
https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

EditorsMark Stamp, Mamoun Alazab and Andrii Shalaginov
Malware	Analysis	Using	Arti�icial
Intelligence	and	Deep	Learning1st ed. 2021

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

EditorsMark StampDepartment of Computer Science, San Jose State University, San Jose,CA, USAMamoun AlazabCollege of Engineering, IT & Environment, Charles Darwin University,Darwin, NT, AustraliaAndrii ShalaginovFaculty of Information Technology and Electrical Engineering,Norwegian University of Science and Technology, Gjøvik, Norway
ISBN 978-3-030-62581-8 e-ISBN 978-3-030-62582-5https://doi.org/10.1007/978-3-030-62582-5© The Editor(s) (if applicable) and The Author(s), under exclusivelicense to Springer Nature Switzerland AG 2021This work is subject to copyright. All rights are solely and exclusivelylicensed by the Publisher, whether the whole or part of the material isconcerned, speci�ically the rights of translation, reprinting, reuse ofillustrations, recitation, broadcasting, reproduction on micro�ilms or inany other physical way, and transmission or information storage andretrieval, electronic adaptation, computer software, or by similar ordissimilar methodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks,service marks, etc. in this publication does not imply, even in theabsence of a speci�ic statement, that such names are exempt from therelevant protective laws and regulations and therefore free for generaluse.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5

The publisher, the authors and the editors are safe to assume that theadvice and information in this book are believed to be true andaccurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, expressed or implied, withrespect to the material contained herein or for any errors or omissionsthat may have been made. The publisher remains neutral with regardto jurisdictional claims in published maps and institutional af�iliations.This Springer imprint is published by the registered company SpringerNature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham,Switzerland

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

PrefaceArti�icial intelligence (AI) is changing the world as we know it. From itshumble beginnings in the late 1940s as little more than an academiccuriosity, AI has gone through multiple boom and bust cycles. Withrecent advances in machine learning (ML) and deep learning (DL), AIhas �inally taken root as a fundamental transformative technology. Thechanges wrought by AI already affect virtually every aspect of daily life,yet we are clearly only in the early stages of an AI-based revolution.In the �ield of information security, there is no topic that is moresigni�icant than malware. The sheer volume of malware and the cost ofdealing with its consequences are truly staggering. It is thereforetimely to consider ML, DL, and AI in the context of malware analysis.The chapters in this book apply numerous cutting-edge AItechniques to a wide variety of challenging problems in the malwaredomain. The book includes no less than 8 survey articles, which canserve to bring a reader quickly up to speed with the current state of theart. The heart of the book consists of 11 chapters that are tightlyfocused on AI-based techniques for malware analysis. We have alsoincluded 6 chapters where AI is applied to information security topicsthat are not strictly malware, but are closely related.We are con�ident that this book will prove equally valuable topractitioners working in the trenches and to researchers at all levels.New and novel techniques as well as clever applications abound, yet wehave strived to make the material accessible to the widest possibleaudience. It is our fervent hope—and �irm belief—that the tools andtechniques presented in the chapters of this book will play a major rolein taming the malware threat.
Mark	Stamp

Mamoun	Alazab
Andrii	Shalaginov

San	Jose,	USA
Darwin,	Australia
Gjøvik,	Norway
December	2020

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Contents
Surveys
A	Selective	Survey	of	Deep	Learning	Techniques	and	Their
Application	to	Malware	AnalysisMark Stamp

1	Introduction
2	A	Brief	History	of	ANNs
3	Why	Deep	Learning?	
4	Decisions,	Decisions
5	Multilayer	Perceptrons

5.	1	Overview	of	MLPs
5.	2	MLPs	in	Malware	Analysis

6	Convolutional	Neural	Networks
6.	1	Overview	of	CNNs
6.	2	Convolutions	and	CNNs
6.	3	Example	CNN
6.	4	CNNs	in	Malware	Analysis

7	Recurrent	Neural	Networks
7.	1	Backpropagation	Through	Time
7.	2	Long	Short-Term	Memory
7.	3	Gated	Recurrent	Units
7.	4	Recursive	Neural	Network
7.	5	Last	Word	on	RNNs
7.	6	RNNs	in	Malware	Analysis

8	Residual	Networks
8.	1	ResNet	in	Malware	Analysis

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

9	Generative	Adversarial	Network
9.	1	GANs	in	Malware	Analysis

10	Extreme	Learning	Machines
10.	1	ELMs	in	Malware	Analysis

11	Word	Embedding	Techniques
11.	1	HMM2Vec
11.	2	PCA2Vec
11.	3	Word2Vec
11.	4	Word	Embeddings	in	Malware	Analysis

12	Conclusion
References

Malware	Detection	with	Sequence-Based	Machine	Learning	and
Deep	LearningWilliam B. Andreopoulos

1	Introduction
2	Data	Extraction

2.	1	Static	Data
2.	2	Dynamic	Data
2.	3	Hybrid	Analysis
2.	4	Alternative	Approaches	That	Use	Raw	Data
2.	5	Evaluation	of	Malware	Detection	Accuracy

3	Recent	Research	Examples
3.	1	Hybrid	Analysis

4	HMM	Architecture
4.	1	Training	for	Malware	Detection
4.	2	Metamorphic	Malware	Detection

5	LSTM	Architecture

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5.	1	LSTM	Training
6	Tools

6.	1	IDA	Pro
6.	2	OllyDbg
6.	3	Ether
6.	4	API	Logger
6.	5	WinAPIOverride
6.	6	API	Monitor
6.	7	BSA

7	Conclusion
References

Review	of	the	Malware	Categorization	in	the	Era	of	Changing
Cybethreats	Landscape:		Common	Approaches,	Challenges	and
Future	NeedsAndrii Shalaginov, Geir Olav Dyrkolbotn and Mamoun Alazab

1	Introduction
2	Background:		From	Malware	Developers	to	Malware	Analysts

2.	1	Severity	of	Malware	Infection	and	Modus	Operandi
2.	2	Detection	and	Approach	Strategy
2.	3	Preliminary	Analysis	and	Dissection
2.	4	Malware	Categorization	and	Cybersecurity	Awareness

3	Malware	Classi�ication:		State	of	the	Art
3.	1	Characteristics-Based	Detection	for	Multinomial
Classi�ication
3.	2	Commonly	Used	Malware	Naming
3.	3	Auxiliary	Software	Tools	and	Research	Datasets

4	Analysis	of	Community—and	Commercially—Accepted
Malware	Taxonomies

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4.	1	Overall	Software	Category
4.	2	Risk	Level/	Threat	Level
4.	3	Malware	Targets/	Platforms/	Operating	Systems
4.	4	Malware	Type/	General	Categories
4.	5	Malware	Family/	Functionality-Speci�ic	Categories
4.	6	System	and	Digital	Forensic-Related	Artefacts
4.	7	Malware	Variants
4.	8	Malware	Name	Suf�ix
4.	9	Binary	Compilation	Timestamps/	Timeline
4.	10	Country/	Adversarial	Groups	Origins

5	Review	of	the	Existing	Anti-virus	Naming	Schemes
5.	1	Computer	Antivirus	Research	Organization	(CARO)
5.	2	Common	Malware	Enumeration	(CME)
5.	3	Malware	Attribute	Enumeration	and	Characterization	
(MAEC)
5.	4	Malware	Information	Sharing	Platform	(MISP)

6	Analysis	of	Existing	Approaches	to	Malware	Categorization
7	Practical	Implications	of	Malware	Naming	in	the	Light	of	Big
Data
8	Discussions	and	Conclusions
References

Addressing	Malware	Attacks	on	Connected	and	Autonomous
Vehicles:		Recent	Techniques	and	ChallengesAiman Al-Sabaawi, Khamael Al-Dulaimi, Ernest Foo andMamoun Alazab

1	Introduction
1.	1	Important	Technologies	in	Intelligent	Transportation
System	in	Smart	Cities

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1.	2	Bene�its	of	Intelligent	Transportation	System
1.	3	Challenges	of	Intelligent	Transportation	System

2	Literature	Review
2.	1	Attack
2.	2	Defence
2.	3	Detect

3	Recent	Techniques	and	Challenges
4	Conclusion
References

A	Survey	of	Intelligent	Techniques	for	Android	Malware	DetectionRajesh Kumars, Mamoun Alazab and WenYong Wang
1	Introduction
2	Static,	Dynamic,	and	Hybrid	Analysis	of	Android	Malware
Background

2.	1	Static	Analysis
2.	2	Dynamic	Analysis
2.	3	Hybrid	Analysis
2.	4	A	Comparison	of	Static,	Dynamic,	and	Hybrid	Analysis

3	Android	Malware	Detection	Approaches
3.	1	Basic	Proposed	Framework	to	Detect	Android	Malware
3.	2	Basic	Proposed	Algorithms	for	Android	Malware
Features
3.	3	Feature	Selection-Based	Algorithms
3.	4	Association	Rule-Based	Algorithms
3.	5	Model	Evaluation	Measures

4	Experimental	Analysis	and	Dataset	Discussion
4.	1	Publicly	Available	Most	Popular	Dataset

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4.	2	Dataset	Other	Research	Work
5	Experimental	Analysis

5.	1	Permission-Based	Experimental	Analysis
5.	2	Clustering-Based	Experimental	Analysis
5.	3	Classi�ication	Experimental	Analysis

6	Additional	Challenges	of	Android	Malware	Detection
7	Conclusion
References

Deep	Learning	in	Malware	Identi�ication	and	Classi�icationBalram Yadav and Sanjiv Tokekar
1	Malware	and	Malware	Analysis

1.	1	Malware
1.	2	Malware	Analysis
1.	3	Malware	Classi�ication

2	Deep	Learning
2.	1	What	is	Deep	Learning?	
2.	2	Deep	Learning	Algorithms
2.	3	Steps	for	Building	a	Deep	Learning	Model

3	Malware	Classi�ication	Based	on	Malware	Visualization	and
Deep	Learning

3.	1	Related	Work:		Recent	Innovations	in	Malware
Classi�ication	Using	Deep	Learning	and	Visualization
3.	2	Performance	Metrics:		To	Measure	the	Performance	of
the	Deep	Learning	Model
3.	3	A	Practical	Implementation	of	Malware	Classi�ication
Using	CNN	and	Malware	Image	Visualization

4	Challenges	and	Open	Issues
5	Conclusion

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

References
Review	of	Arti�icial	Intelligence	Cyber	Threat	Assessment
Techniques	for	Increased	System	SurvivabilityNikolaos Doukas, Peter Stavroulakis and Nikolaos Bardis

1	Introduction
2	AI	Support	to	Survivability

2.	1	Security	Threat	Detection	for	Preventive	Survivability
2.	2	Email	Message	Filtering	by	Linear	Classi�iers
2.	3	Malware	Detection
2.	4	Collusion	Attacks
2.	5	Anomaly	Detection
2.	6	Dynamic	Analysis	of	Malware

3	Cooperative	Infrastructure	Defense
4	Post	Attack	Survivability
5	Conclusions
References

On	Ensemble	LearningMark Stamp, Aniket Chandak, Gavin Wong and Allen Ye
1	Introduction
2	Ensemble	Classi�iers

2.	1	Examples	of	Related	Work
2.	2	A	Framework	for	Ensemble	Classi�iers
2.	3	Classifying	Ensemble	Classi�iers
2.	4	Ensemble	Classi�ier	Examples

3	Experiments	and	Results
3.	1	Dataset	and	Features
3.	2	Metrics

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.	3	Software
3.	4	Overview	of	Experiments
3.	5	Standard	Techniques
3.	6	Bagging	Experiments
3.	7	Boosting	Experiments
3.	8	Voting	Experiments
3.	9	Discussion

4	Conclusion	and	Future	Work
Appendix:		Confusion	Matrices
References

Malware	Analysis
Optimizing	Multi-class	Classi�ication	of	Binaries	Based	on	Static
FeaturesLasse Øverlier

1	Introduction
2	Related	Work	and	Background
3	Methodology

3.	1	Selecting	the	Dictionary
4	Experiments

4.	1	Microsoft	Malware	Classi�ication	Challenge
4.	2	Google	Code	Jam	(GCJ)	Data

5	Results
5.	1	MMCC	Malware
5.	2	Google	Code	Jam	(GCJ)	Results

6	Discussion
6.	1	Length	of	N-Gram
6.	2	Simpli�ication	of	Code

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

6.	3	Size	of	Training	Data
6.	4	64-Bit	Optimized	Binaries	Versus	32-Bit	Non-optimized
Binaries
6.	5	Classi�ication	Algorithm

7	Conclusion
References

Deep	Learning	Techniques	for	Behavioral	Malware	Analysis	in
Cloud	IaaSAndrew McDole, Maanak Gupta, Mahmoud Abdelsalam, Sudip Mittaland Mamoun Alazab

1	Introduction	and	Motivation
1.	1	Relevance	in	Cloud	IaaS

2	Machine	Learning-Based	Malware	Detection
2.	1	File	Classi�ication
2.	2	Online	Malware	Detection

3	Literature	Review
4	Cloud	Security	Monitoring	Overview
5	Behavioral	Features	and	Characteristics
6	Experimental	Setup	and	Methodology
7	Deep	Learning	Techniques

7.	1	Comparative	Analysis
8	Conclusion
References

A	Comparison	of	Word2Vec,	HMM2Vec,	and	PCA2Vec	for	Malware
Classi�icationAniket Chandak, Wendy Lee and Mark Stamp

1	Introduction
2	Related	Work

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3	Background
3.	1	Neural	Networks
3.	2	Hidden	Markov	Models
3.	3	Principal	Component	Analysis
3.	4	Classi�iers

4	Word	Embedding	Techniques
4.	1	HMM2Vec
4.	2	PCA2Vec
4.	3	Word2Vec

5	Experiments	and	Results
5.	1	Dataset
5.	2	Classi�ier	Parameters
5.	3	Baseline	Results
5.	4	HMM2Vec	Results
5.	5	PCA2Vec	Results
5.	6	Word2Vec	Results
5.	7	Over�itting
5.	8	Discussion

6	Conclusion	and	Future	Work
References

Word	Embedding	Techniques	for	Malware	Evolution	DetectionSunhera Paul and Mark Stamp
1	Introduction
2	Related	Work
3	Implementation

3.	1	Dataset

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.	2	Feature	Extraction
3.	3	Classi�ication	Techniques

4	Experiments	and	Results
4.	1	HMM-Based	Secondary	Test
4.	2	Opcode-SVM	Results
4.3	Opcode	 -Gram-SVM	Results

4.	4	Opcode-Word2Vec-SVM	Results
4.	5	Opcode-HMM2Vec-SVM	Results

5	Conclusion	and	Future	Work
References

Reanimating	Historic	Malware	SamplesPaul Black, Iqbal Gondal, Peter Vamplew and Arun Lakhotia
1	Introduction

1.	1	Motivation
1.	2	Emulator	Architecture

2	Manual	Construction
3	Zeus	C2	Server	Emulator
4	Ransomware	C2	Server	Emulators

4.	1	CryptoLocker	C2	Server	Emulator
4.	2	CryptoWall	C2	Server	Emulator

5	Semi-automated	Generation	of	C2	Server	Emulators
6	Limitations
7	Conclusion
References

Cluster	Analysis	of	Malware	Family	RelationshipsSamanvitha Basole and Mark Stamp

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1	Introduction
2	Background

2.	1	Related	Work
2.	2	Dataset
2.	3	Metrics
2.4	 -Means
2.	5	Elbow	Plots

3	Experiments	and	Results
3.	1	Clustering	by	Family
3.	2	Clustering	Families	of	Different	Type
3.	3	Clustering	Families	of	the	Same	Type

4	Conclusion	and	Future	Work
References

Beyond	Labeling:		Using	Clustering	to	Build	Network	Behavioral
Pro�iles	of	Malware	FamiliesAzqa Nadeem, Christian Hammerschmidt, Carlos H. Gañán andSicco Verwer

1	Introduction
2	The	Problem	with	AV	Labels
3	Related	Work

3.	1	Challenges	in	Malware	Labeling
3.	2	Research	Objectives:		Detection	Versus	Analysis
3.	3	Challenges	in	Malware	Behavior	Modeling

4	MalPaCA:		Malware	Packet	Sequence	Clustering	and	Analysis
4.	1	Connection	Generation	(P1)
4.	2	Feature-Set	Extraction	(P2)
4.	3	Distance	Measure	(P3)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4.	4	HDBScan	Clustering	(P4)
4.	5	Cluster	Visualization	(P5)

5	Experimental	Setup
5.	1	Experimental	Dataset
5.	2	MalPaCA	Parameters

6	Malware	Capability	Assessment
6.	1	Cluster	Characterization	
6.	2	Constructing	Behavioral	Pro�iles
6.	3	Showing	Relationships	Using	DAG

7	Comparative	Analysis
7.	1	Comparison	with	Traditional	Family	Labels
7.	2	Comparison	with	Statistical	Features

8	Limitations	and	Future	Work
9	Conclusions
References

An	Empirical	Analysis	of	Image-Based	Learning	Techniques	for
Malware	Classi�icationPratikkumar Prajapati and Mark Stamp

1	Introduction
2	Background

2.	1	Related	Work
2.	2	Learning	Techniques
2.	3	Dataset
2.	4	Hardware
2.	5	Software

3	Deep	Learning	Experiments	and	Results
3.	1	Multilayer	Perceptron	Experiments

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.	2	Convolutional	Neural	Network	Experiments
3.	3	Recurrent	Neural	Networks
3.	4	Transfer	Learning
3.	5	Discussion

4	Conclusions	and	Future	Work
Appendix:		Confusion	Matrices
References

A	Novel	Study	on	Multinomial	Classi�ication	of	x86/	x64	Linux	ELF
Malware	Types	and	Families	Through	Deep	Neural	NetworksAndrii Shalaginov and Lasse Øverlier

1	Introduction
2	State	of	the	Art:		Machine	Learning	for	Linux	Malware
Detection
3	Linux	Malware:		Automated	Features	Extraction	and
Classi�ication
4	Methodology:		Malware	Analysis	and	Detection
5	Experimental	Design

5.	1	Dataset
5.	2	Experimental	Setup

6	Results	and	Analysis
6.	1	Feature	Selection
6.	2	Classi�ication	Accuracy:		State-of-the-Art	Methods
6.	3	Deep	Learning

7	Discussions	and	Conclusions
References

Fast	and	Straightforward	Feature	Selection	MethodSergii Banin
1	Introduction

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2	Background
2.	1	Problem	Description
2.	2	Literature	Overview

3	Intersection	Subtraction	Selection	Method
3.	1	The	Context
3.	2	Feature	Selection	Algorithm
3.	3	Computational	Complexity
3.	4	Theoretical	Assessment

4	Experimental	Evaluation
4.	1	Dataset
4.	2	Experimental	Environment
4.	3	Memory	Access	Operations
4.	4	Data	Collection
4.	5	Feature	Selection	and	Machine	Learning	Algorithms
4.	6	Time	Complexity
4.	7	Analysis	of	Selected	Feature	Sets
4.	8	Classi�ication	Performance

5	Discussion	and	Future	Work
6	Conclusions
References

A	Comparative	Study	of	Adversarial	Attacks	to	Malware	Detectors
Based	on	Deep	LearningCorrado Aaron Visaggio, Fiammetta Marulli, Sonia Laudanna,Benedetta La Zazzera and Antonio Pirozzi

1	Introduction
2	The	Deep	Learning	Models	Adopted	in	Malware	Detection

2.	1	The	Deep	Learning	Models	in	a	Nutshell

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3	Adversarial	Attacks	Against	Deep	Learning-Based	Malware
Detection	System
4	Generative	Adversarial	Attacks	Against	Malware	Detection
Systems
5	Case	Study

5.	1	Case	Study	Design
5.	2	General	Architecture
5.	3	Adversary	Logic
5.	4	Dataset
5.	5	Performance	Metrics
5.	6	Case	Study	Treatments
5.	7	Case	Study	Results	and	Performance	Evaluation

6	Conclusions
References

Related	Topics
Detecting	Abusive	Comments	Using	Ensemble	Deep	Learning
AlgorithmsRavinder Ahuja, Alisha Banga and S C Sharma

1	Introduction
2	Literature	Survey
3	Materials	and	Methods

3.	1	Dataset
3.	2	Data	Pre-processing
3.	3	Text	Representation	Techniques
3.	4	Traditional	Machine	Learning	Methods
3.	5	Deep	Learning	Methods

4	Methodology	Used

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5	Experimental	Results	and	Analysis
6	Conclusion	and	Future	Work
References

DURLD:		Malicious	URL	Detection	Using	Deep	Learning-Based
Character	Level	RepresentationsSriram Srinivasan, R. Vinayakumar, Ajay Arunachalam,Mamoun Alazab and KP Soman

1	Introduction
2	Related	Works
3	An	Overview	of	Uniform	Resource	Locator	(URL)
4	Background	Details	of	Deep	Learning	Models

4.	1	Hybrid	Architecture—Convolutional	Neural	Network
and	Long	Short-Term	Memory	(CNN-LSTM)	with	Character
Level	Keras	Embedding
4.	2	Character-Based	Models
4.	3	Problem	Formulation

5	Shortcomings	in	Malicious	URL	Detection
6	Description	of	Data	Set
7	Model	Con�iguration	of	Malicious	URL	Detection	Engine
8	Proposed	Architecture—DeepURLDetect	(DURLD)
9	Performance	Measures
10	Evaluation	Results	and	Observations
11	Conclusion
References

Sentiment	Analysis	for	Troll	Detection	on	WeiboZidong Jiang, Fabio Di Troia and Mark Stamp
1	Introduction
2	Background

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2.	1	Trolls
2.	2	Machine	Learning	Techniques
2.	3	Evaluation	Metric

3	Related	Work
4	Datasets

4.	1	Chinese	Segmentation	Dataset
4.	2	Sentiment	Analysis	Dataset
4.	3	Troll	Detection	Dataset

5	Implementation	and	Results
5.	1	Weibo	Crawler
5.	2	HMM	for	Chinese	Segmentation
5.	3	HMM	for	Emotion	Classi�ication
5.	4	Sentiment	Score	Calculation
5.	5	Troll	Detection	with	XGBoost	and	SVM
5.	6	Chrome	Extension	for	Troll	Detection

6	Conclusion	and	Future	Work
References

Log-Based	Malicious	Activity	Detection	Using	Machine	and	Deep
LearningKatarzyna A. Tarnowska and Araav Patel

1	Introduction
2	Related	Work
3	Methods

3.	1	Solution	Design
3.	2	User	Behavior	Modeling
3.	3	Anomaly	Detection
3.	4	Scenario

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4	Experiments
4.	1	Distance-Based	Outlier	Detection
4.	2	Machine	and	Deep	Learning	for	Anomaly	Detection

5	Conclusions
5.	1	Future	Work

References
Image	Spam	Classi�ication	with	Deep	Neural	NetworksAjay Pal Singh and Katerina Potika

1	Introduction
2	Problem	Statement	and	Motivation
3	Background

3.	1	Spam	Categories
3.	2	Classi�ication	Techniques
3.	3	Quality	Metrics

4	Related	Work
5	Framework

5.	1	Datasets
5.	2	Data	Pre-processing
5.	3	Image	Features
5.	4	Techniques	Used
5.	5	Deep	Neural	Networks
5.	6	Transfer	Learning

6	Experimental	Results
6.	1	Neural	Network	Results
6.	2	Deep	Neural	Network	Results
6.	3	Image	Spam	Hunter

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

6.	4	Dredze	Dataset
6.	5	Convolution	Neural	Networks	and	Transfer	Learning
Results

7	Conclusion	and	Future	Work
References

Universal	Adversarial	Perturbations	and	Image	Spam	Classi�iersAndy Phung and Mark Stamp
1	Introduction
2	Background

2.	1	Image	Spam	Filtering
2.	2	Adversarial	Learning

3	Evaluating	Adversarial	Attacks
3.	1	Experimental	Design
3.	2	Analysis

4	Inceptionism-Augmented	Universal	Perturbations
4.	1	Procedure
4.	2	Implementation
4.	3	Performance	Evaluation
4.	4	Proposed	Dataset	Analysis

5	Conclusion	and	Future	Work
References

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Part	I
Surveys

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_1
A	Selective	Survey	of	Deep	Learning
Techniques	and	Their	Application	to
Malware	AnalysisMark Stamp1 San Jose State University, San Jose, CA, USA
Mark	Stamp
Email:	mark.stamp@sjsu.edu

AbstractIn this chapter, we consider neural networks and deep learning, withinthe context of malware research. A variety of architectures areintroduced, including multilayer perceptrons (MLP), convolutionalneural networks (CNN), recurrent neural networks (RNN), long short-term memory (LSTM), residual networks (ResNet), generativeadversarial networks (GAN), and Word2Vec. We provide a selectivesurvey of applications of each of these architectures to malware-related problems.
1	 IntroductionIn this chapter, we discuss a variety of topics related to deep learning,with the primary focus on popular neural networking-basedarchitectures. We survey various malware-related applications of eacharchitecture considered. Each topic is discussed in some detail, withadditional references for further reading provided in all cases.This chapter can be viewed as a companion to the survey [78],which covers classic machine learning techniques and their

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_1
mailto:mark.stamp@sjsu.edu

applications in cybersecurity research. Our focus here is on neuralnetworks and deep learning, and with respect to applications, we focusmost of our attention on malware-related topics, but we do mentionother applications within the broader information security domain.For the sake of completeness, we begin with an introduction toarti�icial neural networks (ANNs), which includes a brief history ofneural networks. We then introduce a wide variety of architectures andtechniques, including convolutional neural networks (CNN), recurrentneural networks (RNN), long short-term memory (LSTM), residualnetworks (ResNet), and generative adversarial networks (GAN). Wealso discuss related techniques, such as word embeddings—includingWord2Vec. We also brie�ly mention ensemble techniques and transferlearning in passing.
2	 A	Brief	History	of	ANNsThe concept of an arti�icial neuron [26, 82] is not new, as the idea wasproposed by McCulloch and Pitts in the 1940s [52]. However, moderncomputational neural networking really begins with the perceptron,which was �irst proposed by Rosenblatt in the late 1950s [68].An arti�icial neuron with three inputs is illustrated in Fig. 1. In theoriginal McCulloch-Pitts formulation, , , andthe output . The threshold T determines whether theoutput Y is 0 (inactive) or 1 (active), based on . The thinkingwas that a neuron either �ires or it does not (thus,), and theinputs would come from other neurons (thus,), while theweights specify whether an input is excitatory (increasing thechance of the neuron �iring) or inhibitory (decreasing the chance of theneuron �iring). Whenever , the excitatory response wins,and the neuron �ires; otherwise, the inhibitory response wins and theneuron does not �ire.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 Arti�icial neuronA perceptron is considerably less restrictive than a McCulloch–Pittsarti�icial neuron, as the and can be real-valued. Since we want touse a perceptron as a binary classi�ier, the output is generally taken tobe binary. McCulloch and Pitts chose such a restrictive formulationbecause they were trying to model logic functions. At the time, it wasfelt that encoding elementary logic into arti�icial neurons would be thekey step to constructing systems with arti�icial intelligence. However,that point of view has certainly not panned out, while the additionalgenerality offered by the perceptron formulation has proven extremelyuseful.Given a real-valued input vector , aperceptron can be viewed as a function of the form
that is, a perceptron computes a weighted sum of the components.Based on a threshold, a perceptron can be used to de�ine a binaryclassi�ier. For example, we could classify a sample X as “type 1”provided that , for some speci�ied threshold T, and otherwiseclassify X as “type 0.”

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the case of two-dimensional input, the decision boundary of aperceptron de�ines a line (1)It follows that a perceptron cannot provide ideal separation in caseswhere the data itself is not linearly separable.There was considerable research into ANNs in the 1950s and1960s, and that era is often described as the �irst “golden age” of AI andneural networks. But the gold turned to lead in 1969 when anin�luential work by Minsky and Papert [55] emphasized the limitationsof perceptrons. Speci�ically, they observed that the XOR function is notlinearly separable, which implies that a single perceptron cannot modelsomething as elementary as XOR. The OR, AND, and XOR functions areillustrated in Fig. 2, where we see that OR and AND are linearlyseparable, while XOR is not.

Fig.	2 OR and AND are linearly separable but XOR is notAs the name suggests, a multilayer perceptron (MLP) is an ANN thatincludes multiple (hidden) layers in the form of perceptrons. Anexample of an MLP with two hidden layers is given in Fig. 3, where eachedge represents a weight that is to be determined. Unlike a single-layerperceptron, MLPs are not restricted to linear decision boundaries, andhence an MLP can accurately model the XOR function. However, theperceptron training method proposed by Rosenblatt [68] cannot beused to effectively train an MLP [44]. To train a single perceptron,simple heuristics will suf�ice, assuming that the data is linearly

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

separable. From a high-level perspective, training a single perceptronis somewhat analogous to training a linear SVM, except that for aperceptron, we do not require that the margin (i.e., minimumseparation) be maximized. However, training an MLP would appear tobe challenging since we have hidden layers between the input andoutput, and it is not clear how changes to the weights in these hiddenlayers will affect each other, let alone the output.

Fig.	3 MLP with two hidden layersAs an aside, it is interesting to note that for SVMs, we deal with datathat is not linearly separable by employing a soft margin (i.e., we allow

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

for training errors) and by the use of the so-called “kernel trick,” wherewe map the input data to a higher dimensional feature space using a(nonlinear) kernel function. In contrast, perceptrons (in the form ofMLPs) overcome the limitation of linear separability by the use ofmultiple layers. For an MLP, it is almost as if the nonlinear kernelfunction has been embedded directly into the model itself through theuse of hidden layers, as opposed to a user-speci�ied explicit kernelfunction, as is the case for an SVM.One possible advantage of the MLP approach over an SVM is that foran MLP, the equivalent of the kernel function is, in effect, derived fromthe data and re�ined through the training process. In contrast, for anSVM, the kernel function is selected by a human, and once selected itdoes not change. In machine learning, removing those pesky humansfrom the learning process is a good thing. However, a possible tradeoffis that signi�icantly more training data will likely be needed for an MLP,as compared to an SVM, due to the greater data requirement involvedin learning the equivalent of a kernel function.As another aside, we note that from a high-level perspective, it ispossible to view MLPs as combining some aspects of SVMs (i.e.,speci�ically, nonlinear decision boundaries) and HMMs (i.e., hiddenlayers). Also, we will see that the backpropagation algorithm that isused to train MLPs includes a forward pass and backward pass, whichis eerily reminiscent of the training process that is used for HMMs.As yet another aside, we note that an MLP is a feedforward	neural
network, which means that there are no loops—the input data andintermediate results feed directly through the network. In contrast, arecurrent neural network (RNN) can have loops, which gives an RNN aconcept of memory but can also add signi�icant complexity.In the book Perceptrons:	An	Introduction	to	Computational
Geometry, published in 1969, Minsky and Papert [55] made much of theperceived shortcoming of perceptrons—in particular, theaforementioned inability to model XOR. This was widely viewed as adevastating criticism at the time, as it was believed that successful AIwould need to capture basic principles of logic. Although it was knownthat perceptrons with multiple layers (i.e., MLPs) can model XOR, at thetime, nobody knew how to ef�iciently train MLPs. Minsky and Papert’swork was highly in�luential and is frequently blamed for the relative

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

lack of interest in the �ield—a so-called “AI winter”—that persistedthroughout the 1970s and into the early 1980s.By 1986, there was renewed interest in ANNs, thanks in large partto the work of Rumelhart, Hinton, and Williams [70], who developed apractical means of training MLPs—the method of backpropagation. Fordetails on backpropagation, see [80], for example.It is worth noting that there was another “AI winter” that lastedfrom the late 1980s through the early 1990s (at least). The proximatecause of this most recent AI winter was that the hype far outran thelimited successes that had been achieved. Although deep learning hasnow brought ANNs back into vogue, your author (a doubting Thomas,and proud of it) is not convinced that the current arti�icial intelligencemania will prove any less arti�icial than previous AI “summers” which,on the whole, yielded mostly disappointment. Some of the ridiculousstatements being made today [28] lead your eminently sensible authorto believe that the hype is already hopelessly out of control.1Next, we discuss deep learning, which builds on the foundation ofANNs. We can view the relationship between ANNs and deep learningas being somewhat akin to that of Markov chains and HMMs, forexample. That is, ANNs serve as a basic technology that can be used tobuild a powerful machine learning technique, analogous to the way thatan HMM is built on the foundation of an elementary Markov chain. But,before we get into the details of deep learning, we consider the topicfrom a high-level perspective.
3	 Why	Deep	Learning?It is sometimes claimed that the major advantage of deep learningarises when the amount of training data is large. For example, thetutorial [35] gives a graph similar to that in Fig. 4, which purports toshow that deep learning will continue to achieve improved results asthe size of the dataset grows, whereas other machine learningtechniques will plateau at some relatively early point. That is, modelsgenerated by non-deep learning techniques will “saturate” relativelyquickly, and once this saturation point is reached, more data will notyield improved models.2 In contrast, deep learning is supposed tocontinue learning, essentially without limit as the volume of training

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

data increases, or at least it will plateau at a much higher level. Ofcourse, even if this is entirely true, there are practical computationalconstraints since more data requires more computing power fortraining.

Fig.	4 Model performance as a function of the amount of training data
4	 Decisions,	DecisionsThe essence of machine learning is that when training a model, weminimize the need for input from those fallible humans. That is, wewant our machine learning models to be data-driven, in the sense thatthe models learn as much as possible directly from the data itself, withminimal human intervention. However, any machine learningtechnique will require some human decisions—for HMMs, we specifythe number of hidden states; for SVMs, we specify the kernel function;and so on.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For ANNs in general, and deep learning in particular, the followingdesign decisions are relevant [22].The depth of an ANN refers to the number of hidden layers. The“deep” in deep learning indicates that we employ ANNs with lots ofhidden layers, where “lots” seems to generally mean as many aspossible, based on available computing power.The width of an ANN is the number of neurons per layer, whichneed not be the same in each layer.In an MLP, for example, nonlinearity is necessary, and this isachieved through the activation	functions (also known as transferfunctions). Most activation functions used in deep learning aredesigned to mimic a step function—examples include the sigmoid(or logistic) function
the hyperbolic tangent
the inverse tangent (also known as arctangent)
and the recti�ied linear unit (ReLU)
Note that the softmax function is a generalization of the sigmoidfunction to multiclass problems.The graph of each of the activation functions given above isillustrated in Fig. 5. As of this writing, ReLU is the most popularactivation function. Numerous variants of the ReLU function are alsoused, including the leaky ReLU and exponential linear unit (ELU).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In addition to activation functions, we also specify an objective
function. The objective function is the function that we are trying tooptimize and typically represents the training error.A bias	node may be included (or not) in any hidden layer. Eachbias node generates a constant value and hence is not connected toany previous layer. When present, a bias node allows the activationfunction to be shifted. In the perceptron example given in (1), thebias corresponds to the y-intercept b.For the sake of comparison with our favorite non-deep learningtechnique, the depth of an HMM can be viewed as the order of theunderlying Markov model. Typically, for HMMs, we only considermodels of order one (in which case, the current state depends only onthe previous state), but it is possible to consider higher order models.The width of an HMM might be viewed as being determined by N, thenumber of hidden states. But, regardless of the order of the model orthe choice of N, there is really only one hidden layer in any HMM. Thefact that an HMM is based on linear operations implies that addingmultiple hidden layers would have no effect, as the multiple layerswould be equivalent to a single layer. Furthermore, the A and Bmatrices of an HMM can be viewed as its activation functions (withthe B matrix corresponding to the output layer), and corresponds to the objective function in an ANN. Note that thesefunctions are all linear in an HMM, while at least some of the activationfunctions must be nonlinear in any true multilayer ANN, such as anMLP.Neural networks are trained using the backpropagation algorithm,which is a special case of a more general technique known as reversemode automatic differentiation. For additional details on the topic ofbackpropagation, see, for example, [80].The remainder of this paper is focused on various neural networkbased architectures and related topics. For each topic covered, wediscuss research in the �ield of malware analysis.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Activation functions
5	 Multilayer	PerceptronsWe have already discussed multilayer perceptrons (MLP) in somedetail. MLPs are in some sense one of the most generic neuralnetworking architectures—when someone speaks of a neural networkin general, there is a good chance that they have an MLP in mind.
5.1	 Overview	of	MLPs

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Recall that Fig. 3 is an example of an MLP with two hidden layers. Eachedge in the �igure represents a weight that is to be determined viatraining, and backpropagation is an ef�icient and effective way to trainsuch a network. The advantage of an MLP is that it is not restricted tolinear decision boundary.
5.2	 MLPs	in	Malware	AnalysisMLPs are extremely popular, and in most �ields, they are one of the �irstlearning techniques considered. Information security is no exception,as MLPs have been applied to nearly every security problem wheredeep learning techniques are applicable. Not surprisingly, largenumbers of malware research papers employ MLPs. For example, in [5]MLPs are trained on progressively more generic malware families,yielding quanti�iable results on the inherent tradeoff between thegenerality of the training data and accuracy. The research in [74] showsthat a straightforward ensemble of various learning algorithms—including MLPs—can generate signi�icantly stronger results than anyof the component techniques. The paper [85] uses MLPs as part of anAndroid malware detection technique.Another �ield in information security where MLPs have played avery prominent role is in intrusion detection systems (IDS). Forexample, the paper [57] uses MLPs in a novel multiclass IDS approach.
6	 Convolutional	Neural	NetworksIn this section, we provide an introduction to one of the mostimportant and widely used learning techniques—CNN. After a briefoverview, we introduce discrete convolutions with the focus on theirspeci�ic application to CNNs. We then consider a simpli�ied examplethat serves to illustrate various aspects of CNNs.
6.1	 Overview	of	CNNsGenerically, ANNs use fully connected layers. A fully connected layer candeal effectively with correlations between any points within thetraining vectors, regardless of whether those points are close together,far apart, or somewhere in between. In contrast, a CNN, is designed todeal with local structure—a convolutional layer cannot be expected to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

perform well when crucial information is not local. A key bene�it ofCNNs is that convolutional layers can be trained much more ef�icientlythan fully connected layers.For images, most of the important structure (edges and gradients,for example) is local. Hence, CNNs would seem to be an ideal tool forimage analysis and, in fact, CNNs were developed for precisely thisproblem. However, CNNs have performed well in a variety of otherproblem domains. In general, any problem for which there exists a datarepresentation where local structure predominates is a candidate for aCNN. In addition to images, local structure is crucial in �ields such astext analysis and speech analysis, for example.
6.2	 Convolutions	and	CNNsA discrete convolution is a sequence that is itself a composition of twosequences and is computed as a sum of pointwise products. Let denote the convolution of sequences and . Then the element of the convolution is given by
We can view this process as x being a “�ilter” (or kernel) that is appliedto the sequence y over a sliding window.For example, if and , we �ind
If we reverse the order of the elements of x, then we have
which is, perhaps, a slightly more natural and intuitive way to view theconvolution operation.Again, we can view x as a �ilter that is applied to the sequence y.Henceforth, we de�ine this �iltering operation as convolution with theorder of the elements of the �ilter reversed. For example, suppose that

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

we apply the �ilter to the sequence . Inthis case, the convolution gives us
We can de�ine an analogous �iltering (or discrete convolution)operation in two or three dimensions. For the two-dimensional case,suppose that is an matrix representing an image and is an �ilter. Let be the convolution of F with A.As in the one-dimensional case, we denote this convolution as . In this two-dimensional case, we have
where and . That is, we simplyapply the �ilter F at each offset of A to create the new—and slightlysmaller—matrix that we denote as C. The three-dimensional case iscompletely analogous to the two-dimensional case.We could simply de�ine �ilters as we see �it, with each �ilter designedto correspond to a speci�ic feature.3 But since we are machine learninga�icionados, for CNNs, we let the data itself determine the �ilters.Therefore, training a CNN can be viewed as determining �ilters, basedon the training data. As with any respectable neural network, we cantrain CNNs via backpropagation.Suppose that A represents an image and we train a CNN on theimage A. Then the �irst convolutional layer is trained directly on theimage. The �ilters determined at this �irst layer will correspond to fairlyintuitive features, such as edges, basic shapes, and so on. We can thenapply a second convolutional layer, that is, we apply a similarconvolutional process, but the output of the �irst convolutional layer isthe input to this second layer. At the second layer, �ilters are trainedbased on features of features. Perhaps not surprisingly, these second

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

layer �ilters correspond to more abstract features of the originalimage A, such as the “texture.” We can repeat this convolution ofconvolutions step again and again, at each layer obtaining �ilters thatcorrespond to features representing a higher degree of abstraction, ascompared to the previous layer. The �inal layer of a CNN is not aconvolution layer but is instead a typical fully-connected layer that canbe used to classify based on complex image characteristics (e.g., “cat”versus “dog”). In addition, so-called pooling layers can be usedbetween some of the convolutional layers. Pooling layers are simple—no training is involved—and serve primarily to reduce thedimensionality of the problem. Below, we give a simple example thatincludes a pooling layer.In addition to having multiple convolutional layers, at each layer, wecan (and generally will) stack several convolutions on top of each other.These �ilters are all initialized randomly, so they can all learn differentfeatures. In fact, for a typical color image, the image itself can beviewed as consisting of three layers, corresponding to the R, G, and Bcomponents in the RGB color scheme. Hence, for color images, the�ilters for the �irst convolutional layer will be three-dimensional, whilesubsequent convolutional layers can—and, typically, will—be three-dimensional as well, due to the stacking of multipleconvolutions/�ilters at each layer. For simplicity, in our example, weonly consider a black-and-white two-dimensional image, and we onlyapply one convolution at each layer.Before considering a simple example, we note that there areadvantages of CNNs that are particularly relevant in the case of imageanalysis. For a generic neural network, each pixel would typically betreated as a separate neuron, and for any reasonable size of image, thiswould result in a huge number of parameters, making trainingimpractical. In contrast, at the �irst layer of a CNN, each �ilter is appliedover the entire image, and at subsequent layers, we apply �ilters overthe entire output of the previous layer. One effect of this approach isthat it greatly reduces the number of parameters that need to belearned. Furthermore, by sliding the �ilter across the image as aconvolution, we obtain a degree of translation invariance, i.e., we candetect image features that appears at different offsets. This can beviewed as reducing the over�itting that would otherwise likely occur.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The bottom line is that CNNs represent an ef�icient and effectivetechnique that was developed speci�ically for image analysis. However,CNNs are not restricted to image data, and can be useful in anyproblem domain where local structure is dominant.
6.3	 Example	CNNNow we turn our attention to a simple example that serves to illustratesome of the points discussed above. Suppose that we are dealing withblack-and-white images, where each pixel is either 0 or 1, with 0representing white and 1 representing black.4 Further, suppose that theblack-and-white images under consideration are pixels in size.An example of such an image appears in Fig. 6.

Fig.	6 A black-and-white image
In Fig. 7, we give some �ilters. For example, the output of the�ilter in Fig. 7a is maximized when it aligns with a diagonal segment.Figure 8 shows the result of applying the convolution represented bythe �ilter in Fig. 7a to the smiley face image in Fig. 6.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 Examples of �ilters

Fig.	8 First convolutional layer (�ilter from Fig. 7a)
We note that, for the convolution in Fig. 8, the maximum value of 6does indeed occur only at the three offsets where the (main) diagonalsegments are all black and the off-diagonal elements are all white.These maximum values correspond to convolutions over the red boxesin Fig. 9.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	9 Maximum convolution values in Fig. 8In a CNN, so-called pooling layers are often intermixed withconvolutional layers. As with a convolutional layer, in a pooling layer,we slide a window of a �ixed size over the image. But whereas the �ilterin a convolutional layer is learned, in a pooling layer an extremelysimple �ilter is speci�ied and remains unchanged throughout thetraining. As the name implies, in max	pooling, we simply take the themaximum value within the �ilter window. An illustration of max poolingis given in Fig. 10.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	10 Max pooling layer (, non-overlapping)
Instead of a max pooling scheme, sometimes average	pooling isused. In any case, pooling can be viewed as a downsampling operation,which has the effect of reducing the dimensionality, and thus easing thecomputational burden of training subsequent convolutional layers.5 Toincrease the downsampling effect, pooling usually uses non-overlapping windows. Note that the dimensionality reduction ofpooling could also be achieved by a convolutional layer that uses alarger stride through the data, and in [75], for example, it is claimedthat such an approach results in no loss in accuracy for the resultingCNN.An illustration of the �irst convolutional layer for a color image isgiven in Fig. 11. In this case, a three-dimensional �ilter is applied overthe R, G, and B components in the RGB color scheme. The example inFig. 11 is meant to indicate that �ive different �ilters are being trained.Since each �ilter is initialized randomly, they can all learn different

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

features. At the second convolutional layer, we can again train three-dimensional �ilters, based on the output of the �irst convolutional layer.This process is repeated for any additional convolutional layers.There are several possible ways to visualize the �ilters inconvolutional layers. For example, in [89], a de-convolution techniqueis used to obtain the results in Fig. 12. Here, each row is a randomlyselected �ilter and the columns, from left to right, correspond totraining epochs 1, 2, 5, 10, 20, 30, 40, and 64. From layer 4, we see thatthe training images must be faces. In general, it is apparent that the�ilters are learning progressively more abstract features as the layerincreases.

Fig.	11 First convolutional layer with stack of �ive �ilters (RGB image)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	12 Visualizing convolutions [89]A fairly detailed discussion of CNNs can be found at [38], while thepaper [15] provides some interesting insights. For a more intuitivediscussion, see [37], and if you want to see lots of nice pictures, take alook at [16]. More details on convolutions can be found in [61].
6.4	 CNNs	in	Malware	Analysis

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

CNNs have proven their worth in a wide variety of security-relatedapplications. Some of these applications, such as image spamdetection [1, 10, 72], are obvious and relatively straightforwardapplications of CNNs. However, other security domains that do nothave any apparent image-based component have also had success withCNNs.By treating executable �iles as images, researchers have been ableto leverage the strengths of CNNs for malware detection, classi�ication,and analysis. For example, the papers [6] and [88] treat executable �ilesas images, and obtain the state-of-the-art result for the malwaredetection problem. In particular, the research in [88] makes extensiveuse of transfer learning, whereby the output layer of previously trainedCNNs are retrained for the malware detection problem. This results infast training times and very high malware classi�ication accuracies.The research in [34] compares CNNs to so-called extreme learningmachines (ELM), a topic that we discuss below, in Sect. 10. The bestCNN results in [34] are obtained using a one-dimensional CNN trainedon the raw bytes of executable �iles. In [86], CNNs are successfullyapplied to a combination of static and dynamic features.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	13 Feedforward neural network with two hidden layers
7	 Recurrent	Neural	NetworksAn example of a feedforward neural network with two hidden layers isgiven in Fig. 13. This type of neural network has no “memory” in thesense that each input vector is treated independently of other inputvectors. Hence, such a feedforward network is not well suited to dealwith sequential data.In some cases, it is necessary for a classi�ier to have memory. Forexample, if we want to tag parts of speech in English text (i.e., noun–verb, and so on), this is not feasible if we only look at words inisolation. For example, the word “all” can be an adjective, adverb, noun,or even a pronoun, and the only way to determine which is the case is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

to consider the context. A recurrent neural network (RNN) provides away to add memory (or context) to a feedforward neural network.To convert a feedforward neural network into an RNN, we treat theoutput of the hidden states as another input. For the neural network inFig. 13, the corresponding generic RNN is illustrated in Fig. 14. Thestructure in Fig. 14 implies that there is a time step involved, that is, wetrain (and score) based on a sequence of input vectors. Of course, wecannot consider in�inite sequences, and even if we could, the in�luenceof feature vectors that occurred far back in time is likely to be minimal.

Fig.	14 Network in Fig. 13 as an RNNThe RNN in Fig. 14 can be “unrolled,” as illustrated in Fig. 15. Notethat in this case, we use f to represent the hidden layer or layers, while

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the notation is used to represent at time step t from un-unrolled RNN in Fig. 14 and, similarly, corresponds to attime t. From the unrolled form, it is clear that any RNN can be treatedas a special case of a feedforward neural network, where theintermediate hidden layers (f in our notation) all have identicalstructures and weights. We can take advantage of this special structureto ef�iciently train an RNN using a (slight) variant of backpropagation,known as backpropagation through time (BPTT).

Fig.	15 Unrolled RNN (sequence-to-sequence model)Before brie�ly turning our attention to BPTT, we illustrate somevariants of a generic RNN. An RNN such as that illustrated in Fig. 15 isknown as a sequence-to-sequence model, since each input sequence corresponds to an output sequence . In Fig. 16a, we have illustrated a many-to-oneexample of an RNN, that is, the case where an input sequence of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

form corresponds to the single output . At theother extreme, Fig. 16b illustrates a one-to-many RNN, where thesingle input corresponds to the output sequence .

Fig.	16 Variants of the generic RNN in Fig. 15A many-to-one model might be appropriate for part-of-speechtagging, for example, while a one-to-many RNN could be used for musicgeneration. An example of an application where a sequence-to-sequence (or many-to-many) RNN would be appropriate is a machinetranslation. There are numerous possible variants of the sequence-to-sequence RNN. Also, note that a feedforward neural network, such asthat in Fig. 13, can be viewed as a one-to-one RNN.Multilayer RNNs can also be considered. This can be viewed astraining multiple RNNs simultaneously, with the �irst RNN trained onthe input data, the second RNN trained on the hidden states of the �irstRNN, and so on. A two-layer (sequence-to-sequence) RNN is illustratedin Fig. 17. Of course, more layers are possible, but the trainingcomplexity will increase, and hence only “shallow” RNN architectures(in terms of the number of layers) are generally considered.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	17 Two-layer RNN
7.1	 Backpropagation	Through	TimeRNNs can be viewed as neural networks that are designed speci�icallyfor time series or other sequential data. With an RNN, the number ofparameters is reduced so as to ease the training burden. This situationis somewhat analogous to CNNs, which are designed to ef�iciently dealwith local structure (e.g., in images). That is, both CNNs and RNNsserve to make training more ef�icient—as compared to genericfeedforward neural networks—for speci�ic classes of problems.Backpropagation through time (BPTT) is simply an ever-so-slightvariation on backpropagation that is optimized for training RNNs.In Fig. 18, we give a detailed view of a many-to-one (actually, two-to-one) RNN. In this case, we see that the 10 weights, must be determined via training.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	18 Simple RNN exampleIn Fig. 19, we give a neural network that is essentially the fullyconnected version of the RNN in Fig. 18. Note that in this fullyconnected version, there are 20 parameters to be determined. In anRNN, we assume that the data represents sequential input and hencethe reduction in the number of weights is justi�ied, since we are simplyeliminating from consideration cases where the past is in�luenced bythe future.6

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	19 Fully connected analog of Fig. 18It is well known that gradient issues are a concern when trainingneural networks in general, and are a particularly acute issue withgeneric RNNs. In an RNN, the further that we attempt to backpropagatethrough time, the more likely that the gradient will “explode” or“vanish” or oscillate between extremes. The details of the explodinggradient and vanishing gradient are beyond the scope of this survey;for more information on these topics, see [79], for example.Next, we turn our attention to specialized RNN architectures thatare designed to mitigate the gradient issues that plague generic RNNs.Speci�ically, we consider LSTM networks in some detail and we thenbrie�ly discuss a variant of LSTM known as gated recurrent units (GRU).In fact, a vast number of variants of the LSTM architecture have beendeveloped. However, according to the extensive empirical studyin [23], “none of the variants can improve upon the standard LSTMarchitecture signi�icantly.”
7.2	 Long	Short-Term	Memory

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In addition to being a tongue twister, LSTM networks are a class of RNNarchitectures that are designed to deal with long-range dependencies.That is, LSTM can deal with “gaps” between the appearance of a featureand the point at which it is needed by the model [23]. The claim to fameof LSTM is that it can reduce the effect of a vanishing gradient, which iswhat enables such models to account for longer rangedependencies [30].Before outlining the main ideas behind LSTM, we note that theLSTM architecture has been one of the most commercially successfullearning techniques ever developed. Among many other applications,LSTMs have been used in Google Allo [39], Google Translate [84],Apple’s Siri [46], and Amazon Alexa [25]. However, recently, thedominance of LSTM may have begun to wane. ResNet has been shownto have theoretical advantages over LSTM, and it outperforms LSTM ina wide range of applications [63].Figure 20 illustrates an LSTM. The obvious difference from ageneric vanilla RNN is that an LSTM has two lines entering and exitingeach state. As in a standard RNN, one of these lines represents thehidden state, while the second line is designed to serve as a gradient“highway” during backpropagation. In this way, the gradient can “�low”much further back with less chance that it will vanish along the way.

Fig.	20 LSTM

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In Fig. 21, we expand one of the LSTM cells that appear in Fig. 20.Here, is the sigmoid function, is the hyperbolic tangent (i.e.,)function, the operators “ ” and “ ” are pointwise multiplication andaddition, respectively, while “ ” indicates concatenation of vectors.The vector is the “input” gate, is the “forget” gate, and is the“output” gate. The vector is an intermediate gate and does not havea cool name, but is sometimes referred to as the “gate” gate [47],which, come to think of it, is especially cool. We have much more to sayabout these gates below.

Fig.	21 One timestep of an LSTMThe gate vectors that appear in Fig. 21 are computed as

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

while the outputs are

where “ ” is pointwise multiplication and “ ” is the usual pointwiseaddition. Note that each of the weight matrices is .In matrix form, ignoring the bias terms b, we have

where and are column vectors of length n, and W is the weight matrix

Further, each of the gates , , , and is a column vectors oflength n. Recall that the sigmoid squashes its input to be within therange of 0 to 1, whereas the function gives output within therange of to .

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To highlight the intuition behind LSTM, we follow a similarapproach as that given in the excellent presentation [47]. Speci�ically,we focus on the extreme cases, that is, we assume that the output ofeach sigmoid is either 0 or 1, and each hyperbolic tangent iseither or . Then the forget gate is a vector of 0s and 1s, wherethe 0s tell us the elements of that we forget and the 1s indicate theelements to remember. In the middle section of the diagram, the inputgate and gate gate together determine which elements of toincrement or decrement. Speci�ically, when element j of is 1 andelement j of is , we increment element j of . And if element jof is 1 and element j of is , then we decrement element j of .This serves to emphasize or de-emphasize particular elements in thenew-and-improved cell state . Finally, the output gate determineswhich elements of the cell state will become part of the hidden state .Note that the hidden states is fed into the output layer of the LSTM.Also note that before the cell states are operated on by the output gate,the values are �irst squeezed down to be within the range of – by the function.Of course, in general, the LSTM gates are not simply countered thatincrement or decrement by 1. But, the intuition is the same, that is, thegates keep track of incremental changes thus allowing relevantinformation to �low over long distances via the cell state. In this way,LSTM negates some of the limitations caused by vanishing gradients.
7.3	 Gated	Recurrent	UnitsAs mentioned above, there are a large number of variants of the basicLSTM architecture. Most such variants are slight variants, with onlyminor changes from a standard LSTM. A gated recurrent unit (GRU), onthe other hand, is a fairly radical departure from an LSTM. Although theinternal state of a GRU is somewhat complex and, perhaps, less

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

intuitive than that of an LSTM, there are fewer parameters in a GRU,and hence it is easier to train a GRU, and less training data is required.The wiring diagram for a GRU is given in Fig. 22.

Fig.	22 One timestep of a GRUThe gate vectors that appear in Fig. 21 are computed as

while the output is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

where “ ” is pointwise multiplication and “ ” is the usual pointwiseaddition. Note that each of the weight matrices is .In matrix form, ignoring the bias terms b, we have

where and are column vectors of length n, and W is the weight matrix
Each of the gates , , and is a column vectors of length n.The intuition behind a GRU is that it replaces the input, forget, andoutput gates of an LSTM with just two gates—an “update” gate and a“reset” gate . The GRU update gate serves a similar purpose as thecombined output and forget gates of an LSTM. Speci�ically, the updateserves to determine what to output (or write) and what to forget. Thefunction in the GRU implies that anything that is not output mustbe forgotten. Thus, the GRU is less �lexible as compared to an LSTMsince an LSTM allows us to independently select elements for outputand elements that are forgotten. The GRU reset gate and the LSTMinput gate each serve to combine new input with previous memory.The gating in a GRU is more complex and somewhat less intuitiveas compared to that found in an LSTM. In any case, the most radical

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

departure of the GRU from the LSTM architecture is that there is no cellstate in a GRU. This implies that any memory must be stored in thehidden state . This simpli�ication (as compared to an LSTM) relies onthe fact that in a GRU, the write and forget operations have beencombined.
7.4	 Recursive	Neural	NetworkWe mention in passing that recursive neural networks can be viewedas generalizing recurrent neural networks.7 In a recursive neuralnetwork, we can recurse over any hierarchical structure, with treesbeing the archetypal example. Then training can be accomplished viabackpropagation through structure (BPTS), often using stochasticgradient descent for simplicity. In contrast, a recurrent neural networkis restricted to one particular structure—that of a linear chain.
7.5	 Last	Word	on	RNNsRNNs are useful in cases where the input data is sequential. GenericRNN architectures are subject to vanishing and exploding gradients,which limit the length of the history (or gaps) that can effectively beincorporated into such models. Relatively complex RNN-basedarchitectures—such as LSTM and its variants—have been developedthat can better handle such gradient issues. These architectures haveproven to be commercially successful across a wide range of products.A good general discussion of RNNs can be found in [59], and anoverview of various RNN-speci�ic topics—with links to many relevantarticles—is available at [58]. A more detailed (mathematical)description can be found in Chap. 10 of [20]. The slides at [47] providea good general introduction to RNNs, with nice examples and a brief,but excellent, discussion of LSTM.
7.6	 RNNs	in	Malware	AnalysisIn a commercial sense, LSTMs are surely the most successful deeplearning technique yet developed, so it is not surprising that LSTMshave been successfully applied to the malware detection problem [50].Both LSTMs and GRUs—along with CNNs—are considered in [2], withthe authors claiming a major improvement over relevant previous

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

work. The paper [31] considers an adversarial attack, where theattacker can defeat a system that uses RNNs based on API calls.There are many applications of RNNs in areas of informationsecurity outside of the malware domain. In [87], CNN and LSTMarchitectures are used to detect cybersecurity events, based on socialnetworking messages. Other infosec applications of LSTMs includegenerating security ontologies [19], network security [49], breakingCAPTCHAs [11], host-based intrusion detection [41], and networkanomaly detection [13], among others.
8	 Residual	NetworksAt the time of this writing, residual network (ResNet) is considered thestate of the art in deep learning for many image analysis problems. Aresidual network is one in which instead of approximating afunction F(x), we approximate the “residual,” which is de�ined as . Then the desired solution is given by .The original motivation for considering residuals was based on theobservation that deeper networks sometimes produce worse results,even when vanishing gradients are not the cause [27]. This issomewhat counterintuitive, as the network should simply learnidentity mappings when a model is deeper than necessary. Toovercome this “degradation” problem, the authors of [27] experimentwith residual mappings and provide extensive empirical evidence thatthe resulting ResNet architecture yields improved results as comparedto standard feedforward networks for a variety of problems. Theauthors of [27] conjecture that the success of ResNet follows from thefact that the identity map corresponds to a residual of zero, and “if anidentity mapping were optimal, it would be easier to push the residualto zero than to �it an identity mapping by a stack of nonlinear layers.”Whereas LSTM uses a complex gating structure to ease gradient�low, ResNet de�ines additional connections that correspond to identitylayers. This enables ResNet to deal with vanishing gradients, as well asthe aforementioned degradation problem. These identity layers allow aResNet model to skip over layers during training, which serves to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

effectively reduce the minimum depth when training. Intuitively,ResNet is able to train deeper networks by, in effect, training over aconsiderably shallower network in the initial stages, with later stagesof training serving to �lesh out the intermediate connections. Thisapproach was inspired by pyramidal cells in the brain, which have asimilar characteristic in the sense that they bridge “layers” ofneurons [76].A very high-level illustrative example of a ResNet architecture isgiven in Fig. 23, where each curved edge represents an identitytransformation. Note that in this case, the identity transformationsenable the model to skip over two layers. In principle, ResNet wouldseem to be applicable to any �lavor of deep neural network, but inpractice, it seems to applied to CNNs.

Fig.	23 Example of a ResNet architectureIf a ResNet has N identity paths, then the network contains distinct feedforward networks. For example, the ResNet in Fig. 23 canbe expanded into the graph in Fig. 24. Note that most of the paths in aResNet are relatively short.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	24 Another view of the ResNet architecture in Fig. 23Surprisingly, the paper [81] provides evidence that in spite of beingtrained simultaneously, the multiple paths in a ResNet “showensemble-like behavior in the sense that they do not strongly dependon each other.” And perhaps an even more surprising result in [81]shows that “only the short paths are needed during training, as longerpaths do not contribute any gradient.” In other words, a deep ResNetarchitecture is more properly viewed as a collection of multiple,relatively shallow networks.
8.1	 ResNet	in	Malware	AnalysisAt the time of this writing, ResNet is a relative newcomer and the levelof research in the security domain is somewhat limited. Nevertheless,ResNet architectures have shown promise for dealing with the usualsuspects, namely malware analysis [40, 66] and intrusiondetection [43, 83].
9	 Generative	Adversarial	Network

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Let be a collection of samples and a corresponding set of classlabels. In statistics, a discriminative model is one that models theconditional probability distribution . Such a discriminativemodel can be used to classify samples—given an input X of the sametype as the training samples , the model enables us to easilydetermine the most likely class of X by simply computing foreach class label Y.In contrast, a model is said to be generative if it models the jointprobability distribution of X and Y, which we denote as P(X, Y). Such amodel is called “generative” because, by sampling from thisdistribution, we can generate new pairs that �it the probabilitydistribution. Note that we can produce a discriminative model from agenerative model, since
Therefore, in some sense, a generative model is inherently moregeneral than a discriminative model.Consider, for example, hidden Markov models (HMM) [77], whichare a popular class of classic machine learning techniques. An HMM isde�ined by the three matrices in , where is the initialstate distribution, A contains the transition probability distributionsfor the hidden states, and B consists of the observation probabilitydistributions corresponding to the hidden states. If we train an HMMon a given dataset, then we can easily generate samples that match theprobability distributions of the HMM. To generate such samples, we�irst randomly select an initial state based on the probabilities in .Then we repeat the following steps until the desired observationsequence length is reached: Randomly select an observation based onthe current state, using the probabilities in B, and randomly select thenext state, based on the probabilities in A. The resulting observation

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

sequence will be indistinguishable (in the HMM sense) from the datathat was used to train the HMM.From the discussion in the previous paragraph, it is clear that atrained HMM is a generative model. However, it is more typical to usean HMM as a discriminative model. In discriminative mode, wedetermine a threshold, then we classify a given observation sequenceas matching the model if its HMM score is above the speci�iedthreshold. This example shows that in practice, it is easy to use agenerative model as a discriminative model.On the other hand, while a trained SVM serves to classify samples,we could not use such a model to generate samples that match thetraining set. Thus, an SVM is an example of a discriminative model.In the realm of deep learning, a discriminative network is designedto classify samples, while a generative network is designed to generatesamples that “�it” the training data. From the discussion above, it isclear that we can always obtain a discriminative model from agenerative model. Intuitively, it would seem that training a (moregeneral) generative model in order to obtain a (more speci�ic)discriminative model would be undesirable since we do not need thefull generality of the model. However, reality appears to be somewhatmore subtle. In [60], it is shown that for one generative–discriminativepair (naı̈ve Bayes and logistic regression) the discriminative modelsdo indeed have a lower asymptotic error; however, the generativemodels consistently converge faster. This suggests that with limitedtraining data, a generative model might produce a superiordiscriminative model, as compared to directly training thecorresponding discriminative model. In any case, in the realm of deeplearning, discriminative models dominate, with an example of a typicalapplication being image classi�ication. In contrast, generative modelshave only recently come into vogue, with an example application beingthe creation of fake images.Now, suppose that when training a discriminative neural network,in addition to the real training data, we generate “fake” trainingsamples that follow a similar probability distribution as the realsamples. Further, suppose that these fake training samples aredesigned to trick the discriminative network into making classi�icationmistakes. Such samples would tend to improve the training of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

network, thus making it stronger and more effective than if we hadrestricted the training to only the real data.Although intuitively appealing, several problems arise when tryingto implement a training technique based on fake samples. For onething, we generally do not know the distribution of the training set,which often lives in an extremely high dimensional space of greatcomplexity. Another issue is that during training, the discriminativenetwork is constantly evolving, so determining samples that are likelyto trick the network is a moving target. Another concern is that if thefake training samples are too dif�icult—or too easy—to distinguish atany point in the training process, we are unlikely to see anyimprovement over simply using the real training dataSeveral techniques have been proposed to try to take advantage offake data so as to improve the training process. In the case of agenerative adversarial network (GAN), we use a neural network togenerate the fake data—a generative network is trained to defeat adiscriminative network. Furthermore, the discriminative andgenerative networks are trained simultaneously in a minimax game.This approach sidesteps the complications involved in trying to modelthe probability distribution of the training samples. In fact, thegenerative network in a GAN simply uses random noise as itsunderlying probability distribution.To summarize, a GAN consists of two competing neural networks—a generative network and a discriminative network—with thegenerative network creating fake data that is designed to defeat thediscriminative network. The two networks are trained simultaneouslyfollowing a game-theoretic approach. In this way, both networksimprove, with the ultimate objective being a discriminative model(and/or a generative model) that is stronger than it would have been ifit was trained only on the real training data.We de�ine two neural networks, namely a discriminator ,and a generator , where consists of the parameters of thediscriminator network, and consists of the parameters of thegenerator network. Here, we describe the training process in terms ofimages, but other types of data could be used. Also, to simplify the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

notation, we suppress the dependence on and in the remainderof this discussion, except where it is essential for understanding andmay not be clear from context.The generator G(z) produces a fake image (based on the randomseed value z) with the goal of tricking the discriminator into believingit is a real training image. In contrast, the discriminator D(x) returns avalue in the range of 0– 1 that can be viewed as its estimate of theprobability that the image x is real. For example, means thatthe discriminator is completely certain that the image is real, while tells us that the discriminator is sure that the image is fake,and implies that the discriminator is clueless. Note thatthe discriminator must deal with both real and fake images, while thegenerator is only concerned with generating fake images that trick thediscriminator.The generator G wins if D thinks its fake images are real. Thus, wecan train G by making as close to zero as possible or,equivalently, by minimizing . On the other hand, Dwins if it can distinguish the fake images from real images so, ideally,when training D, we want , when x is a real image, and for fake images G(z). Therefore, we can train D bymaximizing or, equivalently, by maximizing . We want the D and G models to be incompetition, so they can strengthen each other. This can beaccomplished by formulating the training in terms of the minimaxgame (2)where E is the expected value, relative to the implied probabilitydistribution. Speci�ically, for the over D, the expectation is with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

respect to the real sample distribution which has parameters , whilefor the over G, the expectation is with respect to the fake sampledistribution, which is speci�ied by the parameters .In the case of stochastic gradient descent (or ascent), at eachiteration, we consider one real sample x and one fake sample G(z).Then, due to the in equation (2), we �irst perform gradient ascentto update the discriminator network D. This is followed by gradientdescent to update generator network G. Of course, both of these stepsrely on backpropagation.Note that for the discriminator network D, the backpropagationerror term involves
while for the generator network G, the error term involves only (3)Of course, in practice, we would typically use a minibatch of, say, m realsamples and m fake samples at each update of D and G, rather than astrict stochastic gradient descent/ascent.There is one technical issue that arises when attempting to trainthe generator network G as outlined above. As illustrated in Fig. 25, thegradient of the expression in (3) is nearly �lat for values of D(G(z)) nearzero. This implies that, early in training, when the generator network issure to be extremely weak—and hence the discriminator can easilyidentify most G(z) images as fake—it will be dif�icult for the G networkto learn. From, Fig. 25, we also see that (4)is relatively steep near zero. Hence, instead training G based on agradient ascent involving equation (3), we perform gradient descentbased on (4). Note that we have simply replaced the problem ofmaximizing with the equivalent problem of minimizingthe probability D(G(z)).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	25 Gradient of generator network GThe algorithm for training a GAN is summarized in Fig. 26. In someapplications, letting works best, while in others, yields better results. In the latter case, we update thediscriminator network D multiple times for each update of thegenerator network G. This implies that in such cases, the generatormight otherwise overwhelm the discriminator, that is, the generator isin some sense easier to train. Finally, while a GAN certainly is anadvanced architecture, it is important to realize that training reducesto a fairly straightforward application of gradient ascent.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	26 GAN training algorithmAs with LSTM, there are a vast number of variations on the basicGAN approach outlined here; see [48] for a list of nearly 50 suchvariants. Additional sources of information on GANs include theoriginal paper on the subject [21] and the excellent slides at [48].
9.1	 GANs	in	Malware	AnalysisGANs seem to show promise for dealing with some of the mostchallenging problems in information security. For example, GANs havebeen applied with some success to zero-day malware detection [32,42]. In addition, the generative aspect of a GAN can be used to createchallenging security problems in the “lab,” thus enabling researchers toconsider defenses against potential threats before those threats arisein a real-world setting [67].
10	 Extreme	Learning	MachinesAs with most aspects of ELMs, the origin of the technique is somewhatcontroversial. The unfortunate terminology of “Extreme LearningMachine” was apparently �irst used in [24]. Regardless of the origin ofthe technique, ELMs are essentially randomized feedforward neuralnetworks that effectively minimize the cost of training.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

An ELM consists of a single layer of hidden nodes, where theweights between inputs and hidden nodes are randomly initialized andremain unchanged throughout training. The weights that connect thehidden nodes to the output are trained, but due to the simple structureof an ELM, these weights can be determined by solving linearequations—more precisely, by solving a linear regression problem.Since no backpropagation is required, ELMs are far more ef�icient totrain, as compared to other neural network architectures. However,since the weights in the hidden layer are not optimized, we willtypically require more weights in an ELM, which implies that thetesting phase may be somewhat more costly, as compared to a networktrained by backpropagation. Nevertheless, in applications wheremodels must be trained frequently, ELMs can be competitive.

Fig.	27 Architecture of an ELM modelConsider the ELM architecture shown in Fig. 27, where X denotesthe input layer, H is the hidden layer, and Y is the output layer. In thisexample, there are N samples of the form for ,where is the feature vector for sample i and are the output labels, where T indicates thetransposition operation. Then the input and output for the ELM are as and , respectively. In this

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

example, the hidden layer H has neurons. We denote the activationfunction of the hidden layer as g(x).To train an ELM, we randomly select the weight matrix thatconnects the input layer X to the hidden layer H. We denote thisrandomly assigned weight matrix as , where each is a column vector. We also randomly select the bias matrix for this same layer. During the training phase,both W and B remain unchanged.After W and B have been initialized, the output of the hidden layer His given by
The output of the ELM is denoted as Y and is calculated as
where is the weight matrix for the output layer.The values of the weights at the hidden layer are learned vialinear least squares, and can be computed using , the Moore–Penrose generalized inverse of H, as discussed below. It is worthemphasizing that the only parameters that are learned in the ELM arethe elements of .Given that Y is the desired output, a unique solution of the systembased on least squared error can be found as follows. We denote theMoore–Penrose generalization inverse of H as , which is de�ined as
Then the desired solution is given by

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

After calculating , the training phase ends. For each test sample x, theoutput Y can be calculated as
where C(x) is de�ined below. The entire training process is extremelyef�icient, particularly in comparison to the backpropagation techniquethat is typically used to train neural networks [80].For the research reported in this paper, we use the Pythonimplementation of ELMs given in [17]. This implementation uses inputactivations that are a weighted combination of two functions referredto as an “MLP” kernel and an “RBF” kernel—we employ the sameterminology here. The MLP kernel is simply the linear operation
where the weights W and biases B are randomly selected from anormal distribution. This is the kernel function that is typicallyassociated with a standard ELM.The RBF kernel is considerably more complex and is based ongeneralized radial basis functions as de�ined in [18]. The details of thisRBF kernel go beyond the scope of this paper; see [18] for additionalinformation and, in particular, examples where this kernel is applied totrain ELMs. We use the notation to represent the RBF kernel. Also,it is worth noting that the RBF kernel is much more costly to compute,and hence its use does somewhat negate one of the major advantagesof an ELM.The input activations are given by (5)where is a user-speci�ied mixing parameter. Note that for we use only the MLP kernel and for , only the RBFkernel is used.
10.1	 ELMs	in	Malware	Analysis

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In [34], ELMs are compared to CNNs for malware classi�ication, and itis shown that ELMs can outperform CNNs in some cases. This isimpressive since ELMs have training times that are only a smallfraction of those required for comparable CNNs. ELMs have also beenapplied to malware detection on the Android platform in [90], wherethe training is based on static features, with reasonably strong results.In [71], the authors consider the effectiveness of a technique that theyrefer to as high-performance extreme learning machines (HP-ELM). Byvarying the features and activation functions of their HP-ELMarchitecture, they achieve high accuracy on a challenging dataset. Atwo-layer ELM is applied to the malware detection problem in [33]. Apartially connected network is used between the input and the �irsthidden layer, and this layer is aggregated with a fully connectednetwork in the second layer. The authors utilize an ensemble toimprove the accuracy and robustness of the resulting ELM-basedsystem.
11	 Word	Embedding	TechniquesWord2Vec is a technique for embedding terms in a high-dimensionalspace, where the term embeddings are obtained by training a shallowneural network. After the training process, words that are more similarin context will tend to be closer together in the Word2Vec space.Perhaps surprisingly, meaningful algebraic properties also hold forWord2Vec embeddings. For example, according to [53], if we let
and is the Word2Vec embedding of word , then is thevector that is closest—in terms of cosine similarity—to
Results such as this indicate that Word2Vec embeddings capturesigni�icant aspects of the semantics of the language.The focus of this section is Word2Vec, but before discussing thispopular and effective word embedding technique, we consider a coupleof alternatives. First, we discuss simple embedding strategies based on

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

hidden Markov models. Then we brie�ly consider a word embeddingtechnique the uses PCA. Finally, we discuss the main ideas behindWord2Vec.
11.1	 HMM2VecTo begin, we consider individual letter embeddings, as opposed toword embeddings. We call the letter embedding technique consideredhere Letter2Vec.Recall that an HMM is de�ined by the three matrices A, B, and , andis denoted as . The matrix contains the initial stateprobabilities, A contains the hidden state transition probabilities,and B consists of the observation probability distributionscorresponding to the hidden states. Each of these matrices is rowstochastic, that is, each row satis�ies the requirements of a discreteprobability distribution. Notation-wise, we let N be the number ofhidden states, M is the number of distinct observation symbols, and Tis the length of the observation (i.e., training) sequence. Note that Mand T are determined by the training data, while N is a user-de�inedparameter. For more details in HMMs, see [77] or Rabiner’s �inepaper [65].Suppose that we train an HMM on a sequence of letters extractedfrom English text, where we convert all uppercase letters to lowercaseand discard any character that is not an alphabetic letter or word-space. Then , and we select hidden states, and we use observations for training. Note that each observation isone of the symbols (letters plus word-space). For the examplediscussed below, the sequence of observations wasobtained from the Brown corpus of English [7]. Of course, any source ofEnglish text could be used.For one speci�ic case, an HMM trained with the parameters listed inthe previous paragraph yields the B matrix in Table 1. Observe thatthis B matrix gives us two probability distributions over theobservation symbols—one for each of the hidden states. We observe

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

that one hidden state essentially corresponds to vowels, while theother corresponds to consonants. This simple example nicelyillustrates the concept of machine learning, as no a priori assumptionwas made concerning consonants and vowels, and the only parameterwe selected was the number of hidden states N. Through the trainingprocess, the model learned a crucial aspect of English directly from thedata. This illustrative example is discussed in more detail in [77] andoriginally appeared in Cave and Neuwirth’s classic paper [8].
Table	1 Final for HMM
Letter State	0 State	1 Letter State	0 State	1a 0.13537 0.00364 n 0.00035 0.11429b 0.00023 0.02307 o 0.13081 0.00143c 0.00039 0.05605 p 0.00073 0.03637d 0.00025 0.06873 q 0.00019 0.00134e 0.21176 0.00223 r 0.00041 0.10128f 0.00018 0.03556 s 0.00032 0.11069g 0.00041 0.02751 t 0.00158 0.15238h 0.00526 0.06808 u 0.04352 0.00098i 0.12193 0.00077 v 0.00019 0.01608j 0.00014 0.00326 w 0.00017 0.02301k 0.00112 0.00759 x 0.00030 0.00426l 0.00143 0.07227 y 0.00028 0.02542m 0.00027 0.03897 z 0.00017 0.00100Space 0.34226 0.00375 – – –Suppose that for a given letter , we de�ine its Letter2Vecrepresentation to be the corresponding row of the matrix inTable 1. Then, for example, (6)Next, we consider the distance between these Letter2Vecrepresentations. Instead of using Euclidean distance, we measure the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

cosine similarity.8The cosine similarity of vectors X and Y is the cosine of the anglebetween the two vectors. Let S(X, Y) denote the cosine similaritybetween vectors X and Y. Then for and ,

In general, we have , but since our Letter2Vecencoding vectors consist of probabilities—and hence are non-negativevalues—we always have .When considering cosine similarity, the length of the vectors isirrelevant, as we are only considering the angle between vectors.Consequently, we might want to consider vectors of length one, and , in which case the cosine similaritysimpli�ies to the dot product
Henceforth, we use the notation to indicate a vector X that has beennormalized to be of length one.For the vector encodings in (6), we �ind that for the vowels “a” and“e”, the cosine similarity is . In contrast, thecosine similarity of the vowel “a” and the consonant “t” is . The normalized vectors and are

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

illustrated in Fig. 28. Using the notation in this �igure, cosine similarityis .

Fig.	28 Normalized vectors and
These results indicate that these Letter2Vec encodings—which arederived from a trained HMM—provide useful information on thesimilarity (or not) of pairs of letters. Note that we could obtain a vectorencoding of any dimension by simply training an HMM with thenumber of hidden states N equal to the desired dimension.Our HMM-based approach to Letter2Vec encoding is interesting,but we want to encode words, not letters. Analogous to the Letter2Vecembeddings discussed above, we could train an HMM on words andthen use the columns of the resulting B matrix (equivalently, the rowsof) to de�ine word vectors. The state of the art for Word2Vec uses adataset corresponding to , and .Training an HMM with similar parameters would be decidedly non-trivial, as the work factor is on the order of .While the word embedding technique discussed in the previousparagraph—we call it HMM2Vec—is plausible, it has some potentiallimitations. Perhaps the biggest issue with HMM2Vec is that wetypically train an HMM based on a Markov model of order one. This

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

means that the current state only depends on the immediatelypreceding state. By basing our word embeddings on such a model, theresulting vectors would likely provide only a very limited sense ofcontext. While we can train HMMs using models of a higher order, thework factor would be prohibitive.
11.2	 PCA2VecAnother option for generating embedding vectors is to apply PCA to amatrix of pointwise mutual information (PMI). To construct a PMImatrix, based on a speci�ied window size W, we compute theprobabilities for all pairs of words that occur withina window W of each other within dataset, and we also compute for each individual word . Then we de�ine the PMI matrix as as
Let be column i of X. We use as the feature vector for word and perform PCA (using SVD) based on these feature vectors. Asusual, we project the feature vectors onto the resulting eigenspace.Finally, by choosing the N dominant eigenvalues for this projection, weobtain word embedding vectors of length N.It is shown in [56] that these embedding vectors have many similarproperties as Word2Vec embeddings, with the author providingexamples analogous to those we give in the next section. Interestingly,it may be bene�icial in some applications to omit a few of the dominanteigenvectors when determining the PCA2Vec embedding vectors [45].For more details on using PCA to generate word embeddings,see [45]. The aforecited blog [56] gives an intuitive introduction to thetopic.
11.3	 Word2Vec

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Word2Vec uses a similar approach as the HMM2Vec concept outlinedabove. But, instead of using an HMM, Word2Vec is based on a shallow(one hidden layer) neural network. Analogous to HMM2Vec, inWord2Vec, we are not interested in the resulting model itself, butinstead we make use the learning that is represented by the trainedmodel to de�ine word embeddings. Next, we consider the basic ideasbehind Word2Vec. Our presentation is fairly similar to that found in theexcellent tutorial [51].Suppose that we have a vocabulary of size M. We encode each wordas a “one-hot” vector of length M. For example, suppose that ourvocabulary consists of the set of words
Then we encode “for” and “man” as
respectively.Now, suppose that our training data consists of the phrase (7)To obtain training samples, we specify the window size, and for eachoffset, we use all pairs of words within the speci�ied window. Forexample, if we select a window size of two, then from (7), we obtain thetraining pairs in Table 2.Consider the pair “(for,man)” from the fourth row in Table 2. Asone-hot vectors, this training pair corresponds to input 10000000 andoutput 00010000.A neural network similar to that in Fig. 29 is used to generateWord2Vec embeddings. The input is a one-hot vector of length Mrepresenting the �irst element of a training pair, such as those inTable 2, and the network is trained to output the second element of theordered pair. The hidden layer consists of N linear neurons and theoutput layer uses a softmax function to generate M probabilities,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

where is the probability of the output vector corresponding to for the given input.
Table	2 Training data
Offset									 Training	pairs														“ small step ” (one, small), (one, step)“one step for ” (small, one), (small, step), (small, for)
“one small for man ” (step, one), (step, small), (step, for), (step, man)“ small step man one ” (for, small), (for, step), (for, man), (for, one)
“ step for one giant ” (man, step), (man, for), (man, one), (man, giant)“ for man giant leap ” (one, for), (one, man), (one, giant), (one, leap)“ man one leap for ” (giant, man), (giant, one), (giant, leap), (giant, for)
“ one giant for mankind” (leap, one), (leap, giant), (leap, for), (leap, mankind)
“ giant leap mankind” (for, giant), (for, leap), (for, mankind)
“ leap for ” (mankind, leap), (mankind, for)

Observe that the Word2Vec network in Fig. 29 has NM weights thatare to be determined, as represented by the blue lines from the hiddenlayer to the output layer. For each output node , there are N edges(i.e., weights) from the hidden layer. The N weights that connect tooutput node form the Word2Vec embedding of the word .As mentioned above, the state of the art in Word2Vec for Englishtext is based on a vocabulary of words, and embeddingvectors of length . These embeddings are obtained by trainingon a set of about samples. Clearly, training a model of this

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

magnitude is an extremely challenging computational task, as thereare weights to be determined, not to mention a huge numberof training samples to deal with. Most of the complexity of Word2Veccomes from tricks that are used to make it feasible to train such a largenetwork with a massive amount of data.One trick that is used to speed training in Word2Vec is thesubsampling of frequent words. Common words such as “a” and “the”contribute little to the model, so these words can appear in trainingpairs at a much lower rate than they are present in the training text.The most signi�icant work-saving trick that is used in Word2Vec isso-called “negative sampling.” When training a neural network, eachtraining sample potentially affects all of the weights of the model.Instead of adjusting all of the weights, in Word2Vec, only a smallnumber of “negative” samples have their weights modi�ied per trainingsample. For example, suppose that the output vector of a training paircorresponds to word . Then the “positive” weights are those ofoutput node , and all of the corresponding weights are modi�ied. Inaddition, a small subset of the “negative” words (i.e., everyword in the dataset except) are selected and only the weights of thecorresponding output nodes are mod�ied. The distribution used toselect the negative subset is biased toward more frequent words.A high-level discussion of Word2Vec can be found in [3], while avery nice and intuitive—yet reasonably detailed—introduction isgiven in [51]. The original paper describing Word2Vec is [53] and animmediate follow-up paper discusses a variety of improvements thatmostly serve to make training practical for large datasets [54].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	29 Neural network for Word2Vec embeddings
11.4	 Word	Embeddings	in	Malware	AnalysisWord2Vec is fairly popular in the malware detection literature. Forexample, in [64] Word2Vec models based on machine code form thebasis for a malware detection technique, while in [12], an Androidmalware detection scheme dubbed DroidVecDeep uses Word2Vecresults as features in deep belief networks [29]. The recent malwareresearch in [9] considers multiple word embedding techniques(Word2Vec, HMM2Vec, and PCA2Vec) based on opcode sequences.Better results are obtained in most cases, as compared to using rawopcode sequences, which indicates that word embeddings are a usefulform of feature engineering. The paper [36] considers Word2Vec andHMM2Vec embeddings for malware classi�ication, with strong resultsobtained in many cases. In [62], word embeddings are used as part of ascheme that can successfully distinguish points in time wheresigni�icant evolution has occurred within a malware family.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Word2Vec has proven surprisingly useful in a variety of securityapplications beyond the malware domain. Such applications rangefrom network-based anomaly detection [4] to analyzing the evolutionof cyberattacks [73].
12	 ConclusionIn this chapter, we have provided details on a wide array of deeplearning techniques that have proven useful in the �ield of malwareanalysis. We began with an introduction to the historical developmentof neural network-based techniques and related topics. This wasfollowed by a discussion of several popular modern architectures.Speci�ically, we covered the following architectures: Multilayerperceptrons (MLP), convolutional neural networks (CNN), recurrentneural networks (RNN), long short-term memory (LSTM), gatedrecurrent units (GRU), residual networks (ResNet), generativeadversarial networks (GAN), extreme learning machines (ELM), andWord2Vec. For each of these architectures, we cited representativeexamples of relevant malware-related research, and in most cases, wealso mentioned other applications related to information security.
References1. Annapurna, Annadatha, and Mark Stamp. 2018. Image spam analysis and detection. Journal	of

Computer	Virology	and	Hacking	Techniques 14 (1): 39–52.2. Ben Athiwaratkun and Jack W. Stokes. 2017. Malware classi�ication with LSTM and GRUlanguage models and a character-level CNN. https:// www. microsoft. com/ en-us/ research/ wp-content/ uploads/ 2017/ 07/ LstmGruCnnMalwar eClassi�ier. pdf.3. Banerjee, Suvro. 2018. Word2vec — A baby step in deep learning but a giant leap towardsnatural language processing. https:// medium. com/ explore-arti�icial-intelligence/ word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba.4. Barot, Ketul, Jialing Zhang, and Seung Woo Son. 2016. Using natural language processingmodels for understanding network anomalies. http:// ieee-hpec. org/ 2016/ techprog2016/ index_ htm_ �iles/ R-w2vec-�inal. pdf.5. Basole, Samanvitha, Fabio Di Troia, and Mark Stamp. 2020. Multifamily malware models.
Journal	of	Computer	Virology	and	Hacking	Techniques 16 (1): 79–92.[Crossref]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/07/LstmGruCnnMalwareClassifier.pdf
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba
http://ieee-hpec.org/2016/techprog2016/index_htm_files/R-w2vec-final.pdf
https://doi.org/10.1007/s11416-019-00345-8

6. Bhodia, Niket, Pratikkumar Prajapati, Fabio Di Troia, and Mark Stamp. 2019. Transfer learningfor image-based malware classi�ication. In Proceedings	of	the	5th	International	Conference	on
Information	Systems	Security	and	Privacy, ICISSP 2019, eds. Paolo Mori, Steven Furnell, andOlivier Camp, 719–726.7. The Brown corpus of standard American English. http:// www. cs. toronto. edu/ ~gpenn/ csc401/ a1res. html.8. Cave, Robert L., and Lee P. Neuwirth. 1980. Hidden Markov models for English. In Hidden
Markov	models	for	speech, 16–56, IDA-CRD. New Jersey: Princeton. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ CaveNeuwirth/ index. html.9. Chandak, Aniket, Fabio Di Troia, and Mark Stamp. 2020. A comparison of word embeddingtechniques for malware classi�ication. In Malware	analysis	using	arti�icial	intelligence	and
deep	learning, eds. Stamp, Mark, Mamoun Alazab, and Andrii Shalaginov. Berlin: Springer.10. Chavda, Aneri, Katerina Potika, Fabio Di Troia, and Mark Stamp. 2018. Support vectormachines for image spam analysis. In Proceedings	of	the	15th	international	joint	conference
on	e-business	and	telecommunications, ICETE 2018, eds. Callegari, Christian, Marten vanSinderen, Paulo Novais, Panagiotis G. Sarigiannidis, Sebastiano Battiato, A� ngelSerrano Sánchez de León, Pascal Lorenz, and Mohammad S. Obaidat, 597–607.11. Chen, Rui, Jing Yang, Rong-gui Hu, and Shu-guang Huang. 2013. A novel lstm-rnn decodingalgorithm in CAPTCHA recognition. https:// ieeexplore. ieee. org/ document/ 6840561.12. Chen, T., Q. Mao, M. Lv, H. Cheng, and Y. Li. 2019. Droidvecdeep: Android malware detectionbased on Word2Vec and deep belief network. KSII	Transactions	on	Internet	and	Information
Systems 13 (4): 2180–2197.13. Cheng, Min, Qian Xu, Jianming Lv, Wenyin Liu, Qing Li, and Jianping Wang. 2016. MS-LSTM: Amulti-scale LSTM model for BGP anomaly detection. In 2016	IEEE	24th	International
Conference	on	Network	Protocols	(ICNP), 1–6.14. Cohen, Steven A., and Matthew W. Granade. 2018. Models will run the world. Wall	Street
Journal. https:// www. wsj. com/ articles/ models-will-run-the-world-1534716720.15. Cornelisse, Daphne. 2018. An intuitive guide to convolutional neural networks. https:// medium. freecodecamp. org/ an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050.16. Deshpande, Adit. 2018. A beginner’s guide to understanding convolutional neural networks.https:// adeshpande3. github. io/ A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/ .17. Extreme learning machine implementation in Python. https:// github. com/ dclambert/ Python-ELM.18. Fernández-Navarro, Francisco, César Hervás-Martinez, Javier Sanchez-Monedero, andPedro Antonio Gutiérrez. 2011. MELM-GRBF: A modi�ied version of the extreme learningmachine for generalized radial basis function neural networks. Neurocomputing 74(16):2502–2510.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.cs.toronto.edu/%257egpenn/csc401/a1res.html
https://www.cs.sjsu.edu/%257estamp/RUA/CaveNeuwirth/index.html
https://ieeexplore.ieee.org/document/6840561
https://www.wsj.com/articles/models-will-run-the-world-1534716720
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://adeshpande3.github.io/A-Beginner%2527s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://github.com/dclambert/Python-ELM

19. Gasmi, Houssem, Jannik Laval, and Abdelaziz Bouras. 2019. Cold-start cybersecurity ontologypopulation using information extraction with LSTM. In 2019	international	conference	on
cyber	security	for	emerging	technologies, CSET, 1–6.20. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep	learning. Cambridge: MITPress. http:// www. deeplearningbook . org.21. Goodfellow, Ian J, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, SherjilOzair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Proceedings
of	the	27th	international	conference	on	neural	information	processing	systems, NIPS’14,vol. 2, 2672–2680.22. Gormley, Matthew R. 2017. Neural networks and backpropagation. https:// www. cs. cmu. edu/ ~mgormley/ courses/ 10601-s17/ slides/ lecture20-backprop. pdf.23. Greff, Klaus, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R. Steunebrink, and JürgenSchmidhuber. 2017. LSTM: A search space odyssey. IEEE	Transactions	on	Neural	Networks
and	Learning	Systems 28 (10): 2222–2232. https:// arxiv. org/ pdf/ 1503. 04069. pdf.24. Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. 2004. Extreme learning machine: Anew learning scheme of feedforward neural networks. In 2004	IEEE	international	joint
conference	on	neural	networks, vol. 2, 985–990.25. Gupta, Arpit. 2018. Alexa blogs: How Alexa is learning to converse more naturally. https:// developer. amazon. com/ blogs/ alexa/ post/ 15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/ how-alexa-is-learning-to-converse-more-naturally.26. Hardesty, Larry. 2017. Explained: Neural networks. http:// news. mit. edu/ 2017/ explained-neural-networks-deep-learning-0414.27. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for imagerecognition. https:// arxiv. org/ pdf/ 1512. 03385. pdf.28. Hern, Alex. 2017. The	guardian. Elon Musk says AI could lead to third world war. https:// www. theguardian. com/ technology/ 2017/ sep/ 04/ elon-musk-ai-third-world-war-vladimir-putin.29. Hinton, Geoffrey. 2007. Deep belief nets. https:// www. cs. toronto. edu/ ~hinton/ nipstutorial/ nipstut3. pdf.30. Hochreite, Sepp and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
Computation 9(8): 1735–1780. http:// www. bioinf. jku. at/ publications/ older/ 2604. pdf.31. Hu, Weiwei and Ying Tan. 2017. Black-box attacks against RNN based malware detectionalgorithms. https:// arxiv. org/ abs/ 1705. 08131.32. Hu, Weiwei and Ying Tan. 2017. Generating adversarial malware examples for black-boxattacks based on gan. https:// arxiv. org/ pdf/ 1702. 05983. pdf.33. Jahromi, Amir Namavar, Sattar Hashemi, Ali Dehghantanha, Kim-Kwang Raymond Choo, HadisKarimipour, David Ellis Newton, and Reza M. Parizi. 2019. An improved two-hidden-layerextreme learning machine for malware hunting. Computers	and	Security 89.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.deeplearningbook.org/
https://www.cs.cmu.edu/%257emgormley/courses/10601-s17/slides/lecture20-backprop.pdf
https://arxiv.org/pdf/1503.04069.pdf
https://developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-converse-more-naturally
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://arxiv.org/pdf/1512.03385.pdf
https://www.theguardian.com/technology/2017/sep/04/elon-musk-ai-third-world-war-vladimir-putin
https://www.cs.toronto.edu/%257ehinton/nipstutorial/nipstut3.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/1705.08131
https://arxiv.org/pdf/1702.05983.pdf

34. Jain, Mugdha, William Andreopoulos, and Mark Stamp. Convolutional neural networks andextreme learning machines for malware classi�ication. Journal	of	Computer	Virology	and
Hacking	Techniques.35. Kaan, Can. 2018. Deep learning tutorial for beginners. https:// www. kaggle. com/ kanncaa1/ deep-learning-tutorial-for-beginners.36. Kale, Aparna Sunil, Fabio Di Troia, and Mark Stamp. 2020. Malware classi�ication withhmm2vec and word2vec features. submitted for publication.37. Kalfas, Ioannis. 2018. Modeling visual neurons with convolutional neural networks. https:// towardsdatascien ce. com/ modeling-visual-neurons-with-convolutional-neural-networks-e9c01ddfdfa7.38. Karpathy, Andrej. 2018. Convolutional neural networks for visual recognition. http:// cs231n. github. io/ convolutional-networks/ .39. Khaitan, Pranav. 2016. Google AI blog: Chat smarter with Allo. https:// ai. googleblog. com/ 2016/ 05/ chat-smarter-with-allo. html.40. Khan, Riaz Ullah, Xiaosong Zhang, and Rajesh Kumar. 2019. Analysis of resnet and googlenetmodels for malware detection. Journal	of	Computer	Virology	and	Hacking	Techniques 15 (1):29–57.41. Kim, Gyuwan, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon. 2016. LSTM-basedsystem-call language modeling and robust ensemble method for designing host-basedintrusion detection systems. https:// arxiv. org/ abs/ 1611. 01726.42. Kim, Jin-Young, Bu Seok-Jun, and Sung-Bae Cho. 2018. Zero-day malware detection usingtransferred generative adversarial networks based on deep autoencoders. Information
Sciences 460–461: 83–102.[Crossref]43. Kravchik, Moshe, and Asaf Shabtai. 2018. Detecting cyberattacks in industrial control systemsusing convolutional neural networks. https:// arxiv. org/ pdf/ 1806. 08110. pdf.44. Kurenkov, Andrey. 2015. A ‘brief ’ history of neural nets and deep learning. http:// www. andreykurenkov. com/ writing/ ai/ a-brief-history-of-neural-nets-and-deep-learning/ .45. Levy, Omer, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity withlessons learned from word embeddings. Transactions	of	the	Association	for	Computational
Linguistics 3: 211–225. https:// levyomer. �iles. wordpress. com/ 2015/ 03/ improving-distributional-similarity-tacl-2015. pdf.46. Levy, Steven. 2016. The iBrain is here—and it’s already inside your phone. Wired. https:// www. wired. com/ 2016/ 08/ an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/ .47. Li, Fei-Fei, Justin Johnson, and Serena Yeung. 2017. Lecture 10: Recurrent neural networks.http:// cs231n. stanford. edu/ slides/ 2017/ cs231n_ 2017_ lecture10. pdf.48.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.kaggle.com/kanncaa1/deep-learning-tutorial-for-beginners
https://towardsdatascience.com/modeling-visual-neurons-with-convolutional-neural-networks-e9c01ddfdfa7
http://cs231n.github.io/convolutional-networks/
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html
https://arxiv.org/abs/1611.01726
https://doi.org/10.1016/j.ins.2018.04.092
https://arxiv.org/pdf/1806.08110.pdf
http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
https://levyomer.files.wordpress.com/2015/03/improving-distributional-similarity-tacl-2015.pdf
https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Li, Fei-Fei, Justin Johnson, and Serena Yeung. 2017. Lecture 13: Generative models. http:// cs231n. stanford. edu/ slides/ 2017/ cs231n_ 2017_ lecture13. pdf.49. Li, Shixuan, and Dongmei Zhao. 2019. A LSTM-based method for comprehension andevaluation of network security situation. In 2019	18th	IEEE	international	conference	on	trust,
security	and	privacy	in	computing	and	communications, 723–728.50. Lu, Renjie. 2019. Malware detection with lstm using opcode language. https:// arxiv. org/ abs/ 1906. 04593.51. McCormick, Chris. 2016. Word2vec tutorial — The skip-gram model. http:// mccormickml. com/ 2016/ 04/ 19/ word2vec-tutorial-the-skip-gram-model/ .52. McCulloch , Warren S, and Walter Pitts. 1943. A logical calculus of the ideas immanent innervous activity. Bulletin	of	Mathematical	Biophysics 5. https:// pdfs. semanticscholar. org/ 5272/ 8a99829792c32720 43842455f3a110e8 41b1. pdf.53. Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Ef�icient estimation of wordrepresentations in vector space. https:// arxiv. org/ abs/ 1301. 3781.54. Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributedrepresentations of words and phrases and their compositionality. https:// papers. nips. cc/ paper/ 5021-distributed-representations-of-words-and-phrases-and-their-compositionality . pdf.55. Minsky, Marvin, and Seymour Papert. 1969. Perceptrons:	An	introduction	to	computational
geometry. Cambridge: MIT Press.56. Moody, Chris. Stop using word2vec. https:// multithreaded. stitch�ix. com/ blog/ 2017/ 10/ 18/ stop-using-word2vec/ .57. Moradi, Mehdi, and Mohammad Zulkernine. A neural network based system for intrusiondetection and classi�ication of attacks. https:// pdfs. semanticscholar. org/ cbf2/ 57a638aff38eae99 bf88d8e22f150d9d 8c47. pdf.58. Narwekar, Abhishek, and Anusri Pampari. 2016. Recurrent neural network architectures.http:// slazebni. cs. illinois. edu/ spring17/ lec20_ rnn. pdf.59. Neubig, Graham. 2018. NLP programming tutorial 8 — Recurrent neural nets. http:// www. phontron. com/ slides/ nlp-programming-en-08-rnn. pdf.60. Ng , Andrew Y, and Michael I. Jordan. 2001. On discriminative vs. generative classi�iers: Acomparison of logistic regression and naı̈ve Bayes. In Proceedings	of	the	14th	international
conference	on	neural	information	processing	systems:	natural	and	synthetic, NIPS’01, 841–848.61. Olah, Christopher. 2014. Understanding convolutions. http:// colah. github. io/ posts/ 2014-07-Understanding-Convolutions/ .62. Paul, Sunhera, Fabio Di, and Troia Mark Stamp. Word embedding techniques for malwareevolution detection. submitted for publication.63.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
https://arxiv.org/abs/1906.04593
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://pdfs.semanticscholar.org/5272/8a99829792c3272043842455f3a110e841b1.pdf
https://arxiv.org/abs/1301.3781
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://multithreaded.stitchfix.com/blog/2017/10/18/stop-using-word2vec/
https://pdfs.semanticscholar.org/cbf2/57a638aff38eae99bf88d8e22f150d9d8c47.pdf
http://slazebni.cs.illinois.edu/spring17/lec20_rnn.pdf
http://www.phontron.com/slides/nlp-programming-en-08-rnn.pdf
http://colah.github.io/posts/2014-07-Understanding-Convolutions/

Philipp, George, Dawn Song, and Jaime G. Carbonell. 2018. The exploding gradient problemdemysti�ied — De�inition, prevalence, impact, origin, tradeoffs, and solutions. https:// arxiv. org/ pdf/ 1712. 05577. pdf.64. Popov, I. 2017. Malware detection using machine learning based on Word2Vec embeddings ofmachine code instructions. In 2017	Siberian	symposium	on	data	science	and	engineering,SSDSE, 1–4.65. Rabiner, Lawrence R. 1989. A tutorial on hidden Markov models and selected applications inspeech recognition. Proceedings	of	the	IEEE 77(2): 257–286. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ Rabiner. pdf.66. Rezende, E, G. Ruppert, T. Carvalho, F. Ramos, and P. de Geus. 2017. Malicious softwareclassi�ication using transfer learning of resnet-50 deep neural network. In 16th	IEEE
international	conference	on	machine	learning	and	applications, ICMLA 2017, 1011–1014.67. Rigaki, Maria, and Sebastian Garcia. 2018. Bringing a GAN to a knife-�ight: Adapting malwarecommunication to avoid detection. https:// mariarigaki. github. io/ publication/ gan-knife-�ight/ .68. Rosenblatt, Frank. 1961. Principles of neurodynamics: Perceptrons and the theory of brainmechanisms. http:// www. dtic. mil/ dtic/ tr/ fulltext/ u2/ 256582. pdf.69. Ruderman, Avraham, Neil C. Rabinowitz, Ari S. Morcos, and Daniel Zoran. 2018. Pooling isneither necessary nor suf�icient for appropriate deformation stability in CNNs. https:// arxiv. org/ abs/ 1804. 04438.70. Rumelhart, David, Geoffrey Hinton, and Ronald Williams. 1986. Learning representations byback-propagating errors. Nature 323 (9)71. Shamshirband, Shahab, and Anthony T. Chronopoulos. 2019. A new malware detection systemusing a high performance-elm method. In Proceedings	of	the	23rd	international	database
applications	&	engineering	symposium, IDEAS’19, 33:1–33:10.72. Sharmin, Tazmina, Fabio Di Troia, Katerina Potika, and Mark Stamp. 2020. Convolutionalneural networks for image spam detection. Information	Security	Journal:	A	Global	Perspective29 (3): 103–117.73. Shen, Yun, and Gianluca Stringhini. 2019. Attack2vec: Leveraging temporal word embeddingsto understand the evolution of cyberattacks. https:// seclab. bu. edu/ people/ gianluca/ papers/ attack2vec-usenix2019. pdf.74. Singh, Tanuvir, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and Mark Stamp.2016. Support vector machines and malware detection. Journal	of	Computer	Virology	and
Hacking	Techniques 12 (4): 203–212.75. Springenber, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. 2014.Striving for simplicity: The all convolutional net. https:// arxiv. org/ abs/ 1412. 6806.76. Spruston, Nelson. 2019. Pyramidal neurons: Dendritic structure and synaptic integration.
Nature	Reviews	Neuroscience 9: 206–221. https:// www. nature. com/ articles/ nrn2286.77.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://arxiv.org/pdf/1712.05577.pdf
https://www.cs.sjsu.edu/%257estamp/RUA/Rabiner.pdf
https://mariarigaki.github.io/publication/gan-knife-fight/
http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf
https://arxiv.org/abs/1804.04438
https://seclab.bu.edu/people/gianluca/papers/attack2vec-usenix2019.pdf
https://arxiv.org/abs/1412.6806
https://www.nature.com/articles/nrn2286

Stamp, Mark. 2004. A revealing introduction to hidden Markov models. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ HMM. pdf.78. Stamp, Mark. 2018. A survey of machine learning algorithms and their application ininformation security. In Guide	to	vulnerability	analysis	for	computer	networks	and	systems:
an	arti�icial	intelligence	approach, eds. Parkinson, Simon, Andrew Crampton, and Richard Hill,chapter 2, 33–55. Berlin: Springer.79. Stamp, Mark. 2019. Alphabet soup of deep learning topics. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ alpha. pdf.80. Stamp, Mark. 2019. Deep thoughts on deep learning. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ ann. pdf.81. Veit, Andreas, Michael Wilber, and Serge Belongie. Residual networks behave like ensemblesof relatively shallow networks. https:// arxiv. org/ pdf/ 1605. 06431. pdf.82. Wallis, Charles. 2017. History of the perceptron. https:// web. csulb. edu/ ~cwallis/ arti�icialn/ History. htm.83. Wu, Peilun, Hui Guo, and Nour Moustafa. 2020. Pelican: A deep residual network for networkintrusion detection. https:// arxiv. org/ pdf/ 2001. 08523. pdf.84. Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, WolfgangMacherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, JasonSmith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and JeffreyDean. 2016. Google’s neural machine translation system: Bridging the gap between human andmachine translation. https:// arxiv. org/ abs/ 1609. 08144.85. Xu, Ke, Yingjiu Li, Robert H. Deng, and Kai Chen. 2018. Deepre�iner: Multi-layer androidmalware detection system applying deep neural networks. In 2018	IEEE	European
symposium	on	security	and	privacy, Euro SP, 473–487.86. Xue, Di, Jingmei Li, Tu Lv, Weifei Wu, and JiaXiang Wang. 2019. Malware classi�ication usingprobability scoring and machine learning. IEEE	Access, 91641–91656.87. Yagcioglu, Semih, Mehmet Saygin Sey�ioglu, Begum Citamak, Batuhan Bardak, SerenGuldamlasioglu, Azmi Yuksel, and Emin Islam Tatli. 2019. Detecting cybersecurity events fromnoisy short text. https:// arxiv. org/ abs/ 1904. 05054.88. Yajamanam, Sravani, Vikash Raja Samuel Selvin, Fabio Di Troia, and Mark Stamp. 2018. Deeplearning versus gist descriptors for image-based malware classi�ication. In Proceedings	of	the
4th	international	conference	on	information	systems	security	and	privacy, ICISSP 2018, eds.Mori, Paolo, Steven Furnell, and Olivier Camp, 553–561.89. Zeiler, Matthew D, and Rob Fergus. 2014. Visualizing and understanding convolutionalnetworks. https:// cs. nyu. edu/ ~fergus/ papers/ zeilerECCV2014. pdf.90. Zhang, Wei, Huan Ren, Qingshan Jiang, and Kai Zhang. 2015. Exploring feature extraction andELM in malware detection for Android devices. Advances	in	Neural	Networks,	ISNN, eds. Hu,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.cs.sjsu.edu/%257estamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/%257estamp/RUA/alpha.pdf
https://www.cs.sjsu.edu/%257estamp/RUA/ann.pdf
https://arxiv.org/pdf/1605.06431.pdf
https://web.csulb.edu/%257ecwallis/artificialn/History.htm
https://arxiv.org/pdf/2001.08523.pdf
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1904.05054
https://cs.nyu.edu/%257efergus/papers/zeilerECCV2014.pdf

1

2

3
4

5

6
7

Xiaolin, Yousheng Xia, Yunong Zhang, and Dongbin Zhao, 489–498.
FootnotesIn stark contrast to the nonsensical hype that envelopes far too much of the discussion of deeplearning and (especially) AI, there does exist some clear-headed thinking that points to the greattransformative potential of learning technology in the real world, rather than the world of science�iction. For a �ine example of this latter genre, see the intriguingly titled article, “Models will runthe world” [14]. (Spoiler alert: “Models will run the world” is not about world domination byskinny women in swimsuits). If any learning model truly saturates, then adding more data will be counterproductive beyondsome point, as the work factor for training on larger datasets increases, while there is no addedbene�it from the resulting trained model. It would therefore be useful to be able to predetermine a“score” of some sort that would tell us approximately how much data is optimal when training aparticular learning model for a given type of data. We see examples of �ilters applied to simple images in Sect. 6.3. Color and grayscale images are more complex. For grayscale, a nonlinear encoding (i.e., gammaencoding) is employed, so as to make better use of the range of values available. For color images,the RGB (red, green, and blue, respectively) color scheme implies that each pixel is representedby 24 bits (in an uncompressed format), in which case convolutional �ilters can be viewed asoperating over a three-dimensional box that is 3 bytes deep. It is also sometimes claimed that pooling improves certain desirable characteristics of CNNs,such as translation invariance and deformation stability. However, this is disputed, and the currenttrend seems to clearly be in the direction of fully convolutional architectures, i.e., CNNs with nopooling layers [69]. Obviously, the inventors of RNNs were not familiar with Back	to	the	Future or Star	Trek, both ofwhich conclusively demonstrate that the future can have a large in�luence on the past. Unfortunately, “recursive neural network” is typically also abbreviated as RNN. Here, wereserve RNN for recurrent neural networks and we do not use any abbreviation when referring torecursive neural networks.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

8 Cosine similarity is not a true metric, since it does not, in general, satisfy the triangle inequality.
https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_2
Malware	Detection	with	Sequence-
Based	Machine	Learning	and	Deep
LearningWilliam B. Andreopoulos1 Department of Computer Science, San Jose State University, SanJose, USA
William	B.	Andreopoulos
Email:	william.andreopoulos@sjsu.edu

AbstractIn this chapter, we review sequence-based machine learning methodsthat are used for malware detection and classi�ication. We start byreviewing the datatypes extracted from code: static features anddynamic traces of program execution. We review recent research thatapplies machine learning on opcode and API call sequences, call graphs,system calls, registry changes, information �low traces, as well ashybrid and raw data, to detect and classify malware. With a focus onmetamorphic malware, we discuss Hidden Markov Models (HMMs) andLong Short-Term Memory (LSTM) networks. We describe their inputformats, such as one-hot encoding and vector embeddings, thearchitecture of the machine learning models, the training process, andthe output formats. Finally, we discuss commercial and open-sourcetools that are used for data extraction from software.
1	 Introduction

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_2
mailto:william.andreopoulos@sjsu.edu

Malware is software that is designed to disrupt or damage computersystems. According to Symantec, more than 669 million new malwarevariants were detected in 2018, which was an increase of more than80% from 2017, with such trends continuing into 2019 and 2020 [41,42]. Every day, there are at least 350,000 instances of new malwarebeing created and detected. Additionally, 81% of all ransomwareinfections target businesses and organizations, making malwareinfections very costly. Malware and web-based attacks are the twomost costly attack types—companies spent an average of US $2.4million in defense in 2018–2019 [30, 48]. Clearly, malware detection isa critical task in computer security.Malware detection can be based on static or dynamic softwarefeatures, or a combination of those, or raw data. Static features areextracted from static �iles, while dynamic features are extracted duringcode execution or emulation. Static approaches often use features suchas calls to external libraries, strings, and byte sequences forclassi�ication. Other static approaches extract higher level informationfrom binaries, such as sequences of API calls or opcode information.Signature-based detection that uses static data is widely usedwithin commercial antivirus software. While this method is usedwidely in commercial antivirus tools and is capable of detectingspeci�ic malware families ef�iciently, it fails to detect new malware.Therefore, modern antivirus tools go beyond static signature-baseddetection and can detect unknown malwares more accurately usingdynamic data. Using dynamic data, it is able to detect unknownmalwares according to their behavior [10, 16].Sequential features extracted from malware source code analysishave been used for the classi�ication of malware with deep learningapproaches. Sequences used in malware analysis have been used forLSTMs, as well as HMMs. Both features and sequences can be extractedby performing either static or dynamic analysis. There are many toolsthat can extract either or both data types. We provide an overview ofthese tools later in this chapter.This chapter starts with describing the distinction between staticand dynamic data for malware detection. Then we give an overview ofthe data type representation, recent malware detection methods, andtools for extraction of static and dynamic data. Finally, we describe how

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

sequence-based deep learning algorithms can be used for malwaredetection.
2	 Data	Extraction
2.1	 Static	DataMachine learning models for malware detection and classi�ication canbe trained on static features or attributes that are extracted fromexecutable �iles [13]. Static analysis involves analyzing the malwaresoftware or code without actually executing the program. Staticanalysis involves disassembling software and representing some of itsattributes as features for input to a machine learning tool[16]. Approaches to perform static analysis usually employ theexecutable binary �ile, while others use the source code �ile. Examplesof static features include opcodes, API calls, control �low graphs, andmany others. Speci�ic features for training the machine learning modelinclude extracting opcode sequences after disassembling the binary�ile, or extracting the control �low graph from the assembly �ile,extracting API calls from the binary, as well as extracting byte codesequences from the binary executable �ile [2, 9, 21, 28, 38, 44] (Figs. 1and 2).

Fig.	1 Static opcode sequence example. Consider an example based on the assembly code snippetis shown above; the following sequences of length 2, also named bi-grams or 2 grams, can begenerated: s1 (mov, add), s2 (add, push), s3 (push, add), s4 (add, and), s5 (and,push), s6 (push, push), and s7 (push, and). Because most of the common operations that canbe used for malicious purposes require more than one machine code operation, this example usessequences of two opcodes, instead of individual opcodes [35]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Static control �low graph (static): A Control Flow Graph (CFG) is the graphicalrepresentation of control �low or computation during the execution of programs or applications.Control �low graphs are mostly used in the static analysis, as they can accurately represent the�low inside of a program unit
2.2	 Dynamic	DataDynamic Analysis is the analysis of a software’s behavior that isperformed while executing the program. Some of the data that can beobtained through dynamic analysis are API calls, system calls,instruction traces, taint analysis, registry changes, memory writes, andinformation �low tracking. Dynamic analysis uses the tasks performedby a program while it is being executed in a virtualized environment[16]. Dynamic analysis is known to provide more accurate malwarebehavior detection results, but the data can be time-consuming toextract. There are several techniques and approaches followed toperform dynamic analysis.As an example, this is an API system call extracted dynamically [16]:
fork(); getpid(); ioctl(); read(); write();
wait(); exit();

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In order to input this to a sequence-based neural network we canrepresent it in one-hot encoded format. One-hot encoding is created byreplacing the ith system call with an n-vector of zeros and a ‘1’ in the ithposition.
2.3	 Hybrid	AnalysisBesides static and dynamic analysis techniques, another analysistechnique is the hybrid analysis of malware, which combines theadvantages of both static and dynamic analyses [34]. Hybrid analysistechnique is the combination of static and dynamic analysistechniques. In hybrid analysis, static analysis is done before theexecution of a program and then dynamic analysis is done selectivelybased on the information obtained from static analysis. Dynamicanalysis can be tedious due to multi-path execution. Static analysis canbe used to selectively choose the path of execution for dynamicanalysis. Often hybrid analysis results in increased accuracy andef�iciency [34].
2.4	 Alternative	Approaches	That	Use	Raw	DataIn many cases the extraction of these sequences and features forLSTMs and HMMs can be costly, so approaches using raw bytes arepreferred, if comparable accuracy can be obtained. For example, byte n-grams have been successfully used as features [43]. Also, it is possibleto treat executable �iles as images and apply image analysistechniques. Images of malware executables have previously been usedfor classi�ication using convolutional neural networks [25].
2.5	 Evaluation	of	Malware	Detection	AccuracyFor API call sequences and opcode sequences, three test case scenarioshave been implemented in previous work:The �irst case uses dynamic analysis data alone for both training andtesting.The second case uses dynamic analysis data for training and staticanalysis data for testing.The third case uses static analysis data alone for both training andtesting.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

It is widely known that dynamic analysis data is more accurate andis therefore popular for training purposes. On the other hand, usingdynamic data for training and testing is less ef�icient due to thecomplexity of extracting data in a dynamic fashion from software.
3	 Recent	Research	ExamplesIn this section, we give an overview of recent research on malwaredetection and classi�ication.In [51], a system is proposed that extracts the API sequences from aPortable Executable (PE) �ile format. Then Objective-OrientedAssociation (OOA) based mining is done for malwareclassi�ication. The system parses PE �iles and generates OOA rulesef�iciently for classi�ication using FP Growth and a frequent-patterntree. The system was tested on a large collection of PE �iles obtainedfrom the anti-virus laboratory of KingSoft Corporation to comparevarious malware detection approaches. The accuracy and ef�iciency ofthe OOA system outperformed anti-virus software, such as NortonAntiVirus and McAfee VirusScan, as well as previous data mining-baseddetection systems that employed Naive Bayes, Support Vector Machine(SVM), and Decision Tree techniques.In [31], malware is analyzed by abstracting the frequent itemsets inAPI call sequences. The authors focused on the usage of frequentmessages in API call sequences, They hypothesized that frequentitemsets consisting of API names and/or API arguments could bevaluable for identifying the behavior of malware. The authors clustereda dataset of malware binaries, demonstrating that using the frequentitemsets of API call sequences can achieve high precision for malwareclustering while reducing the computation time.In [30], a kernel object behavioral graph is created and graphisomorphism techniques and weighted common graph technique areused to calculate the hotpath for each malware family. And theunknown malware is then classi�ied into whichever malware family hassimilar hotpaths.In [12], dynamic instruction sequences are logged and areconverted to abstract assembly blocks. Data mining algorithms areused to build a classi�ication model using feature vectors extracted

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from the above data. For malware detection, the same method is usedand scored against the classi�ication model.In [3], the authors propose a malware detection technique that usesinstruction trace logs of executables collected dynamically. Thesetraces are then constructed as graphs. The instructions are consideredas nodes and the data from the instruction trace is used to calculate thetransition probabilities. Then a similarity matrix is generated betweenthe constructed graphs using different graph kernels. Finally, theconstructed similarity matrix is input to an SVM for classi�ication.In [47], the authors presented a malware detection technique usingdynamic analysis where �ine-grained models are built to capture thebehavior of malware using system calls information. Then they use ascanner to match the activity of any unknown program against thesemodels to classify them as either benign or malware. The behaviormodels are represented in the form of graphs. The vertices denote thesystem calls and the edges denote the dependency between the callswhere the input of one system call (vertex) depends on the output ofanother system call (vertex).In [1], the authors propose a run-time monitoring based malwaredetection tool that extracts statistical features from malware usingspatio-temporal information from API call logs. The spatial informationis the arguments and return values of the API calls and temporalinformation is the sequence of the API calls. This information is used tobuild formal models that are fed to standard machine learningalgorithms for malware detection.From all the research given above, it is evident that dynamicanalysis is a good source of information for malware behavior. Eventhough producing dynamic data incurs an execution overhead, a moreaccurate model can be obtained from dynamic analysis than usingstatic analysis alone.
3.1	 Hybrid	AnalysisHybrid analysis tools are developed for using the accuracy bene�it thatdynamic analysis offers and the static analysis’ advantage of timecomplexity.HDM Analyzer uses both static analysis and dynamic analysistechniques in the training phase and performs only static analysis in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the testing phase. By combining static and dynamic analyses, HDMAnalyzer achieved a better accuracy and time complexity than staticand dynamic analysis methods alone [18]. The authors extracted asequence of API calls for dynamic analysis, which is one of the mosteffective features for describing the behavior of a program.In [9], the authors propose a framework for classi�ication ofmalware using both static and dynamic analysis. They de�ine thefeatures or characteristics of malware as Mal-DNA (Malware DNA).Mal-DNA combines static, dynamic, and hybrid characteristics. Besidesextracting the static features of malware, they extract dynamic datawith debugging based behavior monitoring. Then they classifymalware using machine learning algorithms.In a slightly modi�ied version, [19] apply n-grams method to the APIcalls extracted and use the above as a feature set for malwareclassi�ication. Application Programming Interface (API) call sequencesare commonly used features in intelligent malware detection systems.An API call sequence captures the activities of a program and, hence, itis useful data for mining of malicious behavior. Different order of eachAPI call in a sequence may mean a different behavior model. Therefore,the order of API calls is an important issue to analyze malwarebehavior. The paper proposes a feature extraction approach formodeling malware behavior that extracts API call sequences bydynamic analysis of executing programs. The novelty of the approachis utilizing n-grams to preserve the order of API calls.In [17], a set of program API calls is extracted and combined withthe control �low graphs (CFGs) to obtain a new representation modelcalled API-CFG, where API calls form the edges in the control �lowgraph. This API-CFG is trained by a learning model and used as aclassi�ier during the testing stage for malware detection. The behaviorof a program is represented by a set of API calls. Therefore, a classi�iercan be employed to construct a learning model with a set of programs’API calls. Finally, an intelligent malware detection system is developedto detect unknown malwares automatically. This approach is capable ofclassifying benign and malicious code with high accuracy. The resultsshow a statistically signi�icant improvement over n-grams-baseddetection method.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In [23], dynamic malware detection is done using registers valuesset analysis. In this paper, a novel method is proposed based onsimilarities of binaries behaviors. At �irst, run-time behavior of thebinary �iles is found and logged in a controlled environment tool. Theapproach assumes that the behavior of each binary can be representedby the values of memory contents in its run-time. That is, values storedin different registers while the malware is running in the controlledenvironment can be a distinguishing factor to discriminate it fromthose of benign programs. Then, the register values for eachApplication Programming Interface (API) call are extracted before andafter API is invoked. After that, the changes of registers valuesthroughout the executable �ile are traced to create a vector for each ofthe values of EAX, EBX, EDX, EDI, ESI, and EBP registers.In [32], a new runtime kernel memory mapping method calledallocation-driven mapping is introduced, which identi�ies dynamickernel objects, including their types and lifetimes. The method worksby capturing kernel object allocation and deallocation events. A bene�itof kernel-based malware analysis includes providing a temporal viewof kernel objects by performing a temporal analysis of kernelexecution. Their system includes a temporal malware behaviormonitor that tracks malware behavior by the manipulation of dynamickernel objects. Allocation-driven mapping is shown to reliably analyzemalware behavior by guiding the analysis only to the events relevant toa malware attack.In [36], the API call sequences and assembly code are combined anda similarity-based matrix is produced that determines whether aportion of code has traces of a particular malware. This researchshowed good results by using API call sequences and Opcodesequences to give a good description of the behavior of a malware.An orthogonal approach to the monitoring of function calls duringthe execution of a program, is the analysis of how the programprocesses data. The goal of information �low tracking is to propagateand track “taint-labeled” data throughout the system, while a programmanipulating this data is executed. The data that should be tracked isspeci�ically marked (tainted) with a corresponding label. Assignmentstatements, for example, usually propagate the taint-label of the sourceoperand to the target [16].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4	 HMM	ArchitectureThe HMM is based on augmenting the Markov chain. A Markov chain isa model that represents the probabilities of sequences of randomvariables, called states, each of which can take on values from some set.These sets can be words, or tags, or symbols representing anything,like the alphabet. In the case of malware, the sets of values may beopcodes or API calls.A Markov chain makes an assumption that for predicting the futurein a sequence, the current state is all that matters. The states before thecurrent state only impact the future via the current state. For instance,to predict the next word you could consider the current word, but youshould not examine previously seen words. Similarly, to predict if thestates in a sequence produced by a piece of software constitutemalware, you could use the states immediately preceding a state, butnot states seen in the distant past.HMMs have been used for malware detection. A Hidden MarkovModel (HMM) is a machine learning model to represent probabilitydistributions over a sequence of observations [22]. The HMM satis�iesthe markov property, i.e., the current state t is dependent only on and is independent of all states prior to . A HMM is motivated bythe idea of considering both observed events (such as words that wesee in the input) and hidden events (such as part-of-speech tags) thatwe think of as causal factors in our probabilistic model. An HMM isspeci�ied by the following components: a set of N states a sequence of T observations, each one drawnfrom a vocabulary a transition probability matrix A, each representing the probability of moving from state i to state j, s.t.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 a sequence of observation likelihoods, also calledemission probabilities, each expressing the probability of anobservation being generated from a state i an initial probability distribution over states. is the probability that the Markov chain will start in state i. Somestates j may have , meaning that they cannot be initial states.

Fig.	3 Illustration of a generic Hidden Markov Model [40]
4.1	 Training	for	Malware	DetectionThe basic steps followed for performing malware detection using HMMare as follows. First, we select the observation data that the modelshould be trained for. In this case, the observed sequences representsoftware states that may originate from malware data. The observedsequences can be API calls sequence or opcode sequences. A model istrained with the above-observed sequences. After convergence, we getan accurate model that best �its the observed sequences. Next, wescore a set of malware and benign �iles against the trained model. If thescores are higher than a predetermined threshold, the scores above thethreshold can be classi�ied as �iles from the malware family and onesthat are below the threshold can be classi�ied as �iles from the benignfamily [5] (Fig. 3).
4.2	 Metamorphic	Malware	DetectionThe use of static data is insuf�icient when dealing with the advancedmalware obfuscation techniques such as code relocation, mutation,and polymorphism [11]. In [37], an opcode-based software similaritymeasure was developed, showing excellent results for metamorphic

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

malware detection and classi�ication. In [14], the metamorphicmalware detection is done based on function call graph analysis. In[29], multiple sequence alignment algorithms from bioinformatics leadto viral code signatures that generalize successfully to previouslyknown polymorphic variants of viruses.The detection of metamorphic malware became more effective dueto the application of Markov models and HMMs to malware detection.Pro�ile Hidden Markov Models (PHMMs) are known for their success atdetecting relations between DNA and protein sequences. When appliedfor malware detection it has been found that PHMMs can effectivelydetect metamorphic malware [40] and HMMs have also beensuccessful in this regard. In [5], HMMs were used for malwareclassi�ication. The HMM clustering results classify the malwaresamples into their appropriate families with good accuracy, providing auseful tool in malware analysis and classi�ication.
5	 LSTM	ArchitectureLong Short-Term Memory networks—usually just called “LSTMs”—area special kind of Recurrent Neural Network (RNN), capable of learninglong-term dependencies in sequences of events. They work well on alarge variety of problems. Besides malware detection, they have alsobeen widely used for sequence classi�ication in other �ields such as textmining and biology.In this section, we analyze how LSTM sequence-based deeplearning methods may be used for malware classi�ication [24]. Whilestatic signature-based malware detection methods are quick, staticcode analysis can be vulnerable to code obfuscation techniques. LSTMsoffer the bene�it that they don’t rely on static analysis and can analyze ashort snapshot of the runtime behavior. Behavioral data collectedduring �ile execution is more dif�icult to obfuscate but takes a long timeto capture (typically up to 5 min). This often means that the maliciouspayload has likely already been delivered by the time it is detected.In [39], LSTMs were applied to microarchitectural event tracescaptured through on-chip hardware performance counter (HPC)registers. The proposed LSTM approach achieved up to 11% higher

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

detection accuracy compared to other sequence-based classi�ication,such as HMM-based approaches in detecting obfuscated malware.References [27, 46, 49] used sequences of API system calls fortraining an LSTM. In [27], they trained the LSTM model to learn fromthe most informative of sequences from the API-dataset based on theirrelative ranking as determined by Term Frequency–Inverse DocumentFrequency (TF–IDF) recommended features. They were able to achieveaccuracy as high as 92% in detecting malware and benign code from anunknown test API-call sequence.Reference [8] extracted 3-grams of opcode sequences and API callsequences. They then used attention mechanisms to identify APIsystem calls that are more important than others for determiningwhether a �ile is malicious. They report this approach gave an accuracythat was 12% and 5% higher than conventional malware detectionmodels using convolutional neural networks and skip-connectedLSTM-based detection models, respectively.Reference [39] used dynamic data in the form of microarchitecturalevent traces captured through on-chip hardware performance counter(HPC) registers. They combined this with localized feature extractionfrom image binaries corresponding to the application binaries. Usingthis advanced approach, an accuracy of 94% and nearly 90% isachieved in detecting normal and metamorphic malware createdthrough code relocation obfuscation technique.An LSTM variation is to use coupled forget and input gates. Thisvariation on the LSTM is called the Gated Recurrent Unit, or GRU [7]. Itcombines the forget and input gates into a single “update gate.” It alsomerges the cell state and hidden state. Instead of separately decidingwhat to forget and what to add new information to, GRUs make thosedecisions together. GRUs only forget when they are going to inputsomething in its place. GRUs only input new values to the state whenthey forget something older. GRUs have also been used for malwaredetection [6].
5.1	 LSTM	Training
Input	format:	A single training data element consists of the label andan input word: xseq—a subsequence of a �ixed size sampled randomlyfrom the full original sequence. Reference [45] used one-hot encoding

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

of logged API call sequences re�lecting process behavior. One-hotencoding is a method for transforming categorical data to numericaldata by representing the ith categorical value from the universe as anumerical vector of zeros and a ‘1’ in the ith position.Reference [50] compared opcode embedding against one-hotencoding methods. One-hot encoding is simple to use and with therather small number of Android opcodes, the sparseness of one-hotencoding does not cause a negative impact on ef�iciency. Anothermethod is learning opcode embedding from data samples. Usingopcode embedding achieves better malware detection results thanone-hot encoding since opcode embedding captures the opcodesemantic information better compared to one-hot encoding. Theembedding idea comes from word vector learning in NLP, such asword2vec. Opcode embedding helps to learn the semantic informationof opcode sequences and mine for malicious behaviors [50].Reference [26] also input word embeddings derived from opcodesequences to LSTMs for malware detection and malware classi�ication.Their evaluation results showed their proposed method can achieve anaverage AUC of 0.99 and an average AUC of 0.987, respectively.Generally, an LSTM or RNN takes an input sequence of a �ixed sizefor training or classi�ication. An input sequence that is of a shorter sizethan the input layer of the LSTM can be padded with special characters[6]. Otherwise, it can either be trimmed or subsampled to derivesamples of the desired size.Reference [33] used trimming of sequences to detect whether ornot an executable is malicious based on a short snapshot of behavioraldata. They collected ten numerical machine activity data metrics (e.g.,CPU and memory usage) as feature inputs, which are continuousnumeric values, allowing for a large number of different machine statesto be represented in a small vector of size 10. They used an ensemble ofRNNs to build an RNN model able to predict whether an executable ismalicious or benign within the �irst 5 s of execution with 94% accuracy.This was one of the �irst works to predict malicious code duringexecution. Previous dynamic analysis research collected data foraround 5 min per sample [33].In some works training the LSTM involved a subsampling ofsequences from the original sequence. Speci�ically, training on a set of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

labeled sequences occurs by subsampling a number (say, 50–100) ofshort �ixed-length sequence samples. Then training happens on eachsample. For instance, [4] used samples extracted from Windows �iles.They trained a multiclass classi�ication RNN, more speci�ically a LSTMon the dataset. This model for analyzing unstructured data was testedon unseen programs and the accuracy reached 67.60%, including sixclasses with �ive different types of malware.The subsampling is chosen to ensure a fair representation ofsmaller and larger sequences. The number (m) of �ixed-lengthsubsequences sampled from each executable code sample should beproportional to the logarithm or square root of the sequence length,such that longer sequences will contribute more samples, but do notoverwhelm the training. Each sample is a different subsequence xseqassociated with the originating sequence. The sequence xseq can beone-hot encoded if the number of possible values is small.
Output	format:	The output from the �inal neuron is in a range from0 to 1. This value is used to discriminate between a positive ornegative classi�ication value; in other words, if it is predicted to bemalware or not malware. A neural network is a function (1)that accepts sequences of points and the feature vector . Thefunction F also depends implicitly on the DL model parameters ,which are determined during the training process. The output of theneural network, score y, is computed using the softmax function, whichensures that y satis�ies . By convention, the higher the scoreis for the sequence, the more likely the sequence is to be a truemalware (Fig. 4).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 An LSTM and a layered LSTM architectureGradient Descent and BackpropagationThe training cycles are typically repeated for a speci�ied number ofepochs (such as 30 training cycles): The loss (error) is computed astarget—actual output. E is the loss overall, computed by averaging lossover all instances of the training set.The gradient of the loss is computed at the position we end up at.For neuron at layer j:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

During gradient descent the weights are adjusted by the learning rate : the product of and the gradient of loss changes such that E decreases in next epochBackpropagation then adjusts all weights from outer to the innerlayers.As hyperparameters, the model can be trained with a binary cross-entropy loss function and Adam optimizer. Usually, there are dropoutlayers to reduce over�itting.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 A hybrid LSTM and dense architecture. A neuron in the dense layer has all-to-allconnectivity and connections are described as a two-dimensional numerical matrix. Dropoutlayers are used to reduce over�ittingAnother possible architecture involves a hybrid of LSTM and adense neural network. As input in this case, a single training data

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

element consists of the label and two input words: —asubsequence of a �ixed size sampled randomly from the full originalsequence and —a vector containing features extracted from the fullsequence. The values of the feature vector can be normalized to bebound within []. This architecture takes the sequences as inputon one branch; and the features as matrices or vectors in anotherbranch [24, 25] (Fig. 5).
6	 Tools
6.1	 IDA	ProIDA Pro is a popular disassembler for generating assembly languagesource code from executables. It can also be used as a debugger. IDAPro can be used to generate .asm �iles from which opcodes andwindows API calls can be extracted. Also, IDA Pro is useful for collectingthe instruction trace logs of executables.
6.2	 OllyDbgOllyDbg is a 32-bit disassembler and debugger, which is second best toIDA Pro. OllyDbg has limited features compared to IDA Pro.
6.3	 EtherEther is an open-source tool for malware analysis that has beendeveloped via hardware virtualization extensions and residescompletely outside of the target OS. This disables the detection ofguest software components. Many recent viruses can detect a debuggeror a virtual environment during execution. Ether malware analysis toolovercomes this problem and hence provides a bene�it as a tool formalware detection [15].
6.4	 API	LoggerAPI Logger is a tool that logs all API calls that meet the restrictions ofthe inclusion and exclusion lists. The inclusion list speci�ies which

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

libraries need to be included and exclusion list speci�ies which librariesor functions can be ignored [20].
6.5	 WinAPIOverrideWinAPIOverride is an advanced API monitoring software. Its maindistinction is the ability to manually extract API calls by deciding the�low of the program during execution. In that sense, it �ills the gapbetween classic API monitoring software and debuggers.
6.6	 API	MonitorAPI Monitor is a software tool that also helps in monitoring andcontrolling API calls made by applications of processes. This tool needsto be run inside a virtual machine to analyze a malware and cannot berun in a sandboxed environment (www. rohitab. com/ apimonitor.Accessed 07/14/2020).
6.7	 BSABuster Sandbox Analyzer (BSA) is a tool that can decide if processesexhibit malicious activities based on dynamic analysis. In addition toanalyzing the behavior of running processes, BSA keeps track of thechanges made to the system, such as registry changes. The tool runsinside a Sandbox that protects the system from getting infected whileexecuting the malware. BSA can generate API trace calls for win32executables. Other tools similar to BSA that are useful for tracing insandboxed environments are CWSandbox and Norman Sandbox(http:// bsa. isoftware. nl. Accessed 07/14/2020).
7	 ConclusionIn this chapter, we have compared data representations for static anddynamic datasets that can be used to classify and detect malware. Theextracted data is input to a sequence-based machine learning or deeplearning tool. Sequence-based machine learning provides a non-signature-based malware detection method that can effectively classifynew and unknown types of malware, as well as metamorphic malware.Both static and dynamic datasets contain data types that are sequence-based. Using dynamic data offers a bene�it over static data for

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.rohitab.com/apimonitor
http://bsa.isoftware.nl/

detecting obfuscated code. The data can be trained upon and classi�iedby sequence-based machine learning tools, such as HMMs and LSTMs.The sequence-based approaches are in contrast to training upon andclassifying using feature-based machine learning tools, such as denseor convolutional neural networks, which often employ images or rawdata from malware.
References1. Ahmed, Faraz, Haider Hameed, M. Zubair Sha�iq, and Muddassar Farooq. 2009. Using	spatio-

temporal	information	in	API	calls	with	machine	learning	algorithms	for	malware	detection,55. New York City: ACM Press.2. Alqurashi, Saja, and Omar Batar�i. 2016. A comparison of malware detection techniques basedon hidden Markov model. Journal	of	Information	Security 07 (03): 215–223.[Crossref]3. Anderson, Blake, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran Lane. 2011. Graph-basedmalware detection using dynamic analysis. Journal	in	Computer	Virology 7 (4): 247–258.[Crossref]4. Andrade, Eduardo de O, José Viterbo, Cristina N. Vasconcelos, Joris Guérin, and Flavia CristinaBernardini. 2019. A model based on lstm neural networks to identify �ive different types ofmalware. Procedia	Computer	Science 159: 182–191.5. Annachhatre, Chinmayee, Thomas H. Austin, and Mark Stamp. 2015. Hidden Markov modelsfor malware classi�ication. Journal	of	Computer	Virology	and	Hacking	Techniques 11 (2): 59–73.[Crossref]6. Athiwaratkun, B, and J. W. Stokes. 2017. Malware classi�ication with lstm and gru languagemodels and a character-level cnn. In 2017	IEEE	international	conference	on	acoustics,	speech
and	signal	processing	(ICASSP), 2482–2486.7. Cho, Kyunghyun, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNNencoder–decoder for statistical machine translation. In Proceedings	of	the	2014	conference	on
empirical	methods	in	natural	language	processing	(EMNLP), 1724–1734, Doha, Qatar.Association for Computational Linguistics.8. Choi, Sunoh, Jangseong Bae, Changki Lee, Youngsoo Kim, and Jonghyun Kim. 2020. Attention-based automated feature extraction for malware analysis. Sensors 20 (10): 2893.[Crossref]9. Choi, Y.H, B.J. Han, B.C. Bae, H.G. Oh, and K.W. Sohn. 2012. Toward extracting malware featuresfor classi�ication using static and dynamic analysis. In IEEE	conference	publication.10. Christodorescu, M, S Jha, S A Seshia, D Song, and R E Bryant. 2005. Semantics-aware	malware

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.4236/jis.2016.73017
https://doi.org/10.1007/s11416-011-0152-x
https://doi.org/10.1007/s11416-014-0215-x
https://doi.org/10.3390/s20102893

detection, 32–46, IEEE.11. Christodorescu , Mihai, and Somesh Jha. 2003. Static analysis of executables to detectmalicious patterns. In Proceedings	of	the	12th	conference	on	USENIX	security	symposium	-
volume	12, SSYM’03, 12. USA: USENIX Association.12. Dai, Jianyong, Ratan Guha, and Joohan Lee. 2009. Ef�icient virus detection using dynamicinstruction sequences. Güncel	Pediatri 4 (5).13. Damodaran, Anusha, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. 2017. Austin, andMark Stamp. A comparison of static, dynamic, and hybrid analysis for malware detection.
Journal	of	Computer	Virology	and	Hacking	Techniques 13(1): 1–12.14. Deshpande, Prasad. 2013. Metamorphic detection using function call graph analysis.15. Dinaburg, Artem, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether:	Malware	analysis
via	hardware	virtualization	extensions, 51. New York City: ACM Press.16. Egele, Manuel, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2012. A survey onautomated dynamic malware-analysis techniques and tools. ACM	Computing	Surveys 44 (2):1–42.[Crossref]17. Eskandari, Mojtaba, and Sattar Hashemi. 2012. A graph mining approach for detectingunknown malwares. Journal	of	Visual	Languages	and	Computing 23 (3): 154–162.[Crossref]18. Eskandari, Mojtaba, Zeinab Khorshidpour, and Sattar Hashemi. 2013. Hdm-analyser: A hybridanalysis approach based on data mining techniques for malware detection. Journal	of
Computer	Virology	and	Hacking	Techniques 9 (2): 77–93.[Crossref]19. Eskandari, Mojtaba, Zeinab Khorshidpur, and Sattar Hashemi. 2012. To	incorporate	sequential
dynamic	features	in	malware	detection	engines, 46–52, IEEE.20. Fasikhov, R. The api logger tool. http:// blackninja2000. narod. ru/ rus/ api_ logger. html.Accessed 14 July 2020.21. Gandotra, Ekta, Divya Bansal, and Sanjeev Sofat. 2014. Malware analysis and classi�ication: Asurvey. Journal	of	Information	Security 05 (02): 56–64.[Crossref]22. Ghahramani, Zoubin. 2001. An introduction to hidden Markov models and bayesian networks.
International	Journal	of	Pattern	Recognition	and	Arti�icial	Intelligence 15 (01): 9–42.23. Ghiasi, Mahboobe, Ashkan Sami, and Zahra Salehi. 2012. Dynamic	malware	detection	using
registers	values	set	analysis, 54–59, IEEE.24. Hr, Sandeep. 2019. Static	analysis	of	android	malware	detection	using	deep	learning, 841–845, IEEE.25. Jain, Mugdha, William Andreopoulos, and Mark Stamp. 2020. Convolutional neural networks

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1016/j.jvlc.2012.02.002
https://doi.org/10.1007/s11416-013-0181-8
http://blackninja2000.narod.ru/rus/api_logger.html
https://doi.org/10.4236/jis.2014.52006

and extreme learning machines for malware classi�ication. Journal	of	Computer	Virology	and
Hacking	Techniques.26. Lu, Renjie. 2019. Malware detection with lstm using opcode language. ArXiv: abs/ 1906. 04593.27. Mathew, J, and M A Ajay Kumara. 2020. API call based malware detection approach usingrecurrent neural network – LSTM. In Intelligent	systems	design	and	applications, Advances	in
intelligent	systems	and	computing, eds. Abraham, Ajith, Aswani Kumar Cherukuri, PatriciaMelin, and NiketaEditors Gandhi, vol. 940, 87–99. Springer International Publishing.28. Moser, Andreas, Christopher Kruegel, and Engin Kirda. 2007. Limits	of	static	analysis	for
malware	detection, 421–430, IEEE.29. Naidu, Vijay, Jacqueline Whalley, and Ajit Narayanan. 2017. Exploring the effects of gap-penalties in sequence-alignment approach to polymorphic virus detection. Journal	of
Information	Security 08: 296–327.30. Park, Younghee, Douglas S. Reeves, and Mark Stamp. 2013. Deriving common malwarebehavior through graph clustering. Computers	and	Security 39: 419–430.[Crossref]31. Qiao, Yong, Yuexiang Yang, Lin Ji, and Jie He. 2013. Analyzing	malware	by	abstracting	the
frequent	itemsets	in	API	call	sequences, 265–270, IEEE.32. Rhee, Junghwan, Ryan Riley, Xu Dongyan, and Xuxian Jiang. 2010. Kernel malware analysiswith un-tampered and temporal views of dynamic kernel memory. In Recent	advances	in
intrusion	detection, Lecture	notes	in	computer	science, eds. Somesh Jha, Robin Sommer, andChristian Kreibich, vol. 6307, 178–197. Berlin: Springer.33. Rhode, Matilda, Pete Burnap, and Kevin Jones. 2018. Early-stage malware prediction usingrecurrent neural networks. Computers	and	Security 77: 578–594.[Crossref]34. Roundy, Kevin, A., and Barton P. Miller. 2010. Hybrid analysis and control of malware. In
Recent	advances	in	intrusion	detection, Lecture	notes	in	computer	science, eds. Somesh Jha,Robin Sommer, Christian Kreibich, vol. 6307, 317–338. Berlin: Springer.35. Runwal, Neha, Richard M. Low, and Mark Stamp. 2012. Opcode graph similarity andmetamorphic detection. Journal	in	Computer	Virology 8 (1–2): 37–52.[Crossref]36. Shankarapani, Madhu K., Subbu Ramamoorthy, Ram S. Movva, and Srinivas Mukkamala. 2011.Malware detection using assembly and api call sequences. Journal	in	Computer	Virology 7 (2):107–119.[Crossref]37. Shanmugam, Gayathri, Richard M. Low, and Mark Stamp. 2013. Simple substitution distanceand metamorphic detection. Journal	of	Computer	Virology	and	Hacking	Techniques 9 (3):159–170.[Crossref]38. Shijo, P.V., and A. Salim. 2015. Integrated static and dynamic analysis for malware detection.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/abs/1906.04593
https://doi.org/10.1016/j.cose.2013.09.006
https://doi.org/10.1016/j.cose.2018.05.010
https://doi.org/10.1007/s11416-012-0160-5
https://doi.org/10.1007/s11416-010-0141-5
https://doi.org/10.1007/s11416-013-0184-5

Procedia	Computer	Science 46: 804–811.[Crossref]39. Shukla, Sanket, Gaurav Kolhe, Sai Manoj P D, and Setareh Rafatirad. 2019. Stealthy malwaredetection using rnn-based automated localized feature extraction and classi�ier. In 2019	IEEE
31st	international	conference	on	tools	with	arti�icial	intelligence	(ICTAI), 590–597, IEEE.40. Stamp, M. A revealing introduction to hidden Markov models. tutorial. www. cs. sjsu. edu/ ~stamp/ RUA/ HMM. pdf. Accessed 14 July 2020.41. Symantec. Symantec Internet security threat report (ISTR) Volume 23. Technical report,Symantec, 03 2018.42. Symantec. Symantec Internet security threat report (ISTR) Volume 24. Technical report,Symantec, 02 2019.43. Tabish, S. Momina, M. Zubair Sha�iq, and Muddassar Farooq. 2009. Malware detection usingstatistical analysis of byte-level �ile content. In Proceedings	of	the	ACM	SIGKDD	workshop	on
cybersecurity	and	intelligence	informatics	-	CSI-KDD	’09, eds. Chen, Hsinchun, Marc Dacier,Marie-Francine Moens, Gerhard Paass, and Christopher C. Yang, 23. New York City: ACM Press.44. Le Thanh, Hieu. 2013. Analysis of malware families on android mobiles: detectioncharacteristics recognizable by ordinary phone users and how to �ix it. Journal	of	Information
Security 04 (04): 213–224.[Crossref]45. Tobiyama, S, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi. 2016. Malware detection withdeep neural network using process behavior. In 2016	IEEE	40th	annual	computer	software
and	applications	conference	(COMPSAC), vol. 2, 577–582.46. Vinayakumar, R, K P Soman, Prabaharan Poornachandran, and S Sachin Kumar. 2018.Detecting android malware using long short-term memory (lstm). Journal	of	Intelligent	and
Fuzzy	Systems 34 (3): 1277–1288.47. Wang, Xiaofeng. 2009. Effective and ef�icient malware detection at the end host. In USENIX
security	symposium, 351–366.48. Wong, A. Symantec internet security threat report highlights. www. techarp. com/ cybersecurity/ 2019-symantec-istr-highlights/ . Accessed 14 July 2020.49. Xiao, Xi, Shaofeng Zhang, Francesco Mercaldo, Guangwu Hu, and Arun Kumar Sangaiah. 2017.Android malware detection based on system call sequences and lstm. Multimedia	Tools	and
Applications 78 (4): 1–21.50. Yan, Jinpei, Yong Qi, and Qifan Rao. 2018. Lstm-based hierarchical denoising network forandroid malware detection. Security	and	Communication	Networks 1–18: 2018.51. Ye, Yanfang, Dingding Wang, Tao Li, Dongyi Ye, and Qingshan Jiang. 2008. An intelligent pe-malware detection system based on association mining. Journal	in	Computer	Virology 4 (4):323–334.[Crossref]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1016/j.procs.2015.02.149
http://www.cs.sjsu.edu/%257estamp/RUA/HMM.pdf
https://doi.org/10.4236/jis.2013.44024
http://www.techarp.com/cybersecurity/2019-symantec-istr-highlights/
https://doi.org/10.1007/s11416-008-0082-4

(1)(2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_3
Review	of	the	Malware	Categorization	in
the	Era	of	Changing	Cybethreats
Landscape:	Common	Approaches,
Challenges	and	Future	NeedsAndrii Shalaginov1 , Geir Olav Dyrkolbotn1 and Mamoun Alazab2 Norwegian University of Science and Technology, Trondheim,NorwayCharles Darwin University, Palmerston City, Australia
Andrii	Shalaginov	(Corresponding	author)
Email:	andrii.shalaginov@ntnu.no
Geir	Olav	Dyrkolbotn
Email:	geir.dyrkolbotn@ntnu.no
Mamoun	Alazab
Email:	alazab.m@ieee.org

AbstractMalicious software threats have been known to Information Securityprofessionals for over several decades since the dawn of computers.Developers of such software have been keeping up with technologiesaddressing known and unknown vulnerabilities for successfulinfection. With the growing amount of devices connected to theInternet, it has become apparent that the categorization of millions ofmalware samples is an emerging challenge. Malware labelling hasbecome a signi�icant challenge in the light of a large number ofmalware samples appearing daily. Many researchers and anti-virus

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_3
mailto:andrii.shalaginov@ntnu.no
mailto:geir.dyrkolbotn@ntnu.no
mailto:alazab.m@ieee.org

vendors developed their unique naming methods that do notcontribute to ef�icient incident response and remediation of themalware infections on a global scale. In this paper, �irst, we provide aview on the modern approaches to malware categorization concerningthe needs of malware detection and analysis, speci�ically focusing ongeneral modus	operandi and automated analysis. Then, we review theState of the Art technical reports from the antivirus on the existinglabelling initiatives and their usage by vendors. Finally, we givepractical insight into future needs and current challenges of the namingschemes using ground truth knowledge. This review aims at bridging aknowledge gap between the existing labelling approaches, threats andmalware functionality and problems related to large-scale malwareclassi�ication.
1	 Introduction
“Malware”, “malicious	software” or broadly speaking “computer	viruses”is an umbrella term that is assigned to software designed to harm end-user as opposite to a “goodware” or “benign	software” such as of�ice andentertainment programs, Internet browsers and games. Further, thereare several ways how actual malware can be called from theperspective of functionality, threats to end-user and distributionmodel, as for example, Trojan, Worm or Ransomware [66]. In general,
malware	labelling is a non-trivial problem and might vary depending onthe analysis approach, discovered artefacts and similarity to otherpreviously discovered samples [8]. To name a malware, one can useeither (i) cryptographic hash sum such as MD51 equal to
0c5e15ea8c92f33396fe3�b85d7a7�bf or (ii) naming convention
Trojan:Win32/Detplock to describe a speci�ic malware species [76].One can see that the hash sum approach is a robust machine-readablestandard, however, not appropriate for a human expert. On the otherhand, the second approach is far more appropriate for a malwareanalyst to make a decision on what kind of threats malware poses andwhat kind of vulnerabilities it uses based on the malware type andfamily speci�ication. However, sometimes it is not clear based on whatthe malware categories are created since the names often are machine-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

generated and do not re�lect peculiarities of actual maliciousbehaviour.Malware analysis and defences recently became an emerging topicover the last few decades—covering many areas and attractingmultiple companies and researchers to work on more secure platformsand solutions. However, the history of malware spans back to thetwentieth century. Commonly, 1949 is considered to be the year whenthe theoretical foundations of self-replicating automata have been setup [34]. The contemporary malware era started with the well-knownMorris worm in 1980 [18]. The real “boom” of malware infectionre�lected widespread development of desktop and further mobile OS inearly 2000 [36, 51, 60].VirusTotal was established in 2004 and now can be considered as a
de-facto standard in the Information Security community [77]. Itprovides reporting of the malware detection from 70 anti-virusvendors, which in addition to extensive Threats Intelligence andcommunity reporting, giving the most extensive publicly-availablemalware awareness. As per 6th of January 2020, there have beenreported 1,304,817 distinct �iles submitted to VirusTotal, while803,259 �iles were labelled as malicious by one or more anti-virusvendors [78]. At the same time, as per January 2020, VirusSharecollection offers access to 34,339,374 different malware samplesavailable through the website [75]. This initiative started back in 2011,and now has collected over 400 versatile archives with differentexamples of malware.Most of the researchers in the Information Security communitywork on the techniques used to identify and detect malware samplesamong others, answering the question How	to	identify	malicious
software	using	known	labels?. This includes the construction of speci�icfeatures and �inding attributes, yet mostly focuses on automatedmalware detection to facilitate human experts. However, we can see aconsiderable need for research initiatives to answer the question How
to	best	label	malware?. CARO (Computer Antivirus ResearchOrganization) created a naming scheme back in 1990 [11], which wassupposed to be a stepping stone for malware naming standardization.However, only Microsoft mostly uses CARO approach in theirproducts [41] with Trend Micro moving in that direction since 2018. In

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the literature, there can be found several sources mentioning thesechallenges, yet offering no comprehensive overview or even solution.The scope of this research is (i) to reveal existing challenges thatcomplicate malware identi�ication and cyber threat intelligenceservices. To our knowledge, the topic has been approached by manyresearchers, while in most cases the emphasis is only on a few mostcommon malware classes rather than on a multi-faceted approach.Moreover, we aim at (ii) providing a high-level overview of existingmethods to malware naming by anti-virus vendors. There can be seen aclear gap in the literature regarding challenges in malware naming andcategorization, which this paper is designed to address. Finally, we (iii)try to project the current needs of anti-virus domain concerningexisting approaches based on the real-world examples from VirusTotaland large-scale malware naming problem.This paper is organized as follows. The Sect. 2 introduces thehistory of malware categorization, distribution of works and theirquantitative overview. Further, Sect. 3 gives an overview of the mostcommon approaches to malware categorization, used characteristicsand supplementary software that can be found in the literature.Section 4 presents an in-depth review of the commonly used malwaretaxonomy by different Anti-Virus vendors. Survey of industrialmalware naming standards and initiatives is given in Sect. 5. Thecomparative analysis and outlined challenges of the malwarecategorization methods are presented in Sect. 6. Section 7 offersinsights into current practical implications, especially in the era of BigData. Finally, Sect. 8 give �inal remarks and recommendations towardsthe future development of the malware naming and taxonomy.
2	 Background:	From	Malware	Developers	to
Malware	AnalystsThis section presents a high-level insight into the problem ofcyberattacks boosted by the development of new malware in additionto the existing general methods of malware analysis and cybersecurityawareness. Development of Information and CommunicationsTechnologies (ICT) boosted the number of adversarial activitiestargeting users, as well as large organizations over the last few years.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The main reason for that is the growing number and complexity ofboth hardware and software products available to end-users. Multiplesecurity vulnerabilities, lack of cybersecurity awareness and weak dataprotection mechanism created a concrete stepping stone forparadigms such as Attacks-as-a-Service and Malware-as-a-Service.Having 29 billions of connected devices by 2022 [24], one will expectmalware infections and cyberattacks in general to be major threats.Therefore, it is important to provide a quick incidence response assoon as possible based on the available cyber threats intelligence,including malware naming information.
2.1	 Severity	of	Malware	Infection	and	Modus	OperandiBy shortening development and delivery cycles, sacri�icingcybersecurity standards number of vulnerabilities may appear in theend-products as shown by OWASP Top 10 [80]. This can be consideredas one of the root-cause problems related to cyber threats inconnection with malicious software that tends to exploit well-known,yet not �ixed, or zero-day vulnerabilities. Over the decades, there havebeen found infection of hundreds of thousands of malware samples,some of those becoming notorious for their elaborate attackingmechanism and caused damages. Since malware is considered as oneof the cyberattacks, the same reasons for committing those apply
�inancial	gain	and	political	motivation [49].Adversarial actors use common mechanisms of exploiting thesystems when preparing and developing malware. Having strongcybersecurity knowledge, they can learn about the target’s valuableassets, possible exploitation scenarios and weak links in the system.The target’s cybersecurity watch mechanism with such knowledgecannot even detect malicious intentions if they are not explicitly active.By now, the importance of awareness of cyberattacks have beenrecognized by governments and companies, such as Cisco [15],Symantec [68], Akamai [2] Check Point [12], UK National CyberSecurity Center [73], etc. Symantec, as many other companies de�ined,beside huge attacks landscape, the generally-recognized routine ofperforming cyberattacks:1. Reconnaissance—attackers retrieve as much information aspossible about the target from public sources.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 2.
Incursion—active phase of delivering malware through varioustechnical means and social engineering. 3.
Discovery—mapping of the internal infrastructure and securitymeasures, staying “low and slow”. 4.
Capture—active malware infection or sensitive informationaccess. 5.
Ex�iltration—getting the information and other incentives out ofthe target’s network back to the attacker via covert anonymizedchannels.
It can be seen that adversarial actors often need a lot of backgroundinformation about hardware and software in the target’s network to beable to �ind and analyze corresponding possible vulnerabilities andprotection weaknesses. This process can take days or monthsdepending on the complexity, zero-day vulnerabilities and humanfactor. On multiple occasions over the last decade, it was shown thatsome of the malware requires thorough development by a large groupof people to be ef�icient on the incursion. One of the notorious is ZeuSbotnet [53], which had the version 1.0 detected in 2006 and latermainstream versions up to 1.4 running through 2013 and later.Moreover, there have been developed multiple forks from themainstream of Zeus, such as Citadel, LEAK and Skynet. This is anexample of how powerful the adversarial malware developerscommunity target MS Windows OS. The reason for such popularity ismulti-fold: ranging from general simplicity for everyday utilization,range of users’ privileges and up to elaborate security features andcontrol of software being installed [1].

2.2	 Detection	and	Approach	StrategySimilarly to real life, the �ight against cybercrime, malware, in this case,begins with reports and indications of malicious activities. There have

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

been suggested several methods on how to approach the cyberattacksin general.
Lockheed	Martin’s	Cyber	Kill	Chain [38] was originally a militaryterm, later formulated in a framework from 2011, having the followingphases: Reconnaissance,	Weaponization,	Delivery,	Exploitation,

Installation,	Command	and	Control,	Actions	and	Objective.Corresponding defending action should be taken during each identi�iedstage to disrupt the attacker’s efforts.
NIST	Cybersecurity	Framework [20] is a policy framework releasedin 2014, for public sector consisting of �ive main functions: Identify,

Protect,	Detect,	Respond,	Recover.Beside speci�ic guidelines, there exists a general approach tomalware discovery that includes routine starting from maliciousactivities being discovered to the point when malware signature isbeing published to end-point security solutions, for example,suggested by Securosis [57]:1. Malicious activities are recorded 2. Likely relevant artefacts have been unidenti�ied 3. Discovery of binary �iles and possible cause of infection 4. Search for hash sums in known-to-be-benign and known-to-be-malicious 5. Reverse engineering and internal logic understanding of found �iles 6. Assignment of most likely malware category, malware family andvariant 7. Creation of Anti-Virus signatures and awareness campaigns To address the Analysis part, there have been created severalguidelines and thorough routines with similar tools as elaboratelystudied by Sikorski et al. [64]. Further, we can see an enormous growthof anti-malware awareness campaigns and diversity of protective

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

software products to combat such infections on the market of digitalservices. Furthermore, malware is not just a software anymore, yetalso more low-level such as Hardware Trojans as studied byTehranipoor et al. [71]. While most anti-virus detection mechanismssuccessfully use behavioural-based and signature-based detection, thisis out of scope in this study. We will only focus on the aspects related tocategorization.One of the core issues in cybersecurity that makes the possibledevelopment of malware is so-called vulnerabilities. Either softwaredevelopment bugs or unforeseen applications, make a user to executerestricted commands or to gain access to sensitive information [39].To address issues of malware naming and information sharing, therehas been developed Common	Vulnerabilities	and	Exposures	(CVE)standard that creates a public entry for known vulnerabilities [19],where the details are taken from the National Vulnerability Database(NVD). The CVE was developed and maintained by MITRECorporation [44].
2.3	 Preliminary	Analysis	and	DissectionOne of the biggest challenges that cybersecurity community faced afew decades ago is how to ef�iciently and in a fast manner perform theanalysis: (i) to identify malicious components and functionality, (ii) toassign the corresponding cluster among existing malware groups and(iii) to develop a recommendation on how to prevent malwareinfection based on the analysis results. There have been suggested afew community-accepted approaches according to the SANS report byDistler et al. [22], by Damshenas et al. [21], Kendall et al. [31] andZeltser [84]:
static	properties	analysis aimed to study the characteristics ofmalware �iles without executing them. Different aspects of �iles canbe investigated such as headers, possible encrypted parts, presentstrings, bytes, opcodes and API n-grams, Portable Executable headerfeatures, strings and others [26, 55, 74, 83].
dynamic	behavioural	analysis considers different parts of theexecuted malware sample in�luence of different factors present inthe target system, as shown by Kendall et al. [31]. Multiple activitiessuch as network traf�ic, registry keys and disk usage patterns, API-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

calls and instruction tracing, and memory layout investigation areexplored to �ind out what differentiates malware from non-malwareaccording to Egele et al. [23]. To collect such information, one canuse either specialized sandboxes like Cuckoo [27] or utilize anyVirtual Machines such as VirtualBox accompanied by monitoringsoftware.
2.4	 Malware	Categorization	and	Cybersecurity
AwarenessMalware categorization becomes more and more important, inparticular, in response to critical incidents. A growing amount ofmalware threats and malware variants [6] require maintainable oflarge-scale datasets and knowledge databases. Without having asystematic approach to labelling and taxonomizing new and existingpieces of malicious software, one may do the same job over. Resolutionof such issues was �irst attempted by the Computer Antivirus ResearchOrganization (CARO) with their naming scheme as de�ined by Skulasonin 1991 [65]. Therefore, it is essential to have a high-level overview ofthe contemporary malware categories, methods and standards formore ef�icient similarity-based malware detection and furtheranalysis. The most extensive available collection of anti-virus reportsis available through VirusTotal, which can demonstrate how complex,diverse malware categorization used by different companies. One ofthe large-scale malware studies showed that out of 60+ AV vendors onVirusTotal, Microsoft follows easy-to-use CARO naming for theirreports [62]. We will only look into how malware is categorized bydifferent vendors and what are the current and future challenges.There can be seen several works that attempted to summarize andprovide an overview of standard approaches to malwarecategorization. We will introduce each of the works with their �indingsbelow. One of those is a report written by Hardikars [28] published bySANS Institute in 2008. The paper aimed at giving a detailed overviewof viruses, a self-replicated type of malware. The author brie�lyacknowledges different malware categories as a worm, logic bomb,backdoor, trojan, spyware and botnet [5] in addition to virus. Further,all existing at that time viruses were classi�ied into the following

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

categories: memory-based, target-based, obfuscation technique-basedand payload-based with multiple speci�ic subcategories.
3	 Malware	Classi�ication:	State	of	the	ArtThis section gives an overview of the malware classi�ications used inscienti�ic research. To understand how the classi�ication has beendeveloping over the years, the history of the malware analysisresearch, corresponding used characteristics, type of classi�ication andmentioned naming schemes would be referenced to. To the authors’knowledge, there have not been any major scienti�ic reviews thataddress aspects of malware naming and categorization. Besides, onlyAnti-Virus vendors and cybersecurity companies focus on theseaspects.Malware developers have been employing advanced techniques intheir software to remain unnoticed as long as possible and to cause asmuch harm as possible. They can use fake Windows certi�icates, zero-day vulnerabilities and default software settings, etc. as described byWu et al. in 2016 [82], making it challenging to notice abnormalities.Further, a set of obfuscation methods is applied, such as encryption,polymorphism, metamorphism, dead code insertions, or instructionsubstitution [55] to conceal the real functionality logic of the software.In addition to this, MS Windows is a known target of many attackscrafted by famous viruses such as Stuxnet, Duqu and Flame [7].Multiple market share surveys suggest that more than 50% of desktopcomputers and laptops users utilize MS Windows as an OperatingSystem (OS) [67]. At the same time, nearly 2% of the users still haveWindows XP installed, which is no longer a supported OS version [48].
3.1	 Characteristics-Based	Detection	for	Multinomial
Classi�icationThere has been a tremendous interest in the academic communitytowards intelligent malware classi�ication to the ability of MachineLearning methods to perform fast and ef�icient classi�ication withouthuman interaction. However, previous works mostly focus on theintelligent differentiation of a �ile between benign or malicioustype [58]. This is a binary	classi�ication, where a heap of malware

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

samples are classi�ied against a collection of goodware. Cohen [17]suggested in 1987, that no algorithm will be able to detect all computerviruses con�idently. This assertion was strengthened by Chess etal. [14]. As a result, we can assume that no methods can achieve 100%classi�ication accuracy on large-scale sets. Bragen [10] applied MachineLearning on opcode sequences and achieved 95% accuracy with thetree-based RandomForest method. Kolter et al. [33] used 1,971malicious �iles and 1,651 benign, while Bragen used only 992 maliciousand 771 benign. Markel et al. [37] used PE32 header data in malwareand benign �iles detection on Decision Tree, Naive Bayes, and LogisticRegression. The authors achieved a 0.97 F-score in binaryclassi�ication. Furthermore, Shankarapani et al. [63] applied PE32 �ileparser to extract static features for similarity analysis. Overall, 1,593samples were acquired for binary classi�ication in that study.In contrast to binary, multinomial	classi�ication can be described asdetection of whether a malware belongs to a particular family or type.There exist several malware	categories, (trojan, backdoor, etc.) and
malware	families, (Poison, Ramdo, etc.), which are commonly de�inedby the Information Security community. A malware	category is ageneral type of malware that uses a certain kind of approach to exploita system and gain illegal access, such as a worm, which is a self-replicating code that can spread over email, or ransomware thatencrypts �iles and requires a �inancial ransom to be paid [13]. On theother hand, a malware	family is a speci�ic sub-category that uses aparticular vulnerability or targets speci�ic software versions. Forexample, considering the worm category, we can distinguish the p2p
worm family such as Spybot from removable	drive	worm like
Autorun!inf [81]. Cohen [17] suggested in 1987, that there are noalgorithms that will be able to con�idently detect all possible computerviruses. This statement was strengthened by Chess et al. [14]. This typeof classi�ication can be seen appearing in scienti�ic literature, mostlystarting from 2008. Rieck et al. [52] studied 14 different malwarefamilies extracted from 10,072 unique binaries. The authors achieved,on average 88% accuracy in family detection using individual SVM foreach one. Further, Zhang et al. [87] explored binary classi�ication usingbinary sub-sets of 450 viruses and goodware based on the 2-gramanalysis.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.2	 Commonly	Used	Malware	NamingThere exists several malware types (like trojan,	backdoor, etc.) andfamilies (like Poison,	Ramdo, etc.), which are commonly de�ined by theInformation Security community. In 1991, the Computer AntivirusResearch Organization (CARO) proposed a standardized namingscheme for malware [11]. Although CARO states that this namingscheme is “widely accepted”, we found that from all the vendors on
VirusTotal, Microsoft is the only one that complies with this. It is,therefore, challenging to establish a typical pattern in scanner resultsacross anti-virus databases. An example of a widely used approach isCARO naming, shown in Fig. 1.

Fig.	1 CARO malware naming scheme [41]To the authors’ knowledge, there has been no adequately performeda scienti�ic study that provides a complete taxonomy of malware orrelevant naming schemes. However, there can be found non-academicblog entries or Anti-Virus vendors reports with different malwarespecies descriptions and dissections. Mushtaq [47] gave an overviewof the fraction malware samples considering only 20 species, mostlyfamilies. Another list of families is published by Microsoft as a part ofthe description of the Windows Malicious Removal Tool [43] startingfrom 2005 up until March 2020. Finally, The Malware Database websiteoffers an extensive collection of different information pages,structured adequately for each particular malware family andcategory [81]. However, what we can see is that in the scienti�iccommunity, authors usually mix up both families and categories, andtypically consider fewer samples than exist in the wild [52, 87].
3.3	 Auxiliary	Software	Tools	and	Research	Datasets

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The de-facto standard online resource in the malware analysiscommunity is VirusTotal that was launched in 2004, and now offersaccess as a single entry point to 70 anti-virus vendors’ databases. Overthe years it started offering Public and Private APIs, also used by majorsecurity labs and companies. However, as it was mentioned before,only Microsoft, in most cases, uses CARO labelling scheme, which canbe parsed into malware family and type accordingly. Other vendors usetheir approaches to labelling, often confusing and misleading. Toovercome this limitation, there has developed a tool called “AVCLASS: ATool for Massive Malware Labeling” and released in 2016 [3, 56]. Themain goal of this tool is to process VirusTotal reports to be able toextract the most likely malware family considering the variety of theformats of the virus analysis reports.Another important aspect that should be mentioned is community-maintained datasets, which are used to foster malware analystscollaboration, results from dissemination and malware detectionmechanism testing. VirusShare [75] gives access to 34,503,473malware samples as of 05.02.2020. Those are not categorized and areavailable in archives containing up to 131,072 �iles in 374 archives.
VxHeaven [79] also offers an overview of computer viruses in a verycategorized and dissected manner. Besides, there has been created anew solution called VirusTotal	Intelligence that can be used to extractbinary samples of a speci�ic malware that the user de�ines.
4	 Analysis	of	Community—and	Commercially
—Accepted	Malware	TaxonomiesAs we can see, the diversity of malware threats became a real Big Dataproblem with nearly 0.5M malware samples being detected byVirusTotal everyday [78]. Over the last decades, there has been agrowth in hardware and software technologies, subsequently makingappropriate categorization of malware samples a very cumbersomeand non-trivial task. It led to cases where one malware has beencategorized completely differently by various AV vendors. This alsomight indicate that malware can belong to multiple categories, asmentioned by Kaspersky [30].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This section provides a high-level overview of the most commonlyused approaches in reviewed literature to categorize malware invarious aspects of used technologies and internal functionality. We �irststart from the general categories and then will go more into morespeci�ic functionality-oriented taxonomies. It was also provided withan overview of relevant Anti-Virus vendors’ approaches to malwarecategorization
4.1	 Overall	Software	CategoryThe most general malware categorization approach is according to thetype of software, as stated by F-secure [25]:1.

Clean/“Goodware”—the software that does not pose any risk to theuser and perform prede�ined benign functions like of�ice programsor browsers.
2.

Potentially	Unwanted	Applications	(PUP)	&	Unwanted
Applications/“Grayware”—the software that can be considered asunwanted, depending on the user and environment they are beingused, typically performs actions without consent such asadvertising or programs parameters changes.

3.

Harmful/“Malware”—the software that has a negative impacteither on user’s data or devices functionality and is designedspeci�ically by adversarial actors.
Further, speaking of PUP, ClamAV [16] offers following thoroughde�inition of the sub-types (10): Packed, PwTool, NetTool, P2P, IRC, RAT,Tool, Spy, Server, Script.

4.2	 Risk	Level/Threat	LevelThis is another categorization that is used by Anti-Virus vendors toindicate the danger of using a particular piece of software. For example,Microsoft Security Essentials [42] differentiates the following securitylevels, which are also included in the reports on discovered malware.1. Low—potentially unwanted programs, which, however, might havesome benign functionality with some malicious intentions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2.
Medium—software that might harm the user’s privacy. 3.
High—potentially harmful programs that may misuse personalinformation or make unauthorized system changes. 4.
Severe—well-known malware species.

4.3	 Malware	Targets/Platforms/Operating	SystemsAnother important categorization of the malware is the target, forwhich such software was developed, including types, formats andplatforms. Each Operating System and Platform dictates the way how itcan be attacked, which depends on multiple factors, security controls,user privileges, �ile system access mechanisms, frequency of updatesand general quality of manufacturer maintenance. Depending on this,adversaries may exploit particular know or zero-day vulnerabilitieswhen the attack reconnaissance phase is �inished, and someinformation is known about the end-user system.
F-Secure categorization includes 49 general programminglanguages and platform types [25]: AM, Android, ACAD, BAT, Boot,ChromeOS, CM, CS, DOS, HLP, HTML, IDA, INF, INI, iPhoneOS, MSIL, Java,JS, Linux, MacOS, MMS, OM, OS/2, OSX, PM, PalmOS, Perl, PHP, PPM, PUM,REG, SH, SMS, Solaris, SymbOS, SVL, SWF, Unix, VBS, W16, W32, W64,W128, WM, WinCE, WinHEX, WMA, WMV, XM.

Table	1 Top 10 desktop and mobile OS with corresponding version distributions
Desktop	OS	(%) Desktop	OS	version

(%)
Mobile	OS	(%) Mobile	OS	version

(%)Windows 88.07 Windows 10 48.96 Android 69.99 Android 8.1 13.91MacOS 9.44 Windows 7 32.37 iOS 29.21 Android 8.0 10.28Linux 1.87 Mac OS X 10.14 4.80 Unknown 0.65 Android 9.0 10.12ChromeOS 0.41 Windows 8.1 3.95 Series 40 0.06 Android 7.0 7.31Unknown 0.19 Windows XP 1.96 Windows phoneOS 0.04 Android 6.0 7.08
BSD 0.02 Mac OS X 10.13 1.78 Linux 0.03 iOS 12.1 5.69 Linux 1.36 RIM OS 0.02 Android 7.1 5.35

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Desktop	OS	(%) Desktop	OS	version
(%)

Mobile	OS	(%) Mobile	OS	version
(%) Mac OS X 10.15 0.95 Symbian 0.01 Android 4.97 Mac OS X 10.12 0.81 Bada 0.00 iOS 12.3 4.64 Windows 8 0.67 Windows 0.00 iOS 12.4 4.55

Microsoft uses more elaborate approaches and actuallydifferentiates three following items [41]:1.
Operating	Systems	(22): AndroidOS, DOS, EPOC, FreeBSD, iPhoneOS,Linux, MacOS, MacOS_X, OS2, Palm, Solaris, SunOS, SymbOS, Unix,Win16, Win2K, Win32, Win64, Win95, Win98, WinCE, WinNT. Thislist will change upon the advancement and appearance of the newOS.

2.

Scripting	Languages (30): ABAP, ALisp, AmiPro, ANSI, AppleScript,ASP, AutoIt, BAS, BAT, CorelScript, HTA, HTML, INF, IRC, Java, JS,LOGO, MPB, MSH, MSIL, Perl, PHP, Python, SAP, SH, VBA, VBS,WinBAT, WinHlp, WinREG. Moreover, Windows binaries can becategorized as EXE (executable) and DLL (Dynamically-LinkedLibrary).

3.
Macros for Microsft Of�ice (12): A97M, HE, O97M, PP97M, V5M,W1M, W2M, W97M, WM, X97M, XF, XM. 4.
Other	�ile	types (9): ASX, HC, MIME, Netware, QT, SB, SWF, TSQL,XML.
So, it can be seen that there is a signi�icant separation in malwaretaxonomies related to what kind of OS and platforms that can run. Togive an overview of the end-user OS market share as of February 2020,we looked into the market share of different platforms provided by thecompany Net Marketshare [48]. The overall statistics are representedin the Table 1 for mobile and desktop devices. It can be seen thatWindows takes 88.07% of all installed desktop OS, while Androidoccupies 69.99% of devices. Surprisingly, most of the vulnerabilitiesand malware infections are af�iliated with these OS. We do not consider

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the enterprise cloud server solutions at this moment due to generallylower cybersecurity awareness among private end-users.
4.4	 Malware	Type/General	CategoriesThis category de�ines the general type of malware. Hardikar [28]suggested the following categorization based on their functionalityaspects as de�ined in the SANS report:1.

Memory-based (resident, temporary, swapping, non-resident, userand kernel). 2.
Payload-based (no, non-destructive, destructive, dropper). 3.
Obfuscation	techniques-based (no, ecryption, oligo-, meta-, poly-morphism, stealth, armouring, tunnelling, retrovirus). 4.
Target-based (compiled (�ile, boot sector), interpreted (macro,script), multipartite).
These are also af�iliated with the functional classi�ication,dissemination methods and behavioural aspects1. This is the mostcommonly used approach by anti-virus vendors, researchers andmalware labs. Further, it can be divided into sub-families and sub-types. However, this is the complete list of 31 names given by

Microsoft [41]: Adware, Backdoor, Behavior, BrowserModi�ier,Constructor, DDoS, Exploit, Hacktool, Joke, Misleading, MonitoringTool,Program, PWS, Ransom, RemoteAccess, Rogue, SettingsModi�ier,SoftwareBundler, Spammer, Spoofer, Spyware, Tool, Trojan,TrojanClicker, TrojanDownloader, TrojanNoti�ier, TrojanProxy,TrojanSpy, VirTool, Virus, Worm. It is worth mentioning, that over thelast few years there were removed three obsolete malware types suchas Dialer, DoS, TrojanDropper.Classi�ication provided by F-secure [25] is more generic andconsists of 12 malware types: Application, Adware, Trackware, Hack-Tool, Monitoring-Tool, Spyware, Backdoor, Exploit, Trojan, Rootkit,Worm, Virus.
Symantec offers a different approach to categorization, based onthe reporting and policies de�inition:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Virus/Threat	types [70] (7): Crack, Damaged, False positive, Joke,Malicious, Speculative, Phish.
Policies-oriented	con�igurations [69] (46): Ad-supported Program,Adware, Adware Bundler, Adware Installer, Attack, Backdoor, Botnet,Browser hijacker, Browser plug-in, Critical Spyware Web site, CustomRestricted Lists 1, 2, and 3, Destroyer, Dialer, Downloader, Exploit,Hack tool, Joke program, Keylogger, Major Spyware Website,Malicious behaviour, Minor Spyware Website, MisleadingApplication, P2P, Parental control, Password Hijacker, Phishing,Potentially Unwanted Software, RAT, Remote access, Rogue SecurityProgram, Rootkit, Security Assessment Tool, Security risk, Spammer,Spyware, Spyware Marketing and Tools, Stealth Noti�ier, Surveillance,System Monitor, Tracking Software, Trackware, Trojan, Trojan FTP,Unclassi�ied Critical Spyware, Unclassi�ied Spyware, Worm.

Avira uses a prede�ined set of malware type pre�ixes (69) in addition tomalware family name [4]: ABAP, ACAD, AM, A97M, APM, ASM, Bash, BAT,BDC, BDS, Boo, CSC, Csh, DIAL, DOS, DR, EML, Game, HLLx, HLP, HTML,INF, INI, IRC:, JAVA, Joke, JS, JSc, Kit, Linux, MIRC, O2000M, 097M, OS2,P2000M, P97M, Palm, Perl, PDF, PHP, PIF, PP, Sh, SPR, SWF, Sys, TR, Unix,UWS, VBS, Vgen, VXD, W16, W2000, W2000M, W32, W95, W97M, WB,WIN, WIN2k, WM, Worm, Wscr, X2000M, X97F, X97M, XF, XM.
TrendMicro used the following set of malware type pre�ixes (34)prior to making CARO compliant naming [72]: ADW, ALS, ATVX, BAT,BHO, BKDR, CHM, COOKIE, DIAL, [DOS, DDOS], ELF, EXPL, GENERIC,HKTL, HTML, IRC, JAVA, JOKE, JS, NE, PALM, PE, PERL, RAP, REG, RTKT,SPYW, SYMBOS, TSPY, TROJ, UNIX, VBS, WORM, [W2KM, W97M, X97M,P97M, A97M, O97M, WM, XF, XM, V5M, X2KM, X97M].

4.5	 Malware	Family/Functionality-Speci�ic	CategoriesDepending on the speci�ic functionality, exploitation and codesimilarity methods, malware types are divided into more speci�ic sub-types, also called families. For example, the Ransomware malware typecontains the following families: Cryptolocker, WannaCry, Cryptowall,etc. Some of the family names have a clear meaning and denotes themalicious software they are assigned to. However, the majority aremore like a machine-constructed derivative from some other names.However, the total amount of malware families is not well-de�ined.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

From the 2016 study, it was discovered 10,362 among nearly 328,000Windows malware samples found in the �irst ten archives fromVirusShare [26, 62]. Further, Malware Wiki2 has one of the mostcomprehensive collections of malware types that are further dividedinto malware families. There are nearly 3,000 malware families’descriptions, including history, exploited vulnerabilities, artefacts andcaused harm [81]. Some of the families are no longer relevant since thesoftware has been patched or just replaced with new versions.
4.6	 System	and	Digital	Forensic-Related	ArtefactsAnother way of categorizing malware is by the traces that they leave inthe system [35, 64]. This also de�ines the ability of Anti-Virus to detectsuch malware based on available signatures.1.

Disk-related—�ile operations, registry modi�ication. However, thereis a new trend, �ile-less malware, which makes tracking of suchartefacts less ef�icient.
2.

Network-related—interaction with C&C centers, port scanning, etc. 3.
Memory-related—any kind of memory activities such thatread/write, new processes, etc.

4.7	 Malware	VariantsMalware developers are using sophisticated techniques to avoiddetection such as obfuscation, encryption and packers changes.However, the internal functionality of malware stays the same.Therefore, it is important to denote such changes such as variant “.BC”that will naturally follow variants “.BB” and “.BA” according toMicrosoft [41].
4.8	 Malware	Name	Suf�ixFinal categorization is according to different supplementary optionalmaterial, like threats campaign, dropper, library identi�ier, etc. asde�ined by Microsoft [41] (19): .dam, .dll, .dr, .gen, .kit, .ldr, .pak, .plugin,.remnants, .worm, !bit, !cl, !dha, !pfn, !plock, !rfn, !rootkit, @m, @mm.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4.9	 Binary	Compilation	Timestamps/TimelineOne of the challenges is that there is no clear and trustworthyinformation on when the malware was exactly created [60], makingtimeline analysis irrelevant. However, one can consider using time-related �ields from VirusTotal reports as an indicator of when themalware �irst draw attention and was uploaded to the website (Fig. 2).

Fig.	2 Distribution of malware creation timestamps from VirusShare_00000 archive [60]
4.10	 Country/Adversarial	Groups	OriginsMalware developers use advanced methods to hide their origins(country or region-speci�ic), sometimes pretending to be from one oranother geographic location based on user language in the source codeor comments [54]. Because any information containing in malwaremay be fake, such origins de�initions are rather speculations than“ground truth”.
5	 Review	of	the	Existing	Anti-virus	Naming
SchemesThe section presents an overview of the Anti-Virus vendors standardsand malware naming initiatives. To our knowledge, there has not beendone relevant academic adaptation for the research, even though,those approaches have been mentioned by cybersecurity researchers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To our knowledge, there are no commonly used standards. However,CARO seems to have a long-standing initiative that is accepted by atleast Microsoft and Trend Micro.Malware Naming in principle is a cumbersome task because onemalware can be classi�ied differently from the perspective of thefunctional taxonomy. The challenge with malware categorization andmalware naming, in general, had been seen already for many decadesand several researchers raised this topic. Impre [29] indicateddif�iculties of proper classi�ication as Big Data problem with 700million malware samples in Q1 2017. Besides existing malwareanalysis techniques, the author analyzed a few existing approaches tomalware naming accepted by Anti-Virus vendors. There are differentneeds for incident	response,	tracking	malware	relations	and	preliminary
analysis that will dictate with a scheme to use. Zeltser [85, 86]identi�ied that there were two major efforts made to address thechanging nature of the malware landscape since mid-2000. As aresponse to multiple malware infections, analysts started assigningeye-catching names to malware campaigns like CryptoLocker orWannaCry. The author shows an example of how Duqu was named after“DQ” pre�ix that the malware used. Mo [46] performed a study of 30most common malware samples using Metascan engine. It was shownthat there is a considerable lack of consistency and agreement betweendifferent Anti-Virus engines. Some of the vendors call, for example,trojan as a worm and vice-versa. Mitre tried to address those issues bysuggesting new solutions in addition to the CARO naming scheme.
5.1	 Computer	Antivirus	Research	Organization	(CARO)Computer Antivirus Research Organization (CARO) had beenestablished in 1990, to facilitate the study and research in malwareanalysis [11]. They published the so-called CARO naming scheme orVirus Naming Convention of computer viruses. The original idea was toreduce confusion in malware names. Many anti-virus vendorssubsequently used this naming scheme to establish their standards.Since 2007, CARO workshop happens every year, where securityexperts meet to discuss challenges and opportunities.The main idea of this naming is to have a clear separation into Type,
Platform,	Family,	Variant	and	Additional	Information that is used to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

mention additional useful information. The Type part indicates ageneral malware category such that Trojan Horse, Rootkit, Worm, etc.According to Microsoft [41], there are 31 malware types and 22Operating Systems. The Family part should indicate what a speci�icmalware group based on the similarity in code or functionality. Suchsimilarity helps researchers to get more details regarding virus frompreviously analyzed members of this family. Despite the long existenceof such a scheme and the involvement of multiple Anti-Virus vendors, itwas not widely used in the industry. For now, only Microsoft appliesthis method to labelling their malware signatures. The generalstructure of the naming looks as follows:
5.2	 Common	Malware	Enumeration	(CME)Common Malware Enumeration (CME) is another approach toestablish a standard in malware naming with a particular focus onmerging the indexing approaches utilized by different anti-virusvendors [45]. It was announced in 2005, as a result of inconsistenciesand lack of communication between anti-virus vendors and verysimilar to Common Vulnerabilities and Exposures (CVE), alsodeveloped by MITRE. In contrary to the per-�ile naming of viruses, CMEoffers a unique treat identi�ication that is independent of variants ornumber of �iles that are assigned to a particular family or attack. Byidentifying a major outbreak, there is a unique code that is beingassigned in the form of CME-N, where N is an integer. Meanwhile, anti-virus vendors can assign such CME identi�ication to their naming ofmalware. However, the threats identi�iers on the website show the lastupdate was in 2007, and the report by Bontchev [9] stated a largenumber of weaknesses and problems with CME in comparison to CAROnaming. Despite the efforts and promising results, we can concludethat the CME scheme is not in use anymore. CME uses uniqueidenti�iers that are further linked to speci�ic malware infectionsdetected by different Anti-Virus Vendors.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5.3	 Malware	Attribute	Enumeration	and	Characterization
(MAEC)Malware Attribute Enumeration and Characterization (MAEC) is acommunity-developed malware naming models based on thebehavioural information, system artefacts and speci�ic relationshipsbetween malware samples [32]. It is maintained by MITRE and can bereinforced by Structured Threat Information Expression (STIX) cyberobservable high-level objects.2 An example of Zeus botnet samples isshown below

5.4	 Malware	Information	Sharing	Platform	(MISP)Malware Information Sharing Platform (MISP) [50] is developed with aprimary goal of facilitation of incident response, where malwareclassi�ication schemes with machine-readable tags human-readabledescriptions are essential components. An example of botnetclassi�ication taxonomy is shown below (Fig. 3).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 MISP taxonomy [50]
6	 Analysis	of	Existing	Approaches	to	Malware
CategorizationAs we have shown below, over a few decades, since 1990s, there havebeen developed multiple schemes to approach malware naming.However, the main challenge in malware naming is diversity inmalware functionality, attack vectors and several malicious softwaresamples. The optimal way is to use multi-faceted taxonomy that canprovide an accurate description of malware categories, as well asfacilitate human-understandable labelling.From the literature, we can see that the problem of malwarenaming attracted the attention of a few companies, while still there isno uni�ied format that may facilitate faster and better malwaredetection based on previous knowledge. One of the studies [29]provided a recommendation of choosing CARO naming for generalclassi�ication due to its solid foundation, while for incident response,there might be a need to employ additional mechanisms. OPSWAT [46]stated that CARO consortium did not convince other Anvi-Virusvendors to use this approach. While others tried their solutions likeCME, they did not succeed over CARO. BitDefender [8] in 2006, statethat CME is a very perspective and intelligent approach, however, hasmajor limitations concerning tremendous speed that Anvi-Virusindustry is moving forward. Finally, in 2005, one of the founders ofCARO—Vesselin Bontchev [9], highlighted a few major challenges in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Anti-Virus naming conventions. Generally, Bontchev advocates for theusage of CARO due to well-through naming standards and restrictionsto avoid confusion and mixed naming. Further, he criticizes CMEinitiative due to many limitations that might easily lead to malwarebeing named without CME identi�ier and vice-versa, one malwarebeing assigned to several CME identi�iers such as Zotob.E has twodifferent CME numbers. Finally, 73% of the vulnerabilities in the SANSRISK bulletin has no CVE numbers making CME less applicable.It is notable how the AV industry has grown: from 5,000 newmalware programs per month according to Bontchev on 13 October2005 to 595,010 distinct malware �iles per day identi�ied by at leastone vendor in VirusTotal as of 10th of February, 2020 [78]. We canguesstimate around 3,563% increase in daily malware samplesappearance over 15 years. To the authors’ knowledge, not every AVvendor has adopted CARO naming: only Microsoft consistently use itover many years and TrendMicro have recently adopted it in July 2018.
7	 Practical	Implications	of	Malware	Naming	in
the	Light	of	Big	DataThe general challenge is that a single malware samples can beattributed to multiple malware categories and families. Todemonstrate the example of malware labelling, we refer to theVirusTotal scanning result of the �ile named“VirusShare_0c5e15ea8c92f33396fe3�b85d7a7�bf” and MD5 hash sum0c5e15ea8c92f33396fe3�b85d7a7�bf [76]. A fraction of 26 Anti-Virusreports is presented in the Fig. 4.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 Example of 26 Anti-Virus naming reports for the executable �ile with MD5 has sum0c5e15ea8c92f33396fe3�b85d7a7�bf [76]However, the diversity of the used naming approaches drawsigni�icant attention. There were few examples of consistency amongAnti-Virus vendors such as Trojan.Downloader.Zlob.ABKL is used by the7 following companies: Ad-Aware, Emsisoft, eScan, Arcabit,BitDefender, F-Secure, GData. Furthermore, among all reports, 49 out of70 AV classi�ied these �iles as malicious software with the followingkeywords (types) used in labels: “Zlob”—28 vendors, “Trojan”—27,“Win32” or “W32”—21, “Downloader”—19 and “Generic”—5. Thisdrastically changes the efforts of malware analyst to �ind the mostlikely classi�ication result. Finally, only Microsoft speci�ied malwarefamily name “Detplock” has used the CARO naming scheme approach:
Trojan:Win32/Detplock. Trend Micro adopted CARO naming in2018 [40]; however, this company named the aforementioned malwaresamples as Undetected/Non-malicious. As a result of theseconsiderations, we have to put forward the following needs (i)fostering cooperation between AV vendors through public dialogueinvolving domain experts, (ii) uni�ication of the malware namingformat, possible towards CARO scheme, (iii) utilization of advancingprocessing mechanisms like AVCLASS tool to extract as close label aspossible.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The main problem with malware naming is the consistent growthin the known malware samples pool. VirusTotal receives more than amillion �iles scanning requests per day, with more than half of thisamount classi�ied as malicious samples by at least one of the anti-virusvendors. One of the extensive studies in 2016, investigated naming of400,000 of Windows Portable Executable 32bit (PE32) �iles [26, 62].Based on the analysis of the JSON reports from VirusTotal, it becameclear that there is no uni�ied approach for malware labelling bringingthe task of proper malware type and family labelling to an almostimpossible one. However, 328,000 malware samples were labelled asmalicious by Microsoft, which also meant that the CARO namingscheme was used. Therefore, it is considered as one of the mostextensive multinomial malware studies [59]. The statistics of themalware types and families are shown in the Table 5.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Statistics of the malware types and families 328,000 Windows PE32 malware samples [59,61]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further, Fig. 6 presents how the 35 general malware types and10,362 more speci�ic malware families are distributed based on thecount of each category. The most frequent malware type is “trojan”detected in 76,932 malware �iles, while examples like “�looder” and“remoteaccess” were only found in 3 cases. While most of the malwaretypes of names can be explained, the process is not that trivial withmalware families. For example, “bho” corresponds to Browser HijackObject (BHO); however, “Lolyda” family does not represent anythingexcept that we know that it is a gaming trojan.

Fig.	6 Distribution of malware types and families over 328,000 Windows PE32 malwaresamples [59]So, from the most extensive collection of malware reports bydifferent anti-virus in VirusTotal, there can be seen a high level ofirregularity and diversity. For example, Trojan	Downloader called
Zlob [76] shows that each Anti-Virus vendor assigned a unique name,which is not only differed by malware name, but also by the namecomponents format and order.
8	 Discussions	and	ConclusionsThe amount of malware being discovered everyday growsexponentially. The number of platform variants, programminglanguages, exploitation ways, vulnerabilities and delivery techniques ishuge considering the heavy development of new hardware and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

software in recent decades. We discovered that there is a growinginterest in multi-class malware detection since 2009. The evolution ofmalware is affected by the current usage of technologies. Despitemultiple attempts since 1990s to unify the approach of malwarecategorization and labelling, only a few comply with the community-accepted CARO naming scheme. Another discovery of this study is,despite the existence of CARO, there is still no uni�ied standard formalware taxonomy since every malware lab and anti-virus vendors usetheir practices while keeping the general names in the reports, so it canbe correlated globally with others. This can be seen from VirusTotal’s70 anti-virus reports, as a de-facto standard tool for malware analysis.Then, we practically con�irmed that the challenge with categorizationis that manual analysis of a large number of samples may not befeasible in a short timeframe to issue adequate protective measuresand proper unique identi�ication within the range of existing families.Finally, some of the malware is no longer usable and outdated, whileothers use zero-day vulnerabilities and have not been discovered yet.As a future direction, we see a need for more work towards theuni�ication of malware labelling, better cyber threats intelligenceexchange and general public-oriented cybersecurity awarenesscampaigns to reduce the risk of malware infection.
References1. Abraham, Shawn. 2018. Why windows get more virus attacks than mac or linux. https:// www. malwarefox. com/ windows-virus-attacks/ . Accessed 25 Mar 2020.2. Akamai. Cyberattacks. https:// www. akamai. com/ uk/ en/ resources/ cyber-attacks. jsp.Accessed 25 Mar 2020.3. Avclass. 2016. https:// github. com/ malicialab/ avclass. Accessed 05 Feb 2020.4. Avira. Malware naming conventions. https:// www. avira. com/ en/ support-malware-naming-conventions. Accessed 07 Feb 2020.5. Azab, Ahmad, Mamoun Alazab, and Mahdi Aiash. 2016. Machine learning based botnetidenti�ication traf�ic. In 2016	IEEE	trustcom/BigDataSE/ISPA, 1788–1794, IEEE.6. Azab, Ahmad, Robert Layton, Mamoun Alazab, and Jonathan Oliver. 2014. Mining malware todetect variants. In 2014	5th	cybercrime	and	trustworthy	computing	conference, 44–53, IEEE.7. Bencsáth, Boldizsár. 2012. Duqu, �lame, gauss: Followers of stuxnet. https:// www.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.malwarefox.com/windows-virus-attacks/
https://www.akamai.com/uk/en/resources/cyber-attacks.jsp
https://github.com/malicialab/avclass
https://www.avira.com/en/support-malware-naming-conventions
https://www.rsaconference.com/writable/presentations/file_upload/br-208_bencsath.pdf

rsaconference. com/ writable/ presentations/ �ile_ upload/ br-208_ bencsath. pdf. Accessed 10July 2016.8. BitDefender. 2006. Virus naming. the “who’s who?” dilemma. Technical report, BitDefender.http:// download. bitdefender. com/ resources/ �iles/ Main/ �ile/ Virus_ Naming_ Whitepaper. pdf.Accessed 10 Jan 2020.9. Bontchev, Vesselin. 2015. Current status of the caro malware naming scheme. Virus	bulletin
(VB2005), Dublin, Ireland. Accessed 07 Feb 2020.10. Bragen, Simen Rune. 2015. Malware detection through opcode sequence analysis usingmachine learning. Gj vik	University	College.

11. CARO. Naming scheme - caro - computer antivirus research organization. www. caro. org/ naming/ scheme. html. Accessed 07 Feb 2020.12. Check Point. What is a cyber attack? https:// www. checkpoint. com/ de�initions/ what-is-cyber-attack/ . Accessed 25 Mar 2020.13. Chen, Chong-Kuan. 2015. Malware classi�ication and detection. http:// www. slideshare. net/ Bletchley131/ malware-classi�icationan ddetection. Accessed 10 July 2016.14. Chess, David M, and Steve R White. 2000. An undetectable computer virus. In Proceedings	of
virus	bulletin	conference, vol. 5.15. Cisco. What are the most common cyber attacks? https:// www. cisco. com/ c/ en/ us/ products/ security/ common-cyberattacks. html. Accessed 25 Mar 2020.16. ClamAV. Potentially unwanted applications (pua). https:// www. clamav. net/ documents/ potentially-unwanted-applications-pua. Accessed 06 Feb 2020.17. Cohen, Fred. 1987. Computer viruses: Theory and experiments. Computers	&	Security 6 (1):22–35.[Crossref]18. Comodo. A short history of computer viruses. https:// antivirus. comodo. com/ blog/ computer-safety/ short-history-computer-viruses/ . Accessed 11 Feb 2020.19. Cvedetails.com - the ultimate security vulnerability datasource. 2020. https:// www. cvedetails. com/ . Accessed 17 Feb 2020.20. Critical Infrastructure Cybersecurity. 2014. Framework for improving critical infrastructurecybersecurity. Framework 1: 11.21. Damshenas, Mohsen, Ali Dehghantanha, and Ramlan Mahmoud. 2013. A survey on malwarepropagation, analysis, and detection. International	Journal	of	Cyber-Security	and	Digital
Forensics	(IJCSDF) 2 (4): 10–29.22. Distler, Dennis, and Charles Hornat. 2007. Malware	analysis:	An	introduction	An	introduction.Sans Reading Room.23. Egele, Manuel, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2012. A survey on

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.rsaconference.com/writable/presentations/file_upload/br-208_bencsath.pdf
http://download.bitdefender.com/resources/files/Main/file/Virus_Naming_Whitepaper.pdf
http://www.caro.org/naming/scheme.html
https://www.checkpoint.com/definitions/what-is-cyber-attack/
http://www.slideshare.net/Bletchley131/malware-classificationanddetection
https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html
https://www.clamav.net/documents/potentially-unwanted-applications-pua
https://doi.org/10.1016/0167-4048(87)90122-2
https://antivirus.comodo.com/blog/computer-safety/short-history-computer-viruses/
https://www.cvedetails.com/

automated dynamic malware-analysis techniques and tools. ACM	Computing	Surveys	(CSUR)44 (2): 6.[Crossref]24. Ericsson: Internet of things forecast. https:// www. ericsson. com/ en/ mobility-report/ internet-of-things-forecast. Accessed 11 Feb 2020.25. F-secure. F-secure classi�ies threats. https:// www. f-secure. com/ v-descs/ guides/ classi�ication_ guide. shtml. Accessed 06 Feb 2020.26. Grini, Lars Strande, Andrii Shalaginov, and Katrin Franke. 2016. Study of soft computingmethods for large-scale multinomial malware types and families detection. In Proceedings	of
the	the	6th	world	conference	on	soft	computing.27. Guarnieri, Claudio, Allessandro Tanasi, Jurriaan Bremer, and Mark Schloesser. 2012. Thecuckoo sandbox.28. Hardikar, A. 2008. Malware 101-viruses. SANS	Institute.29. Impe, Koen Van. 2018. How to choose the right malware classi�ication scheme to improveincident response. https:// securityintellig ence. com/ how-to-choose-the-right-malware-classi�ication-scheme-to-improve-incident-response/ . Accessed 07 Feb 2020.30. Kaspersky. Types of malware. https:// www. kaspersky. com/ resource-center/ threats/ malware-classi�ications. Accessed 06 Feb 2020.31. Kendall, Kris, and Chad McMillan. 2007. Practical malware analysis. In Black	hat	conference,USA.32. Kirillov, Ivan, Desiree Beck, Penny Chase, and Robert Martin. 2011. Malware attributeenumeration and characterization. https:// www. researchgate. net/ pro�ile/ Robert_ Martin10/ publication/ 267691330_ Malware_ Attribute_ Enumeration_ and_ Characterization / links/ 54bd188e0cf218d4 a169ee0c/ Malware-Attribute-Enumeration-and-Characterization . pdf.Accessed 07 Feb 2020.33. Kolter, J.Zico, and A. Marcus, Maloof. 2006. Learning to detect and classify maliciousexecutables in the wild. Journal	of	Machine	Learning	Research 7: 2721–2744.34. Krebs, Brian. 2003. A short history of computer viruses and attacks. Washingtonpost.com 14.35. Lee, Alan, Vijay Varadharajan, and Udaya Tupakula. 2013. On malware characterization andattack classi�ication. Proceedings	of	the	1st	Australasian	web	conference 144: 43–47.36. Malware Bytes. What is malware? https:// www. malwarebytes. com/ malware/ #what-is-the-history-of-malware. Accessed 11 Feb 2020.37. Markel, Zane, and Michael Bilzor. 2014. Building a machine learning classi�ier for malwaredetection. In 2014	2nd	workshop	on	anti-malware	testing	research	(WATeR), 1–4, IEEE.38. Martin, Lockheed. 2014. Cyber kill chain®. http:// cyber. lockheedmartin. com/ hubfs/ GainingtheAdvant ageCyberKillChai n. pdf.39.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1145/2089125.2089126
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.f-secure.com/v-descs/guides/classification_guide.shtml
https://securityintelligence.com/how-to-choose-the-right-malware-classification-scheme-to-improve-incident-response/
https://www.kaspersky.com/resource-center/threats/malware-classifications
https://www.researchgate.net/profile/Robert_Martin10/publication/267691330_Malware_Attribute_Enumeration_and_Characterization/links/54bd188e0cf218d4a169ee0c/Malware-Attribute-Enumeration-and-Characterization.pdf
https://www.malwarebytes.com/malware/#what-is-the-history-of-malware
http://cyber.lockheedmartin.com/hubfs/GainingtheAdvantageCyberKillChain.pdf

Mell, Peter, and Tim Grance. 2002. Use	of	the	common	vulnerabilities	and	exposures	(cve)
vulnerability	naming	scheme. National inst of standards and technology gaithersburg mdcomputer security div: Technical report.40. Micro, Trend. New threat detection naming scheme in trend micro. https:// success. trendmicro. com/ solution/ 1119738-new-threat-detection-naming-scheme-in-trend-micro.Accessed 10 Feb 2020.41. Microsoft. Malware names. https:// docs. microsoft. com/ nb-no/ windows/ security/ threat-protection/ intelligence/ malware-naming. Accessed 06 Feb 2020.42. Microsoft. Understanding alert levels in microsoft security essentials. https:// docs. microsoft. com/ nb-no/ archive/ blogs/ robmar/ understanding-alert-levels-in-microsoft-security-essentials. Accessed 06 Feb 2020.43. Microsoft. 2016. The microsoft windows malicious software removal tool helps removespeci�ic, prevalent malicious software from computers that are running supported versions ofwindows. https:// support. microsoft. com/ en-us/ kb/ 890830. Accessed 15 July 2016.44. MITRE. Common vulnerabilities and exposures. https:// cve. mitre. org/ about/ index. html.Accessed 05 Feb 2020.45. MITRE. 2006. Common malware enumeration: reducing public confusion during malwareoutbreak. https:// cme. mitre. org/ about/ index. html. Accessed 07 Feb 2020.46. Mo, Jianpeng. 2015. What can we learn from anti-malware naming conventions? https:// www. opswat. com/ blog/ what-can-we-learn-anti-malware-naming-conventions, 2015.Accessed 07 Feb 2020.47. Mushtaq, Atif. 2010. World’s top malware. https:// www. �ireeye. com/ blog/ threat-research/ 2010/ 07/ worlds_ top_ modern_ malware. html. Accessed 15 July 2016.48. Netmarketshare - market share statistics for internet technologies. 2020. https:// www. netmarketshare. com/ . Accessed 06 Feb 2020.49. NI Business Info. Cyber security for business: Reasons behind cyber attacks. https:// www. nibusinessinfo. co. uk/ content/ reasons-behind-cyber-attacks. Accessed 05 Feb 2020.50. MISP-Open Source Threat Intelligence Platform. Open standards for threat informationsharing. http:// www. misp-project. org/ index. html. Accessed 07 Feb 2020.51. Rankin, B. 2018. A brief history of malware—its evolution and impact. https:// www. lastline. com/ blog/ history-of-malware-its-evolution-and-impact/ .52. Rieck, Konrad, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov. 2008.Learning and classi�ication of malware behavior. In Proceedings	of	the	5th	international
conference	on	detection	of	intrusions	and	malware,	and	vulnerability	assessment, DIMVA’08,108–125. Berlin: Springer.53. S21Sec. 2013 Zeus timeline. https:// www. s21sec. com/ zeus-timeline-i/ . Accessed 10 Jan2020.54.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://success.trendmicro.com/solution/1119738-new-threat-detection-naming-scheme-in-trend-micro
https://docs.microsoft.com/nb-no/windows/security/threat-protection/intelligence/malware-naming
https://docs.microsoft.com/nb-no/archive/blogs/robmar/understanding-alert-levels-in-microsoft-security-essentials
https://support.microsoft.com/en-us/kb/890830
https://cve.mitre.org/about/index.html
https://cme.mitre.org/about/index.html
https://www.opswat.com/blog/what-can-we-learn-anti-malware-naming-conventions
https://www.fireeye.com/blog/threat-research/2010/07/worlds_top_modern_malware.html
https://www.netmarketshare.com/
https://www.nibusinessinfo.co.uk/content/reasons-behind-cyber-attacks
http://www.misp-project.org/index.html
https://www.lastline.com/blog/history-of-malware-its-evolution-and-impact/
https://www.s21sec.com/zeus-timeline-i/

Saarinen, Juha. 2017. Malware authors camou�lage code with russian terms. https:// www. itnews. com. au/ news/ malware-authors-camou�lage-code-with-russian-terms-452012.55. Schiffman, Mike. 2010. A brief history of malware obfuscation. http:// blogs. cisco. com/ security/ a_ brief_ history_ of_ malware_ obfuscation_ part_ 1_ of_ 2. Accessed 13 July 2016.56. Sebastián, Marcos, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Avclass: A toolfor massive malware labeling. In International	symposium	on	research	in	attacks,	intrusions,
and	defenses, 230–253, Springer.57. Securosis. 2012. Measuring and optimizing malware analysis: An open model. Technicalreport, Securosis. https:// cdn. securosis. com/ assets/ library/ reports/ Securosis-MAQuant-v1. 4_ FINAL. pdf. Accessed 10 Jan 2020.58. Shalaginov, Andrii. 2017. Dynamic feature-based expansion of fuzzy sets in neuro-fuzzy forproactive malware detection. In 2017	20th	international	conference	on	information	fusion
(Fusion), 1–8, IEEE.59. Shalaginov, Andrii. 2018. Advancing	neuro-fuzzy	algorithm	for	automated	classi�ication	in
largescale	forensic	and	cybercrime	investigations:	Adaptive	machine	learning	for	big	data
forensic. PhD thesis, Norwegian University of Science and Technology.60. Shalaginov, Andrii, Sergii Banin, Ali Dehghantanha, and Katrin Franke. 2017. Machine learningaided static malware analysis: A survey and tutorial. Cyber	Threat	Intelligence	2017.61. Shalaginov, Andrii, and Katrin Franke. 2016. Automated intelligent multinomial classi�icationof malware species using dynamic behavioural analysis. In 2016	14th	annual	conference	on
privacy,	security	and	trust	(PST), 70–77, IEEE.62. Shalaginov, Andrii, Lars Strande Grini, and Katrin Franke. 2016. Understanding neuro-fuzzy ona class of multinomial malware detection problems. In International	joint	conference	on
neural	networks	(IJCNN)	2016, 684–691, Research Publishing Services.63. Shankarapani, M, Kesav Kancherla, S Ramammoorthy, R Movva, and Srinivas Mukkamala.2010. Kernel machines for malware classi�ication and similarity analysis. In The	2010
international	joint	conference	on	neural	networks	(IJCNN), 1–6, IEEE.64. Sikorski, Michael, and Andrew Honig. 2012. Practical	malware	analysis:	The	hands-on	guide
to	dissecting	malicious	software. San Francisco: No Starch Press.65. Skulason, Fridrik, Alan Solomon, and Vesselin Bontchev. 1991. CARO naming scheme.66. Sophos. 2020. Sophos 2020 threat report. we’re covering your blind spots. Technical report,Sophos. Accessed 11 Feb 2020.67. Stack Over�low. 2016. Stack over�low - developer survey results. http:// stackover�low. com/ research/ developer-survey-2016. Accessed 11 July 2016.68. Symantec. Preparing for a cyber attack. https:// www. symantec. com/ content/ en/ us/ enterprise/ other_ resources/ b-preparing-for-a-cyber-attack-interactive-SYM285k_ 050913. pdf. Accessed 05 Feb 2020.69.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.itnews.com.au/news/malware-authors-camouflage-code-with-russian-terms-452012
http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2
https://cdn.securosis.com/assets/library/reports/Securosis-MAQuant-v1.4_FINAL.pdf
http://stackoverflow.com/research/developer-survey-2016
https://www.symantec.com/content/en/us/enterprise/other_resources/b-preparing-for-a-cyber-attack-interactive-SYM285k_050913.pdf

Symantec. 2011. Malware categories for policies. https:// support. symantec. com/ us/ en/ article. howto54185. html#v46370003. Accessed 06 Feb 2020.70. Symantec. 2019. Malicious code classi�ications and threat types. https:// support. symantec. com/ us/ en/ article. tech226322. html. Accessed 06 Feb 2020.71. Tehranipoor, Mohammad, and Farinaz Koushanfar. 2010. A survey of hardware trojantaxonomy and detection. IEEE	Design	&	Test	of	Computers 27 (1): 10–25.[Crossref]72. TrendMicro. Malware naming. https:// docs. trendmicro. com/ all/ ent/ tms/ v2. 5/ en-us/ tda_ 2. 5_ olh/ malware_ naming. htm. Accessed 07 Feb 2020.73. UK National Cyber Security Center. 2016. How cyber attacks work. https:// www. ncsc. gov. uk/ information/ how-cyber-attacks-work. Accessed 25 Mar 2020.74. Uppal, Dolly, Roopak Sinha, Vishakha Mehra, and Vinesh Jain. 2014. Malware detection andclassi�ication based on extraction of api sequences. In 2014	international	conference	on
advances	in	computing,	communications	and	informatics	(ICACCI), 2337–2342, IEEE.75. Virusshare. https:// www. VirusShare. com/ . Accessed 17 Feb 2020.76. VirusTotal. Report on trojandownloader zlob. https:// www. virustotal. com/ gui/ �ile/ e8331ed32e33ba0a bb6a73c320552bd1 7d5fe7acd4189cbe a5a72f933e2a09e9 / detection.Accessed 10 Feb 2020.77. VirusTotal. https:// www. virustotal. com/ . Accessed 17 Feb 2020.78. Virustotal statistics. https:// www. virustotal. com/ en/ statistics/ . Accessed 04 Feb 2020.79. VxHeaven.org website mirror. 2018. https:// github. com/ opsxcq/ mirror-vxheaven. org.80. Wichers, Dave. 2013. Owasp top-10 2013. OWASP	Foundation.81. Wikia. The malware database. http:// malware. wikia. com/ wiki/ . Accessed 06 Feb 2020.82. Wu, C.H., and J.D. Irwin. 2016. Introduction	to	computer	networks	and	cybersecurity. BocaRaton: CRC Press.[Crossref]83. Zabidi, M.N.A, M.A. Maarof, and A. Zainal. 2012. Malware analysis with multiple features. In
2012	UKSim	14th	international	conference	on	computer	modelling	and	simulation	(UKSim),231–235.84. Zelster, L. 2015. Mastering 4 stages of malware analysis. https:// zeltser. com/ mastering-4-stages-of-malware-analysis/ .85. Zelster, L. 2011. Assigning descriptive names to malware – why and how? https:// zeltser. com/ descriptive-names-for-malware/ .86. Zelster, L. 2011. How security companies assign names to malware specimens [web blog].https:// zeltser. com/ malware-naming-approaches/ .

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://support.symantec.com/us/en/article.howto54185.html#v46370003
https://support.symantec.com/us/en/article.tech226322.html
https://doi.org/10.1109/MDT.2010.7
https://docs.trendmicro.com/all/ent/tms/v2.5/en-us/tda_2.5_olh/malware_naming.htm
https://www.ncsc.gov.uk/information/how-cyber-attacks-work
https://www.virusshare.com/
https://www.virustotal.com/gui/file/e8331ed32e33ba0abb6a73c320552bd17d5fe7acd4189cbea5a72f933e2a09e9/detection
https://www.virustotal.com/
https://www.virustotal.com/en/statistics/
https://github.com/opsxcq/mirror-vxheaven.org
http://malware.wikia.com/wiki/
https://doi.org/10.1201/9781466572140
https://zeltser.com/mastering-4-stages-of-malware-analysis/
https://zeltser.com/descriptive-names-for-malware/
https://zeltser.com/malware-naming-approaches/

1
2

87. Zhang, Boyun, Jianping Yin, Jingbo Hao, Dingxing Zhang, and Shulin Wang. 2007. Maliciouscodes detection based on ensemble learning. In Proceedings	of	the	4th	international
conference	on	autonomic	and	trusted	computing, ATC’07, 468–477. Berlin: Springer.

FootnotesMessage-Digest algorithm for 128-bit hash sum. https:// maecproject. github. io/ documentation/ overview/ .

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://maecproject.github.io/documentation/overview/

(1)(2)(3)(4)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_4
Addressing	Malware	Attacks	on
Connected	and	Autonomous	Vehicles:
Recent	Techniques	and	ChallengesAiman Al-Sabaawi1, 2 , Khamael Al-Dulaimi1, 2 , Ernest Foo3 andMamoun Alazab4 Queensland University of Technology, Queensland, AustraliaDepartment of Computer Science, Al-Nahrain University, Baghdad,IraqSchool of Information and Communication Technology, Grif�ithUniversity, Queensland, AustraliaCollege of Engineering, Information Technology and Environment,Charles Darwin University, Northern Australia, Australia
Aiman	Al-Sabaawi	(Corresponding	author)
Email:	a.alsabaawi@connect.qut.edu.au
Khamael	Al-Dulaimi
Email:	khamaelabbaskhudhair.aldulaimi@hdr.qut.edu.au
Ernest	Foo
Email:	e.foo@grif�ith.edu.au
Mamoun	Alazab
Email:	alazab.m@ieee.org

AbstractPart of the wider development and monitoring of smart environmentsfor an intelligent cities approach is the building of an intelligenttransportation system. Such a system involves the development of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_4
mailto:a.alsabaawi@connect.qut.edu.au
mailto:khamaelabbaskhudhair.aldulaimi@hdr.qut.edu.au
mailto:e.foo@griffith.edu.au
mailto:alazab.m@ieee.org

modern vehicles which signi�icantly improve passenger safety andcomfort, a trend that is expected to increase in the coming years. Thereare key factors relating to safety impacts and security vulnerabilitiesthat may emerge during the increased deployment of automatedvehicles and the security and privacy of connected and automatedvehicle systems. They include ways of de�ining the security ofmalware-relevant system boundaries including electronic controlunits, silicon hardware, software, vehicle systems, infrastructure,network connectivity and more. In addition, vehicle industries arefacing many problems with critical security and privacy issues,in�luenced by the smart environments for an intelligent citiesapproach. Such problems are related to hardware and softwareapplications that allow the interfacing of Vehicle to Vehicle (V2V) andVehicle to Infrastructure networks (V2I). In this chapter, we presentconnected car methods relating to the attack, defence and detection ofmalware in vehicles. Critical issues are introduced regarding thesharing of safety information and the veri�ication of the integrity ofthis information from V2V and V2I networks. In particular, we discussthe challenges and review state-of-the-art intra–inter-vehiclecommunication. Hackers can access this information in V2V/V2Inetworks and broadcast fake messages and malware to break thesecurity system by using weak points in vehicles and networks. Wepresent important security approaches that are used in vehicles whichcan fully protect the vehicle security architecture by detecting theattempts made and the methods used by hackers to tackle malwareand security problems in vehicles. We present a comprehensiveoverview of current research on advanced intra-inter-vehiclecommunication networks and identify outstanding research questionsthat may be used to achieve high levels of vehicle security and privacyin intelligent cities in the future.
1	 IntroductionSmart city or smart building technology has been advancing in recentyears due to the development of communication technologies andwiring which are associated with the �ields of power, health, education,industries and transportation. Buildings are becoming more complex,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

with interconnected Internet of Things (IoT) systems offeringtechnological equipment and cost-ef�icient buildings and energy. Theinfrastructure of the IoT is still developing and offers many bene�its forhumans including monitoring asset movements, turning lights on/offas needed, optimizing room occupancy, air conditioning systems,health systems, vehicular and road connected systems, securitysystems (monitoring camera systems) and location systems [38, 49].The IoT enables cities to grow and expand. Of�icials in cities withthe technology of the IoT can access valuable data to gain a betterunderstanding of their city’s operations. Those data enable the controlof traf�ic, the empowerment of local law enforcement, allow improvedsecurity of connected vehicles, monitoring of the environment andenable city-wide connectivity and tracking of parking ef�iciency. Thesecities play a signi�icant role in fostering creativity and innovation. Thecreation of customized IoT applications positions cities at thetechnological forefront which, in turn, attracts new residents andbusinesses. Intelligent transportation systems, monitoring the waypeople commute in metros and smart cities, are one bene�it. Anintelligent transportation system offers a novel approach to theprovision of different transportation modes, advanced infrastructureand traf�ic and mobility management solutions. It uses a number ofelectronic, sensor, wireless and communication technologies toprovide consumers with access to a smarter, safer and faster way oftravelling [38, 49].
1.1	 Important	Technologies	in	Intelligent	Transportation
System	in	Smart	Cities1. Advanced Tracking System: modern vehicles are connected within-vehicle GPS. The GPS system can offer two-way communication,helping traf�ic professionals to locate vehicles, check speedingvehicles and provide emergency services. Smartphones, mobileapplications and Google Maps have become useful tools in tracking,understanding road quality, traf�ic density and locating differentroutes and places.

2. Advanced Sensing Technologies: These include intelligent sensorsboth in vehicles and road infrastructure. Radio FrequencyIdenti�ication (RFI) and intelligent beacon sensing technologies are

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Identi�ication (RFI) and intelligent beacon sensing technologies areensuring the safety of drivers in cities worldwide. Road re�lectorsand inductive loops are built into roads, assisting with traf�iccontrol and safe driving, especially at night. They can also provideinformation about vehicle density at particular times and canidentify vehicles at both slow and high speeds.3. Advanced Video Vehicle Detection: Video cameras or CCTVsurveillance can solve many problems for traf�ic managers. Videofootage of strategic places and prime junctions can help operatorsobserve traf�ic �low and identify any emergency situation or roadcongestion. In-built vehicle sensors and automatic number platedetection help to check vehicles for security purposes.

4. Advanced Traf�ic Light Systems: Radio Frequency Identi�ication(RFID) is used in traf�ic light systems. This technology can offercorrect algorithms and databases even when applied to multiplelanes, road junctions and vehicles. These lights can adjustthemselves during critical and peak hour traf�ic situations withoutany human presence.

5. Emergency E-Call Vehicle Service: During an emergency situationsuch as an accident or mishap, in-vehicle sensors can establishcontact with a nearby emergency centre. An e-call will help a driverto connect to a trained operator and also transmit importantinformation such as time, location, direction of vehicle and vehicleidenti�ication directly to the centre [38].

1.2	 Bene�its	of	Intelligent	Transportation	System1. Minimizing Pollution: An intelligent transportation system aims topromote the use of public transport by the general public. If itprovides single-point services and access to real-time informationabout the transport schedule, people will prefer to use anintelligent transportation system and reduce private vehicle usage,thereby lowering traf�ic congestion and lowering pollution levels.

2. Security and Safety: Advanced sensing technologies help to provideemergency and critical care services to drivers and people wheni d h l ti d t l i i l di CCTV GPS

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

required, such as real-time data analysis, including CCTV, GPS,internet connectivity and wireless and virus and malwaredetection [12]. Surveillance of public transportation also helps toalert city managers to the risk of terror elements and to avoidmishaps or terror attacks.3. Market for Mobile Applications: Recently, modern transportationhas come to depend more on smartphones and mobile applicationsto identify parking spots, route guides, destination points, weatherforecasts and arrival and departure details.

4. Smart Parking Solutions: Smart parking solutions, combined withappropriate infrastructure, internet connectivity and securitycameras, can minimize parking problems. Many urban areas nowhave multi-layer parking systems. There are also manyapplications which provide users with information about freeparking spaces available nearby [38].

1.3	 Challenges	of	Intelligent	Transportation	SystemTo support these bene�its and sophisticated features in an intelligenttransportation system, modern vehicles are developed using software,an assortment of embedded computing devices, sensors,communication interfaces and actuators. However, these lead to manychallenges that affect human life and safety [23].Vehicle industries predict that as the cost of software andelectronics fall, security-related incidents will become a serious threat.Exploiting vulnerabilities in the vehicle’s electronics may allow theremote control of vehicle components. An attacker can turn off thevehicle’s lights or even control the brakes while on the move [30]. Morerecently, attacks on production vehicles, for example, exploitingvulnerabilities in Fiat/Chrysler’s Uconnect system, enabled hackers tocontrol the vehicles, turning off the engine and controlling the steeringover the Internet [24, 49], with the company urging owners to updatetheir vehicles’ software to patch the identi�ied vulnerabilities [49].Moreover, many of the enhanced services of these modern inter-connected vehicles rely on the location of the vehicles and theirdrivers, information that, by its nature, gives rise to signi�icant privacyconcerns. Securing the various heterogeneous hardware and software

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

platforms and networks in the intelligent transformation systemecosystem is still a challenging task. While security is an important keyin various aspects of smart vehicle-related Information andCommunications Technology (ICT) deployments, many aspects ofef�icient intelligent transportation operations have safety issues andother Quality of Service (QoS) characteristics which may limit theapplicability of complex security initiatives. Therefore, potentialsolutions should be considered for these limitations by identifyingattack type, defence and detection [23].Given the advantages of a connected vehicle, security in vehiclenetworks and their characteristics and issues, it is crucial tounderstand how current intelligent transportation systems can beadapted to work with smart environments for intelligent cities. In thischapter, we provide an overview of connected vehicle methods in intra-inter-vehicle communication. We then provide a survey of the recenthistory of three key features in-vehicle security and malware: attack,defence and detection. There has been extensive research in each areaand many studies address intra–inter-vehicle communication, which isa critical problem in-vehicle technology. The following review criticallydescribes the literature regarding the identi�ication of attacks such asmalware and their types and the defences and solutions in intra-inter-vehicle communication. The detection issues and challenges for eachtype of communication will be presented. The literature also includesthe recent techniques and their challenges and issues regarding vehiclesecurity from malware including attacks, defences and detection inintra-inter-communication networks. The objective of this chapter isto help researchers to address these challenges in future work and inthe further investigation of attacks, defences and detection, as well asto make signi�icant changes to the design of vehicle systems toimprove automotive security and prevent any malware and cyberterrorists from attacking vehicles.This chapter is organized as follows: the �irst section presents acomprehensive overview of the vehicle connected methods, includingattacks, detection and defence. In the second section, recent techniquesand their challenges are discussed. The third section comprises theconclusion of the chapter.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2	 Literature	ReviewBecause modern technology has introduced more intelligence andcomplexity into the car industry, researchers are required to takegreater responsibility for both safety and security. Vehicle security isdifferent from vehicle safety, which includes vehicle speed [10] andvehicle integrated design [21]. Vehicle security, however, is essential todelivering vehicle safety from malware [45]. With a connectedenvironment, vehicles, infrastructure and pedestrians can exchangeinformation, either through a peer-to-peer connectivity protocol or acentralized system via a 4G or more advanced telecommunication andsecurity network. This technology has the potential to be one of themost disruptive technologies for urban and smart cities. Theinteraction and exchange of information regarding the use of malwaremay occur in V2V, V2I, pedestrian-to-infrastructure (P2I) or vehicle-to-pedestrian applications (V2P) [52].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 The concept of the connected carVehicle security covers many aspects including immobilizers, car-to-car communication, car-to-infrastructure communication, car-to-Xcommunications, cloud and smartphone or smart device [13]. Recently,security analysis has been investigated in vehicle production and itwas discovered that there are many reasons for security development.By accessing the in-vehicle 3G or Bluetooth, an attacker may tamperwith the brakes while people are driving cars. In addition, car thieveshave the ability to exploit security breaches in keyless-entry systemsor to generate spare keys by using the on-board diagnostic system orusing malware. Today, the weakness of security measures in vehiclescan cause many �inancial problems, such as decreasing mileage to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

extend warranty claims by illegal chip adjusting [48]. Connected carmethods are shown in Fig. 1.1. Car-to-Car communication: This term refers to inter-vehiclecommunication exchange between two cars, for example, to warnothers of a change in the road surface, obstacles on the roadway orother dangers.

2. Car-to-infrastructure communication: This refers tocommunication between cars and components of theinfrastructure using wireless communication. Components of theinfrastructure include nodes in a cellular network or intelligenttraf�ic signs that can be utilized to establish car-industrycommunication, infotainment platforms or the Internet.

3. Car-to-X communication: This term refers to the sending andreceiving of data between cars, the infrastructure, other transport,traf�ic management systems and different Internet applications.While other communications receive and process information, carscan also exchange information.

4. Smartphone or smart device: Given the implementation ofcommon modern technology, smartphones, tablets andsmartwatch use is widespread and they become an obvious goal inthe communication system, as shown in Fig. 2.

5. Cloud: Computing can exchange data from cars and data stored inthe (Cloud) by using the Internet, as shown in Fig. 3.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Connection types [33]

Fig.	3 Simple car connectionsIn recent years, electronic systems in vehicles have been controlledby an Electronic Control Unit (ECU). The controller Area Network

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(CAN) uses an in-vehicle network to structure an effective network ofECUs [58].The ECU is an important component in automotive applicationcomponents that can control one or more of the electrical systems andsubsystems in cars [57]. The on-board architecture of vehicles cancontain more than 70 ECUs [17] that can interconnect via differentnetworks such as Local Interconnect Network (LIN), CAN or FlexRay [1,40]. In fact, CAN use has become widespread because it signi�icantlyreduces the number of communication lines and ensures the reliabilityof higher data transmission [28], as shown in Fig. 4.

Fig.	4 Connected car environment [58]Recently, due to increasing penetration of smartphones andadvanced communication technologies, Global Positioning System

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(GPS) data [54, 56], media access control (MAC) addresses fromBluetooth and Wi-Fi components [14, 20] and mobile phone data [15,16] are becoming available for the analysis of traf�ic conditions or eventravel behaviour and security in vehicles. The data sources listed aboveare important in developing and monitoring smart environments forintelligent cities. With such characteristics, more detailed analysis ofattack, detect and defence of vehicle security could be conducted.
2.1	 AttackOne of the effects of the extensive introduction of technology invehicles is car hacking using malware [8]. Nowadays it could beconducted to exploit a new generation of vehicles that are even moreconnected to wireless networks, to the Internet, and with each other[41], as shown in Fig. 4. Vehicles in Vehicular Ad hoc Networks(VANETs) transmit self-information to �ixed remote nodes such astheir speed, direction, acceleration and traf�ic conditions. For example,Dedicated Short-Range Communications (DSRC) are emerging as astandard to support IEEE 802.11 in communications between vehicles.FCC has allocated a 75 MHz of DSRC spectrum at 5.9 GHz to be used inVANETs communications. There is also an IEEE P1609 working groupwhich has proposed DSRC as the IEEE 802.11p standard which givesspeci�ications for a wireless Medium Access Control (MAC) layer and aphysical layer for Wireless Access in Vehicular Environments (WAVE)[39]. Attacks on VANETs create a large number of issues for all networkusers by using different types of attacks, such as malware [53]. In thischapter, two types of attacks using malware are addressed, namelyattacks on Inter-vehicle communication (IVC) and attacks on Intra-vehicle communication. Car methods are shown in Fig. 1.
2.1.1	 Attacks	on	Inter-Vehicle	Communication	(IVC)Several years ago, work on Inter vehicle communication (IVC) startedin industrial research labs and academic institutions. To date, someacademic research teams have started addressing security issues invehicles, however, some research projects are still highly theoreticaland do not suggest realistic solutions [26]. In [45], variousperspectives on IVC security were considered and the focus was onsecure positioning and privacy problems. In this chapter, classifying

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

and identifying the types of attacks in IVC aims to suggest practicalsolutions.
–Denial	of	Service	Attack	(DoS)The purpose of (DoS) attacks is to prevent legal users from accessingservices or data in computer networks. In vehicular networks, thisattack jams and over�lows the traf�ic with huge volumes of irrelevantmessages that negatively affect communication among the nodes ofthe network, roadside units and on-board units. There is a hugenumber of high-powered computing facilities in close proximity to thetarget because the vehicle under attack is part of the vastinfrastructure of the Social Internet of Vehicles (SIoV) embedded in asmart city environment. An attacker can use these for jamming attackson the target’s on-board sensory tool or use malware attacks, therebycountering the ability of the target vehicle to detect irregular messagesduring collaboration with its local information resources. A votingscheme can address the issues of DoS attacks [36]. However, ifattackers can produce false identities to masquerade themselves,voting schemes may fail [32]. According to [34], DoS attacks have threelevels:

First	level	(Basic	Level): Overwhelm the Node Resources. The goalof the attacker is to overwhelm the node resources so that otherimportant and necessary tasks cannot be performed by their nodes.These nodes become constantly busy and use all the resources to checkthe messages.Case 01: DOS Attack in V2V Communications. A warning messageis sent by an attacker (Accident at location Y) and this message isreceived by a victim node behind the attacker node as shown inFig. 5. The attacker continuously repeats the sending of the samemessage, so the victim node is kept busy and is completely deniedaccess to the network [46].Case 02: Launch DOS Attack in V2I Communications as shown inFig. 6, an attack is launched on a Road-Side Unit (RSU). Any othernodes that attempt to communicate with the RSU will be unable toget any response from the RSU, therefore, the service is unavailablewhen the RSU is continuously busy attempting to verify the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

messages. The key risk, in this example, is the inability to sendcritical life information [46].

Fig.	5 DOS attack in V2V communications

Fig.	6 Launch DOS attack in V2I communications
Second	Level	(Extended	Level): Jamming the Channel. The highestlevel of DOS attack involves Jamming the Channel, therefore, denyingother users’ access to the network. There are two possible cases:Case 01: A high-frequency channel, sent by an attacker, jams thecommunication among any nodes in a domain as shown in Fig. 7.Messages cannot be sent or received by these nodes in that domain(services are not available in that domain due to this attack). It cansend and/or receive messages when a node leaves the domain ofattack [46].Case 02: Jamming the communication channel between thenodes and the infrastructure. In Fig. 8, an attack is launched near theinfrastructure to jam the channel. As a result, the network breaks

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

down. In this way, because the network is unavailable, sendingand/or receiving messages and/or malware to/from other nodes isnot possible and would fail.

Fig.	7 A domain of jammed channel for vehicle-to-vehicle communications

Fig.	8 Source denial of service (DOS) attack and its possible solutions in VANET
Third	Level:	Distributed	Denial	of	Services	(DDOS): DDOSattacks are more serious in the vehicular ad hoc network (VANET)because of the distribution of this attack which spreads over a widearea of the network. The attacker can launch attacks from variousresources. The two possible cases [27] areCase 01: An attack is launched from various resources anddifferent time slots may be used to send the messages. Thesemessages and time slots may differ from node to node. The objectiveof this attack is to make a network unavailable by bringing thenetwork down at a goal node. Figure 9 shows three attackers, black

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

cars (nodes), sending messages to a red car (target node) in front.After a period of time, the goal node cannot connect with any othernodes in the network.Case 02: The VANET infrastructure (RSU) is the target of attack asshown in Fig. 10. Three attackers in the network launch an attack onthe infrastructure from various sources. The infrastructure isoverloaded, causing a denial of service when other nodes in thenetwork want to access the network.

Fig.	9 DDOS in vehicle-to-vehicle communications

Fig.	10 DDOS in vehicle-to-infrastructure communications
–	GPS	Spooling	AttackThis attack tries to fake a GPS Receiver by broadcasting false GPSsignals, structured to match a set of normal GPS signals, or byrebroadcasting genuine signals captured elsewhere or at a differenttime. The attacker may modify these spoofed signals in such a way byusing malware to cause the receiver to estimate its location to besomewhere other than where it actually is, or to be located where it is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

but at a different time. GPS spooling detection requires swiftness andaccuracy. In many GPS-based applications, it is critical to detect GPSspooling attacks as soon as possible, as shown in Fig. 11. GPS has beenused in wide-area monitoring systems (WAMSs) in the power grid [63].WAMS consists of frequency disturbance recorders (FDRs), acommunication network and a monitoring system server. Each FDR isprovided with a GPS receiver to obtain its position and accurate timing[50].
–Masquerading	and	SybilIn a masquerading attack, a vehicle conceals its identity and appears tobe legal in the vehicle network. Strangers can conduct attacks, such asinjecting false messages or malware. In a Sybil attack, the attackerscreate several identities, appearing to be several legal vehicles at thesame time. They can arti�icially damage a roadway and impact on thedecision making of the other drivers during smart routing systems. Inthis attack mode, a vehicle can claim several locations concurrently,that can lead to traf�ic congestion [35].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	11 Illustration of time-critical spooling detection in power grid system [33]
–	Impersonation	AttackThe attackers steal the identity of a legal vehicle and can thenbroadcast security messages on the behaviour of that vehicle. Thesemessages can affect the decision-making of other drivers and generatetraf�ic issues. In [19], a method called Building Up secure Connectionalong with Key factors (BUCK) has been proposed to detect andseparate the impersonation attack.
2.1.2	 Attack	on	Intra	Vehicle	Communication
–	Indirect	physical	accessIn modern vehicles, the internal networks can be accessed eitherdirectly or indirectly by several physical interfaces:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The OBD-II port, as shown Fig. 12, is the most signi�icant automotiveinterface that can provide direct access to the vehicle’s key CANbuses. It provides service personnel with suf�icient access to the fullrange of automotive systems, allowing routine maintenance for bothdiagnostics and ECU programming [18]. Attackers can also accessthe in-car entertainment system, for example, introducing false codeinto MP3 �iles when playing the �ile and inserting maliciousinformation and malware in the in-vehicle entertainment systemwithout the owner’s knowledge [61].Entertainment includes Disc, USB and iPod. A USB port or aniPod/iPhone docking port is external digital multimedia portsprovided by vehicle manufacturers, allowing users to control theirvehicle’s media system by using their personal phone or audioplayer. Thus, an attacker can deliver malicious information andmalware by using encoding algorithms as a song �ile on a CD andconvincing the user to play it by using social engineering. Also, itmay compromise an iPod or the mobile phone of the user and installsoftware on them that can help to attack the media system in avehicle when connected.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	12 OBD-II [25]
–	Short-Range	Wireless	AccessThere are many drawbacks in indirect physical access to the network,including challenges to precise targeting, the inability to control thetime of compromise and its operational complexity. Therefore, theability of an attacker to locate a vehicle’s wireless interface for devicesis required to weaken that ability over a Short-Range Wireless Access[18]. Examples include the following:Bluetooth has been used to support hands-free calling in vehiclesand it is sold by all vehicle manufacturers. Generally, Bluetoothdevices used in vehicles have a range of 10 m. The managementservices component of the Bluetooth stack is often implemented insoftware, while the Bluetooth protocol is typically implemented inhardware [45]. For example, the attacker can place a wirelesstransmitter close to the vehicle’s receiver device. The hackers needto know the vehicle’s Bluetooth MAC address to exploit the vehicle’svulnerability without physical contact [61].Remote Keyless Entry: automobiles have been equipped with RF-based remote keyless entry (RKE) systems to open doors from adistance, �lashlights, switch on the engine of the vehicle and activatealarms, as shown in Fig. 13.Tire pressure: Modern vehicles have used a system to support a TirePressure Monitoring System (TPMS) to warn a driver about over- orunder-in�lated tires. It is called Direct TPMS and uses rotatingsensors to transmit digital telemetry, as shown in Fig. 14.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	13 Remote keyless entry [37]

Fig.	14 Tire pressure monitoring system [3]
–	Long-Range	WirelessModern vehicles include long-distance wireless digital access channelsgreater than 1 km. These comprise two categories (Adam, 2011):Broadcast channels are not speci�ically aimed at a given vehicle butcan be (tuned into) by receivers on request to be a part of theexternal attack surface. Long-range broadcast media, such as controlchannels (to make attacks), can be attractive. Because they aredif�icult to detect, malware can control multiple receivers at onceand does not need attackers to get an accurate address for their prey.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

There is a plethora of broadcast receivers for long-range signals inmodern vehicles that include Global Positioning Systems (GPS)(Honda/Acura, GM, Toyota, Saab, Ford, Kia, BMW and Audi). Remotetelematics systems are the most signi�icant systems targeted inlong-range wireless attacks, with companies, such as Ford (Sync),GM (OnStar) and Toyota (Safety Connect) supplying their vehicleswith data networks and cellular voices that provide numerousfeatures, such as (1) supporting safety (crash reporting); (2)convenience (hands-free data access such as driving directions orweather); (3) diagnostics (early alert of mechanical issues); and (4)anti-theft (remote track and disable).Cellular channels also have many features vulnerable to attack overconsiderable distances by using malware, in a mostly covert way,because of the wide coverage of the cellular data structure and itsrelatively high bandwidth. Moreover, they are two-way channels“supporting interactive control and data ex-�iltration” (Adam, 2011)and are individually addressable.
2.2	 DefenceIn the last decade, vehicle industries have been faced with criticalsecurity and privacy issues when they developed telematics systems.These issues relate to everyday applications that allow interfacingbetween vehicles and humans and vehicles and infrastructure. Thecurrent risks that face vehicle architectures are wireless securitybreak-ins and sensors, but future automotive architectures andsystems will increase these risks and, therefore, they need to bemitigated. Vehicle systems can be protected from (hackers) andinfectious viruses using malware that will, from the consumer’sperspective, have a direct impact on trustworthiness, the vehicle’ssafety dynamics and quality. Hacking occurs by taking full advantage ofthe telematics and wireless features that have become an importantpart of the vehicle, performing the function of an electrical systembrain in the vehicle. Therefore, this allows the module to become theopen input to the world. There are two potential solutions to defendagainst an attack [47].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	15 A high-integrity serial bus system with or without CAN
2.2.1	 Inter-Vehicle	Communication	SolutionThis solution combines cryptography and data security with the packetdata session through (TCP/IP) and the voice service. A number ofresearchers have proposed trying to secure V2V networks, but thesemethods are not suf�icient to ef�iciently provide safety and security[47]. Many attempts have addressed this technique. In [22], a newtechnique was proposed, namely Elliptic Curve cryptography andDigital Signature Algorithms (ECDSA), by using two parties (a remoteagent and network embedded system) to create a 128-bit symmetrickey and encrypting all transmitted data through the AdvanceEncryption Scheme (AES). An Identity-based Batch-Veri�ication (IBV)technique that creates a private key for use in [62]. It does not requirea certi�icate and it will verify each received signature within 300 ms.However, it relies on (the Dynamic Short-Range Communication(DSRC) protocols). The research of [44] investigated how much theMedium Access Control (MAC) protocol can acquire through bothquality of Service and security necessity for vehicle network safetyapplications and how to design an ef�icient MAC protocol to acquire thesafety-related vehicle networks.
2.2.2	 Intra-Vehicle	Communication	SolutionAs automotive industries began utilizing more and more electronics invehicles, huge wire harnesses, that were expensive and heavy, were theresult. Speci�ic wiring was then replaced by in-vehicle networks, whichreduced wiring weight, complexity and cost. CAN, a high integrity serial

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

bus system for intelligent networking devices, emerged as the standardin-vehicle network (see Fig. 15). It requires data transmission securitybetween the vehicle’s ECU via a CAN Bus which is a protocol for anopen and unsecured vehicle. Vehicle companies have no concernsabout the security of this type of communication because of the lowrisk of remotely accessing the CAN Bus. The only way of accessing theCAN Bus is by using an On-Board Diagnostic (OBD) connector that canconnect a diagnostic tool physically to the vehicle, so that problemanalysis can be performed by authorized technicians [59]. However,automotive companies are able to easily develop hardware interfacesand software application layers that allow malware to access the CANBus directly through the telematics ECU by using Wi-Fi, BT and cellularnetworks. Today, technology has increased security risks to the point ofallowing unauthorized systems and network access, audit ability andcompliance, customer data breaches, internal and external sabotageand the theft of intellectual property and con�idential businessinformation [51].
2.3	 Detect
2.3.1	 Challenges	of	Inter-Vehicle	CommunicationThere is a critical problem in securing vehicle to vehicle or vehicle toinfrastructure communication. This is because all communicationbetween vehicle and vehicle or vehicle and roadside units occurs usingwireless technology, therefore, if security is not enforced, theprobability of various attacks or viruses being injected into theunprotected system is high [47]. Inter-Vehicle Communication stillfaces challenges regarding the following issues: trust; real-timecommunication; quality of service; message dissemination; faultdetection; ef�icient physical layer transmission schemes; wirelessnetwork access; secure protocols; information security mechanisms;network scalability; and robustness [42]. Therefore, automotiveindustries need to create a secure, reliable and effective system toavoid these problems [47].
2.3.2	 Challenges	of	Intra-Vehicle	CommunicationInternal Vehicle Communication faces a range of issues [33]:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The use of different generic wireless sensor networks possessingunique characteristics that provide the space for optimization.Sensors are stationary so that the network topology does not changeover time.Sensors are typically connected to the ECU through one hop, whichyields a simple star-topology.There is no energy constraint for sensors having a wired connectionto the vehicle power system. The design and deployment of InternalVehicle wireless sensor networks are still challenging.The Internal Vehicle Communication environment is dif�icult due tosevere scattering in a very limited space and often with no line-of-sight. This is the major reason for the extensive effort tocharacterize the Internal Vehicle wireless channels.Data transmissions require low latency and high reliability to satisfythe stringent requirement of real-time Internal Vehicle controlsystems.Interference from neighbouring vehicles in a highly dense urbanscenario may not be negligible.Security is critical to protect the in-vehicle network and controlsystem from malicious attacks.
3	 Recent	Techniques	and	ChallengesElectrical wiring systems in vehicles have become increasinglysophisticated. They require more and more connectors, control units,relays and terminals to connect the ECU with other devices. Recently,due to developments in automotive technology, vehicles have becomeeven more connected through wireless networks and have becomemore dependent on complex electronic systems. Therefore, vehiclescan be attacked through wireless networks, smartphones, GPS andcameras [60]. Automotive industries, such as AVnu and OPENSIG, arguethat Ethernet represents the standard of next-generation automotivenetworks because ethernet is wide-ranging and includes bandwidthimprovements, improved implementation, �lexibility and cost savings.Currently, it is not convenient to replace all in-vehicle devices withEthernet-enabled replacements [43]. Thus, it is likely that Ethernet willfunction as a high-speed backbone network at �irst, coexisting with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

legacy technologies until such time it becomes cost-effective tomigrate to a full end-to-end Ethernet solution. As automotive networksbecome more complicated, the standardization of approachesbecomes more and more attractive to manufacturers. This ishappening at all levels of the automotive communication stack and isgaining momentum, with organizations such as IEEE RTPGE, OPENSIG,the AVnu alliance and AUTOSAR coordinating an industry-led pushtowards extensible and cost-effective standards that will drive thedevelopment of in-vehicle networks, as shown in Fig. 16. Research inthis �ield has been increased. For example, in [27], a method of V2Icybersecurity architecture, known CVGuard, can detect and preventcyberattacks on V2I applications. A Stop Sign Gap Assist (SSGA)application has shown that CVGuard was effective in mitigating theadverse safety effects created by a DDoS attack.

Fig.	16 Ethernet switch to connect vehicle’s devices [29, 31]The literature suggests that, as in-vehicle technology becomesmore and more complex, there will be a drive to standardizeapproaches across the industry, allowing manufacturers to focus onimproving the existing applications built on similar foundations. Thisprovides an excellent structure for the future expansion andimprovement of in-vehicle network systems and leads, ultimately, togreater driver comfort and, most importantly, safety [5, 55].
4	 Conclusion

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Developing security solutions compatible with the automotiveecosystem and smart cities is challenging and we believe it will requiregreater engagement between the computer security community andautomotive manufacturers. This chapter provides an opportunity tore�lect on the security and privacy risks and malware associated withmodern automobiles. We synthesized concrete, pragmaticrecommendations for future automotive security and identi�iedfundamental challenges. Defending against known vulnerabilities doesnot mean the non-existence of other vulnerabilities, thus, many of thespeci�ic vulnerabilities identi�ied will need to be addressed. In thefuture, it may be that the future of intelligent transportation systemsand smart cities falls within the multiple layers of the connectedenvironment including cybersecurity and forensics [6], arti�icialintelligence and machine learning in identi�ication traf�ic [11],biometric recognition [2, 4, 9], traf�ic congestion control-based In-Memory Analytics [7] and connected networks of vehicles. These willlead to the development of future intelligent transportation systemsand smart cities and vehicle industries that include the analysis ofinformation regarding malware from cyber sources, CSP networkmodelling and �low models in a connected environment.
References1. Saber A., F. Di Troia, and M. Stamp. 2020. Intrusion detection and can vehicle networks. Digital

Forensic	Investigation	of	Internet	of	Things	(IoT)	Devices.2. Abbas, Khamael. 2011. Eye recognition technique based on eigeneyes method. International
Conference	on	Software	and	Computer	Applications, vol. 9, 212–219. Singapore: IACSIT Press.3. Adam. Tire pressure, 2011. Retrieved from: http:// www. bergenimports. com/ tire-pressure.4. Khamael Abbas Al-Dulaimi., and Aiman Abdul Razzak Al-Saba’awi. 2011. Handprintrecognition technique based on image segmentation for recognize. International	Journal	of
Computer	Information	Systems 2 (6): 7–12.5. Al-Sabaawi, A., H.M. Ibrahim, M.A.B.M. Almalullah, J. Kaur, K. Al-Dulaimi, and A. Zwayen. 2019.Proposal speci�ications of building data centre for virtual globalnets. In 2019	IEEE	Asia-
Paci�ic	Conference	on	Computer	Science	and	Data	Engineering	(CSDE), 1–7.6. Al-Sabaawi, Aiman, and Ernest Foo. 2019. A comparison study of android mobile forensics forretrieving �iles system. International	Journal	of	Computer	Science	and	Security	(IJCSS) 13 (4):148.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.bergenimports.com/tire-pressure

7. Al-Sabaawi, Aiman Abdul-Razzak Fatehi. 2017. Traf�ic congestion control based in-memoryanalytics: Challenges and advantages. International	Journal	of	Computer	Applications 975:8887.8. M. Alazab, S. Venkatraman, and P. Watters. 2013. Information	Security	Governance:	The	Art	of
Detecting	Hidden	Malware. IGI Global.9. Ali, S.M., and Khamael A. AL-Phalahi. 2009. Face recognition technique based on eigenfacesmethod. In 3rd	Scienti�ic	Conference	of	the	College	of	Science-Baghdad	University-Iraq, 781–785.10. Atombo, C., C. Wu, H. Zhang, and A.A. Agbo. 2017. Drivers speed selection behaviors, intention,and perception towards the use of advanced vehicle safety. Advances	in	transportation
studies 42: 23–38.11. Azab, A., M. Alazab, and M. Aiash. 2016. Machine learning based botnet identi�ication traf�ic. In
2016	IEEE	Trustcom/BigDataSE/ISPA, 1788–1794.12. Azab, A., R. Layton, M. Alazab, and J. Oliver. 2014. Mining malware to detect variants. In 2014
Fifth	Cybercrime	and	Trustworthy	Computing	Conference, 44–53.13. Bécsi, Tamás, Szilárd Aradi, and Péter Gáspár. 2015. Security issues and vulnerabilities inconnected car systems. In 2015	International	Conference	on	Models	and	Technologies	for
Intelligent	Transportation	Systems	(MT-ITS), 477–482. IEEE.14. Bhaskar, Ashish, and Edward Chung. 2013. Fundamental understanding on the use ofbluetooth scanner as a complementary transport data. Transportation	Research	Part	C:
Emerging	Technologies 37: 42–72.[Crossref]15. Caceres, N., J.P. Wideberg, and F.G. Benitez. 2007. Deriving origin-destination data from amobile phone network. IET	Intelligent	Transport	Systems 1 (1): 15–26.[Crossref]16. Francesco Calabrese, Mi Diao, Giusy Di Lorenzo, Joseph Ferreira Jr, and Carlo Ratti. 2013.Understanding individual mobility patterns from urban sensing data: A mobile phone traceexample. Transportation	Research	Part	C:	Emerging	Technologies, 26:301–313.17. Robert N Charette. 2009. This car runs on code. IEEE	spectrum 46 (3):3.18. Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, StefanSavage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno, et al. 2011.Comprehensive experimental analyses of automotive attack surfaces. In USENIX	Security
Symposium, vol. 4, 447–462. San Francisco.19. Simranpreet Singh Chhatwal., and Manmohan Sharma. 2015. Detection of impersonationattack in vanets using buck �ilter and vanet content fragile watermarking (vcfw). In 2015
International	Conference	on	Computer	Communication	and	Informatics	(ICCCI), 1–5. IEEE.20. Danalet, Antonin, Bilal Farooq, and Michel Bierlaire. 2014. A bayesian approach to detectpedestrian destination-sequences from wi�i signatures. Transportation	Research	Part	C:
Emerging	Technologies 44: 146–170.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1016/j.trc.2013.09.013
https://doi.org/10.1049/iet-its:20060020

[Crossref]21. Dedes, G., S. Wolfe, D. Guenther, Byungkyu Brian Park, J.J. So, K. Mouskos, D. Grejner-Brzezinska, C. Toth, X. Wang, and G. Heydinger. 2011. A simulation design of an integratedgnss/inu, vehicle dynamics, and microscopic traf�ic �low simulator for automotive safety.
Advances	in	Transportation	Studies.22. Duraisamy, Roshan, Zoran Salcic, Maurizio Adriano Strangio, and Miguel Morales-Sandoval.2007. An elliptic curve key establishment protocol-on-chip. Supporting symmetric 128-bit aesin networked embedded systems. EURASIP	Journal	on	Embedded	Systems 2007: 1–9.23. Fysarakis, Konstantinos, Ioannis Askoxylakis, Vasilios Katos, Sotiris Ioannidis, and LouisMarinos. 2017. Security concerns in co-operative intelligent transportation systems.24. Greenberg, Andy. 2015. Hackers remotely kill a jeep on the highway–with me in it. Wired 7:21.25. Harborfreigh. OBD II and can code reader with multilingual menu, 2016. Retrieved from:http:// www. harborfreight. com/ can-obdii-code-reader-with-multilingual-menu98568. html.26. Hubaux, Jean-Pierre, Srdjan Capkun, and Jun Luo. 2004. The security and privacy of smartvehicles. IEEE	Security	and	Privacy 2 (3): 49–55.[Crossref]27. Islam, Mhafuzul, Mashrur Chowdhury, Hongda Li, and Hu Hongxin. 2018. Cybersecurityattacks in vehicle-to-infrastructure applications and their prevention. Transportation
Research	Record 2672 (19): 66–78.[Crossref]28. Henrik Johansson, Karl, Martin Törngren, and Lars Nielsen. 2005. Vehicle applications ofcontroller area network. In Handbook	of	Networked	and	Embedded	Control	Systems, 741–765. Springer.29. Koopman. S. 2015. Automotive advanced driver assistance systems ADAS market will reach\$ 18.2bn in 2014. According to a New Study on ASDReports, 2015. https:// www. asdreports. com/ news-5198/ automotive-advanced-driver-assistance-systems-adas-market-will-reach-182bn-2014-according-new-study-asdreports.30. Koscher, Karl, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, StephenCheckoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, et al. 2010.Experimental security analysis of a modern automobile. In 2010	IEEE	Symposium	on	Security
and	Privacy, 447–462. IEEE.31. Reger, L. 2015. Advances	in	automotive	at	ces 2015. Retrieved fromhttps:// blog. nxp. com/ automotive/ advances-in-automotive-at-ces-2015.32. Lesser, Victor, Charles L Ortiz Jr, and Milind Tambe. 2012. Distributed	Sensor	Networks:	A
Multiagent	Perspective, vol. 9. Springer Science & Business Media.33. Lu, Ning, Nan Cheng, Ning Zhang, Xuemin Shen, and Jon W Mark. 2014. Connected vehicles:Solutions and challenges. IEEE	Internet	of	Things	Journal 1 (4):289–299.34.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1016/j.trc.2014.03.015
http://www.harborfreight.com/can-obdii-code-reader-with-multilingual-menu98568.html
https://doi.org/10.1109/MSP.2004.26
https://doi.org/10.1177/0361198118799012
https://www.asdreports.com/news-5198/automotive-advanced-driver-assistance-systems-adas-market-will-reach-182bn-2014-according-new-study-asdreports
https://blog.nxp.com/automotive/advances-in-automotive-at-ces-2015

Maglaras, Leandros A, Ali H Al-Bayatti, Ying He, Isabel Wagner, and Helge Janicke. Socialinternet of vehicles for smart cities. Journal	of	Sensor	and	Actuator	Networks 5 (1):3.35. Maglaras, Leandros A, Pavlos Basaras, and Dimitrios Katsaros. 2013. Exploiting vehicularcommunications for reducing co2 emissions in urban environments. In 2013	International
Conference	on	Connected	Vehicles	and	Expo	(ICCVE) 32–37. IEEE.36. Malla, Adil Mudasir, and Ravi Kant Sahu. 2013. Security attacks with an effective solution fordos attacks in vanet. International	Journal	of	Computer	Applications 66 (22).37. Maurizio. Hacking car security system and remote keyless entry, 2015. Retrieved from:http:// dev. emcelettronica. com/ hacking-car-security-system-and-remote-keyentry-rke.38. Menouar, Hamid, Ismail Guvenc, Kemal Akkaya, A. Selcuk Uluagac, Abdullah Kadri, and AdemTuncer. 2017. Uav-enabled intelligent transportation systems for the smart city: Applicationsand challenges. IEEE	Communications	Magazine 55 (3):22–28.39. Mokhtar, Bassem, and Mohamed Azab. 2015. Survey on security issues in vehicular ad hocnetworks. Alexandria	Engineering	Journal 54 (4): 1115–1126.[Crossref]40. Nolte, Thomas, Hans Hansson, and Lucia Lo Bello. 2005. Automotive communications-past,current and future. In 2005	IEEE	Conference	on	Emerging	Technologies	and	Factory
Automation, vol. 1, 8. IEEE.41. Paganini, P. 2013. Car hacking is today possible due the massive introduction of technology inour vehicles, 2013. Retrieved from: https:// www. cyberdefensemaga zine. com/ car-hacking-is-today-possible-due-the-massive-introduction-of-technology-in-our-vehicles.42. Paruchuri, Vineetha. 2011. Inter-vehicular communications: Security and reliability issues. In
ICTC	2011, 737–741. IEEE.43. Porter, Donovan. 2018. 100base-t1	ethernet:	the	evolution	of	automotive	networking. TexasInstruments: Techn. Ber.44. Qian, Yi, Kejie Lu, and Nader Moayeri. 2008. Performance evaluation of a secure mac protocolfor vehicular networks. In MILCOM	2008-2008	IEEE	Military	Communications	Conference, 1–6. IEEE.45. Raya, Maxim, and Jean-Pierre Hubaux. 2005. Security aspects of inter-vehiclecommunications. In 5th	Swiss	Transport	Research	Conference	(STRC), number CONF.46. Rizvi, Syed, Jonathan Willet, Donte Perino, Seth Marasco, and Chandler Condo. 2017. A threatto vehicular cyber security and the urgency for correction. Procedia	Computer	Science 114:100–105.[Crossref]47. Saed, Mustafa, Scott Bone, and John Robb. 2014. Security concepts and issues in intra-intervehicle communication network. In Proceedings	of	the	International	Conference	on	Security
and	Management	(SAM), 1. The Steering Committee of The World Congress in ComputerScience, Computer.48.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://dev.emcelettronica.com/hacking-car-security-system-and-remote-keyentry-rke
https://doi.org/10.1016/j.aej.2015.07.011
https://www.cyberdefensemagazine.com/car-hacking-is-today-possible-due-the-massive-introduction-of-technology-in-our-vehicles
https://doi.org/10.1016/j.procs.2017.09.021

Sagstetter, Florian, Martin Lukasiewycz, Sebastian Steinhorst, Marko Wolf, Alexandre Bouard,William R Harris, Somesh Jha, Thomas Peyrin, Axel Poschmann, and Samarjit Chakraborty.2013. Security challenges in automotive hardware/software architecture design. In 2013
Design,	Automation	and	Test	in	Europe	Conference	and	Exhibition	(DATE), 458–463. IEEE.49. Samuel. G. 2015. Jeep owners urged to update their cars after hackers take remote control.https:// www. theguardian. com/ technology/ 2015/ jul/ 21/ jeep-owners-urged-update-car-software-hackers-remote-control.50. Sparwasser, Nils, Markus Stöbe, Hartmut Friedl, Thomas Krauß, and Robert Meisner. 2007.Simworld–automatic generation of realistic landscape models for real time simulationenvironments–a remote sensing and gis-data based processing chain. Advances	in
Transportation	Studies 21.51. Stallings, W. 2017. Cryptography	and	network	security:	principles	and	practice. Upper SaddleRiver: Pearson.52. Sumalee, Agachai, and Hung Wai Ho. 2018. Smarter and more connected: Future intelligenttransportation system. IATSS	Research 42 (2): 67–71.53. Ahmed Sumra, Irshad, Halabi Bin Hasbullah, Iftikhar Ahmad, Daniyal M Alghazzawi, et al.2013. Classi�ication of attacks in vehicular ad hoc network (vanet). International	Information
Institute	(Tokyo).	Information 16 (5):2995.54. Sun, Dihua, Hong Luo, Fu Liping, Weining Liu, Xiaoyong Liao, and Min Zhao. 2007. Predictingbus arrival time on the basis of global positioning system data. Transportation	Research
Record 2034 (1): 62–72.[Crossref]55. Tuohy, Shane, Martin Glavin, Ciarán Hughes, Edward Jones, Mohan Trivedi, and LiamKilmartin. 2014. Intra-vehicle networks: A review. IEEE	Transactions	on	Intelligent
Transportation	Systems 16 (2): 534–545.[Crossref]56. Vanajakshi, Lelitha, Shankar C Subramanian, and R Sivanandan. 2009. Travel time predictionunder heterogeneous traf�ic conditions using global positioning system data from buses. IET
Intelligent	Transport	Systems 3 (1):1–9.57. Wolf, Marko, André Weimerskirch, and Thomas Wollinger. 2007. State of the art: Embeddingsecurity in vehicles. EURASIP	Journal	on	Embedded	Systems 1–16: 2007.58. Woo, Samuel, Hyo Jin Jo, and Dong Hoon Lee. 2014. A practical wireless attack on theconnected car and security protocol for in-vehicle can. IEEE	Transactions	on	Intelligent
Transportation	Systems 16 (2):993–1006.59. Yadav, Aastha, Gaurav Bose, Radhika Bhange, Karan Kapoor, NCSN Iyengar, and Ronnie DCaytiles. 2016. Security, vulnerability and protection of vehicular on-board diagnostics.
International	Journal	of	Security	and	Its	Applications 10 (4):405–422.60. Yang, Teng, Frank Wolff, and Chris Papachristou. 2018. Connected car networking. In NAECON
2018-IEEE	National	Aerospace	and	Electronics	Conference, 60–64. IEEE.61.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.theguardian.com/technology/2015/jul/21/jeep-owners-urged-update-car-software-hackers-remote-control
https://doi.org/10.3141/2034-08
https://doi.org/10.1109/TITS.2014.2320605

Yoshida, J. 2013. How hackers can take control over your car. EE Times. https:// www. eetimes. com/ document. asp? doc_ id= 1318838& page_ number= 2.62. Zhang, Chenxi, Rongxing Lu, Xiaodong Lin, P-H Ho, and Xuemin Shen. 2008. An ef�icientidentity-based batch veri�ication scheme for vehicular sensor networks. In IEEE	INFOCOM
2008-The	27th	Conference	on	Computer	Communications , 246–250. IEEE.63. Zhang, Yingchen, Penn Markham, Tao Xia, Lang Chen, Yanzhu Ye, Wu Zhongyu, Zhiyong Yuan,Lei Wang, Jason Bank, Jon Burgett, et al. 2010. Wide-area frequency monitoring network(fnet) architecture and applications. IEEE	Transactions	on	Smart	Grid 1 (2): 159–167.[Crossref]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.eetimes.com/document.asp?doc_id=1318838&page_number=2
https://doi.org/10.1109/TSG.2010.2050345

(1)(2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_5
A	Survey	of	Intelligent	Techniques	for
Android	Malware	DetectionRajesh Kumars1 , Mamoun Alazab2 and WenYong Wang1 School of Computer Science and Engineering, University ofElectronic Science and Technology of China, Chengdu, ChinaCollege of Engineering, IT and Environment at Charles DarwinUniversity, Darwin, Australia
Rajesh	Kumars	(Corresponding	author)
Email:	rajakumarlohano@gmail.com
Mamoun	Alazab
Email:	alazab.m@ieee.org
WenYong	Wang
Email:	wangwy@uestc.edu.cn

AbstractThe revolution of smart devices such as smartphones, smart washingmachines, smart cars is increasing every year, as these devices areprovided connected with the network and provide the onlinefunctionality and services available with the lowest cost. In thiscontext, the Android operating system (OS) is very popular due to itsopenness. It has major stakeholder in the smart devices but has alsobecome an attractive target for cyber-criminals. This chapter presentsa systematic and detailed survey of the malware detectionmechanisms using deep learning and machine learning techniques.Also, it classi�ies the Android malware detection techniques in threemain categories including static, dynamic, and hybrid analysis. The

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_5
mailto:rajakumarlohano@gmail.com
mailto:alazab.m@ieee.org
mailto:wangwy@uestc.edu.cn

main contribution of this chapter are (1) It brie�ly describing thebackground and feature extraction of the static, dynamic, and hybridanalysis. (2) This chapter discusses the basic methodology andframeworks which classify, cluster, or extract Android malwarefeatures. (3) Exploring the dataset, harmful features, and classi�icationresults. (4) Discussing the current challenges and issues. Moreover, itdiscusses the most important factors, data-mining algorithms, andprocessed frameworks.
1	 IntroductionWith the growth of smartphone and the services they provide such asonline shopping, health monitoring system, money transaction, andmany more. The android has largest global market in the world. Thefrequent use of mobile devices with those facilities encourage peopleto store and share their personal and critical information throughusing mobile devices, and the wide use of devices with Android systemmakes Android-based mobile devices a target for malicious applicationdevelopers [3, 4, 6, 7, 38, 41, 42, 70–72]. Therefore, the maliciousactivity can affect the working of many devices connected in a network.Malware is a program or a set of programs that can cause harm to�inancial forgery, identity, sensitive information or data, and resources.These malicious applications may leak the user’s private informationwithout their knowledge or consent.

Personal	data	leakage: People are not concerned with the securityof data or personal information in mobile devices while they arenormally very concerned for the same in PC environments [5, 6, 10, 11,35, 40, 51]. Some apps steal personal information and at the same timedemand payments. Such Trojan apps have been downloaded 9,252times and 211 affected users paid a total of $250,000 to the malwaredevelopers [50]. Malware developers successfully stole personal datasuch as contacts, emails, SMS, and device information which can beused in identity theft and spamming [50].
Social:	GPS location, call log, and contact lists can be captured bymalware [50]. The contact list and location are user-sensitiveinformation. This information can be captured by malware and can do

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

harm by leaking social identity that can be used in various ways tothreaten the security of a user’s social image.
Business: Business organizations have their own apps to run theirbusiness. Malware can capture user information or business datawhich will put the business organization at a risk. The business ownerwill be at a risk of �inancial loss as well as reputation
Financial	loss: The motive of malware development has changedand now focuses on �inancial gain [23]. Capital expenses related tomalware average $ 6–7bn dollars in a �iscal year [23]. “ Zeus in theMobile” is a Trojan that captures the authentication code of the user ina banking application, which may cause �inancial losses to the user. It isalso expensive to remove, where a security �irm charged $21/s for the�irst detection in 2010 [51]. This type of malware can cause user�inancial losses as well as large �inancial losses to a business owner indetection fees. In some cases, a user may have to pay large phone billsfor premium rate services because of the malicious activity of an app[50].Every day has various new applications in the market. It is assessedthat there will be roughly 6.1 billion smartphone clients by 2020 [55,60]. Google, the manufacturers of the Free Phone Alliance, and theopen-source community of Android developers have made greatefforts to enhance security for Android. However, a major concerntends to be the proliferation and development of emerging securitythreats. Hence, in this context, we discuss the static, dynamic, andhybrid analysis detection Android malware features extractiontechniques. After that, the most popular framework to detect malwareis discussed. Then, the most popular and basic algorithm andtechniques are discussed which is mostly an analysis of malware.Finally, some conclusions about Android malware detectiontechniques. Additionally, this chapter identi�ies many elements ofsecurity threats involved in using mobile phones and applications, andthe user will feel con�ident in using these applications. The followingare the main contributions of this survey:1. Providing a summary of the current static, dynamic, and hybridanalysis related to Android malware detection using the machineand deep learning.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2. Presenting a current approach to detect Android malware. 3. Exploring the important features extraction methods and results ofthe machine learning and deep learning approach. 4. Discussing the challenges and open-source dataset of the Androidmalware detection.
The rest of the paper was structured as follows: Sect. 2 overviewsthe static, dynamic, and hybrid analysis approaches and discusses thefeatures extraction methods. Section 3 discusses the currentmethodologies for the classi�ication, clustering , and data mining forthe feature extraction. Section 4 discuss the dataset and results of thecurrent machine learning techniques. Section 6 discusses thechallenges. Finally, Sect. 7 concludes the chapter.

2	 Static,	Dynamic,	and	Hybrid	Analysis	of
Android	Malware	BackgroundIn this chapter, we discuss the background of Android malwaredetection techniques. There are three basic techniques to detectAndroid malware. (i) Static analysis, (ii) Dynamic analysis, iii) Hybridanalysis. Firstly, we discuss the static analysis, which consists of twomethods (i) Permission-based analysis (ii) API Call based analysis.Secondly, we elaborate on the dynamic analysis that is used to extractthe training characteristics of the model. Also, we consider the hybridanalysis that combines static and dynamic analysis. Finally, wecompare the static, dynamic, and hybrid analysis.
2.1	 Static	AnalysisThe static analysis method refers to analyzing source code �iles orexecutable �iles without running applications. There are severalfeatures such as API call and permissions to analyze the static analysis.The feature extraction methods are shown in Fig. 1 (Table 1).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 Static feature extraction of methodFurthermore, some static features detection methods are shown inTable 2. The k-nearest neighbors machine learning classi�ier achievebetter performance and accuracy in the detection of the malware.However, it takes more processing time with a large amount of data.That’s why most of the authors used Support Vector Machine andRandom Forest classi�iers. Therefore, we use and enhance the RandomForest algorithm for Android malware detection.
Table	1 Overview of feature sets of Android APK decompiled �iles
Feature	setsManifest S1 Hardware componentsS2 Requested permissionsS3 Application components

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Feature	setsS4 Filtered intentsDexcode S5 Restricted API callsS6 Used permissionS7 Suspicious API callsS8 Network addresses
Table	2 Static features detection methods
Ref Features Accuracy Machine

learning
models

Contribution Limitation

 [9] Permission 91.75% RandomForest Permission-basedapproach using KNNclustering Risky permissionnot founded
 [29] Permission 81% C4.5, SVM The frameworkquick identify themaliciouspermission

It uses the limitednumber ofmalware. Itrequires theevidence [58] Permission 88.20% HMNB Probabilisticgenerative modelsfor ranking thepermission. Itidenti�ies rangingfrom the simpleNaive Bayes,hierarchical mixturemodels

Susceptible toadversarial attack

 [17] Permission – AHP a global threat scorederiving set ofpermissionsrequired by the app
Only depends onpermissions withknown limitations—susceptible toattack [47] Permission 98.6 J48 Build a frameworkfor based on SIGPID.It extracts top 22permissions.
Susceptible toimpersonate attack

 [39] Permission 92.79% RandomForest Design a modelwhich score themaliciouspermission
Susceptible toadversarial attack

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Ref Features Accuracy Machine
learning
models

Contribution Limitation

 [57] Permission 94.90% RandomForest It uses theclassi�icationalgorithm to detectthe malware.
Susceptible toadversarial attack

 [13] Permission, API calls 92.36% RandomForest Susceptible toadversarial attack [78] Permission, API calls,intent 97.87% k-nearestneighbors Design a DroidMatFramework which isbased on manifestand API call tracing
Susceptible toadversarial attack

 [1] API call 99% k-nearestneighbors It mitigates Androidmalware installationthrough providinglightweightclassi�iers
Susceptible toimpersonate attack

 [16] API call 93.04% Signaturematching It measures thesimilarity ofmalware Susceptible toimpersonate attack
 [15] API call 96.69% SVM The paper usesmalicious-preferredfeatures andnormal-preferredfeatures for thedetection ofmalware

Susceptible toimpersonate attack

 [79] ICC related features 97.40% SVM Design aICCDetectorframework whichclassify the malwarebased on androidintent �ilters
Susceptible toimpersonate attack

 [82] Permission, command,API calls 98.60% Parallelclassi�ier This paper combinethe machinelearning classi�iersto classify themalware.
Susceptible toimpersonate attack

 [27] Requested permissions-used permissionssensitive API calls-Actions-appcomponents
F1 97.3Prec. 98.2Recall98.4

DBN DroidDeep fordetection ofmalware using deepbelief network
Susceptible toadversarial attack

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Ref Features Accuracy Machine
learning
models

Contribution Limitation

 [75] RiskyPermissionsdangerousAPI calls F1-94.5Recall-94.5Prec-93.09
DBN ProposedDroidDeepLearnercombines riskypermission anddangerous API callsto build a DBNclassi�ication model.

Susceptible toadversarial attack

 [28] API call blocks ACC96.66% DBN DroidDelverDetection system isused to identifymalware using anAPI call block.
Susceptible toadversarial attack

 [22] Requested permission Acc 93% CNN-AlexNet Proposed adetection systemthat converts therequestedpermissions into animage format andthen uses CNN forclassi�ication

Only depends onpermissions withknown limitations—susceptible toattack
 [88] 323 features F1 95.05 DBN An identi�icationsystem designed byFlowDroid uses data�low analysis toidentify malware.

Susceptible toadversarial attack
 [52] Learn to detectsequences of opcodethat indicate malware ACC 98Prec. 99Recall 95F1 97

CNN Developed adetection systemthat uses automaticfunctions to learnfrom raw data andto treat thedisassembled codeas text

Although trainedon a large dataset,performancedropped whentested on a newdataset—Susceptible
 [54] API call sequence Acc 99.4Prec. 100Recall98.3 Acc97.7

CNN The proposedmethod based onAPI call sequencethat can use themultiple layers ofCNN.
Susceptible toimpersonate attack

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Ref Features Accuracy Machine
learning
models

Contribution Limitation

 [27] Extract features fromthe transferred images CNN Proposed a RGBscheme based oncolorrepresentation.
Results showedthat human expertsare still needed inthe collection andupdating of long-term samples.Susceptible to anattack [46] Dangerous API calls-risky permissions Recall94.28 DBN DBN was used tocreate an automaticmalware classi�ier Susceptible toadversarial attack

 [86] API calls Permissions-Intent �ilters Prec 96.6Recall98.3 ACC97.4 F197.4
CNN Presented systemdetection ofmalwareDeepClassifyDroidAndroid based onCNN

Susceptible toimpersonate attack
 [65] API calls Acc 95.7 DBN Suggested approachto image textureanalysis formalware detection

Risky permissionnot founded
 [74] Permissions requestedpermissions �ilteredintents restricted APIcalls-hardwarefeatures-code relatedfeatures suspicious APIcalls

Acc 98.8Recall99.91 F199.82
CNN A hybrid malwaredetection model hasbeen developedusing CNN and DAE

It uses the limitednumber ofmalware. Itrequires theevidence
 [34] API sequence calls F1 96.29Prec96.29Recall96.29

CNN MalDozer usednatural languageprocessingtechnique to detectAndroid malwarethat can identify themalware familyattributes.

Susceptible toadversarial attack

 [80] The semantic structureof Android bytecode Acc 97.74 CNNLSTM DeepR�iner wasproposed to identifythe malware. Thestructure of methoduse the LSTM forsemantic byte code
Only depends onpermissions withknown limitations—susceptible toattack

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Ref Features Accuracy Machine
learning
models

Contribution Limitation

 [44] Permissions API Calls Prec97.15Recall94.18 F195.64
DNN Implemented DNN—based malwaredetection engine Susceptible toimpersonate attack

 [26] Code analysis Acc 95.4 CNN The proposedmethod foranalyzing a smallportion of raw APKusing 1-D CNN
Susceptible toadversarial attack

2.1.1	 Permission-Based	AnalysisPermission-based access control mechanism is a major component ofthe Android platform security mechanism. On the Android platform,applications are separated from applications, and applications andsystems are isolated. When applications perform certain operations oraccess certain data, they must apply for corresponding permissions.This means that permissions de�ined in the manifest �ile can indicatethe behavior of the application. Developers can declare thepermissions that need to be applied in the<uses-permission> tagor<permission> tag. The permissions in the<uses-permission> tag areprede�ined by android, and the permissions in the<permission> tag arecustomized by the developer and belong to third-party permissions.According to Android’s of�icial documentation, the level of protectionof permissions implies the potential risks involved and points out theveri�ication process that should be followed when the system decideswhether to grant application permissions. The four protection levelsare described as follows: Normal de�ines the low-risk permissions toaccess the system or other applications, which does not require usercon�irmation and is automatically authorized. Dangerous can accessuser data or control the device in some form, such as READ_SMS(allowing applications to read SMS). When granting such permissions,the system will pop up a con�irmation dialog box and display thepermission information requested by the application. The user canchoose to agree or cancel the installation. Signature is the most severepermission level and requires an encryption key. It only grants

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

applications that use the same certi�icate as the declared permissions.Therefore Signature usually only appears in applications that performdevice management tasks, such as ACCESS_ALL_- EXTERNAL_STORAGE(access to external storage). System can be granted either partialapplications of the system image or applications with the samesignature key as the declaration permission.
2.1.2	 Suspicious	API	CallsThe second solution is a static analysis of the source code of the app.Malicious codes usually use a combination of services, methods andAPI calls that is not common for non-malicious applications [12]. Todifferentiate malicious and non-malicious applications, Machinelearning algorithms can learn common malware services such ascombinations of APIs and system calls. Figure 2 shows the some ofsuspicious API calls, which are mostly used by malware applications.Figure 3 shows the extracted features from the APK �ile that containsthe classes.dex �ile.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Suspicious API calls

Fig.	3 Work�low of android �ile decompiling

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 Dynamic feature extraction and detection
2.2	 Dynamic	AnalysisThe dynamic analysis method is not affected by code transformationtechnologies, such as bytecode encryption, re�lection, and native codeexecution, and can deeply analyze the malicious behaviors of theapplication. Therefore, it makes sense to collect dynamic features,which can effectively compensate for the limitations of static analysis.Figure 4 shows the feature extraction method and detection techniqueof the dynamic analysis. Many machine learning algorithm used fordynamic analysis, for instance, Logistic regression (LR), K-meansClustering, SVM, KNN_E,KNN, Bayesian network (BN), and Naı̈ve Bayes.Table 3 illustrates the accuracy level, dynamic features, and detectionmethods. For example, some malware may obtain malicious �ilesthrough the network or other means during the running process, andthen write them into the system �iles to perform malicious behaviors.These means can escape static detection and affect the accuracy ofdetection. DroidBox is an Android application sandbox that extends

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

TaintDroid. It can perform dynamic strain analysis at the applicationframework level, and monitor various operations of the application,such as information leakage, network, �ile input / output, andencryption operations. DroidBox provides two scripts, startemu.sh anddroidbox.sh. The former is used to start a simulator dedicated to thedynamic analysis of Android applications, and the latter is used toperform speci�ic dynamic analysis. We obtain the dynamic operationlog of each application by installing and running each application inDroidBox for 30s, and extract features from them (Table 4).
Table	3 Dynamic features detection methods
Ref Features Accuracy Machine	learning	models [32] System call 91.75% Signature Matching [12] System call 81% K-Means [24] System call 88.2% Frequency [25] System call – Pattern matching [77] API call 97.6 KNN_M [29] Native size 99.9% RF, SVM
Table	4 Suspicious API call
Name Used	in	malicious Used	in	benignPTRACE Most often utilized [24, 49] Utilized in benign applications [24]SIGPROCMASK Most often utilized [24, 49] Utilized in benign applications [24]CLOCK Most often utilized [49, 68] –CLOCK-GETTIME Utilized in malicious applications[24] Utilized in benign applications [24]
RECV Most often utilized [24, 68] Not Utilized [24]RECVFROM Most often utilized [25, 49, 68] Not Utilized [24]WRITE Most often utilized [25, 49, 68] Utilized in benign applications [24]WRITEV Most often utilized [24, 68] Utilized in benign applications [24]WAIT4 Most often utilized [49] SEND Most often utilized [68] SENDTO Most often utilized [49, 68] MPROJECT Most often utilized [25, 49, 68] Utilized in benign applications [24]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Name Used	in	malicious Used	in	benignFUTEX Most often utilized [24, 49] Utilized in benign applications [24]IOCTL Most often utilized [24, 49] Utilized in benign applications [24]FCNTL64 Most often utilized [24] Utilized in benign applications [24]GETPID Most often utilized [24, 49] Utilized in benign applications [24]GETUID32 Most often utilized [24, 49] Utilized in benign applications [24]EPOLL Most often utilized [24] Utilized in benign applications [24]EPOLL-CTL Most often utilized [24] Utilized in benign applications [24]EPOLL-WAIT Most often utilized [25, 68] Utilized in benign applications [24]CACHEFLUS – –READ Most often utilized [49, 68] Utilized in benign applications [24]READV Most often utilized [68] –STAT64 – –GETTIMEEOFDAY utilized in malicious applications[24] Utilized in benign applications [24]
ACCESS Most often utilized [25, 68] Utilized in benign applications [24]PREAD – –UMASK Most often utilized [24] Not Utilized [24]CLOSE utilized in malicious applications[24] Utilized in benign applications [24]
OPEN Most often utilized [24, 68] Utilized in benign applications [24]MMAP2 utilized in malicious applications[24] Utilized in benign applications [24]
MUNMAP – –MADVISE utilized in malicious applications[24] Utilized in benign applications [24]
FCHOWN32 Most often utilized [24] Not Utilized[24]PRCTL Not Utilized [24] Utilized in benign applications [24]BRK Most often utilized [24] Not Utilized[24]LSEEK Utilized in malicious applications[24] Utilized in benign applications [24]
DUP Utilized in malicious applications[24] Utilized in benign applications [24]
GETPRIORTY Utilized in malicious applications[24] Utilized in benign applications [24]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Name Used	in	malicious Used	in	benignPIPE CLONE Utilized in malicious applications[24] Utilized in benign applications [24]
FSYNC Most often utilized in [24] Not Utilized[24]GETDENTS64 Utilized in malicious applications[24] Utilized in benign applications [24]
GETTID Utilized in malicious applications[24] Utilized in benign applications [24]
LSTA64 Utilized in malicious applications[24] Utilized in benign applications [24]
FORK – –NANOSLEEP Not Utilized [24] Only Utilized in benign applications[24]RECVMSG – –CHMOD Utilized in malicious applications[24] Utilized in benign applications [24]
SENDMSG Most widely Utilized[49] –FLOCK Not Utilized [24] Only Utilized in benign applications[24]MKDIR Most often utilized [24] Not Utilized [24]CONNECT Most often utilized [24] Not Utilized [24]POLL Not Utilized [24] Only Utilized in benign applications[24]RENAME Most widely Utilized [68] Not Utilized [24]SETPRIORITY – –SETSOCKOPT Most often utilized [24] Not utilized [24]SOCKET Most often utilized [24] Not utilized [24]UNLINK – –

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Dynamic feature extraction and detection
Table	5 Hybrid analysis methods
Ref Methodology Tools Achements Limitations [69] Decompress and decompile the Androidapp using the tool Baksmali. Scansdecompiled samli �iles to extract staticpatterns. Generate static behavior vector.Installs and executes the applications onemulator Runs monkey to give user inputsHijacks system calls using LKM logs thesystem calls

BaksmaliMonkeytoolEmulator
can detectthemalicioussystem callsat kernelspace

Insuf�icient testresults formalware detectionNo comparison ofthe system isprovided againstany other malwaredetectiontechniques. Notany classi�icationresults areavailable Increasein malwaredetection rate isnot shownIncompleteevaluation system

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Ref Methodology Tools Achements Limitations [87] Detects known malware samples by�iltering and foot printing based onpermission. Detects zero-day malwarethrough heuristic �iltering and dynamicmonitoring of execution
– Successfullydetects 211maliciousapps among204,040apps.+Detect twozero-daymalwareDroidDream lightandPlanktonAchieves86.1accuracy

This study islimited to twoheuristicsPermission-based�iltering onlyconsidered theessentialpermission of 10malware families

 [2] Pre-process the App through API Monitorto obtain static features such as API calls.Install the app on AVD. Uses APE_BOX,combination of DroidBox and APE, tocollect the run-time activities andsimulation of GUI-based event. Combinesthe static and dynamic features and appliesSVM classi�ication

APIMonitorAPEDroidBoxLIBSVM
Achieves86.1%accuracy Time consumingdue to use ofemulators Highresourceconsumption in logcollection.Malware can easilyevade anti-emulatortechniques [37] Extract the static features from manifest�ile and disassembled dex �ile using AaptExtracts dynamic features usingCuckooDroid Maps the features intovector space and performs vectorselection. Uses LinearSVC classi�ier inMisuse detection to classify theapplication, if app is malware usessignature-based detection to identify themalware. Applies anomaly detection if Appis not classi�ied by misuse detection anduses signature-based detection to identifythe family of malware

AndroidAssetPackagingTool
Detectsknownmalwaresand theirvariantswith98.79% truepositiverate.Detects thezero-daymalwaresreal positiverate with98.76percentaccuracy

Comparison ofproposed schemewith other well-known malwaredetection schemes,e.g., RiskRanker,Drebin, Kirin, etc.is not provided

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Ref Methodology Tools Achements Limitations [56] Parameters related to permissions, such asbroadcast receivers, intents and services,are decompiled from the manifest �ile inthe static analysis phase using Aapt. In thebehavior analysis phase, the Androidemulator app is executed and the functionsrelated to user interactions, java based,and native function calls are extracted.Performs feature on the basis ofinformation gain and records them in CSV�ile. Rule generation module uses CSV �ileto create rules and maps the permissionagainst the function calls for classi�ication

AndroidAssetPackagingTool
Achieves96.4%detectionrate

High time forscanning. Highelectricityconsumption. Highconsumption ofresources/storage

 [84] Extracts sensitive API calls andpermissions as static features. Logsdynamic action for dynamic analysisApplies deep learning model forclassi�ication
7ZIP, XML-printer2Tinyxml,DropidBOXBaksmali

Detects 96.7percentaccuratemalware
Unrealisticmalware fordynamic analysisthat does notdisplay maliciousbehaviorthroughout themonitoringinterval can evadethe detectionsystem [64] Extracts PSI from binary code �iles asstatic features sort features according tothe frequency of occurrence in each �ile.Selects feature with occurrence frequencyabove certain threshold value and createsstatic feature vector. For dynamic featureuse cuckoo malware analyzer. For each�ile, create API call grams and analyze APIcall sequences based on the n-grammethod. Selects grams of API call above acertain threshold value and creates adynamic function vector. Concatenatesboth feature vector for each �ile and inputthem to Machine learning classi�iers

WEKA Classi�ies98.7percentaccurateunknownapplications
Comparison ofproposed schemewith other well-known malwaredetection schemes,e.g., RiskRanker,Derbin,DroidRanger, etc.is not provided

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Ref Methodology Tools Achements Limitations [48] Decompiles applications using Akptool andanalyze the decompiled results.Automatically switches to static analysis ifapp is correctly decompiled. Performsextraction of static features, permissionand API calls, from manifest and smali�iles. Inputs the feature vectors to machinelearning classi�iers, SVM, KNN, and NaiveBayes. If application does not correctlydecompile then it performs dynamicanalysis by operating the app with monkeytool and monitoring the app’s actions usingstrace. Generates the feature vector oftraced system call logs and applies themachine learning classi�ier on the featurevector for classi�ication

APK toolStraceMonkeytool
Achieves99%accuracy asa result ofstaticanalysis and90%accuracy asa result ofdynamicanalysis

Only static ordynamic analysiscan be performedon the application,so that thedynamicallylabeled datacannot be detectedin an easy way forstatic analysisOnly the executedcode is analyzedwhen dynamicanalysis is carriedout. The non-executed coderemainsundetected [62] Extracts features at four different levels:user level, application level, kernel level,and package level user activities at userlevel and market information and riskinessof application at package level Generatesfeature vectors consisting of 14 featuresand input the vector to KNN classi�ier.Noti�ies the user about malicious apps andhelps the user to block and remove themthrough UI

 Only runs onrooted deviceswith a carnalhaving modulesupport due towhich it has notbeen conceived fordistribution in themass market. Pre-installed apps arenot analyzed bythe app evaluator.Thus, will not beincluded in appssuspicious list andso will not bedejected againstknown malwarebehavior patterns.only the appsidenti�ied as riskyor added to theapps suspiciouslist. 9.4% memoryoverhead becauseclassi�ier requiresthe training dataand memory

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Ref Methodology Tools Achements Limitations [61] Feature collector collects static features ofat the application at installation.GramDroid a web tool that extracts thefeatures of applications and provides theirvisual representation in order to identifythe threads posed by the application Localdetector classi�ies the application aslegitimate, malware, or risk using staticfeatures. Response manager gives controlto use if app as detects as malware. Clouddetector performs detailed dynamicanalysis at a remote server if app isdetected is risk by local detector updatesthe database if app is detecting malware

 From top 20enlistedfrequentlyrequestedpermission

 [33] The Android device’s client applicationcaptures the application’s speci�icinformation and sends it to the server.Detailed analysis and applicationexecution based on emulation is carriedout. Otherwise, the APK �ile will be sentfrom the client device to the server
Androgaurd Detects99%accuratemalwareapplications

The malware caneasily evadeemulation-baseddetection
 [67] User permission to detect malwarebehavior as static analysis. The signaturedata type contains all applicationssignature. Android user offers users amalware analysis service. The centralserver connects the Android client to thesignature database

 Archives92.5%speci�icity It lacks theadvantages ofdynamic analysis,as dynamicmalicious payloadscannot be detected
 [66] Uses static functions, manifest �ile, andcode �iles assembled. Uses system calls andbinder transactions as dynamic behaviorfeatures. The user and the applicationmonitor and signature are forwarded tothe server which applies to generate thesignature. The signature matchingalgorithm

 Achieves99%accuracy Overall causes 7.4percent overheadperformance and8.3 percentoverhead memory
2.3	 Hybrid	AnalysisTo improve the performance of learning algorithms, the hybrid analysiswas developed, which utilizes the dynamic and static features asshown in Figure �ig: Hybrid Analysis. Some researches proposed multi-classi�ication techniques [20, 30] to obtain high accuracy in the hybridanalysis. Furthermore, The static features are Publisher ID, API call,Class structure, Java Package name, Crypto operations, Intent receivers

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Services, Receivers, and Permission, and dynamic are Cryptooperations, File operations, Network activity. The APK �ile extractedstatic features from classes.dex �iles, and dynamic features fromAndroidmanifest.xml �ile. Hybrid Analysis combines static features anddynamic features. These features are used to detect maliciousapplications. In [48], the following features are selected form static(permission and APICall) and dynamic (SystemCall). Y. Liu, et al. [48]used the SVM and Naive Bayes machine learning classi�ier. The SVMclassi�ier used for static analysis achieved 93.33 to 99.28 percentaccuracy, while the Naive Bayes used for dynamic analysis achievedaccuracy up to 90 percent. Furthermore, Kim et al. [36], used the J48machine learning classier, the features are selected from static(permission) and dynamic (APICal l). A. Saracino el al. [62], achieved96.9% accuracy based on KNN by selecting the static feature(permission) and dynamic (critical API, SMS, User activity System call)feature (Fig. 5 and Table 5).
2.4	 A	Comparison	of	Static,	Dynamic,	and	Hybrid	Analysis
Static	Analysis:1. Single Category features: The advantages of single categoryfeatures are easy to extract, and low power computation. Thelimitations associated with this method are code obstruction,imitation attack, and low precision.

2. Multiple categories of Features: The advantages of multiplecategory features are easy to extract, and high accuracy. Thelimitations associated with this method are Mimicry attack, highcomputation, code obfuscation, and dif�icult to handle multiplefeatures

Dynamic	Analysis:1. Single Category features: it poses a better accuracy and easy torecover code obfuscation as compared with static analysis.However, its feature extraction process is dif�icult, and it consumeshigh resources.

Multiple categories of Features: It gives better accuracy and easy to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2. Multiple categories of Features: It gives better accuracy and easy torecover code obfuscation as compared with a static and dynamicsingle category. The limitations of this approach are (1) dif�icult tohandle multiple features, (2) high resources, and (3) more timecomputation.

Hybrid	Analysis:	The main bene�its of hybrid analysis are to performthe highest accuracy as compared to static and dynamic analysis. Thelimitations are (1) highest complexity, (2) framework requirement tocombine the static and dynamic features, (3) more resourcesutilization, and (4) time-consumption.
3	 Android	Malware	Detection	Approaches
3.1	 Basic	Proposed	Framework	to	Detect	Android
MalwareIn this section, we discuss the methodology to detect malicious codesdetection techniques based on deep learning and machine learning.Kim et al. [38] proposed an multi-model malware detection-basedmalware analysis system to automatically analyze and classifymalware behaviors. Figure 6 shows the overall architecture of thedeveloped framework. The multimodal deep learning framework usesseven kinds of the feature; String feature, method opcode feature,method API feature, shared library function opcode feature, permissionfeature, component feature, and environmental feature. Using thosefeatures, the seven corresponding feature vectors are generated �irst,and then, among them, the permission/component/prede�ined settingfeature vectors are merged into one feature vector. Finally, the �ivefeature vectors are fed to the classi�ication model for malwaredetection.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	6 A multimodal deep learning method for android malware detection using various features[38] Moreover, Tao Lei et al. [43] proposed an Graph-based malwaredetection model based on three components: (1) call graph extraction;(2) event group building; and (3) NN training. These three phases areshown in 7. In call graph phase it extracts the call graphs of everysample from the training samples by using the static analysis tools andthen �ilters out repetitive API calls. The event group buildingcomponent aims to build the event group for apps, which consists ofevent subgraph traverse, API calls encoding and clustering. Finally, theevent group (clustering result) is fed into the NN to train theparameters.

Fig.	7 EveDroid: event-aware android malware detection against model degrading for IoTdevices [43]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Andrea Saracino et al. [62] detect malicious behavioral-patternsextracted from several categories of malware. The features at the foursystem levels, and to detect and prevent a misbehavior. It consists offour steps shown in Fig. 9. The �irst one is the App Risk Assessment,which includes the App Evaluator that implements an analysis ofmetadata of an app package (apk) (permission and market data),before the app is installed on the device. The second block is the GlobalMonitor, which monitors the device and OS features at three levels, i.e.,kernel (SysCall Monitor), user (User Activity Monitor), and application(Message Monitor). The third block is the Per-App Monitor, whichimplements a set of known behavioral patterns to monitor the actionsperformed by the set of suspicious apps (App Suspicious List),generated by the App Risk Assessment, through the Signature-BasedDetector (Fig. 8).

Fig.	8 Signi�icant permission identi�ication for machine-learning-based android malwaredetection [45]Huijuan Zhu et al. [89] raises a stacking ensemble frameworkSEDMDroid to identify Android malware. Speci�ically, to ensureindividual’s diversity, it adopts random feature subspaces andbootstrapping samples techniques to generate subset, and runs

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Principal Component Analysis (PCA) on each subset. The accuracy isprobed by keeping all the principal components and using the wholedataset to train each base learner Multi-Layer Perception (MLP). Then,Support Vector Machine (SVM) is employed as the fusion classi�ier tolearn the implicit supplementary information from the output of theensemble members and yield the �inal prediction result. Figure 9shows the overall proposed framework of the SEDMDroid (Fig. 10).

Fig.	9 SEDMDroid: an enhanced stacking ensemble framework for Android malware detection[89]

Fig.	10 DAPASA: detecting android piggybacked apps through sensitive subgraph analysis [18]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	11 DAPASA: SSG graph [18]Jin Li, et al. [45] propose the malware detection framework basedon static analysis for permission feature. The proposed frameworkconsists of three-technique to collect risky permissions. (i) PermissionRanking With Negative Rate (ii) Support-Based Permission Ranking(iii) Permission Mining With Association Rules. It extracts signi�icantpermissions from apps and uses the extracted information toeffectively detect malware using a supervised learning algorithm(Fig. 11).Kumar et al. [41] propose the malware detection framework whichis based on three techniques, (i) Clustering Algorithm (ii) Naive BayesClassi�ier for Multi-Feature (iii) Blockchain-based malware detectionframework. Overall architecture of the proposed system shown inFig. 12. A new blockchain-based framework was presented to evaluatethe performance of malware detection. The newly proposed machinelearning technique provides an ef�icient approach to train the modeland then stores and exchanges the trained model results throughout

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the blockchain network for spreading the information of newlygenerated malware.More precisely, the �irst method based on a clustering algorithm,which reduces the high dimensional data and removes unnecessaryfeatures. Secondly, we use a classi�ication method based on naı̈veBayes for multi-feature classi�ication. Finally, a blockchain databasestore the malware information.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	12 A multimodal malware detection technique for Android IoT devices using variousfeatures [42]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.2	 Basic	Proposed	Algorithms	for	Android	Malware
FeaturesThis section discusses the basic algorithms and techniques which isused commonly.
3.2.1	 Clustering	Techniques	to	Classify	the	MalwareThe centroids of the clusters which are calculated using the basic K-means [53] clustering algorithm shown in Algorithm 1. The process offuture generation values in the malicious feature databasecorresponds to the elements of the feature vector, and every featurevalue is searched in the features extracted from input applications. Ifthere is no certain feature value in the extracted features, its absence isrepresented as zero. Otherwise, the existence of the feature value isrepresented as one in the vector. The overall process of futuregeneration is shown in Algorithm 2. Additionally, the similarity-basedfeature vectors are generated in Algorithm 3.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.2.2	 Feature	Ranking-Based	Algorithms
Average	Accuracy-Based	Ranking	Scheme:	The ranking is designedto be directly proportional to the average prediction accuracies acrossthe classes.Let be the set of performance accuracies of K baseclassi�iers. If m denotes malware and b, benign then the averageaccuracy of the k-th base classi�ier is given by (1)Let be a set of the average predictiveaccuracies, to which a ranking function is applied (2)Thus, contains an ordered ranking of the level-1 base classi�iersaverage predictive accuracies in descending order. Next, the top Zrankings are utilized in weight assignments as follows: (3)
Class	Differential-Based	Ranking	Scheme:	let the average accuracyof each base classi�ier be given by in (1) and de�ine with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

cardinality K as a set of ordered rankings in descending order ofmagnitude. Calculate proportional to average accuracies andinversely proportional to absolute difference of interclass accuracies.(4)
(5)

Ranked	Aggregate	of	Per	Class	Accuracies-Based	Scheme:	With de�ined as the set of ordered rankings with cardinality K, given theinitial performance accuracies of of the K base classi�iers.
(6)
(7)
(8)

3.3	 Feature	Selection-Based	AlgorithmsFeature selection is extremely important in static, dynamic, and hybridanalysis. The appropriate feature set is selected using differentselection methods such as information gain, mutual information, �isherscore, and similarity function.Information gain (IG) feature ranking approach to rank the featuresand then selecting the top n features. IG evaluates the features bycalculating the IG achieved by each feature. Speci�ically, given a featureX, IG is expressed as (9)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

where E(X) and E(X/Y) represent the entropy of the feature X beforeand after observing the feature Y, respectively. The entropy of feature Xis given by (10)where p(x) is the marginal probability density function for the randomvariable X. Similarly, the entropy of X relative to Y (11)Similarity-based feature selection is shown in the below equation, Brepresents the benign and M represents the malware. X is the featurelist and is the similarity between the features.
(12)
(13)

3.4	 Association	Rule-Based	AlgorithmsAssociation rule mining is used to discover meaningful relationshipsbetween variables in huge databases. For example, if events A and Balways occur at the same time, then the two events are likely to beassociated, for instance, we found that many permissions are alwaystogether, i.e., READ_CONTACTS and WRITE CONTACTS are always usedtogether. These dangerous Android permissions belong to thepermission Google’s list. As we know that those permissions arealways together. So we only need one of them to characterize certainbehavior.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

STEP1:
STEP2:

–

–

–

–

STEP3:

STEP4:

Find out the frequent two permissions setsDiversity-based interestingness measures for associationrule using frequent two itemsets that were developed by Piatetsky-Shapiro [21]When support support(Y)support(Z), the two-itemsets(Y, Z) are mutually independent. That is, the association rule is uninteresting.
if interest , Y, andZ are correlated positively.if interest , Y, andZ are commonly independent, and thecommon two-item sets should be rejected.if interest , Y, and Z are negatively correlated.Create the association rule based on the permission (seeAlgorithm 4).Calculate the probability table of the association rules.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.5	 Model	Evaluation	MeasuresPython programming language contains tools for data pre-processing,classi�ication, clustering, regression, association rules, andvisualization, which make it the best tool for the data scientist tomeasure and test the performance of classi�iers. There are variouscriteria for evaluating classi�iers and criteria are set based on theselected goals. For the classi�ication methods are evaluating such asTrue Positive Rate (TPR) and False Positive Rate (FPR) andclassi�ication accuracy. we used the following standard measurements:Given the number of true positives for malicious applications using thefollowing formulas: (14)False Positive rate is the proportion of negative instance for the benignapps (15)The accuracy is de�ined as below equation (16)
4	 Experimental	Analysis	and	Dataset
DiscussionThe proposed framework poses strong evidence over acquiredexperiments results. Here, we discuss major aspects forexperimentation which include statistics and source of dataset,evaluation measures to understand the performance criteria forexploited machine learning algorithm, and result outcomes which givestrong evidence towards the signi�icance of our proposed model.
4.1	 Publicly	Available	Most	Popular	Dataset

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In order to excavate practical signi�icance, we introduce 10 mostpopular dataset in Table 6. More description of the dataset arediscussed in the provided links.
Table	6 Publicly available most popular dataset
	 Original	label Sources1 Android Malware GenomeProject http:// www. malgenomeproject . org
2 M0Droid Dataset http:// m0droid. netai. net/ modroid/ 3 The Drebin Dataset http:// user. informatik. uni-goettingen. de/ ~darp/ drebin/ 4 AndroMalShare http:// sanddroid. xjtu. edu. cn: 8080/ #home5 Kharon Malware Dataset http:// kharon. gforge. inria. fr/ dataset/ 6 AMD Project http:// amd. arguslab. org7 AAGM Dataset http:// www. unb. ca/ cic/ datasets/ android-adware. html8 Android PRAGuard Dataset http:// pralab. diee. unica. it/ en/ AndroidPRAGuardD ataset9 AndroZoo https:// androzoo. uni. lu/ 10 A Dataset based onContagioDump http:// cgi. cs. indiana. edu/ ~nhusted/ dokuwiki/ doku. php? id= datasets
4.2	 Dataset	Other	Research	WorkThe comparison of the number of benign and malware apps used inprevious work is shown in Table 7.
Table	7 Compersion of dataset using benign and malware apps
Authors Benign Malware [29] 480 124769 [31] 45 300 [79] 5264 12026 [58] 378 324658 [1] 3978 500 [13] 175 621 [57] 1446 2338 [8] 5560 123453 [82] 2925 3938

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.malgenomeproject.org/
http://m0droid.netai.net/modroid/
http://user.informatik.uni-goettingen.de/%257edarp/drebin/
http://sanddroid.xjtu.edu.cn:8080/#home
http://kharon.gforge.inria.fr/dataset/
http://amd.arguslab.org/
http://www.unb.ca/cic/datasets/android-adware.html
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
https://androzoo.uni.lu/
http://cgi.cs.indiana.edu/%257enhusted/dokuwiki/doku.php?id=datasets

Authors Benign Malware [16] 238 1500
5	 Experimental	Analysis
5.1	 Permission-Based	Experimental	AnalysisAmong the 145 permission set, 48 permission are risky permissionswhich are mentioned in previous literature [13, 63, 73] and Table 8.Moreover, Jin Li, et.al, [47], developed a SIGPID framework to detect therisky permission, the authors generate top 22 risky permissionmentioned in Table 9. Furthermore Kumar et al. [41] used a data-mining technique to extract the risky permission, based on associationrule set of risky permission shown in Table 10.
Table	8 Permission set mostly used in malware
Risky	permissionsACCESS_WIFI_STATE SEND_SMSREAD_LOGS READ_CALL_LOGCAMERA DISABLE_KEYGUARDCHANGE_NETWORK_STATE RESTART_PACKAGESWRITE_APN_SETTINGS SET_WALLPAPERCHANGE_WIFI_STATE INSTALL_PACKAGESREAD_CONTACTS WRITE_CONTACTSWRITE_SETTINGS GET_TASKSRECEIVE_MMS ACCESS_WIFI_STATEWRITE_APN_SETTINGS SYSTEM_ALERT_WINDOWREAD_HISTORY_BOOKMARKS RECEIVE_BOOT_COMPLETEDACCESS_NETWORK_STATE CALL_PHONEREAD_EXTERNAL_STORAGE ACCESS_FINE_LOCATIONEXPAND_STATUS_BAR ADD_SYSTEM_SERVICEPERSISTENT_ACTIVITY INTERNETGET_ACCOUNTS WRITE_SMSPROCESS_OUTGOING_CALLS CHANGE_CONFIGURATIONREAD_HISTORY_BOOKMARKS GET_PACKAGE_SIZE

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Risky	permissionsWAKE_LOG ACCESS_MOCK_LOCATIONWRITE_CALL_LOG WRITE_HISTORY_BOOKMARKSREAD_PHONE_STATE RECEIVE_WAP_PUSHSET_ALARAM WRITE_SMSRECEIVE_SMS READ_SMS
Table	9 Top 22 permissions [45]
Top	22	Risky	permission	extract	from	SIGPIDACCESS_WIFI_STATE SEND_SMSREAD_LOGS READ_CALL_LOGRESTART_PACKAGES DISABLE_KEYGUARDREAD_EXTERNAL_STORAGE CHANGE_NETWORK_STATEWRITE_APN_SETTINGS SET_WALLPAPERCHANGE_WIFI_STATE INSTALL_PACKAGESREAD_CONTACTS WRITE_CONTACTSCAMERA GET_TASKSREAD_HISTORY_BOOKMARKS ACCESS_WIFI_STATEWRITE_APN_SETTINGS SYSTEM_ALERT_WINDOWWRITE_SETTINGS RECEIVE_BOOT_COMPLETED
Table	10 Permission patterns Malware and Benign [41]
Permission	patterns Benign MalwareCommon android request permissionREAD_PHONE_STATE, ACCESS_WIFI_STATE 2.36 63.08INTERNET, ACCESS_WIFI_STATE 5.05 63.49READ_PHONE_STATE 31.87 93.4ACCESS_WIFI_STATE 5.22 63.49ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE 3.99 60.31INTERNET, WRITE_EXTERNAL_STORAGE, READ_PHONE_STATE 13.28 65.44INTERNET, READ_PHONE_STATE, ACCESS_NETWORK_STATE 24.21 78.97INTERNET, READ_PHONE_STATE 31.21 93.078WRITE_EXTERNAL_STORAGE, READ_PHONE_STATE 13.37 65.53

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Permission	patterns Benign MalwareREAD_PHONE_STATE, ACCESS_NETWORK_STATE 24.21 79.05READ_PHONE_STATE, ACCESS_NETWORK_STATE 23.63 77.18INTERNET, READ_LOGS 6.85 6.85READ_PHONE_STATE 30.32 91.69INTERNET, READ_PHONE_STATE, ACCESS_NETWORK_STATE 26.36 77.18READ_PHONE_STATE,VIBRATE 21.92 65.28INTERNET, READ_PHONE_STATE 29.9 91.52READ_PHONE_STATE, READ_LOGS 5.38 46.86READ_LOGS 6.93 47.6INTERNET, READ_PHONE_STATE, VIBRATE 21.68 65.12Unique android request permissionREAD_PHONE_STATE, WRITE_SMS 0 50.94INTERNET, READ_PHONE_STATE, ACCESS_WIFI_STATE 0 63.09ACCESS_NETWORK_STATE, RECEIVE_BOOT_COMPLETED 0 51.68ACCESS_NETWORK_STATE, WRITE_SMS 0 49.64RECEIVE_BOOT_COMPLETED, ACCESS_WIFI_STATE 0 42.63INTERNET, RECEIVE_BOOT_COMPLETED 0 44.75WRITE_EXTERNAL_STORAGE, ACCESS_NETWORK_STATE,ACCESS_WIFI_STATE 0 54.53
READ_PHONE_STATE, RECEIVE_BOOT_COMPLETED 0 43.12INTERNET, SEND_SMS 0 43.12INTERNET, ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE 0 60.31Unique android run-time permissionsINTERNET, READ_PHONE_STATE, ACCESS_NETWORK_STATE, VIBRATE 0 55.42ACCESS_NETWORK_STATE, VIBRATE, READ_LOGS 0 38.55READ_PHONE_STATE, ACCESS_NETWORK_STATE, READ_LOGS 0 43.2READ_LOGS, INTERNET, ACCESS_NETWORK_STATE 0 43.2READ_PHONE_STATE, VIBRATE, READ_LOGS 0 41.33INTERNET, VIBRATE, READ_LOGS 0 41.49READ_LOGS, INTERNET, READ_PHONE_STATE, 0 46.87ACCESS_FINE_LOCATION, READ_PHONE_STATE, VIBRATE,INTERNET 0 34.23INTERNET, SEND_SMS 0 33.58

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Permission	patterns Benign MalwareINTERNET, ACCESS_FINE_LOCATION, READ_LOGS 0 28.45
5.2	 Clustering-Based	Experimental	AnalysisKim et al. [38], cluster the malware features based on frequencyanalysis. The red color shows the highest risk features. Figure 13shows the clustering results obtained by [38].

Fig.	13 Topological data analysis (TDA) result of each feature data. Density-based spatialclustering algorithm was utilized in the TDA. a–e the visualized result for each feature type.Malicious samples from Malgenome project were used [38]
5.3	 Classi�ication	Experimental	AnalysisFrom the machine learning-based methods to the generalclassi�ication-based methods, various kinds of the Android malwaredetection methods were surveyed. As shown in Table 11, the detectionaccuracy or the F-measure values of our framework were higher thanthe other methods including the deep learning-based methods [30, 36,47, 54].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Table	11 Classi�ication results
Authors Algorthim Capicity	for	feature

diversity
Accuracy F-

measure [38] Multimodal deep neuralnetwork High 98% 0.99
 [81] Ranking based High 98% 0.98 [42] KNN & Navie Bayes High 98% 0.98 [83] DNN/RNN Medium 90% NA [52] CNN Low 90% NA [19] XGBoost Low 97% 0.97 [29] Adaboost/NB/DT Low NA 0.78 [85] NB Low 93% NA [8] SVM Low 93.9 NA [76] KNN+K-means Low NA 0.91 [14] Bayesian Low 92% NA [84] SVM Low NA 0.98 [59] RF Low 97.5% NA
6	 Additional	Challenges	of	Android	Malware
DetectionMobile malware and account fraud have exploded around the world.Cybersecurity strategy that allows you to protect your digital assetsfrom hackers. We observed that increasing cyber threats targetingAndroid mobile devices. Cyber Threat Actors and their use andmonetization of stolen data. We discuss and analyze the current effortof monetizing mobile malware in detail below.

Premium	Rate	Number	Billing: In this case, the attacker setsand registers an additional rate number. Usually, these are“shortcodes” that are shorter than the usual phone numbers. TheAndroid application can request permission to send SMS messagesduring installation. These SMS messages can be sent without usercon�irmation. Sending a text message to an advanced shortcodecauses the phone owner to charge his phone bill and attacker togenerate revenue.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Spyware: Several Android apps allow someone to track andmonitor a mobile phone user. These apps can record and export allSMS, emails, messages, call logs, microphone, and GPS locations.These applications typically require an attacker to buy a vendorapplication and then gain physical access to the phone. Althoughthese apps may not generate an attacker’s revenue, they generaterevenue for the spyware application vendor. Table 8 shows therequired permission and APIs used in an Android application toperform these tasks.
Search	Engine	Poisoning: Some search engines recommendwebsites or change search engine rankings by monitoring useraccess rates. These recommendations can be further customizedwhen using a mobile version of the search site and are explicitlymonitored by mobile users. A malicious application can initiatemultiple requests to these sites, thereby poisoning the hit ratemonitored by the search engine. Arti�icially increasing their searchrankings allows an attacker to increase the number of visits bypotential customers, or generate revenue through pay-per-view orpay-per-click advertising displayed on the website.
Pay-Per-Click: Each service (such as an ad network) pays foreach time an af�iliate member refers to a particular website (pay-per-click). Using malicious applications, an attacker can manuallyaccess these sites for a few cents per click. Mobile television in Chinais a wide range of value-added services, and content providers canparticipate in revenue-sharing programs with operators based onthe payer’s view. An attacker can create a video channel with thecarrier and then register it, generating revenue each time a userviews the video or channel. Malicious apps can generate revenue fordownloading such video content
Pay-Per-Install: In the mobile market, the pay-per-view schemeusually refers to a model that differs from the pay-per-install schemein the PC malware space. The term usually refers to a legitimatedistribution market in the mobile market, which hosts downloadapplications and charges vendors based on the number ofdownloads and installations. The opposite is a pre-installation in thePC malware space; the reseller pays the af�iliate each time they caninstall an app on a user’s computer. Installing pay-per-install

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

software on an infected computer allows an attacker to generaterevenue. Although PC applications have many pay-as-you-gosolutions, only a handful of mobile apps are available.
Adware: Many ad networks pay for each view and click when thead appears. Malicious apps can display ads by launching a browser.An attacker generates ad revenue each time the app is used and anad is displayed.
mTAN	Stealing: Some banks must send additional credentialsout of the band to prevent man-in-the-middle attacks when theymake a transaction or log in to an online bank account. In particular,the bank will send a random number to the registered mobile phonenumber called a transaction authentication number (mTAN). Theyneed malware on their phone to get this number for the attacker tosucceed.

7	 ConclusionThis chapter presented a systematic literature survey of the Androidmalware detection techniques using deep learning and machinelearning. Te reviewed and papers were categorized as three categoriesof Android malware detection: (1) static analysis, (2) dynamic analysis,and (3) hybrid analysis approaches. The most popular and usefulAndroid malware detection techniques were analyzed via classi�icationapproaches, clustering approaches, data-mining approaches, deeplearning and, machine-based approaches. Moreover, this chapterdiscusses the all available dataset and experimental analysis of androidmalware detection. Furthermore, it assessed the effectiveness ofcurrent methods for analyzing malware and detection techniques.That’s different from previous surveys that usually study mobileattacks only, this chapter introduces static, dynamic, and hybridanalysis techniques and proposed algorithms.
References1. Aafer, Yousra, Wenliang Du, and Heng Yin. 2013. Droidapiminer: Mining api-level features forrobust malware detection in android. In International	Conference	on	Security	and	Privacy	in

Communication	Systems, 86–103. Springer.2.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Afonso, Vitor Monte, Matheus Favero de Amorim, André Ricardo Abed Grégio, Glauco BarrosoJunquera, and Paulo Lı́cio de Geus. 2015. Identifying android malware using dynamicallyobtained features. Journal	of	Computer	Virology	and	Hacking	Techniques 11 (1):9–17.3. Alazab, Mamoun, and Roderic Broadhurst. 2017. An analysis of the nature of spam ascybercrime. In Cyber-Physical	Security 251–266. Springer.4. Alazab, Mamoun, Shamsul Huda, Jemal Abawajy, Ra�iqul Islam, John Yearwood, SitalakshmiVenkatraman, and Roderic Broadhurst. 2014. A hybrid wrapper-�ilter approach for malwaredetection. Journal	of	Networks 9 (11): 2878–2891.5. Alazab, Mamoun, Robert Layton, Roderic Broadhurst, and Brigitte Bouhours. 2013. Maliciousspam emails developments and authorship attribution. In 2013	Fourth	Cybercrime	and
Trustworthy	Computing	Workshop, 58–68. IEEE.6. Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. Informationsecurity governance: the art of detecting hidden malware. In IT	Security	Governance
Innovations:	Theory	and	Research, 293–315. IGI Global.7. Alazab, Moutaz, Mamoun Alazab, Andrii Shalaginov, Abdelwadood Mesleh, and Albara Awajan.2020. Intelligent mobile malware detection using permission requests and api calls. Future
Generation	Computer	Systems 107: 509–521.[Crossref]8. Arp, Daniel, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad Rieck. 2014.Drebin: Effective and explainable detection of android malware in your pocket. In
Proceedings	2014	Network	and	Distributed	System	Security	Symposium.9. Aung, Zarni, and Win Zaw. 2013. Permission-based android malware detection. International
Journal	of	Scienti�ic	and	Technology	Research.10. Azab, Ahmad, Mamoun Alazab, and Mahdi Aiash. 2016. Machine learning based botnetidenti�ication traf�ic. In 2016	IEEE	Trustcom/BigDataSE/ISPA, 1788–1794. IEEE.11. Azab, Ahmad, Robert Layton, Mamoun Alazab, and Jonathan Oliver. 2014. Mining malware todetect variants. In 2014	Fifth	Cybercrime	and	Trustworthy	Computing	Conference, 44–53.IEEE.12. Burguera, Iker, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid: Behavior-basedmalware detection system for android. Proceedings	of	the	1st	ACM	Workshop	on	Security	and
Privacy	in	Smartphones	and	Mobile	Devices	-	SPSM	’11, 15.13. Chan, Patrick P.K., and Wen Kai Song. 2014. Static detection of android malware by usingpermissions and API calls. In Proceedings	-	International	Conference	on	Machine	Learning
and	Cybernetics, vol. 1, 82–87.14. Chen, Kai, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing Huang, Wei Zou, andPeng Liu. 2015. Finding unknown malice in 10 seconds: Mass vetting for new threats at thegoogle-play scale. In 24th Security	Symposium (Security	15), 659–674.15.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1016/j.future.2020.02.002

Chuang, Hsin Yu, and Sheng De Wang. 2015. Machine learning based hybrid behavior modelsfor android malware analysis. Proceedings	-	2015	IEEE	International	Conference	on	Software
Quality. Reliability and Security: QRS.16. Desnos, Anthony, and Geoffroy Gueguen. 2011. Android: From reversing to decompilation. In
Proceeding	of	Black	Hat, Abu Dhabi.17. Dini, Gianluca, Fabio Martinelli, Ilaria Matteucci, Marinella Petrocchi, and Andrea Saracino.2018. and	Daniele	Sgandurra.	Risk	analysis	of	Android	applications:	A	user-centric	solution.
Future	Generation	Computer	Systems.18. Fan, Ming, Jun Liu, Wei Wang, Haifei Li, Zhenzhou Tian, and Ting Liu. 2017. Dapasa: Detectingandroid piggybacked apps through sensitive subgraph analysis. IEEE	Transactions	on
Information	Forensics	and	Security 12 (8): 1772–1785.[Crossref]19. Fereidooni, Hossein, Mauro Conti, Danfeng Yao, and Alessandro Sperduti. 2016. ANASTASIA:android malware detection using static analysis of applications. In 2016	8th	IFIP
International	Conference	on	New	Technologies,	Mobility	and	Security	(NTMS), 1–5. IEEE.20. Ferrante, Alberto, Miroslaw Malek, Fabio Martinelli, Francesco Mercaldo, and JelenaMilosevic. 2018. Extinguishing ransomware - a hybrid approach to android ransomwaredetection. In Lecture	Notes	in	Computer	Science	(Including	Subseries	Lecture	Notes	in
Arti�icial	Intelligence	and	Lecture	Notes	in	Bioinformatics).21. Piatetsky-Shapiro, G. 1991. Discovery, analysis and presentation of strong rules. Knowledge
Discovery	in	Databases.22. Ganesh, Meenu, Priyanka Pednekar, Pooja Prabhuswamy, Divyashri Sreedharan Nair,Younghee Park, and Hyeran Jeon. 2017. CNN-based android malware detection. In 2017
International	Conference	on	Software	Security	and	Assurance	(ICSSA), 60–65. IEEE.23. Gold, Steve. 2011. Android insecurity. Network	Security 2011 (10): 5–7.[Crossref]24. Ham, You Joung, and Hyung-Woo Lee. 2014. Detection of malicious android mobileapplications based on aggregated system call events. International	Journal	of	Computer	and
Communication	Engineering.25. Ham, You Joung, Daeyeol Moon, Hyung Woo Lee, Jae Deok Lim, and Jeong Nyeo Kim. 2014.Android mobile application system call event pattern analysis for determination of maliciousattack. International	Journal	of	Security	and	its	Applications.26. Hasegawa, Chihiro, and Hitoshi Iyatomi. 2018. One-dimensional convolutional neuralnetworks for Android malware detection. In Proceedings	-,	2018.	IEEE	14th	International
Colloquium	on	Signal	Processing	and	its	Application.	CSPA	2018.27. Hou, Shifu, Aaron Saas, Lingwei Chen, Yanfang Ye, and Thirimachos Bourlai. 2017. Deep neuralnetworks for automatic android malware detection. In Proceedings	of	the	2017	IEEE/ACM
International	Conference	on	Advances	in	Social	Networks	Analysis	and	Mining	2017	-
ASONAM	’17.28.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1109/TIFS.2017.2687880
https://doi.org/10.1016/S1353-4858(11)70104-0

Hou, Shifu, Aaron Saas, Yanfang Ye, and Lifei Chen. 2016. Droiddelver: An android malwaredetection system using deep belief network based on api call blocks. In International
Conference	on	Web-Age	Information	Management, 54–66. Springer.29. Huang, Chun Ying, Yi Ting Tsai, and C.H. Hsu. 2013. Performance evaluation on permission-based detection for android malware. Smart	Innovation,	Systems	and	Technologies.30. Huda, Shamsul, Ra�iqul Islam, Jemal Abawajy, John Yearwood, Mohammad Mehedi Hassan,and Giancarlo Fortino. 2018. A hybrid-multi �ilter-wrapper framework to identify run-timebehaviour for fast malware detection. Future	Generation	Computer	Systems 83: 193–207.31. Idrees, Fauzia, and Muttukrishnan Rajarajan. 2014. Investigating the android intents andpermissions for malware detection. In International	Conference	on	Wireless	and	Mobile
Computing,	Networking	and	Communications, 354–358.32. Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. 2011. Kernel-based behavioranalysis for android malware detection. In Proceedings	-	2011	7th	International	Conference
on	Computational	Intelligence	and	Security,	CIS	2011.33. Jang, Jae Wook, Hyunjae Kang, Jiyoung Woo, Aziz Mohaisen, and Huy Kang Kim. 2016. Andro-Dumpsys: Anti-malware system based on the similarity of malware creator and malwarecentric information. Computers	and	Security.34. Karbab, El Mouatez Billah, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga Mouheb, 2018.MalDozer: Automatic framework for android malware detection using deep learning. Digital
Investigation.35. Khan, Riaz Ullah, Xiaosong Zhang, Rajesh Kumar, Abubakar Sharif, Noorbakhsh Amiri Golilarz,and Mamoun Alazab. 2019. An adaptive multi-layer botnet detection technique using machinelearning classi�iers. Applied	Sciences 9 (11): 2375.36. Kim, D., J. KIm, S. Kim. 2013. Proceedings: 3rd International, and unde�ined 2013. A maliciousapplication detection framework using automatic feature extraction tool on android market.In 3rd	International	Conference	on	Computer	Science	and	Information	Technology	(ICCSIT),1–4.37. Kim, Gisung, Seungmin Lee, and Sehun Kim. 2014. A novel hybrid intrusion detection methodintegrating anomaly detection with misuse detection. Expert	Systems	with	Applications.38. Kim, TaeGuen, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. A multimodal deeplearning method for android malware detection using various features. IEEE	Transactions	on
Information	Forensics	and	Security 14 (3): 773–788.39. Kumar, Ajit, K.S. Kuppusamy, and G. Aghila. 2018. FAMOUS: Forensic analysis of mobile devicesusing scoring of application permissions. Future	Generation	Computer	Systems.40. Kumar, Rajesh, Zhang Xiaosong, Riaz Ullah Khan, Ijaz Ahad, and Jay Kumar. 2018. Maliciouscode detection based on image processing using deep learning. In Proceedings	of	the	2018
International	Conference	on	Computing	and	Arti�icial	Intelligence, 81–85.41. Kumar, Rajesh, Xiaosong Zhang, Riaz Khan, Abubakar Sharif, Rajesh Kumar, Xiaosong Zhang,Riaz Ullah Khan, and Abubakar Sharif. 2019. Research on data mining of permission-induced

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

risk for android IoT devices. Applied	Sciences 9 (2): 277.42. Kumar, Rajesh, Xiaosong Zhang, Wenyong Wang, Riaz Ullah Khan, Jay Kumar, and AbubakerSharif. 2019. A multimodal malware detection technique for android iot devices using variousfeatures. IEEE	Access 7: 64411–64430.43. Lei, Tao, Zhan Qin, Zhibo Wang, Qi Li, and Dengpan Ye. 2019. Evedroid: Event-aware androidmalware detection against model degrading for iot devices. IEEE	Internet	of	Things	Journal 6(4): 6668–6680.[Crossref]44. Li, Dongfang, Zhaoguo Wang, and Yibo Xue. 2018. Fine-grained android malware detectionbased on deep learning. In 2018	IEEE	Conference	on	Communications	and	Network	Security
(CNS), 1–2. IEEE.45. Li, Jin, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye. 2018. Signi�icantpermission identi�ication for machine-learning-based android malware detection. IEEE
Transactions	on	Industrial	Informatics 14 (7): 3216–3225.[Crossref]46. Li, Wenjia, Zi Wang, Juecong Cai, and Sihua Cheng. 2018. An android malware detectionapproach using weight-adjusted deep learning. In 2018	International	Conference	on
Computing,	2018. Networking and Communications: ICNC.47. Li, Yuqi, Yanghao Li, Hongfei Yan, and Jiaying Liu. 2018. Deep joint discriminative learning forvehicle re-identi�ication and retrieval. In: Proceedings	-	International	Conference	on	Image
Processing,	ICIP,	2017, 395–399.48. Liu, Yu, Yichi Zhang, Haibin Li, and Xu Chen. 2016. A hybrid malware detecting scheme formobile android applications. In 2016	IEEE	International	Conference	on	Consumer	Electronics,
ICCE	2016.49. Malik, Sapna, and Kiran Khatter. 2016. System call analysis of android malware families.
Indian	Journal	of	Science	and	Technology 9 (21).50. Mans�ield-Devine, Steve. 2012. Android malware and mitigations. Network	Security 2012(11): 12–20.[Crossref]51. Mans�ield-Devine, Steve. 2012. Paranoid android: just how insecure is the most popularmobile platform? Network	Security 2012 (9): 5–10.[Crossref]52. McLaughlin, Niall, Adam Doupé, Gail Joon Ahn, Jesus Martinez del Rincon, BooJoong Kang,Suleiman Yerima, Paul Miller, Sakir Sezer, Yeganeh Safaei, Erik Trickel, and Ziming Zhao. 2017.Deep android malware detection. In Proceedings	of	the	Seventh	ACM	on	Conference	on	Data
and	Application	Security	and	Privacy	-	CODASPY	’17, 301–308.53. Mohamad, Ismail Bin, and Dauda Usman. 2013. Standardization and its effects on k-meansclustering algorithm. Research	Journal	of	Applied	Sciences,	Engineering	and	Technology 6(17): 3299–3303.54.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1109/JIOT.2019.2909745
https://doi.org/10.1109/TII.2017.2789219
https://doi.org/10.1016/S1353-4858(12)70104-6
https://doi.org/10.1016/S1353-4858(12)70081-8

Nix, Robin, and Jian Zhang. 2017. Classi�ication of android apps and malware using deepneural networks. In Proceedings	of	the	International	Joint	Conference	on	Neural	Networks.55. Park, Ji Sun, Taek Young Youn, Hye Bin Kim, Kyung Hyune Rhee, and Sang Uk Shin. 2018.
Sensors	(Switzerland):	Smart	Contract-Based	Review	System	for	an	IoT	Data	Marketplace.56. Patel, Kanubhai, and Bharat Buddadev. 2015. Detection and mitigation of android malwarethrough hybrid approach. In International	symposium	on	Security	in	Computing	and
Communication.57. Pehlivan, Ugur, Nuray Baltaci, Cengiz Acarturk, and Nazife Baykal. 2014. The analysis offeature selection methods and classi�ication algorithms in permission based Android malwaredetection. In IEEE	SSCI	2014:	2014	IEEE	Symposium	Series	on	Computational	Intelligence	-
CICS	2014:	2014	IEEE	Symposium	on	Computational	Intelligence	in	Cyber	Security,
Proceedings.58. Peng, Wuxu, Linda Huang, Julia Jia, and Emma Ingram. 2018. Enhancing the Naive Bayes spam�ilter through intelligent text modi�ication detection. In Proceedings	-	17th	IEEE	International
Conference	on	Trust,	Security	and	Privacy	in	Computing	and	Communications	and	12th	IEEE
International	Conference	on	Big	Data	Science	and	Engineering,	Trustcom/BigDataSE	2018.59. Rastogi, Vaibhav, Yan Chen, and Xuxian Jiang. 2013. DroidChameleon: Evaluating android anti-malware against transformation attacks. In Proceedings	of	the	8th	ACM	SIGSAC	symposium	on
Information,	Computer	and	Communications	Security	-	ASIA	CCS	’13, 329. New York: ACMPress.60. Biljana, L., Risteska Stojkoska and Kire V. Trivodaliev. 2017. A	Review	of	Internet	of	Things	for
Smart	Home:	Challenges	and	Solutions.61. Rodriguez-Mota, Abraham, Ponciano Jorge Escamilla-Ambrosio, Salvador Morales-Ortega,Moises Salinas-Rosales, and Eleazar Aguirre-Anaya. 2016. Towards a 2-hybrid androidmalware detection test framework. In 2016	International	Conference	on	Electronics,
Communications	and	Computers	(CONIELECOMP), 54–61. IEEE.62. Saracino, Andrea, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. 2018. MADAM:Effective and ef�icient behavior-based android malware detection and prevention. IEEE
Transactions	on	Dependable	and	Secure	Computing.63. Seo, Seung Hyun, Aditi Gupta, Asmaa Mohamed Sallam, Elisa Bertino, and Kangbin Yim. 2014.Detecting mobile malware threats to homeland security through static analysis. Journal	of
Network	and	Computer	Applications 38 (1): 43–53.64. Shijo, P. V., and A. Salim. 2015. Integrated static and dynamic analysis for malware detection.In Procedia	Computer	Science.65. Shiqi, Luo, Tian Shengwei, Yu Long, Yu Jiong, and Sun Hua. 2018. Android malicious codeclassi�ication using deep belief network. KSII	Transactions	on	Internet	and	Information
Systems.66. Sun, Mingshen, Xiaolei Li, John C.S. Lui, Richard T.B. Ma, and Zhenkai Liang. 2017. Monet: Auser-oriented behavior-based malware variants detection system for android. IEEE
Transactions	on	Information	Forensics	and	Security 12 (5).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

67. Talha, Kabakus Abdullah, Dogru Ibrahim Alper, and Cetin Aydin. 2015. APK auditor:Permission-based Android malware detection system. Digital	Investigation.68. , Tchakounté, F., P. Dayang. 2013. International journal of science and unde�ined. System callsanalysis of malwares on android. International	Journal	of	Science	and	Technology 2 (9): 669–674.69. Thomas, Blasing, Leonid Batyuk, Aubrey Derrick Schmidt, Seyit Ahmet Camtepe, and SahinAlbayrak. 2010. An android application sandbox system for suspicious software detection. In
Proceedings	of	the	5th	IEEE	International	Conference	on	Malicious	and	Unwanted	Software,
Malware	2010.70. Tran, Khoi-Nguyen, Mamoun Alazab, Roderic Broadhurst, et al. 2014. Towards a feature richmodel for predicting spam emails containing malicious attachments and urls. Eleventh
Australasian	Data	Mining	Conference.71. Vasan, Danish, Mamoun Alazab, Sobia Wassan, Hamad Naeem, Babak Safaei, and Qin Zheng.2020. Imcfn: Image-based malware classi�ication using �ine-tuned convolutional neuralnetwork architecture. Computer	Networks 171: 107138.72. Venkatraman, Sitalakshmi, and Mamoun Alazab. Use of data visualisation for zero-daymalware detection. Security	and	Communication	Networks.73. Wang, Jingdong, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. 2014. Hashing for similaritysearch: A survey. arXiv	preprint arXiv: 1408. 2927.74. Wang, Panpan, and Bo Li. 2018. Vehicle re-identi�ication based on coupled dictionary learning.In 2018	2nd	International	Conference	on	Robotics	and	Automation	Sciences	(ICRAS), 1–5.IEEE.75. Wang, Zi, Juecong Cai, Sihua Cheng, and Wenjia Li. 2016. Droid deep learner: IdentifyingAndroid malware using deep learning. In 2016	IEEE	37th	Sarnoff	Symposium, 160–165. IEEE.76. Wu, Dong Jie, Ching Hao Mao, Te En Wei, Hahn Ming Lee, and Kuo Ping Wu. 2012. DroidMat:Android malware detection through manifest and API calls tracing. In Proceedings	of	the	2012
7th	Asia	Joint	Conference	on	Information	Security,	AsiaJCIS	2012.77. Songyang, Wu, Pan Wang, Xun Li, and Yong Zhang. 2016. Effective detection of androidmalware based on the usage of data �low APIs and machine learning. Information	and
Software	Technology 75: 17–25.[Crossref]78. Wu, W.-C., and S.-H. Hung. DroidDolphin: A dynamic android malware detection frameworkusing big data and machine learning. In 2014	Conference	on	Research	in	Adaptive	and
Convergent	Systems,	RACS	2014, 247–252.79. Ke, Xu, Yingjiu Li, and Robert H. Deng. 2016. ICCDetector: ICC-based malware detection onandroid. IEEE	Transactions	on	Information	Forensics	and	Security.80. Xu, Ke, Yingjiu Li, Robert H. Deng, and Kai Chen. 2018. DeepRe�iner: Multi-layer androidmalware detection system applying deep neural networks. In 2018	IEEE	European

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/1408.2927
https://doi.org/10.1016/j.infsof.2016.03.004

Symposium	on	Security	and	Privacy	(EuroS&P), 473–487. IEEE.81. Yerima, Suleiman Y., and Sakir Sezer. 2018. Droidfusion: A novel multilevel classi�ier fusionapproach for android malware detection. IEEE	Transactions	on	Cybernetics 49 (2): 453–466.82. Yerima, Suleiman Y., Sakir Sezer, and Igor Muttik. 2014. Android malware detection usingparallel machine learning classi�iers. Proceedings	-	2014	8th	International	Conference	on	Next
Generation	Mobile	Applications, 2014. Services and Technologies: NGMAST.83. Yu, Wei, Linqiang Ge, Guobin Xu, and Xinwen Fu. 2014. Towards neural network basedmalware detection on android mobile devices. In Cybersecurity	Systems	for	Human	Cognition
Augmentation, 99–117. Springer.84. Yuan, Zhenlong, Lu Yongqiang, and Yibo Xue. 2016. Droiddetector: Android malwarecharacterization and detection using deep learning. Tsinghua	Science	and	Technology 21 (1):114–123.[Crossref]85. Zhang, Mu, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-aware android malwareclassi�ication using weighted contextual api dependency graphs. In Proceedings	of	the	2014
ACM	SIGSAC	Conference	on	Computer	and	Communications	Security, 1105–1116.86. Zhang, Yi, Yuexiang Yang, and Xiaolei Wang. 2018. A novel android malware detectionapproach based on convolutional neural network. In Proceedings	of	the	2nd	International
Conference	on	Cryptography,	Security	and	Privacy	-	ICCSP	2018, 144–149. New York: ACMPress.87. Zhou, Yajin, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get off of my market:Detecting malicious apps in of�icial and alternative android markets. In NDSS	(Network	and
Distributed	System	Security	Symposium).88. Zhu, Dali, Hao Jin, Ying Yang, Di Wu, and Weiyi Chen. 2017. DeepFlow: Deep learning-basedmalware detection by mining android application for abnormal usage of sensitive data. In
Proceedings	-	IEEE	Symposium	on	Computers	and	Communications.89. Zhu, Huijuan, Yang Li, Ruidong Li, Jianqiang Li, Zhu-Hong You, and Houbing Song. 2020.Sedmdroid: An enhanced stacking ensemble of deep learning framework for android malwaredetection. IEEE	Transactions	on	Network	Science	and	Engineering.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1109/TST.2016.7399288

(1)(2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_6
Deep	Learning	in	Malware
Identi�ication	and	Classi�icationBalram Yadav1 and Sanjiv Tokekar2 I.E.T, D.A.V.V., Indore, IndiaI.E.T., D.A.V.V., Indore, India
Balram	Yadav	(Corresponding	author)
Email:	balram.dreamsworld@gmail.com
Sanjiv	Tokekar
Email:	stokekar@ietdavv.edu.in

AbstractAlbeit the cyber world has become an essential part and the lifeline ofthe present day, there are threats associated with it. People access thecyber world for various services like networking, banking,communication, shopping, and for other uses. Malware is one of theprimary and perilous threats among malevolent software for thedecades in the cyber and the computing world. Due to its magni�icationin volume and in complexity, malware and its variant identi�ication andclassi�ication are the most central and severe problems nowadays.Since malware inception, more and more malware is engendered anddesigned, as time passes; more intricate malware is designedenormously. Researchers and analysts are perpetually probing for asolution that is the most ef�icacious to �ight back with malware. Themost-famed methods utilized for malware analysis is signature-baseddetection, static, and dynamic analysis. In recent years, signature-based detection has been proven ineffective against the escalation ofmalware and its variants. Malware classi�ication is attracting

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_6
mailto:balram.dreamsworld@gmail.com
mailto:stokekar@ietdavv.edu.in

widespread interest due to its vast proliferation. In this chapter, wehave chosen to discuss and explore another method of malwareanalysis that is image-based malware analysis utilizing deep learning.We are speci�ically discussing malware classi�ication utilizing malwarevisualization and deep learning, one of the most widely implementedtechniques in many real-world applications. To better understand theconcept from a practical perspective, we additionally discussed andimplemented a fundamental level malware classi�ier, for the reader’sfurther research and study purpose. The main objective of this chapteris to avail readers a better and in-depth understanding of malwareclassi�ication, visualization, deep learning algorithms and emergingchallenges, open issues.
1	 Malware	and	Malware	AnalysisIn this section, we are discussing what is malware, what is malwareanalysis, what is malware classi�ication, how we visualize malware, etc.This section is prodigiously needed and avails readers to betterunderstand the malware analysis and malware classi�ication.
1.1	 MalwareTo ef�icaciously understand and analyze malware, you should befamiliar with it. Malware is an abbreviation for malicious software(malicious software is an umbrella term used to refer a variety offorms of inimical software or programs) intending to accessinformation, resources without the user’s noti�ication, and sanction.Malware is any code that performs inimical. Malware infections areamong the most frequently encountered threats in the digital andcomputing world. Malware is additionally utilized for obtaining apassword, obtaining con�idential data; additionally, they are acclimatedto trap the government. The malware is mall functioning software thatis found on the computer systems. Malware and other threats arede�ined as specially indited programs to perform deleterious activities.An assailant designs malware to compromise computer services,access data, bypass access controls, and affects the functioning of acomputer, its applications, or data.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Adware

Virus

The accelerated growth of devices in the cyber world hasdesignated a massive obstruction in front of malware analysts,researchers, and additionally for antivirus companies. Assailantsutilize the cyber world for illegitimate activities to commit �inancialfrauds, to gain access to sensitive and personal information, to gainaccess for systems and networks. In recent years, there has been anexpeditious increase in Internet attacks [7, 8]. The researchers andanalysts customarily suggested security mechanisms and designednovel methods to �ight malware and its variant attacks. There has beena great amendment in the design of malware. Afore the term malwarewas coined, all the malignant programs were considered under theterm computer virus. Malware is an umbrella term for any programthat contravenes the con�identiality, integrity, and availability ofaccommodations, contrivances, networks, or systems.The list below provides an overview of variants of malware basedon malware’s behavior includes Trojans, viruses, worms, rootkits,botnets, phishing, spam, spyware, key loggers, logic bombs, etc. is kenned as advertisement software. Adware is thedesignation given to those programs which are designed to exhibitadvertisements on your computer when you explore the cyber world,and then redirect your search requests to advertising websites andaccumulate information about you and your interest. Adware isconsidered as malevolent because it amasses data without yourconsent or sanction. It is a type of malware that automaticallydistributes advertisements. Advertising-forti�ied software oftencomes bundled with software and applications and most of them serveas a revenue tool.A computer virus is a malevolent program that cyber attackersprogram to reproduce in massive amounts and affects the functioningof a computer and degrades its performance. It is also known asinfectors. It conventionally does so by assailing and infectingsubsisting �iles on the target system and from one host to another.Viruses must execute to do their deleterious task, so they target anytype of �ile that the system can execute. A virus is a software programthat modi�ies other programs and af�ixes itself to their code. A virus

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Spyware

Worm

Trojan

Key	logger

Rootkit

can run by itself; they perform intended malevolent activities when theinfected program is executed.Abbreviated for spy software (software that spies on acomputer system). It is programmed to monitor and record browsingdata as well as con�idential information and other activities. It is a typeof malware that spies and tracks utilizer activity without theirerudition. The capabilities of spyware can include keystrokesaccumulation, �inancial data harvesting, or activity monitoring.Functionally virus and worms are homogeneous. Worms areinfectious and spreads. Assailers design worms to replicatethemselves like a virus. However, a worm replicates without targetingand infecting speci�ic �iles that are already present on a computer.They utilize a computer network to spread, relying on security failureson the target computer to access it, and steal or delete data. Worms arenetwork viruses that can spread over the network by duplicatingthemselves. They do not transmute or ravage the user’s �iles but theyreside in main memory and duplicate themselves, and by this theymake the system and network unresponsive.A trojan or trojan horse is a male�icent program thatrepresents its utilizer to be appearing utilizable and innocuous �iles orlegitimate software. Attackers distribute trojans as routine software,game, or an implement that persuades a utilizer to install it on theircomputer. The denomination is derived from the antediluvian Greekstory of the wooden horse that used to march into the city of Troy bystealth. Trojan horses are just as pernicious on computers andconsidered destructive. Cybersecurity experts consider trojans to beamong the most hazardous types of malware, concretely trojans aredesigned to glom �inancial information from users.A keystroke logger, or key logger, captures keystrokeingression made on a computer by the utilizer, often without thesanction or erudition of the utilizer. Key loggers have legitimate usesas a professional information technology monitoring tool . However,keystroke logging is commonly utilized for malefactor purposes,capturing sensitive information like usernames, passwords, answersto security questions, and �inancial information.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Bots	and	Botnets

Ransomware

A rootkit is a set of software tools, typically malevolent, which gives anunauthorized utilizer privileged access to a computer. Once a rootkithas been installed, the controller of the rootkit can remotely execute�iles and transmute system con�igurations on the host machine.Rootkits cannot self-propagate or replicate. They must be installed ona device. Additionally kenned as robots. Bots are male�icentprograms designed to in�iltrate a computer and automatically respondto and carry out instructions received from a central command andcontrol server. Bots can self-replicate (like worms) or replicate viauser action (like viruses and trojans).Ransomware is a type of malware that locks the dataon a victim’s computer, typically by encryption. The cybercriminalbehind the malware demands payment afore decrypting the ransomeddata and returning access to the victim. The motive for ransomwareattacks is proximately always monetary, and unlike other types ofattacks, the victim is conventionally noti�ied that an exploit hasoccurred and is given instructions for making payment to have thedata renovated to normal. It is a type of malignant software thatessentially restricts utilizer access to the computer by encrypting the�iles or locking down the system while injunctively authorizing aransom. Users are forced to pay the malware author to remove therestrictions and gain access to their computers.
1.1.1	 Current	Scenario	of	Malware	Magni�icationThis section deals with the current scenario of the magni�ication ofmalware and its variants. We can see from Fig. 1 that the number ofattacks is growing every year. The number of malware found perpetualto increment because malware and its variants can be engenderedutilizing automated tools and reusing code modules. Reports fromdifferent antivirus companies limpidly describe that number ofmalware, and its variants are incrementing expeditiously.A report from the av-test institute verbalized that in the period2011- august 2020, 1050.82 million malware were recorded [7] and10.87 million new malware were reported in the month August 2020Fig. 2.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 Malware evolution statistics

Fig.	2 New malware evolution statisticsOne more report from McAffe antivirus company placidly describesthe statistics of malware evolution, millions of malware and variantsare discovered [8].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

There are many more reports from different antivirus companiesconspicuous the fact that malware and its variant assailments areincrementing every year and besides malware, reports additionallypresent the current scenario of attacks of Internet of Things (IoT)malware, mobile malware, and withal an expeditious increase is inransomware recently. With these statistics, manual malware analysis isnot feasible anymore; it does not scale to handle this enormous countof malware that’s why the process of malware analysis needs to beautomated. This is discovered or reported malware and its variants. Itdoes not account for malware that has not been discovered or reportedyet. There could be millions more out there that are still relishing thecomfort of not being detected
1.1.2	 Malware	FamilyA malware family is a group of malware that comports and functions inthe same way. A family can be divided into different variants, especiallyif an incipient malware has different functionality and structure thanthe precedent ones. Malware family is the term utilized for the malwaresamples that belong to the same family designates they apportion theircode or can have homogeneous code, capabilities, damage potential,inchoation, or behavior. Malware family betokens that incipientmalware is designed by utilizing antecedent malware so we can groupthem in a single malware family.For example, the Loylda family refer Table 1 of malware has fourknown variants: Loylda.AA1, Loylda.AA2, Loylda.AA3 and Loylda.AT,malware samples from malimg dataset [19].
1.1.3	 Threats	From	MalwareThe damage caused by malware depends upon it, whether it infected acomputer, a business organization or whole network. Theconsequences of the damage caused by malware depend upon the typeof malware. There are many threats associated with variants ofmalware, such as some malware interrupts the services of the systemand operating system, some accesses �ile system without sanction,some access user’s con�idential data, some perform a denial ofaccommodation attacks, some minimize the space of a system,effacing, misplacement and corrupts �iles, some access systems

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

resources, they additionally decelerate the process of the system,engender multiple shortcuts, automatically consumes an abundance ofspace in the system and truncating the recollection of the system.Malware greatly affects the functionality of computers and networks.Malware additionally causes hardware failure.
1.2	 Malware	AnalysisMalware analysis is the process of inspection and dissection of thefunctionality, purport, inception, and potential impact of malevolentcode. In another way, it is the process of extracting cryptic informationfrom malware code through static, dynamic, or hybrid inspection byutilizing tools, techniques, and methods. The data that is extractedfrom malware can be simple like its �ile type, strings to more perplexedinformation like malfeasance. Malware analysis denotes analyzing andinspecting binaries of malignant code to understand its working and�inding methods for identi�ication and classi�ication of homogeneous�iles. Attributes or properties of data/samples, and these attributes areanalyzed to engender paramount insights into the data under analysis.We accumulate features from malware binaries.For example, in the facial detection system, the features would beshape, size, color, and structure of eye perceivers, nose perceiver and inmalware analysis, features can be strings from the malware binaries,application programming interface (API) call sequences, n-grams, etc.
1.2.1	 Traditional	ApproachesThe investigation of male�icent code is done traditionally mainly withstatic, dynamic, and hybrid analysis. Traditional approaches Fig. 3 suchas static, dynamic, or hybrid analysis extract separate levels of featuresfrom malignant samples for identi�ication and relegation, which cannotperform ef�iciently and accurately. The utilizations of deep learning formalware classi�ication offers an expedient of building scalable machinelearning models, which may handle any scale of data, withoutexpending of resources such as memory. Deep learning marks malwaredepend on the general pattern, which directs the distinguishing of avariety of malware attacks and their variations. Furthermore, deeplearning conducts a profound classi�ication and improves its accuracybecause deep learning identi�ies more features than conventional

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

machine learning methods by passing through many calibers of featureextraction. This enables deep learning models to acquire an incipientpattern of malware after the fundamental training phase.
1.2.2	 Features	and	Feature	EngineeringThe performance of any classi�ication, prediction, and recognitionsystem is closely dependent on feature. In machine learning, featuresare learned manually or we can say that hand-crafted features are used.They dominate the past on image- and video-based applications. Thereare many disadvantages associated with this feature learning like deepknowledge of data for feature extraction; feature extraction andclassi�ication were two different modules, where hundreds of featurescrafted for applications, feature dimension is high and to selectoptimized features from feature vector is a slow process.

Fig.	3 Traditional malware analysis approachesTraditionally malware was identi�ied and analyzed by utilizing thefollowing approaches.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1.2.3	 Static	AnalysisIt refers to the analysis or investigation of a malignant programwithout executing it. It is the process of extracting information frommalware while it is not executing. Static analysis can be performeddirectly with the actual code (if present) and if not, can be applied tosundry representations of executables. Static analysis is consideredthe most facile, expeditious, and less precarious analysis process. It isthe most facile and expeditious because there are no special conditionsand requisites needed for the analysis process. The malware is simplysubjected to analysis implements. It is less jeopardous because themalware is not executed during analysis; consequently, there is not atall any jeopardy of an infection yielding and spreading while analysis isgoing on, and we do not worry about engendering a safe environmentfor static analysis. The patterns detected in this kind of analysis includestring signature, byte-sequence or operation codes (opcodes),frequency distribution, byte-sequence n-grams or opcodes n-grams,API calls, the structure of the disassembled program, etc. The terminusgoal is to identify malware afore the program goes under assessment.Disassembly of malevolent programs is required to detect the patternssome prevalent disassembly implements are objdump, IDA Pro, etc.Static analysis is considered to be a less pro�it method of analysis asthe data extracted from the static analysis is less promising becausedata is amassed when malware is in passive mode (not executing).Data extracted is constrained and not reveal much paramountinformation about malware. Prevalent techniques applied in the staticanalysis are �low analysis, string analysis and signature analysis.
1.2.4	 Dynamic	AnalysisDynamic analysis is the process of extracting data from malware whileit is executing. It refers to the analysis of the deportment of amalevolent program while it is being executed in a controlledenvironment (virtual machine, emulator, sandbox, etc) to identifyinimical activities after the program executes. The demeanor ismonitored by utilizing implements like process monitor, processexplorer, wire shark, or capture bat. This kind of analysis endeavors tomonitor system calls, injunctive authorization trace, function and APIcalls, the network, the �low of information, etc. Unlike the static

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

analysis, which provides inhibited information from the malware beinganalyzed, the dynamic analysis offers an in-depth view into themalware’s functions and comportment because it is accumulatinginformation while the malware is executing. To conduct dynamicanalysis we require two things, �irst is the environment where we canexecute malware is in a controlled manner for the analysis purport andsecond is analysis implements that monitor and records theenvironment for any vicissitudes made by the malware to its targetsystem. Unlike static analysis, dynamic analysis is considered to behighly jeopardous but paramount, or high-pro�it process. The peril ofinfection, spreading, or something inimical transpiring is high becausethe malware is executing; the pro�it is high because the data extractedfrom malware reveals more of itself during execution. In the dynamicanalysis, we are probing for the following vicissitudes in registryactivity, network traf�ic activity, process, and �ile activity. Someprevalent dynamic analysis implements are process monitor, wireshark, capture bat, anubis, etc.
1.2.5	 Hybrid	AnalysisThe hybrid analysis technique includes consolidating static anddynamic features accumulated from examining the application anddrawing data while the application is running, discretely. Nevertheless,it would boost the precision of the identi�ication. The principaldrawback of hybrid analysis consumes the system resources and takesa long time to perform the analysis. The hybrid analysis amalgamatesthe traits of static and dynamic analysis for expeditious analysis andbetter results.
1.2.6	 ComparisonStatic analysis cannot detect unknown malware and its variants.Compared to static analysis, dynamic analysis is more ef�icacious anddoes not require the executable to be disassembled but on the otherhand, it takes more time and consumes more resources than staticanalysis, being more arduous to scale. One more issue is as thecontrolled environment in which the malware is monitored is differentfrom the genuine one, the program may comport differently becausesome deportment of malware might be triggered only under certain

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

conditions such as via a concrete command or on the concrete systemdate and in consequence, cannot be detected in a virtual environment.In static analysis, data extraction is effective only if the malware is freefrom any type of encryption or obfuscation. Dynamic analysis is allabout making the malware prosperously run in a controlledenvironment. Therefore, its circumscription is because of the differentmalware dependencies like time, event, program, etc. Static analysiscan facilely be subjugated by a packed and encrypted �ile. This is why�ile unpacking and decryption are paramount in the �ight againstmalware. Static analysis reveals some immediate information aboutmalware but it is expeditious, exhaustive analysis more in-depthinformation but it is hard and time-consuming.Malware analysis is a highly manual and laborious task, additionallyrequires analysts to have expertise in software internals and reverseengineering. Data mining and machine learning have shown promise inautomating certain components of malware analysis, but thesemethods still rely heavily on extracting paramount features from thedata, which is a nontrivial task that perpetuates to requirepractitioners with specialized skill sets. As the number of devicesconnected over the cyber world increases parallelly the attacksadditionally increase exponentially. In reality, malware analysis doesnot reveal most of the information from the malware because of theknown limitation of the malware analysis process.
1.3	 Malware	Classi�icationWe now shift our discussion toward the main topic of this chapter thatis malware classi�ication and identi�ication. In general, malwareclassi�ication is de�ined as to group or classify malware togetherpredicated on some mundane properties like they apportionhomogeneous code, same potential damage, their inceptions, etc. Inmore simple words, classi�ication is the process of assigning an objectto a category or class. Classi�ication refers to methods for presagingthe likelihood that a given sample belongs to a prede�ined class orcategory, like whether a piece of email belongs to the class “spam” or aurl is benign or malignant.Malware can be classi�ied in many ways such as depending on task,inception, authorship, damage potential, etc. In general, malware

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

samples are grouped by family. Malware samples that showhomogeneous functionality, structure with little differences aregrouped under one roof and referred to as they belong to the samemalware family. Classi�ication is the prediction of incipient samplesinto its class whereas clustering is about discrimination of one groupof samples from other groups. Classi�ication is supervised whereasclustering is unsupervised. Classi�ication examples are like to classifythe taste of food as good or bad, to classify the thoughts or thinking asright and wrong, etc.The prevalent term for non-male�icent �iles is a benign �ile. Theseare the examples of a binary classi�ication problem one with only twooutput classes, “spam” and “not spam,” “botnet” or “benign.” Byconvention, samples that possess the attribute we are investigating(e.g., that an electronic mail is spam) are labeled as belonging to class“1” while samples that don’t possess this attribute (e.g., mail that is notspam) are labeled as belonging to the class “0.” These 1 and 0 classlabels are often referred to as positive and negative cases, respectively.Classi�ication is a puissant and ef�icacious supervised learningmodel that can be applied productively to a broad range of security andother quandaries. The algorithms used to perform classi�ication arereferred to as “classi�iers.” There are numerous classi�iers available tosolve binary classi�ication problems, each with its strengths andimpotencies. By the de�inition of malware classi�ication, one can beconfused with the identi�ication of any given �ile as malicious and non-malicious. One should be kept in mind that malware classi�icationincludes the identi�ication and classi�ication of malicious and non-malicious �iles. So we can conclude that a given arbitrary binary �ileidenti�ied or classi�ied as benign or malware comes under malwareclassi�ication. This classi�ication is utilized to determine whether abinary is malicious or not.
1.3.1	 Classi�ication	StepsA classi�ication typically proceeds through the following steps:1. A training/learning phase: In this phase, an analyst builds a modeland applies a classi�ier on the training inputs. Training dataconsists of two things, data or samples, and its associatedlabels/class.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2. A validation phase: This phase is applied to assess the trainingperformance on validation data. The validation phase is optionalbut researchers and analysts vigorously suggest utilizing thevalidation phase. In this, training data is split into two sets, one isfor training and the second is for validation. Training is done ontraining data and to assess the training performance (customarilyaccuracy) we apply validation data on training.

3. A testing phase: To assess the performance of the deep learningmodel, we apply testing data on the classi�ier and monitor theclassi�iers prognosticated labeled with an authentic or ground-truth label of test samples. The test precision is the overallprecision of the model. test data is not optically discerned aforedata.

1.3.2	 Why	Malware	Classi�ication?Malware and its variant detection and classi�ication have become oneof the most adverse quandaries in the �ield of cybersecurity and thedigital world. The daily increase of malware and its variants is arigorous quandary of malware analysis. The main quandary withmalware analysis is that the number of attack �iles submitted toantivirus companies for the investigation purpose is enormous. It isvirtually infeasible and arduous to analyze each �ile manually, so thereis a desideratum for some automation system and implements toanalyze these �iles ef�iciently with less human intervention and efforts.In the cybersecurity domain, traf�ic classi�ication as malicious andbenign is considered the �irst step toward security. By classifyingmalware into their respective families is helpful to analyze samples of agiven family by human experts and some defensive measures can beproposed to mitigate malware attacks. Features or characteristics areextracted from the malware binaries utilizing data extraction methodsand implements. The attack of malware and its variants is not onlyinhibited to the cyber world, it is withal affecting the IoT networks,mobile networks, and contrivances. Researchers and analystscommenced to explore malware analysis utilizing deep learning andvisualization techniques in IoT, mobile, and cloud infrastructure.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1.3.3	 Why	Malware	Visualization?Malware visualization is the process of visualizing malware binaries asimages—examples are given in Fig. 4. Visualization avails to visualizekindred attributes and distinctions between two variants of the samefamily. Visualization is ef�icacious in the representation of internalstructure kindred attribute of malware. Malware binaries are ready torun or executable programs referred to as binary �iles and has anextension of .bin or .exe .

Fig.	4 Visual representation of malware

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

As we can visually perceive from Fig. 4 that malware from the samemalware family exhibits the same internal structure while malwarefrom different malware families has a different internal structure. Thisis the prevalent advantage of visual malware as an image and it availsin classifying malware. The advantage of images utilized invisualization is that they can give more in-depth information about theinternal structure of the malware binary code and could identify evensmall changes in code while retaining the whole structure of the code.
1.3.4	 Challenges	of	Malware	Classi�icationHere we are going to discuss the challenges that are reported duringthe study of malware analysis. One of the most sizably voluminouschallenges is that everyday millions of malware are being designed andthe complexity to detect this massive amplitude of sophisticatedmalware are very dif�icult to identify. Traditional approaches formalware analysis were very tedious and manual intervention wasrequired for analysis. Obfuscation techniques present most immenselycolossal hurdle and one of the major factors which affect the analysis ofmalware. Scalability is one of the major challenges in the malwaredefense system as the number and variety of malware are keptincrementing. Classi�ication algorithms and models can engenderprecise results on propitious conditions but this case is not possible inthe genuine world. To obtain a dataset for training and testing that issizably voluminous and accurately labeled is arduous. The number ofsamples in each class additionally affects the relegation precision. Theclassi�ier’s performance is highly dependent upon the ample quantityof labeled data. Over�itting and under�itting are two well-kennedquandaries associated with the classi�ier’s performance. There is not asingle performance measure that is used to assess the performance ofthe classi�ier; there are varieties of measures available like accuracy,precision, f1 score, roc curves, etc. Deep learning is about deep neuralnetworks and neural networks have a variety of hyper parameters thataffects the models or classi�ier’s performance like the number ofhidden layers, number of neurons per layer, learning rate, dropout, etc.Some features extracted from malware samples have highdimensionality, which denotes a more involutes system andincremented processing time. One of the latest emerging threat in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

malware analysis is the �ile less malware [10], it does not utilize the �ilesystem for its malevolent activities, thereby eschewing traditionalapproaches and became one of the hurdles in malware analysis.
2	 Deep	LearningIn this section, we are discussing what is deep learning, what aredifferent deep learning algorithms, how is the deep learning modelde�ined? The topic is brie�ly explicated to relate with the malwareclassi�ication.
2.1	 What	is	Deep	Learning?Deep learning is a sub-branch of machine learning and its functioningis inspired by the structure and function of the brain called neuralnetworks. Deep learning refers to the set of techniques utilized forlearning in neural networks. It refers to deep, or many-layered, neuralnetworks withal kenned as deep neural network. Deep learning is aboutlearning abstract representations of data or observations utilizingnetwork layers that avail to make sense of some kind of hiddenpatterns, features of data like images, sound, and text. In pursuingmalware analysis and lowering human intervention, deep learning hasbeen introduced into malware analysis. Deep learning depends onstudying various levels (from low level to higher level) ofrepresentations, where top-level features (for example, face) aretenacious from lower level ones (like edges, curve, etc.), and similarlylower- level features avail in determining numerous top-level features.
2.1.1	 Machine	LearningMachine learning is de�ined as the sub�ield of arti�icial intelligence. Thegoal of machine learning is to understand the data and build anumerical model, �it that data into a model that can be understood andutilized by the user.Antivirus companies commenced to utilize modern classi�icationtechniques dependent on data mining and machine learning methods.All the methods either data mining or machine learning approachdependent upon the extraction of features, applying more cleverframeworks or classi�iers for classi�ication purposes. The disadvantage

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

of machine learning is that it requires manual feature extraction. Manyauthors applied support vector machine (SVM) classi�ier, naı̈ve bayesclassi�ier, or mixed classi�iers to classify malware.
2.1.2	 Shallow	and	Deep	LearningDeep learning is a sub�ield of machine learning, concerned withfunctionality and structure inspired by the human brain called arti�icialneural networks. The term “deep” in deep learning isn’t a reference toany kind of in-depth understanding achieved by the approach; rather, itstands for conception and number of stacked layers of representationsof the input. How many layers contribute to a deep learning model ofthe input data is called the depth or deepness of the model? The termshallow learning algorithms are normally referred to as traditionalmachine learning algorithms. It refers to algorithms that are not deepin architecture, e.g., decision trees, support vector machines, naivebayes classi�ier, etc.Modern deep learning models often constitute tens or evenhundreds of stacked layers of representations and they’re all learned/extract features automatically from exposure to training data.Machine learning inclines to �ixate on learning/extracting only one(mostly) or two layers of representations of the input data; hence,they’re sometimes called shallow learning.
2.1.3	 What	Makes	Deep	Learning	Different?1. Deep learning algorithms offered better performance on manyinvolutes real-world problems. 2. It makes problem-solving more facile. 3. It automates the most critical phase of machine learning that isoptimized feature extraction. 4. With deep learning, we can acquire more re�ined transformationsof complex problems.
2.1.4	 Deep	Learning	Framework

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Generally, a framework is a platform, interface, accumulation oflibraries, and implements for developing applications. We have deeplearning frameworks for building deep learning models facilely andwithout going into depth cognizance of algorithms. Some popularframeworks are tensor �low, keras, pytorch, caffe, deeplearning4j, etc.
2.2	 Deep	Learning	AlgorithmsDeep learning can be considered as a sub�ield of machine learning. It ispredicated on learning and improving on its own by examiningalgorithms. While machine learning uses simpler concepts, deeplearning works with arti�icial neural networks, which are designed tobe homogeneous to how humans think and learn. Arti�icial neuralnetwork (ANN) drive deep learning. Neural networks were restrictedby computing power and thus were limited in complexity. However,deep learning (ANN with many layers) sanction computers to observe,learn, and react to intricate situations more expeditious than humans.Deep learning has availed image classi�ication, language translation,and speech recognition. Deep learning can be acclimated to solve anypattern recognition problem, to classify images, for languagetranslation, to recognize speech and without human intervention. Deeplearning is to learn hierarchical representations of input data.Commonly used deep learning algorithms are
2.2.1	 Deep	Neural	Network	(DNN)Deep neural networks are the ANN with many layers Fig. 5. Typicallydeep neural networks are feed-forward networks in which input �lowsfrom the input layer to the output layer and hidden layers(two or more) and the sodalities between the layers are one way which is in theforward direction(input layer to output layer). The outputs areobtained by learning with datasets of labeled information predicatedon backpropagation. The circumscription of deep neural networks isthat they don’t have any memory unit.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Deep neural network
2.2.2	 Restricted	Boltzmann	Machine	(RBM)RBMs are a two-layered arti�icial neural network with generativecapabilities Fig. 6. They can learn a probability distribution over its setof input. RBM can be utilized for dimensionality reduction, relegation,regression, collaborative �iltering, feature learning, and topic modeling.RBMs are a special class of Boltzmann machines and they are restrictedin terms of the connections between the visible and the hidden units.This makes it facile to implement them when compared to boltzmannmachines. As stated earlier, they are a two-layered neural network (onebeing the visible layer and the other one being the hidden layer) andthese two layers are connected by a fully bipartite graph. This denotesthat every node in the visible layer is connected to every node in thehidden layer but no two nodes in the same group are connected. Thereare two other layers of bias units (hidden bias and visible bias) in aRBM. This is what makes RBMs different from auto encoders. Thehidden bias RBM produces the activation on the forward pass and thevisible bias avails RBM to reconstruct the input during a rearward pass.The reconstructed input is always different from the actual input asthere are no connections among the visible units and therefore, thereis no way of transferring information among them.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	6 Restricted boltzmann machine
2.2.3	 Convolutional	Neural	Network	(CNN)Convolutional neural networks are very subsidiary for images basedprocessing, especially for image-based classi�ication. A convolutionalneural network Fig. 7 is a type of feed-forward neural network in whichthe connectivity pattern between its neurons is inspired by theorganization of the animal visual cortex, whose individual neurons arearranged in such a way that they respond to overlapping regions tillingthe visual �ield. Convolutional layers are the core of a convolutionalneural network. Convolutional neural networks, like neural networks,are composed of neurons with weights and biases (updates throughlearning). Each neuron receives inputs, applies a convolution operation(weighted sum of multiplication) over them, passes it through anactivation function, and responds with an output. The network has aloss function and weights and biases are updated according to the lossfunction. CNN is composed of three types of layers: convolution layers,pooling/subsampling layers, fully-connected/dense layers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 Convolutional neural network
2.2.4	 Deep	Belief	Network	(DBN)A DBN is a class of deep neural network, a graphical model, composedof multiple layers of latent variables (hidden units utilized for detectingfeatures), with connections between the layers but not between unitswithin each layer and have direct and undirected connections Fig. 8.RBMs can be stacked and trained to compose so-called deep beliefnetworks. Multiple RBMs can withal be stacked and learned through theprocess of gradient descent and backpropagation. Such a network iscalled a deep belief network. A deep belief network utilizes anunsupervised machine learning model to produce results. One of themundane features of a deep belief network is that albeit layers haveconnections between them, the network does not include connectionsbetween units in a single layer. A DBN can work as a supervisedlearning algorithm (as a classi�ier) and additionally utilized as anunsupervised learning algorithm (to cluster data).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	8 Deep belief network
2.2.5	 Recurrent	Neural	Network	(RNN)Recurrent neural networks are best to process sequences. A recurrentneural network Fig. 9 addresses the issue of the memory limitation ofdeep neural networks. Deep neural networks are stateless, butrecurrent neural networks have connections between passes andconnections through time. A recurrent neural network looks similar toa traditional arti�icial neural network except that it has a memory-stateand is added to the neurons. With a recurrent neural network, thisoutput is sent back to the previous layer number of times. RNNs canremember parts of the inputs and use them to make accuratepredictions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	9 Recurrent neural network
2.2.6	 Deep	Autoencoder	(AE)Autoencoder is a neural network Fig. 10 that utilizes unsupervisedlearning algorithms and backpropagation. It ef�iciently compresses andencodes input data then learns how to set output values identically tothe input values. How to decode the data back from the minimizedencoded representation to a representation that is as proximate to theoriginal input as possible. Autoencoder, by design, transforms data intoa hidden representation and then reconstructs data from that hiddenrepresentation inputs are high-dimensional data. It is compressed bythe hidden layer and the output layer reconstructs the inputs. The mainapplications of the autoencoder are data denoising and dimensionalityabbreviation.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	10 Autoencoder
2.3	 Steps	for	Building	a	Deep	Learning	ModelThe main advantage of deep learning systems for malware analysis isthat they automate the work of feature extraction, and they have thepotential to perform more accurately and ef�iciently than traditionalapproaches to malware analysis, especially we want to focus onmalware classi�ication especially on new, previously unseen malware.Essentially, the following steps Fig. 11 are used to build any deeplearning model for malware classi�ication.1. Data/samples collection: To train the DL model, we require data(training data). For malware analysis, we require malware as wellas benign (good wares) data. The performance of the dl modeldepends profoundly on the quantity and quality of trainingexamples, you provide for training. The quality of the training datais also important. If you want to apply the dl model for a multi-classclassi�ication problem you have to amass adequate data for eachclass. The general rule of thumb is that the more data (training

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

data) you feed into your dl model for training, the more preciseresults you will get.2. Model building: We have to de�ine a deep learning model amongvarious available deep learning models (DNN, CNN, RNN, AutoEncoders, etc.) as per the requirements. We �irst build the modelthen training and testing is applied on the de�ined model.

3. Training: Train the model for recognition of malware on theoptimized features extracted automatically by the dl model. Fortraining, we provide data /samples and associated labels ofsamples. Mundanely, training is considered to be an arduous taskto perform because of the settings of hyper parameters. We feedthe training images into different CNN model architectures (itvaries with several layers, number of neurons in layers, learningrate, number of epochs, batch size, etc.) with different hyperparameters settings, several epochs, and batch size and probe forthe model that �its our dataset.

4. Testing: Once you trained your model, we require to test the modelon the data samples that were not included in the training to assessthe model’s performance or how precise the model is. Generally,testing is done by running the trained deep learning model on thedata samples that were not included in the training denotes datathat has been never seen by the model.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	11 Deep learning model building
3	 Malware	Classi�ication	Based	on	Malware
Visualization	and	Deep	LearningIn the following section, we are going to present and discuss detailedprocedures on the recent cognate work predicated on malwareclassi�ication utilizing deep learning. The exhaustive study coverstechniques of malware visualization predicated on different deeplearning algorithms.To visualize malware as an image [19] is the �ield of representingmalware in the form of visual features. To analyze malware moredeeply, malware has to be transformed into an image, refer Fig. 13. Themain bene�it of visualizing malware as an image is that differentsections of a binary �ile can be facilely differentiated, Fig. 4. Manysolutions have been proposed and implemented utilizing static anddynamic approaches but this work is predicated on the malevolentcode and its variants detection and classi�ication utilizing visualizationtechniques and deep learning. There has been extensive research andstudy done on analyzing malware, many papers are published whichdenotes static, dynamic, and signature-based malware analyzing

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

techniques. A publication on image-based malware visualization is oneof the preferred ways [19]. This section explicates how to compose animage out of binary malware �iles, how to visualize those images, andhow these images are utilized for image-based classi�ication.Traditionally this task is done by signature matching. In signaturematching, a database is prepared of properties, the behavior ofpreviously seen malware; incipient binaries are compared by thisdataset to compare previously stored data to determine thatsomething visually perceived afore. Signature matching performs wellas long as malware designers alter the behavior and properties ofmalware to evade detection. A malware designer continuously changesthe properties and behavior of malware to avoid detection. By utilizingobfuscation techniques like metamorphic and polymorphic, authors ofmalware changes properties of code, behavior to avoid detection ofmalware by signature matching or malware identi�icationimplementations.We have studied papers which utilize the same principles as [19] toclassify the malware into their families. It has been observed that thedeep learning model is ef�icient. We propose to utilize malwarevisualization technique, converts every malware bytes code to agrayscale image. In research and analysis, it was observed thatmalware from different families has kindred attributes in visualappearance presenting to us an opportunity to exploit this impotencywhere these images will be utilized for image-based classi�ication. Inimage generation and classi�ication technique, every byte of data isconverted into a grayscale pixel; array of the byte stream wasconverted into an image. Image representation of the malwareengenders very convincing images for analysis purposes.
3.1	 Related	Work:	Recent	Innovations	in	Malware
Classi�ication	Using	Deep	Learning	and	VisualizationIn this section, we are going to discuss and review the current state-of-the-art approaches that have been established to address the malwareclassi�ication utilizing deep learning models and malwarevisualization.The solution based on malware visualization by Nataraj et al. [19]in the year 2011 is considered as the �irst solution of this kind. Authors

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

proposed a method to represent malware as a grayscale image andafter that extracted gist (a texture-based feature), afterward, thegrayscale malware images are classi�ied utilizing a data miningalgorithm knn (k-nearest neighbor). They experimented with themalimg dataset consisting of 9458 malware grayscale imagesbelonging to 25 different families, amassed from the anubis system.For the experimental purpose, they converted malware into a grayscaleimage of dimension 64*64. They extracted 320-dimensional texturefeatures from malware image predicated on gist. They divided thesamples into a ratio of 90–10% for train and test ratio. They obtainedthe test accuracy of 97.18% which is very high as compared totraditional approaches. The results obtained evidence thatvisualization of malware is very ef�icacious and can relegate malwarewith more precision and expeditiously than subsisting static anddynamic approaches.In the year 2013, Han k. et al. [5] proposed an incipient way ofvisualizing malware. They visualized malware as a color image utilizingbinary values. The proposed method generates RGB colored pixels byutilizing binary information extracted through static analysis. First, theauthor disassembled malware binary �iles utilizing implements such asIDA pro or ollyDbg, after disassembling the extracted sequence ofassembly codes are divided into blocks of opcodes (example of opcodesequence: pusmovaddsubmov), after block building, every block ofopcode instruction sequence is processed by two hash functions toengender matrix of coordinate values and RGB color pixelsinformation. To compute the homogeneous attribute between imagematrices authors utilized a selective area matching algorithm. Forexperiment purposes, the authors utilized a color image of size 256 *256, 2505 benign, and 8169 malware image matrices are engenderedutilizing a visualization implement. 95% test accuracy is achieved bythis method. Results deduced relegation ef�icaciously and the timespent to calculate homogeneous attribute was about 2.4ms.In 2016, K. K. Pal and k. S. Sudeep [21] presented a datapreprocessing technique for the malware relegation model utilizing aconvolutional neural network and image representation. Authorsproved that by applying preprocessing techniques on the data,classi�ication accuracy can amend. Raw data applied to any deep neural

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

network does not engender good results. The authors conducted threetypes of normalization on the dataset and showed how precisionvaries. They applied to mean normalization, standardization, zerocomponent analysis on the dataset. For experimental purport authorsused malware color images of size 32*32 and they utilized the cifar 10dataset (dataset contains 60000 color images of size 32*32 belongs to10 different classes). They obtained an accuracy of 64–68% when zerocomponent analysis is applied, they got increased accuracy ascompared to when no preprocessing applied.In the year 2016 Ding y. et al. [2] have prosperously applied a deepbelief network, one of the unsupervised learning algorithms formalware relegation. The authors represented malware as opcodesequences and then use deep belief network to detect malware. Anopcode (operation code) additionally kenned as an instructionmachine code that designates the operation to be performed. In a deeplearning algorithm, the neural network is trained multiple times by theraw opcode sequences extracted from the decompiled �ile, so that thehidden feature information can be ef�icaciously learned and themalware can be detected ef�iciently and more accurately. Featureextractor measures different measures like information gain,document frequency to evaluate the relegation . Author usedinformation gain to cull subsidiary n-gram. To accurately describe theopcode comportment, the author extracted opcode sequences from3000 benign and 3000 malware samples. The extractor evaluates10000 different n-grams with different information gain values. Fromthese 10000 values author utilized the top 400 n-grams as the featuresof an executable. DBN architecture has 3 hidden units with 200,200 50hidden neurons, respectively. Each layer is trained with 30 epochs. Theauthors obtained 96.1% accuracy.In the year 2016 Hardy w. et al. [6] proposed an intelligent deeplearning framework for malware detection. They applied auto encoder,it is one of the unsupervised deep learning algorithms used to detectgeneric features from malware to detect unknown malware. Theyutilized a greedy-based feature learning at each layer, followed bysupervised tuning of weights and biases. The authors extractedwindows-based API call sequences from the portable executable (PE)�iles. For experimental purpose, authors used the comodo cloud

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

security center dataset (dataset contains 22500 malware samples and22500 benign samples total of 50000) and the train and test ratio was90–10%. The experiment is performed with a different number ofneurons in the hidden layer but 100 neurons at each hidden layer and 3hidden layers con�iguration yield the maximum accuracy that is96.85% at training and 95.64% at testing.Tobiyama s. Et al. [23], in the year 2016, proposed the fusion ofdeep learning models in malware analysis. The authors �irst applied arecurrent neural network to extract the features based on malwarebehavior and then applied CNN to classify malware feature images ofsize image 30*30. To capture the behavior of malicious applicationauthors utilized API call sequences. The proposed malware detectionframework is mainly using API call sequence extraction and deeplearning technique for classi�ication. A process behavior is de�ined asvarious activities and to perform each activity various operations areassociated with activities. To record process behavior API callsequence is generated; the API call sequence represents activities andrelated operations. They extracted feature vector by training ofrecurrent neural network and then these extracted feature vectors areconverted into an image and applied CNN for classi�ication. Forexperimental purpose 81 malware process log �iles of 11 differentmalware families, 69 benign processes log �iles data collected by NTTsecure platform laboratory. The architecture of recurrent neuralnetwork consists of an input layer, a hidden layer, 2 LSTM hiddenlayers, and an output layer. The architecture of CNN consists of 2convolution and pooling layers with 10 and 20 �ilters, respectively.Used max pooling with stride 2, no of epochs: 5, batch size: 20. Theyobtained 96% accuracy.Azab A. et al. [1] in the year 2016 proposed and addressed machinelearning technique for identi�ication of untrained botnets traf�ic.Authors applied the c4.5 learning algorithm (for building classi�ier with10,20 and 30 FN costs and 1 FP cost) and correlation-predicatedfeature cull (cfs, applied to �ilter out duplicate, redundant andimpertinent features form extracted features) algorithm on thecommunication traf�ic between compromised contrivances andbotmaster, they extracted 511 different features coalescence from 9different features categories from this communication that avails to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

relegate between botnet traf�ic and legitimate traf�ic. For botnetnetwork traf�ic accumulation, Zeus (a botnet toolkit) was culled and itis considered one of the major threats, especially for attacks on onlinebanking transmissions. Two separate datasets accumulated forexperiment one are for training (the 432 botnet traf�ic engenderedutilizing zeus builder version 1.x and 2774 HTTP traf�ic) and thesecond is for testing(the 144 botnet traf�ic engendered utilizing Zeusbuilder version 2.x and 2396 HTTP traf�ic). All the built classi�iers wereevaluated utilizing the K-10 cross-validation to optate the lenientclassi�iers. The built classi�iers were evaluated utilizing the K-10 cross-validation to cull the rigorous classi�ier. The voting results from thethree costs achieved 88 TP, 56 FN, and 1 FP results, providing 0.989precision, 0.611 recall, and 0.755 F-Measure results. These resultsbetoken that the utilization of the stringent classi�ier might affect thedetection of the untrained version’s �lows that were included by thelenient classi�ier.In the year 2018, Kalash M. et al. [11] proposed and implemented adeep CNN model for malware classi�ication. They translate themalware classi�ication problem into an image classi�ication byfollowing the approach used by Nataraj et al. [19], converting malwarebinaries to grayscale images of size 224*224 and then applied aconvolutional neural network for classi�ication. The proposedconvolutional neural network model architecture is based on VGG-16.They applied the proposed method on two different datasets, namely,malimg(dataset consists of 9458 malware samples belonging to 25different families) and Microsoft dataset (contains 21741 malwaresamples, each malware sample belongs to 9 different malwarefamilies). Train and test ratio used by the authors are 90–10% in themalimg dataset and 10868 samples for training and 10873 samples fortesting on the Microsoft dataset. They utilized cross-entropy loss totrain the network. The authors achieved 98.52% accuracy on themalimg dataset (with 25 epochs and a batch size of 6) and 98.99 and99.97% on two different settings of Microsoft dataset (with 25 epochsand a batch size of 8).In 2018, Ni S. et al. [20] proposed a malware classi�icationalgorithm that utilizes static features and convolutional neuralnetwork. They converted the disassembled malware codes into

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

grayscale images based on simhash, and then classi�ication is done byconvolutional neural network. They extracted the opcode sequencefrom the code section as features then after extraction of the opcodesequence they calculated simhash for sequence similarity comparison.By using simhash and bipolar interpolation they converted the opcodesequence into a malware image then applied convolutional neuralnetwork for training and classi�ication. Each input image needs to gothrough two convolutional layers, two subsampling layers, and threefull connection layers. During the convolution process, they applied 32�ilters of size 2*2 and during subsampling max pooling is used whosesize is 2*2 to dimension reduction. The authors used the dataset forthe experiment in Microsoft malware classi�ication challenge on kaggleby Microsoft 2015. The dataset consists of 10868 labeled malwareimages from 9 families, from 10868, 80% of them used for training andthe rest for testing. The classi�ication accuracy they obtained was99.260% with a 98.07% f1 Score and 2.34% false positive rate (FPR).Kim C. H. et al. [13] in the year 2018 proposed a convolution gatedneural network for the task of malware identi�ication andclassi�ication. Proposed model comprised of convolutional neuralnetwork, gated recurrent unit (GRU), layer of deep neural network, anda sigmoid layer. Each convolutional neural network has a convolutionlayer, activation function, and pooling layer. All convolutional neuralnetwork produces a single output, and this output is applied to gatedrecurrent unit layers and treats this output of convolutional neuralnetwork as time-series data. Each gated recurrent unit produces asingle output equal to the number of convolutional neural networks inthe �irst layer. Output of GRU is input to deep neural network. Eachdeep neural network produces single output. The �inal layer of thenetwork is the sigmoid layer and the result of this layer is theclassi�ication.In the year 2019, Singh A. et al. [22] explored and implemented anew way to represent malware as color images as they used RGBrepresentation of malware (RGB images of size 32*32) over grayscaleimages to classify malware. They experimented with 37374 binarysamples belonging to 22 families collected from malshare, virusshare,and virustotal, and malimg dataset. They applied deep neural networkarchitectures ResNet-50(residual network) architecture including a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

dense convolutional neural network for classifying images. With theirimplemented model they obtained 98.98% using convolutional neuralnetwork and 99.40% using ResNet-50 on the authors dataset and96.08% using convolutional neural network and 98.10% using ResNet-50 on the malimg dataset. The authors introduced a novel approach toconvert the binary �ile string of zeros and ones into rgb color images.They used a 15 layer convolutional neural network model (5convolutional layers and 2 dense layers).Yin Q. et al. [25] in the year 2019 presented a fused model ofconvolutional neural network and recurrent neural network for imageclassi�ication. Authors extracted features using convolutional andrecurrent neural network networks from the intermediateconvolutional neural network network.In the year 2019, Naeem H. [17] proposed a fast deep learningmodel to detect malware in the IoT network. IoT devices improved theuser experience of the internet by smart devices to connect andinformation sharing. The author proposed the detection of malware byconverting malware binaries into the color images of size 192*192 andthen applied a deep convolutional model for ef�icient malwaredetection on the malimg dataset (dataset consists of 9458 malwaresamples belonging to 25 different families) and leopard mobiledatasets(contains 14733 malware samples and 2486 benign samplesof IoT applications.) The train and test ratio was utilized as 55–45% forthe malimg dataset and 34–66% for the leopard dataset. The authorobtained an accuracy of 98.18% on the malimg dataset and 97.34% onthe leopard dataset. The author achieved better accuracy and responsetime.In the year 2019, Khan U. R., et al. [12] de�ined an improved, moreintelligent convolutional neural network model for intrusion detection.Authors mentioned that machine learning algorithms have a lowdetection rate, as well as manual extraction of features, which is alaborious and time-consuming task that’s why they applied deeplearning in intrusion detection. Deep convolutional neural network isused for training and classi�ication and it automatically extractsoptimized features from input samples. The dataset used forexperiments is the KDD99 dataset; the dataset contains 494021training samples and 311029 test samples, from 5 different categories

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(contains normal, DOS, R2L, U2R, probe). They obtained the accuracyon improved convolutional neural network that is 99.23 for 800epochs, which is a promising result. CNN model architecture has twoconvolutional and two pooling layers.Mourtaji Y. et al. [16] in the year 2019 proposed a deep learningframework for malware classi�ication. Authors �irst converted malwarebinaries into grayscale images as used by Nataraj et al. [19] and thentrained a convolutional neural network model for classi�ication.Different parameters for experimental purpose used malimg andMicrosoft datasets. Train-test ratio used 85–15% for the malimgdataset and 10868 samples for training and 10873 samples for testing,and they utilized the convolutional neural network architecturede�ined by K. Simonyan and used a cross-entropy to learn and train themodel from the network after that utilize stochastic gradient descent(SGD) to optimize the learning parameters of the model, initialized thelearning rate to be 0.001 and 25 epochs, batch size of 6 for malimgdataset and 25 epochs, batch size of 8 for Microsoft dataset. Theauthors obtained 97.02% on malimg and 98.72% and 99.881% on twodifferent experiment settings on Microsoft dataset.Jain M. et al. [9] in the year 2020 applied and compared CNN andextreme learning machines (ELM) for malware classi�ication. Resultsare evident that ELMs required less time to train as compared to traina CNN and achieves higher accuracy on one-dimensional dataprocessing. Authors also found that for two-dimensional dataprocessing ELMs are faster than CNN. Authors experimented withdifferent settings of the CNN model like they applied CNN with onehidden layer than with two hidden layers with differenthyperparameters settings, and the best results they got with a two-layer con�iguration of CNN with input images of size 128 128 pixelswith 32 and 64 �ilter maps. With ELMs, they have to perform very fewerexperiment settings like only they tuned some neurons in the hiddenlayer, the chosen 50 neurons for the experiment. The authors utilizedgrayscale images of size 128*128 for CNN and grayscale images of size64*64 for the ELM model. They used the malimg dataset forexperiments and 80% for training, 10% for testing, and 10% forvalidation division is applied to the dataset. The con�iguration of CNN

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

architecture: CNN with two convolutional layers, 128 128 images,and (32, 64) �ilters and ELM architecture has 50 neurons in the hiddenlayer. They obtained an accuracy of 96.3% on the CNN model and97.7% on the ELM model.In January 2020, Kumar G. S. and Bagane P. [3] presented a hybriddeep learning-based model for malware classi�ication. They appliedconvolutional neural network with bi-directional long short-termmemory(LSTM) to do the task. First, they applied convolutional neuralnetwork for feature extraction, and then in the last layer after �latteningthe output they applied the LSTM model for the classi�ication.In the year 2020, Vasan D. et al. [24] proposed a novel approachbased on the ensemble CNN architecture model for effective detectionand classi�ication of malware images. Authors utilized the pre-trainedmodels and combined different optimized features extracted to �ine-tune the VGG 16 and ResNet50 and fused the extracted features fromboth models and classi�ied the malware into their correspondingfamilies. Results proved the effectiveness of the proposed method.In the year 2020, Naeem et al. [18] proposed a deep learning modelfor malware detection in the android operating system. Theytransformed a raw android �ile into a color image (of dimension224*224 and 229*229) and then applied a deep convolutional neuralnetwork model for android malware classi�ication. The authordesigned a very deep convolutional neural network that has 4convolutional layers each followed by an activation function and maxpooling layer, followed by a dense layer and softmax layer. The authorapplied a deep convolutional neural network model on the leoparddataset (dataset contains 14,733 malware samples and 2486 benignsamples of different IIoT applications) and the malimg dataset. Theyachieved 97.81% accuracy on a leopard mobile malware dataset(224*224 color image dimension), a well-known industrial Internet ofThings (IIOT) dataset, and 98.79% on a malimg dataset (with 229*229color image dimension).
3.1.1	 Generative	Adversarial	Networks	(GANs)Generative adversarial networks provide a new way of addressingcomputer vision, detection and classi�ication problems. One of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

biggest problems with deep learning model is lacking of suf�icienttraining samples as we know that good quality and suf�icient data isthe key of deep learning model. Any deep learning model heavilydependent on the number of samples providing for training. Manydatasets available today face this problem. We can notice from Table 1that malimg dataset is also a high imbalanced dataset Allaple. Amalware family contains 2949 samples as compare to Wintrim.BX andSkintrim.N malware family contains 97 and 80 samples respectively.This imbalance affects the training process as well as the classi�icationperformance. To address this problem GANs we can utilize. GAN can beused to generate samples from the data.GANs are types of deep learning technique for generative modelingand most recent development in machine learning. GANs are veryincipient in the literature on deep learning, and they belong tounsupervised learning. The �irst paper published by Goodfellow et al. In2014 [4] introduced the generative adversarial networks framework. AGAN is trained utilizing two neural network models. Generativemodeling requires a model to engender incipient samples from asubsisting distribution of available samples, for example, engenderingincipient images that are generally homogeneous but concretelydifferent from available images in the dataset. GANs are mainly utilizedwith convolutional neural network which denotes GANs are speciallyutilized for image cognate applications. A GAN is trained utilizing twoneural network models. One model is referred as the generator orgenerative network model, which learns to engender incipient likelysamples. The other model is called the discriminator or discriminativenetwork and learns to differentiate engendered samples fromauthentic samples, discriminator works like a classi�ier; itdistinguishes authentic samples from the engendered samples.We can apply GAN in cybersecurity �ield, and it is proving verypromising. One of the quandaries with any deep learning model is dataimbalance issue. As we all very well know that good quality andadequate magnitude of training data is the key for any deep learningmodels performance. So, we can surmount this issue of data imbalanceutilizing GAN and can engender incipient samples from the genuinesamples for training. In reality, all the real-world datasets areimbalance datasets and there is much variation in the number of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

samples in each family. So GANs can be proved very ef�icient to addressthis issue.In the year 2019, Y. Lu and J. Li [15] applied GAN for malwareclassi�ication/predication on deep learning model. Authors addressedthe data imbalance issue and engender incipient samples for training.They applied GAN utilizing convolutional neural network and calledthis model as deep convolutional generative adversarial network(DCGAN) to engender malware samples from the available dataset.Experimental results are conspicuous that utilizing GAN accuracy ofthe proposed model is incremented by 6%. In their implementation,they utilized a 18-layers deep residual net as the malware classi�ier.Network learns from the trained data that engenders the potentialdistribution of the incipient genuine samples from the authenticsamples, while the discriminator differentiates the incipient genuinesamples with the genuine samples as accurately as possible. Multipleconvolutional and convolutional-transpose layers are utilized in thediscriminator and engenderer for training. They trained the GANnetwork for 10000 epochs to engender the authentic samples, startingfrom the 1000 training epochs, preserved 25 engendered samples forevery 100 epochs for each class. So after the training is done. They have2250 engendered synthetic samples for each class. They achieved theoverall average testing accuracy of the deep residual network is 84%and the precision, recalls, and f1-scores of the classes with moresamples size are supplementally incremented.In the year 2017, Kim JY. et al. [14] proposed a transferredgenerative adversarial network (tGAN) for automatic malwarerelegation and detection of the zero-day attack. They surmount theconstraint of GAN training to pre-train GAN with auto encoderstructure. The proposed model gets the best performance compared tothe conventional learning algorithms. To address the data imbalanceissue and to engender incipient samples they proposed and appliedtGAN model predicated on GAN. Their proposed architecture consistsof three modules: pre-training module, engendering data module, andmalware detecting module. First module pre-trains the second modulewhich has an engenderer that engenders data kindred for training, anda discriminator that distinguishes genuine data from engendered data.The discriminator is trained to distinguish the authentic data from the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

engendered data, and the engenderer is trained to make thediscriminator to classify the engendered data into the genuine data.They used malware data utilized in the kaggle Microsoft malwareclassi�ication challenge. The accuracy of malware type detection is96.39%. The entire data is divided into training and test data at a ratioof 90:10. It shows the best performance compared to otherconventional models, and it enables to detect malware even with aminute of data.A detailed review of generative adversarial networks and itsapplication in cyber security is presented by Banjo Y. et al. [26]. Theyexplained how GANs are very useful and applicable in cyber security�ield. They reviewed two very widely utilized GAN architectures thedeep convolutional generative adversarial network (DCGAN), andwasserstein GAN. Their reviews are notable to study cyber securitywhere the GAN plays a vital role in the design of a security system . Thispaper guide the scope of modern cyber security studies withgenerative adversarial networks.Deep learning can help to solve problems caused by modernmalware and the way they function. Using deep learning we can alsoautomate the malware analysis process. The biggest advantage withdeep learning is that the manual extraction of features or data isskipped, deep learning architectures automatically extracts featuresfrom samples, based on the extracted features from the trainingdataset, samples are distinguished by samples belonging to aparticular class to other classes. Traditionally malware classi�icationhas been a manual process, involving experts having in-depthknowledge of malware, their working, properties in malware to designmalware identi�ication, or classi�ication engines. Deep learningfacilitates automatic extraction of optimized features from the trainingdataset, letting the automatic detection of features analysts can makeeffort for designing more ef�icient algorithms, and better results.
3.2	 Performance	Metrics:	To	Measure	the	Performance	of
the	Deep	Learning	ModelTo evaluate the performance of the developed system or solutionfollowing metrics are calculated. Using these metrics we can compare

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

different techniques and can conclude which technique is better thanothers.
3.2.1	 Confusion	MatrixIt is utilized to visualize the performance of a technique. In general, aclassi�ier is evaluated by a confusion matrix Fig. 12. Structure-wiseconfusion matrix is a table representation that is used to describe theperformance of a classi�ication model on the test datasets. All otherperformance metrics are calculated utilizing the confusion metric. Inthe confusion matrix, there are four possible states denominated truepositive (TP), false positive (FP), true negative (TN), and false negative(FN) de�ined as followsTP: when the sample is identi�ied as an attack and the sample is anattack (Remark: identi�ication of attack).FP: when the sample is identi�ied as an attack and the sample is notan attack (false alarm).TN: when the sample is not identi�ied as an attack and the sample isnot an attack.FN: when the sample is not identi�ied as an attack and the sample isan attack.

Fig.	12 Confusion matrix

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Accuracy indicates the proportion of all samples with correctpredictions to the total sample size. The formula to calculate accuracyis (1)Precision describes the ratio of predictive positive samples positive.The formula to calculate precision is (2)Recall is also known as True Positive Rate (TPR.)The formula tocalculate recall is (3)F1 is the harmonic mean of precision and recall. The formula tocalculate the F1 score is (4)Receiver operating characteristic curve (ROC) is a graph that is used tosummarize the performance of a classi�ier over all possible thresholds.The graph is generated by plotting a graph between True Positive Rate(TPR) and False Positive Rate (FPR). the formulas for TPR and FPR are
We observed that accuracy (1) is a common measure used to judge theclassi�ier’s performance but it seems inadequate, and other measureslike f1-score (4) and recall (3) are also important to evaluate theperformance of the classi�ication. High accuracy and recall with lowermisclassi�ication are required for an ef�icient model.
3.3	 A	Practical	Implementation	of	Malware	Classi�ication
Using	CNN	and	Malware	Image	Visualization

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this section, we are going to discuss a practical example of malwareclassi�ication utilizing a convolutional neural network, which isconsidered the most prosperous deep learning architecture incomputer vision, pattern matching, and natural language processing.We also discuss an idea of how convolution works, convolutionalneural network works, and the main operation types are used inbuilding the convolutional neural network model. We can implementany other deep learning model withal but most advanced applicationsand models are currently being utilized by convolutional neuralnetwork so we decided to implement convolutional neural network forour practical implementation. After reading this section, you will havean early understanding of how deep neural networks work, and you willbe able to move on to practical applications. Our goal is to give you anexpeditious and facile tutorial on how to implement image relegation.Hopefully, you will be able to understand the main practical conceptsand utilize this to build your applications and research.A fundamental convolutional neural network model architectureFig. 7 contains convolutional layer followed by an activation function(CONV), pooling layer (max or avg pooling based on the requisite)(POOL), dense/fully connected layer (FC).
3.3.1	 Convolution	LayerTo implement convolution operation kernels/�ilters are frequentlyutilized. The convolution operation (betokened by *) consists ofmultiplying the corresponding pixels with the kernel pixels, one pixelat a time, and summing up the values to assign that value to the centralpixel. The same operation will then be applied, shifting the convolutionmatrix to the left until all possible pixels are visited. Kernels or �iltersare a matrix of values and the kernel slides over the input image andperforms element-wise multiplication operation between the values inthe �ilter with the pristine pixel values of the image. Themultiplications are summed up engendering a single number for thatparticular receptive �ield. The input to the convolutional layer is animage that is resized to an optimal size (mundanely image size n*n)and fed as input to the convolutional layer. Let us consider image size is32*32*1, where 32*32 is image dimension and 1 is the channel depth,it will be 1 for grayscale image and will take value 3 for color images.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.3.2	 Pooling	LayerConvolutional layers in a convolutional neural network methodicallyapply kernels/�ilters to images to extract optimized features andoutputs feature maps. A quandary with feature maps is that they aresensitive to the location of the features in the input image whichdenotes a minuscule change (this can transpire due to shifting,cropping, rotation, or any other transformation) in the input image willyield different feature maps. A prevalent solution to this problem isdownsampling. Mundane pooling methods are average pooling andmax pooling. Max pooling is commonly utilized for the downsampling.Pooling layer operates on each feature map individually.
3.3.3	 Dense/Fully	Connected	LayerFully connected layers or dense layers are a crucial layer ofconvolutional neural network, which are responsible for recognizingand classifying images or we can say that the �inal classi�icationdecision is taken by a fully connected layer. Fully connected layer takesthe output from previous layers (convolutional and pooling layers ofthe de�ined convolutional neural network model) and predicts theclass/label that best describes the input image.
3.3.4	 DatasetIn this practical implementation, we will be working on one of the mostextensively used datasets in malware classi�ication that is the malimgdataset. The dataset details are given in Table 1. In this demonstration,we will build a simple convolutional neural network model to have anidea of the general structure of computations needed to tackle themulti-class classi�ication problem.First, let us understand the dataset. We are going to use malimgmalware dataset [19] for practical purpose. Description of the datasetis as follows1. The dataset contains 9339 malware images. 2. Malware images belong to 25 different malware families/classes. 3. Images are grayscale images.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 4. All images of different sizes. 5. Dataset is highly imbalanced.
Table	1 Malimg dataset
Serial	no. Family/class Family	name No.	of	variants1 Worm Allaple.A 29492 Worm Allaple.L 15913 Worm Yuner.A 8004 Dialer Instant access 4315 Worm VB.AT 4086 Rogue Fakerean 3817 PWS Lolyda.AA 1 2138 Trojan C2Lop.gen!G 2009 Trojan Alueron.gen!J 19810 PWS Lolyda.AA 2 18411 Dialer Dialplatform.B 17712 Trojan-Downloader Dontovo.A 16213 PWS Lolyda.AT 15914 Backdoor Rbot!gen 15815 Trojan C2Lop.P 14616 Trojan-Downloader Obfuscator.AD 14217 Trojan Malex.gen!J 13618 Trojan-Downloader Swizzor.gen!I 13219 Trojan-Downloader Swizzor.gen!E 12820 PWS Lolyda.AA 3 12321 Dialer Adialer.C 12222 Backdoor Agent.FYI 11623 Worm:AutoIT Autorun.K 10624 Trojan-Downloader Wintrim.BX 97

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Serial	no. Family/class Family	name No.	of	variants25 Trojan Skintrim.N 80— — Total 9339
3.3.5	 PreprocessingOur malimg dataset already contains malwarein the form of images(grayscale images), to demonstrate how a malware binary can bevisualized as an image, we are going to use a random text �ile and wewill show you how to convert the �ile into image Fig. 13. The ultimategoal of this step is to convert �iles into images and use them as theinput of our convolutional neural network. We can convert any �ileusing the following python code used by [19]. We have created anotepad �ile abc.txt with the contents of activeds.dll. Activeds.dll is thedynamic link library �ile of the windows operating system, which isstored in location c:/windows/system32/ activeds.dll.The following python program is used to convert the abc.txt �ileinto a grayscale image.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

After running the above program we got the following grayscale imageFig. 13 of the corresponding abc.txt.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	13 Converted grayscale image
3.3.6	 Image	ResizingLet us proceed, so our malimg dataset already contains malwaresamples in grayscale image format. To input these images intoconvolutional neural network for training, we need all images of thesame size, so there is need to resizes all images of the malimg datasetto the speci�ied size you want. I chose the (48*48) image dimension.As we can see from Fig. 4, some differences among malware images,However, it would be too complex to accurately classify malware intotheir corresponding families as we have 9339 total malware images.
3.3.7	 Implementation	DetailsFor a programming perspective, we performed the followingexperiment utilizing a personal laptop with i3, 2.40 GHz intelprocessor; a 64-bit system with 4GB of random access memory. Weused python programming language, python packages, and librarieswhich are availed to experiment. Keras library is utilized to train andtest the model which utilizes a convolutional neural network. We haveutilized spyder 4.0.1 which is a scienti�ic python developmentenvironment tool, python 3.7.5 on windows 10, 64-bit windows 10operating system.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.3.8	 ArchitectureLet us de�ine the convolutional neural network model for training andclassi�ication. Our dataset is ready; we have built our model usingkeras. Here, we will de�ine our model, which is a stacked layer ofconvolution and pooling operations, with a �inal �lattened layer and asoftmax activation function applied to determine the class probabilityof the malware samples. The following network architecture will beused for training and testing purpose, the chosen convolutional neuralnetwork architecture Table 2 will only be for study and understandingpurpose, We have randomly chosen the number of �ilters, layers, �iltersize. Hyper parameters tuning is also a research topic. So basically, wedon’t know how it is going to perform, what will be the accuracy, and wedo not need to worry about these things here.1. Convolutional layer : 30 �ilters, (3 * 3) kernel size, activation=ReLU 2. Max pooling layer : (2 * 2) pool size 3. Convolutional layer : 48 �ilters, (3 * 3) kernel size, activation=ReLU 4. Max pooling layer : (2 * 2) pool size 5. Dropout layer: dropping 50 percent of neurons 6. Flatten layer 7. Dense/fully connected layer : 1024 neurons, ReLU activationfunction 8. Dropout layer: dropping 50 perecnt of neurons 9. Dense/fully connected layer : number of output class, softmaxactivation function
Table 2 summarizes our chosen convolutional neural networkarchitecture.model.summary() is used to visualize de�ined model architecture.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Table	2 Summary of our chosen convolutional neural network architecture
S.	no. Layer	(type) Output	shape Parameters1 conv2d_3(Conv2D) (None, 46, 46, 30) 3002 max_pooling2d_3(MaxPooling2) (None, 23, 23, 30) 03 conv2d_4(Conv2D) (None, 21, 21, 48) 130084 max_pooling2d_4(MaxPooling2) (None, 10, 10, 48) 05 dropout_3(Dropout) (None, 10, 10, 48) 06 �latten_2(Flatten) (None, 4800) 07 dense_3(Dense) (None, 1024) 49162248 dropout_4(Dropout) (None, 1024) 09 dense_4(Dense) (None, 25) 25625The input for convolutional neural network training has a shape of[48 * 48 * 1]: [image width * image height * channel /depth]. In ourcase, each malware is a grayscale image, so the image channel valuewill be 1, if we use color images we have to assign value 3 in the imagechannel.We used the train test split() function of scikit learn to splitdataset images between train and test, following a (90-10) % ratio.Here is the code used to de�ine convolutional neural networkarchitecture using keras.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We executed our program for 15 epochs. Epochs summary are asfollowsTrain on 7564 samples, validate on 841 samplesEpoch 1/157564/7564 [==============================] - 174s23ms/step - loss: 0.9531 - acc: 0.7132 - val_loss: 0.2436 - val_acc:0.9394Epoch 2/157564/7564 [==============================] - 491s65ms/step - loss: 0.2252 - acc: 0.9332 - val_loss: 0.1796 - val_acc:0.9441Epoch 3/157564/7564 [==============================] - 713s94ms/step - loss: 0.1643 - acc: 0.9510 - val_loss: 0.1265 - val_acc:0.9631Epoch 4/157564/7564 [==============================] - 168s22ms/step - loss: 0.1370 - acc: 0.9594 - val_loss: 0.1125 - val_acc:0.9750

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Epoch 5/157564/7564 [==============================] - 168s22ms/step - loss: 0.1158 - acc: 0.9636 - val_loss: 0.1214 - val_acc:0.9655Epoch 6/157564/7564 [==============================] - 166s22ms/step - loss: 0.1062 - acc: 0.9681 - val_loss: 0.0941 - val_acc:0.9774Epoch 7/157564/7564 [==============================] - 170s22ms/step - loss: 0.0913 - acc: 0.9718 - val_loss: 0.1050 - val_acc:0.9727Epoch 8/157564/7564 [==============================] - 719s95ms/step - loss: 0.0890 - acc: 0.9710 - val_loss: 0.1350 - val_acc:0.9679Epoch 9/157564/7564 [==============================] - 166s22ms/step - loss: 0.0819 - acc: 0.9741 - val_loss: 0.0810 - val_acc:0.9798Epoch 10/157564/7564 [==============================] - 167s22ms/step - loss: 0.0726 - acc: 0.9757 - val_loss: 0.1052 - val_acc:0.9703Epoch 11/157564/7564 [==============================] - 167s22ms/step - loss: 0.0753 - acc: 0.9753 - val_loss: 0.0797 - val_acc:0.9822Epoch 12/157564/7564 [==============================] - 166s22ms/step - loss: 0.0650 - acc: 0.9791 - val_loss: 0.1039 - val_acc:0.9738Epoch 13/157564/7564 [==============================] - 166s22ms/step - loss: 0.0773 - acc: 0.9751 - val_loss: 0.0852 - val_acc:0.9798Epoch 14/15

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

7564/7564 [==============================] - 166s22ms/step - loss: 0.0634 - acc: 0.9790 - val_loss: 0.0847 - val_acc:0.9822Epoch 15/157564/7564 [==============================] - 166s22ms/step - loss: 0.0620 - acc: 0.9795 - val_loss: 0.0977 - val_acc:0.9715
3.3.9	 ResultsAfter training and testing our convolutional neural network model, wereached a �inal test accuracy of 97.537% which is very high! We got testtime at 0.078. Here is the confusion matrix of our classi�ication Fig. 14.

Fig.	14 Confusion matrixWe can observe from the confusion matrix that most of themalware samples were well classi�ied into its corresponding actualfamily, Autorun. K is always misclassi�ied for Yuner. A, it is probablybecause we have only 80 samples of Autorun.K; this is very few in our

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

dataset and that both are a component of a close worm type. Moreover,Swizzor.gen!E is often misclassi�ied with Swizzor.gen!l, which can beexplicated by the fact that they emanate from authentically close kindof families and types and thus could have homogeneous attributes intheir code.We can also plot train and validation accuracy Fig. 15 andloss Fig. 16 during per epoch and analyze precision and losses, ups anddowns during the whole journey. We can also calculate some moreperformance-based quanti�ications such as precision of the modelwhich is 0.965, recall of the model is 0.975, and f1-score of the model is0.968.

Fig.	15 Training and validation accuracy during 15 epochs

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	16 Training and validation losses during 15 epochsIt is all about how to implement initial level malware imageclassi�ication, and to further explore the results and analysis we canplot the confusion matrix, which give us some more statistics aboutthe classi�ication, some hints about what went erroneous duringclassi�ication. It was the initial level understanding of how toimplement malware image classi�ication utilizing convolutional neuralnetwork. Utilizing this basic understanding, you can further ameliorateclassi�ication results, perform more applications, and do furtherresearch.
3.3.10	 Datasets	for	Malware	AnalysisHere we are mentioning some popular datasets Table 3 available forpractice and research. Datasets play a consequential role in training,testing, and validation of systems. Datasets of malware images consistof many images that belong to different families. Readers can makeutilization of it for their research and projects. Some popular datasetsare
Table	3 Summary of publicly available datasets for malware analysis
S.
no.

Dataset Dataset	description

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

S.
no.

Dataset Dataset	description

1 Malimg dataset The malimg dataset consists of 9000 malware �iles belonging to 25malware families and their variants2 Malicia dataset The dataset comprises 11,688 malware binaries collected from 500drive-by download servers3 Microsoftmalwareclassi�icationchallengedataset
This dataset contains 9 classes for training and testing purposes. Itincludes 21741 malware samples

4 Malshare A free malware repository providing researchers access to samples,malicious feeds5 IoT-23 A labeled dataset with malicious and benign IoT network traf�ic6 AMD Android malware dataset has 24,553 samples, it is integrated by 71malware families ranging from 2010 to 20167 Androidmalwaregenome project More than 1,200 malware samples that cover the majority of existingAndroid malware families, ranging from their debut in August 2010 torecent ones in October 20118 Drebin dataset The dataset contains 5,560 applications from 179 different malwarefamilies. The samples have been collected from August 2010 to October2012 and were made available to us by the mobile sandbox project
4	 Challenges	and	Open	IssuesThis chapter and study is the �irst step toward enhancing ourunderstanding of visualization and deep learning-based malwareclassi�ication. During the study, many dif�iculties and challenges ofmalware classi�ication were found; the present �indings might haveimportant implications for suggesting several courses of action tosolve this problem. For a consistent and effective framework, it isimportant to address all the challenges and dif�iculties. Traditionalmalware classi�ication approaches are very time-consuming andcomplex.In our view, malware classi�ication is very well handled by imagevisualization and deep learning approaches as compared to traditionalapproaches. Deep learning approaches ef�iciently perform learning butwe found some limitations such as dl models requires all input imagesof the same size, which limits the training model. Work done by many

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

researchers transform malicious binaries into grayscale images, sothere is the scope of training and classi�ication with color images.Different model architectures (differ in several layers, number ofkernels/�ilters, size of strides, etc) show different results, so there isthe scope of more intelligent architectures using deep learning toimprove performance. Existing approaches which achieved highaccuracy are often speci�ic to a particular dataset, so still, there is aneed for more generic deep learning architecture, which can be utilizedfor any type of dataset. The size of the dataset has signi�icantimportance on the accuracy and performance of the model. There isscope to address the data imbalance issue (as there is a difference inthe number of samples in one family and rest). Available malwaredatasets constitute different formats and speci�ications containingboth infected and non-infected �iles; inconsistencies may arise in theaccuracy of the results, deep learning methods can be substantiallyin�luenced by adversarial attacks using the experience of the learningalgorithm to avoid detection, or infuse harming instances into thetraining data. One of the latest emerging hurdles in malware analysis isthe �ile less malware [10], which makes malware analysis morecomplicated. A combination of deep learning models for malwareanalysis can prove more intelligent and effective. To achieve goodclassi�ication accuracy architecture alone is not only responsible it isalso dependent on the dataset, so quality and enough data generatemore accurate results, so preprocessing of the dataset is one of theimportant considerations for classi�ication.
5	 ConclusionIn this chapter, we provided a detailed study of the malware, malwareanalysis, deep learning, and its algorithms. The exponentialdevelopment of the Internet, connected devices, services andapplications, user’s activity, and con�idential information attractscybercriminals. Although malware is not a new threat in the cyberworld, but the device manufacturer, attacker’s techniques to avoiddetection and different service providers use different communicationtechnologies creates a heterogeneous environment where malwareanalysis becomes a critical task. In this context, this chapter aimed to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

present an overview of the fundamental aspects of malware detectionand classi�ication using image visualization and deep learningtechniques.Within the next few years, malware classi�ication and identi�icationare likely to become important and inevitably be an issue that is goingto be explored more. As can be concluded from the above-discussedinformation and study, the use of visualization techniques to representmalware and deep learning models in malware detection andclassi�ication proved to be ef�icient than traditional approaches. It isimportant to keep in mind that deep learning approaches prove to be astate-of-the-art approaches for malware detection and classi�ication insome cases, but they are always the possibility of better to do. Deeplearning methods also have some limitations such as a limited numberof samples for analysis, to increase hidden layers which also increasescomplexity in the model and increases training time.One biggest advantage of deep learning is automation. There is aneed for automating the detection and classi�ication process is still animportant issue as most of the traditional malware analysis in theidenti�ication and classi�ication of new threats continues to be ahuman task. Deep learning also has human interaction but limitedsense. Until now, this methodology has only been applied to very less inliterature and also in practice, so this chapter will encourage readers todo further research in this vast and important topic, and malwareanalysis is also connected to our lives directly. Malware classi�ication isa fundamental and vital issue for future research and we havementioned some state-of-the-art researcher’s approaches, scope andemerging challenges for malware classi�ication using deep learning forthe reader’s further studies. Finally, it is expected that the informationpresented and discussed in this chapter would help readers, analysts,and researchers to obtain a general and practical view of the malwareanalysis especially malware identi�ication and classi�ication fromwhere they can visualize and explore new avenues of research.
References1. Azab, A., M. Alazab, and M. Aiash. 2016. Machine learning based botnet identi�ication traf�ic. In

2016	IEEE	Trustcom/BigDataSE/ISPA, 1788–1794.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2. Ding, Y., S. Chen, and J. Xu. 2016. Application of deep belief networks for opcode basedmalware detection. In 2016	International	Joint	Conference	on	Neural	Networks	(IJCNN),3901–3908.3. Bagane Pooja, Garminla Sampath Kumar. 2020. Detection of malware using deep learningtechniques. International	Journal	of	Scienti�ic	and	Technology	Research 9: 1688–1691.4. Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances	in	Neural
Information	Processing	Systems, ed. Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, andK.Q. Weinberger, vol. 27, 2672–2680. Curran Associates, Inc.5. KyoungSoo Han, Jae Hyun Lim, and Eul Gyu Im. 2013. Malware analysis method usingvisualization of binary �iles. In Proceedings	of	the	2013	Research	in	Adaptive	and	Convergent
Systems,	RACS	’13, 317–321. New York: Association for Computing Machinery.6. Hardy, W., Lingwei Chen, Shifu Hou, Yanfang Ye, and X. Li. 2016. Dl 4 md : A deep learningframework for intelligent malware detection.7. AV-TEST The Independent IT-Security Institute. Malware statistics and trends report [online]by av-test institute, 2020.8. McAfee LLC is an American global computer security software company. Mcafee labs threatsreports [online] by mcafee, 2019.9. Jain, Mugdha, William Andreopoulos, and Mark Stamp. 2020. Convolutional neural networksand extreme learning machines for malware classi�ication. Journal	of	Computer	Virology	and
Hacking	Techniques, vol. 04.10. Sudhakar, K., and K. Sushil. 2019. An emerging threat �ileless malware: a survey and researchchallenges 3: 1, 12.11. Kalash, M., M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and F. Iqbal. 2018. Malwareclassi�ication with deep convolutional neural networks. In 2018	9th	IFIP	International
Conference	on	New	Technologies,	Mobility	and	Security	(NTMS), 1–5.12. Khan, R.U., X. Zhang, M. Alazab, and R. Kumar. 2019. An improved convolutional neuralnetwork model for intrusion detection in networks. In 2019	Cybersecurity	and	Cyberforensics
Conference	(CCC), 74–77.13. Kim, C.H., E.K. Kabanga, and S. Kang. 2018. Classifying malware using convolutional gatedneural network. In 2018	20th	International	Conference	on	Advanced	Communication
Technology	(ICACT), 40–44.14. Kim, Jin-Young, Seok-Jun Bu, and Sung-Bae Cho. 2017. Malware detection using deeptransferred generative adversarial networks. In Neural	Information	Processing, ed. DerongLiu, Shengli Xie, Yuanqing Li, Dongbin Zhao, and El-Sayed M. El-Alfy, 556–564. Cham: SpringerInternational Publishing.15. Lu, Y., and J. Li. 2019. Generative adversarial network for improving deep learning basedmalware classi�ication. In 2019	Winter	Simulation	Conference	(WSC), 584–593.16.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Mourtaji, Youness, Mohammed Bouhorma, and Daniyal Alghazzawi. 2019. Intelligent
Framework	for	Malware	Detection	with	Convolutional	Neural	Network.	NISS19. New York:Association for Computing Machinery.17. Naeem, Hamad. 2019. Detection of malicious activities in internet of things environmentbased on binary visualization and machine intelligence. Wireless	Personal	Communications,1–21.18. Naeem, Hamad, Farhan Ullah, Muhammad Rashid Naeem, Shehzad Khalid, Danish Vasan, SohailJabbar, and Saqib Saeed. 2020. Malware detection in industrial internet of things based onhybrid image visualization and deep learning model. Ad	Hoc	Networks 105: 102154.19. Nataraj, L., S. Karthikeyan, G. Jacob, and B.S. Manjunath. 2011. Malware images: Visualizationand automatic classi�ication. In Proceedings	of	the	8th	International	Symposium	on
Visualization	for	Cyber	Security,	VizSec	’11. New York: Association for Computing Machinery.20. Ni, Sang, Quan Qian, and Rui Zhang. 2018. Malware identi�ication using visualization imagesand deep learning. Computers	and	Security 77: 04.21. Pal, K.K., and Sudeep, K.S. (2016). Preprocessing for image classi�ication by convolutionalneural networks. In 2016	IEEE	International	Conference	on	Recent	Trends	in	Electronics,
Information	Communication	Technology	(RTEICT), 1778–1781.22. Singh, Ajay, Anand Handa, Nitesh Kumar, and Sandeep Kumar Shukla. 2019. Malwareclassi�ication using image representation. In Cyber	Security	Cryptography	and	Machine
Learning, ed. Shlomi Dolev, Danny Hendler, Sachin Lodha, and Moti Yung, 75–92, Cham:Springer International Publishing.23. Tobiyama, S., Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi. 2016. Malware detection withdeep neural network using process behavior. In 2016	IEEE	40th	Annual	Computer	Software
and	Applications	Conference	(COMPSAC), vol. 2, 577–582.24. Vasan, Danish, Mamoun Alazab, Sobia Wassan, Babak Safaei, and Qin Zheng. 2020. Image-based malware classi�ication using ensemble of cnn architectures (imcec). Computers	and
Security 92: 101748, 05.25. Yin, Qiwei, Ruixun Zhang, and XiuLi Shao. 2019. Cnn and rnn mixed model for imageclassi�ication. MATEC	Web	of	Conferences, 277: 02001, 01.26. Yinka-Banjo, Chika, and Ogban-Asuquo Ugot. 2019. A review of generative adversarialnetworks and its application in cybersecurity. Arti�icial	Intelligence	Review 53: 06.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1)(2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_7
Review	of	Arti�icial	Intelligence	Cyber
Threat	Assessment	Techniques	for
Increased	System	SurvivabilityNikolaos Doukas1 , Peter Stavroulakis2 and Nikolaos Bardis1 Hellenic Army Academy, Varis - Koropiou Avenue, P.O. 16673, Vari,Athens, GreeceTelecommunications Research Institute of Crete, TechnicalUniversity of Crete, Chania, Greece
Nikolaos	Doukas
Email:	nd@ieee.org
Peter	Stavroulakis	(Corresponding	author)
Email:	pete_tsi@yahoo.gr
Nikolaos	Bardis
Email:	bardis@ieee.org

AbstractThis chapter presents an overview of the problem of survivability ofinformation systems, along with solutions that are currently availableto designers of such systems. The notion of survivability in the contextof cybersecurity over multi-user distributed information systems isde�ined, which is set as the target of cyber defense to prevent theadversary from successfully completing their mission. The cyber-attackers’ kill chain is explained. Arti�icial Intelligence (AI) techniquesthat may be employed in order to promote information systemsurvivability are outlined and the technical issues toward which eachtechnique can contribute are listed. Following that, schemes for

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_7
mailto:nd@ieee.org
mailto:pete_tsi@yahoo.gr
mailto:bardis@ieee.org

increased cyber survivability are presented, which focus on solvingparticular problems that commonly appear by employing arti�icialintelligence techniques. First, the problem of email message �iltering inthe context of breaking the cyber kill chain is analyzed and a typical AI-assisted technical solution is given. Following that, the effect ofmalware in survivability is presented and an approach to its solutionbased on the static analysis and detection of patterns is presented.Subsequently, the collusion attack, an attack where multiple malwareprograms collaborate in order to achieve malicious goals, is presentedand an AI-powered solution is outlined based on currently availabletechnology. A three-level anomaly detection system is presented thatemploys AI primitives and detects problematic behavior in networktraf�ic, packed �iles, and SQL statements in order to producecybersecurity defense actions and warnings. Dynamic analysis ofpotentially harmful programs is analyzed and a technique thatperforms such analysis is presented that examines the executedmachine-level instruction opcodes and utilizes AI in order tocircumvent efforts of malware creators to obfuscate the actions andintents of their code. A recently proposed comprehensive cooperativeinfrastructure defense system is brie�ly presented that is based on thearti�icial intelligence ant colony paradigm. The system aims tocoordinate human and automated efforts to protect the integrity oflarge-scale information systems. It uses multiple AI principles in orderto utilize existing information and obtain novel knowledge, adapting tonew threats and user expectations. Finally, survivability promotingcountermeasures are presented that act as additional fail-safemechanisms to impair the cyber-attackers mission.
1	 IntroductionSurvivability is a notion applicable to both military and civilian orcommercial systems and describes the ability of such systems toremain operational or gracefully degrade after an attack against them[17]. The range of possible attacks is easy to determine in the case ofphysical systems, but presents a challenge of itself in the case of cybersystems. In the context of the cyberspace, maintaining an informationsystem operational principally involves protecting the CIA triad of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

information security, namely con�identiality, integrity, and availability[4]. Some researchers further expand this description with threefurther specialized cybersecurity targets, authorization,authentication, and non-repudiation [12]. Defense efforts againstcyberattacks are facilitated by understanding the cyber kill chain, awidely accepted model describing the steps taken by attackers in orderto achieve their goals. These steps start involve (i) reconnaissance,whereby a would-be attacker collects information about speci�ictargets and tactics of the target information system, (ii)weaponization, which describes the development by the attacker oftarget-speci�ic weapons or exploits based on the identi�iedweaknesses, (iii) delivery, when the actual delivery of the malicioussoftware to the target takes place, (iv) exploitation, where theweaknesses identi�ied are used in order to execute the maliciousapplication, (v) installation of the malware, (vi) command and control,when the attacker acquires communications and managementchannels with the target and �inally, and (vii) actions, when theattackers utilize the target to achieve their objectives of illegitimatedata access, data integrity violation, or denial of service [15, 17].Engineers aiming to protect information systems against cyberattacksdistribute their efforts in four fronts, namely the ability of a system to(i) remain invisible from the attacker, (ii) remain inaccessible to theattacker’s weapons, (iii) withstand the hit, and (iv) maintain partial orfull functionality despite possible damages, while offering capabilitiesfor containing the problems arising and following recovery procedures[17]. The survivability approach to cyber defense involves makingassumptions that conventional defenses in each phase have failed anddesigning techniques to minimize the effect of possible attackeractions. Such techniques include cyber deception to confuse theadversary, analysis of outbound traf�ic to detect data theft, white listsfor software, limitations on use of non-essential applications, use ofredundant computational units, etc. Designing and implementing cyberdefense for survivability is a process relying on intuition, requiresanalysis of system data and activities and prioritization of threats, allfor the purpose of deriving the context and allowing human operatorsto make real-time informed decisions. Defending cyber systemsagainst attacks to this effect, arti�icial intelligence has been

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

successfully used for the purpose of supporting the decision-makingprocess. This chapter reviews emergent research results concerning AItools that contribute to effective and timely threat prioritization andmitigation, for the purpose of developing components of AI cyberthreat assessment decision support systems. AI primitives thatcontribute to these aims include pattern recognition, anomalydetection, predictive analytics, and natural language processing.Particular topics to be reviewed are anomaly-based network intrusiondetection, detection of insider threats, spam and phishing detection,behavior-based malicious software identi�ication, malicious activitydetection based on low-level instruction analysis, suspicious networkactivity identi�ication, data provenance tracking, etc. The actual AItechniques involved include classi�ication, clustering, statisticaldecision models, fuzzy logic, stream data analytics, and datavisualization. A review of these techniques will be covered in thischapter regarding the use of AI for cyber survivability. Specialemphasis will be given to the use of AI for cyber survivability decisionsupport including machine learning for software analysis, cyber-physical system integration, blind testing of programs withoutspeci�ications, machine learning and data mining techniques forenhanced database security, malicious executable detection via ML,etc. A particular challenge in the problem of classi�ication in thecontext of cyber security is class imbalance or the “one classclassi�ication” issue. This arises from the necessity to train thedetector using a limited training set of positive examples, since thebehavior of malware is unknown and rapidly evolving.
2	 AI	Support	to	SurvivabilityAI techniques are being applied to cybersecurity problems, despite thefact that the foundation technology may still be considered as underdevelopment or experimental [13], since it is producing promisingresults in a signi�icant range of possible cyber threats belonging to thecyber kill chain explained earlier. The application of AI to the problemof identifying and alleviating cyber threats provides a defense toolcapable of adapting to the continuously changing tactics of theattackers [13, 18]. AI includes a variety of techniques and algorithms,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

several of which become useful in the �ight against cyber threats [17,18]. Pattern recognition algorithms are commonly used for identifyingphishing or spam e-mail messages, malware programs, untrusted sites,and other threats. Anomaly detection techniques are employed forspotting unusual computer process activity or questionable data.Natural language processing schemes may be used to process textsthat have been created for the purpose of obfuscating the attackersaims, into structured intelligence information useable in the context ofdefense. Predictive analytics process large quantities of data in searchof patterns and outliers that may reveal upcoming threats. The use ofAI is, despite fears to the contrary, not aiming to replace humans, but toprovide decision support tools in order to assist human efforts to makeoptimal and rapid decisions [13, 17, 18]. It is not expected to solve allpossible cybersecurity problems. The aim is to enable the timely andadequate response to emerging threats, either by quickly �ilteringsimplistic attacks or by identifying the suspicious cases in order tobring them to the attention of the expert security analysts. AItechniques have been successfully applied in the context of some moreabstract challenges concerning the ability of information systems towithstand and survive attacks, hence supporting their survivability,namely [17]Compliance. The pre-deployment veri�ication of the consistency ofan information system’s implementation with its speci�ications andthe relevant security standards of its conformance with the rules ofthe network to which it is going to connect, and of its compatibilityto the architecture of the other systems in conjunction with which itis going to operate.Intrusion Detection. The run-time operation of identifying incomingthreats. It may be based on signatures, in the case of attacks thathave already been observed at least once, or with anomaly detectiontechniques after long-term observations that have permitted theestablishment of the baseline normality of network traf�ic.Determining what is normal is a particularly challenging task inenvironments presenting rich cyber activity.Patching. The act of identifying vulnerabilities discovered by thecommunity that affect the system of interest and for which

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

remedies, or patches, are already available and can be readilyapplied.Digital Forensics. The post-attack process of discovering what wentwrong, how, when, where, and why, in order to avoid the occurrenceof similar events in the future.Defense in Depth. The run-time process of identifying ongoingattacks and impeding their progress within the system until suitablecountermeasures and defensive actions may be employed.
2.1	 Security	Threat	Detection	for	Preventive	SurvivabilitySurvivability as an engineering design target does not imply theprevention of every possible attack and the elimination of theprobability of an intrusion [14]. On the contrary, survivability analysesneed to consider multiple “what if” scenaria determining the behaviorand availability of the information system after different types ofsecurity breach events [14, 17]. The ultimate aim is not to prevent theattack, but prevent the attackers to complete their mission [17]. Themission is the �inal link of the kill chain described and consists of oneor more of the three subtasks of data theft, system integritycompromise, and denial of service. Therefore, in designing forsurvivability, the AI algorithms to be used may be selected according tothe expected level of threat, the anticipated types of attacks and theamount of processing capabilities available to be assigned for thispurpose. The survivability subsystem of the design hence becomescon�igurable and scalable according to the necessities of theapplication. The success of the defense can be quanti�ied as the extentto which the mission of the attacker failed. According to thisobservation, AI techniques suitable for the survivability in the event ofdifferent types of attacks will be outlined in the order of theprogression of the attack within the cyber kill chain described earlierand in increasing level of sophistication.
2.2	 Email	Message	Filtering	by	Linear	Classi�iersEmail messages are commonly used as an attack vector and dependingon their type, e.g., spam, phishing, malware, etc., may present asigni�icant cyber threat. Email messages can be the vehicle used by theattackers in multiple links of the kill chain, as for example a phishing

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

message may be part of a reconnaissance effort or a spam messagemay be used for the delivery of the malicious payload [13, 17]. Considera simplistic approach, whereby undesired messages are recognized bythe presence and frequency of appearance of words or patterns from apre-determined set of suspicious ones within their body [13]. A genericclassi�ier may then be designed, which based the decision on a scorevalue for the suspicious words calculated for each message. The scorecould be a simple weighted sum of the frequencies of appearance ofeach of these words and the weight for each word is a designparameter [13]. The �inal decision is based on a threshold; if the scorefor a message exceeds a certain threshold, which is another designparameter, the message is classi�ied as spam, otherwise it isconsidered normal. In realistic applications, however, given the varietyof spam sources and the evolution of the practices of the spammers,who will adapt in order to circumvent the �ilter, the design parametersfor this classi�ier would have to be regularly or continuously adjusted.If this is organized in an iterative manner, in interaction with the users,the use of AI-supervised learning techniques becomes a naturallyoccurring choice [13]. The weighted sum approach represents a linearclassi�ier in a space whose dimensions are determined by the size ofthe word-set. The AI instrument suitable for solving this problem is theperceptron. An initial set of weights is determined via an arbitraryprinciple and a desired result is de�ined for the weighted sum functiondescribed above that requires it to give e.g., an answer of +1 when amessage is spam and -1 when it is not. The perceptron, which isrealized as an implementation of this function, can then be trained,using a training set of emails. Each training message is presented tothe perceptron, the result produced is observed, compared to theknown result and the weights of the function are adjusted dependingon the difference from the desired value. The correction functions forthe weights are the object of many independent research efforts, but asimple and robust approach may be found in [13], along with furtherdetails about the implementation. The corrections become smallerafter a number of iterations and the training converges. The principaland signi�icant limitation of this class of algorithms is that they canonly be effective if the actual data is separable by a multidimensionalline in the space de�ined by the data. In fact, if the data is not linearly

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

separable, then the training algorithm will not converge, i.e., thecorrections will cause the values of the weights to oscillate inde�initely,irrespective of the number of iterations [13]. Better classi�ication forspam messages can be achieved if the separation is attempted by ahyperplane function not limited to a linear form. Support VectorMachines (SVMs) are also supervised learning algorithms that attemptto determine the hyperplane that separates the data and are notlimited to linear models [13]. Another major difference fromperceptrons is that they attempt to maximize the distance of thetraining data from the separation hyperplane, rather than minimizingthe number of misclassi�ications. SVMs are a powerful tool and can alsodetect spam that is encoded in the form of images [13]. A completelydifferent approach for spam e-mail classi�ication was proposed in [1].Instead of trying to detect spam messages based on the content,messages are clustered according to the author to whom they areattributed. Incoming messages undergo a two-phase process. In the�irst phase, messages are grouped together using an authorship-basedclustering algorithm. Finer categorization is achieved in the secondstep, whereby linguistic, syntactical, and other structural analyses areperformed [1]. The results are clusters of e-mails with high probabilityof being attributed to the same author. This approach, as reported byits authors in [1], does not produce an actual solution to the problem ofdetecting spam, as it is easy for spammers to occasionally modify theirstyle in order to evade detection. It should be seen as a means ofreducing the volume of processing required in order to process allmessages, and therefore cancelling the advantage spammers acquireby launching massive numbers of spam messages. Additionally, themethod has been successful [1] in detecting links between seeminglydifferent spam campaigns.
2.3	 Malware	DetectionMalware, or MALicious softWARE, is software that is employed bycyber-attackers for the purposes of completing their mission with thekill chain. Depending on the method of delivery, malware could be veryeasy or extremely dif�icult to recognize. An executable �ile arriving asan attachment to an e-mail message can be readily detected by thespam detectors described earlier on. However, malware hidden in a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

downloaded �ile, a non-authorized installation medium or a sharedstorage unit may present a greater challenge. Additionally, there existcollusion attacks, when multiple, seemingly innocent applicationscombine AI algorithms can again be employed to facilitate thedetection and promote survivability. Detection can be broadly dividedinto two categories in this case, namely static and dynamic analysis.Static analysis involves examining the �ile, without executing it.Recognition may be achieved based on a variety of factors, rangingfrom the name of the �ile to specialized signatures of particularmalware that have been identi�ied by the community. This process isessentially a feature extraction process: large volumes of data (e.g., theexecutable �iles) are processed in order to extract features (thesignatures, the �ilename, other distinguishing strings) which are thenused for recognition either by humans or in this case by means of AIalgorithms. Hash functions are mathematical functions with severalproperties that render them suitable for fast processing of largequantities of data [9, 10], among which is the ability to summarize.Suitable many-to-one hash functions are applied on a large number ofbytes to produce a relatively small-sized result used as a signature, i.e.,a quick way to identify identical data items. For well-designed hashfunctions, the signature is unique, in that slightly dissimilar itemsproduce completely different results [9], while collisions are possible,since the function is many-to-one. Widely used signature functions areSHA256 and MD5, with MD5 being susceptible to collisions [16].Community-identi�ied hashes of the executables of known malwarecan be used as features to identify a particular �ile as an instance of thatmalware. Other elements of the �ile, such as the magic numbersencountered in some �ile types (pdf, image �iles) or the portableexecutable header in Windows, are also used as recognition features. Atoolbox and database for such �ile feature extraction is Yara (https:// yara. readthedocs. io/ en/ stable/). Commonly encountered malware inthe form of viruses, trojans, etc., is successfully detected bycommercially available antivirus and other similar programs. Thereexist, however, cases where this process is not as straightforward as itseems, and the assistance of AI is indispensable.
2.4	 Collusion	Attacks

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://yara.readthedocs.io/en/stable/

In recent years, an everexpanding use of smart phones has beenobserved. Even though such devices use operating systems, andtherefore software isolation and other information security principlescan be applied, the need for openness has created several ways thatapplications running on such devices can communicate or share databetween them [3]. This means that multiple, seemingly unrelated, appscollaborating between them have the possibility to achieve maliciousintents, such as data theft. This type of attack is called a collusionattack. Examining applications individually, e.g., in a sandboxenvironment, would not reveal such behavior. Machine learning andother AI techniques may be used as detection tools for colludingbehavior. Even though the Android operating system incorporatesmany of the strict Linux security primitives isolating runningapplications, both open and secret means of communication betweenapps have been identi�ied [3]. An open, or overt means could be �ilesharing, while a hidden or covert one might be a special setting of ashared resource, such as the system volume, which passes a specialmessage to the collaborating application [3]. Since there existlegitimate applications that need to perform similar actions as thoseobserved in malware, the principal dif�iculty of the detection is that theintent of the application, a purely subjective and qualitative notion,needs to be detected. Suitable features for detecting colluding behaviorneed to be identi�ied before any AI technique can be employed fordetecting colluding behavior. Such features can include actions thatapplications take [3], e.g.,accessing sensitive information (contacts, e-mail messages),accessing cost-bearing services (calling, SMS sending),accessing sensitive hardware (camera, microphone),sending data over the Internet, andpermissions it requires.The above actions are actions that can be legitimately used byauthorized application in order to create services desired by the users.The fact that an application takes one or more of these actions is by nomeans an indication of malicious intent. The Naive Bayes classi�ier hasbeen successfully employed as an AI tool in order to estimate thelikelihood of sets of two or more applications are serving malicious

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

purposes, given the set of actions that each one of them uses [3]. Theclassi�ier was trained over a set of known for their malicious intentapplications. A probabilistic �ilter was hence created that operates intwo stages:An initial, fast �ilter examines applications and application setsbased on the easily detectable features outlined aboveThe second, more thorough �ilter performs the static codeanalysis described in the previous section, along with intentdetermination rules, in order to discover candidates with increasedlikelihood for colluding behavior.On the identi�ied candidates a software model checking procedureis used in order to detect sequences of actions that are likely to be partof collusion of malicious intent [3]. This approach presents both falsepositives and false negatives, especially since given the fact that theanalysis is of probabilistic character. This same fact, however, alsoimplies that the approach promotes survivability. Calibrating thelikelihood of false positives, for example, can be viewed as a means ofcalibrating the survivability of the system in relation to its capability ofrunning applications that may perform risky but desirable operations.Additionally, scores of the intermediate detection phases may be usedin order to create breaking points at which to block the attacker’smission from being completed. For example, even though data transferoperations by applications could be allowed, data transfers after asequence of actions are classi�ied as likely to be malicious.
2.5	 Anomaly	DetectionAn arti�icial intelligence technique for survivability has been presentedthat is based on the method of operation of biological beings [8]. Threedifferent machine learning systems are used in order to construct ahybrid framework for detecting anomalies and can be viewed as amulti-agent system. Each agent operates in a different sector of theinformation system and synchronization is achieved by cooperation ornegotiation, since no single agent has a complete perspective of all theavailable information and there exists no central coordinator [8].Temporal programming is used in order to phase contradiction ofintentions and contradiction of resource management concluding

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

about the extent of the threat and risk. Automatic actions may betaken, such as termination of network connections and reports are sentto human administrators for taking more complicated risk mitigationactions. The �irst agent uses neural network classi�iers trained on adatabase of information system intrusion information with recordingsof the total �low of a network simulating the US air-force militarynetwork [8]. Events are analyzed including the connection between theIP addresses, the TCP packages exchanged, the protocols used, and theoperation time. The features extracted include content features, traf�icfeatures, time-based traf�ic features, and host-based traf�ic features,totaling 41 features. The attacks noted include Denial of Service,Remote to User, Probing, and User to Root. A three-step procedure isdeveloped, with each step using an increasing number of features, inorder to �ilter out irrelevant events and raise the alarm with highcon�idence for more dangerous occurrences. The second agent alsoemploys a neural network classi�ier in order to detect packed orunpacked executables of possible malware [8]. A genetic algorithm ishence used in order to reduce the probability of false positives andfalse negatives. The agent is trained based on an available dataset ofpatterns used as features that are extracted from packed malware, andbenign executables [8]. A three-step procedure is employed:The neural network classi�ies binaries as packed �iles or benignexecutables.The executables are sent to the regular antivirus software for furtherassessment. The Evolving Classi�ication Function technique is thenused upon the packed �iles in order to again classify those �iles asbenign or malignant. A genetic algorithm is used in order to increasethe process of the integrity.Benign �iles are sent to the antivirus software, while suspect onesare unpacked in sandbox, the diagnosis is veri�ied by antivirussoftware and are �inally quarantined for treatment by humanadministrators.The third agent uses a neural network and a genetic algorithm inorder to train the neural network’s weights for minimum error inclassifying SQL injection attacks [8]. A dataset of 13384 SQLstatements is used, including both legitimate and malicious ones.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Various features are extracted from the available SQL statementsincluding length, symbols present, linguistic constructs in the SQLsyntax, and the correlation with known malicious SQL commands.Particularly interesting is the entropy feature measuring the amount ofinformation the SQL command is expected to extract [8]. Theclassi�ication is two-phase, �irstly eliminating outlier data and thenemploying the classi�ier in order to examine the instances that aremore likely to be malicious SQL injections. The three-agent system’sfunctionality is consistent with the aims of survivability. The �irst agentuses AI to detect network anomalies that evade the �irewall andintrusion detection systems. The second agent enhances survivabilityin virus attacks by employing AI techniques in order to �ilter outregular threats that can be successfully handled by the antivirussoftware and employing advanced and computationally intensive AIdetection procedures for more involved cases.The use of network traf�ic analysis and irregularity detection hasbeen shown in [5] to be capable of detecting new botnets before theylaunch their attack, i.e., being able to predict the attack. The detectionis based on extracted features from network traf�ic in the phase wherethe botnet is establising or recon�iguring their command and control(CC) structure. Machine learning is employed that is trained onobservations before and after the deployment of the botnet CC traf�ic.There exist elements of botnet CC traf�ic that are similar betweendifferent botnets and deviate from the corresponding observations oflegitimate traf�ic, which make the training of machine learningalgorithms effective [5]. This approach is, therefore, extremely helpfulin detecting zero-day versions of botnets.
2.6	 Dynamic	Analysis	of	MalwareStatic analysis of malware, as explained in a previous section, aims toidentify malware threats based on features such as the structure of thecode, data structures encountered, patterns that can be observedwithin, and signatures. The structure of the code may be parametrizedas call graphs. Patterns within �iles may reveal information such as IPaddresses or URLs, command line options, passwords and windowsportable execution �iles utilized by the malware for attaining its aims.The process is considered safe, since it is not necessary to execute the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

�ile. However, it is not always feasible to examine alternative call paths,since attackers can easily insert redundant code in order to obfuscatethe path for the true malicious actions [7]. Dynamic analysis ofexecutables involves observing the �ile under investigation while it isbeing executed. Information about memory accesses during theexecution of the program is recorded, thereby eliminating many of thepossibilities of attackers to hide their intentions. The execution maytake place in the actual operating system, in an emulated environmentthat is monitored by the controllers’ host, or a purely virtualenvironment that completely isolates the target system from possibleeffects of the malware. Countermeasures taken by malware creators toevade dynamic analysis includethe detection of emulated or virtual environments,insertion of complicated mathematical or other complex code thatserves no purpose,re-ordering of instructions within their code so that it does notresemble the known patterns,variable use of registers,altering code appearance by using alternative instruction constructsto achieve the same results, andpacking software to obfuscate the appearance of the Windowsportable executable �iles.Additional techniques employed by attackers are polymorphicapproaches that encrypt malicious code until it is time to attempt itsmalicious assignment and metamorphic malware where the maliciouscode is rewritten at every iteration [7]. Opcode analysis has beenproposed as a counter-measure against these practices of the attackersto mask their actions. Opcoderefers to the machine-level instructionsexecuted by the malware in the target system. It is hence possible toobserve the actual actions of the malware and circumvent obfuscationefforts. A scheme for dynamic malware analysis was proposed in [7].The training and testing are based on the VirusTotal database ofmalware. The opcodes corresponding to the stored executables wereextracted via an automated procedure. The Intel architecturecommonly used in most current personal computer incorporates 610different opcodes. From these opcode sequences, run-lengths of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

various lengths were extracted. N-grams are a concept used in solvingnatural language processing problems. A similar approach was used foranalyzing the malware opcode language. Hence, the extracted opcodedata was processed for bigrams and trigrams, and run-lengths weredetermined [7]. The proposed method uses the Random Forest (RF)classi�ication algorithm. The RF is an ensemble learner, combiningdecisions from multiple small decision trees, each one with a randomnumber of features at each node. This technique presents increasedimmunity to noise and reduces over�itting, while it is possible to beparallelized. For better training accuracy, the features were reduced byselecting features with the largest information gain [7]. Accuracy indetection for this dynamic analysis technique is reported at more than99%. The technique promotes the survivability target of detectingunknown attacks based on the knowledge of known attacks, via thetransformation of malware commands into the opcode space.A scheme for calculating the similarity between obfuscatedversions of malware binaries is proposed in [6]. This is achieved usingthe Trend Locality Sensitive Hashing (TLSH) and k Nearest Neighborsin order to detect similarities between obfuscated versions of the samebinaries. Hashing techniques that are common in document similaritydetection [9, 10] are used. A sliding window is used to populate anarray of buckets. The quartile points of each bucket is then estimated. Adigest is hence created that also includes a checksum. The digest bodyis further quantized and each bucket count is converted to a two-bitvalue. The output digest created from the last two steps is used for thedecision-making. The method is shown [6] to be able to ef�icientlydetect and being resilient to obfuscations commonly used bycybercriminals.
3	 Cooperative	Infrastructure	DefenseThe cyber survivability systems reviewed so far involve an automaticprocess, with an optional asynchronous intervention by humanoperators. A cyber defense scheme has been proposed that organizeshumans and digital agents into a cooperative scheme, where theinitiative is mixed [11]. The Cooperative Infrastructure Defense (CID)implements a hierarchical framework of humans and digital agents

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

called ants. The notion of digital agents that are parallelized to ants iswell established in AI. The CID rapidly adapts to respond to unknownattacks, with the high-level supervision and guidance by humanoperators—administrators [11]. The software agents (ants) are alsohierarchically organized, in order to better organize the �low ofguidance instructions from the human to the ants and also provide aconcise and accurate representation of the current situation asfeedback to the administrator. Each of the agents possesses a level ofrationality which is a combination of human instructions, logicprogramming rules, and machine learning results. The system iscapable of collecting information and using it to update its knowledgeand recognizing unknown states as safe or potentially problematic. Itis, therefore, inherently continuously seeking survivable states, thusenhancing its survivability. The software agents take real-timedecisions at low level, while permitting human intervention at alllevels. Agents have the ability to spawn more agents or terminate theiroperation. In normal operation, agents stop operating only when theyencounter a dif�icult problem that requires intervention by humans.Human-initiated intervention is permitted at any time, but isdiscouraged as it disrupts the real-time response and adaptation to theevents happening within the system. Agents are organized in threelevels of hierarchy, enclave-level, host-level and swarm-level [11].At enclave level, the agents interface with humans and otheragents at the same level in order to coordinate the establishmentand application of business drivers and human-de�ined policies.Their role involves creating and enforcing executable policies for theentire information system (enclave). A supervisor may beresponsible for one or more information systems and could bemembers of regulatory bodies. They interact with the top-levelsoftware agents via natural language or graphical commands. Theyoversee the overall system survivability. They translate humaninstructions to actionable policies to be applied over the entiresystem. Using supervised learning, they adapt their behavior inorder to better interact with the human operators and createresponses that are closer to what the human will eventually choose.They can broker agreements with agents at the same level of otherinformation systems. Their actions are uniquely identi�iable within

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the system for attribution and problem detection. Since such actionsmay incur physical costs, especially when involving externalsystems, special rules impose limits upon the actions they can take.At host level, the agents protect and con�igure a single host or aset of similar hosts and interact with the administrators to obtainclari�ications about ambiguous evidence from the swarm. Thesubsystem under the control of such agents could be a single serveror router, a storage area network or a set of user workstations. Theyare responsible for implementing the policies they receive fromhigher level agents. They are also responsible for collecting theinformation gathered by the lower level agents (the sensors). Theygive sensors local connectivity information and control theirspawning. They combine the information from the sensors, theirown previously obtained information and previous human input andpolicies from higher level agents in order to detect problems andderive solutions. They are essentially the principal survivabilityseeking architecture of the system. Host-level agents give positivefeedback to sensors that provided information that turned out to beuseful, in order to encourage them to collect more similarinformation.At swarm level, the agents that can also be seen as sensors,continuously scan machines for problems and reporting them to thesentinel. Sensors are specialized and possess classi�iers capable ofdetecting a particular set of problem indicators. They areindependent processes and communicate via messaging primitives.Sensors may move from machine to machine, by suitable remoteprocedure calls and message passing. They employ ant colonyalgorithms and swarm intelligence as documented in literature [11].They must contain simple logic so that it can be possible to spawnlarge numbers of such agents and give them high mobility. Theymove according to a prede�ined geography within their informationsystem, but their motion is random similar to that of ants whenmoving on the ground. They employ a classi�ier and search the hoststhey visit for patterns of known problems or anomalous conditions.There also exist differential sensors that detect differences betweensimilar hosts that they visit, such as network traf�ic volume, numberof open �iles, etc. They communicate with other sensors via

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

messages. Sensors that have contributed a signi�icant amount ofinformation that turns out useful are spawned by higher level agentsso as to employ more identical instances.Trust is maintained at the host-level agents, as they have beenshown to be capable of hence protecting and promoting trust at lowerlevels. Results show that this system for safeguarding systemsurvivability can match the performance of an equivalent intrusiondetection system with the number of operational sensors of each typebeing about 50% of the number of the existing devices. In rough terms,this means that the information system level survivability is achievedwith approximately half the computational load overhead required forthe equivalent intrusion detection system.A fully automated system that incorporates techniques to detectunknown and hidden malware, thereby providing a solution for the zer-day malware problem is proposed in [2]. Both the systems described inthis section demonstrate how AI-based tools are capable of easing theburden of forensic analysis on information systems for the purpose ofdetecting hidden malware threats and providing a real-time commandand control center for defending cyber infrastructure.
4	 Post	Attack	SurvivabilityThe survivability analysis is based on the assumption that the attackhas already occurred [17], and therefore, when trying to mitigate theeffects of the attack, one or more links of the cyber kill chain havealready been materialized. The ultimate goal of the attacker is toachieve their mission, which is normally quali�ied into one of threeprimary attack objectives which are denial of service, informationtheft, and deception attacks [17]. The ultimate target of survivabilitydesign involves preventing the attacker from completing their mission,i.e., reaching the �inal link of the kill chain. In the previous sections, aseries of algorithms that detect or give warning about the possibilitythat a security breach has occurred. In this section, it will bedemonstrated with two scenaria how AI and other techniques can beused to implement counter-measures that are capable of interruptingthe progress of an attack that has not been detected. The �irst scenarioinvolves the establishment of a secure communications link to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

disseminate critical mission messages to remotely operating militarypersonnel. Assuming that the communication breach will inevitablyoccur, the following preventive countermeasures are capable oflimiting or completely eliminating the effects of this breach [17].Use of deceptive messages which are randomly mixed with theproper ones. The attacker will then have to devise a means ofdistinguishing between the two.Re-establishment of the session after each mission has beenaccomplished, or at random instances. The attacker will need todetect the change and repeat the breach successfully.Multiple channel creation, hence dividing the maximum possiblegain of any single breach.Agreement of session keys between the legitimate participantsbefore they are separated in order to arrive at their remotepositions. The attacker will hence be forced to attempt to deduce thesession keys by data observation, a process that requires more timeand processing capabilities.The second scenario involves protecting the position informationfor a �leet of UAVs when the base control station has beencompromised [17]. In this case, the following preventive actions couldbe taken:Indications of compromise coming from the attack detection AIalgorithms of possible security breaches cause a secure reboot of thesystem to occur. The attacker will hence have to overcome the secureoperator authentication process. This process could be triggered,even if the quantitative indices show a low probability of breach.Disk encryption at both operating system level and at data level.The adversary will hence have to cryptanalyze both encryptionschemes.Indications of compromise coming from the attack detection AIalgorithms of possible security breaches trigger the destruction ofall data stored in the base station. The attacker will have to try torecover the data without triggering the destruction mechanism.Provided that the data required by the legitimate users is regularlytransferred to secure storage, this process could also be triggered,even if the quantitative indices show a low probability of breach.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Regular veri�ication of the integrity of the base station isrequired, e.g., by having a legitimate user or the administratorauthenticate locally. If the deadline passes without this eventoccurring, data destruction is initiated.The above scenaria demonstrate the cyber survivability principle ofdesigning information systems that have as principle aim to preventthe adversary from completing their mission after they havecompleted parts of their attack (the cyber kill chain). Thecountermeasures described are complementary to currentcybersecurity schemes, but have a signi�icant contribution toward thisvery important aim.
5	 ConclusionsSurvivability is a concept that is well known in the context of militaryoperations and is also understood in other contexts, such as business,and medicine. The notion of survivability in the context ofcybersecurity over multi-user distributed information systems wasde�ined. Rather than setting as the target of cyber defense theprevention of the adversary from breaching the system, the aimbecomes to stop them from bringing their mission to an end, which caninvolve data theft, denial of service, or integrity violation. An overviewof the problem of survivability in information systems and solutionsthat are currently available to system designers was presented. Thecyber attacker’s kill chain was explained. Arti�icial Intelligence (AI)techniques that may be employed in order to promote systemsurvivability were outlined and the technical issues toward which theycan contribute were listed. Following that, schemes for increased cybersurvivability were presented, which focused on solving particularproblems that commonly appear, by employing arti�icial intelligencetechniques. First, the problem of email message �iltering in the contextof breaking the cyber kill chain was analyzed and a typical AI-assistedtechnical solution was given. Following that, the effect of malware insurvivability was presented and an approach to its solution based onstatic analysis and detection of patterns was presented. Subsequently,the collusion attack, an attack where multiple malware programscollaborate in order to achieve malicious goals, was presented and an

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

AI-powered solution was outlined based on current technology. Athree-level anomaly detection system was presented that employs AIprimitives and detects problematic behavior in network traf�ic, packed�iles, and SQL statements in order to produce cybersecurity warnings.Dynamic analysis of potentially harmful programs was analyzed and atechnique that performs such analysis was presented that examinedthe executed machine-level instruction opcodes and utilized AIprimitives in order to circumvent efforts of malware creators toobfuscate the actions and intents of their code. The �inal sectionpresented a comprehensive cooperative infrastructure defense systemthat was based on the ant colony paradigm of arti�icial intelligencetheory. The system aimed to coordinate human and automated effortsto protect the integrity of large-scale information systems. It usedmultiple AI principles in order to utilize existing information andobtain novel knowledge, adapting to new threats and userexpectations. A set of countermeasures that inhibit the cyberadversary’s mission and promote survivability against cyber attackswere �inally outlined and evaluated in the context of cyberattackscenaria. The countermeasures acted as fail-safe mechanisms to breakthe cyber kill chain when the attack has not been detected.
References1. Alazab, M., R. Layton, R. Broadhurst, and B. Bouhours. 2013. Malicious spam emailsdevelopments and authorship attribution. Fourth	cybercrime	and	trustworthy	computing

workshop 58–68.2. Alazab, M., S. Venkatraman, P. Watters, and M. Alazab. 2013. Information security governance:The art of detecting hidden malware. IT	security	governance	innovations:	theory	and
research, 293–315. Harrisburg: IGI Global.[Crossref]3. Asăvoae, Irina Măriuca, Jorge Blasco, Thomas M. Chen, Harsha Kumara Kalutarage, IgorMuttik, Hoang Nga Nguyen, Markus Roggenbach, and Siraj Ahmed Shaikh. 2017. Detectingmalicious collusion between mobile software applications: The AndroidTM case. https:// www. jorgeblascoalis. com/ assets/ papers/ Asavoae2017. pdf.4. Atighetchi, Michael, and Joseph Loyall. 2010. Meaningful	and	�lexible	survivability
assessments:	Approach	and	practice, 12–18. In CrossTalk: The journal of defense softwareengineering.5. Azab, A., M. Alazab, and M. Aiash. 2016. Machine learning based botnet identi�ication traf�ic.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.4018/978-1-4666-2083-4.ch011
https://www.jorgeblascoalis.com/assets/papers/Asavoae2017.pdf

IEEE	Trustcom/BigDataSE/ISPA 1788–1794.6. Azab, A., R. Layton, M. Alazab, and J. Oliver. 2014. Mining malware to detect variants. Fifth
cybercrime	and	trustworthy	computing	conference 44–53.7. Carlin, Domhnall, Philip O’Kane, and Sakir Sezer. 2017. Dynamic analysis of malware usingrun-time opcodes. Data	analytics	and	decision	support	for	cybersecurity, 99–125. Berlin:Springer.[Crossref]8. Demertzis, Konstantinos, and Lazaros Iliadis. 2015. A bio-inspired hybrid arti�icial intelligenceframework for cyber security. Computation,	cryptography,	and	network	security, 161–193.Berlin: Springer.[Crossref]9. Doukas, Nikolaos. 2017. Technologies for greener internet of things systems. Green	IT
engineering:	components,	networks	and	systems	implementation, 23–42. Berlin: Springer.[Crossref]10. Doukas, Nikolaos, Oleksandr P. Markovskyi, and Nikolaos G. Bardis. 2019. Hash functiondesign for cloud storage data auditing. Theoretical	Computer	Science 800: 42–51.[MathSciNet][Crossref]11. Haack, J.N., G.A. Fink, W.M. Maiden, A.D. McKinnon, S.J. Templeton, and E.W. Fulp. 2011. Ant-based cyber security. Eighth	international	conference	on	information	technology:	new
generations 918–926.12. Asif Khan, M., and Mureed Hussain. 2010. Cyber security quanti�ication model. In Proceedings
of	the	3rd	international	conference	on	security	of	information	and	networks.13. Parisi, Alessandro. 2019. Hands-On	Arti�icial	Intelligence	for	Cybersecurity:	Implement	Smart
AI	Systems	for	Preventing	Cyber-Attacks	and	Detecting	Threats	and	Network	Anomalies.Birmingham: Packt Publishing Ltd.14. Stavroulakis, P., M. Kolisnyk, V. Kharchenko, N. Doukas, O.P. Markovskyi, and N.G. Bardis.2017. Reliability, fault tolerance and other critical components for survivability ininformation warfare. International	Conference	on	E-Business	and	Telecommunications, 346–370. Berlin: Springer.15. Tarnowski, Ireneusz. 2017. How to use cyber kill chain model to build cybersecurity.
European	Journal	of	Higher	Education	IT.16. Tsukerman, Emmanuel. 2019. Machine	Learning	for	Cybersecurity	Cookbook. Birmingham:Packt Publishing Ltd.17. Wilson, Duane. Cyber survivability—Keeping mission systems survivable in the event of amission-based cyberattack. https:// www. survice. com/ media/ technology-spotlight/ cyber-survivability-keeping-mission-systems-survivable-event-mission.18. Wolfgang, Ertel. 2011. Introduction	to	Arti�icial	Intelligence. London: Springer. Translated byNathanael Black with illustrations by Florian Mast.[zbMATH]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-319-59439-2_4
https://doi.org/10.1007/978-3-319-18275-9_7
https://doi.org/10.1007/978-3-319-55595-9_2
http://www.ams.org/mathscinet-getitem?mr=4030330
https://doi.org/10.1016/j.tcs.2019.10.015
https://www.survice.com/media/technology-spotlight/cyber-survivability-keeping-mission-systems-survivable-event-mission
http://www.emis.de/MATH-item?1238.68002

(1)(2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_8
On	Ensemble	LearningMark Stamp1 , Aniket Chandak1 , Gavin Wong2 and Allen Ye2 San Jose State University, San Jose, CA, USALynbrook High School, San Jose, CA, USA
Mark	Stamp	(Corresponding	author)
Email:	mark.stamp@sjsu.edu
Aniket	Chandak
Email:	aniket.chandak@sjsu.edu
Gavin	Wong
Email:	gavinmwong@gmail.com
Allen	Ye
Email:	allenye66@gmail.com

AbstractIn this chapter, we consider ensemble classi�iers, that is, machinelearning based classi�iers that utilize a combination of scoringfunctions. We provide a framework for categorizing such classi�iers,and we outline several ensemble techniques, discussing how each �itsinto our framework. From this general introduction, we then pivot tothe topic of ensemble learning within the context of malware analysis.We present a brief survey of some of the ensemble techniques thathave been used in malware (and related) research. We conclude withan extensive set of experiments, where we apply ensemble techniquesto a large and challenging malware dataset. While many of theseensemble techniques have appeared in the malware literature,previously there has been no way to directly compare results such as

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_8
mailto:mark.stamp@sjsu.edu
mailto:aniket.chandak@sjsu.edu
mailto:gavinmwong@gmail.com
mailto:allenye66@gmail.com

these, as different datasets and different measures of success aretypically used. Our common framework and empirical results are aneffort to bring some sense of order to the chaos that is evident in theevolving �ield of ensemble learning—both within the narrow con�inesof the malware analysis problem, and in the larger realm of machinelearning in general.
1	 IntroductionIn ensemble learning, multiple learning algorithms are combined, withthe goal of improved accuracy as compared to the individualalgorithms. Ensemble techniques are widely used, and as a testamentto their strength, ensembles have won numerous machine learningcontests in recent years, including the KDD Cup [15], the Kagglecompetition [14], and the Net�lix prize [26].Many such ensembles resemble Frankenstein’s monster [33], in thesense that they are an agglomeration of disparate components, withsome of the components being of questionable value—an “everythingand the kitchen sink” approach clearly prevails. This effect can beclearly observed in the aforementioned machine learning contests,where there is little (if any) incentive to make systems that areef�icient or practical, as accuracy is typically the only criteria forsuccess. In the case of the Net�lix prize, the winning team wasawarded $1,000,000, yet Net�lix never implement the winning scheme,since the improvements in accuracy “did not seem to justify theengineering effort needed to bring them into a productionenvironment” [3]. In real-world systems, practicality and ef�iciency arenecessarily crucial factors.In this chapter, we provide a straightforward framework forcategorizing ensemble techniques. We then consider speci�ic (andrelatively simple) examples of various categories of such ensembles,and we show how these �it into our framework. For various examplesof ensembles, we also provide experimental results, based on a largeand diverse malware dataset.While many of the techniques that we consider have previouslyappeared in the malware literature, we are not aware of anycomparable study focused on the effectiveness of various ensembles

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

using a common dataset and common measures of success. While webelieve that these examples are interesting in their own right, they alsoprovide a basis for discussing various tradeoffs between measures ofaccuracy and practical considerations.The remainder of this chapter is organized as follows. In Sect. 2, wediscuss ensemble classi�iers, including our framework for categorizingsuch classi�iers. Section 3 contains our experimental results and somediscussion of these results. This section also includes a discussion ofour dataset, scoring metrics, software used, and so on. Finally, Sect. 4concludes the paper and includes suggestions for future work.
2	 Ensemble	Classi�iersIn this section, we �irst give a selective survey of some examples ofmalware (and closely related) research involving ensemble learning.Then we provide a framework for discussing ensemble classi�iers ingeneral.
2.1	 Examples	of	Related	WorkThe paper [18] discusses various ways to combine classi�iers andprovides a theoretical framework for such combinations. The focus ison straightforward combinations, such as a maximum, sum, product,majority vote, and so on. The work in [18] has clearly been in�luential,but it seems somewhat dated, given the wide variety of ensemblemethods that are used today.The book [20] presents the topic of ensemble learning from asimilar perspective as [18] but in much more detail. Perhaps notsurprisingly, the more recent book [62] seems to have a somewhatmore modern perspective with respect to ensemble methods, butretains the theoretical �lavor of [18, 20]. The brief blog at [35] providesa highly readable (if highly selective) summary of some of the topicscovered in the books [20, 62].Here, we take an approach that is, in some sense, more concretethan that in [18, 20, 62]. Our objective is to provide a relativelystraightforward framework for categorizing and discussing ensembletechniques. We then use this framework as a frame of reference forexperimental results based on a variety of ensemble methods.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Table 1 provides a summary of several research papers whereensemble techniques have been applied to security-related problems.The emphasis here is on malware, but we have also included a fewclosely related topics. In any case, this represents a small sample of themany papers that have been published, and is only intended to providean indication as to the types and variety of ensemble strategies thathave been considered to date. On this list, we see examples ofensemble methods based on bagging, boosting, and stacking, asdiscussed below in Sect. 2.3.
Table	1 Security research papers using ensemble classi�iers
Authors Application Features EnsembleAlazab et al. [2] Detection API calls Neural networksComar et al. [8] Detection Network traf�ic Random forestDimjaševic et al. [9] Android System calls RF and SVMGuo et al. [10] Detection API calls BKSIdrees et al. [12] Android Permissions, intents RF and othersJain & Meena [13] Detection Byte n-grams AdaBoostKhan et al. [17] Detection Network based BoostingKong & Yan [19] Classi�ication Function call graph BoostingMorales et al. [24] Android Permissions SeveralNarouei et al. [25] Detection DLL dependency Random forestShahzad et al. [31] Detection Opcodes VotingSheen et al. [32] Various Detection ef�iciency PruningSingh et al. [34] Detection Opcodes SVMSmutz & Stavrou [36] Malicious PDF Metadata Random forestToolan & Carthy [40] Phishing Various C5.0, boostingYe et al. [58] Detection API calls, strings SVM, baggingYe et al. [59] Categorization Opcodes ClusteringYerima et al. [60] Zero day 179 features RF, regressionZhang et al. [61] Detection n-grams Dempster-Shafer
2.2	 A	Framework	for	Ensemble	Classi�iers

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this section, we consider various means of constructing ensembleclassi�iers, as viewed from a high-level perspective. We then provide anequally high-level framework that we �ind useful in our subsequentdiscussion of ensemble classi�iers in Sect. 2.3 and, especially, inSect. 2.4.We consider ensemble learners that are based on combinations ofscoring functions. In the general case, we assume the scoring functionsare real valued, but the more restricted case of zero-one valued“scoring” functions (i.e., classi�iers) easily �its into our framework. Weplace no additional restrictions on the scoring functions and, inparticular, they do not necessarily represent “learning” algorithms, perse. Hence, we are dealing with ensemble methods broadly speaking,rather than ensemble learners in a strict sense. We assume that theensemble method itself—as opposed to the scoring functions thatcomprise the ensemble—is for classi�ication, and hence ensemblefunctions are zero-one valued.Let be training samples, and let be a featurevector of length m, where the features that comprise are extractedfrom sample . We collect the feature vectors for all n trainingsamples into an matrix that we denote as (1)where each is a column of the matrix V. Note that each row of Vcorresponds to a speci�ic feature type, while column i of V correspondsto the features extracted from the training sample .Let be a scoring function. Such a scoring function willbe determined based on training data, where this training data is givenby a feature matrix V, as in Eq. (1). A scoring function will generallyalso depend on a set of k parameters that we denote as (2)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The score generated by the scoring function when applied tosample x is given by
where we have explicitly included the dependence on the trainingdata V and the function parameters .For any scoring function , there is a corresponding classi�icationfunction that we denote as . That is, once we determinea threshold to apply to the scoring function , it provides a binaryclassi�ication function that we denote as . As with , we explicitlyindicate the dependence on training data V and the functionparameters by writing
For example, each training sample could be a malware executable�ile, where all of the belong to the same malware family. Then anexample of an extracted feature would be the opcode histogram,that is, the relative frequencies of the mnemonic opcodes that areobtained when is disassembled. The scoring function could, forexample, be based on a hidden Markov model that is trained on thefeature matrix V as given in Eq. (1), with the parameters in Eq. (2)being the initial values that are selected when training the HMM.In its most general form, an ensemble method for a binaryclassi�ication problem can be viewed as a function ofthe form (3)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

That is, the ensemble method de�ined by the function F produces aclassi�ication based on the scores , where scoringfunction is trained using the data and parameters .
2.3	 Classifying	Ensemble	Classi�iersFrom a high-level perspective, ensemble classi�iers can be categorizedas bagging, boosting, stacking, or some combination thereof [20, 35,62]. In this section, we brie�ly introduce each of these general classes ofensemble methods and give their generic formulation in terms ofEq. (3).
2.3.1	 BaggingIn bootstrap aggregation (i.e., bagging), different subsets of the data orfeatures (or both) are used to generate different scores. The results arethen combined in some way, such as a sum of the scores, or a majorityvote of the corresponding classi�ications. For bagging, we assume thatthe same scoring method is used for all scores in the ensemble. Forexample, bagging is used when generating a random forest, where eachindividual scoring function is based on a decision tree structure. Onebene�it of bagging is that it reduces over�itting, which is a particularproblem for decision trees.For bagging, the general Eq. (3) is restricted to (4)That is, in bagging, each scoring function is essentially the same, buteach is trained on a different feature set. For example, suppose that wecollect all available feature vectors into a matrix V as in Eq. (1). Thenbagging based on subsets of samples would correspond to generating by deleting a subset of the columns of V. On the other hand, baggingbased on features would correspond to generating by deleting asubset of the rows of V. Of course, we can easily extend this to baggingbased on both the data and features simultaneously, as in a randomforest. In Sect. 2.4, we discuss speci�ic examples of bagging.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2.3.2	 BoostingBoosting is a process whereby distinct classi�iers are combined toproduce a stronger classi�ier. Generally, boosting deals with weakclassi�iers that are combined in an adaptive or iterative manner so asto improve the overall classi�ier. We restrict our de�inition of boostingto cases where the classi�iers are closely related, in the sense that theydiffer only in terms of parameters. From this perspective, boosting canbe viewed as “bagging” based on classi�iers, rather than data orfeatures. That is, all of the scoring functions are re-parameterizedversions of the same scoring technique. Under this de�inition ofboosting, the general Eq. (3) becomes (5)That is, the scoring functions differ only by re-parameterization, whilethe scoring data and features do not change.Below, in Sect. 2.4, we discuss speci�ic examples of boosting; inparticular, we discuss the most popular method of boosting, AdaBoost.In addition, we show that some other popular techniques �it ourde�inition of boosting.
2.3.3	 StackingStacking is an ensemble method that combines disparate scores usinga meta-classi�ier [35]. In this generic form, stacking is de�ined by thegeneral case in Eq. (3), where the scoring functions can be (andtypically are) signi�icantly different. Note that from this perspective,stacking is easily seen to be a generalization of both bagging andboosting.Because stacking generalizes both bagging and boosting, it is notsurprising that stacking-based ensemble methods can outperformbagging and boosting methods, as evidenced by recent machinelearning competitions, including the KDD Cup [15], the Kagglecompetition [14], as well as the infamous Net�lix prize [26]. However,this is not the end of the story, as ef�iciency and practicality are oftenignored in such competitions, whereas in practice, it is virtually alwaysnecessary to consider such issues. Of course, the appropriate tradeoffswill depend on the speci�ics of the problem at hand. Our empirical

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

results in Sect. 3 provide some insights into these tradeoff issueswithin the malware analysis domain.In the next section, we discuss concrete examples of bagging,boosting, and stacking techniques. Then in Sect. 3, we present ourexperimental results, which include selected bagging, boosting, andstacking architectures.
2.4	 Ensemble	Classi�ier	ExamplesHere, we consider a variety of ensemble methods and discuss how each�its into the general framework presented above. We begin with a fewfairly generic examples, and then discuss several more speci�icexamples.
2.4.1	 MaximumIn this case, we have (6)
2.4.2	 AveragingAveraging is de�ined by

(7)
2.4.3	 VotingVoting could be used as a form of boosting, provided that no bagging isinvolved (i.e., the same data and features are used in each case). Votingis also applicable to stacking, and is generally applied in such a mode,or at least with signi�icant diversity in the scoring functions, since wewant limited correlation when voting.In the case of stacking, a simple majority vote is of the form

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

where “ ” is the majority vote function. Note that the majority voteis well de�ined in this case, provided that is odd—if is even, we cansimply �lip a coin in case of a tie.As an aside, we note that it is easy to see why we want to avoidcorrelation when voting is used as a combining function. Consider thefollowing example from [47]. Suppose that we have the three highlycorrelated scores
where each 1 indicates correct classi�ication, and each 0 is an incorrectclassi�ication. Then, both and are 80% accurate, and is 70%accurate. If we use a simple majority vote, then we obtain the classi�ier
which is 80% accurate. On the other hand, the less correlatedclassi�iers
are only 80%, 70% and 60% accurate, respectively, but the majorityvote in this case gives us
which is 90% accurate.
2.4.4	 ML-Based	CombinationRecall that the most general formulation of an ensemble classi�ier isgiven in Eq. (3). In this formulation, we can select the function F basedon a machine learning technique, which is applied to the individual

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

scores . In the remainder of this section, we considerspeci�ic ensemble examples involving machine learning techniques.
2.4.5	 AdaBoostGiven a collection of (weak) classi�iers , AdaBoost is aniterative algorithm that generates a series of (generally, stronger)classi�iers, based on the classi�iers . Each classi�ier isdetermined from the previous classi�ier by the simple linear extension
and the �inal classi�ier is given by . Note that at each iteration,we include a previously unused from the set of (weak) classi�iersand determine a new weight . A greedy approach is used whenselecting , but it is not a hill climb, so that results might get worse atany step in the AdaBoost process.From this description, we see that the AdaBoost algorithm �its theform in Eq. (5), with , and
2.4.6	 SVM	as	Meta-Classi�ierIt is natural to use an SVM as a meta-classi�ier to combine scores [38].For example, in [34], an SVM is used to generate a malware classi�ierbased on several machine learning and statistical-based malwarescores. In [34], it is shown that the resulting SVM classi�ier consistentlyoutperforms any of the component scores, and the differences aremost pronounced in the most challenging cases.The use of SVM in this meta-classi�ier mode can be viewed as ageneral stacking method. Thus, this SVM technique is equivalent to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Eq. (3), where the function F is simply an SVM classi�ier based on thecomponent scores , for .
2.4.7	 HMM	with	Random	RestartsA hidden Markov model can be viewed as a discrete hill climbtechnique [37, 38]. As with any hill climb, when training an HMM we areonly assured of a local maximum, and we can often signi�icantlyimprove our results by executing the hill climb multiple times withdifferent initial values, selecting the best of the resulting models. Forexample, in [51] it is shown that an HMM can be highly effective forbreaking classic substitution ciphers and, furthermore, by using a largenumber of random restarts, we can signi�icantly increase the successrate in the most dif�icult cases. The work in [51] is closely related tothat in [7], where such an approach is used to analyze the unsolvedZodiac 340 cipher.From the perspective considered in this paper, an HMM withrandom restarts can be seen as a special case of boosting. If we simplyselect the best model, then the “combining” function is particularlysimple, and is given by (8)Here, each scoring function is an HMM, where the trained models differbased only on different initial values. We see that Eq. (8) is a specialcase of Eq. (6). However, the “ ” in Eq. (8) is the maximum over theHMM model scores, not the maximum over any particular set of inputvalues. That is, we select the highest scoring model and use it forscoring. Of course, we could use other combining functions, such as anaverage or majority vote of the corresponding classi�iers. In any case,since there is a score associated with each model generated by anHMM, any such combining function is well-de�ined.
2.4.8	 Bagged	PerceptronLike a linear SVM, a perceptron will separate linearly separable data.However, unlike an SVM, a perceptron will not necessarily produce theoptimal separation, in the sense of maximizing the margin. If we

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

generate multiple perceptrons, each with different random initialweights, and then average these models, the resulting classi�ier willtend to be nearer to optimal, in the sense of maximizing themargin [21, 47]. That is, we construct a classi�ier
(9)

where is a perceptron and each represents a set of initial values.We see that Eq. (9) is a special case of the averaging example given inEq. (7). Also, we note that in this sum, we are averaging the perceptronmodels, not the classi�ications generated by the models.Although this technique is sometimes referred to as “bagged”perceptrons [47], by our criteria, it is a boosting scheme. That is, the“bagging” here is done with respect to parameters of the scoringfunctions, which is our working de�inition of boosting.
2.4.9	 Bagged	Hidden	Markov	ModelLike the HMM with random restarts example given above, in this case,we generate multiple HMMs. However, here we leave the modelparameters unchanged, and simply train each on a subset of the data.We could then average the model scores (for example) as a way ofcombining the HMMs into a single score, from which we can easilyconstruct a classi�ier.
2.4.10	 Bagged	and	Boosted	Hidden	Markov	ModelOf course, we could combine both the HMM with random restartsdiscussed in Sect. 2.4.7 with the bagging approach discussed in theprevious section. This process would yield an HMM-based ensembletechnique that combines both bagging and boosting.
3	 Experiments	and	ResultsIn this section, we consider a variety of experiments that illustratevarious ensemble techniques. These experiments involve malware

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Adload

Agent

Allaple

BHO
Bifrose
CeeInject

classi�ication based on a challenging dataset that includes a largenumber of samples from a signi�icant number of malware families.
3.1	 Dataset	and	FeaturesOur dataset consists of samples from the 21 malware families listed inTable 2. These families are from various different types of malware,including Trojans, worms, backdoors, password stealers, so-calledVirTools, and so on.
Table	2 Type of each malware family
Index Family Type Index Family Type1 Adload [41] Trojan downloader 12 Renos [43] Trojan downloader2 Agent [42] Trojan 13 Rimecud [54] Worm3 Allaple [52] Worm 14 Small [44] Trojan downloader4 BHO [45] Trojan 15 Toga [46] Trojan5 Bifrose [4] Backdoor 16 VB [6] Backdoor6 CeeInject [48] VirTool 17 VBinject [50] VirTool7 Cycbot [5] Backdoor 18 Vobfus [55] Worm8 FakeRean [53] Rogue 19 Vundo [56] Trojan downloader9 Hotbar [1] Adware 20 Winwebsec [22] Rogue10 Injector [49] VirTool 21 Zbot [23] Password stealer11 OnLineGames [28] Password stealer – – –Each of the malware families in Table 2 is summarized below. downloads an executable �ile, stores it remotely, executes the�ile, and disables proxy settings [41].downloads Trojans or other software from a remoteserver [42].is a worm that can be used as part of a denial of service (DoS)attack [52].can perform a variety of actions, guided by an attacker [45].is a backdoor Trojan that enables a variety of attacks [4].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Cycbot

FakeRean

Hotbar

Injector
OnLineGames

Renos

Rimecud

Small

Toga

VB

VBinject

Vobfus

Vundo

Winwebsec

Zbot

uses advanced obfuscation to avoid being detected by antivirussoftware [48].connects to a remote server, exploits vulnerabilities, andspreads through backdoor ports [5].pretends to scan the system, noti�ies the user of supposedissues, and asks the user to pay to clean the system [53].is adware that shows ads on webpages and installsadditional adware [1].loads other processes to perform attacks on its behalf [49].steals login information of online games and tracksuser keystroke activity [28].downloads software that claims the system has spyware andasks for a payment to remove the nonexistent spyware [43].is a sophisticated family of worms that perform a variety ofactivities and can spread through instant messaging [54].is a family of Trojans that downloads unwanted software. Thisdownloaded software can perform a variety of actions, such as a fakesecurity application [44].is a Trojan that can perform a variety of actions of theattacker’s choice [46].is a backdoor that enables an attacker to gain access to acomputer [6].is a generic description of malicious �iles that areobfuscated in a speci�ic manner [50].is a worm that downloads malware and spreads through USBdrives or other removable devices [55].displays pop-up ads and may download �iles. It uses advancedtechniques to defeat detection [56].displays alerts that ask the user for money to �ixsupposed issues [22].is installed through email and shares a user’s personalinformation with attackers. In addition, Zbot can disable a�irewall [23].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 From each available malware sample, we extract the �irst 1000mnemonic opcodes using the reversing tool Radare2 (also know asR2) [29]. We discard any malware executable that yields less than 1000opcodes, as well as a number of executables that were found to becorrupted. The resulting opcode sequences, each of length 1000, serveas the feature vectors for our machine learning experiments.Table 3 gives the number of samples (per family) from which wesuccessfully obtained opcode feature vectors. Note that our datasetcontains a total of 9725 samples from the 21 malware families and thatthe dataset is highly imbalanced—the number of samples per familyvaries from a low of 129 to a high of nearly 1000.
Table	3 Type of each malware family
Index Family Samples Index Family Samples1 Adload 162 12 Renos 5322 Agent 184 13 Rimecud 1533 Allaple 986 14 Small 1804 BHO 332 15 Toga 4065 Bifrose 156 16 VB 3466 CeeInject 873 17 VBinject 9377 Cycbot 597 18 Vobfus 9298 FakeRean 553 19 Vundo 7629 Hotbar 129 20 Winwebsec 83710 Injector 158 21 Zbot 30311 OnLineGames 210 9725
3.2	 MetricsThe metrics used to quantify the success of our experiments areaccuracy, balanced accuracy, precision, recall, and the F1 score.Accuracy is simply the ratio of correct classi�ications to the totalnumber of classi�ications. In contrast, the balanced accuracy is theaverage accuracy per family.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Precision, which is also known as the positive predictive value, isthe number of true positives divided by the sum of the true positivesand false positives. That is, the precision is the ratio of samplesclassi�ied as positives that are actually positive to all samples that areclassi�ied as positive. Recall, which is also known as the true positiverate or sensitivity, is computed by dividing the number of truepositives by the number true positives plus the number of falsenegatives. That is, the recall is the fraction of positive samples that areclassi�ied as such. The F1 score is computed as
which is the harmonic mean of the precision and recall.
3.3	 SoftwareThe software packages used in our experiments include
hmmlearn [11], XGBoost [57], Keras [16], TensorFlow [39], and
scikit-learn [30], as indicated in Table 4. In addition, we use
Numpy [27] for linear algebra and various tools available in thepackage scikit-learn (also known as sklearn) for general dataprocessing. These packages are all widely used in machine learning.
Table	4 Software used in experiments
Technique SoftwareHMM hmmlearnXGBoost XGBoostAdaBoost sklearnCNN Keras, TensorFlowLSTM Keras, TensorFlowRandom Forest sklearn

3.4	 Overview	of	ExperimentsFor all of our experiments, we use opcode sequences of length 1000 asfeatures. For CNNs, the sequences are interpreted as images.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We consider three broad categories of experiments. First, we apply“standard” machine learning techniques. These experiments, serve as abaseline for comparison for our subsequent experiments. Among otherthings, these standard experiments show that the malwareclassi�ication problem that we are dealing with is challenging.We also conduct bagging and boosting experiments based on asubset of the techniques considered in our baseline standardexperiments. These results demonstrate that both bagging andboosting can provide some improvement over our baseline techniques.Finally, we consider a set of stacking experiments, where werestrict our attention to simple voting schemes, all of which are basedon architectures previously considered in this paper. Although theseare very basic stacking architectures, they clearly show the potentialbene�it of stacking multiple techniques.
3.5	 Standard	TechniquesFor our “standard” techniques, we test several machine learningmethods that are typically used individually. Speci�ically, we considerhidden Markov models (HMM), convolutional neural networks (CNN),random forest, and long short-term memory (LSTM). The parametersthat we have tested in each of these cases are listed in Table 5, withthose that gave the best results in boldface.
Table	5 Parameters for standard techniques
Technique Parameters Values	testedHMM n_components [1,2,5,10]

n_iter [50,100,200,300,500]
tol [0.01,0.5]CNN learning_rate [0.001,0.0001]
batch_size [32,64,128]
epochs [50,75,100Random Forest n_estimators [100,200,300,500,800]
min_samples_split [2,5,10,15,20]
min_samples_leaf [1,2,5,10,15]
max_features [auto,sqrt,]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technique Parameters Values	tested

max_depth [30,40,50,60,70,80]LSTM layers [1,3]
directional [uni-dir,bi-dir]
learning_rate [0.01]
batch_size [1,16,32]
epochs [20]From Table 5, we note that a signi�icant number of parametercombinations were tested in each case. For example, in the case of ourrandom forest model, we tested

different combinations of parameters.The confusion matrices for all of the experiments in this section canbe found in the Appendix in Fig. 2a through Fig. 2d. We present theresults of all of these experiments—in terms of the metrics discussedpreviously (i.e., accuracy, balanced accuracy, precision, recall, and F1score)—in Sect. 3.9.
3.6	 Bagging	ExperimentsRecall from our discussion above that we use the term bagging to meana multi-model approach where the individual models are trained withthe same technique and essentially the same parameters, but differentsubsets of the data or features. In contrast, we use boosting to refer tomulti-model cases where the data and features are essentially thesame and the models are of the same type, with the model parametersvaried.We will use AdaBoost and XGBoost results to serve asrepresentative examples of boosting. We also consider baggingexperiments (in the sense described in the previous paragraph)involving each of the HMM, CNN, and LSTM architectures. The resultsof these three distinct bagging experiments—in the form of confusionmatrices—are given in Fig. 3 in the Appendix. In terms of the metrics

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

CNN

LSTM

discussed above, the results of these experiments are summarized inSect. 3.9.
3.7	 Boosting	ExperimentsAs representative examples of boosting techniques, we considerAdaBoost and XGBoost. In each case, we experiment with a variety ofparameters as listed in Table 6. The parameter selection that yieldedthe best results are highlighted in boldface.
Table	6 Parameters for boosting techniques
Technique Parameters Values	testedAdaBoost n_estimators [100,200,300,500,800,1000]

learning_rate [0.5,1.0,1.5,2.0]
algorithm [SAMME,SAMME.R]XGBoost eta [0.05,0.1,0.2,0.3,0.5]
max_depth [1,2,3,4]
objective [multi:softprob,binary:logistic]
steps [1,5,10,20,50]Confusion matrices for these two boosting experiments are givenin Fig. 4 in the Appendix. The results of these experiments aresummarized in Sect. 3.9, in terms of accuracy, balanced accuracy, and soon.

3.8	 Voting	ExperimentsSince there exists an essentially unlimited number of possible stackingarchitectures, we have limited our attention to one of the simplest,namely, voting. These results serve as a lower bound on the results thatcan be obtained with stacking architectures.We consider six different stacking architectures. These stackingexperiments can be summarized as follows. consists of the plain and bagged CNN models discussed above.The confusion matrix for this experiment is given in Fig. 5a.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Bagged	neural	networks

Classic	techniques

All	neural	networks

All	models

consists of the plain and bagged LSTM models discussed above. Theconfusion matrix for this experiment is given in Fig. 5b.combines our bagged CNN and baggedLSTM models. The confusion matrix for this experiment is given inFig. 5c. combines (via voting) all of the classic modelsconsidered above, namely, HMM, bagged HMM, random forest,AdaBoost, and XGBoost. The confusion matrix for this experiment isgiven in Fig. 5d. consists of all of the CNN and LSTM models,bagged and plain. The confusion matrix for this experiment is given inFig. 5e. combines all of the classic and neural network modelsinto one voting scheme. The confusion matrix for this experiment isgiven in Fig. 5f. In the next section, we present the results for each of the votingexperiments discussed in this section in terms of our various metrics.These metrics enable us to directly compare all of our experimentalresults.
3.9	 DiscussionTable 7 summarizes the results of all of the experiments discussedabove, in term of the following metrics: accuracy, balanced accuracy,precision, recall, and F1 score. These metrics have been introduced inSect. 3.1.
Table	7 Comparison of experimental results
Experiments Case Accuracy Balanced Precision Recall F1	score

accuracyStandard HMM 0.6717 0.6336 0.7325 0.6717 0.6848CNN 0.8211 0.7245 0.8364 0.8211 0.8104Random Forest 0.7549 0.6610 0.7545 0.7523 0.7448LSTM 0.8410 0.7185 0.7543 0.7185 0.8145

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Experiments Case Accuracy Balanced Precision Recall F1	score

accuracyBagging Bagged HMM 0.7168 0.6462 0.7484 0.7168 0.7165Bagged CNN 0.8910 0.8105 0.9032 0.8910 0.8838Bagged LSTM 0.8602 0.7754 0.8571 0.8602 0.8549Boosting AdaBoost 0.5378 0.4060 0.5231 0.5378 0.5113XGBoost 0.7472 0.6636 0.7371 0.7472 0.7285Voting Classic 0.8766 0.8079 0.8747 0.8766 0.8719CNN 0.9260 0.8705 0.9321 0.9260 0.9231LSTM 0.8560 0.7470 0.8511 0.8560 0.8408Bagged neural networksAll neural networks 0.9208 0.8613 0.9284 0.9208 0.9171All models 0.9188 0.8573 0.9249 0.9188 0.9154In Table 7, the best result for each type of experiment is in boldface,with the best results overall also being boxed. We see that a votingstrategy based on all of the bagged neural network techniques gives usthe best result for each of the �ive statistics that we have computed.Since our dataset is highly imbalanced, we consider the balancedaccuracy as the best measure of success. The balanced accuracy resultsin Table 7 are given in the form of a bar graph in Fig. 1.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 Balanced accuracy results

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Confusion matrices for standard techniques

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 Confusion matrices for bagging experiments

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 Confusion matrices for boosting techniques

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Confusion matrices for voting ensemblesNote that the results in Fig. 1 clearly show that stacking techniquesare bene�icial, as compared to the corresponding “standard”techniques. Stacking not only yields the best results, but it dominatesin all categories. We note that �ive of the six stacking experimentsperform better than any of the standard, bagging, or boostingexperiments. This is particularly noteworthy since we only considereda simple stacking approach. As a result, our stacking experiments likelyprovide a poor lower bound on stacking in general, and more advancedstacking techniques may improve signi�icantly over the results that wehave obtained.
4	 Conclusion	and	Future	WorkIn this chapter, we have attempted to impose some structure on the�ield of ensemble learning. We showed that combination architecturescan be classi�ied as either bagging, boosting, or in the more generalcase, stacking. We then provided experimental results involving achallenging malware dataset to illustrate the potential bene�its ofensemble architectures. Our results clearly show that ensemblesimprove on standard techniques, with respect to our speci�ic dataset.Of course, in principle, we expect such combination architectures tooutperform standard techniques, but it is instructive to con�irm thisempirically, and to show that the improvement can be substantial.These results make it clear that there is a reason why complex stackingarchitectures win machine learning competitions.However, stacking models are not without potential pitfalls. As thearchitectures become more involved, training can become impractical.Furthermore, scoring can also become prohibitively costly, especially iflarge numbers of features are used in complex schemes involvingextensive use of bagging or boosting.For future work, it would be useful to quantify the tradeoff betweenaccuracy and model complexity. While stacking will generally improveresults, marginal improvements in accuracy that come at greatadditional cost in training and scoring are unlikely to be of any value inreal-world applications. More concretely, future work involving

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

additional features would be very interesting, as it would allow for amore thorough analysis of bagging, and it would enable us to draw�irmer conclusions regarding the relative merits of bagging andboosting. Of course, more and more complex classes of stackingtechniques could be considered.
Appendix:	Confusion	MatricesSee Figs. 2, 3, 4, 5
References1. Adware:win32/hotbar. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Adware: Win32/ Hotbar& threatId= 6204.2. Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. 2011. Zero-daymalware detection based on supervised learning algorithms of API call signatures. In

Proceedings	of	the	Ninth	Australasian	Data	Mining	Conference,	volume	121	of	AusDM	’11,171–182, Australian Computer Society, Darlinghurst.3. Amatriain, Xavier, and Justin Basilico. 2012. Net�lix recommendations: Beyond the 5 stars(part 1). https:// medium. com/ net�lix-techblog/ net�lix-recommendations-beyond-the-5-stars-part-1-55838468f429.4. Backdoor:win32/bifrose. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Backdoor: Win32/ Bifrose& threatId= -2147479537.5. Backdoor:win32/cycbot.g. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Backdoor: Win32/ Cycbot. G.6. Backdoor:win32/vb. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Backdoor: Win32/ VB& threatId= 7275.7. Berg-Kirkpatrick, Taylor, and Dan Klein. 2013. Decipherment with a million random restarts.
Proceedings	of	the	Conference	on	Empirical	Methods	in	Natural	Language	Processing,
EMNLP, 874–878.8. Comar, Prakash Mandayam, Lei Liu, Sabyasachi Saha, Pang-Ning Tan, and Antonio Nucci. 2013.Combining supervised and unsupervised learning for zero-day malware detection. 2013
Proceedings	IEEE	INFOCOM, 2022–2030. IEEE: Piscataway.[Crossref]9. Dimjaševic, Marko, Simone Atzeni, Ivo Ugrina, and Zvonimir Rakamaric. 2015. Androidmalware detection based on system calls. Technical Report UUCS-15-003, School ofComputing, University of Utah, Salt Lake City, Utah.10.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Hotbar&threatId=6204
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Bifrose&threatId=-2147479537
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Cycbot.G
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/VB&threatId=7275
https://doi.org/10.1109/INFCOM.2013.6567003

Guo, Shanqing, Qixia Yuan, Fengbo Lin, Fengyu Wang, and Tao Ban. 2010. A malware detectionalgorithm based on multi-view fusion. International	Conference	on	Neural	Information
Processing,	ICONIP	2010, 259–266. Berlin: Springer.11. hmmlearn. https:// hmmlearn. readthedocs. io/ en/ latest/ .12. Idrees, Fauzia, Muttukrishnan Rajarajan, Mauro Conti, Thomas M. Chen, and YogachandranRahulamathavan. 2017. Pindroid: A novel android malware detection system using ensemblelearning methods. Computers	&	Security 68: 36–46.[Crossref]13. Jain, Sachin, and Yogesh Kumar Meena. 2011. Byte level -gram analysis for malwaredetection. Computer	Networks	and	Intelligent	Computing, 51–59. Berlin: Springer.[Crossref]14. Kaggle. 2018. Welcome to Kaggle competitions. https:// www. kaggle. com/ competitions.15. KDD Cup of fresh air. 2018. https:// biendata. com/ competition/ kdd_ 2018/ .16. Keras: The Python deep learning API. https:// keras. io/ .17. Khan, Muhammad Salman, Sana Siddiqui, Robert D. McLeod, Ken Ferens, and Witold Kinsner.2016. Fractal based adaptive boosting algorithm for cognitive detection of computermalware. 15th	International	Conference	on	Cognitive	Informatics	&	Cognitive	Computing,
ICCI*CC, 50–59. IEEE: Piscataway.18. Kittler, Josef, Mohamad Hatef, Robert P.W. Duin, and Jiri Matas. 1998. On combining classi�iers.
IEEE	Transactions	on	Pattern	Analysis	and	Machine	Intelligence 20 (3): 226–239.[Crossref]19. Deguang, Kong, and Guanhua Yan. 2013. Discriminant malware distance learning on structuralinformation for automated malware classi�ication. In Proceedings	of	the	19th	ACM	SIGKDD
International	Conference	on	Knowledge	Discovery	and	Data	Mining, KDD ’13, 1357–1365,ACM, New York.20. Kuncheva, Ludmila I. 2004. Combining	Pattern	Classi�iers:	Methods	and	Algorithms. Wiley,Hoboken, NJ. 2004. https:// pdfs. semanticscholar. org/ 453c/ 2b407c57d7512fdb e19fa1cefa08dd22 614a. pdf.21. Michailidis, Marios. 2017. Investigating	machine	learning	methods	in	recommender	systems.Thesis: University College London.22. Microsoft malware protection center, winwebsec. https:// www. microsoft. com/ security/ portal/ threat/ encyclopedia/ entry. aspx? Name= Win3223. Symantec security response, zbot. http:// www. symantec. com/ security_ response/ writeup. jsp? docid= 2010-011016-3514-99.24. Morales-Ortega, Salvador, Ponciano Jorge, Abraham Escamilla-Ambrosio, and Rodriguez-Mota, and Lilian D, Coronado-De-Alba. 2016. Native malware detection in smartphones with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://hmmlearn.readthedocs.io/en/latest/
https://doi.org/10.1016/j.cose.2017.03.011
https://doi.org/10.1007/978-3-642-22786-8_6
https://www.kaggle.com/competitions
https://biendata.com/competition/kdd_2018/
https://keras.io/
https://doi.org/10.1109/34.667881
https://pdfs.semanticscholar.org/453c/2b407c57d7512fdbe19fa1cefa08dd22614a.pdf
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99

Android OS using static analysis, feature selection and ensemble classi�iers. 11th	International
Conference	on	Malicious	and	Unwanted	Software,	MALWARE	2016, 1–8. IEEE: Piscataway.25. Narouei, Masoud, Mansour Ahmadi, Giorgio Giacinto, Hassan Takabi, and Ashkan Sami. 2015.Dllminer: Structural mining for malware detection. Security	and	Communication	Networks 8(18): 3311–3322.[Crossref]26. Net�lix Prize. 2009. https:// www. net�lixprize. com.27. Numpy. https:// numpy. org/ .28. Pws:win32/onlinegames. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS%3AWin32%2FOnLineGames.29. Radare2: Libre and portable reverse engineering framework. https:// rada. re/ n/ .30. scikit-learn: Machine learning in Python. https:// scikit-learn. org/ stable/ .31. Raja Khurram Shahzad and Niklas Lavesson. 2013. Comparative analysis of voting schemesfor ensemble-based malware detection. Journal	of	Wireless	Mobile	Networks,	Ubiquitous
Computing,	and	Dependable	Applications 4 (1): 98–117.32. Sheen, Shina, R Anitha, and P Sirisha. 2013. Malware detection by pruning of parallelensembles using harmony search. Pattern	Recognition	Letters 34 (14): 1679–1686.[Crossref]33. Mary Wollstonecraft Shelley. 1869. Frankenstein or The Modern Prometheus. Dent.34. Singh, Tanuvir, Fabio Di Troia, Visaggio Aaron Corrado, Thomas H. Austin, and Mark Stamp.2016. Support vector machines and malware detection. Journal	of	Computer	Virology	and
Hacking	Techniques 12 (4): 203–212.[Crossref]35. Smolyakov, Vadim. 2017. Ensemble learning to improve machine learning results. https:// blog. statsbot. co/ ensemble-learning-d1dcd548e936.36. Smutz, Charles, and Angelos Stavrou. 2012. Malicious pdf detection using metadata andstructural features. In Proceedings	of	the	28th	Annual	Computer	Security	Applications
Conference, ACSAC 2012, 239–248, ACM, New York.37. Stamp, Mark. 2004. A revealing introduction to hidden Markov models. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ HMM. pdf.38. Stamp, Mark. 2017. Introduction	to	Machine	Learning	with	Applications	in	Information
Security. Boca Raton: Chapman and Hall/CRC.[Crossref]39. TensorFlow: An end-to-end open source machine learning platform. https:// www. tensor�low. org/ .40. Toolan, Fergus, and Carthy Joe. 2009. Phishing detection using classi�ier ensembles. eCrime

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1002/sec.1255
https://www.netflixprize.com/
https://numpy.org/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%253AWin32%252FOnLineGames
https://rada.re/n/
https://scikit-learn.org/stable/
https://doi.org/10.1016/j.patrec.2013.05.006
https://doi.org/10.1007/s11416-015-0252-0
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://www.cs.sjsu.edu/%257estamp/RUA/HMM.pdf
https://doi.org/10.1201/9781315213262
https://www.tensorflow.org/

Researchers	Summit,	2009,	eCRIME	’09, 1–9. IEEE: Piscataway.41. Trojandownloader:win32/adload. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader %3AWin32%2FAdload.42. Trojandownloader:win32/agent. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader : Win32/ Agent& ThreatID= 14992.43. Trojandownloader:win32/renos. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader : Win32/ Renos& threatId= 16054.44. Trojandownloader:win32/small. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader : Win32/ Small& threatId= 15508.45. Trojan:win32/bho. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Trojan: Win32/ BHO& threatId= -2147364778.46. Trojan:win32/toga. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Trojan: Win32/ Toga& threatId= -2147259798.47. van Veen, Hendrik Jacob, Le Nguyen The Dat, and Armando Segnini. 2015. Kaggle ensemblingguide. https:// mlwave. com/ kaggle-ensembling-guide/ .48. Virtool:win32/ceeinject. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= VirTool%3AWin32%2FCeeInject.49. Virtool:win32/injector. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= VirTool: Win32/ Injector& threatId= -2147401697.50. Virtool:win32/vbinject. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= VirTool: Win32/ VBInject& threatId= -2147367171.51. Vobbilisetty, Rohit, Fabio Di Troia, Richard M. Low, Corrado Aaron Visaggio, and Mark Stamp.2017. Classic cryptanalysis using hidden Markov models. Cryptologia 41 (1): 1–28.[Crossref]52. Win32/allaple. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Allaple& threatId= .53. Win32/fakerean. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ FakeRean.54. Win32/rimecud. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Rimecud& threatId= .55. Win32/vobfus. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Vobfus& threatId= .56. Win32/vundo. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Vundo& threatId= .57.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%253AWin32%252FAdload
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Agent&ThreatID=14992
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Small&threatId=15508
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Toga&threatId=-2147259798
https://mlwave.com/kaggle-ensembling-guide/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%253AWin32%252FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/Injector&threatId=-2147401697
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject&threatId=-2147367171
https://doi.org/10.1080/01611194.2015.1126660
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Allaple&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Rimecud&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vobfus&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vundo&threatId=

XGBoost documentation. https:// xgboost. readthedocs. io/ en/ latest/ .58. Ye, Yanfang, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and Min Zhao. 2009. Sbmds: Aninterpretable string based malware detection system using svm ensemble with bagging.
Journal	in	Computer	Virology 5 (4): 283.[Crossref]59. Ye, Yanfang, Tao Li, Yong Chen, and Qingshan Jiang. 2010. Automatic malware categorizationusing cluster ensemble. In Proceedings	of	the	16th	ACM	SIGKDD	International	Conference	on
Knowledge	Discovery	and	Data	Mining, KDD ’10, 95–104, ACM, New York.60. Suleiman Y, Yerima, Sakir Sezer, and Igor Muttik. 2015. High accuracy android malwaredetection using ensemble learning. IET	Information	Security 9 (6): 313–320.[Crossref]61. Zhang, Boyun, Jianping Yin, Jingbo Hao, Dingxing Zhang, and Shulin, Wang. 2007. Maliciouscodes detection based on ensemble learning. International	Conference	on	Autonomic	and
Trusted	Computing,	ATC	2007, 468–477. Berlin: Springer.62. Zhou, Zhi-Hua. 2012. Ensemble	Methods:	Foundations	and	Algorithms. Boca Raton, FL: CRCPress. http:// www2. islab. ntua. gr/ attachments/ article/ 86/ Ensemble

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://xgboost.readthedocs.io/en/latest/
https://doi.org/10.1007/s11416-008-0108-y
https://doi.org/10.1049/iet-ifs.2014.0099
http://www2.islab.ntua.gr/attachments/article/86/Ensemble

Part	II
Malware	Analysis

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_9
Optimizing	Multi-class	Classi�ication	of
Binaries	Based	on	Static	FeaturesLasse Øverlier1 Norwegian Defence Research Establishment, Kjeller, Norway
Lasse	Øverlier
Email:	lasse.overlier@f�i.no

AbstractClassi�ication of binaries is often done with limited resources spent onpre-processing the input, assuming that the resource-intensivemachine learning techniques will �ind the optimal results. In this paper,we identify pre-processing methods to perform faster malware multi-class classi�ication of high accuracy, and we also use the sametechniques to classify author (programmer) identi�ication fromexecutables. One method is via eight different types of codesimpli�ications of the disassembled code to reduce storage andcalculation time. Another is through visual analysis from runningTFIDF N-gram analysis using both Random Forest and SVM, for a largerange of different N-grams. The results show interesting features fromour classi�ication of executables which we base solely on the analysisof the disassembled code. We have in addition looked at using differenttraining data sizes, compiler optimized code, and both ELF and PE-�ilesand demonstrate methods for optimizing storage and computationalcomplexity when classifying executable �iles. Our �indings show that ahigher size N-gram is only preferable for some code simpli�ications,and that some code simpli�ications can give a very high accuracy(99.2%) based on only a fraction of the code. In addition, the amount oftraining data can be quite low and still yield an accuracy of over 95%.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_9
mailto:lasse.overlier@ffi.no

1	 IntroductionWhen we move away from malware detection [10, 23] and binaryclassi�ication to malware multi-class classi�ication, there are manyways to group the malware binaries.It is useful to classify the malware with other malware with similarfunctionality. It is also useful to classify the programmers who wrotethe malware assuming that they leave some sort of identi�iablesignatures through their programming practices. The malwareprogrammer may be anonymous, but it is useful to know whichmalware most likely originates from the same programmer orprogrammer group. These two methods of classi�ication do seem liketwo completely different challenges since we might assume that anyauthor identi�iable texts are removed and code converted when thesource codes are compiled into binaries.So when we have access to the originating source code of themalware, this latter research problem resembles the authoridenti�ication problem for identifying the origin of, or classi�ication of,anonymous texts [1]. But for processed text, in our case binarysoftware �iles without access to the source code, this is a different kindof problem. In our case, we have little or no control over how thesoftware’s source code has been parsed, analyzed, and optimized bythe compiler to produce the binary software �ile. We may also assumethat different types of compilers might leave identi�iable markers. Andin addition most malware programmers make an effort into beinganonymous for obvious reasons, and this may also affect the resultingbinary. After compilation, we may also assume that the binary also canbe edited to hide potential identifying markers before being used as amalware.Our original challenge was to start with the binaries and see if andhow a classi�ication of the source code may be optimized by using andextracting as little as possible from the binary �iles. This created twodimensions of experiments. First, we look at how accuracy of correctclassi�ication varies with different methods of machine learningtechniques and variables. And second, we attempt to minimize the datathat must be extracted from the binaries in order to create andmaximize classi�ication results and still maintain acceptable accuracy.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In one of our experiments, we examine whether malwareclassi�ications into family classes of similar functionality can be doneand how the results vary with our optimizations. In the otherexperiment, we attempt to see whether an author can be identi�ied tobelong to a classi�ication of binaries based on the authors(programmers).This paper is structured as follows. We will in section two look atrelated work, and in section three look at the theory behind ourclassi�ication experiment. In section four, we explain the experimentsetup, and we continue in section �ive with the results. The discussionof the results is in chapter six, and in chapter seven we conclude.
2	 Related	Work	and	BackgroundClassifying programmer (group) when we have access to the sourcecode, this research problem resembles the author identi�icationproblem with many earlier publications. In [5] deVel et al. used asupport vector machines (SVM) classi�ier to identify authorship ofmulti-topic e-mails. Others have looked at different uses of N-gramfeatures for author identi�ication using histograms of character-basedN-grams [6], and also trying to avoid language dependency and smallerpro�iles [13]. N-grams can be used on different types of entities,characters, bytes, opcodes, words, etc., depending on what kind ofpatterns we are looking for.Using character-based techniques may not be best in all types ofanalyses and classi�ications. Houvardas et al. [9] use variable lengthword-based N-gram features to make author identi�ication withoriginal text as input. They experimented with various length(character) n-grams, 3-gram up to 5-gram, and showed that there is avariation in accuracy when comparing different lengths. Languageindependence was also shown in programmer identi�ication wherePeng et al. [18] present graphs for accuracy of the various lengths of N-grams from 1-gram to 7-gram for English, Chinese, and Greek.Classifying �ile types is another similar problem where earlier N-gram analysis [22] have shown to be promising and produced“�ingerprints” for the �ile types using unigrams (“1-gram”). Laterresearch have improved this by using support vector machines and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

multiple various length N-grams for the same �ile type classi�icationproblem [2]. Most earlier N-gram analysis on binary �iles are madecharacter-by-character.Analyzing programmer authorship may involve other things morespeci�ic for programmers and code structure than authors’ languageand structures. Krsul and Spafford [15] looked at the programmingstyle through measurable predetermined parameters in the code, likeprogram line length, variable name length, function names, percentageof global variables, etc. Others have researched similar techniques later[14]. Caliskan-Islam et al. [4] use syntactic structures in the sourcecode to extract selected features and run these features through arandom forest classi�ication. Burrows and Tahaghoghi [3] have madesimilar research using N-gram source code analysis.This raises the question of which of the different lengths of n-gramthat will contribute the most in our case where we only base theanalysis on the binary �iles. Even for binary �iles, there are multiplemethods of how the binary code is produced. Some binaries mayinclude debug information and thus may include names and identi�iersused in the source code. Most binaries remove this debug information,and some compile with a high degree of optimization which tries tomake the most effective binary code from the source code �iles.Other types of binary data analysis have been performed onnetwork traf�ic. Analysis of different N-gram techniques for classifyingand detecting binary protocols (“not text-based protocols”) like RPC,Samba, and RDP can be found in [7].Different types of compilers might leave identi�iable markers inhow they compile or maybe how they optimize the binary executable.In [12], Kalbhor et al. demonstrates successful results by using hiddenMarkov models for identifying the compiler used.Spafford and Weeber [21] addressed the challenge of tracking bothsource code and binary code back to its authors already in 1992.Among other things, they discussed the use of compiler optimization,different source code languages, data structures and system calls, allwhich are relevant features to use in today’s newer analysis methods.Research into identifying programmer(s) from binaries have receivedan extra boost with the current machine learning tools to simplifylarge-scale analysis. In Meng [16] and Meng et al. [17], extract features

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from basic blocks in the binaries and use this to attribute the differentbasic blocks to authors using support vector machines and randomforest classi�ication models. Rosemblum et al. [20] use features fromthe control �low graph, and Caliskan et al. [4] extracts both instructionfeatures, lexical features, syntactic features, and �low features in theirde-anonymization of programmers.

Fig.	1 Example of code from one of the data sets [19]
3	 MethodologyIn author identity analysis there are multiple identi�ication indicatorsthat will vary and may help identify an author, like language,vocabulary, word frequency, term frequency, sentence buildup, order ofsentences, style of writing, etc. There are many more indicators whichmay be speci�ic for any individual author. We will in this paper only usea few of these identi�iers, but let us �irst review some of the additionalchallenges we have to address when we start with binary code toattempt to classify malware. We use a disassembler to give us a textualrepresentation of the malware, but this contains information likememory addresses which will vary with compiler and operatingsystem. We try to structure this disassembled information as explainedin Chap. 4 and we will only look at some of the indicators: words, terms,term lengths, and term frequency. Then we will visualize how theprediction accuracy varies with the length of the terms in differentsetups.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.1	 Selecting	the	DictionaryOne term in disassembled code can be interpreted to be one of manyvariations. Figure 1 shows a tiny fraction of one such �ile from theexperiment. The code can be found in the lower right half of the �igure.We may look at each word (or set of characters separated by one ormore whitespace characters) as they are found in the code, like “mov,”“edi,” “[ecx-0DCh],” etc., or we may look at one full line of code at a time,like “push ebp,” “mov ebp, esp,” etc., to be one single term in thedictionary.Many earlier machine learning experiments have fed the binary�iles with limited pre-processing into the classi�iers, often usingcharacter-based analysis, and including all the disassembled output,like addresses, comments, opcodes (machine code values) and havehad very successful results [8, 11].Since we wanted to build our analysis solely on the disassembledcode and different variations of this code as found from the binarymalware �iles, we have extracted the code without all the extrainformation shown in Fig. 1. The code lines with the disassembly codeshown in the lower right part of the �igure are everything we base ouranalysis on. This way we ignored the addresses, comments, andopcodes/machine code, and only used our parsing, pre-processing, andanalysis on the textual representation of the code part.The difference between using word frequency and term frequencycan easily be observed in the �igure as the word count for “push” is �ive,but if we use the term “push<REGISTER>” we see that there is only oneoccurrence of each term. We can also assume that a longer moreinclusive term will give a lower occurrence rate/count of each term anda larger dictionary, compared to single word “terms.” More complexterms will usually give a lower term count and a larger dictionary. Tomake the text easier to parse we combined words into selected “terms”(chosen by us) through removing spaces to build new words in the textto be analyzed.We wanted to analyze the difference between the terms included inthe dictionary to see whether we could make good predictions inclassifying malware by using only a fraction of the information givenfrom the disassembler and binary analysis tools. We have run our

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

analysis on the following different simpli�ications of disassembledcode:1. Single letter—only the �irst letter from the �irst word (�irst letter ofmnemonic). 2. First word—only the �irst word of each code line (the mnemonic) 3. First two words connected—as (4), but as one word in thedictionary (“2 words connected”) 4. First two words—often mnemonic and �irst parameter, as separatewords in the dictionary (“2 words”) 5. All words connected—as (6), but as one word in the dictionary foreach code line 6. All words—removed number values, type information, and specialcharacters, except colon(’:’), and kept all words—often mnemonicwith all registers
7. All code connected—as (8), but as one word in the dictionary foreach code line 8. All code—the complete code line with the whitespace output fromthe disassembler as the word separator. Meaning that commas,brackets, etc., will be present in the words in the dictionary.

An example of this code simpli�ication is shown in Table 1. Here wehave used the disassembled code from Fig. 1 to exemplify how thedifferent dictionaries will become. The input disassembled code isshown in the “All code” column. Note that when using large N-gram wewill include words from multiple lines, as a line separator will functionas a normal whitespace.Table 2 shows the �irst 80 characters of the resulting documentsrepresenting the simpli�ication from one �ile in the experiment. The fullcode can be seen/extracted when combining “All code” and “All codeconnected.” All these different types of combining the disassembled

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1-gram,	Single	letter	:
2-gram,	Single	letter	:
1-gram,	2	words	:

2-gram,	2	words	:

3-gram,	2	words	:

1-gram,	All	code	connected	:

2-gram,	All	code	connected	:

code gives completely different dictionaries when run through a word-based term frequency-inverse document frequency (TFIDF) counter.1
Table	1 Code simpli�ication in the different analysis formats
Single
letter

First
word

2	words
connected

2
words

All	words
connected

All
words

All	code
connected

All	code

m mov movedi movedi movediedi movedi edi movedi,edi mov edi, edi
p push pushebp pushebp pushebp pushebp pushebp push ebp
m mov movebp movebp movebpesp movebp esp movebp,esp mov ebp,esps sub subesp subesp subesp sub esp subesp,1Ch sub esp, 1Ch
l lea leaecx lea ecx leaecxedx lea ecxedx leaecx,[edx+140h] lea ecx,[edx+140h]a add addedi addedi addediecx add ediecx addedi,[ecx-0DCh] add edi,[ecx-0DCh]p push pushecx pushecx pushecx pushecx pushecx push ecx
p push pusheax pusheax pusheax pusheax pusheax push eax

So the list of words in the dictionaries based on the code from Table1 will look something like this (“m”, “p”, “s”, “l”, “a”)(“m p”, “p m”, “m s”, “s l”, “l a”, “a p”, “p p”)(“mov”, “edi”, “push”, “ebp”, “sub”, “esp”, “lea”, “ecx”,“add”, “eax”) (“mov edi”, “edi push”, “push ebp”, “ebp mov”, “movebp”, “ebp sub”, “sub esp”, “esp lea”, ...)(“mov edi push”, “edi push ebp”, “push ebp mov”,“ebp mov ebp”, “mov ebp sub”, “ebp sub esp”, ...)(“movedi,edi”, “pushebp”, “movebp,esp”,“subesp,1Ch”, “leaecx,[edx+140h]”, ...)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1-gram,	All	code	:

(“movedi,edi pushebp”, “pushebp movebp,esp”, “movebp,espsubesp,1Ch”, “subesp,1Ch leaecx,[edx+140h]”, “leaecx,[edx+140h]”, ...)(“mov”, “edi,”, “edi”, “push”, “ebp”, “ebp,”, “esp”, “sub”,“esp,”, “1Ch”, “lea”, “ecx,”, “[edx+140h]”, ...) These are just a few examples to understand how our simpli�ication ofcode is being built into “words” that will appear in the dictionaries andbe used in the analyses.
Table	2 First 80 characters in one of the disassembled �iles in all simpli�ication variations
Simpli�ication First	80	characters	of	“Document”Single letter j d i a a a a a a a a a a x a x a j a a a x a o s p a p a a a x a x a a a a a aFirst word jg dec inc add add add add add add add add add add xor add xor add jeadd add adFirst two wordsconnected jg decesp incesi addecx addeax addeax addeax addeax addeax addeaxaddeax addeaxFirst two words jg dec esp inc esi add ecx add eax add eax add eax add eax add eax addeax add eAll words connected jg decesp incesi addecxeax addeaxeax addeaxal addeaxal addeaxaladdeaxal addeaxeAll words jg dec esp inc esi add ecx eax add eax eax add eax al add eax al add eax aladdAll code connected jg0x47 decesp incesi adddword[ecx],eax adddword[eax],eaxaddbyte[eax],al addbyteAll code jg 0x47 dec esp inc esi add dword [ecx], eax add dword [eax], eax addbyte [eax]Some special situations to be aware of1. In “2 words,” “All words,” and “All code” each word in every code lineseparated by a whitespace (or new line) will be a word for thedictionary. This especially affects the large N-gram experimentswith regards to dictionary size and memory usage.

2. In “All code,” there will be special characters in the different words,like “ebp,” (with a comma included) which makes the dictionaryadd this entry in addition to “ebp.”

When using multiple words and the *-connected words the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3. When using multiple words, and the connected words theresulting dictionary will grow extremely large and this have causedproblems with the largest data set as it required up toward 1TB ofmemory when using standard ML-libraries for higher N-gramvalues. We have, therefore, reduced the maximum N-grams to 8-gram for the experiment using the biggest data set.

4	 ExperimentsFor learning how to perform multi-class classi�ication, there exists afew data sets available online, but not many (public) large ones. Wehave chosen two quite different data sets. One set from the MicrosoftMalware Classi�ication Challenge (MMCC) and one set extracted fromthe Google Code Jam (GCJ) competition. These two data sets aredifferent in many ways. In MMCC, we have a classi�ication of binarieswhich is made into malware families which consists of many variantsof same functionality. In GCJ, we have classi�ied, by the programmer,and have different programs written by the same author with highlydifferent functionality and purpose.The similarities of the experiments is that we try to make the sametype of dictionary variants as explained in Sect. 3, and plot the accuracyof support vector machines and random forest classi�ication for all N-gram values from “1-gram” up to either “8-gram” or “18-gram” basedon the data size.But �irst we will explain the special circumstances for running ourexperiment on these two quite different type of data sets.
4.1	 Microsoft	Malware	Classi�ication	ChallengeOne of the largest public available data sets with malware can be foundin the Microsoft Malware Classi�ication Challenge [19]2 (MMCC). Itconsists of over 400 GB of data, with both binary and disassembledcode from the use of the IDA	disassembler	and	debugger.3 The binarymalware has been stripped of the PE-header to be made non-executable for security reasons. This does limit the value of the dataset, but they have prioritized the potential security implications withhundreds of gigabytes of executable malware available to anyone. TheMMCC data set consists of around 200 GB of training data, where the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

classi�ication is known, and another 200 GB of test data to be classi�iedas a part of the competition evaluation. The real classi�ication of thistest data set is still unknown at the time of our experiment—four yearsafter the competition was completed. We, therefore, used only thetraining data for both training and testing our results.The data classi�ication is given on all the training data—10868 ofthem in nine different classes: Ramnit, Lollipop, Kelihos_ver3, Vundo,Simda, Tracur, Kelihos_ver1, Obfuscator.ACY, and Gatak. These classeswere prede�ined and found in a separate �ile classifying each malware�ile. We wanted to see if the results varied with the amount of data usedfrom each code line. Therefore, we made eight experiments on thisdata set where each line of disassembled code was converted intodocuments of the same simpli�ication classes shown in Table 1, fromsingle letter, �irst word, etc. to “all code.”There were 10859 �iles useful for classi�ication based ondisassembled code. Nine �iles were ignored simply because they onlyconsisted of data without any code, and with the PE-header removed,these were so different from the other �iles, and therefore not used inthe analysis.We performed some simpli�ications before applying thisconversion. We found that some disassembly instructions were over-represented in many �iles and these lines have been removed. “align”and especially the data indicator lines “dd” which is just listingunstructured (unrecognized) data in the binary. These data blocks areoften encrypted, not very informative until the malware is executed,and therefore not used in our static analysis.
Table	3 MMCC code size in gigabytes (GB) after simpli�ication in the different analysis formats,uncompressed (top) and Zlib-compressed (bottom)
Single
letter

First
word

2
words

2	words
connected

All
words

All	words
connected

All
code

All	code
connected

Raw
input0.52 0.97 4.3 4.5 4.9 5.6 6.4 7.6 1400.039 0.061 1.3 1.3 1.4 1.4 1.9 1.9 17With our simpli�ications, the code base was reduced from thearound 200 GB (binary and compressed disassembled code) down to500 MB for “single letter” data and even down to 39MB for the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

compressed version. Sizes of the different code versions are shown inTable 3 with all sizes in gigabytes. So if we can get acceptable resultswith “single letter” or “�irst word,” we can reduce storage needed forthe classi�ication from 140 GB to 39 MB/61 MB.
4.2	 Google	Code	Jam	(GCJ)	DataAnother set of software was taken from the Google Code jam librarywhich has a publicly available source code repository at https:// www. go-hero. net/ jam/ where the source code �iles from every competitioncan be downloaded (if scripting). The programs entered here areanswers to programming challenges and authors submit theirsolutions into this open competition. All solutions are sorted bychallenge, year, programming language, and author. The source �ilessubmitted are made in multiple programming languages, but we haveonly extracted those that used C/C++ for our experiment. These sourcecode �iles had to be compiled to Linux ELF binaries for our experimentsetup.As with all machine learning algorithms, you need a minimumamount of training and testing data to have signi�icance and see ifidentifying patterns can be discovered. There were many contributorswith just a few entries of programs, so we start by using the top tencode writers (based on a number of contributions only). This gave usapproximately the same number of classes as in the MMCC data set, butthe number of �iles in total went down from 10800 in MMCC to 413 inGCJ. This makes GCJ a quite different classi�ication challenge as we nowonly have 37 samples from the “least productive” programmer in ourset up to 49 �iles from the “most productive” programmer as thecontent in this multi-class classi�ication.We used a script made by F. Seehusen at FFI4 to download the GCJsource code from the 2010–2017 competitions. The code wasdownloaded and sorted by username and this script also included howto produce both a 64-bit version with the optimization �lag set (“g++ -w -m64 -O”), and a 32-bit version without any optimization (“g++ -w -m32 -O0”) from each of the source codes. Compile time of these smallprograms were in the order of seconds.So why did we not just use the source code? Because that would bea similar problem as described by others under Chap. 3. There have

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.go-hero.net/jam/

been many classi�ication experiments on original source code(s). Soeven if we had the source code, our experiment was to see if we couldclassify disassembled code correctly. First the disassembled code wasextracted using Radare25 and all the functions in the executable (asde�ined by Radare) were extracted together with their correspondingdisassembled code. As with MMCC, we only used the code parts in ouranalysis. We do assume that data areas may contain useful informationthat will enhance the analysis and classi�ication, but this experimentwas narrowed down to only look at the code sections.
Table	4 GCJ code size in megabytes (MB) after simpli�ication in the different analysis formats,uncompressed (top) and Zlib-compressed (bottom)
Single
letter

First
word

2
words

2	words
connected

All
words

All	words
connected

All
code

All	code
connected

Raw
input2.1 4.6 7.1 8.0 8.3 9.8 14 16 180.33 0.48 0.72 0.74 0.86 0.92 1.8 1.9 2.7We converted the GCJ-code into the eight different codesimpli�ications and the sizes of the analysis material and the resultingeight versions are shown in Table 4.

5	 ResultsHere, we will �irst describe the results from the MMCC malwareexperiments and then from the Google Code Jam data set. All accuracyvalues are made from running the classi�ication with 80% of the �iles intraining and 20% in the prediction set. Every test was run 10 times andthe average of these runs is shown in the graphs. The average accuracyfor correct classi�ications are shown in Fig. 2 as given from the scikit-
learn metrics accuracy_score library.
5.1	 MMCC	Malware
5.1.1	 Using	SVMUsing Support Vector Machines (SVM), we run the experiment 10 timesfor each n-gram from 1 to 8, using 80% random selected �iles fortraining, and the remaining 20% for testing.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Classi�ication using SVM on MMCC malwareTo get some more details on the variation of the data we canshorten the scale on the y-axis as shown in Fig. 3.

Fig.	3 Classi�ication using SVM on MMCC malware—shortened y-axisWe can see from the results that single letter have the least accurateresult starting at 1-gram, but stay within top-5 and better than 98%accuracy from 3-gram and larger. Another interesting result is that all

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the manually connected dictionaries have their accuracy start high, butdrops off signi�icantly after 6-gram.If we look at the accuracy more in detail in Fig. 3, we can observethat the “All code” keeps a slight advantage almost for all N-grams. Butwe also can see that the accuracy “Single letter” is actually (nearly) asgood as the maximum accuracy value at 5-gram.To visualize better and see which binary classes are easier topredict than others we can print a heatmap for the scenario of the bestand another lower accuracy when using Linear SVC. We can see fromFig. 3 that the assumed worst accuracy is the “Single letter,” 1-gramresult, and that the best accuracy (by a small margin) is the “All code,”
2-gram result. These heatmaps are shown in Table 5 where we can seethat under the 1-gram/single	letter, some features seem to be over-represented to be predicted, like “Kelihos_ver3,” but others are notoccuring at all, like “Kelihos_ver1,” “Ramnit,” and “Obfuscator_ACY.” Butthis improves a lot when using all code were close to everything that ispredicted to be “Kelihos_ver1” actually is correct, and all othercategories have a very high accuracy as well.
Table	5 Heatmap for best and worst accuracy using SVM

Looking at the results it seems like 2	words, all	words and all	codeare consistently better than 98% accuracy. And we can also see that
�irst	word and single	letter reaches the 98% accuracy level alreadyaround 3-gram.
5.1.2	 Using	Random	Forest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

If we use the same data in a random forest classi�ication we get theresults shown in Fig. 4. In order to see any differences between the top�ive code types we reduce the scale on the accuracy axis to observe anypatterns. This is shown in Fig. 5.

Fig.	4 Classi�ication using Random Forest on MMCC malwareAs we can see every run for the top �ive code types gives anaccuracy better than 98.5% from 2-gram and higher, and that a 99%accuracy is achieved already at 1-gram of “2 words,” “all words,” and“all code” and the need for building much higher n-grams seemunnecessary.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Classi�ication using Random Forest on MMCC malware—re-scaled y-axisBest accuracy was found with All	words, 2-gram at 99.2% accuracywith only one parameter taken into account. As expected the worstaccuracy was found in single	letter, 1-gram.
Table	6 Heatmap for best and worst accuracy using Random Forest

Table 6 shows the heatmap for best and worst accuracy for randomforest, even if the differences and/or challenges are not easilyidenti�iable from the heatmap. The hardest category to detect seemshere to be “Simda” for our best result as these are more often thanother classes wrongfully predicted to be either “Tracur” or“Obfuscator.ACY.”

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5.2	 Google	Code	Jam	(GCJ)	ResultsIn the Google Code Jam (GCJ) data set, we look at two different binaryversions: Linux 32-bit and Linux 64-bit. In addition, we look at thesame eight different code parsing methods.
5.2.1	 Google	Code	Jam—32-BitFor the GCJ 32-bit using Linear SVC, shown in Fig. 6, we see that theresults are lower than for the MMCC experiments. The maximumaccuracy can be found at 5-gram and higher and in the �irst six codecategories. We see here that both “All code” and “All code connected”never reaches more than around 60% accuracy.

Fig.	6 Classi�ication using Linear SVC on GCJ 32-bit binariesUsing random forest classi�ication, we get the results of Fig. 7. Thescale of the �igure is reduced and starts at 60% accuracy. We see thathere the accuracy of the top six code types are around 90% from 5-gram and higher.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 Classi�ication using Random Forest on GCJ 32-bit binaries, 60–100% accuracyBut Figs. 6 and 7 are only showing the results when the speci�ic N-gram is included in the classi�ication. Since we have a signi�icantlysmaller amount of code in this experiment compared to in the MMCC-experiment, we can try to build the dictionary from all combinationsfrom 1-gram to 18-gram where all lower n-grams are included.Meaning that the 3-gram result will include 1-grams, 2-grams, and 3-grams. This result is shown in Fig. 8.

Fig.	8 Classi�ication using Random Forest on GCJ 32-bit binaries, 1-gram through n-gramincluded, 60–100% accuracy

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can see that the only major difference is that the drop offdisappears and every code class seems to more or less stabilize ataround a maximum accuracy of 90% for the top six, and around 80% atthe two “all code” types.
5.2.2	 Google	Code	Jam—64-BitThe 64-bit versions of the GCJ codes were compiled with theoptimization �lag set and including all lower n-grams when buildingclassi�ication vectors as explained above. Figure 9 shows the RandomForest classi�ication of the 64-bit codes.

Fig.	9 Classi�ication using Random Forest on GCJ 64-bit binaries

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	10 Classi�ication using Random Forest on GCJ 64-bit binaries, 80–100% accuracy, top sixThe top six code types for accuracy is enhanced in Fig. 10 with thescale showing 80–100% accuracy. We see that most of these six codetypes reach 95% accuracy for higher N-grams.
6	 DiscussionWe have analyzed the classi�ication of binaries through disassembly inseveral different dimensions. The paper set out to use only twovariants: length of N-grams used in classi�ication and different types ofsimpli�ication of disassembled code for storage reduction. Through theexperiment phase other dimensions were added as they were found tobe interesting for optimizing the classi�ication algorithms: the size oftraining material, 64-bit optimized compilation vs. 32-bit nooptimization, classi�ication algorithm, and accumulation of n-gramlengths. We will discuss each of these points here.
6.1	 Length	of	N-GramThe length of the N-grams is essential with regards to accuracy.Increase in length also means a signi�icant increase in dictionary size,unless we make a strict cutoff in the TFIDF construction. We hadproblems with the implementation in our machine learning toolkit,sklearn, when both the training size and the dictionary size were large.With large N-grams the dictionary could be up millions of entries if we

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

did not enforce cutoff. We have not had time to experiment with bestcutoff values, but after some initial testing we chose 5% for the lowboundary, and 75% for the high boundary. After this the dictionary wasin most cases below 10000, and we were able to run the experiment on1-gram–8-grams for the MMCC data set within reasonable time (< 4hfor each setting) and keep sklearn below our 192 GB of RAM.For the GCJ data set, we only had around 440 �iles, and therefore wecould include all lengths up to 18-gram, including the accumulation oflower N-grams. Without accumulation we had some of the codesimpli�ications demonstrating a “drop off.” These were the “*-connected” simpli�ications where the dictionary usually become verylarge in higher N-grams. For accumulated results this “drop off” islikely the reason for the lower horizontal accuracy graph. We could alsoobserve that the dictionary was about twice as big for the accumulatedn-grams as for the single n-grams.
6.2	 Simpli�ication	of	CodeLooking at the accuracy graphs for each of the different codesimpli�ications we observe that almost all variants occur in the highestlevels. If this is to be used as an indication only with>98% accuracy, wewould suggest just using “single letter/3-gram,” “�irst word/2-gram” or“2words/1-gram.” All these results will yield a signi�icant indicationupon the classi�ication, and be both fast and demand less resources.We also observe that in �ive of the code simpli�ications, theaccuracy in the MMCC data analysis is kept above 98% in all N-gramlengths (ref Fig. 5).
6.3	 Size	of	Training	DataAs expected we have a higher accuracy when we have a high amount oftraining material (MMCC data, 99.2% accuracy) compared to a smalltraining data size (GCJ data, 95% accuracy). Classifying a programmerbased on only 440 �iles of training data with an accuracy of 95% mightbe a good indication and good enough for many analysis scenarios.As we can see from Tables 3 and 4 we may save signi�icant amountsof storage if we are comfortable with the “single letter” accuracy. Thereduction is around 10:1 and almost as good with.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

6.4	 64-Bit	Optimized	Binaries	Versus	32-Bit	Non-
optimized	BinariesOne surprising result came with the analysis of optimized vs. non-optimized binaries. From the graphs in Figs. 10 and 8 we observe thatthe accuracy of the GCJ classi�ication was better than 95% from theoptimized binaries and around 92% from the 32-bin plain compilation.We also note that the difference between 64-bit and 32-bit code mayplay a part here, but we did not have time to include analysis of thisvariable as well.
6.5	 Classi�ication	AlgorithmWe see that the LinearSVC classi�ication algorithm is almost identicalin both the “single n-gram analysis” compared to the “accumulated n-gram analysis.” But comparing the graphs for Random Forestclassi�ication, they show a clear “drop off” in increasing N-gram valuesfor the largest dictionaries when using “single n-gram”. This iscompensated by including the use of lower length n-grams in“accumulated n-gram.”LinearSVC also demonstrates a lower accuracy in all classi�icationresults, but it was signi�icantly faster (5-10x) in large dictionaries andslower (1-2x) in small dictionaries.
7	 ConclusionWe have observed interesting features in multi-class classi�ication ofbinaries based on analyzing only the disassembled code. We havelooked at various methods of constructing simpli�ication of the code,using different length N-grams for analysis, different classi�icationalgorithms, and different training data sizes.Our �indings show that a higher size N-gram is only preferable forsome code simpli�ications, and that some code simpli�ications can givea very high accuracy (99.2%) based on only a fraction of the code. Inaddition, we found that the amount of training data storage can bereduced by over 97% from input to compressed �irst word, withcorresponding reduced computing resources for 1-grams in dictionarysize, and still yield an accuracy of over 95%.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In future work, we hope to extend to other platforms and othertypes of malware and maybe be able to include more programmerspeci�ic code. In addition ROC-curves will be analyzed to optimize howto best visualize elements from a multi-class classi�ication.
References1. Argamon, Shlomo, Moshe Koppel, James W Pennebaker, and Jonathan Schler. 2009.Automatically pro�iling the author of an anonymous text. Communications	of	the	ACM, 52(2):119–123.2. Beebe, N.L., L.A. Maddox, L. Liu, and M. Sun. 2013. Sceadan: Using concatenated n-gramvectors for improved �ile and data type classi�ication. IEEE	Transactions	on	Information

Forensics	and	Security 8 (9): 1519–1530.[Crossref]3. Burrows, Steven, and Seyed MM Tahaghoghi. 2007. Source code authorship attribution usingn-grams. In Proceedings	of	the	twelth	Australasian	document	computing	symposium,
Melbourne,	Australia,	RMIT	University, 32–39, Citeseer.4. Caliskan-Islam, Aylin, Harang Richard, Liu Andrew, Narayanan Arvind, Voss Clare, YamaguchiFabian, and Greenstadt Rachel. 2015. De-anonymizing programmers via code stylometry. In
24th	USENIX	security	symposium	(USENIX	Security	15), 255–270, USENIX Association,Washington, D.C.5. de Vel, O., A. Anderson, M. Corney, and G. Mohay. 2001. Mining e-mail content for authoridenti�ication forensics. SIGMOD	Record 30 (4): 55–64.[Crossref]6. Escalante, Hugo Jair, Thamar Solorio, and Manuel Montes-y Gómez. 2011. Local histograms ofcharacter n-grams for authorship attribution. In Proceedings	of	the	49th	annual	meeting	of
the	association	for	computational	linguistics:	human	language	technologies	-	volume	1, HLT’11, USA, 288–298, Association for Computational Linguistics, Stroudsburg.7. Hadžiosmanović, Dina, Lorenzo Simionato, Damiano Bolzoni, Emmanuele Zambon, andSandro Etalle. 2012. N-gram against the machine: On the feasibility of the n-gram networkanalysis for binary protocols. In Research	in	Attacks,	Intrusions,	and	Defenses, ed. DavideBalzarotti, Salvatore J. Stolfo, and Marco Cova, 354–373. Berlin, Heidelberg: Springer.8. Hardy, William, Lingwei Chen, Shifu Hou, Yanfang Ye, and Xin Li. 2016. Dl4md: A deep learningframework for intelligent malware detection. In Proceedings	of	the	international	conference
on	data	mining	(DMIN), 61. The Steering Committee of The World Congress in ComputerScience, Computer.9. Houvardas, John, and Efstathios Stamatatos. 2006. N-gram feature selection for authorshipidenti�ication. In Proceedings	of	the	12th	international	conference	on	arti�icial	intelligence:
methodology,	systems,	and	applications, AIMSA’06, 77–86. Berlin, Heidelberg: Springer.10.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1109/TIFS.2013.2274728
https://doi.org/10.1145/604264.604272

Idika, Nwokedi, and Aditya P Mathur. A survey of malware detection techniques. 2007.
Purdue	University, 48: 2007–2.11. Kalash, M., M. Rochan, N. Mohammed, N.D.B. Bruce, Y. Wang, and F. Iqbal. 2018. Malwareclassi�ication with deep convolutional neural networks. In 2018	9th	IFIP	international
conference	on	new	technologies,	mobility	and	security	(NTMS), 1–5.12. Kalbhor, Ashwin, Thomas H. Austin, Eric Filiol, Sébastien Josse, and Mark Stamp. 2015. Duelinghidden markov models for virus analysis. Journal	of	Computer	Virology	and	Hacking
Techniques 11 (2): 103–118.[Crossref]13. Keselj, Vlado, Peng Fuchun, Cercone Nick, and Thomas Calvin. 2003. N-gram-based authorpro�iles for authorship attribution.14. Kothari, Jay, Shevertalov Maxim, Stehle Edward, and Mancoridis Spiros. 2007. A probabilisticapproach to source code authorship identi�ication. In Fourth	international	conference	on
information	technology	(ITNG’07), 243–248. Piscataway: IEEE.15. Krsul, Ivan, and Eugene H. Spafford. 1996. Authorship analysis: Identifying the author of aprogram. Technical report, Computers and Security.16. Meng, Xiaozhu. 2016. Fine-grained binary code authorship identi�ication. In Proceedings	of
the	2016	24th	ACM	SIGSOFT	international	symposium	on	foundations	of	software
engineering, FSE 2016, 1097–1099, Association for Computing Machinery, New York, NY,USA.17. Meng, Xiaozhu, Barton P. Miller, and Kwang-Sung Jun. 2017. Identifying multiple authors in abinary program. In Computer	Security	–	ESORICS	2017, 286–304, ed. Simon N. Foley, DieterGollmann, and Einar Snekkenes. Cham: Springer International Publishing.18. Peng, Fuchun, Dale Schuurmans, Shaojun Wang, and Vlado Keselj. 2003. Languageindependent authorship attribution using character level language models. In Proceedings	of
the	Tenth	Conference	on	European	Chapter	of	the	Association	for	Computational	Linguistics	-
Volume	1, EACL ’03, 267–274, USA, Association for Computational Linguistics, New York, NY.19. Ronen, Royi, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ahmadi. 2018.Microsoft malware classi�ication challenge. CoRR, arXiv: abs/ 1802. 10135.20. Rosenblum, Nathan, Xiaojin Zhu, and Barton P. Miller. 2011. Who wrote this code? Identifyingthe authors of program binaries. In Computer	Security	–	ESORICS	2011, ed. Vijay Atluri, andClaudia Diaz, 172–189. Berlin, Heidelberg: Springer.21. Spafford, Eugene H., and Stephen A. Weeber. 1993. Software forensics: Can we track code toits authors? Computers	and	Security 12 (6): 585–595.[Crossref]22. Li, Wei-Jen, Ke Wang, S.J. Stolfo, and B. Herzog. Fileprints: Identifying �ile types by n-gramanalysis. 2005. In Proceedings	from	the	sixth	annual	IEEE	SMC	information	assurance
workshop, 64–71.23. Ye, Yanfang, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. 2017. A survey on malware

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/s11416-014-0232-9
http://arxiv.org/abs/abs/1802.10135
https://doi.org/10.1016/0167-4048(93)90055-A

1
2
3
4
5

detection using data mining techniques. ACM	Computing	Surveys, 50(3): 3073559.
FootnotesWe used the SKLearn (https:// scikit-learn. org/) TFIDF vectorizer. https:// www. kaggle. com/ c/ malware-classi�ication. https:// www. hex-rays. com/ products/ ida/ . Norwegian Defence Research Establishment. Radare2 can be found at https:// rada. re/ and is one of the most used open-source disassemblytools today.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://scikit-learn.org/
https://www.kaggle.com/c/malware-classification
https://www.hex-rays.com/products/ida/
https://rada.re/

(1)(2)(3)(4)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_10
Deep	Learning	Techniques	for
Behavioral	Malware	Analysis	in	Cloud
IaaSAndrew McDole1 , Maanak Gupta1 , Mahmoud Abdelsalam2 ,Sudip Mittal3 and Mamoun Alazab4 Tennessee Technological University, Cookeville, TN, USAManhattan College, Riverdale, NY, USAUniversity of North Carolina at Wilmington, Wilmington, NC, USACharles Darwin University, Casuarina, NT, Australia
Andrew	McDole
Email:	amcdole42@students.tntech.edu
Maanak	Gupta	(Corresponding	author)
Email:	mgupta@tntech.edu
Mahmoud	Abdelsalam
Email:	mabdelsalam01@manhattan.edu
Sudip	Mittal
Email:	mittals@uncw.edu
Mamoun	Alazab
Email:	alazab.m@ieee.org

AbstractThis chapter focuses on online malware detection techniques in cloudIaaS using machine learning and discusses comparative analysis on theperformance metrics of various deep learning models.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_10
mailto:amcdole42@students.tntech.edu
mailto:mgupta@tntech.edu
mailto:mabdelsalam01@manhattan.edu
mailto:mittals@uncw.edu
mailto:alazab.m@ieee.org

1	 Introduction	and	MotivationCloud has become a popular platform due to its characteristics of on-demand services, in�inite resources, ubiquitous availability and pay-as-you-go business model [22]. Infrastructure as a Service (IaaS) is apopular service model for many data centers. In IaaS, resources of adata center may be purchased by clients to perform their own personaltasks but require either the strength or availability of the data centersresources. This model allows customers to save money by removingthe need for every customer to set up their own computers orcomputing cluster and it allows data centers to ef�iciently utilize theircomputing resources. Clients can purchase access to any number ofvirtual machines, which can include a few machines or thousands ofvirtual machines. With the scale of resource usage, there must beautomatic monitoring of these virtual machines to provide security forthe cloud provider and its clients. With many clients having theirresources in a shared virtual space, there is a risk that one client’svirtual machine becoming infected could mean more virtual machineswithin the data center become infected. Not only would the cloudproviders hardware be at risk, any users who have virtual resources inthis data center could also be at risk. As cloud providers grow andincrease the size of their consumer base, the responsibility of cloudproviders to ensure the protection and security of their customers alsoincreases. Cloud providers must seek the best possible securitymechanisms to employ in the defense of their clients. In IaaS, the risk ofattack and infection is increased due to common con�igurations andautomatic provisioning of virtual machines in data centers. Whencon�igurations are similar among virtual machines, malware attacksare able to be repeated across those similar virtual machines.As cloud infrastructure grows and develops, it presents a largerattack vector for malicious actors to launch attacks and inject malware.Customers who utilize cloud resources in data centers are called cloudtenants. Those tenant’s virtual machines (VMs) need to be protectedand secured against any variety of attacks that may take place againsttheir resources. Preventing these attacks is a critical task, but equallyimportant is detecting when a novel exploit succeeds and a portion of adata center’s resources become infected. These exploits can take the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

form of a system vulnerability, a con�iguration vulnerability, an insiderthreat, or credentials stolen from an external source. With all of thepossible methods of malware entry, cloud presents the opportunity forlarge amounts of malware to infect data centers globally.
1.1	 Relevance	in	Cloud	IaaSCloud infrastructure is unique because of the �lexibility of services thatcan be offered in a cloud format. The �lexibility of cloud attracts manycustomers who can utilize IaaS for their own bene�it. With this�lexibility also brings more risk with the various types of malware thatcan affect the data center. With varying services hosted within a datacenter, there are more variations of malware and attacks that can beperformed as opposed to a system where a single type of service isoffered. With more viable attacks, cloud infrastructure becomes morelikely to experience malware infections. Cloud IaaS would bene�it fromhighly accurate malware analysis and detection. Deep learningtechniques have proven to be highly effective in malware detection andcan be used to improve the security of cloud IaaS as well.Cloud has some essential characteristics such as on-demand self-service, rapid elasticity, migration, resource pooling, and controlledmeasured service. These characteristics are necessary to support theon-demand delivery of computing power and the pay-as-you-goservice model of cloud computing. These characteristics alsoincentivize attackers to target cloud infrastructure. For example,attackers could make use of the rapid-elasticity characteristic to createbot-nets quickly. Reacting to emerging threats brought on by theadoption of cloud is necessary to increasing cloud security.Research in [1–3, 9, 15–18, 23, 31] discuss vulnerabilities thatinvolve the essential cloud properties. The largest threat to cloudinfrastructure is malware infection. Cloud malware injection is anattack where malware is injected into pre-existing process. While thisattack is not unique to cloud environments, it can affect cloud moredrastically. This is due to automatic provisioning and ability for cloudto spin up more VMs on demand and those VMs are con�igured in asimilar manner. Such VMs are vulnerable to alike attacks if they arefrom the same template, increasing the chances that malware willspread from one VM to the next. In such a case, an attacker is able to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

quickly gain control of large number of VMs to execute large-scaleattacks.
2	 Machine	Learning-Based	Malware	DetectionIn many cases, malware detection methods for a single machine willwork for cloud systems as well. Figure 1 shows an overview of machinelearning-based malware detection techniques and their commonlyassociated features.

Fig.	1 Classi�ication diagram of machine learning-based malware detection methods andassociated features
2.1	 File	Classi�icationIn �ile classi�ication, the goal is to examine a binary �ile and classify it aseither malicious or not. This is usually accomplished by executing themalware in an observable isolated environment. The environment isdesigned to prevent malware from spreading outside of the intendedscope. If an executable is identi�ied as benign, then it is allowed to beexecuted without further interference. File classi�ication methods aresplit into static and dynamic analysis.Static malware is the process of scanning �iles before they areexecuted to determine if they are malicious or not. If a �ile is beingstatically analyzed, then the malware executable is disassembled bydissemblers. These dissemblers produce an approximate source codeof the malware which can be examined with various tools. Morecomplex dissemblers can produce more accurate source codes than

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

simpler ones. Certain dissemblers can also analyze control �low of aprogram to produce even more accurate source code. This technique iscommonly used because it is simple, quick, and the tools needed arereadily available. This technique can be defeated by malware writerswho can craft binaries which cause the dissemblers to generateincorrect code. This is usually accomplished by the malware writersinserting in �lawed code, which when executed, follow an obfuscatedexecution path that the dissemblers could not generate properly ontheir own. One example of this type of static malware analysis isextracting n-grams of a binary �ile. These n-grams can then be used asfeatures to be used in a machine learning technique to uncovermalicious patterns.Even if dissemblers could generate the proper source code for aparticular malicious binary, then the malware could be injected into analready running application. Since many �iles in static analysis arechecked only once, usually before executing the �ile, the benignapplication would be scanned and deemed as such. If malware isinjected into this already running process, then the malware’s sourcecode would not be scanned and go undetected. In cloud IaaS, this attackis referred to as a cloud malware injection [17]. If a cloud malwareinjection attacked is performed successfully, then the malware will goundetected and allowed to act without interference. Therefore, there isan essential need to constantly monitor applications running in cloudenvironments to maintain the services that have not been infected.Where static analysis will fail to capture such malware attackstaking place, dynamic analysis can detect such an attack. Dynamicanalysis works by recording the behavior of an executable andanalyzing it to determine if malicious behavior is taking place. Indynamic analysis, the executable is executed and external software isrecording its behavior. Typically, this is conducted within a sandboxwhere the executable would not be able to affect anything important.Information gathered during execution may include system calls,memory access, or network communications.
2.2	 Online	Malware	DetectionIn contrast, online detection methods involved a system that is beingcontinuously monitored for malware. The features associated with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

online detection methods such as system calls, memory features, andperformance metrics are costly to collect. These methods make up forthis cost with the ability to detect malware that has infected an alreadyrunning process that was initially determined to be benign.Figure 1 shows a classi�ication diagram of various machinelearning-based malware detection techniques. Several works havebeen done in malware detection which focuses on different featureaspects. Most algorithms for detecting malware focus on a singlemachine. Some examples of this include support vector machines(SVMs) [30], all-nearest-neighbor classi�ier [13], and naı̈ve bayes [4,14]. While cloud environments generally involve more than a singlemachine acting on its own, there is not a large difference between asingle virtual machine and a standalone host except for the hypervisorin a cloud environment. The hypervisor is critical in collectinginformation about the virtual machines running in a cloudenvironment. Due to this restriction, most works [4, 10–12, 19, 20, 24,26, 32] are limited to using features which can be obtained through thehypervisor. Dawson et al. [10] utilize system calls for features and areconcerned with rootkits. The work uses a non-linear phase-spacealgorithm to detect anomalies found in the system calls. The phase-space graph dissimilarities are used to evaluate the results.Entropy-based Anomaly Testing (EbAT) was introduced in [29].EbAT used multiple metrics such as memory utilization as well as CPUutilization. The work analyzed these metrics for anomaly detectionbased upon distribution instead of a �lat threshold. Accurate resultswere generated from this approach for detection and the ability toscale up to meet metric processing demand. This work was limited inusefulness for practical and realistic cloud environment scenarios.Azmandian et al. [8] utilize performance metrics gathered from thehypervisor to form a new anomaly detection approach. These metricsincluded disk and network input–output. This work also uses KNN andLocal Outlier Factor.Abdelsalam et al. [3] show that malware detection can be conductedusing a black-box approach. The metrics used in this work includedVM-level performance and resource utilization. Highly active malwarethat made a large footprint in resource utilization records weredetected by this approach. This approach was not as effective in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

detecting malware with low amounts of activity. These malwares likelyattempted to hide themselves and reduced their activity to avoidleaving evidence in the resource utilization records.
3	 Literature	ReviewTables 1 and 2 summarize state-of-the-art research, challenges, andcontributions with respect to online malware detection literature.
Table	1 Online malware detection literature
Paper	title Focus/objective Contribution LimitationMalware detectionin cloud computinginfrastructures [30] Introduces anonline cloudanomaly detectionapproach

 Effective anomalydetection using one-classSupport Vector Machines Assesses VM-Basedfeaures on detectionperformance
 Gathering features perprocess iscomputationallyexpensive Uses highly activemalware that is easier todetectMalicious sequentialpattern mining forautomatic malwaredetection [13]

Proposes aneffective sequencemining operationto discovermalicious patters
 Proposes effectiveframework using sequencemining techniques New nearest neighborclassi�ier to identifyunknown malware

 Unable to performmalware classi�ication,only detection
Analysis of machinelearning techniquesused in behavior-based malwaredetection [14]

Provide proof-of-concept onautomaticbehavior-basedmalware analysis
 Utilizes 220 uniqueIndonesian malware forWindows Proof of concept forusing ML in behavior-basedmalware detection

 Limited malwaredataset Limited featureselection
Zero-Day MalwareDetection Based onSupervised LearningAlgorithms of APICall Signatures [4]

Propose andevaluate a novelmethod ofdetecting andclassifying zero-day malware
 Proposes machinelearning framework todetect unknown malwarewith high accuracy, highef�iciency, and signaturefree

 Only uses WindowsAPI Calls as features

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Paper	title Focus/objective Contribution LimitationTowardsunderstandingmalware behaviorby the extraction ofAPI calls [6]
Providesautomatedmethod ofextracting API callfeatures

 Provides automatedapproach for API callfeature extraction Combines API callfeatures with anomalydetection to analyzeoverall behavior ofbinaries

 Only applies tomalware which usesWindows API calls

Malware detectionbased on structuraland behavioralfeatures of API calls[5]
Detectingobfuscatedmalware involvingstructural andbehavioralfeatures of APICalls

 Provides automatedsystem to reverse-engineerprogram codes and applyfeature extraction Behavior features of APIcalls Applied n-gramstatistical model onexecutables for n-values

 If there are a lack oftools that can unpackcertain malware, then itposes a challenge to theautomated system

Table	2 Online malware detection literature (Continued)
Paper	title Focus/objective Contribution LimitationMachine learning-based botnetidenti�icationtraf�ic [7]

Botnet Identi�icationusing machinelearning. IntroducesCONIFA, a MLframework forbotnet detection
 CONFIA relies on ML whichcan be affected by new datadeviating from the data usedduring training.Phase-spacedetection of virtualmachine cyberevents throughhypervisor-levelsystem callanalysis [10]

Validating Oak RidgeNational Lab’s(ORNL) Beholderproject is applicableto rootkit detectionin virtual machines
 Implementssystem fordetecting malwarein a running VM. Validatesaccuracy of ORNL’sBeholder projectalgorithm Builds on ORNL’sBeholder projectby applying newdata

 Only tested with Beholder’sparameter set, could havedifferent results with otherparameters Future work left toexperiment with otherexecution environments

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Paper	title Focus/objective Contribution LimitationOn the feasibilityof online malwaredetection withperformancecounters [11]
Building a malwaredetector inhardware usingperformancecounters

 Tests theef�icacy of usingdynamicperformance datato characterize anddetect malware Applies standardmachine learningtechniques such asKNN and DecisionTrees to detectmalware

 Detector accuracy can beimproved in futher work Unable to determine if newapproach provides a signi�icantadvantage in malware detection

Deep learningapproach forintelligentintrusion detectionsystem [27]
Incorporating deeplearning tointroduce a newscalable intrusiondetection system

 Proposes deeplearning approachto detectcyberattacksproactively Explores host-level events usingnatural languageprocessing Use multipledatasets incomparativeanalysis due tounderlying �laws Proposes ascalable hybridintrusion detectionsystem SHIA

 Further work includesenhancing accuracy of theproposed framework by addingthe ability to monitor DNS andBGP events in the network. Complex deep neuralnetworks were not trained dueto the computational cost

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Paper	title Focus/objective Contribution LimitationRobust intelligentmalware detectionusing deep learning[28]
Evaluating classicalmachine learningarchitectures anddeep learningarchitectures formalware detection

 Proposesscalableframework namedScaleMalNet tocollect malwaresamples fromdistributed sources Novel imageprocessingtechnique Independentperformanceevaluation ofclassical machinelearning and deeplearningarchitectures

 The deep learningarchitectures are vulnerable toadversarial environments andthe robustness of the deeplearning architectures againstthis vulnerability is notdiscussed.

Fig.	2 Cloud monitoring points

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4	 Cloud	Security	Monitoring	OverviewCloud security monitoring takes place at various levels. The levelsinclude the Physical layer which contains computer hardware. The nextlevel is the Infrastructure as a Service level which contains the cloudinfrastructure made of virtual machines and storage. The next level isthe Platform as a Service level which is made of run-timeenvironments. The last level is the Software as a Service level wherecloud applications are used over the Internet.With cloud systems becoming more complex and servicing morecustomers, the need volume of virtual machines that need to bemonitored is increasing. Monitoring all of these virtual machines isresource intensive and failure to protect the tenants can result inservice downtime. Tenants can also infect other tenants via co-residentattacks. All of the scenarios in the cloud systems where attacks couldbe performed need to be monitored. Figure 2 shows where cloudmonitoring endpoints could be employed in a cloud IaaS scenario.There are two categories of cloud security described by Fig. 2:Resource Layer Monitoring and Service Layer Monitoring. The �igureillustrates interactions between components in a cloud environmentand which components should be monitored. There is a security riskassociated with every interaction and malware can spread throughthese interactions to infect unrelated parts of the ecosystem.Customers interact with various cloud services hosted on cloudstorage. Users typically can update and manage this information.Clients can also host services such as web sites which have their ownset of end users. If an end user of a hosted website is able to infect theCloud App component, then the Cloud Storage component is at riskwhich endangers the rest of the environment and its entities.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 Resource layer monitoringFigures 3 and 4 show close up views of the Resource LayerMonitoring and Service Layer Monitoring, respectively. Figure 3 showsthe tenants interacting with various cloud resource components.Figure 4 shows the tenants interacting in various ways with cloudservices. These cloud services are also communicating between oneanother in the background. While monitoring the behavior of thetenants’ interactions may provide evidence for malicious activity, itmay also be worth monitoring the background communicationsbetween services.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 Service layer monitoring
5	 Behavioral	Features	and	CharacteristicsWhen building a deep learning model for malware analysis, featuresmust be determined and collected from experiments or existing data.They should represent information that re�lects the behavior of activemalware in a particular system. Existing work such as [4, 24, 26] utilizeAPI calls whereas [10, 12, 20] focus on system calls. Other features caninclude performance counters [11] and memory features [19, 32].Table 3 shows an example set of features which could be used forbehavioral malware detection.
Table	3 Sample virtual machine features
Metric DescriptionCPU utilization Average CPU utilization

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Metric DescriptionMemory usage Amount of memory in use by the VM that is allocated to itMemory allocation Amount of memory allocated to the VM by the hypervisorDisk read requests Amount of times the VM requested read access to the diskDisk read amount Number of bytes read from the disk by the VMDisk write requests Amount of times the VM requested write access to the diskDisk write amount Number of bytes write from the disk by the VMNetwork incoming bytes Number of bytes received by the VMNetwork outgoing bytes Number of bytes sent by the VMFor the collection of data, developing an ecosystem which allowsmalware to execute without issue is essential. Modern malwarecommonly has mechanisms to detect when it should or should not beactive. This can be done to avoid detection and reduce the chance thata system’s malware detection and prevention methods will catch themalware. If a malware detects that it is running inside of a “sandbox” orbeing monitored by an anti-virus application, the malware mightdecide to remain idle. If a malware is not active and features of thesystem are recorded, then those features may re�lect normal activity ofthe system and should not be labeled as malicious.An example experimental setup may look like a set of machines setup with Internet access and limited anti-virus measures, if any. Suchmachines need Internet access to allow most malware to conduct theirmalicious activities without interference. These may be part of a largernetwork that simulates some service and traf�ic to that service. Anexample service relevant to cloud IaaS is a web server that responds tovarious HTTP requests. Simulated traf�ic represents normal usersinteracting with this web service. Allow the simulated traf�ic to run fora period of time and record the selected features for the machine thatis intended to be infected with malware. This machine will generatebenign samples that will be used later to establish what is normalbehavior. After the period of time is over, malware should be injectedinto the machine and the simulated traf�ic should be allowed tocontinue. This represents a successful cloud malware injection attackin the real world, where users are unlikely to know that the service theyare using has been compromised. If users notice no change in their

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

service, their behavior should remain the same and it should be thesame traf�ic behavior as before. Once the malware has been injectedinto the target machine, further recording should take place of thesame selected features. This phase of recording should last as long asthe benign phase to maintain a balanced amount of data. Once all of thedata has been collected across the time samples, the networkinfrastructure should be wiped clean so that any changes made by themalware are reverted. This experiment should be run multiple timeswith different malware or network setups to generate a large volume ofdata which can be used in deep learning techniques.Once the data has been collected, the data must be pre-processedand transformed into a format that is able to be input into deeplearning algorithms. This usually means transferring all relevantinformation in a vector with �loating point values and encoding allstrings using one-hot encoding. Once the data is in the proper format, aset of data must be set aside for training and validation. A deeplearning model requires data to train on to learn behaviors but thereneeds to be some way of comparing performances across models. Thevalidation data is used for this comparison. Dataset aside as validationdata should not be used during the training of the model, and insteadbe used as a measurement of a model’s accuracy. An example of usingvalidation data is to split the full dataset into 80% training and 20%validation. The model trains on the training dataset and every so often,the model is tasked with predicting the validation data samples. Theaccuracy of the model on the validation dataset should be the standardby which the model is judged. Various techniques exist when applyingthis dataset split including using a third test dataset when splitting thefull dataset as well as cross-fold validation. It is necessary to generateenough data so that even after the split, there is enough data to trainthe deep learning model and enough data to test a varied set ofexamples.
6	 Experimental	Setup	and	MethodologyThe dataset used for experimental analysis of deep learning techniques[21] was collected from an OpenStack testbed that simulated a 3-tierweb architecture. The testbed utilized a database (MySQL), application

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

server (Wordpress), and a web server (Apache) to create thearchitecture. In a typical 3-tier web architecture, a client makes arequest to a web server which can then either return a static page tothe client or access the application server. If the application serverrequires data access, then it can access the database. In any case, theresponse is returned back to the client. In this experimental setup, theweb server and application server were allowed to scale up or downbased on demand while the database was not. Two separate loadbalancers were used, one to distribute requests among web-serversfrom clients, and the other to distribute web server requests toapplication servers. Each computes node, acting as a cloud service, hadnetwork monitoring agents as well as agents collecting samples of thevirtual machine itself.Traf�ic was needed to accurately represent the intended use case: 3-tier web service. The traf�ic was simulated using two traf�ic differentgeneration models: Poisson	Process and ON/OFF	Pareto. A program wasbuilt to act as multiple clients. This program sent requests to the web-servers which would go through the load balancer �irst. Theparameters used for the simulation areGeneration algorithm: Poisson or On/Off ParetoConcurrent Clients: 50Requests sent per hour: 3600Request Types: GET and POST (Randomly Generated)The parameters for the On/Off Pareto algorithm used the NS21 tooldefaults. The traf�ic volume was chosen to test the scalability policy bystressing the load balancers. The policy for scaling up was set to scaleup when CPU utilization of either the app-servers or web-serversincreased above %. Each experiment lasted for one hour.The following four metrics were used to evaluate the effectivenessof the models:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

A positive is when the system correctly detects a present malware anda negative is when the system fails to detect an existing malware.Therefore:TP: Malware successfully detectedFP: System detected malware but no malware was presentTN: System correctly identi�ied no malware was presentFN: System failed to detect present malwareIn the experiments, a single virtual machine was randomly chosento be injected with malware halfway through the experiment. Thechosen features of this machine were recorded every 10 s. All machineswere erased and rebuilt after every experiment due to the infection oflive malware.Table 4 shows the metrics collected for the experiments in [21]. Theexample column represents a single process with the features collectedabout that process at a given time slice. This is the raw data that wascollected by the polling agents. Further preparation of the data must bedone before it is ready to be used in a neural network such as usingone-hot encoding to encode the string values. All of the preparation willturn this raw data into a feature vector.
Table	4 Sample values for metrics collected in [21]
Metric Value Metric Valuesample_no 5672254 mem_swap 0exp_no 23 mem_lib 0vm_id 178 mem_text 217088pid 1036 mem_uss 1105920ppid 1 mem_dirty 0sample_time 6/6/2018 19:32 mem_shared 3334144process_creation_time 6/6/2018 19:32 mem_data 585728

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Metric Value Metric Valuestatus sleeping mem_vms 43921408num_threads 1 mem_rss 3751936kb_received 0 io_write_bytes 0kb_sent 0 io_write_chars 76num_fds 14 io_write_count 9cpu_children_sys 0 io_read_bytes 958464cpu_children_user 0 io_read_chars 61088cpu_user 0.01 io_read_count 77cpu_sys 0 ctx_switches_involuntary 43cpu_percent 0 ctx_switches_voluntary 182cpu_num 0 nice 0name dbus-daemon ionice_ioclass 0gid_real 111 ionice_value 0gid_saved 111 label 0gid_effective 111 – –
7	 Deep	Learning	TechniquesDeep learning is a subset of machine learning, which revolves aroundusing arti�icial neural networks (ANNs). ANNs are made of layers ofneurons that activate in response to its input from the previous layers.Input in the form of tensors is passed through the layers and eventuallymakes a prediction. The prediction is then used to calculate the loss ofthe model and the weights of the model is then updated to increaseaccuracy. Two of the most used types of arti�icial neural networks areconvolutional neural networks (CNNs) and recurrent neural networks(RNNs).CNNs are used in many applications where data can be visualized inthe form of images. CNNs utilize a series of convolutional layers andpooling layers to break down an image into smaller mappings, and thenbegin to recognize smaller patterns until it builds up to predicting tofull image. In the case of malware detection, features can be gatheredfrom a virtual machine and used to create two-dimensional arrays of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

processes and features which can then be interpreted as an image. ACNN can work on this image to “recognize” and infected VM.RNNs are used for applications where there is a strong timerelationship between data samples that need to be captured. RNNsutilize either Long Short-Term Memory (LSTM) or Gate RecurrentUnits (GRUs) cells to simulate memory. These cells are designed tosolve the vanishing gradient where backpropagation fails to update theearly layers within a deep network. Such LSTM and GRU cells haveinternal gates which regulate the �low of information. For example, theauthors in [25] utilize an RNN to perform early detection of malware.They were able to detect malware within the �irst 5 s of execution with94% accuracy.
7.1	 Comparative	AnalysisIn this subsection, a detailed [21] comparison and contrasts ofdifferent state-of-the-art CNN models have been discussed used fordetecing malwares in cloud IaaS. The models used were LeNet-5,ResNet-50, ResNet-101, ResNet-152, DenseNet-121, DenseNet-169,and DenseNet-201.
Table	5 Comparison for evaluation metrics
Model Accuracy Precision Recall F1LeNet-5 89.2 94.7 80.9 87.2ResNet-50 88.4 86.0 88.9 87.4ResNet-101 86.6 82.3 89.7 85.9ResNet-152 89.5 89.0 87.8 88.4DenseNet-121 92.9 100 84.6 91.5DenseNet-169 92.8 99.7 84.4 91.4DenseNet-201 92.8 99.5 84.6 91.5The results for the seven models tested are shown in Table 5. Thebaseline model LeNet-5 represents a shallow, simple CNN. The modellacks the depth necessary to capture complex and minute features.LeNet-5 reached an accuracy of 87% while the best performingmodel, DenseNet-121 reached the highest accuracy of 93%. Thedifference between DenseNet-121, DenseNet-169, and DenseNet-201

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

in accuracy was negligible. These results suggest that adding morelayers to create deeper networks did not improve accuracy past acertain point within dense networks.ResNet-152 performed slightly better than LeNet-5 in accuracy butfell behind in precision. One impact of this low precision is the ResNetmodels that were classifying benign samples as malicious. This couldprove to be detrimental if regular use was being misidenti�ied asmalicious and a cloud provider was receiving false alarms. This maycause loss of availability to clients if the cloud provider were takingsteps against these false alarms such as isolating virtual resources.Once the considerably longer training time of ResNet-152 is taken intoaccount, the minor accuracy increase over LeNet-5 is likely not aworthwhile tradeoff. The higher recall of the residual networks maylend themselves to other scenarios where catching all of the malwareincidents is more important than some false alarms. These may becases where the resources being protected are extremely sensitive innature and false positives are preferable to false negatives. ResNet-50and ResNet-101 achieved the lowest accuracy overall however so theyare not recommended over the other models tested.All of the models underwent training and validation to �ind thepoint at which their validation accuracy was greatest. For all sevenmodels, their highest performing version was used in a testing phaseto generate the results in Table 5. The DenseNet models took muchlonger to train and therefore longer to reach their highest performingstates than LeNet-5. DenseNet-121 took almost 10x longer to trainthan LeNet-5 and the other DenseNet models took longer thanDenseNet-121 while providing marginally better results. It suf�ices tosay that DenseNet-121 provided the best performance improvement interms of accuracy with respect to training time from the baselineLeNet-5.
8	 ConclusionIn this chapter, we discuss the importance of analyzing malwaredetection methods in cloud IaaS and the ability to utilize deep learningmethods in those detection efforts. Cloud providers have an increasingresponsibility to provide security mechanisms which will protect their

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

data centers and the customers they serve. One such securitymechanism is deep learning. Deep learning techniques provide highlyaccurate models which can detect malware. These models are usefulfor cloud environments especially when many virtual machines may becon�igured similarly and therefore could be susceptible to repeatedattacks using the same malware. To utilize deep learning in cloudmalware detection, data must �irst be found or generated. The datashould be gathered from a simulated environment that closelyrepresents real-world services and network infrastructure. If a newdataset is being generated, then the features being collected must beselected �irst. These features can include CPU usage, memory usage,system calls, or even network operations. Once data is generated andcollected, it is ready to be fed into a deep learning model forpredictions. A deep learning model should be designed to �it thedataset and the hyperparameters of the model will need to be tuned toincrease accuracy. Once a model has been trained, it can then be usedto perform predictions on new malware.
AcknowledgementsThis work is partially supported by National Science Foundationawards 1565562, 2025682, 2025685, and 2025686.
References1. Abdelsalam, Mahmoud, et al. 2019. Online malware detection in cloud auto-scaling systemsusing shallow convolutional neural networks. In Proceedings	of	IFIP	annual	conference	on

data	and	applications	security	and	privacy. Berlin: Springer.2. Abdelsalam, Mahmoud, Ram Krishnan, Yufei Huang, and Ravi Sandhu. 2018. Malwaredetection in cloud infrastructures using convolutional neural networks. In Proceedings	of
IEEE	international	conference	on	cloud	computing, 162–169.3. Abdelsalam, Mahmoud, Ram Krishnan, and Ravi Sandhu. 2017. Clustering-based IaaS cloudmonitoring. In Proceedings	of	IEEE	international	conference	on	cloud	computing	(CLOUD),672–679.4. Alazab, Mamoun, et al. 2011. Zero-day malware detection based on supervised learningalgorithms of API call signatures. In Proceedings	of	the	Australasian	data	mining	conference,171–182, AUS. Australian Computer Society, Inc.5. Alazab, Mamoun, Robert Layton, Sitalakshmi Venkatraman, and Paul Watters. 2010. Malwaredetection based on structural and behavioural features of API calls. In Proceedings	of	the	1st

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

International	cyber	resilience	conference ed. Craig Valli, 1–10. Edith Cowan University.6. Alazab, Mamoun, Sitalakshmi Venkataraman, and Paul Watters. 2010. Towards understandingmalware behaviour by the extraction of API calls. In 2010	second	cybercrime	and	trustworthy
computing	workshop, 52–59. IEEE.7. Azab, Ahmad, Mamoun Alazab, and Mahdi Aiash. 2016. Machine learning based botnetidenti�ication traf�ic. In 2016	IEEE	Trustcom/BigDataSE/ISPA, 1788–1794. IEEE.8. Azmandian, Fatemeh, et al. 2011. Virtual machine monitor-based lightweight intrusiondetection. ACM	SIGOPS	Operating	Systems	Review 45 (2): 38–53.[Crossref]9. Dahbur, Kamal, Bassil Mohammad, and Ahmad Bisher Tarakji. 2011. A survey of risks, threatsand vulnerabilities in cloud computing. In Proceedings	of	the	2011	international	conference
on	intelligent	semantic	web-services	and	applications, 1–6.10. Dawson, Joel A., et al. 2018. Phase space detection of virtual machine cyber events throughhypervisor-level system call analysis. In Proceedings	of	IEEE	international	conference	on
data	intelligence	and	security, ICDIS, 159–167.11. Demme, John, et al. 2013. On the feasibility of online malware detection with performancecounters. ACM	SIGARCH	Computer	Architecture	News 41 (3): 559–570.[Crossref]12. Dini, Gianluca, et al. 2012. Madam: A multi-level anomaly detector for android malware. In
Computer	Network	Security, ed. Igor Kotenko, and Victor Skormin, 240–253. Berlin: Springer.[Crossref]13. Fan, Yujie, Yanfang Ye, and Lifei Chen. 2016. Malicious sequential pattern mining for automaticmalware detection. Expert	Systems	with	Applications 52: 16–25.[Crossref]14. Firdausi, Ivan, et al. 2010. Analysis of machine learning techniques used in behavior-basedmalware detection. In Proceedings	of	IEEE	international	conference	on	advances	in
computing,	control,	and	telecommunication	technologies, 201–203.15. Gholami, Ali, and Erwin Laure. 2016. Security and privacy of sensitive data in cloudcomputing: A survey of recent developments. arXiv: 1601. 01498.16. Grobauer, Bernd, Tobias Walloschek, and Elmar Stocker. 2010. Understanding cloudcomputing vulnerabilities. IEEE	Security	&	Privacy 9 (2): 50–57.[Crossref]17. Gruschka, Nils, et al. 2010. Attack surfaces: A taxonomy for attacks on cloud services. In
Proceedings	of	IEEE	international	conference	on	cloud	computing, 276–279.18. Jensen, Meiko, Jörg Schwenk, Nils Gruschka, and Luigi Lo Iacono. 2009. On technical securityissues in cloud computing. In 2009	IEEE	international	conference	on	cloud	computing, 109–116. IEEE.19. Khasawneh, Khaled N., et al. 2015. Ensemble learning for low-level hardware-supported

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1145/2007183.2007189
https://doi.org/10.1145/2508148.2485970
https://doi.org/10.1007/978-3-642-33704-8_21
https://doi.org/10.1016/j.eswa.2016.01.002
http://arxiv.org/abs/1601.01498
https://doi.org/10.1109/MSP.2010.115

malware detection. In Proceedings	of	international	symposium	on	recent	advances	in
intrusion	detection, 3–25. Berlin: Springer.20. Luckett, P., et al. 2016. Neural network analysis of system call timing for rootkit detection, 1–6. In Proceedings	of	Cybersecurity	symposium,	CYBERSEC, April.21. McDole, Andrew, Mahmoud Abdelsalam, Maanak Gupta, and Sudip Mittal. 2020. AnalyzingCNN Based Behavioural Malware Detection Techniques on Cloud IaaS. arXiv: 2002. 06383.22. Mell, Peter, and Tim Grance. 2011. The NIST de�inition of cloud computing. https:// csrc. nist. gov/ publications/ detail/ sp/ 800-145/ �inal.23. Piplai, Aritran, Sudip Mittal, Mahmoud Abdelsalam, Maanak Gupta, Anupam Joshi, and TimFinin. 2020. Knowledge enrichment by fusing representations for malware threat intelligenceand behavior. Technical report, UMBC, October24. Pirscoveanu, Radu S., et al. 2015. Analysis of malware behavior: Type classi�ication usingmachine learning. In Proceedings	of	IEEE	international	conference	on	cyber	situational
awareness,	data	analytics	and	assessment, 1–7.25. Rhode, Matilda, Pete Burnap, and Kevin Jones. 2018. Early-stage malware prediction usingrecurrent neural networks. Computers	&	Security 77: 578–594.[Crossref]26. Tobiyama, Shun, et al. 2016. Malware detection with deep neural network using processbehavior. In Proceedings	of	IEEE	annual	computer	software	and	applications	conference vol.2, 577–582.27. Vinayakumar, R., K.P. Mamoun Alazab, Prabaharan Poornachandran Soman, Ameer Al-Nemrat,and Sitalakshmi Venkatraman. 2019. Deep learning approach for intelligent intrusiondetection system. IEEE	Access 7: 41525–41550.[Crossref]28. Vinayakumar, R., K.P. Mamoun Alazab, Prabaharan Poornachandran Soman, and SitalakshmiVenkatraman. 2019. Robust intelligent malware detection using deep learning. IEEE	Access 7:46717–46738.[Crossref]29. Wang, Chengwei. 2009. Ebat: Online methods for detecting utility cloud anomalies. In
Proceedings	of	the	middleware	doctoral	symposium, 1–6.30. Watson, Michael R., et al. 2015. Malware detection in cloud computing infrastructures. IEEE
Transactions	on	Dependable	and	Secure	Computing 13 (2): 192–205.[Crossref]31. Xiao, Zhifeng, and Yang Xiao. 2012. Security and privacy in cloud computing. IEEE
Communications	Surveys	&	Tutorials 15 (2): 843–859.[MathSciNet][Crossref]32. Xu, Zhixing, et al. 2017. Malware detection using machine learning based analysis of virtualmemory access patterns. In Proceedings	of	IEEE	design,	automation	&	test	in	europe
conference	&	exhibition, 169–174.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/2002.06383
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://doi.org/10.1016/j.cose.2018.05.010
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1109/TDSC.2015.2457918
http://www.ams.org/mathscinet-getitem?mr=3088723
https://doi.org/10.1109/SURV.2012.060912.00182

1FootnotesNS2 tool manual. http:// www. isi. edu/ nsnam/ ns/ doc/ node509. html.
https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.isi.edu/nsnam/ns/doc/node509.html

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_11
A	Comparison	of	Word2Vec,	HMM2Vec,
and	PCA2Vec	for	Malware	Classi�icationAniket Chandak1 , Wendy Lee1 and Mark Stamp1 San Jose State University, San Jose, CA, USA
Aniket	Chandak
Email:	aniket.chandak@sjsu.edu
Wendy	Lee
Email:	wendy.lee@sjsu.edu
Mark	Stamp	(Corresponding	author)
Email:	mark.stamp@sjsu.edu

AbstractWord embeddings are often used in natural language processing as ameans to quantify relationships between words. More generally, thesesame word embedding techniques can be used to quantifyrelationships between features. In this paper, we �irst consider multipledifferent word embedding techniques within the context of malwareclassi�ication. We use hidden Markov models to obtain embeddingvectors in an approach that we refer to as HMM2Vec, and we generatevector embeddings based on principal component analysis. We alsoconsider the popular neural network-based word embedding techniqueknown as Word2Vec. In each case, we derive feature embeddings basedon opcode sequences for malware samples from a variety of differentfamilies. We show that we can obtain better classi�ication accuracybased on these feature embeddings, as compared to HMM experimentsthat directly use the opcode sequences, and serve to establish a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_11
mailto:aniket.chandak@sjsu.edu
mailto:wendy.lee@sjsu.edu
mailto:mark.stamp@sjsu.edu

baseline. These results show that word embeddings can be a usefulfeature engineering step in the �ield of malware analysis.
1	 IntroductionMalware detection and analysis are critical aspects of informationsecurity. The 2019 Internet Threat Security Report [46] claims anincrease of 25% in 1 year in the number of attack groups usingmalware to disrupt businesses and organizations. According tothe 2016 California Data Breach Report [13], malware contributedto 54% of all breaches and 90% of total records breached, with astaggering 44 million records breached due to malware in the years2012–2016. Statistics such as these imply that malware is anincreasing threat.In this paper, we apply machine learning classi�ication techniquesto engineered features that are derived from malware samples. Thisfeature engineering involves machine learning techniques. In effect, weapply machine learning to higher level features, where these featuresare themselves obtained using machine learning models. Themotivation is that machine learning can serve to distill usefulinformation from training samples, and hence the classi�icationtechniques may perform better on such data. In this research, weconsider the effectiveness of using these derived features in thecontext of malware classi�ication.Speci�ically, we use word embeddings based on opcodes to derivefeatures for subsequent classi�ication. We consider three distinct wordembedding techniques. First, we derive word embeddings from trainedhidden Markov models (HMM). We refer to this technique as HMM2Vec.We then consider an analogous technique based on principalcomponent analysis (PCA), which we refer to as PCA2Vec. And, as athird approach, we experiment with the popular neural network-basedword embedding technique known as Word2Vec. In each case, wegenerate word embeddings for a signi�icant number of samples from avariety of malware families. We then use several classi�icationtechniques to determine how well we can classify these samples usingword embeddings as features.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The remainder of this paper is organized as follows. We provide aselective survey of relevant related work in Sect. 2. Section 3 containsan extensive and wide-ranging discussion of machine learning topicsthat play a role in this research. In Sect. 4, we provide details on theword embedding techniques that form the basis of our experiments.Section 5 gives our experiments and results, while Sect. 6 provides ourconclusion and some paths for future work.
2	 Related	WorkMalware analysis and detection are challenging problems due to avariety of factors, including the large volume of malware andobfuscation techniques [10]. Every day, thousands of new malware aregenerated—manual analysis techniques cannot keep pace. Obfuscationis widely used by malware developers to make it dif�icult to analyzetheir malicious code.Signature-based malware detection methods rely on patternmatching with known signatures [47]. Signature detection is relativelyfast, and it is effective against “traditional” malware. However,extracting signatures is a labor-intensive process, and obfuscationtechniques can defeat signature scanning.Anomaly-based techniques are based on “unusual” or “virus-like”behavior or characteristics. An example of anomaly detection isbehavior-based analysis, which can be used to analyze a sample whenexecuted or under emulation [47]. When an executable �ile performsany action that does not �it its expected behavior, an alarm can betriggered. Such a method can detect obfuscated and zero-day malware,but it is slow, and generally subject to excessive false positives.Recently, machine learning techniques have proven extremelyuseful for malware detection. The effectiveness of machine learningalgorithms depends on the characteristics of the features used by suchmodels. In malware detection and classi�ication, a sample can berepresented by a wide variety of features, including mnemonicopcodes, raw bytes, API calls, permissions, header information, etc.Opcodes are a popular feature that form the basis of the analysisconsidered in this paper.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In [7], the author experiments with opcodes and determines thatsuch features can be successfully used to detect malware. Thepaper [11] achieves good results using API calls as a feature. Suchfeatures can be somewhat more dif�icult for malware writers toobfuscate, since API calls relate to the essential activity of software.However, extracting API calls from an executable is more costly thanextracting opcodes.Another example of malware research involving opcodes can befound in [33]. This paper features opcode n-grams, with a Markovblanket used to select from the large set of available n-gram.Classi�ication is based on hidden Markov models, and experiments arebased on �ive malware families.In [3], malware opcodes are treated as a language, with Word2Vecused to quantify contextual information. Classi�ication relies on k-nearest neighbors (). The research in [34] also uses Word2Vecto generate feature vectors based on opcode sequences, with a deepneural network employed for malware classi�ication. In this latterresearch, the number of opcodes is in the range of 50–200, and thelength of the Word2Vec embeddings range from 250 to 750.Word2Vec embeddings are used as features to train bi-directionalLSTMs in [20]. The experiments achieve good accuracy for malwaredetection, but training is costly. In [14], the author proposed a wordembedding method based on opcode graphs—the graph is projectedinto vector space, which yields word embeddings. This technique isalso computationally expensive.In comparison to previous research, we consider additional vectorembedding techniques, we experiment with a variety of classi�icationalgorithms, we use a smaller number of opcodes, and we generateshort embedding vectors. Since we use a relatively small number ofopcodes and short embedding vectors, our techniques are all highlyef�icient and practical. In addition, our experiments are based on arecently collected and challenging malware dataset.
3	 Background

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this section, we present background information on the variouslearning techniques that are used in the experiments discussed inSect. 5. Speci�ically, we introduce neural networks, beginning withsome historical background and moving on to a modern context. Wealso introduce HMMs and PCA, which form the basis for the wordembedding techniques that we refer to as HMM2Vec and PCS2Vec,respectively. Finally, we introduce four classi�ication techniques, whichare used in our experiments.In Sect. 4, we discuss HMM2Vec, PCA2Vec, and the neural network-based word embedding technique, Word2Vec, in detail. For ourexperiments in Sect. 5, we use these three word embedding techniquesto generate features to classify malware samples.

Fig.	1 Arti�icial neuron
3.1	 Neural	NetworksThe concept of an arti�icial neuron [12, 49] is not new, as the idea was�irst proposed by McCulloch and Pitts in the 1940s [22]. However,modern computational neural networks begins with the perceptron, asintroduced by Rosenblatt in the late 1950s [37].
3.1.1	 McCulloch–Pitts	Arti�icial	NeuronAn arti�icial neuron with three inputs is illustrated in Fig. 1. In theoriginal McCulloch–Pitts formulation, the inputs , the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

weights , and the output . The output Y is 0(inactive) or 1 (active), based on whether or not the linear function exceeds the speci�ied threshold T. This form of an arti�icialneuron was modeled on neurons in the brain, which either �ire or it donot (thus), and have input that comes from other neurons(thus each). The weights specify whether an input isexcitatory (increasing the chance of the neuron �iring) or inhibitory(decreasing the chance of the neuron �iring). Whenever ,the excitatory response wins, and the neuron �ires—otherwise theinhibitory response wins and the neuron does not �ire.
3.1.2	 PerceptronA perceptron is less restrictive than a McCulloch–Pitts arti�icial neuron.With a perceptron, both the inputs and the weights can be realvalued, as opposed to the binary restrictions of McCulloch–Pitts. Aswith the McCulloch–Pitts formulation, the output Y of a perceptron isgenerally taken to be binary.Given a real-valued input vector , aperceptron can be viewed as an instantiation of a function of the form
that is, a perceptron computes a weighted sum of the inputcomponents. Based on a threshold, a single perceptron can de�ine abinary classi�ier. That is, we can classify a sample X as “type 1”provided that , for some speci�ied threshold T, and otherwisewe classify X as “type 0.”In the case of two-dimensional input, the decision boundary of a isof the form (1)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

which is the equation of a line. In general, the decision boundary of aperceptron is a hyperplane. Hence, a perceptron can only provide idealseparation in cases where the data itself is linearly separable.As the name suggests, a multilayer perceptron (MLP) is an ANN thatincludes multiple (hidden) layers in the form of perceptrons. Anexample of an MLP with two hidden layers is given in Fig. 2, where eachedge represent a weight that is to be determined via training. Unlike asingle layer perceptron, MLPs are not restricted to linear decisionboundaries, and hence an MLP can accurately model more complexfunctions. For example, the XOR function—which cannot be modeledby a single layer perceptron—can be modeled by an MLP.To train a single layer perceptron, simple heuristics will suf�ice,assuming that the data is actually linearly separable. From a high-levelperspective, training a single layer perceptron is somewhat analogousto training a linear support vector machine (SVM), except that for aperceptron, we do not require that the margin (i.e., minimumseparation between the classes) be maximized. But training an MLP isclearly far more challenging, since we have hidden layers between theinput and output, and it is not obvious how changes to the weights inthese hidden layers will affect each other or the output.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 MLP with two hidden layersAs an aside, it is interesting to note that for SVMs, we deal with datathat is not linearly separable by use of the “kernel trick,” where theinput data is mapped to a higher dimensional “feature space” via a(nonlinear) kernel function. In contrast, perceptrons (in the form ofMLPs) overcome the limitation of linear separability by the use ofmultiple layers. With an MLP, it is as if a nonlinear kernel function hasbeen embedded directly into the model itself through the use of hiddenlayers, as opposed to a user-speci�ied explicit kernel function, which isthe case for an SVM.We can view the relationship between ANNs and deep learning asbeing somewhat akin to that of Markov chains and hidden Markov

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

models (HMM). That is, ANNs serve as a basic technology that can beused to build powerful machine learning techniques, analogous to theway that an HMM is built on the foundation of an elementary Markovchain.
3.2	 Hidden	Markov	ModelsA generic hidden Markov model is illustrated in Fig. 3, where the represent the hidden states and all other notations are shown inTable 1. The state of the Markov process, which we can be viewed asbeing hidden behind a “curtain” (the dashed line in Fig. 3), isdetermined by the current state and the A matrix. We are only able toobserve the observations , which are related to the (hidden) statesof the Markov process by the matrix B.

Fig.	3 Hidden Markov model
3.2.1	 Notation	and	BasicsThe notation used in an HMM is summarized in Table 1. Note that theobservations are assumed to come from the set ,which simpli�ies the notation with no loss of generality. That is, wesimply associate each of the M distinct observations with one of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

elements , so that we have for .
Table	1 HMM notation
Notation Explanation

T Length of the observation sequence
N Number of states in the model
M Number of observation symbols
Q Distinct states of the Markov process,
V Possible observations, assumed to be
A State transition probabilities
B Observation probability matrixInitial state distributionObservation sequence,

The matrix is with
The matrix A is row stochastic, that is, each row satis�ies theproperties of a discrete probability distribution. Also, the probabilities are independent of t, and hence the A matrix does not vary with t.The matrix is of size , with
As with the A matrix, B is row stochastic, and the probabilities are independent of t. The somewhat unusual notation isconvenient when specifying the HMM algorithms.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Problem	1

An HMM is de�ined by A, B, and (and, implicitly, by thedimensions N and M). Thus, we denote an HMM as .Suppose that we are given an observation sequence of length four,that is,
Then the corresponding (hidden) state sequence is denoted as
We let denote the probability of starting in state , and denotes the probability of initially observing , while is theprobability of transiting from state to state . Continuing, we seethat the probability of a given state sequence X of length four is (2)Note that in this expression, the represent indices in the A and Bmatrices, not the names of the corresponding states.To �ind the optimal state sequence in the dynamic programming(DP) sense, we simply choose the sequence (of length four, in this case)with the highest probability. In contrast, to �ind the optimal statesequence in the HMM sense, we choose the most probable symbol ateach position. The optimal DP sequence and the optimal HMMsequence can differ.
3.2.2	 The	Three	ProblemsThere are three fundamental problems that we can solve using HMMs.Here, we brie�ly describe each of these problems. Given the model and a sequence ofobservations , determine . That is, we want to compute ascore for the observed sequence with respect to the given model .

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Problem	2

Problem	3

Given and an observation sequence , �indan optimal state sequence for the underlying Markov process. In otherwords, we want to uncover the hidden part of the hidden Markovmodel. Given an observation sequence and the parameter N,determine a model that maximizes the probability of .This can be viewed as training a model to best �it the observed data.This problem is generally solved using Baum–Welch re-estimation [35,43], which is a discrete hill climb on the parameter space representedby A, B, and . There is also an alternative gradient ascent techniquefor HMM training [4, 45]. Since the technique we use to train an HMM (Problem 3) is a hillclimb, in general, we obtain a local maximum. Training with differentinitial conditions can result in different local maxima, and hence it isoften bene�icial to train multiple HMMs with different initialconditions, and select the highest scoring model.
3.2.3	 ExampleConsider, for example, the problem of speech recognition which, notcoincidentally, is one of the earliest and best-known successes ofHMMs. In speech problems, the hidden states can be viewed ascorresponding to movements of the vocal cords, which are not directlyobserved. Instead, we observe the sounds that are produced, andextract training features from these sounds. In this scenario, we canuse the solution to HMM Problem 3 to train an HMM to, for example,recognize the spoken word “yes.” Then, given an unknown spokenword, we can use the solution to Problem 1 to score the word againstthe trained model and determine the likelihood that the wordis “yes.” In this case, we do not need to solve Problem 2, but it ispossible that such a solution (i.e., uncovering the hidden states) mightprovide additional insight into the underlying speech model.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

English text analysis is another classic application of HMMs, whichappears to have been �irst considered by Cave and Neuwirth [9]. Thisapplication nicely illustrates the strength of HMMs and it requires nobackground in any specialized �ield, such as speech processing orinformation security.Given a length of English text, we remove all punctuation, numbers,etc., and converts all letters to lower case. This leaves 26 distinct lettersand word-space, for a total of 27 symbols. We assume that there is anunderlying Markov process (of order one) with two hidden states. Foreach of these two hidden states, we assume that the 27 symbols areobserved according to �ixed probability distributions.This de�ines an HMM with and , where the statetransition probabilities of the A matrix and the observationprobabilities of the B matrix are unknown, while the observations consist of the series of characters we have extracted from the giventext. To determine the A and B matrices, we must solve HMMProblem 3, as discussed above.We have trained such an HMM, using the �irst observations from the Brown Corpus,1 which is available at [8]. Weinitialized each element of and A randomly to approximately 1/2,taking care to sure that the matrices are row stochastic. For onespeci�ic iteration of this experiment, the precise values used were
and
Each element of B was initialized to approximately 1/27, again, underthe constraint that B must be row stochastic. The values in the initial Bmatrix (more precisely, the transpose of B) appear in the second andthird columns of Table 2.
Table	2 Initial and �inal

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Observation Initial FinalObservation Initial Final

a 0.03735 0.03909 0.13845 0.00075
b 0.03408 0.03537 0.00000 0.02311
c 0.03455 0.03537 0.00062 0.05614
d 0.03828 0.03909 0.00000 0.06937
e 0.03782 0.03583 0.21404 0.00000
f 0.03922 0.03630 0.00000 0.03559
g 0.03688 0.04048 0.00081 0.02724
h 0.03408 0.03537 0.00066 0.07278
i 0.03875 0.03816 0.12275 0.00000
j 0.04062 0.03909 0.00000 0.00365
k 0.03735 0.03490 0.00182 0.00703
l 0.03968 0.03723 0.00049 0.07231
m 0.03548 0.03537 0.00000 0.03889
n 0.03735 0.03909 0.00000 0.11461
o 0.04062 0.03397 0.13156 0.00000
p 0.03595 0.03397 0.00040 0.03674
q 0.03641 0.03816 0.00000 0.00153
r 0.03408 0.03676 0.00000 0.10225
s 0.04062 0.04048 0.00000 0.11042
t 0.03548 0.03443 0.01102 0.14392
u 0.03922 0.03537 0.04508 0.00000
v 0.04062 0.03955 0.00000 0.01621
w 0.03455 0.03816 0.00000 0.02303
x 0.03595 0.03723 0.00000 0.00447
y 0.03408 0.03769 0.00019 0.02587
z 0.03408 0.03955 0.00000 0.00110Space 0.03688 0.03397 0.33211 0.01298After the initial iteration, we �ind andafter 100 iterations, we have These

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

model scores indicate that training has improved the modelsigni�icantly over the 100 iterations.In this particular experiment, after 100 iterations, the model has converged to
with the converged appearing in the last two columns of Table 2.The most interesting part of an HMM is generally the B matrix.Without having made any assumption about the two hidden states,the B matrix in Table 2 shows us that one hidden state consists ofvowels while the other hidden state consists of consonants. Curiously,from this perspective, word-space acts more like a vowel, while y is noteven sometimes a vowel.Of course, anyone familiar with English would not be surprised thatthere is a signi�icant distinction between vowels and consonants. But,the crucial point here is that the HMM has automatically extracted thisstatistically important distinction for us—it has “learned” todistinguish between consonants and vowels. And, thanks to HMMs, thisfeature of English text could be easily discovered by someone whopreviously had no knowledge whatsoever of the language.Cave and Neuwirth [9] obtain additional results when consideringHMMs with more than two hidden states. In fact, they are able tosensibly interpret the results for models with up to hiddenstates.For more information on HMMs, see [43], which includes detailedalgorithms including scaling or Rabiner’s classic paper [35].
3.3	 Principal	Component	AnalysisPrincipal component analysis (PCA) is a linear algebraic technique thatprovides a powerful tool for dimensionality reduction. Here, weprovide a very brief introduction to the topic; for more details, Shlens’tutorial is highly recommended [40], while a good source for the mathbehind PCA is [39]. The discussion at [42] provides a brief, intuitive,and fun introduction to the subject.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Geometrically, PCA aligns a basis with the (orthogonal) directionshaving the largest variances. These directions are de�ined to be theprincipal components. A simple illustration of such a change of basisappears in Fig. 4.

Fig.	4 A better basisIntuitively, larger variances correspond to more informative data—if the variance is small, the training data is clumped tightly around themean and we have limited ability to distinguish between samples. Incontrast, if the variance is large, there is a much better chance ofseparating the samples based on the characteristic (or characteristics)under consideration. Consequently, once we have aligned the basiswith the variances, we can ignore those directions that correspond tosmall variances without losing signi�icant information. In fact, smallvariances often contribute only noise, in which cases we can actuallyimprove our results by neglecting those directions that correspond tosmall variances.The linear algebra behind PCA training (i.e., deriving a new-and-improved basis) is fairly deep, involving eigenvalue analysis. Yet, thescoring phase is simplicity itself, requiring little more than thecomputation of a few dot products, which makes scoring extremelyef�icient and practical.Note that we treat singular value decomposition (SVD) as a specialcase of PCA, in the sense that SVD provides a method for determining

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the principal components. It is possible to take the oppositeperspective, where PCA is viewed as a special case of the generalchange of basis technique provided by SVD. In any case, for ourpurposes, PCA and SVD can be considered as essentially synonymous.
3.4	 Classi�iersIn the research presented in this paper, we consider four differentclassi�iers, namely, k-nearest neighbors (), multilayerperceptron (MLP), random forest (RF), and support vector machine(SVM). We have already discussed MLPs above, so in this section, wegive a brief overview of , RF, and SVM.
3.4.1	 k-Nearest	NeighborsPerhaps the simplest possible machine learning algorithm is k-nearestneighbors (). In the scoring phase, consists ofclassifying based on the k-nearest samples in the training set, typicallyusing a simple majority vote. Since all computation is deferred to thescoring phase, is considered to be a “lazy learner.”

Fig.	5 Examples of classi�ication [44]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Figure 5 shows examples of , where the training dataconsists of two classes, represented by the open blue squares and thesolid red circles, with the green diamond (the point labeled X) being apoint that we want to classify. Figure 5a shows that if we use the 1-nearest neighbor, we would classify the green diamond as being ofsame type as the open blue squares, whereas Fig. 5b shows that Xwould be classi�ied as the solid red circle type if using the 3-nearestneighbors.
3.4.2	 Random	ForestA random forest (RF) generalizes a simple decision tree algorithm. Adecision tree is constructed by building a tree, based on features fromthe training data. It is easy to construct such trees, and trivial toclassify samples once a tree has been constructed. However, decisiontrees tend to over�it the input data.An RF combines multiple decision trees to generalize the trainingdata. To do so, RFs use different subsets of the training data as well asdifferent subsets of features, a process known as bagging [44]. A simplemajority vote of the decision trees comprising the RF is typically usedfor classi�ication [18].
3.4.3	 Support	Vector	MachineSupport vector machines (SVM) are a class of supervised learningmethods that are based on four major ideas, namely, a separatinghyperplane, maximizing the “margin” (i.e., separation betweenclasses), working in a higher dimensional space, and the so-calledkernel trick. The goal in SVM is to use a hyperplane to separate labeleddata into two classes. If it exists, such a hyperplane is chosen tomaximize the margin [44].An example of a trained SVM is illustrated in Fig. 6. Note that thepoints that actually minimize the distance to the separatinghyperplane correspond to support vectors. In general, the number ofsupport vectors will be small relative to the number of training datapoints, and this is the key to the ef�iciency of SVM in the classi�icationphase.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	6 Support vectors in SVM [44]Of course, there is no assurance that the training data will belinearly separable. In such cases, a nonlinear kernel function can beembedded into the SVM process in such a way that the input data is, ineffect, transformed to a higher dimensional “feature space.” In thishigher dimensional space, it is far more likely that the transformeddata will be linearly separable. This is the essence of the kernel trick—an example of which is illustrated in Fig. 7. That we can transform ourtraining data in such a manner is not surprising, but the fact that wecan do so without paying any signi�icant penalty in terms ofcomputational ef�iciency makes the kernel trick a very powerful “trick”indeed. However, the kernel function must be speci�ied by the user, andselecting an (near) optimal kernel can be challenging.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 A function illustrating the kernel trick [44]
3.4.4	 Last	Word	on	Classi�ication	TechniquesWe note in passing that MLP and SVM are related techniques, as both ofthese approaches generate nonlinear decision boundaries (assuming anonlinear kernel). For SVM, the nonlinear boundary is based on a user-speci�ied kernel function, whereas the equivalent aspect of an MLP islearned as part of the training process—in effect, the “kernel” islearned when training an MLP. This suggests that MLPs have anadvantage, since there are limitations on SVM kernels, and selecting anoptimal kernel is more art than science. However, the trade-off is thatmore data and more computation will generally be required to train acomparable MLP, since the MLP has more to learn, in comparison to anSVM.It is also the case that and RF are closely related. In fact,both are neighborhood-based algorithms, but with neighborhoodstructures that are somewhat different [19].Thus, we generally expect that the results obtained using SVM andMLP will be qualitatively similar, and the same is true when comparingresults obtained using and RF. By using these four classi�iers,we obtain a “sanity check” on the results. If, for example, our SVM andMLP results differ dramatically, this would indicate that we should

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

investigate further. On the other hand, if, say, our MLP and RF resultsdiffer signi�icantly, this would not raise the same level of concern.
4	 Word	Embedding	TechniquesWord embeddings are often used in natural language processing asthey provide a way to quantify relationships between words. Here, weuse word embeddings to generate higher level features for malwareclassi�ication.In this section, we discuss three distinct word embeddingtechniques. First, we consider word embeddings derived from trainedHMMs, which we refer to as HMM2Vec. Then we consider a wordembedding technique based on PCA, which we refer to as PCA2Vec.Finally, we discuss the popular neural network-based technique knownas Word2Vec.
4.1	 HMM2VecBefore discussing the basic ideas behind Word2Vec, we consider asomewhat analogous approach to generating vector representationsbased on hidden Markov models. To begin with we consider individualletters, as opposed to words—we call this simpler version Letter2Vec.Recall that an HMM is de�ined by the three matrices A, B, and , andis denoted as . The matrix contains the initial stateprobabilities, A contains the hidden state transition probabilities,and B consists of the observation probability distributionscorresponding to the hidden states. Each of these matrices is rowstochastic, that is, each row satis�ies the requirements of a discreteprobability distribution. Notation-wise, N is the number of hiddenstates, M is the number of distinct observation symbols, and T is thelength of the observation (i.e., training) sequence. Note that M and Tare determined by the training data, while N is a user-de�inedparameter.Suppose that we train an HMM on a sequence of letters extractedfrom English text, where we convert all uppercase letters to lowercaseand discard any character that is not an alphabetic letter or word-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

space. Then , and we select hidden states, and we use observations for training. Note that each observation isone of the symbols (letters plus word-space). For the examplediscussed below, the sequence of observations wasobtained from the Brown corpus of English [8]. Of course, any source ofEnglish text could be used.In one speci�ic case, an HMM trained with the parameters listed inthe previous paragraph yields the B matrix in Table 2. Observe thatthis B matrix gives us two probability distributions over theobservation symbols—one for each of the hidden states. We observethat one hidden state essentially corresponds to vowels, while theother corresponds to consonants. This simple example nicelyillustrates the concept of machine learning, as no assumption wasmade a priori concerning consonants and vowels, and the onlyparameter we selected was the number of hidden states N. Thanks tothis training process, the model has learned a crucial aspect of Englishdirectly from the data.Suppose that for a given letter , we de�ine its Letter2Vecrepresentation to be the corresponding row of the convergedmatrix in the last two columns of Table 2. Then, for example, (3)Next, we consider the distance between these Letter2Vec embeddings.However, instead of using Euclidean distance, we measure distancebased on cosine similarity.The cosine similarity of vectors X and Y is the cosine of the anglebetween the two vectors. Let and . Then the cosine similarity is given by

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In general, , but since our Letter2Vec encodingvectors consist of probabilities—and hence are non-negative—wehave for the X and Y under consideration.For the vector encodings in (3), we �ind that for the vowels “a” and“e,” the cosine similarity is . In contrast, thecosine similarity between the vowel “a” and the consonant “t” is . These results indicate that theseLetter2Vec embeddings—which are derived from a trained HMM—provide useful information on the similarity (or not) of pairs of letters.Analogous to our Letter2Vec embeddings, we could train an HMMon words (or other features) and then use the columns of theresulting B matrix (equivalently, the rows of) to de�ine word(feature) embeddings.The state of the art for Word2Vec based on words from English textis trained on a dataset corresponding to , and . Training an HMM with such parameters would be decidedlynon-trivial, as the work factor for Baum–Welch re-estimation is on theorder of .While the word embedding technique discussed in the previousparagraph—we call it HMM2Vec—is plausible, it has some potentiallimitations. Perhaps the biggest issue with HMM2Vec is that wetypically train an HMM based on a Markov model of order one. That is,the current state only depends on the immediately preceding state. Bybasing our word embeddings on such a model, the resulting vectorswould likely provide only a very limited sense of context. While we can

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

train HMMs using models of higher order, the work factor would beprohibitive.
4.2	 PCA2VecAnother option for generating embedding vectors is to apply PCA to amatrix of pointwise mutual information (PMI). To construct a PMImatrix, based on a speci�ied window size W, we compute forall pairs of words that occur within a window W of each otherwithin our dataset, and we also compute for each individualword . Then we de�ine the PMI matrix as
We treat column i of X, denoted , as the feature vector for word .Next, we perform PCA (using a singular value decomposition) based onthese feature vectors, and we project the feature vectors ontothe resulting eigenspace. Finally, by choosing the N dominanteigenvalues for this projection, we obtain embedding vectors oflength N.It is shown in [32] that these embedding vectors have many similarproperties as Word2Vec embeddings, with the author providingexamples analogous to those we give in the next section. Interestingly,it may be bene�icial in certain applications to omit some of thedominant eigenvectors when determining the PCA2Vec embeddingvectors [17].For more details on using PCA to generate word embeddings,see [17]. The aforecited blog [32] gives an intuitive introduction to thetopic.
4.3	 Word2VecWord2Vec is a technique for embedding “words”—or more generally,any features—into a high-dimensional space. In Word2Vec, theembeddings are obtained by training a shallow neural network. After

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the training process, words that are more similar in context will tend tobe closer together in the Word2Vec space.Perhaps surprisingly, certain algebraic properties also hold forWord2Vec embeddings. For example, according to [30], if we let
and we de�ine to be the Word2Vec embedding of , then is the vector that is closest to
where “closest” is in terms of cosine similarity. Results such as thisindicate that Word2Vec embeddings capture meaningful aspects of thesemantics of the language.Word2Vec uses a similar approach as the HMM2Vec conceptoutlined above. But, instead of using an HMM, Word2Vec embeddingsare obtained from shallow (one hidden layer) neural network.Analogous to HMM2Vec, in Word2Vec, we are not interested in theresulting model itself, but instead we make use the learning that isrepresented by the trained model to de�ine word embeddings. Next, weconsider the basic ideas behind Word2Vec. Our approach is similar tothat found in the excellent tutorial [21]. Here, we describe the processin terms of words, but these “words” can be general features.Suppose that we have a vocabulary of size M. We encode each wordas a “one-hot” vector of length M. For example, suppose that ourvocabulary consists of the set of words
Then we encode “for” and “man” as
respectively.Now, suppose that our training data consists of the phrase (4)To obtain our training samples, we specify a window size W, and foreach offset we consider pairs of words within the speci�ied window.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For this example, we select , so that we consider words at adistance of one or two, in either direction. For the sentence in (4), awindow size of two gives us the training pairs in Table 3.
Table	3 Training data
Offset									 Training	pairs														“ small step ” (one, small), (one, step)“one step for ” (small, one), (small, step), (small, for)“one small for man ” (step, one), (step, small), (step, for), (step, man)“ small step man one ” (for, small), (for, step), (for, man), (for, one)“ step for one giant ” (man, step), (man, for), (man, one), (man, giant)“ for man giant leap ” (one, for), (one, man), (one, giant), (one, leap)“ man one leap for ” (giant, man), (giant, one), (giant, leap), (giant, for)“ one giant for mankind” (leap, one), (leap, giant), (leap, for), (leap, mankind)“ giant leap mankind” (for, giant), (for, leap), (for, mankind)“ leap for ” (mankind, leap), (mankind, for)

Consider the pair “(for,man)” from the fourth row in Table 3. Asone-hot vectors, this training pair corresponds to the inputvector 10000000 and output vector 00010000.A neural network similar to that illustrated in Fig. 8 is used togenerate Word2Vec embeddings. The input is a one-hot vector oflength M representing the �irst element of a training pair, such as thosein Table 3. The network is trained to output the second element of eachordered pair which, again, is represented as a one-hot vector. Thehidden layer consists of N linear neurons and the output layer uses asoftmax function to generate M probabilities, where is theprobability of the output vector corresponding to for the giveninput.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	8 Neural network for Word2Vec embeddingsObserve that the Word2Vec network in Fig. 8 has NM weights thatare to be determined via training, and these weights are representedby the blue lines from the hidden layer to the output layer. For eachoutput node , there are N edges (i.e., weights) from the hidden layer.The N weights that connect to output node form the Word2Vecembedding of the word .The state of the art in Word2Vec for English text is trained on avocabulary of some words, and embedding vectors oflength , training on about samples. Clearly, training amodel of this magnitude is an extremely challenging computational

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

task, as there are weights to be determined, not to mention ahuge number of training samples to deal with. Most of the complexityof Word2Vec comes from tricks that are used to make it feasible totrain such a large network with such a massive amount of data.One trick that is used to speed training in Word2Vec is“subsampling” of frequent words. Common words such as “a” and “the”contribute little to the model, so these words can appear in trainingpairs at a much lower rate than they are present in the training text.Another key trick that is used in Word2Vec is “negative sampling.”When training a neural network, each training sample potentiallyaffects all of the weights of the model. Instead of adjusting all of theweights, in Word2Vec, only a small number of “negative” samples havetheir weights modi�ied per training sample. For example, suppose thatthe output vector of a training pair corresponds to word . Then the“positive” weights are those connected to the output node , andthese weights are modi�ied. In addition, a small subset of the “negative” words (i.e., every word in the dataset except) areselected and their corresponding weights are adjusted. Thedistribution used to select negative cases is biased toward morefrequent words.A general discussion of Word2Vec can be found in [5], while anintuitive—yet reasonably detailed—introduction is given in [21]. Theoriginal paper describing Word2Vec is [30] and an immediate follow-up paper discusses a variety of improvements that mostly serve tomake training practical for large datasets [31].
5	 Experiments	and	ResultsIn this section, we summarize our experimental results. These resultsare based on HMM2Vec, PCA2Vec, and Word2Vec experiments. But, �irstwe discuss the dataset that we have used for all of the experimentsreported in this section.
5.1	 Dataset

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

BHO

CeeInject

FakeRean

OnLineGames

Renos

Vobfus

The experimental results discussed in this section are based on thefamilies in Table 4, with the number of available samples listed. Inorder to keep the test set balanced, from each of these families, werandomly selected 1000 samples, for a total of 7000 samples in ourclassi�ication experiments. These families have been used in manyrecent studies, including [6, 48], for example.
Table	4 Malware families and the number of samples
Family Type SamplesBHO Trojan 1396CeeInject VirTool 1077FakeRean Rogue 1017OnLineGames Password stealer 1508Renos Trojan downloader 1567Vobfus Worm 1107Winwebsec Rogue 2302Total – 9974The malware families in Table 4 are of a wide variety of differenttypes. Next, we brie�ly discuss each of these families. can perform a wide variety of malicious actions, as speci�ied byan attacker [25].is designed to conceal itself from detection, and hencevarious families use it as a shield to prevent detection. For example,CeeInject can obfuscate a bitcoin mining client, which might have beeninstalled on a system without the user’s knowledge or consent [24].pretends to scan the system, noti�ies the user ofnonexistent issues, and asks the user to pay to clean the system [29].steals login information of online games and tracksuser keystroke activity [26].will claim that the system has spyware and ask for a paymentto remove the supposed spyware [23].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Winwebsec

is a family that downloads other malware onto a user’s computer andmakes changes to the device con�iguration that cannot be restored bysimply removing the downloaded malware [27].is a trojan that presents itself as antivirus software—itdisplays misleading messages stating that the device has beeninfected and attempts to persuade the user to pay a fee to free thesystem of malware [28]. In the remainder of this section, we present our experimentalresults. First, we discuss the selection of parameters for the variousclassi�iers. Then we give results from a series of experiments formalware classi�ication, based on each of the three word embeddingtechniques discussed in Sect. 4, namely, HMM2Vec, PCA2Vec, andWord2Vec. Note that all of our experiments were performed using
scikit-learn [38].
Table	5 Classi�ier hyperparameters tested
Classi�ier Hyperparameter Tested	valuesMLP constant, invscaling, adaptive[(30, 30, 30), (10, 10, 10)]

solver sgd, adam
activation relu, logistic, tanh[10000]SVM kernel rbf, linear
C [1, 10, 100, 1000]
gamma (rbf only) [0.001, 0.0001][3, 5, 11, 19]
weights uniform, distance
p [1, 2, 3]RF [30, 100, 500, 1000][5, 8, 15, 25, 30][2, 5, 10, 15, 100][1, 2, 5, 10]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Table	6 Classi�ier hyperparameters selected
Classi�ier Hyperparameter HMM2Vec Word2Vec PCA2Vec Baseline

HMMMLP invscaling constant adaptive constant(30, 30, 30) (30, 30, 30) (30, 30, 30) (30, 30, 30)
solver adam adam sgd adam
activation relu relu relu relu10000 10000 10000 10000SVM kernel linear rbf rbf rbf
C 1000 1000 1000 10
gamma NA 0.001 0.001 0.00013 3 3 3
weights distance distance distance distance
p 1 2 1 3RF 100 500 1000 1000

5.2	 Classi�ier	ParametersFor each of our word embedding classi�ication experiments, we testthe three classi�iers discussed in Sect. 3.4, namely, k-nearest neighbors(), random forest (RF), and support vector machine (SVM),along with the multilayer perceptron (MLP), which is discussed inSect. 3.1.2. The features considered are the word embeddings fromHMM2Vec, PCA2Vec, and Word2Vec. Note that this gives us a total of 12distinct experiments.For each case, we performed a grid search over a set ofhyperparameters using GridSearchCV [41] in scikit-learn.
GridSearchCV performs �ivefold cross validation to determine thebest parameters for each embedding technique. The parameters testedare listed in Table 5. Observe that for each of the three different wordembedding techniques, we tested 36 combinations of parameters

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

for MLP, we tested 12 combinations for SVM, we tested 16combinations for , and we tested 400 RF combinations. Overall,we conducted
experiments to determine the parameters for the remainingexperiments.The optimal parameters selected for each classi�ier and for eachembedding technique are listed in Table 6. We note that overall there isconsiderable agreement between the parameters for the differentword embedding techniques, but in two cases (and), a different parameter is selected for each of thethree embedding techniques.
5.3	 Baseline	ResultsFirst, we consider experiments based on opcode sequences and HMMs.These results serve as a baseline for comparison with the vectorembedding techniques that are the primary focus of this research. Wechoose these HMM-based experiments for the baseline, as HMMtrained on opcode features have proven popular and highly successfulin the �ield of malware analysis [1, 2, 16, 36, 50].Speci�ically, we train an HMM for each of the seven families in ourdataset, using hidden states in each case. For classi�ication, wescore a sample against all seven of these HMMs, and the resulting scorevector (of length seven) serves as our feature vector. We use the sameclassi�ication algorithms as in our word embedding experiments,namely, , MLP, RF, and SVM.Note that we use the same opcode sequences here as in our vectorembedding experiments. Speci�ically, the top 20 most frequent opcodesare used, with all remaining opcodes deleted.The confusion matrices for these baseline HMM experiments aregiven in Fig. 9. The accuracies obtained for , MLP, RF, and SVMare 0.92, 0.44, 0.91, and 0.78, respectively. We see that MLP and SVMboth perform poorly, whereas the neighborhood-based techniques,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

namely, and RF, are both strong, considering that we haveseven classes. In addition, and RF give very similar results.

Fig.	9 Confusion matrices for baseline HMM experiments
5.4	 HMM2Vec	ResultsFor these experiments, we train an HMM on each sample in our dataset.Recall that our dataset consists of 1000 samples from each of the sevenfamilies listed in Table 4. We train each of these 7000 models with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 hidden states, using the most frequent opcodes over allmalware samples. Opcodes outside the top 20 are ignored.As mentioned in Sect. 3.2.2, we often train multiple HMMs withdifferent initial conditions, and select the best scoring model. Thisbecomes more important as the length of the observation sequencedecreases. Hence, when training our HMMs, we perform multiplerandom restarts—the number of restarts is determined by the lengthof the training sequence, as indicated in Table 7.
Table	7 Number of random restarts
Observations RestartsGreater than 30,000 1010,000–30,000 305000–10,000 100Less than 500 500Each B matrix is , where each row corresponds to one of thehidden states of the model. From each of these matrices, we constructa vector of length 40 by appending the two rows. Since the order of thehidden states can vary between models, we select the order of the rowsso as to obtain a consistency with respect to the most common opcode.That is, the row corresponding to the state that accumulates thehighest probability for MOV is the �irst half of the feature vector, withthe other row of the B matrix becoming the last 20 elements of thefeature vector. This accounts for any cases where the hidden statesdiffer.Based on the resulting feature vectors, we use the parameters inthe HMM2Vec column of Table 6 to classify the samples using ,MLP, RF, and SVM. The confusion matrices for each of these cases isgive in Fig. 10.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	10 Confusion matrices for HMM2Vec experimentsThe accuracies obtained for , MLP, RF, and SVM based onHMM2Vec features are 0.93, 0.91, 0.93, and 0.89, respectively. From theconfusion matrices in Fig. 10, we see that the greatest source ofmisclassi�ications is between FakeRean and Winwebsec families. Inmost—but not all—of our subsequent experiments, these two familieswill prove to be the most challenging to distinguish.
5.5	 PCA2Vec	Results

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For our PCA2Vec experiments, we generate embedding vectors for eachof the 7000 samples in our training set, as discussed in Sect. 4.2. Wethen train and classify the 7000 malware samples using these PCA2Vecfeature vectors. The confusion matrices for these experiments aresummarized in Fig. 11.

Fig.	11 Confusion matrices for PCA2Vec experimentsAs above, each model is based on the 20 most frequent opcodes,which gives us a PMI matrix. For consistency with theHMM2Vec experiments discussed above, we consider the two most

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

dominant eigenvectors, and for consistency with the Word2Vec modelsdiscussed below, we use a window size of when constructingthe PMI matrix. The resulting projection into the eigenspace is ,which we vectorize to obtain a feature vector of length 40.The accuracies obtained for , MLP, RF, and SVM based onPCA2Vec features are 0.84, 0.78, 0.88, and 0.76, respectively. Fromthese numbers, we see that PCA2Vec performed poorly for each of theclassi�iers considered, as compared to HMM2Vec.
5.6	 Word2Vec	ResultsAnalogous to the HMM2Vec and PCA2Vec experiments above, weclassify the samples using the same four classi�iers but with Word2Vecembeddings as features. The confusion matrices for these experimentsare given in Fig. 12.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	12 Confusion matrices for Word2Vec experimentsAs with the PCA2Vec experiments above, to generate our Word2Vecmodels, we use a window size of . And, to be consistent withboth the HMM2Vec and PCA2Vec models discussed above, we use avector length of two, giving us feature vectors of length 40. We use theso-called continuous-bag-of-words (CBOW) model, which is the modelthat we described in Sect. 4.3.The accuracies obtained for , MLP, RF, and SVM based onWord2Vec features are 0.93, 0.91, 0.93, and 0.89, respectively. Theseresults match those obtained using HMM2Vec.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In Sect. 5.8, we compare the accuracies obtained in our baselineHMM, HMM2Vec, PCA2Vec, and Word2Vec experiments. But �irst wediscuss possible over�itting issues with respect to the and RFclassi�iers discussed above.
5.7	 Over�ittingAs discussed above in Sect. 3.4.4, both and random forest areneighborhood-based classi�ication algorithms, but with differentneighborhood structure. Thus, we expect that these two classi�icationalgorithms will generally perform in a somewhat similar manner, atleast in a qualitative sense.For , small values of k tend to result in over�itting. To avoidover�itting, the rule of thumb is that we should choose ,where N is the number of samples in the training set [15]. Since we usean 80-20 split for training-testing and we have 7000 samples, for our experiments, this rule of thumb gives us .However, for each feature set considered, our grid search yielded anoptimal value of .In Fig. 13, we graph the accuracy of as a function of k forthe baseline HMM, HMM2Vec, and Word2Vec feature sets. We see thatall of these techniques perform more poorly as k increases. Inparticular, for , the performance of each is poor in comparisonto , and this effect is particularly pronounced in the case of thebaseline HMM. This provides strong evidence that small values of k in result in over�itting for each feature set, and the over�itting isespecially pronounced for the baseline HMM.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	13 results as a function of k
For a random forest, the over�itting that is inherent in decisiontrees is mitigated by using more trees. In contrast, if the depth of thetrees in the random forest is too large, the effect is analogous tochoosing k too small in , and over�itting is likely to occur.To explore over�itting in our RF experiments, in Fig. 14, we give themisclassi�ication results for the baseline HMM, HMM2Vec, andWord2Vec features, as a function of the maximum depth of the trees. Inthis case, Word2Vec performs best for smaller (maximum) depths,which indicates that the baseline HMM and HMM2Vec features aremore prone to over�itting.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	14 Random forest results as a function of tree depth

Fig.	15 Random forest maximum depth vs number of treesIn Fig. 15a and b, we give misclassi�ication results as a function ofboth the maximum depth and the number of trees for the baselineHMM and for HMM2Vec features, respectively. From these results, wesee that the baseline HMM performs similarly as a function of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

maximum depth, regardless of the number of trees. In contrast, theHMM2Vec features yield consistently better results than the baselineHMM (as a function of the maximum depth), except when the numberof trees is very small. This indicates that, with respect to the maximumdepth, over�itting is signi�icantly worse for the baseline HMM, since theover�itting cannot be overcome by increasing the number of trees.From the discussion in this section, we see that all of our experimental results suffer from some degree of over�itting, with thiseffect being most signi�icant in the case of the baseline HMM. For ourRF results, over�itting is a relatively minor issue for the HMM2Vec- andWord2Vec-engineered features but, as with , it is a signi�icantproblem for the baseline HMM. Consequently, both the and RFresults we have reported for the baseline HMM are overly optimistic, asthese represent cases where signi�icant over�itting has occurred.
5.8	 DiscussionFigure 16 gives the overall accuracy for each of our multiclassexperiments using , MLP, RF, and SVM classi�iers, for ourbaseline HMM opcode experiments, and for each of the HMM2Vec-,PCA2Vec-, and Word2Vec-engineered feature experiments. In general,we expect RF and to perform somewhat similarly, since bothare neighborhood-based algorithms. We also expect that in most cases,SVM and MLP will perform in a qualitatively similar manner to eachother, since these techniques are closely related. We �ind that theseexpectations are generally met in our experiments, which can beviewed as a con�irmation of the validity of the results.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	16 Accuracies for combinations of features and classi�iersFrom our 16 distinct experiments, we see that HMM2Vec andWord2Vec perform best, with PCA2Vec lagging far behind. The baselineHMM does well with respect to the neighborhood-based classi�iers,namely, RF and . However, as discussed in the previous section,these neighborhood-based techniques over�it the training data in thebaseline HMM experiments. Neglecting these over�it results, we seethat using the HMM2Vec- and Word2Vec-engineered features with SVMand MLP classi�iers, give us the best results. Furthermore, theseHMM2Vec and Word2Vec results are substantially better than either ofthe reliable results obtained for the baseline HMM, that is, the baselineHMM results using SVM and MLP classi�iers.
6	 Conclusion	and	Future	WorkIn this paper, we have presented results for a number of experimentsinvolving word embedding techniques in malware classi�ication. We

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

have applied machine learning techniques to raw features to generateengineered features that are used for classi�ication. Such a concept isnot entirely unprecedented as, for example, PCA is often used to reducethe dimensionality of data before applying other machine learningtechniques. However, the authors are not aware of previous workinvolving the use word embedding techniques in the same mannerconsidered in this paper.Our results show that word embedding techniques can be used togenerate features that are more informative than the original data.This process of distilling useful information from the data beforeclassifying samples is potentially useful, not only in the �ield ofmalware analysis, but also in other �ields where learning plays aprominent role.For future work, it would be interesting to consider other familiesand other types of malware. It would also be worthwhile to considermore complex and higher dimensional data—as with dimensionality-reduction techniques, such data would tend to offer more scope forimprovement using the word embedding strategies considered in thispaper.
References1. Annachhatre, Chinmayee, Thomas H. Austin, and Mark Stamp. 2015. Hidden Markov modelsfor malware classi�ication. Journal	of	Computer	Virology	and	Hacking	Techniques 11 (2): 59–73.[Crossref]2. Austin, Thomas H., Eric Filiol, Sébastien Josse, and Mark Stamp. 2013. Exploring hiddenMarkov models for virus analysis: A semantic approach. In 46th	Hawaii	international

conference	on	system	sciences	HICSS	2013, 5039–5048.3. Awad, Y., M. Nassar, and H. Safa. Modeling malware as a language. In 2018	IEEE	international
conference	on	communications, ICC, 1–6.4. Baldi, Pierre, and Yves Chavin. 1994. Smooth on-line learning algorithms for hidden Markovmodels. Neural	Computation 6: 307–318. https:// core. ac. uk/ download/ pdf/ 4881023. pdf.5. Banerjee, Suvro. 2018. Word2Vec — A baby step in deep learning but a giant leap towardsnatural language processing. https:// medium. com/ explore-arti�icial-intelligence/ word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba.6. Basole, Samanvitha, Fabio Di Troia, and Mark Stamp. 2020. Multifamily malware models.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/s11416-014-0215-x
https://core.ac.uk/download/pdf/4881023.pdf
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba

Journal	of	Computer	Virology	and	Hacking	Techniques.7. Bilar, Daniel. 2007. Opcodes as predictor for malware. International	Journal	of	Electronic
Security	and	Digital	Forensics 1 (2): 156–168.[Crossref]8. The Brown corpus of standard American English. http:// www. cs. toronto. edu/ ~gpenn/ csc401/ a1res. html.9. Cave, Robert L., and Lee P. Neuwirth. 1980. Hidden Markov models for English. In Hidden
Markov	models	for	speech, 16–56, IDA-CRD. New Jersey: Princeton. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ CaveNeuwirth/ index. html.10. Dhammi, Arshi, and Maninder Singh. 2015. Behavior analysis of malware using machinelearning. In Eighth	international	conference	on	contemporary	computing, IC3 2015, 481–486.11. Hachinyan, Olga. 2017. Detection of malicious software on based on multiple equations ofAPI-calls sequences. In 2017	IEEE	conference	of	Russian	roung	researchers	in	electrical	and
electronic	engineering, EIConRus, 415–418.12. Hardesty, Larry. 2017. Explained: Neural networks. http:// news. mit. edu/ 2017/ explained-neural-networks-deep-learning-0414.13. Harris, Kamala. 2016. California data breach report. https:// oag. ca. gov/ sites/ all/ �iles/ agweb/ pdfs/ dbr/ 2016-data-breach-report. pdf.14. Hashemi, Hashem, Amin Azmoodeh, Ali Hamzeh, and Sattar Hashemi. 2016. Graph embeddingas a new approach for unknown malware detection. Journal	of	Computer	Virology	and
Hacking	Techniques 13: 153–166.[Crossref]15. Jirina, Marcel, and Marcel Jirina Jr. Using singularity exponent in distance based classi�ier. In
10th	International	Conference	on	Intelligent	Systems	Design	and	Applications, ISDA 2010,220–224.16. Kalbhor, Ashwin, Thomas H. Austin, Eric Filiol, Sébastien Josse, and Mark Stamp. 2015. Duelinghidden Markov models for virus analysis. Journal	of	Computer	Virology	and	Hacking
Techniques 11 (2): 103–118.[Crossref]17. Levy, Omer, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity withlessons learned from word embeddings. Transactions	of	the	Association	for	Computational
Linguistics 3: 211–225. https:// levyomer. �iles. wordpress. com/ 2015/ 03/ improving-distributional-similarity-tacl-2015. pdf.18. Liaw, Andy, and Matthew Wiener. 2002. Classi�ication and regression by randomForest. R
news 2 (3): 18–22.19. Lin, Yi, and Yongho Jeon. 2006. Random forests and adaptive nearest neighbors. Journal	of	the
American	Statistical	Association 101 (474): 578–590.[MathSciNet][Crossref]20.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1504/IJESDF.2007.016865
http://www.cs.toronto.edu/%257egpenn/csc401/a1res.html
https://www.cs.sjsu.edu/%257estamp/RUA/CaveNeuwirth/index.html
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://oag.ca.gov/sites/all/files/agweb/pdfs/dbr/2016-data-breach-report.pdf
https://doi.org/10.1007/s11416-016-0278-y
https://doi.org/10.1007/s11416-014-0232-9
https://levyomer.files.wordpress.com/2015/03/improving-distributional-similarity-tacl-2015.pdf
http://www.ams.org/mathscinet-getitem?mr=2256176
https://doi.org/10.1198/016214505000001230

Liu, Yingying, and Yiwei Wang. 2019. A robust malware detection system using deep learningon API calls. In 2019	IEEE	3rd	information	technology,	networking,	electronic	and
automation	control	conference, ITNEC, 1456–1460.21. McCormick, Chris. 2016. Word2vec tutorial — The skip-gram model. http:// mccormickml. com/ 2016/ 04/ 19/ word2vec-tutorial-the-skip-gram-model/ .22. McCulloch, Warren S., and Walter Pitts. 1943. A logical calculus of the ideas immanent innervous activity. Bulletin	of	Mathematical	Biophysics 5. https:// pdfs. semanticscholar. org/ 5272/ 8a99829792c32720 43842455f3a110e8 41b1. pdf.23. Microsoft Security Intelligence. Renos. 2006. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader : Win32/ Renos& threatId= 16054.24. Microsoft Security Intelligence. CeeInject. 2007. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= VirTool%3AWin32%2FCeeInject.25. Microsoft Security Intelligence. BHO. 2008. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Trojan: Win32/ BHO& threatId= -2147364778.26. Microsoft Security Intelligence. OnLineGames. 2008. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS%3AWin32%2FOnLineGames.27. Microsoft Security Intelligence. Vobfus. 2010. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? name= win32%2Fvobfus.28. Microsoft Security Intelligence. Winwebsec. 2010. https:// www. microsoft. com/ security/ portal/ threat/ encyclopedia/ entry. aspx? Name= Win32%2fWinwebsec.29. Microsoft Security Intelligence. FakeRean. 2011. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ FakeRean.30. Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Ef�icient estimation of wordrepresentations in vector space. https:// arxiv. org/ abs/ 1301. 3781.31. Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributedrepresentations of words and phrases and their compositionality. https:// papers. nips. cc/ paper/ 5021-distributed-representations-of-words-and-phrases-and-their-compositionality . pdf.32. Moody, Chris. Stop using word2vec. https:// multithreaded. stitch�ix. com/ blog/ 2017/ 10/ 18/ stop-using-word2vec/ .33. Pechaz, B., M.V. Jahan, and M. Jalali. 2015. Malware detection using hidden Markov modelbased on Markov blanket feature selection method. In 2015	International	congress	on
technology,	communication	and	knowledge, ICTCK, 558–563.34. Popov, Igor. 2017. Malware detection using machine learning based on Word2Vec embeddingsof machine code instructions. In 2017	siberian	symposium	on	data	science	and	engineering,SSDSE, 1–4.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://pdfs.semanticscholar.org/5272/8a99829792c3272043842455f3a110e841b1.pdf
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%253AWin32%252FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%253AWin32%252FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%252Fvobfus
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%252fWinwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://arxiv.org/abs/1301.3781
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://multithreaded.stitchfix.com/blog/2017/10/18/stop-using-word2vec/

35. Rabiner, Lawrence R. 1989. A tutorial on hidden Markov models and selected applications inspeech recognition. Proceedings	of	the	IEEE 77 (2): 257–286. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ Rabiner. pdf.36. Raghavan, Aditya, Fabio Di Troia, and Mark Stamp. 2019. Hidden Markov models with randomrestarts versus boosting for malware detection. Journal	of	Computer	Virology	and	Hacking
Techniques 15 (2): 97–107.[Crossref]37. Rosenblatt, Frank. 1961. Principles of neurodynamics: Perceptrons and the theory of brainmechanisms. http:// www. dtic. mil/ dtic/ tr/ fulltext/ u2/ 256582. pdf.38. scikit-learn: Machine learning in Python. https:// scikit-learn. org/ stable/ .39. Shalizi, Cosma. Principal component analysis. https:// www. stat. cmu. edu/ ~cshalizi/ uADA/ 12/ lectures/ ch18. pdf.40. Shlens, Jonathon. 2005. A tutorial on principal component analysis. http:// www. cs. cmu. edu/ ~elaw/ papers/ pca. pdf.41. sklearn.model_selection.GridSearchCV. https:// scikit-learn. org/ stable/ modules/ generated/ sklearn. model_ selection. GridSearchCV. html.42. Stack Exchange. 2015. Making sense of principal component analysis. https:// stats. stackexchange. com/ questions/ 2691/ making-sense-of-principal-component-analysis-eigenvectors-eigenvalues.43. Stamp, Mark. 2004. A revealing introduction to hidden Markov models. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ HMM. pdf.44. Stamp, Mark. 2017. Introduction	to	machine	learning	with	applications	in	information
security. Boca Raton: Chapman and Hall/CRC.[Crossref]45. Stamp, Mark. 2019. Deep thoughts on deep learning. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ ann. pdf.46. Symantec. 2019. Internet security threat report: Malware. https:// interactive. symantec. com/ istr24-web.47. Vinod, P., R. Jaipur, V. Laxmi, and M. Gaur. 2009. Survey on malware detection methods. In
Proceedings	of	the	3rd	Hackers’	workshop	on	computer	and	internet	security, IITKHACK’09,74–79.48. Wadkar, Mayuri, Fabio Di Troia, and Mark Stamp. 2020. Detecting malware evolution usingsupport vector machines. Expert	Systems	with	Applications 143.49. Wallis, Charles. 2017. History of the perceptron. https:// web. csulb. edu/ ~cwallis/ arti�icialn/ History. htm.50. Wong, Wing, and Mark Stamp. 2006. Hunting for metamorphic engines. Journal	in	Computer
Virology 2 (3): 211–229.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.cs.sjsu.edu/%257estamp/RUA/Rabiner.pdf
https://doi.org/10.1007/s11416-018-0322-1
http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf
https://scikit-learn.org/stable/
https://www.stat.cmu.edu/%257ecshalizi/uADA/12/lectures/ch18.pdf
http://www.cs.cmu.edu/%257eelaw/papers/pca.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://www.cs.sjsu.edu/%257estamp/RUA/HMM.pdf
https://doi.org/10.1201/9781315213262
https://www.cs.sjsu.edu/%257estamp/RUA/ann.pdf
https://interactive.symantec.com/istr24-web
https://web.csulb.edu/%257ecwallis/artificialn/History.htm

1
[Crossref]

FootnotesOf�icially, it is the Brown University Standard Corpus of Present-Day American English, whichincludes various texts totaling about 1,000,000 words. Here, “Present-Day” means 1961.
https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/s11416-006-0028-7

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_12
Word	Embedding	Techniques	for
Malware	Evolution	DetectionSunhera Paul1 and Mark Stamp1 San Jose State University, San Jose, CA, USA
Mark	Stamp
Email:	mark.stamp@sjsu.edu

AbstractMalware detection is a critical aspect of information security. Onedif�iculty that arises is that malware often evolves over time. Tomaintain effective malware detection, it is necessary to determinewhen malware evolution has occurred so that appropriatecountermeasures can be taken. We perform a variety of experimentsaimed at detecting points in time where a malware family has likelyevolved, and we consider secondary tests designed to con�irm thatevolution has actually occurred. Several malware families are analyzed,each of which includes a number of samples collected over an extendedperiod of time. Our experiments indicate that improved results areobtained using feature engineering based on word embeddingtechniques. All of our experiments are based on machine learningmodels, and hence our evolution detection strategies require minimalhuman intervention and can easily be automated.
1	 IntroductionMalware is a malicious software that causes disruption in normalactivity, allows access to unapproved resources, gathers private data of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_12
mailto:mark.stamp@sjsu.edu

users, or performs other improper activity [1]. Developing measures todetect malware is a critical aspect of information security.Malware often evolves due to changing goals of malwaredevelopers, advances in detection, and so on [3]. This evolution canoccur through a wide variety of modi�ications to the code. It isessential to detect and analyze malware evolution so that appropriatemeasures can be taken to maintain and improve the effectiveness ofdetection techniques [2].An obvious technique for analyzing malware evolution consists ofreverse engineering a large number of samples over an extendedperiod of time, which is a highly labor-intensive process. Otherapproaches to malware evolution include graph pruning techniques [7]and analysis of PE �ile features using support vector machines(SVM) [29]. This latter research shows considerable promise, and hasthe advantage of being fully automated, with no reverse engineering orother time-consuming analysis required. Our proposed research can beviewed as an extension of—and improvement on—the groundbreakingwork in [29].We consider several experiments that are designed to detect pointsin time where a malware family has likely evolved signi�icantly. Wethen perform further experiments to con�irm that such evolution hasactually occurred. All of our experiments have been conducted using asigni�icant number of malware families, most of which include a largenumber of samples collected over an extended period of time.Furthermore, all of our experiments are based on machine learning,and hence fully automatable.For a given malware family, we �irst separate the available samplesbased on windows of time. We have extracted opcode sequences fromevery sample and we use these opcodes as features for detectingmalware evolution. We experiment with a variety of featureengineering techniques, and in each case we train linear SVMs oversliding windows of time. The SVM weights of these models arecompared based on a distance measure, which enables us to detectchanges in the SVM models over time. A point in time where a spike isobserved in the graph shows a substantial change in SVM models—

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

which indicates a possible evolutionary branch in the malware familyunder consideration. To con�irm that such evolution has actuallyoccurred, we train hidden Markov models (HMM) on either side of asigni�icant spike in the graph. If a clear distinction between theseHMMs is observed, it serves as a con�irmation that signi�icantevolution has been detected. The primary objective of this research isto implement and analyze different variants of this proposed malwareevolution detection technique.The remainder of this paper is organized as follows. In Sect. 2, wediscuss relevant related work in the area of malware evolution.Section 3 provides an overview of the dataset that we use, as well asbrief introductions to the various machine learning models andtechniques that we use in this research. We present our experimentalresults in Sect. 4. The paper concludes with Sect. 5, where we alsooutline possible avenues for future work.
2	 Related	WorkRelative to the vast malware research literature, comparatively littlehas been done in the area of malware evolution. In this section, weprovide a selective review of research related to malware evolution.The malware evolution research in [7] is based on large and diversemalware dataset that spans for nearly two decades. This work focuseson the inheritance properties of malware, and the technique is basedon graph pruning. The authors claim that many speci�ic traits ofvarious families in their dataset have been “inherited” from otherfamilies. However, it is not entirely clear that these “inherited” traitsare actually inherited, as opposed to having been developedindependently. In addition, the graph-based analysis in [7] requires“extensive manual investigation,” which is in stark contrast to theautomated techniques that are considered in this paper.The authors of [9] extract a variety of features from Androidmalware samples and determine trends based on standard softwarequality metrics. These results are compared to a similar analysis oftrends in Android non-malware, or goodware. This work shows thatthe trends in Android malware and goodware are fairly similar,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

indicating that the “improvement” in this type of malware has followeda similar path as that of goodware.The paper [24] is focused on detecting new malware variants,which is closely related to an evolution problem. The authorsconsidered malware variants that would typically defeat machinelearning based detectors. Their approach relies as an extensive featureset and employs semi-supervised learning. In comparison, theapproach in this paper relies entirely on unsupervised techniques, andwe are able to detect less drastic code modi�ications.The work in [4] is nominally focused on malware taxonomy.However, this work also provides insight into malware evolution, in theform of “genealogical trajectories.” The work relies on a variety offeatures and uses support vector machines (SVM) for classi�ication.We note in passing that machine learning models are trained onfeatures. Thus, extracting appropriate features from a dataset is acrucial step in any malware analysis technique that is based onmachine learning. We can broadly classify features as static anddynamic—features that can be obtained without executing the codeare said to be static, while those that require code execution oremulation are known as dynamic. In general, static features are moreef�icient to collect, whereas dynamic features can be more informativeand are typically more robust [5].The author in [29] use static PE �ile features of malware samples asthe basis for their malware evolution research. Based on thesefeatures, linear SVMs are trained over various time windows and theresulting model weights are compared using a distance. A spike inthe distance graph is shown to be indicative of an evolutionarychange in a malware family. Note that this approach is easilyautomated, with no reverse engineering required.The research presented in this paper extends and expands on thework in [29]. As in [29], we use SVMs together with distance as ameans of detecting evolutionary change. We make several importantcontributions that greatly increase the utility of this basic approach.The novelty of our work includes the use of more sensitive static

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

features—we use opcodes as compared to derived PE �ile features—and we employ various feature engineering techniques. In addition, wedevelop an HMM-based secondary test to verify the putativeevolutionary changes obtained from the SVM together with a distance.
3	 ImplementationIn this section, we give a broad summary of the malware families thatcomprise the dataset used in the research. We also discuss the featuresand machine learning techniques used in our experiments. Thesefeatures and techniques form the basis of our evolutionaryexperiments in Sect. 4.
3.1	 DatasetA malware family represents a collection of samples that have majortraits in common. Over time, successful malware families will tend toevolve, as malware writers develop new features and �ind differentapplications for the code base.The research in this paper is based on a malware dataset consistingof Windows portable executable (PE) �iles. From a large dataset, wehave extracted 11,037 samples belonging to 15 distinct malwarefamilies. Table 1 lists these malware families and the number ofsamples per family that we use in our experiments.
Table	1 Number of samples used in experiments
Family Samples YearsAdload 791 2009–2011BHO 1,116 2007–2011Bifrose 577 2009–2011CeeInject 742 2009–2012DelfInject 401 2009–2012Dorkbot 222 2005–2012Hupigon 449 2009–2011IRCBot 59 2009–2012

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Bifrose

CeeInject

Family Samples YearsObfuscator 670 2004–2017Rbot 127 2001–2012VBInject 2,331 2009–2018Vobfus 700 2009–2011Winwebsec 1,511 2008–2012Zbot 835 2009–2012Zegost 506 2008–2011Total 11,037 –Our Winwebsec and Zbot malware samples were acquired from theMalicia dataset [23], while the remaining 13 families were extractedfrom a vast malware dataset that was collected as part of the workreported in [8]. This latter dataset is greater than half a terabyte in sizeand contains on the order of 500,000 malware executables. Ourdatasets are available from the authors, upon request.Most of the malware families that were chosen for this researchhave a substantial number of samples available over an extended timeperiod. The smaller families (e.g., IRCBot and Rbot) were chosen to testour analysis techniques in cases where the training data is severelylimited.As a pre-processing step, we have organized all the malwaresamples in each family according to their creation date. During thisinitial data-wrangling phase, any sample having an altered compilationor creation date was discarded.Next, we brie�ly discuss each of the malware families in our dataset.Note that these families represent a wide variety of types of malware,including Trojan, worm, adware, backdoor, and so on. is a backdoor Trojan that allows an attacker to connect to aremote IP using a random port number. Some variants of Bifrose havethe capability to hide �iles and processes from the user. Bifrose enablesan attacker to view system information, retrieve passwords, orexecute �iles by gaining remote control of an infected system [22].serves to shielding nefarious activity from detection. Forexample, CeeInject can obfuscate a bitcoin mining client, which might

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

DelfInject

Dorkbot

Hotbar

Hupigon

Obfuscator

Rbot

VBInject

Vobfus

be installed on a system to mine bitcoins without the user’sknowledge [13].is a worm that enters a system from a �ile passed by othermalware, or as a �ile downloaded accidentally by a client when visitingmalignant sites. DelfInject drops itself onto the system using anarbitrary document name (e.g., xpdsae.exe) and alters the relevantregistry entry so that it runs at each system start. The malware theninjects code into svchost.exe so that it can create a connection withspeci�ic servers and download �iles [14].is a worm that steals user names and passwords bytracking online activities. It blocks security update websites and canlaunch denial of service (DoS) attacks. Dorkbot is spread via instantmessaging applications, social networks, and �lash drives [21].is an adware program that may be unintentionallydownloaded by a user from a malicious website. Being adware, Hotbardisplays advertisements as the user browses the web [11].is a family of backdoor Trojans. This malware opens abackdoor server enabling other remote computers to control acompromised system [12].hides its purpose through obfuscation. The underlyingmalware can have virtually any payload [18].is a backdoor Trojan that enables an attacker to control aninfected computer using an IRC channel. It then spreads to othercomputers by scanning for network shares and exploitingvulnerabilities in the system. Rbot includes many advanced featuresand it has been used to launch DoS attacks [10].primarily serves to disguise other malware. VBInject is apackaged malware, i.e., malware that utilizes techniques of encryptionand compression to obscure its contents. This makes it dif�icult torecognize malware that it is concealing. VBInject was �irst seen in 2009and appeared again in 2010 [15].is a malware family that downloads other malware onto auser’s computer. It uses the Windows autorun feature to spread toother devices such as �lash drives. Vobfus makes long-lasting changes

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Winwebsec

Zbot

Zegost

to the device con�iguration that cannot be restored simply byremoving the malware from the system [16].is a Trojan that presents itself as an antivirus software. Itshows misleading messages to the users stating that the device hasbeen infected and attempts to persuade the user to pay to removethese non-existent threats [17].is a Trojan that attempts to steal con�idential information froma compromised computer. It explicitly targets system data, onlinesensitive data, and banking information, and it can also be easilymodi�ied to accumulate other kinds of data. The Trojan itself isgenerally disseminated through drive-by downloads and spamcampaigns. Zbot was originally discovered in January 2010 [19].is a backdoor Trojan that injects itself into svchost.exe,thus allowing an attacker to execute �iles on the compromisedsystem [20].
3.2	 Feature	ExtractionMnemonic opcodes are machine-level language instructions thatspecify a particular operation that is to be performed [26]. For thisresearch, our dataset consists of malware samples in the form ofportable executable (PE) �iles. The primary feature that we considerare opcode sequences extracted from these executable �iles. We havealso segregated the malware samples in each family according to theircreation date.
3.3	 Classi�ication	TechniquesIn this section, we will provide an overview of each machine learningtechnique that we employ in this research. Additional pointers to theliterature are provided.
3.3.1	 Support	Vector	MachinesSupport vector machines (SVM) are one of the most popular classes ofmachine learning techniques. An SVM attempts to �ind a separatinghyperplane between two labeled classes of data [27]. By utilizing the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

so-called “kernel trick,” an SVM can map the input data to a high-dimensional space where the additional space can afford a greateropportunity to �ind a separating hyperplane. The “trick” of the kerneltrick is that this mapping does not result in any signi�icant increase inthe work factor.A linear SVM assigns a well-de�ined weight to each feature in thetraining vector. These weights specify the relative importance that theSVM places on each feature which can serve as useful when ranking theimportance of features. In our experiments, we rely heavily on thisaspect of linear SVMs.Analogos to [29], in our experiments, we de�ine the two classes ofan SVM as follows. All the samples within the most recent one-yeartime window are class “ ,” while all samples from the current monthare de�ined as class “ .” For example, in Table 2, we give threeconsecutive time windows, along with the time frames correspondingto the two classes in each case.
Table	2 Sliding time window example
Time	window Class	 Class	Jan. 2011–Jan. 2012 Jan. 2011–Dec. 2011 Jan. 2012Feb. 2011–Feb. 2012 Feb. 2011–Jan. 2012 Feb. 2012Mar. 2011–Mar. 2012 Mar. 2011–Feb. 2012 Mar. 2012
3.3.2	 	StatisticThe statistic is a normalized sum of square deviation between theobserved and expected frequency distributions. This statistic iscalculated as
where n denotes the number of features or observations, is theobserved value of the ith instance, and is expected value of the ith

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

instance.For our experiments, this statistic is used to quantify thedifferences between SVM feature weights of different models, wherethese models were trained over different time windows. As mentionedabove, we use a time period of one year for one class, and a timewindow of the following month as the other class. We compute this “distance” between pairs of models that are trained on overlappingtime windows. Any points in the resulting graph where asubstantial change (i.e., a “spike”) occurs indicates a point whereadjacent SVM models differ signi�icantly. These are points of interest,since they indicate the times at which the code has likely beensubstantially modi�ied.
3.3.3	 Word2VecWord2Vec is a “word” embedding technique that can be applied moregenerally to features. Word2Vec is extremely popular in languagemodeling. The embedding vectors produced by state-of-the-artimplementations of Word2Vec capture a surprising level of thesemantics of a language. That is, words that are similar in meaning are“close” in the Word2Vec embedding space [25]. An oft-cited example ofthe strength of Word2Vec is the following. If we let
and is the Word2Vec embedding of the word , then isthe vector that is closest—in terms of cosine similarity—to
Word2Vec is based on a shallow, two-layer neural networks, asillustrated in Fig. 1. Training such a model consists of determining theweights based on a large training corpus [6]. These weights yieldthe Word2Vec embedding vectors.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 Neural network to obtain Word2Vec embeddingsIn this paper, we compute Word2Vec embeddings based onextracted opcode sequence from malware samples. These wordembeddings are then used as features in SVM classi�iers. In thiscontext, we can view the use of Word2Vec as a form of featureengineering.One of the great strengths of Word2Vec is that training is extremelyef�icient. The key tricks that enable ef�icient training of such modelsare subsampling of frequent words, and so-called negative sampling,whereby only a subset of the weights that are affected by a trainingpair are adjusted at each iteration. For additional details on Word2Vec,see, for example [28].
3.3.4	 Hidden	Markov	Models

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

A Markov process is a statistical model that has states with known and�ixed probabilities of state transitions. A hidden Markov model (HMM)extends this concept to the case where the states are “hidden,” in thesense that they are not directly observable.Figure 2 provides a generic view of an HMM. Here, the states aredetermined by the row stochastic matrix A. The states arenot directly observable, but as the name implies, the observations can be observed. The hidden states are probabilistically related to theobservations via the row stochastic matrix B. Here, N is thenumber of hidden states of the model, and M is the number of distinctobservation symbols, and T in Fig. 2 is the length of the observationsequence. There is also a row stochastic initial state distributionmatrix, which is denoted as . The three matrices, A, B, and de�ine anHMM, and we adopt the notation .

Fig.	2 Hidden Markov modelThe following three HMM problems can be solved ef�iciently:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Problem	1

Problem	2

Problem	3

Given a model and an observationsequence , we need to �ind . That is, an observationsequence can be scored to see how well it �its a given model.Given a model and an observationsequence , we can determine an “optimal” hidden state sequence. Inthe HMM sense, optimal means that we maximize the expectednumber of correct states. This is an expectation maximization (EM)algorithm. Given and a speci�ied N, we can determine a model that maximizes . This is, we can train a model to�it a given observation sequence. In this research, we employ the algorithms for Problems 1 and 3above. That is, we train HMMs, and we use trained HMMs to scoresamples.
3.3.5	 Experimental	ApproachTo automatically determine points in time where signi�icantevolutionary changes occur in malware families, we tag each sample inthe family according to the date on which it was compiled. We alsoextract the opcode sequences from each of the malware samples.As a �irst set of experiments, we train a series of linear SVMsdirectly on the extracted opcodes, as discussed above. We then attemptto improve on these results by considering several feature engineeringtechniques, in all cases using linear SVM weights and graphs.For our �irst attempt at feature engineering, we consider opcode n-grams. We then experiment using Word2Vec embeddings of theopocdes. Finally, we repeat the word embedding experiments, butbased on the B matrices obtained from trained HMMs, instead ofWord2Vec embeddings. We refer to this HMM-based word embeddingtechnique as HMM2Vec.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

As discussed above, when training, one class consists of all samplesbelonging to a speci�ic family within a one-year time window, while theother class consists of the samples from the subsequent one-monthtime window. Such a model contrasts the family characteristics over aone month period to the characteristics of the previous one-year timeinterval. From each such model, we obtain a vector of linear SVMweights. Then we shift our time window one month ahead, and againtrain an SVM and obtain another vector of SVM weights.For each set of experiments, we obtain a series of snapshots of thesamples—in the form of linear SVM weights—based on overlappingsliding windows, where each SVM is trained over a one-year time-frame. Adjacent SVM weight vectors are based on one-month offsets.We use these SVM weight vectors as a basis for tracking changes in theunderlying models, and we quantify those changes using the statistics, as discussed above. Potential evolutionary points appear asspikes in the resulting graph.As a secondary test, for each signi�icant spike in the graph, wetrain two HMMs, one on either side of the spike. We then score sampleson both sides of the spike using both HMMs. If the sample scores areobservably different for each of these HMMs on each side of the spike,this serves to con�irm that signi�icant evolutionary change in themalware family has occurred.For this secondary test, we can quantify the evolutionary effect bycomputing the -like evolution score
where is the HMM score of the sample using the “correct”model and is the score of using the “incorrect” model. Forexample, if sample occurs before the spike, then is the score

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

obtained using the model that was trained on data before the spike,and is the score of using the model trained after the spike. Thelarger the evolution score E, the stronger the evidence of evolution.Note that the 1/n factor is needed since the number of samplesavailable differs for different families, and the number of samplesmight also differ for different spike computations within the samefamily.
4	 Experiments	and	ResultsIn this section, we present and discuss the results of the experimentsoutlined in the previous section. First, we provide a graphicalillustration of our HMM-based secondary test. Then we consideropcode-SVM experiments, followed by analogous SVM experimentsbased on opcode n-gram features. Neither of these techniques produceparticularly strong results, and hence we then turn our attention toadditional opcode-based feature engineering. Speci�ically, we applyword embedding techniques to opcode sequence and train SVMclassi�iers based on these engineered features. These experimentsprove to be highly successful.
4.1	 HMM-Based	Secondary	TestThe previous work in [29] is based on PE �ile features and uses linearSVM analysis to detect evolutionary changes in a malware family. Weperform similar analysis in this paper, but based on opcode featuresand using word embedding techniques for feature engineering. In thispaper, we also employ hidden Markov models as a secondary test tocon�irm suspected evolutionary changes.As discussed above, once distinct spikes have been obtained fromthe similarity graph, we train an HMM model on both sides suchspikes using extracted opcode sequences. Both models are then usedfor scoring malware samples on either side of the spike. Here, weillustrate this secondary test for a speci�ic case.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Figure 3a depicts the scores obtained when scoring samples beforea graph spike using both HMMs, while Fig. 3b gives thecorresponding result for samples after the spike. In all cases, the scoresare log likelihood per opcode (LLPO), that is, the scores have beennormalized so as to be independent of the length of the opcodesequence.

Fig.	3 Hidden Markov model trained before and after the spikeIn both Fig. 3a and b, we see that the scores are distinct for the twomodels on each sample tested. These results demonstrate that themodel trained before and the model trained after the spike aresigni�icantly different which, in turn, indicates that the samples used totrain the models differ signi�icantly. This is a clear sign of anevolutionary branch point in the malware family.
4.2	 Opcode-SVM	ResultsIn this section, we discuss experiments on 15 malware families, basedon opcode sequences and SVMs. That is, opcodes sequences are useddirectly as features in linear SVM models, with the resulting modelweights used to compute graphs.Figure 4 gives such a graph for the Zegost family, which has 506malware samples from the years 2008 through 2011. We observemultiple spikes in the graph but the secondary HMM test does not yield

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

impressive results for any of these spikes. Hence, we conclude that thisparticular test does not reveal any strong evolution result for theZegost family.

Fig.	4 Opcode-SVM similarity graph for Zegost
We also computed opcode-SVM graphs for the remaining 14malware families, nine of which appear in Fig. 5. For Adload and BHO,we observe that the graphs do not show any signi�icant spikes exceptat the last time period. We are not able to perform the secondary HMMtest at the extreme endpoint, so we are not able to con�irm or denythese as evolution points.From Fig. 5, we observe considerable �luctuation in the graphs forBifrose, CeeInject, Hupigon, and Rbot, but none of these �luctuationsstand out as clear points of possible evolutionary change in thefamilies. That is, for these families, it appears that we only observebackground noise.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Opcode-SVM graphs for selected families
4.3	 Opcode	n-Gram-SVM	ResultsNext, we consider analogous experiments to those of the previoussection, but based on opcode n-grams. This can be viewed as a �irstattempt at feature engineering. As with the previous experiments, wetrain linear SVMs on these features and construct graphs. Weconsider overlapping n-grams, and we experimented with on each of the 15 families.Examples of the results of these n-gram experiments are given inFig. 6, which shows 2-gram and 5-gram graphs for the Zegost family.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For both of these cases, we see only noisy results, with no clearevolutionary points. These results are typical of our n-gramexperiments and we conclude that opcode n-grams are not useful forour purposes.

Fig.	6 Opcode-n-gram-SVM graphs for Zegost
Next, we consider Word2Vec and HMM2Vec word embeddingsThese feature engineering techniques prove to be more effective fordetecting evolutionary changes, with HMM2Vec giving us our strongestresults.

4.4	 Opcode-Word2Vec-SVM	ResultsHere, we generate Word2Vec models based on opcode sequences. Wethen train linear SVMs over each time window, based on theseWord2Vec embeddings, and we compute graphs of the SVM weights.As above, spikes in this graph indicate points in time where evolutionmight have occurred.Figure 7a and b gives the graphs for the Zegost family withWord2Vec embeddings of length 2 and 3, respectively. From Fig. 7, weobserve that feature weights in certain time windows divergesigni�icantly from their average values. Speci�ically, these time periodsare November 2010 and May 2011, and these are the points in timewhere signi�icant evolution in the family may have taken place. We also

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

note the similarity between the results for embedding vector lengths 2and 3. This can be viewed as a sign of the stability of the underlyingapproach, and serves to provide additional con�idence in the putativeevolution points.

Fig.	7 Opcode-Word2Vec-SVM graphs for Zegost
Applying our secondary HMM veri�ication technique to the spike inFig. 7, we obtain the results in Fig. 8, which con�irm that the malwarefamily has evolved at this point. Since vector lengths of 2 and 3 give usconsistent results for Zegost, for our remaining Word2Vecexperiments, we use embedding vectors of length 2 in all cases.

Fig.	8 Zegost HMM secondary test for opcode-Word2Vec-SVM

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Figure 9 shows our Word2Vec based graphs for eight additionalmalware families. Four of these families—BHO, Bifrose, Adload, andVobfus—perform well with this approach, in the sense that we detectclear spikes in their graphs.

Fig.	9 Opcode-Word2Vec-SVM graphs for selected families
For the remaining four families in Fig. 9, namely, CeeInject, Dorkbot,Hupigon, and Rbot, we do not detect any signi�icant spikes in their graphs. Additional secondary HMM tests showing evolution appear inFig. 10, while Fig. 11 gives an example of a secondary test that showsno evolution. It is evident that the results of these opcode-Word2Vec-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

SVM experiments are a major improvement over the experimentsconsidered above.

Fig.	10 HMM secondary tests for opcode-Word2Vec-SVM showing evolution

Fig.	11 HMM secondary tests for opcode-Word2Vec-SVM showing no evolution

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Of course, it is possible that there is no evolution to be detected, insome of these families. But, over the extended time periods underconsideration, we believe it likely that evolution has occurred, whichsuggests that the Word2Vec features are simply not suf�icientlysensitive to detect changes in all cases. In the next section, we consideranother word embedding technique.
4.5	 Opcode-HMM2Vec-SVM	ResultsThe experiments in this section are essentially the same as those in theprevious section, except that we use HMM2Vec embeddings in place ofWord2Vec embeddings. As discussed above, HMM2Vec embeddingsuse obtained from the B matrix of a trained HMM.Figure 12a and b give HMM2Vec based graphs for Zegost, usingone random start and 10 random restarts, respectively. Note that theseresults are based on HMMs with hidden states, which gives usembedding vectors of length 2. Since our HMM training algorithm is ahill climb technique, multiple random restarts often enable us to �ind astronger model. For the Zegost results in Fig. 12, random restartsappear to offer little, if any, advantage. Consequently, for the remainingexperiments in this section, we train a single HMM model, and we donot perform any random restarts.

Fig.	12 Opcode-HMM2Vec-SVM graphs for Zegost

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We experimented with and hidden states (giving usembedding vectors of length 2 and 3, respectively), but we did not �indany improvement using . Hence, we use HMM2Vec embeddingvectors of length 2 in all experiments below.Figure 13 shows the graphs for 8 additional families based onHMM2Vec embedding vectors. Overall, this HMM2Vec-SVM approachseems to provide better results than the Word2Vec-SVM technique inthe previous section, as we can detect more malware evolution usingthe HMM2Vec feature engineering.

Fig.	13 Opcode-HMM2Vec-SVM for selected families

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Adload

Zbot

BHO

Bifrose

CeeInject

DelfInject

Dorkbot

Hupigon

Based on the graphs in Fig. 13, we make the following observations. — An evolutionary event takes place in the time window Sep2010–May 2011.— No signi�icant spike is observed in the graph.— Signi�icant evolution takes place in the time window Nov2008–May 2011— Malware evolution takes place in the time window March2010–June 2011. The other spike in the period June 2009–Jan 2011 is apart of noise in the data. This was con�irmed by training HMMs onboth sides. — Evolution occurs in the time window June 2009–April2011. — No signi�icant spike is observed in the graph.— No signi�icant spike is observed in the graph.— A signi�icant spike in the time period June 2010–Jan2011 is observed in the graph. From Fig. 13, we conclude that we can observe signi�icant spikes inalmost all families using HMM2Vec-SVM analysis. For the familiesAdload, BHO, Bifrose, CeeInject, and Hupigon we observe signi�icantspikes in the distribution graph. HMM secondary test con�irmingevolution for some of these cases appear in Fig. 14. In Fig. 15, we giveresults of HMM secondary tests that do not reveal evolution.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	14 HMM secondary tests for opcode-HMM2Vec-SVM showing evolution

Fig.	15 HMM secondary tests for opcode-HMM2Vec-SVM showing no evolutionComparing the families in which we could detect evolutionarychanges using Word2Vec with those detected using HMM2Vec, weobserve that the evolutionary points obtained using Word2Vec are alsofound using HMM2Vec. Yet, the HMM2Vec technique providesadditional evolutionary points, indicating that it is more sensitive tochange than Word2Vec embeddings. Overall, HMM2Vec performedbetter than any of the other approaches that we considered in thispaper.
5	 Conclusion	and	Future	Work

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Previous research has shown that analysis based on PE �ile featuresand linear SVM models can be useful in detecting malwareevolution [29]. In this paper, we expanded on—and improved upon—this previous work in several ways. First, we considered opcodefeatures, rather than PE �ile features. Our intuition was that opcode-based features would be more sensitive to the types of changes that wewould like to detect, and our results support this intuition. Second, weexperimented with various feature engineering techniques, and wefound that vector embeddings increase the sensitivity of the SVManalysis. Thirdly, we showed that a secondary test using HMMtechniques can be used to verify that suspected evolutionary points inthe timeline.We experimented with a variety of techniques, and our best resultswere obtained using an approach that we refer to as opcode-HMM2Vec-SVM. In this technique, we use mnemonic opcodes as rawfeatures, then generate HMM2Vec encodings of the opcodes, whichserve as features for linear SVMs, with the SVMs trained over slidingwindows of time. The resulting SVM weights are compared using a statistic, and we graph this statistic over the available timeline. Spikesin the graph serve as indicators of likely evolutionary change. Wewere then able to further con�irm evolutionary changes using asecondary test based on training HMMs on either side of a spike. Thisoverall approach was more sensitive than previous work, in the sensethat we were able to detect additional changes in the codebase ofvarious families, and it was more precise, since we have a secondarytest available to con�irm (or deny) putative evolutionary changes.In the realm of future work, additional machine learning techniquesand additional features and engineering strategies could beconsidered. For example, neural network techniques could be used inplace of SVMs, with multiclass output probabilities playing the role ofthe linear SVM weights. Another option would be to elevate our HMM-based secondary test to the role of the primary test. This might enablea more �ine-grained analysis of the timeline, as relatively little data isneeded for HMM training. With respect to feature engineering,dimensionality reduction techniques would be a natural topic to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

consider. The use of dynamic features might add value as well, althoughthe additional complexity involved with collecting such features mightbe a concern.
References1. Aycock, John. 2010. Computer	viruses	and	malware. Berlin: Springer.2. Bai, Jin, Shi Mu, and Guo Zou. 2014. The application of machine learning to study malwareevolution. Applied	Mechanics	and	Materials 530–531(Advances in Measurements andInformation Technologies): 875–878.3. Barat, Marius, Dumitru-Bogdan Prelipcean, and Drago Gavrilu. 2013. A study on commonmalware families evolution in 2012. Journal	of	Computer	Virology	and	Hacking	Techniques 9(4): 171–178.[Crossref]4. Chen, Zhongqiang, Mema Roussopoulos, Zhanyan Liang, Yuan Zhang, Zhongrong Chen, andAlex Delis. 2012. Malware characteristics and threats on the internet ecosystem. The	Journal

of	Systems	&	Software 85 (7): 1650–1672.[Crossref]5. Damodaran, Anusha, Fabio Di Troia, Corrado Visaggio, Thomas Austin, and Mark Stamp. 2017.A comparison of static, dynamic, and hybrid analysis for malware detection. Journal	of
Computer	Virology	and	Hacking	Techniques 13 (1): 1–12.6. Gilyadev, Julian. 2017. Word2vec explained. https:// israelg99. github. io/ 2017-03-23-Word2Vec-Explained/ .7. Gupta, A., P. Kuppili, A. Akella, and P. Barford. 2009. An empirical study of malware evolution.In 2009	�irst	international	communication	systems	and	networks	and	workshops, 1–10. IEEE.8. Kim, Samuel. 2018. PE header analysis for malware detection. Master’s thesis, San Jose StateUniversity, Department of Computer Science.9. Mercaldo, Francesco, Andrea Di Sorbo, Corrado Aaron Visaggio, Aniello Cimitile, and FabioMartinelli. 2018. An exploratory study on the evolution of android malware quality. Journal	of
Software:	Evolution	and	Process 30 (11): n/a–n/a.10. Microsoft. Win32 rbot detected with windows defender antivirus. 2005. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia -description? Name= Win32%2FRbot.11. Microsoft. Adware: Win32 hotbar detected with windows defender antivirus. 2006. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Adware%3AWin32%2FHotbar.12. Microsoft. Backdoor: Win32 hupigon detected with windows defender antivirus. 2006.https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/s11416-013-0192-5
https://doi.org/10.1016/j.jss.2012.02.015
https://israelg99.github.io/2017-03-23-Word2Vec-Explained/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia%2520-description?Name=Win32%252FRbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware%253AWin32%252FHotbar
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%253AWin32%252FHupigon

Name= Backdoor%3AWin32%2FHupigon.13. Microsoft. Virtool: Win32 ceeinject detected with windows defender antivirus. 2007. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= VirTool%3AWin32%2FCeeInject.14. Microsoft. Virtool: Win32 del�inject detected with windows defender antivirus. 2007.https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= VirTool: Win32/ DelfInject& ThreatID= -2147369465.15. Microsoft. Virtool: Win32 vbinject detected with windows defender antivirus. 2010. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= VirTool: Win32/ VBInject& ThreatID= -2147367171.16. Microsoft. Win32 vobfus detected with windows defender antivirus. 2010. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopediadesc ription? name= win32%2Fvobfus.17. Microsoft. Win32 winwebsec detected with windows defender antivirus. 2010. https:// www. microsoft. com/ security/ portal/ threat/ encyclopedia/ entry. aspx? Name= Win32%2fWinwebsec.18. Microsoft. Win32 obfuscator detected with windows defender antivirus. 2011. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32%2FObfuscator.19. Microsoft. Win32 zbot detected with windows defender antivirus. 2011. http:// www. symantec. com/ securityresponse / writeup. jsp? docid= 2010-011016-3514-99.20. Microsoft. Win32 zegost detected with windows defender antivirus. 2011. https:// www. symantec. com/ security-center/ writeup/ 2011-060215-2826-99.21. Microsoft. Worm: Win32 dorkbot detected with windows defender antivirus. 2011. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Worm%3AWin32/ Dorkbot.22. Microsoft. Win32 bifrose detected with windows defender antivirus. 2012. https:// www. trendmicro. com/ vinfo/ us/ threat-encyclopedia/ malware/ bifrose.23. Nappa, Antonio, M. Ra�ique, and Juan Caballero. 2015. The malicia dataset: Identi�ication andanalysis of drive-by download operations. International	Journal	of	Information	Security 14(1): 15–33.[Crossref]24. Ouellette, J., A. Pfeffer, and A. Lakhotia. 2013. Countering malware evolution using cloud-based learning. In Proceedings	of	the	8th	international	conference	on	malicious	and	unwanted
software, 85–94.25. Popov, Igor. 2017. Malware detection using machine learning based on word2vec embeddingsof machine code instructions. In 2017	Siberian	symposium	on	data	science	and	engineering
(SSDSE), 1–4. IEEE.26.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%253AWin32%252FHupigon
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%253AWin32%252FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/%2520DelfInject&ThreatID=-2147369465
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject&ThreatID=%2520-2147367171
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopediadescription?name=win32%252Fvobfus
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%252fWinwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%252FObfuscator
http://www.symantec.com/securityresponse/writeup.jsp?docid=2010-011016-3514-99
https://www.symantec.com/security-center/writeup/2011-060215-2826-99
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Worm%253AWin32/Dorkbot
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/bifrose
https://doi.org/10.1007/s10207-014-0248-7

Rezaei, Saeid, Fereidoon Rezaei, Ali Afraz, and Mohammad Reza Shamani. 2016. Malwaredetection using opcodes statistical features. In 2016	8th	international	symposium	on
telecommunications	(IST), 151–155. IEEE.27. Stamp, Mark. 2018. Introduction	to	machine	learning	with	applications	in	information
security. Boca Raton: CRC Press, Taylor & Francis Group.[zbMATH]28. Stamp, Mark. 2019. Alphabet soup of deep learning topics. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ alpha. pdf.29. Wadkar, Mayuri, Fabio Di Troia, and Mark Stamp. 2020. Detecting malware evolution usingsupport vector machines. Expert	Systems	with	Applications 143.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.emis.de/MATH-item?1414.68002
https://www.cs.sjsu.edu/%257estamp/RUA/alpha.pdf

(1)(2)(3)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_13
Reanimating	Historic	Malware	SamplesPaul Black1 , Iqbal Gondal1 , Peter Vamplew2 and Arun Lakhotia3 ICSL, Federation University, Ballarat, AustraliaSEIT, Federation University, Ballarat, AustraliaCMIX, University of Louisiana at Lafayette, Lafayette, USA
Paul	Black	(Corresponding	author)
Email:	p.black@federation.edu.au
Iqbal	Gondal
Email:	iqbal.gondal@federation.edu.au
Peter	Vamplew
Email:	p.vamplew@federation.edu.au
Arun	Lakhotia
Email:	arun@louisiana.edu

AbstractMany types of malicious software are controlled from an attacker’scommand and control (C2) servers. Anti-virus organizations seek todefeat malware attacks by requesting removal of C2 server DomainName Server (DNS) records. As a result, the life span of most malwaresamples is relatively short. Large datasets of historical malwaresamples are available for countermeasures research. However, due tothe age of these malware samples, their C2 servers are no longeravailable. To cope with high volumes of malware production, malwareanalysis is increasingly performed using machine learning techniques.Dynamic analysis is commonly used for feature extraction. However,due to the absence of their C2 servers, after initialization, malware

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_13
mailto:p.black@federation.edu.au
mailto:iqbal.gondal@federation.edu.au
mailto:p.vamplew@federation.edu.au
mailto:arun@louisiana.edu

samples may exit or loop attempting to establish C2 serverconnections and, as a result, no longer exhibit their originalcapabilities. Therefore, partial execution of historical malware samplesin a sandbox results in features that differ from those that would beextracted in-the-wild, thus invalidating the results of any machinelearning research based on these features. One approach to extractingaccurate features is to build an emulated C2 server to provide anenvironment that allows control of the full capabilities of the malwarein an isolated environment. To illustrate the bene�its of building C2server emulators, this chapter provides examples of techniques for thecreation of C2 server emulators for three malware families (Zeus,CryptoWall, and CryptoLocker) using manual reverse engineeringtechniques and a review of semi-automated techniques for theconstruction of C2 server emulators.
Keywords Command and control emulation – Malware analysis –Feature extraction – Machine learning
1	 IntroductionMany types of malware, including information-stealing malware,ransomware, and Remote Access Trojans (RATs) are controlled from anattacker’s Command and Control (C2) servers [3]. Anti-virusorganizations seek to defeat malware attacks by requesting removal ofC2 server Domain Name Server (DNS) records. For discussion, ahistorical malware sample is de�ined as a malware sample that has hadits C2 servers removed. Large datasets of historical malware samplesare available for academic experiments. However, due to the age ofthese malware samples, their C2 servers are no longer available. Tocope with high volumes of malware production, malware analysis isincreasingly performed using machine learning techniques [4].Dynamic analysis is commonly used for feature extraction. However,due to the absence of their C2 servers, after initialization, malwareexecution may exit, or loop attempting to establish C2 serverconnections. As a result, the command interface of historic malwaresamples is no longer controlled. This results in the extraction offeatures that differ from those that would be extracted in-the-wild,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

thus invalidating the results of machine learning research based onthese features.It is noted that research techniques exist for automatic protocolanalysis of malware [13]. However, these techniques depend onmalware communications with live C2 servers. The usage of themalware capabilities is determined by the malware operators, and livetesting may not reveal the full extent of the malware’s capability. Otherissues related to performing research with live malware includedif�iculties in obtaining a consistent supply of live malware, unknowncon�iguration, unknown triggering conditions, detection of the analysisIP address (mitigated by the use of an anonymizing proxy), or themalware operators gaining access to the analysis VM via malwareprovided interfaces.Researchers have recognized the need to prevent malwareexperiments from causing harm on the Internet. Research systemshave been built to provide containment of malware research [23].However, these systems do not address the C2 server problems facedwhen performing experiments with historical datasets. Internetsimulator programs [20] may be used as part of a malware analysisenvironment and can provide generic responses to requests forcommon Internet services. A malware process may request aconnection to a common website to perform a connectivity check, andan Internet simulator may be able to satisfy this request. However, if aconnection to a C2 server or other attacker-controlled infrastructure isrequested, an Internet simulator will not be able to respond with theprotocol required by the malware.The Botnet Evaluation Environment (BEE) provides an isolatedenvironment for botnet research with emulated C2 servers forexecution of the Agobot, SDBot, GTBot, Phatbot, and Spybot malware[6]. An isolated Waledac botnet was created by reverse engineering theWaledac malware and identifying the Waledac botnet protocol. Anemulated C2 server was built to support this protocol, and a 3000 nodeWaledac botnet was built. This isolated botnet was used to researchsecurity vulnerabilities that could be used to take down the Waledacbotnet [12].To illustrate the bene�its of building C2 server emulators formachine learning purposes, this chapter provides examples of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

techniques for the creation of C2 server emulators for three malwarefamilies (Zeus, CryptoWall, and CryptoLocker) using manual reverseengineering techniques.1 This chapter also provides a review of semi-automated techniques for the construction of C2 server emulators.
1.1	 MotivationAt a high level, the need to build a C2 server emulator will be the resultof the following requirements:The need to perform research using historical malware samples,The need to control the full capabilities of a malware sample,The need to perform the research in an isolated environment.The construction of C2 server emulators has the following bene�its:the ability to control the malware through its network interface allowsthe execution of the full capabilities of the malware and the extractionof features that would otherwise not be possible using historicalmalware samples. Using an emulated C2 server allows the testing ofmalware samples in isolation from the Internet, which preventscriminal groups from becoming aware of the research.
1.2	 Emulator	ArchitectureThe architecture of a C2 server emulator will be similar irrespective ofwhether a manual or semi-automated process is used to construct theemulator. A representative C2 server emulator consists of an isolatednetwork using two or more virtual machines (VMs). One VM (VM1) iscon�igured to run the C2 server emulator script and a DNS simulator,while another VM (VM2) is con�igured to run the selected malwaresamples and any related programs that will be attacked by thismalware. The DNS simulator resolves requests from the malware VM,and malware protocol requests are read by the C2 emulator. Anillustration of this architecture is shown in Fig. 1. C2 server emulatorsmay be created using either manual or semi-automated constructiontechniques. Sections 2–4 discuss manual construction, and Sect. 5provides a review of semi-automated construction techniques.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 C2 emulator architecture
2	 Manual	ConstructionThe creation of C2 emulators provides a test harness that allows thefull capability of historic malware samples to be controlled in anisolated network. The process for the manual construction of C2emulators can be described in an abstract manner as a process of theguided discovery of the communication and command processingpaths of a malware sample using a debugger and the correspondingiterative development of a script to generate network traf�ic to controlthis execution path. A dif�iculty with this high-level description of theC2 server emulator construction process is that there may bedif�iculties in fully understanding how to implement this process. Amalware analysis environment using a manually constructed C2emulator is described in [18]. To illustrate the manual constructionprocess, Sects. 3 and 4 provide examples of the manual construction ofC2 server emulators for a common information-stealing malware andtwo ransomware families.The requirement for the emulation of a malware C2 server arosefrom a research project using machine learning for the detection ofwebinjects. Webinjects are malicious HTML that are injected into webbrowser sessions and are used to steal banking credentials and toillegally transfer funds [16]. Information stealing malware targetingbanking infrastructure (banking malware, banking trojans) containfacilities for intercepting credentials prior to encryption and injecting

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

content into Internet banking sessions. This is performed by injectingmalware into the browser process and gaining control of networkingApplication Programming Interface (API) functions with the use ofuser-mode hooking techniques [7]. Three options were considered forwebinject generation:The use of live malware to perform webinjects, Zarathustra, andPrometheus performed webinject detection using live malwaresamples [9, 14],The use of Java-Script methods to inject code into the browsersession,The creation an emulated C2 server that can be used inconjunction with a historical malware sample to perform userspeci�ied webinjects.The problems associated with using live malware for researchpurposes have been discussed previously. While Java-Script methodscan be used to inject HTML code into a browser session, this injectedHTML may differ from webinjects created by malware. The timerequired to perform the reverse engineering work is a signi�icantconsideration when deciding whether to build an emulated C2 server.However, this may be offset by the signi�icant bene�its of being able tocontrol the full capabilities of the malware on an isolated network andthe collection of more representative features.The following sections provide the details of the construction of theC2 server emulators for the Zeus V2, CryptoLocker, and CryptoWallmalware.
3	 Zeus	C2	Server	EmulatorThe Zeus v2 malware was selected for this research due to familiaritywith this malware from previous research. The Zeus C2 serveremulator provides the capability to create custom webinjects on anisolated network and to capture the modi�ied webpages for use in awebinject detection machine learning system [24]. In the followingdescription, class and function names (e.g., Core::GetBaseCon�ig) aretaken from the leaked Zeus source code [32]. A Zeus v2.1.0.1 malwaresample with an MD5 hash of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

a2a21d66f72ee53cfbc2dcfe929ffaba was used in this research.This malware was unpacked using a custom static unpacker. Theunpacked Zeus sample was loaded into the Interactive Disassembler(IDA). This IDA database was used to record the malware execution andto determine suitable API calls for breakpoints.The Zeus v2 malware has an anti-analysis mechanism known ashardware locking. When Zeus malware infects a computer, a copy of themalware is installed in the �ilesystem, and a block of encrypted binarydata is embedded into this installed malware. This encrypted dataincludes the malware’s installation directory and a Globally UniqueIdenti�ier (GUID) that was generated from the computer’s hard disk[31]. When a previously installed Zeus sample is executed in ananalysis environment, execution on a new computer will be detected,and the malware will exit.The hardware locking test was disabled by editing the machinecode in the Core::EntryPoint function, and the jump instructioncontrolling the call to the ExitProcess API was overwritten with nooperation (NOP) instructions. This was the only change that was madeto the Zeus malware.The guiding principle in building the Zeus C2 server emulator wasto perform the minimum amount of reverse engineering needed toproduce a C2 server emulator. Two VMs were used where VM1 wasrunning the python C2 server emulator and the Internet simulator, andVM2 was running the Zeus malware sample and Internet Explorerversion 8 for the webinjects testing. When the Zeus sample is executed,a copy of this malware is injected into the Explorer process, and theinjected malware attempts to connect to the C2 server.The Zeus con�iguration is an encrypted binary data structurecontaining text specifying the target URL, injection start pattern, andthe corresponding webinjects. The Zeus con�iguration is created by theZeus con�iguration builder, subject to the malware author’s securitycontrols. To simplify the researcher work�low, the emulated C2 serveruses a simpli�ied text based con�iguration containing the targetedURLs, injection start patterns, and the corresponding webinjects. Anexample of the simpli�ied con�iguration used by the emulated Zeus C2server is given in Fig. 2. The C2 server emulator injects additional

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

JavaScript to dump the DOM of the injected webpage into a shared hostdirectory for analysis.

Fig.	2 Simpli�ied Zeus con�igurationAn initial C2 server emulator returning a response of 256 null byteswas created using the python BaseHttpServer class. On VM2, adebugger was attached to the explorer.exe process, a breakpoint wasset at the InternetReadFile API, and the Zeus malware sample wasexecuted. The emulated C2 server returned a response, and thebreakpoint on the InternetReadFile API was hit in theWininet::DownloadData function. Single stepping in the debugger wascontinued until the BinStorage::Unpack function was called where thefollowing operations were observed:RC4 decryption of the received con�iguration,Recursive XOR decoding of the decrypted con�igurationCrypt::_visualEncrypt,Checking of the MD5 signature stored in the header of thedecoded con�iguration,The writing of the encrypted Zeus con�iguration to the Windowsregistry.Based on these observations, the C2 server emulator was updatedto use RC4 encryption, recursive XOR encoding, and MD5 signing of thecon�iguration data. A �lowchart showing the steps involved in thecreation of the encrypted Zeus con�iguration is given in Fig. 3.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 Creation of encrypted Zeus con�iguration

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 Example Zeus webinjectA full explanation of the Zeus con�iguration and webinjectsprocessing would require excessive detail. The following provides ahigh-level view of the structure of the Zeus con�iguration and theoperation of the malware in the browser. The Zeus con�iguration �ileconsists of the following sections: header, �ilters, a number of webinjectsections, and an injects list containing the targeted URLs.Using a debugger to follow the execution of the injected Zeus codein the web browser was necessary in order to debug the processing ofthe encrypted Zeus con�iguration created by the C2 server emulatorand to determine the minimum con�iguration sections required toallow successful webinjects. To gain control of the Zeus code in InternetExplorer, a debugger was attached to the Internet Explorer 8 parent

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

process, and a breakpoint was set on the GetModuleHandleW API.Following the validation of the Zeus con�iguration in the Explorerprocess, Zeus malware is injected into the browser process to monitorthe current webpages, to detect triggering URLs, and to performinjection of the webinjects.When executing in the context of a web browser, Zeus hooks thebrowser’s HttpSendRequest and InternetReadFile APIs. When theHttpSendRequest API is called, this results in a call toWininetHook::OnHttpSendRequest to check the Zeus con�iguration�ilter actions. If the �ilter action is not “ignore,” the HTTP request isadded to an HTTP connections tracking table. When theInternetReadFile API is called, this results in a call toWininetHook::OnInternetReadFile to check the HTTP response. If thisconnection is in the tracked HTTP connections table, then theHttpGrabber::ExecuteInjects function is called to determine whetherthe URL is in the targeted URLs section, and if required injects thewebinject into the HTTP response data. An example of a Zeuswebinject, injected text in red, is shown in Fig. 4.
4	 Ransomware	C2	Server	EmulatorsThe following section provides details of the construction of a C2server emulator for the CryptoLocker and CryptoWall ransomware. Thereverse engineering of the CryptoLocker malware was straightforward,and the construction of the C2 server emulator was simple. However,the reverse engineering of the CryptoWall ransomware wascomplicated by injection into multiple processes and API obfuscation.
4.1	 CryptoLocker	C2	Server	EmulatorCryptoLocker ransomware was identi�ied in 2013, and the number ofinfected computers is not known. The MD5 hash of the CryptoLockersample used in this research is
fec5a0d4dea87955c124f2eaa1f759f5 [15]. This sample wasobtained from Malpedia [26] and includes an unpacked version of themalware. CryptoLocker uses the Microsoft CryptoAPI, which simpli�iesthe identi�ication of cryptographic operations. CryptoLockerencryption of communications and �iles uses a randomly generated

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

AES key. This AES key is then RSA encrypted and is embedded into eachencrypted object. CryptoLocker communications encryption makes useof a public key embedded in the malware and a private key stored inthe C2 server. CryptoLocker �ile encryption uses a public key providedby the C2 server. The private key needed to decrypt the �iles is onlyprovided after the ransom is paid [21, 25].Running the unpacked malware in a debugger showed that a secondmalware process was started, and the �irst process terminated.Examination of the malware in IDA showed that the functioncontrolling C2 server communications and user �ile encryption waslocated at address 0x40B2A1. A shortcut to gaining control of thismalware was performed by editing the �irst two bytes of this functionin the unpacked malware to 0xEBFE. This is a two byte loop that willcause any process executing this function to loop and will stop themalware from progressing. The looping process was identi�ied by itshigh CPU usage using the task manager. The debugger was thenattached to gain control of the malware. Stepping through the malwarewith the debugger showed that the following (before encryption) datawas sent to the C2 server "version=1&id=1&name=USERNAME-
06752E85&group=sell03-10&lid=en-US".The response from the C2 server is intended to be encrypted with aprivate key contained in the C2 server. However, the C2 servers are nolonger active, and the private key is not available. Two approaches toaddress the missing private key are to edit the CryptoLocker malwareand replace the hard-coded RSA public key with a generated public key,and use the corresponding private key in the C2 emulator, or createunencrypted responses in the C2 emulator and modify theCryptoLocker malware to no longer check the decryption status byreplacing a conditional jump with NOP instructions. The latter optionwas selected as it was easier to implement.The unencrypted C2 server response was read using theInternetReadFile API and was decrypted using the CryptDecrypt API.The conditional jump instruction testing the return code from theCryptDecrypt API was overwritten with a NOP instruction, allowingunencrypted C2 server responses to be processed by the CryptoLockermalware. The malware was observed to test that the last byte of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

decrypted response is zero, and the C2 server emulator was updated tosend a null terminated unencrypted response.Further use of the debugger showed that a value of 1 in the �irstbyte of the response results in a call to a function that calls theCryptDecodeObjectEx API to decode a Privacy Enhanced Mail (PEM)format public key. This public key is located at byte 3 of the response.The completed C2 server emulator reads the initial message from themalware and returns a response of 0x01, 0x00, 0x00, followed by a nullterminated PEM format public key. A screenshot of the CryptoLockerransom demand screen displayed after the user �iles were encrypted isshown in Fig. 5.

Fig.	5 CryptoLocker ransom demand
4.2	 CryptoWall	C2	Server	Emulator

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

CryptoWall ransomware was identi�ied in 2014. The MD5 hash of theCryptoWall version 4 sample used in this research is
d9993ab7397f5d2a34f786b54fc55b2c. This sample wasobtained from Malpedia [26] and included an unpacked version of themalware. Descriptions of the CryptoWall protocol were provided byindustry blogs [1, 15, 29], and this information signi�icantly reducedthe amount of reverse engineering required to build the CryptoWall C2emulator.Early versions of CryptoWall copied CryptoLocker’s appearance,and the malware authors adopted the name CryptoWall in May 2014.CryptoWall was primarily distributed through malicious spamattachments. CryptoWall deletes volume shadow copies, and theWindows System Restore feature is disabled. CryptoWall version 4uses a locally generated AES key to encrypt user �iles and �ilenames,RSA encryption is used to protect the AES key. CryptoWallcommunications are RC4 encrypted, and the RC4 cipher is passed tothe C2 server in the URL of the infection announcement message [1,29].CryptoWall version 4 malware injects itself into a newly started
explorer process [15]. The injected malware creates a new svchostprocess, which is injected with a copy of the malware [29]. The new
svchost process performs ransomware operations. To gain control ofthe ransomware, run the analysis VM before the C2 server emulator isstarted. This will prevent the C2 server connection from beingestablished and will keep the ransomware in its initialization state.Before running the CryptoWall ransomware, record a list of the processidenti�iers of the svchost processes. Start the CryptoWall malware andidentify the new svchost process, connect to this process and set abreakpoint at the InternetConnectA API, next start the CryptoWall C2emulator and allow the debugger to run the CryptoWall malware.When the ransomware is executed, an HTTP POST is sent to the C2server. The C2 server uses the sorted URL parameter as ciphertext tocreate an RC4 key [11]. The data passed by the HTTP POST is ASCIIencoded binary data, which is decoded using the Pythonbinascii.unhexlify function. The decoded data is decrypted using theRC4 key. The decrypted request is "

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

{1|crypt13001|32DC0066DCE410C9285635F121811FB99|1|
2|1}".The C2 server responds by sending an RC4 encrypted response e.g.,
"{204|1}" to the infected computer. The CryptoWall ransomwareresponds by sending a public key request to the C2 server. The C2server responds with a message containing a public key and a base64encoded ransom demand graphic. When this C2 response is received,the ransomware process scans the infected computer’s storage andencrypts user �iles. When the user �iles have been encrypted, aninfection noti�ication message e.g., "{260|1}" is sent to the C2 server.Finally, a window is displayed on the infected computer to demandpayment [1, 15]. The messages exchanged between the ransomwareand the C2 server emulation are shown in Fig. 6.

Fig.	6 CryptoWall messages

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The CryptoWall C2 emulator implements the CryptoWall protocolthat allows the ransomware to exercise its full capabilities. Ascreenshot of a section of the CryptoWall ransom demand screendisplayed after the user �iles were encrypted is shown in Fig. 7.

Fig.	7 CryptoWall ransom demand
5	 Semi-automated	Generation	of	C2	Server
EmulatorsWhile the ability to automatically generate C2 server emulators forarbitrary malware families would be useful, this is not currentlyfeasible, and the recent work in literature is a semi-manualconstruction process.The Imaginary C2 program [30] converts captured network traf�icinto request de�initions that allow C2 HTTP response to be replayed.However, this traf�ic replay approach is not suitable for situationswhere initial network traf�ic samples are not available.One automation approach for the creation of C2 server emulators isprovided in [2]. This research refers to C2 server emulators as CustomImpersonators. Malware samples are executed on a QEMU VM, andinstruction traces are collected using DECAF [19], and the instructiontraces are translated into VINE intermediate language [28]. Symbolicexecution [22] is performed on the instruction traces, and symbolicvariables are assigned to network input. A Simple Theorem Prover(STP) constraint solver [17] is used to determine the values thatdetermine the outcome of the control �low tests. These values can beused to identify malware control dependencies controlled by values inthe network input [2]. The malware control �low graph and controldependencies are provided to assist analysts with the manualconstruction of C2 server emulators.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Research using ANGR [27], an open-source symbolic executionframework, creates a technique that employs static analysis todetermine the C2 command protocol and associated commandsimplemented in a common RAT. The top-level command processingfunction of the RAT is analyzed, and for each explored path, a list of themalware API calls and their arguments, function call relationships, andthe network data required to trigger the path’s execution are provided[5]. Windows API models and support for the stdcall callingconvention were added to ANGR in order to support the analysis ofWindows malware. Heuristics were created to limit the number ofpaths explored by the symbolic execution in order to prevent potentialpath explosion problems. Symbolic execution commences at themanually selected Symbolic Execution Point (SEP), and an executioncontext is needed to provide precondition values that are generated inmalware initialization. In this research, the execution context wasgenerated using two different techniques: by performing concreteexecution, setting a breakpoint at the SEP, taking a memory dump, andextracting the necessary parts of the execution context, or by movingthe SEP backward, allowing initialization of execution context values.Symbolic execution was used to explore the command processing loop.The report produced by this technique showed the API calls, and thefunctions called in processing each command, as well as the networkdata required to trigger the processing of each command. Thisresearch targets analysis for a single RAT, requires manual SEPidenti�ication, does not support analysis of encrypted protocols anddoes not support mining of the analysis report from the tool output [5].The S2E symbolic execution engine is used as the basis of researchthat constructs C2 servers for RATs [8]. The S2E engine performssymbolic execution of instructions and forks execution when branchesare taken. An SMT solver is used to evaluate expressions and obtainconcrete values. To prevent performance problems and scalabilityissues due to path explosion, an analyst must provide the location ofthe command processing loop and details of how to reach this address.The process used in this research can be summarized as TraceGeneration, Trace Analysis, Speculation, Validation, and C2 ServerGeneration. Trace generation uses symbolic execution to exploreexecution paths and to maximize code coverage. A number of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

recorded traces will cover the RAT command processing code. Thebranches taken and API execution details are recorded. Trace analysisbuilds Augmented Pre�ix Tree Acceptors (APTA) that captures APIexecution and branches taken along the explored paths. APTA’s areDeterministic Finite Automata (DFA) that have been used in theprotocol reverse engineering [10]. The goal of speculation is togenerate a small number of paths that cover all of the commands.Speculative edges are added to the APTAs in an attempt to combinesymbolically executed command fragments into paths containingmultiple commands. The symbolic execution engine is then used tovalidate speculatively generated paths, and when speculative edges arevalidated, the branches and API calls are recorded. C2 servergeneration is performed for each validated path that contains multiplecommands. This research generates a C2 server from the code of asmall RAT created for research purposes [8]. Due to the requirementfor manual analysis to provide the location of the command processingloop as a starting point, this research is classi�ied as semi-automated.
6	 LimitationsIrrespective of the C2 emulator construction technique, some malwaresamples require minor modi�ication before they can be executed witha C2 server emulator. Examples of the modi�ications required to allowthe Zeus V2 and CryptoLocker malware to run with C2 serveremulators are given below.Zeus v2 is a self-modifying malware with a hardware lockingfeature that only allows the installed Zeus malware to execute on thecomputer that it was installed on. In the Zeus C2 server emulator, theZeus malware was unpacked using a static unpacker, and the jumpinstruction that controls the hardware locking test was overwrittenwith NOP instructions to prevent the malware from terminating.The CryptoLocker malware contains a hard-coded RSA public key,and the C2 server emulator is expected to respond withcommunications encrypted with the corresponding private key. Due tothe removal of the original C2 servers, this private key is no longeravailable. The C2 server emulator was developed to returnunencrypted responses, and the unpacked CryptoLocker malware

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

sample was modi�ied to skip the successful decryption check. Themodi�ied CryptoLocker sample operates in the same manner as theoriginal ransomware, it connected to the emulated C2 server, scannedthe hard disk for user �iles, performed �ile encryption, and displayedthe ransom demand window.In both of these cases, a modi�ication of the malware’s machinecode allowed a historical malware sample to operate at a high level of�idelity with an emulated C2 server, allowing the collection of featuresets that are comparable with malware execution in-the-wild. It isacknowledged that the technique of manually building an emulated C2server cannot currently be performed at scale. However, cases existwhere manually building a C2 server emulator allows academicresearch projects to be performed that would not otherwise bepossible.A limitation in the manual construction of C2 emulators is the needfor a skilled analyst to perform manual reverse engineering.Techniques for the semi-automated generation of C2 server emulatorsdo exist. However, the fully automatic generation of C2 emulators is notcurrently feasible due to current limitations in symbolic executiontechniques.
7	 ConclusionAcademic malware datasets consist of collections of historic malwaresamples. The C2 servers of these malware samples no longer exist, andwhen executed on a VM, these malware samples perform theirinitialization functions and then wait for C2 server connections that nolonger exist. This initialization-only behavior of historic malwaresamples provides more limited features than would be collected whenthe malware was running in-the-wild. Historic malware samplesrunning without an emulated environment cannot perform many of themalware’s original capabilities.Live malware samples with active C2 servers have been used forresearch [14]. This approach is feasible but uncertain due to problemsassociated with the short life span of malware C2 servers, unknownmalware con�iguration, the malware being controlled by the malware

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

operator, and the possibility of the malware operator becoming awareof the research.The creation of C2 server emulators allows the full capabilities ofmalware samples to be fully controlled by researchers in an isolatednetwork. In the case of historic malware samples, the use of C2 serveremulators allows control of malware capabilities that would no longerbe available without emulation. This chapter discussed methods forthe manual reverse engineering of the malware sample’s commandprotocol and created an emulated C2 server that can control the fullcommand interface of the malware. Three examples of methods usedfor the construction of emulated command and control servers wereprovided. Apart from the generation of C2 server emulators, somemalware samples require minor modi�ications to bypass anti-analysissystems or to compensate for lost encryption keys. Examples of thesemodi�ications were provided for two malware families.A review of the literature related to the creation of emulated C2servers was undertaken. This review showed that the use of C2 serveremulators and the automated generation of C2 server emulators is anew research topic with research in the early stages. Existing researchprovides the semi-automated generation of C2 server emulators basedon individual samples.
References1. Allievi, Andrea, Holger Unterbrink, and Warren Mercer. 2015. Cryptowall 4 - the evolutioncontinues.2. Alwabel, Abdulla, Hao Shi, Genevieve Bartlett, and Jelena Mirkovic. 2014. Safe and automatedlive malware experimentation on public testbeds. In 7th	Workshop	on	cyber	security

experimentation	and	test	(CSET	14).3. Azab, Ahmad, Mamoun Alazab, and Mahdi Aiash. 2016. Machine learning based botnetidenti�ication traf�ic. In 2016	IEEE	Trustcom/BigDataSE/ISPA, 1788–1794. IEEE.4. Azab, Ahmad, Robert Layton, Mamoun Alazab, and Jonathan Oliver. 2014. Mining malware todetect variants. In 2014	Fifth	Cybercrime	and	Trustworthy	Computing	Conference, 44–53.IEEE.5. Baldoni, Roberto, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. 2017. Assistingmalware analysis with symbolic execution: A case study. In International	conference	on	cyber
security	cryptography	and	machine	learning, 171–188. Springer.6.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Barford, Paul, and Mike Blodgett. 2007. Toward botnet mesocosms. HotBots 7: 6–6.7. Black, Paul, Iqbal Gondal, and Robert Layton. 2018. A survey of similarities in bankingmalware behaviours. Computers	&	Security 77: 756–772.[Crossref]8. Borzacchiello, Luca, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. 2019.Reconstructing c2 servers for remote access trojans with symbolic execution. In
International	symposium	on	cyber	security	cryptography	and	machine	learning, 121–140.Springer.9. Bosatelli, Fabio. 2013. Zarathustra: detecting banking trojans via automatic, platformindependent webinjects extraction.10. Bugalho, Miguel, and Arlindo L. Oliveira. 2005. Inference of regular languages using statemerging algorithms with search. Pattern	Recognition 38 (9): 1457–1467.11. Cabaj, Krzysztof, and Wojciech Mazurczyk. 2016. Using software-de�ined networking forransomware mitigation: The case of cryptowall. IEEE	Network 30 (6): 14–20.[Crossref]12. Calvet, Joan, Carlton R. Davis, José M. Fernandez, Jean-Yves Marion, Pier-Luc St-Onge, WadieGuizani, Pierre-Marc Bureau, and Anil Somayaji. 2010. The case for in-the-lab botnetexperimentation: creating and taking down a 3000-node botnet. In Proceedings	of	the	26th
annual	computer	security	applications	conference, 141–150.13. Cho, Chia Yuan, Domagoj Babi ć, Eui Chul Richard Shin, and Dawn Song. 2010. Inference andanalysis of formal models of botnet command and control protocols. In Proceedings	of	the
17th	ACM	conference	on	Computer	and	communications	security, 426–439.14. Continella, Andrea, Michele Carminati, Mario Polino, Andrea Lanzi, Stefano Zanero, andFederico Maggi. 2017. Prometheus: Analyzing webinject-based information stealers. Journal
of	Computer	Security 25 (2): 117–137.[Crossref]15. Dell Secureworks Counter Threat Unit. 2014. Cryptowall ransomware threat analysis.16. Forrester, Jock Ingram. 2014. An exploration into the use of webinjects by �inancial malware.PhD thesis, Rhodes University.17. Ganesh, Vijay, and David L. Dill. 2007. A decision procedure for bit-vectors and arrays. In
International	conference	on	computer	aided	veri�ication, 519–531. Springer.18. Hakkarainen, Jani. 2015. Malware analysis environment for windows targeted malware.19. Henderson, Andrew, Lok Kwong Yan, Xunchao Hu, Aravind Prakash, Heng Yin, and StephenMcCamant. 2016. Decaf: A platform-neutral whole-system dynamic binary analysis platform.
IEEE	Transactions	on	Software	Engineering 43 (2): 164–184.20. www. Inetsim. org. 2020. Inetsim: Internet services simulation suite.21. Jarvis, Keith. 2013. Cryptolocker ransomware.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1016/j.cose.2017.09.013
https://doi.org/10.1109/MNET.2016.1600110NM
https://doi.org/10.3233/JCS-15773
http://www.inetsim.org/

1

22. King, James C. 1976. Symbolic execution and program testing. Communications	of	the	ACM 19(7): 385–394.23. Kreibich, Christian, Nicholas Weaver, Chris Kanich, Weidong Cui, and Vern Paxson. 2011. Gq:Practical containment for measuring modern malware systems. In Proceedings	of	the	2011
ACM	SIGCOMM	conference	on	Internet	measurement	conference, 397–412.24. Moniruzzaman, Md, Adil Bagirov, Iqbal Gondal, and Simon Brown. 2018. A server side solutionfor detecting webinject: A machine learning approach. In Paci�ic-Asia	conference	on
knowledge	discovery	and	data	mining, 162–167. Springer.25. Panda Security. 2015. Cryptolocker: What is and how to avoid it.26. Plohmann, Daniel, Martin Clauss, Steffen Enders, and Elmar Padilla. 2018. Malpedia: Acollaborative effort to inventorize the malware landscape. The	Journal	on	Cybercrime	&
Digital	Investigations 3 (1).27. Shoshitaishvili, Yan, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, et al. 2016. Sok:(stateof) the art of war: Offensive techniques in binary analysis. In 2016	IEEE	symposium	on
security	and	privacy	(SP), 138–157. IEEE.28. Song, Dawn, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang, ZhenkaiLiang, James Newsome, Pongsin Poosankam, and Prateek Saxena. 2008. Bitblaze: A newapproach to computer security via binary analysis. In International	conference	on
information	systems	security, 1–25. Springer.29. Sophos. 2015. The current state of ransomware: Cryptowall.30. Weyne, Felix. 2020. Imaginary c2.31. Wyke, James. 2011. What is zeus? Technical report, Sophos Labs.32. Zeus Author. 2011. Zeus source code.

FootnotesThe datasets and code related to this research are available on request from the correspondingauthor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_14
Cluster	Analysis	of	Malware	Family
RelationshipsSamanvitha Basole1 and Mark Stamp1 San Jose State University, San Jose, CA, USA
Samanvitha	Basole	(Corresponding	author)
Email:	s97basole@gmail.com
Mark	Stamp
Email:	mark.stamp@sjsu.edu

AbstractIn this chapter, we use K-means clustering to analyze variousrelationships between malware samples. We consider a datasetcomprising 20 malware families with 1000 samples per family. Thesefamilies can be categorized into seven different types of malware. Weperform clustering based on pairs of families and use the results todetermine relationships between families. We perform a similarcluster analysis based on malware type. Our results indicate that K-means clustering can be a powerful tool for data exploration ofmalware family relationships.
1	 IntroductionPrevious research has demonstrated that it is possible in some casesto train a machine learning model to detect multiple malwarefamilies [3]. Speci�ically, neighborhood-based techniques are relativelyeffective in such a situation. Although support vector machines (SVM)did not perform well in this previous research, both k-nearest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_14
mailto:s97basole@gmail.com
mailto:mark.stamp@sjsu.edu

neighbors (k-NN) and random forest (RF) were able to distinguishmalware from benign with good accuracy, even when several malwarefamilies were combined to form the malware class.In this research, we consider the same dataset used in [3], whichincludes 20 malware families. Here, we apply cluster analysis to thesefamilies. Our goal is to determine whether we can discover interestingconnections, relationships, and differences between these variousfamilies, based on elementary clustering techniques. While [3]considers binary classi�ication experiments to distinguish malwarefrom benign, the research in this chapter is focused on a dataexploration problem. The features we use are byte n-gram frequencies,while the clustering method we consider is the well-known K-meansalgorithm.The remainder of this paper is organized as follows. In Sect. 2, weprovide relevant background information, including a brief discussionof related work. Then in Sect. 3, we give our experimental results andanalysis. Finally, Sect. 4 concludes this chapter, where we have includedsuggestions for future work.
2	 BackgroundIn this section, we �irst consider relevant related work. Then we discussour malware dataset, and we provide information on each family in thedataset. We also present the various metrics that we use in ourclustering experiments. Finally, we provide an introduction to the K-means clustering algorithm.
2.1	 Related	WorkIn [9], the authors use API calls to classify malware based on theirtypes. They consider a random forest (RF) classi�ier and achieve anaverage area under the ROC curve (AUC) of 0.98. In contrast, we use n-grams and a clustering approach, and we are considering a dataexploration problem, rather than a straightforward classi�icationproblem.The authors in [4] propose a clustering approach for malware,wherein the goal is to cluster samples based on similar behavior. Theseauthors use features such as system calls and network activity, to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Adload

Agent

Alureon

cluster malicious code based on its behavior. In contrast to thisprevious work, our cluster analysis is based on simpler and easier tocollect features and, again, we are in a data exploration mode ofoperation.The research in [10] uses BIRCH clustering based on static anddynamic features. These authors consider 18 families, but 12 of thosefamilies contain less than 100 samples each. Our approach uses alarger and balanced dataset for clustering.
2.2	 DatasetThe same dataset as used in [3] is considered in this research. Thisdataset includes 20 families, which we categorize into malware types,as listed in Table 1.
Table	1 Type of each malware family
Index Family Type Index Family Type0 Adload [18] Trojan Downloader 10 Obfuscator [27] VirTool1 Agent [19] Trojan 11 OnLineGames [13] Password Stealer2 Alureon [25] Trojan 12 Rbot [28] Backdoor3 BHO [21] Trojan 13 Renos [20] Trojan Downloader4 CeeInject [24] VirTool 14 Startpage [22] Trojan5 Cycbot.G [2] Backdoor 15 Vobfus [29] Worm6 DelfInject [11] VirTool 16 Vundo [30] Trojan Downloader7 FakeRean [26] Rogue 17 Winwebsec [31] Rogue8 Hotbar [1] Adware 18 Zbot [14] Password Stealer9 Lolyda.BF [12] Password Stealer 19 Zeroaccess [23] TrojanEach of the malware families in Table 1 is summarized below. downloads an executable �ile, stores it remotely, executes the�ile, and disables proxy settings [18].downloads Trojans or other software from a remoteserver [19].ex�iltrates usernames, passwords, credit card data, andother con�idential data from an infected system [25].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

BHO
CeeInject

Cycbot.G

DelfInject

FakeRean

Hotbar

Lolyda.BF

Obfuscator

OnLineGames

Rbot

Renos

Startpage

Vobfus

Vundo

Winwebsec

Zbot

can perform a variety of actions, guided by an attacker [21].uses advanced obfuscation to avoid being detected byantivirus software [24].connects to a remote server, exploits vulnerabilities, andspreads through backdoor ports [2].sends usernames, passwords, and other personal andprivate information to an attacker [11].pretends to scan the system, noti�ies the user of supposedissues, and asks the user to pay to clean the system [26].is adware that shows ads on webpages and installsadditional adware [1].sends information from an infected computer andmonitors the system. It can share user credentials and networkactivity with an attacker [12].tries to obfuscate or hide itself to defeat malwaredetectors [27]. steals login information of online games and tracksuser keystroke activity [13].gives control to attackers via a backdoor that can be used toaccess information or launch attacks, and serves as a gateway to infectadditional sites [28].downloads software that claims the system has spyware andasks for a payment to remove the nonexistent spyware [20].changes the default browser homepage and may performother malicious activities [22].is a worm that downloads malware and spreads through USBdrives or other removable devices [29].displays pop-up ads and may download �iles. It uses advancedtechniques to defeat detection [30].displays alerts that ask the user for money to �ixsupposed issues [31].is installed through email and shares a user’s personalinformation with attackers. In addition, Zbot can disable a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Zeroaccess
�irewall [14]. is a Trojan horse that downloads applications that clickon ads, thereby making money for the attacker [23]. The features we use for clustering are based on byte n-gramfrequencies. Speci�ically, we choose the top 20 byte n-grams, with , from our malware class. These frequency vectors are thennormalized, so that each vector can be viewed as a discrete probabilitydistribution. The resulting normalized bigram frequency vectors (oflength 20) form our feature set.Our experiments include clustering based on pairs of families,clustering selected families belonging to different malware types, andclustering families belonging to the same malware type. The number ofsamples of each of the seven malware types found in our dataset isgiven in Table 2. Note that we categorize “Trojan Downloader” as a typeof Trojan, giving us the seven distinct types listed in Table 2.
Table	2 Number of samples of each type
Malware	type SamplesVirTool 3000Password Stealer 3000Backdoor 2000Trojan 8000Worm 1000Rogue 2000Adware 1000
2.3	 MetricsIn this section, we discuss the metrics used to numerically evaluate ourclustering results. Note that we do not use accuracy, due to the label-switching problem that occurs when we attempt to apply this metric toclustering results [17].One popular choice for clustering is the so-called v-measure, whichis a robust metric for cluster evaluation—robust in the sense that a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

permutation of the cluster labels does not affect the score. The v-measure is de�ined as the harmonic mean between homogeneity (i.e.,the case where each cluster contains all points from a single class) andcompleteness (i.e., the case where all points from the same class are inone cluster) [8]. Another nice feature of this metric is that it issymmetric, in that it yields the same score if the predicted classes andthe true classes are switched. The v-measure ranges from 0 to 1.Although v-measure is a robust evaluation metric with manyadvantages, it is not the best choice for the research considered in thischapter. The v-measure is not normalized for random cluster results,hence it would tend to produce a higher score for random clusterassignments when a “large” number of clusters K is chosen, say, . In contrast, adjusted mutual information (AMI) results inrandom label assignments having a score close to 0, regardless of thesize of the dataset or the number of clusters.Another useful metric for clustering is the adjusted Rand index(ARI). The ARI is similar to AMI, in the sense that it is adjusted toaccount for chance. The Rand index is a similarity measure thatconsiders all pairs of samples and uses the number of pairwiseagreements in the true and predicted clusters. Speci�ically, the Randindex is calculated as [16]

where a, b, c, and d are de�ined as follows: If U and V are two differentpartitions or clusterings of the same data, then let a, b, c, and d be thenumber of objects determined by

The formula for ARI is calculated using the raw Rand index RI as [8]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

where E is the expected value operator.The authors in [15] state that AMI should be used when the trueclusters are unbalanced in size, while ARI should be used when the trueclusters are large and roughly equal-sized. In our research, the size ofthe ground truth for family labels is precisely balanced with 1000samples in each family. Thus, we use ARI to evaluate our clusteringpredictions.
2.4	 K-MeansIn this section, we �irst discuss a generic approach to clustering. Wethen consider how to implement such an approach, which leadsdirectly to the K-means algorithm.Suppose that we are given the n data points , whereeach of the is a vector of m real numbers. For example, we couldanalyze a set of malware samples based on, say, �ive distinct scores,denoted . Then each data point would be of the form
We assume that the desired number of clusters K is speci�ied inadvance and that we want to partition our n data points into K clusters. We also assume that we have a distance function that is de�ined for all pairs of data points.We associate a centroid with each cluster, where the centroid canbe viewed as representative of its cluster. Intuitively, a centroid is thecenter of mass of a cluster. We denote cluster j as with thecorresponding centroid denoted as . Note that in K-means, centroidsneed not be actual data points.Now, suppose that we have clustered our n data points. Then wehave a set of K centroids,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

and each data point is associated with exactly one centroid. Let denote the (unique) centroid of the cluster to which belongs. The centroids determine the clusters, in the sense thatwhenever we have
then belongs to cluster .Before we can cluster data based on the process outlined above, weneed to address the following two questions:1. How do we determine the centroids ? 2. How do we determine the clusters? That is, we need to specify thefunction , which assigns data points to centroids.This has the effect of determining the clusters.

There are many reasonable ways to answer these questions. Next,we consider an intuitively appealing approach that leads directly to the

K-means algorithm.Intuitively, it seems clear that the more “compact” a cluster is, thebetter. Of course, this will depend on the data points and the numberof clusters K. Since the data is given, and we are assuming that K hasbeen speci�ied, we have no control over the or K. But, we do havecontrol over the selection of the centroids and the assignment ofpoints to centroids via the function . The choice ofcentroids and the assignment of points to centroids will clearlyin�luence the compactness (i.e., “shape”) of the resulting clusters.Let (1)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Intuitively, the smaller the , the better, since a smaller implies that individual clusters are more compact.1For example, consider the data in Fig. 1, where the same data pointsare clustered in two different ways. It is clear that the clustering on theleft-hand side in Fig. 1 has a smaller than that on the right-hand side. Therefore, we would say that the left-hand clustering issuperior, at least with respect to the measure of .

Fig.	1 Smaller and larger for the same dataset
Suppose that we try to minimize the . First, we observethat depends on K, since more clusters imply morecentroids—in the limit, we could let , and make each data point acentroid, in which case the is 0. To emphasize thisdependence on K, we write . As mentioned above, weassume that K is speci�ied in advance.The problem we want to solve can be stated precisely as (2)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Condition	1

Condition	2

Step	1

Finding an exact solution to this problem is computationally infeasible.But, there is a simple iterative approximation that works well inpractice.We claim that a solution to (2) must satisfy the following twoconditions. Each is clustered according to its nearest centroid.That is, if the data point belongs to cluster , then for all , where the are thecentroids. Each centroid is located at the center of its cluster. To verify the necessity of Condition 1, suppose that is in cluster and that we have for some . Then by simplyreassigning to cluster , we will reduce . Condition 2also seems intuitively clear, and it is a straightforward calculusexercise to prove the necessity of this condition as well.Condition 1 tells us that given any clustering for which there arepoints that are not assigned to their nearest centroid, we can improvethe clustering by simply reassigning such data points to their nearestcentroid. Condition 2 implies that we always want a centroid to be atthe center of its cluster. Therefore, given any clustering, we mayimprove it—and we cannot make it worse—with respect to by performing either of the following two steps:
Assign each data point to its nearest centroid.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Step	2 Recompute the centroids so that each lies at the center of itsrespective cluster. It is clear that nothing can be gained by applying Step 1 more thanonce in succession, and the same holds true for Step 2. However, byalternating between these two steps, we obtain an iterative processthat yields a series of solutions that will generally tend to improve andcan never get worse with respect to . This is precisely the
K-means algorithm [7], which we state somewhat more precisely asAlgorithm 1.

The stopping criteria in Algorithm 1 could be that improves (i.e., decreases) by less than a set threshold, or that thecentroids do not change by much, or we could simply run the algorithmfor a �ixed number of iterations.Note that Algorithm 1 is a hill climb, and hence K-means is onlyassured of �inding a local maximum. And, as with any hill climb, themaximum we obtain will depend on our choice for the initialconditions. For K-means, the initial conditions correspond to the initialselection of centroids. Therefore, it can be bene�icial to repeat thealgorithm multiple times with different initializations of the centroids.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the experiments below, we use the K-means clustering algorithmto explore the natural formation of malware clusters. We employ elbowplots as a tool to discern structure from the 20 malware families basedon pairwise clusters. Next, we discuss elbow plots in this context.
2.5	 Elbow	PlotsSuppose that we graph the clustering error as a function of the numberof clusters, K. Then an “elbow” in this graph indicates the point whereadding another cluster does not signi�icantly improve the clusteringresults [5]. Such an elbow can be used to determine the (near) optimalnumber of clusters.We choose distortion and inertia for our elbow plots. Distortion iscalculated as the average of the squared Euclidean distances from eachpoint to the nearest centroid, whereas inertia is calculated as the sumof these same distances. For our experiments, elbow plots usingdistortion and inertia indicate that the clusters are not well formed,and thus, the number of clusters is somewhat subjective. From Fig. 2, itappears that should be good values for the number ofclusters, as the inertia and distortion only slightly decrease from thatpoint onward. In any case, these elbow plots clearly indicate that theoptimal number of clusters is less than 10, which is somewhatsurprising, given that we are dealing with 20 families. This is a strongindication that there is signi�icant similarity between some of thefamilies in our dataset.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Elbow plots
3	 Experiments	and	ResultsIn this section, we present results of three different sets of clusteringexperiments. First, we cluster each pair of malware families and showthat we can draw meaningful conclusions based on these clusteringresults. Then we consider clustering experiments where we restrictour attention to one family of each malware type under consideration.Finally, we consider clustering multiple families from the samemalware type.
3.1	 Clustering	by	FamilyIn this set of experiments, we perform clustering for each pair offamilies. Since there are 20 families, we have suchclustering experiments. In each case, the top 20 n-grams is extracted toform the features under consideration. Every sample in the twofamilies under consideration is then converted to a normalized vectorof n-gram frequencies. The resulting data is clustered using K-means,with .The results of these experiments consist of 190 ARI scores and 190confusion matrices. Representative examples of the resultingconfusion matrices are given in Fig. 3.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 Selected examples from the 190 pairwise confusion matricesEach of these 190 clustering experiments provides information onhow closely one family is related to another. From such results, we candeduce weak and strong links between malware family pairs. The 190ARI similarity scores are given in the form of a heatmap in Table 3.Note that the diagonal elements are 1 in every case, since the similaritybetween a family and itself is always 1. Also, the heatmap is symmetric,since the ARI similarity score is itself symmetric.Figure 4 gives the total pairwise ARI for each family in the form of abar graph. That is, each bar represents the sum of the 19 ARI scores of agiven family with all other families in our dataset. We refer to this sumas the total ARI.In Fig. 5 we give the average ARI for all pairwise clusters formedwith a given family. Based on the horizontal line at , we see that

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

there are four families with a high average ARI, that is, an ARI thatexceeds the line. This implies that when each of these fourfamilies is clustered against the other families, the ARI is, on average,particularly high. The four high-ARI families are BHO, Adload, Hotbar,and Vobfus. Note that these strong ARI results are also apparent fromthe total ARI scores in Fig. 4 and from the heatmap in Table 3.From Table 1, we see that Hotbar is the only adware in the datasetand Vobfus is the only worm. It is intuitive that these malware familieswould tend to stand out more from the other families, due to theirbeing of unique types, and would thus be easier to cluster. This isclearly indicated by the high-ARI results for Hotbar and Vobfus. On theother hand, BHO and Adload are both Trojans, which is the mostcommon type in our dataset. This result indicates that in spite ofAdload and BHO being Trojans, they contain byte bigram features thatare signi�icantly different from the other Trojans in the dataset, namely,Agent, Alureon, Renos, Startpage, Vundo, and Zeroaccess. It is alsointeresting that Adload and BHO are similar to each other, in the sensethat their pairwise clustering result is poor, as can be observed fromthe heatmap in Table 3.
Table	3 Heatmap of pairwise clustering ARI scores

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 Total ARI score (sum of 19 ARI scores) for each family

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Average ARI score for each familyTo further explore these high-ARI families, we provide graphsshowing the relationship strength of each with respect to all otherfamilies. To generate these graphs, we use the NetworkX library inPython. The resulting graphs are given in Figs. 6, 7, 8 and 9, where eachnode represents a family, with the node numbers corresponding to the“index” column in Table 1. In each of these �igures, the darkened nodecorresponds to the family mentioned in the caption. Also, a dotted edgebetween two nodes indicates an ARI score of 0.5 or less, while a solidline represents an ARI score greater than 0.5. The nodes are positionedby simulating a force-directed representation, based on theFruchterman–Reingold force-directed algorithm [6].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	6 Adload relationship with its paired families

Fig.	7 BHO relationship with its paired families

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	8 Hotbar relationship with its paired families

Fig.	9 Vobfus relationship with its paired familiesThese graphs help visualize how other families are related to thefour most-distinct families in our dataset. For example, Hotbar isalmost equally distinguishable from all other families. On the otherhand, Adload is distinguishable from all families except Vobfus and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

BHO. This means that Adload, BHO, and Vobfus are mostly similar toeach other, but highly distinguishable when clustered with otherfamilies in the dataset.It is also interesting to note that there are many families ourdataset with extremely poor pairwise clustering results. We see thatAgent, CeeInject, Cycbot, DelfInject, FakeRean, Obfuscator, Rbot, Renos,Vundo, Winwebsec, and Zbot all have average ARI scores below 0.23.This indicates that there is a large subset of the families that arevirtually indistinguishable from each other.
3.2	 Clustering	Families	of	Different	TypeIn this set of clustering experiments, we consider seven families, eachof which is of a different malware type. Speci�ically, the seven familiesconsidered, and their type, are the following:
Agent—Trojan
Ceeinject—VirTool
Cycbot—Backdoor
FakeRean—Rogue
Hotbar—Adware
Lolyda—Password Stealer
Vobfus—WormFigure 10 shows the results of clustering these seven families, eachof which belongs to a different malware type. We might expect well-de�ined clusters in this case, but the ARI score is only 0.23, suggestingthat a few families are still very similar, in spite of belonging todifferent malware types.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	10 Clustering using seven families from different malware typesThe results in Fig. 10 indicate that “type” is not a strong feature ofmalware. More speci�ically, we can say that the characteristics ofbigrams that distinguish one malware family from another are notstrongly type-dependent. This somewhat surprising result is useful,since it shows that attempts to identify malware by generic type are, ingeneral, unlikely to be successful, at least when the analysis is based onbyte bigram features. However, we note in passing that the authorsin [9] use API calls as features and appear to have successfullyclassi�ied selected malware by its type. Hence, it may be possible toobtain better results for malware type by using other features.
3.3	 Clustering	Families	of	the	Same	TypeIn this section, we conducted two experiments to examine how well K-means clustering can distinguish between families belonging to thesame malware type. Figure 11 illustrates the results of clustering fourfamilies, all of which are Trojans—the speci�ic families considered in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

this case are Agent, Alureon, BHO, and Startpage. This result suggeststhat there are three well-de�ined clusters among these four families.We obtain an ARI of 0.35 in this case, which, interestingly, is muchhigher than the result obtained for malware samples of different typesin the previous section.

Fig.	11 Clustering four Trojan families (Agent, Alureon, BHO, and Startpage)Next, we cluster the three VirTool families in our dataset, namely,CeeInject, DelfInject, and Obfuscator. In this, we obtain the results inFig. 12, which give us an ARI score of just 0.07. This number suggests arandom clustering result and implies that these VirTool families arevirtually indistinguishable, based on byte bigram features.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	12 Clustering VirTool families (DelfInject, CeeInject, and Obfuscator)The results in this section indicate that the Trojan type is generic, inthe sense that Trojan families can (and generally do) differ signi�icantlyfrom each other. This is not surprising, as Trojan code tends to bedominated by the non-malicious part of the application, which wouldbe expected to vary widely between different Trojan families.On the other hand, the VirTool type is highly speci�ic, which resultsin an inability to distinguish between these families. That is, theVirTool type is relatively homogeneous, making such samples dif�icultto distinguish from each other, even when they are from differentfamilies.
4	 Conclusion	and	Future	WorkThe goal of this research was to analyze malware clustering, withrespect to families and types, based on elementary features andclustering techniques. We considered three different sets ofexperiments. In our �irst set of experiments, we clustered all families inpairs. In our second set of experiments, we clustered seven families,with one family from each of the distinct types in our dataset. Finally,we conducted experiments where the clustered families all belong tothe same malware type. All of our experiments were based on K-meansclustering using byte bigram features.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Our �indings indicate that the relationship between malwarefamilies and malware type is somewhat complex. This is not entirelyunexpected, since some malware types, such as Trojans, are only veryloosely related, while other types, such as VirTool, are much morespeci�ic. Indeed, we did �ind that families of the Trojan type were fareasier to distinguish from each other based on clustering, as comparedto VirTool families.More generally, our pairwise clustering results—and, in particular,the heatmap of ARI scores generated from these pairwise clusters—enabled us to draw many conclusions concerning similarities anddifferences between families. We were able to clearly see whichfamilies were most distinct from all other families, and which subsetsof families were the most similar to each other. These results show thatelementary cluster analysis is extremely useful for exploringrelationships between malware families and that such analysis couldserve as a guide for additional (and more costly) analysis of a givenmalware dataset.In this chapter, we performed cluster analysis to examine therelationship between malware families. Our focus was clustering using
K-means and byte bigram features. For future work, it would beinteresting to consider larger numbers of clusters and to explore otherclustering techniques, including Gaussian mixture models, hierarchicaltechniques, spectral clustering, and density-based clustering. While K-means can be viewed as generating “circular” or “spherical” clusters,other techniques can produce clusters of more general shapes. Inaddition, it would be interesting to experiment with other features,such as opcodes and API call sequences.
References1. Adware:win32/hotbar. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Adware: Win32/ Hotbar& threatId= 6204.2. Backdoor:win32/cycbot.g. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Backdoor: Win32/ Cycbot. G.3. Basole, Samanvitha, Fabio Di Troia, and Mark Stamp. 2020. Multifamily malware models.

Journal	of	Computer	Virology	and	Hacking	Techniques 16 (1): 79–92.[Crossref]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Hotbar&threatId=6204
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Cycbot.G
https://doi.org/10.1007/s11416-019-00345-8

4. Bayer, Ulrich, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and EnginKirda. 2009. Scalable, behavior-based malware clustering. In NDSS, vol. 9, 8–11.5. Bholowalia, Purnima, and Arvind Kumar. 2014. EBK-means: A clustering technique based onelbow method and -means in WSN. International	Journal	of	Computer	Applications 105 (9).
6. Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network structure,dynamics, and function using networkx. In Proceedings	of	the	7th	python	in	science

conference,	SciPy	2008, 11–15. http:// citeseer. ist. psu. edu/ viewdoc/ download;jsessionid= 045872D50E1F4721 50E79500F79F4B93 ? doi= 10. 1. 1. 522. 2540& rep= rep1& type= pdf.7. Moore, Andrew W. -means and hierarchical clustering. https:// www. cs. cmu. edu/ ~cga/ ai-course/ kmeans. pdf.8. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in python. Journal	of	Machine
Learning	Research 12: 2825–2830.[MathSciNet][zbMATH]9. Pirscoveanu, Radu S., Steven S. Hansen, Thor M.T. Larsen, Matija Stevanovic, Jens MyrupPedersen, and Alexandre Czech. 2015. Analysis of malware behavior: Type classi�ication usingmachine learning. In 2015	International	conference	on	cyber	situational	awareness,	data
analytics	and	assessment	(CyberSA), 1–7.10. Pitolli, Gregorio, Leonardo Aniello, Giuseppe Laurenza, Leonardo Querzoni, and RobertoBaldoni. 2017. Malware family identi�ication with birch clustering. In 2017	International
Carnahan	Conference	on	Security	Technology,	ICCST, 1–6.11. Pws:win32/del�inject. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS: Win32/ DelfInject& threatId= -2147241365.12. Pws:win32/lolyda.bf. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS%3AWin32%2FLolyda. BF.13. Pws:win32/onlinegames. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS%3AWin32%2FOnLineGames.14. Pws:win32/zbot. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS: Win32/ Zbot& threatId= -2147368817.15. Romano, Simone, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. 2016. Adjusting forchance clustering comparison measures. The	Journal	of	Machine	Learning	Research 17 (1):4635–4666.16. Santos, Jorge M., and Mark Embrechts. 2009. On the use of the adjusted rand index as a metricfor evaluating supervised classi�ication. In International	conference	on	arti�icial	neural
networks, 175–184.17. Stephens, Matthew. 2000. Dealing with label switching in mixture models. Journal	of	the	Royal
Statistical	Society:	Series	B	(Statistical	Methodology) 62 (4): 795–809.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://citeseer.ist.psu.edu/viewdoc/download%3Bjsessionid=045872D50E1F472150E79500F79F4B93?doi=10.1.1.522.2540&rep=rep1&type=pdf
https://www.cs.cmu.edu/%257ecga/ai-course/kmeans.pdf
http://www.ams.org/mathscinet-getitem?mr=2854348
http://www.emis.de/MATH-item?1280.68189
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/DelfInject&threatId=-2147241365
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%253AWin32%252FLolyda.BF
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%253AWin32%252FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/Zbot&threatId=-2147368817

1

[MathSciNet][Crossref]18. Trojandownloader:win32/adload. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader %3AWin32%2FAdload.19. Trojandownloader:win32/agent. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader : Win32/ Agent& ThreatID= 14992.20. Trojandownloader:win32/renos. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader : Win32/ Renos& threatId= 16054.21. Trojan:win32/bho. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Trojan: Win32/ BHO& threatId= -2147364778.22. Trojan:win32/startpage. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Trojan: Win32/ Startpage& threatId= 15435.23. Trojan.zeroaccess. https:// www. symantec. com/ security-center/ writeup/ 2011-071314-0410-99.24. Virtool:win32/ceeinject. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= VirTool%3AWin32%2FCeeInject.25. Win32/alureon. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Alureon.26. Win32/fakerean. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ FakeRean.27. Win32/obfuscator. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Obfuscator& threatId= .28. Win32/rbot. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Rbot& threatId= .29. Win32/vobfus. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Vobfus& threatId= .30. Win32/vundo. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Vundo& threatId= .31. Win32/winwebsec. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Winwebsec.
FootnotesIn addition to having compact clusters, we might also want a large separation between clusters.However, such separation is not (directly) accounted for in K-means.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.ams.org/mathscinet-getitem?mr=1796293
https://doi.org/10.1111/1467-9868.00265
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%253AWin32%252FAdload
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Agent&ThreatID=14992
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435
https://www.symantec.com/security-center/writeup/2011-071314-0410-99
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%253AWin32%252FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Alureon
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Obfuscator&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Rbot&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vobfus&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vundo&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Winwebsec

 https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_15
Beyond	Labeling:	Using	Clustering	to
Build	Network	Behavioral	Pro�iles	of
Malware	FamiliesAzqa Nadeem1 , Christian Hammerschmidt1 , Carlos H. Gañán1 and Sicco Verwer1 Delft University of Technology, Delft, The Netherlands
Azqa	Nadeem	(Corresponding	author)
Email:	azqa.nadeem@tudelft.nl
Christian	Hammerschmidt
Email:	c.a.hammerschmidt@tudelft.nl
Carlos	H.	Gañán
Email:	c.hernandezganan@tudelft.nl
Sicco	Verwer
Email:	s.e.verwer@tudelft.nl

AbstractMalware family labels are known to be inconsistent. They are alsoblack-box since they do not represent the capabilities of malware. Thecurrent state of the art in malware capability assessment includesmostly manual approaches, which are infeasible due to the ever-increasing volume of discovered malware samples. We propose a novelunsupervised machine learning-based method called MalPaCA, whichautomates capability assessment by clustering the temporal behaviorin malware’s network traces. MalPaCA provides meaningful behavioralclusters using only 20 packet headers. Behavioral pro�iles are

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_15
mailto:azqa.nadeem@tudelft.nl
mailto:c.a.hammerschmidt@tudelft.nl
mailto:c.hernandezganan@tudelft.nl
mailto:s.e.verwer@tudelft.nl

generated based on the cluster membership of malware’s networktraces. A Directed Acyclic Graph shows the relationship betweenmalwares according to their overlapping behaviors. The behavioralpro�iles together with the DAG provide more insightfulcharacterization of malware than current family designations. We alsopropose a visualization-based evaluation method for the obtainedclusters to assist practitioners in understanding the clustering results.We apply MalPaCA on a �inancial malware dataset collected in the wildthat comprises 1.1 k malware samples resulting in 3.6 M packets. Ourexperiments show that (i) MalPaCA successfully identi�ies capabilities,such as port scans and reuse of Command and Control servers; (ii) Ituncovers multiple discrepancies between behavioral clusters andmalware family labels; and (iii) It demonstrates the effectiveness ofclustering traces using temporal features by producing an error rate of8.3%, compared to 57.5% obtained from statistical features.
1	 IntroductionThe �irst malware was discovered over thirty years ago. Yet, it is stillone of the leading threats in cybersecurity.1 AV-test, a security researchinstitute, reported detecting over 1000 Million malware samples in2019.2 Anti-Virus (AV) companies play a pivotal role in analyzingmalware by assigning labels to newly discovered samples. However,there are several shortcomings of malware family labels: (i) Eachvendor has its own way of determining a malware family. Labelsobtained from different vendors are often inconsistent [29]. (ii) Theprecise methods used by each vendor are proprietary andunstandardized [49]. (iii) The current labels are heavily based on staticand system-level activity analysis. The problem is that malware familylabels do not represent the capabilities of malware samples. The black-box (unexplainable) nature of the labeling methods also makes itimpossible to verify assigned family labels, causing the evaluation ofnewer detection methods to depend on unreliable ground truth [33].Moreover, network traf�ic is rarely used to determine family labelsbecause of noisy ground truth and non-stationary data distribution [3].As a result, malware samples that exhibit identical network behavior

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

but have different code attributes end up in different families, see, e.g.,Perdisci et al. [44].In this chapter, we address the limited interpretability of malwarefamily labels by proposing white-box3 behavioral pro�iles for malwaresamples. Existing research suggests that network traf�ic showsmalware’s core behavior by capturing direct interactions with theattacker or C&C server [14]. Network traf�ic analysis can also beperformed remotely, which presents a lower overhead than manypopular system-activity solutions. Therefore, we place emphasis inbuilding network behavioral pro�iles. To this end, we propose MalPaCA(Malware Packet Sequence Clustering and Analysis) for automatedcapability assessment of malware samples. The goal of Capability
Assessment is to discover the behaviors a malware sample can exhibit.We investigate the usage of unsupervised machine learning forintelligent capability assessment to tackle the ever-increasing volumeof newly discovered malware.Until now, malware capability assessment has primarily been amanual effort [11, 40, 50], resulting in behavioral pro�iles that arequickly outdated. Although machine learning-based behavioralanalysis approaches exist, they construct a single model that describeseither the whole network or each protocol usage individually [47].However, the network traf�ic originating from even a single host can beso complex that these models fail to correctly represent maliciousbehaviors [23]. This is why MalPaCA splits the network traf�ic betweenhosts into uni-directional	connections and considers them as discretebehaviors (or capabilities).MalPaCA clusters similar connections based on their temporalsimilarity, where each cluster represents a unique capability. Amalware sample is then represented by its Behavioral	Pro�ile—a list ofcluster membership of its connections. We represent malware’sbehavioral pro�iles in a Directed Acyclic Graph that shows differentsamples’ overlapping behaviors. The graph also shows malwaresamples from different families behaving identically, showingpotentially incorrect family labels. MalPaCA is novel as it adoptssequential features that keep the temporal nature of the traf�ic intact. Ituses a combination of Dynamic Time Warping and Ngrams to measurethe distance between network connections. MalPaCA utilizes only 20

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

packets to identify the network behavior shown by any givenconnection. It also utilizes only the packet header features that areavailable even when traf�ic is encrypted.The last step of MalPaCA’s pipeline is assigning capability labels toclusters. Each discovered cluster is visualized using temporal	heatmapsto determine which capability it captures. The temporal heatmapsprovide a goal- and data-driven approach to investigate theperformance of MalPaCA’s clustering, by clearly showing the networkconnections that are grouped together. This eliminates the need tomanually investigate thousands of network traces. Security analystscan also �ine-tune MalPaCA’s parameters by visualizing the temporalheatmaps. The key advantage of this methodology is its white-box andexplainable nature: it provides a visual representation to investigateMalPaCA’s rationale for �inding behavioral similarity. In doing so, weaddress the interpretability problem of typical black-box analysismethods, which is an important stepping stone towards betterdetection methods.We evaluate MalPaCA’s performance on 1.1 k malware samples(resulting in 3.6 M packets) coming from 15 families collected in thewild. We also compare the effectiveness of sequence clustering bycomparing with an existing method based on frequently-usedstatistical (aggregate) features [54].
Results. The results are very promising: (i) MalPaCA’s capabilityassessment works on low quality datasets with as low as 20 packets ineach trace, though additional traces result in more thorough pro�iles;(ii) It successfully discovers several attacking capabilities, such as portscans and reuse of C&C servers; (iii) MalPaCA demonstrates theeffectiveness of sequence clustering by producing an error rate of 8.3%compared to 57.5% obtained from statistical features; and (iv)MalPaCA uncovers multiple discrepancies between behavioral clustersand family labels. We believe this happens either because the labels areincorrect or because the overlapping families share signi�icantbehavior.
Contributions. We summarize our contributions as follows:1. We show that short sequences of packet header features arecapable of characterizing network behavior;

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2. We build MalPaCA4—a tool to automatically build networkbehavioral pro�iles of malware samples collected in the wild; 3. We introduce temporal	heatmaps—a data-driven andvisualization-based cluster evaluation method that requires noground truth;
4. We show the behavioral relationships between malwares using aDirected Acyclic Graph, which also uncovers discrepanciesbetween behavioral clusters and traditional family labels;
5. We demonstrate the effectiveness of sequence clustering, whichshows less errors than an existing solution based on statisticalfeatures.
2	 The	Problem	with	AV	LabelsThis section presents an analysis of our experimental dataset toemphasize the problem of inconsistent AV labels and motivates theneed for explainable behavioral pro�iles. We compare the agreement
rate of two popular malware labeling practices, i.e., YARA rules5 andVirusTotal6 labels. The malware collection process is given in Sect. 5.1.Table 2 shows the number of binaries in each malware family.The malware binaries in the dataset are labeled using YARA rules.Each malware binary also has a Virus Total (VT) scan report. Onaverage, there are 61 AV vendors for each malware sample, out ofwhich 25.8% vendors per malware sample return a null detection, i.e.,unable to detect it as malicious. The rest assign various labels to eachmalware binary.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 Disagreements between AV vendors. Rows: YARA labels, Columns: AVClass labels, Counts: #malware binariesSince each AV vendor has its own vocabulary, a trivial �ilteringattempt on a VT report cannot identify the true underlying family label.Sebastian et al. [49] have developed an open source tool, called AVClass,that takes VT reports as input and returns the most likely family label.If, after all the �iltering steps, AVClass is unable to identify the familyname, it declares the malware as a “SINGLETON”. We use AVClass toreduce a VT report into its representative VT family label. In theexperimental dataset, AVClass returns “SINGLETON” for 101/1196(8.4%) VT reports, while assigning 42 unique family labels to the rest1095 malware binaries.Figure 1 shows the label agreement rate between the YARA and VTlabels. The y-axis shows the YARA labels. The x-axis shows the VT labelsas aggregated by AVClass. For brevity, “OTHERS” category contains all

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

samples for which . Only 3 family names co-exist in bothYARA and VT labels, i.e., Citadel, Gozi, and Ramnit. Also, although
Ramnit is detected under the same name by both YARA and VT, 10malware samples are still labeled differently. In fact, YARA family labelsare assigned 4.2 distinct VT labels on average, while VT labels areassigned 1.5 distinct YARA labels on average. One exampledemonstrating this is: YARA: Zeus-VM-AES (29 samples) arepredicted as VT: razy (10 samples), gamarue (6 samples), cerber (3samples), upatre (3 samples), farfli (1 samples), locky (1samples), hpcerber (1 samples), and SINGLETON (4 samples). Thismakes it very hard to understand the collected malware. One fairconclusion is that some VT labels can be considered as sub-families ofthe popular YARA malware family. For example, Dinwod and Banbraseem to be sub-families of Blackmoon, but the names alone do notexplain which attributes set them apart from each other.
3	 Related	WorkThe �ield of malware analysis has existed since the �irst malware wasdiscovered over 30 years ago. Since then, multiple machine learning-based approaches have been proposed to automate malware detectionand analysis. In this section, we present a brief survey of the majorresearch challenges targeted by prior work. In doing so, we highlighthow our work �ills the gaps across various research themes.
3.1	 Challenges	in	Malware	LabelingExisting research has repeatedly shown that malware family labels arenoisy and inconsistent. Popular tools, such as VirusTotal, run multipleAV scanners and return an array of labels predicted by each scanner,without any indication as to which is correct. There is also an absenceof a common vocabulary that all security companies can follow to labelmalware samples. Maggi et al. [37] propose a method to �indinconsistencies in malware family labels generated by Anti-Virus (AV)scanners. Mohaisen et al. [38] are the �irst to measure the accuracy,consistency, and completeness of AV scanners. Their results show thatAV vendors produce inconsistent labels 50% of the time, on average.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

These �indings resulted in research that found ways to deal with theinconsistencies in the family labels. Kantchelian et al. [29] proposed analgorithm based on Expectation Maximization and Bayesian modelsthat assign weights to each vendor’s trustworthiness. Sebastián etal. [49] developed a useful open source tool, called AVClass thatdetermines the likely family name after performing heavy �iltering onall the predicted labels. However, these methods do not address the keyunderlying issue—malware family labels are black-box with limitedinterpretability.
Behavioral	pro�iles complement family names in that they alsodescribe the behavior of a sample. Capability	assessment is done tocharacterize a malware family, which has primarily been a manualeffort resulting in behavioral pro�iles that are quickly outdated. Also,most of the prior works in capability assessment utilize informationextracted from the static analysis of malware executables: Black etal. [11] bridge the semantic gap between low-level API calls and high-level behaviors in order to build a taxonomy of banking malware. Theyextract API calls by statically analyzing a banking malware dataset, andmap them to high-level behaviors manually with the help of domainexperts. Sharma et al. [50] recently proposed a method toautomatically build behavioral pro�iles. They select a few high-levelcapabilities possessed by malware by investigating the literature, andmap them to low-level behaviors extracted from the static analysis of56 malware samples. In	contrast,	we	propose	MalPaCA	that

automatically	builds	dynamic	(network)	behavioral	pro�iles.

3.2	 Research	Objectives:	Detection	Versus	AnalysisExisting research on malware comes in two strains: detection-basedand analysis-based. Malware detection and signature generationdominates existing literature, with the end-goal of optimizingmetrics [1, 2, 7, 10, 17, 24, 35, 36, 39, 44, 46, 54, 60], while only a few ofthese works also help the readers understand and analyze the obtainedresults [23, 43]. Recently, however, several malware analysisapproaches have been proposed that aim to improve malwareunderstandability rather than optimizing detection rates. Thesemethods provide essential insights that can improve malwaredetection methods. Black et al. [11] perform an in-depth analysis of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

key behaviors of banking malware families and how they have evolvedover time. Moubarak et al. [40] discuss malware evolution and thestructural relationship between several potentially state-sponsoredmalware. In [51], the authors cluster Android malware samples andbuild a dendrogram of the malware families showing overlapping codesnippets. Sharma et al. [50] build behavioral pro�iles of malwaresamples using static analysis. In	this	chapter,	we	follow	a	similar
approach	and	build	an	analysis	tool,	MalPaCA.	MalPaCA	uses
unsupervised	clustering	to	group	network	connections	that	behave
similarly	and	uses	them	to	construct	malware’s	behavioral	pro�iles.Although clustering is an unsupervised technique, existingliterature has often used some notion of ground truth (family labels) toevaluate the cluster quality. Bayer et al. [7] evaluate their malwareclustering approach using labels obtained by the majority voting of 6AV vendors. Perdisci et al. [44] evaluate their malware clusteringapproach by introducing a notion of AV graphs that depict theagreement between AV vendors as a measure of cluster cohesion andseparation. In [35], the authors report the precision and recall of higherthan 0.95 of their malware clustering approach. They use the majorityvoted family labels from 25 AV vendors as their ground truth. Li etal. [33] have examined the challenges of evaluating malware clusteringand have advised caution when deciphering highly accurate clusteringresults as they can be impacted by spatial bias: performing majorityvoting on AV-provided labels is hazardous, since if most of the AVvendors are in agreement, it typically indicates that the families arealready easy to detect. In	this	chapter,	we	propose	a	data-driven	and
visualization-based	method	to	evaluate	clusters,	without	using	family
labels.	Instead	of	optimizing	clustering	accuracy,	our	emphasis	is	on
explainability	of	the	results.

3.3	 Challenges	in	Malware	Behavior	ModelingModeling software behavior is a challenging task, but modelingmalware’s behavior is even more challenging since malware authorsspeci�ically try to evade detection [15]. Static analysis of malwarebinaries and disassembled code has been a popular malware analysisapproach in the literature [6, 11, 21, 35, 39]. Increasingly moremalware uses obfuscation techniques to evade analysis, causing

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

dif�iculties for statically analyzing malware. The obfuscation attemptsgave rise to dynamic analysis of malware that executes a malwaresample in a sandbox and collects execution traces from it. Dynamicanalysis is generally divided into two strains: System activity andNetwork traf�ic analysis. Network traf�ic analysis collects traces ofmalware samples remotely using existing network monitoringinfrastructures [44], making it much easier to apply. However, thebehavioral analysis and signature generation literature is heavilyfocused on system activity analysis, e.g., see [7, 16, 50, 52]. Researchsuggests that network traf�ic shows the core behavior of malware [14].Although sometimes encrypted, network traf�ic contains the directinteraction with the attacker. In this section, we discuss three majorchallenges of modeling malware behavior via traf�ic analyses.
Feature	selection. Network traf�ic analysis is generally appliedwhen designing Network Intrusion Detection Systems (NIDS), whicheither detect anomalous traf�ic [24] or generate signatures formalware families [22, 26, 55]. Deep Packet Inspection (DPI) is onecommonly used approach in NIDS to extract information from packetpayloads. For example, Ra�ique et al. [46] use DPI for automaticsignature generation of malware families. Although effective,downsides to DPI-based approaches are that they are privacy-intrusive, operationally expensive, and do not work out-of-the-box forencrypted traf�ic. There are also approaches that detect speci�icattacks. For example, HTTP-based malware can be detected usingspeci�ic features from the Application header [44]. Similar approachesexist for DNS-based malware [32, 45], and HTTPs-based malware [4].In the absence of the HTTP, DNS, and TLS headers, these approachesseize to work.Several works use coarse or high-level features that are protocol-agnostic and work out-of-the-box even with encrypted traf�ic. Forexample, Conti et al. [17] use sequences of packet sizes to characterizethe network behaviors generated by Android applications. Aiolli etal. [2] use various statistical features computed over packet sizes todetect bitcoin wallet application functionality. Acar et al. [1] usenetwork traf�ic direction and packet lengths to identify commandsissued to smart home IoT devices. These works aim to characterizebenign network behaviors. In the malware domain, Tegeler et al. [54]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

use average packet size, average packet inter-arrival time, averageconnection duration, and the FFT of C&C communication to detect bot-infected hosts. Garcia [23] builds a behavioral Intrusion DetectionSystem by using the size, duration, and periodicity of Net�lows. In	this
chapter,	we	also	use	high-level	features	from	packet	headers	to
characterize	malware’s	network	behavior.	To	the	best	of	our	knowledge,
network	traf�ic	analysis	has	not	been	used	in	capability	assessment	or	for
generating	behavioral	pro�iles	of	malware	samples.

Feature	representation. Machine learning methods take a featurevector as input, which can represent anything ranging from a singlebehavior to a complete malware sample. Multiple observations for asingle feature are aggregated into statistical	features, e.g., mean packetsize of a net�low. Existing literature is �illed with approaches that usesuch statistical features, e.g., see [5, 10, 23, 54]. Although they arecomputationally ef�icient, they lose local behavioral details, which canbe a problem when the goal is to characterize that behavior.Another approach that is gaining momentum is the use of
sequential	features. Numeric sequential features are typically used intwo ways: Discretized and Raw	sequences. A raw sequence (or acontinuous sequence) is composed of the original observations, whilea discretized sequence encodes the observations into a �inite set ofbins. Discretizing sequences is typically faster and makes measuringdistances easier. Pellegrino et al. [43] learn state machines fromdiscretized net�low data in order to detect bot-infected traf�ic, whileHammerschmidt et al. [27] use it to cluster host behavior over time.Lin et al. [36] detect anomalies in industrial water treatment plant byusing discretized sequences from sensor readings. In practice,malware-related data is often scarce and noisy. In this case,discretization can lose important information.Raw sequences are rarely used for modeling network traf�icbecause it is non-stationary and contains noise (e.g., emptyacknowledgment packets or retransmissions), and delays (due tovarying network latency) [3]. Ntlangu et al. [41] provide a briefoverview of time-series approaches to model network traf�ic. As notedin [41], due to the nature of network traf�ic and their distributions,(auto-)regressive models struggle to accurately capture them. Kim etal. [30] use a multi-variate time-series regression model on host-based

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

resource consumption, such as CPU and memory usage (not networktraf�ic) to identify Android malware. Conti et al. [17] propose a methodto detect the action performed by Android applications using rawsequential features. To	the	best	our	knowledge,	MalPaCA	is	the	�irst
method	that	successfully	uses	short	raw	sequential	features	to
characterize	malware	network	behavior.

Distance	measure. The notion of behavioral similarity requiresthe means to be able to measure distance between two objects. Thechoice of the distance measure is directly dependent on the data typeof the feature set (e.g., numeric or categorical) and the way the featuresare represented (e.g., statistical or sequential). For statistical features,Euclidean distance is most commonly used. For instance, Chan etal. [16] use Euclidean distance to determine similar Android processes.Calculating the distance between sequential features is morechallenging because they may not always be properly aligned. Forcategorical (or discretized) sequences, there exist Bioinformaticsinspired solutions using sequence alignment [57]. They require pre-computed substitution matrices, which currently do not exist formalware. There also exist String matching solutions frequently used inthe Natural Language Processing domain. Baysa et al. [8] useLevenshtein, or edit distance, to measure the similarity between twomalware binary �iles. A sequence can also be broken down into sub-sequences, represented as Ngrams, which have been used to modelgenomic sequences [58] and to match �iles [34]. They have also beenused to classify malware families in [13]. Longest CommonSubsequence (LCS) with k-gaps can also be used to measure distancesbetween sequences. The gaps account for the occasional noise. Chan etal. [16] use LCS to group similar resource-access-patterns (notnetwork traf�ic) in Android applications.A few distance measures exist for raw or continuous sequences.Verwer et al. [56] have used Kullback–Leibler divergence to measurethe distance between two sequences while learning probabilisticautomata. However, it requires substantial amount of data to measurethe similarity with a high con�idence, which is not always available formalware. Another promising distance measure is Dynamic TimeWarping (DTW). DTW has been used in �ingerprint veri�ication [31],characterizing DDoS attack dynamics [59], and measuring similarity in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

android application behavior [17]. MalPaCA	uses	a	combination	of	DTW
and	Ngrams	to	measure	the	distance	between	network	connections.

4	 MalPaCA:	Malware	Packet	Sequence
Clustering	and	AnalysisThe ultimate goal of MalPaCA is to construct a behavioral pro�ile foreach malware sample that is more descriptive than its family label.Research shows that malware belonging to the same family exhibitssimilar behaviors since malware authors often share code andresources [53]. To this end, MalPaCA automatically identi�ies thevarious network behaviors exhibited by malware samples, and groupssamples that share common behavior. MalPaCA does not assume any apriori knowledge about the malware’s family name or its capabilities,and hence can be used out-of-the-box for other malware datasets. Thepro�iles are built using observed behavior since only the executedfunctionality is relevant for behavioral pro�iling. Pro�iles for individualfamilies can be enriched further by observing additional traf�ic. Werelease MalPaCA to the public.7

Fig.	2 MalPaCA: Connections clustered on behavioral similarity; malware described usingconnections’ cluster membershipFigure 2 illustrates the architecture of MalPaCA with its �ive phases(P1 to P5). Network traces (Pcap �iles) are given as input to the system,which are split into uni-directional packet streams (or connections)that are clustered based on temporal similarities. Each cluster isassigned a capability label by visualizing temporal heatmaps showing

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

connections’ feature values. Each malware sample (and its associatedPcap �ile) is then described by a Cluster	Membership	String, forming adescriptive behavioral pro�ile.
4.1	 Connection	Generation	(P1)A connection is de�ined as an uninterrupted uni-directional list of allpackets sent from source IP to destination IP address. This means8.8.8.8 123.123.123.123 is a different connection than123.123.123.123 8.8.8.8. We refer to these as Outgoing and Incomingconnections based on their direction with respect to the localhost.Note that we do not use IP address as a feature, except to createconnections.Ideally, a connection captures one complete capability. Theconnection length can vary signi�icantly depending upon the behaviorand network delays. Since the network delay is an artifact of thenetwork, not of the malware, it is important to reduce its impact whenmeasuring behavioral similarity. MalPaCA does so by capping thesequence length to a �ixed threshold, avoiding artifacts that are due toconnection length.Existing research suggests that it is possible to identify behavioraldifferences from a handshake.8 Wang et al. [61] use the �irst 3 to 12bytes of packet headers in order to identify the different so-calledProtocol Format Messages. MalPaCA builds upon this idea and utilizesthe �irst few packets of a connection to identify the capability. This is a�ixed threshold denoted by the tunable parameter len. It should be largeenough to allow the handshake to be modeled, the length of which isoften unknown in network traf�ic analysis. Larger values of len not onlyinclude noise artifacts but also increase the computational resourcesrequired to process longer connections.
4.2	 Feature-Set	Extraction	(P2)The choice of feature-set is crucial for determining the kind ofbehaviors that are identi�ied by MalPaCA. Two considerations motivateour choice: (1) MalPaCA should be generalizable to more than one typeof malware; (2) The feature set is small and easy to extract. Hence, wedo not use features extracted from the packet payload itself as theylimit the applicability of the method. We also do not use IP addresses as

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

they are easy to spoof and are considered Personally Identi�iableInformation9 in countries like the Netherlands. We use four sequentialfeatures: (i) packet size, (ii) time interval, (iii) source port, (iv)destination port. All four features are independent of the protocol type,making them available for every connection. Each feature isrepresented as a sequence of raw observations for subsequent packets.Although these features are simplistic, we demonstrate that theirsequential nature captures malware behavior effectively.
Packet	size	() measures the size of the IP	datagram of eachpacket in bytes. Time	interval	() captures the inter packet arrivaltime in milliseconds. We use time interval because malware tends toshow a periodic behavior, e.g., bots send periodic heartbeat packets10to inform the C&C server about the infected host. MalPaCA is meant tobe used on a single network at a time since using inter-arrival timemakes connections collected on different latency networksincomparable.We use both source	() and destination	()	port	numbersbecause the connections are uni-directional. We particularly usesource port so the analysts can limit the use of problematic ports incase of outgoing connections. The usage of certain vulnerable ports canalso indicate suspicious activity. Each connection is represented byfour sequences, one per feature, .

4.3	 Distance	Measure	(P3)Three considerations motivate our choice of distance measure: (1)Different distance measures are applicable on numeric and categoricaldata types; (2) The distance measure should be intuitive to helpunderstand the results; (3) It must produce results that are resilient todelays and noise, which are common characteristics of network traces.The last consideration was added after observing distance measuresproducing results that were artifacts of network delays. MalPaCA uses acombination of Dynamic Time Warping (DTW) and Ngram analysis tomeasure distance between two connections.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Dynamic	Time	Warping. DTW [9] is used to measure distancesbetween numeric sequences (packet size and time interval) due to itsrobustness to delays and noise. It aligns two time-series that maycontain distortions (or warps) in the time-axis. It maps localsubstructures in one sequence to those of the other sequence. For twosequences and the DTWdistance is
(1)

The output is a similarity score, which we normalize using: (2)
Ngram	analysis. An Ngram is de�ined as the set of n (called order)consecutive items in a given sequence. The larger the value of order,the more sequence structure is captured. A sequence of port numbersis converted into a set of Ngrams, called its Ngram	pro�ile using asliding window of length order. An example for is shown inTable 1, where A, B, C, D are hypothetical port numbers. Let G be the setof all unique Ngrams occurring in the dataset. For each packetsequence a, a vector isgenerated, containing the occurrence frequencies in a of eachNgram .
Table	1 Example—Distance measurement using Ngram analysis
Input Ngram	pro�iles G	 	[AB,	BC,	CB,	DA,	CA] Cosine	distance

ABCBC AB, BC, CB, BC [1, 2, 1, 0, 0] 0.3876
DABCA DA, AB, BC, CA [1, 1, 0, 1, 1]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We measure the distance between two Ngram pro�iles using Cosinedistance. Other distance measures exist for Ngrams, but Cosine hasshown promise in measuring similarity between categoricalsequences [63]. It is determined by the angle between two non-zerovectors. The similarity value lies between 0 and 1, where 1 means thatthe two vectors are the same (parallel to each other) and 0 means theyare completely different (orthogonal to each other). For two sequencesin their vector representations and ,the Cosine distance is
(3)

Finally, the DTW and cosine distances are combined to calculate the�inal distance between two connections: (4)where and areconnections and their features: packet sizes , intervals ,source port Ngram pro�iles , and destination port Ngrampro�iles .
4.4	 HDBScan	Clustering	(P4)A key strength of MalPaCA is the clustering algorithm it uses. Thereexists a familial structure among malware behaviors [51, 55].Therefore, it makes sense to use hierarchical clustering to model therelationships between them. We have used Hierarchical Density-BasedSpatial Clustering of Applications with Noise (HDBScan) [12] for thispurpose. The key strengths of HDBScan are twofold: it automaticallydetermines the optimal number of clusters, and it generates high-quality clusters that remain stable over time. It also has minimaltunable parameters, which allow con�igurations to be generalizable.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

HDBScan requires a pairwise distance matrix as input. It does notforce data points to become part of clusters—all data points whosemembership to a cluster cannot be determined are considered to be
noise. In our context, noise refers to behaviors that are either toodifferent from all the others or cannot be clearly assigned to onecluster. An ideal dataset with clear cluster boundaries will have nonoise. Hence, in the presence of a less ideal dataset, noise is discardedto extract high-quality clusters. Keep in mind that discarding excessiveconnections as noise can also be counterproductive. We discuss thislimitation in Sect. 8.
4.5	 Cluster	Visualization	(P5)Formalizing cluster quality without ground truth is a fundamentalchallenge in clustering. Although some metrics exist that capturecluster quality (i.e., Silhouette index [48] and DB Index [18]), theyrequire a notion of distance from a cluster centroid, which is dif�icult toobtain for sequences. In MalPaCA, each connection is represented byfour sequences and collapsing these into a single cluster qualitymeasure loses important local behavior. Instead, we de�ine thefollowing properties to be indicative of good clustering: (1) Clusterhomogeneity is high—a cluster contains only similar connections. (2)Cluster separation is high—each cluster captures a unique capability.(3) Clusters are small and speci�ic so they only capture the corecapability. The �irst two properties ensure that we obtain meaningfulcapability-based clusters, the third ensures that only the corecapabilities are captured.We use temporal	heatmaps for a white-box cluster analysis. Wegraphically show the connection features and rely on humanvisualization skills to determine cluster quality. Analysts can inspectheatmaps to determine which behavior is captured in a cluster. Thisgives them control over the clustering results. We leave the automationof this process as future work.Four temporal heatmaps are associated with each cluster, onecorresponding to each feature. Each row in a heatmap shows thecorresponding feature sequence of the �irst len packets in a connection.Figure 3 shows example temporal heatmaps. The �igure highlights one

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

dissimilar connection among the eight in the cluster, clearlyhighlighted in red.

Fig.	3 A clustering error: one connection does not belong in the cluster it is assigned
Clustering	Error	Analysis. Visualizing the cluster content helps toidentify which connections belong in a cluster. A Clustering	Error (CE) isde�ined as a connection that is placed in cluster X despite half of itsfeatures being different from the remaining connections in the cluster.Since each feature holds equal weight, we only consider a connectionas CE if more than two features differ. We consider two features

different if more than 50% of their sequences differ so signi�icantly thata different color appears on the temporal heatmap. This is wherehuman visualization skills play a key role in determining featuresimilarity. Figure 3 shows a cluster containing one CE, highlighted inred. It shows that three out of four feature values of this connection aredifferent from other connections in the same cluster. The clusteringerror rate is calculated as , i.e., . We measure the error rate ofeach cluster similarly and calculate the average	percentage	of	errors	per
cluster as a notion of clustering quality.In practice, we �irst establish the common majority by �inding twoor more connections that are most similar to one another, i.e., the onesthat have the least mutual distance. The pairwise distance matrixcomputed during clustering is used as a lookup table for �inding suchconnections. Figure 3 shows a simple case where the rightful	owners	of
a	cluster are easily visible since 7 out of 8 connections are very similar.The rest of the connections are compared with the rightful owners andare either considered as true positives or clustering errors, dependingon how many feature sequences differ.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5	 Experimental	SetupIn this section, we describe the dataset used for the experiments andthe con�iguration details of MalPaCA’s parameters.
5.1	 Experimental	DatasetMalPaCA was evaluated on �inancial malware samples collected in thewild. We worked in collaboration with a security company thatspecializes in malware analysis and threat intelligence. They collectedthe dataset independently. The dataset contained 1196 malwaresamples that were collected over one year. Each malware sample wasexecuted in a sandboxed environment containing several virtualmachines. The resulting network traf�ic was stored in a Pcap �ile. Somesamples showed sandbox evasion. They were re-executed in a VM withdifferent settings. This resulted in a total of 1196 Pcap �iles. Uni-directional connections were extracted, resulting a total of 8997connections containing 3.6 M packets.The dataset contains 15 famous �inancial malware families. Theywere labeled by the security company using their proprietary YARArules. Additionally, each sample was submitted to VirusTotal (VT),which hosts 68 AV vendors. For each sample, VT returns a reportcontaining detection results from each vendor. Table 2 summarizes thedataset.
Table	2 Experimental dataset: malware binaries and their associated YARA family labels
Family	name	(YARA) #	Malware	binariesBlackmoon (B) 887 (74.10%)Gozi-ISFB (GI) 122 (10.19%)Citadel (C) 70 (5.85%)Zeus-VM-AES (ZVA) 29 (2.42%)Ramnit (R) 22 (1.83%)Dridex-Loader (DL) 15 (1.25%)Zeus-v1 (Zv1) 10 (0.83%)Zeus-Panda (ZPa) 10 (0.83%)Gozi-EQ (GE) 7 (0.58%)Dridex RAT Fake Pin 7 (0.58%)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Family	name	(YARA) #	Malware	binariesDridex (D) 6 (0.50%)Zeus-P2P (ZP) 4 (0.33%)Zeus (Z) 3 (0.25%)Zeus OpenSSL 2 (0.17%)Zeus Action 2 (0.16%)Total 1,196 (100%)
5.2	 MalPaCA	ParametersMalPaCA has four parameters, i.e., order of the Ngrams used for portnumbers, len of packet sequences for features, and the two parametersof HDBScan clustering algorithm: and . In our experiments, we have used trigrams () for port numbers, because they form a good trade-offbetween performance and data sparsity [28]. In the experimentaldataset, the length of connections is highly skewed towards shortersequences, with a mean of 20 packets. We use this mean as len.11 Out of8997 connections in the dataset, 733 connections are longer than len.The HDBScan algorithm uses and . These parameters were selected by tuningMalPaCA on a con�iguration dataset (5% of the usable data). Theexperiments were run on a machine with Intel Xeon E3-12xx v2processor, 8 cores and 64 GB RAM.The speci�icity of the identi�ied behaviors is highly dependent onthe length of sequences, i.e., len. Based on preliminary experimentswith , we found that provided the optimaltrade-off between behavior characterization and the amount ofconnections that were discarded. For smaller values, the connectionswere too generic. For larger values, connections with slight behavioraldifferences were considered very different. For example, at

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

several clusters capture slightly different variations of port scans,while at those variations merge to form a few strong clusters.
Table	3 For each cluster, (i) # connections, (ii) # malware families, (iii) Capability label, and (iv)Traf�ic direction
Cluster #	Conns #	Families Behavior Directionc1 39 9	(Common) SSDP traf�ic Outc2 90 9	(Common) Broadcast traf�ic Outc3 9 4 LLMNR traf�ic Outc4 49 5 Systematic port scan Inc5 56 5 Randomized port scan Outc6 25 1	(Rare) Connection spam Inc7 23 1	(Rare) Connection spam Outc8 16 1	(Rare) Malicious subnet Outc9 11 1	(Rare) Connection spam Outc10 9 2 HTTPs traf�ic Outc11 8 2 C&C Reuse Inc12 18 4 HTTPs traf�ic Inc13 25 5 Misc. Inc14 10 3 Misc. Inc15 20 3 Misc. Inc16 12 3 Misc. Outc17 19 3 Misc. Outc18 10 4 Misc. Out
6	 Malware	Capability	AssessmentMalPaCA produces 18 clusters from the dataset. There are, on average,25 connections in each cluster. The algorithm discards 284 connectionsas noise. The remaining 449 connections originate from 216 Pcap �iles.Each cluster captures a unique behavior, listed in Table 3 along with themalware families that show that behavior. We describe a few of theinteresting behaviors obtained by MalPaCA. We also discuss how host-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

based blacklisting [25, 54], which is a very common practice in securitycompanies, will fail to detect these behaviors.1.
Connection	Direction	Identi�ication. MalPaCA successfullyidenti�ies the direction of traf�ic �low even though no such featureis used. The clusters and their traf�ic direction are listed in Table 3.Interestingly, we continue to see this pattern even when port-related features are removed from the clustering. Hence, thesequence of packet sizes and their inter-arrival time arecollectively indicative of the �low direction. This important traitidenti�ies whether the suspicious behavior is originating frominside the network or from outside it.

2.

Device	Probing. Some clusters capture connections that connectto the same host. For example, one cluster contains all connectionsbroadcasting to 239.255.255.250, which is used by the SSDPprotocol to �ind Plug and Play devices. Another cluster captures allconnections broadcasting to 224.0.0.252, which is used by theLink-Local Multicast Name Resolution (LLMNR) protocol to �indlocal network computers. These clusters could easily have beenobtained by using IP-based blacklist, but they would not haveclustered behaviorally similar hosts with different IP addresses.

3.

Split-personality	C&C	Servers. In several instances, an infectedhost was observed responding differently to the same request, somuch so that the resulting connections ended up in differentclusters. For example, two connections of Gozi-ISFB contact46.38.238.XX, which has been reported as a malicious serverlocated in Germany. The outgoing connections are identical as theyboth request for the same resource. However, the responsesreceived are very different—the �irst response contains a smallpacket followed by a series of 1200-byte packets, while the secondone contains a periodic list of small and large packets in the rangeof 600–1800 bytes. This insight portrays a better picture of thebehavior of said C&C server. In contrast, a blacklist would havegrouped these connections since they belong to the same host.

4. Port	Scan	Detection. Some clusters capture a Port	Scan,12 which isa method for determining open ports on a device in a network Port

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

a method for determining open ports on a device in a network. Portscans are usually a part of the reconnaissance phase in the attackkill chain [62]. Utilizing sequences of port numbers enables us todetect any suspicious temporal behavior before an attack happens.The clusters identify two types of port scans: (i) Systematic	port
scan where ports are swept incrementally, which is seen as agradient in the corresponding temporal heatmap; and (ii)
Randomized	port	scan where ports are contacted randomly, whichshows up in the heatmap as a checkered pattern. See Fig. 4. Portscans carried out by different connections are clustered together ifthey contact the same range of port numbers, which increases theirmutual similarity. This result is in direct contrast with Mohaisen etal. [39] who conclude that port numbers are the least usefulfeatures in distinguishing malware families.

5.
C&C	Reuse	by	Multiple	Families. One cluster containsconnections from different families that contact the same C&Cserver, and their temporal heatmaps look behaviorally identical.The cluster includes three Zeus-Panda (ZPA) connections andone Blackmoon (B) connection who contact a single IP address(encoded as 009), which has been reported as malicious. Figure 5shows the temporal heatmaps of this cluster. The said connectionsare highlighted in green. This result suggests that either the YARArules mislabeled one of the samples or that authors share C&Cservers.

6.

Malicious	Subnet	Identi�ication. In some instances, severalconnections contact IP addresses that fall in the same subnet. Forexample, two Zeus-VM-AES connections contact one host from62.113.203.XX subnet, while another connection detected 15 dayslater contacts another host in the said subnet. Similarly, two Zeus-
Panda connections and one Blackmoon connection contact twohosts in 88.221.14.XX subnet. This gives actionable intelligence toISPs to investigate if other IPs in these subnets are also hostingC&C servers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 Clusters showing systematic and randomized port scans

Fig.	5 Similar Zeus-Panda and Blackmoon connections
6.1	 Cluster	CharacterizationWe analyze the temporal heatmaps for the behavioral trend of eachcluster in order to label it. MalPaCA’s goal is to identify differentbehaviors in the network traf�ic and it does so regardless of theirmaliciousness and origin. Hence, the resulting clusters contain both,benign and malicious behaviors. The common clusters can bediscarded if they contain known-benign behaviors, drastically reducingthe number of connections to analyze.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We successfully assigned labels to 12 clusters. For example, in thecase of connection spam, the whole cluster is �illed with almostidentical connections originating from the same host. We validate thisobservation by speci�ically looking at the network traf�ic of theseconnections to see exactly what behavior is shown. Six clusters wereleft unlabeled since we could not identify the captured capabilitysimply by exploring temporal heatmaps. These particular clusters werealso the source of clustering errors. Table 3 shows that SSDP and
Broadcast	traf�ic are the most common behaviors and are both speci�icto Windows OS. Since the dataset is composed of Windows-basedmalware, it explains why 9 out of 12 families have connections in thesetwo clusters. On the contrary, Connection	Spam and Malicious	Subnetare the rarest behaviors. Malicious	Subnet only captures Zeus-VM-
AES. Gozi-ISFB opens numerous connections, creating a Connection
Spam. The incoming connections are stored in one cluster, while theoutgoing traf�ic is split into two clusters due to the difference in thetype of requests. This detailed behavioral analysis enables theidenti�ication of interesting clusters to analyze further.

Performance	Analysis. The temporal heatmaps show that onaverage, 8.3% connections per cluster are CEs—their featuresequences are different from their fellow connections in a cluster. Themajority of the errors originate from the last six clusters. Note that thiserror rate is low for an unsupervised setting since not all connectionsrequire manual revision.
6.2	 Constructing	Behavioral	Pro�ilesMalPaCA identi�ies 18 distinct behaviors in the dataset. Hence, eachmalware sample (and its associated Pcap �ile) can be described as abinary string of 18 characters, known as Cluster	Membership	String
(CMS), where each character signi�ies whether the Pcap’s connectionswere found in that cluster. Precisely, for a malware sample x, , where , n is the number of behavioral clusters,and indicates whether x’s connections are present in the ith cluster.The Cluster Membership String can be regarded as the behavioralpro�ile of a given malware sample. In this work, we consider binary

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

CMSs because we are only interested in the behavior overlap ofdifferent malware samples. Non-binary , for connectioncounts , is an interesting avenue to investigate.Table 4 lists the composite behavioral pro�iles for each YARAmalware family in the dataset—each YARA family is represented as theunion of all its samples’ CMSs. Dridex, Gozi-EQ, Zeus-P2P and
Zeus-v1 only generate either SSDP or Broadcast	traf�ic. Since thistraf�ic is obtained from standard Windows services, it is likely that themalware was not activated when the associated Pcap �iles wererecorded. Hence, the only connections observed from these familiesseem benign. Gozi-ISFB has the most diverse pro�ile, withconnection in 16 out of 18 clusters, which exhibit attacking capabilitiessuch as Port	Scans and Connection	Spamming. Speci�ically, the
Connection	Spamming behavior is never exhibited by any othermalware family in the dataset. There are two reasons for Gozi-ISFB’sdiversity: (i) Gozi-ISFB is the largest family under consideration, somany of its behavioral aspects are captured; and (ii) Gozi-ISFBopens more connections per sample compared to other families. Forexample, one sample of Gozi-ISFB opens 111 connections, while theaverage number of connections for other malware samples is 3.
Table	4 Composite behavioral pro�iles of malware families. Columns: YARA labels, Rows: Clusterlabels by MalPaCA
	 B C D DL GE GI R Z ZP ZPa Zv1 ZVASSDP traf�ic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ – ✓Broadcast traf�ic ✓ ✓ – ✓ – ✓ ✓ – ✓ – ✓ ✓LLMNR traf�ic ✓ ✓ – ✓ – ✓ – – – – – –System. port scan ✓ ✓ – – – ✓ ✓ – – – – ✓Random. port scan ✓ ✓ – – – ✓ ✓ – – – – ✓In conn spam – – – – – ✓ – – – – – –Out conn spam – – – – – ✓ – – – – – –Malicious Subnet – – – – – – – – – – – ✓In HTTPs – ✓ – ✓ – ✓ – – – ✓ – –

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

	 B C D DL GE GI R Z ZP ZPa Zv1 ZVAOut HTTPs – – – – – ✓ – – – ✓ – –C&C reuse ✓ – – – – – – – – ✓ – –Misc. ✓ ✓ – ✓ – ✓ – ✓ – ✓ – ✓# Clusters 7 11 1 8 1 16 4 2 1 7 1 7
6.3	 Showing	Relationships	Using	DAGWe extract the behavioral relationships between the 216 ClusterMembership Strings by considering it a Set	Membership problem. Itdictates that, e.g., Set A= {0,1,1} is a subset of Set B={1,1,1}because Set B encapsulates all of Set A’s behaviors and more.Similarly, Set C= {0,0,0} is a subset of every other set in thisdomain. Set C represents Pcaps where all connections werediscarded as Noise due to signi�icant differences in behavior.We represent the relationships between Pcap �iles using a DirectedAcyclic Graph (DAG), shown in Fig. 6. Each node represents a uniqueCluster Membership String. Multiple Pcaps can share a single CMS IFFtheir behaviors overlap. The nodes with minimum Hamming distanceare connected using edges. This method allows multiple parents, i.e., aCMS of "111" may be reached by both "110" and "101". Note thatthis graph is constructed purely from a data-driven approach withoutusing any knowledge of family labels. In combination with humanintelligence, we believe that it can serve as a powerful tool inunderstanding malware’s network behavior.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	6 MalPaCA’s behavioral pro�iles: The DAG shows the behavioral relationships betweenmalware samples. Each node shows a CMS and compares with YARA family labels (+ # Pcaps)
7	 Comparative	AnalysisWe show MalPaCA’s results in relation to existing work by conductingtwo comparative analyses: (i) Comparing MalPaCA’s behavioral pro�ileswith YARA family labels, and (ii) Comparing MalPaCA’s cluster qualitywith an existing approach that uses statistical features.
7.1	 Comparison	with	Traditional	Family	LabelsWe use the DAG from Fig. 6 to contrast between YARA labels andMalPaCA’s behavioral pro�iles. Each node shows a unique CMS, and thenumber of malware families that share it. For example, the node withthe CMS of "000000000000001010" is labeled as "Citadel(2),
Gozi-ISFB(7)" because 2 Citadel Pcaps and 7 Gozi-ISFB Pcapsshow the same behavior—their connections are co-located in theclusters 15 and 17. The root (on the left most side) contains the Pcapsfor which all connections were discarded as Noise. Pcaps showingsubsequently more behaviors are placed towards the right of thegraph, with the right most node "111110000001100000

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Citadel(1)" containing one Citadel Pcap that shows the mostdiverse number of behaviors. Note that observing additional networktraf�ic will enrich this graph even further.The graph shows four major partitions (denoted by G1-G4),indicating that there are four high-level behavioral sub-groups presentin the dataset. The G2 group containing only one node stands out. Itcontains Pcaps from Zeus-Panda and Blackmoon, and are the onlymalware samples that share a C&C server. This observation makes astrong case that these particular Pcap �iles, albeit originating from twofamilies, are behaviorally alike. The G3 group contains Pcaps fromvarious families that are observed doing port scans and broadcastingbehaviors. Some servers from this group also form malicious subnets.The G4 group, on the other hand, is the largest group that uses HTTPstraf�ic along with broadcasting behaviors. The G1 group is highlydominated by Gozi-ISFB and is observed doing Connectionspamming, along with using HTTPs traf�ic. Some connections fromthese Gozi-ISFB Pcaps were placed in the behavioral clusters that wefailed to identify (c13-c18).The node location for some malware families is intriguing. Forexample, most of the Zeus-VM-AES Pcaps that are associated withmalicious subnets are located in the G3 group, together with Ramnit�iles that are associated with port scans. Dridex-Loader is onlyobserved in group G4, while most of the Citadel Pcaps are also seenin the same. Blackmoon and Gozi-ISFB have Pcaps that aredistributed over all of the behavioral sub-groups. However, Gozi-
ISFB is seen dominating the G1 group, while Backmoon dominatesthe G4 group. Furthermore, as observed from Table 4, Gozi-ISFB’sPcaps collectively show 18 discrete behaviors and Citadel’s Pcapsshow 11 behaviors. However, Citadel shows more discretebehaviors in a single Pcap compared to Gozi-ISFB, as Gozi-ISFB’sPcaps contain more (behaviorally similar) connections on average.Also, each of Gozi-ISFB’s Pcaps is more behaviorally dissimilar than
Citadel’s Pcaps.

Zeus-Panda’s Pcaps are clearly divided into two behavioral sub-groups—one in G2 group with Blackmoon samples and the other inthe G4 group. Zeus-v1, Zeus-P2P, ZeuS, Gozi-EQ, and Dridex are

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

only seen at the left side of the graph, indicating that none of theirdistinguishing behaviors were present in the dataset.To conclude, the DAG clearly identi�ies the discrepancies in themalware’s behavioral pro�iles and their traditional family names. Asigni�icant portion of the analysis pipeline is automated andunsupervised. The temporal heatmaps together with the DAG areintended for human-in-the-loop exploration—they actively supportmalware behavior analysis and provide more insightfulcharacterization of malware than current family labels.
7.2	 Comparison	with	Statistical	Features
Baseline	Setup. We compare the cluster quality of using sequentialversus statistical features. We use the existing method by Tegeler etal. [54] (called baseline, henceforth) to compare our results since theynot only use statistical features, but also incorporate periodic behaviorusing Fourier transform to detect bot-infected network traf�ic.Although the goal of their study diverges from ours, their featureselection approach is aligned with ours. For objectivity, we keep therest of the pipeline as explained in Sect. 4. Taking guidelines fromTegeler et al. [54] and adapting them to our problem statement, eachconnection in the baseline is characterized by (1) average packet size,(2) average interval between packets, (3) average duration of aconnection, and (4) the maximum Power Spectral Density (PSD) of theFFT obtained by the binary sampling approach by Tegeler et al. [54]—the signal is 1 when a packet is present in the connection and is 0 inbetween.

Cluster	quality	comparison. The baseline method results in 22clusters, with an average of 21.2 connections per cluster. 265connections are discarded as noise. These results are in comparisonwith sequence clustering—18 clusters; on average 25 connections percluster; 284 connections discarded as noise.Baseline seems to perform better with smaller cluster size onaverage and discarding fewer connections as noise. However, a deeperanalysis shows the obtained clusters lack quality.1. With statistical features, connections present in most clustersappear very different from their fellow connections. On average,57.5% connections per cluster have visually different temporal

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

heatmaps, compared to 8.3% for sequential features. Figure 7shows a cluster from the baseline. It has nine connections, out ofwhich six are errors based on their behavior. The rightful	owners ofthe cluster are the connections that have the least mutual distance,i.e., GI|090|178 021, GI|073|610 131, GI|073|610
346. The other six connections have minor differences in allfeatures, except the source port which is 6 for all. They wereclustered together because their statistical features had the leastmutual distance, i.e., ; ; ; . The temporal heatmaps clearlyshow behavioral differences in nearly all clusters.2. Statistical features are also unable to identify the direction ofnetwork traf�ic. In the cluster shown in Fig. 7, there is one incomingconnection in the cluster along with eight outgoing ones. A similartrend is observed for 19 out of 22 clusters. In contrast, sequencesof packet size and inter-arrival time are enough to identify traf�icdirection in sequence clustering.

Fig.	7 Baseline clusters: Six out of nine behaviorally different connections clustered together inbaseline version

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In summary, while statistical features may be simple to use, theylose behavioral information that plays a crucial role in accuratelydetermining similarities in network behavior. Sequence clusteringobtains signi�icantly better clusters. Given that modeling behavioralpro�iles is already challenging for short sequences, it is remarkable thatMalPaCA can identify network behaviors using only 20 packets and 4coarse features.
8	 Limitations	and	Future	Work
Limitations. Performance optimizations are needed to make sequenceclustering more ef�icient and scalable. In MalPaCA, DTW forms the mainbottleneck as the length of sequences grows longer. There existstreaming versions of DTW that compute results in real time. One suchtechnique is presented by Oregi et al. [42]. Moreover, using LocalitySensitive Hashing [6, 7] can make MalPaCA more scalable.Density-based clustering discards rare events as noise. This makessense if the dataset is noisy. However, in the presence of a purelymalicious dataset, the connections that lie in lower density regionsmay represent rare attacking capabilities, which may be discarded inthe current implementation.Malware authors can try to evade detection by modifying malware’scode. A common assumption is that malware can easily evadedetection by adding random delays and padding to packets. However,there is a limit to what an attacker can change. For example, a TCPhandshake needs to happen in a certain way because this is how theprotocol dictates it. Also, padding-related provisions are alreadystandardized by some commonly used protocols, such as TLS making itdif�icult to hide “coarse” features like packet sizes and inter-arrivaltimes [19]. We expect that MalPaCA is evasion resilient, e.g., sinceMalPaCA only uses coarse features, evading it is not a trivial task.Moreover, the usage of Dynamic Time Warping distance makes itresilient to random delays [20] and due to the relative distancemeasures used in HDBScan, randomized port numbers are alreadyclustered together, as shown in Sect. 6. If, after all this, attackers stillmanage to evade MalPaCA, the malware sample will end up with a new

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

behavioral pro�ile, making analysts more prone to analyze it. Morestudy is needed to strengthen these claims.
Future	work. There are several research directions this work cantake: (i) We will work on fully automating the capability assessment ofmalware by building a directory of observed behaviors, which will beused for cluster labeling. (ii) We will test and improve MalPaCA’sadversarial evasion resilience. (iii) We will integrate additionalbehavioral data sources in MalPaCA so the pro�iles are based on allstatic, system-level, and network behavior. (iv) Since MalPaCA is ageneric technique, we will test its applicability in building behavioralpro�iles for everyday-use software.

9	 ConclusionsIn this chapter, we propose MalPaCA, an intuitive network traf�ic-basedtool to perform malware capability assessment: It groups capabilitiesusing sequence clustering and uses the cluster membership to buildnetwork behavioral pro�iles. We also propose a visualization-basedcluster evaluation method whose key advantage is its white-boxnature, allowing malware analysts to investigate, understand, and evencorrect labels, if necessary. We implement MalPaCA and evaluate it onreal-world �inancial malware samples collected in the wild. MalPaCAindependently identi�ies attacking capabilities. We build a DAG to showoverlapping malware behaviors and discover a number of samples thatdo not adhere to their family names, either because of incorrectlabeling by black-box solutions or extensive overlap in the families’behavior. We also show that sequence clustering outperforms existingstatistical features-based methods by making only 8.3% errors, asopposed to 57.5%. MalPaCA, with its visualizations and capabilityassessment, can actively support the understanding of malwaresamples. The resulting behavioral pro�iles give malware researchers amore informative and actionable characterization of malware thancurrent family designations.
References1. Acar, Abbas, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Miettinen, Hidayet

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and A. Selcuk Uluagac. 2018. Peek-a-boo: I see yoursmart home activities, even encrypted! arXiv.2. Aiolli, Fabio, Mauro Conti, Ankit Gangwal, and Mirko Polato. 2019. Mind your wallet’s privacy:Identifying bitcoin wallet apps and user’s actions through network traf�ic analysis. In SIGAPP,1484–1491. ACM.3. Anderson, Blake, and David McGrew. 2017. Machine learning for encrypted malware traf�icclassi�ication: Accounting for noisy labels and non-stationarity. In Proceedings	of	the	23rd
ACM	SIGKDD, 1723–1732.4. Anderson, Blake, Subharthi Paul, and David McGrew. 2017. Deciphering malware’s use of TLS(without decryption). CVHT	Journal 14 (3).5. Azab, Ahmad, Mamoun Alazab, and Mahdi Aiash. 2016. Machine learning based botnetidenti�ication traf�ic. In IEEE	Trustcom/BigDataSE/ISPA, 1788–1794. IEEE.6. Azab, Ahmad Robert Layton, Mamoun Alazab, and Jonathan Oliver. 2014. Mining malware todetect variants. In Cybercrime	and	trustworthy	computing	conference, 44–53. IEEE.7. Bayer, Ulrich, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and EnginKirda. 2009. Scalable, behavior-based malware clustering. In NDSS, vol. 9, 8–11. Citeseer.8. Baysa, Donabelle, Richard M. Low, and Mark Stamp. 2013. Structural entropy andmetamorphic malware. CVHT	Journal 9 (4): 179–192.9. Berndt, Donald J., and James Clifford. 1994. Using dynamic time warping to �ind patterns intime series. KDD 10: 359–37010. Bilge, Leyla, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher Kruegel.2012. Disclosure: Detecting botnet command and control servers through large-scale net�lowanalysis. In ACSAC, 129–138. ACM.11. Black, Paul, Iqbal Gondal, and Robert Layton. 2017. A survey of similarities in bankingmalware behaviours. Computers	and	Security.12. Campello, Ricardo J.G.B., Davoud Moulavi, and Jörg Sander. 2013. Density-based clusteringbased on hierarchical density estimates. In PAKDD, 160–172. Springer13. Canfora, Gerardo, Andrea De Lorenzo, Eric Medvet, Francesco Mercaldo, and Corrado AaronVisaggio. 2015. Effectiveness of opcode ngrams for detection of multi family androidmalware. In ARES, 333–340. IEEE.14. Cavallaro, Lorenzo, Christopher Kruegel, Giovanni Vigna, Fang Yu, Muath Alkhalaf, Tev�ikBultan, Lili Cao, Lei Yang, Heather Zheng, Christopher C. Cipriano, et al. 2009. Mining thenetwork behavior of bots. Technical report 2009-12.15. Chakkaravarthy, S. Sibi, D. Sangeetha, and V. Vaidehi. 2019. A survey on malware analysis andmitigation techniques. Computer	Science	Review 32: 1–23.16. Chan, Neil Wong Hon, and Shanchieh Jay Yang. 2017. Scanner: Sequence clustering of androidresource accesses. In IEEE	DSC	2017.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

17. Conti, Mauro, Luigi V. Mancini, Riccardo Spolaor, and Nino Vincenzo Verde. 2015. Can’t youhear me knocking: Identi�ication of user actions on android apps via traf�ic analysis. In
CODASPY, 297–304. ACM.18. Davies, David L. and Donald W. Bouldin. 1979. A cluster separation measure. In TPAMI	1979.19. Dyer, Kevin P., Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012. Peek-a-boo, istill see you: Why ef�icient traf�ic analysis countermeasures fail. In S&P, 332–346. IEEE.20. Elfeky, Mohamed G., Walid G. Aref, and Ahmed K. Elmagarmid. 2005. Warp: Time warping forperiodicity detection. In Data	Mining, 8–pp. IEEE.21. Feng, Yu, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-baseddetection of android malware through static analysis. In SIGSOFT, 576–587. ACM.22. Gandotra, Ekta, Divya Bansal, and Sanjeev Sofat. 2014. Malware analysis and classi�ication: Asurvey. Information	Security	Journal 5 (02): 56.[Crossref]23. Garcia, Sebastian. 2015. Modelling the network behaviour of malware to block maliciouspatterns. the stratosphere project: A behavioural IPS. VB.24. Garcia-Teodoro, Pedro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique Vázquez.2009. Anomaly-based network intrusion detection: Techniques, systems and challenges.
Computers	and	Security 28 (1–2): 18–28.[Crossref]25. Gha�ir, Ibrahim and Vaclav Prenosil. 2015. Blacklist-based malicious IP traf�ic detection. In
GCCT, 229–233. IEEE.26. Ghorbani, Ali A., and Saeed Nari. 2013. Automated malware classi�ication based on networkbehavior. In ICNC, 642–647. IEEE.27. Hammerschmidt, Christian, Samuel Marchal, Radu State, and Sicco Verwer. 2016. Behavioralclustering of non-stationary IP �low record data. In CNSM, 297–301. IEEE.28. Kalgutkar, Vaibhavi, Natalia Stakhanova, Paul Cook, and Alina Matyukhina. 2018. Androidauthorship attribution through string analysis. In ARES, 4. ACM.29. Kantchelian, Alex, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal Shankar, RekhaBachwani, Anthony D. Joseph, and J Doug Tygar. 2015. Better malware ground truth:Techniques for weighting anti-virus vendor labels. In AISec.30. Kim, Ki-Hyeon and Mi-Jung Choi. 2015. Android malware detection using multivariate time-series technique. In APNOMS, 198–202.31. Kovacs-Vajna, Zsolt Miklos. 2000. A �ingerprint veri�ication system based on triangularmatching and dynamic time warping. TPAMI 22 (11): 1266–1276.32. Lee, Jehyun, and Heejo Lee. 2014. Gmad: Graph-based malware activity detection by DNStraf�ic analysis. Computer	Communications 49.33.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.1016/j.cose.2008.08.003

Li, Peng, Limin Liu, Debin Gao, and Michael K. Reiter. 2010. On challenges in evaluatingmalware clustering. In RAID, 238–255. Springer.34. Li, Wei-Jen, Ke Wang, Salvatore J. Stolfo, and Benjamin Herzog. 2005. Fileprints: Identifying�ile types by n-gram analysis. In IEEE	SMC	information	assurance	workshop, 64–71. IEEE.35. Li, Yuping, Jiyong Jang, Xin Hu, and Xinming Ou. 2017. Android malware clustering throughmalicious payload mining. In RAID, 192–214. Springer.36. Lin, Qin, Sridha Adepu, Sicco Verwer, and Aditya Mathur. 2018. Tabor: a graphical model-based approach for anomaly detection in industrial control systems. In Asia	CCS, 525–536.ACM.37. Maggi, Federico, Andrea Bellini, Guido Salvaneschi, and Stefano Zanero. 2011. Finding non-trivial malware naming inconsistencies. In ICISS, 144–15938. Mohaisen, Aziz, Omar Alrawi, Matt Larson, and Danny McPherson. 2013. Towards amethodical evaluation of antivirus scans and labels. In ISA	workshop, 231–241. Springer.39. Mohaisen, Aziz, Omar Alrawi, and Manar Mohaisen. 2015. Amal: High-�idelity, behavior-basedautomated malware analysis and classi�ication. Computers	and	Security 52.40. Moubarak, Joanna, Maroun Chamoun, and Eric Filiol. 2017. Comparative study of recent meamalware phylogeny. In ICCCS, 16–20. IEEE.41. Ntlangu, Mbulelo Brenwen, and Alireza Baghai-Wadji. 2017. Modelling network traf�ic usingtime series analysis: A review. In IoTBDS, 209–215.42. Oregi, Izaskun, Aritz Pérez, Javier Del Ser, and José A Lozano. 2017. On-line dynamic timewarping for streaming time series. In ECML-PKDD, 591–605. Springer.43. Pellegrino, Gaetano, Qin Lin, Christian Hammerschmidt, and Sicco Verwer. 2017. Learningbehavioral �ingerprints from net�lows using timed automata. In IFIP, 308–316. IEEE.44. Perdisci, Roberto, Wenke Lee, and Nick Feamster. 2010. Behavioral clustering of http-basedmalware and signature generation using malicious network traces. In NSDI, vol. 10.45. Pomorova, Oksana, Oleg Savenko, Sergii Lysenko, Andrii Kryshchuk, and Kira Bobrovnikova.2015. A technique for the botnet detection based on DNS-traf�ic analysis. In CN, 127–138.Springer.46. Ra�ique, M. Zubair, and Juan Caballero. 2013. Firma: Malware clustering and networksignature generation with mixed network behaviors. In RAID, 144–163. Springer.47. Rieck, Konrad, Philipp Trinius, Carsten Willems, and Thorsten Holz. 2011. Automatic analysisof malware behavior using machine learning. Journal	of	Computer	Security 19 (4): 639–668.[Crossref]48. Rousseeuw, Peter J. 1987. Silhouettes: a graphical aid to the interpretation and validation ofcluster analysis. CAM	Journal 20.49. Sebastián, Marcos, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Avclass: A tool

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.3233/JCS-2010-0410

for massive malware labeling. In RAID, 230–253. Springer.50. Sharma, Arushi, Ekta Gandotra, Divya Bansal, and Deepak Gupta. 2019. Malware capabilityassessment using fuzzy logic. Cybernetics	and	Systems 1–16.51. Suarez-Tangil, Guillermo, Juan E. Tapiador, Pedro Peris-Lopez, and Jorge Blasco. 2014.Dendroid: A text mining approach to analyzing and classifying code structures in androidmalware families. Expert	Systems	with	Applications 41 (4).52. Sun, Mingshen, Xiaolei Li, John C.S. Lui, Richard T.B. Ma, and Zhenkai Liang. 2017. Monet: auser-oriented behavior-based malware variants detection system for android. TIFS 12 (5).53. Tajalizadehkhoob, S.T., Hadi Asghari, Carlos Gañán, and M.J.G. Van Eeten. 2014. Why them?extracting intelligence about target selection from zeus �inancial malware. In WEIS.54. Tegeler, Florian, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel. 2012. Bot�inder:Finding bots in network traf�ic without deep packet inspection. In CoNEXT, 349–360. ACM.55. Tian, Ronghua, Lynn Batten, Ra�iqul Islam, and Steve Versteeg. 2009. An automatedclassi�ication system based on the strings of trojan and virus families. In MALWARE. IEEE.56. Verwer, Sicco, Rémi Eyraud, and Colin De La Higuera. 2014. Pautomac: A probabilisticautomata and hidden Markov models learning competition. Machine	Learning 96 (1–2): 129–154.[MathSciNet][Crossref]57. Vinod, P., V. Laxmi, M.S. Gaur, and Grijesh Chauhan. 2012. Momentum: Metamorphic malwareexploration techniques using MSA signatures. In IIT, 232–237. IEEE.58. Volis, George, Christos Makris, and Andreas Kanavos. 2016. Two novel techniques for spacecompaction on biological sequences. WEBIST.59. Wang, An, Aziz Mohaisen, Wentao Chang, and Songqing Chen. 2015. Capturing DDoS attackdynamics behind the scenes. In DIMVA, 205–215. Springer.60. Wang, Wei, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. 2017. Malware traf�icclassi�ication using convolutional neural network for representation learning. In ICOIN, 712–717.61. Wang, Yipeng, Zhibin Zhang, Danfeng Daphne Yao, Buyun Qu, and Li Guo. 2011. Inferringprotocol state machine from network traces: a probabilistic approach. In ACNS, 1–18.Springer.62. Yadav, Tarun and Arvind Mallari Rao. 2015. Technical aspects of cyber kill chain. In SSCC.63. Zahrotun, Lisna. 2016. Comparison jaccard similarity, cosine similarity and combined both ofthe data clustering with shared nearest neighbor method. CE&AJ 5 (1): 11–18.
Footnotes

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.ams.org/mathscinet-getitem?mr=3218881
https://doi.org/10.1007/s10994-013-5409-9

1
2
3
4
5
6
7
8
9
10
11
12

https:// www. cybersecurity-insiders. com/ top-15-cyber-threats-for-2019/ . https:// www. av-test. org/ en/ statistics/ malware/ . In white-box ML, all steps are explainable—the input, output and how the output wasgenerated. In contrast, only the input and output are known in black-box ML, e.g., NeuralNetworks. https:// github. com/ azqa/ malpaca-pub. https:// virustotal. github. io/ yara/ . https:// www. virustotal. com/ . https:// github. com/ azqa/ malpaca-pub.
Handshake	traf�ic	refers	to	the	introductory	few	packets	of	a	connection. https:// www. enterprisetimes. co. uk/ 2016/ 10/ 20/ ecj-rules-ip-address-is-pii/ . https:// www. ixiacom. com/ company/ blog/ mirai-botnet-things.
len can	be	adjusted	based	on	the	required	behavioral	speci�icity. https:// whatismyipaddres s. com/ port-scan.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.cybersecurity-insiders.com/top-15-cyber-threats-for-2019/
https://www.av-test.org/en/statistics/malware/
https://github.com/azqa/malpaca-pub
https://virustotal.github.io/yara/
https://www.virustotal.com/
https://github.com/azqa/malpaca-pub
https://www.enterprisetimes.co.uk/2016/10/20/ecj-rules-ip-address-is-pii/
https://www.ixiacom.com/company/blog/mirai-botnet-things
https://whatismyipaddress.com/port-scan

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_16
An	Empirical	Analysis	of	Image-Based
Learning	Techniques	for	Malware
Classi�icationPratikkumar Prajapati1 and Mark Stamp1 San Jose State University, San Jose, CA, USA
Pratikkumar	Prajapati
Email:	pratikkumar.prajapati@sjsu.edu
Mark	Stamp	(Corresponding	author)
Email:	mark.stamp@sjsu.edu

AbstractIn this chapter, we consider malware classi�ication using deep learningtechniques and image-based features. We employ a wide variety ofdeep learning techniques, including multilayer perceptrons (MLP),convolutional neural networks (CNN), long short-term memory(LSTM), and gated recurrent units (GRU). Among our CNNexperiments, transfer learning plays a prominent role—speci�ically, wetest the VGG-19 and ResNet152 models. As compared to previous work,the results presented in this chapter are based on a larger and morediverse malware dataset, we consider a wider array of features, and weexperiment with a much greater variety of learning techniques.Consequently, our results are the most comprehensive and completethat have yet been published.
1	 Introduction

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_16
mailto:pratikkumar.prajapati@sjsu.edu
mailto:mark.stamp@sjsu.edu

Traditionally, malware detection and classi�ication has relied onpattern matching against signatures extracted from speci�ic malwaresamples. While simple and ef�icient, signature scanning is easilydefeated by a number of well-known evasive strategies. This fact hasgiven rise to statistical and machine learning-based techniques, whichare more robust to code modi�ication. In response, malware writershave developed advanced forms of malware that alter statistical andstructural properties of their code, which can cause statistical modelsto fail.In this chapter, we compare deep learning (DL) models for malwareclassi�ication. For most of our deep learning models, we use image-based features, but we also experiment with opcode features. The DLmodels consider include a wide variety of neural networkingtechniques, including multilayer perceptrons (MLP), several variants ofconvolutional neural networks (CNN), and vanilla recurrent neuralnetworks (RNN), as well as the advanced RNN architectures known aslong short-term memory (LSTM) and gated recurrent units (GRU). Wealso experiment with a complex stacked model that combines bothLSTM and GRU. In addition, we consider transfer learning, in the formof the ResNet152 and VGG-19 architectures.The remainder of this chapter is organized as follows. In Sect. 2 weprovide relevant background information, including a discussion ofrelated work, an overview of the various learning techniquesconsidered, and we introduce the dataset used in this research.Section 3 is the heart of the chapter, with detailed results from a widevariety of malware classi�ication experiments. Section 4 concludes thechapter and provides possible directions for future work.
2	 BackgroundIn this section, we discuss related work and we introduce the variouslearning techniques that are considered in this research. We alsodiscuss the dataset that we use in our malware classi�icationexperiments. In addition, we provide the speci�ications of thehardware and software that we use to conduct the extensive set ofexperiments that are summarized in Sect. 3.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2.1	 Related	WorkTo the best of our knowledge, image-based analysis was �irst applied tothe malware problem in [16], where high-level “gist” descriptors areused as features. More recently, [44] con�irmed the results in [16] andpresented an alternative deep learning approach that produces equallygood—if not slightly better—results, without the extra work requiredto extract gist descriptors.Transfer learning, where the output layer of an existing pre-trainedDL model is retrained for a speci�ic task, is often used in imageanalysis. Such an approach allows for ef�icient training, as a new modelcan take advantage of a vast amount of learning that is embedded inthe pre-trained model. Leveraging the power of transfer learning hasbeen shown to yield strong image-based malware detection andclassi�ication results [44].There is a vast malware analysis literature involving classicmachine learning techniques. Representative examples include [2, 5, 8,25, 28, 42]. Intuitively, we might expect models based on imageanalysis to be somewhat stronger and more robust, as compared tomodels that rely on opcodes, byte n-grams, or similar statisticalfeatures that are commonly used in malware research.The work presented in this chapter can be considered an extensionof the work in [6], where image-based transfer learning is applied tothe malware classi�ication problem. We have extended this previouswork in multiple dimensions, including a larger, more challenging, andmore realistic dataset. In addition, we perform much moreexperimentation with a much wider variety of techniques, and weconsider a large range of hyperparameters in each case.
2.2	 Learning	TechniquesIn this section, we provide a brief introduction to each of the learningtechniques considered in this paper. Additional details on most of thelearning techniques discussed here can be found in [27], whichincludes examples of relevant applications of the techniques. Weprovide additional references for the techniques discussed below thatare not considered in [27].
2.2.1	 Multilayer	Perceptron

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

A perceptron computes a weighted sum of its components in the formof a hyperplane, and based on a threshold, a perceptron can be used tode�ine a classi�ier. It follows that a perceptron cannot provide idealseparation in cases where the data itself is not linearly separable. Thisis a severe limitation, as something as elementary as the XOR functionis not linearly separable.A multilayer perceptron (MLP) is an arti�icial neural network thatincludes multiple (hidden) layers in the form of perceptrons. Unlike asingle layer perceptron, MLPs are not restricted to linear decisionboundaries, and hence an MLP can accurately model more complexfunctions. The relationship between perceptrons and MLPs is verymuch analogous to the relationship between linear support vectormachines (SVM) and SVMs based on nonlinear kernel functions.Training an MLP would appear to be challenging since we havehidden layers between the input and output, and it is not clear howchanges to the weights in these hidden layers will affect each other orthe output. Today, MLPs are generally trained using backpropagation.The discovery that backpropagation can be used for training neuralnetworks was a major breakthrough that made deep learning practical.
2.2.2	 Convolutional	Neural	NetworkGenerically, arti�icial neural networks use fully connected layers. Theadvantage of a fully connected layer is that it can deal effectively withcorrelations between any points within training vectors. However, forlarge training vectors, fully connected layers are infeasible, due to thevast number of weights that must be learned.In contrast, a convolutional neural network (CNN) is designed todeal with local structure. A convolutional layer cannot be expected toperform well when signi�icant information is not local. The bene�it ofCNNs is that convolutional layers can be trained much more ef�icientlythan fully connected layers, due to the reduced number of weights.For images, most of the important structure (edges and gradients,for example) is local. Hence, CNNs are an ideal tool for image analysisand, in fact, CNNs were developed precisely for image classi�ication.However, CNNs have performed well in a variety of other problemdomains. In general, any problem for which local structurepredominates is a candidate for CNNs.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2.2.3	 Recurrent	Neural	NetworkMLPs and CNNs are feedforward neural networks, that is, the datafeeds directly through the network, with no “memory” of previousfeature vectors. In a feedforward network, each input vector is treatedindependently of other input vectors. While feedforward networks areappropriate for many problems, they are not well suited for dealingwith sequential data.In some cases, it is necessary for a classi�ier to have memory.Suppose that we want to tag parts of speech in English text (i.e., noun,verb, etc.), this is not feasible if we only look at words in isolation. Forexample, the word “all” can be an adjective, adverb, noun, or pronoun,and this can only be determined by considering its context. A recurrentneural network (RNN) provides a way to add memory (or context) to afeedforward neural network.RNNs are trained using a variant of backpropagation known asbackpropagation through time (BPTT). A problem that is particularlyacute in BPTT is that the gradient calculation tends to be becomeunstable, resulting in “vanishing” or “exploding” gradients. Toovercome these problems, we can limit the number of time steps, butthis also serves to limit the utility of RNNs. Alternatively, we can usespecialized RNN architectures that enable the gradient to �low overlong time periods. Both long short-term memory and gated recurrentunits are examples of such specialized RNN architectures. We discussthese two RNN architectures next.
2.2.4	 Long	Short-Term	MemoryLong short-term memory (LSTM) networks are a class of RNNarchitectures that are designed to deal with long-range dependencies.That is, LSTM can deal with extended “gaps” between the appearanceof a feature and the point at which it is needed by the model. In plainvanilla RNNs this is generally not possible, due to vanishing gradients.The key difference between an LSTM and a generic vanilla RNN isthat an LSTM includes an additional path for information �low. That is,in addition to the hidden state, there is a so-called cell state that can beused to, in effect, store information from previous steps. The cell stateis designed to serve as a gradient “highway” during backpropagation.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this way, the gradient can “�low” much further back with less chancethat it will vanish (or explode) along the way.As an aside, we note that the LSTM architecture has been one of themost commercially successful learning techniques ever developed.Among many other applications, LSTMs play a critical role in GoogleAllo [11], Google Translate [43], Apple’s Siri [13], and Amazon Alexa [9].
2.2.5	 Gated	Recurrent	UnitDue to its wide success, many variants on the LSTM architecture havebeen considered. Most such variants are slight, with only minorchanges from a standard LSTM. However, a gated recurrent unit (GRU)is a fairly radical departure from an LSTM. Although the internal stateof a GRU is somewhat complex and less intuitive than that of an LSTM,there are fewer parameters in a GRU. As a result, it is easier to train aGRU than an LSTM, and consequently less training data is required.
2.2.6	 ResNet152Whereas LSTM uses a complex gating structure to ease gradient �low, aresidual network (ResNet) de�ines additional connections thatcorrespond to identity layers. These identity layers allow a ResNetmodel to, in effect, skip over layers during training, which serves toeffectively reduce the depth when training and thereby mitigategradient pathologies. Intuitively, ResNet is able to train deepernetworks by training over a considerably shallower network in theinitial stages, with later stages of training serving to �lesh out theintermediate connections. This approach was inspired by pyramidalcells in the brain, which have a similar characteristic, in the sense thatthey bridge “layers” of neurons [26].ResNet152 is a speci�ic deep ResNet architecture that has been pre-trained on a vast image dataset. As one of our two examples of transferlearning, we use this architecture, which includes an astounding 152layers. That is, we use the ResNet152 model, where we only retrain theoutput layer speci�ically for our malware classi�ication problem.
2.2.7	 VGG-19

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Adload

VGG-19 is a 19-layer convolutional neural network that has been pre-trained on a dataset containing more than images [24]. Thisarchitecture has performed well in many contests, and it has beengeneralized to a variety of image-based problems. Here, we use theVGG-19 architecture and pre-trained model as one of our two examplesof transfer learning for image-based malware classi�ication.
2.3	 DatasetOur dataset consists of 20 malware families. Three of these malwarefamilies, namely, Winwebsec, Zeroaccess, and Zbot, are from theMalicia dataset [15], while the remaining 17 families are taken fromthe massive malware dataset discussed in [12]. This latter dataset isalmost half a terabyte and contains more than 500,000 malwaresamples in the form of labeled executable �iles.Table 1 lists the 20 families used in this research, along with thetype of malware present in each family. Next, we brie�ly discuss each ofthese 20 malware families.
Table	1 Type of each malware family
Family Type Family TypeAdload [29] Trojan downloader Obfuscator [37] VirToolAgent [30] Trojan Onlinegames [22] Password stealerAlureon [35] Trojan Rbot [38] BackdoorBHO [32] Trojan Renos [31] Trojan downloaderCeeInject [34] VirTool Startpage [33] TrojanCycbot [3] Backdoor Vobfus [39] WormDelfInject [20] VirTool Vundo [40] Trojan downloaderFakeRean [36] Rogue Winwebsec [41] RogueHotbar [1] Adware Zbot [23] Password stealerLolyda [21] Password stealer Zegost [4] Backdoor downloads an executable �ile, stores it remotely, executes the�ile, and disables proxy settings [29].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Agent

Alureon

BHO
CeeInject

Cycbot.G

DelfInject

FakeRean

Hotbar

Lolyda

Obfuscator

Onlinegames

Rbot

Renos

Startpage

Vobfus

Vundo

downloads trojans or other software from a remoteserver [30].ex�iltrates usernames, passwords, credit card information,and other con�idential data from an infected system [35].can perform a variety of actions, guided by an attacker [32].uses advanced obfuscation to avoid being detected byantivirus software [34].connects to a remote server, exploits vulnerabilities, andspreads through a backdoor [3].sends usernames, passwords, and other personal andprivate information to an attacker [20].pretends to scan the system, noti�ies the user of supposedissues, and asks the user to pay to clean the system [36].is adware that shows ads on webpages and installsadditional adware [1].sends information from an infected system and monitors thesystem. It can share user credentials and network activity with anattacker [21]. tries to obfuscate or hide itself to defeat malwaredetectors [37]. steals login information and tracks user keystrokeactivity [22].gives control to attackers via a backdoor that can be used toaccess information or launch attacks, and it serves as a gateway toinfect additional sites [38].downloads software that claims the system has spyware andasks for a payment to remove the nonexistent spyware [31].changes the default browser homepage and can performother malicious activities [33].is a worm that downloads malware and spreads through USBdrives or other removable drives [39].displays pop-up ads and it can download �iles. It usesadvanced techniques to defeat detection [40].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Winwebsec

Zbot

Zegost

displays alerts that ask the user for money to �ixnonexistent security issues [41].is installed through email and shares a user’s personalinformation with attackers. In addition, Zbot can disable a�irewall [23].creates a backdoor on an infected machine [4].The number of samples per malware family for the various featuresis given in Table 2. The “Binaries” lists the number of binary executable�iles available, the “Images” column lists the number of binaries thatwere successfully converted to images, and the “Opcodes” column liststhe number of samples from which a suf�icient number of opcodeswere extracted. From the table we see that 26,413 samples are used inour image-based experiments, and 25,901 samples are used in ouropcode-based experiments.
Table	2 Samples per malware family
Family Samples

Binaries Images OpcodesAdload 1050 1050 1044Agent 842 842 817Alureon 1328 1328 1327BHO 1176 1176 1159CeeInject 894 894 886Cycbot 1029 1029 1029DelfInject 1146 1146 1097Fakerean 1063 1063 1063Hotbar 1491 1491 1476Lolyda 915 915 915Obfuscator 1445 1445 1331Onlinegames 1293 1293 1284Rbot 1017 1017 817Renos 1312 1312 1309Startpage 1136 1136 1084

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Family Samples

Binaries Images OpcodesVobfus 926 926 924Vundo 1793 1793 1784Winwebsec 3651 3651 3651Zbot 1786 1786 1785Zeroaccess 1120 1120 1119Total 26,413 26,413 25,901
2.4	 HardwareTable 3 lists the hardware con�iguration of the machine used for theexperiments reported in this chapter. This machine was assembled forthe purpose of training deep learning models and it is highly optimizedfor this task.
Table	3 Hardware characteristics
Feature Description DetailsCPU Brand and model Intel i9-9940XClock frequency 3.30 GHzNumber of threads 28Cache 19.25 MB Intel Smart CacheCPU liquid cooling Brand and model Corsair Hydro Series H115i PRO RGBFan speed 1200 RPMFan size 140 mmRadiator size 280 mmDRAM Brand and model Corsair CMK32GX4M2A2666C16Speed 2666 MHzCapacityMotherboard Brand and model ASUS WS x299 SageGPU Brand and model Nvidia Titan RTXTotal video memory 24 GB GDDR6Tensor cores 576CUDA cores 4608

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Feature Description DetailsBase clock (MHz) 1350 MHzSingle-precision performance 16.3 TFLOPSTensor performance 130 TFLOPSStorage Brand and model Sabrent 2TB Rocket NVMeRead speed 3400 MB/sWrite speed 2750 MB/s
2.5	 SoftwareFor our deep learning neural network experiments, we have usedPyTorch [18]. In addition, for general data processing and relatedoperations, we employ both Numpy [17] and Pandas [14]. In addition,all code that was developed as part of this project is available at [19].
3	 Deep	Learning	Experiments	and	ResultsIn this section, we present results of a wide variety of neural network-based experiments. First, we consider MLP experiments, followed byCNN experiments, and then RNN experiments. We consider a largenumber of CNN and RNN cases. We conclude this section with a pair ofmodels based on transfer learning. The MLP, CNN, and transfer learningmodels are based on image features, while the RNN experiments useopcode sequences.We consider various different sizes for images, in each case usingsquare images. To generate a square image from an executable, we �irstspecify a width N, with the height determined by the size of the sample.We then resize the image so that it is , which has the effect ofstretching or shrinking the height, as required.
3.1	 Multilayer	Perceptron	ExperimentsWe experimented with various perceptron-based neural networks. Themodel we present here uses square input image and has four hiddenlayers, each using the popular recti�ied linear unit (relu) activationfunction. The output from the �inal hidden layer is passed to a fullyconnected output layer. The output layer is used to classify the sample

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

—since we have 20 classes of malware in our dataset, the output vectoris 20-dimensional. The hyperparameters used for these MLPexperiments are given in Table 4.
Table	4 MLP model parameters
Classi�ier Hyperparameter Tested	values Accuracy

Train TestMLP image_dim 0.9529 0.8644
learning_rate

batch_size 256
epochs 50Figure 2 gives the confusion matrix for the best results obtained inour MLP experiments. The hyperparameters used for this best case arethose shown in boldface in Table 4. In this case, the DelfInject andObfuscator families have the lowest detection rates, with both onlyslightly above 50% accuracy. The overall accuracy is 0.8644.

3.2	 Convolutional	Neural	Network	ExperimentsWe have conducted a large number of convolutional neural network(CNN) experiments. In this section we �irst discuss CNN experimentsbased on two-dimensional images. Then we consider one-dimensionalCNN experiments, where the malware images are vectorized. We alsopresent results for CNN experiments using opcodes extracted from PE�iles, as opposed to forming images based on the raw byte values in theexecutable �iles. The opcodes were extracted using objdump, and weuse the resulting mnemonic opcode sequence (eliminating operands,labels, etc.) as features. The hyperparameters tested for all of theseCNN experiments are given in Table 5.
Table	5 CNN model parameters
Classi�ier Hyperparameter Tested	values Accuracy

Train TestCNN 2-d image_dim 0.9294 0.8955

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Classi�ier Hyperparameter Tested	values Accuracy

Train Test

learning_rate

batch_size 256
epochs 50CNN 1-d image_dim 0.8445 0.8664
learning_rate

batch_size 256
epochs 20CNN 1-d re�ined conv1d_1_out_channel 0.8538 0.8932
conv1d_1_kernel_size

conv1d_1_stride

conv1d_2_out_channel

conv1d_2_kernel_size

conv1d_2_stride

image_dim 4096
learning_rate 0.001
batch_size 512
epochs 15CNN opcode opcode_length 0.8418 0.8282
num_filters

filter_size

embedding_dim

learning_rate 0.001
batch_size 256
epochs 50

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.2.1	 Two-Dimensional	Image	CNNsBased on two-dimensional image features, we test the CNN modelhyperparameters listed under “CNN 2-d” in Table 5. All of these 2-dCNN experiments use two convolutional layers and three fullyconnected layers. The �irst convolutional layer takes as input a squaregray-scale image with one channel and outputs data with 12 channelsusing a kernel size of three, padding of two, and a stride of one. A reluactivation and max pooling is applied to the result before passing it tothe second convolutional layer. This second layer outputs data with 16channels, with the other parameters being the same as the �irstconvolutional layer. Again, relu activation and max pooling is appliedbefore passing data to the �irst fully connected layer. This �irst fullyconnected layer outputs a vector of dimension 120. After applying reluactivation, the data is passed to the second fully connected layer, whichreduces the output to a 90-dimensional vector. Finally, relu activationis again applied and the data passes to the last fully connected layer,which is used to classify the sample, and hence is 20-dimensional. Forall image sizes less than 1024, we execute our CNN 2-d models for 50epochs; for the case of images, we use 8 epochs due tothe costliness of training on these large images.The best overall accuracy obtained for our CNN 2-d experimentsis 0.8955. Figure 3 gives the confusion matrix for the best case. Wenote that the Obfuscator family is again the most dif�icult todistinguish.
3.2.2	 Vectorized	Image	CNNsRecent work has shown promising results for malware classi�icationusing one-dimensional CNNs on “image” data [10]. Consequently, weexperiment with �lattened images, that is, we use images that are onepixel in height. A possible advantage of this approach is that two-dimensional results can depend on the width chosen for the images.We perform two sets of such experiments, which we denote as CNN 1-dand CNN 1-d re�ined, the latter of which considers additional �ine-tuning parameters. The hyperparameters tested for these two casesare given in Table 5.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Our CNN 1-d model uses two one-dimensional convolutional layers,followed by three fully connected layers. The �irst convolution layertakes in an image with one channel and outputs data with 28 channelsbased on a kernel size of three. The second convolutional layer outputsdata with 16 channels and again uses a kernel of size three. The �irstfully connected layer outputs a vector of 120 dimensions, which isreduced to 90 dimensions by the second fully connected which, in turn,is reduced to 20 dimensions by the third (and last) fully connectedlayer. We have applied relu activations in all layers.The confusion matrix for our best CNN 1-d case is given in Fig. 4.The overall accuracy in this case is 0.8664. A handful of families (Agnet,Alureon, DelfInject, Obfuscator, and Rbot) have accuracies below 80%,which represents the majority of the loss of accuracy.The CNN 1-d re�ined tests use the same basic setup as our CNN 1-dexperiments, but includes different selections of hyperparameters. Asexpected, these additional parameters improved on the CNN 1-d case,as the best overall accuracy attained for our CNN 1-d re�inedexperiments is 0.8932. Qualitatively, the CNN 1-d re�ined results aresimilar (per family) to the CNN 1-d experiments, so we have omittedthe confusion matrix for this case.
3.2.3	 Opcode-Based	CNNsWe also apply 2-d CNNs to opcode features. For each malware sample,we use the �irst N opcodes from each binary �ile, where . We also experiment with various other parameters,as indicated in Table 5.The results for the best choice of parameters for our opcode-basedCNN experiments are summarized in the confusion matrix in Fig. 5.Perhaps not surprisingly, the results in this case are relatively weak,with an overall accuracy of 0.8282. However, it is interesting to notefrom the confusion matrix that some of the families that areconsistently misclassi�ied at high rates by image-based CNN modelsare classi�ied with high accuracy by this opcode-based approach. Forexample, DelfInject is classi�ied at no better than about 71% in ourprevious CNN experimetns, but it is classi�ied with greater than 90%accuracy using the opcode-based features.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.3	 Recurrent	Neural	NetworksNext, we consider a variety of experiments based on various recurrentneural network (RNN) architectures. Speci�ically, we employ plainvanilla RNN, LSTM, and GRU models. We also consider a complex LSTM-GRU stacked model. The hyperparameters tested in these experimentsare summarized in Table 6.
Table	6 RNN model parameters
Classi�ier Hyperparameter Tested	values Accuracy

Train TestRNN embedding_dim 0.7710 0.7294
hidden_dim

num_layers

directional

learning_rate 0.001
batch_size 128
epochs 20LSTM embedding_dim 0.9362 0.8916
hidden_dim

num_layers

directional

learning_rate 0.001
batch_size 128
epochs 20GRU embedding_dim 0.9411 0.9003
hidden_dim

num_layers

directional

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Classi�ier Hyperparameter Tested	values Accuracy

Train Test

learning_rate 0.001
batch_size 128
epochs 20Stacked embedding_dim 0.9525 0.8990
hidden_dim

num_layers

directional

LG

learning_rate 0.001
batch_size 128
epochs 20

3.3.1	 Vanilla	RNN,	LSTM,	and	GRUWe have trained our plain vanilla RNNs, LSTMs, and GRU-based modelsusing 20 epochs in each case, with a learning rate of 0.001, a batch sizeof 128, and based on the �irst 500 opcodes from each malware sample.We performed multiple experiments with various other parameters, asgiven in Table 6. In addition, we have applied a dropout layer with 0.3probability for all models with more than one layer.The vanilla RNN experiments performed poorly, with an overallaccuracy of just 0.7294, and hence we omit the confusion matrix forthis case. On the other hand, both the LSTM and GRU models performwell, with accuracies of 0.8916 and 0.9003, respectively. The confusionmatrix for the GRU case is given in Fig. 6. Since the LSTM results are sosimilar, we omit the LSTM confusion matrix. From Fig. 6, we see that,qualitatively, the results of our GRU experiments more closely matchthose of the CNN opcode-based experiments than the CNN image-based experiments. However, quantitatively, our GRU opcode-basedexperiments yield signi�icantly better results than our CNN opcode-based experiments.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.3.2	 Stacked	LSTM-GRU	ModelAs in [7], we have also experimented with stacked LSTM and GRUlayers. The experiments in this chapter test more parameters and weuse a larger dataset, as compared to [7]. A con�iguration option, whichwe refer to as LG, is used to decide whether the LSTM is stacked on topof the GRU (in this case) or GRU is stacked on top of theLSTM (). For example, when LG is “true,” opcode inputsare �irst passed to LSTM layers, with the output of the LSTM (i.e., thehidden cells) becoming input to the GRU layers. The output of the GRUis then passed to fully connected layers that are used to classify theinput data. We have applied a dropout layer with 0.3 probability formodels with more than one layer.The best overall accuracy we obtain for our stacked LSTM-GRUexperiments is 0.8990; the confusion matrix for this case is given inFig. 7. This is somewhat disappointing, as it is in between the resultsobtained for our LSTM and GRU models.
3.4	 Transfer	LearningFinally, we have considered two popular image-based transfer learningmodels, namely RestNet152 and VGG-19. These are models that havebeen pre-trained on large image datasets, and we simply retrain thelast few layers for the malware dataset under consideration, while theearlier layers are frozen during training. The parameters used in theseexperiments are summarized in Table 7.
Table	7 Transfer learning model parameters
Classi�ier Hyperparameter Tested	values Accuracy

Train TestResNet152 image_dim 256 0.9811 0.9150
learning_rate

batch_size 256
epochs 20VGG-19 image_dim 256 0.9690 0.9216

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Classi�ier Hyperparameter Tested	values Accuracy

Train Test

learning_rate

batch_size 256
epochs 20For ResNet152, the model parameters for layer four were unfrozenfor training. We also added two more layers of fully connected neuronsfor training. Resnet152 is pre-trained based on 1000 classes and henceits last fully connected layer has output dimensions of 1000. We reducethis output dimension to 500 via another fully connected layer, and anadditional fully connected layer further reduces the output dimensionto 20, which is the number of classes in our dataset.For VGG-19, we froze all layers except 34, 35, and 36. As withResNet152, we added two more layers of fully connected neurons toreduce the output dimension from 1000 to 20.For all of our transfer learning experiments, we use a batch sizeof 256 and trained each model for 20 epochs with learning ratesof 0.001 and 0.0001. Both ResNet152 and VGG-19 expect imagedimensions of and hence we resize our imagesto .The performance of these transfer learning models was the best ofour deep learning experiments, with ResNet152 achieving an overallaccuracy of 0.9150 and VGG-19 doing slightly better at 0.9216. Theconfusion matrix for VGG-19 is given in Fig. 8; we omit the confusionmatrix for ResNet152 since it is similar, but marginally worse. Ascompared to the other image-based deep learning models we haveconsidered, we see marked improvement in the classi�ication accuracyof the most challenging families, such as Obfuscator.

3.5	 DiscussionThe results of the malware classi�ication experiments discussed in thissection are summarized in Fig. 1. We see that among the deep learningtechniques, the image-based pre-trained models, namely, ResNet152and VGG-19, perform best, with VGG-19 classifying more than 92% of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the samples correctly. The best of our other (i.e., not pre-trained)image-based models achieved slightly less than 90% accuracy.

Fig.	1 Comparison of resultsAlthough the opcode-based results performed relatively poorlyoverall, it is interesting to note that they were able to classify somefamilies with higher accuracy than any of the image-based models.This suggests that a model that combines both image features andopcode features might be more effective than either approachindividually.
4	 Conclusions	and	Future	WorkMalware classi�ication is a fundamental and challenging problem ininformation security. Previous work has indicated that treating

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

malware executables as images and applying image-based techniquescan yield strong classi�ication results.In this chapter, we provided results from a vast number of learningexperiments, comparing deep learning techniques using image-basedfeatures to some cases involving opcode features. For our deeplearning techniques, we focused on multilayer perceptrons (MLP),convolutional neural networks (CNN), and recurrent neural networks(RNN), including long short-term memory (LSTM) and gated recurrentunits (GRU). We also experimented with the image-based transferlearning techniques ResNet152 and VGG-19. Among these techniques,the image-based transfer learning models performed the best, with thebest classi�ication accuracy exceeding 92%.For future work, additional transfer learning experiments would beworthwhile, as there are many more parameters that could be tested.Larger and more diverse datasets could be considered. In addition, itwould be interesting to consider both image-based and opcodefeatures as part of a combined classi�ication technique. As noted above,the opcode-based techniques perform worse overall, but they doprovide better results for some families that are particularlychallenging to distinguish based only on image features.
Appendix:	Confusion	Matrices

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Confusion matrix for MLP experiment

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 Confusion matrix for CNN 2-d experiment

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 Confusion matrix for CNN 1-d experiment

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Confusion matrix for opcode-based CNN experiment

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	6 Confusion matrix for GRU experiment

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 Confusion matrix for stacked LSTM-GRU experiment

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	8 Confusion matrix for VGG-19 experiment
References1. Adware:win32/hotbar. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Adware: Win32/ Hotbar& threatId= 6204.2. Austin, Thomas H., Eric Filiol, Sébastien Josse, and Mark Stamp. 2013. Exploring hiddenMarkov models for virus analysis: A semantic approach. In 46th	Hawaii	international

conference	on	system	sciences,	HICSS	2013,	Wailea,	HI,	USA,	January	7–10,	2013, 5039–5048.IEEE Computer Society.3. Backdoor:win32/cycbot.g. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Backdoor: Win32/ Cycbot. G.4.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Hotbar&threatId=6204
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Cycbot.G

Backdoor:win32/zegost.ad. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Backdoor%3AWin32%2FZegost. AD.5. Baysa, Donabelle, Richard M. Low, and Mark Stamp. 2013. Structural entropy andmetamorphic malware. Journal	of	Computer	Virology	and	Hacking	Techniques 9 (4): 179–192.[Crossref]6. Bhodia, Niket, Pratikkumar Prajapati, Fabio Di Troia, and Mark Stamp. 2019. Transfer learningfor image-based malware classi�ication. https:// arxiv. org/ abs/ 1903. 11551.7. Carrera, Ero. 2019. pe�ile 2019.4.18. https:// pypi. org/ project/ pe�ile/ .8. Damodaran, Anusha, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and MarkStamp. 2017. A comparison of static, dynamic, and hybrid analysis for malware detection.
Journal	of	Computer	Virology	and	Hacking	Techniques 13 (1): 1–12.[Crossref]9. Gupta, Arpit. 2018. Alexa blogs: How Alexa is learning to converse more naturally. https:// developer. amazon. com/ blogs/ alexa/ post/ 15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/ how-alexa-is-learning-to-converse-more-naturally.10. Jain, Mugdha, William Andreopoulos, and Mark Stamp. 2020. Convolutional neural networksand extreme learning machines for malware classi�ication. Journal	of	Computer	Virology	and
Hacking	Techniques. To appear.11. Khaitan, Pranav. 2016. Google AI blog: Chat smarter with Allo. https:// ai. googleblog. com/ 2016/ 05/ chat-smarter-with-allo. html.12. Kim, Samuel. 2018. PE header analysis for malware detection. Master’s thesis, San Jose StateUniversity. https:// scholarworks. sjsu. edu/ etd_ projects/ 624/ .13. Levy, Steven. 2016. The iBrain is here—and it’s already inside your phone. Wired. https:// www. wired. com/ 2016/ 08/ an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/ .14. McKinney, Wes. 2020. Pandas 1.0.5: Powerful data structures for data analysis, time series,and statistics. https:// pypi. org/ project/ pandas/ .15. Nappa, Antonio, M. Zubair Ra�ique, and Juan Caballero. 2015. The malicia dataset:identi�ication and analysis of drive-by download operations. International	Journal	of
Information	Security 14 (1): 15–33.[Crossref]16. Nataraj, L., S. Karthikeyan, G. Jacob, and B.S. Manjunath. 2011. Malware images: Visualizationand automatic classi�ication. In Proceedings	of	the	8th	International	Symposium	on
Visualization	for	Cyber	Security, VizSec ’11.17. Travis Oliphant. 2006. NumPy: A guide to NumPy. http:// www. numpy. org/ .18. Paszke, Adam, Sam Gross, Soumith Chintala, and Gregory Chanan. 2016. PyTorch: Fromresearch to production. https:// pytorch. org/ .

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%253AWin32%252FZegost.AD
https://doi.org/10.1007/s11416-013-0185-4
https://arxiv.org/abs/1903.11551
https://pypi.org/project/pefile/
https://doi.org/10.1007/s11416-015-0261-z
https://developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-converse-more-naturally
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html
https://scholarworks.sjsu.edu/etd_projects/624/
https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/
https://pypi.org/project/pandas/
https://doi.org/10.1007/s10207-014-0248-7
http://www.numpy.org/
https://pytorch.org/

19. Prajapati, Pratikkumar. 2020. Github repository. https:// github. com/ pratikpv/ malware_ detect2.20. Pws:win32/del�inject. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS: Win32/ DelfInject& threatId= -2147241365.21. Pws:win32/lolyda.bf. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS%3AWin32%2FLolyda. BF.22. Pws:win32/onlinegames. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS%3AWin32%2FOnLineGames.23. Pws:win32/zbot. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= PWS: Win32/ Zbot& threatId= -2147368817.24. Simonyan, Karen, and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. https:// arxiv. org/ abs/ 1409. 1556.25. Singh, Tanuvir, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and Mark Stamp.2016. Support vector machines and malware detection. Journal	of	Computer	Virology	and
Hacking	Techniques 12 (4): 203–212.[Crossref]26. Spruston, Nelson. 2019. Pyramidal neurons: Dendritic structure and synaptic integration.
Nature	Reviews	Neuroscience 9: 206–221. https:// www. nature. com/ articles/ nrn2286.27. Stamp, Mark. 2020. A selective survey of deep learning techniques and their application tomalware analysis. In Malware	Analysis	using	Arti�icial	Intelligence	and	Deep	Learning,chapter 1, Stamp, Mark, Mamoun Alazab, and Andrii Shalaginov, ed. 1–48. Springer.28. Toderici, Annie H., and Mark Stamp. 2013. Chi-squared distance and metamorphic virusdetection. Journal	of	Computer	Virology	and	Hacking	Techniques 9 (1): 1–14.[Crossref]29. Trojandownloader:win32/adload. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader %3AWin32%2FAdload.30. Trojandownloader:win32/agent. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader : Win32/ Agent& ThreatID= 14992.31. Trojandownloader:win32/renos. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= TrojanDownloader : Win32/ Renos& threatId= 16054.32. Trojan:win32/bho. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Trojan: Win32/ BHO& threatId= -2147364778.33. Trojan:win32/startpage. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Trojan: Win32/ Startpage& threatId= 15435.34. Virtool:win32/ceeinject. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= VirTool%3AWin32%2FCeeInject.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/pratikpv/malware_detect2
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/DelfInject&threatId=-2147241365
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%253AWin32%252FLolyda.BF
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%253AWin32%252FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/Zbot&threatId=-2147368817
https://arxiv.org/abs/1409.1556
https://doi.org/10.1007/s11416-015-0252-0
https://www.nature.com/articles/nrn2286
https://doi.org/10.1007/s11416-012-0171-2
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%253AWin32%252FAdload
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Agent&ThreatID=14992
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%253AWin32%252FCeeInject

35. Win32/alureon. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Alureon.36. Win32/fakerean. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ FakeRean.37. Win32/obfuscator. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Obfuscator& threatId= .38. Win32/rbot. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Rbot& threatId= .39. Win32/vobfus. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Vobfus& threatId= .40. Win32/vundo. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Vundo& threatId= .41. Win32/winwebsec. https:// www. microsoft. com/ en-us/ wdsi/ threats/ malware-encyclopedia-description? Name= Win32/ Winwebsec.42. Wong, Wing, and Mark Stamp. 2006. Hunting for metamorphic engines. Journal	in	Computer
Virology 2 (3): 211–229.[Crossref]43. Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, WolfgangMacherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, JasonSmith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and JeffreyDean. 2016. Google’s neural machine translation system: Bridging the gap between human andmachine translation. https:// arxiv. org/ abs/ 1609. 08144.44. Yajamanam, S., V. R. S. Selvin, F. Di Troia, and Mark Stamp. 2018. Deep learning versus gistdescriptors for image-based malware classi�ication. In Proceedings	of	the	4th	International
Conference	on	Information	Systems	Security	and	Privacy, ICISSP 2018, 553–561.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Alureon
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Obfuscator&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Rbot&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vobfus&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vundo&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Winwebsec
https://doi.org/10.1007/s11416-006-0028-7
https://arxiv.org/abs/1609.08144

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_17
A	Novel	Study	on	Multinomial
Classi�ication	of	x86/x64	Linux	ELF
Malware	Types	and	Families	Through
Deep	Neural	NetworksAndrii Shalaginov1 and Lasse Øverlier1 Norwegian University of Science and Technology, Trondheim,Norway
Andrii	Shalaginov	(Corresponding	author)
Email:	andrii.shalaginov@ntnu.no
Lasse	Øverlier
Email:	lasse.overlier@ntnu.no

AbstractThrough the history of desktop and server-oriented malware,Microsoft Windows was notoriously known as one of the heavilyattacked Operating Systems (OS). Several factors caused this, includingunobstructed installation of third-party software. Unix-like OS isconsiderably less susceptible to malware infections. However, thereare still a few examples of successful malicious software. The challengeis that there are not that many software tools available to analyzeLinux malware, including well-known automated intelligent machinelearning-aided classi�ication. Our contribution in this paper istwofolded. First, we look at the most popular approaches to analyzeLinux malware into families and types. Simple binary classi�ication isno longer ef�icient and it is more important to know the exact class ofmalware to speed up incident response. Second, we suggested

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_17
mailto:andrii.shalaginov@ntnu.no
mailto:lasse.overlier@ntnu.no

methodology for multinomial Linux malware classi�ication using deepneural network. This approach overcomes the limitation of shallowneural networks used before for multinomial Windows PE32 malwareclassi�ication. Such classi�ication has been explored successfully for MSWindows, yet, not on the Linux malware. Our focus also is speci�icallyon desktop and server Intel-compatible Linux malware rather thanaf�iliated ARM binaries that require designed IoT environment to runsuccessfully. This work will serve as a stepping stone for ef�icientintelligent Linux malware classi�ication using deep learning-basedmethods. We have created a novel dataset with 10,574 malware �ileslabeled into 19 malware types and 442 malware families
1	 IntroductionMalicious software, computer viruses, or simpler malware have beenthere for decades, targeting individual users, organizations, and criticalnational infrastructure. Historically, the family of Microsoft WindowsOperating Systems (OS) is considered to be more vulnerable and moresusceptible to cyberattacks than Linux or MacOS [17, 29]. Multiplefactors in�luenced and lead to such state of the art. Although Linux isconsidered to be more secure and less affected my computer viruses,there are still notorious examples of how systems are exploited [20,40]. As a result, a very few works focus on either intelligent- orsignature-based Linux malware detection [16]. This work bridges thegap between detection of Linux malware families and types andapplication of renewed deep learning models for similarity-basedstatic malware detection.Most of the researchers in the information security communitywork on the techniques used to identify and detect Windows malwaresamples among others, particularly, known and widely seen classes.They use a lot of methods, both static and dynamic analyses, to identifythat malware among others, besides whether the software is maliciousor benign. Very few works focus on Linux and there is a clear reason forsuch bias. From the global perspective of Desktop OS marketshare [35], we can see that during May 2019–May 2020, the overallshare of MS Windows OS is 77.04%, OS X 0 18.38%, and Linux—1.68%.Market share of Linux in cloud services is much bigger—more than

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

90% of public cloud services run Linux [13]. However, large-scaleenterprise cloud solutions have better security measures than privateend users. Therefore, Linux malware analysis requires a betterunderstanding of speci�ic features and approaches that can be used tonot only detect malware but also understand what type of malware itis. Another big challenge is malware naming. CARO (ComputerAntivirus Research Organization) created a naming scheme back in1990 [3], which was supposed to be a stepping stone for malwarenaming standardization. However, only Microsoft mostly uses CAROapproach in their products [2] with Trend Micro moving that directionsince 2018. In the literature, there can be found several sourcesmentioning these challenges, yet offering no comprehensive overviewor even solution. As a result, one needs to use additional processingmethods like majority voting [34] or AVCLass [30] tool to �ind ourcorrect and realistic malware class name.The scope of this research is (i) to reveal existing challenges thatcomplicate Linux malware identi�ication and cyberthreat intelligenceservices when it comes to feature engineering and extraction usingopen-source tools. To our knowledge, the topic has been approached byresearchers before, however, there is no comprehensive evaluation offeatures that can be used for multinomial malware detection.Moreover, we aim at (ii) providing a high-level overview of possibletools and data sources for static feature contractions. Finally, (iii) wefocus on multinomial Linux malware classi�ication using deep learningwith multiple abstraction layers. To our awareness, such evaluation hasnot been done before nor other works focused purely on Linuxmalware compiled speci�ically for Intel desktop platforms rather thanARM or MIPS. We have identi�ied 15,101 Intel-compiled ELF �iles, whichis the largest known Linux malware collection used in malwareresearch. Out of those, 10,574 were labeled into malware types andfamilies.This paper is organized as follows. Section 2 represents the historyof Linux malware and relevant background state of the art, includingprevious studies with applications of Machine Learning (ML).Following the relevant literature study, Sect. 3 presents the ELF �ileformat and possible raw data that can be extracted from the �ile, andsubsequently used to identify malware category. Section 4 provides a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

suggested methodology, used data and deep learning technique.Section 5 describes used experimental setup, software tools, anddeveloped programs, while analysis of achieved results in intelligentLinux malware classi�ication is given in Sect. 6. Conclusions andDiscussions are outlined in Sect. 7.
2	 State	of	the	Art:	Machine	Learning	for	Linux
Malware	DetectionLinux malware is not the most mainstream attack vectors. Frombefore, those binaries were tailored for speci�ic attacks when anattacker seeks access to the system, e.g., outdated vulnerable webservice hosted on old Linux machine [24]. Another reason for this isthat Linux malware is developed for server-based production cloudsystems, while desktop Linux usage pattern is far from beingmainstream [35]. We can see a huge difference in available samples forLinux and Windows malware research. There were only 10,548collected ELF Linux malware samples, including PC and ARM devices inthe study by Cozzi et al. [16], out of which only 3,738 binaries wereIntel-compatible. Shalaginov et al. [34] managed to collect 326,000malicious PE32 �iles. Linux malware detection is not yet a Big Dataproblem and does not necessarily target the consumer market.In general, the history of Linux malware is not as extensive as it canbe seen in the case of MS-DOS or Microsoft Windows. One of the mainreasons is that hiding malware code in open-source projects withcommunity review is a very dif�icult task [8]. In a matter of fact, thereare very few surveys or articles published on the evolution of Linuxmalware. However, we can say that early 1990s can be considered as astarting point in a growing number of Linux malware. One of thesurveys [1] mentioned a few known famous Linux malware samplessuch as Staog (1996), Slapper (2002), and Trass Spyware (2014). ScottGranneman in 2003 article [21] de�ined following approximation oftotal number of known viruses: MS Windows—60,000, Macintosh—40,commercial Unix versions—5 and Linux—40. It means that Linuxmalware roughly shares 0.07% of known malware samples. In June2020, according to VirusTotal Intelligence Platform (search command“magic:pe32	positives:1+”), there are PE32 malware—37.55 million,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

ELF—0.14 million, and Mach-O—0.025 million of samples with at leastone anti-virus vendors de�ining �ile as malicious. In our particular case,it means that the number of malicious ELF �iles identi�ied by VirusTotalis 0.37% out of globally known malware. It includes both Intel-compiled binaries and ARM and MIPS platforms. IoT botnets becamepopular in recent years, also hitting ARM portable and embeddeddevices running Linux [25]. Using Shodan.io service we found only12,320 Linux devices openly connected to the Internet [9] withpossible vulnerabilities and privacy concerns. Therefore, it is yetanother proof that Linux malware is not a mainstream infection,however, still representing a threat to corporate and enterprise clients,especially if the software is outdated.Cozzi et al. [16] highlighted a general lack of studies related to Linuxmalware, how it functions, limited availability of data, and whatindicators to look for complicates the whole research. There are veryfew works that dissect Linux ELF malware and perform a thoroughstudy. Cozzi et al. looked at several examples of how Linux malwareimplement malicious activities and what can be used for malwaredetection. Another distinct work in the area is ELF-miner developed byShahzad et al. [31].
3	 Linux	Malware:	Automated	Features
Extraction	and	Classi�icationMalware analysis research has gained extensive popularity andattention in the last two decades, especially focusing on automateddetection using ML. However, the key factor to success andreproducible of study—data, i.e., malware binary samples. When itcomes to Linux malware, the main challenge is a qualitative anddescriptive ELF dataset, in contrary to millions of available WindowsPE32 malware �iles. We investigated several sources of possible Linuxmalware that can be utilized in this research. First, VxHeaven [7] wasone of the websites providing access to well-categorized binary �iles.However, the website was closed in 2012 by Ukrainian police forces,then worked since 2013 until 2018. Finally, it went of�line, andcurrently several mirrors can be found online to maintain the initiative.The challenge is that most of the viruses there are already outdated.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Another resource is VirusTotal, which was established in 2004 and nowcan be considered as a de	facto standard in the information securitycommunity [5]. It provides reporting of the malware detection from 70anti-virus vendors, which in addition to extensive threats intelligenceand community reporting, giving the most extensive publicly availablemalware awareness. As per 03.07.2020, there have been reported1,606,461 distinct �iles submitted to VirusTotal, while 836,160 �ileswere labeled as malicious by one or more anti-virus vendors [6].Finally, VirusShare [4] initiative started back in 2011 and now hascollected over 400 versatile archives with different examples ofmalware. As per 03.07.2020, VirusShare collection offers access to34,866,212 different malware samples available through the website.In this research, we focus on VirusShare malware �iles that arerepresented in four dedicated archives: one Linux and three ELF-speci�ic.When it comes to Microsoft Windows Portable Executable 32 �ileformat, we can see that there has been done a wide range of studies[18, 28, 34, 36, 39, 41] dissecting particular features and attributes thatcan identify malicious behavior. In a matter of fact, one can �ind a well-known Windows API function calls that are attributed to the maliciousbehavior [10, 19, 27, 37]. Furthermore, the attack vectors andexploitation methods used famous software packages available forWindows platform [42]. Therefore, state of the art in Windowsmalware analysis is extensive and amount of available literature aboutpossible distinct features and a corresponding set of supplementaryanalytics tools is overwhelming [32].We mentioned above that Linux malware is not a mainstreamresearch �ield, therefore making it challenging to have robust andresilient characteristics extraction. However, we still can �ind a fewworks focusing on the peculiarities of Linux malware samples.Generally speaking of Executable and Linkable Format (ELF) �iles,there is a commonly used reference structure of the �ile. The ELF �ileformat was selected as the main format in x86 Unix and Linux systemsin 1999 [22]. Moreover, according to ELF version 1.2 speci�ication [14],the �iles are organized in the following components: (i) ELF	header with(ii) subsequent	program	header	table and (iii) section	header	table. ELF

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

header represents 32-byte-long data structure that identi�ies thefollowing parameters of the �iles as shown in Fig. 1.

Fig.	1 Decoded ELF header �ield values extracted using “readelf -h”Program headers are represented in Fig. 2. Each header has a sizeof 56 bytes and current example has 3 headers. Section headers andcorresponding segment mapping are shown in the end.

Fig.	2 Overview of program header sections extracted using “readelf -l”

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Having in mind a general overview of the ELF �ile format, our maingoal would extract as many features as possible to be able to performautomated analysis [12]. Header and �ile data can be crucial to �indingdissimilarities in malicious �iles. Our particular goal is to investigatewhether static analysis can be utilized for multi-class malwareclassi�ication using ML. A study by Cozzi et al. [16] attempted tounderstand what kind of characteristics can be used to identifymalicious behavior in Linux. The authors mostly focused on dynamicbehavioral exaction and touched static analysis brie�ly. Only 3,738Intel-complied ELF �iles were used. Bai et al. [11] applied ELF parserfor classi�ication of 8 malware classes with 763 malware samplesbased on the system calls. There were even attempts to provideplatform-independent malware analysis for both Windows andLinux [23]. So, the main difference from previous works is theutilization of a variety of relevant static features for malware detectionfor Intel-complied binaries rather than the runtime and dynamicanalysis of ELF, which heavily depends on platform and OS.Multi-class intelligent Linux malware classi�ication requiresbuilding ML methods capable of high level of abstraction. DeepLearning and Deep Neural Networks (DNN) have been successfullyused in the area of malware analysis before [15, 38, 43]. The reason forthis is the ability of the DNN to model highly nonlinear relationships,especially when it comes to multiple classes rather than standardbinary classi�ication [33]. By using such an approach, the plan is toovercome the limitations of static features in the multinomial Linuxclassi�ication problem due to the presence of obfuscation.
4	 Methodology:	Malware	Analysis	and
DetectionIn ML, any application based on the data analytics should include so-called testing and training phase according to Kononenko [26]. Thefundamentals of ML-based intelligent malware detection depend onthe quality of features or attributes that the classi�ication engine isrelying upon. Shalaginov et al. [32] made an extensive survey ofpossible way of feature extraction from malware samples, such as bytesequences, opcodes, high-level header features, etc. In our view, using

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

high-level static features in this research can yield reliableidenti�ication of multiple classes of malware. At the same time, thedynamic behavioral analysis may not yield a suf�icient amount ofrelevant attributes and require much more efforts to establish a testingenvironment. Unlike Cozzi et al. [16], we focus speci�ically on Linux PCmalware (Intel 3086 and x86-64) and not on ARM/MIPS platforms,while having many more samples for our experimentation. So, to yieldthe best possible results, we developed the following methodologyusing static analysis based on the characteristics from Linux nativetools and threat intelligence from VirusTotal platform.
Phase	0. Acquiring samples from VirusShare—the mostcomprehensive and known information security community ELF Linuxmalware samples that are also publicly available.
Phase	1. Filtering all �iles that are not completed for ELF platform,performing extraction of raw information for every malware binary �ilesuch as “md5,” JSON “peframe” report, “readelf,” “�ile,” “strings,” �ilesize, and entropy. All information is being stored in MySQL database foreasier subsequent access.
Phase	2. Filtering ELF Linux malware samples that have beencompiled for either Intel 3086 or Intel x64-86 platform based onextracted metadata. We speci�ically exclude any other binaries such asARM/MIPS to facilitate a better “ground truth” in experiments andunbiased results. Then, an extraction of the reports using VirusTotalPrivate API was performed.
Phase	3. Feature extraction is being performed on all types of rawdata extracted at the previous phase. As a basis, the followingcategories of metadata and characteristics were used:“virustotal_�ile_report,” “peframe,” “readelf,” “strings,” “�ile_size,” and“�ile_entropy.” The description of 30 extracted features is shown inTable 1.

Table	1 Description of features extracted for each ELF �ile
Feature	name Explanation

vt_submission_names Number of submission names
vt_times_submitted Times the binary was submitted
vt_exif Number of entries in “exiftool”

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Feature	name Explanation

vt_embedded_ips Number of embedded IPs in the binary
vt_contacted_ips Number of IPs the binary contacted
vt_exports Number of export functions
vt_imports Number of import functions
vt_shared_libraries Number of shared libraries included
vt_segments Number of segments
vt_sections Number of sections
vt_packers Number of packers
vt_tags Number of tags
vt_positives Number of AV identi�ied as malicious
peframe_ip Number of identi�ied IP addresses
peframe_url Number of identi�ied URLs
readelf_entry_address Entry point address
readelf_start_prog_headers Start of program headers
readelf_start_sec_headers Start of section headers
readelf_number_�lags Number of �lags
readelf_header_size Size of this header
readelf_size_prog_headers Size of program headers
readelf_number_prog_headers Number of program headers
readelf_size_sec_headers Size of section headers
readelf_number_section_headers Number of section headers
readelf_sec_header_string_table_index Section header string table index
strings_number Number of distinct strings
strings_size Size of all strings extracted from the �ile
strings_avg Average size of each string
�ile_size‘ Size of the �ile
�ile_entropy‘ Entropy of the whole �ile contentFinally, we are looking into malware types and families based on thestandard developed by the Computer Anti-Virus Research Organization(CARO). The idea is to extract two classes: “type” and “family.” Toolslike AVCLass [30] cannot give both classes, and therefore we will be

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

looking into VirusTotal reports generated by Microsoft, one of the veryfew companies following CARO naming standard.
Phase	4. In this step, we extract two labeled datasets: with classlabel “type” and “family” separately to investigate how those differ.This phase has to goals: (i) to investigate features and possibly selectthe best set and (ii) evaluate the performance of state-of-the-art MLmethods and deep DNN with a large number of hidden layers.

5	 Experimental	DesignTo investigate Linux ELF malware and understand how deep learningcan be used to perform multinomial classi�ication, there wasestablished an experimental setup to process raw malware, extractrelevant features, and build an intelligent detection model.
5.1	 DatasetAs we have mentioned before, the amount of available Linux ELFmalware cannot be compared to MS Windows PE32 malware binaries.Therefore, we looked for community-published datasets that can servethe purpose of multinomial malware detection and reproducibleexperiments. One of the famous collection has been published byVxHeaven [7]. Even though VxHeaven website offers well-classi�iedmalware samples, the resource was of�line and the data was notupdated for several years. Therefore, we found another alternative—popular malware distribution platform VirusShare [4]. Three archiveswith Linux ELF malware were acquired as described in Table 2.
Table	2 Archives extracted from VirusShare that contain Linux and ELF malware
Filename Archive	size	(GB) Number	of	�ilesVirusShare_ELF_20140617.zip 0.13 2,778VirusShare_ELF_20190212.zip 1.24 10,426VirusShare_ELF_20200405.zip 2.40 43,553VirusShare_Linux_20160715.zip 10.78 9,469Collected archives have been uploaded to VirusShare in 2014, 2016,2019, and 2020. Following Phase	0, we managed to collect 56,805

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

unique (MD5) ELF �iles for further processing from the archives. After�iltering all non-Intel binaries, we have shortlisted 15,101 ELF �ilesfollowing Phase	1. The top 10 types of Intel-related malware platformsare presented in Table 3. One can see that there is quite a different typeof �iles. In overall, we retrieved 700 different types of ELF �ilescompiled for Intel platform out of 1,128 all types. During Phase	2, theextraction of the reports using VirusTotal Private API andcorresponding characteristics using open-source and inline Linuxcommand line software tools was performed. Finally, after Phase	3, weended up having 10,574 selected ELF �iles that also have been labeledby Microsoft following the CARO naming convention. Reason for thisselection is the ability to use trustworthy classi�ication for bothmalware “types” and “families.”
Table	3 Top 10 �ile types using Linux “�ile” command
Count Linux	“�ile”	command	output3,517 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, not stripped3,194 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, stripped1,785 ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped1,271 ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux), statically linked,stripped610 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked,interpreter /lib/ld-linux.so.2, for GNU/Linux 2.0.0, not stripped385 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, missingsection headers370 ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, stripped364 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked,interpreter /lib/ld-linux.so.2, for GNU/Linux 2.2.5, not stripped315 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, forGNU/Linux 2.2.5, not stripped264 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked,interpreter /lib/ld-linux.so.2, for GNU/Linux 2.2.5, with debug_info, not strippedMoreover, all relevant �iles have been checked against VirusTotal toretrieve relevant static and dynamic analysis information and, mostimportant, labels assigned by Anti-Virus vendors. However, did not �indany �iles that have not been submitted to VT before—all were known

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

malware samples from before. The overall raw data set extracted fromselected ELF �iles occupied 6.8 GB in MySQL storage for the following�ields in the database that are shown in the Fig. 3.

Fig.	3 Raw data extracted from ELF �iles that are places in MySQL dataset
5.2	 Experimental	SetupExperimental setup and all data processing have been done on Ubuntu18.04 using Python 3.6.9 and storing data in MySql 5.7. For featureengineering, we used following tools: “ent”—entropy of the �ile,“strings” v 2.30—all ASCII strings in the �ile, “�ile” v 5.32— informationabout particular �ile type, “readelf” v 2.30— information about ELFformal object �ile, “peframe” v 6.0.3—a tool for getting JSON report onPE32 �iles, also giving a lot of structural information on ELF, VirusTotalPrivate API 2.0—all anti-virus reports. For ML part, it was used Weka3.8.4 and RapidMiner 9.7.
6	 Results	and	AnalysisOne of the most important �indings of this study is the actualdistribution of the malware samples in the collected dataset. In overall,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

we discovered 19 distinct malware types and 442 families followingELF malware labeled by Microsoft following the CARO naming scheme.To our awareness, such descriptive statistics were not available andthe summary is represented in the Table 4. It is peculiar that “DDoS”type and “Mirai” family have a considerable share in the detectedx86/x64 Linux malware. Based on this, we can speculate that Linuxmachines are often infected for distributed attacks and botnetcreation.
Table	4 Top 10 ELF x86/x64 ELF malware types and families extracted from the dataset
Malware	type Count Malware	family CountDDoS 4,230 Lightaidra 2,709Trojan 2,602 Gafgyt 1,368Backdoor 2,153 Mirai 1,346Virus 577 Occamy 1,050Exploit 394 RST 281DoS 204 CoinMiner 238TrojanDownloader 160 Setag 236Worm 120 Berbew 220VirTool 98 Wacatac 195HackTool 62 Tsunami 164
6.1	 Feature	SelectionEven though it was extracted 30 relevant features for multinomialclassi�ication of Linux ELF malware, not all of them have the samecontribution toward dissimilarities in each class. To measure thedifferences in such contribution, we performed feature evaluationusing Information Gain method [26]. Results for 19 malware types and442 families are shown in the Table 5.
Table	5 Top 10 features according to Information Gain measure
Average	merit Average	rank Feature	name

Malware	type1.022 +- 0.013 1 +- 0 readelf_start_sec_headers0.898 +- 0.037 2 +- 0 �ile_size

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Average	merit Average	rank Feature	name0.774 +- 0.007 3.6 +- 0.66 readelf_entry_address0.766 +- 0.016 3.9 +- 0.83 strings_size0.757 +- 0.019 4.5 +- 0.67 strings_number0.675 +- 0.003 6.4 +- 0.8 readelf_sec_header_string_table_index0.665 +- 0.009 7.3 +- 0.64 readelf_number_section_headers0.646 +- 0.034 7.7 +- 1.27 strings_avg0.609 +- 0.019 8.9 +- 0.54 �ile_entropy0.597 +- 0.005 9.7 +- 0.46 vt_sections
Malware	Family2.174 +- 0.026 1 +- 0 readelf_start_sec_headers1.894 +- 0.036 2 +- 0 �ile_size1.708 +- 0.03 3.1 +- 0.3 strings_size1.671 +- 0.033 4 +- 0.45 strings_number1.613 +- 0.025 4.9 +- 0.3 readelf_entry_address1.478 +- 0.05 6.5 +- 0.5 readelf_number_section_headers1.394 +- 0.178 7.5 +- 1.91 readelf_sec_header_string_table_index1.401 +- 0.019 7.7 +- 0.46 strings_avg1.285 +- 0.026 9.1 +- 0.7 �ile_entropy1.274 +- 0.089 9.6 +- 1.02 vt_sectionsA few peculiarities that we can see is the consistency between themost in�luential features when it comes to both types and families.Even though there is 10 magnitude difference in the number of classes,the following features have one of the biggest merits when comparedto others: “readelf_start_sec_headers”—starting position of the sectionheaders into ELF �ile measures in bytes, “�ile_size” in bytes,“string_size”—the size of all ASCII strings discovered in ELF �ile and“strings_number”—number of all distinct strings found in ELF �ile. Thedistribution of the two �ist aforementioned features is represented inFigs. 4 and 5. The distribution is given for DDoS and Trojan malwaretypes, which were found to be the most frequent in the datasetaccording to Table 4. We can see how distributions differ from one typeto a different type, in�luenced by internal malicious functionality ofbinary �iles.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

6.2	 Classi�ication	Accuracy:	State-of-the-Art	MethodsTo establish a “ground truth” compared to other ML methods acceptedin the community and considered as state of the art, we used thefollowing implementations in Weka with tenfold cross-validation:Naive Bayes, Support Vector Machines (SVM), multilayer perceptron, k-NN, and C4.5. The overall classi�ication results for all malware familiesand types are shown in Table 6.

Fig.	4 Distribution of “readelf_start_sec_headers” for two most frequent ELF malware types—DDoS and Trojan (plotted in RapidMiner)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Distribution of “�ile_size” for two most frequent ELF malware types—DDoS and Trojan(plotted in RapidMiner)One of the most accurate models is C4.5, which builds a decisiontree model. However, the complexity is quite outstanding, consideringthat for the “type” dataset, the tree includes 693 leaves and having thesize of 1,385; for the “family” dataset, the tree contains 1,148 leavesand tree size is 2,295. It makes those methods impractical.
6.3	 Deep	Learning

Table	6 Classi�ication accuracy of ELM malware types and families
Method Malware	type,	% Malware	family,	%Naive Bayes multinomial 6.6295 6.5916Support vector machine 59.6747 47.3804Multilayer perceptron (3 L) 63.6751 34.7172IBk (k-NN, k 3) 73.8415 63.8075J48 (C4.5) 80.8587 71.5150It was mentioned before that the major advantage of deep learningis the ability to model highly nonlinear data, such as multinomialclassi�ication. State-of-the-art ML methods does not perform too well

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

on the ELF multinomial malware classi�ication, especially hundreds ofmalware families cannot be classi�ied properly. The exception is k-NNand C4.5; however, training such models on millions of malwaresamples will result in unmanageable and large models that areimpractical in real life. To investigate the in�luence on number ofhidden layers—and, as a result, abstraction level—we performed acomparison of the DNN classi�ication. Results for the ELF malwaretypes are shown in Fig. 6 and—for the malware families—in Fig. 7.There is no improvement in accuracy for the family dataset for DNNwith more than 10 layers while the training time and complexity growdramatically. The conclusion that we can draw from the plots is anecessity for higher abstraction level models that can properly modelfeatures of each particular class when it comes to tens and hundreds ofmalware classes, rather than the classical problem of binarymalware/goodware detection. Classi�ication accuracy with the lowernumber of classes can be easily boosted by an increasing number ofhidden layers; however, it is not the case if there is a considerablenumber of classes.

Fig.	6 Dependency of DNN accuracy and training time for 19 malware types on number of layers(plotted in RapidMiner)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 Dependency of DNN accuracy and training time for 442 malware families on number oflayers (plotted in RapidMiner)
7	 Discussions	and	ConclusionsThis work describes ongoing research related to rarely explored LinuxELF malware detection and analysis designed speci�ically for Intelx86/x64. The general lack of tools and malware detection approachescan be explained by a much lower share of desktop Linux OS incomparison to MS Windows. Moreover, the latter has a differentsecurity mechanism when it comes to the installation of third-partysoftware, making Linux malware targeting servers with outdatedsoftware. Moreover, there was no comprehensive properly labeleddataset available for x86/x64. One of the outcomes of this work iscorresponding ELF malware dataset containing 10,574 malware �ileslabeled into 19 malware types and 442 malware families. Followingthis, we extracted 30 static features that can be used for malwareclassi�ication using state-of-the-art machine learning methods. We cansee that to achieve a reasonable classi�ication accuracy and concisemodel size on such non-trivial dataset one needs to use deep neuralnetworks with a large number of layers. However, additional study ofstatic and possibly dynamic behavioral features is required to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

understand the better multinomial classi�ication of Linux ELF malwarebinaries.
AcknowledgementsAuthors would like to acknowledge NTNU Malware Lab for the supportand VirusTotal Intelligence Premium Services for access to data.Moreover, we are grateful to VirusShare for priceless data collectionand contribution toward malware analysis community. Finally, theutilization of PEframe for ELF �iles processing gave valuable resultsmaking this research possible.
References1. A brief history of linux malware. Accessed 24 June 2020.2. Malware names. https:// docs. microsoft. com/ nb-no/ windows/ security/ threat-protection/ intelligence/ malware-naming. Accessed 06 Feb 2020.3. Naming scheme - caro - computer antivirus research organization. www. caro. org/ naming/ scheme. html. Accessed 07 Feb 2020.4. Virusshare. https:// www. VirusShare. com/ . Accessed 17 Feb 2020.5. Virustotal. https:// www. virustotal. com/ . Accessed 17 Feb 2020.6. Virustotal statistics. https:// www. virustotal. com/ en/ statistics/ . Accessed 04 Feb 2020.7. Vxheaven. Accessed 22 June 2020.8. The short life and hard times of a linux virus. 2000. Accessed 24 June 2020.9. Shodan.io. 2020. https:// www. shodan. io. Accessed 24 June 2020.10. Amer, Eslam, and Ivan Zelinka. 2020. A dynamic windows malware detection and predictionmethod based on contextual understanding of api call sequence. Computers	&	Security 92:101760.11. Bai, Jinrong, Yanrong Yang, Mu Shiguang, and Yu Ma. 2013. Malware detection through miningsymbol table of linux executables. Information	Technology	Journal 12 (2): 380.12. Boelen, Michael. 2019. The 101 of elf �iles on linux: Understanding and analysis. https:// linux-audit. com/ elf-binaries-on-linux-understanding-and-analysis/ .13. cbtnuggets. Why linux runs 90 percent of the public cloud workload. Accessed 12 June 2020.14. TIS Committee et al. 1995. Tool interface standard (tis) executable and linking format (elf)speci�ication version 1.2.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.microsoft.com/nb-no/windows/security/threat-protection/intelligence/malware-naming
http://www.caro.org/naming/scheme.html
https://www.virusshare.com/
https://www.virustotal.com/
https://www.virustotal.com/en/statistics/
https://www.shodan.io/
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/

15. Coull, Scott, and Christopher Gardner. 2018. What are deep neural networks learning aboutmalware? https:// www. �ireeye. com/ blog/ threat-research/ 2018/ 12/ what-are-deep-neural-networks-learning-about-malware. html.16. Cozzi, Emanuele, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti. 2018.Understanding linux malware. In 2018	IEEE	symposium	on	security	and	privacy	(SP), 161–175. IEEE.17. Das, Ankush. 2018. Reasons why linux is better than windows. 11 (3): 11. https:// itsfoss. com/ linux-better-than-windows/ .18. Denzer, Thilo, Andrii Shalaginov, and Geir Olav Dyrkolbotn. 2019. Intelligent windowsmalware type detection based on multiple sources of dynamic characteristics. NISK	Journal,12.19. Duncan, Rory, and Z. Cliffe Schreuders. 2019. Security implications of running windowssoftware on a linux system using wine: A malware analysis study. Journal	of	Computer
Virology	and	Hacking	Techniques 15 (1): 39–60.20. Eset. Linux and malware: Should you worry? Accessed 12 June 2020.21. Granneman, Scott. 2020. Linux vs. windows viruses, 2003. Accessed 24 June 2020.22. Hofmann, Frank. 2019. Understanding the elf �ile format. https:// linuxhint. com/ understanding_ elf_ �ile_ format/ .23. Hwang, Chanwoong, Junho Hwang, Jin Kwak, and Taejin Lee. 2020. Platform-independentmalware analysis applicable to windows and linux environments. Electronics 9 (5): 793.[Crossref]24. Jayasinghe, Keshani, and Guhanathan Poravi. 2020. A survey of attack instances ofcryptojacking targeting cloud infrastructure. In Proceedings	of	the	2020	2nd	Asia	paci�ic
information	technology	conference, 100–107.25. Kolias, Constantinos, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas. 2017. Ddos inthe iot: Mirai and other botnets. Computer 50 (7): 80–84.26. Kononenko, Igor, and Matjaz Kukar. 2007. Machine	learning	and	data	mining. Sawston:Horwood Publishing.27. Liu, Yingying, and Yiwei Wang. 2019. A robust malware detection system using deep learningon api calls. In 2019	IEEE	3rd	information	technology,	networking,	electronic	and	automation
control	conference	(ITNEC), 1456–1460. IEEE.28. Markel, Zane, and Michael Bilzor. 2014. Building a machine learning classi�ier for malwaredetection. In 2014	second	workshop	on	anti-malware	testing	research	(WATeR), 1–4. IEEE.29. Noyes, Katherine. 2010. Why linux is more secure than windows. Luettavissa:http:// www. pcworld. com/ article/ 202452/ why_ linux_ is_ more_ secure_ than_ windows. html.Luettu, vol 14,2014.30.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://itsfoss.com/linux-better-than-windows/
https://linuxhint.com/understanding_elf_file_format/
https://doi.org/10.3390/electronics9050793
http://www.pcworld.com/article/202452/why_linux_is_more_secure_than_windows.html

Sebastián, Marcos, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Avclass: A toolfor massive malware labeling. In International	symposium	on	research	in	attacks,	intrusions,
and	defenses, 230–253. Springer.31. Shahzad, Farrukh, and Muddassar Farooq. 2012. Elf-miner: Using structural knowledge anddata mining methods to detect new (linux) malicious executables. Knowledge	and
Information	Systems 30 (3): 589–612.[Crossref]32. Shalaginov, Andrii, Sergii Banin, Ali Dehghantanha, and Katrin Franke. Machine learning aidedstatic malware analysis: A survey and tutorial. In Cyber	threat	intelligence, 7–45. Cham:Springer.33. Shalaginov, Andrii, and Katrin Franke. A deep neuro-fuzzy method for multi-label malwareclassi�ication and fuzzy rules extraction. In 2017	IEEE	symposium	series	on	computational
intelligence	(SSCI), 1–8. IEEE.34. Shalaginov, Andrii, Lars Strande Grini, and Katrin Franke. 2016. Understanding neuro-fuzzy ona class of multinomial malware detection problems. In International	joint	conference	on
neural	networks	(IJCNN)	2016, 684–691. Research Publishing Services.35. Statcounter. Operating system market share worldwide: May 2019–May 2020. Accessed 11June 2020.36. Sun, Zhi, Zhihong Rao, Jianfeng Chen, Rui Xu, Da He, Hui Yang, and Jie Liu. 2019. An opcodesequences analysis method for unknown malware detection. In Proceedings	of	the	2019	2nd
international	conference	on	geoinformatics	and	data	analysis, 15–19.37. Tarek, Radah, Saadi Chaimae, and Chaoui Habiba. 2020. Runtime api signature for �ilelessmalware detection. In Future	of	information	and	communication	conference, 645–654.Springer.38. Tobiyama, Shun, Yukiko Yamaguchi, Hajime Shimada, Tomonori Ikuse, and Takeshi Yagi. 2016.Malware detection with deep neural network using process behavior. In 2016	IEEE	40th
annual	computer	software	and	applications	conference	(COMPSAC), vol 2, 577–582. IEEE.39. Webster, George D, Bojan Kolosnjaji, Christian von Pentz, Julian Kirsch, Zachary D Hanif,Apostolis Zarras, and Claudia Eckert. 2017. Finding the needle: A study of the pe32 rich headerand respective malware triage. In International	conference	on	detection	of	intrusions	and
malware,	and	vulnerability	assessment, 119–138. Springer.40. Malware Wiki. Linux. Accessed 12 June 2020.41. Yang, June Ho, and Yeonseung Ryu. 2015. Toward an ef�icient pe-malware detection tool.
Advanced	Science	and	Technology	Letters 109: 14–17.42. Zhoghov, Victor. 2017. The ransomware “Petya” as a challenge to the cybersecurity ofUkraine, main factors of spreading this virus in the focus of Ukraine, the steps taken by theauthorities to combat this phenomenon and suggest ways to improve such activities usingexperience of other countries. PhD thesis, Victor Zhoghov The ransomware “Petya” as achallenge to the cybersecurity of43.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/s10115-011-0393-5

Zhou, Huan. 2018. Malware detection with neural network using combined features. In China
cyber	security	annual	conference, 96–106. Springer.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_18
Fast	and	Straightforward	Feature
Selection	Method
A	Case	of	High-Dimensional	Low	Sample	Size	Dataset	in
Malware	AnalysisSergii Banin1 Department of Information Security and CommunicationTechnology, NTNU, Gjøvik, Norway
Sergii	Banin
Email:	sergii.banin@ntnu.no

AbstractMalware analysis and detection is currently one of the major topics inthe information security landscape. Two main approaches to analyzeand detect malware are static and dynamic analyses. In order to detecta running malware, one needs to perform dynamic analysis. Differentmethods of dynamic malware analysis produce different amounts ofdata. The methods that rely on low-level features produce very highamounts of data. Thus, machine learning methods are used to speed upand automate the analysis. The data that is fed into machine learningalgorithms often requires preprocessing. Feature selection is one ofthe important steps of data preprocessing and often takes signi�icantamount of time. In this paper, we analyze the Intersection Subtraction(IS) feature selection method that was �irst proposed and used on ahigh-dimensional dataset derived from the behavioral malwareanalysis. In our work, we assess its computational complexity andanalyze potential strengths and weaknesses. In the end, we compareIntersection Subtraction and Information Gain (IG) feature selectionmethods in terms of potential classi�ication performance and time

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_18
mailto:sergii.banin@ntnu.no

complexity. We apply them to the dataset of memory access patternsproduced by malicious and benign executables. As a result, we foundthat the features selected by IS and IG are very different. Nevertheless,machine learning models trained with IS-selected features performedalmost as good as those trained with IG-selected features. IS allowed toachieve the classi�ication accuracy of more than 99%. We also show,the IS feature selection method is faster than IG what makes itattractive to those who need to analyze high-dimensional datasets.The research leading to these results has received funding from theCenter for Cyber and Information Security, under budget allocationfrom the Ministry of Justice and Public Security of Norway.
1	 IntroductionToday many researchers from different research areas have to dealwith big amounts of data. Various statistical methods are used toprocess and understand data that is too big or complex for humananalysis. Part of these methods are called machine	learning: “theautomatic modeling of underlying processes that have generated thecollected data” [22]. Currently, machine learning is one of the mostused approaches when there is a need to predict certain qualities ofobjects or events. Machine learning algorithms can be divided intosupervised (classi�ication and regression) and unsupervised(clustering). In this paper, we focus on the classi�ication: prediction of a
class (type) of a sample based on its features (properties). Machinelearning is widely used in different �ields such as medicine, biology,manufacturing [24], or information security [4, 31]. In informationsecurity, machine learning is extensively used in production andresearch, as the amounts of data that need to be processed areenormous. Especially, machine learning is actively used for malwareanalysis and detection. According to AV-TEST Institute, there are morethan 350,000 new malware samples detected every day [3]. Thedevelopers of the anti-virus solutions and researchers work on �indinga way to detect malware without having to search through the entiredatabase of already known malware. Moreover, they try to �indmethods that allow detecting previously unknown malware. The

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

common practice is to �ind certain characteristics that are common tomany malware samples. As the number of malware is very big andgrowing [3], the machine learning methods are used to deal with theemerging amount of data. Machine learning methods rely on features:properties of objects that are being studied. There are two main typesof features that can be extracted from malware: static and dynamic.Static features are extracted directly from the malicious �ile without aneed to launch it. Static features are relatively easy to extract, but atthe same time it is easier to change them with a use of obfuscation orencryption [1]. However, malware becomes malicious only after it hasbeen launched. The features that occur after the launch of malware arecalled dynamic or behavioral features. We can divide dynamic featuresinto high- and low-level features [6]. File and network activity, API [2],and system calls are some of the high-level features, while opcodes,memory access operations [38], or hardware performance countersare considered to be low-level ones. We name dynamic features thatemerge from the system’s hardware as the low-level features [5, 21,25]. To represent a certain behavioral event with low-level features, weneed to record and process a signi�icantly bigger amount of data. Forexample, to describe an API call on the high level, we only need its nameand arguments passed to it on the call. However, if we decide to recorda sequence of opcodes or memory access operations invoked by theAPI call we’ll end up with hundreds if not thousands of events. In thispaper, we address a problem that arises from the number of low-levelfeatures one needs to record and process while doing dynamicmalware analysis.While machine learning provides good opportunities forautomation and analysis, the data that is used by machine learningalgorithms has to be preprocessed. Various methods of datapreprocessing are described in the literature: discretization ofcontinuous features, attribute binarization, the transformation ofdiscrete features into continuous, dimensionality reduction, and so on[22]. The �irst three of the aforementioned methods are mostly usedwhen the chosen machine learning algorithm works only with a certaintype of data. For example, the Naive Bayes classi�ier needs discretedata to provide a useful outcome. On its turn, dimensionality reductionis often needed, when the amount of features in the dataset is too big.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Having too many features can result in increased model training timesand model over�itting. There are several ways to reducedimensionality: feature subset selection, feature extraction, andPrincipal Components Analysis (PCA) [22]. Feature extraction is aimedat �inding a set of new features that are constructed as a function oforiginal features. On its turn, PCA �inds a new coordinate system with afocus on making the axes aligned with the highest variance of the data.These methods, however, make it harder to analyze the resultsachieved by the machine learning model: it is sometimes important tounderstand which features contribute the most toward theclassi�ication performance of a model. In such cases, in order to reducethe dimensionality, one may apply feature (subset) selection. Withfeature selection it is possible to select a certain amount of bestfeatures based on a certain feature quality measure while keeping theoriginal features intact.Feature selection is aimed at the dimensionality reduction.Ironically, when the amount of features becomes too big (for example,millions as in [8] or [5]) the feature selection becomes a verycomputationally intense task. The datasets where the number offeatures is much bigger than the number of learning samples are calledhigh-dimensional low (small) sample size (HDLSS/HDSSS) datasets.Sometimes there are so many features [8] that commonly usedmachine learning packages simply cannot handle such datasets.Storing such a dataset in the single �ile or database table becomes aproblem as well. Thus, the use of the common machine learningpackages becomes impossible since they require data to be stored inone piece. On its turn, developing and implementation of a custommachine learning package can take more time than actual datacollection and be a hard task for the researchers that don’t have enoughexpertise in software development.In this paper, we focus on the feature selection method that wasdeveloped and used in [8] to detect malware based on the memoryaccess patterns. In [8], the dataset contained almost six millions ofbinary features and 1204 samples divided into two classes. Thefeatures represented sequences of memory access operationsgenerated by malicious and benign software. The feature took value 1 ifit was generated by a sample, and 0 if not. Utilized feature selection

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

method was aimed at removing those features that are present (takevalue 1) in the samples of both classes. Thus, it is named IntersectionSubtraction (IS) feature selection method. This method helped authorsof [8] to reduce feature space from 6 M of features to 800. With the useof selected features, it became possible to train a classi�ication modelthat achieved 98% classi�ication accuracy for the two-class dataset. Inthis paper, we provide an additional analysis of the IS feature selectionmethod and discuss its advantages and disadvantages. We alsocompare its performance with an Information Gain [22] featureselection method in a similar malware detection problem. We run ourtests on the newer and larger dataset of malicious and benignexecutables. We show how machine learning models trained withfeatures selected by IS feature selection perform compared to thoseselected by IG.The remainder of the paper is arranged as follows. In Sect. 2, wedescribe the problem and provide an overview of related articles. InSect. 3, we describe the IS feature selection method, theoreticallyassess its strengths and weaknesses, and explain the context in whichIS might be used. In Sect. 4, we describe our experimental setup,compare feature sets selected by IS and IG, and train machine learningalgorithms with the use of selected features. In Sect. 5, we discuss our�indings and outline the future work. In Sect. 6, we summarize our�indings and provide conclusions.
2	 BackgroundIn this section, we describe the problem area and provide an overviewof the papers related to HDLSS datasets and feature selection.
2.1	 Problem	DescriptionWhile talking about the optimal size of the dataset to be used inmachine learning model training, different authors consider differentdataset sizes to be optimal. The size of the dataset consists of anumber of samples and features. In various sources [15, 26], one can�ind suggestions that a minimal amount of samples for training shouldbe between 50 and 80, while 200 and more samples are expected tobring increased accuracy and signi�icantly smaller error rates. Other

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

authors have shown that it is important to have at least 20–30 samplesper class [11]. When talking about the number of features it is generallyconsidered that the fewer features there are in the dataset, the better itis for machine learning algorithm [5, 7, 8, 22]. Some authors adviseutilizing the	rule	of	10: in order to train a model with a goodperformance, one needs to have ten times more samples than thenumber of features [23]. However, in some cases, the number offeatures can be signi�icantly higher than the number of learningsamples. This may happen due to the context of the research and thenature of data. For example, in [8], the authors describe a novelmalware detection approach. They record memory access operationsperformed by malicious and benign executables, split them into n-grams of various sizes, and use those n-grams as features for trainingthe machine learning models. Each feature could take value 1 or 0 if then-gram represented by the feature was or was not generated by thesample, respectively. The sequence of memory access operations is asequence of Reads (R) and Writes (W). In their work, authors record a�irst million of memory access operations performed by eachexecutable after it was launched. Afterward, the sequence of memoryaccess operations is being split into the set of overlapping n-grams of asize 96. Since memory access operations take only two possible values(R and W), the potential feature space of the abovementionedapproach is if a sequence of memory access operations would becompletely random. However, as the same authors mention in theirnext paper [5], the memory access operations are not random. Thus, in[8], their initial feature space is “only” about 6 M of features. They had1204 samples divided into two classes. This can be considered a goodsample size based on what was suggested in [11, 15]. However, theamount of features generated under such experimental design makes itimpossible to follow “the rule of 10.” A straightforward approach insuch conditions could be to simply use all the data for training themachine learning model. However, just the storage of a completedataset from [8] would take more than 6 GB of space. Popular machinelearning frameworks such as Weka [19] or Scikit-learn [26] are notsuited to load and handle so much data. This shows a need fordimensionality reduction. In the works similar to [8] or [5], it isimportant to keep the original features in order to be able to interpret

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

results. For example, having the results from [8] it might be possible tounderstand which memory access patterns make malicious behaviordistinctive from the benign behavior. Thereby, dimensionalityreduction methods such as feature extraction or PCA are not applicablein such cases. On its turn, feature selection can help to select a subsetfeature without hindering their original state.Feature selection methods can be divided into several categories:�ilter, wrapper, and embedded methods. Filter methods choose featuresbased on a certain quality measure such as Pearson correlation, chi-square, mutual information, and so on. Wrapper methods choosefeatures based on the classi�ication performance of the target machinelearning model trained with the use of those features [33]. Wrappermethods are very computationally intense since for every possiblefeature subset there is a need to train and test the machine learningmodel. Embedded methods, as the name states, are embedded in themachine learning algorithms. Algorithms such as decision trees [22]perform feature selection simultaneously with model training.However, the computational overhead is higher than one of the �iltermethods and such algorithms are susceptible to over�itting [9] and arenot suitable for high-dimensional data [33]. So for the research similarto [8], the most suitable approach for dimensionality reduction will bea �ilter-based method. In the case of (very) high-dimensional data, it iscrucial to have a feature selection method with the lowest possiblecomputational overhead. The perfect feature selection method willhave a computational complexity of that is linear to a number offeatures n. But such a method does not exist, since �ilter methods areaimed to select features that represent classes (and consequentlysamples) in the best possible way [22]. Thereby, while choosing thefeature selection method to work on the high-dimensional dataset it isdesirable to choose a method with the computational complexity of where m is the number of samples in the dataset.The use of different �ilter-based feature selection methods isdescribed in various papers. Information Gain [7, 24], correlation-based feature selection [5, 17], and ReliefF [17] are some of thecommon feature selection methods. Information	Gain (IG) ranksfeatures based on entropy in respect to the classes and can be

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

described as “the amount of information, obtained from the attributeA, for determining the class C” [22]. Basically, in order to perform afeature selection based on IG, one have to calculate probabilities of anattribute to take certain values and relevant class-conditionalprobabilities. This results in a computational complexity around , where n is the amount of features and m is the amount ofsamples. Correlation-based	Feature	Selection	method (CFS) wasproposed in [18] and is aimed at selecting the subset of features thathave a high correlation to the class but low correlation between eachother. By doing so it is possible to �ind a subset of features withminimal redundancy. The problem with this method is that it requiresto calculate a pairwise correlation matrix between all of the n featuresand m classes which requires operations. The featureselection search could require an additional operation in aworst-case scenario. With a potential computational complexity of the use of CFS for high-dimensionaldata becomes very problematic. For example, just storing ofcorrelation matrix needed for 6 M of features in [8] would require atleast 18 TB of space. Thus, in order to apply CFS on high-dimensionaldatasets, it might be useful to �irst reduce a feature space with another,less computationally intense, feature selection method, and only afterapply the CFS [5]. ReliefF ranks features based on their ability toseparate close samples from the different classes [22]. In order toperform feature selection with ReliefF, it is �irst important to calculatea distance matrix between all samples. The resulting computationalcomplexity of the method can be roughly estimated as that is almost m/2 times more than the one of the IG.Having a large n makes the use of ReliefF less favorable than IG.Based on the assumptions about the computational complexity ofthe abovementioned feature selection methods one can make aconclusion that IG might be one of the best choices when it comes tothe high-dimensional datasets. The problem is that even the feature

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

selection methods with complexity become slow with the largenumbers of n. And as we mentioned above, common machine learningpackages are not suitable to work with big datasets. Thus, a researcherwho needs to perform feature selection on such datasets is forced todevelop a custom implementation of feature selection algorithm withregard to the data in interest. In this case, inef�icient implementation ofthe common feature selection algorithm may result in signi�icant useof time and even inability to obtain results (e.g., due to the lack ofvirtual memory). For example, the Information Gain of a feature iscalculated with the following formula:
where is the probability of the class k, is the probability of anattribute to take value, and is the conditional probability ofclass k given value of an attribute [22]. This shows that it isnecessary to “count” how many times each attribute takes a certainvalue in total and when a certain class is given. Let’s rewrite previouslymentioned computational complexity of IG as where is the computational time needed to calculate thequality measure (Information Gain in this case) of a feature. We willneed later to show that the IS feature selection methodworks faster than IG, which is important when working with high-dimensional datasets. Thus, it is easy to see that the inef�icientimplementation of IG can signi�icantly increase the time needed toobtain the results. As we will later show, it is possible to overcome thisproblem with a Intersection Subtraction feature selection method.
2.2	 Literature	OverviewIn this subsection, we refer to papers where authors addressed theproblems related to HDLSS datasets and feature selection on them. In[12], authors outline both curses and blessings of high dimensionality.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

By blessings of dimensionality, they mention the phenomenon ofmeasure concentration and the success of asymptotic methods. Whiletalking about curses of dimensionality authors outline several areaswhere they can occur: optimization, function approximation, andnumerical integration. They also stress attention to the fact that many“classical” statistical methods are based on the assumption that theamount of features n is less than the amount of samples m, while . However, these methods may fail if , especially when . Other authors in [14] outline the following challenges of highdimensionality: “(i) high dimensionality brings noise accumulation,spurious correlations, and incidental homogeneity; (ii) highdimensionality combined with large sample size creates issues such asheavy computational cost and algorithmic instability” [14]. As well asauthors of [12] outline that traditional statistical methods may failwhen used on high-dimensional data. The authors of [40] review theperformance and limitations of several common classi�iers such asNaive Bayes, linear discriminant analysis, logistic regression, supportvector machines, and distance weighted discrimination in the case oftwo-class classi�ication problem on HDLSS datasets. They also say thatif the number of features and both classes are from the samedistribution “the probability that these two groups are ‘perfectly’separable converges to 1” [40]. In simple words, it means that with alarge enough amount of features it should be possible to construct a setof rules (build a classi�ier) that will perfectly �it (over�it) the trainingdata. This fact outlines the importance of thorough feature selection. Itwill improve the capability of machine learning algorithms to createmodels with good generality and interpretability. The model with goodgenerality is the model that is capable of generalizing over the dataset;such model would not be signi�icantly changed if the number ofsamples in the dataset is slightly increased/decreased [40]. A modelwith good interpretability makes the analysis of the model itself easier.The fewer features are involved during the training the easier it is toanalyze the obtained model. For example, authors of [5] underline theimportance of the fact that having 29 features instead of 6 M or 15 Mhelps in the understanding of the underlying processes. They

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

performed multinomial (10 class) malware classi�ication with the useof features constructed from memory access patterns. Similar to [8],they used memory access 96-grams as features. Such feature, if foundto be important in the classi�ication, cannot be directly understood bya human analyst. Thus, in [6], they made an attempt to interpretmemory access sequences with more high-level system events (APIcalls). Such analysis would be much harder if they had millions offeatures instead of 29.Various authors addressed the problem of feature selection onHDLSS datasets more speci�ically. For example, same authors in [36,37] present possible improvements to the PCA in HDLSS cases. In [36],they propose a way to estimate singular value decomposition of thecross data matrix. Later, in [37], authors explore the impact of thegeometric representation of HDLSS data on a possibility to convergethe dataset to an n-dimensional surface. The authors of [13] propose anonlinear transformation of HDLSS data. They showed, howtransformation based on inter-point distances helps to increase �inalclassi�ication accuracy. In [39], the authors propose a hybrid featureselection method that is based on ant lion optimization and gray wolfoptimization methods (ALO-GWO). They evaluate the performance ofthe proposed method on several HDLSS datasets. The authors showthat the ALO-GWO feature selection method provides a good balancebetween the performance of models and the ability to reduce a featurespace. The abovementioned papers addressed the problem of featureselection on HDLSS. However, the number of features in the datasetused in those papers rarely exceeded several tens of thousands (e.g., in[39]). On their turn, authors of [16] during the test of their featureselection method used a dataset with more than 3 M of features. Intheir work, they proposed a feature selection method based onbijective soft sets (BSSReduce). They claim that the computationalcomplexity of the method is where m is the number of samples.This might have been a perfect feature selection method for the HDLSSdatasets. However, after reviewing the provided algorithms, it lookslike their approach relies on the precomputed bijective soft sets thathave to contribute to the computational complexity as well.Nevertheless, the results of testing the BSSReduce on the several

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

HDLSS datasets showed that it is capable of signi�icant dimensionalityreduction while keeping a competitive level of the trained modelperformance. It could be useful to compare BSSReduce with ourmethod, and unfortunately authors of BSSReduce did not provide thesource code of their tool. An approach different from the previouslymentioned papers is present in the [5]. The authors of the paper didnot focus on feature selection. However, they needed to reduce featurespace in two HDLSS datasets from 6 M to 15 M of features. Authors saidthat “models should be simple enough” [5] to make their analysiseasier. In order to reduce a large feature space, they performed featureselection in two steps. On the �irst step, they used customimplementation of Information Gain feature selection to reduce featurespace to 50 K and fewer features. On the second step, they took the best5 K feature selected by IG and used them in CFS implementation fromWeka. This resulted in 29 features selected by CFS. The models trainedwith just 29 features performed almost as good as a model trained on5 K and more features. For Naive Bayes and support vector machinealgorithms, smaller feature set even allowed to increase theperformance of trained models. Such approach has its own limitations.CFS is aimed at selecting features that are not correlated with eachother. However, since the �irst feature selection step utilizes IG, there isno guarantee that features passed to the CFS does not have a strongmutual correlation. But as we mentioned above, running CFS on theHDLSS dataset with millions of features requires enormouscomputational resources and sometimes impossible.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3	 Intersection	Subtraction	Selection	MethodIn this section, we describe the IS feature selection method andevaluate its strengths and weaknesses.
3.1	 The	ContextBefore describing the Intersection Subtraction feature selectionmethod we need to describe a context under which its use becomesmeaningful. This method was developed during the research describedin [8]. The task was to detect malware based on the memory accesstraces. To do this, malicious and benign executables were launchedtogether with custom-built Intel Pin [20] tool. The raw data consistedof the �irst 1 M of memory access operations performed by eachexecutable. The sequences contained W for each write operation and Rfor each read operation performed by an executable. These sequenceswere later divided into a set of overlapping n-grams of various sizes.For example, a sequence [WWRWRR] of a length 6 can be divided intothe set of 4-grams in the following way: [WWRW,WRWR,RWRR]. The n-grams were directly used as features for machine learning modeltraining. Each feature got value 1 if the corresponding n-gram wasgenerated by the sample regardless of the number of times it wasencountered in the trace of a certain sample. In other cases, the featuregot value 0. As the goal of the [8] was to be able to detect malware, it ispossible to state that features that obtain 1 (are present within acertain class) pose greater interest. Such approach allows to state that
presence of certain memory access n-grams is the sign of maliciousbehavior. The dataset from [8] was nearly balanced and samples weredivided into two classes. So the context of the use of the proposedfeature selection method is the following: two-class classi�icationproblem on a balanced dataset with binary features.
3.2	 Feature	Selection	AlgorithmThe feature space in [8] was around 6 M of unique memory access n-grams of a size 96. By the time of writing, authors were not able toimplement any common feature selection method (for example, IG) tooperate on such dataset. Thus, they implemented the following featureselection method. It includes the following steps:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1. Construct two vectors of features for each class. The feature isincluded in the vector of the class if the corresponding memoryaccess n-gram was generated by a sample from this class.
2. Having two vectors constructed, remove from them features thatare present in both vectors. Having this done we obtain twovectors of class-unique features. In other words, we subtracted	an

intersection of two feature sets from both of them.

3. Decide on the size of the �inal feature set k. 4. From each of the class-unique features vectors, select k/2 featureswith the highest class-wise frequency. A class-wise frequency is theproportion of samples within the class that generate acorresponding memory access n-gram.

5. Use the k selected features to construct the �inal dataset withreduced dimensionality.
The resulting dataset is later used to build machine learningmodels. The operation performed in Step 2 is quite similar to thesymmetric difference of two sets. However, we prefer to say that wesubtract intersection from both sets, as we need those sets to beseparated until the last step. It is also worth mentioning that having anintersection of two feature sets allows to explore features that fell intoit. It might be useful for additional analysis of the results [8].

3.3	 Computational	ComplexityLet’s discuss the potential computational complexity of IntersectionSubtraction (IS) feature selection. As data is already labeled (samplesdivided into two classes), the feature vectors from the Step	1 are readyfrom the beginning. Step	2 requires �inding an intersection of two sets.Imagine we have two sets A and B with cardinality of a and b,respectively. In order to �ind the intersection of A and B, we need tocompare all elements of set A with all elements of set B. Such operationwill have a computational complexity of . Let’s denote the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

intersection of A and B as with cardinality c. Subtracting theelements of C from A and B, similarly to the previous operation, willhave the computational complexity of . The resultingcomputational complexity of may look quite highalready, since both a and b are large in case of HDLSS datasets.However, the real implementation of IS feature selection with the useof Python programming language shows that execution of the Step	2does not take signi�icant time (see Sect. 4). First of all, according to[28], subtraction A-C (set difference) will have computationalcomplexity of . So we can already rewrite previously mentionedcomputational complexity of Step 2 with . Moreover, ifwe are not interested in the intersection C itself, we can utilize twooperations A-B and B-A in order to obtain sets of class-unique features.Complexity of such approach will be . Step	4 requires thecalculation of class-wise frequencies of the features. In our particularcase, when features are binary, we only need to count how manysamples from each class has value 1 of a certain feature. Step 4 willthen have computational complexity. Here, mis the number of samples in the dataset, a-c is the amount of class-unique features from set A and b-c—from set B. It is also worthmentioning that Step 4 can be optimized. Let’s assume that the datasetis perfectly balanced, so we have two classes with m/2 samples. Sinceour IS feature selection is aimed on �inding class-unique features, wecan only search for 1s among a-c and b-c features of m/2 samples ofeach class. So Step 4 can be optimized to have a complexity of . Let’s now try to assess the overallcomputational complexity of the IS feature selection. Let us have theinitial amount of features a+b	=	n and m samples. The amount offeatures from intersection c is normally smaller than both a and b (herewe assume that and). Having this we can conclude that

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the complexity of Step	2 after substitution will besmaller than for all . On its turn, the complexity of Step	4 should be smaller than . Theresulting complexity of should be smaller than . The feature selection methodwhere the upper boundary of computational complexity is describedwith is not what we outlined in Sect. 2 as a good feature selectionmethod for HDLSS dataset. Let’s now make a substitution similar to theone we made in Sect. 2. First, let’s substitute m with which is the time needed to calculate class-wise frequency of a feature.Second, the time needed to �ind whether a certain feature from oneset is present in another set (to �ind an intersection or to subtractthese features from the set) is relatively small. Thus, the updatedcomputational complexity of IS feature selection will be smaller than which can be smaller than ofIG. We will prove this in Sect. 4.
3.4	 Theoretical	AssessmentIn this subsection, we discuss potential outcomes of the IS featureselection. As we already mentioned, IS feature selection is potentiallyfaster than a more common IG feature selection. This makes ISattractive for the high-dimensional datasets. However, speed comeswith a price. Let’s look at the potential disadvantages of IS featureselection. As we described at the beginning of this section, the use ofthis method makes more sense when we are interested in �indingfeatures the presence of which poses particular interest. However, itmight happen that in the dataset there will be no class-unique features.In other words, it will be impossible to say that if a certain feature of asample takes value 1, then this sample belongs to a certain class. Insuch case, it will be impossible to �ind an intersection of two feature

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

sets. The other problem is potential information loss due tointersection removal. Imagine we have a dataset that is represented inTable 1. It has four features and four samples labeled into two classesC1 and C2. IS feature selection will remove features f1 and f3 since theyobtain value 1 (are present) in both classes. The remaining features f2and f4 will not allow us to generate a rule that will be able todistinguish between samples s2 and s4. This example is quite small,but on the larger dataset removing a feature that takes value 1 in allsamples of one class and only in one sample of another class can lead tothe inability of building a model with good performance. Such featurewould be most likely selected by IG feature selection. The lastdisadvantage of the IS feature selection is potentially poorperformance on the multinomial datasets. If we increase the number ofclasses we will end up in the situation of growing intersection size. Insuch case, the IS will remove more features from the feature spaceresulting in increased information loss. We begin with the descriptionof our dataset and experimental environment. Later, we explain thebasics of memory access operations and explain the way we record andprocess the data.
Table	1 Sample dataset 1
	 f1 f2 f3 f4 	s1 1 1 1 0 C1s2 1 0 0 0 C1s3 1 0 1 1 C2s4 0 0 1 0 C2
4	 Experimental	EvaluationIn this section, we describe experimental evaluation of the IS featureselection method. We show how IS feature selection can be applied formalware detection. During experimental evaluation we compareperformance of features selected by IS and IG. In Fig. 1, we depictgeneral data �low of our experiments. We start by recording memoryaccess operations produced by benign and malicious executables.After, we split sequences of memory access operations into n-grams.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Then we apply feature selection methods to select best features (n-grams). In the end, we use these features to train machine learningmodels and compare performance of the models trained with a use offeatures selected by different feature selection methods. Beforepresenting the results achieved by machine learning models, we showthe experimental time complexity of the IS and IG feature selectionmethods. We also check how similar the feature sets selected bydifferent methods are.We now proceed with the description of our dataset, experimentalenvironment, and the way we collect and process the data.

Fig.	1 The �low of data collection and feature selection

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4.1	 DatasetIn this work, we use dataset similar to the one used in [7]. It consists of2098 benign and 2005 malicious Windows executables. Maliciousexecutables were downloaded as part of VirusShare_00360 packavailable at VirusShare [35]. Malicious samples belong to the followingmalware families: Fareit, Occamy, Emotet, VBInject, Ursnif, Prepscram,CeeInject, Tiggre, Skeeyah, and GandCrab. According to the VirusTotal[32] reports, our samples were �irst seen (�irst submission date)between March 2018 and March 2019. Benign executables are the realsoftware downloaded from Portable Apps [27] in September 2019.
4.2	 Experimental	EnvironmentIn order to perform dynamic malware analysis, we need to avoid thein�luence of any environmental changes, so that all executables arelaunched in similar conditions. To achieve this we used an isolatedVirtual Box virtual machine (VM) with Windows 10 guest operatingsystem. VMs were launched on the Virtual Dedicated Server (VDS) with4-core Intel Xeon CPU E5-2630 CPU running at 2.4 GHz and 32 GB ofRAM with Ubuntu 18.04 as a main operating system.
4.3	 Memory	Access	OperationsThe executables used on Windows operating systems are compiledinto the �iles in PE32 format. Files of PE32 format contain header and
sections. The header contains the metadata that is used by operatingsystem in order to properly load an executable into memory andprepare all the necessary resources. The sections contain informationabout imported and exported functions, resources, data, and theexecutable code. The executable code is stored in the binary formwhich can be represented as opcodes. Opcodes (or assemblycommands) are the basic instructions that are executed by the CPU.Execution of some instructions will not require memory access. Forexample, execution of MOV	EAX,EBX opcode will not result in memoryaccess, since data is being moved between registers in the CPU. At thesame time, MOV	EDI,	DWORD	PTR	[ebp-0x20] will generate a Read	(R)memory access, since the data has to be read from the memory. On itsturn, the ADD	DWORD	PTR	[EAX],ECX will require Reading	(R) the valuefrom the memory location addressed by [EAX] and then Writing	(W) the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

result of the addition to the memory. The sequences of opcodes werepreviously proven to be a source of effective features for malwaredetection [10, 30, 34]. When the sequence of opcodes is executed itgenerates a sequence of memory access operations. Two previousstatements allow for memory access sequences to be a potentialsource of features for malware detection [8]. Under our experimentaldesign we use only the type of memory access operation: R for readand W for write. We do not use the value that is transferred to or fromthe memory as well as the address of the memory region in use.
4.4	 Data	CollectionEach malware sample was launched on the clean snapshot of VM.During the execution of each sample, we recorded the �irst million ofmemory access operations produced after the launch. This was donewith the help of a custom-built Intel Pin [20] tool that was launchedtogether with the sample inside the VM. The VM had all built-in anti-virus features disabled to make malware run properly and also becausethey kept interrupting the work of Intel Pin. The automation of VM anddata collection were performed with the help of Python 3.7 scripts.The memory access traces were �irst stored in the separate �iles.After, they were split into the sequence of overlapping n-grams of thesize 96 (96-grams). We choose n-gram size (as well as the amount ofrecorded memory accesses) based on the conclusions of theireffectiveness drawn in [8]. The n-grams of memory access operationsfor each sample are then stored in the MySQL table. This table took28.5 GB of storage.
4.5	 Feature	Selection	and	Machine	Learning	AlgorithmsWe implemented IS feature selection algorithm with Python. Thecustom implementation of IG feature selection algorithm was similarto one in [7]. That implementation allows to run feature selection inmultiple threads, which signi�icantly speeds up the process. We foundthat samples produced more than 5.5 M of unique n-grams (features).Benign samples generated more than 4.5 M of features, while malicious—more than 1 M of features. When performing IS feature selection wefound that benign and malicious samples shared almost 600 Kcommon features. Subtraction of those features resulted in almost 4 M

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

and 430 K of class-unique benign and malicious features, respectively.According to the algorithm from Sect. 3, we selected 50, 30, 15, 10, and5 thousands of features. We selected a similar amount of features withthe IG feature selection algorithm as well. Similar to [5–7] we wanted toreduce feature space even more, so that our models are simple enoughfor future human analysis. Thus, we used CFS feature selection methodfrom Weka [19] to select the most relevant and least redundantfeatures from 50 K features selected by IS and IG. As a result, weobtained 15 features from IS-based 50 K feature set and 9 featuresfrom IG-based 50 K feature set. As CFS appends features to the featureset until the increase of its merit is no longer possible, it is impossibleto control the �inal amount of selected features unless theGreedyStepwise search is applied. However, such search never �inishesits work when applied to the larger feature sets in our experimentalenvironment. We wanted to compare the performance of IS and IG withthe CFS as well. So we tried to select the same number of features withIG and IS. However, CFS selected 15 features. And as the IS have toselect equal amount of features from each class (Sect. 3) we decided toselect 14 features with IS (7 from each class).The selected features were later used to build machine learningmodels. The data that is actually fed into mechine learning algorithmsis basically a bitmap	of	presence [8]: if a certain sample (row) generatesa certain feature (column), then this feature takes value 1 for thissample. In the opposite case, the feature takes value 0. We used thefollowing machine learning algorithms from Weka: k-NearestNeighbors (kNN), RandomForest (RF), Decision Trees (J48), SupportVector Machines (SVM), and Naive Bayes (NB) with the default Weka[19] parameters. We assessed the quality of the models with �ivefoldcross validation [22]. Accuracy (ACC) as the amount of correctlyclassi�ied samples and F1-measure (F1M) that takes into accountprecision and recall were chosen as evaluation metrics. Further, in thissection, we present the classi�ication performance of the machinelearning models.
4.6	 Time	ComplexityOne of the reasons to use IS feature selection is that it is relativelyfaster than the other common methods. In this subsection, we provide

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

time taken by IS and IG methods to select 50 K of features from theinitial 5.5 M distinct features. It took 302 s (5 min) for IS to select50 K features. In contrast, the IG used 18,560 s (5.15 h) to select 50 Kfeatures when running in one thread. While being launched in 16threads, IG used 1168 s (20 min) to select 50 K features. Furtherincrease in the number of threads does not make sense, since this isthe maximum amount of threads available at our VDS. As we can see,single-threaded IS works 3.8 times faster than IG ran with 16 threadsand 61.5 times faster than IG ran with 1 thread. To �ind an intersectionof benign and malicious feature sets, the IS used 1.18 s as the averageof 1000 runs. It has used an additional 0.7 s to subtract intersectionfrom both feature vectors. The actual implementation of our featureselection algorithms did not load the entire dataset at the same time.Thus, it is impossible to directly measure the time needed to calculatethe quality measure of a single feature, since it is calculated initerations. But indirect assessment (we divide overall time by the totalamount of features to go through) showed that IS needed around s to assess a single feature, and IG needed s and s to assess a single feature with 16 and 1 thread,respectively. It is important to mention that the times provided arerelevant to our data structure and the way we store our data. Forinstance, the fact that we stored memory access n-grams for eachsample in a separate cell of the database table could affect the timeneeded to perform feature selection.
4.7	 Analysis	of	Selected	Feature	SetsHere we analyze how different are the feature sets selected by IS andIG. In Table 2, the feature amount column shows the size of the featureset for IS and IG methods; the common feature column shows thenumber of similar features selected by IG and IS for the correspondingfeature set size; and the difference ratio column shows the ratio of thedistinct features and is calculated as (Feature	amount—Common
features)/Feature	amount. As we can see, most of the features selectedby the IS method are different from those selected by IG. It complieswith the theoretical assessment of IS (see Sect. 3), where we explained

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

that IS may discard features with potentially high information gainonly because they get value 1 in both classes. As we mentioned before,we used CFS feature selection on the feature sets of the size 50 K. It isworth mentioning that CFS selected completely different features whenworking with 50 K feature sets selected by IS or IG. When using IG andIS to select the same amount of features as selected by CFS we alsoobtained completely different feature sets.
Table	2 Difference between feature sets selected by IS and IG
Feature	amount Common	features Difference	ratio50 K 994 0.9830 K 994 0.9715 K 979 0.9310 K 955 0.95 K 812 0.84IG/IS 9/14 0 1
4.8	 Classi�ication	PerformanceIn this subsection, we present the classi�ication performance achievedby the machine learning algorithms. Tables 3 and 4 contain evaluationmetrics of machine learning models trained with the feature sets of adifferent lengths selected by different feature selection algorithms.Therefore, FSL stands for feature set length, ACC stands for accuracy,and F1M stands for F1-measure. As we can see, both feature vectorsallowed to achieve a quite high classi�ication accuracy. The bestperforming RF model that used 10 K features selected by IG managedto classify 99.9% of the samples correctly. On its turn, features selectedby IS allowed to build kNN and RF models with an accuracy of 99.8%.As we can see, in most cases, models built with the use of featuresselected by IS have slightly lower classi�ication performance. However,the difference in accuracy or F1-measure between IS and IG features ismost of the time less than 1%. Thus, it is hard to conclude whether thefeatures selected by IG is signi�icantly better than those selected by IS.There is one exception for NB models built with the use of 50 Kfeatures. As it is possible to see, the NB model trained with 50 Kfeatures selected by IG has signi�icantly lower accuracy and F1-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

measure than the one trained with 50 K features selected by IS. Thisdifference might be explained by the nature of features selected by ISand the limitations of the NB method. While building the model, NaiveBayes assumes that features are independent. However, InformationGain feature selection potentially selects a lot of mutually correlatedfeatures. The IS does not take into account the mutual correlationbetween features as well. However, there should be less correlatedfeatures selected by IS, since one half of the features will not have 1s inone of the classes and vice versa. These properties of Naive Bayes werestudied in [29]. Even though CFS selected completely different featuresin IS and IG cases, the models built with those features showed a quitesimilar classi�ication performance. We will discuss this in Sect. 5. Whenwe used IS and IG to select the number of features similar to CFS wefound that models built with these features perform slightly worse ifcompared to the models built with features selected by CFS. This�inding can be explained by the natures of CFS and IS algorithms. The ISwill select features with higher class-wise frequency. However, suchfeatures might correlate with each other. Thus, these features mighthave a strong correlation with each other bringing redundantinformation to the model. In contrast, CFS will try to select a feature setthat has as little redundant information as possible. Looking onceagain in Tables 3 and 4, we can conclude that both feature selectionmethods performed quite good under our experimental setup whileselecting feature sets that are very different from each other.
Table	3 Classi�ication performance with a use of features selected by IG
Method FSL kNN RF J48 SVM NB

ACC F1M ACC F1M ACC F1M ACC F1M ACC F1MInfoGain 50 K 0.996 0.996 0.996 0.996 0.997 0.997 0.983 0.983 0.693 0.67130 K 0.996 0.996 0.997 0.997 0.998 0.998 0.986 0.986 0.983 0.98315 K 0.996 0.996 0.998 0.998 0.998 0.998 0.991 0.990 0.983 0.98310 K 0.998 0.998 0.999 0.999 0.998 0.998 0.992 0.991 0.983 0.9835 K 0.995 0.995 0.997 0.997 0.997 0.997 0.988 0.988 0.983 0.9839 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988CFS 9 0.997 0.997 0.997 0.997 0.996 0.996 0.997 0.997 0.988 0.988

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Important notice. The results from Table 3 is similar to part of theresults provided in [7]. This happened because our papers share thesame dataset. Also the data collection processes have only minordifferences: in this paper, we recorded the �irst million of memoryaccess operations, while methodology of [7] is to record the �irstmillion of memory access operations unless a certain stopping criteriais met.
Table	4 Classi�ication performance with a use of features selected by IS
Method FSL kNN RF J48 SVM NB

ACC F1M ACC F1M ACC F1M ACC F1M ACC F1MIS 50 K 0.991 0.991 0.997 0.997 0.997 0.997 0.983 0.983 0.982 0.98230 K 0.996 0.996 0.997 0.997 0.997 0.997 0.983 0.983 0.985 0.98515 K 0.998 0.998 0.998 0.998 0.997 0.997 0.984 0.984 0.983 0.98310 K 0.998 0.998 0.997 0.997 0.997 0.997 0.985 0.985 0.983 0.9835 K 0.998 0.998 0.998 0.998 0.997 0.997 0.985 0.985 0.983 0.98314(7+7) 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983CFS 15 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.983 0.983
5	 Discussion	and	Future	WorkIn this section, we discuss our �indings and limitations that should beapplied to the possible conclusions made based on the presentedresults. As we were able to see, IS feature selection works faster thanIG. The main reason to this is the fact that the selection of featuresbased on its class-wise frequency requires less computations.However, it is important to understand that all measurements of timecomplexity presented in this paper are speci�ic to our conditions(available computational resource, structure of the data,implementation of feature selection algorithms) and might differ inother conditions. The theoretical assessment of the IS feature selectionmethod predicted that features selected by IS might bring lessinformation about samples and classes than those selected by IG. Butthe experimental evaluation showed only marginal difference inclassi�ication performance. Under our experimental setup, only theamount of features selected by CFS could be considered as a proof of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

our theoretical assessment. The CFS selected more features from IS-selected feature set to gain similar merit (what resulted in similarclassi�ication performance). As we mentioned before, CFS addsfeatures to the feature set until its merit stops growing. These factsshow that features selected by IS possess less information. Thus, on thesmall feature sets, we need more features selected by IS than thoseselected by IG. As we compared classi�ication performance of machinelearning methods, we found that under certain conditions NB mightperform better when using IS-selected features. This fact can beexplored more thoroughly in the future work. The method was testedon a nearly balanced dataset, and we selected the equal amount offeatures to represent both classes. The use of other approach in theselection of the desired amount of features or applicability on theimbalanced datasets is left for the future work.The IS feature selection method is quite simple in implementation.However, as we discussed in Sect. 3, its applicability limited to thecases where we are interested in the fact of presence of a certainfeature in the class. Thus, when features are not binary or discreet, theapplicability of IS feature selection is questionable. It is possible,however, to binarize continuous variables [22], but this a separatetopic and it is out of scope of this paper. There is also a number ofpossible improvements and modi�ications that can be applied to the ISfeature selection method in the future. For example, we can decreasethe time complexity of IS in the following way. When we calculate class-wise frequencies of features, we might limit the search space by thesamples that produce this feature. Rough estimation suggest that itmay halve the time needed to perform IS feature selection. Anothermodi�ication that can be implemented in IS feature selection isintroduction of the degree of membership to the intersection. Forexample, a certain feature f might occur in both classes C1 and C2.These classes have and samples, respectively. The feature f ispresent in samples of a class C1 and samples of class C2. Forexample, we may exclude feature from the intersection if

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

. Basically, we keep a feature if it represents times bigger fraction ofsamples of one class than fraction of samples of the other class. Suchapproach may decrease an information loss, but will contribute to theincrease of computational complexity of IS feature selection method,and thus will make IS less attractive feature selection method.It is also important to outline the following observation. IS and IGselected quite different feature sets. Moreover, CFS selected completelydifferent features from those preselected by IS and IG. Nevertheless,classi�ication performance of the machine learning models appeared tobe very similar when using different feature sets. This raises thefollowing question: do the mentioned feature selection methodsalways select the best feature set or do they �ind one of the severalsimilarly good feature sets? This question is left open for the futurestudies.
6	 ConclusionsIn this paper, we studied the performance of Intersection Subtractionfeature selection on malware detection problem. We showed that withthe use of IS feature selection on HDLSS dataset, it is possible tocorrectly classify more than 99% of the benign and malicious samples.The main contribution of this paper is the direct comparison of IS andIG feature selection methods under the same conditions. We found thatmost of the features selected by IS and IG are different. Theclassi�ication performance of the machine learning models trainedwith the use of quite different feature sets appeared to be very similar.Even though the models trained with IG-selected features showedmarginally better performance, the single-thread implementation ofthe IS feature selection method worked 3.8 times faster than the 16-thread implementation of IG. This makes Intersection Subtractionfeature selection attractive when it comes to the analysis of HDLSSdatasets. The IS feature selection may help when it is not known yet

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

whether the data is useful for the classi�ication task at all. The numberof features might so big that it is pointless to spend time running morecommon (also slower) feature selection methods. Thus, with certainabovementioned limitations, the IS feature selection may besuccessfully applied to HDLSS datasets.
References1. Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. 2013.Information security governance: the art of detecting hidden malware. In IT	security

governance	innovations:	theory	and	research, 293–315. IGI Global.2. Alazab, Manoun, Robert Layton, Sitalakshmi Venkataraman, and Paul Watters. 2010. Malwaredetection based on structural and behavioural features of api calls.3. AVTEST. 2020. The independent IT-Security Institute. Malware. https:// www. av-test. org/ en/ statistics/ malware/ .4. Azab, Ahmad, Mamoun Alazab, and Mahdi Aiash. 2016. Machine learning based botnetidenti�ication traf�ic. In 2016	IEEE	Trustcom/BigDataSE/ISPA, 1788–1794. IEEE.5. Banin, Sergii, and Geir Olav Dyrkolbotn. 2018. Multinomial malware classi�ication via low-level features. Digital	Investigation 26: S107–S117.[Crossref]6. Banin, Sergii, and Geir Olav Dyrkolbotn. 2019. Correlating high-and low-level features. In
International	workshop	on	security, 149–167. Berlin: Springer.7. Banin, Sergii, and Geir Olav Dyrkolbotn. 2020. Detection of running malware before itbecomes malicious. page To be published.8. Banin, Sergii, Andrii Shalaginov, and Katrin Franke. 2016. Memory access patterns formalware detection. Norsk	informasjonssikkerhetskonferanse	(NISK), 96–107.9. Bramer, Max. 2007. Principles	of	data	mining, vol. 180. Berlin: Springer.[zbMATH]10. Carlin, Domhnall, Philip O’Kane, and Sakir Sezer. 2017. Dynamic analysis of malware usingrun-time opcodes. In Data	analytics	and	decision	support	for	cybersecurity, 99–125. Berlin:Springer.11. Dobbin, Kevin K., and Richard M. Simon. 2007. Sample size planning for developing classi�iersusing high-dimensional dna microarray data. Biostatistics 8 (1): 101–117.[Crossref]12. Donoho, David L., et al. 2000. High-dimensional data analysis: The curses and blessings ofdimensionality. AMS	Math	Challenges	Lecture 1 (2000): 32.13.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.av-test.org/en/statistics/malware/
https://doi.org/10.1016/j.diin.2018.04.019
http://www.emis.de/MATH-item?1116.68069
https://doi.org/10.1093/biostatistics/kxj036

Dutta, Subhajit, and Anil K. Ghosh. 2016. On some transformations of high dimension, lowsample size data for nearest neighbor classi�ication. Machine	Learning 102 (1): 57–83.[MathSciNet][Crossref]14. Fan, Jianqing, Fang Han, and Han Liu. 2014. Challenges of big data analysis. National	Science
Review 1 (2): 293–314.[Crossref]15. Figueroa, Rosa L., Qing Zeng-Treitler, Sasikiran Kandula, and Long H. Ngo. 2012. Predictingsample size required for classi�ication performance. BMC	Medical	Informatics	and	Decision
Making 12 (1): 8.16. Gong, Ke, Xu Yong Wang, and Maozeng, and Zhi Xiao. 2018. Bssreduce an o (u) incrementalfeature selection approach for large-scale and high-dimensional data. IEEE	Transactions	on
Fuzzy	Systems 26 (6): 3356–3367.17. Grini, Lars Strande, Andrii Shalaginov, and Katrin Franke. 2018. Study of soft computingmethods for large-scale multinomial malware types and families detection. In Recent
developments	and	the	new	direction	in	soft-computing	foundations	and	applications, 337–350. Berlin: Springer.18. Hall, M.A. 1998. Correlation-based	feature	subset	selection	for	machine	learning. PhD thesis,University of Waikato, Hamilton, New Zealand.19. Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.Witten. 2009. The WEKA data mining software: An update. SIGKDD	Explorations 11 (1): 10–18.[Crossref]20. IntelPin. 2020. A dynamic binary instrumentation tool.21. Khasawneh, Khaled N., Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh, and DmitryPonomarev. 2015. Ensemble learning for low-level hardware-supported malware detection.In Research	in	attacks,	intrusions,	and	defenses, 3–25. Berlin: Springer.22. Kononenko, Igor, and Matjaž Kukar. 2007. Machine	learning	and	data	mining:	introduction	to
principles	and	algorithms. Sawston: Horwood Publishing.[Crossref]23. Haldar, Malay. 2015. How much training data do you need? https:// medium. com/ @malay. haldar/ how-much-training-data-do-you-need-da8ec091e956.24. Ogorodnyk, Olga, Ole Vidar Lyngstad, Mats Larsen, Kesheng Wang, and Kristian Martinsen.2018. Application of machine learning methods for prediction of parts quality inthermoplastics injection molding. In International	workshop	of	advanced	manufacturing	and
automation, 237–244. Berlin: Springer.25. Ozsoy, Meltem, Khaled N. Khasawneh, Caleb Donovick, Iakov Gorelik, Nael Abu-Ghazaleh, andDmitry Ponomarev. Hardware-based malware detection using low-level architecturalfeatures. IEEE	Transactions	on	Computers 65 (11): 3332–3344.26. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.ams.org/mathscinet-getitem?mr=3437983
https://doi.org/10.1007/s10994-015-5495-y
https://doi.org/10.1093/nsr/nwt032
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1533/9780857099440
https://medium.com/%2540malay.haldar/how-much-training-data-do-you-need-da8ec091e956

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python. Journal	of	Machine
Learning	Research 12: 2825–2830.[MathSciNet][zbMATH]27. PortableApps.com. 2020. Portableapps.com. https:// portableapps. com/ apps.28. Python.org. 2020. Time complexity. https:// wiki. python. org/ moin/ TimeComplexity.29. Rennie, Jason D., Lawrence Shih, Jaime Teevan, and David R. Karger. 2003. Tackling the poorassumptions of naive bayes text classi�iers. In Proceedings	of	the	20th	international
conference	on	machine	learning	(ICML-03), 616–623.30. Santos, Igor, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G. Bringas. 2013. Opcodesequences as representation of executables for data-mining-based unknown malwaredetection. Information	Sciences 231: 64–82.[MathSciNet][Crossref]31. Shalaginov, Andrii, Sergii Banin, Ali Dehghantanha, and Katrin Franke. 2018. Machine learningaided static malware analysis: A survey and tutorial. In Cyber	Threat	Intelligence, 7–45.Berlin: Springer.32. Virus Total. 2012. Virustotal-free online virus, malware and url scanner. https:// www. virustotal. com/ en.33. Venkatesh, B., and J. Anuradha. 2019. A review of feature selection and its methods.
Cybernetics	and	Information	Technologies 19 (1): 3–26.[MathSciNet][Crossref]34. Vinod, P., Vijay Laxmi, and Manoj Singh Gaur. 2012. Reform: Relevant features for malwareanalysis. In 2012	26th	international	conference	on	advanced	information	networking	and
applications	workshops, 738–744. IEEE.35. VirusShare. Virusshare.com. http:// virusshare. com/ . Accessed 09 March 2020.36. Yata, Kazuyoshi, and Makoto Aoshima. 2010. Effective pca for high-dimension, low-sample-size data with singular value decomposition of cross data matrix. Journal	of	Multivariate
Analysis 101 (9): 2060–2077.[MathSciNet][Crossref]37. Yata, Kazuyoshi, and Makoto Aoshima. 2012. Effective pca for high-dimension, low-sample-size data with noise reduction via geometric representations. Journal	of	Multivariate	Analysis105 (1): 193–215.[MathSciNet][Crossref]38. Yücel, Çağatay, and Ahmet Koltuksuz. 2020. Imaging and evaluating the memory access formalware. Forensic	Science	International:	Digital	Investigation 32: 200903.39. Zawbaa, Hossam M., Eid Emary, Crina Grosan, and Vaclav Snasel. 2018. Large-dimensionalitysmall-instance set feature selection: a hybrid bio-inspired heuristic approach. Swarm	and
Evolutionary	Computation 42: 29–42.[Crossref]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.ams.org/mathscinet-getitem?mr=2854348
http://www.emis.de/MATH-item?1280.68189
https://portableapps.com/apps
https://wiki.python.org/moin/TimeComplexity
http://www.ams.org/mathscinet-getitem?mr=3028813
https://doi.org/10.1016/j.ins.2011.08.020
https://www.virustotal.com/en
http://www.ams.org/mathscinet-getitem?mr=3928069
https://doi.org/10.2478/cait-2019-0001
http://virusshare.com/
http://www.ams.org/mathscinet-getitem?mr=2671201
https://doi.org/10.1016/j.jmva.2010.04.006
http://www.ams.org/mathscinet-getitem?mr=2877512
https://doi.org/10.1016/j.jmva.2011.09.002
https://doi.org/10.1016/j.swevo.2018.02.021

40. Zhang, Lingsong, and Xihong Lin. 2013. Some considerations of classi�ication for highdimension low-sample size data. Statistical	Methods	in	Medical	Research 22 (5): 537–550.[MathSciNet][Crossref]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.ams.org/mathscinet-getitem?mr=3190674
https://doi.org/10.1177/0962280211428387

(1)(2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_19
A	Comparative	Study	of	Adversarial
Attacks	to	Malware	Detectors	Based	on
Deep	LearningCorrado Aaron Visaggio1 , Fiammetta Marulli2 , Sonia Laudanna1, 2,Benedetta La Zazzera1, 2 and Antonio Pirozzi1, 2University of Sannio, Benevento, ItalyDepartment of Maths and Physics, University of Campania“L.Vanvitelli”, Caserta, Italy
Corrado	Aaron	Visaggio
Email:	visaggio@unisannio.it
Fiammetta	Marulli	(Corresponding	author)
Email:	�iammetta.marulli@unicampania.it

AbstractMachine learning is widely used for detecting and classifying malware.Unfortunately, machine learning is vulnerable to adversarial attacks. Inthis chapter, we investigate how generative adversarial approachescould affect the performance of a detection system based on machinelearning. In our evaluation, we trained several neural networks formalware detection on the EMBER [3] dataset and then we built tenparallel GANs based on convolutional layer architecture (CNNs) for thegeneration of adversarial examples with a gradient-based method. Wethen evaluated the performance of our GANs, in a gray-box scenario, bycomputing the evasion rate reached by the adversarial generatedsamples. Our �indings suggest that machine- and deep-learning-basedmalware detectors could be fooled by adversarial malicious samples

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_19
mailto:visaggio@unisannio.it
mailto:fiammetta.marulli@unicampania.it

with an evasion rate of around 99% providing further attackopportunities.
Keywords Adversarial machine learning – Malware detection – Deeplearning – Feature extraction – Data models – Computer security
1	 IntroductionSeveral studies have investigated the effectiveness [1, 7, 8, 17, 19, 48]and drawbacks [4, 40] of machine (and recently also deep) learning indetecting and classifying malware. Independently from the inherentlimitations of malware detectors based on machine learning, thegenerative adversarial networks (GANs, in the remainder of thechapter) become a menace to the effectiveness of these tools.A GAN is a tool that produces adversarial samples by using theadversarial machine learning [26]: this is a technique that leveragesmachine learning for fooling classi�iers trained with a machine learningalgorithm, leading them to wrongly classify some samples.Adversarial machine learning has been applied with a certainsuccess especially to the �ield of image recognition with somesurprising results [21], but also to speech recognition [2] andbiometric recognition [11].For understanding how powerful maybe this technique, we couldmention the case of image recognition. The adversarial sample is animage that has been tampered within a way that cannot bedistinguished by a bare eye, but that misleads the classi�ier. The resultis that the image is not recognized at all or, even worst, is classi�ied as acompletely different image.An exemplar case is the automatic recognition of street signs: astreet sign is decoded as another street sign. Alike the �ields whereGANs have been experimented, they could be successfully used forgenerating samples of malware that are recognized by malwaredetectors based on machine learning as goodware.The research community is now investigating the application ofGANs to malware analysis, and so far the main result consists of somemodels of GANs for producing adversarial malware samples.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Our purpose is to investigate how and how much GANs are able todegrade the performance of malware detectors based on machinelearning. We trained a set of classi�iers using different combinations offeatures, obtaining a wide spectrum of performances. Thus, we builtdifferent models of GANs, observing the degradation of each detector.This work does not help to identify how to make stronger adetector against an adversarial attack but provides data for quantifyingthe potential effects of a GAN on a malware detector based on machinelearning.In this chapter, we provide a brief overview of the current state ofthe art and some open issues related to the vulnerabilities of deeplearning models adopted in designing malware recognition systems.More precisely, we focused on the weak points of these approacheswhen attacked by adversarial examples that are proving to beincreasingly sophisticated and effective in misleading defense systems.We provide further evidence by discussing a case study that showshow adversarial examples and generative adversarial approaches, bythe means of generative adversarial neural networks (GANs), candegrade the detection performance of a deep learning feature-basedmalware detector, �inally highlighting that certain features may proveto be more sensitive than others.The chapter is organized as follows: the next section provides thebackground of adversarial machine learning and the most signi�icantapplications, while Sect. 3 compares the related literature. Section 4shows the research questions we posed and the design of the casestudy. Section 5 discusses the obtained results, and, �inally, conclusionsare drawn in the last section.
2	 The	Deep	Learning	Models	Adopted	in
Malware	DetectionMachine learning (ML) and deep learning (DL) have been successfullyemployed for detecting malicious objects, e.g., executable �iles.New malware programs appear each year in increasing amountsand hence malware detection based on signature matching isincreasingly becoming an impractical approach. Machine and deeplearning promise to provide valid countermeasures against modern

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

malware because of their capability to potentially detect malwareapplications without speci�ic signatures of their behavior or data.Generally, ML-based malware detectors work on the extraction ofthe malware (and benign programs) features and static and/ordynamic analysis can be performed. Such systems learn from examplesfor creating models by which they will be able to discriminate whethera given program is a malware or not. These models are then used toestimate the likelihood that a given program is malware.One of the bottlenecks exhibited by ML-based malware detection isrepresented by the high time required to learn when the number orsize of features is wide or the number of sample programs is large.Although reducing the number of features could shorten the learningtime, the accuracy in the detection task likely decreases. So, �inding anacceptable trade-off among the detection accuracy, short learningtimes, and limiting the size of data, obtainable by selecting aconvenient combination of sensitive features, is far from being a trivialproblem.A very accurate review of recent �indings of adversarial examples indeep neural networks and a deep investigation of existing methods forgenerating adversarial examples is provided in [50].
2.1	 The	Deep	Learning	Models	in	a	NutshellThe essential background about techniques and enabling architecturesof deep learning is provided in the following.Deep learning is a kind of machine learning that makes computersto learn from experience and knowledge without explicit programmingand extracts useful patterns from raw data.Conventional machine learning algorithms exhibit some limitationssince it is dif�icult to extract well-represented features because of thecurse of dimensionality, computational bottleneck, and strongrequirements of the domain and expert knowledge. Deep neuralnetworks represent a particular kind of machine learning algorithm,leveraging several “deep” layers of networks. Furthermore, deeplearning solves the problem of the representation by building multiplesimple features to model a complex concept. The more the number ofavailable training data grows, the more powerful the deep learningclassi�ier becomes. Deep learning models solve complicated problems

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

by complex and large models, with the help of hardware acceleration incomputational time.Traditionally, researchers build a single deep learning model usingthe entire dataset. However, the single deep learning model may nothandle the increasing complex malware data distributions effectivelysince different sample subspaces representing a group of similarmalware may have unique data distribution [52].Since the performance of deep learning models keeps improvingwith the increasing number of samples [49], researchers build a singledeep learning model using an entire data to understand therelationship between data features extracted from malware and thetarget [9, 27, 39, 45].These deep learning models mainly use three types of neuralnetwork architectures:Convolutional neural network (CNN);Recurrent neural network (RNN); andFully connected feedforward neural network (FC).There are two major disadvantages in building a single deeplearning model that uses a blended dataset:Complex data distribution;Scalability.Each type of malware has unique and different characteristics,proliferation methods, and data distributions [35, 49].Consequently, merging different types of malware into one datasetresults in a very complex overall data distribution. Furthermore, thediversity and sophistication of the merged dataset continue to growrapidly due to the large number of new malware variants that arecreated each year [49]. As a result, it is very challenging for a singledeep learning model to understand this complex data distribution.Additionally, the single CNN model treats malware as the imagewhile the single RNN model considers the behavior as the sequence ofevents. Both models only analyze the data distribution from only oneperspective. In the case of malware, the analysis of data distribution indifferent sample subspaces from multiple angles is preferred in order

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

to combine the knowledge and strength of these single modelseffectively.Second, building a single deep learning model for malwaredetection lacks scalability to train on increasingly large malwaredatasets. Training deep learning models on very large datasets is acomputationally expensive process [20]. Since the number of newmalware samples has exponentially increased through time [9, 31],building a single deep learning model requires longer computationtime. This slow training process makes dif�icult to search and rebuildthe learning model rapidly in order to adapt to the fast changingmalware landscape and respond to the new techniques adopted by themalware writers. An alternative to using a single deep learning modelto build malware detection systems (MDSs) is the development ofensemble-based deep learning models. Multiple deep learning modelsin the ensemble can work together to enhance the performance ofMDSs. Researchers have developed the ensemble-based deep learningmodels, where each model is constructed on the whole blendeddataset.
2.1.1	 The	Most	Popular	Deep	Neural	Network	ArchitecturesA neural network layer includes a set of perceptrons (arti�icialneurons), and each one is able to map a set of inputs to output valuesby evaluating a simple activation function. The function of a neuralnetwork is formed in a chain f(x) f (k) (f(2) (f(1)(x))), where f(i) isthe function of the ith layer of the network, with .

Convolutional	neural	networks (CNNs) and recurrent	neural
networks (RNNs) are the two most popular and adopted neuralnetwork architectures in recent times.CNNs deploy convolution operations on hidden layers for weightsharing and parameter reduction. CNNs can extract local informationfrom grid-like input data. CNNs have shown incredible successes incomputer vision tasks, such as image classi�ication [24], objectdetection [44] and semantic segmentation [14].RNNs are neural networks adopted for processing sequential inputdata with variable length. RNNs produce an output at each step. Thehidden neuron at each step is calculated based on input data and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

hidden neurons at a previous step. To avoid vanishing/explodinggradients of RNNs in long-term dependency, long short-term memory(LSTM) and gated recurrent unit (GRU) with controllable gates arewidely used in practical applications.
Generative	adversarial	networks (GANs) are a type of generativemodel introduced by [22], where adversarial examples can beexploited to improve the representation of deep learning and performunsupervised learning. A generative network (generator) createsarti�icial samples while a discriminative network (discriminator) actsas an adversary to determine if the generated samples are genuine orfake. This kind of network architectures are typically referred asgenerative adversarial network (GAN) and solve an optimizationfunction described by

where D and G denote the discriminator and generator, and and are, respectively, the distribution of input data and noise. In thiscompetition, GAN is able to generate raw data samples that look closeto the real data.Due to the wide use and breakthrough successes, ML- and DL-baseddetection systems have become a major target for attacks, whereadversaries are usually applied to evaluate the attack methods.Unfortunately, both ML and DL approaches to malware detection canbe fooled by adversarial examples that consist of small changes to theinput data causing misclassi�ication at testing time.
3	 Adversarial	Attacks	Against	Deep	Learning-
Based	Malware	Detection	SystemIn this section, we explore the adversarial attack techniques on MLmodels that have been applied to intrusion and malware attackscenarios.Several techniques have been proposed to create adversarialexamples. Most approaches suggest minimizing the distance betweenthe adversarial example and the instance to be manipulated in order to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

cause the ML classi�ier to misclassify the testing dataset with highcon�idence.Some methods require access to the gradients of the model, whichtypically introduce perturbations optimized for certain distancemetrics between the original and perturbed samples: this kind ofattack is called white-box	attack. Other methods only require access tothe prediction function, which makes these methods model-agnostic:this kind of attacks are called black-box	attack.A simple indiscriminate approach is gradient ascent during thetraining of ML model. Szegedy et al. [47] proposed a �irst gradientmethod to generate adversarial examples applied to the imaging �ield,using box-constrained	limited-memory	Broyden-Fletc.her-Goldfarb-
Shanno (L-BFGS) optimization, an optimization algorithm that workswith gradients. The adversarial examples were generated byminimizing the following function:

where x is an image represented as a vector of pixels, r represents theperturbations to be made on the pixels to create an adversarial image, lis the target label (the desired outcome class), and the parameter c isused to balance the distance between images and the distance betweenpredictions.Goodfellow et al. [22] proposed a simple and fast gradient-basedmethod called fast	gradient	sign	method (FGSM), using the gradient ofthe underlying model to �ind adversarial examples and the originalimage x is manipulated by adding or subtracting a small error to eachpixel:
Here, is the perturbed sample, is a hyperparameter controlling theamount of perturbation added to each feature (pixel), J is thegradient of the models loss function with respect to the original input

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

pixel vector x and y the target label (the true label vector for x). Thesign of the gradient is positive if an increase in pixel intensityincreases the error the model makes and negative if a decrease in pixelintensity increases the error. This approach requires many pixels to bechanged, for this reason, Su et al. [46] demonstrated that it is actuallypossible to deceive image classi�iers by changing a single pixel (theRGB value). The one-pixel attack uses differential evolution to �ind outwhich pixel is to be changed and how.Brown at. al [12] proposed how to create image patches that can beadded to a scene, and force a classi�ier into reporting a class of theattacker’s choosing. This method differs from the methodsaforementioned since the adversarial image isn’t close to the originalimage but it is removed and a part of the image is replaced with a patchthat can take on any shape.Carlini and Wagner [13] modi�ied the objective function and used adifferent optimizer compared with the L-BFGS attack described in [47].Instead of using the same loss function as in L-BFGS, they solved thefollowing box-constraint optimization problem to �ind an adversarialperturbation , making the problem more ef�icient to solve. CW �indsthe adversarial instance by �inding the smallest noise addedto an image x that will change the classi�ication to a class t and uses the norm (i.e., Euclidean distance) to quantify the difference betweenthe adversarial and the original examples. Formally:
where C(x) is the class label returned with an image x.While successful, gradient-based methods work only under “white-box” settings. Papernot et al. [38] showed a type of zero-knowledgeattack (black-box attack) to create adversarial examples withoutinternal model information and without access to the training data.This technique, called Jacobian-based	saliency	map	attack (JSMA),unlike the previous method, proposed to use the gradient of loss witheach class label with respect to every component of the input, i.e.,Jacobian matrix to extract the sensitivity direction. Then a saliency

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

map is used to select the dimension which produces the maximumerror using the following equation:
In the previous formula , represents the Jacobian of target class t and represents the sum of Jacobian values of all non-target class.Changing the selected pixel will signi�icantly increase the probability ofthe model labeling the image as the target class. The purpose of JSMAattack is to optimize the distance metric (the amount of perturbedfeatures).Moosavi-Dezfooli et al. [33] proposed an algorithm, DeepFool, tocompute adversarial examples using an iterative linearization of theclassi�ier to generate minimal perturbations that are suf�icient tochange the classi�ication labels. Starting with a binary classi�icationproblem, this method creates an adversarial example computing theEuclidean distance between perturbed samples and original samples inan iterative manner until where r is theminimum perturbation required.

Zeroth-order	optimization	attack (ZOO) was proposed by Chen et al.[15] and consists of approximating the full gradient via a randomgradient estimate using the difference between the predictedprobability of the target model and the desired class label. Precisely,the method uses zeroth-order stochastic coordinate descent tooptimize the malicious sample by adding perturbations to each featureand querying the classi�ier to estimate the gradient and Hessian of thedifferent features. In this scenario, solving the optimization problem iscomputationally expensive and the authors proposed a ZOO-Adamalgorithm to �ind the optimal perturbations for the target sample.Most of the attacks presented have been initially tested on imagedomains by introducing perturbations to existing images but they canequally be applied to other types of data, such as datasets with alimited number of features since these attacks are not data-type

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

dependent. In a cybersecurity scenario, a malicious user could accessany type of data used by a classi�ier and produce adversarial examples.
4	 Generative	Adversarial	Attacks	Against
Malware	Detection	SystemsIn this section, we examine existing generative adversarial algorithmsused to attack malware detectors.Generative adversarial algorithms have been mainly applied toimage recognition, where generative adversarial networks (GANs)were used to generate images that were indistinguishable from realones. In the process of image generation, for example, the GAN networkmodi�ies some features like pixels, while a human eye does notperceive the difference from an original one. Using GAN to create abinary �ile poses more dif�iculties than an image, because changing abit in a binary may corrupt the �ile. For this reason, generatingexecutable �iles with a GAN could be challenging.The main difference between image and malware is that images arecontinuous while malware features are binary. Changing bytearbitrarily could break semantics and syntax of portable executable(PE) so we are limited in the types of modi�ication that can be donewithout breaking the malware functionality. For this reason, differentapproaches have been proposed in the literature such as addingpadding bytes (adversarial noise) at the end of a �ile beyond PEboundaries [30]. Another approach consists of injecting the adversarialnoise in an unused PE region that is not mapped in memory [32]. Mostworks in literature simply ignore this problem. In order to overcomethis limitation, attackers must have a white-box model in which thetype of the ML algorithm used and the features to be used are known.One of the �irst demonstrations of an adversarial creation of a PE is thework [25]; in this paper, authors adopt a gray-box model in which theyonly know the set of used features based on API calls but do not knowthe ML model used by the classi�ier. In MalGAN, authors generateadversarial examples by adding some irrelevant features to the binary�iles because removing features may crack the executable or itsintended behavior. The adversarial generated example is expressed bythe following formula:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

where m is the initial feature vector, each element of m corresponds tothe presence/absence of a particular feature in a malware, and thenthis input vector is fed into a multi-layer feedforward neural networkwith weights
The output layer of this network has M neurons and has a sigmoid asan activation function which is continuous in the range (0,1) as the lastlayer. The output of this network is denoted as o.Since malware features are binary, the output in the continuousspace must be transformed into the binary space with atransformation called binarization. This procedure generates a newbinary vector o’. Then the resulting m’ is a binary vector obtained bythe initial m vector through an OR bit-wise operation with the o’ binaryvector.The non-zero element of the binary vector o’ acts as an irrelevantfeature to be added to the original malware. While MalGAN and thedetector use the same API as features quantity and this could affect theperformance of avoidance, in [28] authors add some noise to malware,extracting features (API list) from clean malware and input them to thegenerator.In another work [30], the authors present a gradient-based attackto generate adversarial malware binaries but their limit is themanipulation to the padding bytes appended at the end of the PE toguarantee that the malware integrity is preserved. With this approach,they reach an evasion rate of 60% against raff2017malware used as aclassi�ier. GANs are also used to generate a malicious document. In[51], the authors propose a method based on Wasserstein	generative
adversarial	network (WGAN) to generate a malicious PDF with anevasion rate of 100% as stated. A malicious PDF is a document thatembeds and executes malicious code. In this work, the authorsgenerate adversarial examples by modifying 68 features extractedfrom various attributes: size, metadata, and structural attributes.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5	 Case	StudyWe carried out a case study to examine the effectiveness of adversarialmodels against malware detectors based on deep learning. To this aim,we considered a cooperative system of generative adversarialnetworks, where multiple GANs (couples of generators anddiscriminators) run in parallel for supporting a multistage black-boxattack.Under the realistic hypothesis that an attacker knows very littleabout the system he wants to attack (the case of a black-box attack),the attacker could set up some sort of brute-force attack by deploying apool of speci�ic generators built for interacting with a correspondingpool of speci�ic targets (discriminators).The attack strategy envisages multiple stages (steps). As �irst, theonly knowledge owned by the attacker consists of knowing that thetarget victim could behave according to a ML or DL model and the kindof inputs it could accept, so the attacker trains several generatorsworking over different groups of features (possibly, he could try overall the sensible combinations) for re�ining the generation of arti�icialadversarial samples.This training stage is performed without effectively interacting yetwith the real target. Discriminators play the role of the potentialvictims, as substitutes of real victim systems. In the middle of attackingtime, the attacker will start a smooth interaction with its victim, thistime represented by a black box. By carefully analyzing responses fromthe black box, it is able to �igure out what features are used by themalware detector black box. Adversarial test cases are produced byexploiting all the trained generators in the attacker’s wallet.Most of these samples will be harmless since they will not act on theright set of features but we can suppose that almost one of thesegenerators will be able to generate samples that will produce someeffects. By this way, the attacker will gain knowledge about itsadversary and can implement a gray-box attack, basing on the featuresset its victim works over.At the real attack time, the attacker will exploit only the rightgenerator and proceed to attack and re�ine its generation model untilits target is reached out. The case study we propose should not be

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

regarded as exhaustive but it can be regarded as proof of the conceptthat adversary attacks pointing ML and DL systems can beimplemented in many alternative and successful ways, for tamperingwith real existing defense systems.
5.1	 Case	Study	DesignAs �irst, we trained ten parallel GANs simultaneously, where both thedetectors and the generators were realized by adopting deep neuralnetwork models. In particular, the models used for the discriminatorsimplement a fully connected feedforward network architecture(FFNNs) while, for models of the generators, we adopted aconvolutional layer architecture (CNNs).For implementing each GAN comprised in our cooperative system,we took our cue from the general system architecture and thegenerators neural network architecture, implemented as a CNN,suggested in MalGAN [25]. Unlike MalGAN, we don’t use a black-boxdetector and a substitute detector, since we designed our case studyfrom the perspective of a “patient attacker” deploying a multistageattack. Our approach differs from MalGAN also in the kind of featuresconsidered both for training detectors and generators and in thegeneration strategy of the adversarial samples, as it will be detailed inthe following sections.Then, in the �irst stage, we assume that the attacker knows at leastthe features adopted by its victim for distinguishing betweengoodware and malware and has access also to its gradients. In this way,we could directly exploit the gradient’s information provided by thedetectors for training the generators and re�ining the capability toarti�icially generate samples that look like genuine ones.With regard to the type of samples we analyzed and the kind ofanalysis performed by the victim detectors, speci�ically, we consideredthe surface features extracted from binary �iles applications, so thedetectors answering to adversarial attacks are trained to perform a
static	analysis over the inputs they are fed in.Correspondingly, adversarial examples will be generated by craftingthese surface features. Since the surface feature space is discrete, wewill apply a transformation to continuous space, in order to apply agradient-based method for improving the probability that the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

generated adversarial examples will go undisturbed through thedetection system. The approach suggested in [23] allows us to work indiscrete and binary input domains, differently from most of the otherproposed approaches [30] that operate only in continuous anddifferentiable domains.Furthermore, static analysis has the advantage that does notrequire the execution of samples in a sandbox or safe environment forstudying their behaviors, and the features for training the detectorand/or classi�iers can be extracted over speci�ic subsets of features.Conversely, the dynamic analysis could reveal more information aboutmalicious behaviors by the applications (e.g.., actions relationships andpatterns) but the operative conditions are more dif�icult to achieve.Challenging results obtained by adopting static analysis in trainingmachine and deep learning algorithms for malware detection aredescribed in [3], where the authors provided, as �irst, an open-sourcedataset, namely, “EMBER,” consisting in a collection of surface featuresextracted from a little under a million of malicious applicationstargeting Windows O.S. environment; furthermore, they provideexperiments that compare a baseline gradient boosted decision treemodel trained using LightGBM [29] with default settings to MalConv[43], an end-to-end but featureless deep learning model for malwaredetection, which recently became a very popular benchmark in thiskind of experiments.In the case of malware detection, unlike other application domains,like image and speech recognition, manipulating bytes can severelycompromise application functionalities and validity; therefore,generating adversarial examples is not straightforward. Anunavoidable requirement that should lay down every manipulationstrategy consists in adopting generation techniques that are able toguarantee the preservation of malware functionality in theadversarially manipulated samples.In our evaluation we trained, validated, and tested discriminatormodels for malware detection, by adopting for all the same samples,randomly extracted from the EMBER [3] dataset. Finally, we selectedthe �irst ten ones that obtained the best accuracy in the detection task.Then, we build ten parallel GANs, and we trained ten generators for thecorresponding trained detectors (discriminators). For training the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

generators, we adopted a descendent gradient-based strategy and weadopted the maximum mean discrepancy (MMD) [5] as distancefunction for evaluating sample distributions similarity during thetraining process.We examined the results obtained in the different stages of ourexperiment for measuring the effectiveness of the adversarial strategyand the robustness of the malware detectors to these kinds of attacks.We adopted, for evaluating the reached performances, the followingmetrics: accuracy, sensitivity, speci�icity, and evasion rate. The evasionrate represents a measure of the success rate obtained by generatornetworks in fooling their opponent discriminators; it can be computedas the ratio between the number of adversarial examples that weremisclassi�ied as benign samples (also referred in the following as“goodware”) by each detector, over the total amount of adversarialsamples submitted to the discriminators.By adopting the EMBER dataset, we were able to �it the detectionperformance obtained from the state of the art. Then, by using theadversarial crafting algorithm, we were able to mislead, on average, theten detectors by decreasing the average accuracy over all the modelsranging from a minimum of 20.63% (best case) to a maximum of40.8% (worst case), by mixing genuine samples with adversarial one’ssamples and acting over the surface features.Our preliminary experiments revealed, at a �irst sight analysis, thatthe byte distribution (byte histogram) is among the most sensitivefeatures. This �inding could suggest that machine- and deep-learning-based malware detectors, which work on static and surface features,could be fooled by adversarial malicious samples that are able to reacha bytes distribution with a high level of likelihood with the goodwarebytes distribution.
5.2	 General	ArchitectureThe overall architecture of the system we propose corresponds to thegeneral schema of a GAN (Fig. 1), where each couple made of agenerator (G) and a discriminator (D) acts independently from eachother.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 GANs logic and building blocks of the proposed GANs-based architecture
5.2.1	 The	Discriminator	Network	ModelFollowing the approaches suggested in [36, 42, 43], we adopted a fullyconnected multilayered feedforward neural network as the basearchitecture for our discriminator’s models. All the models we trainedfor obtaining the detection systems, as detailed in the followingsections, share the same number of dense hidden layers, their size andthe size of the output layer, set to 1, since the detection acts as a binaryclassi�ication task (e.g., malware or goodware). All the trained modelsdiffer in the input layer size, since we performed several experimentsby changing the size and the values of the input vectors, according tothe combinations of features that we aimed to test. Figure 2 shows thegeneral architecture of the discriminator network we adopted in ourstudy.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 The discriminator network: malware detector architectural schemaThe basic model adopted for each discriminator of our poolincludes �ive hidden dense and fully connected layers characterized bydecreasing size (256-256-256-128-64); for each discriminator, theinput size was variable, according to the subset of features weconsidered for each model. The maximum size of the input layer wasset to 2,351, when we consider all the available features provided in theEMBER dataset for implementing a static malware analysis over theinput samples. In addition, we adopted the Adam algorithm asoptimization function and the binary	cross	entropy as loss function.Finally, as an activation function, we adopted the ReLU that allowed toalleviate the vanishing gradient issues and is faster when comparedwith other non-linear activation functions.We performed all the training cycles for 250	epochs with batch	sizeset to 64. We adopted different learning rates lr varying in the range[0.01;0.5]; �inally, all the discriminators models were able to converge

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

to an accuracy rate a 80% and a false	positive	rate (where FPR is computed as the number of benign samplesmisclassi�ied as malicious over the total number of malicious samplesdetected), by adopting a and a number of iterations 250
epochs. The performance metrics values were cross validated over thevalidation and the test sets. All the experiments were repeated �ivetimes and the average values obtained in these experiments wereconsidered as the values of the �inal hyperparameters for tuning thenetworks.The reason underlying the strategy of training several models wasdictated also by the need to apply a reduction to the whole set of thefeatures provided by PEs �iles; even though the best accuracy isperformed when a detection model is trained over the whole featuresset, we need also to limit the performance decay, in terms of data sizeand training time, in order to make this approach feasible for real-world scenarios. So, we applied a strategy for reducing features and wewere able to obtain a trade-off among accuracy, data size, and learningtime. Anyway, we didn’t investigate more space and time complexity onthis occasion, but it will be the object of further and necessaryinvestigations.
5.2.2	 The	Generator	Network	ModelFor the generation network model, we followed the general settingadopted in [25].The model we adopted for the generators is represented by aconvolutional neural network (CNN) trained on a sample fractionextracted by the EMBER dataset. We split the Ember dataset in order tosave a fraction of samples, made of benign and malicious samples thatwere not included in the training set of our detectors. We trained thegenerators until all of them reached at least an accuracy rate a 98%,when arti�icially reproducing the original samples, as it will be detailedin the following of this section. For the generation of adversarialexamples (AEs), we set two main constraints:

Functionality	preserving: Adding noise for generatingadversarial examples should not break the sample’s behavior.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Features	probability	distributions	invariance: Since we workedonly on surface features, we don’t manipulate the content of binariesbut we try to change the surface information as their probabilitydistribution looks like more close to the distribution of goodsamples.The CNNs we adopted for generators are characterized by layersizes set to X-256-X, where X represents the variable size for both theinput and the output, according to the input dimension that has to betransformed and the adversarial sample size that has to be produced.Noise vectors adopted for manipulating genuine inputs have the samedimensions of the input, according to the number of features that areconsidered in each couple of generator-discriminator. The Adamoptimizer was selected as an optimization function. Each generatorwas trained for 500 epochs with a learning rate set to 0.05. Thesetraining parameters were obtained after several experiments until thebest tuning that guarantees convergence for all the generators with anaccuracy rate over the original ground truth stabilized to 98%. Thisaccuracy was cross validated also over the validation and test set. Allthe experiments were repeated �ive times and the average valuesobtained in these experiments were considered as the values of the�inal hyperparameters for tuning the networks.The generation of AEs is usually done by adding smallperturbations to the original input in the direction of the gradient. Thegradient-based methods work for continuous input sets but they fail inthe case of discrete input sets. If we denote the set of the features as , where , the features comprised in the PEs�iles can be arbitrarily represented as scalars in a set X [0, N - 1], where . So, AEs can be generated in a continuous embedding spaceE and reconstructed them to original X.
5.2.3	 Adversarial	Example	Generation	ProblemGiven a trained deep learning model f, an original input data sample x,generating an adversarial example x’, can generally be described as abox-constrained optimization problem:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

wherex is the genuine input sample;x’ is the arti�icial input sample;m () represents the trained deep learning model;l and l’ represent, respectively, the output labels produced by themodel m () when processing x and x’; and|| || denotes the distance between two samples. is the difference between x’ and x, and represents the perturbation(noise) added to x. This optimization problem minimizes theperturbation while misclassifying the prediction with a constraint ofinput data. Other variants of this optimization problem can beconsidered in different scenarios and assumptions. For instance, in theimage recognition domain, some adversaries consider that if ,the perturbation is small enough to be unnoticeable to humans and it isviewed as a constraint. The optimization objective function becomesthe distance of the targeted prediction score from the originalprediction score.
5.3	 Adversary	LogicAs described in [50], the adversarial examples can be categorized in ataxonomy along seven axes. In our study, we followed the axes of the
adversarial	falsi�ication and the iterative	attack. For the �irst dimension,we were interested in training generators able to lead a decay in thedetection accuracy of each detector, as it will be shown in the resultssubsection. For the second dimension, by exploiting the transferabilityof adversarial examples [37], we divided our attack into multiple

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

stages until we reach a �ine-tuned generator for addressing the victim’svulnerabilities. We considered as:
False	positive: The negative examples arti�icially generated that aremisclassi�ied as positive samples.
False	negative: The positive examples arti�icially generated that aremisclassi�ied as negative samples.In the case of the malware detection task, a benign software beingclassi�ied as malware is a false positive. Conversely, a false negative is amalware (usually considered as positive) that cannot be identi�ied bythe trained model. This is also known as machine/deep	learning

evasion.
5.3.1	 Threat	ModelWe de�ine the threat model as follows:The adversaries can attack only at the testing/deploying stage. Theycan tamper with only the input data in the testing stage after thevictim deep learning model is trained. Further, we assume thatneither the trained model nor the training dataset can be modi�ied.The adversaries may have knowledge of the trained model(architectures and parameters) but not allowed to modify the model,which is a common assumption for many online machine learningservices. We are not considering attacks at the training stage (e.g.,training data poisoning [16, 34]), even if they are another interestingtopic to explore.Since we considered adversarial attacks for deep neural networks,the adversaries target only the integrity of their inputs. In general,integrity is essential to a deep learning model, although othersecurity issues related to con�identiality and privacy have drawnattention in deep learning. Anyway, in the case we considered PE�iles, the integrity of the input is crucial. So, we focused on theattacks that degrade the performance of deep learning models formalware detection: attacks cause the increase of false positives andfalse negatives.
5.3.2	 Adversarial	Examples	Generation

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

AEs are arti�icial inputs that are generated by modifying legitimateinputs so as to fool the classi�ication models. In the �ields of image andspeech recognition, modi�ied inputs are considered adversarial whenthey are indistinguishable by humans from the legitimate inputs, andyet they fool the model. Conversely, discrete sequences are inherentlydifferent than speech and images, as changing one element in thesequence may completely alter its meaning. For example, changing oneword in a sentence may hinder its gradient in a binary �ile, where theinput is a discrete sequence of bytes, changing one byte may result ininvalid bytecode or different runtime functionality. In malwaredetection, an AE is a binary �ile that is generated by modifying anexisting malicious binary. While the original �ile is correctly classi�iedas malicious, its modi�ied version is misclassi�ied as benign. Recentworks as [23] have shown that AEs cause catastrophic failures inmalware detection systems, trained on a set of handcrafted featuressuch as �ile headers and API calls. Our experiment (contribution) isfocused on changing surface features by keeping the same originaldistribution of benign samples.
5.4	 DatasetWe chose EMBER released by Endgame [3] as the dataset for our casestudy. EMBER is a collection of features extracted from a large corpusof Windows portable executables.The �irst version of the dataset is a collection of 1.1 million PEs thatwere all scanned by VirusTotal in 2017. The second EMBER datasetrelease consisted of features extracted from samples collected in orbefore 2018.The set of binary �iles is divided as follows:900,000 training samples grouped in:– 300,000 malicious;– 300,000 benign; and– 300,000 unlabeled.200,000 test samples grouped in:– 100,000 malicious;– 100,000 benign.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The dataset is made up of JSON �iles. Each sample includesthe sha256 hash of the original �ile as a unique identi�ier;the month the �iles was �irst seen;a label, which may be 0 for benign, 1 for malicious, or -1 forunlabeled; andeight groups of raw features that include both parsed values andformat-agnostic histograms.A code snippet from the JSON �ile is shown in Fig. 3.

Fig.	3 Code snippet from Ember dataset JSON �iles describing PEs features
5.4.1	 Raw	FeaturesThe raw features include both parsed features and format-agnostichistograms and counts of strings. Parsed features, extracted from thePE �ile, are
General	�ile: Information including the �ile size and basic informationobtained from the PE header.
Header	information: Reporting the timestamp, the target machine(string), and a list of image characteristics (list of strings). From theoptional header, the target subsystem (string); DLL characteristics(a list of strings); the �ile magic as a string (e.g., “PE32”); major andminor image versions; linker versions; system versions and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

subsystem versions; and the code, headers, and commit sizes areprovided.
Imported	functions: After having parsed the import address table, theimported functions by the library are reported.
Exported	functions: The raw features include a list of the exportedfunctions.
Section	information: Properties of each section are provided,including the name, the size, the entropy, the virtual size, and a list ofstrings representing section characteristics.The EMBER dataset also includes three groups of features that areformat-agnostic, as they do not require parsing the PE �ile:Byte histogram contains 256 integer values, representing thecount of each byte value within the �ile. The byte histogram isnormalized to a distribution, since the �ile size is represented as afeature in the general �ile information.Byte-entropy histogram approximates the joint distributionp(H,X) of entropy H and byte value X.String information reported is the number of strings, theiraverage length, a histogram of the printable characters within thosestrings, and the entropy of characters across all the printable strings.

5.5	 Performance	MetricsFour metrics were used to evaluate the detectors (accuracy,	sensitivity,
speci�icity,	and	evasion	rate) obtained under different testingconditions. We provide the general standard de�initions for thesemetrics while reserving us to improve the explanation about how theywere speci�ically computed in the speci�ic sections. As �irst we providede�initions for true positives, true negatives, false positives, and falsenegatives.

True	positive: (TP) the number of malicious samples correctlyidenti�ied as malicious;
False	positive: (FP) the number of benign (goodware) samplesincorrectly identi�ied as malicious;
True	negative: (TN) the number of benign samples correctlyidenti�ied as benign; and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

False	negative: (FN) the number of malicious samplesincorrectly identi�ied as benign.By combining these observations it is possible to compute furtherindicators, whose general meaning is provided as follows:
Accuracy: The accuracy of a test is de�ined as its ability todifferentiate the benign and malicious samples correctly. To estimatethe accuracy of a test, we compute the proportion of true positive (TP)and true negative (TN) in all the evaluated cases. Mathematically, thiscan be stated as follows:

Sensitivity: The sensitivity of a test is its ability to determine themalicious cases correctly. To estimate it, we should calculate theproportion of true positive (TP) in malicious cases. Mathematically,this can be stated as follows:
Speci�icity: The speci�icity of a test is its ability to determine the goodcases correctly. To estimate it, we compute the proportion of truenegative among good cases. Mathematically, this can be stated asfollows:
Finally, we consider another indicator of sensitiveness known as the
evasion	rate. When a dataset for testing the ability exhibited by asystem in detection and/or classi�ication task is poisoned withcarefully designed adversarial examples, there are two adversaryperspectives: the victim (detector) and the attacker (generator) ones.So, if we are interested to estimate the robustness of a detectionsystem by computing its performance decay under an adversarialattack (e.g., an accuracy decay), we are interested in the estimation ofthe ability of the generator to produce adversarial examples that aremisclassi�ied. In this perspective, the evasion rate can be adopted as an

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

indicator for measuring the generation ability and is de�ined, accordingto the de�inition provided in [10], as follows:
where NAEs represents the number of arti�icially generated adversarialsamples of malware submitted to the detector and FNAEs is the fractionof the overall counted false negatives (malware incorrectly classi�ied asgoodware) represented by adversarial samples set (that is to say,arti�icially generated malware incorrectly classi�ied as goodware).
5.6	 Case	Study	TreatmentsThe case study was conducted on an Ubuntu 18.04 platform, runningon a cluster composed of �ive machines, with the same hardwarecon�iguration, equipped with an Intel Xeon E5-2620 processor and 128GB RAM. We exploited the GPU functionalities of 5 NVIDIA GeForce RTX2080 boards, by using the CUDA toolkit 9.0 and cuDNN with aTensorFlow-GPU v.1.13.1 version, running with Python 3.7. We furtheradopted the Ember script tools version 0.1.0, LightGBM 2.1.0,scikitlearn 0.19.1, NumPy 1.14.2, and SciPy 1.0.0, Matplotlib 3.2.2 forplotting results.
5.6.1	 Malware	Detector	Training:	The	MethodThe total number of features comprised in each PE is equal to 2,351,grouped in eight families, according to the PE speci�ications[41].Families’ names and their quantity are provided in Table 1. We added,for convenience of comparison, the 9th group (FG00) representing thegroup including all the feature families, that is to say, 2,351 features.
Table	1 PEs surface feature groups in the ember dataset
Feature	group	ID Description	and	original	name Number	of	featuresFG00 All 2351FG01 General �ile info (General) 10FG02 Header info (Header) 62FG03 Imported functions (Imports) 1280

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Feature	group	ID Description	and	original	name Number	of	featuresFG04 Exported functions (Exports) 128FG05 Section info (Section) 255FG06 Byte histogram (Histogram) 256FG07 Byte-entropy histogram (Byte entropy) 256FG08 String info (Strings) 104For our case study, we started from considering all the featuresbelonging to a group as a unit, so we always selected all the features ina feature group or we selected none.Each combination was evaluated according to the followinginformation:selected feature groups;accuracy and false positive rates (FPR) computed by varying thethreshold of malware-likelihood scores by 0.01.As described in the performance metric subsection, we de�ine theaccuracy as the ratio of the number of correct answers to the numberof all answers, and FPR as the ratio of the number of malware-determination answers to the number of good samples.For each feature combination, we associated a set of featurevectors with a ground-truth label and trained a different model; �inally,we performed testing (malware-likelihood computation) operations.After performing training, validation, and tests, we selected the tenbest detectors, according to the best accuracy values in the detectionand a FP rate less than the limit threshold of 0.01.
5.6.2	 Adversarial	Examples	Generator:	The	MethodAs for the generation strategy for adversarial examples, we worked onthe surface features of binary �iles and we focused on producing smallchanges on the most sensitive features groups, in order to reproduce,for the arti�icially generated samples, the distributions of the samefeatures exhibited by goodware samples.We want to remark that, for the purposes of the case study, we onlyconsidered applications metadata, extracted by the original binary �ilesand conveniently provided in the EMBER dataset. We were interested

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

to provide further evidence that feature-based models for malwaredetection, even if realized by the means of deep neural networks, maybe broken by adversarial samples properly designed. We haven’tconsidered the whole binary �iles, because manipulating the content ofa binary �ile, even also changing a small number of byte, can severelycompromise the behavior and the functionalities of the application.This aspect, also investigated in the works of [30, 32], will be a matterof further investigations, possibly joining both surface features andpayload of binary �iles.With previous works, we share the common approach of generatingAEs by adding small perturbations to the original malicious inputs, inorder to follow the probability distributions of the selected featuresgroups, in the direction of the descent gradient, for reducing thedistance between probabilities distribution.Since we considered surface features, we observed that somefeatures are more sensitive than others. So, our generation strategyconsisted in following the probability distribution trend of thesesensitive features in genuine goodware samples, thus producing anoise able to make closer the surface features probability distributionsof the followed model (the genuine benign sample) with the probabilitydistributions of the following model (the malware sample that has tobe manipulated).
5.6.3	 Training,	Validation,	and	Test	Sets	CompositionIn this section, details about the size of the training, validation, and testsets employed for performing the case study are provided. Thesamples composing these sets have been randomly extracted as asubset of the EMBER �iles collection, only excluding the adversarialsamples that were arti�icially generated.

Training	set	for	discriminators: 300,000 genuine samples,divided into 150,000 goodware and 150,000 malware (XtrainD).
Training	set	for	generators: 300,000 genuine samples, dividedinto 150,000 goodware and 150,000 malware (XtrainG); this trainingset is intersectionless with the set adopted for trainingdiscriminators:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Validation	set	for	discriminators: 50,000 genuine samples(GEs), divided into 25,000 goodware and 25,000 malware(XvalidationD).
Test	set	for	discriminators	(excluding	the	adversarial

samples): 45,000 genuine samples, divided into 15,000 goodwareand 30,000 malware (XtestGEs).
Test	set	for	GANs	(discriminators	including	the	adversarial

scenario): 45,000 samples, divided into 15,000 genuine benignsamples, 15,000 genuine malicious samples (the same ofdiscriminators without attack), 15,000 arti�icially generatedadversarial examples of malware (XtestAEs).
5.7	 Case	Study	Results	and	Performance	EvaluationIn order to provide a clear and convenient explanation of our casestudy and its results, we decide to present the results splitting theminto two scenarios, in order to compare how the malware detectorperformances degrade when attacked with adversarial samples.Results of our tests will be summarized in terms of accuracy, sensitivity,and speci�icity metrics.Regarding the �irst scenario, sensitivity corresponds to the true
positive	rate	(TPR), where we considered as true positives all themalicious samples that were correctly identi�ied as malware in thedetection task. Finally, we considered the false	positive	rate	(FPR)obtained in the malware detection task, computed according to thefollowing equation:
Regarding the second scenario, instead, accuracy is computed as thesuccess rate, i.e., the evasion	rate (ER) obtained from the generatoragainst his opponent (the detector), and measures the number ofadversarial examples that pass undisturbed. In this scenario, the ER(coinciding with the TPR) is computed as the number of adversarialmalicious examples that are misclassi�ied as “good guys” (goodware);

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

it corresponds to the ratio between the number of adversarialexamples that successfully pass as “good guys” and the total number ofadversarial examples submitted to the detector (discriminator).
5.7.1	 Scenario	1:	Discriminator	Performance	Excluding	the
Adversarial	AttackResults are shown only for the best ten trained models, according tothe described criteria for the accuracy and FPR. In addition to thesecriteria, we performed two different tests for obtaining a furtherindication of the sensitiveness of the considered feature groups.De�ining as , with , the maximum number of featuregroups considered in the combination Ci, Tables 2 and 3 show theaccuracy scores of the best ten models (plus the case of selectingall the available different features), respectively, in the case in whichwe set the additional conditions in the training models to

The combination named All corresponds to all the eight groups
(Header,	Imports,	Section,	Histogram,	General,	Exports,	Byte	entropy,
Strings), including all the 2,351 features.The accuracy metric was computed by adopting the test setdenoted as (XtestGEs), comprising 45,000 genuine samples divided into15,000 benign and 30,000 malicious samples.
Table	2 Accuracy scores for the best ten combinations of features by considering thecombinations of 4 different feature groups at most()
Combination
ID

Selected	feature	group
combination

Total	number	of
feature

Accuracy	rate
(%)General, Header, Histogram,Section 583 92.27

General, Header, Histogram, Strings 432 91.84

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Combination
ID

Selected	feature	group
combination

Total	number	of
feature

Accuracy	rate
(%)General, Header, Section, Strings 431 90.66General, Header, Histograms 328 89.45Header, Section, Strings 421 88.23General, Header, Byte entropy 328 87.12General, Section, Strings 369 86.35General, Header, Strings 176 85.73Section, Strings 359 83.07General, Section 265 80.24

All 2351 98.32

Table	3 Accuracy scores for the best ten combinations of features by considering at least �ive andat most seven different feature groups ()
Combination
ID

Selected	feature	group	combination Total	number	of
feature

Accuracy
rate	(%)Header, Imports, Section, Histogram, General,Strings 1967 96.89

Header, Imports, Section, Histogram, General,Byte entropy, Strings 2223 96.55
Header, Imports, Section, Histogram, Byteentropy, String 2213 96.39
Header, Imports, Section, Histogram, General,Exports, Byte entropy 2247 96.28
Header, Imports, Section, Histogram, String 1957 96.12Header, Imports, Section, Histogram, Exports,Byte entropy 2237 96.07
Header, Imports, Section, Histogram, General,Exports, String 2095 95.96
Header, Imports, Section, Histogram, Byteentropy 2109 95.89

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Combination
ID

Selected	feature	group	combination Total	number	of
feature

Accuracy
rate	(%)Header, Imports, Section, Histogram, General,Exports 1991 95.74

All 2351 98.32

By analyzing the results shown in Table 3, we can observe that thehighest value for the accuracy is scored by the combination ,including all the features, while the closest score to this combination isobtained with a reduced set of features (combination), with adifference in accuracy that is at minimum 1.43% (versus) andat maximum 2.58% (versus).The feature groups Header,	Imports,	Section, and Histogram revealedto be particularly sensitive in biasing the accuracy score.Particularly, we observed that the feature group Histogram appearsin the best scores both in the reduced () and in the extended ()feature group combinations.Finally, since the information about feature sensitiveness to theaccuracy is crucial for designing the generation strategies foradversarial samples that will be effective, we performed the last testconsidering only single group combinations, as shown in Table 4.
Table	4 Accuracy scores for singleton feature group combinations ()
Combination
ID

Selected	feature	group
combination

Total	number	of
feature

Accuracy	rate
(%)Imports 1280 82.79Section 255 73.46Histogram 256 73.14Byte entropy 256 65.81Strings 104 64.73

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Combination
ID

Selected	feature	group
combination

Total	number	of
feature

Accuracy	rate
(%)General 10 61.59Header 62 54.13Exports 128 20.45

We can observe that the feature groups that scored the bestaccuracy values were imports,	section, and histogram. These threegroups were also included in all the ten best ranking modelsconsidered in Table 3, where the best results were generally obtained.Figure 4 summarizes the absolute frequency scored for all the eightfeatures groups over the three best ranked models for each of the threetraining we performed.

Fig.	4 Feature groups’ absolute frequency in the three most accurate models
5.7.2	 Generator	and	Discriminator	Performance	Including
Adversarial	Attack

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For generating adversarial examples and testing the pool comprisingthe ten most accurate discriminator models described in the previousscenario, we trained correspondingly ten generators.Given the initial working hypothesis of having knowledge, at thisstage, of discriminators gradients generated during the training overthe genuine dataset, we had the opportunity to exploit them incombination with the inner gradients of generators, in order to apply asemi-direct training process for the generators. To be clearer, we couldadopt both a direct method for training the generators and an indirectone.The direct method does not require to involve the discriminatorsduring the training of the generators that are trained by simplycomparing the difference elapsing between the probabilitydistributions of genuine samples and the arti�icially generated(adversarial) samples. This method is practicable in this case becausewe have the true genuine data (a kind of white-box attack at the �irststage) available.In the second and most realistic stage of the attack scenario, weimagined (a black-box attack) genuine data aren’t available and thedirect method for training generators can’t be applied yet. In thissituation, the generators can be trained by submitting, at each trainingiteration, the generated outputs to the victim and collecting theresponse, for computing a step for making descendant the gradientfunction.For reasons of simplicity, we adopted the direct method, since ouraim was to provide evidence that feature-based deep learning modelsfor malware detection could work with high accuracy even if the staticanalysis is performed; anyway, as other kinds of deep learning models,also performing a dynamic analysis of samples, they are affected byadversarial examples carefully designed.So, the generators were trained by performing the comparisonbetween the probability distribution of its generated samples with a“genuine” training set and backpropagating the difference (the error)through the network, at each iteration of the training process. Tocompute the distance (or similarity measure), we adopted themaximum mean discrepancy (MMD) [5, 6, 18], able to compareeffectively two distributions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Then, the training process of the generative networks develops asfollows. Given a random variable with uniform probability distributionas input, we want the probability distribution of the generated outputto be the “genuine data set probability distribution”; we consideredtwo subcases:the �irst one in which the genuine dataset is the same adopted fortraining the discriminators;the second one, in which the genuine dataset is represented by adifferent and intersection fewer dataset from the one adopted fortraining discriminators.The training process for each of the generators follows the basicidea to optimize its inner network by repeating the following steps:to generate some random inputs of the same size as thecorresponding discriminator;to make these inputs go through the generator and thediscriminator and collect both generated outputs;to compare the “genuine probability distribution” and thearti�icially generated one, by computing the MMD distance betweenthe true samples and the generated ones; andto adopt backpropagation to make one step of gradient descentto lower the MMD distance between the truly genuine and arti�iciallygenerated distributions.We discuss here how to manipulate a source malware sample x intoan adversarial malware binary by slightly changing the surfacefeature values. Generators aim to minimize the con�idence associatedwith the malicious class (i.e., it maximizes the probability of theadversarial malware sample being classi�ied as benign), under theconstraint that qmax is the maximum amount of noise (changes) thatcan be added to the original sample for being effective. The deepnetwork implementing each generator produces the probability of thegeneric sample x being malware, denoted in the following with f(x). Iff(x) , the input �ile is thus classi�ied as malware (and as benign,otherwise).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This can be characterized as the following constrainedoptimization problem:
wherex denotes the genuine sample distribution; denotes the generated sample; andd(x,) is the distance function computed as the MMD distance.We solve this problem with a gradient-descent algorithm over thegenerator networks by adopting as loss function the distance betweenthe true and the generated distributions at the current iteration.We trained each generator, for both the genuine datasets, for 500epochs, and we also adopted a learning rate set to 0.05. Thesehyperparameters for the training process were obtained after all theten generators were able to converge and we stopped when the errorreached the threshold value of 0.02 (2%) (corresponding to anaccuracy rate in validation and testing of 98%). We were not able toreach lower error rates, because we trained generators for being ableto produce just over 15.000 adversarial samples, in order to ensure thesame numerosity of the genuine test examples when testing thediscriminators. The overall time for training the ten generators until allof them converge to a similarity rate of 98%, estimated between thetruly genuine and the adversarial generated samples distributions,lasted about 1 day and a half (about 37 h). We repeated the trainingprocess �ive times and we considered as assessed the generatormodels after a time of about 10 d.In this way, we obtained 30,000 adversarial examples, divided intotwo sets GEQ and GNEQ comprising, respectively, 15,000 adversarialmalicious samples generated (AEsEQ)from comparison with thegenuine training set adopted for discriminator models and 15,000arti�icially generated samples (AEsNEQ) computed by evaluating thedifference from a different dataset from the one adopted for trainingdiscriminator models.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Finally, we addressed the adversarial attack to the tendiscriminators with both the two sets of generated adversarialsamples and we provide a brief discussion over the results weobserved.Like in Scenario 1, for computing performance metrics, we testedthe discriminators with two variants of the test set denoted as(XtestAEs); each variant comprises 45,000 samples, divided into 15,000genuine benign samples and 30,000 malicious samples, in turn dividedinto 15,000 genuine malware and 15,000 adversarial malware samples.The two classes of test sets differ only for the kind of adversarialmalware samples included. In the �irst class, we included adversarialmalware samples generated by comparison with the same training setadopted for training discriminator models; in the second class, weincluded adversarial malware samples generated by adopting adifferent training set from the one adopted for training discriminators.So, we discussed these two cases of AE attack and we comparedthem with the original accuracy scored by each discriminator whenexcluding AEs from its test set.To verify the ef�icacy of the attack, for each test we measuredbeyond the accuracy and the sensitivity, also the evasion rate [10],computed as the percentage of malicious samples that managed toevade the network [30].For each of the three cases shown in Table 5, accuracy wascomputed considering a test set comprising 45,000 samples; anyway,these tests were differently composed for allowing, respectively, thecase excluding the adversarial examples and the two cases includingAEs generated by comparing or not comparing to the genuine trainingset adopted for discriminators. These cases includeExcluding AEs: No AEs attack is performed against thediscriminators; the test set is made of 45,000 genuine samples only,divided into 15,000 goodware samples and 30,000 malware samples.Including AEs trained over the training set adopted by thediscriminator: AEs attack is performed against the discriminators;the test set is made of 45,000 samples, among which 30,000 genuinesamples are divided into 15,000 goodware and 15,000 malware; the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

remaining 15,000 represent adversarial examples; this test set willbe called as follows: .Including AEs trained over a different training set from the oneadopted by the discriminator: AEs attack is performed against thediscriminators; the test set is made of 45,000 samples, among which30,000 genuine samples are divided into 15,000 goodware and15,000 malware; the remaining 15,000 represent adversarialexamples; this test set will be called in the following as .The results that we obtained in terms of evasion rate and accuracydecay for each of the ten discriminators are summarized in Tables 5and 6.
Table	5 Accuracy rate reached by attacking discriminators with adversarial examples from setsAEsEQ and AEsNEQ
	 TEST	1 TEST	2 TEST	3

Discriminator
ID

Accuracy	excluding
AEs	(%)

Accuracy	including
AEsEQ	(%)

Accuracy	including
AEsNEQ	(%)

96.89 58.77 73.3296.55 56.54 78.7396.39 57.87 77.1796.28 60.59 74.4396.12 59.25 74.3196.07 62.58 76.8795.96 56.55 75.7795.89 59.75 76.3895.74 56.74 76.17
98.32 57.52 74.68

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In Figs. 5, 6, and 7 are reported, respectively, the accuracy ratedistributions and the trend line of the accuracy decay, computed overthe ten discriminators and the two types of AEs considered, whendiscriminators are under AEs attack.

Fig.	5 Accuracy rate distributions for discriminators under AEs attack

Fig.	6 Trend of accuracy decay of discriminators under AEs attack (TEST 1–TEST 2)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 Trend of accuracy decay of discriminators under AEs attack (TEST 1–TEST 3)We can observe that AEs perform worse (test set AEsNEQ) than theother AEs adversarial set, producing, over the ten tested models fordiscriminators, an average decay of accuracy valued to Delta (a) 20.63 points. Minimum loss minloss 19.20 points and maximumloss maxloss 23.57 points.Instead, when adversarial attack is performed by adoptingadversarial examples produced by generators trained over the samedataset adopted for training the discriminators, AEs perform better(test set AEsEQ) than the other AEs adversarial set, affecting over theten tested models for discriminators an average decay of accuracyvalued to Delta (a) 37.50 points. Minimum loss minloss 30.49points and maximum loss maxloss 40.80 points.
Table	6 Evasion rate computed attacking discriminators with adversarial examples (AEs) fromsets AEQ and ANEQ
Discriminator	ID Evasion	rate	with	AEsEQ	(%) Evasion	rate	with	AEsNEQ	(%)

35.84 26.6933.72 27.3834.65 25.4432.61 26.14

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Discriminator	ID Evasion	rate	with	AEsEQ	(%) Evasion	rate	with	AEsNEQ	(%)34.89 25.9833.77 26.2931.52 27.6629.05 26.3927.39 24.61
39.12 32.45

6	 ConclusionsAttacks and defenses on adversarial examples draw great attention.The vulnerability to adversarial examples becomes one of the majorrisks for applying DNNs in safety-critical environments.Adversarial perturbations can easily fool deep neural networks(DNNs) in the testing/deploying stage exploiting blind spots in the MLengine. The effectiveness of an adversarial system is measured interms of evasion	rate and it depends upon a speci�ic group of featuresconsidered for the input set. Applied to the creation of malware, GANsare able to generate a new instance of a malware family withoutknowing an explicit model of the initial distribution of the data.So an attacker could use GANs to fool detection systems, just bysampling the provided data. On the other hand, GANs are also useful tobuild more robust machine learning models helping in thedevelopment of a better training set. Real defense technologies such asAV or EDR must take into account an acceptable trade-off among thedetection accuracy, short learning times, and limit the size of dataobtainable by selecting a convenient combination of the sensitivefeature. The effectiveness of an attack on the ML model also dependson the knowledge of the system by the attacker. In this case study, weconducted a gray-box attack in which the features of the training setare known: this permits us to reach a very high evasion rate (about98%).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

References1. Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. 2013.Information security governance: the art of detecting hidden malware. In IT	security
governance	innovations:	theory	and	research, 293–315. IGI Global.2. Alzantot, Moustafa, Bharathan Balaji, and Mani Srivastava. 2018. Did you hear that?adversarial examples against automatic speech recognition. arXiv: 1801. 00554.3. Anderson, Hyrum S., and Phil Roth. 2018. Ember: an open dataset for training static pemalware machine learning models. arXiv: 1804. 04637.4. Apruzzese, Giovanni, Michele Colajanni, Luca Ferretti, Alessandro Guido, and Mirco Marchetti.2018. On the effectiveness of machine and deep learning for cyber security. In 2018	10th
international	conference	on	cyber	Con�lict	(CyCon), pages 371–390. IEEE, 2018.5. Arbel, Michael, Dougal Sutherland, Mikołaj Bińkowski, and Arthur Gretton. 2018. On gradientregularizers for mmd gans. Advances	in	neural	information	processing	systems 6700–6710.6. Arjovsky, Martin, and Léon Bottou. 2017. Towards principled methods for training generativeadversarial networks. arXiv: 1701. 04862.7. Azab, Ahmad, Mamoun Alazab, and Mahdi Aiash. 2016. Machine learning based botnetidenti�ication traf�ic. In 2016	IEEE	Trustcom/BigDataSE/ISPA, 1788–1794. IEEE.8. Azab, Ahmad, Robert Layton, Mamoun Alazab, and Jonathan Oliver. 2014. Mining malware todetect variants. In 2014	�ifth	cybercrime	and	trustworthy	computing	conference, 44–53. IEEE.9. Benchea, Răzvan, and Dragoş Teodor Gavriluţ. 2014. Combining restricted boltzmannmachine and one side perceptron for malware detection. In International	conference	on
conceptual	structures, 93–103. Springer.10. Biggio, Battista, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim S�rndić, Pavel Laskov,Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against machine learning at test time.In Joint	European	conference	on	machine	learning	and	knowledge	discovery	in	databases,387–402. Springer.11. Biggio, Battista, Paolo Russu, Luca Didaci, Fabio Roli, et al. 2015. Adversarial biometricrecognition: A review on biometric system security from the adversarial machine-learningperspective. IEEE	Signal	Processing	Magazine 32 (5): 31–41.[Crossref]12. Brown, Tom B., Dandelion Mané, Aurko Roy, Martı́n Abadi, and Justin Gilmer. 2017.Adversarial patch. arXiv: 1712. 09665.13. Carlini, Nicholas, and David Wagner. 2017. Towards evaluating the robustness of neuralnetworks. In 2017	IEEE	symposium	on	security	and	privacy	(sp), 39–57. IEEE.14. Chen, Liang-Chieh, George Papandreou, Florian Schroff, and Hartwig Adam. 2017. Rethinkingatrous convolution for semantic image segmentation. arXiv: 1706. 05587.15. Chen, Pin-Yu, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017. Zoo: Zeroth order

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/1801.00554
http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1701.04862
https://doi.org/10.1109/MSP.2015.2426728
http://arxiv.org/abs/1712.09665
http://arxiv.org/abs/1706.05587

optimization based black-box attacks to deep neural networks without training substitutemodels. In Proceedings	of	the	10th	ACM	workshop	on	arti�icial	intelligence	and	security, 15–26.16. Chen, Xinyun, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted backdoor attackson deep learning systems using data poisoning. arXiv: 1712. 05526.17. Damodaran, Anusha, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and MarkStamp. 2017. A comparison of static, dynamic, and hybrid analysis for malware detection.
Journal	of	Computer	Virology	and	Hacking	Techniques 13 (1): 1–12.[Crossref]18. Dziugaite, Gintare Karolina, Daniel M Roy, and Zoubin Ghahramani. Training generative neuralnetworks via maximum mean discrepancy optimization. arXiv: 1505. 03906.19. Firdausi, Ivan, Alva Erwin, Anto Satriyo Nugroho, et al. 2010. Analysis of machine learningtechniques used in behavior-based malware detection. In 2010	second	international
conference	on	advances	in	computing,	control,	and	telecommunication	technologies, 201–203.IEEE.20. Gibert, Daniel. 2016. Convolutional	neural	networks	for	malware	classi�ication. Tarragona,Spain: University Rovira i Virgili.21. Goodfellow, Ian, Patrick McDaniel, and Nicolas Papernot. 2018. Making machine learningrobust against adversarial inputs. Communications	of	the	ACM 61 (7): 56–66.[Crossref]22. Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessingadversarial examples. arXiv: 1412. 6572.23. Grosse, Kathrin, Nicolas Papernot, Praveen Manoharan, Michael Backes, and PatrickMcDaniel. 2017. Adversarial examples for malware detection. In European	symposium	on
research	in	computer	security, 62–79. Springer.24. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into recti�iers:Surpassing human-level performance on imagenet classi�ication. InProceedings	of	the	IEEE
international	conference	on	computer	vision 1026–1034.25. Hu, Weiwei, and Ying Tan. 2017. Generating adversarial malware examples for black-boxattacks based on gan. arXiv: 1702. 05983.26. Huang, Ling, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar.2011. Adversarial machine learning. In Proceedings	of	the	4th	ACM	workshop	on	Security	and
arti�icial	intelligence, 43–58.27. Jung, Wookhyun, Sangwon Kim, and Sangyong Choi. 2015. Poster: deep learning for zero-day�lash malware detection. In 36th	IEEE	symposium	on	security	and	privacy, vol. 10, 2809695–2817880.28. Kawai, Masataka, Kaoru Ota, and Mianxing Dong. 2019. Improved malgan: Avoiding malwaredetector by leaning cleanware features. In 2019	international	conference	on	arti�icial
intelligence	in	information	and	communication	(ICAIIC), 040–045. IEEE.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/1712.05526
https://doi.org/10.1007/s11416-015-0261-z
http://arxiv.org/abs/1505.03906
https://doi.org/10.1145/3134599
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1702.05983

29. Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly ef�icient gradient boosting decision tree. In Advances	in
neural	information	processing	systems 3146–3154.30. Kolosnjaji, Bojan, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto, ClaudiaEckert, and Fabio Roli. 2018. Adversarial malware binaries: Evading deep learning formalware detection in executables. In 2018	26th	European	signal	processing	conference
(EUSIPCO), 533–537. IEEE.31. Kolosnjaji, Bojan, Apostolis Zarras, George Webster, and Claudia Eckert. 2016. Deep learningfor classi�ication of malware system call sequences. In Australasian	joint	conference	on
arti�icial	intelligence, 137–149. Springer.32. Kreuk, Felix, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and Joseph Keshet.2018. Deceiving end-to-end deep learning malware detectors using adversarial examples.arXiv: 1802. 04528.33. Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard. 2016. Deepfool: asimple and accurate method to fool deep neural networks. InProceedings	of	the	IEEE
conference	on	computer	vision	and	pattern	recognition 2574–2582.34. Muñoz-González, Luis, Battista Biggio, Ambra Demontis, Andrea Paudice, VasinWongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep learningalgorithms with back-gradient optimization. In Proceedings	of	the	10th	ACM	workshop	on
arti�icial	intelligence	and	security, 27–38.35. Obeis, Turki, and Wesam Bhaya Nawfal. 2016. Review of data mining techniques for maliciousdetetion. Research	Journal	of	Applied	Sciences 11 (10): 942–947.36. Oyama, Yoshihiro, Takumi Miyashita, and Hirotaka Kokubo. 2019. Identifying useful featuresfor malware detection in the ember dataset. In 2019	seventh	international	symposium	on
computing	and	networking	workshops	(CANDARW), 360–366. IEEE.37. Papernot, Nicolas, Patrick McDaniel, and Ian Goodfellow. 2016. Transferability in machinelearning: from phenomena to black-box attacks using adversarial samples. arXiv: 1605. 07277.38. Papernot, Nicolas, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, andAnanthram Swami. 2017. Practical black-box attacks against machine learning. In Proceedings
of	the	2017	ACM	on	Asia	conference	on	computer	and	communications	security, 506–519.39. Pascanu, Razvan, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil Thomas.2015. Malware classi�ication with recurrent networks. In 2015	IEEE	international	conference
on	acoustics,	speech	and	signal	processing	(ICASSP), 1916–1920. IEEE.40. Pendlebury, Feargus, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and LorenzoCavallaro. 2019. TESSERACT : Eliminating experimental bias in malware classi�icationacross space and time. In 28th USENIX Security	Symposium	(USENIX Security	19), 729–746.41. Pietrek, Matt. 2002. Inside windows-an in-depth look into the win32 portable executable �ile

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/1802.04528
http://arxiv.org/abs/1605.07277

format. MSDN	Magazine 17 (2): 80–90.42. Puranik, Piyush Aniruddha. 2019. Static malware detection using deep neural networks onportable executables.43. Raff, Edward, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and CharlesNicholas. 2017. Malware detection by eating a whole exe. arXiv: 1710. 09435.44. Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once:Uni�ied, real-time object detection. In Proceedings	of	the	IEEE	conference	on	computer	vision
and	pattern	recognition 779–788.45. Saxe, Joshua, and Konstantin Berlin. 2015. Deep neural network based malware detectionusing two dimensional binary program features. In 2015	10th	international	conference	on
malicious	and	unwanted	software	(MALWARE), 11–20. IEEE.46. Su, Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One pixel attack for foolingdeep neural networks. IEEE	Transactions	on	Evolutionary	Computation 23 (5): 828–841.[Crossref]47. Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, IanGoodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv: 1312. 6199.48. Ucci, Daniele, Leonardo Aniello, and Roberto Baldoni. 2019. Survey of machine learningtechniques for malware analysis. Computers	&	Security 81: 123–147.[Crossref]49. Ye, Yanfang, Tao Li, S. Donald Adjeroh, and Sitharama, and Iyengar. 2017. A survey on malwaredetection using data mining techniques. ACM	Computing	Surveys	(CSUR) 50 (3): 1–40.50. Yuan, Xiaoyong, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples: Attacks anddefenses for deep learning. IEEE	Transactions	on	Neural	Networks	and	Learning	Systems 30(9): 2805–2824.[MathSciNet][Crossref]51. Zhang, Jinlan, Qiao Yan, and Mingde Wang. 2019. Evasion attacks based on wassersteingenerative adversarial network. In 2019	Computing,	communications	and	IoT	applications
(ComComAp), 454–459. IEEE.52. Zhong, Wei, and Gu Feng. 2019. A multi-level deep learning system for malware detection.
Expert	Systems	with	Applications 133: 151–162.[Crossref]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/1710.09435
https://doi.org/10.1109/TEVC.2019.2890858
http://arxiv.org/abs/1312.6199
https://doi.org/10.1016/j.cose.2018.11.001
http://www.ams.org/mathscinet-getitem?mr=4001274
https://doi.org/10.1109/TNNLS.2018.2886017
https://doi.org/10.1016/j.eswa.2019.04.064

Part	III
Related	Topics

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_20
Detecting	Abusive	Comments	Using
Ensemble	Deep	Learning	AlgorithmsRavinder Ahuja1 , Alisha Banga1 and S C Sharma1 Indian Institute of Technology Roorkee Saharanpur Campus,Saharanpur, India
Ravinder	Ahuja	(Corresponding	author)
Email:	ahujaravinder022@gmail.com
Alisha	Banga
Email:	alishabanga47@gmail.com
S	C	Sharma
Email:	scs60fpt@gmail.com

AbstractToday, there is an avalanche of data on social networking sites.Technology has facilitated our way of Internet usage and provided uswith great liberty to do what, when, and how we like. In just one click,we can share, like, comment any post on social media, but this libertyhas caused a severe threat to humans; unfortunately, the onlineinteraction among users with such ease involves harassment, abuse,and bullying actions. The concern over this problem has triggered tobuild up better models for classifying the abusive comments. In thischapter, we have applied four classi�ication algorithms: Naive Bayes,Random Forest, Decision Tree, and Support Vector Machine, with Bagof Words features. Deep learning algorithms: Convolutional NeuralNetwork (CNN), Long Short-Term Memory (LSTM), and an ensemble ofLSTM and CNN are applied using GloVe and fastText word embedding

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_20
mailto:ahujaravinder022@gmail.com
mailto:alishabanga47@gmail.com
mailto:scs60fpt@gmail.com

to classify the comments into six categories: toxic, severe toxic,obscene, threat, insult, and identity hate. We have taken data set fromKaggle competition. We conducted experiments by using Keras libraryand TensorFlow at the back end and taken accuracy as performanceparameter. We found that CNN, LSTM blend with fastText wordembedding performs better out of all the algorithms applied with anaccuracy of 98.46%.
1	 IntroductionSocial media provides an environment where people are givencomplete freedom to post, comment, engage in discussions, and sharetheir opinions. Such online platforms have given us an entirely newdimension to communicate and express our thoughts. With time,online networking sites like Facebook and Twitter have proved to be anintegral part of our social lives. They are handy for expressingopinions, thoughts, and views of people present all around the globe. In2017 only, the daily Facebook post volume is 4.3 billion, and 656million tweets are posted daily on Twitter [28]. There are manyapplications of analyzing contents on social media like knowingperson’s dietary preferences [38]. With so much importance of socialmedia, it is a matter of concern for the authorities to make theseplatforms safe for the masses. With such a wide variety of users, socialmedia platforms are getting miserable because of a constant increasein the toxicity of comments, posts, and thoughts. Functionalities toreport comments as abusive or toxic, block people, report discussions,and remove such comments have been provided. Still, there is a lack ofa moderating functionality that �lags such comments. There are usersall around the globe with different languages and writing styles. Notonly language, but they are becoming more innovative with the use ofURLs and unique uses of emoticons. The high usage of these socialnetworking sites demands a well-modeled automated approach tohandle such vast data and detect toxicity in the content present withreasonable accuracy. There have been criticisms of online socialnetworking sites for the negligence of cyber bullying and theirincapability to classify and remove toxic comments [10]. As these siteshave a wider audience, such comments and posts spread like wild�ire,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

which is a matter of concern for Social Networking Sites. Althoughefforts have been made to increase the online environment’s safetybased on the crowd sourcing techniques in most cases, thesetechniques have failed in detecting toxicity. As per cyber BullyingResearch Center data of 2016 [5], 26% of the sample reportedcyberbullying related to different types of bullying, two or more timeswithin a time interval of just 30 d. 73% of adult users on the Internethave seen online harassment as per 2014 Pew Report [7]. It isbecoming a toxic place buried under tonnes of rubbish and obsoletecomments and posts. It is reported that the person who faced onlineharassment has decreased participation, which has occurred in thenext project [32]. There are so many cases that children were so bulliedon social media that they are depressed and lead to suicide. Therefore,the work we are proposing is centered around this very thought tomake social media a safer place. Automatic detection and classi�icationof the comments, posts, or messages at the correct time are ofparamount importance. Considering the humongous amount ofcomments being produced everyday classifying comments manuallywould not be a feasible approach. Therefore, an optimal model isrequired for text classi�ication. We describe a method to ef�icientlyperform this task using deep learning models and detecting toxicity inthe comments through our work. Our job is intended to classifycomments into six classes as obscene, identity hate, toxic, severe toxic,insult, and threat so that social media can now select the type oftoxicity they are trying to resolve. The contribution of this chapter is asfollows: (i) Machine learning algorithms—Support Vector Classi�ier,Decision Tree, Naive Bayes, and Random Forest classi�ier with a bag ofwords is applied to classify the text into six categories (ii) Deeplearning algorithms—CNN, LSTM, and their blends is used with GloVeand fastText word embedding. The rest of the chapter is organized asfollows: Sect. 2 contains literature survey, Sect. 3 contains material andmethods, Sect. 4 contains approach used, and Sect. 5 containsexperimental results and analysis, followed by the conclusion section.
2	 Literature	Survey

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Abusive text classi�ication research was �irst represented in the paper[35] in which supervised machine learning technique SVM was appliedon TF-IDF features. In paper [20], toxic comment classi�ication isperformed using SVM. The data was collected from Youtube.com, and2665 English comments were collected. Out of which 1451 commentswere classi�ied as neutral or positive. Other 1214 were stated to beabusive or spam comments and achieved an accuracy of 86.95% usingtenfold cross-validations. In the paper [10], attacks on perspective APIcreated by Google and the Jigsaw team for a toxic detection system isproposed (2017). The Perspective website provides some samplephrases, and an attack is applied to these phrases. This paper showsthat toxicity scores can be reduced to the level of non-toxic phrases.Further, this perspective API tool is only for the English language.Recently, researchers have been applying deep learning models likeConvolution Neural nets and LSTM to optimize text classi�ication. Inthe paper [8], CNN with word2vec word embedding was comparedagainst a bag of words in which SVM and Naive Bayes were applied ondesigned DTMs (Document Term Matrices). LSTM for tweets wasintroduced for twitter sentiment production in the paper [31], whichgave us the idea that LSTM might work pretty well for our dataset andsolve a vanishing gradient problem. In the paper [6], word, character,and sentence level representations were used to perform sentimentanalysis. They used two datasets and found that character levelembedding has performed better in the case of the �irst dataset, but incase of other data, all of the embeddings perform much better. In thepaper [33], authors have applied traditional machine learningalgorithms on 4029 messages to detect profanity related texts onTwitter. They reported that Logistic regression is performing wellamong all algorithms applied. In the paper [16], authors have appliedthe SVM and Naı̈ve Bayes algorithm to identify abusive comments fromtext or images from social media platforms. In the paper [21], authorshave applied �ifteen transformations on the toxic data to determinewhether using these transformations can improve the models’performance. But they found that applying these transformations donot increase the performance of the model. Their suggestion was toselect the best model instead of wasting time on the transformation ofdata. In the paper [27], the authors have applied logistic regression,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

convolutional neural network, long short-term memory, and CNN-LSTM to classify toxicity in the comments. They reported that CNN-LSTM is giving the highest accuracy of 98.20%. In the paper[25],authors have considered the TF-IDF features and applied threeclassi�ication algorithms, namely Logistic Regression, Random Forest,and Gradient Boosting. Out of the three algorithms applied, logisticregression has given the highest accuracy of 97.20%. In the report [30],authors have applied LSTM and CNN on the dataset taken from Kagglecompetition and used various word embedding like word2vec andGloVe. In the Thesis [19], Siyuan Li applied word2vec, Glove, and skip-gram embedding vectors in Gated Recurrent Unit, and Bi-LSTM (bi-directional long short-term memory). They applied samplingtechniques and penalizing loss to handle the imbalance issue of thedataset. He concluded that using pre-trained word embedding is notnecessarily will improve the performance. Sampling technique andpenalizing loss increase the performance of the model. In the paper [1],authors have applied deep learning techniques on three datasets fromthree different social media platforms. Firstly, they have appliedtraditional classi�ication algorithms with char n-gram and wordunigram and computed the performance of these algorithms. Theyhave also applied CNN, LSTM, and Bi-LSTM with random, GloVe, andSSWE word embedding. They have applied transfer learning also toknow whether the model trained on one dataset can be applied toanother dataset or not. In the paper [24], authors have applied J48, Jrip,SVM with different kernels, KNN, Naı̈ve Bayes, Random Forest, andCNN with one hidden layer and two hidden layers for cyberbullyingdetection. They reported that CNN, with two hidden layers,outperforms all the algorithms applied. In the paper [15], authors haveapplied support vector machine, multinomial naive bayes,GausseanNB, back propagation multilabel neural networks algorithmson Bangla language text for toxic comments classi�ication. Theyevaluated the models on the basis log loss and hamming log and foundthat back propagation multilabel neural network is performing betteramong all the algorithms. In the paper [22], authors have presented areview of various machine learning techniques used in toxic commentclassi�ication from 2012 to 2015. In addition to this, they have alsopresented two tools for detecting abusive comments and their

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

advantages and limitations. In paper [30], authors have applied CNN,LSTM, Bi-directional LSTM, Bi-directional GRU, Bi-directional GRU withattention, and using Glove and fastText word embedding. They havealso applied logistic regression using char n-gram and word n-gram.Further, authors ensemble all these algorithms on Wikipedia andTwitter datasets and reported the highest performance parametersAUC of 98.3%, F1 score of 79.1%, the precision of 74%, and recall of88%. In the paper [2], authors have applied decision tree, randomforest, support vector machines, gradient-based decision tree, anddeep neural network with Glove word embedding to detect hatespeech. In the paper [11], Mai Ibrahim et al. applied data augmentationto remove the data’s imbalance effect. Further, an ensemble of threealgorithms, i.e., convolutional neural network, bi-directional longshort-term memory, and bi-directional gated recurrent unit. They haveapplied two classi�iers: one is used to identify whether the comment istoxic or not. If the comment is toxic, then another multi-classi�ier isapplied to classify different types of toxicity. They reported the highestf-score of 82.82% in the case of toxic/non-toxic classi�iers and an f-score of 87.24% in the case of toxicity-type classi�iers.
3	 Materials	and	Methods
3.1	 DatasetWe have taken a dataset from www. Kaggle. com, which consists of159571 Wikipedia comments labeled by humans as a training set and153164 comments for testing. These ratings have classi�ied toxicity in6 classes as toxic, severe toxic, obscene, threat, insult, and identityhate. Figure 1 shows the count of different tags in the dataset. Wordcloud for comments under these six categories is shown in Fig. 2.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.kaggle.com/

Fig.	1 Count of different tags in a dataset
3.2	 Data	Pre-processingText pre-processing is an important step before applying anyclassi�ication algorithms. Authors in the paper [13] compared varioustext pre-processing techniques. The following pre-processingtechniques have been applied. Technique 1: Unnecessary characterslike!, ", ()*+,-./: etc. and stop words are removed. Technique 2: All theletters are converted to lowercase. Technique 3: Tokenization.Technique 4: Stemming. We have pre-processed the data using Pythonregular expression, stemming from Porter Stemmer, removing stopwords with NLTK libraries.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Word cloud for toxic comments
3.3	 Text	Representation	TechniquesText can be represented by various techniques such as a bag of words(BoW), Term Frequency-Inverse Document Frequency (TF-IDF), anddifferent pre-trained word embeddings such as word2vec, GloVe, andfastText. We have used following text representation schemes in ourstudy:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 Top thirty words in different six categories of comments
3.3.1	 Bag	of	Words	(BoW)Bag of Words is a Natural Language Processing model where only thevocabulary of documents is considered instead of the structure of thematerial. It is, therefore, called a bag of words because the structure ofthe document is wholly disregarded. It is extensively being used fordocument classi�ication, where each word frequency is taken intoconsideration. It is also known as the Vector Space Model. This model isonly concerned about the word’s occurrence rather than wherein thedocument, the term occurs. This model’s limitation is that twodocuments will be similar if they have the same bag of words.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.3.2	 Term	Frequency-Inverse	Document	Frequency	(TF-
IDF)In the TF-IDF [14] term is taken as the weighing factor for the wordimportance in a document or corpus. We have found the top 30 wordsrelated to each type of toxicity in the comments using TF-IDF approachas shown in Fig. 3. TF (Term Frequency)—which measures howfrequently a word is present in a document and dividing it bydocument length, results in normalization as given in Eq. (1). (1)IDF (Inverse Document Frequency) measures the term importance inthe given document. In this methodology, rare terms are given moreweightage as compared to frequent terms. The intuition behind this isthat the words like is, an, and the occurs very frequently but have verylittle importance for inference something whereas the abusive termslike idiot and moron would be less in frequency but of primeimportance in the comment to make strong predictions. In a set ofdocuments, U-IDF weight for a token t is computed as given in Eq. (2):(2)In post j, weight for term i is given in Eq. (3): (3)Therefore, each comment can be represented using vector, whichfurther can be represented by the TF-IDF value.
3.3.3	 Word	EmbeddingWord embedding are numerical representations of the text, and theymap words to vectors using a dictionary such that words with similarmeaning have similar description. There are various pre-trainedembedding like word2vec, GloVe, ElMo, fastText. Word embeddings areused for a variety of tasks in deep learning, such as semantic analysis,syntactic parsing, named entity recognition, etc. Embedding provides amore sophisticated way to represent words in digital space. They

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Step	1

Step	2

Step	3

provide a measure of similarity between words and phrases. The twoword embedding used in our study is as follows:
Global	Vectors	for	Words	Representation	(GloVe): The GloVe [23]is a count-based model and can be easily used for larger data comparedto the bag of words model. The main idea of this model is that theword’s ratio to word co-occurrence probabilities can give us usefulinformation as some words will have a higher likelihood of co-occurring more with some particular words. It consists of the followingsteps: The co-occurrence of a word concerning the other words iscollected in the form of a matrix X. Each element Xij in this matrixrepresents how often word I appears in the context of word j. Awindow size is used before the term and after the term. Less weight isgiven for more distant words, using the formula given in Eq. (4). (4)Soft constraints are de�ined for each word pair as given inEq. (5): (5) is the vector for the main word, vector for the context word, , are scalar biases for the main and context words.The cost function is de�ined as given in Eq. (6)

(6)
 Here, f is a weighting function and takes care that prevalent words arenot used for the learning process, and V is the size of the vocabulary.The Euclidean distance (cosine similarity) between two vectorsprovides information regarding the similarity between the words. The

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

similarity metrics used for this nearest neighbor evaluation produce asingle scalar, but this could be a problem because a unique numbershould not represent the relationship between two words. GloVe usesvector differences of the two words such that they are able to captureas much meaning as possible. The GloVe embedding is trained forworking on non-zero entries of the word–word co-occurrence matrix.Although for large corpora, this computation can be expensive, it is aone-time-up-front cost. Training iterations are much faster as thenumber of non-zero entries in the matrix is much smaller as comparedto the vocabulary of the corpus.
fastText	Embedding: Pre-trained word vectors for 294 languageswere released by Facebook trained on Wikipedia in 2017 calledfastText. fastText [3] library is very ef�icient in terms of wordrepresentation learning and classi�ication of the sentence. This modelis a continuation of the skip-gram Word2vec model. fastText is helpfulin �inding the vector representation for rare words, and it assumesword to be formed by n-grams of character, thus taking into accountsub-word information. N-grams within a range of 3 to 6 characterswere chosen. GloVe fails where words are not in the dictionary. fastTextcan give vector representations for words not found in the dictionary,i.e., that are not in the training set called OOV (Out of Vocabulary)words since these can also be broken down into character n-grams. Forthis, they averaged the vector representation of its n-grams. Wordswere broken into chunks and using the vectors for these chunks tocreate a �inal vector for the word. We have used 300-dimensionfastText word embedding.

3.4	 Traditional	Machine	Learning	MethodsClassi�ication algorithms are now being used in various applicationsand producing good results. In the paper [12], authors have appliedclassi�ication algorithms on text classi�ication. Following machinelearning algorithms are implemented considering the BoW features.
3.4.1	 Support	Vector	MachineSupport Vector Machine (SVM) [29] is a supervised learning algorithm.It is used for classi�ication as well as regression problems by �inding ahyperplane that differentiates the classes most optimally. Each data

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

point is marked in n-dimensional space. Finding the right hyperplane isthe challenge in SVM. Hyperplanes can be linear, quadratic, etc.depending on the data points. SVM works for text classi�ication tasks aswell, as they can handle high-dimensional input space. SVM can alsohandle nonlinear classi�ications by using kernel tricks where inputs aremapped into high-dimensional space. New data is then mapped intoone of the categories as per the hyperplane. The regularization andgamma are used for tuning the model.
3.4.2	 Decision	TreesDecision trees [26] are supervised learning algorithms whereindecisions are made using some criteria, and the data are classi�ied inthe fashion of a tree. The data is split into subsets until the point eachleaf node is assigned a class variable. The nodes are the points wherethe data is split, and decisions are made. Decision trees are simple toimplement and work well with both numerical and categoricalvariables. The feature that divides the data most broadly is kept at theroot node, and further decisions are made accordingly as which featurebest divides the data. This algorithm is simple to implement and do notrequire much pre-processing. Generally, the criteria for decision-making can be a Gini index, information gain. In this chapter, we haveused the Gini index for splitting.
3.4.3	 Random	ForestRandom forest [4] is an ensemble of decision tree algorithm. Anensemble algorithm uses the results of multiple models, whether sameor different. Therefore, for this model, multiple decision trees are usedfor classi�ication, and therefore called a forest. The larger the numberof trees that are used for making a decision, the more likely it is to getan accurate decision. In the case of a random forest, the splitting isdone randomly, i.e., the features chosen for decision-making are chosenrandomly as opposed to the concept of a decision tree. They alsoovercome the problem of over �itting by introducing randomness. Themode of classes of individual trees is taken as the criteria for decidingthe class label of the whole forest. The parameters that can be tweakedfor this model are the number of decision trees.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.4.4	 Naive	Bayes	AlgorithmNaı̈ve Bayes [36] is a supervised learning algorithm that uses theconcept of Bayes probability theorem based on conditional and classprobabilities. Thus, it has also been used for text classi�ication tasks.Bayes theorem gives us the probability of an event given that an eventhas already occurred. It assumes that the features are independent ofeach other. It is extremely useful with large data with a lesser numberof features. It is simple to perform and a fast algorithm. The drawbackof this algorithm is that the assumption of independence amongfeatures is rarely true in practical cases due to which it is called a naivealgorithm. It is a good algorithm for categorical data compared tonumerical data and highly ef�icient in terms of accuracy, speed, andsimplicity. It is good for linear classi�ication.
3.5	 Deep	Learning	MethodsDeep Learning algorithms are nowadays widely used in differentapplications like image processing, healthcare, sentiment analysis, etc.We have applied CNN, LSTM, and their blend in our approach.

Fig.	4 CNN with word embedding architecture [17]
3.5.1	 Convolutional	Neural	Network	(CNN)CNN’s were recently used in NLP systems and achieved remarkableresults [17, 34, 37]. In the case of arti�icial neural nets, each inputneuron was connected to hidden layers, and when they reach out tooutput neurons, but in our task, we are not considering them as theymiss out on the spatial features of our text. ANN would consider the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

relationship between vectors. However, in reality, each vector has adifferent relationship with other vectors. CNN performs well on datawith the high locality. We expect high locality for our dataset becausecomments would be based on a speci�ic idea or content. As shown inFig. 4, we have applied CNN in the comments. Convolutional neuralnets have a stack of various input layers and multiple hidden layersthat are passed on to the output layer. Hidden layers itself contain aconvolutional layer, pooling layers, connected layers full of connections,and normalization layers, with the use of nonlinear activation functionlike ReLU or tanh. A convolutional neural net has three layers: (1)Convolution Layers—performs convolutions on the complete widthand depth of input by sliding a window, the window (�ilters) performsdifferent operations on the data. Each cell of the matrix is a tokenizedcharacter. Unlike 2D orientations in computer vision, texts have one-dimensional structure only, and here, the word sequence matters. So,we �ix up this one dimension of the �ilter, and thus, it matches the wordvector and can vary in the number of rows. Rows are representing theword present in the sentence matrix that would be �iltered. Each �iltercomputes the dot product of its entries and corresponding input. Afterperforming the computation, it produces a 2D activation map of the�ilter. All the convolutions and computations result in training thenetwork about �ilters. These �ilters activate whenever they detect anyspecial kind of features at a particular spatial input position. Thus,stacking all the activation maps of �ilters, along with input dimensions,resulting in a full output of the convolutional layer. One can nowinterpret every entry of output as a neuron output, which only looks ata small input region and sharing parameters with other connectedneurons. The extent of connectivity to the smaller regions of input isknown as the neuron’s receptive �ield. (2) Pooling Layers—Poolinglayers are used for nonlinear dimensionality reduction of the inputfeature map keeping the most salient information. It partitions theinput volume into non-overlapping regions. For all such regions, basedon the pooling function we are using, it outputs a value. Poolingfunctions can be max-pooling, min polling, and average pooling. Themost common and better is the max-pooling function, which considersthe local neighborhood’s maximum. The intuition behind using thepooling layer is the importance of a feature’s rough location concerning

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

its neighboring feature. Here, we are not concerned about the exactposition of the input. Thus, the pooling layer reduces the input volumedimensions, reduces computations, and controls over �itting. In ourcontext, based on the value, some characters from each �ilter would beselected by the max-pooling technique. (3) Fully connected Layer—Finally, after the convolutional layer and pooling layer, we reach out to afully connected layer that performs a high level of reasoning. Everyneuron of a fully connected layer is connected with every other neuronin the next layer. All connections have activation function involved withsome random weights and biases, which they will learn with training.Its output to softmax function with cross-entropy loss and results inproviding probabilities for each class.
3.5.2	 Long	Short-Term	Memory	Network	(LSTM)Recurrent Neural Network (RNN) is being used in text classi�ication[18], but it is not able to handle long-term dependencies. LSTM is aspecial variant of RNN introduced by Hochreiter and Schmidhuber [9].LSTM is powerful to handle long-term dependencies. LSTM hasmemory blocks connected as a set of recurrent subnets. In each block,LSTM has memory cells along with some special units—put, output,and forget gate that control, protect, and let information �low throughthe cell. Cell state is analogous to a conveyor belt that runs an entirechain of information �low with some liner interactions. The gatesregulate the information to the cell state. Sigmoid Layer (with either 0or 1 as output) and pointwise multiplication operations compose thesegates. As shown in Fig. 5, the memory block has one cell with threegates as nonlinear units collecting information and controlling othercells’ activation with multiplication. Input, output, and the previousstate of the cell are multiplied by input, output, and forget the gate.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 LSTM block diagram [9]The cell usually has sigmoid activation, which simply looks for thegate closed (when 0) and the gate open (when 1) as given in Eq. (7). (7)In the above equation, is the sigmoid activation, xt is the input to thecell, is the previous hidden state, and W is the weightmatrix. The initial decision in LSTM is regarding the information LSTMis throwing out of the cell state and forget gate help us doing that usingthe sigmoid layer. This layer looks for the and xt output either 0or 1. 0 means to completely ignore, and one means completely retaininformation from a cell state, , as given in Eqs. (8) and (9). (8)
(9) is the sigmoid activation, xtis the input to the cell, is thepreviously hidden state, ctis the current cell state, is theprevious cell state, and g is the external input gate. If the gates letinformation in then, LSTM decides what new information will be storedin the cell state. This decision needs two tasks to perform -Input

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(sigmoid) gate layer deciding which information will update and a tanhyperbolic function creating a new value Ct added to the state. Now,decisions are made, and it’s time for LSTM to update the old state, , into Ct, forgetting the things initially decided. After all the stepsare performed, LSTM will get its updated value for each state, as givenin Eq. (10). (10)
(11)Finally, after performing the entire above task comes the decision ofoutput from the cell state. This somewhat works like input operations,the sigmoid layer and tan hyperbolic will do their work. One decideswhether to output the part of the information or not through 0 and 1,and others will decide which part of the information is important tooutput. The output formula is given in Eq. (11).As shown in Fig. 6, data to be fed into the LSTM is converted tonumeric form. Here we use LSTM with pre-trained word embeddingGloVe and fastText. The embedding of each word is passed sequentiallyinto an LSTM. LSTM takes words in a sequence one by one, i.e., at timet, it takes input the ith word and the output from . Therefore, itcan learn long-term dependencies as opposed to traditional RNNs.That is, LSTM can be used to embed text regions of variable and largesizes.

Fig.	6 Working of LSTM with word embedding

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 Depicts CNN+LSTM Blend Architecture
3.5.3	 CNN-LSTM	BlendA more optimized approach can be to use the features of both themodels (CNN and LSTM). Deep Neural nets such as densely connectedneural networks (DNNs), convolutional neural networks (CNNs), andrecurrent neural nets (RNNs) are good performers in their respective�ields. CNN’s are good for image recognition and computer visionproblems, but they can also be used for text classi�ication tasks; on theother hand, RNNs are good for language modeling and speechrecognition issues. Therefore, it is interesting to know whether onekind of deep learning model can learn from others to improveperformance. Model blending is combining the models that have thesame dependent variables and or the same independent variables.Both LSTM and CNN are quite powerful models, but theirfunctionalities and learning processes are quite different.CNN models are powerful for detecting patterns in the data, andLSTMs are good for capturing language context. As shown in Fig. 7, theoutput from the CNN layer is passed to the LSTM network. CNNperforms very well in feature extraction, and LSTM is used forsequence modeling. We have used CNN-LSTM with fastText and GloVeembeddings. The difference between CNN and RNN is that both use

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

different structures for knowing the contextual information. CNN usesa �ixed window of words to learn the text context, whereas RNNs use arecurrent structure. CNN can select more discriminative featuresthrough the max-pooling layer, and then the CNN output is passed on toLSTM, where more discriminative features are learned.

Fig.	8 Flowchart of the Methodology Used
4	 Methodology	UsedFigure 8 shows the overall methodology used in our study. We haveused a dataset from the Kaggle competition. The dataset is pre-processed to get useful information out of it and to reduce the noise.The processed dataset is converted into numeric values using a bag ofwords and word embeddings (GloVe and fastText). We have appliedfour classi�ication algorithms (Random Forest, Naı̈ve Bayes, SupportVector Machine, and Decision Tree) on the bag of word representationand evaluated the performance based on accuracy. We have appliedtwo deep learning algorithms (CNN and LSTM) and their blend CNN-LSTM on the text. Text is represented by GloVe and fastText wordembedding and evaluated the performance based on accuracy. CNN isgood for feature extraction, whereas LSTM is good for sequencemodeling. Therefore, to use the advantages of both these models, weblended LSTM and CNN to increase the performance.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5	 Experimental	Results	and	AnalysisWe have applied four classi�ication algorithms (SVM, Naı̈ve Bayes,Random Forest, and Decision Tree) with BoW, and two deep learningalgorithms (CNN, LSTM, and their blend CNN and LSTM) with the two-word embedding GloVe and fastText. The performance parameterconsidered is accuracy. With this approach, detecting toxicity and thencategorizing the toxic comment into six different categories—toxic,severe toxic, obscene, threat, insult, and identity hate are given in Table1. As shown in Table 1, we have achieved an accuracy of 89.92% withSVM, 90.24% with a decision tree, 93.45% with naive Bayes classi�ier,and 91.78% with random forest classi�ier. Naive Bayes gives the bestresults out of all these classi�ication models because it is a linearmodel. The other reason for naive Baye’s performance is that our datadoes not have a binary classi�ication. This model can handle this typeof task very well as it is based on Gaussian probability, so giving betterprobabilities of each class. The performance of deep learningalgorithms (CNN, LSTM, and CNN-LSTM) with word embeddings(GloVe, and fastText) is also presented in Table 1. With GloVeembedding, we have achieved an accuracy of 95.42% with CNN,97.06% with LSTM, and 98.07% with CNN-LSTM blend.
Table	1 Results of various approaches applied
Machine	Learning	Models	with	BoW

Sr.	No. Models	used Accuracy	(%)1 Support vector classi�ier 89.922 Decision tree 90.243 Naı̈ve Bayes 93.454 Random forest 91.78GloVe word embedding5 Convolutional neural network 95.426 Long short-term memory 97.067 CNN+LSTM blend 98.07fastText word embedding

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Machine	Learning	Models	with	BoW

Sr.	No. Models	used Accuracy	(%)5 Convolutional neural network 95.986 Long short-term memory 97.647 CNN+LSTM blend 98.46The fastText embedding proves to be a better option in terms ofword embedding because we have achieved an accuracy of 95.98%with CNN, 97.64% with LSTM, and 98.46% with CNN-LSTM Blend. ThefastText is better for this problem due to their function of consideringthe substructure of the word. The reason for this embedding going wellwith our models is its ability to work well on new words being used byusers on social media. There is no rule of using strict standard rules ofEnglish for expression on social media. This is a very important aspectwhen we are working on data generated by highly evolved users. Theyare more in the habit of using abbreviations, hashtags, and code words,which are sometimes entirely different from the standard languagestructure fastText embedding takes care of. One more positive point ofthis embedding is that it is multilingual and not necessarily restrictedto English; so, this model can be used for other languages. Themaximum accuracy was achieved for CNN-LSTM blend with fastText.Thus, it can be seen that the CNN -LSTM blend has signi�icantlyimproved the accuracy both for fastText as well as GloVe wordembedding. The LSTM model performs better than CNN due to itsfunctionality of good sequential modeling and recurrent memoryblocks. CNN is through powerful, as its results show, in comparison toour other approaches, it is least accurate because of its weakness towork only close to the data and unable to handle sequential modeling.But when CNN is combined with LSTM, it performed extremely wellbecause CNN models are very ef�icient in detecting patterns in thedata, and for capturing language context, we have LSTM. As shown inTable 2, our approach is better than the state-of-the-art approachesexisting in the literature.
Table	2 Comparison of our results with the existing results
Sr.
No.

Research	Paper Accuracy	(%)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Sr.
No.

Research	Paper Accuracy	(%)

1 Saif, M. A., Medvedev, A. N., Medvedev, M. A., Atanasova, T. [16] 96.452 Pallam Ravi, Hari Narayana Batta, Greeshma S, and Shaik Yaseen [17] 97.923 Georgakopoulos, S. V., Tasoulis, S. K., Vrahatis, A. G., Plagianakos, V. P. [10] 91.204 In’es BEN AMAR, Antoine COPPIN, and Emerick LECOMTE (2017) [18] 97.725 Our Approach 98.46
6	 Conclusion	and	Future	WorkNowadays, scientists and researchers are concerned about makingsocial media platforms a better place for users to interact freely inways they think to be appropriate. Toxicity and abusiveness incomments is a big hurdle for online social media networking sites.Identifying toxic, abusive, offensive comments in social media is a hugeproblem that needs to be tackled and explored urgently. An ef�icientapproach or solution to this problem is still in its infancy. Hence, ourwork is devoted to curbing social media abuse, toxicity, andcyberbullying. In this study, we have implemented four classi�icationmodels—SVM, Naive bayes, random forest, decision tree with BoWfeatures and deep learning models—CNN and LSTM along with theirblends using GloVe and fastText word embedding to classify a commentas toxic. Naive Bayes proves to a better approach among all theclassi�ication techniques applied in our study and giving an accuracy of93.45%. Our optimal blending of CNN and LSTM on both fastText andGloVe enhanced our results. We have achieved promising results of98.46% accuracy with CNN-LSTM blend with fastText word embedding.CNN and the LSTM blend proved to achieve better results by using eachmodel’s advantages. The use of word embedding has increased theperformances of these models with fastText giving remarkable results.In future more deep learning models like Gated Recurrent Unit (GRU),Bi-LSTM, Bi-GRU, and BERT. An ensemble of different word embeddingcan be done to improve performance. Working on better data withmore features and considering parameters like user’s past posts,pro�ile, and general use of language.
List	of	Abbreviations

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

API:
ANN:
BoW:
Bi-GRU:
Bi-LSTM:
CNN:
DTM:
GloVe:
GRU:
IR:
LSTM:
LDA:
ML:
NLTK:
OOV:
PLSA:
RNN:
ReLU:
NLTK:
SVM:
SSWE:
TF-IDF:
URL:

 Application Programming InterfaceArti�icial Neural NetworkBag of WordsBi-directional Gated Recurrent UnitBi-directional Long Short-Term MemoryConvolutional Neural Network Modi�iedDocument Term MatricesGlobal Vector for Word RepresentationGated Recurrent UnitInformation RetrievalLong Short-Term MemoryLinear Discriminant AnalysisMachine LearningNatural Language ToolkitOut of VocabularyProbabilistic Latent Semantic AnalysisRecurrent Neural NetworkRecti�ier Linear UnitNatural Language ToolkitSupport Vector MachineSentiment Speci�ic Word EmbeddingTerm Frequency-Inverse Document FrequencyUniform Resource Locator
References1. Agrawal, Sweta, and Amit Awekar. 2018. Deep learning for detecting cyberbullying across

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

multiple social media platforms. In European	conference	on	information	retrieval, 141–153.Springer.2. Badjatiya, Pinkesh, Shashank Gupta, Manish Gupta, and Vasudeva Varma. 2017. Deep learningfor hate speech detection in tweets. In Proceedings	of	the	26th	international	conference	on
world	wide	web	companion, 759–760, 2017.3. Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching wordvectors with subword information. Transactions	of	the	Association	for	Computational
Linguistics 5: 135–146.[Crossref]4. Breiman, Leo. 2001. Random Forests. Machine	Learning 45 (1): 5–32.[Crossref]5. Brooks, Bryony. 2018. Cyberbullying	and	cyberbullicide:	The	role	of	linguistic	features	in
suicides	by	text. Hofstra University.6. Santos, Cicero Dos, and Maira Gatti. 2014. Deep convolutional neural networks for sentimentanalysis of short texts. In Proceedings	of	COLING	2014,	the	25th	international	conference	on
computational	linguistics:	technical	papers, 69–78.7. Duggan, Maeve, L. Rainie, A. Smith, C. Funk, A. Lenhart, and M. Madden. 2014. Onlineharassment. Washington, DC: Pew research center.8. Georgakopoulos, Spiros V., Sotiris K. Tasoulis, Aristidis G. Vrahatis, and Vassilis P. Plagianakos.2018. Convolutional neural networks for toxic comment classi�ication. In Proceedings	of	the
10th	hellenic	conference	on	arti�icial	intelligence, 1–6.9. Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
Computation 9 (8): 1735–1780.[Crossref]10. Hosseini, Hossein, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. 2017. Deceivinggoogle’s perspective api built for detecting toxic comments. arXiv: 1702. 08138.11. Ibrahim, Mai, Marwan Torki, and Nagwa El-Makky. 2018. Imbalanced toxic commentsclassi�ication using data augmentation and deep learning. In 2018	17th	IEEE	international
conference	on	machine	learning	and	applications	(ICMLA), 875–878. IEEE.12. Ikonomakis, M., Sotiris Kotsiantis, and V. Tampakas. 2005. Text classi�ication using machinelearning techniques. WSEAS	Transactions	on	Computers, 4(8):966–974.13. Jianqiang, Zhao, and Gui Xiaolin. 2017. Comparison research on text pre-processing methodson twitter sentiment analysis. IEEE	Access 5: 2870–2879.[Crossref]14. Jing, Li-Ping, Hou-Kuan Huang, and Hong-Bo Shi. 2002. Improved feature selection approacht�idf in text mining. In Proceedings	international	conference	on	machine	learning	and
cybernetics, vol. 2, 944–946. IEEE.15. Jubaer, A.N.M., Abu Sayem, and Md Ashikur Rahman. 2019. Bangla toxic comment

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1702.08138
https://doi.org/10.1109/ACCESS.2017.2672677

classi�ication (machine learning and deep learning approach). In 2019	8th	international
conference	system	modeling	and	advancement	in	research	trends	(SMART), 62–66. IEEE.16. Kansara, Krishna B., and Narendra M. Shekokar. 2015. A framework for cyberbullyingdetection in social network. International	Journal	of	Current	Engineering	and	Technology,5(1):494–498.17. Kim, Yoon. 2014. Convolutional neural networks for sentence classi�ication. arXiv: 1408. 5882.18. Lai, Siwei, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neural networksfor text classi�ication. In Twenty-ninth	AAAI	conference	on	arti�icial	intelligence.19. Li, Siyuan. 2018. Application	of	recurrent	neural	networks	in	toxic	comment	classi�ication.Ph.D. thesis, UCLA.20. Maus, Adam. 2009. Svm approach to forum and comment moderation. Class	Projects	for	CS.21. Mohammad, Fahim. 2018. Is preprocessing of text really worth your time for online commentclassi�ication? arXiv: 1806. 02908.22. Parekh, Pooja, and Hetal Patel. 2017. Toxic comment tools: A case study. International	Journal
of	Advanced	Research	in	Computer	Science 8 (5)23. Pennington, Jeffrey, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectorsfor word representation. In Proceedings	of	the	2014	conference	on	empirical	methods	in
natural	language	processing	(EMNLP), 1532–1543.24. Ptaszynski, Michal, Juuso Kalevi Kristian Eronen, and Fumito Masui. 2017. Learning deep oncyberbullying is always better than brute force. In LaCATODA@	IJCAI, 3–10.25. Ravi, Pallam, Greeshma S Hari Narayana Batta, and Shaik Yaseen. 2019. Toxic commentclassi�ication. International	Journal	of	Trend	in	Scienti�ic	Research	and	Development
(IJTSRD).26. Rasoul Safavian, S., and David Landgrebe. 1991. A survey of decision tree classi�iermethodology. IEEE	Transactions	on	Systems,	Man,	and	Cybernetics 21 (3): 660–674.[MathSciNet][Crossref]27. Saif, Mujahed A., Alexander N. Medvedev, Maxim A. Medvedev, and Todorka Atanasova. 2018.Classi�ication of online toxic comments using the logistic regression and neural networksmodels. In AIP	conference	proceedings, vol. 2048, 060011. AIP Publishing LLC.28. Schultz, Jeff. 2017. How much data is created on the internet each day. Micro	Focus	Blog, 10.29. Suykens, Johan A.K., and Joos Vandewalle. 1999. Least squares support vector machineclassi�iers. Neural	processing	letters 9 (3): 293–300.[Crossref]30. van Aken, Betty , Julian Risch, Ralf Krestel, and Alexander L.öser. 2018. Challenges for toxiccomment classi�ication: An in-depth error analysis. arXiv: 1809. 07572.31. Wang, Xin, Yuanchao Liu, Cheng-Jie Sun, Baoxun Wang, and Xiaolong Wang. 2015. Predicting

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1806.02908
http://www.ams.org/mathscinet-getitem?mr=1130731
https://doi.org/10.1109/21.97458
https://doi.org/10.1023/A:1018628609742
http://arxiv.org/abs/1809.07572

polarities of tweets by composing word embeddings with long short-term memory. In
Proceedings	of	the	53rd	annual	meeting	of	the	association	for	computational	linguistics	and
the	7th	international	joint	conference	on	natural	language	processing	(Volume	1:	long
papers), 1343–1353.32. Wulczyn, Ellery, Nithum Thain, and Lucas Dixon. 2017. Ex machina: Personal attacks seen atscale. In Proceedings	of	the	26th	international	conference	on	world	wide	web, 1391–1399.33. Xiang, Guang, Bin Fan, Ling Wang, Jason Hong, and Carolyn Rose. 2012. Detecting offensivetweets via topical feature discovery over a large scale twitter corpus. In Proceedings	of	the
21st	ACM	international	conference	on	Information	and	knowledge	management, 1980–1984.34. Xiao, Yijun, and Kyunghyun Cho. 2016. Ef�icient character-level document classi�ication bycombining convolution and recurrent layers. arXiv: 1602. 00367.35. Yin, Dawei, Zhenzhen Xue, Liangjie Hong, Brian D. Davison, April Kontostathis, and LynneEdwards. 2009. Detection of harassment on web 2.0. Proceedings	of	the	content	analysis	in
the	WEB 2: 1–7.36. Zhang, Harry. 2004. The optimality of naive bayes, 2004. American	Association	for	Arti�icial
Intelligence	(www.	aaai.	org).37. Zhang, Xiang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks fortext classi�ication. InAdvances	in	neural	information	processing	systems, 649–657.38. Zhou, Qingqing, and Chengzhi Zhang. 2018. Detecting users’ dietary preferences and theirevolutions via Chinese social media. Journal	of	Database	Management	(JDM) 29 (3): 89–110.[Crossref]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/1602.00367
https://doi.org/10.4018/JDM.2018070105

(1)
(2)(3)(4)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_21
DURLD:	Malicious	URL	Detection	Using
Deep	Learning-Based	Character	Level
RepresentationsSriram Srinivasan1 , R. Vinayakumar2 , Ajay Arunachalam3 ,Mamoun Alazab4 and KP Soman1 Center for Computational Engineering and Networking, AmritaSchool of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore,IndiaDivision of Biomedical Informatics, Cincinnati Children’s HospitalMedical Center, Cincinnati, OH, USACentre for Applied Autonomous Sensors Systems (AASS), O� rebroUniversity, O� rebro, SwedenCharles Darwin University, Darwin, Australia
Sriram	Srinivasan	(Corresponding	author)
Email:	sri27395ram@gmail.com
R.	Vinayakumar
Email:	Vinayakumar.Ravi@cchmc.org
Ajay	Arunachalam
Email:	ajay.arunachalam@oru.se
Mamoun	Alazab
Email:	mamoun.alazab@cdu.edu.au
KP	Soman
Email:	kpsoman2000@gmail.com

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_21
mailto:sri27395ram@gmail.com
mailto:Vinayakumar.Ravi@cchmc.org
mailto:ajay.arunachalam@oru.se
mailto:mamoun.alazab@cdu.edu.au
mailto:kpsoman2000@gmail.com

AbstractCybercriminals widely use Malicious URL, a.k.a. malicious website as aprimary mechanism to host unsolicited content, such as spam,malicious advertisements, phishing, and drive-by exploits, to name afew. Previous studies used blacklisting, regular expression, andsignature matching approaches to detect malicious URLs. However,these approaches are limited to detect variants of existing or newlygenerated malicious URLs. Over the last decade, classic machinelearning techniques have been used to detect malicious URLs. In thiswork, we evaluate various state-of-the-art deep learning-basedcharacter level embedding methods for malicious URL detection. Toleverage and transform the performance improvement, we proposeDeepURLDetect (DURLD) in which raw URLs are encoded usingcharacter level embedding. To capture several types of information inURL, we used the hidden layers in deep learning architectures toextract features from character level embedding and then employ anon-linear activation function to estimate the probability of the URL asmalicious or not. Experimental evaluation demonstrates that DURLDcan detect variants of malicious URLs, and it is computationallyinexpensive when compared to various relevant deep learning-basedcharacter level embedding methods.
1	 IntroductionMalicious Uniform Resource Locator (URL) host unsolicitedinformation and attackers use malicious URLs as one of a primary toolto carry out cyber attacks. E-mail and social media resources such asFacebook, Twitter, and WhatsApp are the most commonly usedapplications to spread malicious URLs [3, 4, 35]. They host unsolicitedinformation on the web page. Whenever an unsuspecting user visitsthat website unknowingly through the URL, the host may getcompromised, making them victims of various types of fraudsincluding malware installation, data, and identity theft. Every year,malicious URLs have been causing billions of dollars worth of losses[12]. These factors force the development of ef�icient techniques todetect malicious URLs promptly and give an alert to the networkadministrator.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Most of the commercial products existing in markets are based onthe blacklisting method [5]. This method relies on a database thatcontains a list of malicious URLs. The blacklists are continually updatedby the anti-virus group through scanning and crowdsourcing solutions.The blacklisting method can be used to detect the malicious URLswhich are already present in the database. But, they completely fail todetect the variants of the existing malicious URLs or entirely newmalicious URLs. In recent days, cyberattackers follow mutationtechniques to generate several variants of existing malware. To copewith this, machine learning techniques are employed.In recent days, the most commonly used approach is applyingdomain knowledge to extract lexical features of URL, followed byapplying machine learning models. The most commonly used featureengineering technique is Bag-of-words (BoW) and the most commonlyused machine learning model is the support vector machine (SVM)[29]. Though machine learning-based solution can be used instead ofblacklisting methodology, it suffers from many issues:1. The conventional URL representation methods fail to capture thesequential patterns and relationships among the characters. 2. Conventional machine learning models rely on manual featureengineering. This requires extensive domain knowledge in thecybersecurity domain and it is considered a daunting task.
3. Fails to hold unrevealed features and it doesn’t generalize on thetest data. Additionally, the number of unique words is immenselylarge and as a result, the machine learning model faces memoryconstraints while training.

To alleviate the aforementioned issues, this work proposes a modelnamed DeepURLDetect (DURLD) which uses a modern machinelearning technique, typically called “deep learning” with characterembedding. Deep learning uses multiple hidden layers in which eachlayer does non-linear projection to learn representations of multiplelevels of abstraction and they are applied to many cybersecurityapplications [2, 6, 8, 9, 26–28, 34, 37–39]. The main contributions of theproposed work are

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1. Detailed investigation and analysis of various benchmark deeplearning architectures are performed for malicious URL detection. 2. Various types of data sets are used in the experimental analysis to�ind out how generalizable the models are. The difference betweenthe time-split and random-split of data splitting methods is shownin the experimental analysis.

3. Experiments are shown for character level embedding and n-gramrepresentation with various deep learning architectures
The rest of the sections of this chapter are organized as follows.Section 2 discusses the related works of malicious URL detection.Section 3 provides information about URLs. Section 4 discusses thebackground details of benchmark text classi�ication models and theproposed model. Section 5 provides the major shortcomings inmalicious URL detection. Section 6 includes a description of the dataset. The working �low of malicious URL detection is discussed in Sect. 7.Section 8 contains information on proposed architecture. Details ofperformance measures are discussed in Sect. 9. The results arediscussed in Sect. 10. At last, the conclusion and future works areplaced in Sect. 11.

2	 Related	WorksFor the detailed literature survey of machine learning-based maliciousURL detection, see [29]. This section discusses the most importantworks in malicious URL detection.At the beginning stages, blacklisting, regular expression, andsignature matching approaches are most commonly used for maliciousURL detection. These methods completely fail to detect new or variantof existing URLs. Moreover, the signature database has to be updatedfrequently to handle new patterns of malicious URLs. Later, machinelearning algorithms were used to effectively detect new types ofmalicious URLs. Conventional machine learning algorithms depend onfeature engineering to extract a list of features from URLs. This featureengineering requires extensive domain knowledge of URL in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

cybersecurity and a list of good features has to be carefully chosenthrough feature selection. There are various types of features whichare used in the published works for malicious URL detection. Thisincludes blacklist features [18, 22], lexical features [20, 22, 23], host-based features [14, 24], content features, context- and popularity-based features [13, 15, 21]. Blacklist features are estimated throughchecking its presence of a URL in a blacklist. This could serve as astrong feature in identifying malicious URLs. Lexical features areestimated through the string properties of the URL, e.g., the number ofspecial characters, length of URL, etc. Host-based features are obtainedfrom the hostname properties of the URL. This includes informationrelated to WHOIS information, IP Address, Geographic location, etc.Content features are derived from the HTML and JavaScript when anunsuspecting user visits a webpage through the malicious URL.Content features include information related to their ranking,popularity scores, and source of sharing. Many existing studies haveused separate feature category and as well as a combination of thesefeatures which were continually determined through domain experts.Feature engineering is a daunting task with considering thesecurity threats. For example, obtaining context-based featuresconsumes more time and it is highly risky too. Moreover, featureselection requires extensive domain knowledge. The informationwhich is obtained directly from the raw URL is a well-known approach[22, 23]. From the published results, obtaining the lexical feature iseasier in comparison to other features and it gave good performances[11]. Statistical properties of the URL string such as length of the URLand number of special characters [20] have been most commonly usedand other most popular features were BoW, and term frequencymethods such as term document matrix (TDM) and term frequencyand inverse document frequency (TF-IDF) and n-gram features [11, 20,22]. All these features are not effective in extracting sequential orderand semantics of URL. This completely disregards the informationfrom unseen characters. Moreover, malicious URL detection solutionbased on the feature engineering with conventional machine learningcan be easily broken by an adversary.In recent days, the application of deep learning with character levelembedding has been used for malicious URL detection. In [41], we

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

compared a detailed analysis of deep learning with character levelembedding and conventional machine learning with featureengineering methods for malicious and phishing URL detection. Deeplearning architectures performed well in comparison to theconventional algorithms. The application of the recurrent neuralnetwork (RNN) and long short-term memory (LSTM) is applied tophishing URL detection [10]. For comparative analysis, lexical featuresand statistical URL analysis were used with random forest classi�ier.Both models performed well, the performance of LSTM was good incomparison to the conventional machine learning method. In [31], weused convolutional neural network (CNN) with character level Kerasembedding for detecting malicious URLs, �ile paths, and registry keys.This study showed how a unique deep learning architecture could beused on different cybersecurity problems. Like this, there are so manybenchmark deep learning architectures that exist. In this work, weevaluate the performance of various deep learning architectures formalicious URL detection.
Table	1 Character level deep learning architectures
Name Architecture TaskEndgame[7] LSTM Detecting and categorizing domain names that aregenerated by DGAsInvincea[31] CNN To detect malicious URLs, �ile paths and registry keys
CMU [17] Bidirectional recurrentstructures Social media text classi�ication, Twitter
MIT [44] Hybrid of CNN and LSTM Social media text classi�ication, TwitterNYU [43] Stacked CNN layers Text classi�ication
3	 An	Overview	of	Uniform	Resource	Locator
(URL)A uniform resource locator (URL) is a part of the uniform resourceidenti�ier (URI) which is used to identify and retrieve a resource fromthe Internet service. A URL is composed of three parts as shown in Fig.1. The �irst part de�ines the type of protocol, for example, http or https,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the second part de�ines the domain name or IP address and the thirdpart de�ines the path and its parameters to a speci�ic resource on theweb. The protocol is separated by a double slash from the other partsof the URL and it is followed by the domain name. The path and itsparameters are separated by a single slash. A sample URL is given inFig. 1. An adversary may use the URL as the main source to hostmalicious activities. Most commonly, the malicious URLs are spread viaemail and other social media apps. Once an unsuspecting user visits amalicious URL, the host system may get compromised. Thus, detectingthe nature and type of URL is considered as a signi�icant task.

Fig.	1 Uniform resource locator (URL) components
4	 Background	Details	of	Deep	Learning
Models
4.1	 Hybrid	Architecture—Convolutional	Neural	Network
and	Long	Short-Term	Memory	(CNN-LSTM)	with
Character	Level	Keras	EmbeddingConvolutional neural network (CNN) is very similar to Deep NeuralNetwork (DNN) and it uses convolution operation to extract featuresfrom the input. The example of DNN and CNN network is shown inFigs. 2 and 3, respectively. CNN based on character (CNN-C) level is aminimal variant of the deep CNN based on character level [44]. CNN-Cprimarily uses 1D convolution and pooling operations also calledtemporal convolution and temporal pooling, respectively. CNN-Cextracts optimal features from the character level representation ofURLs. For character level representation, the character level Kerasembedding representation is used. This takes three parameters such

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

as dictionary size, the maximum length of the character vector, andembedding vector length. Initially, the character level Keras embeddingweights can be initialized as a hyperparameter. The weights areoptimized during backpropagation. The CNN features are passed intoLSTM which facilitates to learn character level sequencerepresentation.

Fig.	2 Deep Neural Network architecture

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 Convolutional Neural Network architecture
4.2	 Character-Based	ModelsCharacter-based model takes an input text as a string of characters andautomatically extracts features. These features can be used forperforming different tasks (e.g., text classi�ication). There are differentcharacter-based models that exist in the �ield of natural languageprocessing (NLP), and in this work, the ef�icacy of them are evaluatedfor cybersecurity application, namely, malicious URL detection. Allmodels use embedding as the �irst layer to transform the URLs intonumeric vectors. The details of the various character-based models aregiven in Table 1. The details of the various character-based models aregiven below1. Character	level	models	based	on	RNN

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Endgame	Architecture: Reference [7] It uses LSTM with characterlevel Keras embedding for modeling domain generation algorithms(DGAs) to detect and categorize the domain names that aregenerated by DGAs. The character level Keras embeddingfacilitates to learn the sequence of characters of domain names andit helps to preserve the order of character in domain names.Moreover, it completely avoids the feature engineering methodthat is an important step for classical machine learning methods.The method has better performance when compared to the othermethods such as hidden Markov model, feature engineering, andbigrams with classical machine learning classi�iers. The proposedLSTM network is composed of an embedding layer for URLrepresentation, LSTM layer for optimal feature extraction, andlogistic regression for classi�ication. The embedding layer mapseach character to shape 128 and passes into LSTM for featurelearning and logistic regression for assigning a probability scorefor each domain name.
CMU	Architecture: Reference [17] CMU Architecture is namedas Tweet2vec for tweet representation and classi�ication for socialmedia data. It uses a bidirectional gated recurrent unit (BGRU) tolearn feature representation of Twitter data. The tweets aretokenized into a stream of characters and each character isrepresented by using one-hot character encoding. These one-hotrepresentations are mapped into a character space and fed into theBGRU model. The model contains forward and backward GRUwhich facilitates to learn the sequence of characters in the domainname. Both the forward and backward GRU layers are combinedusing a fully connected layer and a softmax non-linear activationfunction was used for tweet classi�ication, particularly to predicthashtags of tweets. For comparative study, the tweet2vec isevaluated on the word level tweet representation.

2. Character	level	models	based	on	CNN
NYU	Architecture: Convolutional neural network (CNN) is mostcommonly used in the �ield of image processing. In recent days, 1DCNN has been mapped into text classi�ication [43]. They have usedword based CNN and LSTM. The CNN of NYU is stacked CNN. WithCNN, pre-trained embedding, embedding, and lookup tables are

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

used as text representation methods. With LSTM, pre-trained wordembedding is used as a text representation method. For evaluation,they used different types of large-scale data sets. They claimed thatthe character level CNN model performed well in comparison to theclassical and deep learning models. The ef�icacy of deep learningmodels is evaluated on the classical text representation methodssuch as BoW, n-gram with TF-IDF.
Invincea	Architecture: To model short character strings suchas URLs, �ile paths, or registry keys of cybersecurity data, [31]proposed CNN network. This CNN network is composed ofcharacter level Keras embedding layer, parallel CNN layer, followedby three fully connected layers. All three fully connected layerscontain 1,024 units and ReLU as an activation function. Thearchitecture uses batch normalization and dropout regularizationtechniques to speed up the model training and prevent over�itting.To classify the short character strings as either legitimate ormalicious, the CNN network contains a fully connected layer withunit 1 and sigmoid non-linear activation function.3.

Character	level	models	based	on	hybrid	CNN	and	RNN
MIT	Architecture: Reference [44] This is an extension of the NYUmodel for tweet classi�ication. It is composed of stacked CNNlayers followed by an LSTM layer. The stacked CNN layer results inover�itting. To alleviate this, a minimum number of parameters areused.

4.3	 Problem	FormulationThe objective of this work is to classify a given URL as either legitimateor malicious and classi�ication problem is binary. Let us consider a setof URLs where u represents URL andy represents ‘0’ for legitimate and ‘1’ for malicious.There are two steps involved in the classi�ication procedure, �irstly,the optimal feature representation and secondly, the predictionfunction. Feature representation forms n-dimensional vectorrepresentation which can be passed into prediction function as

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

input . The main aim is to minimize the total numberof misclassi�ication. This can be achieved by minimizing the lossfunction. This type of loss function can also include a regularizationterm. In this work, f is represented as deep learning architectures.
5	 Shortcomings	in	Malicious	URL	DetectionThere are no publically available benchmark data sets for research inmalicious URL detection. Most of the published results on maliciousURL detection have used their own private data sets in evaluating theef�icacy of various conventional machine learning algorithms and deeplearning architectures. These private data sets are collected fromvarious sources such as Alexa, DMOZ, Phishtank, OpenPhish,MalwareDomains, MalwareDomainList, and many others. Though,these approaches cannot be regarded as generic methods due to theuncommon data sets. Most of the published results haven’t given anyimportance to the time-split methodology to divide the data into trainand test. Recently, [30] discussed the importance of time-split individing the data into train and test sets. The data splittingmethodology based on time-split is very important to meet the zeroday malware detection. Recently, the background reason for notdeploying machine learning-based solutions for security is discussedby [33]. The detailed test cases that should be considered in testexperiments are discussed in detail by [36]. These different test caseshelp to evaluate the robustness of machine learning-based solutions.Moreover, they have discussed the dif�iculty behind applying datascience techniques for cybersecurity.
6	 Description	of	Data	SetIt is necessary to test different forms of URL to assess the performanceof various conventional machine learning classi�iers and deep learningarchitectures. There are two types of data sets that are used. They areData set 1 and Data set 2. The Data set 1 is collected from publicallyavailable sources such as Alexa.com, DMOZ directory,MalwareDomainlist.com and MalwareDomains.com, CEN Amrita

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Vishwa Vidyapeetham research internal network backbone. Data set 2is from Sophos research [32]. The most commonly used methodologyfor dividing data into train and test is random-split [25]. Data set 1follows random-split. The classi�ier which is modeled using a random-split approach is not an ef�icient splitting methodology to meet zeroday malware detection [30]. Data set 2 follows both the random-splitand time-split [30]. In the domain of cybersecurity, it is good to followthe time-split [19, 42]. This facilitates to enhance zero day malwaredetection. The detailed statistics of both Data set 1 and Data set 2 arereported in Table 2.
Table	2 Detailed statistics URL data set
Data	set Category Legitimate MaliciousData set 1 Train 212,751 175,121Data set 1 Test 122,406 101,616Data set 2 random-split Train 43,771 43,430Data set 2 random-split Test 18,516 18,857Data set 2 time-split Train 39,271 47,044Data set 2 time-split Test 23,016 15,243
7	 Model	Con�iguration	of	Malicious	URL
Detection	EngineThe pseudo-code of the malicious URL detection engine is given asAlgorithm 1. It is composed of three different sections. They are (1)preprocessing, (2) optimal features extraction, and (3) classi�ication.In preprocessing, the URLs are transformed into feature vectorusing text representation methods and the optimal features from thenumeric vectors are extracted using various benchmark models suchas Invincea, NYU, MIT, CMU, Endgame, and proposed model,DeepURLDetect (DURLD), and �inally, classi�ication is done using fullyconnected layer with non-linear activation function.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The characters in URLs are converted into lower case. This is due to thereason domain names are case insensitive, and differentiating betweencapital and small letters may cause regularization issue. Otherwise, themodels have to be run for more number of epochs to learn the patternsof all possibilities of characters that exist in the URLs. The Data set 1corpus contains 150 unique characters, dictionary size and themaximum length of the URL is 2,307. The Data set 2 random-split andtime-split corpus contains 42 unique characters and the maximumlength of the URL is 246. The URL which is lesser than the maximumlength is padded with 0. The detailed architecture and con�igurationdetails of DURLD is shown in Tables 3 and 4 for Data set 1 and Data set2 random-split and time-split, respectively. In DURLD, character levelKeras embedding contains 128 as embedding size, as each character ismapped into 128 dimensions. This helps to learn the similarity amongcharacters by mapping the semantics of similar characters to similarvectors. All models contain character level Keras embedding as a URLrepresentation method and the dimensionality of the embedding sizeis set to the same size to conduct a fair comparative evaluationstrategy. To know the effectiveness of character level Keras embedding,a 3-gram text representation method is mapped into domain names.The features of 3-grams are hash it into a vector of length 1,000 usingfeature hashing. These 1,000-dimensional vectors are passed into DNN

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

for optimal feature extraction and classi�ication; the detailedcon�iguration parameter details of DNN is available in Table 5. To avoidover�itting and speed up the training process, dropout and batchnormalization are used, respectively, in between the DNN layers.Followed by the embedding layer, DURLD contains the convolutionlayer. This layer contains 64 �ilters with �ilter length 5, activationfunction ReLU. The convolutional layer follows maxpooling with poollength 4, LSTM with 70 memory blocks. Finally, the optimal features arepassed into a fully connected layer which contains sigmoid non-linearactivation function which results in 0 for legitimate and 1 for spam.The loss function is binary cross-entropy and is de�inedmathematically as given below.
(1)

where pd is a vector of predicted probability for all samples in testingdata set, ed is a vector of the expected class label, values are either 0 or1.
Table	3 Detailed con�iguration parameter information of DURLD for Data set 1
Layer	(type) Output	shape Param	#embedding_1 (Embedding) (None, 2307, 128) 19200conv1d_1 (Conv1D) (None, 2306, 128) 32896max_pooling1d_1 (MaxPooling1) (None, 1153, 128) 0lstm_1 (LSTM) (None, 70) 55720dense_1 (Dense) (None, 1) 71activation_1 (Activation) (None, 1) 0Total params: 107,887Trainable params: 107,887Non-trainable params: 0
Table	4 Detailed con�iguration parameter information of DURLD for Data set 2 random-split andtime-split
Layer	(type) Output	shape Param	#embedding_1 (Embedding) (None, 246, 128) 5376

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Layer	(type) Output	shape Param	#conv1d_1 (Conv1D) (None, 245, 128) 32896max_pooling1d_1 (MaxPooling1 (None, 122, 128) 0lstm_1 (LSTM) (None, 70) 55720dense_1 (Dense) (None, 1) 71activation_1 (Activation) (None, 1) 0Total params: 94,063Trainable params: 94,063Non-trainable params: 0
Table	5 Detailed con�iguration details of DNN
Layer	(type) Output	shape Param	#dense_1 (Dense) (None, 128) 128128batch_normalization_1 (Batch (None, 128) 512activation_1 (Activation) (None, 128) 0dropout_1 (Dropout) (None, 128) 0dense_2 (Dense) (None, 96) 12384batch_normalization_2 (Batch (None, 96) 384activation_2 (Activation) (None, 96) 0dropout_2 (Dropout) (None, 96) 0dense_3 (Dense) (None, 64) 6208batch_normalization_3 (Batch (None, 64) 256activation_3 (Activation) (None, 64) 0dropout_3 (Dropout) (None, 64) 0dense_4 (Dense) (None, 32) 2080batch_normalization_4 (Batch (None, 32) 128activation_4 (Activation) (None, 32) 0dropout_4 (Dropout) (None, 32) 0dense_5 (Dense) (None, 16) 528batch_normalization_5 (Batch (None, 16) 64activation_5 (Activation) (None, 16) 0dropout_5 (Dropout) (None, 16) 0dense_6 (Dense) (None, 1) 17

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Layer	(type) Output	shape Param	#Total params: 150,689Trainable params: 150,017Non-trainable params: 672

Fig.	4 Proposed architecture—DeepURLDetect (DURLD)
8	 Proposed	Architecture—DeepURLDetect
(DURLD)The proposed architecture for malicious URL detection in the Ethernetlevel is shown in Fig. 4. It is called as DeepURLDetect (DURLD). DURLDis a hybrid of convolution and long short-term memory in-housemodel. This module can be added to the existing scalable frameworkfor cyber threat situational awareness to enhance the maliciousdetection rate [40]. The architecture consists of three main modules

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1) Data collection, (2) Identifying malicious URL, and (3) ContinuousmonitoringA distributed log collector collects URL logs from different sourcesinside an Ethernet LAN in a passive way and pass it into a distributeddatabase. Following, the URLs are parsed using distributed log parserand fed into the deep learning module. This classi�ies the URLs intoeither malicious or legitimate. A copy of the preprocessed URLs isstored in a distributed database for further use. The deep learningmodule has a Front End Broker to display detailed information aboutthe URL analysis. The framework contains a continuous monitoringmodule that monitors detected malicious URLs. This monitors thetargeted URLs once every 30 s. This helps to detect the malicious URLwhich is generated using Digitally Generated Algorithms (DGA).
Table	6 Test results
Model Accuracy

(%)
Precision
(%)

Recall
(%)

F1-score
(%)Data set 1 (both train and test from public sources)Invincea [31] 99.0 99.5 98.4 98.9NYU [43] 97.7 98.0 96.8 97.4MIT [44] 97.9 98.8 96.6 97.7CMU [17] 99.1 99.2 98.7 99.0Endgame [7] 99.1 99.3 98.7 99.0DeepURLDetect (proposed) 97.2 97.4 96.4 96.93-gram with DNN 5 layer(proposed) 95.4 96.8 93.0 94.9

Data set 2 random-splitInvincea [31] 96.4 97.9 93.1 95.4NYU [43] 96.1 97.9 92.2 95.0MIT [44] 96.0 96.1 93.6 94.9CMU [17] 95.4 95.1 93.3 94.2Endgame [7] 96.6 97.2 94.1 95.6DeepURLDetect (proposed) 95.4 97.4 90.8 94.03-gram with DNN 5 layer(proposed) 95.0 96.2 90.9 93.5

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)Data set 2 time-splitInvincea [31] 96.1 95.9 94.4 95.1NYU [43] 95.0 95.8 91.3 93.5MIT [44] 93.3 97.7 85.2 91.0CMU [17] 94.1 95.9 89.0 92.3Endgame [7] 97.1 97.6 95.0 96.3DeepURLDetect (proposed) 93.1 94.5 87.8 91.13-gram with DNN 5 layer(proposed) 93.0 96.3 85.6 90.7

Table	7 Test results. TPR and FPR are w.r.t. a threshold 0.5
Model TPR	(%) FPR AUCData set 1 (both train and test from public sources)Invincea [31] 88.9 0.087 0.9995NYU [43] 89.5 0.10 0.9974MIT [44] 85.9 0.124 0.9980CMU [17] 87.7 0.105 0.9995Endgame [7] 87.1 0.081 0.9996DeepURLDetect (proposed) 87.6 0.116 0.99643-gram with DNN 5 layer (proposed) 87.9 0.121 0.9909Data set 2 random-splitInvincea [31] 93.9 0.142 0.9914NYU [43] 94.2 0.143 0.9918MIT [44] 95.0 0.146 0.9918CMU [17] 94.4 0.145 0.9915Endgame [7] 93.6 0.139 0.9913DeepURLDetect (proposed) 95.3 0.146 0.99223-gram with DNN 5 layer (proposed) 95.3 0.143 0.9922Data set 2 time-splitInvincea [31] 85.9 0.023 0.9938NYU [43] 83.3 0.031 0.9896MIT [44] 82.7 0.027 0.9815

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Model TPR	(%) FPR AUCCMU [17] 89.5 0.027 0.9865Endgame [7] 92.1 0.034 0.9962DeepURLDetect (proposed) 79.9 0.032 0.98233-gram with DNN 5 layer (proposed) 71.4 0.042 0.9812

Fig.	5 ROC curve for a Data set 1, b Data set 2 (random-split) c Data set 2 (time-split)

Fig.	6 ROC curve for a Data set 1, b Data set 2 (random-split) c Data set 2 (time-split)
9	 Performance	MeasuresThe main objective of this work is to classify whether the URL is eitherbenign or malicious. To identify the performance of the deep learningarchitectures, we have used the following statistical metrics.True positive (TP): malicious URL that is correctly classi�ied asmalicious URL.True negative (TN): benign URL that is correctly classi�ied asbenign URL.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

False positive FP:benign URL that is incorrectly classi�ied asmalicious URL.False negative (FN): malicious URL that is incorrectly classi�iedas benign URL.The above metrics are obtained from the confusion matrix. In theconfusion matrix, each row indicates the URL samples in a predictedclass and each column indicates the URL samples in an actual class. Weestimate the statistical measures such as Accuracy, Precision, Recall,F1-score, true positive rate (TPR), and false positive rate (FPR) fromconfusion matrix, and they are de�ined mathematically as follows: (2)
(3)
(4)
(5)
(6)
(7)The accuracy estimates the ratio of the total number of correctclassi�ications. The precision estimates the number of correctclassi�ications penalized by the number of incorrect classi�ications.The recall estimates the number of correct classi�ications penalized bythe number of missed entries. The recall is also called sensitivity ortrue positive rate. The F1-score estimates the harmonic mean ofprecision and recall, which serves as a derived effectivenessmeasurement. The receiver operating characteristic (ROC) curve

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

denotes the performance of the classi�ier which is plotted using TPR on
Y-axis and FPR on X-axis. Generally, the ROC curve is used when theclasses are balanced and for imbalanced classes precision-recall curveis used. To generate the precision-recall curve, we estimated the trade-off between the precision and recall across varying thresholds in therange of [0, 1].
10	 Evaluation	Results	and	ObservationsAll deep learning architectures are implemented using TensorFlow [1]with Keras [16] and conventional machine learning algorithms areimplemented using Scikit-learn [25]. The graphical processing unit(GPU)-enabled machine is used for experimental purposes. Initially, allthe models are trained with Data set 1. To evaluate the performance,the trained model is tested with the test data set of Data set 1.Likewise, same approach is followed for Data set 2 random-split andData set 2 time-split. Most of the models performed well on Data set 1when compared to the models trained on Data set 2 random-split andtime-split. Moreover, the performance of various models on Data set 2random-split is good when compared to the models trained on Data set2 time-split. This is because the samples of test data of Data set 2 time-split is unseen during training. The detailed results are reported inTables 6 and 7. The receiver operating characteristic (ROC) curve forvarious models on different test data sets are shown in Fig. 5a for Dataset 1, Fig. 5b for Data set 2 random-split, and Fig. 5c for Data set 2 time-split with comparing two operating characteristics such as truepositive rate and false positive rate across varying threshold in therange [0.0–1.0]. Likewise, the precision-recall curve for various modelson different test data sets are shown in Fig. 6a for Data set 1, Fig. 6b forData set 2 random-split, and Fig. 6c for Data set 2 time-split withcomparing two operating characteristics such as precision and recallacross varying thresholds in the range [0.0–1.0]. Obtaining better AUCin the precision-recall curve indicates that the models predict moreaccurately. The performance of all models has a marginal difference interms of accuracy and AUC, and thus voting methodology can beemployed to distinguish whether the URL is legitimate or malicious.This can further enhance the malicious URL detection rate. This

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

remains as one of the signi�icant direction toward future work. Themodels that used character level Keras embedding as the textrepresentation method performed well when compared to DNN with a3-gram text representation method. Deep learning with embedding-based malicious URL detection can be a robust solution overhandcrafted features with conventional machine learning-basedsolutions. This is because the attacker can utilize domain knowledge tolearn the handcrafted features to evade detection. They can make useof generative adversarial networks in deep learning; the details arediscussed in [7].
11	 ConclusionIn this work, a comparative analysis of various deep learning-basedcharacter level embedding models for malicious URL detection is done.All deep learning architectures have a marginal difference in terms ofaccuracy. Among �ive models, two are based on RNN, two are based onCNN, and one is based on a hybrid of CNN and LSTM. All the modelsperformed well and achieved around 93–98% malicious URL detectionrate with a false positive rate of 0.001. For comparative analysis, DNNwith n-gram is used. In all test cases, deep learning-based characterlevel models performed well when compared to the other models. Alldeep learning-based character level embedding-based models have thepotential to handle variants of malicious URLs. Though deep learninghas performed well, it is good to have conventional methods such asblacklisting using regular expression, signature matching method, andconventional machine learning-based solutions as an initial gatewayfollowed by deep learning-based character level embedding models.The DeepURLDetect (DURLD) model can be made more robust byadding auxiliary modules such as registration services, websitecontent, network reputation, �ile paths, and registry keys. This can beconsidered as one of the signi�icant directions for future work.
AcknowledgementsThis work was supported by the Department of Corporate andInformation Services, Northern Territory Government of Australia andin part by Paramount Computer Systems and Lakhshya Cyber Security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Labs. We are grateful to NVIDIA India, for the GPU hardware support tothe research grant. We are also grateful to Centre for ComputationalEngineering and Networking (CEN), Amrita School of Engineering,Coimbatore, for encouraging this research.
References1. Abadi, Martı́n, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, MatthieuDevin, Sanjay Ghemawat, Geoffrey Irving, and Michael Isard. 2016. Tensor�low: A system forlarge-scale machine learning. In 12th	 USENIX symposium	on	operating	systems	design	and

implementation	(OSDI 16), 265–283.
2. Alazab, M., R. Layton, R. Broadhurst, and B. Bouhours. 2013. Malicious spam emailsdevelopments and authorship attribution. In 2013	fourth	cybercrime	and	trustworthy

computing	workshop, 58–68.3. Alazab, Mamoun, and Roderic Broadhurst. 2016. Spam and criminal activity. Trends	and
Issues	in	Crime	and	Criminal	Justice	(Australian	Institute	of	Criminology) (526). https:// www. aic. gov. au/ publications/ tandi/ tandi526.4. Alazab, Mamoun, Robert Layton, Roderic Broadhurst, and Brigitte Bouhours. 2013. Maliciousspam emails developments and authorship attribution. In 2013	fourth	cybercrime	and
trustworthy	computing	workshop, 58–68. IEEE, 2013.5. Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. 2010. Zero-daymalware detection based on supervised learning algorithms of api call signatures.6. Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. 2013.Information security governance: the art of detecting hidden malware. In IT	security
governance	innovations:	theory	and	research, 293–315. IGI Global.7. Anderson, Hyrum S., Jonathan Woodbridge, and Bobby Filar. 2016. Deepdga: Adversarially-tuned domain generation and detection. In Proceedings	of	the	2016	ACM	workshop	on
arti�icial	intelligence	and	security, 13–21.8. Azab, A., M. Alazab, and M. Aiash. 2016. Machine learning based botnet identi�ication traf�ic. In
2016	IEEE	Trustcom/BigDataSE/ISPA, 1788–1794.9. Azab, A., R. Layton, M. Alazab, and J. Oliver. 2014. Mining malware to detect variants. In 2014
�ifth	cybercrime	and	trustworthy	computing	conference, 44–53.10. Bahnsen, A.C., E.C. Bohorquez, S. Villegas, J. Vargas, and F.A. González. 2017. Classifyingphishing urls using recurrent neural networks. In 2017	APWG	symposium	on	electronic	crime
research	(eCrime), 1–8.11. Blum, Aaron, Brad Wardman, Thamar Solorio, and Gary Warner. 2010. Lexical feature basedphishing url detection using online learning. In Proceedings	of	the	3rd	ACM	Workshop	on

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.aic.gov.au/publications/tandi/tandi526

Arti�icial	Intelligence	and	Security, 54–60.12. Broadhurst, Roderic, Peter Grabosky, Mamoun Alazab, Brigitte Bouhours, and Steve Chon.2014. An analysis of the nature of groups engaged in cyber crime. An	Analysis	of	the	Nature	of
Groups	engaged	in	Cyber	Crime,	International	Journal	of	Cyber	Criminology 8 (1): 1–20.13. Cao, Jian, Qiang Li, Yuede Ji, Yukun He, and Dong Guo. 2016. Detection of forwarding-basedmalicious urls in online social networks. International	Journal	of	Parallel	Programming 44(1): 163–180.[Crossref]14. Chiba, Daiki, Kazuhiro Tobe, Tatsuya Mori, and Shigeki Goto. 2012. Detecting maliciouswebsites by learning ip address features. In 2012	IEEE/IPSJ	12th	international	symposium	on
applications	and	the	internet, 29–39. IEEE.15. Choi, Hyunsang, Bin B. Zhu, and Heejo Lee. 2011. Detecting malicious web links andidentifying their attack types. WebApps 11 (11): 218.16. Chollet, François. 2015. keras.17. Dhingra, Bhuwan, Zhong Zhou, Dylan Fitzpatrick, Michael Muehl, and William W Cohen. 2016.Tweet2vec: Character-based distributed representations for social media. arXiv: 1605. 03481.18. Felegyhazi, Mark, Christian Kreibich, and Vern Paxson. 2010. On the potential of proactivedomain blacklisting. LEET 10: 6.19. Harikrishnan, N.B., R. Vinayakumar, K.P. Soman, and Prabaharan Poornachandran. 2019. Timesplit based pre-processing with a data-driven approach for malicious url detection. In
Cybersecurity	and	secure	information	systems, 43–65. Springer.20. Kolari, Pranam, Tim Finin, and Anupam Joshi. 2006. Svms for the blogosphere: Blogidenti�ication and splog detection. In AAAI	spring	symposium	on	computational	approaches
to	analysing	weblogs.21. Lee, S., and J. Kim. 2013. Warningbird: A near real-time detection system for suspicious urls intwitter stream. IEEE	Transactions	on	Dependable	and	Secure	Computing 10 (3): 183–195.[Crossref]22. Ma, Justin, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. 2009. Beyond blacklists:learning to detect malicious web sites from suspicious urls. In Proceedings	of	the	15th	ACM
SIGKDD	international	conference	on	Knowledge	discovery	and	data	mining, 1245–1254.23. Ma, Justin, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. 2009. Identifyingsuspicious urls: an application of large-scale online learning. In Proceedings	of	the	26th
annual	international	conference	on	machine	learning, 681–688.24. Kevin McGrath, D., and Minaxi Gupta. 2008. Behind phishing: An examination of phisher modioperandi. LEET 8: 4.25. Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, and Vincent Dubourg. 2011.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/s10766-014-0330-9
http://arxiv.org/abs/1605.03481
https://doi.org/10.1109/TDSC.2013.3

Scikit-learn: Machine learning in python. the	Journal	of	Machine	Learning	Research, 12:2825–2830.26. R., V., M. Alazab, A. Jolfaei, S. K.P., and P. Poornachandran. 2019. Ransomware triage using deeplearning: Twitter as a case study. In 2019	cybersecurity	and	cyberforensics	conference	(CCC),67–7327. S, S., V. R, M. Alazab, and S. KP. 2020. Network �low based iot botnet attack detection usingdeep learning. In IEEE	INFOCOM	2020	-	IEEE	conference	on	computer	communications
workshops	(INFOCOM	WKSHPS), 189–194.28. S, S., V. R, S. V, M. Alazab, and S. KP. 2020. Multi-scale learning based malware variant detectionusing spatial pyramid pooling network. In IEEE	INFOCOM	2020	-	IEEE	conference	on
computer	communications	workshops	(INFOCOM	WKSHPS), 740–745.29. Sahoo, Doyen, Chenghao Liu, and Steven CH Hoi. 2017. Malicious url detection using machinelearning: A survey. arXiv: 1701. 07179.30. Sanders, Hillary, and Joshua Saxe. 2017. Garbage in, garbage out: How purport-edly great mlmodels can be screwed up by bad data. Technical	report.31. Saxe, Joshua, and Konstantin Berlin. 2017. expose: A character-level convolutional neuralnetwork with embeddings for detecting malicious urls, �ile paths and registry keys. arXiv: 1702. 08568.32. Schiappa, Madeline. 2009. Machine	learning:	How	to	build	a	better	threat	detection	model.Accessed July 3, 2020.33. Sommer, R., and V. Paxson. 2010. Outside the closed world: On using machine learning fornetwork intrusion detection. In 2010	IEEE	symposium	on	security	and	privacy, 305–316.34. Srinivasan, S., V. Ravi, S. V., M. Krichen, D. Ben Noureddine, S. Anivilla, and S. K. P. 2020. Deepconvolutional neural network based image spam classi�ication. In 2020	6th	conference	on
data	science	and	machine	learning	applications	(CDMA), 112–117.35. Tran, Khoi-Nguyen, Mamoun Alazab, and Roderic Broadhurst. 2014. Towards a feature richmodel for predicting spam emails containing malicious attachments and URLs.36. Verma, Rakesh. 2018. Security analytics: Adapting data science for security challenges. In
Proceedings	of	the	fourth	ACM	international	workshop	on	security	and	privacy	analytics, 40–41.37. Vinayakumar, R., M. Alazab, K.P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman.2019. Deep learning approach for intelligent intrusion detection system. IEEE	Access 7:41525–41550.[Crossref]38. Vinayakumar, R., M. Alazab, K.P. Soman, P. Poornachandran, and S. Venkatraman. 2019. Robustintelligent malware detection using deep learning. IEEE	Access 7: 46717–46738.[Crossref]39. Vinayakumar, R., M. Alazab, S. Srinivasan, Q. Pham, S.K. Padannayil, and K. Simran. 2020. A

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/1701.07179
http://arxiv.org/abs/1702.08568
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2906934

visualized botnet detection system based deep learning for the internet of things networks ofsmart cities. IEEE	Transactions	on	Industry	Applications 56 (4): 4436–4456.[Crossref]40. Vinayakumar, R., Prabaharan Poornachandran, and K.P. Soman. 2018. Scalable framework forcyber threat situational awareness based on domain name systems data analysis. In Big	data
in	engineering	applications, 113–142. Springer.41. Vinayakumar, R., K.P. Soman, and Prabaharan Poornachandran. 2018. Evaluating deeplearning approaches to characterize and classify malicious url’s. Journal	of	Intelligent	&	Fuzzy
Systems, 34(3):1333–1343.42. Vinayakumar, R., K.P. Soman, Prabaharan Poornachandran, Mamoun Alazab, and Sabu Thampi2019. Amritadga: a comprehensive data set for domain generation algorithms (dgas) baseddomain name detection systems and application of deep learning. In Big	data	recommender
systems-Volume	2:	application	paradigms , 455–485. Institution of Engineering andTechnology (IET).43. Vosoughi, Soroush, Prashanth Vijayaraghavan, and Deb Roy. 2016. Tweet2vec: Learning tweetembeddings using character-level cnn-lstm encoder-decoder. In Proceedings	of	the	39th
international	ACM	SIGIR	conference	on	research	and	development	in	information	retrieval,1041–1044.44. Zhang, Xiang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for textclassi�ication. In Advances	in	neural	information	processing	systems, 649–657.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1109/TIA.2020.2971952

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_22
Sentiment	Analysis	for	Troll	Detection
on	WeiboZidong Jiang1, Fabio Di Troia1 and Mark Stamp1 San Jose State University, San Jose, CA, USA
Fabio	Di	Troia
Email:	fabio.ditroia@sjsu.edu
Mark	Stamp	(Corresponding	author)
Email:	mark.stamp@sjsu.edu

AbstractThe impact of social media on the modern world is dif�icult tooverstate. Virtually all companies and public �igures have social mediaaccounts on popular platforms such as Twitter and Facebook. In China,the micro-blogging service provider, Sina Weibo, is the most popularsuch service. To in�luence public opinion, Weibo trolls—the so-calledWater Army—can be hired to post deceptive comments. In this chapter,we focus on troll detection via sentiment analysis and other useractivity data on the Sina Weibo platform. We implement techniques forChinese sentence segmentation, word embedding, and sentiment scorecalculation. In recent years, troll detection and sentiment analysis havebeen studied, but we are not aware of previous research that considerstroll detection based on sentiment analysis. We employ the resultingtechniques to develop and test a sentiment analysis approach for trolldetection, based on a variety of machine learning strategies.Experimental results are generated and analyzed. A Chrome extensionis presented that implements our proposed technique, which enablesreal-time troll detection when a user browses Sina Weibo.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_22
mailto:fabio.ditroia@sjsu.edu
mailto:mark.stamp@sjsu.edu

1	 IntroductionSocial media plays a signi�icant role in the ongoing development of theInternet, as people tend to acquire more information from social mediathan other platforms. Deceptive comments created by trolls present achallenging problem in social media applications. Trolls can be hired topublish misleading comments in an effort to affect public opinionrelated to events or people, or even to negatively in�luence theeconomy of a country.Sina Weibo is a widely used micro-blogging social media platformin China. A majority of Weibo posts are written in Chinese and, likeTwitter, most posts published on Weibo are short—until recently, therewas a 140 character limit. With the number of daily active users inexcess of 200 million (as of 2019), Weibo is one of the largest socialmedia platforms in China.Weibo is based on weak relationships, in the sense that a user canshare content that is visible to all of the user base. Therefore, manycelebrities, businesses, and Internet in�luencers all over the worldregister as Weibo users in an effort to expand their exposure to theChinese public. Weibo has become a platform where government andbusinesses can communicate more ef�iciently with the general public.The Chinese Water Army refers to a group of people who can behired to post deceptive comments on Weibo. Such troll activity isdif�icult to detect, due in part to the unsegmented characteristic of theChinese sentences. In some cases, Chinese sentences can be segmentedin different ways to yield different meanings.Recent research has shown that hidden Markov models (HMMs) areeffective for sentiment analysis of English text [37]. Chinese wordsegmentation can also be accomplished using HMMs [4, 21, 32]. In thisresearch, we use HMMs, Word2Vec, and other learning techniques toperform word segmentation and sentiment analysis on Sina Weibo“tweets” for the purpose of detecting potential troll activity. We useWord2Vec and HMMs for Chinese text segmentation, we employ HMMsand naı̈ve Bayes for sentiment analysis, and we use XGBoost andsupport vector machines (SVMs) for troll detection.We have generated a large training dataset by crawling the SinaWeibo and Tencent Weibo platforms. Using an HMM-based Chinese

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

sentence segmentation model comparable to that in [32], we pre-process each post into a list of words. Then, following the approachin [10], we construct a Word2Vec similarity scoring matrix based onthe word list that we have generated. A baseline of sentiment isdetermined from the corpus that we have collected.For sentiment analysis, we use a Word2Vec based technique tocalculate sentiment scores. We use extracted features from Weibocomments as observations to train HMM models for each emotion, andwe use the trained models to determine the emotions of eachcomment. We use an XGBoost model to aggregate sentiment analysisresults with user activity data to build the troll detection model. As apoint of comparison, we experiment with an approach based onsupport vector machines.Finally, we present a Chrome extension that we have developed.This Chrome extension implements our troll detection model, and itenables us to detect potential troll activity on Weibo in real-time.The remainder of this paper is organized as follows. In Sect. 2, wediscuss relevant background topics. Section 3 contains an overview ofselected previous work. In Sect. 4, we consider data sources and datacollection methods. In Sect. 5, we provide implementation details andincludes experimental results. Lastly, in Sect. 6, we give a summary ofour work, including a brief discussion of possible directions for futuredevelopment.
2	 BackgroundIn this section, we discuss several relevant background topics. First, tomotivate this research, we discuss trolls in the context of social media.Then, we introduce machine learning models that are used in thisresearch. We conclude this section with a brief discussion of theevaluation metric that we employ.
2.1	 TrollsTroll users publish misleading, offensive, or trivial following-upcontent in online communities. The content of a troll posting generallyfalls into one of several categories. It may consist of an apparentlyfoolish contradiction of common knowledge, a deliberately offensive

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

insult to the readers of a newsgroup or mailing list, or a broad requestfor trivial follow-up postings. The result of such posting is frequently a�lood of angry responses. In some cases, the follow-up messages postedin response to a troll can constitute a large fraction of the contents of anewsgroup or mailing list on a particular topic over an extended periodof time. These messages may be transmitted around the world to vastnumbers of computers, wasting network resources, and costingresources. Troll threads frustrate people who are trying to carry onsubstantive discussions [12].Organized troll activity on the Sina Weibo platform was �irstdetected in 2013. This initial group of troll users consisted ofabout 20,000 individuals in 50 ICQ chat groups associated with aperson nicknamed “Daxia.” Subsequently, troll activity became anonline business on the Weibo platform. Trolls can be hired bybusinesses to publish negative comments against their competitors orto generate anonymous good reviews or positive comments. Priorto 2015, much of the troll activity on Weibo was designed to adverselyaffect the reputation of businesses. After 2015, stricter controls wereset on speech on the Internet in China, and Sina Weibo developed amore sophisticated infrastructure to �ilter such troll comments.Currently, most of the troll activity on Weibo turned is designed topromote celebrities and companies.Troll users on the Weibo platform can be categorized by theirsource of content. Traditionally, trolls use automated fake accounts topost repeated messages in an effort to dominate the comments. Anexample of such activity is shown in Fig. 1. However, the Weiboplatform has recently improved their infrastructure to block theserepeated messages from users, based on proxy detection, combinedwith message �ilters for repeated comments.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	1 Weibo comments dominated by troll activity [26]Recently, troll users have become more sophisticated. Someorganized Weibo trolls are supervised by a management group whocontrols what, when, and where they reply on the Weibo platform.Speci�ic details of the comments that each troll account publishes aremade by individual troll users rather than being copied from themanagement group. The management group only gives out the overallemotional trend that the comments should convey. Thus, content madeby troll users is repetitive but not monotonously so. This fact makestroll detection on Weibo challenging, since troll comments arecomposed and published by real human users. Furthermore, in recentyears, trolls are mostly hired by companies and celebrities to makepositive comments toward themselves.
2.2	 Machine	Learning	Techniques

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Content-based troll detection usually utilizes natural languageprocessing (NLP) using machine learning to analyze and categorizetext. This is accomplished by constructing language processing modelson comments and posts so as to label comments with a high polarity ofemotion or repetitiveness. By applying sentiment analysis methods,we can �ilter comments with either high or low sentiment scoresrepresenting extreme positive or negative sentiment. This isaccomplished by calculating word relevance, and by analyzingcorrelations using word embedding techniques, such as Word2Vec. Wecan then mark potential troll comments or pass along user informationbehind such comments to the next stage of a troll detection model. Akey point of this research is to use sentiment analysis in troll detection.Classifying speci�ic comments as troll activity is challenging.Therefore, utilizing user behavioral information to discern deceptiveactivity is a popular trend in troll detection. Like most social mediaplatforms, Weibo has numerous user relationship data, such as thenumber of followers, number that a user is following, user rank, andnumber of original Weibo tweets. Also, trolls commonly make attacksin a small time window following a speci�ic tweet [11]. We can utilizethis fact in combination with other user relationship information in atroll detection system. The goal of including such data in our trolldetection approach is to reduce the false negatives that affect strictlycontent-based detection methods.Next, we introduce the various machine learning techniques usedin this research. Speci�ically, we discuss hidden Markov models,Word2Vec, XGBoost, and support vector machines.
2.2.1	 Hidden	Markov	ModelsHidden Markov models (HMMs) are well known for their use in patternprediction and for deriving hidden states from observations. An HMM(of order one) is a stochastic model representing states where eachfuture state depends only on the current state, and not on statesfurther in the past. By training an HMM on an observation sequence, wecan obtain the probability of the transitions between each hidden stateand probability distributions for the observations, based on thosehidden states. A generic HMM is illustrated in Fig. 2.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Hidden Markov modelIn Fig. 2, the matrix A drives the Markov process for the hiddenstates, while the matrix B probabilistically relates the hidden states tothe observations . The HMM notation is summarized in Table 1.
Table	1 HMM notation
Notation Description

T Length of the observation sequence
N Number of states in the model
M Number of observation symbols
Q Distinct states of the Markov process,
V Possible observations, assumed to be
A State transition probabilities
B Observation probability matrixInitial state distributionObservation sequence,

Applications of HMMs are extremely diverse, but for our purposes,two relevant uses are English text analysis and speechrecognition [28]. Other applications of HMMs range from classic

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

cryptanalysis [30] to malware detection [7, 29]. In this research, we useHMMs for both Chinese word segmentation and for emotionclassi�ication.
2.2.2	 Word2VecWord2Vec has recently gained considerable popularity in naturallanguage processing (NLP) [18]. This word embedding technique isbased on a shallow neural network, with the weights of the trainedmodel serving as embedding vectors—the trained model itself servesno other purpose. These embedding vectors capture signi�icantrelationships between words in the training set. Word2Vec can also beused beyond the NLP context to model relationships between moregeneral features or observations.When training a Word2Vec model, we must specify the desiredvector length, which we denote as N. Another key parameter is thewindow length W, which represents the width of a sliding window thatis used to extract training samples from the data.Certain algebraic properties hold for Word2Vec embeddings. Forexample, suppose that we train a state-of-the-art Word2Vec model onEnglish text. Further, suppose that we let
and we de�ine to be the Word2Vec embedding of word . Thenaccording to [18], the vector is closest to
where “closeness” is in terms of cosine similarity. Results such as thisindicate that in the NLP context, Word2Vec embeddings capturemeaningful aspects of the semantics of the language.In this research, we train Word2Vec models Chinese text. Thesemodels are then used for sentiment analysis of Weibo tweets.
2.2.3	 XGBoostBoosting is a general technique for constructing a stronger classi�ierfrom a large collection of relatively weak classi�iers [6]. XGBoosttypically uses decision trees as the base classi�iers. To generate our

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Separating	hyperplane

Maximize	the	margin

Work	in	higher	dimensional	space

Kernel	trick

models, we use the XGBoost package in Python. With thisimplementation, it is easy to analyze the signi�icance of each individualfeature relative to the overall model, and thus eliminate ineffectivefeatures.
2.2.4	 SVMIn [2], support vector machine (SVM) is described as “a rare example ofa methodology where geometric intuition, elegant mathematics,theoretical guarantees, and practical algorithms meet.” The essentialideas behind SVMs are the following. —We seek a hyperplane that will separatetwo labeled classes. —We want to �ind hyperplane that maximizesthe “margin” between two classes, where margin is de�ined as theminimum distance. —By shifting the problem to ahigher dimensional space, there is a better chance that we can �ind aseparation hyperplane, or separating hyperplane with a larger margin.—Perhaps surprisingly, we are able to work in a higherdimensional space without paying any signi�icant penalty with respectto computational complexity. This is a powerful “trick” and is the keyreason why SVM is one of the most popular machine learningtechniques available.In this research, SVM serves as a comparison to XGBoost for trolldetection. We �ind that XGBoost performs better on one of our datasets,while SVM is superior on another dataset.
2.3	 Evaluation	MetricWe use accuracy as the primary measure of success for all of ourclassi�ication experiments. The accuracy is computed as

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

where TP is number of true positive cases, TN is true negatives, FP isfalse positives, and FN is the number of false negatives. Accuracy canbe seen to simply be the ratio of correct classi�ications to the totalnumber of classi�ications.Finally, we note that cross-validation is used in all of ourexperiments. Cross-validation is a popular technique that serves tosmooth any bias in the data, while also maximizing the number ofdatapoints. Speci�ically, we employ �ivefold cross-validation.
3	 Related	WorkRelated work in sentiment analysis includes [36], where a combinationof emotional orientation and logistical regression is used to analyzeAmazon.com reviews. By �iltering the training dataset by text length,vocabulary complexity, correlation with the product, sentimentsimilarity, and transition words, the proposed model achieved 91.2%accuracy. For the problem of fake Weibo tweet detection—as opposedto the troll detection we consider in this research—an XGBoost modelbased on user activity achieved 93% accuracy in [17].From our review of the literature, it appears that only [24] appliessentiment analysis to the troll detection problem. The work in [24]applies domain adaptation techniques to a recursive neural tensornetwork (RNTN) sentiment analysis model to detect trolls that postrepetitive, destructive, or deceptive comments. This previous workachieves 78% accuracy. The results in [24] serve as a baseline for ourresearch.Sentiment analysis is widely used for mining subjectiveinformation in online posts. In [14], Kim, et al., use hidden Markovmodels with syntactic and sentiment information for sentimentanalysis of Twitter data. This differs from classic approaches that use
n-grams and polarity lexicons, as they group words based on similarsyntactic and sentiment groups (SIG), then build HMMs, where the SIGsde�ine the hidden states. Zhao and Ohsawa [37] propose a two-dimensional HMM to analyze Amazon reviews in Japanese. For ourpurposes, this work illustrates an important method for convertingsegmented Japanese text into word vectors using Word2Vec. Feng andDurdyev [10] implemented three types of classi�ication models (SVM,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

XGBoost, LSTM) for the aspect-level sentiment analysis of restaurantcustomer reviews in Chinese. According to the research in [10], LSTMyields better F-1 scores and accuracy, as compared to SVM andXGBoost. Further related research can be found in Liu et al. [15], whichuses a self-adaptive HMM.Troll detection based on user characteristic data is considered inZhang et al. [11]. In this paper, Weibo troll detection is based on aBayesian model and genetic algorithm. The proposed techniqueincludes novel features (as compared to previous work) such as theratio of followers, average posts, and Weibo credibility, and achieves anaccuracy of about 90%.Liu et al. [17] use XGBoost to detect fake Weibo posts based onfeatures such as a user’s number of posts, description, gender,followers, and reposts. The authors attain an accuracy of morethan 95%. Both [11] and [17] use data beyond Weibo post text itself,and achieve good results. This previous work serves as inspiration forsome of the features considered in this paper.The special interest group for Chinese language processing(SIGHAN) of the Association for Computational Linguistics organizescompetitions for Chinese word segmentation. In the �irst SIGHAN bake-off event in 2003, Zhang et al. [35] proposed a word segmentationapproach using hierarchical HMMs to form a Chinese lexical analyzer,ICTCLAS. In 2005, Masayuki et al. [1] presented three wordsegmentation models, including a character tagging classi�ier based onsupport vector machines (SVMs) that also used maximumexpropriation Markov models and conditional random �ields. Thesemodels were based on previously proposed methods, with a differentcombination of out-of-vocabulary (OOV) extraction techniques beingused.In general, for Chinese word segmentation, character-based modelsperform better than word-based models. Wang et al. [33] highlightedthat OOV techniques for word extraction perform poor for in-vocabulary (IV) words. They proposed a generative model thatperforms well on both OOV and IV words, and achieved good results onthe popular SIGHAN datasets. Chen et al. [5] report the use of Gibbssampling in combination with both word-based hierarchical processmodels and character-based HMMs. Their solution achieved better

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

performance (in terms of score) than the state-of-the-art models atthat time.
4	 DatasetsWe acquired data and generated additional data for the various parts ofthis research. We have Chinese segmentation data, sentiment analysisdata, data consisting of Weibo comments, and user data correspondingto the Weibo comments data. This data is split into three datasets,namely, a Chinese segmentation dataset, a sentiment analysis dataset,and a troll detection dataset. Next, we discuss each of these threedatasets.
4.1	 Chinese	Segmentation	DatasetFor Chinese sentence segmentation, we acquired the dataset used inthe SIGHAN 2005 Competition for Chinese sentence processing [9].This dataset includes training, testing, and validation data. The trainingdata consists of approximately 860,000 segmented Chinese sentences.Most of these sentences are from newspapers and published books.The test set includes about 22,000 unsegmented sentences fromsimilar sources, while the validation set contains the segmentation ofall of the sentences in the test set. Table 2 gives additional statistics forthis dataset.
Table	2 Chinese segmentation dataset (SIGHAN 2nd Bakeoff 2005)
Source Training TestingAcademia Sincia 708,953 14,432Peking University 19,056 1,944City University of Hong Kong 53,019 1,492Microsoft Research Asia 86,924 3,985We consider the character-based generative model proposedin [32]. In this model, the features from the training data consist of thepositions of each character in each segmented word. The beginningcharacter in each segment is marked as B, any middle character or

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

characters are marked as M, and the ending character is marked as E.On the other hand, all one-character words are marked as S.For example, consider the sample Chinese sentence in Fig. 3, whichincludes the correct segmentation for this sentence. Table 3 gives thestates corresponding to the sentence in Fig. 3.

Fig.	3 Sample Chinese sentence segmentation
Table	3 State sequence for Chinese sentence

4.2	 Sentiment	Analysis	DatasetFor sentiment analysis, we use the sentiment training dataset from thePython SnowNLP package [34]. This particular dataset includes 16,548sentences with positive sentiment and 18,574 with negativesentiment. The source for this dataset is Chinese online shopping,movie, and book reviews. However, this data might not accuratelyrepresents tweets and comments appearing in Weibo.Since there is no public datasets for Weibo, we crawled about 5million Sina Weibo posts to obtain additional data for our sentimentmodel. This data includes terms and slang that are commonly seen onWeibo. From this data, we created a collection of 2,325,644 sentenceswith positive sentiment and 960,899 sentences with negativesentiment.From all of our Weibo crawled data, we manually extracted 500tweets for each of the six emotions of interest, namely, happiness,surprise, fear, anger, disgust, and sadness [3]. This data will be used totrain an HMM for each emotion.We process each comment using the Pandas package in Python toremove stop words, numbers, nonsense emoji, and single-wordcomments. A language detection method was implemented to detect

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

MI

CHI

TF-IDF

non-Chinese comments and translate English comments into Chineseusing the Translator package in Google Translate. We eliminate allcomments that are in languages other than Chinese and English, whichresults in a negligible loss of data. In addition, we removed purereposts and tagging that is not relevant to our analysis.For positive and negative sentiment analysis, we used theWord2Vec embedding method. The resulting embedding vectorsenable us to calculate a word sentiment score, after segmenting aWeibo comment into a list of word. For sentiment analysis (based onsix basic emotions), we use the features introduced in [15], which arethen used to train HMMs for sentiment classi�ication. These featuresare mutual information, distance, and term frequency inversedocument frequency, which are de�ined as follows. —Mutual information (MI) is based on correlations between twoterms. In this research, MI is used to determine the relevance betweenwords and emotions. The formula for MI representing the correlationbetween emotion e and text t is given by
— We use a distance measure (CHI) to quantify thedependence between emotion e and text t. The higher the CHI value,the more dependent the text t is on the emotion e. We calculate CHI as

where A is the prevalence of word t in comments with emotion e, B isthe prevalence of word t in comments with emotions other than e, C isthe absence of word t in comments with emotion e, D is the absence ofword t in comments with emotions other than e, and N is the totalnumber of comments.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

—Term frequency inverse document frequency (TF-IDF) wasoriginally developed to extract keywords from text, for purposes suchas indexing. We use TF-IDF to determine keywords with respect to thevarious emotions under consideration. We compute the TF-IDF as
where is the number of times word t appears in a comment withemotion e, N is the total number of comments, and is the number ofcomments in which the emotion e appears.
4.3	 Troll	Detection	DatasetAfter some initial experiments, we realized that there are limitations tothe features speci�ied in [15, 24]. Therefore, we introduced more userinformation related features that we obtained by mining Weibocomment data. When crawling the Weibo data, we use the JavaScriptobject notation (JSON) packet returned from representational statetransfer (REST) calls to the Weibo mobile site [27], which includesuser-related information. Typical operations under the REST APIinclude GET, POST, UPDATE, and DELETE. We extract the userinformation listed in Table 4. We also include a small dataset of 673normal users and 75 trolls from a Kaggle data source [16].
Table	4 List of user-related information from comment data
Field	Name Dataset Description

uid UID Unique User ID for User Account in Weibo
screen_name Username Displayed User Nickname
followers_count Follower User’s follower count
follow_count Following User’s following count
status_count Original_post User’s original composed tweet count

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Field	Name Dataset Description

urank User_rank User’s rated rank by user activity in Weibo
verified Veri�ied Whether user is veri�ied celebrity or business
description Description User’s own description in headline
like_count Like_count Like count of this comment
floor_number Floor_number Location where the comment is at
text Comment Comment contentAll user information and corresponding comments are grouped byoriginal tweet ID and stored in CSV format. One CSV �ile contains all ofthe comments regarding one tweet, and each entry represents all of theinformation listed in Table 4. We selected eight tweets with a totalof 31,980 comments from Sina Weibo accounts belonging primarily tobusiness owners and celebrities. The detailed tweet information andstatistics for this dataset are listed in Table 5.
Table	5 Statistics of troll detection tweets and comments crawled from Weibo
	 Tweet	ID User	details Number1 44275283 LeEco CEO YT Jia declared bankrupt 8122 44317480 Actress Yiyan Jiang volunteered teaching in rural 8293 44564209 Yong actress Zi Yang suspected done plastic surgery 3354 44718878 Reporting fraud in singer Hong Han Foundation receiving donation 12105 44651702 Singer Hong Han Foundation donation to Wu Han Coronavirus battle 33796 44650056 Criticism of multiple celebrities’ donation to Coronavirus battle 8147 43961306 Suspected breakup of Han Lu and Xiaotong Guan (Actor/ress) 83718 43961306 Han Lu and Xiaotong Guan (Actor/ress) showoff their same sweatshirt 16,230We manually labeled the data for rows 1, 2, 3, and 6 in Table 5 astroll or non-troll by examining the content of each comment.Combining these results with fake account data from [16], we haveabout 3500 comment entries for our initial training and testing datafor the troll detection model. This manual labeling is extremely tedious.To accelerate this process, we created a bot based on Selenium [25] tohelp open each user’s Weibo page based on the UID that we providefrom the dataset.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To extract features from the data listed in Table 4, we use PythonPandas [20] and Numpy [19]. Some of the available features proved tobe of little use, and these were dropped, as discussed below. In order tohave better features for our models, we also perform some featureengineering. For example, we note whether users provide a self-description or not.Features such as follower count, following count, and the number oforiginal composed tweets clearly have a high signi�icance in ouranalysis. However, we found that building models with quantitativenumbers from these categories biases the model, due to the largedifferences across users. Weibo users typically only follow a fairly smallnumber of accounts, while troll users typically follow a large number ofaccounts. Therefore, we dropped the follower and following count inthe raw dataset and instead compute the ratio of following to followerand use this as a feature. Similarly, we introduce a feature consisting ofthe ratio of original posts to followers to help identify troll users, whooften make a large number of posts without a commensurate increasein their follower count—we use this engineered feature in place of thecomposed post feature from the raw data.
Table	6 Features considered for troll detection model
	 Feature Description SourceF0 follower Follower count Crawled WeibodatasetF1 following Following count Crawled WeibodatasetF2 original_post Number of original tweets Crawled WeibodatasetF3 urank Rank by user activity in Weibo Crawled WeibodatasetF4 verified User certi�ied or not Crawled WeibodatasetF5 like_count Like count for a comment Crawled WeibodatasetF6 floor_number Comment location Crawled WeibodatasetF7 description Self-description (1 or 0) Engineered feature

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

	 Feature Description SourceF8 freqComment Frequent comments Engineered featureF9 ffRatio following divided by follower Engineered featureF10 foRatio original_post divided by
follower

Engineered feature
F11 sentiment Comment sentiment score (0 to 1) Engineered featureF12 diffOriginalSenti sentiment minus sentiment of original Engineered featureF13 happy Happiness score (0 to 1) Engineered featureF14 sad Sadness score (0 to 1) Engineered featureF15 anger Anger score (0 to 1) Engineered featureF16 disgust Disgust score (0 to 1) Engineered featureF17 fear Fear score (0 to 1) Engineered featureF18 surprise Surprise score (0 to 1) Engineered featureWhen crawling Weibo, we noticed that some users frequentlycomment on the same tweet rather than replying to other commentsunder a tweet. Therefore, we select users who have more than onecomment under a tweet, and we count the comments made for eachsuch user. Then, we computed the median of these comment counts.Following this approach, a “frequent comment” feature is generatedbased on users who made more comments than the median number.We have a total of 19 features that we use in our XGBoost model.One of the engineered features related to the sentiment score isdenoted as diffOriginalSenti. This feature is the score for acomment minus the sentiment score of the original tweet. Table 6 liststhe complete set of features that we obtain by combining sentimentanalysis result and user information data in Table 4.We would like to maximize our troll detection accuracy whileminimizing the number of features needed. To achieve this, we performfeature analysis in order to rank the signi�icance of features, so that wecan drop features. This feature reduction process is discussed inSect. 5.5.
5	 Implementation	and	Results

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this section, we give our results. First, we discuss the Weibo crawlerthat we have implemented. Then, we consider our Chinese wordsegmentation results, followed by our emotion classi�icationtechnique, both of which are based on hidden Markov models. Then, weconsider our Word2Vec-based sentiment score and our XGBoost andSVM-based troll detection results. We conclude this section with adiscussion of a Chrome extension that implements this troll detectionsystem.
5.1	 Weibo	CrawlerAs mentioned above, in order to have suf�icient training and testingdata, we developed a crawler to obtain such data directly from theWeibo platform. Our crawler extracts posts, comments, and userinformation.To extract posts, the crawler certain considers a number of tweetsunder speci�ic Weibo accounts. Note that Weibo tweets are similar toTwitter tweets, in that users can retweet other users’ posts to theirown Weibo account. The crawler disregards retweets and only keepsoriginal posts.Comment crawling is used to obtain additional information relatedto posts. Most comments contain repetitive messages and includeusername and hash-tags. We remove this extraneous data with thePython Panda Dataframe function before pipelining the comments intothe word segmentation stage. Also, it is very common to see bilingualcomments in Weibo, where most of the text is Chinese, but someEnglish is included. Therefore, we incorporate a language detectionmodule extended from the Google language library, which uses naı̈veBayes to �ilter and translate English to Chinese.Our comment crawler works on Weibo mobile [27] data, where thetweets and comments page are slightly simpli�ied. The crawler makesHTTP requests such as
which yields JSON data from the Weibo platform containing commentsrelated to the speci�ied tweet.1 We parse the resulting comment datacontained in the JSON packet to extract all of the raw data, includinguser information and comment content using the BeautifulSoup

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

package in Python [22]. After all of the entries have been collected, theyare saved into a CSV �ile, organized by tweet. Feature extraction andmodel training are based on these CSV �iles.
5.2	 HMM	for	Chinese	SegmentationAs illustrated in Table 3, when segmenting a Chinese sentence, weconsider four states, namely, B for begin, M for middle, E for end, and Sfor single. Thus, we train an HMM with four hidden states. Theobservation sequence consists of Chinese characters in the trainingdataset, and the hidden states correspond to B, M, E, and S. It followsthat the hidden state transition matrix of the HMM is and of theform

(1)
We implemented this HMM-based Chinese text segmentation, which issimilar to that in [32]. When training, the �irst character of eachsegmented word is marked as a beginning state (B). Then charactersare marked as middle states (M), until the last character is read, whichis marked as an end state (E), with any single-character words markedas such (S). The emission probability, the state transition probability,and the initial state probability are then used to update the statetransition probability matrix in (1). Subsequently, we use the trainedHMM to segment Weibo posts and comments line by line.
5.3	 HMM	for	Emotion	Classi�icationFor each word in a tweet or comment, we can calculate a three-dimensional vector based on its MI, CHI, and TF-IDF scores, asdiscussed in Sect. 4.2. After calculating the feature vectors for eachemotion, we obtain a mean value of each feature over all tweets labeledby each speci�ic emotion. This mean value is used as an observation.The transition feature between states and is computed as

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

where the HMM states correspond to the features MI, CHI, and TF-IDF. This determines how close a feature vector in the test tweet is tothose in the training set, with respect to the various emotions. Theemission probability
can be calculated by Jaccard similarity [13], which measures thecorrelation between the feature vector and the state , where is the total number of tweets containing feature vector and state with respect to emotion , is the number of tweets containingonly state with respect to emotion , and is the number oftweets containing only feature vector with respect to emotion .Table 7 gives an example of the relationship between threeconsecutive words , , and in a particular test case.
Table	7 Features for words , , and with respect to each emotion
Word Emotion MI CHI TD-IDFHappiness 0.0012 0.0247 0.0009Anger 0.0012 0.0247 0.0070Sadness 0.0015 0.0100 0.0450Surprise 0.0080 0.0220Disgust 0.0020 0.0470 0.0117Fear 0.2200 0.0700 0.0009Happiness 0.0167 0.0064 0.1045Anger 0.0247 0.0009

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Word Emotion MI CHI TD-IDFSadness 0.0200 0.0009Surprise 0.0012Disgust 0.0247 0.0009Fear 0.0012 0.0247Happiness 0.0012 0.0247 0.0009Anger 0.0012 0.0247 0.0070Sadness 0.0015 0.0100 0.0450Surprise 0.3693 0.0820Disgust 0.0526 0.0247 0.0008Fear 0.0012 0.0247 0.0007We train an HMM for each of the six emotions. Then, we score asample against each model, and assign an emotion to the tweet basedon the largest probability.
5.4	 Sentiment	Score	CalculationWe �irst construct a Word2Vec model based on the 35,124 onlineshopping reviews contained in the sentiment analysis datasetdiscussed in Sect. 4.2. Note that this Word2Vec model is based onsegmented Chinese text. We use the GenSim package in Python [31] totrain this Word2Vec model.Next, the resulting Word2Vec embeddings are used to assign asentiment score to segmented Chinese words, based on 3,286,543tweets that we crawled from Weibo. These sentiment scores aredetermined using naı̈ve Bayes. Speci�ically, we use naı̈ve Bayes tocompute
where represents the event that a word is positive and represents the event that a word is negative. Our sentiment score is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

computed as the product of and the word similarityscore computed using the Word2Vec model. The resulting score can beviewed as the probability of a word in a tweet being positive, where 0represents an extremely negative word, while 1 represents anextremely positive word. Figure 4 illustrates a sample sentiment scoredistribution for one of our training datasets. Note that this particularbar graph is based on the 812 comments corresponding to Weibotweet ID 44275293, as listed in Table 5. Figure 4 shows the sentimentscore frequency count distribution for all 812 comments with bracketsof width 0.02 over the range of 0 to 1.

Fig.	4 Sentiment score distribution for comments in Table 6, Row 1
5.5	 Troll	Detection	with	XGBoost	and	SVMOur troll detection model is based on XGBoost. We train our XGBoostmodels using Python under the Jupyter Notebook environment. Forthese XGBoosting troll detection models, we drop non-quantitativefeatures, which leaves us with the features listed in Table 8. Training anXGBoost model on all of these features, we achieve about 80%accuracy.
Table	8 Troll detection statistics crawled from Weibo
	 Feature DescriptionF0 follower Follower countF1 following Following count

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

	 Feature DescriptionF2 original_post Number of original tweetsF3 ffRatio following divided by followerF4 foRatio original_post divided by followerF5 urank User activity rank in WeiboF6 verified User certi�ied or notF7 description User’s self-description (1 or 0)F8 freqComment User comments frequently or notF9 like_count Like count for commentF10 floor_number Location of commentF11 sentiment Sentiment score of the comment (0 to 1)F12 diffOriginalSenti sentiment minus sentiment of originalRanking the features in this full-feature XGBoost model, we obtainthe results in Fig. 5. Note that F12 in Fig. 5 has a weight of 0, whichimplies that F12 (the diffOriginalSenti feature) contributednothing to the classi�ication.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 Initial XGBoost features rankingNext, we consider recursive feature elimination (RFE), where wedrop the lowest ranked feature, then retrain the model. Our RFE resultsare given in Fig. 6. We observe that the model improves when we dropthe two lowest ranked features, namely, F12 and F8, but beyond that,the model will lose accuracy if we drop additional features. Hence, ouroptimal XGBoost model uses all of the features in Table 8, except F8and F12. With this model, we achieve an accuracy of about 82%.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	6 XGBoost model accuracy versus numbers of featuresThe features used and their relative importance rank are given inFig. 7. Note that these are the features in the XGBoost model.

Fig.	7 XGBoost features and rankingsFor comparison with our XGBoost classi�ier, we also experimentwith an SVM classi�ier. We utilize the Python scikit-learn package [23]to train our SVM classi�ier. We compare the results of these SVMclassi�ication experiments to the XGBoost experiments, based over twodifferent datasets and various sets of features. Next, we summarizethese results.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

As discussed above, using XGBoost as our classi�ication method andRFE, we achieve an accuracy of about 82%. With some additionalfeature engineering, we were able to increase this troll detectionaccuracy to 83.64% on our Weibo crawled dataset, using only the threefeatures labeled as F9, F10, F11 in Fig. 7. In addition, using our SVMclassi�ier, we achieve 87.27% accuracy on the same dataset, based onthe same three features.As another experiment, we compare our XGBoost and SVM modelsusing the SnowNLP sentiment dataset for the sentiment scorecalculation. By using this training dataset for sentiment analysis, andwith the addition of features F3 and F6, the accuracy for XGBoostis 89%. However, with this same dataset and feature set, the SVMmodel achieves an accuracy of only 81.82%. These accuracy aresummarized in the form of a bar graph in Fig. 8.

Fig.	8 Comparison of XGBoost and SVM

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Our experimental results show that we can achieve an accuracy ashigh as 89%, which far exceeds the 78% accuracy obtained in thecomparable previous work in [24], and matches the accuracy in theprevious work [11]. A signi�icant advantage of our approach is that itonly requires a small number of easily obtained features, as comparedto any previous research. This makes our troll detection techniquehighly ef�icient, and thus suitable for real-time troll detection, asvalidated by the Chrome extension discussed in Sect. 5.6.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	9 Chrome extension employing troll detection model
5.6	 Chrome	Extension	for	Troll	DetectionSince our troll detection mechanism is written in Python, for real-timetroll detection on the Sina Weibo mobile website, we created a Chromeextension using HTML and JavaScript. In this extension, we pass theJSON packet with Weibo comment information to the back-end, whichis built on the Django framework [8]. This back-end implements ourtroll detection model, as discussed above. The overall work�low for theplug-in is summarized as follows.1. Run the crawler script against all the comments currentlydisplayed in the browser under one tweet and send the packet to aserver-side portal (currently running as localhost).
2. On the server-side, sort the essential user information andcomment text from the returned JSON packet, as generated by thecrawler.
3. On the server-side, run our sentiment analysis classi�ier againstthe comment text and acquire the text sentiment scores. 4. On the server-side, aggregate the sentiment scores and other userinformation, feed these into our troll detection model, and returnthe troll detection result to the client-side plug-in.
5. Modify the CSS style sheet for any detected troll comments byadding an orange background behind the text.

A screenshot showing this plug-in in action is given in Fig. 9. Notethat in this implementation, tweets and comments that have been�lagged as potential troll activity are blurred.
6	 Conclusion	and	Future	WorkThe widespread use of social media enables information transfer tooccur much faster than ever before. However, troll activities detract

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from the utility of social media. Trolls have a variety of motivations,ranging from deception to pro�its, and it is not likely that thesemotivating factors will diminish in the future. Therefore, intelligentdefenses against trolls are essential.In this research, we utilized a variety of machine learningtechniques to analyze comment content and user information on theSina Weibo platform. By conducting sentiment analysis and byincluding user data aggregation, we were able to ef�iciently identifytroll comments on Sina Weibo with higher accuracy, as compared toprevious work. We developed a Chrome extension that served tohighlight the practicality of our approach.For future work, more user data and other features can beconsidered. In addition, deep learning techniques that utilizesequential information, such as long short-term memory (LSTM)networks, could prove useful. The Chrome extension that we havedeveloped could be extended to support the Weibo desktop platform.
References1. Asahara, Masayuki, Kenta Fukuoka, Ai Azuma, Chooi-Ling Goh, Yotaro Watanabe, YujiMatsumoto, and Takashi Tsuzuki. 2005. Combination of machine learning methods foroptimum Chinese word segmentation. In Proceedings	of	the	fourth	SIGHAN	workshop	on

Chinese	language	processing.2. Bennett, Kristin P., and Colin Campbell. 2000. Support vector machines: Hype or hallelujah?
SIGKDD	Explorations 2: 1–13.[Crossref]3. Calvo, Rafael, and Sunghwan Kim. 2012. Emotions in text: Dimensional and categoricalmodels. Computational	Intelligence, early view.4. Chen, Miaohong, Baobao Chang, and Wenzhe Pei. 2014. A joint model for unsupervisedchinese word segmentation. Proceedings	of	the	2014	conference	on	empirical	methods	in
natural	language	processing, 854–863.5. Chen, Miaohong, Baobao Chang, and Wenzhe Pei. 2014. A joint model for unsupervisedChinese word segmentation. In Proceedings	of	the	2014	conference	on	empirical	methods	in
natural	language	processing, EMNLP 2014, 854–863, Association for ComputationalLinguistics, Stroudsburg.6. Chen, Tianqi, and Carlos Guestrin. XGBoost: A scalable tree boosting system. http:// arxiv. org/ abs/ 1603. 02754.7. Dhanasekar, Dhiviya, Fabio Di Troia, Katerina Potika, and Mark Stamp. 2018. Detecting

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1145/380995.380999
http://arxiv.org/abs/1603.02754

encrypted and polymorphic malware using hidden Markov models. In Guide	to	vulnerability
analysis	for	computer	networks	and	systems:	an	arti�icial	intelligence	approach, ed. SimonParkinson, Andrew Crampton, and Richard Hill, 281–299, Springer, Berlin.8. Django Python web framework. 2020. https:// www. djangoproject. com/ .9. Emerson, Thomas. 2005. The second international Chinese word segmentation bakeoff.https:// pdfs. semanticscholar. org/ 65e9/ 0d9f6754d32db464 f635e7fdec672fad 9ccf. pdf.10. Feng, Suofei, and Eziz Durdyev. 2018. Fine-grained sentiment analysis of restaurant customerreviews in Chinese language. http:// cs229. stanford. edu/ proj2018/ report/ 195. pdf.11. Huang, Yingying, Mengyi Zhang, Yuqing Yang, Shijie Gan, and Yanmei Zhang. 2016. The Weibospammers’ identi�ication and detection based on Bayesian-algorithm. In 2016	2nd	workshop
on	advanced	research	and	technology	in	industry	applications, WARTIA-16.12. Indiana University. 2018. What is a troll? https:// kb. iu. edu/ d/ a�hc.13. Jaccard, Paul. 1908. Nouvelles recherches sur la distribution �lorale. Bulletin	de	la	Societe
Vaudoise	des	Sciences	Naturelles, 44: 223–270.14. Kim, N.-R., Kyoungmin Kim, and Jong-Heon Lee. 2017. Sentiment analysis in microblogs usinghmms with syntactic and sentimental information. International	Journal	of	Fuzzy	Logic	and
Intelligent	Systems, 17: 329–336.15. Liu, Li, Dashi Luo, Ming Liu Liu, Jun Zhong, Ye Wei, and Letian Sun. 2015. A self-adaptivehidden Markov model for emotion classi�ication in Chinese microblogs. Mathematical
Problems	in	Engineering, 2015: 987189.16. Liu, Linqing, Yao Lu, Ye Luo, Renxian Zhang, Laurent Itti, and Jianwei Lu. 2016. Detecting“smart” spammers on social network: A topic model approach. In Proceedings	of	the	NAACL
Student	Research	Workshop, 45–50, Association for Computational Linguistics, San Diego, CA.17. Liu, Yixin, Xinhua Wang, and Wen Long. 2019. Detection of false Weibo repost based onXGBoost. In IEEE/WIC/ACM	International	Conference	on	Web	Intelligence, WI ’19, 97–105,ACM, New York.18. Mikolov, Tomas, Kai Chen, Greg S. Corrado, and Jeffrey Dean. 2013. Ef�icient estimation ofword representations in vector space. http:// arxiv. org/ abs/ 1301. 3781.19. Numpy. 2020. https:// numpy. org/ .20. pandas Python data analysis library. 2020. https:// pandas. pydata. org/ .21. Haiyun, Peng, Erik Cambria, and Amir Hussain. 2017. A review of sentiment analysis researchin chinese language. Cognitive	Computation 8: 423–435.22. Richardson, Leonard. 2020. BeautifulSoup Python package. https:// www. crummy. com/ software/ BeautifulSoup/ bs4/ doc/ .23. scikit-learn Python package. 2019. https:// scikit-learn. org/ stable/ .24.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.djangoproject.com/
https://pdfs.semanticscholar.org/65e9/0d9f6754d32db464f635e7fdec672fad9ccf.pdf
http://cs229.stanford.edu/proj2018/report/195.pdf
https://kb.iu.edu/d/afhc
http://arxiv.org/abs/1301.3781
https://numpy.org/
https://pandas.pydata.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://scikit-learn.org/stable/

1

Seah, Chun Wei, Hai Leong Chieu, Kian Ming A. Chai, Loo-Nin Teow, and Lee Wei Yeong. 2015.Troll detection by domain-adapting sentiment analysis. In 18th	International	Conference	on
Information	Fusion, Fusion 2015, 792–799.25. Selenium Projects. 2020. https:// www. selenium. dev/ projects/ .26. Sina-Entertainment. 2016. Weibo of Zi Yang dominated by troll. http:// ent. sina. com. cn/ s/ m/ 2016-11-03/ doc-ifxxneua4008428. shtml.27. Sina-Weibo. 2009. Weibo mobile site. https:// m. weibo. cn/ .28. Stamp, Mark. 2004. A revealing introduction to hidden Markov model. https:// www. cs. sjsu. edu/ ~stamp/ RUA/ HMM. pdf.29. Stamp, Mark and S. Venkatachalam. 2011. Detecting undetectable metamorphic viruses. In
Proceedings	of	2011	International	Conference	on	Security	&	Management, 340–345.30. Vobbilisetty, Rohit, Fabio Di Troia, Richard M. Low, Corrado Aaron Visaggio, and Mark Stamp.2017. Classic cryptanalysis using hidden Markov models. Cryptologia, 41(1): 1–28.31. R� ehu̇řek, Radim, and Petr Sojka. 2010. Software framework for topic modelling with largecorpora. In Proceedings	of	the	LREC	2010	Workshop	on	New	Challenges	for	NLP	Frameworks,45–50.32. Wang, Kun, Chengqing Zong, and Keh-Yih Su. 2009. Which is more suitable for chinese wordsegmentation, the generative model or the discriminative one? Proceedings	of	the	23rd	Paci�ic
Asia	Conference	on	Language,	Information	and	Computation, 827–834.33. Wang, Kun, Chengqing Zong, and Keh-Yih Su. 2009. Which is more suitable for Chinese wordsegmentation, the generative model or the discriminative one? In Proceedings	of	the	23rd
Paci�ic	Asia	Conference	on	Language,	Information	and	Computation, 827–834, City Universityof Hong Kong.34. Wang, Rui. 2018. SnowNLP Python package. https:// github. com/ isnowfy/ snownlp.35. Zhang, Hua-Ping, Hong-Kui Yu, De-Yi Xiong, and Qun Liu. 2003. HHMM-based Chinese lexicalanalyzer ICTCLAS. In Proceedings	of	the	Second	SIGHAN	Workshop	on	Chinese	Language
Processing, 184–187, Association for Computational Linguistics, Stroudsburg.36. Zhao, Jun, and Hong Wang. 2016. Detection of fake reviews based on emotional orientationand logistic regression. Journal	of	CAAI	Transactions	on	Intelligent	Systems 13: 336–342.37. Zhao, Xiaoyi, and Yukio Ohsawa. 2018. Sentiment analysis on the online reviews based onhidden Markov model. Journal	of	Advances	in	Information	Technology 9: 33–38.

FootnotesOne obstacle we encountered was a change in the Weibo mobile site at the beginning of 2020.To avoid being blocked when crawling a large number of comments, we were forced to modifythe crawler to use the “max_ID” property for the current comment page.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.selenium.dev/projects/
http://ent.sina.com.cn/s/m/2016-11-03/doc-ifxxneua4008428.shtml
https://m.weibo.cn/
https://www.cs.sjsu.edu/%257estamp/RUA/HMM.pdf
https://github.com/isnowfy/snownlp

 https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(1)(2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_23
Log-Based	Malicious	Activity	Detection
Using	Machine	and	Deep	LearningKatarzyna A. Tarnowska1 and Araav Patel2 The Department of Computer Science, San Jose State University,One Washington Square, San Jose, CA, USAThe Department of Computer Science, University of California atBerkeley, Berkeley, CA, USA
Katarzyna	A.	Tarnowska	(Corresponding	author)
Email:	katarzyna.tarnowska@sjsu.edu
Araav	Patel
Email:	araavp@berkeley.edu

AbstractThis chapter describes the application of intelligent computationaltechniques to the problem of malicious activity detection. It isproposed to embed machine and deep learning models for maliciousactivity detection into the framework of a log-based decision supportsystem (DSS) for information security administrators. It is expectedthat such a solution will enable organizational-wide protection ofinformational assets, by providing accurate and comprehensive real-time insights into violations of information security policies. In thiswork, we present experiments and results on database systems’ loganalysis using traditional machine learning (ML) methods and deeplearning (DL) on the synthetic log dataset simulating user activity in ahypothetical company.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_23
mailto:katarzyna.tarnowska@sjsu.edu
mailto:araavp@berkeley.edu

1	 IntroductionThe organization of the chapter is as follows. First, the backgroundinformation is presented: (1) the problem area of malicious activity,such as unauthorized access to data or con�iguration changes; (2)insider threats, such as masquerader-based attacks; (3) informationsecurity audit, including audit logging for security and compliance; (4)intrusion detection systems (IDSs), with the focus on host-based IDSand anomaly-based detection. The second section provides a review ofcurrent IDS solutions and research speci�ically for relational databasemanagement systems (RDBMSs). Section three describes the proposedmethods for anomaly detection in system event logs. Within theexperimental design, traditional ML approaches such as distance-based outlier detection and support vector machines (SVMs) arecompared with the DL method based on the sequential autoencodermodel. The fourth section presents and discusses the results. Examplesof detected incidents’ scenarios are presented. The chapter concludeswith a combined ML-DL approach, limitations, and future work tointegrate the models into the framework of DSS for the informationsecurity audit.
Data	security Data has become a valuable asset for mostcompanies. As such it has become important for companies to protectand manage this asset. Sensitive and con�idential data include personalrecords, medical records, company’s contracts, clients, �inancialtransactions, etc. On the other hand, we have seen a surge in data-targeted attacks. The consequences of data breaches are serious:lawsuits, �ines, loss of trust, reputation, and customer base. Accordingto the 2013 IOUG Enterprise Security Survey, the three greatest threatsto data security are (1) human error (77%), (2) internal hackers orunauthorized users (63%), and (3) malicious code/viruses (49%) [31].In the Kroll 2012 Global Fraud Survey, it is reported that 60% of fraudsare committed by insiders, increasing from 55% in the previous year[25]. Likewise, the 2012 Cybercrime report by PwC states that the mostserious fraud cases were committed by insiders [34]. Therefore, theproblem to be solved within this work is human malicious/insideractivity.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Secondly, the database is considered the most vulnerable layer(54%) surpassing the network (51%) and the server layer (51%) interms of the severity of potential damage [31]. On the other hand, mostIT resources are allocated to protect the network layer (65%), theserver layer (59%), and the database layer as third (57%) in terms ofbudget, staff time, etc. [31]. In this work, the focus is on theunderresourced, but most vulnerable—the database layer.Thirdly, data security is mandated by regulations, such as Sarbanes-Oxley-Act (SOX)—58%, local state/government data protection laws(49%), Health Insurance Portability and Accountability ActHIPAA/HITECH for healthcare electronic records (37%), PCI DSS forpayment card industry (30%), SAS 70 (18%), or Federal InformationSecurity Management Act FISMA (11%) [31]. The General DataProtection Regulation (GDPR) adopted by the EU in 2016 mandates anyorganization handling personal identi�iable information (PII) of EUcitizens to leverage security, auditing, and intrusion detectionmechanisms under heavy �ine for compliance failure.
Malicious	activity	detection Malicious	activity is the harmful actinitiated by trusted insiders, that is, users authorized to access anorganization’s network, system, or data. A malicious insider is de�inedas a current or former employee, contractor, or business partner whointentionally exceeded or misused that access in a manner thatnegatively affected the con�identiality, integrity, or availability of theorganization’s information or information systems [5]. Themotivations and behaviors of insider threats vary widely; however, thedamage of insiders can in�lict is signi�icant. Detecting compromiseduser accounts and insiders within the company who may havemalicious intent has become a key problem in enterprise security. In

masquerader	attacks, users hide their identity by impersonating otherpeople [46]. Such attacks became one of the most frequent forms ofsecurity attacks, including the database domain.
Log-based	audit	control A log	�ile is a �ile that records either eventsthat occur in an operating system or other applications. Logs arecomposed of log entries; each entry contains information related to aspeci�ic event that has occurred within a system or network [24].Almost every software generates logs, mostly for debugging purposes.The logs generated daily by software and hardware are in a massive

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

volume. It is challenging to keep track and analyze large heterogeneouslogs. Detecting and preventing cyber-attacks, which become even moresophisticated, require to generate a holistic view rather than analyzinglogs individually. The process of an information	security	audit is aformal check if the system is meeting security requirements as well assystem and organizational policies [33]. According to the NationalInstitute of Standards and Technology, audit	logs are records of eventsbased on applications, users, and systems, while the audit	trails involveaudit logs of applications, users, and systems. In many criticalapplications, such as in hospitals or banking, collecting audit trail isrequired by law [47]. The human inspection of audit information isgenerally tedious as well as time-consuming. While the traditionalaudit process is highly manual, performed by specialized auditors,there exist automated tools that support the information securityaudit. So-called security information and event management (SIEM)systems aggregate and analyze data. However, they use proprietary(non-standard) data formats and the analytics is limited to statisticalmethods. Moreover, they are complicated to deploy and expensive.
Intrusion	detection	systems Log analysis for intrusion	detection isunderstood as the process to detect attacks on a speci�ic environmentusing system logs as the primary source of information. A host-based

intrusion	detection	system (HIDS) is a system that monitors a computeron which it is installed to detect an intrusion and/or misuse andresponds by logging the activity and notifying the designated authority.HIDS monitors the system audit and event logs and noti�ies the systemadministrator accordingly with alert messages. The analysis of datacaptured by IDS should be preferably analyzed in real time (rather thanin batch-mode later). Intrusion detection approaches includestatistical modeling, data mining-based methods, signature analysis,rule-based systems, genetic algorithms, etc. The noti�icationmechanism based on anomaly	(outlier)	detection techniques has thecapability of detecting new or unknown attacks by using theclassi�ication techniques, as opposed to more traditional signature-based or rule-based detection.
Anomaly-based	detection An outlier is de�ined as an observationin a dataset that appears to be inconsistent with the remainder of thatset of data [22]. Anomalies are de�ined as events that deviate from the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

standard and happen rarely. These are patterns in data that do notconform to expected behavior or do not “follow the rest of the pattern”[6]. In anomaly-based approaches, malicious activity is detected as adeviation from the normal behavior of the users in the systems. Itsbene�it is in detecting unknown intrusions. The models analyze currentsessions and log entries by comparing them against the pro�ilerepresenting a normal behavior. If a deviation is found during thecomparison, the noti�ication is sent to the information securityauthority. The “normal” behavior is modeled using either supervised orunsupervised techniques [7]. Supervised learning builds a predictivemodel based on the instances labeled as normal and as an anomaly, butthe problem is that anomalous instances are usually few in the real-world datasets. Machine learning algorithms designed speci�ically foranomaly detection tasks are isolation forests, DBScan, one-class SVMs,elliptic envelopes, the local outlier factor, and others. These methodsare rooted in traditional machine learning. A common problem is ahigh rate of false positives and over-�itting the “normal” pro�iles. Thereis a trade-off between relaxing these margins and a higher rate ofmissed attacks. Therefore, �ine-tuning the anomaly detection modelsto �ind the optimum threshold is problematic.
Database	systems	security Database	systems are systemsdesigned to store and manage data effectively. Database intrusion isunderstood as any activity that violates data integrity, data

con�identiality, or data availability. Traditional database securitymechanisms offer basic security features such as authentication,authorization, access control, data encryption, data masking, andauditing. These methods are not suf�icient to guarantee data security,especially guard against malicious data access, as they were mostlydesigned to prevent intrusions, not to detect them. These databasesecurity mechanisms need to be complemented by suitable IDmechanisms to address especially the problem of insider threats. Thegoal of the intrusion detection, as a “second line of defense”, is tominimize the harm done by malicious activity by early detection andnoti�ication. Most log-based IDS have been designed for network-basedintrusion detection [4, 37, 50, 56].Although a database management system (DBMSs) is a vulnerableIT system layer that contains sensitive information, to date, there have

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

been few ID mechanisms proposed that are speci�ically tailored tofunction within a generic DBMS. IDS designed for operating systems ornetwork are not suitable for protecting DBMS against insider threats.These are more dif�icult to defend against, as they come from subjectsthat are legitimate users of the system.

Fig.	1 The design of the decision support system for information security administrator, with thelog-based application monitoring the activity of the system users, including high-privilegedsystem users, such as administratorsThe malicious user threat can come from the high-privilegeddatabase administrator (DBA) accounts. Within this research, it isproposed to gather cross-organizational and cross-system user eventsdata and apply intelligent computational techniques to detect andnotify about security incidents. IDS noti�ications should be provided to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the Information Security Administrator, who oversees ITsystems/database administrators (see Fig. 1).
2	 Related	Work
Machine	Learning	methods	for	Intrusion	Detection	Systems Priorwork on IDS systems recommends a machine learning approach ratherthan a rule-based due to the increased ef�iciency, scalability, and thegeneralization in contrary to over-�itting.A sample rule-based approach to host-based IDS for log analyticswas described in [35]. A framework for time-series based patternmining for anomaly detection was proposed in [12].Research on IDS for DBMS proposes employing both unsupervisedand supervised ML methods. The major drawback of the supervisedmethods is that they require to work with labeled data. Traditionalclassi�ication architectures are not suf�icient for effective anomalydetection. As they are not meant to be used in an unsupervised manner,they do not handle well severe class imbalance and, therefore, struggleto correctly recall the outliers. Work in [23] uses clustering torepresent normal user behavior and outlier detection techniques toidentify behavior that deviates from these pro�iles. The COBWEBclustering method with SQL query mining was used in [44] todetermine deviations from normal pro�iles. A multi-stage log-analysisapproach based on Kibana for pattern-matching and Bayes Net for MLwas proposed to detect SQL-injection attacks in [32]. The research in[21] proposed protecting databases from internal and external attacksusing a hidden Markov model (HMM); however, having onlyinformation on known attacks, the system left the database vulnerableto novel intrusions. The problem of masquerade detection was tackledwith pro�ile hidden Markov models (PHMMs) based on user-issuedUNIX commands in [20]. One-class SVM (OCSVM) was proposed foranomaly detection of user behavior for the database security audit in[27]. The same method was applied for detecting anomalous windowsregistry accesses in [17]. Windows event logs were pre-processed andanalyzed using statistical methods based on standard deviation in [11].A singular value decomposition (SVD)-based algorithm for user andentity behavior analytics within an intelligent platform for malicious

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

activity is described in [48]. Naive Bayes classi�ier was used in [8] toevaluate the legitimacy of a database transaction represented as ahexplet data structure constructed from SQL queries. They alsoproposed binding all the queries of the same transaction in onebehavior to reduce the false positive, similarly as in [19]. Work in [49]utilized Naive Bayes classi�ier and maximum aposteriori probability todetect intrusions. The relevant features were extracted from a parse-tree representation of SQL commands. A system called DBSAFE,designed in [43], uses database audit log �iles to train a hybrid binaryclassi�ier and Naive-Bayesian classi�ier model for pro�iling normalusers. Predetermined policies are added for automated responses todetect intrusions. Work in [40] proposed an IDS based on the randomforests (RF) method with weighted voting to balance the impact ofeach tree. RF is graph-based and can be used for modeling SQL queries.K-means algorithm was applied in [38] to recognize anomalousbehavior in a dataset with email noti�ication; however, without thecapability to analyze incoming log entries in real time. Big data-basedIDS categorizing logs in real time as either high, medium, or low inseverity was described in [36].Work in [39] attempts to compare the performance of different datamining techniques (such as KNN, ANNs, SVMs, J48 decision trees,multilayer perceptions, random forest) and different feature selectionmethods to detect database anomalous behavior. The anomalydetection solution presented in [51] is DBMS-speci�ic (MS SQL Server).A general ID solution is needed to accommodate different types ofDBMSs that exist within the enterprise infrastructure. Work in [54]attempted a generic and customizable approach for databaseexploitation detection using reinforcement learning in conjunctionwith neural network and association rule mining.
Deep	Learning	for	Intrusion	Detection Although deep learning(DL) is a subset of machine learning, it is a newer and more complexway of learning than the norm [2]. DL allows quick detection of attackswithout having to retrain the entire model for incoming log entries[13]. The application of an arti�icial neural network (ANN) for theuser’s behavioral analysis system was proposed in [1]. A general-purpose framework for online log anomaly detection and diagnosis in[10] utilized long short-term memory (LSTM) network and self-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

adaptation. The authors used natural language processing by handlinglog entries as sequential elements that followed patterns and rules.However, it proved somehow dif�icult to analyze the entire logmessages from different systems. A stacked LSTM network for anomalydetection in times series was described in [30]. A hybrid LSTMautoencoder model was used in [15] for anomaly detection inapplication log data. The authors also provided a comparison of itsaccuracy and generalization with unsupervised ML methods, such asKNN and K-means. Autoencoders with nonlinear dimensionalityreduction for anomaly detection tasks were proposed in [42], whichdemonstrated that autoencoders are able to detect subtle anomalies.Current insider attacks are becoming more sophisticated, andanomaly detection that includes logs from different layers of IT system(OS, database, application) can provide the most accurate insights andevent correlation analysis. For example, an attempt to analyze andcorrelate events from different system layers (OS, kernel, application,and web application data) within host-based IDS was proposed in [53].A multifaceted and comprehensive approach to a cyber defense systemthat utilizes the biological immune system was described in [9]. Visualtechniques have the potential to enhance machine learning fordecision-making about potential threats [26, 52].
3	 MethodsThis research attempts to develop a cross-platform approach tointrusion detection based on machine and deep learning methods. Thegoal is to identify unexpected access patterns by authorized users,including masqueraders. This work proposes mining database auditlogs with the goal of detecting violations of access control. We considera DBMS layer that implements role-based access control (RBAC) model[45]. Under this model system permissions are associated with roles,grouping several users, rather than with single users. Since RBAC isstandardized and adopted in various DBMS products, the proposed IDSsolution is generic. Both traditional machine learning and deeplearning methods are employed to model normal database accessbehavior using audit-log data with the goal of recognizing intruders.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.1	 Solution	DesignThe architecture for the proposed log-based IDS system supportinginsider threat detection consists of the following components (seeFig. 2):

Fig.	2 The proposed log-based anomaly detection system for malicious user activity within the ITenterprise infrastructure (here, Project Management, and Sales systems). Deep learning methodsare proposed to learn “baseline” user behavior and detect deviations, which will result in notifyingInformation Security Of�icerLog aggregation—log �iles from different IT systems and different ITlayers are aggregated into one central repository.Log data pre-processing and feature extraction—data is pre-processed accordingly for anomaly detection models.Modeling user behavior/pro�ile—using deep learning models, whichwill be updated periodically.Anomaly detection and alerting—comparing the current pro�ile withthe base pro�ile to detect statistical deviations. Correspondingnoti�ications are generated and sent as an alert to the securityadministrator.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.2	 User	Behavior	ModelingUsers’ behavior within systems can be tracked over time using the logtrail. These datasets can be used to learn a baseline pro�ile of the user’sbehavior. Any deviations from this behavior can be �lagged as potential
anomalies that warrant further investigation. Within this research, wepropose to compare traditional ML with novel deep learning (DL)techniques. They will be applied to system log datasets including audittrail and operating system event logs to identify anomalous behaviorof users. There are two approaches to anomaly detection:Historical baseline—the user’s behavior is compared to its ownbehavior in the past.Peer baseline—the user’s behavior is compared to users with similarroles/ privileges in the systems (“peers”).
User	behavior is de�ined as follows. First, the time-granularity forbehavior analytics has to be de�ined (hourly, daily, weekly, etc.). Eachlog entry is described by timestamp with precision up to seconds, andthis timestamp feature will be used to derive granularity. Secondly,content features of the logs, such as the command itself, or data objectsinteracted with, are used for analysis.
3.3	 Anomaly	DetectionWe propose two methods for anomaly detection:1. Traditional machine learning—distance-based—ML method basedon the distance metric, and support vector machines (SVMs)algorithm.
2. Deep learning-based—learning normal user behavior witharti�icial neural network (ANN) based on the autoencoder modeland using it to detect anomalous behavior.

Support vector machines (SVMs) are being applied to anomalydetection in the one-class setting, that is, using one class to learn aregion that contains the training data instances (a boundary). Kernels,such as radial basis function (RBF) kernel, can be used to learn complexregions. If a test instance falls within the learned region, it is declaredas normal, else it is declared as anomalous.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The DL methods can be particularly useful in user modelingbecause of its ability to self-learn and to adapt. The input to ANN willbe encoded data about the user actions. Autoencoders will be used asmodels of an arti�icial neural network model for the task of anomalydetection. Autoencoders are a type of unsupervised neural networkthat accepts an input set of data, compresses the data into a latent-space representation (an encoder), and reconstructs the input datafrom the latent representation (a decoder). These types of ANN areversatile because they learn compressed data encoding in anunsupervised manner [2]. They can be implemented ef�iciently bytraining one layer at a time. Autoencoders are well-suited for theanomaly detection problem. Namely, mean squared error (MSE), whichmeasures the reconstruction loss, can be also indicative of an anomaly.Autoencoder is expected to minimize MSE on the trained data, but forunexpected or anomalous data, which the model has never has seen, itwill yield higher MSE. If the MSE of the reconstruction is high, thenlikely the data instance is an outlier and in our case, an anomaly.
3.4	 ScenarioThe dataset of the generated system logs simulates system useractivity in a medium-sized hypothetical company, which specializes inweapon production. The case study is described in more detail in [41,52]. The classi�ied information is related to products, clients, andorders. Sensitive information includes sales data, and HR data, such asemployee data. Two sample database systems were designed anddeployed to simulate enterprise infrastructure in the consideredcompany. It includes systems for project management (PM) and Salessystem, both running on Oracle 11g DBMS. The company employs arole-based access model to restrict access to data objects according tothe job role. Each user is assigned role corresponding to their jobfunction, for example, Project Manager, Developer, Human Resources,System Administrator. Each role is assigned privileges to read ormodify corresponding data objects, such as Employees, Payments,Products, and Projects tables. There are 18 users, 8 roles, and 14objects (tables) in the PM database system, and 16 users, 10 roles, and5 tables in the Sales system.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.4.1	 Logging	ElementsLog entries generated for the described scenario contain the followingelements:
System’s name—host name, system component, or resource;The command’s content;The type of operation (i.e., login, read, write, delete);
Object—the resource on which operation performed (i.e., identity orname of affected data, component, such as DB table);The user performing the operation (i.e., user ID);
Result	status—if the operation was successful or not;
Date/Time—stamp consisting of day-month-year and hour-minutes-second.Sample log entries, related to insider threats, are presented in Table1. In sample log 1, the masquerader is executing a malicious procedurein the database from the privileged System account. In Sample log 2,the malicious employee is attempting to perform an illegal operation ofincreasing its own salary. In Sample log 3, the attacker is trying toobtain the database SID in the OS-level command. All these operationswere taking place outside of normal business hours (9–17).

Table	1 Sample log entries generated by simulating malicious user activity in the source systems.Audit trail includes the following information: the system’s component, the command’s content,type of operation, object, and subject (user) involved in the operation, its result, and timestamp
Attribute Sample	log	1 Sample	log	2 Sample	log

3System PM-Oracle Sales-Oracle Sales-LinuxCommand execdbms_session.set_sql_trace(true); update Admin.Employees set “Salary” where “Employee” ‘Skala Peter’ EchoORACLE_SID
Operation execute procedure UPDATE N/AObject dbms_ session PMO.EMPLOYEES N/AUser SYSTEM PSKALA RootResult Successful Unsuccessful SuccessfulDate 2/13/20 4/12/2020 11/30/2020Time 20:45:00 17:37:01 2:12:45

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4	 ExperimentsThe preliminary experiments on the dataset described in Sects. 3.4 and4.1.1 were conducted on distance-based outlier detection inRapidMiner. The second series of experiments involved supervisedmachine learning based on SVM (in Python scikit-learn) andunsupervised deep learning models (in Python Tensor�low). Theseinvolved generating a synthetic dataset of train and test data generatedin Python and described in more detail in Sect. 4.2.1. The results of eachexperiment are presented and discussed in the next sections.
4.1	 Distance-Based	Outlier	DetectionThe experiments on distance-based outlier detection were conductedusing RapidMiner. The effectiveness of the approach was measuredwith common metrics for an IDS, including the rate of false positives,false negatives, and accuracy [3].
4.1.1	 Data	Pre-ProcessingOne challenge in academic research on log-based intrusion detection isthe limited availability of large datasets for event analysis [16], asopposed to commonly available malware datasets [2]. The datasetused in this research was generated by simulating normal andmalicious activity in the monitored systems (PM and Sales). One of theproblems in anomaly detection is that anomalies only typically occur0.001–1% of the time, which causes a massive imbalance in classlabels. The dataset re�lects that imbalance with 17 records labeled aspart of security incidents out of 1510 records in total (around 0.011 or1.1%). The anomalous data was generated by simulating commondatabase security threats, such as excessive privilege abuse, legitimateprivilege abuse, privilege elevation, SQL injection, weakauthentication/password attacks, and database communicationprotocol vulnerabilities. The operations were logged using operatingsystems’ logging facilities (Event Log in Windows XP and syslog inLinux-Red Hat 5) and switching on Oracle’s AUDIT option on thespeci�ied operations, objects, and users. The logs from both monitoredsystems were automatically extracted, transformed (standardized),and loaded into Microsoft SQL Server 2008 repository using ETL

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

processes implemented in SQL Server Integration Services 2008. Thefollowing attributes were used as input to the distance-based outlierdetection algorithm: operation command, date, time, object, user,operation type, and system. The date attribute was transformed intothe day of the week attribute (1–7) and the quarter (1–3).
Table	2 Distance-based outlier detection results in RapidMiner. Examples of events’ entriesdetected by the algorithm as outliers (in a 1 and 2% models) versus the ground truth (incident ornot)
# Log	entry	(command	@	user/system	@	time) Outlier

(1%)
Outlier
(2%)

Actual

1 select from DBA_USERS @ SYSTEM/Oracle_PMO @ 22:35 Yes Yes Yes2 login @ jczolg/Oracle_PMO @ 4:23 Yes Yes Yes3 exec dbms_session.set_sql_trace(true); @ SYSTEM/Oracle_PMO@ 20:45 Yes Yes Yes
4 ECHO ORACLE_SID @ root/Linux @ 2:12 Yes Yes Yes5 lsnrctl status @ root/Linux @ 3:12 Yes Yes Yes6 revoke create any procedure from rwidawsi @ADMIN/Oracle_PMO @ 23:34 Yes Yes No
7 LOGOFF BY CLEANUP @ jczolg/ADMIN @ 19:58 Yes Yes No8 alter table CLIENTS modify Client_name NVARCHAR2(50) notnull @ KTARNOWS/Oracle_PMO @ 18:05 Yes Yes No
9 insert into PROJECT_DETAILS VALUES(1,1,’Atomic bombconstruction’) @ ZFENICKI/Oracle_PMO @ 17:30 Yes Yes No
10 insert into PRODUCTS values (1,1,Bomb,1000, null) @SBASZEL/Oracle_Sales @ 17:30 Yes Yes No
11 LOGON @ WMSYS/Oracle_Sales @ 22:50 Yes Yes Yes12 select username,password from dba_users wherepassword=EXTERNAL; @ SYS/Oracle_Sales @ 15:45 Yes Yes Yes
13 select from projects @ Admin/Oracle_PMO @ 0:39 No No Yes14 select from project_details @ Admin/Oracle_PMO @ 0:40 No Yes Yes15 update Employees set Salary=2500 where Name=’Skala Peter’@ PSKALA/Oracle_PMO @ 17:37 No Yes Yes
16 update Employees set salary=2000 where employee_id=1 @MWARZYCHA/Oracle_PMO @ 17:35 No Yes No
17 select from Clients @ KTARNOWS/Oracle_PMO @ 18:06 No Yes Yes18 insert into Salesperson values (1,1,Karolina Uszka) @MWARZYCHA/Oracle_Sales @ 16:38 No Yes No

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

# Log	entry	(command	@	user/system	@	time) Outlier
(1%)

Outlier
(2%)

Actual

19 insert into Salesperson values (1,1,Karolina Uszka) @GOSTROW/Oracle_Sales @ 16:28 No Yes No
4.1.2	 ResultsThe detected outliers were compared against the ground truth, that is,whether the log was part of the injected incident event in thehypothetical company setting. Table 2 shows a list of correctlyidenti�ied incidents (true positives-TP), missed incidents (falsenegatives—FN), as well as log entries incorrectly �lagged as incidents(false positives—FP). The two tested models of distance-based outlierdetection included the outliers percentage of 1% (default inRapidMiner) and 2%.
4.1.3	 DiscussionTable 2 shows the log entries from the OS and at the DBMS level, wereeither detected or missed as incidents. “True negatives”, whichcomprise the largest group of events that represent normal userbehavior and not �lagged as outliers by the tested model, are notincluded in the table.

Detected	incidents The �irst group of events listed (#1-#5;#11-#12) represents correctly detected security incidents (“truepositives”). The �irst correctly detected anomaly is the operation ofreading from the system table DBA_USERS, which is a part of the attack,where the malicious user has cracked the SYSTEM user password. Inthe presented event, the masquerader looks for user accounts in thesystem with the goal of abusing object privileges and read classi�ied orsensitive data. Log entry #2 in Table 2 denotes unsuccessful attemptsto login into the jczolg account, which is an account of the InformationSecurity Of�icer. One reason it has been detected as an anomaly isatypical hours of login (late in the evening), another might be theatypical result of the login operation for that user. Log entry #3, alsocorrectly detected as an outlier, is related to a SQL-injection attack,where a malicious user exploits the dbms_session package to injectmalicious code. Log entries #4-#5 are elements of an attack where a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

masquerader is trying to obtain Oracle instance SID and check a DBMSlistener status from the compromised root account.
False	alarms The second group of presented events (#6-#10)consists of so-called “false positives” (commonly known as “falsealarms”)— marked by the algorithm as outliers, but not actual securityincidents. For example, in log entry #8 KTARNOWS with the Developerrole is legally modifying the Clients table. The same, in log entry #9

ZFENICKI with the Project_manager role is adding a new project, whichis a legal operation for his role. Similarly, in log entry #10, SBASZEL isauthorized to add new products to the SALES database, as he is theR&D Director.
Undetected	incidents Finally, the third group of the presented logobservations (#13-#15;#17) contains so-called “false negatives”,which are the actual security incidents but not detected by the system.For example, in log entry #15, user PSKALA made an illegal, butunsuccessful attempt to change his own salary. On the other hand, logentry # 16 represents the same operation but with an authorized user—MWARZYCHA, who has an HR role.One can see, that few events were detected in the model with thepercentage of outliers set as 2%, but not detected in the model with 1%outliers, for example, in log #14 (masquerader attack) and log #17(attempt of illegal read). While the 2%-model improved incidentdetection (TP), it also incorrectly labeled events that were not anattack (FP). For example, logs #18 and #19 (data update) were not theactual incidents, but the 2%-model has �lagged them as outliers. As aresult, detection capability improved but generated more “falsealarms” as well. Table 3 summarizes the results with the numbers forTP, FP, FN, TN, and the metrics for accuracy, precision, recall, and falsealarm rate (FAR). The table also compares two models in three metrics:accuracy, recall, precision, and false alarm rate (FAR). Accuracy (1) wascomputed as the ratio of correctly classi�ied examples to all events.Recall (2) can be also interpreted as the detection	rate or probability	of

detection (the ratio of correctly classi�ied “normal” events to all actualnormal events). Precision (3) is the ratio of items correctly classi�iedincidents to all events classi�ied as incidents. FAR (4) represents itemsincorrectly labeled as incidents. (1)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(2)
(3)
(4)

Table	3 The summaries of distance-based outlier detection experiments in RapidMiner. The tablepresents the number of true positives (TP)—detected as outliers and actual incidents, falsepositives (FP)—detected as outliers, but not part of the incident, false negatives (FN)- not outliers,but actual incidents, true negatives (TN), and the derived metrics of accuracy, recall, precision,and false alarm rate
Model #TP #FP #FN #TN Accuracy

(%)
Recall
(%)

Precision
(%)

FAR
(%)Model with 1%outliers 8 7 5 1489 99.2 61.5 53.3 0.5

Model with 2%outliers 11 17 2 1479 98.7 84.6 39.3 1.3
The goal is highly accurate detection of attacks while minimizingfalse positives and false negatives. Accuracy and precision are higher in1%-model, while 2% model correctly detects more incidents (higherrecall), but also results in more “false alarms”, deteriorating precisionand accuracy. Improving the rate of correct detection of an intrusion atthe cost of increased false alarms is a known problem in intrusiondetection systems.

4.2	 Machine	and	Deep	Learning	for	Anomaly	DetectionThe experiments on supervised ML using SVM were conducted withPython scikit-learn library was used. For deep learning PythonTensor�low Keras library was used.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

4.2.1	 Synthetic	Dataset
Training	dataset The training dataset simulates the intrusion-freedatabase trail within PMO and Sales systems as described in thescenario in Sect. 3.4. This dataset, which simulates normal userbehavior, was generated within the algorithm implemented in Python.Log audit records represent the recorded sequence of events indatabase systems within the Jan–Aug 2020 timeframe and 9 am–5 pmworking hours. The attributes include source system, timestamp (date:year, month, and day, time: hours, minute, and second), operation type,user, and object (if applicable). Types of operations include login, select(read), update, insert, delete, and logoff. Randomized 50,000 logrecords were used for training the ML/DL models.

Test	dataset Numerous, fresh, never-before-seen attacks weregenerated to check the generalization aptitude of the ID system. Theintrusion/anomalous log entries were generated with a Python script,which implements an algorithm that represents violations againstRBAC policy in the considered company, malicious attacks, such as
brute	force attack, denial of service, and anomalous behavior, such asunapproved operations and operations outside normal business hours.The subset of randomized incident logs was used as a test dataset forML/DL models.
4.2.2	 Feature	Pre-ProcessingSince the attributes are categorical or text, there is a need fortransformation before making it suitable for deep learning models. It iscritical to frame the problem correctly for DL models to be useful inanomaly detection. Autoencoders have proven to work well withdependent data; however, the logs consist of both independent anddependent variables. The system/user/operation/object relationshipis dependent, whereas the date and times are independent. Includingdependent and independent attributes to train autoencoders yieldedpoor results in terms of accuracy (32–65%). Tuning the parameters(such as changing the number of epochs and batch size) did notimprove these results signi�icantly. Therefore, the log data was splitbetween independent and dependent attributes, using the former asinput for SVM model, and the latter as input to the DL model. A system,user, operation, and object attributes were transformed into numeric

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(integer) representations. Similarly, date (year-month-day) and time(hour-minute-second) were transformed into separate integerattributes.
4.2.3	 Results
Supervised	machine	learning The SVM model was used as asupervised ML method with log entries labeled as either anomalous ornot, with train size 10,000 or 50,000. Table 4 presents the process ofparameter tuning for the 1:1 anomalous data ratio. The model wastested with different types of the kernel (linear/polynomial/RBF), anddifferent values of c-parameter for the kernel.
Table	4 Parameter tuning for SVM-based machine learning model using different kernels and c-parameter values to optimize accuracy. The table presents changes leading to improvement only
Kernel C-Param Train	size Accuracy	(%) Precision	(%) Recall	(%)Linear 2 10,000 70.09 72.15 64.74Polynomial 20 10,000 90.68 95.10 85.87Polynomial 2 10,000 91.24 96.44 85.92Polynomial 6 10,000 91.24 95.97 86.01RBF 8 50,000 99.72 99.99 99.45
RBF 20 50,000 99.97 100.00 99.94The �irst attempted SVM model with a linear kernel yielded anaccuracy of 70% and has not changed signi�icantly after trying differentparameter values. After changing the kernel from linear to polynomial,the accuracy improved to around 90% and the optimal parametersyielded an accuracy of 92.1%. The best results were obtained for theSVM with the RBF kernel with an accuracy of 99.995% after parametertuning. The experiments with different parameters were repeated forthe different ratio of anomaly data (1:1000), and for the entire logentry as input data (WL). Table 5 presents the accuracy, precision, andrecall of the optimal model (SVM with RBF kernel on 50,000 trainingdata points) for different ratios of normal to anomaly logs (1:1 and1000:1) and different feature selection.
Table	5 Comparing accuracy, precision, and recall of an optimal model (RBF, c) fordifferent ratios of an anomaly in train data and different sets of attributes (timestamp vs. the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

whole log)
Log Anomaly	ratio Accuracy	(%) Precision	(%) Recall	(%)Timestamp 1:1 99.97 100.00 99.94Timestamp 1:1000 99.96 100.00 64.00Whole log 1:1000 99.92 80.00 24.00As one can see, decreasing the ratio of anomaly data (from 1:1 to1:1000) to meet the realistic scenarios deteriorates the recall metric.Further, when the whole log was used as train input data, as opposed totimestamp data only, the accuracy, precision, and recall metrics werelower, with 99.92, 80, and 24% accordingly.

Unsupervised	deep	learning The deep sequential autoencodermodel was used as an unsupervised DL method that was trained onnormal log entries only. The log entries consist of the system, user,
operation, and object portion of the log. The model was tested withdifferent values for the following parameters:Layers—number of layers for input and the �irst hidden layer;Activation—activation method (relu/sigmoid);Epochs—number of training epochs;Batch size—number of training examples in oneforward/backward pass;Validation—whether test data will be used as validation;Shuf�le—whether the log data will be shuf�led prior to modelimplementation.The decoding accuracy was measured with the root meanstandard/squared absolute error (RMSE,):

(5)
(6)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Table 6 presents the results of the error averages for the normal andanomalous data. The detection accuracy was measured with thepercent of anomalies that had a metric score greater than the averagenormal metric score. It clearly shows that the reconstruction errorbecomes far bigger for anomalous data.
Table	6 Parameter tuning for deep learning model based on sequential autoencoder. The Layerscolumn includes the encoding layers and for each row, there is a symmetrical decoding layer afterthe 2nd 3-node layer. The Normal and Anomaly Avg columns represent the average scores of thenormal and anomaly logs with the Metric (RMSE /)
Layers Activation Batch Valida Shuff Metric Normal

Avg
Anomaly
Avg

Detect
(%)[3, 25, 3] sigmoid: 2nd25 32 N/A N/A RMSE 55.6

[3, 48, 24, 12, 6, 3] tanh: 2nd 48 32 N/A N/A RMSE 70.6
[3, 30, 15, 7, 3] sigmoid: 2nd30 32 N/A N/A RMSE 1.2 73.9
[3, 48, 24, 12, 6, 3] sigmoid: 2nd48 32 N/A N/A RMSE 3.5 75.5
[3, 48, 24, 12, 6, 3] sigmoid: 2nd48 256 N/A N/A RMSE 2.1 8.6 75.5
[3, 48, 24, 12, 6, 3] sigmoid: 2nd48 128 N/A N/A RMSE 1.1 75.7
[3, 30, 15, 7, 3] sigmoid: 2nd30 128 N/A N/A RMSE 77.7
[3, 30, 15, 7, 3] sigmoid: 2nd30 64 N/A N/A RMSE 1.9 79.5
[3, 30, 15, 7, 3] sigmoid: 2nd30 80 N/A N/A RMSE 1.4 6.2 86.1
[3, 30, 15, 7, 3] linear: middle3, sigmoid:2nd 30 80 TRUE TRUE RMSE 1.3 86.8
[3, 30, 15, 7, 3] linear: middle3, sigmoid:2nd 30 80 TRUE TRUE 89.2

linear:
middle	3,
sigmoid:	2nd48

80 TRUE TRUE 92.5

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

All models in the table were performed with 200 epochs and relu asthe default activation for each layer if speci�ied otherwise. The �irstattempted autoencoder model had the following architecture, in termsof layers: [3, 25, 10, 3, 10, 25, 3] and “relu” activation functions for eachlayer, except “sigmoid” activation for the 2nd 25-node layer. The batchsize was the default (32), and there was no validation nor shuf�ling oflog data. Though the root mean squared error (RMSE) averages foranomaly data were times smaller than the normal data(training and testing data), only 55.6% of anomalies had an RMSEscore larger than the normal testing data RMSE average. Some of theanomalies had very high RMSE values, skewing the average RMSE valuefor all the anomalies. This made it very important to not only considerthe difference in RMSE scores between normal and anomaly logs, butalso to consider detection capability. After increasing the number ofhidden layers and changing their respective nodes to[3, 48, 24, 12, 6, 3, 6, 12, 24, 48, 3] with “sigmoid” activation for the 2nd48-node layer, the anomaly detection accuracy increased to 74.5%.With these sets of layers and activations, tuning the batch size to 128made the accuracy rise to 77.7%. The set of hidden layers:[3, 30, 15, 7, 3, 7, 15, 30, 3] with sigmoid activation on the 2nd 30-nodelayer gave very similar results to the hidden layers:[3, 48, 24, 12, 6, 3, 6, 12, 24, 48, 3]. Both these sets of layers were testedwith each tune of parameters and the higher value was recorded in theresults table. Validating the model with the test data, shuf�ling the logentries prior to encoding and decoding the data and further tuning ofthe batch size to an optimal 80 provided an accuracy of 78.1%.However, the results improved drastically to 86.8% after implementinga linear activation function for the middle 3-node layer. The best resultof 92.5% detection capability was obtained with hidden layers:[3, 48, 24, 12, 6, 3, 6, 12, 24, 48, 3] with a “linear” activation at themiddle 3-node layer and “sigmoid” activation at the 2nd 48-node layer,batch size of 80, validation of the model with test data, and shuf�ling oflog entries prior to encoding and decoding.
4.2.4	 Discussion

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In our proposed hybrid solution, we utilize the strengths of the ML andDL models. The incoming log entry is �irst pre-processed by convertingthe data to integer representations. The SVM model performstimestamp-based classi�ication on the log data. The role-basedfeatures (system, user, operation, object) are analyzed with the deepsequential autoencoder model. The results of both models determinethe nature of the incoming log entry. The SVM model will label thetimestamp portion of the log entry as either normal or anomalous. Thedeep sequential autoencoder will provide a value that is representedby the square of the mean absolute error and, based on a Gaussiandistribution, will label the role-based features as either normal oranomalous. Combining the results of both models will determine theanomalous nature of the log: whether it is normal, anomalous in therole-based features, anomalous within the timestamp, or anomalous inboth the role-based features and the timestamp.
Table	7 Sample log entries fed into the hybrid (machine and deep learning) model. The tablepresents different types of incoming log entries (prior to pre-processing) and whether each modeldetected it as a normal or anomalous log
System User Operation Object Date Time Anom

(SVM)
Anom
(ANN)#1 PM apuzon LOGON none 2020-08-05 23:05:03 Yes No

#2 SALES kuszka INSERT ORDERS 2020-01-20 21:45:55 Yes No
#3 SALES gnyski INSERT ORDERS 2020-05-22 8:26:15 Yes No
#4 PM gmjarcinska INSERT PROJECT_DETAILS 2020-08-17 1:30:55 Yes No
#5 PM ktarnows LOGON none 2020-07-25 16:16:31 Yes No
#6 PM adynka SELECT TASKS 2020-06-21 14:45:23 Yes No
#7 PM kuszka DELETE CLIENTS 2020-01-12 11:26:53 Yes No
#8 SALES amaly SELECT PRODUCTS 2020-07-04 12:48:02 Yes No
#9 SALES mwarzycha SELECT ORDERS 2020-01-03 9:01:33 No Yes

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

System User Operation Object Date Time Anom
(SVM)

Anom
(ANN)#10 SALES apuzon SELECT DISTRI-BUTORS 2020-04-10 14:23:04 No Yes

#11 PM ktarnows INSERT TASKS 2020-03-19 14:34:40 No Yes
#12 SALES kespiel UPDATE ORDERS 2020-07-23 14:47:51 No Yes
#13 PM adynka LOGON none 2020-06-24 10:05:45 No No
#14 PM adynka LOGON none 2020-06-24 11:07:23 No Yes
#15 PM ktarnows ALTER PROJECT_TYPE 2020-01-01 9:28:47 No No
#16 SALES sbaszel SELECT WARE-HOUSES 2020-05-05 15:39:51 No No
#17 PM mwarzycha SELECT DEPART-MENTS 2020-05-29 10:49:53 No No
#18 PM aosinska LOGON none 2020-08-07 10:56:23 No No

The last two columns in Table 7 mark whether each part of thehybrid model determined the log entry to be anomalous. The �irst eightlog entries are labeled anomalous based on timeframes outside thenormal working hours/days. Though these �irst eight rows may not bemalicious, they are marked as anomalous due to the timestamp atwhich they were logged. The hybrid model aims to reduce falsenegatives, but at the cost of increasing the number of false positives, asin the case of marking logs outside of work hours as anomalous. Rows#9-#12 are also anomalous as they are unapproved operations,meaning that the users who performed the operations and objectswere not privileged to do so. This can mean that they were privilegedwithout the approval, either by themselves or another user, or therewas an intrusion into the RBAC database system. For example, user
mwarzycha falls under the HR role; however, she performed theoperation SELECT on the ORDERS object. This operation and objectpair is a common log for the WAREHOUSEMAN role and is notpermitted for the HR role. This means that the user mwarzycha was

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

privileged without the approval of the WAREHOUSEMAN role or wasgiven access to just the SELECT and ORDERS operation and object pair.The rows #9-#12 were marked as anomalous by the deep sequentialautoencoder part of the hybrid detection model. Rows #13-#14 showan example of an intrusion that was caught the ANN part of the model.The user adynka logged in in row #13, and then the user logged inagain, without logging off, in row #14. This shows that adynka hadlogged in from multiple accounts, suggesting that her account has beenbreached. The last four rows (#15-#18) are marked as normal logs, asthey are within the RBAC model and the timestamp of the log is withinworking hours. For example, user mwarzycha, who is under the HRrole, is performing the SELECT operation on the DEPARTMENTS objecton a Friday at 10:49 am. This is an authorized operation and object pairunder the HR role that is logged during normal work hours. For theselast four rows, the deep sequential autoencoder marked the event asnormal, and the SVM model marked the timestamp as normal.
5	 ConclusionsThis chapter proposed a log-based anomaly detection system inapplication, database, and operating system layers. Our research hasdemonstrated that deep learning methods, speci�ically, autoencoderscan be successfully applied to detect deviations from normal userbehavior in data-based systems. The proposed IDS determines roleintruders that deviate from normal behavior. If the error between theoriginal input data and the model’s decoded representation is within ahigh-level of con�idence of the Gaussian distribution, the incoming logentry is considered normal, and otherwise, abnormal. Our experimentsincluded manual tuning of the parameters of autoencoders, such aslayers, activation, batch size, validation, and shuf�ling. Further, we haveproposed a hybrid method combining ML models and DL models tofurther optimize anomaly detection. Although the performance ofautoencoders was already good enough without temporal information,we augment the anomaly detection with the SVM method trained ontimestamp data. It performs a combined anomaly detection at per logentry-level, rather than at per session-level as many previous methodsare limited to. The proposed generic solution is tailored for any role-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

based access control (RBAC) database system. The limitations of thiswork were also identi�ied. The technique was tested on an arti�icialdataset, but ideally, the method should be tested on a real world, highlyunbalanced log dataset from the organization. It is necessary to test theapproach on a greater variety of possible insider threat scenarios, suchas weak audit trail or backup data exposure. The experiments withinthis work focused on database system logs. The goal is to extend andevaluate this methodology for real-world log data accumulated fromdifferent platforms, DBMS systems, and applications. The aggregatedlog analytics will involve handling known challenges for logmanagement, such as many log sources, inconsistent log content,inconsistent timestamps, and inconsistent log formats [24].
5.1	 Future	WorkFuture works include testing and incorporating other deep learningtechniques (i.e., different types of recurrent neural networks, restrictedBoltzmann machines) and integrating log data from different databasesystems (i.e., SQL Server) and applications to perform morecomprehensive detection. Parameters for neural networks needfurther detailed investigation. The future work also includes textmining techniques on parsing and analyzing the commands’ contents(such as proposed in [28, 55]). Evaluating the approach for ef�iciencywill involve testing on very large log event datasets, such as describedin [29]/[14].As there is a gap in both research and in academia, but mostnotably in the industry offerings of comprehensive decision supportsystems (DSSs) for information security (IS) administrators, the futurework includes incorporating the tested and veri�ied models into theframework of intelligent DSS for IS. Such as system is expected toenable better enforcement of organizational policies and compliancewith the mandated regulations. The prototype DSS was implementedfor a hypothetical medium-sized company. The target organizations ofthis system are small-medium companies who cannot afford expensiveto deploy and more complicated SIEM systems, but that are mandatedby various regulations to meet the audit compliance because ofsensitive/classi�ied data stored within their systems. The bene�its ofthe proposed systems are customization to the organizational needs,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

but supporting a variety of platforms existing in the enterprise ITinfrastructure. It is proposed to collect and analyze the comprehensivelog data including (1) the IT infrastructure across the entireorganization, meaning heterogeneous IT systems; and (2) all layers ofeach IT system: from the operating system level, through databasesystem-level, up to the application level. In the DSS customizationprocess, the ETL process extracting logs from differentsystems/platforms has to be implemented accordingly to theorganization’s needs, as well as the central repository of transformedand standardized log records has to be set up locally. Such a DSS toolwill help organizations in undergoing security audits and incompliance with security standards de�ined by organizations, such asISO international information security standards. A DSS frameworkincorporating a combination of ML algorithms with neural network-based DL approaches offers rich opportunity to detect new variants ofmalicious and zero-day attacks. The new types of attacks andvulnerabilities exploitations will help organizations craft andimplement better security policies and defense measures.While many organizations concentrate the majority of theirresources toward securing the perimeter of their networks, they oftenneglect the most critical company asset, databases [18]. Databasesecurity logging and monitoring are more dif�icult because the data isoften sensitive, there are legitimate privileged users or varyingdegrees. Databases contain the most valuable data companies own—customer, employee, �inancial, and intellectual property to name a fewcategories. Protecting, logging, and monitoring database data shouldbe a core activity of every business, unfortunately, many businesses failto provide adequate security logging and monitoring for theirdatabases. This research attempts to help close this gap.
References1. Anashkin, E., and M Zhukova. 2020. An implementation of arti�icial neural networks intobehavioral analysis system. IOP	Conference	Series:	Materials	Science	and	Engineering 734:121–161.2. Berman, Daniel, Anna Buczak, Jeffrey Chavis, and Cherita Corbett. 2019. A survey of deeplearning methods for cyber security. Information 10 (4).3.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Britel, Merieme. 2018. Big data analytic for intrusion detection system. In 2018	International
Conference	on	Electronics,	Control,	Optimization	and	Computer	Science,	ICECOCS, 1–5.4. Camacho, José, José Manuel Garcı́a-Giménez, Noemı́ Marta Fuentes Garcı́a, and Gabriel Maciá-Fernández. 2019. Multivariate big data analysis for intrusion detection: 5 steps from thehaystack to the needle. CoRR, arXiv: abs/ 1906. 11976.5. Cappelli, Dawn M, Andrew P Moore, and Randall F Trzeciak. 2012. The	CERT	guide	to	insider
threats:	how	to	prevent,	detect,	and	respond	to	information	technology	crimes	(Theft,
Sabotage,	Fraud). Addison-Wesley.6. Chandola, Varun, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey.
ACM	Computing	Surveys	(CSUR) 41 (3): 1–58.[Crossref]7. Ashok Kumar D, and Venugopalan Srinivasagopalan Rajan. 2017. Intrusion detection systems:A review. International	Journal	of	Advanced	Research	in	Computer	Science 8, 10.8. Darwish, Saad M. 2016. Machine learning approach to detect intruders in database based onhexplet data structure. Journal	of	Electrical	Systems	and	Information	Technology 3: 261–269.[Crossref]9. Dasgupta, Dipankar. 2007. Immuno-inspired autonomic system for cyber defense.
information	Security	Technical	Report 12 (4): 235–241.10. Du, Min, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly detection anddiagnosis from system logs through deep learning. In Proceedings	of	the	2017	ACM	SIGSAC
Conference	on	Computer	and	Communications	Security,	CCS	’17, 1285–1298. Association forComputing Machinery.11. Dwyer, John, and Traian Marius Truta. 2013. Finding anomalies in windows event logs usingstandard deviation. https:// www. nku. edu/ ~trutat1/ papers/ CollaborateCom13 _ dwyer. pdf.12. Feremans, Len, Vincent Vercruyssen, Wannes Meert, Boris Cule, and Bart Goethals. 2019. Aframework for pattern mining and anomaly detection in multi-dimensional time series andevent logs. In International	Workshop	on	New	Frontiers	in	Mining	Complex	Patterns, 3–20.Springer.13. Fontaine, Jaron, Chris Kappler, Adnan Shahid, and Eli De Poorter. 2019. Log-based intrusiondetection for cloud web applications using machine learning. In Advances	on	P2P,	Parallel,
Grid,	Cloud	and	Internet	Computing,	3PGCIC	2019, ed. L Barolli, P Hellinckx, and J Natwichai,vol. 96, 197–210. Springer.14. Glasser, Joshua, and Brian Lindauer. 2013. Bridging the gap: A pragmatic approach togenerating insider threat data. In 2013	IEEE	Security	and	Privacy	Workshops, 98–104. IEEE.15. Grover, Aarish. 2018. Anomaly detection for application log data. Master’s thesis, San JoseState University.16. He, Shilin, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience report: System loganalysis for anomaly detection. In 2016	IEEE	27th	International	Symposium	on	Software
Reliability	Engineering	(ISSRE), 207–218. IEEE.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/abs/1906.11976
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.jesit.2015.12.001
https://www.nku.edu/%257etrutat1/papers/CollaborateCom13_dwyer.pdf

17. Heller, Katherine, Krysta Svore, Angelos D Keromytis, and Salvatore Stolfo. 2003. One classsupport vector machines for detecting anomalous windows registry accesses. https:// academiccommons. columbia. edu/ doi/ 10. 7916/ D85M6CFF.18. Horwath, Jim. 2012. Setting up a database security logging and monitoring program.19. Hu, Yi, and Brajendra Panda. 2003. Identi�ication of malicious transactions in databasesystems. In Seventh	International	Database	Engineering	and	Applications	Symposium,	2003.
Proceedings, 329–335. IEEE.20. Huang, Lin, and Mark Stamp. 2011. Masquerade detection using pro�ile hidden markovmodels. Computers	and	Security 30 (8): 732–747.[Crossref]21. Islam, Mohammad Saiful, Mehmet Kuzu, and Murat Kantarcioglu. 2015. A dynamic approachto detect anomalous queries on relational databases. In Proceedings	of	the	5th	ACM
Conference	on	Data	and	Application	Security	and	Privacy, 245–252.22. Johnson, Richard Arnold, and Dean W. Wichern. 2002. Applied	Multivariate	Statistical
Analysis, 5th ed. Prentice Hall.23. Kamra, Ashish, Evimaria Terzi, and Elisa Bertino. 2008. Detecting anomalous access patternsin relational databases. The	VLDB	Journal 17 (5): 1063–1077.[Crossref]24. Kent, Karen, and Murugiah Souppaya. 2006. Guide to computer security log management.
NIST	Special	Publication 92: 1–72.25. Kroll global fraud report 2011/12. https:// www. slideshare. net/ abaytelman/ kroll-global-fraud-report-2011-2012.26. Legg, Philip A. 2017. Human-machine decision support systems for insider threat detection. In
Data	Analytics	and	Decision	Support	for	Cybersecurity, 33–53. Springer.27. Li, Yong, Tao Zhang, Yuan Yuan Ma, and Cheng Zhou. 2016. Anomaly detection of userbehavior for database security audit based on ocsvm. In 2016	3rd	International	Conference
on	Information	Science	and	Control	Engineering	(ICISCE), 214–219. IEEE.28. Lin, Qingwei, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016. Log clusteringbased problem identi�ication for online service systems. In 2016	IEEE/ACM	38th
International	Conference	on	Software	Engineering	Companion	(ICSE-C), 102–111. IEEE29. Lindauer, Brian, Joshua Glasser, Mitch Rosen, Kurt C Wallnau, and L ExactData. 2014.Generating test data for insider threat detectors. Journal	of	Wireless	Mobile	Networks,
Ubiquitous	Computing	Dependable	Application 5 (2): 80–94.30. Malhotra, Pankaj, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. 2015. Long short termmemory networks for anomaly detection in time series. In Proceedings, vol. 89, 89–94.Presses universitaires de Louvain.31. Joseph McKendrick. Data security: Leaders vs. laggards - 2013 IOUG enterprise data security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://academiccommons.columbia.edu/doi/10.7916/D85M6CFF
https://doi.org/10.1016/j.cose.2011.08.003
https://doi.org/10.1007/s00778-007-0051-4
https://www.slideshare.net/abaytelman/kroll-global-fraud-report-2011-2012

survey.32. Moh, Melody, Santhosh Pininti, Sindhusha Doddapaneni, and Teng-Sheng Moh. 2016. Detectingweb attacks using multi-stage log analysis. In 2016	IEEE	6th	International	Conference	on
Advanced	Computing	(IACC), 733–738. IEEE.33. Nieles, Michael, Kelley Dempsey, and Victoria Pillitteri. 2017. An	introduction	to	information
security. Technical report. National Institute of Standards and Technology.34. PricewaterhouseCoopers LLP. 2011. Protecting against the growing threat — Events andtrends. https:// www. pwc. com. cy/ en/ events/ assets/ economic-crime-survey. pdf.35. Raut, Umesh K. 2018. Log based intrusion detection system. IOSR	Journal	of	Computer
Engineering, 20 (5): 15–22.36. Reghunath, K. 2017. Real-time intrusion detections system for big data. International	Journal
of	Peer	to	Peer	Networks	(IJP2P) 8 (1).37. Ring, Markus, Sarah Wunderlich, Dominik Gruedl, Dieter Landes, and Andreas Hotho. 2017. Atoolset for intrusion and insider threat detection. In Data	Analytics	and	Decision	Support	for
Cybersecurity:	Trends,	Methodologies	and	Applications, ed. Ivn Palomares Carrascosa,Harsha Kumara Kalutarage, and Yan Huang, 1st ed., 3–31. Springer Publishing Company,Incorporated.38. Rodrigues, A.J. 2013. Automated log analysis using ai: intelligent intrusion detection system.
Computer	Journal 132.39. Ronao, Charissa Ann, and Sung-Bae Cho. 2014. A comparison of data mining techniques foranomaly detection in relational databases. In International	Conference	on	Digital	Society.40. Ronao, Charissa Ann, and Sung-Bae Cho. 2015. Random forests with weighted voting foranomalous query access detection in relational databases. In Arti�icial	Intelligence	and	Soft
Computing, ed. Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz,Lot�i A. Zadeh, and Jacek M. Zurada, 36–48. Cham: Springer International Publishing.41. Rudowski, Michal, and Katarzyna Tarnowska. 2016. Decision support system for informationsystems security audit (WABSI) as a component of IT infrastructure management.
Information	Systems	in	Management 5 (3): 389–400.42. Sakurada, Mayu, and Takehisa Yairi. 2014. Anomaly detection using autoencoders withnonlinear dimensionality reduction. In Proceedings	of	the	MLSDA	2014	2nd	Workshop	on
Machine	Learning	for	Sensory	Data	Analysis,	MLSDA’14, 4–11. Association for ComputingMachinery.43. Sallam, Asmaa, Elisa Bertino, Syed Ra�iul Hussain, David Landers, Robert Michael Le�ler, andDonald Steiner. 2017. DBSAFE - an anomaly detection system to protect databases fromex�iltration attempts. IEEE	Systems	Journal 11 (2): 483–493.44. Sallam, Asmaa, Daren Fadolalkarim, Elisa Bertino, and Qian Xiao. 2016. Data and syntaxcentric anomaly detection for relational databases. Wiley	International	Review	of	Data
Mining	and	Knowledge	Discovery 6 (6): 231–239.45.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.pwc.com.cy/en/events/assets/economic-crime-survey.pdf

Sandhu, Ravi, David Ferraiolo, and Richard Kuhn. 2000. The NIST model for role-based accesscontrol: Towards a uni�ied standard. In Proceedings	of	the	Fifth	ACM	Workshop	on	Role-Based
Access	Control,	RBAC	’00, 47–63. Association for Computing Machinery.46. Schonlau, Matthias, William DuMouchel, Wen-Hua Ju, Alan F. Karr, Martin Theusan, andYehuda Vardi. 2001. Computer intrusion: Detecting masquerades. Statistical	Science 16 (1):58–74.47. HHS Of�ice of the Secretary and Of�ice for Civil Rights (OCR). Security rule guidance material,Aug 2017.48. Shashanka, M., M. Shen, and J. Wang. 2016. User and entity behavior analytics for enterprisesecurity. In 2016	IEEE	International	Conference	on	Big	Data	(Big	Data), 1867–1874.49. Shebaro, Bilal, Asmaa Sallam, Ashish Kamra, and Elisa Bertino. 2013. Postgresql anomalousquery detector. In Proceedings	of	the	16th	International	Conference	on	Extending	Database
Technology,	EDBT	’13, 741–744. Association for Computing Machinery.50. Shen�ield, Alex, David Day, and Aladdin Ayesh. 2018. Intelligent intrusion detection systemsusing arti�icial neural networks. ICT	Express 4 (2): 95–99.[Crossref]51. Spalka, Adrian, and Jan Lehnhardt. 2005. A comprehensive approach to anomaly detection inrelational databases. In Data	and	Applications	Security	XIX, ed. Sushil Jajodia and DumindaWijesekera, 207–221. Berlin: Springer.52. Tarnowska, Katarzyna. 2013. System security audit.53. Torkaman, Atefeh, Marjan Bahrololum, and Mohammad Hesam Tadayon. 2014. A threat-aware host intrusion detection system architecture model. 7th	International	Symposium	on
Telecommunications	(IST’2014), 929–933.54. Wee, Chee Keong, and Richi Nayak. 2019. A novel machine learning approach for databaseexploitation detection and privilege control. Journal	of	Information	and	Telecommunication 3(3): 308–325.55. Xu, Wei, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009. Detectinglarge-scale system problems by mining console logs. In Proceedings	of	the	ACM	SIGOPS	22nd
Symposium	on	Operating	Systems	Principles,	SOSP	’09, 117–132. Association for ComputingMachinery.56. Yen, Ting-Fang, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William Robertson, Ari Juels, andEngin Kirda. 2013. Beehive: Large-scale log analysis for detecting suspicious activity inenterprise networks. In Proceedings	of	the	29th	Annual	Computer	Security	Applications
Conference,	ACSAC	’13, 199–208. Association for Computing Machinery.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1016/j.icte.2018.04.003

(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_24
Image	Spam	Classi�ication	with	Deep
Neural	NetworksAjay Pal Singh1 and Katerina Potika1 San Jose State University, One Washington Square, San Jose,CA 95192, USA
Ajay	Pal	Singh	(Corresponding	author)
Email:	ajay.id.4.ms@gmail.com
Katerina	Potika
Email:	katerina.potika@sjsu.edu

AbstractImage classi�ication is a fundamental problem of computer vision andpattern recognition. We focus on images that contain spam. Spam isunwanted bulk content, and image spam is unwanted contentembedded inside the images. Image spam potentially creates a threatto the credibility of any email-based communication system. While alot of machine learning techniques are successful in detecting textualbased spam, this is not the case for image spams, which can easilyevade these textual-spam detection systems. In our work, we exploreand evaluate four deep learning techniques that detect image spams.First, we train deep neural networks using various image features. Weexplore their robustness on an improved dataset, which was especiallybuild in order to outsmart current image spam detection techniques.Finally, we design two convolution neural network architectures andprovide experimental results for these, alongside the existing VGG19transfer learning model, for detecting image spams. Our work offers a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_24
mailto:ajay.id.4.ms@gmail.com
mailto:katerina.potika@sjsu.edu

new tool for detecting image spams, usage of a bigger dataset, and iscompared against recent related tools.
1	 IntroductionOver the last decade, email and Internet is �looded with spam content.A spam can be de�ined as unwanted content, distributed mostly viaemails. Due to the ef�luence of spam emails over the Internet a lot oftechniques have surfaced which classify the spam from the validcontent. Reports from Symantec [18] indicated that of theemails include spam content. These spam emails can include phishinglinks, malware, advertisements, adult content, and others, which mayimpose a signi�icant threat to the security of the user’s privacy.Spam initial was only in the form of texts. With the advent ofmachine learning, many classi�iers were developed to �ilter such spambased on email content. Lai and Tsai [11] used four different machinelearning techniques, including K-nearest neighbors (KNN), supportvector machines (SVM), and Naı̈ve Bayes, that used email messages to�ilter spam emails. These classi�iers were able to classify text-basedspam with approximately accuracy. Hence, over the yearsdetecting content-based spam emails became very easy. Google,Microsoft, and Yahoo use techniques that perform very accurately toclassify spam emails from the authentic emails.However, over time, spammers came up with novel ideas to foolthese content-based classi�ication techniques. Thus, image spam wasdeveloped, where unwanted textual information was delivered in theform of images. To detect these types of image text, optical characterrecognition (OCR) techniques [4] were developed which were able toextract the text from the images. It involves segmentation of thetextual region within the images and using techniques to extract textfrom these regions. However, these text-based classi�iers were notalways successful in detecting image spam. One reason was thatsegmentation of textual area within these images in itself is a dif�iculttask [17]. Also, spammers started using obfuscation techniques, whichmade the OCR techniques less effective.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

A more direct approach was used by Annadatha et al. [1] and AneriChavda et al. [2], where they consider properties of the image itself toclassify spam images. They used image processing techniques inconjunction with various machine learning models. We use differentdeep learning techniques on various image properties as compared tothese previous work [1] and [2]. We train neural networks and deepneural networks on these image properties, instead of using themachine learning techniques that were used previously in [2]. We thendivulge deeper and experiment with other deep learning techniques,such as convolutional neural networks (CNN) based on raw images.Finally, we discuss the use of transfer learning and train a VGG19 modelon our dataset. The main focus of this work is to quantify therobustness of these techniques on an improved spam dataset createdby Aneri et al. [2].The remainder of the report is organized as follows. In Sect. 2, wediscussed the problem statement and the motivation behind it.Section 3 focuses on the related work done so far in this domain.Section 4 describes the essential background, topics, andterminologies needed to understand this project. Section 5 discussesthe various datasets used in this work, the steps involved in pre-processing these datasets and the architecture used to train the deeplearning models. Section 6 presents the experimental results. Finally,Sect. 7 concludes and provides scope for future work.
2	 Problem	Statement	and	MotivationThis section de�ines the problem statement and scope for this work. Italso focuses on the motivation and purpose of solving this problem.We focus on binary image classi�ication. Anything that contains themarketing, sexual, or other unwanted content embedded within theimages is called a SPAM image, whereas anything other than that isconsidered a HAM image. HAM is a keyword speci�ied in the and usedin previous papers [1, 2], so in order to maintain the consistency wewill also use the same terminology.The goal is to use speci�ically Neural Networks and Deep NeuralNetworks on the problem of spam image classi�ication in order to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

obtain better results as obtained in the previous papers. There are twomain parts towards that direction:Classi�ication based on image features: extraction of 38 featuresfrom the images as described in [2] and then use the different NeuralNetworks and Deep Neural Network architectures with the motive toimprove the results.Use of Raw Images: usage of deep learning techniques, such asConvolution Neural Networks, with different architectures and thenwith pre-built models based on transfer learning on the spam imageclassi�ication problem.Using different approaches as mentioned above the results arepresented in the form of tables, graphs, and other metrics to give aquanti�ication of this work.The Internet is �looded with spam content, whether it is in the formof text or unwanted text in the images. Previous techniques are good todetect textual spam but the spammers are coming up with new ways tofool such techniques. We try to solve this hard problem of imagespams. We discuss the results obtained to classify spam images byleveraging the power of neural networks and deep learning. Since theadvent of deep learning, there is not much research done on thisdomain. By using our approach potentially administrators of emailsystems or other systems can minimize the spam content that is evenembedded in images.
3	 BackgroundLet us present the essential background and terminology that we need.
3.1	 Spam	CategoriesIn general spam detection techniques are partitioned into the followingtwo categories:1. Content-based spam: spam in emails that are in textual form;classi�iers in this case deal with the actual content of the emailextracted from email headers, keywords, body of email, etc. Widevariety of machine learning techniques are available for such spamclassi�ication [3].

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

2. Non-content-based spam: spam that use advanced forms; such oneis an image spam. For image spam classi�ication we can look at theproperties of an image, or with the advent of deep learning we canuse images in their raw byte form. There are different generationof image spams ranging from �irst generation to third generation.Images in the �irst generation contain plain spam images, but in thesecond and third generation images are obfuscated using noise, byoverlaying background of images to make them more resistant toOCR techniques. OCR techniques are capable of segmenting thepart of the images that contain speci�ic object for further purposes,for example, extraction of text or object detection.

3.2	 Classi�ication	TechniquesHere we mention the techniques that we use and are implemented forthe experiments described in Sect. 6.
3.2.1	 Neural	NetworksArti�icial neural networks (ANNs) are algorithms that are modeledafter the neuronal structure of cerebral cortex of the human brain buton much smaller scales. A neural network (NN) structure is dividedinto different layers: the input layer, one or many hidden layers, and theoutput layer. Each layer comprises nodes or neurons. A basic unit ofcomputation in a neural network is a neuron, which receives an inputfrom previous layer nodes along with their speci�ic weights, andperforms a function on them. This function is also called the activationfunction. These neurons are activated by using different activationfunctions. Some examples of activation functions: the sigmoid, thetanh, and the Relu function. A bias is usually added with each layer toprovide regularization and move the function graph by some constantfrom the center. The goal of the ANN’s is to decrease the loss function,which is derived from the dataset.As compared to support vector machines (SVM), which use onlyone function, neural networks provide non-linearity due to thestructure of its layers. There are different types of neural networks, forexample, feedforward NN, single layer perceptron, multi-layer

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

perceptron, and so on. The output layer in case of a classi�icationproblem usually consists of a sigmoidal activation function to provideprobabilities for different classes, or labels for the dataset.
3.2.2	 Deep	Neural	NetworksThey are differentiated from basic NN by their depth; that is, thenumber of node layers through which data passes in a multi-stepprocess of pattern recognition. In this each layer of a network issupposed to learn speci�ic features as received from the previous layer.The further the layer is, nodes are able to understand more complexfeatures, since they aggregate and recombine those features fromprevious layers. Deep learning networks perform automatic featureextraction without human intervention, unlike most traditionalmachine learning algorithms.
3.2.3	 Convolution	Neural	NetworksThe idea behind Convolution Neural Networks (CNN) was derived fromNNs with neurons that learn from weights and biases. Also, each layercalculates a non-linear function using teh dot product and someactivation functions. CNN’s work on the images itself in the input layer.The normal NN’s does not scale very well on the raw images, becausethey are not able to learn enough features from them. The architectureof CNN’s introduces different types of layers, each of which learnspeci�ic features from the previous layer. Thus, the general idea is thatthe starting layers are able to learn more generic features, such as thecurves and edges from the images, then as the architecture growsthese layers becomes more speci�ic, for example, detecting the ears ofan animal. Unlike a NN a CNN have neurons arranged in threedimensions, namely, width, height, and depth. The depth here refers tothe channels in an image, for a color image the depth is 3, whereas for agrayscale image it is 1. The CNN architecture is built from differenttypes of layers, which are repeated as necessary to build the deep CNN.These layers are1. Convolutional Layer: Tries to learn the features from the images bypreserving the spatial relationship among pixels. It uses theconcept of �ilters. The images are divided into small squares onwhich these �ilters are projected. These �ilters contain different

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

values of pixels, for example, a �ilter can be used to �ind edges oftext in a spam image. So, if there exist edges in the speculatedsquare, those pixels are activated. The pixels on the �ilter aremultiplied on the input image area under consideration and a sumis performed over those activated pixels within the �ilter to checkthe intensity of the �ilter. These �ilters work in sync with the depthof the images, so if the image is RGB then there are 3 �ilters used foreach depth of given sizes. There are three parameters that controlthe size of the Convolution layers: stride, depth, and padding. Thedepth is mostly determined by the depth of the raw images orbased on the previous layer input. The stride de�ines the number ofpixels the �ilters are slided from left to right. Sometimes the inputlayer features are padded with zeros to maintain proportion withthe size of the �ilter and to control the size of the output layer. Aftersliding the �ilter over all locations of the input array we get anactivation map or feature map.2. RELU (Recti�ied Linear Units) Layer: To provide non-linearity aftereach Convolution layer it is suggested to apply a RELU layer. ARELU layer works far better in terms of performance as comparedto the sigmoid or tanh function without compromising theaccuracy. This layer also overcomes the problem of vanishinggradient. In vanishing gradient the lower layers train much slowly,because the gradient due to back-propagation decreasesexponentially through the layers. The RELU function is given as
This function changes all negative values to 0 and increases thenon-linearity of the model without affecting the output of theConvolution layer.

3. Pooling (or down-sampling) Layer. It uses a �ilter of a given size,moves across the input from previous layer, and applies a givenfunction. For example, in a max pooling layer, a max of all the �iltervalues is given as output. There are other types of pooling layers aswell such as average pooling and -norm pooling. This layerserves two purposes: it decreases the amount of computation by

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

decreasing the amount of parameters of weights, and it overcomesover�itting in the model.4. Dropout Layer: This layer helps in overcoming the problem ofover�itting. Over�itting means the weights and parameters are sotuned to the training examples after training the network, that theyperform very bad on the new examples. So this layer drops out arandom set of activation in a given layer by setting their valuesto 0 [16].

5. Fully Connected Layer: it takes as input from any of theConvolution layer, Pooling or RELU layer and outputs a Ndimensional vector. This N depends on the number of classes youwant to classify. In case of the image spam classi�ication problemthe value of , i.e., whether the image is a SPAM or a HAM.

A classic CNN architecture is composed of the above layersrepeated in some fashion as necessary. A simple example of sucharchitecture is given in Fig. 1.
Fig.	1 A simple CNN architecture composed of different layers
3.2.4	 Transfer	LearningData is an essential part of deep learning community. As you train yournetworks on large amount of data the network becomes moreredundant and ef�icient in generalizing the results to new datasets.Thus in case you have a small amount of dataset to actually work on,transfer learning overcomes this caveat. It is a process of using pre-trained models, which are trained on millions or billions of samples ofgeneralized datasets and then �ine-tune these models on your owndatasets. Rather than training the whole network we use a pre-trainedmodel weights and freeze them and focus on training only speci�iclower level of layers which are more speci�ic to our dataset. If yourdataset is different from the pre-trained model dataset then in that

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

case training more layers of the model is preferred. We focus on usingtwo such pre-trained models VGG16 and VGG19.A technique called data augmentation is widely used to overcomethe problem of having less samples of dataset. It performs differentimage transformation on the images to produce new images and henceaugment the dataset. Some transformations may include scaling theimage by some ratio, rotating them, skewing, �lipping, and cropping theimages.
3.3	 Quality	MetricsThe following terms will be used to quantify the results:True Positive (TP): an image is a SPAM image and classi�ier marks itis as a SPAMTrue Negative (TN): an image is a HAM image and classi�ier marks itis as a HAMFalse Positive (FP): an image is a HAM image and classi�ier marks itis as a SPAMFalse Negative (FN): an image is a SPAM image and classi�ier marksit is as a HAMConfusion Matrix: This is a matrix between TP, TN, FP, and FN. AFig. 2 taken from [2] is shown below.Accuracy: It is a metric used to determine how well a classi�ierworks. It is de�ined as (1)where P (Positive) and N (Negative) = .ROC and AUC: Receiver Operating characteristics (ROC) and Areaunder the Curve (AUC) can be obtained from a trained classi�ier. AROC curve is plotted against True positive rate (TPR) and FalsePositive rate (FPR) for varied threshold values. An area under thisROC curve is known as AUC value. TPR and FPR are determined as (2)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

(3)
An AUC close to 1 is considered as a good classi�ier.
K-fold cross validation: In this technique the classi�ier is trained Ktimes. The dataset is divided into K subsets. Each time a classi�ier istrained, one of the K subsets is used as the validation or test and theremaining subsets are used as the training set. The accuracyover all these K classi�iers is averaged to provide the averageaccuracy. Cross validation techniques are generally used toovercome over�itting within the dataset.Strati�ied K-fold cross validation: It is a slight variation in the K-foldcross validation technique. In this each fold is created in such afashion that each subset contains approximately the samepercentage of each target class. This is used in cases where thedataset classes are skewed, i.e., one class predominates the other.

Fig.	2 A confusion matrix [2]
4	 Related	WorkImage spam detection can be done using various techniques. One suchapproach is to use content-based detection, i.e., to segment the contentusing OCR techniques and then classify it. Other approaches include todetect image spams based on the properties or features extracted fromthese images. Different machine learning algorithms are also used inconjunction with image processing to generate strong classi�iers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Additionally, deep learning techniques, such as CNN, can also be usedon the raw images to detect image spams.A content-based image spam detection technique is discussedin [1], which uses OCR techniques on spam images. These techniquesextract the text from the segmented image and perform textualanalysis on the extracted text to determine whether the image is aSPAM or a HAM.Another paper by Gevaryahu, Elias-Bachrach et al. [4] use the imagemetadata properties, such as �ile size and other properties to detectSPAM images. The work presented in [5] use probabilistic boostingtrees for the classi�ication by working on the color and gradienthistogram features and achieve an accuracy of .Sanjushree, Suhasini et al. [10] use SVMs and particle swarmoptimizations (PSO) on ten metadata features and three textualfeatures for SPAM image classi�ication. Using the combination of thesetechniques they were able to achieve a accuracy on the Dredzedataset (discussed below) using 380 test and 300 training images. Theauthors of [5] use cluster-based �iltering techniques with client andserver-based models and claim to achieve a accuracy.A fuzzy inference system was used to analyze multiple featuresin [8], claiming to have achieved an accuracy of . Annadatha etal. [1] used a linear SVM classi�ier on 21 image properties and eachproperty was associate with a weight for the classi�ication. The authorperformed feature reduction and selection based on these weights.Two datasets [5] and Dredze [4] are used by them and they achieved anaccuracy of and , respectively. Moreover, they also developeda new challenging dataset for their classi�ier.Aneri et al. [2] used 38 features extracted for the Dredze and theImage Spam hunter (ISH) datasets (discussed below). In theirapproach they use SVM kernels and achieved an accuracy of withlinear, with Radial Basis Function (RBF), and with apolynomial kernel on the ISH dataset. Respectively, the results are

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

using linear, using RBF, and using a polynomial kernel on theDredze dataset. Additionally, feature reduction techniques are used,like univariate feature selection (UFS) and recursive featureelimination (RFE), to reduce the initial 38 features and provide betterresults. Expectation maximization (EM) clustering techniques aresome of their other approaches, but these did not performed very welland achieved an accuracy of on the ISH and on the Dredzedataset. One of the main contributions of this work is the creation of anew challenging dataset, that we also use in this work. The accuracywas not very good for it being . The number of samples that weuse is relatively large from these datasets. A big part of our work alsodiscusses various data processing techniques used to extract imagesfrom the spam archive, which was an unprocessed dataset as providedby Dredze. Hence, the amount of data the experiments and results arebased on are large as compared to all previous papers.In a recent work, Sharma et al. [14] use CNNs along with othermachine learning techniques to solve the SPAM image classi�icationproblem. They consider it similar to our real-world image spam andchallenging datasets. The best results they get are for their CNNs withan accuracy of for the ISH dataset, for the improveddataset of [2], and for the challenging dataset of [1] based onthe Dredze dataset.Soranamageswari et al. [15] use backpropagation neural networkbased on only color features and was able to achieve a accuracy. An interesting aspect used was that of splitting the imageinto different blocks and using them as features, but this approach onlyachieves a accuracy.Hong-Gang Zhang and Er-Xin Shang [13] use CNNs to classify into 7categories of unwanted content embedded in images. They worked ona dataset containing around 52K images. The 7 categories targeted bythem include commodities, spam images, political content images,adult content, recipe images, scenes, and everything else. They used�ive-convolution alongside max pooling layers. The output of these

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

layers is given to the fully connected layer and a SVM classi�ier is usedon this N sized feature vector. They resized all the images to a size and were able to achieve an average accuracy of . Following this approach we use a custom CNN architecture, butonly on a binary classi�ication, namely, SPAM and HAM.
5	 Framework
5.1	 DatasetsWe experiment with the three different datasets that are used by Aneriet al. [2]. However, the number of images used is much larger comparedto the images used in that approach. We focus on making use ofdifferent formats of images such as gif, jpeg, jpg, png, tif, and bmp. Thegif images were processed and the �irst frame was extracted from thegif images and converted to png �iles.
5.1.1	 Dredze	DatasetDredze et al. [4] created a SPAM image archive dataset as well as apersonalized SPAM image archive. The personalized SPAM imagearchive contained a lot of unprocessed �iles in different formats such asgif, txt, and jpg. We pre-processed this archive as well to augment ourdataset. Then, the experiments were performed on the combination ofthe Dredze SPAM archive and the Dredze personalized archive. Earlierpapers [1, 2] focused only on a subset of the personalized SPAM imagesarchive. After the pre-processing step, the personalized SPAM imageswere 3165 with 1760 HAM images, and the SPAM images obtainedwere 10937. Totally, 14, 103 SPAM images and 12, 565 HAM images.
5.1.2	 Image	Spam	Hunter	(ISH)The image spam hunter dataset contained both HAM and SPAMimages [5]. We extracted and processed 922 SPAM and 810 HAMimages.
5.1.3	 Improved	Dataset

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This dataset was created by Aneri et al. [2]. This dataset was created byperforming transformation on the HAM images to make them SPAM.The HAM images were resized to the size of SPAM images to align theirmetadata features. Noise was introduced in the SPAM images to maketheir edge detection dif�icult, since SPAM images generally have lessnoise as compared to HAM images. These noise-induced SPAM imageswere overlayed on top of the HAM images to generate the improveddataset. We experimented with the additional 1, 030 improved SPAMimages.
5.1.4	 Combined	DatasetIn general CNN requires large amount of datasets to converge andperform better. So instead of experimenting with individual datasetsmentioned above we combined together all these datasets to augmentthe number of SPAM image samples. In order to account for the HAMimages we downloaded images belonging to different categories, thatare not SPAM, to make our dataset balanced.
5.2	 Data	Pre-processingThe Dredze dataset archive contained a lot of unwanted �iles andcorrupted images from which features could not be extracted. Therewere a lot of images in different formats and almost of theimages were in gif formats. These gif images were processed to extractthe �irst frame and then saved in a png format which helped inaugmenting the dataset. The steps in order to achieve this objectiveare described next:1. All unwanted formats, such as .txt, were removed. 2. All .gif images were converted to .png �iles. All frames of the .gifimages were extracted and the �irst frame was saved as a SPAMimage. The rest of the frames did not contain a SPAM image andwere discarded.

3. All corrupted �iles were removed.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In order to achieve the above objectives, different proofs ofconcepts were tried. We created bash scripts to perform all the abovesteps and keep track of the results after each step to get a cleanaugmented SPAM images archive.
5.3	 Image	FeaturesThe �irst part of the experiments used NNs and DNNs on featuresextracted from the images from the different datasets. We use the 38features as mentioned in [2]. The features are classi�ied into �ive bigcategories: metadata, color, texture, shape, and noise features. Figure 3below describes the different features belonging to each category. Thedifferent categories of features are discussed below.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 Different image features [2]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5.3.1	 Metadata	PropertiesThese properties contain the image height, width, aspect ratio, bitdepth, and compression ration of the image �iles. Compression of animage is de�ined as (4)
5.3.2	 Color	PropertiesThese properties include mean, skew, variance, and entropy values ofdifferent properties of an image such as RGB colors, kurtosis, hue,brightness, and saturation. Mean can be a basic color feature thatrepresents the average pixel value of the image. That is, it is useful fordetermining an image background. A SPAM compared to a HAM imagehas different histogram properties for these features as depicted in theexamples of Fig. 4. These histograms show the reasoning behindselecting these properties of color for the classi�ication task. Similarly,in the examples of Fig. 5 one can see the histogram for HSV’s values of aSPAM and a HAM image. In images, a glossier surface has more positiveskew values as compared to a lighter and matte surface. Hence, we canuse skewness in making judgments about image surfaces. Kurtosisvalues are interpreted in combination with noise and resolutionmeasurement. High kurtosis values go hand in hand with low noise andlow resolution. SPAM images usually have high kurtosis values.

Fig.	4 SPAM verses HAM RGB’s histogram

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	5 SPAM verses HAM HSV’s histogram
5.3.3	 Texture	PropertiesThe local binary pattern (LBP) is used to determine similarity andinformation of adjacent pixels. The LBP would appear to be a strongfeature for detecting an SPAM image that is simply text set on a whitebackground. In the case of SPAM images these histograms will havehigh intensity for speci�ic values rather than being scattered.
5.3.4	 Shape	PropertiesHistogram of oriented gradients (HOG) determines how intensitygradient changes in an image. HOG descriptors are mainly used todescribe the structural shape and appearance of an object in an image,making them excellent descriptors for object classi�ication. Edges areone of the most important features to detect SPAM images. They serveto highlight the boundaries in an image. Canny edge �ilters are used to�ind the edges. Fig. 8 shows the contrast in canny edges for SPAM andHAM images. Figures 6 and 7 show the hog features for a HAM and aSPAM image.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	6 a HAM original Image b HAM Grayscale Image c HAM HOG d HAM Canny edges

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 a SPAM original Image b SPAM Grayscale c SPAM HOG d SPAM Canny edges
5.3.5	 Noise	PropertiesThese features include signal to noise ratio (SNR) and entropy of noise.SPAM images tend to have lesser noise as compared to HAM images.SNR is de�ined as the ratio of mean to standard deviation of an image.
5.4	 Techniques	Used

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Let us brie�ly describe the various techniques and architectures thatwe are going to use.
5.4.1	 Neural	NetworksA backpropagation neural network with 1 hidden layer with 20 neuronswas used. The input layer consisted of the 38 features. The hidden layerused the RELU activation function and the output layer consists of thesigmoid activation function with one neuron. A K-fold strati�ied crossvalidation, with , was used with this. An architecture of themodel is shown in Fig. 8.

Fig.	8 Neural network architecture
5.5	 Deep	Neural	NetworksThe previous neural network was extended to introduce anotherhidden layer with 10 neurons and with the RELU activation function.Binary cross entropy was used as the loss function and again with K-fold strati�ied cross validation. We make use of two CNN architectures.We name them as CNN1 and CNN2. CNN1 was trained for 30 iterations,whereas CNN2 was run with 25 iterations. Both of them were trained

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

with a batch size of 64 images. The training set contained 19924images, whereas the validation set contained 2681 images.
5.5.1	 CNN1	ArchitectureThe CNN1 architecture as de�ined below was used as the third model todraw results. The images were �irst rescaled to 128x128x3 and then fedto the network.1. 96 �ilters of size were used to the input layer with astride of 1 followed by the RELU function.
2. On the output of from the previous layer a maxpool layer is used taking the maximum value from a areawith stride of .

3. On the input of from previous layer anotherconvolution layer with 128 �ilters, with �ilter size and strideof 1, and no padding is used followed by a RELU activation function.

4. On input from previous layer another max poolinglayer with a area and stride of 2 is used on the input ofprevious layers to produce an output of size .

5. The input of the previous layer is �lattened and given to a fullyconnected layer. The N vector obtained from the input layer is ofsize 107648. On this N vector a dense layer of size 256 is used withRELU as activation function and a dropout layer with probability of0.1. Another dense layer of size 1, which acts as the output layer isadded to the end of this with sigmoid activation function.

5.5.2	 CNN2	Architecture

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The CNN2 architecture is de�ined below and was used as the fourthmodel to draw results. The images were again �irst rescaled to and then fed to the network.1. 128 �ilters of size were used to the input layer with astride of 2 followed by the rectilinear linear operator (RELU)function.

2. On the output of from previous layer a max poollayer is used taking the maximum value from a area withstride of 1.

3. On the input of from previous layer anotherconvolution layer with 128 �ilters with �ilter size and strideof 1 and no padding is used followed by a RELU activation function.

4. On input from previous layer another max poolinglayer with a area and stride of 1 is used on the input ofprevious layers to produce an output of size .

5. On the previous layer input another convolution layer with 256�ilters with �ilter size and stride of 2 is used followed by aRELU activation function.

6. On the input from the previous layer another maxpooling layer with a area and stride of 2 is used on the inputof previous layers to produce an output of size .

7. The input of the previous layer is �lattened and given to a fullyconnected layer. The N vector obtained from the input layer is ofsize 36864. On this N vector a dense layer of size 1024 is used with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

yRELU as activation function and a dropout layer with probability of0.2. Another dense layer of size 128 is added after that with adropout layer with probability of 0.1 and RELU activation function.
The �inal layer is of 1 neuron, which acts as the output layer withsigmoid activation function.

5.6	 Transfer	LearningThere are pre-trained models that are open sourced. These models aretrained on billions of images such as the ImageNet database [9].Transfer learning is used to decrease the computation time to trainyour own network and to make you make use of these pre-trainednetworks. We can freeze some layers based on our requirements andonly train a subset of those layers on our own dataset. There are twosuch pre-trained models available as open source, VGG16 andVGG19 [7, 12]. However, here we only discuss the VGG19 model and theassumption is that VGG16 would have performed similar to VGG19 withsome minor difference in accuracy.
5.6.1	 VGG19In the VGG19 architecture we added 3 fully connected layers at thebottom with 1024, 512, and 1 layer, respectively and added a dropoutlayer with probability of 0.3 with 1024 neurons layer. We freeze all thelayers of the network and just trained this fully connected layer addedto the end in 50 iterations.
6	 Experimental	ResultsWe �irst discuss the NNs results, then we go deeper and show ourresults for DNNs. After that, we will show an alternative approach, ofusing raw images from our dataset, and explain the results obtained forthe CNN1 and the CNN2 architecture. Finally, we conclude with theresults obtained from the VGG19 model, which uses the transferlearning approach. All the results were obtained by using the datasetsdiscussed in Sect. 5. Speci�ically, NNs and DNNs were trained and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

tested on the Dredze, the ISH dataset, and the improved dataset.Whereas CNN1, CNN2, and VGG19 were run on the combined dataset.
6.1	 Neural	Network	ResultsWe created a neural network with the architecture discussed in Sect. 5and ran it for the ISH, Dredze, and Improved Dataset.
6.1.1	 ISH	DatasetThe NN was run with 100 mini batch size and for 500 iterations with10-fold strati�ied cross validation. The mean accuracy obtained aftertraining the model was . Figure 9 shows the AUC achieved bythe best classi�ier over the whole ISH dataset and the confusion matrixobtained with a 0.7 threshold value is shown in Fig. 9. The FP rateobtained was .

Fig.	9 ROC and confusion matrix for ISH dataset trained on NNWhen the above-trained model was tested on the improved dataset,it gave a very low accuracy of , which was expected as theimproved dataset was meant to fool such classi�iers. So, in the nextexperiment the ISH dataset and with the improved dataset and then

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

trained on the NN, which gave an accuracy of and an areaunder curve of 0.99. The ROC curve regarding the same is given inFig. 10.

Fig.	10 ROC curve for NN when trained on Improved dataset and with ISH dataset
6.1.2	 Dredze	DatasetThe same NN was run on the Dredze personalized dataset and on theDredze spam archive combined with 10-fold strati�ied cross validation.We got mean accuracy of and , respectively. The ROCcurve when the NN was run on the Dredze spam archive and with thepersonalized dataset is shown in Fig. 11 alongside its confusion matrix.The FPR achieved in this case was . When this model was testedon the improved dataset we achieved an accuracy of .

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	11 ROC and confusion Matrix for Dredze dataset trained on NNWhen the whole Dredze dataset was combined with the improveddataset and then trained on the NN we achieved an accuracy of 94.42%.Figure 12 below shows the ROC curve obtained for the sameexperiment.

Fig.	12 ROC curve for Dredze dataset combined with improved dataset on NN

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The summary of all the results when trained with differentcombination of datasets on the NN is given in Fig. 13.

Fig.	13 Summarized Result of NN trained on different datasetsAs shown above, NN gave best results for the ISH dataset. Itperformed worse when trained on the ISH or the Dredze dataset, andthen tested on the improved dataset. However, when the two datasetswere combined with the improved dataset, the NN was still able toperform better, however, decreased the overall accuracy of the otherdatasets as it acted as noise for them.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

6.2	 Deep	Neural	Network	ResultsThe purpose of using a DNN was to compare the results obtained fromthe NN and see if the introduction of extra hidden layers actuallyaffects the results or not. The experiments are performed on the samedatasets and their combination with the improved dataset as done inthe NN approach.
6.3	 Image	Spam	HunterTwo experiments were performed on the ISH with the samecon�iguration as discussed in Sect. 5. When the DNN was trained on theISH dataset alone we achieved a mean accuracy of , the ROCcurve and the confusion matrix are shown in Fig. 14. The FPR in thiscase was and when this model was tested on the improved datasetwe achieved an accuracy of . When the DNN was trained on theimproved dataset and with the ISH dataset we achieve a mean accuracyof and an ROC curve as shown in Fig. 15.

Fig.	14 ROC and confusion matrix for ISH dataset trained on DNN

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	15 ROC curve for ISH dataset and with improved dataset and trained on DNN
6.4	 Dredze	DatasetAfter training it on the personalized dataset we achieved an accuracy of. When the same model was trained on the personalizedcombined with the SPAM archive we obtained an accuracy of and a FPR of . When this model was tested on the improved datasetwe achieved an accuracy of . The ROC curve and confusion matrixobtained for the latter case is shown in Fig. 16.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	16 ROC and confusion matrix for Dredze dataset trained on DNNWhen the Dredze dataset was combined with the improved datasetwe achieved the following ROC curve of Figure 17 and a mean accuracyof .

Fig.	17 ROC curve for Dredze dataset combined with improved dataset on DNN

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The summary of all the results when trained with differentcombination of dataset on the DNN is shown in Fig. 18.

Fig.	18 Summarized Result of DNN trained on different datasetsAfter comparing the results we obtain from NNs and DNNs, we canconclude that the introduction of an extra layer indeed increases theaccuracies for Dredze dataset with more samples but decreases theaccuracy of the ISH dataset with comparable lesser samples. It alsobecame more robust with the improved dataset.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

6.5	 Convolution	Neural	Networks	and	Transfer	Learning
ResultsWe trained the CNN1 and the CNN2 architectures on 19924 images ofSPAM and HAM, and test on 2681 images. The CNN1, CNN2, and VGG19are trained on a GPU machine with GeForce GTX 960M, Cuda Version8.0 and compute capability—5.0 con�iguration, and each model took anaverage of 4 days to train. CNN1 was trained for 30 iterations, CNN2 for25 iterations, and VGG19 for 50 iterations. For all of these models Adamoptimizer was used along with binary cross entropy. Figure 19 showsthe training accuracy, training loss, validation accuracy, and validationloss obtained over the 40 epochs the CNN1 model was trained on.

Fig.	19 Accuracy verses Loss for the CNN1 modelThen, Fig. 20 shows the accuracy results for the three models whentrained on the combined dataset, and when tested on the improveddataset.
Fig.	20 CNNs and transfer learning accuracies

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

From the above table it can be concluded that as the CNN2performed little bit better as compared to CNN1 as it had more layers.Also VGG19 performed better than the other two because it was a pre-trained model on a much larger dataset. Transfer learning hence ispreferable in such scenarios when there are lesser time and resourcesavailable to train your own model.
7	 Conclusion	and	Future	WorkIn this work we make use of different real-world image spam datasetsand provide strong classi�iers based on neural networks, deep neuralnetworks, and convolution neural networks. We compare our results tothe ones presented by Aneri et al. [2]. These techniques were able tolearn even from the improved dataset provided by them. We performeddifferent experiments with different combinations of datasets whichwere derived from Dredze (image archive and personalized), the imagespam hunter, and the improved dataset. In the CNN experiments, wematched and kept the datasets for SPAM and HAM balanced byrandomly sampling HAM �iles from different categories over theInternet. All the experiments, especially the ones with the convolutionneural networks, showed really promising results because the size ofthe used dataset was comparatively much larger to the previousexperiments performed in the past and the diversity of the HAM �iles.With the advent of deep learning which make use of big dataavailable across the Internet, even more strong classi�iers are feasible.Techniques like generative adversarial networks (GAN’s), introduced inyear 2012 by Ian Goodfellow [6] can be used for this purpose. UsingGAN’s which is based on Nash equilibrium, more stronger and robustclassi�iers can be built. Also, object segmentation using CNN and RNN(Recurrent Neural Networks) [19] can be used to detect the segmentedregion of SPAMS and remove them from the images by extrapolating abackground from ham images. Using such techniques, SPAM imagescan be converted to ham dynamically. Also, different experiments withdifferent architectures within the CNN can be used to quantify differentresults. We can also use recursive feature elimination (RFE) andunivariate feature selection (UFS), as done in [2] on the image features,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

when trained to neural networks and deep neural network to decreasethe number of features under consideration.
References1. Annadatha, A., and M. Stamp. 2016. Image spam analysis and detection. Journal	of	Computer

Virology	and	Hacking	Techniques.2. Chavda, Aneri, Katerina Potika, Fabio Di Troia, and Mark Stamp. Support vector machines forimage spam analysis. In Proceedings	of	the	15th	international	joint	conference	on	e-Business
and	telecommunications,	ICETE	2018	-	Volume	1:	DCNET,	ICE-B,	OPTICS,	SIGMAP	and
WINSYS,	Porto,	Portugal,	July	26-28,	2018, 597–607.3. Dhanaraj, S., and V. Karthikeyani. 2013. A study on e-mail image spam �iltering techniques. In
2013	international	conference	on	pattern	recognition,	informatics	and	mobile	engineering
(PRIME), 49–55. IEEE.4. Dredze, Mark, Reuven Gevaryahu, and Ari Elias-Bachrach. 2007. Learning fast classi�iers forimage spam. In CEAS, 2007–487.5. Gao, Yan, Ming Yang, Xiaonan Zhao, Bryan Pardo, Ying Wu, Thrasyvoulos N Pappas, and AlokChoudhary. 2008. Image spam hunter. In ICASSP	2008	IEEE	international	conference	on
acoustics,	speech	and	signal	processing, 1765–1768. IEEE.6. Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances	in	neural
information	processing	systems, 2672–2680.7. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into recti�iers:Surpassing human-level performance on imagenet classi�ication. In Proceedings	of	the	IEEE
international	conference	on	computer	vision, 1026–1034.8. Jain, U., and S. Dhavale. 2015. Image	spam	detection	technique	based	on	fuzzy	inference
system, Master’s Report. Department of Computer Engineering, Defense Institute of AdvancedTechnology.9. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classi�ication withdeep convolutional neural networks. In Advances	in	neural	information	processing	systems,1097–1105.10. Kumaresan, T., S. Sanjushree, K. Suhasini, and C. Palanisamy. 2015. Image spam �iltering usingsupport vector machine and particle swarm optimization. International	Journal	of	Computer
Applications	in	Technology 1: 17–21.11. Lai, Chih-Chin, and Ming-Chi Tsai. 2004. An empirical performance comparison of machinelearning methods for spam e-mail categorization. In 2004	HIS’04	fourth	international
conference	on	hybrid	intelligent	systems, 44–48. IEEE.12. Long, Jonathan, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

semantic segmentation. In Proceedings	of	the	IEEE	conference	on	computer	vision	and	pattern
recognition, 3431–3440.13. Shang, Er-Xin, and Hong-Gang Zhang. 2016. Image spam classi�ication based on convolutionalneural network. In 2016	international	conference	on	machine	learning	and	cybernetics
(ICMLC), vol. 1, 398–403. IEEE.14. Sharmin, Tazmina, Fabio Di Troia, Katerina Potika, and Mark Stamp. 2020. Convolutionalneural networks for image spam detection. Information	Security	Journal:	A	Global	Perspective29 (3): 103–117.15. Soranamageswari, M., C. Meena. 2010. Statistical feature extraction for classi�ication of imagespam using arti�icial neural networks. In Second	international	conference	on	machine
learning	and	computing	(ICMLC), 101–105. IEEE.16. Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and RuslanSalakhutdinov. 2014. Dropout: A simple way to prevent neural networks from over�itting.
The	Journal	of	Machine	Learning	Research 15 (1): 1929–1958.[MathSciNet][zbMATH]17. Stamp, Mark. 2011. Information	security:	principles	and	practice. Wiley.18. Whitney, Lance. 2009. Report: Spam now 90 percent of all e-mail. CNET	News, 26.19. Zheng, Shuai, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su,Dalong Du, Chang Huang, and Philip HS Torr. Conditional random �ields as recurrent neuralnetworks. In Proceedings	of	the	IEEE	international	conference	on	computer	vision, 1529–1537.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.ams.org/mathscinet-getitem?mr=3231592
http://www.emis.de/MATH-item?1318.68153

(1)(2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021M. Stamp et al. (eds.), Malware	Analysis	Using	Arti�icial	Intelligence	and	Deep	Learninghttps://doi.org/10.1007/978-3-030-62582-5_25
Universal	Adversarial	Perturbations
and	Image	Spam	Classi�iersAndy Phung1 and Mark Stamp2 Independence High School, San Jose, CA, USASan Jose State University, San Jose, CA, USA
Andy	Phung
Email:	phungandy0080@students.esuhsd.org
Mark	Stamp	(Corresponding	author)
Email:	mark.stamp@sjsu.edu

AbstractAs the name suggests, image spam is spam email that has beenembedded in an image. Image spam was developed in an effort toevade text-based �ilters. Modern deep learning-based classi�iersperform well in detecting typical image spam that is seen in the wild. Inthis chapter, we evaluate numerous adversarial techniques for thepurpose of attacking deep learning-based image spam classi�iers. Ofthe techniques tested, we �ind that universal perturbation performsbest. Using universal adversarial perturbations, we propose andanalyze a new transformation-based adversarial attack that enables usto create tailored “natural perturbations” in image spam. The resultingspam images bene�it from both the presence of concentrated naturalfeatures and a universal adversarial perturbation. We show that theproposed technique outperforms existing adversarial attacks in termsof accuracy reduction, computation time per example, andperturbation distance. We apply our technique to create a dataset of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://doi.org/10.1007/978-3-030-62582-5_25
mailto:phungandy0080@students.esuhsd.org
mailto:mark.stamp@sjsu.edu

adversarial spam images, which can serve as a challenge dataset forfuture research in image spam detection.
1	 IntroductionE-mail, or electronic mail, is one of the most popular forms ofcommunication in the world, with over 3.9 billion active emailusers [4]. As a side effect of this rapid growth, the number of unwantedbulk email messages—i.e., spam messages—sent with commercial ormalicious intent has also grown. According to [4], 60 billion spamemails will be sent each day for the next 3 years.While text-based spam �iltering systems are in use by most, if notall, e-mail clients [8], spammers can embed messages in attachedimages to evade such systems—such messages are known as imagespam. Image spam detectors based on optical character recognition(OCR) have been deployed to combat such e-mail. As acountermeasure, spammers can modify images so as to disrupt OCR-based techniques [9].In recent years, deep learning models, such as multi-layerperceptrons and convolutional neural networks, have been successfullyapplied to the image spam problem [1, 2, 6, 9, 12, 24, 25]. Note thatthese techniques do not rely on OCR, but instead detect image spamdirectly, based on characteristics of the images.With the recent development of perturbation methods, thepossibility exists for spammers to utilize adversarial techniques todefeat image-based machine learning detectors [26]. To date, we arenot aware of perturbation techniques having been used by imagespammers, but it is highly likely that this will occur in the near future.The main contributions of our research are the following.We show that the universal perturbation adversarial attack isbest suited for the task of bypassing deep learning-based imagespam �ilters.We propose a new image transformation-based attack thatutilizes the maximization of layer activations to produce spamimages containing universal perturbations. This technique focusesperturbations in the most salient regions, as well as concentratingnatural features in the remaining regions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We compare our proposed adversarial technique to existingattacks and �ind that our approach outperforms all others in terms ofaccuracy reduction, computation time per example, andperturbation magnitude.We generate a large dataset containing both non-spam andadversarial spam images using our proposed attack. The authors willmake this dataset available to researchers.The remainder of this chapter is organized as follows. In Sect. 2, weprovide an overview of relevant research and related work. In Sect. 3,we evaluate adversarial attacks in the context of image spam, and inSect. 4, we present our proposed attack. Finally, Sect. 5 concludes thischapter, where we have included suggestions for future work.
2	 Background
2.1	 Image	Spam	FilteringThe initial defenses against image spam relied on optical characterrecognition (OCR). In such OCR-based systems, text is extracted froman image, at which point a traditional text-based spam �ilter can beused [3]. As a reaction to OCR-based techniques, spammers introducedimages with slight modi�ications, such as overlaying a light backgroundof random artifacts on images, which are suf�icient to render OCRineffective. The rise of learning algorithms, however, has enabled thecreation of image spam �iltering systems based directly on imagefeatures.In 2008, a �iltering system using a global image feature-basedprobabilistic boosting tree was proposed and achieved 89.44%detection rate with a false positive rate of 0.86% [9]. Two years later,an arti�icial neural network for image classi�ication was proposed [25].These latter authors used were able to classify image spamwith 92.82% accuracy based on color histograms, and 89.39% accuracybased on image composition extraction.The two image spam detection methods presented in [2] rely on theprincipal component analysis (PCA) and support vector machines(SVM). In addition, the authors of [2] introduce a new dataset that theirmethods cannot reliably detect. Two years later, the authors of [6]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

improved on the results in [2] by training a linear SVM on 38 imagefeatures, achieving 98%, accuracy in the best case. The authors alsointroduce a challenge dataset that is even more challenging than theanalogous dataset presented in [2].The recent rise of deep learning, a sub�ield of machine learning,coupled with advances in computational speed has enabled thecreation of �iltering systems capable of considering not only imagefeatures but also entire images at once. In particular, convolutionalneural networks (CNNs) are well suited to computer vision tasks dueto their powerful feature extraction capabilities.In recent years, CNNs have been applied to the task of image spamdetection. For example, in [1], a CNN is trained on an augmenteddataset of spam images, achieving 6% improvement in accuracy, ascompared to previous work. Similarly, the authors of [12] consider aCNN, which achieved 91.7% accuracy. In [24], a CNN-based system isproposed, which achieves an accuracy of 99% on a real-world imagespam dataset, 83% accuracy on the challenge dataset in [2] (animprovement over previous works), and 68% on the challenge datasetin [6].From the challenge datasets introduced in [2, 6], we see that theaccuracy of machine learning-based �iltering systems can be reducedsigni�icantly with appropriate modi�ications to spam images. In thisresearch, we show that the accuracy of such systems can be reduced farmore by using the adversarial learning the approach that we presentbelow.
2.2	 Adversarial	LearningThe authors of [26] found that by applying an imperceptible �ilter to animage, a given neural network’s prediction can be arbitrarily changed.This �ilter can be generated from the optimization problem
where f is the classi�ier, r is the minimizer, l is the target label, and m isthe dimension of the image. The resulting modi�ied images are said tobe adversarial	examples, and the attack presented in [26] is known as

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the L-BFGS	Attack. These adversarial examples generalize well todifferent network architectures and networks.More recently, many advances have been made in both adversarialexample generation and detection. For example, in [28] a taxonomy isproposed for generation and detection methods, as well as a threatmodel. Based on this threat model, the task of attacking neuralnetwork-based image spam detectors requires an attack that is falsenegative (i.e., generative of positive samples misclassi�ied as negative)and black box (i.e., the attacker does not have access to the trainedmodel). Attacks on image spam classi�iers must satisfy these twocriteria.After the introduction of the L-BFGS Attack, the authors of [10] builton their work in [26] by introducing the Fast	Gradient	Sign	Method(FGSM). This method uses the gradient of the loss function withrespect to a given input image to ef�iciently create a new image thatmaximizes the loss, via backpropagation. This can be summarized withthe expression
where is the parameters of the model, x is the input image, y is thetarget label, and J is the cost function used to train the model. Theseauthors also introduce the notion that adversarial examples resultfrom linear behavior in high-dimensional spaces.The authors of [5] introduce C&W’s	Attack, a method designed tocombat defensive	distillation, which consists of training a pair of modelssuch that there is a low probability of successively attacking bothmodels. C&W’s Attack is a non-box constrained variant of the L-BFGSAttack that is more easily optimized and effective against both distilledand undistilled networks. They formulate adversarial examplegeneration as the optimization problem
where x is the image, D is one of the three distance metrics describedbelow, and c is a suitably chosen constraint (the authors choose c with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

binary search). The authors also utilize three distance metrics formeasuring perturbation: (the number of altered pixels), (theEuclidean distance), and (the maximum change to any of thecoordinates), and introduced three subvariants of their attack that aimto minimize each of these distance metrics.It is important to note that the previously mentioned attacksrequire knowledge of the classi�ier’s gradient and, as such, cannot bedirectly deployed in a black-box attack. In [19], the authors proposeusing a surrogate model for adversarial example generation to enablethe transferability of adversarial examples to attack black-box models.Differing from gradient-based methods, the authors of [7] introduced amethod, Zeroth-Order	Optimization (ZOO), which is inspired by thework in [5]. The ZOO technique employs gradient estimation, with themost signi�icant downside being that it is computationally expensive.The paper [14] introduces the DeepFool attack, which aims to �indthe minimum distance from the original input images to the decisionboundary for adversarial examples. They found that the minimalperturbation needed for an af�ine classi�ier is the distance to theseparating af�ine hyperplane, which is expressed (for differentiablebinary classi�iers) as
where i denotes the iteration, is the perturbation, and f is theclassi�ier. In comparison to FGSM, DeepFool minimizes the magnitudeof the perturbation, instead of the number of selected features. Thiswould appear to be ideal for spammers, since it would tend tominimize the effect on an image.The universal	perturbation attack presented in [13] is also suited tothe task at hand. We believe that universal adversarial examples aremost likely to be deployed by spammers against black-box models dueto their simplicity and their transferability across architectures.Generating universal perturbations is an iterative process, as the goalis to �ind a vector v that satis�ies

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

where is a distribution of images, is a classi�ication function thatoutputs for each image x and a label . The results in [13] show thatuniversal perturbations are misclassi�ied with high probability,suggesting that the existence of such perturbations are correlated tocertain regions of the decision boundary of a deep neural network.Finally, the authors of [11] propose input restoration with apreprocessing network to defend against adversarial attacks. Theauthors’ defense improved the classi�ication precision of a CNNfrom 10.2% to 81.8%, on average. These results outperform existinginput transformation-based defenses.
3	 Evaluating	Adversarial	Attacks
3.1	 Experimental	DesignThe two multi-layer perceptron and convolutional neural networkarchitectures presented in [24] are each trained on both of the datasetspresented in [9], which henceforth will be referred to as the ISH
Dataset, and the dataset presented in [6], which henceforth will bereferred to as the MD	Dataset (modi�ied Dredze). We useTensorFlow [27] to train our models—both architectures have beentrained as they were presented in their respective articles on each ofthe datasets. NumPy [17] and OpenCV [18] are used for numericaloperations and image processing tasks, respectively. All computationsare performed on a laptop with 8GB ram, using Google Colaboratory’sPro GPU.The ISH Dataset contains 928 spam images and 830 non-spamimages, while the MD Dataset contains 810 spam images and 784 non-spam images; all images in both datasets are in jpg format. Thesedatasets are summarized in Table 1.
Table	1 Image spam datasets
Name Spam	images Non-spam	images

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Name Spam	images Non-spam	imagesISH dataset 928 830MD dataset 810 784Total 1738 1613Dataset preprocessing for the networks presented in [24] consistsof downsizing each of the images such that their dimensions are , applying zero-parameter Canny edge detection [20] to a copyof the downsized image, and concatenating the downsized image withthe copy that had Canny edge detection applied. This process results in images, which are used to train the two neural networks, one forthe ISH dataset, and one for the MD dataset. The four resulting modelsachieved accuracies within roughly 7% of the accuracies reportedin [24].To enable the generation of adversarial examples, four largermodels with an input size of 400x400 are also trained on the originaldatasets. The �irst few layers of each of these models are simply used todownscale input images such that the original architectures can beused after downscaling. These four alternative models achieveaccuracy roughly equivalent to the original models. The fouradversarial attacks (FGSM, C&W’s Attack, DeepFool, and universalperturbation) utilize these four alternative models to generateadversarial examples that can then be formatted as the originaldatasets to attack the original four models. This procedure attempts toexploit the transferability of adversarial examples to similararchitectures.The IBM Adversarial Robustness Toolbox (ART) [16] is used toimplement C&W’s Attack, DeepFool, and universal perturbations, whileFGSM was implemented independently from scratch. An attempt wasmade to optimize the parameters of each technique—the resultingparameters are summarized in Table 2. Note that for the universalperturbation attack, FGSM was used as the base attack, as the IBM ARTallows any adversarial attack to be used for computing universalperturbations.
Table	2 Attack parameters

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Attack Description ValueFGSM Perturbation magnitude 0.1C&W’s attack Target con�idence 0Learning rate 0.001Binary search steps 20Maximum iterations 250Initial trade-off 100Batch size 1DeepFool Max iterations 500Overshoot parameter
Class gradients 10Batch size 1Universal perturbation target accuracy 0%Max iterations 250Step size 64NormThe metrics used to evaluate each of the four attacks are theaverage accuracy, area under the curve (AUC) of the receiver operatingcharacteristic (ROC) curve, average perturbation measurement(Euclidean distance), and average computation time per example foreach of the four models. Scikit-learn [21] was used to generate the ROCcurves for each attack.We use 251 data points for accuracy and distances collected forthe FGSM, DeepFool, and universal perturbation experiments, inaccordance with the full size of the test dataset, which contains 251examples for generating adversarial examples. However, only 28 datapoints were collected from the C&W’s Attack experiment due to a largeamount of time required to generate each data point (roughly �iveminutes per data point). The technique that will be used as the basis ofour proposed attack will be selected based on the performance of eachattack, as presented in the next section.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3.2	 AnalysisThe mean accuracy, computation time per example, and distancewere recorded for each of the four models attacked by each of theattack methods. This data was compiled into the tables discussed inthis section.From Table 3, we see that for FGSM, the accuracy of the attackedmodels is shown to vary inconsistently while Fig. 1 shows that thedistribution of the distances of the generated adversarial examplesskew right. Based on these results and corresponding density plots ofthe accuracy and distance distributions, the FGSM attack can beruled out as a candidate due to poor accuracy.
Table	3 Mean accuracy per adversarial example
Model FGSM	(%) C&W’s	attack	(%) DeepFool	(%) Universal	perturbation	(%)MLP (ISH) 95.2 89.2 98.8 98.7CNN (ISH) 36.2 49.6 61.5 49.9MLP (MD) 69.7 75.6 93.5 94.3CNN (MD) 82.8 77.2 14.5 8.4

Fig.	1 Density plot of (Euclidean) distances (Fast Gradient Sign Method)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The mean (Euclidean) distances of the adversarial examples aregiven in Table 4. The distribution of distances appears to be roughlyequivalent across all attacks.
Table	4 Mean (Euclidean) distance of adversarial examples from original images
Model FGSM	attack C&W’s DeepFool	perturbation UniversalMLP (ISH) 11537.55 10321.77 11513.26 11483.72CNN (ISH) 11108.44 10924.14 11216.19 11416.58MLP (MD) 8998.71 9185.04 9566.02 9490.56CNN (MD) 9144.49 9009.91 9128.99 9381.15DeepFool can also be ruled as a candidate, as the attack has beenseen to be only marginally better than the FGSM attack in terms ofperformance while also having a signi�icantly higher averagecomputation time per adversarial example. This can be observed inTable 5, where the computation time per example varies greatly.
Table	5 Mean computation time per adversarial example
Model	attack FGSM C&W’s DeepFool	perturbation UniversalMLP (ISH) 0.180 269.65 19.90 4.37CNN (ISH) 0.038 251.01 4.75 2.87MLP (MD) 0.164 270.58 36.30 3.71CNN (MD) 0.165 244.47 1.48 5.23In contrast, C&W’s Attack shows consistent performance in all threemetrics at the cost of high computation time (roughly �ive minutes peradversarial example). The consistency of this attack is ideal from aspammer’s perspective, though the trade-off is a relatively highcomputation time. In addition, the left skew of this attack with respectto distance, as presented in Fig. 2, indicates that the perturbationmade to spam images is much lower in comparison to the otherattacks.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	2 Density plot of (Euclidean) distances (C&W’s Attack)
The universal perturbation attack is inconsistent in terms ofaccuracy, as shown in Table 3, where the mean accuracy across the fourmodels is clearly shown to �luctuate wildly, but this is simply due to thefact that only one perturbation (albeit with varying success acrossarchitectures) is applied to all spam images, which is highlyadvantageous for spammers. The generation and application of thisperturbation to an image takes roughly four seconds, which wouldresult in greater performance in a real-world spam setting incomparison to C&W’s Attack.To further compare C&W’s Attack and the universal perturbationattack, the ROC curves of the two are presented in Fig. 3. These ROCcurves can be used to quantify the diagnostic ability of the modelsattacked by each method.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	3 ROC curves of C&W’s Attack and the universal perturbation when used to attack the fourclassi�iersThe ROC curve for C&W’s attack is much noisier due to beinggenerated from only 28 data points. Taking this into consideration, itcan be inferred that both C&W’s Attack and the universal perturbationattack are able to reduce the areas under the ROC curve (AUC) of theattacked models to values close to 0.5. This suggests that both attacksare able to reduce the class separation capacity of attacked imagespam classi�iers to essentially random.To analyze the differences in distribution of the accuracy and distance data collected from the trials conducted on C&W’s Attack andthe universal perturbation attack, the Mann–Whitney U test wasutilized via its implementation in SciPy [22]. The Mann–Whitney U testcompares two populations—in this case, the accuracy and distancedata from both attacks for each attacked model. The null hypothesis(H0) for the test is that the probability is 50% that a randomly drawnvalue from the �irst population will exceed a value from the secondpopulation. The result of each test is a Mann–Whitney U Statistic (notrelevant in our case) and a p-value. We use the p-value to determinewhether the difference between the data is statistically signi�icant,where the standard threshold is . The results of these testsare given in Table 6.
Table	6 Mann–Whitney U test results comparing C&W’s attack and the universal perturbationattack

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Model Accuracy	p-value 	distance	p-valueMLP ISH 0.000 (H0 is rejected) 0.034 (H0 is rejected)CNN ISH 0.384 (H0 is not rejected) 0.098 (H0 is not rejected)MLP MD 0.000 (H0 is rejected) 0.057 (H0 is not rejected)CNN MD 0.000 (H0 is rejected) 0.016 (H0 is rejected)The results in Table 6 imply that the performance of these twoattacks (C&W’s Attack and the universal perturbation attack) arenearly identical when attacking a CNN trained on the ISH dataset, asevidenced in the second row, where the null hypothesis is not rejected.However, the distance measurement for spam images that have hadthe universal perturbation applied should remain constant relative tothe original spam image. Therefore, the results of these tests suggestthat the universal perturbation attack is able to achieve similarperformance to C&W’s Attack, in terms of perturbation magnitude,with a much lower computation time per example in comparison toC&W’s Attack.Given the above evidence, the universal perturbation attack is thebest choice for image spam, as it is unrivaled in terms of potentialperformance in a real-world setting. The key advantages of theuniversal perturbation attack include that it generates a singleperturbation to be applied to all spam images and its relatively fastcomputation time per adversarial example. Therefore, universalperturbation will be used as a basis for our image transformationtechnique, as discussed and analyzed in the remainder of this paper. Asample adversarial spam image generated with the universalperturbation attack is presented in Fig. 4.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	4 Adversarial spam image generated with the universal perturbation attack
4	 Inceptionism-Augmented	Universal
Perturbations
4.1	 ProcedureBased on the results and discussion above, a transformation that isapplied to spam images prior to generating adversarial examples, sinceperturbations cannot be transformed after application, should meetthe following conditions.Lower the misclassi�ication ratePreserve adversarial effects after image resizingMake non-spam features more prominent while retaininglegibility

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Given the above criteria, a reasonable approach would be tomaximize the presence of “natural features” in a given spam image.That is, the features characteristic of non-spam images learned byclassi�iers should be maximized while retaining legibility. Toaccomplish this, the procedure for maximizing the activation of a givenoutput neuron (in this case, the non-spam output neuron), asintroduced in [15], dubbed “DeepDream,” can be used to increase thenumber of natural features in all images from the non-spam subsets ofthe ISH and MD datasets. This is accomplished by maximizing theactivations of the convolutional layer with the greatest number ofparameters and output layer in the corresponding CNNs. The resultingtwo sets of images that have had DeepDream applied (“dreami�ied”images) are then grouped into batches of four images. The weightedaverage of the four images in each batch can then be taken to producetwo processed non-spam datasets of images with high concentrationsof natural features, as batches of greater than four images, may resultin high noise. Each of the images in the resulting two non-spamdatasets are henceforth referred to as natural	perturbations.To preserve the adversarial effect that the universal perturbationintroduces, the Gradient-weighted Class Activation Mapping (Grad-CAM) technique introduced in [23] is used to generate a classactivation map for each spam image in each dataset. The inverse ofeach such map is used with a natural perturbation generated from thesame dataset to remove the regions of the natural perturbation wherethe class activation map is highest. By superimposing the resultingnatural perturbations onto the corresponding spam images, theregions where the universal perturbation is most effective are leftintact while the regions of the spam images affected by the naturalperturbations bene�it by being more non-spam like. The presence ofnatural features in the resulting spam images should also result inrobustness against resizing prior to inference by a deep learning-basedimage spam detection model, as the natural features should be still besomewhat preserved even after being shrunken.The universal perturbation is then applied to each of the resultingspam images. The result is that we potentially reduce a deep learning-based image spam detector’s accuracy due to the presence of a naturalperturbation and a universal adversarial perturbation and retain some

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

sort of adversarial effect in the case of resizing. This procedure alsoallows for the retention of legible text within spam images.
4.2	 ImplementationTo generate our two sets of “dreami�ied” images, the CNN architecturepresented in [24] is trained on both the ISH and MD datasets, withinverted labels to allow for the maximization of the activations of theneurons corresponding to non-spam images, as the activations forspam images would be maximized if the labels weren’t inverted. Thesetwo models are trained with the TensorFlow Keras API, with thehyperparameters given in [24]. For each of the models, theconvolutional layer with the highest number of parameters and theoutput layer were chosen as the layers in which the activation shouldbe maximized via gradient ascent, as the aforementionedconvolutional layer is responsible for recognizing the most complexnatural features. Each of the images from the non-spam subsets of theISH and MD datasets were used for inference on the two CNN models.The CNN models use the losses of the chosen layers to iterativelyupdate the non-spam images with gradient ascent so that the numberof non-spam features is maximized. Each non-spam image is updatedfor 64 iterations with an update size of 0.001. The resulting“dreami�ied” images are then grouped into batches of 4 and blendedvia evenly distributed weighted addition to produce a total of 392grayscale images, each of size . These 392 grayscaleimages are evenly split between the ISH dataset and MD datasets.To utilize GradCAM, the CNN architecture presented in [24] istrained on both the ISH and MD datasets with normal labels. For eachimage from the spam subsets of the ISH and MD datasets, GradCAM isused to generate a corresponding class activation map based on theactivations of the last convolutional layer in each of the two models.This is accomplished by computing the gradient of the top predictedclass with respect to the output feature map of the last convolutionallayer, using the mean intensity of the gradient over speci�ic featuremap channels. OpenCV [18] is then used to upscale each of the classactivation maps to , convert them to binary format andinvert the result to allow the class activation maps to be applied to the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

natural perturbations such that only the areas with the highestactivation will contain the natural perturbations. The bitwise AND ofeach processed class activation map and a randomly selected naturalperturbation can then be used to generate two sets of processednatural perturbations, which are superimposed on the correspondingspam images from each of the two spam subsets. This procedureresults in two subsets of spam images with natural perturbations.Lastly, the universal perturbation is generated and applied to allimages within the two spam image subsets that have had naturalperturbations applied. For this operation, we use the IBM AdversarialRobustness Toolbox [16]. The hyperparameters for the UniversalPerturbation attack remain the same as those given in Table 2, above.
4.3	 Performance	EvaluationThe mean accuracy, computation time per example, and distancewere recorded for each of the four models attacked using spam imageswith modi�ied universal perturbations. This is analogous to what wasdone during the attack selection process. This data has been compiledinto the tables discussed in this section.As can be seen from the results in Table 7, the proposed method forgenerating adversarial spam images is capable of lowering a learning-based model’s accuracy to 23.7%. In addition, on average, ourproposed technique is much more effective while being evenlydistributed in terms of accuracy on similar learning-based models.
Table	7 Mean accuracy of each model with spam images created by the proposed method
Images MLP	(ISH)

(%)
CNN	(ISH)
(%)

MLP	(MD)
(%)

CNN	(MD)
(%)Modi�ied spam images 80.1 98.8 98.4 75.3Modi�ied spam images with universalperturbations 72.2 50.4 78.7 23.7

From Table 8, we see that in contrast to C&W’s Attack, which onaverage takes 258.93 s per example, the time necessary to generateadversarial spam images with natural perturbations is signi�icantlylower and comparable to that of the original Universal Perturbationattack. This is another advantage of our proposed attack.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Table	8 Mean computation time per adversarial spam image (in seconds)
MLP	(ISH) CNN	(ISH) MLP	(MD) CNN	(MD)5.46 5.15 5.87 4.80The mean distances and the distribution of the distances ofthe modi�ied adversarial spam images are given in Table 9. From Fig. 5,we see that the distributions of these distances are, on average, notskewed, indicating that the natural perturbations have had a slightlynegative effect on the spam image distances, as the distributionsfor the original Universal Perturbation attack were skewed to the left.
Table	9 Mean (Euclidean) distance of modi�ied adversarial spam images from original images
MLP	(ISH) CNN	(ISH) MLP	(MD) CNN	(MD)11392.02 11309.40 9440.69 9628.61

Fig.	5 Density plot of (Euclidean) distances of the modi�ied adversarial spam images fromthe original imagesThe ROC curves of the models attacked by the proposed method,which appear in Fig. 6, are slightly worse in comparison to that of theoriginal Universal Perturbation attack, suggesting once more that the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

attack is capable of reducing the class separation capacity of attackedimage spam classi�iers to essentially random.

Fig.	6 ROC curves of each of the four models attacked by the modi�ied spam images generatedwith the proposed method
4.4	 Proposed	Dataset	AnalysisFigure 7 contains an example of modi�ied adversarial spam images.From this image, we observe that the proposed method was able toeffectively utilize class activation maps generated with GradCAM toselectively apply a random natural perturbation to the spam image. Asdiscussed in the previous section, this decreases classi�icationaccuracy even prior to the application of a universal perturbation.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	7 Example of modi�ied adversarial spam image generated with the proposed methodTo fully evaluate the effect of the modi�ied adversarial spam imagesfrom the two modi�ied datasets, two sets of class activation maps aregenerated from the spam subsets of the two datasets using GradCAMand the corresponding CNN models. These activation maps are thenaveraged to obtain two heatmaps from the class activation maps, asshown in Figs. 10 and 11. For comparison, the same process wasapplied to the original datasets to obtain Figs. 8 and 9.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	8 ISH spam data

Fig.	9 MD spam data

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fig.	10 Modi�ied ISH spam data

Fig.	11 Modi�ied MD spam dataAs can be seen in Figs. 8 and 9, the activation regions for spamimages from the original ISH and MD datasets are skewed towards thetop and bottom. The narrow shape of these regions represent theregions in spam images that generate the highest activations in theneurons of the deep learning-based classi�ier. The central region of theaverage class activation map for spam images from the MD dataset is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

much darker in comparison to that of spam images from the ISHdataset due to the superimposition of natural images directly ontospam features, as described in [6].In contrast, Figs. 10 and 11 indicate that the introduction of naturaland universal adversarial perturbations are able to more evenlydistribute the activation regions. This result shows that the spamimages from the modi�ied datasets are much closer—in terms ofnatural features—to non-spam images. This also suggests that theproposed method outperforms the procedure used to generate theoriginal MD dataset as outlined in [6].
5	 Conclusion	and	Future	WorkModern deep learning-based image spam classi�iers can accuratelyclassify image spam that has appeared to date in the wild. However,spammers are constantly creating new countermeasures to defeatanti-spam technology. Consequently, the eventual use of adversarialexamples to combat deep learning-based image spam �ilters isinevitable.In this chapter, four adversarial attacks were selected based onspeci�ic restrictions and constraints of the image spam problem. Theseadversarial attacks were evaluated on the CNN and MLP architecturesintroduced in [24]. For training data, we used the dataset presentedin [9] and [6]. The Fast Gradient Sign Method (FGSM) attack, C&W’sAttack, DeepFool, and the Universal Perturbation attack were allevaluated based on mean accuracy reduction, mean computation timeper adversarial spam image, mean distance from the original spamimages, and ROC curves of the attacked classi�iers. Through furtherstatistical analysis, the Universal Perturbation was chosen as a base forour proposed image transformation attack, due to its versatility andoverall high performance in terms of accuracy reduction andcomputation time.To maximize the number and intensity of natural features in anattack, the approach introduced in [15] for maximizing activations ofcertain layers in a deep neural network was used. This techniqueserves to generate sets of “natural perturbations” from the non-spam

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

subsets of the image spam datasets. These natural perturbations werethen modi�ied via the class activation maps of all spam images in bothdatasets. The class activations were generated using GradCAM fromthe two convolutional neural networks trained on the ISH and MDdatasets. These activation maps allow the regions in spam imagesrecognized to contribute most to the spam classi�ication to bene�itfrom a universal adversarial perturbation.Our technique resulted in comparable—if not greater—accuracyreduction as compared to C&W’s Attack. In addition, our approach iscomputation much more ef�icient than C&W’s Attack. Furthermore, thenature of our attack implies that the only potential computationalbottleneck is generating the modi�ied natural perturbations. Thisaspect of the attack would not be an issue in practice, unless aspammer generates vast numbers (i.e., in the millions) of modi�iedadversarial spam images.A dataset of modi�ied adversarial spam images has been generatedby the authors by applying the proposed attack to the spam subsets ofthe ISH and MD datasets. This dataset will be made freely available toresearchers.Future work will include evaluating the ability of adversarial attackdefense methods. We will consider defensive distillation againstadversarial spam images generated with our proposed attack. The goalof this research will be to develop defenses speci�ically designed fornatural perturbation-augmented adversarial spam images. Forexample, the subtraction of predicted adversarial perturbations is onepath that we intend to pursue.
References1. Aiwan, Fan, and Yang Zhaofeng. 2018. Image spam �iltering using convolutional neuralnetworks. Personal	and	Ubiquitous	Computing 22 (5–6): 1029–1037.2. Annadatha, Annapurna, and Mark Stamp. 2016. Image spam analysis and detection. Journal	of

Computer	Virology	and	Hacking	Techniques 14 (1): 39–52.3. Apache. SpamAssassin. https:// spamassassin. apache. org/ .4. Campaign Monitor. 2019. Email Usage Statistics in 2019. https:// www. campaignmonitor. com/ blog/ email-marketing/ 2019/ 07/ email-usage-statistics-in-2019/ .5.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://spamassassin.apache.org/
https://www.campaignmonitor.com/blog/email-marketing/2019/07/email-usage-statistics-in-2019/

Carlini, Nicholas, and David Wagner. 2017. Towards evaluating the robustness of neuralnetworks. In 2017	IEEE	symposium	on	security	and	privacy	(sp), 39–57, IEEE.6. Chavda, Aneri, Katerina Potika, Fabio Di Troia, and Mark Stamp. 2018. Support vectormachines for image spam analysis. In Proceedings	of	the	15th	international	joint	conference
on	e-business	and	telecommunications.7. Chen, Pin-Yu, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017. Zoo: Zeroth orderoptimization based black-box attacks to deep neural networks without training substitutemodels. In Proceedings	of	the	10th	ACM	workshop	on	arti�icial	intelligence	and	security, 15–26.8. Dada, Emmanuel Gbenga, Joseph Stephen Bassi, Haruna Chiroma, Sha�ii MuhammadAbdulhamid, Adebayo Olusola Adetunmbi, and Opeyemi Emmanuel Ajibuwa. 2019. Machinelearning for email spam �iltering: review, approaches and open research problems. Heliyon 5(6).9. Gao, Yan, Ming Yang, Xiaonan Zhao, Bryan Pardo, Ying Wu, Thrasyvoulos N. Pappas, and AlokChoudhary. 2008. Image spam hunter. In 2008	IEEE	international	conference	on	acoustics,
speech	and	signal	processing.10. Goodfellow, Ian J, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessingadversarial examples. arXiv: 1412. 6572.11. Jiang, Jianguo, Boquan Li, Min Yu, Chao Liu, Weiqing Huang, Lejun Fan, and Jianfeng Xia. 2019.Restoration as a defense against adversarial perturbations for spam image detection. In
International	conference	on	arti�icial	neural	networks, 711–723. Springer.12. Kumar, Amara Dinesh, Soman KP, et al. 2018. Deepimagespam: Deep learning based imagespam detection. arXiv: 1810. 03977.13. Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. 2017.Universal adversarial perturbations. In Proceedings	of	the	IEEE	conference	on	computer
vision	and	pattern	recognition, 1765–1773.14. Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard. 2016. Deepfool: Asimple and accurate method to fool deep neural networks. In Proceedings	of	the	IEEE
conference	on	computer	vision	and	pattern	recognition, 2574–2582.15. Mordvintsev, Alexander, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper intoneural networks. 2015. https:// research. googleblog. com/ 2015/ 06/ inceptionism-going-deeper-into-neural. html.16. Nicolae, Maria-Irina, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, MartinWistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian Molloy,and Ben Edwards. 2018. Adversarial robustness toolbox v1.2.0. arXiv: 1807. 01069.17. NumPy. 2020. https:// numpy. org/ .18. OpenCV. 2020. https:// opencv. org/ .19. Papernot, Nicolas, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1810.03977
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://arxiv.org/abs/1807.01069
https://numpy.org/
https://opencv.org/

Ananthram Swami. 2017. Practical black-box attacks against machine learning. In Proceedings
of	the	2017	ACM	on	Asia	conference	on	computer	and	communications	security, 506–519.20. Rosebrock, Adrian.2020. Zero parameter automatic canny edge detection. https:// pyimagesearch. com/ 2015/ 04/ 06/ zero-parameter-automatic-canny-edge-detection-with-python-and-opencv/ .21. Scikit-learn. 2020. Machine learning in python. https:// scikit-learn. org/ .22. SciPy. 2020. https:// scipy. org/ .23. Selvaraju, Ramprasaath R, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, DeviParikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from deep networks viagradient-based localization. In Proceedings	of	the	IEEE	international	conference	on	computer
vision, 618–626.24. Sharmin, Tazmina, Fabio Di Troia, Katerina Potika, and Mark Stamp. 2020. Convolutionalneural networks for image spam detection. Information	Security	Journal:	A	Global	Perspective29 (3): 103–117.25. Soranamageswari, M, and C. Meena. 2010. Statistical feature extraction for classi�ication ofimage spam using arti�icial neural networks. In 2010	second	international	conference	on
machine	learning	and	computing.26. Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, IanGoodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv: 1312. 6199.27. TensorFlow. 2020. https:// tensor�low. org/ .28. Yuan, Xiaoyong, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples: Attacks anddefenses for deep learning. IEEE	Transactions	on	Neural	Networks	and	Learning	Systems 30(9): 2805–2824.[MathSciNet]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pyimagesearch.com/2015/04/06/zero-parameter-automatic-canny-edge-detection-with-python-and-opencv/
https://scikit-learn.org/
https://scipy.org/
http://arxiv.org/abs/1312.6199
https://tensorflow.org/
http://www.ams.org/mathscinet-getitem?mr=4001274

	Front Matter
	Part I. Surveys
	A Selective Survey of Deep Learning Techniques and Their Application to Malware Analysis
	Malware Detection with Sequence-Based Machine Learning and Deep Learning
	Review of the Malware Categorization in the Era of Changing Cybethreats Landscape: Common Approaches, Challenges and Future Needs
	Addressing Malware Attacks on Connected and Autonomous Vehicles: Recent Techniques and Challenges
	A Survey of Intelligent Techniques for Android Malware Detection
	Deep Learning in Malware Identification and Classification
	Review of Artificial Intelligence Cyber Threat Assessment Techniques for Increased System Survivability
	On Ensemble Learning

	Part II. Malware Analysis
	Optimizing Multi-class Classification of Binaries Based on Static Features
	Deep Learning Techniques for Behavioral Malware Analysis in Cloud IaaS
	A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification
	Word Embedding Techniques for Malware Evolution Detection
	Reanimating Historic Malware Samples
	Cluster Analysis of Malware Family Relationships
	Beyond Labeling: Using Clustering to Build Network Behavioral Profiles of Malware Families
	An Empirical Analysis of Image-Based Learning Techniques for Malware Classification
	A Novel Study on Multinomial Classification of x86/x64 Linux ELF Malware Types and Families Through Deep Neural Networks
	Fast and Straightforward Feature Selection Method
	A Comparative Study of Adversarial Attacks to Malware Detectors Based on Deep Learning

	Part III. Related Topics
	Detecting Abusive Comments Using Ensemble Deep Learning Algorithms
	DURLD: Malicious URL Detection Using Deep Learning-Based Character Level Representations
	Sentiment Analysis for Troll Detection on Weibo
	Log-Based Malicious Activity Detection Using Machine and Deep Learning
	Image Spam Classification with Deep Neural Networks
	Universal Adversarial Perturbations and Image Spam Classifiers

