
pass that in as a constructor parameter to the DoFn.

In the DoFn, save the handle as an instance variable.

In the process function of the DoFn, acquire the endpoint through the handle
every time.

Provide a function that can be called to create the endpoint the first time around.

We would use the shared handle approach if the endpoint stub is very large, very
expensive to create, or cannot handle concurrent access from multiple workers. That
is not the case here.

If you are loading an ML model directly from a SavedModel file
and calling model.predict() on the in-memory model from
within the pipeline, then the considerations flip. Creating the
model is very expensive because it involves parsing the model file
and creating a set of neural network layers. Models, especially text
and image models, can be extremely large. If you are memory limi‐
ted, you might want to use the same model from multiple workers.
Keras model functions are not thread-safe. Given this, you would
want to use the shared handle approach, and not the per-worker
instance approach that I’m going to use here.

Per-worker instance
Creating an endpoint stub is just a single network call and is not very expensive. The
state of an endpoint stub is essentially just a URL. That is not very large. Moreover,

382 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

the endpoint stub connects to a web application that runs on Vertex AI, which will
autoscale predictions. Therefore, it’s better if workers can invoke the endpoint in par‐
allel and not have to wait on each other.

Because we have an inexpensive operation, a small object, and a thread-safe backend,
it’s better to create an endpoint stub the first time it’s needed in a worker thread and
then reuse it as long as that worker thread is active.

In order to do so, we should not use an instance variable like this because worker state
can be passivated and reactivated many hours later on another machine:

THIS IS WRONG. DO NOT DO THIS
class FlightsModelInvoker(beam.DoFn):
 def __init__(self):
 from google.cloud import aiplatform
 endpoint_name = 'flights-ch10'
 self.endpoint = aiplatform.Endpoint.list(
 filter='display_name="{}"'.format(endpoint_name),
 order_by='create_time desc'
)[0]

 def process(self, input_data):
 predictions = self.endpoint.predict(input_data).predictions
 for idx, input_instance in enumerate(input_data):
 result = input_instance.copy()
 result['prob_ontime'] = predictions[idx][0]
 yield result

...

preds = features | 'pred' >> beam.ParDo(FlightsModelInvoker())

In general, instance variables on a Beam function should be set within the __init__
method of a DoFn only for things that can be safely resurrected from a passivated
object. The endpoint is not safe to resurrect in this manner because it might contain a
number of cached variables.

Instead, we have to hook into the lifecycle of a DoFn. The contract of a DoFn is that the
setup method will be called the first time a DoFn is used on a worker. So, we override
the setup() method and initialize the endpoint instance variable there:

class FlightsModelInvoker(beam.DoFn):
 def __init__(self):
 self.endpoint = None

 def setup(self):
 from google.cloud import aiplatform
 endpoint_name = 'flights-ch10'
 self.endpoint = aiplatform.Endpoint.list(
 filter='display_name="{}"'.format(endpoint_name),
 order_by='create_time desc'

Streaming Predictions | 383

)[0]

 def process(self, input_data):
 # call predictions and pull out probability
 predictions = self.endpoint.predict(input_data).predictions
 for idx, input_instance in enumerate(input_data):
 result = input_instance.copy()
 result['prob_ontime'] = predictions[idx][0]
 yield result

With this change, we reuse endpoint stubs throughout the lifetime of a worker
thread.

Batching Predictions
While we do need to make predictions for each flight, we do not need to send the
flight information to the service one-by-one. Instead of invoking the machine learn‐
ing service once for each flight, we could batch up requests. If we were to invoke the
predictions for 60,000 flights into batches of 60 each, we’d be making only 1,000
requests. Making fewer requests will not only reduce costs, it might also end up
increasing the overall performance by having less time spent waiting for a response
from the service.

Because it is possible to send multiple flights to the model endpoint, sending the
flights one-by-one is wasteful. However, our pipeline uses a ParDo, which will send
each element of the features collection one-by-one to the prediction method:

preds = (features
 | 'model_predict' >> beam.ParDo(FlightsModelInvoker())
)

We can ask Beam to send in a list of elements using the BatchElements method:

preds = (features
 | 'batch_instances' >> beam.BatchElements(
 min_batch_size=1, max_batch_size=64)
 | 'model_predict' >> beam.ParDo(FlightsModelInvoker())
)

Recall that all aggregation (sum, mean, max, etc.) happens within a time window—
this is why our average departure delay was the average delay over the most recent
hour. Unfortunately, batching is also an aggregation. However, we will defeat the pur‐
pose if the batches are grouped in any way. So, let’s ask Beam to discard the time win‐
dow information before batching:

preds = (features
 | 'into_global' >> beam.WindowInto(beam.window.GlobalWindows())
 | 'batch_instances' >> beam.BatchElements(
 min_batch_size=1, max_batch_size=64)
 | 'model_predict' >> beam.ParDo(FlightsModelInvoker())
)

384 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

Note that we have specified a minimum and maximum batch size to the BatchEle‐
ments method. This allows Dataflow to time how long it takes to invoke the model on
different batch sizes and choose an optimal size. When I tried it, Dataflow seemed to
settle on sending around 30 flights to the model each time:

INFO:root:Invoking ML model on 1 flights
INFO:root:Invoking ML model on 2 flights
INFO:root:Invoking ML model on 4 flights
INFO:root:Invoking ML model on 8 flights
INFO:root:Invoking ML model on 16 flights
INFO:root:Invoking ML model on 32 flights
INFO:root:Invoking ML model on 30 flights

For obvious reasons, Dataflow tuning the batch size is better than hard coding the
number of elements to batch the features collection into—our model could grow over
time, and it might turn out that our hardcoded value is too large at some point.

Streaming Pipeline
At this point, we have a streaming pipeline that can listen to incoming flight events,
compute the likelihood that a flight that’s about to take off will arrive on-time, and
write the output to Cloud Storage. However, we need to add the arrival probability to
a database, not just to a file. This is so that the database can be used to serve client
applications.

Writing to BigQuery
Fortunately, it’s quite simple to change out the output sink to BigQuery:

preds_schema = ','.join([
 'event_time:timestamp',
 'prob_ontime:float',
 'dep_delay:float',
...
 'avg_dep_delay:float',
 'avg_taxi_out:float',
])
(preds
 | 'to_bigquery' >> beam.io.WriteToBigQuery(
 'dsongcp.streaming_preds',
 schema=preds_schema,
 # write_disposition=...WRITE_TRUNCATE,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
 method='STREAMING_INSERTS'
)
)

There are two important changes to previous times that we wrote to BigQuery:

Streaming Pipeline | 385

• We do not use WRITE_TRUNCATE. This is because the streaming pipeline needs to
insert new records, not overwrite the table.

• We ask Dataflow to stream the inserts into BigQuery so that information is avail‐
able in real time. Had we omitted it, Dataflow would have staged the output to
Google Cloud Storage and done periodic loads.

Is BigQuery enough for our purpose? Should I not be using Cloud SQL, Cloud Big‐
table, or Spanner? I’ll answer this question later on in this section. For now, trust me
when I say BigQuery is sufficient.

Executing Streaming Pipeline
Now that the pipeline code has been written, we can start the simulation from Chap‐
ter 4 to stream records into Cloud Pub/Sub:

cd ../04_streaming/simulate
python3 simulate.py --startTime "2015-02-01 00:00:00 UTC" --endTime \
 "2015-02-03 00:00:00 UTC" --speedFactor 30 --project PROJECT

Then, we can start the Cloud Dataflow pipeline that we have just written to consume
these records:

python3 make_predictions.py --input pubsub \
 --project <PROJECT> --bucket <BUCKET> --region <REGION>

With the pipeline running, we can navigate over to the BigQuery console and verify
that flight information is indeed getting streamed in:

SELECT
 event_time, dest, carrier, prob_ontime
FROM dsongcp.streaming_preds
WHERE origin = 'DFW'
ORDER BY event_time DESC
LIMIT 5

The preceding query is looking at flights originating at Dallas/Fort Worth (DFW) and
ordering and limiting the result set so that the five latest flights are retained:

Row event_time dest carrier prob_ontime

1 2015-02-01 04:17:00 UTC MSY AA 0.999135375

2 2015-02-01 04:11:00 UTC TUL AA 0.999612808

3 2015-02-01 04:10:00 UTC LRD MQ 0.229228586

4 2015-02-01 04:07:00 UTC LAX AA 0.809439421

5 2015-02-01 04:02:00 UTC SEA AA 0.994473457

386 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

The query results change when I execute the query a few minutes later, showing that
we are getting new and updated flights (note from the speedFactor that the simula‐
tion is run at 30 times the speed of real time):

Row event_time dest carrier prob_ontime

1 2015-02-01 05:35:00 UTC PHX NK 0.964711547

2 2015-02-01 05:25:00 UTC LAS NK 0.982865453

3 2015-02-01 04:50:00 UTC ICT AA 0.99398911

4 2015-02-01 04:44:00 UTC LAS AA 0.998527884

5 2015-02-01 04:33:00 UTC LAX AA 0.991004586

Late and Out-of-Order Records
Our simulation uses the flight record time to add records into Cloud Pub/Sub in pre‐
cise order. In real life, though, flight records are unlikely to arrive in order. Instead,
network vagaries and latencies will cause late and out-of-order records to happen. In
order to simulate these essentially random effects, we should change our simulation
to add a random delay to each record.

This can be done in the BigQuery SQL statement that is used by the simulation pro‐
gram to read in the flight records:

SELECT
 EVENT_TYPE,
 EVENT_TIME AS ORIGINAL_NOTIFY_TIME,
 TIMESTAMP_ADD(EVENT_TIME,
 INTERVAL CAST (0.5 + RAND()*120 AS INT64) SECOND)
 AS NOTIFY_TIME
FROM
 dsongcp.flights_simevents
WHERE event_type = 'wheelsoff'
ORDER BY original_notify_time ASC LIMIT 5

Because RAND() returns a number that is uniformly distributed between 0 and 1, mul‐
tiplying the result of RAND() by 120 yields a delay between 0 and 2 minutes. Running
this query on the BigQuery console, we notice that it works as intended—the records
now reflect some jitter:

Row EVENT_TYPE ORIGINAL_NOTIFY_TIME NOTIFY_TIME

1 wheelsoff 2014-12-31 22:14:00 UTC 2014-12-31 22:14:42 UTC

2 wheelsoff 2015-01-01 04:28:00 UTC 2015-01-01 04:29:22 UTC

3 wheelsoff 2015-01-01 05:21:00 UTC 2015-01-01 05:21:35 UTC

4 wheelsoff 2015-01-01 05:36:00 UTC 2015-01-01 05:36:28 UTC

5 wheelsoff 2015-01-01 05:45:00 UTC 2015-01-01 05:45:37 UTC

Streaming Pipeline | 387

6 If we had a real-time feed, we’d of course collect data on delay instead of simply guessing.

Note that the first record is delayed by 42 seconds, whereas the second record is
delayed by 1 minute and 22 seconds.

Uniformly distributed delay
A zero delay is highly unrealistic, however. We could change the formula to simulate
other scenarios. For example, if we want to have latencies between 90 and 120 sec‐
onds, we would change the jitter to be CAST(90.5 + RAND()*30 AS INT64). The
resulting distribution might look like this:

Even this strikes me as being unrealistic. I don’t know what the delay involved with
the flight messages is,6 but there seem to be two possibilities: an exponential distribu‐
tion and a normal distribution.

Exponential distribution
An exponential distribution is the theoretical distribution associated with the time
between events where the events themselves happen at a constant rate. If the network
capacity is limited by the number of events, we’d observe that the delay follows an
exponential distribution. To simulate this, we can create the jitter variable following
the formula:

CAST(-LN(RAND()*0.99 + 0.01)*30 + 90.5 AS INT64)

The resulting distribution would look something like this:

388 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

With the exponential distribution, latencies of 90 s are much more common than
latencies of 150 s, but a few records will encounter unusually high latencies.

Normal distribution
A third alternative distribution for the delay is that it follows the law of big numbers,
and that if we observe enough flight events, we might observe that the delay is nor‐
mally distributed around some mean with a certain standard deviation. Of course, the
delay has to be positive, so the distribution would be truncated at zero.

Generating a normally distributed random variable is hard to do with just plain SQL.
Fortunately, BigQuery allows for user-defined functions (UDFs) in JavaScript. This
JavaScript function uses the Marsaglia polar rule to transform a pair of uniformly dis‐
tributed random variables into one that is normally distributed:

js = """
 var u = 1 - Math.random();
 var v = 1 - Math.random();
 var f = Math.sqrt(-2 * Math.log(u)) * Math.cos(2*Math.PI*v);
 f = f * sigma + mu;
 if (f < 0)
 return 0;
 else
 return f;
""".replace('\n', ' ')

The preceding JavaScript can be used to create a temporary UDF invokable from
SQL:

sql = """
CREATE TEMPORARY FUNCTION
trunc_rand_normal(x FLOAT64, mu FLOAT64, sigma FLOAT64)
RETURNS FLOAT64

Streaming Pipeline | 389

7 See the jitter variable in 04_streaming/simulate/simulate.py.

LANGUAGE js AS "{}";

SELECT
 trunc_rand_normal(ARR_DELAY, 90, 15) AS JITTER
FROM
 ...
""".format(js).replace('\n', ' ')

The resulting distribution of jitter might look something like this (the preceding
code used a mean of 90 and a standard deviation of 15):

In order to experiment with different types of jitter, let’s change our simulation code
to add random jitter to the notify_time:7

jitter = 'CAST (-LN(RAND()*0.99 + 0.01)*30 + 90.5 AS INT64)'

run the query to pull simulated events
querystr = """\
SELECT
 EVENT_TYPE,
 TIMESTAMP_ADD(EVENT_TIME, INTERVAL @jitter SECOND) AS NOTIFY_TIME,
 EVENT_DATA
FROM
 dsongcp.flights_simevents
WHERE
 EVENT_TIME >= @startTime
 AND EVENT_TIME < @endTime
ORDER BY
 EVENT_TIME ASC
"""

390 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

job_config = bq.QueryJobConfig(
 query_parameters=[
 bq.ScalarQueryParameter("jitter", "INT64", jitter),
 bq.ScalarQueryParameter("startTime", "TIMESTAMP", args.startTime),
 bq.ScalarQueryParameter("endTime", "TIMESTAMP", args.endTime),
]
)
 rows = bqclient.query(querystr, job_config=job_config)

In the preceding code snippet, I am using parameterized queries in BigQuery by hav‐
ing the query refer to variables as @jitter, @startTime, and so on. These variables
are passed in as query parameters by the Python code.

Watermarks and triggers
The Beam programming model implicitly handles out-of-order records within the
sliding window, and by default accounts for late arriving records. Beam has the con‐
cept of a watermark, which is the oldest unprocessed record left in the pipeline. The
watermark is an inherent property of any real-time data processing system and is
indicative of the lag in the pipeline. Cloud Dataflow tracks and learns this lag over
time.

If we are using the time that a record was inserted into Cloud Pub/Sub as the event
time, then the watermark is a strict guarantee that no data with an earlier event time
will ever be observed by the pipeline after the watermark. On the other hand, if the
event time is user-specified (by specifying a timestampLabel), then there is nothing
to prevent the publishing program from inserting a really old record into Cloud Pub/
Sub, so the watermark is a learned heuristic based on the observed historical lag. The
concept of a watermark is more general than Cloud Pub/Sub, of course—in the case
of streaming sources (such as low-power Internet of Things devices) that are inter‐
mittent, watermarking helps those delays as well.

Computation of aggregate statistics is driven by a trigger. Whenever a trigger fires, the
pipeline calculations are carried out. Our pipeline can include multiple triggers, but
each of the triggers is usually keyed off the watermark. The default behavior is that
the trigger fires when the watermark passes the end of the window and then immedi‐
ately whenever any late data arrives. In other words, every late-arriving record is pro‐
cessed individually. This prioritizes correctness over performance.

What if we add a uniformly distributed jitter to the simulation? Since our uniform
delay is in the range of 90–120 s, the actual difference in delay between the earliest-
arriving and latest-arriving records is 30 s. So, Cloud Dataflow has to keep windows
open 30 s longer.

The Cloud Dataflow job monitoring web page on the Cloud Platform Console indi‐
cates the learned watermark value. We can click on any of the transform steps to view

Streaming Pipeline | 391

what this value is. And with a uniform delay added to the simulation, the monitoring
console shows us that this is what is happening:

We see that the simulation (righthand side of the snapshot) is sending events at
00:12:32 UTC, whereas the watermark shown by the monitoring console is at
17:11:50 Pacific Standard Time. Ignoring the 7 hours due to time zone conversion,
Cloud Dataflow is keeping windows open for 42 s longer (this includes the system lag
of 7 s, which is the time taken to process the records).

Unlike uniform jitter, small delays are far more likely than larger delays in exponen‐
tially distributed jitter. With exponentially distributed jitter added to the simulated
data in the Cloud Pub/Sub pipeline, the learned watermark value is 22 seconds:

Recall that the default trigger prioritizes correctness over performance, processing
each late-arriving record one-by-one and updating the computed aggregates. Fortu‐
nately, changing this trade-off is quite easy. Here is a different trade-off:

beam.WindowInto(
 beam.window.SlidingWindows(...),
 trigger=AfterWatermark(late=AfterCount(10)),
 allowed_lateness=1800) # 30 minutes

Here, the calculations are triggered at the watermark (as before). Late records are pro‐
cessed 10 at a time but only if they arrive within 30 minutes after the start of the
plane. Beyond that, late records are thrown away.

392 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

Possible Streaming Sinks
Streaming the output flight records to BigQuery is acceptable for my flight delay sce‐
nario, but it may not be the right choice for your data pipeline. You should select the
output sink based on four factors—access pattern, transactions, throughput, and
latency.

If your primary access pattern is around long-term storage and delayed access to the
data, you could simply stream to sharded files on Cloud Storage. Files on Cloud Stor‐
age can serve as staging for later import into Cloud SQL or BigQuery for later analy‐
sis of the data. In the rest of this section, I will assume that you will need to query the
data in near-real time.

Recall that we receive several events for each flight—departed, wheelsoff, etc.
Should we have a single row for each flight that reflects the most up-to-date state for
that flight? Or can the data be append-only so that we simply keep storing flight
events as they come streaming in? Is it acceptable for readers to possibly get slightly
out-of-date records, or is it essential for there to be a single source of truth and con‐
sistent behavior throughout the system? The answers to these questions determine
whether flight updates have to be transactional, or whether flight updates can be done
in an environment that provides only eventual consistency guarantees.

How many flight events come in every second? Is this rate constant, or are there peri‐
ods of peak activity? The answers here determine the throughput that the system
needs to handle. If we are providing for eventual consistency, what is the acceptable
latency? Once flight data is added to the database, within what time period should all
readers see the new data? At the time of writing, streaming into BigQuery supports
up to 1 GBps with latency on the order of a few seconds. You can achieve a latency on
the order of milliseconds by turning on BI Engine in BigQuery. To do so, all we have
to do is to go to the BigQuery administration console and purchase a BI Engine
capacity reservation (see Figure 11-9).

Streaming Pipeline | 393

https://oreil.ly/kSryY
https://oreil.ly/GMjhW

Figure 11-9. Use BI Engine to provide clients lower latencies when streaming data into
BigQuery.

For throughput needs that are higher than this, or latency requirements that are
lower, we need to consider other solutions.

Choosing a sink
During development, we used Cloud Storage, but as depicted in Figure 11-8, we want
the pipeline to write the predictions to a database. What database shall we use?

If transactions are not needed, and we simply need to append flight events as they
come in, we can use BigQuery, text files, or Cloud Bigtable:

• As stated in the previous section, streaming flight events directly into BigQuery is
a great solution for throughputs of up to 1 GBps and acceptable latencies of a few
milliseconds. Many dashboard applications fall into this sweet spot.

• Cloud Dataflow also supports streaming into text files on Cloud Storage. This is
obviously useful if the primary use case is to simply save the data, not to analyze
it or query it. Recall that we want client programs such as mobile applications to
be able to query for a specific flight. So, this won’t work for our current use case.
However, it is also a solution to consider if periodic batch updates into BigQuery
will suffice. For example, we could stream into text files that are sharded by hour,
and at the end of the hour, we could do a batch upload of the file into BigQuery.

394 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

https://oreil.ly/DAnpd

This is less expensive than streaming into BigQuery and can be used if hourly
latencies are acceptable.

• Cloud Bigtable is a massively scalable NoSQL database service—it can handle
workloads that involve hundreds of petabytes with millions of reads and writes
per second at a latency that is on the order of milliseconds. Moreover, the
throughput that can be handled by Cloud Bigtable scales linearly with the num‐
ber of nodes—for example, if a single node supports 10,000 reads or writes in 6
ms, a Cloud Bigtable instance with a hundred nodes will support a million reads
or writes in the same 6 ms interval. In addition, Cloud Bigtable automatically
rebalances the data to improve query performance and availability.

On the other hand, if transactions are needed and you wish to have a single record
that reflects the most current state of a flight, we could use a traditional relational
database, a NoSQL transactional database, or Cloud Spanner:

• Cloud SQL, which is backed by MySQL or PostgreSQL, is useful for frequently
updated, low-throughput, medium-scale data that you want to access from a vari‐
ety of tools and programming languages in near-real time. Because relational
technologies are ubiquitous, the tools ecosystem tends to be strongest for tradi‐
tional relational databases. For example, if you have third-party, industry-specific
analysis tools, it is possible that relational databases might be the only storage
mechanism that they will connect to. Before choosing a traditional relational
database solution, though, consider whether the use case is such that you will run
into throughput and scaling limitations.

• You can scale to much larger datasets (terabytes of data) and avoid the problem
of converting between hierarchical objects and flattened relational tables by using
Cloud Firestore, which is a NoSQL object store. Cloud Firestore provides high
throughput and scaling by designing for eventual consistency. However, it is pos‐
sible to get strong (or immediate) consistency on queries that involve lookups by
key or “ancestor queries” that involve entity groups. Within an entity group, one
gets transactions, strong consistency, and data locality. Thus, it is possible to bal‐
ance the need for high throughput and many entities while still supporting strong
consistency where it matters.

• Cloud Spanner provides a strongly consistent, transactional, SQL-queryable
database that is nevertheless globally available and can scale to extremely large
amounts of data. Cloud Spanner offers latency on the order of milliseconds,
extremely high availability (99.999% availability, which translates to downtimes
of around 5 minutes a year), and maintains transactional consistency and global
reach. Cloud Spanner is also fully managed, without the need for manual inter‐
vention for replication or maintenance.

Streaming Pipeline | 395

In our use case, we don’t need transactions. Our incoming stream has fewer than a
thousand events per second. A few seconds latency between insertion into the data‐
base and availability to applications that need the flight delay information is quite tol‐
erable because what we might do is to simply send alerts to our users if their flight is
likely to be delayed. BigQuery is fully managed, supported by many data visualization
and report-creation products, and is relatively inexpensive compared to the alterna‐
tive choices. Based on these considerations, streaming into BigQuery is the right
choice for our use case.

Cloud Bigtable
However, just as a hypothetical scenario, what if our stream consisted of gigabytes of
flight events per second, and our use case required that the latency be on the order of
milliseconds, not seconds? This would be the case if each aircraft were to provide up-
to-the-minute coordinate information while it is en route, and if the use case involved
traffic control of the air space. In such a case, Cloud Bigtable would be a better
choice. Let’s look at how we’d build the pipeline to write to Cloud Bigtable if this were
the case.

Cloud Bigtable separates compute and storage. Tables in Cloud Bigtable are sharded
into blocks of contiguous rows, called tablets. The Cloud Bigtable instance doesn’t
store these tablets; instead, it stores pointers to a set of tablets. The tablets themselves
are durably stored on Cloud Storage. Because of this, a node may go down, but the
data remains in Cloud Storage (see Figure 11-10). Work may get rebalanced to a dif‐
ferent node, and only metadata needs to be copied.

Figure 11-10. Cloud Bigtable tables sharded into tablets.

The data itself consists of a sorted key/value map (each row has a single key). Unlike
BigQuery, Cloud Bigtable’s storage is row-wise, and the rows are stored in sorted
order of their key value. Columns that are related are grouped into a column family,
with different column families typically managed by different applications. Within a
column family, columns have unique names. A specific column value at a specific row

396 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

8 The exception is for operations like an atomic increment, where Cloud Bigtable expects the data to be an
integer.

can contain multiple cells at different timestamps (the table is append-only, so all the
values exist in the table). This way, we can maintain a time-series record of the value
of that cell over time. For most purposes, Cloud Bigtable doesn’t care about the data
type—all data is treated as raw byte strings.8

The performance of Cloud Bigtable is best understood in terms of the arrangement of
rows within a tablet (blocks of contiguous rows into which tables in Cloud Bigtable
are sharded). The rows are sorted in order of the keys. To optimize the write perfor‐
mance of Cloud Bigtable, we want to have multiple writes happening in parallel, so
that each of the Cloud Bigtable instances is writing to its own set of tablets. This is
possible if the row keys do not follow a predictable order. The read performance of
Cloud Bigtable is, however, more efficient if multiple rows can be read at the same
time. Striking the right balance between the two contradictory goals (of having writes
be distributed while making most reads be concentrated) is at the heart of effective
Cloud Bigtable schema design.

Designing tables. At the extremes, there are two types of designs of tables in Cloud
Bigtable. Short and wide tables take advantage of the sparsity of Cloud Bigtable, while
tall and narrow tables take advantage of the ability to search row keys by range.

Short and wide tables use the presence or absence of a column to indicate whether or
not there is data for that value. For example, suppose we run an automobile factory
and the primary query we wish to support with our dataset is to determine the
attributes of the parts (part ID, supplier, manufacture location, etc.) that make up a
specific automobile. Imagine that we will have millions of cars, each with hundreds of
thousands of parts. We could use the car serial number as the row key, and each
unique part (e.g., a spark plug) could have a column associated with it (see
Figure 11-11).

Figure 11-11. Short and wide table for auto parts.

Each row then consists of many events and is updated as the automobile is put
together on the assembly line. Because cells that have no value take up no space, we

Streaming Pipeline | 397

don’t have to worry about the proliferation of columns over time as new car models
are introduced. Because we will tend to receive events from automobiles being manu‐
factured at the same time, we should ensure that automobile serial numbers are not
consecutive, but instead start with the assembly line number. This way, the writes will
happen on different tablets in parallel, and so the writes will be efficient. At the same
time, diagnostic applications troubleshooting a quality issue will query for all vehicles
made on the same line on a particular day, and will therefore tend to pull consecutive
rows. Service centers may be interested in obtaining all the parts associated with a
specific vehicle. Because the vehicle ID is the row key, this requires reading just a sin‐
gle row, and so, the read performance of such a query will also be very efficient.

Tall and narrow tables often store just one event per row. Every flight event that
comes in could get streamed to a new row in Cloud Bigtable. This way, we can have
multiple states associated with each flight (departed, wheels-off, etc.) and the histori‐
cal record of these. At the same time, for each flight, we have only 20 or so fields, all
of which can be part of the same column family. This makes the streaming updates
easy and intuitive.

Designing the row key. Although the table design of one row per event is very intu‐
itive, we need to design the row key in a way that both writes and reads are efficient.
To make the reads efficient, consider that the most common queries will involve
recent flights between specific airports on a specific carrier (e.g., the status of today’s
flight between SEA and SJC on AS). Using multiple rows, with a single version of an
event in each row, is the simplest way to represent, understand, and query your data.
Tall and narrow tables are most efficient if common queries involve just a scan range
of rows. This can be achieved if the origin and destination airports are part of the key,
as is the carrier. Thus, our row key can start with:

ORIGIN#DEST#CARRIER

Having the row key start with these three fields also helps with optimizing write per‐
formance. While the tablets associated with busy airports like Atlanta might get some
amount of hotspotting, the overload will be counteracted by the many sleepy airports
whose names also start with the letter A. An alphabetical list of airports should there‐
fore help distribute the write load. Notice that I have the carrier at the end of the list
—putting the carrier at the beginning of the row key will have the effect of overload‐
ing the tablets that contain the larger airlines (American and United); because there
are only a dozen or so carriers, there is no chance of this load being counteracted by
smaller carriers.

Because common queries will involve the latest data, scan performance will be
improved if we could store the most current data at the top of the table. Using the
timestamp in the most intuitive way: 2017-04-12T13:12:45Z will have the opposite
effect. The latest data will be at the bottom of the table. Therefore, we need to store
timestamps in reverse order somehow. One way would be to convert timestamps to

398 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

the number of milliseconds since 1970, and then to compute the difference of that
timestamp from the maximum possible long value: (LONG_MAX - milliseconds

SinceEpoch).

Where should the timestamp go? Having the timestamp at the beginning of the row
key would cause the writing to get focused on just one tablet at a time. So, the time‐
stamp needs to be at the end of the row key. In summary, then, our row key will be of
the form:

ORIGIN#DEST#CARRIER#ReverseTimeStamp

But which timestamp? We’d like all the events from a particular flight to have the
same row key, so we’ll use the scheduled departure time in the key. This avoids prob‐
lems associated with the key being different depending on the departure delay.

Streaming into Cloud Bigtable. Creating a Cloud Bigtable instance to stream flight
events into can be done using gcloud:

gcloud bigtable \
 instances create flights \
 --cluster=datascienceongcp --cluster-zone=us-central1-b \
 --description="Chapter 11" --instance-type=DEVELOPMENT

The name of my instance is flights, and the name of the cluster of machines is data
scienceongcp. By choosing a development instance type, I get to limit the costs—the
cluster itself is not replicated or globally available.

To stream into Cloud Bigtable from Bigtable, we need to create a set of Cloud Big‐
table mutations (each mutation consists of a change to a single cell):

class CreateRowFn(beam.DoFn):
 def process(self, event):
 key = "{}#{}#{}#{}".format(event['origin'],
event['dest'],event['carrier'],reverse_ts(event['event_time']))
 result = []
 for name, value in event.items():
 direct_row = row.DirectRow(row_key=key)
 direct_row.set_cell(
 name, value, event['event_time']))
 result.append(direct_row)
 return result

preds | 'to_bigtable' >> beam.io.WriteToBigTable(
 project_id=PROJECT,
 instance_id='flights',
 table_id='predictions'

)

With these changes to the pipeline code, flight predictions from our pipeline can get
streamed to Cloud Bigtable.

Streaming Pipeline | 399

Querying from Cloud Bigtable. One of the conveniences of using BigQuery as the sink
was the ability to carry out analytics using SQL even while the data was streaming in.
Cloud Bigtable also provides streaming analytics, but not in SQL. Because Cloud Big‐
table is a NoSQL store, the typical use case involves hand-coded client applications.
We can, however, use an HBase shell to interrogate the contents of our table.

For example, we can get the latest row in the database by doing a table scan and limit‐
ing it to one:

scan 'predictions', {'LIMIT' => 1}
hbase(main):006:0> scan 'predictions', {'LIMIT' => 1}
ROW COLUMN+CELL
 ABE#ATL#DL#9223370608969975807 column=FL:AIRLINE_ID, timestamp=1427891940,
 ABE#ATL#DL#9223370608969975807 column=FL:ARR_AIRPORT_LAT, timestamp=1427891940
 ABE#ATL#DL#9223370608969975807 column=FL:ARR_AIRPORT_LON, timestamp=1427891940
...

Because the rows are sorted in ascending order of the row key, they end up being
arranged by origin airport, destination airport, and reverse timestamp. That is why
we get the most current flight between two airports that start with the letter A. The
command-line shell outputs one line per cell, so we get several lines even though the
lines all refer to the same row (note that the row key is the same).

The advantage of the way we designed the row key is to be able to get the last few
flights between a pair of airports. For example, here are ontime and EVENT columns of
the latest two flights between O’Hare airport in Chicago (ORD) and Los Angeles (LAX)
flown by American Airlines (AA):

scan 'predictions', {STARTROW => 'ORD#LAX#AA', ENDROW => 'ORD#LAX#AB', COLUMN =>
ROW COLUMN+CELL
 ORD#LAX#AA#9223370608929475807 column=FL:EVENT, timestamp=142792
 ORD#LAX#AA#9223370608929475807 column=FL:ontime, timestamp=142792
 ORD#LAX#AA#9223370608939975807 column=FL:EVENT, timestamp=142793
 ORD#LAX#AA#9223370608939975807 column=FL:ontime, timestamp=142793

Notice that the arrived event has the actual on-time performance (1.00), while the
wheelsoff event has the predicted on-time arrival probability (0.73). It is possible to
write an application that uses a Cloud Bigtable client API to do such queries on the
Cloud Bigtable table and surface the results to end users.

Summary
In this chapter, we augmented the machine learning training dataset with time-
windowed aggregate features. We computed the average departure and taxi-out
delays at the origin airport over the previous hour. This required us to compute a
moving average.

400 | Chapter 11: Time-Windowed Features for Real-Time Machine Learning

https://oreil.ly/8oyry

Apache Beam allows us to compute a time-windowed moving average on historical
data in the same way as we would on streaming data in real time. Cloud Dataflow
allows us to execute data pipelines written using Beam on Google Cloud Platform in
a serverless way.

In order to compute the average arrival delay, we need to emit records with a time‐
stamp. We discovered that we had a logical error of repeated lines in our output. This
turned out to be because we were computing the arrival delay on sliding windows,
and these windows caused each flight object to be present in 12 windows. The solu‐
tion was to determine the slice of the window that the flight object was in and to emit
the flight only if it was the latest slice of the window. With these changes, the pipeline
was logically correct and the entire training and evaluation datasets were created.

Invoking a model that requires moving averages requires that the model be invoked
from a streaming pipeline that continually computes these moving averages. Sending
requests for flights one-at-a-time could prove costly in terms of networking, money,
and time. Fortunately, the mechanism that we use to invoke the service batches up the
requests to the machine learning service from within our Cloud Dataflow pipeline.

Our pipeline reads data from Cloud Pub/Sub and processes it using code that is iden‐
tical to that used in training. Using the same code for serving as we used in training
helps us mitigate training–serving skew. We also employed watermarks and triggers
to get a finer control on how to deal with late-arriving, out-of-order records.

We explored other possible streaming sinks and how to choose between them. As a
hypothetical, we considered a Cloud Bigtable sink to work in situations where high
throughput and low latency are required. We designed an appropriate row key to par‐
allelize the writes while getting speedy reads.

Suggested Resources
The Apache Beam documentation includes a section on common pipeline patterns.
These merit careful reading. For example, I learned from the deadletter pattern that
the WriteToBigQuery transform that I’ve been using for donkey’s years tells you
which rows that it failed to write.

Another list worth periodically reviewing is the list of built-in transforms in Apache
Beam.

Streaming Systems by Tyler Akidau et al. (O’Reilly) is a good way to develop a founda‐
tion in streaming systems concepts.

Suggested Resources | 401

https://oreil.ly/miwXT
https://oreil.ly/K4eKk
https://oreil.ly/iaeqf
https://www.oreilly.com/library/view/streaming-systems/9781491983867/

CHAPTER 12

The Full Dataset

In Chapters 1–11, we built a system for predicting flight delays so as to provide trav‐
elers with guidance on whether they would be likely to make it to their already sched‐
uled meetings. All of the development was carried out on one year of data. In this
chapter, I will change the code to process the full dataset.

All of the code snippets in this chapter are available in the folder
12_fulldataset of the book’s GitHub repository.

Four Years of Data
How well the final model performs can be evaluated only on truly independent data.
Because we used our “test” data to evaluate different models along the way and do
hyperparameter tuning, we cannot use any of the originally ingested data to evaluate
the performance of the model.

Fortunately, though, I did not actually use all of the available data. In order to keep
the datasets small enough that the Dataflow pipelines and ML training jobs would
complete in a couple hours, I have limited all my work so far to 2015. I have not used
2016–2021 data in training, model selection, or hyperparameter tuning.

Let’s fix this. What I am going to do is to train the ML model on data from 2015–2018
and assume that we put the model into production at the end of 2018. How would
that model have fared in 2019? If this works well, it gives us the confidence that we
can train the ML model on a few years of data and then apply it in real time. That
said, you probably realize why I’m not training the model on 2015–2020 and testing
on 2021 data—the world of aviation was turned on its head during 2020–2021 by the

403

https://github.com/GoogleCloudPlatform/data-science-on-gcp

1 I suppose I could have picked a different dataset for the second edition. But most real-world datasets that are
dependent in some way on human behavior exhibit dramatic changes before and after March 2020.

COVID-19 pandemic.1 We will have to retrain the ML model for a post COVID-19
future.

Even between 2015–2018 and 2019, the environment would have changed; the list of
carriers doing business in 2019 is likely to be different from those in 2015. Also, air‐
line schedulers have presumably changed how they schedule flights. The economy
would have been different, and this might lead to more full planes (and hence longer
boarding times). Still, evaluating on 2019 data is a reasonable thing to do—after all, in
the real world, we might have been using our 2015–2018 model and serving it out to
our users in 2019. How would our predictions have fared?

In order to evaluate the performance of a model trained on 2015–2018 data in 2019,
we need to:

• Create the dataset for training, validation, and testing.
• Train the model on the 2015–2018 dataset.
• Evaluate the model on the 2019 data.

Let’s look at each of these steps.

Creating Dataset
Getting 2015–2019 data ready involves repeating the steps we carried out for our
training dataset except doing so on the full dataset (see the README.md file in Chap‐
ter 12 for details on how to reproduce the steps).

Dataset split
In order to achieve this desired data split, I changed the splitting code in
flights_transforms.py to be such that 2019 data is used for test while the rest is split
between training (95%) and validation (5%) using farmhash:

def get_data_split_2019(fl_date):
 fl_date_str = str(fl_date)
 if fl_date_str > '2019':
 data_split = 'TEST'
 else:
 # Use farm fingerprint just like in BigQuery
 x = np.abs(np.uint64(farmhash.fingerprint64(
 fl_date_str)).astype('int64') % 100)
 if x < 95:
 data_split = 'TRAIN'
 else:

404 | Chapter 12: The Full Dataset

 data_split = 'VALIDATE'
 return data_split

Shuffling data
In Chapter 10, when I wrote the TensorFlow code to read in the data, I shuffled the
data within an in-memory buffer that is 10 times the batch size:

if mode == tf.estimator.ModeKeys.TRAIN:
 dataset = dataset.shuffle(batch_size*10)
 dataset = dataset.repeat()

I explained this as being needed for distributed training so that different workers
don’t always see the same slice of the data. Another reason that we wish to shuffle the
data is that it could be clumped based on the way we retrieve and process the records
before writing them out. For example, our Beam pipeline processes the data in hourly
time windows at each airport. So, successive records are likely to all be from the same
airport and the same time. Of course, the file will not be perfectly sorted, just clum‐
ped. But such clumping can cause the model to get stuck in a local optimum. So, as
our dataset size grows, in-memory shuffling will no longer be sufficient to ensure that
a batch remains representative of the overall dataset instead of being from the same
time or same airport.

So, let’s add a reshuffle operation to create_traindata.py:

features = (
 features
 | 'into_global' >> beam.WindowInto(
 beam.window.GlobalWindows())
 | 'shuffle' >> beam.util.Reshuffle()
)

Note that I have been careful to remove the time windowing by putting all the ele‐
ments into the global window. Had I not done that, the reshuffle would have been
only within each time window, and the training data would have been clumped by
time. With this change, the data will get reshuffled globally before it is written out.

Need for continuous training
When I ran the pipeline, though, I discovered that the time correction code failed
because the airports.csv that the script was using was incomplete for the new year.
New airports had been built, and some airport locations had changed, so there were
several unique airport codes that were not present in the original airports file. We
could go out and get the latest airports.csv, but this doesn’t address a bigger problem.
Recall that we used the airport location information in our machine learning model
by creating embeddings of origin and destination airports—such features will not
work properly for new airports. In the real world, especially when we work with
humans and human artifacts (customers, airports, products, etc.), it is unlikely that

Four Years of Data | 405

we will be able to train a model once and keep using it from then on. Instead, models
will have to be continually trained with up-to-date data. Continuous training is a nec‐
essary ingredient in machine learning. Hence, the emphasis on easy operationaliza‐
tion, versioning, and pipelines in Vertex AI—this is a workflow that you will have to
automate.

Continuous Training
What I am doing in this chapter is retraining the model from scratch. I am not using
the 2015 model in any way. I am taking the model code and training it on 2015–2018
data.

An alternative approach is called fine-tuning. When we trained our model, we wrote
out checkpoints—to train the model with new data, we would start from such a
checkpointed model, load it in, and then run a few batches through it, thus adjusting
the weights. This allows the model to slowly adapt to new data without losing its
accumulated knowledge. It is also possible to replace nodes from a checkpointed
graph, or to freeze certain layers and train only others (such as perhaps the embed‐
ding layers for the airports). If you’ve done operations such as learning rate decay,
you’d continue training at the lower learning rate and not restart training with the
highest learning rate. Vertex AI and TensorFlow are designed to accommodate this.

Fine-tuning is faster than retraining. So, if you are doing continuous training, it is
much more common to do fine-tuning than retraining. However, fine-tuning will not
provide the same overall benefit as from-scratch retraining. So, the typical approach
is to fine-tune the model on a daily or weekly basis with new data, but once the
amount of new data has become a significant fraction of the original data (say 5%), go
back and train completely from scratch.

For now, though, I will simply change the code that looks up airport codes to deal
gracefully with the error and impute a reasonable value for the machine learning
code:

def airport_timezone(airport_id, airport_timezones_dict):
 if airport_id in airport_timezones_dict:
 return airport_timezones_dict[airport_id]
 else:
 return ('37.41', '-92.35', u'America/Chicago')

If the airport is not found in the dictionary, the airport location is assumed to be loca‐
ted at (37.41, –92.35), which corresponds to the population center of the United
States in central Missouri as estimated by the US Census Bureau.

406 | Chapter 12: The Full Dataset

https://oreil.ly/ShGzD

More powerful machines
Whereas the 2015 data consisted of about 5 million flights, the 2015–2019 dataset
consists of 30 million flights. Preparing the data doesn’t simply take six times longer
on the same set of machines. One of the key steps in the pipeline involves time win‐
dowing of grouped elements. Because this is a batched pipeline, Dataflow will need to
sort the 30 million flights in order to do time windowing. We can no longer use the
default n1-standard-1 machines that we used for the 2015 data. In order for cre‐
ate_traindata.py to work, I need more workers each with more memory, more com‐
pute, and more storage:

--worker_machine_type=m1-ultramem-40 --disk_size_gb=500

The M1 class of machines on Google Cloud have higher memory. I’m asking for such
a high-memory machine with 40 vCPUs and a persistent disk of 500 GB to store tem‐
porary data.

Even with this increased computational power, creating the training dataset seems to
take forever—when I ran it, the pipeline got bottlenecked by the ability of the
machines to handle the grouped time window (see Figure 12-1). Note that the by_air
port transformation that converts the flight events into a tuple (origin, flight)
has completed and has output 30 million tuples. On the other hand, the
group_by_airport transform is only 79% complete. It is emitting 2,500 elements per
second to subsequent stages and has processed 12.5 million airport time-windows
so far.

Since the dataset has 30 million records, and we are processing only 2,500 records per
second, it will take 12,000 seconds or 3.5 hours to get through this bottleneck. The
stage after that computes statistics on each group (time-window at an airport), and
that one is processing 800 groups/second. Since there are about 105,000 5-minute
intervals in a year and we have 4 years of data and 300 airports, there are 126 million
of these groups. At 800 elements/second, it will take 44 hours or around 2 days to
finish that step.

In reality, it takes less time because not all airport-hour combinations have flights. For
example, many airports do not have flights landing or taking off between midnight
and 5:30 a.m. local time. Smaller airports will not have data for many hours. I did run
the pipeline to completion, and it took 26 hours, indicating that the true number of
groups is about half my estimate.

Four Years of Data | 407

Figure 12-1. The pipeline to create the full dataset is bottlenecked by the group_by_air
port operation, which is able to process only 2,500 elements/second.

408 | Chapter 12: The Full Dataset

2 This is a compromise because the time averages at the beginning of the year will be wrong—flights from
December 31 will not be available to compute the time average on January 1. Still, this affects only a minus‐
cule number of flights and might be a reasonable compromise to make.

3 Sercan Ö. Arik, Tomas Pfister, “TabNet: Attentive Interpretable Tabular Learning,” Proceedings of the AAAI
Conference on Artificial Intelligence, 35 no. 8 (May 2021): 6679-6687. https://arxiv.org/pdf/1908.07442.pdf.

4 Can you tell that I’m ready to finish writing the book?

Is there a way to cut down on the time and resources needed? One way would be to
compromise on accuracy and process each of the years separately.2 This would
require less powerful machines and allow the pipeline to finish faster.

Since this is so expensive in terms of time and resources, I have placed the full dataset
in the data-science-on-gcp bucket. You can copy the data to your bucket instead of
running the Dataflow pipeline:

gsutil cp \
 gs://data-science-on-gcpedition2/ch12_fulldataset/all-00000-of-00001.csv \
 gs://BUCKET/ch11/data/all-00000-of-00001.csv

Training Model
Once the training dataset is created, we have to choose the model to train. Should we
use the AutoML model that got an RMSE of 0.198 or our wide-and-deep model with
location-based feature crosses that achieved an RMSE of 0.195? There are good argu‐
ments for both.

AutoML uses a number of sophisticated models such as neural architecture search,
which builds deep learning networks one layer at a time, and TabNet, which is based
on a sophisticated approach called sequential attention.3 These types of models work
better the more data you have. Just because we beat AutoML on a dataset of 5 million
flights doesn’t mean that we will get to beat it using 30 million flights. On the other
hand, our location-based feature cross and embeddings will improve in quality if we
train them with more data. So, it is conceivable that the custom model will continue
to be better than AutoML. There is no way to know. We’d have to try both
approaches.

However, there is a key reason I want to use AutoML. Recall that we asked AutoML to
write out evaluation data to BigQuery. That capability will come in very handy for
sliced evaluation—for example, we can easily analyze whether our model performs
better on American Airlines flights than on Southwest Airlines. While I could add the
necessary code (to write out evaluation data) to our custom model, that’s a lot of
work.4 Let’s go with AutoML.

Four Years of Data | 409

https://oreil.ly/eJE7F

Training took about 5 hours. The feature importance graph on the full dataset was
similar to the one obtained from the AutoML model trained on 2015 data (see
Figure 12-2). The five most important features in 2015—dep_delay, taxi_out, ori
gin, dest, and carrier—remain the five most important in 2015–2018, although the
order of the fourth and fifth features are switched around.

Figure 12-2. The five most important features in the AutoML model trained on 2015
data are the five most important on 2015–2018 data as well. The first three are identical
while features 4 and 5 are switched around.

The precision and recall curves (see Figure 12-3) seem quite similar.

So far, we have been comparing RMSE (which compares the performance at all
thresholds, not just 0.7) and so, we need to evaluate the 2015–2018 model the same
way. Let’s do that next.

410 | Chapter 12: The Full Dataset

Figure 12-3. The ML model trained and evaluated on subsets of 2015 data (top) seems to
have similar performance to the ML model trained on 2015–2018 data and evaluated
on 2019 data.

Evaluation
We can dig deeper into the performance characteristics using Vertex Workbench (see
evaluations.ipynb).

RMSE
We can start with the query to compute the RMSE:

%%bigquery
SELECT
 SQRT(SUM(
 (CAST(ontime AS FLOAT64) - predicted_ontime.scores[OFFSET(0)])*
 (CAST(ontime AS FLOAT64) - predicted_ontime.scores[OFFSET(0)])
)/COUNT(*)) AS rmse
FROM dsongcp.ch10_automl_evaluated

Four Years of Data | 411

This results in an RMSE of 0.1998. Rounding to three decimal places, this is 0.2,
which is slightly worse when compared to the 0.198 that we got from training and
evaluating on subsets of 2015 data. As expected, performance does drop a bit when
we evaluate on a dataset from a completely different time period.

Confusion matrix
The difference between this RMSE calculation and the evaluation shown in
Figure 12-3 is that the RMSE is over all thresholds, whereas the precision and recall
are for a single threshold. Let’s compute the confusion matrix at a specific threshold:

DECLARE thresh FLOAT64;
SET thresh = 0.7;

SELECT
 *,
 ROUND(num_1_as_1 / (num_1_as_1 + num_1_as_0), 2) AS frac_1_as_1,
 ROUND(num_1_as_0 / (num_1_as_1 + num_1_as_0), 2) AS frac_1_as_0,
 ROUND(num_0_as_1 / (num_0_as_1 + num_0_as_0), 2) AS frac_0_as_1,
 ROUND(num_0_as_0 / (num_0_as_1 + num_0_as_0), 2) AS frac_0_as_0
FROM (
 SELECT
 thresh,
 COUNTIF(CAST(ontime AS FLOAT64) > 0.5 AND
 predicted_ontime.scores[OFFSET(0)] > thresh) AS num_1_as_1,
 COUNTIF(CAST(ontime AS FLOAT64) > 0.5 AND
 predicted_ontime.scores[OFFSET(0)] <= thresh) AS num_1_as_0,
 COUNTIF(CAST(ontime AS FLOAT64) <= 0.5 AND
 predicted_ontime.scores[OFFSET(0)] > thresh) AS num_0_as_1,
 COUNTIF(CAST(ontime AS FLOAT64) <= 0.5 AND
 predicted_ontime.scores[OFFSET(0)] <= thresh) AS num_0_as_0
 FROM dsongcp.ch10_automl_evaluated
)

The result shows that 4% of on-time flights are misclassified as being late, and 13% of
late flights are misclassified as being on time:

Row thresh num_1_

as_1

num_1_

as_0

num_0_

as_1

num_0_

as_0

frac_1_

as_1

frac_1_

as_0

frac_0_

as_1

frac_0_

as_0

1 0.7 5633570 245409 184545 1204708 0.96 0.04 0.13 0.87

Impact of threshold
We can expand this to multiple thresholds using an array in SQL:

WITH counts AS (
 SELECT
 thresh,
 COUNTIF(CAST(ontime AS FLOAT64) > 0.5 AND
 predicted_ontime.scores[OFFSET(0)] > thresh) AS num_1_as_1,

412 | Chapter 12: The Full Dataset

 COUNTIF(CAST(ontime AS FLOAT64) > 0.5 AND
 predicted_ontime.scores[OFFSET(0)] <= thresh) AS num_1_as_0,
 COUNTIF(CAST(ontime AS FLOAT64) <= 0.5 AND
 predicted_ontime.scores[OFFSET(0)] > thresh) AS num_0_as_1,
 COUNTIF(CAST(ontime AS FLOAT64) <= 0.5 AND
 predicted_ontime.scores[OFFSET(0)] <= thresh) AS num_0_as_0
 FROM UNNEST([0.5, 0.7, 0.8]) AS thresh, dsongcp.ch10_automl_evaluated
 GROUP BY thresh
)

SELECT
 *,
 ROUND(num_1_as_1 / (num_1_as_1 + num_1_as_0), 2) AS frac_1_as_1,
 ROUND(num_1_as_0 / (num_1_as_1 + num_1_as_0), 2) AS frac_1_as_0,
 ROUND(num_0_as_1 / (num_0_as_1 + num_0_as_0), 2) AS frac_0_as_1,
 ROUND(num_0_as_0 / (num_0_as_1 + num_0_as_0), 2) AS frac_0_as_0
FROM counts
ORDER BY thresh ASC

which returns:

Row thresh num_1_

as_1

num_1_

as_0

num_0_

as_1

num_0_

as_0

frac_1_

as_1

frac_1_

as_0

frac_0_

as_1

frac_0_

as_0

1 0.5 5763136 115843 258138 1131115 0.98 0.02 0.19 0.81

2 0.7 5633570 245409 184545 1204708 0.96 0.04 0.13 0.87

3 0.8 5498807 380172 146200 1243053 0.94 0.06 0.11 0.89

As we’d expect, the fraction of on-time flights that we get correct decreases the higher
we make our threshold. Conversely, the fraction of late flights that we get correct
increases.

Impact of a feature
We can also check whether what the model understood about the data is reasonable.
For example, the relation between model prediction and departure delay can be
obtained using:

SELECT
 ROUND(predicted_ontime.scores[OFFSET(0)], 2) AS prob_ontime,
 AVG(CAST(dep_delay AS FLOAT64)) AS dep_delay,
FROM dsongcp.ch10_automl_evaluated
GROUP BY prob_ontime
ORDER BY prob_ontime ASC

The query pulls out the average departure delay associated with each predicted prob‐
ability. For example, what is the average departure delay associated with model pre‐
dictions of 0.8? We can plot the converse graph as well:

SELECT
 ROUND(predicted_ontime.scores[OFFSET(0)], 2) AS prob_ontime,

Four Years of Data | 413

 AVG(CAST(dep_delay AS FLOAT64)) AS dep_delay,
FROM dsongcp.ch10_automl_evaluated
GROUP BY prob_ontime
ORDER BY prob_ontime ASC

Both graphs, when plotted, are eminently smooth and reasonable (see Figure 12-4).
At higher on-time probabilities, we see lower departure delays. And at lower depar‐
ture delays, we see higher probabilities. This is what we would expect.

Figure 12-4. The average departure delay associated with probabilities predicted by the
model (left) and the average prediction for specific departure delays (right).

Analyzing errors
We can also analyze the difference in the relationship of departure delay to errors in
the model:

WITH preds AS (
 SELECT
 CAST(ontime AS FLOAT64) AS ontime,
 ROUND(predicted_ontime.scores[OFFSET(0)], 2) AS prob_ontime,
 CAST(dep_delay AS FLOAT64) AS var,
 FROM dsongcp.ch10_automl_evaluated
)

SELECT
 prob_ontime,
 AVG(IF((ontime > 0.5 and prob_ontime <= 0.5) or
 (ontime <= 0.5 and prob_ontime > 0.5), var, NULL)) AS wrong,
 AVG(IF((ontime > 0.5 and prob_ontime > 0.5) or
 (ontime <= 0.5 and prob_ontime <= 0.5), var, NULL)) AS correct
FROM preds
GROUP BY prob_ontime
ORDER BY prob_ontime

Plotting this shows that our model has a very similar dependency on departure delay
(see Figure 12-5). This makes sense because departure delay is the most important
feature. When we look at the next best feature (taxi-out time), differences start to

414 | Chapter 12: The Full Dataset

show up. It’s clear that the model makes more errors when the taxi-out time is small
but the flight nevertheless arrives late.

Figure 12-5. The model makes more errors when the taxi-out time is lower than usual
but the flight nevertheless arrives late.

Categorical features
Analyzing the impact of categorical features is more difficult—there are more than
300 airports, and it’s difficult to make sense of so many different values.

To understand whether the model learned the difference between airports, we can
examine the model behavior in terms of the probability that it predicts for a given
departure delay at two different airports: New York’s JFK airport and Seattle’s SEA air‐
port (see Figure 12-6). A 25-minute delay at Seattle is associated with a lower on-time
arrival probability than the same delay at JFK. The model discounts long departure
delays at New York—these are common enough that airline schedulers take them into
account when publishing scheduled arrival times.

Figure 12-6. Departure delays between 10 and 50 minutes are associated with lower
probabilities predicted by the model in Seattle versus New York’s John F. Kennedy
airport.

Four Years of Data | 415

Because there are only a handful of carriers, we can plot the probability versus depar‐
ture delay relationship of all the carriers. As you can see in Figure 12-7, at a departure
delay of 20 minutes, the model predicts a lower on-time arrival probability for Alaska
Airlines (AS) than for Delta Airlines (DL).

Figure 12-7. The model outputs different probabilities when different carriers encounter
the same departure delay. See it in color online.

Alaska Airlines operates mostly on the West Coast of the United States and encoun‐
ters significantly fewer weather-related delays than Delta Airlines. Therefore, it makes
sense that a 20-minute departure delay on Alaska Airlines is more significant than the
same delay on Delta Airlines.

It appears that our 2015–2018 model would have performed quite well in 2019. 2020,
with its COVID-19 pandemic, is of course a completely separate story. Hopefully, we

416 | Chapter 12: The Full Dataset

https://oreil.ly/dsgcp_12-7

would have been continuously evaluating the predictions, caught the deterioration of
the model once many flights started to get canceled, and taken our model out of
production.

Summary
In this chapter, we looked at how to train the model on the full dataset and how to
evaluate model performance. Having now built an end-to-end system, work moves
on to continually improving it and constantly refreshing it with data.

Suggested Resources
When developing and evaluating ML models, keep responsible AI principles and
practices in mind.

Summary | 417

https://oreil.ly/0JN81
https://oreil.ly/0JN81

Conclusion

In Chapter 1, we discussed the goals of data analysis, how to provide data-driven
guidance using statistical and machine learning models, and the roles that will be
involved with such work in the future. We also formulated our case study problem—
of recommending whether a traveler should cancel a scheduled meeting based on the
likelihood of the flight that they are on being delayed.

In Chapter 2, we automated the ingest of flight data from the Bureau of Transporta‐
tion Statistics website. We started out by reverse engineering a web form, writing
Python scripts to download the necessary data, and storing the data on Google Cloud
Storage. Finally, we made the ingest process serverless by creating a Cloud Run appli‐
cation to carry out the ingest and made it invokable from Cloud Scheduler.

In Chapter 3, we discussed why it was important to bring end users’ insights into our
data modeling efforts as early as possible. We achieved this by building a dashboard
in Data Studio and populated this dashboard from Cloud SQL. The dashboard was
used to explain a simple contingency table model that predicted on-time arrival likeli‐
hood by thresholding the departure delay of the flight.

In Chapter 4, we simulated the flight data as if it were arriving in real time, used the
simulation to populate messages into Cloud Pub/Sub, and then processed the stream‐
ing messages in Cloud Dataflow. In Cloud Dataflow, we computed aggregations and
streamed the results into BigQuery. Because Cloud Dataflow follows the Beam pro‐
gramming model, the code for streaming and batch is the same, and this greatly sim‐
plifies the training and operationalization of machine learning models in the rest of
the book.

In Chapter 5, we carried out interactive data exploration by loading our dataset into
Google BigQuery and plotting charts using Vertex Workbench. The model we used in
this chapter was a non-parametric estimation of the 30th percentile of arrival delays.
It was in this chapter that we also divided up our dataset into two parts—one part for
training and the other for evaluation. We discussed why partitioning the dataset
based on date was the right approach for this problem.

419

In Chapter 6, we created a Bayes model on a Cloud Dataproc cluster. The Bayes
model itself involved quantization in Spark and on-time arrival percentage computa‐
tion using Apache Pig. Cloud Dataproc allowed us to integrate BigQuery, Spark SQL,
and Apache Pig into a Hadoop workflow. Because we stored our data on Google
Cloud Storage (and not HDFS), our Cloud Dataproc cluster was job-specific and
could be job-scoped, thus limiting our costs. At the end of the chapter, we briefly
looked at serverless Spark, which promises to allow us to forget about cluster man‐
agement completely.

In Chapter 7, we built a logistic regression machine learning model using Apache
Spark. The model had three input variables, all of which were continuous features.
On adding categorical features, we found that the resulting explosion in the size of
the dataset caused scalability issues. There were also significant hurdles to taking the
logistic regression model and making it operational in terms of achieving low-latency
predictions.

In Chapter 8, we built machine learning models in SQL using BigQuery ML. We
found that the scalability of BigQuery made it possible to use sparse categorical fea‐
tures and sophisticated models such as gradient boosted trees quite easily. BigQuery
ML also allowed us to separate out the transformations needed, so that we could
ensure that those transformations were carried out during inference as well.

In Chapter 9, we used TensorFlow to create a wide-and-deep model with hand-
crafted features. This resulted in a high-performing model for predicting the on-time
arrival probability.

In Chapter 10, we scaled out the training of the TensorFlow model using Vertex AI,
carried out hyperparameter tuning, and deployed the model so as to be able to carry
out online predictions and get explainability. We also automated the entire process by
creating a Vertex AI training pipeline.

In Chapter 11, we built a Cloud Dataflow pipeline to compute time-aggregate features
to use as inputs to the machine learning model. This involved the use of time win‐
dows. We also created a streaming pipeline to invoke the deployed model as a micro‐
service, batching up calls to it and adding flight predictions as we receive and process
flight data in real time.

In Chapter 12, we evaluated the model on completely independent data, learning that
continuous training of our ML model is a necessity.

Throughout this book, as we worked our way through a data science problem end-to-
end, from ingest to machine learning, the realization struck me that this is now a lot
easier than it ever has been. I was able to do everything from simple thresholds, to
Bayesian techniques, to deep neural networks, with surprisingly little effort. At the
same time, I was able to ingest data, refresh it, build dashboards, do stream process‐
ing, and operationalize the ML model with very little code. At the start of my career,

420 | Conclusion

80% of the time to answer a data science question would be spent building the
plumbing to get at the data. Operationalizing a machine learning model was some‐
thing on the same scale as developing it in the first place. Google Cloud Platform,
though, is designed to allow you to forget about infrastructure, and operationalizing a
machine learning model is something you can fold into the model development
phase itself. The practice of data science has become easier thanks to the advent of
serverless data processing and machine learning systems that are integrated into pow‐
erful statistical and visualization software tools.

I can’t wait to see what you build next.

Conclusion | 421

APPENDIX

Considerations for Sensitive Data Within
Machine Learning Datasets

The content of this appendix, written by the author and Brad Svee,
was published as a solution paper on the Google Cloud Platform
documentation website.

When you are developing an ML program, it’s important to balance data access
within your company against the security implications of that access. You want
insights contained in the raw dataset to guide ML training even as access to sensitive
data is limited. To achieve both goals, it’s useful to train ML systems on a subset of the
raw data, or on the entire dataset after partial application of any number of aggrega‐
tion or obfuscation techniques.

For example, you might want your data engineers to train an ML model to weigh cus‐
tomer feedback on a product, but you don’t want them to know who submitted the
feedback. However, information such as delivery address and purchase history is crit‐
ically important for training the ML model. After the data is provided to the data
engineers, they will need to query it for data exploration purposes, so it is important
to protect your sensitive data fields before making it available. This type of dilemma
is also common in ML models that involve recommendation engines. To create a
model that returns user-specific results, you typically need access to user-specific
data.

Fortunately, there are techniques you can use to remove some sensitive data from
your datasets while still training effective ML models. This article aims to highlight
some strategies for identifying and protecting sensitive information, and processes to
help address security concerns you might have with your ML data.

423

https://oreil.ly/qvXek
https://oreil.ly/qvXek

Handling Sensitive Information
Sensitive information is any data that you and your legal counsel want to protect with
additional security measures such as restricted access or encryption. For example,
fields such as name, email address, billing information, or information that could
allow a data engineer or malicious actor to indirectly deduce the sensitive informa‐
tion are often considered sensitive.

Standards such as HIPAA and PCI-DSS specify a set of best practices for protecting
sensitive data, while also informing customers about the way their sensitive data is
supposed to be handled. These certifications allow customers to make informed deci‐
sions about the security of their information.

Handling sensitive data in ML datasets can be difficult for the following reasons:

• Most role-based security is targeted toward the concept of ownership, which
means a user can view and/or edit their own data but can’t access data that
doesn’t belong to them. The concept of ownership breaks down with ML datasets
that are an aggregate of data from many users. Essentially, data engineers need to
be granted view access to an entire set of data in order to effectively use the
dataset.

• Encrypting or reducing the resolution of sensitive fields is often used as a preven‐
tive measure, but isn’t always sufficient for an ML dataset. The aggregate dataset
itself often provides the means of breaking the encryption through frequency
analysis attacks.

• Random tokenization, suppression, or removal of the sensitive fields from the
dataset can degrade effective ML model training by obscuring necessary data,
resulting in poor performance of your predictions.

Organizations often develop tools and a set of best practices in order to strike an
appropriate balance between security and utility. To help protect sensitive data in ML
datasets, keep in mind the following three goals, which are discussed in the rest of
this document:

• Identify sensitive data in the dataset with a high level of confidence.
• Protect sensitive data without adversely impacting the project. This can be

accomplished by removing, masking, or coarsening the data you have deter‐
mined to be sensitive.

• Create a governance plan and best practices documentation. This allows your
data engineers as well as customers to make appropriate decisions about your
sensitive data, particularly those scenarios where the sensitive data cannot be
identified reliably, masked, or removed.

424 | Considerations for Sensitive Data Within Machine Learning Datasets

https://oreil.ly/BjnMY
https://oreil.ly/BjnMY

These three goals are discussed in detail in the following sections, which focus on sce‐
narios where your datasets remain private within your company. This article does not
cover scenarios where the datasets are meant to be shared publicly.

Sensitive data might exist in your environment in several scenarios. The following
sections cover five of the most common scenarios and present methods you can use
to identify sensitive data in each.

Sensitive Data in Columns
Sensitive data can be restricted to specific columns in structured datasets. For exam‐
ple, you might have a set of columns containing a user’s first name, last name, and
mailing address. In this case, you identify which columns have sensitive data, decide
how to secure them, and document these decisions.

Sensitive Data in Natural Language Datasets
Sensitive data can be part of an natural language dataset, and it can often be detected
using known patterns. For example, credit card numbers in chat transcripts can be
reliably detected using a common regular expression pattern for credit card numbers.
Regular expression detection errors, leading to misclassification, can be minimized
using more complex tools like the Google Data Loss Prevention API (DLP API).

Sensitive Data in Free-Form Unstructured Data
Sensitive data can exist in free-form unstructured data such as text reports, audio
recordings, photographs, or scanned receipts. These datasets make it considerably
more difficult to identify your sensitive data, but there are many tools available to
help you:

• For free-text documents, you might use a natural language processing system
such as the Cloud Natural Language API to identify entities, email addresses, and
other sensitive data.

• For audio recordings, you can use a speech-to-text service such as the Cloud
Speech API, and subsequently apply the natural language processor.

• For images, you can use a text-detection service such as the Cloud Vision API to
yield raw text from the image and isolate the location of that text within the
image. The Vision API can provide the coordinates for locations of some targe‐
ted items within images, and you might use this information, for example, to
mask all faces from images of a cash register line before training a machine learn‐
ing model to estimate average customer wait times.

Considerations for Sensitive Data Within Machine Learning Datasets | 425

https://oreil.ly/GAG14
https://oreil.ly/8GIeF
https://oreil.ly/V2jDD
https://oreil.ly/V2jDD
https://oreil.ly/4ar4W

• For videos, you can parse each video into individual picture frames and treat
them as image files, or you can use a video processing tool such as the Cloud
Video Intelligence API along with the Cloud Speech API to process the audio.

These techniques are still subject to the review and approval of your own legal coun‐
sel and depend on how well your systems are able to process free text, transcribe
audio, understand images, and segment video in order to identify potential sensitive
data. The Google APIs listed previously, as well as the DLP API, are powerful tools
you can incorporate into your preprocessing pipeline. However, these automated
methods are imperfect, and you will want to consider maintaining a governance pol‐
icy to deal with any sensitive information that remains after scrubbing.

Sensitive Data in a Combination of Fields
Sensitive data can exist as a combination of fields, or manifest from a trend in a pro‐
tected field over time. For example, a standard practice to reduce the likelihood of
identifying a user is to blur the last two zip-code digits, reducing the zip code from
five to three (“zip3”). However, a combination of zip3 associated with work and a
zip3 associated with a home address might be enough to identify users with unusual
home-work combinations. Similarly, a zip3 home address trend over time might be
enough to identify an individual who has moved several times.

Identifying whether a dataset is truly protected in the face of a frequency analysis
attack requires statistical expertise. Any scenario dependent upon human experts
presents scalability challenges and can paradoxically require the same data engineer
scrubbing the data to inspect the raw data for potential problems. Ideally, you would
create automated ways to identify and quantify this risk, a task beyond the scope of
this article.

Regardless, you should work with your legal counsel and data engineers to assess
your exposure to risk in these scenarios.

Sensitive Data in Unstructured Content
Sensitive data sometimes exists in unstructured content because of embedded contex‐
tual information. For example, a chat transcript might include the phrase “I called
yesterday from my office. I had to go to the eighteenth floor lobby by the Cafe Deluxe
Espresso, because the fourth floor has poor mobile reception.”

Based on the context and scope of your training data and advice of your legal counsel,
you might want to filter aspects of this content. Due to the unstructured nature and
large set of complex combinations of phrases that could enable similar inferences,
this is a difficult scenario to address with programmatic tools, but it is worth consid‐
ering tighter governance around access to the entire unstructured dataset.

426 | Considerations for Sensitive Data Within Machine Learning Datasets

https://oreil.ly/024qh
https://oreil.ly/024qh

For model development it is often effective to take a subsample of this data that has
been scrubbed and reviewed by a trusted person and make it available for model
development. You would then be able to use security restrictions and software auto‐
mation to process the full dataset through the production model training process.

Protecting Sensitive Data
After you have identified your sensitive data, you must determine how to protect it.

Removing Sensitive Data
If user-specific information is not necessary for your project, consider deleting all
that information from the dataset before it is provided to the data engineers building
your ML model. However, as discussed earlier, there are cases where removing the
sensitive data dramatically reduces the value of the dataset and in these cases, sensi‐
tive data should be masked using one or more of the techniques discussed in the fol‐
lowing section.

Depending on the structure of the dataset, removing sensitive data requires different
approaches:

• When data is restricted to specific columns in structured datasets, you can create
a view that doesn’t provide access to the columns in question. The data engineers
cannot view the data, but at the same time the data is “live” and doesn’t require
human intervention to de-id it for continuous training.

• When sensitive data is part of unstructured content, but it’s identifiable using
known patterns, it can be automatically removed and replaced by a generic
string. This is how the DLP API addresses this challenge.

• When sensitive data exists within images, videos, audio, or unstructured free-
form data, you can extend the tools you’ve deployed to identify the sensitive data
to mask or remove it.

• When sensitive data exists because of a combination of fields, and you have
incorporated automated tools or manual data analysis steps to quantify the risk
posed by each column, your data engineers can make informed decisions about
retaining or removing any relevant column.

Masking Sensitive Data
When you can’t remove sensitive data fields, it might still be possible for your data
engineers to train effective models with the data in a masked format. If your data
engineers determine that some or all of the sensitive data fields can be masked
without impacting the ML training, you can use several techniques to mask the data:

Considerations for Sensitive Data Within Machine Learning Datasets | 427

• The most common approach is to use a substitution cipher, which involves
replacing all occurrences of a plain-text identifier by its hashed and/or encrypted
value. It is generally accepted as a best practice to use a strong cryptographic hash
such as SHA-256, or a strong encryption algorithm such as AES-256 to store all
sensitive fields. It is important to remember that using a salt with your encryp‐
tion will not create repeatable values and is detrimental to ML training.

• Tokenization is a masking technique that substitutes an unrelated placeholder
value for the real value stored in each sensitive field. The mapping of the place‐
holder value to the real value is encrypted/hashed in a completely different and
presumably more secure database. It is worth noting that this method works for
ML datasets only if the same token value is reused for identical values. In this
case, it is akin to a substitution cipher and is vulnerable to frequency analysis
attacks. The primary difference is that tokenization adds an additional layer of
protection by pushing the encrypted values into a separate database.

• Another method of protecting data with multiple columns uses Principal Com‐
ponents Analysis (PCA) or other dimension-reducing techniques to combine
several features and then carry out ML training on only the resulting PCA vec‐
tors. For example, given three different fields (age, smoker—represented as 1 or
0—and body-weight), the data might get condensed into a single PCA column
that uses the following equation:

1.5 age + 30 smoker + 0.2 × body-weight

Somebody who is 20 years old, smokes, and weighs 140 pounds generates a value
of 88. This is the same value generated by someone who is 30 years old, doesn’t
smoke, and weighs 215 pounds.
This method can be quite robust because even if one identifies individuals who
are unique in some way, it is hard to determine what makes them unique without
an explanation of the PCA vector formula. However, all PCA processing reduces
the data distribution and trades accuracy for security.

As previously noted, it is sometimes possible to break a substitution cipher using a
priori knowledge of the frequency with which different identifiers occur “in the wild,”
and deriving inferences from the actual occurrence of the various encrypted identifi‐
ers. For example, the distribution of first names in a public dataset of baby names can
be used to infer the likely set of names for a particular encrypted identifier. Given that
bad actors might have access to the complete dataset, encryption, hashing, and toke‐
nization are vulnerable to frequency analysis attacks. Generalization and quantization
use a many-to-one mapping in their substitution, and the corresponding inference is
slightly weaker but still vulnerable to a frequency analysis attack. Because ML datasets

428 | Considerations for Sensitive Data Within Machine Learning Datasets

https://oreil.ly/RKGjO
https://oreil.ly/OzrII
https://oreil.ly/HvmbK
https://oreil.ly/HvmbK
https://oreil.ly/2blCy
https://oreil.ly/uJ1bc

have a number of corresponding variables, the frequency analysis attack can use
joint-probabilities of occurrence, potentially making the cipher much easier to crack.

Therefore, all masking methods have to be combined with an effective auditing and
governance mechanism to restrict access to all ML datasets that could potentially
contain sensitive data. This includes datasets where all the sensitive fields have been
suppressed, encrypted, quantized, or generalized.

Coarsening Sensitive Data
Coarsening is another technique used to decrease the precision or granularity of data
in order to obscure sensitive data within the dataset, while maintaining comparable
benefits versus training your model with the pre-coarsened data. The following fields
are particularly well-suited to this approach:

Locations
Population density varies across the globe, and there is no easy answer to how
much you should round off location coordinates. For example, decimal-based
latitudes and longitudes, rounded off to single-digit precision (e.g., –90.3,
approximately within 10 km), might be sufficient to pinpoint residents of rural
areas with large farms. When rounding is insufficient for coordinates, you can
use location identifiers such as city, state, or zip code. These cover much larger
areas, making it harder to distinguish one single individual. Choose a large
enough bucket size to adequately obfuscate the unique characteristics of any one
row.

Zip codes
US zip codes in a 5 + 4 form can identify a household, but can be coarsened to
include just the first three digits (“zip3”). This limits the ability to identify a spe‐
cific user by putting many users into the same bucket. Again, you might want to
quantify this risk since extremely large datasets enable increasingly sophisticated
attacks.

Numeric quantities
Numbers can be binned to make them less likely to identify an individual. For
example, an exact birthday is often not required, just the decade or month a user
was born. Therefore, ages, birthdays, and similar numeric fields can be coarsened
by substituting ranges.

IP addresses
IP addresses are often part of any machine learning workflow that involves appli‐
cation logs, and they are often treated like physical addresses in terms of sensitiv‐
ity. A good coarsening technique is to zero out the last octet of IPv4 addresses
(the last 80 bits if using IPv6). This has the same function as rounding off the
latitude/longitude or reducing a street address to a zip code, trading geographic

Considerations for Sensitive Data Within Machine Learning Datasets | 429

https://oreil.ly/6b4tr

accuracy for more protection. Engage in IP address coarsening as early in the
pipeline as possible: you might even be able to modify your logging software to
mask or suppress IP addresses before writing them to disk.

Establishing a Governance Policy
If your datasets have any amount of sensitive data, I recommend that you consult
legal counsel to establish some sort of governance policy and best practices documen‐
tation. The details of your policy are left to you, and there are many resources avail‐
able, such as the PCI Security Standards Council’s Best Practices for Maintaining PCI
DSS Compliance, and the ISO/IEC 27001:2013 security technique requirements. The
following list also contains a number of common concepts you can consider when
establishing your policy framework:

• Establish a secure location for governance documentation.
• Exclude encryption keys, hash functions, and other tools from your

documentation.
• Document all known sources of incoming sensitive data.
• Document all known locations of stored sensitive data along with what type of

data is present. Include all remediation steps that have been taken to protect it.
• Document known sensitive data locations where remediation steps are difficult,

inconsistent, or impossible. This covers situations where it is suspected that fre‐
quency analysis attacks could be used.

• Establish a process to continually scan for and identify new sources of sensitive
data.

• Document the roles and (possibly) individual employee names who have been
granted temporary or permanent access to sensitive data. Include information as
to why they required the access.

• Document the processes by which employees request access to sensitive data.
Specify where they can access sensitive data; if, how, and where they can copy it;
and any other restrictions associated with access.

• Establish a process to regularly review who has access to what sensitive data and
determine whether access is still required. Outline what to do when employees
leave or change roles as part of an off-boarding process.

• Establish a process to communicate, enforce, and regularly review the policies.

430 | Considerations for Sensitive Data Within Machine Learning Datasets

https://oreil.ly/M2Uja
https://oreil.ly/M2Uja
https://oreil.ly/J7l6k

Index

A
access control, Google BigQuery, 57-60
activation function, 313
aggregated streaming data, 162-164

(see also time-windowed aggregate features)
agile architecture, 22-25

defined, 23
managed services, 24
no-code/low-code decisions, 23

air traffic corridors, 323
Airline On-time Performance Data, 29-36
analytics data warehouse, 95

(see also BigQuery)
Analytics Hub, 133
Anscombe's quartet, 176
Apache Airflow, 239
Apache Beam

augmenting dataset with aggregate features
using, 358

batching, 384
data pipeline construction, 135
filtering events, 362
input and output, 379-380
installing into Python environment, 137
invoking model, 380
possible streaming sinks, 393-400
Python syntax, 137
reusing endpoint stub, 381-384
reusing transforms, 377
starting points, 359
streaming predictions, 376-385

Apache Hive, 217
Apache Pig, 216

Apache Spark (see Spark; time-windowed
aggregate features)

arrival delays, departure delays and, 199-203
auditability, 2
AutoML, 341-343
AutoML Tables, 374
autoscaling, 239, 269-271

B
Bash, 65
batch aggregation, 162
batch processing, 160
Bayesian classification, 231-237

comparing to single threshold model,
235-237

defined, 221
departure delay bins and, 231-232
dynamically resizing clusters, 233-235
model evaluation, 232

Beam (see Apache Beam)
BI (see business intelligence)
BigQuery

access control, 57-60
advantages of a serverless columnar data‐

base, 55
analyzing streaming data in, 168
as columnar database, 55
creating view, 100
as database choice for recording predic‐

tions, 394
Google Cloud Storage versus, 57
independence check using, 223-225
ingesting CSV files, 61
loading data into, 55-63

431

partitioning, 62
preparing data for TensorFlow, 314-315
pricing, 56
querying using, 96-101
reading events from, 361
schema exploration, 96-97
sharing data in, 132
staging data on Cloud Storage, 57
streaming pipelines and, 385
using Preview, 97
using Table Explorer, 99

%%bigquery magic environment, 189
BigQuery ML, 283-307

categorical variable, 303
data split, 285
hyperparameter tuning, 292-294
interrogating the model, 286
logistic regression, 283-290
as low-code system, 304
model evaluation, 287-289
models in Vertex AI, 329
nonlinear machine learning, 290-296
scalability/simplicity of, 289
time features, 300-305
time window features, 296-300
TRANSFORM clause, 302
Vertex AI AutoML tables, 294

BigQuery Omni, 45
Bigtable (see Cloud Bigtable)
boosting, 292
Brewer's theorem, 53
bucketing, 324
bucketizing, 276
buckets

Cloud Dataproc and, 216
cost budgets for, 51
for uploading data to Google Cloud Storage,

51-54
Bureau of Transportation Statistics, US, 18, 29
business intelligence (BI), 119-122

connected sheets, 122
digitization, 119
Looker versus Data Studio, 106
natural language queries, 120

C
C++, Python versus, 66
CAP theorem, 54
case studies, benefits of, 10

categorical features, 278
categorical variables, 278-280, 303
causality constraints, 31
causality principle, 31
CDF (cumulative distribution function), 16-18
cells, in notebooks, 187
charts, creating in Data Studio, 109
clipping, 273
Cloud Bigtable

as database choice for recording predic‐
tions, 396-400

as database choice for recording predic‐
tions, 395

designing row keys, 398
designing tables, 397
querying from, 400
streaming into, 399
streaming sinks and, 396-400

Cloud Composer, 239
cloud computing, advantages of, 11
Cloud Dataflow

for augmenting time average dataset, 359
benefits of, 135
Cloud Dataproc versus, 243
data pipeline construction, 135
as database choice for recording predic‐

tions, 394
real-time stream processing in, 160-162

Cloud Dataproc, 214-220
autoscaling, 239
Cloud Dataflow versus, 243
dynamically resizing clusters, 233-235
jobs versus clusters, 217
JupyterLab on, 222
need for higher-level tools, 216
preinstalling software, 219
serverless Spark and, 240

Cloud Firestore, 395
Cloud Identity and Access Management (Cloud

IAM), 58, 60
Cloud Platform Console, 89
Cloud Pub/Sub

creating events for publishing in, 146
publishing a batch of events, 159
publishing event streams to, 153-159
speed-up factor, 154
timestamps, 363
watermarks, 391

Cloud Run, 71-76

432 | Index

basics, 71-72
deploying/invoking, 74
scheduling, 75-76
security, 72

(see also sensitive data)
Cloud Scheduler, 64, 75-76
Cloud Shell, 20, 47
Cloud Spanner, 395
Cloud SQL

creating instances, 89-91
as database choice for recording predic‐

tions, 395
interacting with database, 95
loading data into, 88-96

Cloud Storage (see Google Cloud Storage)
cluster management, 233-235
code cell, 187
Colossus, 44
columnar databases, 55
comma-separated values (CSV) files (see CSV

files)
compounding delays, 298
Compute Engine, 39, 43, 177
conditional probability, 221
confusion matrix, 101
Connected Sheets, 122
contingency table, 101, 117-119
controls, end-user, 110-112
Coordinated Universal Time (UTC), 127,

133-153, 141-144
cost control, 51
cron job, 63
cross-entropy, 251
CSV files

exploration and cleanup, 50
federated queries and, 130
ingesting into Google BigQuery, 61
reading from GCS into TensorFlow,

315-317
staging on Cloud Storage, 57

cumulative distribution function (CDF), 16-18
curse of dimensionality, 245

D
dashboards, 81-124

accuracy and honesty in, 86-88
adding context to, 125
basics, 81-82
building with Data Studio, 106-119

contingency table, 101
creating Google Cloud SQL instances, 89-91
explaining model with, 83-88
initial model, 101-106
loading data into Google Cloud SQL, 88-96
modern business intelligence and, 119-122
real-time stream processing and, 169
reasons to build first, 84
table creation, 91-94
threshold optimization, 103-106

data analysis
primary purpose, 1

data analytics, data science versus, 4
data exploration (see interactive data explora‐

tion)
data pipeline

building with Apache Beam/Cloud Data‐
flow, 135

running pipelines in the cloud, 150-152
data processing architectures

scaling out, 41-46
scaling up, 39

data science models, evaluating, 260-263
data science, data analytics versus, 4
data scientists

best practices, 10-13
collaboration with other teams, 9
full stack cloud data scientists, 8
role in data-driven decisions, 5-10

data split
BigQuery ML, 285
for case study data, 404
machine learning dataset, 368
MLOPs, 340

data streaming (see streaming data)
Data Studio

basics, 107
chart creation, 109
dashboard construction with, 106-119
end-user controls, 110-112
explaining contingency tables, 117-119
Looker versus, 106
pie-chart creation, 112-116

data warehouse (see BigQuery)
data-driven decisions (see decisions, data-

based)
data-related jobs, 9
data-related roles, 9
Dataflow (see Cloud Dataflow)

Index | 433

Dataplex, sharing data in, 133
Dataproc (see Cloud Dataproc)
dataset, for case study, 403-417

analyzing errors, 414
categorical features, 415-417
confusion matrix, 412
creating dataset, 404-409
data split, 404
evaluation, 411-417
feature impact, 413
need for continuous training, 405
RMSE computation, 411
shuffling data, 405
threshold impact, 412
time and resource expense, 407-409
training model, 409-410

date correction, 144-146
decision criterion, 15
decision support, 5
decision threshold, for arrival delays, 203
decision tree, 291
decisions, data-based, 1-27

data analytics versus data science, 4
probabilistic decisions, 13-18
purpose of collecting data, 1-4

Deep Learning VM, 40
deep neural networks (DNNs), 312-313, 322
dimensionality reduction, 280
distributions, plotting, 191-194
duplicates, removing, 365-367

E
EDA (see exploratory data analysis)
elasticity, 12
ELT (extract-load-transform) pipelines, 23, 35
embedding, 280, 326
empirical probability distribution function, 202
end-user controls, 110-112
endpoint, reusing, 381-384

per-worker instance, 382
shared handle, 381

ETL (extract-transform-load) pipelines, 128
event feeds

architecture, 128
creating events to publish in Pub/Sub, 146
designing, 126-133
obtaining airport geographic information,

129-132

publishing event stream to Cloud Pub/Sub,
153-159

publishing event streams, 153-159
sharing data, 132-133
transformations and, 127

event timestamps, 165
eventual consistency, 53
explainability

configuring explanations metadata, 350
creating/deploying model, 352
dashboards and, 83-88
obtaining explanations, 352
Vertex AI and, 350-354

exploratory data analysis (EDA)
arrival/departure delay analysis, 199-203
basics, 174-184
dashboards and, 81
exploration with SQL, 177-179
exploring arrival delays, 190-203
model evaluation, 199-203
origins, 173
random shuffling, 204
reading a query explanation, 179-184
splitting by date, 205
training and testing, 206-209
Vertex AI Workbench and, 184-190

exponential distribution, 388
extract-load-transform (ELT) pipelines, 23, 35
extract-transform-load (ETL) pipelines, 128

F
feature cross, 303, 325
feature engineering, 263-281, 318
feature selection, 267-271

defined, 264
removing features, 271

feature transformations, 271-274
clipping, 273
scaling, 272

features
defined, 263
input versus, 275

federated queries, 130
filtering data, 197-199
fine-tuning, 406
flattening, 161
frequency analysis attack, 424

434 | Index

G
GCS (see Google Cloud Storage)
geographical maps, 86
GFS (Google File System), 44
GitHub repository URL, 19
Google BigQuery (see BigQuery)
Google Cloud Composer, 239
Google Cloud Dataflow (see Cloud Dataflow)
Google Cloud Dataproc (see Cloud Dataproc)
Google Cloud Run (see Cloud Run)
Google Cloud Scheduler (see Cloud Scheduler)
Google Cloud Shell (see Cloud Shell)
Google Cloud SQL (see Cloud SQL)
Google Cloud Storage (GCS)

BigQuery versus, 57
reading/writing time correction to, 148-150
sharing data in, 132
staging ground for ingesting data into Big‐

Query, 57
uploading data to, 51-55

Google Colossus, 44
Google Compute Engine (see Compute Engine)
Google data centers, 44
Google Data Studio (see Data Studio)
Google Dataflow (see Cloud Dataflow)
Google Deep Learning VM, 40
Google File System (GFS), 44
Google Looker, Data Studio versus, 106
Google Sheet, 122
Google Vertex AI (see Vertex AI)
GPUs (graphics processing units), 260
graphics

in dashboard design, 86-88
in EDA, 175

H
Hadoop

Google Cloud Dataproc and, 214-220
MapReduce and Hadoop ecosystem,

211-214
Hadoop Distributed File System (HDFS), 216,

218
held-out dataset, 266
heuristics, 3
hexbin plot, 223
histogram equalization, 227-230
hub-and-spoke architecture, 34
hyperparameter tuning, 292-294

best trial to completion, 349

metrics during training, 347
model parameterizing, 344
pipeline, 347
shortening training run, 345-346
Vertex AI, 343-350

I
ingesting data into the cloud, 29-79, 46-55

downloading data, 48-49
exploration and cleanup, 50
loading data into Google BigQuery, 55-63
reverse engineering a web form, 46-47
scheduling monthly downloads, 63-76

initialization actions, 220
input, feature versus, 275
interactive data exploration, 173-210, 260-263

J
Java, Python versus, 66
jitter, 387-389, 390-391
Jupyter Notebooks

cells in, 187
commands, 188
creating a notebook, 186
installing Python packages, 188
magic for Google Cloud, 189-190
Vertex AI Workbench and, 185-186

JupyterLab
Google Cloud Dataproc and, 222
Jupyter Notebook as key unit of work, 185
Spark SQL in, 225-227
using local Python module from, 336

K
Keras

deep neural networks, 322
feature columns, 318
inputs, 320
model function, 317
model training, 320
saving/exporting model, 322
training and evaluation in, 317-322
wide-and-deep model, 323-327

kernel density plot, 192
(see also violin plot)

L
L-BFGS algorithm, 251

Index | 435

L2 regularization, 292
labels, defined, 249
late records, 387-392
local times, converting to UTC, 133-153,

141-144
logistic function, 247
logistic loss function, 251
logistic regression, 245-282

basics, 246-251
BigQuery ML and, 283-290
data split, 285
hyperparameter tuning, 292-294
interrogating the model, 286
making predictions, 259
methodology, 246-249
model evaluation, 260-263, 287-289
nonlinear machine learning, 290-296
Spark ML and, 245-282
Spark ML library for, 249
Spark ML regression choices, 251-263
Spark ML setup, 250
time features, 300-305
time window features, 296-300
training dataset creation, 252-256
training the model, 256-258
Vertex AI AutoML tables, 294
XGBoost, 290-292

logit, 247
Looker, Data Studio versus, 106
low-code system, 23, 304

M
machine learning, 106

(see also BigQuery ML; MLOPs; SparkML;
TensorFlow; Vertex AI)

feature engineering, 263-281
nonlinear, 290-296
requirements for model to be put into pro‐

duction, 335
streaming pipelines, 385-400
streaming predictions, 376-385
threshold optimization and, 106
training, 367-376

machine learning dataset, 367-372
data split, 368
distance bug, 369
label computation, 367
monitoring and verification, 370-372

machine learning training, 367-376

dataset for, 367-372
training the model, 373-376

map operations, 41
MapReduce, 41

Apache Hadoop and, 214
Hadoop ecosystem and, 211-214
mechanism of operation, 212
presharding and, 42

markdown cell, 187
materialized view, 101
Matplotlib, 188
MLlib, 249
MLOPs

data split, 340
developing and deploying using Python,

336-343
using AutoML with pipeline, 341-343
Vertex AI and, 335-355
writing model.py, 337
writing training pipeline, 338-340

model evaluation, 204-209
random shuffling, 204
splitting by date, 205
training and testing, 206-209

model training, 256-258, 373-376
AutoML model, 374
custom model, 376

model, defined, 249
model.py, 337
mutations, 399

N
narrative graphics, 86
natural language queries, 120
neural networks, 312-313, 322
no-code system, 23, 304
nonlinear machine learning, 290-296

hyperparameter tuning, 292-294
Vertex AI AutoML tables, 294
XGBoost, 290-292

normal distribution, 389-392
notebooks, 186

(see also Jupyter Notebooks)
creating, 186

notify() method, 158
NumPy, 188

O
Occam's Razor, 11, 263

436 | Index

odds, 247
one-hot encoding, 278-280
orchestration

Apache Spark, 237-242
autoscaling, 239
Cloud Composer, 239
serverless Spark, 240
submitting a Spark job, 238
workflow template, 238

out-of-order records, 387-392
exponential distribution, 388
normal distribution, 389-391
uniformly distributed delay, 388
watermarks and triggers, 391

outliers
recognizing, 194
removing, 195-197

overfitting, 274, 311

P
Pandas, 188
parameterized queries, 156
parsimony, principle of, 11, 263
PCA (Principal Components Analysis), 428
PDF (probability density function), 15
pie charts, 112-116
Pig Latin, 216

(see also Apache Pig)
polling, 63
PostgreSQL, 89
prediction, defined, 249
presharding, 42, 44
Preview (BigQuery functionality), 97
Principal Components Analysis (PCA), 428
principle of parsimony, 11, 263
probabilistic decision making, 13-18

cumulative distribution function, 16-18
data and tools for, 18-22
probabilistic approach, 14
probability density function, 15

probability, 247
probability density function (PDF), 15
Pub/Sub (see Cloud Pub/Sub)
publishing event streams to Cloud Pub/Sub,

153-159
building a batch of events, 158
events per topic, 156
getting records to publish, 155
iterating through records, 157

publishing a batch of events, 159
speed-up factor, 154

PyCharm, 360
Python

Apache Beam Python syntax, 137
data split, 340
ingesting data in, 65-71
installing packages in Notebooks, 188
MLOPs and, 336-343
using AutoML with pipeline, 341-343
using local module from JupyterLab, 336
writing model.py, 337
writing training pipeline, 338-340

Q
quality control, 194-199

filtering data on occurrence frequency,
197-199

recognizing outliers, 194
removing outliers, 195-197

quality flags, reliability of, 197
quantization thresholds

dynamically resizing clusters, 233-235
histogram equalization and, 227-230
independence check using BigQuery,

223-225
JupyterLab on Google Cloud Dataproc, 222
Spark SQL and, 221-230
Spark SQL in JupyterLab, 225-227
two-variable versus single threshold,

235-237
queries

natural language, 120
reading a query explanation, 179-184
row key design and, 398

R
real-time machine learning

time averages, 357-367
time-windowed features for, 357-401

real-time stream processing, 160-168
analyzing streaming data in BigQuery, 168
dashboard for, 169
event timestamps and, 165
executing stream processing, 166-166
streaming aggregation, 162-164
streaming in Dataflow, 160-162
windowing pipelines, 162

receiver operating characteristic (ROC), 288

Index | 437

Rectified Linear Units (ReLUs), 313
reduce operations, 41
relational databases, 88, 95
relational graphics, 86
ReLUs (Rectified Linear Units), 313
REST APIs, 91
ROC (receiver operating characteristic), 288

S
Scala, Python versus, 66
scaling

data engineer's role in, 7
feature transformations and, 272

scaling out, 41-46
with data-in-place, 43-46
with sharded data, 41-42

scaling up, 39
Seaborn, 188
secondary machines, 234
Secure Shell (SSH), 216
security

Google Cloud Run, 72
semantics of data, 2
sensitive data, 423-430

bucket names and, 51
coarsening, 429
in columns, 425
in combinations of fields, 426
in free-form unstructured data, 425
governance policy for, 430
handling of, 424-427
masking, 427-429
protecting, 427-430
removing, 427
in unstructured content, 426
in unstructured text-based datasets, 425

serverless
defined, 13

serverless columnar databases, 55
serverless services, 12
serverless Spark, 240
service account

audit records and, 58
defined, 58
running Cloud Run as, 72

sharding, 41-42
shuffling data, 204, 405
sliced evaluation, 409
sliding windows, 363

slots, 56
soft quota, 268
Spark

Hadoop and, 217
orchestration, 237-242
serverless, 240
submitting a Spark job, 238

Spark ML
algorithms included in, 249
logistic regression choices, 251-263
logistic regression using, 245-282
making predictions, 259
model evaluation, 260-263
model training, 256-258
training dataset creation, 252-256

Spark SQL
in JupyterLab, 225-227
quantization using, 221-230

speed-up factor, 154
splitting data (see data split)
SQL, exploratory data analysis with, 177-179
SSH (Secure Shell), 216
stream processing, 160
streaming aggregation, 162-164

batch aggregation versus, 162
streaming data

basics, 125
data pipeline creation with Apache Beam/

Cloud Dataflow, 135
event feed design, 126-133
publication and ingest with Pub/Sub and

dataflow, 125-171
publishing event streams to Cloud Pub/Sub,

153-159
real-time stream processing, 160-168
time correction, 133-153

streaming pipelines, 385-400
executing, 386
late/out-of-order records, 387-392
writing to BigQuery, 385

streaming predictions, 376-385
batching, 384
input and output, 379-380
invoking model, 380
possible streaming sinks, 393-400
reusing endpoint stub, 381-384
reusing transforms, 377

streaming sinks, 393-400
choosing a sink, 394-396

438 | Index

Cloud Bigtable, 396-400
strong consistency, 53
substitution cipher, 428
supervised learning, 249, 310

T
Table Explorer, 99
tables

contingency table, 101, 117-119
creating, 91-94
Vertex AI AutoML tables, 294

taxi-out time, 296-298
TensorFlow, 309-333

creating more complex models, 310-317
deploying a trained model to Vertex AI,

327-332
machine learning with, 309-333
preparing BigQuery data for, 314-315
reading data into, 315-317
training and evaluation in Keras, 317-322
uploading model, 328

test dataset, 265
three-sigma rule, 198
threshold optimization, 103-106
time averages

augmenting dataset with aggregate features
using Apache Beam, 358

Cloud Dataflow and, 359
filtering events, 362
local JSON input, 361
reading and writing, 360-362
reading from BigQuery, 361
real-time machine learning and, 357-367
time windowing, 362-367

time correction, 133-153
adding time zone information, 139
converting times to UTC, 141-144
correcting dates, 144-146
creating events from time-corrected data,

146
parsing airport data, 136-139
reading/writing to the cloud, 148-150
running pipelines in the cloud, 150-152
steps in, 133

time features, 300-305
categorical variable, 303
departure hour, 300
feature cross, 303
TRANSFORM clause, 302

time series graphics, 86
time windowing, 362-367

assigning a timestamp, 363
moving average computation, 364
removing duplicates, 365-367
sliding windows, 363

time zones
latitude/longitude correspondence, 139
offsets, 127, 134, 275

time, storing, 134
time-windowed aggregate features, 357-401

BigQuery ML and, 296-300
causality, 299
compounding delays, 298
ML training, 367-376
streaming pipelines, 385-400
streaming predictions, 376-385
taxi-out time, 296-298
time averages, 357-367

time-windowed analytics, 162
timestamps

assigning, 363
best practices for storing, 134
real-time stream processing and event time‐

stamps, 165
tokenization, 428
training datasets, 252-256

(see also data split)
corner cases, 253-255
creating training examples, 255

training examples, creating, 255
training, defined, 249
training-serving skew, 32, 250
TRANSFORM clause, 302
transformations (see feature transformations)
triggers, 391

U
uploading data, 51-55
UTC (see Coordinated Universal Time (UTC))

V
Vertex AI

BigQuery ML models in, 329
creating endpoint, 330
deploying a trained TensorFlow model to,

327-332
deploying model to endpoint, 330
explainability, 350-354

Index | 439

getting ready for MLOps with, 335-355
(see also MLOps)

hyperparameter tuning, 343-350
invoking deployed model, 331
TensorFlow in (see TensorFlow)

Vertex AI AutoML service, 294
Vertex AI Workbench

creating a Python notebook, 186
exploratory data analysis in, 184-190
Jupyter commands, 188
Jupyter Notebooks and, 185-186

violin plots, 191-194
visualization, 82

(see also dashboards)
Vizier, 344
vocabulary, 279, 319

W
watermarks (Apache Beam), 391
web forms, reverse engineering of, 46-47
wide-and-deep model

air traffic corridors represented in, 323
bucketing, 324
feature crossing, 325
in Keras, 323-327
wide_and_deep_classifier, 326

workflow template, 238

X
XGBoost, 290-292

440 | Index

About the Author
Valliappa (Lak) Lakshmanan is the director of analytics and AI solutions at Google
Cloud, where he leads a team building cross-industry solutions to business problems.
His mission is to democratize machine learning so that it can be done by anyone any‐
where. Lak is also the author or coauthor of Practical Machine Learning for Computer
Vision, Machine Learning Design Patterns, Data Governance: The Definitive Guide, and
Google BigQuery: The Definitive Guide (all O’Reilly).

Colophon
The animal on the cover of Data Science on the Google Cloud Platform is a buff-
breasted sandpiper (Calidris subruficollis). While most sandpipers are considered
shorebirds, this species is uncommon near the coast. It breeds in tundra habitat in
Canada and Alaska, and migrates thousands of miles to South America during win‐
ter, flying over the Midwest region of the United States. Some small flocks can be
found in Great Britain and Ireland.

Buff-breasted sandpipers are small birds, about 7–9 inches in length and with an
average wingspan of 18 inches. They have brown plumage on their backs, as well as
light tan chests that give them their common name. During mating season, the birds
gather on display grounds (called “leks”) where the males point their bills upward,
raise their wings to show the white undersides, and shake their body. They may mate
with multiple females if successful. Female sandpipers have separate nesting grounds,
where they lay eggs on the ground in a shallow hole lined with moss, leaves, and
other plant matter. Insects are the primary food source of the sandpiper; it hunts by
sight by standing still and making a short run forward to catch the prey in its short
thin bill.

Outside of breeding season, buff-breasted sandpipers prefer habitat with short grass:
plowed fields and golf courses are common resting places for the birds as they pass
through or winter in developed areas. They are currently classified as Near Threat‐
ened due to pesticide use, as well as habitat loss in their Arctic breeding grounds.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Birds III. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Making Better Decisions Based on Data
	Many Similar Decisions
	The Role of Data Scientists
	Scrappy Environment
	Full Stack Cloud Data Scientists
	Collaboration

	Best Practices
	Simple to Complex Solutions
	Cloud Computing
	Serverless

	A Probabilistic Decision
	Probabilistic Approach
	Probability Density Function
	Cumulative Distribution Function

	Choices Made
	Choosing Cloud
	Not a Reference Book
	Getting Started with the Code

	Agile Architecture for Data Science on Google Cloud
	What Is Agile Architecture?
	No-Code, Low-Code
	Use Managed Services

	Summary
	Suggested Resources

	Chapter 2. Ingesting Data into the Cloud
	Airline On-Time Performance Data
	Knowability
	Causality
	Training–Serving Skew
	Downloading Data
	Hub-and-Spoke Architecture
	Dataset Fields

	Separation of Compute and Storage
	Scaling Up
	Scaling Out with Sharded Data
	Scaling Out with Data-in-Place

	Ingesting Data
	Reverse Engineering a Web Form
	Dataset Download
	Exploration and Cleanup
	Uploading Data to Google Cloud Storage

	Loading Data into Google BigQuery
	Advantages of a Serverless Columnar Database
	Staging on Cloud Storage
	Access Control
	Ingesting CSV Files
	Partitioning

	Scheduling Monthly Downloads
	Ingesting in Python
	Cloud Run
	Securing Cloud Run
	Deploying and Invoking Cloud Run
	Scheduling Cloud Run

	Summary
	Code Break
	Suggested Resources

	Chapter 3. Creating Compelling Dashboards
	Explain Your Model with Dashboards
	Why Build a Dashboard First?
	Accuracy, Honesty, and Good Design

	Loading Data into Cloud SQL
	Create a Google Cloud SQL Instance
	Create Table of Data
	Interacting with the Database

	Querying Using BigQuery
	Schema Exploration
	Using Preview
	Using Table Explorer
	Creating BigQuery View

	Building Our First Model
	Contingency Table
	Threshold Optimization

	Building a Dashboard
	Getting Started with Data Studio
	Creating Charts
	Adding End-User Controls
	Showing Proportions with a Pie Chart
	Explaining a Contingency Table

	Modern Business Intelligence
	Digitization
	Natural Language Queries
	Connected Sheets

	Summary
	Suggested Resources

	Chapter 4. Streaming Data: Publication and Ingest with Pub/Sub and Dataflow
	Designing the Event Feed
	Transformations Needed
	Architecture
	Getting Airport Information
	Sharing Data

	Time Correction
	Apache Beam/Cloud Dataflow
	Parsing Airports Data
	Adding Time Zone Information
	Converting Times to UTC
	Correcting Dates
	Creating Events
	Reading and Writing to the Cloud
	Running the Pipeline in the Cloud

	Publishing an Event Stream to Cloud Pub/Sub
	Speed-Up Factor
	Get Records to Publish
	How Many Topics?
	Iterating Through Records
	Building a Batch of Events
	Publishing a Batch of Events

	Real-Time Stream Processing
	Streaming in Dataflow
	Windowing a Pipeline
	Streaming Aggregation
	Using Event Timestamps
	Executing the Stream Processing
	Analyzing Streaming Data in BigQuery

	Real-Time Dashboard
	Summary
	Suggested Resources

	Chapter 5. Interactive Data Exploration with Vertex AI Workbench
	Exploratory Data Analysis
	Exploration with SQL
	Reading a Query Explanation

	Exploratory Data Analysis in Vertex AI Workbench
	Jupyter Notebooks
	Creating a Notebook
	Jupyter Commands
	Installing Packages
	Jupyter Magic for Google Cloud

	Exploring Arrival Delays
	Basic Statistics
	Plotting Distributions
	Quality Control
	Arrival Delay Conditioned on Departure Delay

	Evaluating the Model
	Random Shuffling
	Splitting by Date
	Training and Testing

	Summary
	Suggested Resources

	Chapter 6. Bayesian Classifier with Apache Spark on Cloud Dataproc
	MapReduce and the Hadoop Ecosystem
	How MapReduce Works
	Apache Hadoop

	Google Cloud Dataproc
	Need for Higher-Level Tools
	Jobs, Not Clusters
	Preinstalling Software

	Quantization Using Spark SQL
	JupyterLab on Cloud Dataproc
	Independence Check Using BigQuery
	Spark SQL in JupyterLab
	Histogram Equalization

	Bayesian Classification
	Bayes in Each Bin
	Evaluating the Model
	Dynamically Resizing Clusters
	Comparing to Single Threshold Model

	Orchestration
	Submitting a Spark Job
	Workflow Template
	Cloud Composer
	Autoscaling
	Serverless Spark

	Summary
	Suggested Resources

	Chapter 7. Logistic Regression Using Spark ML
	Logistic Regression
	How Logistic Regression Works
	Spark ML Library
	Getting Started with Spark Machine Learning

	Spark Logistic Regression
	Creating a Training Dataset
	Training the Model
	Predicting Using the Model
	Evaluating a Model

	Feature Engineering
	Experimental Framework
	Feature Selection
	Feature Transformations
	Feature Creation
	Categorical Variables
	Repeatable, Real Time

	Summary
	Suggested Resources

	Chapter 8. Machine Learning with BigQuery ML
	Logistic Regression
	Presplit Data
	Interrogating the Model
	Evaluating the Model
	Scale and Simplicity

	Nonlinear Machine Learning
	XGBoost
	Hyperparameter Tuning
	Vertex AI AutoML Tables

	Time Window Features
	Taxi-Out Time
	Compounding Delays
	Causality

	Time Features
	Departure Hour
	Transform Clause
	Categorical Variable
	Feature Cross

	Summary
	Suggested Resources

	Chapter 9. Machine Learning with TensorFlow in Vertex AI
	Toward More Complex Models
	Preparing BigQuery Data for TensorFlow
	Reading Data into TensorFlow

	Training and Evaluation in Keras
	Model Function
	Features
	Inputs
	Training the Keras Model
	Saving and Exporting
	Deep Neural Network

	Wide-and-Deep Model in Keras
	Representing Air Traffic Corridors
	Bucketing
	Feature Crossing
	Wide-and-Deep Classifier

	Deploying a Trained TensorFlow Model to Vertex AI
	Concepts
	Uploading Model
	Creating Endpoint
	Deploying Model to Endpoint
	Invoking the Deployed Model

	Summary
	Suggested Resources

	Chapter 10. Getting Ready for MLOps with Vertex AI
	Developing and Deploying Using Python
	Writing model.py
	Writing the Training Pipeline
	Predefined Split
	AutoML

	Hyperparameter Tuning
	Parameterize Model
	Shorten Training Run
	Metrics During Training
	Hyperparameter Tuning Pipeline
	Best Trial to Completion

	Explaining the Model
	Configuring Explanations Metadata
	Creating and Deploying Model
	Obtaining Explanations

	Summary
	Suggested Resources

	Chapter 11. Time-Windowed Features for Real-Time Machine Learning
	Time Averages
	Apache Beam and Cloud Dataflow
	Reading and Writing
	Time Windowing

	Machine Learning Training
	Machine Learning Dataset
	Training the Model

	Streaming Predictions
	Reuse Transforms
	Input and Output
	Invoking Model
	Reusing Endpoint
	Batching Predictions

	Streaming Pipeline
	Writing to BigQuery
	Executing Streaming Pipeline
	Late and Out-of-Order Records
	Possible Streaming Sinks

	Summary
	Suggested Resources

	Chapter 12. The Full Dataset
	Four Years of Data
	Creating Dataset
	Training Model
	Evaluation

	Summary
	Suggested Resources

	Conclusion
	Appendix A. Considerations for Sensitive Data Within Machine Learning Datasets
	Handling Sensitive Information
	Sensitive Data in Columns
	Sensitive Data in Natural Language Datasets
	Sensitive Data in Free-Form Unstructured Data
	Sensitive Data in a Combination of Fields
	Sensitive Data in Unstructured Content

	Protecting Sensitive Data
	Removing Sensitive Data
	Masking Sensitive Data
	Coarsening Sensitive Data

	Establishing a Governance Policy

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

