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Preface

The rapid advancement of Artificial Intelligence (AI) and Machine Learning (ML)
has revolutionized numerous industries, including cyber security. As cyber-threats
grow in sophistication, Al-driven security solutions are emerging as powerful tools
to predict, detect, and mitigate cyber risks. This book, Demystifying AI and ML for
Cyber—Threat Intelligence, aims to bridge the gap between theoretical Al concepts
and their practical applications in cyber security.

This volume presents a comprehensive collection of cutting-edge research,
addressing various aspects of Al-powered security, privacy protection, blockchain
innovations, fraud prevention, cryptography, and secure communications. The book
is structured into ten parts, each dedicated to a critical area where Al plays a
transformative role in cyber security.

e Al-Powered Cyber Security and Threat Mitigation explores Al-driven intrusion
detection, deep learning-based defense mechanisms and adaptive learning in cyber
security.

® Privacy,Data Protection and Secure Al Systems highlights innovative techniques
to enhance data integrity, privacy-preserving biometric authentication, and Al-
driven data protection frameworks.

e Al for Fraud Prevention and Threat Intelligence delves into Al-powered fraud
detection, phishing defense mechanisms and hybrid ensemble learning models.

® Blockchain Innovations for Cyber Security and Digital Trust presents
blockchain-driven security frameworks, secure digital transactions, and appli-
cations of blockchain in academic and financial domains.

e Al in Social Media and Misinformation Detection discusses Al-based rumor
detection, fake profile identification, and misinformation control in online
ecosystems.

e Alin IoT, Smart Cities and Autonomous Systems examines Al’s role in securing
IoT networks, enhancing smart city infrastructure and cyber-physical security for
autonomous systems.
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e Al and Cryptography for Secure Communications focuses on Al-enhanced cryp-
tographic methods, secure data encryption techniques, and attack modeling in
modern communication networks.

e Al in Healthcare and Data Privacy highlights Al applications in healthcare
security, privacy-preserving Al models, and generative Al for synthetic data
protection.

e Al for Secure Digital Infrastructure covers Al-driven secure cloud computing,
document privacy techniques, and adaptive steganography frameworks.

e FEthical Considerations and Future Perspectives in Al Security discuss the ethical
implications of Al in cyber security, deep learning in financial security, and
predictive analytics for cyber risk management.

By bringing together the expertise of researchers and industry professionals, this
book provides an in-depth analysis of Al-driven cyber security methodologies and
their impact on global digital security. It is designed for cyber security professionals,
Al researchers, students, and policymakers seeking to understand the intersection of
Al and cyber security.

As Al continues to evolve, it is imperative to stay ahead of emerging threats. We
hope this book serves as a valuable resource, fostering further research and innovation
in Al-driven cyber security solutions.

Kennesaw, USA Ming Yang
Vijayawada, India Sachi Nandan Mohanty
Bhubaneswar, India Suneeta Satpathy

West Lafayette, USA Shu Hu
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A Comprehensive Review )
on the Detection Capabilities of IDS e
Using Deep Learning Techniques

Harinath Ankarboina, Jasmini Kumari, and Amit Kumar Singh

Abstract Intrusion Detection Systems (IDS) are essential for enhancing cyberse-
curity in modern vehicular networks, especially as they become increasingly inter-
connected. However, traditional IDS approaches often face limitations in handling
complex attack patterns, evolving threat landscapes, and the high volume of network
data generated. This paper examines the incorporation of DL methodologies,
including LSTM networks, CNNs, autoencoders, and DRL, within IDS frameworks.
These methods offer enhanced detection accuracy, real-time anomaly identifica-
tion, and adaptability, addressing key challenges in IDS deployment for vehicular
networks. This review study highlights the improvements in IDS effectiveness and the
future directions for DL-driven cybersecurity in connected and autonomous vehicles.

Keywords IDS - CNN - LSTM * DRL + CAN - Autoencoders - [oV - VANETSs

1 Introduction

IDS is essential for augmenting the security of vehicular networks, especially given
the growing interconnectivity of contemporary vehicles. Intrusion Detection Systems
(IDS) have a central role to play in vehicular network security improvement, espe-
cially against the backdrop of rising interconnectivity of modern cars. IDS systems
they are specifically geared to observe network traffic for anomalies and prospec-
tive intrusions, maintaining communication integrity between the vehicle’s Elec-
tronic Control Units (ECUs) [1]. The introduction of Vehicular Ad Hoc Networks
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(VANETjS) further called for the application of efficient IDS since VANETS support
vehicular-to-vehicle communication and vehicle-to-infrastructure communication,
hence enhancing safety and service performance but subjecting them to all forms of
cyber threats [2]. Recent breakthroughs in deep learning (DL) techniques have further
boosted the performance and efficiency of IDS. By applying convolutional neural
networks (CNN) and other DL models, researchers have made systems that can detect
anomalies in real-time, which is essential for timely response to prospective intru-
sions [3]. Anomaly detection methods are most appropriate for identifying abnormal
patterns that differ from regular vehicular operational patterns, indicating prospec-
tive vulnerability to security attacks [4]. More importantly, implementing specific
intrusion detection algorithms tailored explicitly for vehicular networks is inevitable.
The algorithms must deal with the challenges of limited computation capabilities and
the need for timely responsiveness and standard features in the automobile environ-
ment [5]. Also included in the threat landscape are various types of cyber attacks,
including Denial of Service (DoS) attacks that hinder normal network operations by
overwhelming the system with excessive traffic [6]. A good IDS should be capable of
identifying such attacks to assure service availability in vehicular networks. Vehicle
network cybersecurity platforms are increasingly incorporating machine learning-
based methods. These add another layer of protection against cyberattacks [7]. This
integration is crucial in developing autonomous cars, which need strong cyberse-
curity controls to communicate and operate safely [8]. With the automotive sector
moving towards IP-based protocols such as SOME/IP, which are intended for service-
oriented communication in automotive Ethernet networks, the demand for efficient
anomaly detection systems is even higher [9]. In summary, manufacturing advanced
IDS for vehicular networks is fundamental for defense against a broad range of cyber
attacks. With DL, anomaly detection, and customized algorithms, these systems can
offer real-time monitoring and response capabilities, thereby improving the overall
security of connected vehicles.

In this review paper, we will concentrate on using DL approaches to improve the
detection features of IDS. DL has a significant contribution to the detection features
of IDS in intra-vehicular networks by utilizing complex algorithms to study complex
data patterns and yield precise detection of anomalies and attacks. These systems use
deep learning architectures, including LSTM networks, CNN, and autoencoders, to
study and process the enormous volumes of data in vehicular networks. Integrating
DL into IDS frameworks allows for more precise detection of malicious activities,
thereby bolstering the security of intra-vehicular networks.

The subsequent structure of the article is outlined as follows. Section 2 discusses
the pertinent literature. Motivation is addressed in Sect. 3, DL techniques utilizing
IDS are discussed in Sect. 4, and the conclusion is presented in Sect. 5.
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2 Related Work

The increasing complexity and volume of network traffic in vehicular networks neces-
sitate sophisticated intrusion detection capabilities. Conventional IDS, including
rule-based and anomaly-based approaches, are constrained in identifying advanced
and evolving threats because they depend on predetermined signatures and statistical
frameworks. As vehicular networks expand, researchers have increasingly explored
DL approaches to enhance IDS effectiveness, leveraging the strengths of various
architectures to improve detection accuracy, scalability, and adaptability. The paper
[10] presented an efficient IDS for network traffic patterns using the NSLKDD
dataset. The technique, combining the Genetic Optimization Algorithm (GOA) and
Naive Bayesian technique, achieved a detection accuracy of 95.0%, outperforming
the recommended 53.0%. However, the study highlights potential attack surfaces and
suggests further research to explore noise levels and patterns in machine-learning
models. The paper [11] presented a hybrid classifier approach for intrusion detection
in general network security, using the Beetle Swarm Optimization and K-RMS clus-
tering algorithm. It achieves higher accuracy, precision, specificity, and recall rates
than existing models. However, limitations include reliance on the CICIDS2017
dataset and the need for computational resources. The paper [12] presented a hybrid
model for intrusion detection using ML and DL techniques, specifically CNN and
LSTM. The model demonstrates high detection rates, good accuracy, and low false
acceptance rates, addressing security limitations in network systems. The model is
crucial due to increasing data transfer and attacker efforts. The paper [13] proposed
a multistage framework using DL to enhance IDS in network traffic. The framework
uses three sequential DNN architectures, including one for classifiers and two for
autoencoders. The transfer learning technique enhances robustness against evolving
cyber threats, achieving an average detection accuracy of 98.5%.

3 Motivation

IDS are critical for safeguarding networks against evolving cyber threats. Conven-
tional IDS methodologies, typically dependent on rule-based or anomaly-based
detection, find it challenging to adjust to the swift evolution of attack strategies and the
growing intricacy of network data. The ever-increasing complexity of cyber attacks
highlights the potential of utilizing DL techniques for IDS, making it a compelling
area for investigation. DL models, with their ability to learn complex patterns and
features in unsupervised datasets, offer significant benefits over traditional methods
concerning accuracy, flexibility, and scalability. This review analyzes and assesses
recent developments in combining DL methods with IDS. Based on recent studies
and real-world applications, we try to emphasize not only the accuracy in detection
offered by DL but also the capability of DL to overcome the common pitfalls of IDS.
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4 Various Deep-Learning Techniques Implemented in IDS

DL dramatically improves the detection capacity of IDS in intra-vehicular networks.
Through the use of sophisticated neural network architectures to interpret sophisti-
cated data patterns. This will enhance accuracy in the detection of anomalies and
attacks.

4.1 RNN and LSTM-Based IDS

LSTM networks have shown improved performance in false message attack detec-
tion in VANETSs over conventional approaches. LSTMs are effective since they
can learn temporal patterns and time series dependencies, essential for anomaly
detection in the dynamic VANET environment. This enables LSTMs to outperform
conventional machine learning approaches in accuracy and reliability in IDS. The
following discussion explains how LSTM networks improve false message detec-
tion in VANETSs. Wang et al., in the paper [14], introduced a new IDS based on
time series classification and DL to enhance false emergency message detection in
VANETSs. The system uses LSTM to detect patterns in traffic parameters related
to time to strengthen the detection of false messages from internal and collusive
attackers. Extensive simulations confirm the effectiveness of the approach in real-
world deployment. Wang et al., in the paper [15], introduced a new IDS based on time
series classification and deep learning to enhance false emergency message detection
in VANETS. The system uses LSTM networks to detect patterns in traffic parameters
related to time to strengthen the detection of false messages from internal and collu-
sion attackers. The LSTM-based IDS is more precise in detecting false messages than
existing machine-learning methods. This paper introduces a prediction-driven IDS
approach for detecting anomalies and attacks in a Controller Area Network (CAN)
bus by examining the temporal relationships of message content. The proposed IDS
framework outperforms top classifiers, showing near 100% detection accuracy and F-
scores. In the paper [16], the CNN-LSTM with Attention model (CLAM) presented a
novel intrusion detection method specifically for automotive networks with a special
focus on the CAN protocol, which is prone to attack because it does not have in-
built security features. The model uses one-dimensional convolution for signal value
feature extraction and bidirectional LSTM to effectively detect temporal relation-
ships in the data. The approach also uses attention mechanisms to identify signifi-
cant time steps, improving the rate of convergence and the accuracy of the predictive
results. The CLAM model attains an average F1 score of 0.951 and an error rate
of 2.16%, with a 2.5% improvement in accuracy in attack detection compared to
previous work. This model improves convergence speed and prediction accuracy,
eliminating the necessity to parse the CAN communication matrix. The paper [17]
introduced a DL-centered bidirectional LSTM architecture for intrusion detection
in Autonomous Vehicles. The framework uses temporal patterns in communication
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data to identify intrusions in real-time, reducing false alarms. It achieves a high accu-
racy rate, and the framework detects zero-day attacks in IoV networks. The paper
[18] presented a DL-based IDS designed for ITS, focusing on detecting suspicious
network activity in In-Vehicle Networks, Vehicle-to-Vehicle communications, and
Vehicle-to-Infrastructure networks. The system outperforms eight other intrusion
detection techniques.

4.2 Convolutional Neural Network (CNN) Based IDS

CNN-based IDS have significant potential in enhancing the security and reliability
of vehicular communication networks. These systems leverage the advanced pattern
recognition capabilities of CNNs to detect and mitigate various cyber threats in vehic-
ular networks, which are increasingly becoming targets due to their interconnected
nature. The paper [19] analyzed secrecy performance in mobile vehicular networks,
focusing on using a dense-inception convolution neural network (DI- CNN) for
predicting secrecy performance. The DI-CNN model demonstrates a 48.8% better
prediction accuracy than the Transformer method, enhancing real-time prediction
capabilities for secrecy performance in IoV communication systems. The paper
emphasizes the importance of physical layer security modeling for secure data trans-
mission. Wang et al. [20] proposed CNN-based IDS can improve security in vehicular
communication networks by accurately detecting and locating malicious data frames
from external nodes and compromised electronic control units. This system effi-
ciently minimizes bandwidth usage, thus making it suitable in resource-limited envi-
ronments, especially in intelligent connected vehicles (ICVs). The FeatureBagging-
CNN combined model efficiently detects and locates malicious data frames without
requiring developer documentation, thus making it more feasible to protect in-vehicle
networks. The FeatureBagging-CNN combined model provides detection capabili-
ties without using CAN bus bandwidth, thus making it suitable in resource-limited
environments. The paper [21] proposed a flow-based intrusion detection system for
Vehicular Ad Hoc Networks (VANETS) using CNN and Context-Aware Feature
Extraction-Based CNN (CAFECNN). This system improves security by detecting
and countering potential threats in real time, thus improving the overall security
architecture. The study emphasizes the need for context-aware mechanisms in the
detection process. The author of the paper [22] proposed an Intelligent IDS (IIDS),
which utilizes a modified CNN to improve intrusion detection in Connected and
Autonomous Vehicles (CAVs). It utilizes hyperparameter optimization to detect
and classify malicious autonomous vehicles (AVs), thus preventing accidents and
pandemonium. The IIDS is implemented in a 5G Vehicle-to-Everything (V2X)
environment, achieving a high 98% accuracy rate in cyberattack detection.
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4.3 Auto Encoder-Based IDS

As aneural network, autoencoders possess tremendous potential to improve vehicular
communication network security and reliability. The networks, being an integral part
of the oV is experiencing issues in data security, network congestion, and real-time
data processing. Autoencoders can solve these problems with better data representa-
tion, anomaly detection, and effective data transmission. The paper [23] introduced
a semi-supervised learning-based convolutional adversarial autoencoder model for
in-vehicle intrusion detection. The approach improves security by identifying anoma-
lies in communication patterns, enhancing data compression, and enabling effective
feature extraction for threat detection. The model is better for intrusion detection
than traditional approaches, decreasing false positives and improving detection rates,
which is promising for real-world applications in vehicle security. The paper [24]
presented a VeNet hybrid learning system, which employs a stacked autoencoder
to predict future vehicle locations and network traffic. The system improves data
transmission efficiency and decreases congestion, leading to more secure and reli-
able communication. The VeNet model decreases required signaling network traffic
and prediction error by 75%, decreasing vehicle energy consumption and learning
delays. The paper [25] proposed a deep Q-learning-based strategy to secure cellular
V2X communications using Autoencoders. The plan aims to maximize secrecy rates
while managing interference levels. It addresses the vulnerability of V2X links to
eavesdropping attacks and ensures the required Signal-to-Interference-plus-Noise
Ratio (SINR) for both V2X and I2V communications. The simulation results of the
study prove its efficiency. The method solves data scarcity issues and enhances the
model’s generalization capability in real-world settings, improving security in vehic-
ular communication systems. The paper [26] introduced a Secure and Intelligent
System for the Internet of Vehicles (SISIV), which employs DL structures, graph
convolutional networks, and attention mechanisms to enhance traffic forecasting
and secure data transmission via blockchain technology. The system surpasses the
current forecasting rate, F-measure, and attack detection solutions and is an efficient
and trustworthy solution for traffic flow prediction in the IoV.

4.4 Deep Reinforcement Learning (DRL) Based IDS

Deep Reinforcement Learning (DRL) offers great promise to improve the relia-
bility and safety of vehicular communication networks. When employing DRL,
the networks can address problems like ultra-reliable low-latency communication
(URLLC), resource allocation, and trust management, which are essential to intelli-
gent transportation systems development. The article [27] proposed a novel DRL
approach for joint resource allocation for ultra-reliable, low-latency vehicle-to-
everything (V2X) communications. The approach optimally addresses the limitations



A Comprehensive Review on the Detection Capabilities of IDS Using ... 9

of traditional optimization-based algorithms when deployed in dynamic environ-
ments. It introduces an efficient event-triggered DRL algorithm, reducing execu-
tion frequency by up to 24% while achieving 95% of traditional performance.
This approach improves overall performance and security in V2X communication
systems. The paper [28] introduced a DRL-assisted hybrid precoding method for
vehicle-to-infrastructure communication in the 5G new radio frequency range 2. The
method balances complexity, reliability, and data rate while considering Doppler shift
and delay spread. The study uses a downlink transmission model and demonstrates
that incorporating RNN significantly enhances training efficiency, with the twin
delayed deep deterministic policy gradient model showing superior spectral perfor-
mance. The paper [29] introduced a distributed trust-sharing mechanism utilizing
Reservoir Computing within the context of the IoT. This mechanism integrates
the Echo State Network with Reinforcement Learning to enhance vehicle trust and
communication. The model is structured as a Partially Observable Markov Decision
Process, considering vehicle storage and computational capacity constraints. Simu-
lation results show the algorithm outperforms traditional methods, demonstrating its
feasibility and effectiveness in vehicle trust sharing. The paper [30] discussed the
use of DRL in optimizing resource allocation strategies in vehicular edge computing
systems. It introduces a duopolistic edge service market model for vehicles, where
edge servers announce pricing strategies and vehicles generate reviews. The paper
proposes a DRL framework to maximize vehicle utility, even when they prefer not
to disclose their requests. The paper [31] proposed a double deep Q-network frame-
work based on reinforcement learning for fiber-wireless vehicular communication
networks. It presents a priority-driven V2V data offloading strategy, categorizing data
packets according to urgency and significance. This method improves data transmis-
sion efficiency, decreases latency, and enhances network performance in dynamic
settings, showcasing its potential for future vehicular communication systems.

5 Conclusion

In conclusion, DL techniques offer transformative potential in strengthening IDS for
vehicular networks, addressing the limitations of traditional methods in a highly
dynamic and vulnerable environment. By employing models like LSTM, CNN,
autoencoders, and DRL, IDS can achieve higher accuracy in anomaly detection,
reduce false positives, and improve adaptability to new attack types. These advance-
ments are critical for the security of vehicular networks, where real-time detec-
tion and response are paramount. Future research should refine these DL models
to be more resource-efficient, interpretable, and resilient to adversarial attacks,
further enhancing their applicability in real-world vehicular environments. DL-
based IDS encounters considerable obstacles concerning computational resources
and model interpretability. The challenges arise from the intricate nature of DL
models, which necessitate significant computational resources and frequently func-
tion as “black boxes,” complicating the comprehension of their decision-making
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mechanisms. Resolving these issues is essential for the efficient implementation of
IDS in cybersecurity.
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Abstract Next-generation intrusion Detection performs an essential task in modern
cyberspace to differentiate between normal and abnormal network traffic in incoming
and outgoing network packets. This is one of industrial control systems’ most impor-
tant security solutions to detect potential attacks like ransomware, DDoS, etc. Finan-
cial institutions are persistent targets of DDoS attacks that disrupt the services, and
IDS can detect these attacks by monitoring abnormal traffic. Therefore, this research
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focuses on enhancing IDS performance by combining Active Learning with Arti-
ficial Neural Networks (ANN). We have implemented and compared two models,
ANN with Active Learning and ANN without Active Learning. The experimental
results show that Active learning with ANN consumes fewer resources and performs
better than ANN without Active learning with an accuracy of 99%.

Keywords Next-generation intrusion detection system + DDoS - Active learning *
Artificial Neural Networks

1 Introduction

Cyber-security is one of the top 10 global dangers for the present and the future.
Distributed Denial of Service (DDoS) attacks that repress systems with the flood of
network traffic are among the most common and devastating cyber-attack types [1].
A DDoS is an attack that floods the victim server/system with malformed network
traffic, potentially overloading and slowing down the system, causing financial and
reputational loss [2]. There are different ways to flood a system: ICMP echo request
flood, SYN flood, HTTP-GET request flood, etc. An attacker can choose traffic ac-
according to the victim’s network traffic; if the victim uses a web server, the adversary
can flood the victim with HTTP request traffic.

Intrusion Detection System (IDS) can help reduce these attacks by detecting
abnormal patterns and features [3]. Moreover, other types of attacks, such as phishing
that spoof individuals into disclosing sensitive information, can cause significant
financial loss and reputational damage. Some methods like spear and email phishing
complicate the conventional detection methods, so IDS is very vital in detecting and
reducing attempts by continuously monitoring and analyzing emails and network
traffic [4-6]. Imposing powerful IDS is essential for ensuring the systems work
smoothly, even under a cyber-attack, by maintaining service availability [7]. Nowa-
days, machine learning techniques are implemented for building IDS models from
network audit data [8]. Moreover, deep learning is employed in intrusion detection
tasks and is a vital area of research in cyber-security.

As the cyber threat increases, robust IDS are becoming a necessity. Therefore,
signature-based, behavior-based, and machine learning-based techniques have been
used for intrusion detection in next-generation IDS. The signature-based method
works by matching the data points with their signature. These methods accurately
detect known attacks but fail at detecting zero-day attacks. The anomaly detection
method learns normal behavior in the data and flags deviations from this behavior as
attacks. This method is successful in detecting unseen attacks [9]. Researchers have
discovered many machine learning methods, such as support vector machines (SVM)
and decision trees, to analyze network traffic data to enhance detection rates and
reduce false predictions [10]. Besides this, other ensemble learning techniques, such
as Random Forest (RF) and gradient boosting, have shown promising performance
in IDS by integrating multiple classifiers [11].
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However, these techniques are supervised, and the output depends entirely on
the labeled data. On the other hand, deep learning also shows better results than
machine learning if the dataset is large. Therefore, in this research work, we apply
active learning. This semi-supervised training method helps reduce dependency on
the labeled data by choosing very informative or uncertain event samples for training
or reducing the need to train a model with a large dataset. We integrate active learning
with deep learning, namely, artificial neural networks (ANN), in IDS to detect DDoS
attacks.

Active learning is a technique that works by asking the user to choose the most
valuable data points from a big training set in machine learning. This helps cut down
on how many resources the model uses. The goal is to use training data smartly by
picking out the most informative bits. The ANN model acts as a base learner, which
helps active learners pick up complex patterns from the training data. The ANN acts
as a base learner in intrusion detection to help with the generalization since it can fit
the training data well.

The UNSW-NB 15 dataset is used for intrusion classification tasks. Other Datasets
such as KDD98, KDDCUP99, and NSLKDD don’t capture modern network traffic
like zero-footprint attacks. On the bright side, the UNSW-NB15 dataset gives current
regular network traffic alongside newly created attack patterns [12]. Moreover, the
existing literature shows better detection accuracy with the UNSW-NB15 dataset
while evaluating the model compared to the rest [13].

1.1 Contributions

e Integration of Active Learning with ANN: Our research introduces novelty by
integrating active learning with the ANN model. The active learning integrated
with ANN detects DDoS attacks with an accuracy of 99.00% compared to ANN
without active learning at 98.96%.

e Semi-supervised Learning: The existing research significantly depends on the
labeled data and selects the most uncertain or informative data sample for labeling.
Therefore, we apply active learning, a semi-supervised learning approach, which
helps reduce dependency on the labeled data by choosing very uncertain data
samples for training. Moreover, it takes fewer resources by reducing the proportion
of labeled data needed for learning compared to traditional training methods.

e Balancing Technique: The UNSW-NB15 dataset has an imbalanced class of
benign and malicious samples, leading to biased results. Therefore, we apply the
SMOTE to prevent data imbalance problems.
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2 Related Work

The literature review of Active learning in IDS shows very expressive advancements
through various techniques, which are discussed as follows.

Almgren and Jonsson [14] used the KDD CUP99 dataset and integrated active
learning in IDS using the SVM as a base learning model to detect Denial of
Service (DoS) attacks. They discovered that the active learning integrated algo-
rithm performed better than supervised learning by using almost 80% less labeled
data and showed a slightly greater accuracy of 96.71% from the base model. Seliya
and Khoshgoftaar [8] utilized neural networks combined with Active learning for
Intrusion detection with the DARPA KDD-1999 dataset to detect DoS attacks. A
comparison between an actively learned neural network and the C4.5 decision tree
shows an active learning-based neural network outperforms a C4.5 decision tree with
an accuracy of 95.94%, and the C4.5 decision tree shows an accuracy of 90%.

McElwee [15] used the KDD-CUP99 dataset and integrated active learning with
k-means clustering and RF in IDS to detect DoS attacks. They found that active
learning integrated with RF shows an accuracy of 90%, with only 0.13% of data
points needing manual labeling by human experts. Kumari and Varma [16] used the
NSL-KDD dataset and integrated active learning with SVM and Fuzzy C-Means
(FCM) clustering to detect DoS attacks. They found that active learning with SVM
and FCM shows an accuracy of 99.6% compared to SVM and FCM without active
learning, which shows an accuracy of 99.40%.

Li and Gui [17] used the KDDCUP99 dataset and integrated active learning with
the Transductive Confidence Machines for the K-Nearest Neighbor (TCM-KNN)
algorithm to discover DOS attacks. It was found that active learning with TCM-
KNN shows an accuracy of 99.7% with just selecting 40 instances, in comparison
to TCM-KNN without active learning, which takes 2000 instances to reach a similar
result as active learning. Zakariah & Abdulaziz [18] used the UNSW-NB15 dataset
and integrated active learning with the RF algorithm to detect DoS attacks. It is
found that active learning with RF gives an accuracy of 99.75% in comparison to
the models, RF, SVM, and VLSTM without active learning using the UNSW-NB15
dataset, showing an accuracy from 90.50% to 98.67% using labeled data.

Aouedi [19] used the EDGE-IIOTSET dataset and integrated semi-supervised
federated learning (FL) with active learning to detect DDoS attacks. It is found that
federated learning with active learning performs better, with an accuracy of 94.67%,
slightly greater than federated learning without active learning. It also takes less data
to be labeled.

Table 1 summarizes the existing techniques for next-generation IDS using active
learning. In contrast to the existing models, we have proposed a novel framework
by integrating active learning with ANN using the UNSW-NB15 dataset for next-
generation IDS. This dataset contains modern network traffic samples alongside
newly created attack patterns.
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Table 1 Summary and comparison of existing techniques with the proposed framework for next-

generation IDS

Author Dataset Year | Active learning driven | Attacks
model

Almgren and Jonsson KDD Cup 1999 2004 |SVM DoS

[14]

Seliya and Khoshgoftaar | DARPA KDD 1999 |2010 |ANN DoS

[8]

McElwee [15] KDD Cup 1999 2017 |RF DoS

Kumari and Varma [16] | NSL-KDD 2017 | SVM and FCM DoS

Li and Gui [17] KDD Cup 1999 2007 | TCM-KNN DoS

Zahariah and Abdulaziz | UNSW-NB15 2023 |RF DoS

[18]

Aouedi [19] EDGE-IIOTSET 2024 |FL DDoS

Proposed framework UNSW-NB15 2024 | ANN DDoS

2.1 Research Gaps

In the existing literature, there are several gaps, particularly in Almgren and Jonsson
[14], Seliya [8], and McElwee [15]. The authors used the KDD Cup 1999 and DARPA
KDD 1999 datasets, which are old and lacked modern and unusual attack types. These
are imbalanced data, i.e., it has more benign and fewer attack instances and cannot
detect complicated cyber-attacks [8]. Moreover, the detection accuracy is low in

Aouedi [19].

3 Proposed Framework for Detection of DDoS Attacks

The proposed framework is shown in Fig. 1, which has the following components.

Fig. 1 Proposed framework with active learning for next-generation IDS
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Table 2 Summary of DDoS Features Count

attacks features of the

UNSW-NBI15 dataset IPV4_SRC_ADDRESS 40
IPV4_DST_ADDRESS 40
L4_SRC_PORT 64586
L4_DST_PORT 64610
PROTOCOL 255
L7_PROTO 265
IN_BYTES 12256
OUT_BYTES 16047
IN_PKTS 892
OUT_PKTS 1207
TCP_FLAGS 15
FLOW_DURATION_MILLISECONDS 17377

3.1 Dataset Description

The UNSW-NB15 dataset [12] has been used to detect DDoS attacks in the IDS. This
dataset has around 1,623,118 rows and 14 columns filled with features and labels.
The labels include 1,550,712 benign cases and 72,406 DDoS attack instances. Table 2
summarizes the features of the UNSW-NB15 dataset.

3.2 Data Balancing Technique

The dataset used in our study initially suffers from a significant imbalance. This
imbalance is a generic issue in intrusion detection and fraud detection tasks. When a
dataset is imbalanced, models tend to be biased toward the majority class, achieving
high accuracy for that class while performing poorly on the minority class. To tackle
this problem, we employed SMOTE, a popular technique for handling data imbal-
ance. SMOTE works by identifying samples from the minority class, selecting one
or more of their nearest neighbors, and creating synthetic samples by interpolating
the features of these samples and their neighbors.

In our case, the original dataset contains 1,550,712 instances of benign behavior,
the majority, and only 72,406 DDoS attacks, leading to bias in the intrusion detection
model. We generated 1,478,306 synthetic data points by applying SMOTE, resulting
in a balanced dataset with 1,550,712 instances each for both benign and attack behav-
iors. This balanced dataset enables the model to detect benign and attack instances
accurately, improving overall performance and prediction accuracy.
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3.3 Data Pre-processing

The dataset contains categorical features, such as ipv4 src addr and ipv4 dst addr,
that must be converted into a numerical format before training the machine learning
model. We achieve this through label encoding, a method that assigns a unique integer
to each category. This transforms the categorical data into a numerical format suitable
for the ANN model, which can only process numerical data.

Additionally, the numerical features in the dataset require normalization to ensure
that each parameter contributes uniformly to the model’s training process. Normal-
ization scales these features within a specific limit, typically from O to 1 or —1 to
1, which improves the model’s convergence and performance. We applied Min-Max
scaling, a common normalization technique using Eq. (1), to rescale the data.

X — (X) min
X (scaled) = - (D
(X) max —(X) min

3.4 Active Learning-Based ANN for Detection of DDoS
Attacks in Next-Generation IDS

We developed an Active Learning-based ANN model for detecting DDoS attacks in
a next-generation IDS. Although our dataset is fully labeled, we simulate an active
learning scenario by retaining a small subset of data labeled (x train, y train) while
treating the rest as unlabeled (x pool, y pool). After pre-processing the data, we
constructed an ANN model integrated with active learning techniques as outlined in
Algorithm 1.

The ANN architecture has an input layer with 12 neurons, followed by two hidden
layers containing 50 neurons using the ReLU function. Later on, one neuron in
the output layer uses a sigmoid function. Our model is optimized with the Adam
optimizer and binary cross-entropy for the cost function.

We utilized the mod AL framework for Python 3 for the active learning component,
initializing the ActiveLearner with uncertainty sampling as the query strategy. This
strategy enables the model to label the uncertain instances from the unlabeled dataset
(x pool). The ANN, the base classifier, is trained on the labeled data (x train, y train).
During each iteration, ActiveLearner selects the most uncertain samples from the x
pool, which an oracle or human expert then labels. These newly labeled samples are
added to the training set (X train, y train) and removed from the unlabeled dataset
(x pool). This iterative process is carried out for 30 iterations, with 100 instances
selected in each iteration, allowing the model to achieve high performance with
minimal labeled data.
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Ultimately, the model efficiently classifies network instances as either benign
or DDoS attack, demonstrating the effectiveness of active learning in optimizing
performance with fewer labeled examples.

Algorithm 1 IDS with Active Learning-based ANN

1: Input: Labeled and unlabeled data from the UNSW-NB15 dataset

2: Output: Classify instances as Benign or Attack

3: Data: Labeled dataset (train, train), Unlabeled dataset (pool, pool)

4: Data Preprocessing: Applied encoding on categorical data, SMOTE to balance the

dataset, and MinMaxScaler() to normalize the dataset.

s: Encode categorical data:

6: Initialize the ANN model

7: Initialize the Active Learning framework:

a. Use uncertainty sampling as the query strategy

. Define the ActiveLearner with the ANN model as the base estimator
. Train the ActiveLearner on (train, train)
. Query the most uncertain samples from (xp001) using the ActiveLearner
. Add the new samples to (Xiain, Virain)
. Remove the newly labeled samples from (xpool)

g. The selected samples are labeled from oracle/human(in this experiment it is y pool)
8: Initialize » iterations = 30
9: for idx in range(n iterations) do

-~ D & 0o T

10: query idx,query sample = learner.query(x pool, n instances=100, verbose=1 )
11: learner.teach(Xpool, Ypool, Verbose = 1)

12: Xpool = np.delete(xpoot, guery idx, axis = 0)

13: end for

14: Evaluate the model on the testing set to classify instances as Benign or DDoS Attacks.

4 Experimental Setup and Results

The experimental setup contains the following components.

4.1 Training and Testing

The data set is divided into 90% training and 10% testing data for baseline ANN (i.e.,
without Active learning). For active learning, we use 10% as training data, which is
labeled, and 90% as testing data, which is unlabeled. After training active learning
with fewer labeled data, the model is tested on unlabeled data where it employs
uncertainty sampling as a query strategy to choose the uncertain sample from the
unlabeled dataset iteratively till the stopping criteria are not met and update the newly
labeled data to the training data and remove it from an unlabeled data set.

After completing the active learning loop, the remaining unlabeled datasets, x pool
and y pool, are used to estimate the performance of an Active learning framework.
For baseline ANN, test datasets are used to assess the framework’s performance.
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Table 3 Hyperparameters details

Hyperparameters

Detail

Initial labeled data

X_train, y_train

Unlabeled data pool

X_pool, y_pool

Models

Active learning with ANN, Baseline ANN

Input layer (no. of features)

12 neurons

Hidden layers

50 neurons each in 2 hidden layers

Output layer 1 neuron
Activation function in hidden layers ReLU
Activation function in the output layer Sigmoid

ANN without active learning

30 epochs, 100 batch size per epoch

ANN with active learning

30 iterations, 100 instances per iteration

Query strategy

Uncertainty Sampling

Oracle

Y_pool

Optimizer ADAM

Loss function

Binary cross-entropy

Table 3 demonstrates the dataset attributes and hyperparameters employed in the
active learning-based ANN model to identify DDoS attacks. The build of ANN
consists of 2 hidden layers with 50 neurons in each hidden layer, and ReLU is used
for the hidden layer and Sigmoid for the output layer. For the Active learning loop,
30 iterations were implemented with 100 instances in each iteration. For Active
Learning, we chose modAL, a modular framework that works with Python3. To
pick out the most uncertain data samples, we applied the uncertainty sampling query
strategy that modAL offers [20].

Uncertainty sampling has three types: least confidence, max-margin, and max-
entropy. For our experiment, we used the least confidence sampling method. The
Active learning loop stops at 30 iterations with 100 instances (100 most uncertain
or informative instances) in each iteration, i.e., after the 30th iteration for the most
uncertain unlabeled data sample, the Active learning loop stops. For the ANN baseline
model, 30 epochs with 100 batch sizes are used for each epoch.

4.2 Experimental Results

In this segment, we compare the practical results of proposed models, ANN with
Active learning and ANN without Active learning. The performance of the models
is estimated using the metrics mentioned in Egs. (2), (3), (4), and (5), where TP is
True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.
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Table 4 Performance comparison of traditional ANN and Active Learning-Driven ANN

Model Accuracy Precision Recall F1-Score
ANN without active learning 0.9896 0.9898 0.9896 0.9896
ANN with active learning 0.9900 0.9902 0.9900 0.9900
TP + TN
Accuracy = 2
TP + TN + FP + FN
- P
Precision = ——— 3)
TP + FP
TP
Recall = — 4)
TP + FN

Precision - Recall
F1-Score =2 - — @)
Precision + Recall

Table 4 shows the results of ANN with and without active learning for detecting
DDoS attacks. The ANN that uses Active learning does better than the one that
doesn’t. It hits an accuracy of 99%, with precision at 99.02%, recall at 99%, and
a fantastic fl-score of 99%. Conversely, the ANN without Active learning gets
an accuracy of 98.96%, precision of 98.98%, recall of 98.96%, & an fl-score of
98.96%. Active learning boosts our model’s performance, reduces false predictions,
and improves its ability to distinguish benign traffic from DDoS attack traffic.

5 Comparison with the Existing Literature

The proposed research on Active Learning-Driven Neural Networks for next-
generation IDS has been compared with the existing literature. The existing methods
typically rely on extensive labeled data and traditional machine learning algorithms,
which can take enormous resources and are less adaptable to rapidly changing cyber
attacks. Our research focuses directly on Active learning integrated with ANN for
next-generation IDS. We have reached a promising result with an accuracy of 99%
with SMOTE, and uncertainty sampling for active learning enabled ANN to detect
DDoS attacks.

Figure 2 demonstrates that our proposed model outperforms other active learning-
based approaches, including Active Learning-driven RF[15], Active Learning-driven
SVM [14], and Active Learning-driven federated learning [19]. The superiority of
our model can be attributed to the limitations of the datasets used in these existing
studies, namely KDD Cup 1999 and DARPA KDD 1999Chemical Engineering.
These datasets are considered traditional and contain numerous duplicate samples,
making it challenging for models to learn and detect novel or unusual attack patterns
effectively.



23

Next-Generation Intrusion Detection Framework with Active ...

Sdl
IO SpoyIowW SUNSIXa Y} YIIM UONI)9(] UOISNIU] UOTJRISUID-IXIN J0J SIOMIAN [BINAN USALI(J-SuruIesa] 2anoy pasodoid jo Aoeinooe jo uosmedwo) g *Si



24 S. Raj et al.

Furthermore, they suffer from the significant class imbalance between benign
and attack instances. They do not include modern cyber-attack types, reducing their
relevance and effectiveness in contemporary DDoS attack scenarios. Additionally,
it is evident from the literature that using imbalanced datasets for active learning
can introduce bias into the results, further impacting the models’ performance and
generalizability.

6 Conclusion and Future Work

Our research demonstrates the effectiveness of integrating active learning with an
ANN to enhance the performance of next-generation IDS in detecting DDoS attacks.
By leveraging the UNSW-NBI15 dataset, that captured recent network flow, our
approach addresses several limitations of traditional intrusion detection data sets
such as NSL-KDD, KDD CUP, and DARPA KDD, as they often contain outdated
and redundant data samples. Additionally, the class imbalance issue is mitigated
using the SMOTE technique. The practical outcomes show that the ANN framework
combined with active learning achieves higher results, with higher accuracy, preci-
sion, recall, and F1-Score compared to the ANN model without Active Learning,
reaching an accuracy of 99.00% while reducing the number of labeled data needed
for training.

Given these promising results, future work could focus on further enhancing IDS
model performance through various strategies. Potential directions include experi-
menting with alternative query strategies such as hierarchical sampling and query-
by-committee and integrating other machine learning or deep learning models with
active learning.
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Abstract RPL (Routing Protocol for Low-Power and Lossy Networks) is a widely
adopted routing protocol for 6LoWPAN-based IoT networks. Yet, it is vulner-
able to several attacks compromising network security and reliability. This paper
presents a machine learning-based approach for detecting four major RPL-specific
attacks: Blackhole Attack, Flooding Attack, Decreased Rank Attack, and DODAG
Version Number Attack. Using an existing [oT-RPL dataset generated from the Cooja
simulator on the Mendeley platform, we implement ensemble learning techniques,
including Random Forest, Gradient Boosting, AdaBoost, and Stacking Ensemble, to
enhance attack detection accuracy. Feature selection techniques, such as Recursive
Feature Elimination (RFE) and filter-based methods, are employed to identify key
RPL-specific metrics, including packet delivery ratio, rank, and DODAG version
number, which are critical for detecting attack patterns. The Stacking Ensemble
model demonstrates the highest accuracy at 99.1%, outperforming other models in
detecting the four types of attacks while maintaining a low false positive rate. To
ensure the interpretability of the models, we apply SHAP (Shapley Additive expla-
nations) and LIME (Local Interpretable Model-agnostic Explanations). SHAP values
reveal the most influential features contributing to attack detection, such as packet
delivery ratio and rank, while LIME provides local interpretability for individual
predictions. These explainability methods confirm the reliability of the models,
making them suitable for real-world IoT deployments. Future work will enhance
model efficiency in real-time and under dynamic network conditions.
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1 Introduction

The Internet of Things (IoT) has enabled significant advancements in smart cities,
healthcare, and industrial automation by connecting resource-constrained devices
through low-power and lossy networks. These networks are often supported by
6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks), which facili-
tates IPv6 communication over constrained wireless links, and the Routing Protocol
for Low-power and Lossy Networks (RPL), which provides efficient and scalable
routing for these devices. However, despite the benefits of 6LoWPAN and RPL,
such networks are vulnerable to various security threats that can severely disrupt
communication, cause data loss, and lead to energy depletion.

RPL-based networks, in particular, are susceptible to several types of routing
attacks, including Blackhole Attacks, Flooding Attacks, Decreased Rank Attacks,
and DODAG Version Number Attacks. The Blackhole Attack occurs when a mali-
cious node falsely advertises an optimal route to attract traffic, only to drop the
packets, causing significant data loss. The Flooding Attack involves the malicious
node generating excessive control messages, such as DIO (DODAG Information
Object) or DAO (Destination Advertisement Object), which overwhelms the network
with unnecessary traffic, leading to congestion and energy depletion. The Decreased
Rank Attack is another serious threat where an attacker reduces its rank to deceive
neighboring nodes into selecting it as the preferred parent, resulting in inefficient
routing paths and communication delays. In the DODAG Version Number Attack,
a malicious node artificially increases the version number of the DODAG (Destina-
tion Oriented Directed Acyclic Graph), forcing unnecessary re-routing and causing
instability in the network.

Detecting and mitigating these attacks in RPL-based IoT networks is a complex
challenge due to the resource-constrained nature of the devices involved. Traditional
security mechanisms that require significant computational resources are not viable in
this context. To address these limitations, machine learning (ML), mainly supervised
learning techniques, has emerged as a powerful tool for attack detection. Supervised
learning models can analyze labeled network traffic to detect anomalous patterns that
indicate attacks. Furthermore, using feature selection techniques allows for identi-
fying the most relevant features from the data, improving the model’s efficiency
while reducing computational overhead and making it more suitable for deployment
in resource-constrained IoT environments.

In this paper, we leverage the IoT-RPL dataset obtained from the Cooja simulator
to investigate the detection of Blackhole, Flooding, Decreased Rank, and DODAG
Version Number attacks. The Cooja simulator is widely used to simulate 6LoWPAN
and RPL-based networks, generating realistic network traffic data under every day
and attack scenarios. The IoT-RPL dataset provides a comprehensive set of labeled
traffic patterns, which allows us to train and evaluate various supervised machine
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learning models. Feature selection techniques are employed to reduce the dimen-
sionality of the dataset, ensuring that the resulting detection models are accurate,
lightweight, and suitable for IoT devices with limited resources.

The remainder of this paper is organized as follows: Sect. 2 reviews related work on
RPL security and machine learning-based attack detection. Section 3 introduces the
IoT-RPL dataset generated using the Cooja simulator, describes the feature selection
process, and outlines the supervised learning models used in the proposed frame-
work. Section 4 presents the experimental results, evaluating the performance of the
detection framework based on the IoT-RPL dataset. Finally, Sect. 5 concludes the
paper and suggests directions for future research.

2 Related Work

This section briefs about work done by various researchers on RPL-based network
intrusion detection systems. Jayaprakash and Lalitha [1] proposed a novel Network
Intrusion Detection System (NIDS) for RPL-based IoT networks to combat routing
attacks. It utilizes a bio-inspired voting ensemble classifier and feature selection
technique (SA-ISSA). The method achieves 96.4% accuracy, 97.7% attack detec-
tion rate, and 3.6% false alarm rate using the RPL-NIDDS17 dataset. The paper
combines multiple classifiers (SVM, KNN, LR, DT, Bi-LSTM) and employs SMOTE
for dataset balancing. The proposed system effectively detects routing attacks in
resource-constrained IoT environments [2].

Touzen et al. [3] proposed a hybrid deep learning-based intrusion detection system
for RPL-based IoT networks, combining supervised and semi-supervised learning.
Their system achieved an accuracy of 98% for known attacks like DIS, Rank, and
Wormbhole. The IoTR-DS dataset was used, and they reported high effectiveness even
for untrained attacks with an average accuracy of 95%. Osman et al. [4] developed
an artificial neural network for detecting decreased rank attacks in RPL networks.
Their approach utilized IoT data from the Cooja simulator and achieved an accuracy
of 93% for reduced rank attack detection. The model’s effectiveness was evalu-
ated in resource-constrained IoT environments. Verma and Ranga [5] implemented
an ensemble learning-based intrusion detection system (ELNIDS) for RPL-based
6LoWPAN networks. Their work addressed DIS flooding attacks using a combina-
tion of decision trees and random forests, achieving an accuracy of 94.7%. Cakir et al.
[6] introduced a GRU-based deep learning model to detect and prevent RPL-specific
attacks. Their approach targeted DIS flooding attacks in IoT networks and demon-
strated robust performance with an accuracy of 96.5%. Momand et al. [7] employed
multiple machine-learning algorithms for detecting various attacks, including black
hole and version number attacks in RPL networks. Using random forest and SVM
models, they achieved 91 and 96% accuracy across different attack types. Agiollo
et al. [8] developed DETONAR, a system for detecting routing attacks in RPL-based
IoT. This system applied a hybrid approach of decision trees and ensemble methods,
resulting in accuracy rates of over 95% for detecting multiple attack vectors. Shafiq
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et al. [9] evaluated the effectiveness of machine learning algorithms like random
forest and SVM in detecting botnet-based attacks in IoT smart city environments.
Their method achieved an accuracy of 98.5%, showing excellent performance in
identifying complex attack patterns.

Seth et al. [10] focused on detecting decreased rank attacks in RPL-based
6LoWPAN networks using round-trip time measurements. Their machine learning
approach using SVM classifiers achieved an accuracy of 89%. Reshi et al. [11] devel-
oped a defense algorithm against blackhole attacks in IoT networks, utilizing a trust-
based system. Their work achieved 92% detection accuracy in real-time scenarios.
Almusaylim et al. [12] proposed SRPL-RP, a machine learning-based framework
designed to detect and mitigate rank and version number attacks in IoT environments.
Their system achieved accuracy rates of over 90%, demonstrating the robustness of
the approach.

3 Methodology

This section describes the detection of four types of security attacks using ensemble
learning techniques trained on an existing [oT-RPL dataset. This dataset, publicly
available on the Mendeley platform, contains realistic traffic data for various standard
and attack scenarios within a simulated RPL-based network. Ensemble learning
models, which combine the strengths of multiple base models, are employed to
provide robust and accurate attack detection. Feature selection techniques are also
applied to reduce the complexity of the detection model and improve performance
for resource-constrained [oT environments. Figure 1 shows the steps used to develop
the attack detection system.

Fig. 1 Methodology adapted to develop IoT-RPL security attack detection system
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3.1 IoT-RPL Dataset

The IoT-RPL dataset, which serves as the foundation for this research, is obtained
from the Mendeley platform. This dataset contains traffic data generated using the
Cooja simulator, a widely used simulation tool for 6LoWPAN networks. The dataset
includes various regular network traffic instances and attack scenarios, explicitly
focusing on the four types of attacks: Blackhole, Flooding, Decreased Rank, and
DODAG Version Number Attacks. Each attack introduces distinct anomalies in RPL
control messages, rank values, and other network metrics, making the dataset suitable
for training machine learning models.

The dataset consists of labeled instances with various features, including the
following network-related attributes:

e RPL control messages: The rate and type of control messages, such as DIO
(DODAG Information Object), DAO (Destination Advertisement Object), and
DIS (DODAG Information Solicitation).

e Rank values: The rank of each node within the RPL DODAG topology indicates
the node’s distance to the root.

e Version number: The DODAG version number is manipulated during DODAG
Version Number Attacks.

e Energy consumption metrics are essential for detecting resource exhaustion
caused by attacks like flooding.

e Packet delivery ratio (PDR): Measures the success rate of data packets delivered
to their intended destinations, a key feature impacted by blackhole and decreased
rank attacks.

The dataset has been pre-processed to label instances as either standard or attack.
For this research, the dataset is further divided into training and testing sets to evaluate
the performance of the machine learning models.

3.2 Feature Selection

Given the resource-constrained nature of IoT devices, the efficiency of machine
learning models is paramount. Therefore, feature selection plays a critical role in
this methodology. Feature selection helps reduce the dimensionality of the dataset,
retaining only the most relevant features and reducing the computational complexity
of the model while maintaining high detection accuracy.

The following feature selection techniques are applied:

e Filter-based methods: Techniques such as the Pearson correlation coefficient and
chi-square test are used to evaluate the importance of each feature by measuring
its correlation with the attack labels. Features that have strong correlations are
prioritized for inclusion in the model.
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e Wrapper methods: These methods evaluate the performance of different subsets
of features using machine learning models. Using a base model (e.g., Decision
Trees), subsets of features are systematically assessed, and those that contribute
most to performance are selected.

e Recursive feature elimination (RFE): This method recursively removes the least
essential features based on model performance, helping narrow down the final set
of features that contribute most to attack detection.

The final set of selected features includes RPL-specific metrics, such as the rate
of control messages (DIO, DAO, and DIS), rank, version number, hop count, energy
consumption, and packet delivery ratio. These features highly indicate the various
attack scenarios and are used to train the machine learning models.

3.3 Ensemble Learning Techniques

Ensemble learning techniques are employed to enhance the robustness and accuracy
of the attack detection model. Ensemble methods combine multiple base learners
to create a more accurate and reliable model. This study’s main ensemble learning
techniques are Bagging, Boosting, and Stacking, each providing unique benefits for
attack detection.

3.3.1 Bagging (Bootstrap Aggregating)

Bagging works by training multiple classifiers on different subsets of the data gener-
ated through bootstrapping (random sampling with replacement). The final prediction
is made by aggregating the predictions of all classifiers, typically through majority
voting (for classification tasks). Bagging reduces model variance and improves
stability.

The Random Forest algorithm, a widely used bagging method, is applied for this
research. Random Forest trains multiple decision trees on different subsets of the
IoT-RPL dataset. Each tree in the forest provides a classification, and the majority
vote of all trees determines the final output. This method is particularly effective in
detecting network anomalies, as Random Forest can handle noisy data and remains
robust against overfitting.

3.3.2 Boosting

Boosting is another ensemble technique that sequentially trains weak classifiers,
where each new classifier attempts to correct the errors made by the previous ones.
Boosting is designed to reduce bias and variance, making it suitable for learning
complex patterns in the data.
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In this work, two boosting algorithms are used:

¢ Gradient Boosting Machine (GBM): This method builds models sequentially,
with each new model attempting to correct the errors of its predecessor. GBM is
robust in handling imbalanced data, which is crucial when specific attacks (such
as Decreased Rank Attacks) are rarer in the dataset.

e AdaBoost: This is another boosting algorithm that assigns weights to misclassified
instances in each iteration, encouraging subsequent models to focus on those
complicated cases. AdaBoost is efficient for detecting subtle attacks, such as the
DODAG Version Number Attack, which can be difficult to detect through simple
thresholding techniques.

Both GBM and AdaBoost are trained on the IoT-RPL dataset and evaluated for
their ability to detect the four types of attacks. These algorithms provide high accu-
racy if the attack patterns are subtle, as they continuously improve the classification
boundary.

3.3.3 Stacking

Stacking is a more advanced ensemble technique that combines the predictions of
several base models using a meta-model (also known as a meta-learner). The base
models provide their forecasts as input to the meta-model, which learns to make a final
prediction based on these inputs. In this research, a Stacking ensemble is built using
a combination of different classifiers, including Random Forest, Gradient Boosting,
and Support Vector Machines (SVM), as base models. The meta-learner chosen is
Logistic Regression, which aggregates the predictions from the base models. The idea
behind stacking is that different classifiers capture different aspects of the data. For
instance, Random Forest may excel in detecting Blackhole and Flooding Attacks
due to their distinct network traffic signatures, while Gradient Boosting may be
better at detecting Decreased Rank Attacks. By combining these models through a
meta-learner, stacking can achieve superior performance over individual classifiers.

3.4 Model Training and Evaluation

The IoT-RPL dataset is split into training and testing sets, with 70% of the data used
for training and 30% for testing. The ensemble learning models are trained using the
training set, and cross-validation ensures that the models generalize well to unseen
data.

e Model fitting: Each ensemble model is trained using the selected features from
the dataset. For bagging (Random Forest), each decision tree is trained on a
bootstrapped training set sample. In the case of boosting (GBM, AdaBoost), each
weak learner is sequentially trained to improve performance on misclassified
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instances from the previous learners. For stacking, the base models are trained
first, and their predictions are fed into the meta-learner (Logistic Regression) for
final prediction.

e Hyperparameter tuning: Hyperparameter tuning is conducted using grid search
and random search techniques to optimize the performance of each ensemble
model.

The trained models are then evaluated on the test set using various performance
metrics:

e Accuracy: The proportion of correctly classified instances out of the total
instances.

e Precision: The proportion of actual positive attack instances out of all predicted
attacks.

e Recall (Sensitivity): The proportion of actual attack instances the model correctly
identifies.

e Fl-score: The harmonic mean of precision and recall, providing a balanced
measure of model performance.

e False Positive Rate (FPR): The proportion of regular traffic instances incorrectly
classified as attacks.

4 Results and Discussion

The ensemble models are evaluated for their ability to detect the four types of attacks.
The performance metrics for the models are summarized in Table 1. The results show
that the Stacking Ensemble model outperforms the individual classifiers in all metrics,
achieving the highest accuracy of 99%. The Random Forest model closely follows
with an accuracy of 98.5%, while Gradient Boosting and AdaBoost also demonstrate
commendable performance but fall short of the ensemble methods.

The ensemble models perform exceptionally well in detecting black holes and
flooding attacks, as indicated by the high recall and precision values. However, the
Decreased Rank Attack is more challenging, with the AdaBoost model achieving a
lower recall rate. Nonetheless, all models maintain a low false positive rate, indicating
they are reliable for practical deployment in RPL-based IoT networks.

Table 1 Performance metrics for the models on the IOT-RPL dataset

Model Accuracy (%) | Precision (%) |Recall (%) |FPR (%) |Fl-score (%)
Random forest 98.30 98.30 98.00 98.10 1.50
Gradient boosting | 97.60 97.50 97.20 97.30 2.00
AdaBoost 95.60 95.70 95.30 95.50 3.90
Stacking ensemble | 99.00 99.10 99.00 99.00 1.10
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Fig. 2 Attack specific performance of ensemble techniques

4.1 Attack-Specific Performance

For a detailed understanding of each model’s performance in detecting specific
attacks, the graph in Fig. 2 summarizes the performance metrics.

The Stacking Ensemble model shows the highest accuracy of 99.4%, with a preci-
sion of 99.6% and a recall of 99.4%, making it the best at detecting packet drops
caused by blackhole Attacks. All models perform well for Flooding Attacks, but
the Stacking ensemble achieves 99.2% accuracy with a 0.7% FPR, making it the
most reliable in detecting this attack type. The decreased rank attack proves chal-
lenging, especially for the AdaBoost model, which shows a lower recall of 93.5%.
The Stacking Ensemble improves detection rates with a recall of 98.6%. DODAG
version number attack is subtle, and AdaBoost struggles with a recall of 92.5%, but
the Stacking Ensemble still achieves 97.9% recall, ensuring reliable detection.

4.2 Explainability of Models

SHAP and LIME are used to explain the model predictions, offering insights into
feature importance and the rationale behind each decision. The following are the
results from both explainability techniques.
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Table 2 .SHAP values for the Feature SHAP value
most critical features across
all attack types Packet Delivery Ratio (PDR) 0.45
Rank value 0.32
Control messages (DIO, DAO, DIS) 0.29
DODAG version number 0.27
Energy consumption 0.21

SHAP provides a unified measure of feature importance based on cooperative
game theory. The SHAP values quantify the average contribution of each feature to
the model’s predictions. Table 2 presents SHAP values for the most critical features
across all attack types.

The SHAP analysis indicates that PDR (Packet Delivery Ratio) is the most influ-
ential feature for Blackhole Attack detection, with a SHAP value of 0.45. A sharp
drop in PDR is a strong indicator of this attack. For Flooding Attacks, the SHAP value
of 0.29 for Control Messages reflects how excessive DIO or DIS messages signifi-
cantly contribute to detecting this attack. The Rank Value plays a crucial role, with
a SHAP value of 0.32, highlighting how abnormal rank decreases are key indicators
of Decreased Rank Attacks. The SHAP value for version number is 0.27, indicating
that frequent changes in DODAG version number are the primary features used to
detect this attack.

LIME provides local interpretations by generating explanations for individual
model predictions. Here are key insights from LIME analysis: In 90% of cases,
low PDR values dominate the local explanation, making them the primary factor
in correctly identifying Blackhole Attacks. For 85% of correctly detected Flooding
Attacks, the high rate of DIO control messages was recognized as the leading cause
of classification. LIME shows that sudden drops in Rank Values were responsible for
correct predictions in 80% of instances. The frequent increments in Version Number
were the primary explanation for 95% of correctly detected DODAG Version Number
Attacks.

5 Conclusion

The experimental results demonstrate that ensemble learning techniques, particularly
the stacking model, are highly effective for detecting the four types of attacks—
Blackhole, Flooding, Decreased Rank, and DODAG Version Number Attacks—in
RPL-based IoT networks. By combining multiple base classifiers (Random Forest,
Gradient Boosting, and SVM) and using Logistic Regression as a meta-learner, the
stacking model achieved superior performance across all attack types, with a notably
low False Positive Rate.

Furthermore, incorporating SHAP and LIME provides essential insights into the
model’s decision-making process, ensuring interpretability and trustworthiness. The
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results indicate that machine learning techniques can effectively safeguard RPL-
based IoT networks against prevalent attacks, paving the way for more secure deploy-
ments in real-world applications. Future work will focus on real-time implementation
and further model refinement based on dynamic network conditions.
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Advancing Detection )
of Man-in-the-Middle Attacks Through e
Possibilistic C-Means Clustering

Saswati Chatterjee, Lalmohan Pattnaik, Suneeta Satpathy,
and Deepthi Godavarthi

Abstract Man-in-the-middle attacks are among the most dangerous types of cyber
threats, which implies unauthorized interception of information exchange between
two or more users. Real-time Identification of these attacks has been deemed particu-
larly difficult because of the complexity of the data traffic and sometimes the overlap
of the attack classes. In this work, we aim to improve the detection of these attacks
based on the Machine Learning algorithm using the NSL-KDD dataset, a well-
known dataset for applications in network intrusion detection. We use Possibilistic
C-Means (PCM) clustering as the primary detection method. PCM clustering effec-
tively handles uncertainty and overlapping clusters, making it well-suited for distin-
guishing Man-in-the-middle attacks from regular traffic. Thus, from this dataset, Chi-
square and Information Gain feature selection methods are used to extract the attack
features with the most distinguishing attributes. State experiments were performed
with the help of an open-source software KNIME (Konstanz Information Miner), and
several machine learning algorithms such as Naive Bayes Gaussian, SVM, SVM-
SOM K-Means, Random Forest, and PCM clustering were tested. This paper proves
that the proposed method, PCM clustering, outperforms other techniques in the actual
positive rate and accuracy of identifying the attacks of its high detection rates and
its enhanced handling of ambivalent data. This approach shows the strength of the
PCM clustering for practical Man-in-the-middle attack detection and confirms the
advantage of the proposed method over generic approaches.
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1 Introduction

The development of computers and communication, including portable applications
and greater networks, has internationally changed the nature of network security.
Thus, open computer networks are subject to interruption since Internet attacks and
misleading acts have been directed toward businesses and private systems. Today,
there are many application areas for modern technologies of automation [1], and
their availability is essential for the continuous provision of many important services.
Organizations involved in regulation, standardization, and direction aim to improve
dependability, safety, and quality/excellence of service. In diagnosing anomalous
behavior in Industrial Automation Control Systems (IACS), tracking the control
components frequently, especially the Programmable Logic Controllers (PLCs),
would be important. It has also been noticed that PLCs facilitating Modbus/TCP
[2] are mostly on the receiving end of repeated attacks. These might include trying
to flood or amplify a network to perform a DoS [3] objective. Sophisticated attacks
such as the Man in the Middle (MITM) assaults use the method of ARP poisoning to
disrupt data flow and/or hide it. A direct and purposeful strike against the system of
another person or organization is called a network attack. However, with the assis-
tance of information, it is possible to help others, while at the same time, cyberattacks
are often a real menace [4]. Several widespread hostile network attacks, for instance,
contemporary cyberattacks typically include insider threats, injection of SQL queries,
denial of service (DoS), hacking or spoofing, and ransomware, have called for the
implementation of more complex remedies that embrace modern advancements such
as the use of artificial intelligence and creation of security measures. Cloud has
significantly improved scholarly and secure transportation systems since scholars
have benefited from the cost and flexibility features. Various facilities provided by
cloud computing that are in use today encounter challenges such as privileged access
to the platform [5]. Cloud users and supported applications are usually accessed
through insecure HTTP, which indicates tremendous vulnerability to external risks
and threats. Therefore, it has to limit authority access and maintain the change effi-
ciently in the structure, as cloud processing servers use similar working systems.
Indirect construction processes of the weaknesses make them a severe threat to the
whole distributed computing environment. In today’s complex business environment,
most organizations must have adequate computing skills to communicate through
networks. Network users have to trust the privacy and security of their communica-
tions to learn effectively and share information across such environments. However,
most attackers build techniques designed to compromise the network through eaves-
dropping, tampering with, or intercepting what should be private messages. Based
on Najafabadi et al. [6, 7], it is estimated that 63% of specified data breaches can be
linked to attacks that target credentials [8]. One technique in which such operations
can be done is the Man-in-the-Middle (MITM) assault. The attacked computer [9,
10] is in the middle of a dialogue between two connected machines; MITM attacks
are still a current threat [11] and aim at eavesdropping on the conversation. Network
security and anomaly detection are priorities for ISPs because these organizations
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have to manage increasing events that threaten the network’s capability and avail-
ability. Since the data dimensionality that current network monitoring systems handle
is vast, using machine learning to detect and classify anomalous events is possible and
practical. This must be tricky because it is quite well established that no set solution
exists for all problems in a single instance when choosing the right machine-learning
approach to a given problem. Although many models may be incredibly valuable
regarding a particular issue, it could be awkward when struggling to select a suitable
set for various patterns in conjunction with analytical blends. The blending method
allows combining one or many models to create a new model, which can (potentially)
be better. In ensemble approaches, several learning algorithms are applied to achieve
better prediction potential than using any individual learning method. In theory, the
general concept of aggregation, or ensemble learning, is more complex than a single-
based learning algorithm. However, this constraint is slightly addressed because most
large data platforms and regular analysis power can quickly execute many algorithms
simultaneously [12]. The current study incorporates artificial intelligence to enhance
the protection of the organizational network by developing an MITM attack detec-
tion model. The information and communication are analyzed for the desired data
using the machine learning algorithm and looking for MITM attacks. The experi-
ment results show that classifiers are better than standardized learning. The authors
employ machine learning in the current study to enhance the organizational network’s
security by developing an MITM attack model. The network traffic is monitored for
specific data by machine learning technology and by searching MITM attacks. The
results of the experiment presented here show that classifiers are superior to standard
learning techniques.

2 Related Work

Efficient and secure communication over computer networks is essential for modern
industries. Network users must trust that their communications are private and safe
to exchange sensitive information. However, many attackers attempt to compromise
network security through techniques that enable them to steal, modify, or monitor
confidential communications. According to the Verizon Data Breach Investigations
Report, 63% of confirmed data breaches are attributed to credential theft attacks.
One prominent method for achieving this is the Man-in-the-Middle (MITM) attack,
which remains a significant threat today. MITM attacks involve intercepting commu-
nications between two machines by positioning the attacker’s system between them.
The attacker can monitor the communication or modify the data before forwarding it
to the intended recipient. Both passive and active MITM attacks pose serious secu-
rity risks, with passive attacks being potentially more insidious. MITM attacks can
also lead to malicious activities, such as Distributed Denial of Service (DDoS) or
Domain Name System (DNS) spoofing. Communication through computer networks
is now required in almost all branches of modern industry and commerce. There
exists a mandatory need to ensure that the users of that network are assured that
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their communication information is safe and secure. However, most attackers are
interested in violating the security of computer networks in a way that allows them
to intercept, alter, or eavesdrop on sensitive messaging. The Verizon Data Breach
Investigations Report shows that about 63% of confirmed data breaches result from
different attacks seeking to obtain users’ credentials. It has been considered that both
passive and active MITM attacks would seriously jeopardize security measures, but
the potential for passive attacks is lurking more. This MITM attack can also result
in other evil doings, such as Distributed Denial of Service (DDoS) or Domain Name
System (DNS) spoofing. Due to the MITM attack’s flexibility can be carried out
using various techniques based on the network topology and/or attack objectives:
passive and/or active. The most common forms of computer attacks include ARP
spoofing, DHCP spoofing, and port stealing. These methods are easy to implement
and use due to their availability; moreover, the variety of the methods covers all neces-
sary aspects connected with MITM attack behaviors and traffic characteristics. The
previous research on capturing MITM attack traffic is often used on closed networks
and does not consider real environment characteristics. Most of these experiments
don’t consider the regular traffic experienced in live networks, such as web browsing,
file transfers, server interactions, and multimedia streaming. However, most of such
research centers on crude data download objectives regarding the FTP or file transfer
protocol, which are somewhat constrained in their range.

In contrast, our approach involves capturing MITM attack traffic on a live, large-
scale campus network with over 60 active users. The traffic includes a wide range
of everyday network activities, and attacks are directed toward machines actively
engaged in everyday tasks. Our goal is to explore the challenges of capturing MITM
attack traffic in a live environment and identify patterns and behaviors character-
istic of such attacks. We also analyze the collected traffic and describe our unique
labeling procedure. We can distinguish between regular and attack traffic by focusing
on specific attack behaviors. We observe distinct relationships between IP addresses
and their associated Media Access Control (MAC) addresses for each MITM attack
variant. These patterns enable us to label traffic as part of an attack accurately.
Our analysis further discusses the behaviors and anomalies associated with MITM
attacks. On the other hand, this paper is based on capturing the MITM attack traffic
on a live large-scale campus network with over 60 active users. The traffic encom-
passes many ordinary network activities, and attacks are launched on busy machines
dealing with regular business. This work aims to analyze the prospects of capturing
MITM attack traffic in the real environment and the typical patterns and behavior
related to these attacks. We also discuss the collected traffic analysis and give an
overview of our peculiar labeling process. One can differentiate between regular and
attack traffic by examining precise attack behaviors. In each MITM attack variant, the
researcher notes different correlations between the IP addresses and the respective
MAC addresses. These patterns help us correctly identify traffic as attack traffic. We
then outlined the behaviors and anomalies related to MITM attacks in our further anal-
ysis section. Section 7 presents a case study to show how these attack behaviors affect
the detection performance. The researcher has given [13] a comprehensive survey
of the different ML techniques used in traffic identification. There are only a few
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comprehensive ML-based algorithms for network anomaly identification presented
in Chuang and Ye [14], Mittal et al. [15] and Lu et al. [16] and broad domain anomaly
detection methodologies. The researcher has extended the utilization of the learning
methodologies to address privacy. However, minimal literature has specifically used
ensemble learning approaches for confidentiality and the identification of anomalies.
However, it is often noted in the methodology that groups appear to produce better
results if there is sufficient variation among the predictions about them [17, 18]. In
Jingle and Rajsingh [19], the authors proposed dealing with this problem by imple-
menting monitoring agents at different levels of the network. During experimentation,
a global monitoring agent was used on the side of the gateway router.

Remote surveillance monitors across the network also kept a table regarding
address information and timer values, which provided details. The timer value indi-
cated the nodal presence and how long the node had been present. The primary focus
of the defense against Man-in-the-middle attacks is to invent new protocols, sensors,
or security techniques for various systems [20]. A new strategy to resolve the IP/
MAC mapping problem is needed for the researcher’s proposed modification of the
present ARP to function against APR poison-based MIMT attacks. An unsupervised
WLAN method was developed by researchers [21, 22]. The experts [23] proposed
the MITM detector, Vesper. To illustrate the shape of the setting, it uses architecture
as an idea analogous to Reflections in the Cave. It also captures subtle changes that
enable accurate identification of MITM assault attacks. Internet-related applications
for man-in-the-middle (MITM) assault requires a perpetrator to take over an internet
connection between two different ends. The contact traffic of the victims included
message exchanging and phone calls and was listened to, monitored, and manipu-
lated by the MITM attacker [20]. The research study established that any information
transmitted between endpoints is possibly vulnerable to MITM attacks in OSI model
layers.

Another experiment was conducted regarding the Artificial Neural Network Solu-
tion. The experts explained a DNS spoofing type based on the MITM attack with
the help of the ANN type [24]. Thus, the defensive strategy could be considered
relatively successful by looking at the total discovery ratio of 98%. The present
study used SOM-based visualization because data with high dimensionality could
be mapped into low dimensions, exposing a large amount of information simultane-
ously. This was done because the occurrence of access to data, as well as the absence
of effective forensic investigation procedures for digital crime scenarios, are making
digital crimes a big issue. IoT devices are not developed with privacy in mind because
resource limitations are the primary constraint in IoT implementation. Therefore, it
becomes a challenging task to build a reliable IoT protection system that can identify
security intrusions [25]; the MANET [26] usually assumes that every node in the
network is reliable. One of the dangerous nodes damaging a MANET is a node that
misinterprets the channel of communication between the originator and the recip-
ient to launch what is referred to as the “man-in-the-middle (MITM)” attack [27,
28]. Other attacks referred to as “The-Middle” (MITM), in which the attacker inter-
cepts the communication media across wireless communication networks, can easily
compromise the security of wireless fidelity networks [29]. Phishing [30] today is
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the most common online threat due to the World Wide Web’s volume growth rate
[31]. In addition to making a framework recommendation for the current study, the
current work uses experimental analysis to fill any gap that earlier studies may have
left.

The success of a predictor is defined by how closely it was able to estimate the
intuitive forecast or the most stated perfect classifier based on the actual collection
of data. The predictability of all techniques depends on the problems they have to
solve, and due to training datasets, each algorithm learns different kinds of factual
characteristics. There are various types of supervised learning, including states that
simple learning models or single hypothesis algorithms may experience one of three
different bottlenecks: When it comes to the amount of data for training, there are
too many hypotheses; statistical problem: when most methods have similar accuracy
and the risk of choosing a process that cannot accurately predict the following data
sets; computational challenge Many algorithms may not find the world’s optimum; A
representation issue arises from the non-existence of a model in the set of hypothesis
that matches the actual distribution. Ensemble approaches build some hypotheses and
choose one using the combinatorial form instead of choosing the optimal framework
for reporting the facts. This strategy seeks unity where the learning limitations of
one predictor are balanced by the other. Therefore, different predictions are arrived
at if several of these algorithms are executed simultaneously. Some articles have
attempted to address techniques that exploit the existence of the above variety to
enhance the general predictive performance indicated by the merged results of several
algorithms [32, 33]. This is done using a process known as ensemble learning, where
the result of the predictors is passed into a completely new algorithm referred to as
the second-level or meta-learner.

3 Proposed Methodology

This study investigates the extraction of a relevant feature set for detecting Man-in-
the-Middle (MITM) attacks using two distinct sources of Internet traffic datasets:
The results are obtained based on the NSL-KDD Cup dataset available to the public
and traffic data from the Smart and Secure Environment (SSE) network. MITM
attack detection investigations: In this case, the ability to identify traffic parame-
ters that indicate deviation in traffic is emphasized. Initially, twenty-three features
were selected; Information gain and chi-square tests applied yielded eight relevant
features at 1-s intervals. Due to the pleasant distinction between attack and regular
traffic classes, the study used various machine learning algorithms such as SVM,
KNN, Naive Bayes, Decision Tree, K-means clustering, and possibilistic C-means
clustering. Possibilistic C-means clustering is most helpful as this form of clus-
tering is less strict about assigning the data point to the clusters since traffic analysis
separates the regular traffic from the attack traffic. This method helps to analyze
the nature of uncertainty in traffic classification by highlighting the possibilities of
MITM attacks. Information Gain is a successful strategy for ranking attributes linked



Advancing Detection of Man-in-the-Middle Attacks Through ... 45

to the target class. In this respect, we proposed how it is possible to choose the most
important features based on rank. In more detail, the Chi-Square test determines the
level of dependency of feature X on cluster Y. The significance of the feature and
target relationship can be tested by comparing the result to a chi-square distribution
with one degree of freedom.

A=)

i=1 j

z m
(Yij— Rij)
A ) 1
A G, (D

1

In this regard, Eq. (1) denotes the feature K, while m symbolizes the clusters. R; ;
Is the count of feature values that occur with cluster j, and the expected count given
the occurrence of feature value I and cluster j is represented by G; ; This indicates
that the higher the A2, the higher the relevance of the feature to the cluster has been
recognized. Using both values and information gain, eight features of significance
emerged: The following table, Table 1, ranks these features using the chi-square and
information gain methods.

Features Extraction of Data

The firm correlated details that need to be used to detect MITM attacks are high-
lighted by correlating all features. It is also necessary to include all the 14 attributes
indicated for evaluation and forecasts of reference samples to identify the anomaly
identification outcomes learning model. The lack of certain features in samples from
the model will impact the results; therefore, features should be kept to a minimum to
develop a sound model. The Heat Map correlation matrix is valuable in determining

Table 1 Dataset parameters and its description

Feature name Outline

IPV4_SRC_ADDR IPv4 source address
L4_SRC_PORT IPv4 source port number
1IPV4_DST_ADDR IPv4 destination address
L4_DST_PORT IPv4 destination port number
PROTOCOL IP protocol identifier byte
L7_PROTO Layer 7 protocol (numeric)
IN_BYTES Incoming number of bytes
OUT_BYTES Outgoing number of bytes
IN_PKTS Incoming number of packets
OUT_PKTS The outgoing number of packets
TCP_FLAGS Cumulative of all TCP flags
FLOW_DURATION_MILLISECONDS Flow duration in milliseconds
Label Anomaly or typical conduct
Attack Type of Attack
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related variables, making it easier to choose features. Heat maps help interpret the
data received more simply than other visualizations.

Based on the Chi-Square test and Information Gain shown in Table 2, the following
eight features were identified as the most significant in detecting Man-in-the-Middle
(MITM) attacks: IPV4_SRC_ADDR: The source IP address plays a central role in
differentiating between regular and attack traffic. While using a ‘reliable’ network
source address is impossible, it would be easier to flag unknown ones as suspicious or
at least strange. L4_SRC_PORT: Source port numbers, which denote the port from
which the data in a network transmission started, should also be given to determine
the service or application used. In some instances, particular ports may be attacked
in MITM attacks. IPV4_DST_ADDR: The destination IP address is quite valid to
monitor the traffic direction. Some attacks are as follows: an attack may be directed to
specific addresses or divert traffic to a particular undesirable URL. L4_DST_PORT:
The destination port number conveys the service or application the data packet uses.
Some ports, such as HTTP 80 or HTTPS 443, are either blocked or recognized to be
attacked more often when compared to others. PROTOCOL: This feature designates
the transport layer protocol the connection uses, for instance, TCP, UDP, or ICMP.
Also, different protocols can act on different warding attacks, hence the need for
protocol identification and classification. IN_BYTES: The total number of received
bytes. This parameter gives an overall picture of how many bytes are being received.
Large fluctuations in the incoming traffic volume might be used to identify mali-
cious traffic, including a sizeable number during an MITM attack. OUT_BYTES:
Canceled bytes are also essential for identifying deviant data transmission trends,
just like the total outgoing bytes. High volumes in the outbound traffic often indicate
unauthorized data leakage—a typical attribute of MITM attacks. TCP_FLAGS: This
feature monitors the TCP flags, including SYN, ACK, or FIN, amongst other vari-
ables. Some TCP flags may point to an attack since the opponent may change them
to interrupt or gain control of a session. Among the 27 features considered, the ones
pointed out here as the eight most suitable are: These features, chosen according
to Chi-Square and Information Gain results, produce powerful signs for flagging
anomalies and categorizing traffic as either standard or attack-related when the goal
is MITM detection.

Table 2 Feature description
and chi-square test and
information gain IPV4_SRC_ADDR

1
L4_SRC_PORT 2
IPV4_DST_ADDR |3
L4_DST_PORT 4
PROTOCOL 5

6
7
8

Features Chi-square rank | Information gain rank

IN_BYTES
OUT_BYTES
TCP_FLAGSS

N0 N || B W N~
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Machine Learning

Machine learning uses an algorithm to teach a technique for making accurate predic-
tions from large astronomic data sets regarding one type of attribute. Machine
learning is on the cutting edge of artificial intelligence and computer framework
research. The approach created here uses a combination of features to determine
a man-in-the-middle attack. This enables more accurate attack detections from the
computer program and the machine learning algorithm.

Random Forest

In this study, a well-liked supervised learning method is Random Forest. They are
utilized in regression and classification using machine learning. It uses ensemble
learning to handle complicated problems and enhance model performance by
combining many classifiers. The algorithm is predicted in classification problems,
such as when recognizing an MTM attack. In contrast, in regression problems, the
technique projected is calculated as the mean of all tree forecasts.

SVM

A supervised learning method, SVM, is frequently employed to address classifica-
tion and regression problems. Its prominence is due to its being commonly utilized
in machine learning for categorization [34]. The idea of statistical learning serves
as the foundation for the machine learning paradigm known as Support Vector
Machine (SVM) [35, 36]. Instead of merely reducing the data set’s mean square
error, the approach minimizes the model’s generalization error’s outer bounds. The
SVM algorithm can provide more accuracy since it can show greater accuracy on
massive datasets.

K-Means Clustering

It works in the following way: first, the clusters are randomly assigned, and data
points are associated with the clusters depending on distances between these points
and the centroids of respective clusters. It also assigns each data point to the centroid
with which they are most alike, which helps create rather unique clusters.

Naive Bayes Gaussian

Based on Bayes’ theorem, the Nave Bayes approach is employed for categorization.
The Nave Bayes Classifier is among the more effective and basic categorization
methods for quickly building machine learning models that can immediately make
forecasts. The class-based attributes can be identified by continuous characteristics
using the Bayesian classification Gaussian function [37].

Hybrid Classifier

Support Vector Machine (SVM) and Self Organized Map (SOM) are two machine
learning-based models we have combined to handle this DDoS onslaught. We started
with the SVM and SOM separately. Furthermore, we found that SOM outperforms
SVM in terms of assault detection. To increase performance, we combined the SVM
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and SOM, and the results show better detection rates, accuracy, and false rates than
the standalone implementation. This section covered the operation of two algorithms
and our suggested hybrid machine-learning algorithm.

Possibilistic C-Means (PCM) Clustering

PCM clustering is a variant of the C-means clustering study. It is closer to the actual
data than the conclusive facts because it considers concepts of possibility theory
in clustering. PCM is more forgiving of cluster membership compared to the other
approaches, allowing for the decision of which data points to assign to which cluster
to be made with more flexibility. The method can be formulated as follows in the
Eq. (2):

m n m n

2
J=3 0 Mhd(wy) + 4y (1= My @
J

j=1 i=1 =1 =l

where:

I is the possibility that data point x; belongs to cluster j.

v; Is the centroid of cluster j.

d(x;,v;) represents the distance between data point x; and cluster centroid v;
(usually the Euclidean distance).

[ is a parameter controlling the influence of the distance term in the objective
function.

v is a parameter controlling the influence of the possibility term in the objective
function.

A; is a parameter balancing the two terms in the objective function for cluster j.

n is the number of data points.

m is the number of clusters.

The objective function seeks to minimize the sum of two terms: the distance-based
clustering term and the possibility-based term, which handles uncertainty in cluster
membership. The parameters control the balance between these terms i, v, and A;.

Data Set

The origin of the dataset used in the execution of this study is discussed in this
section. The research’s datasets are derived for experimentation from the Machine
Learning-Based NIDS Dataset, the most significant data science community globally
[38].

4 Performance Evaluation

The dataset was collected on the SSE (Simulation of Snapshot Ethernet) network
and contains both attack and regular traffic. Standard traffic data was collected from
the SSE network for classification, while the attack traffic data was collected from
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the NSL-KDD set. The analysis and classification were performed using the open-
source KNIME (Konstanz Information Miner), version 3. The correct classification
results are included in Table 3. Table 4 presents the F-measure percentage, Fig. 1
demonstrates the ROC of the machine learning algorithms, and Fig. 2 represents
the Correlation Heat Map. In these experiments, the based classifier outperforms all
classifiers regarding recall rate for MITM attack detection. This approach managed
uncertainty and overlapping clusters better than other methods and was more efficient
at identifying six different types of attacks in the given data set. PCM (Possibilistic
C-Means) is used as it is more suitable than conventional k-means or fuzzy c-means
methods and takes into account uncertain factors and overlapping of clusters. Unlike
the traditional methods that categorize data points into clusters using probabilities or
distances, PCM clustering permits altering the membership values as they do not have
to sum up to 1. This makes it easier for PCM to manage problems with overlapping
clusters since the degrees of membership are variable and can give high membership
to one cluster and low membership to other clusters for a given data point or give
low membership to all clusters for noisy data points. By formally allowing such
uncertainty, the specified approach enables the classifier to produce more accurate
and timely results that are easier to interpret rather than quantifying them under
a specific number of categories. Moreover, PCM clustering is also very efficient
for extensive voluminous high-dimensional data, which can be seen from handling
overlapping clusters and the capacity to distinguish between six different types of
attacks in the dataset provided. These strengths make PCM a reliable method for real-
world scenarios such as MITM attack detection since excellent levels of uncertainty
and overlapping patterns characterize the problem.

The PCM clustering was evaluated qualitatively using several parameters with a
special emphasis on recall rate that quantifies true positives for identification of
MITM attacks. Other measures considered in overall classification performance
included accuracy, F-measure computed as the arithmetic mean of precision and
recall, and ROC analysis. These metrics offered a balanced assessment so that all of
the method’s performance characteristics were investigated and compared to other
methods regarding uncertainty handling, overlapping clusters, and attacks.

Precision = TP/TP + FP

Table 3 Classification

. Method used Classification % | Detection time
analysis
Probabilistic C-Means 96.5 0.16
Naive Bayesian Gaussian | 95.3 0.54
SVM 93.2 0.28
SVM-SOM 92.3 0.26
Random forest 94.2 0.24
K-Means 95.5 0.21
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Table 4 The F-measure percentage

S. Chatterjee et al.

Method used TP FP TN FN F-measure
Probabilistic C-means 278 2 265 3 0.988
Naive Bayesian Gaussian 285 10 254 17 0.955
SVM 279 21 242 31 0914
SVM-SOM 282 18 254 22 0.9344
Random forest 275 16 274 0 0.971
K-means 276 23 219 54 0.877

Fig. 1 ROC curve

Calculated attack data from recall is compared to all attack data.

Recall = TP/TP + FN

The harmonic mean of recall and precision is referred to as the F-measure.

F — measure = 2 Precision - Recall/Precision 4 Recall

The detection rate is the proportion of attacks that are accurately identified among

all anticipated attacks.

Decision Rate = TP/(TP + FP) *x 100
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Fig. 2 The attributes of the Correlation Heat Map

5 Conclusion

The performances of various machine learning algorithms for MITM attack detec-
tion are analyzed and compared in this paper using the NSL-KDD dataset. The
dataset forms the basis for regular and attack traffic data. By applying Chi-Square
and Information Gain ranking techniques, only essential features are chosen well to
improve the classification. The effectiveness of the Possibilistic C-Means clustering
algorithm is shown in this work by comparing the results of classifications yielded
by this method to those achieved by other methods. Compared with most clustering
methods, Possibilistic C-Means work well with ambiguity and data overlapping,
giving a better probe into the cluster membership degree. It also increases the likeli-
hood of classifying normal traffic flow from malicious traffic, thereby increasing the
success rate of MITM attack detections. In addition, Possibilistic C-Means brings
a higher efficiency than other machine learning algorithms because of its fast rate.
These results, therefore, imply the appropriateness of selecting the right features
and the proper partitioning method for improving the stability of the MITM detec-
tion systems. Altogether, this work contributes useful findings in enhancing machine
learning strategies appropriate to cybersecurity, especially in the fight against MITM
insecurity. This study demonstrates the practical potential of PCM clustering in
real-world network security scenarios and underscores its advantage over traditional
approaches for MITM attack detection.
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CNN-Based IDS for Internet of Vehicles )
Using Transfer Learning e

Samarjeet Singh Rathore, Shaurya Yadav, Nitin Singh, and Biswajit Brahma

Abstract This paper focuses on comparing an RNN and an LSTM model to a
CNN-based Intrusion Detection System (IDS) to secure vehicular ad hoc networks
(VANETS) against cyber threats like DoS and spoofing attacks, which will become
more and more common as technology advances in Internet of Vehicles (IoV). Using
different Neural Network models, the Intrusion Detection System is being compared
based on accuracy, f1 score, precision, and recall. This helps us to understand which
model will perform better under real-time attack scenarios and why it is better than the
other models. All the models are trained on a standard input dataset (CICIDS2017)
and processed to give an accuracy table. This dataset uses 81 attributes like packet
size, packet rate, and other factors to consider for an intrusion attack. The project’s
accuracy is considered by how efficiently it identifies an intrusion in the system
based on the input. To improve road safety and traffic efficiency, modern vehicular
networks, which are essential to the Internet of Vehicles (IoV), allow communication
between vehicles and infrastructure. However, the increased connectivity creates a
lot of openings for cyberattacks like Distributed Denial-of-Service (DDoS) attacks,
data injection, and message tampering. The high mobility and dynamic topology of
vehicular networks present challenges for traditional IDS. That is why these chal-
lenges are recognized using this comparative study of conventional and new models
for Intrusion Detection.
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Keywords Intrusion Detection System (IDS) - Internet of Vehicles (IoV) -
Vehicular + Accuracy + Machine learning - Deep learning + Convolutional -
Dataset - Vehicular Ad Hoc Networks (VANET) - Al

1 Introduction

The Internet of Vehicles (IoV) framework links automobiles, infrastructure, devices,
and users online to build intelligent, effective, and secure transportation systems.
Communication between vehicles (V2V), vehicles and infrastructure (V2I), pedes-
trians (V2P), and cloud services (V2C) is made possible, for which it uses cutting-
edge technologies like sensors, GPS, and communication modules. For safe self-
driving cars and maps for navigation, the Internet of Vehicles (IoV) facilitates real-
time communication with sensors and traffic systems. It uses real-time data to manage
accidents, optimizes traffic flow, and lessens congestion. It also improves infotain-
ment services by providing drivers and passengers with customized media. However,
as advances are being made, technology becoming prone to cyber-attacks is a concern.
AsFig. 1 shows, the percentage of attacks on IoVs is vast, and attackers are improving
with the improving technology.

In past cases, the datasets and models created could not detect attacks accurately.
The trained models used RNN, LSTM, and other artificial neural networks in real-
time scenarios.

Therefore, implementing Al/Deep Learning models is becoming necessary in this
field to safeguard against these attacks and improve Intrusion Detection Systems.
This will allow for faster and more accurate detection of threats, eventually helping

Fig. 1 IoV cyber threats
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to eradicate them quicker, lessen the chances of a successful cyber-attack or intrusion
in these systems, and keep people safe in real-time problems by identifying the best
models for IDS in IoV.

The remaining sections of the paper are structured as follows: Sect. 1 discusses the
associated research. The past work and objectives are discussed in Sect. 2. Section 3
describes the methodology and dataset used in this research work. Section 4 describes
the results and discussions, while Sect. 5 covers the conclusion and future scope.

2 Related Work

A similar project was carried out for “Machine Learning-Driven Optimization for
Intrusion Detection in Smart Vehicular Networks by Ayoub Alsarhan, Abdel-Rahman
Al-Ghuwairi, Islam, Almalkawi, and Mohammad Alauthman at Hashemite Univer-
sity [1] regarding intrusion detection in innovative vehicular network. Another paper
compares the most popular intrusion detection models that use CNN to RNN and
LSTM and observes how efficient these models are to protect against various cyber-
attacks in a vehicular network [2, 3]. The main idea is to turn our dataset into spatial
images and then use multiple CNN models and, at the same time, input the raw
tabular data set into RNN and LSTM; the output of all these models is then taken
into consideration, and we try to find the best working model out of all.

The paper titled “Transfer learning and CNN optimized IDS for [oV” by Yang and
Shami [4]. This paper [4] discusses applying and implementing various CNN models
for Intrusion Detection in the Internet of Vehicles using images as input. This provides
us with the in-depth implementation of CNN in IDS. CNN model was observed to
give high accuracy, but other models were not compared during implementation
[5, 6]. The dataset did not have many attributes, an essential requirement, or an
implementation case for CNN. The same dataset is then utilized for RNN and LSTM
models to provide a uniform comparison.

Song et al. [7] proposed an Intrusion Detection System (IDS) for in-vehicle
networks using Deep Convolutional Neural Networks (CNNis) to detect cyberattacks
in Controller Area Network (CAN) messages [7]. Their method converts CAN data
into image-like representations for CNN analysis and automates feature extraction,
eliminating the need for manual engineering. Outperforming conventional machine
learning techniques, the IDS showed excellent detection accuracy across a range of
attack types, including DoS and spoofing [8]. The study addresses scalability and
computational limitations while highlighting the possibility of real-time deployment
in automobiles.

Research Gap

The caliber and variety of training datasets significantly impact IDS efficacy. Compre-
hensive, publicly accessible datasets covering various attack scenarios and typical
driving conditions are complex. The creation and assessment of reliable IDS models
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that can be generalized across multiple vehicular environments are hampered by this
limitation.

Real-time detection capabilities with low latency are essential for IDS implemen-
tation in actual vehicular systems. However, this isn’t easy to achieve because vehi-
cles have limited computational resources. Research on striking a balance between
computational efficiency and detection accuracy is still ongoing. Performance eval-
uation is inconsistent in IoV environments due to the lack of standardized evaluation
metrics and benchmarking frameworks for IDS. To objectively compare various
IDS approaches and Deep Learning models, it is imperative to establish generally
recognized benchmarks.

The objectives of this research work are:

e To develop a machine learning based Intrusion Detection System for accurate
time threat detection in the Internet of Vehicles.

e Using different models (CNN, RNN, LSTM) to improve the knowledge of how
each model works for IDS.

e Comparing these models to obtain the best model with higher accuracy, F1 score,
precision, and recall, making it the best fit for implementation.

e To provide people with a sense of security and safeguard the network of vehicles
globally.

3 Methodology

The models use one common dataset as input (CICIDS2017) [4]; for CNN models,
this dataset is first converted into spatial images and then used for four individual
models (Xception, Inception, VGG16, VGG19). The spatial images are generated
pixel-wise by using a set of 3 attributes at a time representing the RGB values; a total
of 81 attributes being present makes it (9 x 9 images).

After the CNN implementation, the other two models, namely RNN and LSTM,
utilize the dataset directly as a time-series dataset, and pre-trained models are used
here to work on this dataset. The pre-trained RNN uses the ‘real’ activation function
for non-linearity and includes a drop-out layer that drops a specific percentage of data
to overcome the overfitting problem. A fully connected (dense) layer with 64 neurons
extracts complex patterns in the features, which RNN learns; another dropout layer
is used, and then a final output layer is used with the SoftMax function for multi-
class classification. Hence, this RNN-based multi-class classification model has one
RNN layer for sequence learning, fully connected layers for feature transformation,
Dropout for regularization, and A final SoftMax layer for class probabilities.

LSTM model is similarly worked on, but it uses hyperbolic tangent as an activation
function, and it also uses an additional batch normalization of LSTM layers after
dropout layers to stabilize training; apart from that 2, LSTM layers are present to
capture temporal dependencies, ends the same way as RNN with dense layers and
SoftMax activation for class probabilities. The output for all three models is a table
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Fig. 2 Flow chart of the proposed work

to provide their accuracy, precision, recall, and F1 score. This is used to compare
them on graphs and manually and provide us with the best possible model for this
problem, as shown in Fig. 2.

3.1 Architecture of the CNN Model Used

4 CNN models were utilized in CNN implementation:
e VGG16

VGG16 has 13 convolutional layers, three fully connected layers, five pooling layers,
and 3 x 3 convolution kernels. It uses a ReLLU activation function [3].

e VGG19



60 S. S. Rathore et al.

VGG-19 is a deep convolutional neural network with 19 weight layers, comprising
16 convolutional layers and three fully connected layers. The architecture follows a
straightforward and repetitive pattern, making it easier to understand and implement

[3].
e Xception

Xception is an expansion of the Inception architecture that uses depth-wise sepa-
rable convolutions to replace typical Inception modules, reducing computational
complexity and improving performance [9, 10].

e Inception

It is a cryptographic protocol for securely operating network services over an unse-
cured network. Typical applications include remote command-line login and remote
[11].

Once the model is trained, it is essential to evaluate and compare its performance
in terms of accuracy. These are:

e Precision: The model can be precise with the positives it gives, i.e., the total
number of true positives by the total number of positives, which provides precision.

e Recall: Also known as sensitivity and actual positive rate, which helps us iden-
tify how many of the actual positives the model correctly identified. The only
difference is that the calculation formula uses false negatives instead of false
positives.

e F1 score: It is the harmonic mean of both precision and recall, which helps us
provide a balance between them. So, if the fl score is high, it represents high
precision and recall.

e Support: This refers to the number of occurrences of each class in the dataset.
Telling us about the instances present in a test set at a time.

CNN Inputs

As shown in Fig. 3, we have various spatial images produced for the CNN models,
which are then used as input to train these models.

LSTM

In the Internet of Vehicles (IoV), Long Short-Term Memory (LSTM) networks—a
type of Recurrent Neural Networks (RNNs)—are beneficial for Intrusion Detection
Systems (IDS). Because LSTMs solve the vanishing gradient issue that traditional
RNNs have, they are excellent at identifying long-term dependencies in sequential
data, like CAN messages. This enables them to recognize complex attack patterns,
such as DoS, fuzzy, and spoofing attacks over long periods. LSTMs improve the
accuracy and dependability of IDS by examining contextual patterns and temporal
correlations in vehicular network traffic, providing a strong defense against changing
cyber threats in IoV environments.
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Fig. 3 CNN spatial images

RNN

Because recurrent neural networks (RNNs) can analyze sequential data, such as
Controller Area Network (CAN) messages, they are very effective for Intrusion
Detection Systems (IDS) in the Internet of Vehicles (IoV). RNNs help identify intri-
cate attack patterns like spoofing, DoS, and fuzzy attacks because they can identify
temporal dependencies in network traffic. By examining message sequences over
time, their sequential modeling aids in distinguishing between benign and malevolent
behavior. Furthermore, RNN variants like LSTMs and GRUs resolve the vanishing
gradient issue, making it possible to learn from lengthy sequences effectively. RNNs
are a valuable tool for improving IoV cybersecurity because of these features.

3.2 Dataset Description

This research work incorporates the usage of two datasets.
CIC-IDS2017

The dataset contains benign and the most up-to-date common attacks, which resemble
real-world data (PCAPs). It also includes the results of the network traffic analysis
using CICFlowMeter with labeled flows based on the time stamp, source, destination
IPs, source and destination ports, protocols, and attack (CSV files).
(https://www.unb.ca/cic/datasets/ids-2017.html) [12] as shown in Fig. 4.

Car Hacking Dataset

Include DoS attack, fuzzy attack, spoofing the drive gear, and RPM gauge. Datasets
were constructed by logging CAN traffic from an actual vehicle via the OBD-II port
while message injection attacks were performed. Datasets contain 300 intrusions
of message injection. Each intrusion is performed for 3-5 s, and each dataset has
30-40 min of CAN traffic.
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Fig. 4 CIC-IDS2017 dataset table

(https://ocslab.hksecurity.net/Datasets/C AN-intrusion-dataset) [13].

4 Results and Discussion

The conclusion derived from the performance evaluation of CNN, RNN, and LSTM
for the IDS is that CNN achieved high accuracy and low false favorable rates
compared to its counterparts, i.e., RNN and LSTM. RNN, even though its focus
on past data, was met with the challenge of vanishing gradient during the training
phase. Similarly, LSTM worked better than RNN, helping in long-term dependen-
cies, but required more computational power. Overall, CNN proved to be the most
effective among the three in static data scenarios, and LSTM works well in dynamic
ones. Using the CICIDS2017 dataset [12, 13], metrics like accuracy, precision, recall,
and F1-score were compared, and CNN proved to be the best performing.

4.1 Comparative Analysis Result

The comparison of RNN and LSTM models based on the overall accuracy and loss
is done graphically, as shown in Fig. 5.

The overall comparative analysis of all three models (CNN, RNN, LSTM) based
on precision, recall, F1 score, and support is shown in detail in Table 1.

Compared to baseline IDS approaches, such as RNN and LSTM, the proposed
framework reduces false positives while maintaining high detection accuracy and
provides a more balanced decision-making framework, as shown by comparing
traditional voting mechanisms alone.

LSTM

The individual stats for the LSTM model include the Confusion Matrix, as shown in
Fig. 6 and the accuracy/loss comparison based on train and validation accuracy, as
shown in Fig. 7.


https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset

CNN-Based IDS for Internet of Vehicles Using Transfer Learning

Fig. 5 Overall accuracy/loss comparison

Table 1 Comparative table analysis

Models Precision Recall F1 score Support
CNN 0 1.00 1.00 1.00 5052
1 1.00 1.00 1.00 225
2 1.00 1.00 1.00 200
3 1.00 1.00 1.00 197
4 1.00 1.00 1.00 171
Macro avg 1.00 1.00 1.00 5845
RNN 0 1.00 1.00 1.00 19537
1 0.50 0.50 0.50 2
2 1.00 1.00 1.00 25605
3 0.67 1.00 0.80 2
4 1.00 0.50 0.67 2
Macro avg 0.83 0.80 0.79 45148
LSTM 0 1.00 1.00 1.00 19537
1 0.00 0.00 0.00 2
2 1.00 1.00 1.00 25605
3 1.00 1.00 1.00 2
4 0.25 0.50 0.33 2
Macro avg 0.65 0.70 0.67 45148

Cross-Validation Results:
Mean Accuracy: 0.9986.
Standard Deviation of Accuracy: 0.0003.
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Fig. 6 LSTM confusion matrix

Fig. 7 LSTM accuracy/loss comparison

RNN

The individual stats for the RNN model, including the accuracy/loss comparison
based on train accuracy and validation accuracy, are shown in Fig. 8, and the
classification report is shown in Fig. 9.
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Fig. 8 RNN accuracy/loss comparison

Fig. 9 RNN classification report

5 Conclusion

The study shows that CNN-based intrusion detection systems are good at spotting
threats accurately and keeping false alarms low, especially when working with stable
data in-car networks. LSTM models, on the other hand, do a great job handling
changing environments since they can look at patterns over time. Future works—

Adaptive Models: Focus on developing more innovative and flexible systems that
can learn and adapt to changes in vehicular networks in real time. These models
should be capable of handling dynamic environments, such as changing traffic
patterns or new types of cyber threats.

More enormous Datasets: Increase the variety and diversity of datasets training
these models. This can include collecting data from different regions, network setups,
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and attack scenarios. Real-Time Improvements: Work on optimizing detection and
response times to ensure the system can instantly identify and counter threats.
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Abstract This paper proposes a novel Intrusion Detection and Prevention System
(IDPS) that employs machine learning techniques to bolster network security. By
leveraging labelled datasets such as CIC-IDS2017 and CIC-IDS IOT 2023, the
system undergoes rigorous data preprocessing to extract meaningful features. A
comprehensive ensemble of supervised learning models, including Random Forest,
XGBoost, CNN, LSTM, KNN, and Model Stacking, is trained and evaluated for
intrusion detection accuracy. Additionally, unsupervised clustering algorithms (K-
Means, DBSCAN) are integrated to identify anomalous network traffic patterns.
Experimental results demonstrate the efficacy of the proposed IDPS in detecting and
preventing cyber threats, particularly within the evolving 5G ecosystem.
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1 Introduction

In today’s digital world, safeguarding information is crucial for businesses and
individuals. Network security protects sensitive data from unauthorised access,
modification, or disruption.

While traditional security measures offer some protection, they often struggle
to defend against the ever-evolving tactics of cybercriminals. These attackers are
becoming increasingly sophisticated, requiring more advanced security solutions.
The emergence of 5G technology brings faster internet speeds and more excellent
connectivity.

However, it also creates new opportunities for cyberattacks. With more devices
connected to the network, the potential for breaches increases [1].

IDPS systems act as a shield, monitoring network activity for suspicious
behaviour. They can detect and block cyberattacks, helping to maintain the integrity
and confidentiality of information [2]. This research aims to develop an advanced
IDPS capable of protecting networks, especially those using 5G technology [3], to
create a system that can accurately identify and prevent a wide range of cyber threats.

2 Methodology

Data Collection and Preprocessing

The study utilised network traffic data from publicly accessible datasets,
CICIDS2017 and CIC 2023 IoT [4], providing labelled instances of regular and mali-
cious network activity. These datasets are widely used benchmarks in cybersecurity
research, with diverse threat types and realistic traffic patterns.

Each dataset includes labelled examples for specific threat types, enabling detailed
analysis and modelling of network intrusions.

The identified threat types for each dataset are:

(1) CICIDS2017:

(a) BENIGN: Normal traffic with no malicious intent.

(b) DoS (Denial of Service): Attacks aimed at making a network service
unavailable by overwhelming it with traffic.

(c) Port Scan: Probing of network ports to identify open ports and associated
vulnerabilities.

(d) Brute Force: Attempts to gain unauthorised access by systematically
guessing login credentials.

(e) Web Attack: Exploits targeting web servers, including SQL injection and
cross-site scripting.

(f) Bot: Malicious traffic from botnets for spam, data theft, or distributed
denial-of-service (DDoS) attacks.
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(g) Infiltration: Unauthorized access and movement within a network, often
aiming to exfiltrate data or disrupt operations.

(2) CIC 2023 I0T:

(a) BENIGN: Normal network activity.

(b) DoS Hulk: A flood-based DoS attack using oversized requests to exhaust
resources.

(c) Port Scan: Similar to CICIDS2017, probing open ports for vulnerabilities.

(d) DDoS (Distributed Denial of Service): Coordinated attacks from multiple
sources, overwhelming a target system.

(e) DoS Golden Eye: HTTP-based DoS attacks targeting web servers.

(f) FTP-Patator & SSH-Patator: Brute-force attacks targeting FTP and SSH
services, respectively.

(g) DoS Slowloris & Slowhttptest: Specialized DoS attacks that exploit web server
connection management vulnerabilities.

(h) Web Attack: Including SQL injection, command injection, and other web-
targeted exploits.

(i) Bot: Similar to CICIDS2017, encompassing botnet-generated malicious traffic.

(j) Infiltration: Unauthorized access within the network.

(k) Heartbleed: A vulnerability in OpenSSL that allows data theft from encrypted
connections.

The initial dataset comprised approximately 500,000 rows, which were pre-
sampled down to a manageable size of 56,000-60,000. This initial sampling involved
stratified random selection to reduce data size while preserving the overall class
distribution. To prepare the data, several steps were taken:

1. Cleaning: Removed corrupted or irrelevant data and replaced missing values with
ZeroSs.

2. Normalization: Standardized feature values using Z-score normalisation [5].

3. Sampling: Utilized KNN clustering to create a smaller, representative dataset [6].

(a) Minority Class Retention: All instances of minority classes were preserved
to ensure adequate representation in the dataset.

4. Balancing: Employed SMOTE to address class imbalance between normal and
malicious instances [7].

To reduce the number of features while preserving important information, the
following methods were used:

e Information Gain: It ranks features based on their relevance in distinguishing
between malicious and regular traffic. Features with low information gain were
excluded to focus on the most predictive attributes [8].

e Fast Correlation Filter (FCBF): It identifies and removes redundant features
by calculating their correlation with the target variable and among them-
selves. Features irrelevant to the target are discarded, while redundant ones—
those providing overlapping information—are filtered out based on a predefined
threshold [9, 10].
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Information Gain and FCBF were applied, except for CNN and LSTM models,
which used all features.

3 Machine Learning Models

Supervised Learning for Signature-Based Detection

The models implemented include Random Forest, Decision Tree [11], XGBoost, 1D-
Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM). For
Random Forest, Decision Tree, and XGBoost, both IG and IG with FCBF feature
reductions are used as inputs. CNN and LSTM models are used without feature
eduction.

XGBoost

XGBoost is a popular gradient-boosting algorithm known for its efficiency and
accuracy in handling structured/tabular data. It’s widely used in intrusion detec-
tion systems because it can detect anomalies and classify network traffic effectively
[12].

Decision Tree

A Decision Tree is a type of supervised learning method used for classification. It
divides the data into subsets based on the most important features, creating a tree-
like structure of decisions. Decision Trees are simple to understand and interpret,
making them useful for identifying patterns in network traffic for intrusion detection
[13, 14].

Random Forest

Random Forest is an ensemble learning method that builds several decision trees
during training and uses the most frequent class for classification tasks. This method
is resistant to overfitting and achieves high accuracy by combining the predictions
of multiple trees. In intrusion detection, it can efficiently handle many features and
detect complex patterns in network traffic [15].

Stacking

Stacking is a technique in ensemble learning that improves prediction performance by
combining multiple classification models. It uses base models to make predictions
and a meta-model to combine them, enhancing the overall model’s accuracy and
robustness. The Base Models include a Decision Tree, Random Forest and XGBoost,
while the Meta-Model uses an XGBoost Classifier. It is utilised as the meta-model
to combine predictions from the base models.

Using Hyperopt for hyperparameter tuning helps to find the best settings for the
XGBoost meta-model in a stacking ensemble. This process optimises the ensemble
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by combining the strengths of Decision Tree, Random Forest, and XGBoost models,
leading to better accuracy in detecting network intrusions.

Convolutional Neural Network (1D-CNN)

CNNs can automatically learn spatial hierarchies of features from network traffic
data, improving the detection of complex patterns and anomalies that indicate
intrusions.

LSTM

LSTM models are best for analysing time-series data, such as network traffic logs,
to identify suspicious activities or anomalies.

Unsupervised Learning for Anomaly-Based Detection

Unsupervised learning models are utilised for anomaly-based detection. Clustering
algorithms such as K-Means and DBSCAN are executed to distinguish and identify
anomalies in network activity. This approach classifies information into malicious
unknown packets or harmless packets and checks the certainty of the anomaly-based
model to verify incorrect identifications.

K Means Clustering

The K-means clustering algorithm groups the training data into clusters and then
uses these clusters to assign labels to the test data. The model’s accuracy is measured
by comparing these predicted labels with the actual labels of the test data.

Hyperparameter Tuning Using BO-GP

BO-GP (Bayesian Optimization with Gaussian Processes) uses the principles of
Bayesian inference and Gaussian processes to find the best hyperparameters effi-
ciently. Bayesian inference continuously updates the probability estimate for a
hypothesis as new evidence or information becomes available. BO-GP updates the
belief about the objective function as new evaluations are performed. Gaussian
processes are statistical models for observations in a continuous domain, like time or
space. They define a distribution over functions and provide a probabilistic approach
to learning these functions.

Hyperparameter Tuning Using BO-TPE

Tree-structured Parzen Estimator (TPE) is a Bayesian Optimization method that
models the objective function differently from Gaussian Processes. TPE employs
a tree-based approach to model the distribution of the objective function for
hyperparameter optimisation [16].

TPE uses two distributions to model the objective function: one for hyperparam-
eters expected to perform well (good hyperparameters) and another for hyperparam-
eters expected to perform poorly (bad hyperparameters). The algorithm selects the
next set of hyperparameters to evaluate by sampling from these two distributions.
This approach balances exploration (trying new, potentially good hyperparameters)
and exploitation (focusing on hyperparameters known to perform well).
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DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an unsu-
pervised machine learning algorithm designed for clustering data points, which is
handy for large spatial datasets. It excels in identifying clusters of varying shapes
and distinguishing outliers as noise.

DBSCAN forms clusters by evaluating the density of data points in the dataset. It
groups densely packed points and designates points in low-density regions as outliers.

Performance Metrics (Supervised Learning)
(a) Accuracy
Accuracy measures the number of correct predictions out of the total instances.

Number of Correct Predictions
Total Number of Predictions

Accuracy =

(b) Precision

Precision measures the number of accurate positive predictions out of the total
optimistic predictions made by the model.

. True Positives
Precision =

(True Positives + False Positives)

(c) Recall

Recall measures the number of accurate optimistic predictions from the total
positive instances in the dataset.

True Positives
Recall =

(True Positives + False Negatives)

(d) FlI-Score

Fl-score is the harmonic mean of precision and recall. It provides a balance
between the two metrics.

Precision x Recall
F1 — score =2 x

Precision + Recall

(e) Macro Average

Macro average calculates the metrics independently for each class and then takes
the unweighted mean of the scores.

n ..
> iy Precision;

n

Macro Average =
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‘n’ is the number of classes.
(f) Weighted Average

Weighted average calculates the metrics for each class but considers the support
(the number of actual instances for each label).

Y i Precision; x Support;

Weighted Average =
Total Support

‘Support’ gives the number of actual instances for class i, and ‘Total Support’
gives the sum of support across all classes.

4 System Design

Signature Based Detection

The signature-based model outlined in Fig. 1 follows a supervised learning approach
akin to MTH-IDS’s Tier 1 [16] supervised model development. Attack patterns
are matched using tree-based classifiers (XGBoost, Random Forest, Decision Tree)
with hyperparameter optimisation via Bayesian Optimization (BO-TPE). However,
this modification extends the ensemble stacking methodology, enhancing detection
confidence and reducing false positives.

Anomaly Based Detection

The anomaly-based model outlined in Fig. 2 integrates unsupervised clustering
(DBSCAN, K-Means) with a SMOTE-enhanced preprocessing layer.

e The clustering-based labeling method remains inspired by MTH-IDS’s Tier 3
(unsupervised model development) [17] but introduces confidence thresholds and
adaptive feature extraction.

¢ Instead of relying solely on biased classifiers for false positives (as in MTH-
IDS Tier 4), [17] this model refines the classification step by leveraging adaptive
decision thresholds based on detected anomalies.

5 Model Performance

Supervised Learning
a. With FCBF and IG

XGBoost consistently emerges as the best-performing model (as per Table 1), both
pre- and post-tuning. Before tuning, it achieves an Accuracy of 0.985, Precision of
0.990, Recall of 0.990, and F1-Score of 0.987. After tuning, these metrics improve
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Fig. 1 Signature based detection
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Fig. 2 Anomaly based
detection

to an Accuracy of 0.994, Precision of 0.995, Recall of 0.995, and F1-Score of 0.994,
showcasing its strong optimization potential. Random Forest follows closely, with its
Accuracy increasing from 0.994 pre-tuning to 0.994 post-tuning, while its F1-Score
improves from 0.994 to 0.994, reflecting marginal enhancement due to tuning.

The Stacking Ensemble demonstrates consistent high performance, achieving
Accuracy and F1-Score values of 0.993 both before and after tuning, highlighting
its reliability even without additional optimization. In contrast, Decision Tree shows
limited improvement, with Accuracy remaining stable at 0.993, and its F1-Score
consistent at 0.993, indicating relatively modest sensitivity to hyperparameter tuning.

b. Without FCBF

XGBoost consistently emerges as the top-performing model, both before and after
hyperparameter tuning (as per Table 2). Before tuning, it achieves an Accuracy of
0.987, Precision and Recall of 0.988, and F1-Score of 0.987. After tuning, these
metrics improve to 0.996 for Precision, Recall, and F1-Score, and Accuracy reaches
0.996, showcasing its strong optimization potential. Random Forest follows closely,
with marginal improvement after tuning. Decision Tree shows limited improvement
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with tuning. Stacking Ensemble maintains consistent high performance, both before
and after tuning.

The combination of FCBF and SMOTE contributes to the strong performance of
all models. FCBF helps in selecting relevant features, while SMOTE addresses the
class imbalance issue, improving the overall model performance.

c. WithIG

Hyperparameter tuning greatly improves the performance of the model, especially
for XGBoost, which comes out as the best model both before and after tuning (as
per Table 3). Before tuning, XGBoost already performs very well with an Accuracy
of 0.987, Precision and Recall of 0.987, and F1-Score of 0.987. After tuning, its
performance improves dramatically with Accuracy increasing to 0.996, Precision to
0.997, Recall to 0.996, and F1-Score to 0.996, showing great optimization potential.
Random Forest also exhibits marked improvement, with Accuracy being increased
from 0.99 to 0.994 and F1-Score similarly increased from 0.99 to 0.994, which places
it in the second position of the best model overall.

Stacking Ensemble has performed consistently well throughout the exercise, with
values of both Accuracy and F1-Score being at 0.994 pre- and post-tuning, indi-
cating stability. Decision Tree, though competitive, only exhibited minor increases
in its Accuracy and F1-Score, increasing from 0.993 to 0.994, which limits the
optimization flexibility.

d. FCBF + IG Without SMOTE

XGBoost consistently emerges as the best-performing model, both pre- and post-
tuning (as per Table 4). Before tuning, it achieves an Accuracy of 0.990, Precision and
Recall of 0.990, and F1-Score of 0.990. After tuning, these metrics improve to 0.995
for Precision, Recall, and F1-Score, and Accuracy also reaches 0.995, showcasing
its strong optimization potential. Random Forest follows closely, with its Accuracy
increasing from 0.995 pre-tuning to 0.995 post-tuning, while its F1-Score improves
from 0.995 to 0.995, reflecting marginal enhancement due to tuning.

The Stacking Ensemble demonstrates consistent high performance, achieving
Accuracy and F1-Score values of 0.994 both before and after tuning, highlighting
its reliability even without additional optimization. In contrast, Decision Tree shows
limited improvement, with Accuracy increasing slightly from 0.993 to 0.994, and
its F1-Score remaining stable at 0.994, indicating relatively modest sensitivity to
hyperparameter tuning.

e. Without Feature Selection

1D-CNN demonstrates strong performance before tuning, achieving an Accuracy of
0.981, Precision of 0.982, Recall of 0.981, and F1-Score of 0.981 (as per Table 5).
However, after tuning, these metrics decrease slightly, with Accuracy dropping to
0.974, Precision to 0.975, Recall to 0.974, and F1-Score to 0.974. This indicates
a sensitivity to hyperparameter tuning, where the optimization led to marginally
reduced performance. Macro Average and Weighted Average of F1-Score also
decrease from 0.98 to 0.97 after tuning.
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Table 5 Model performance without feature selection

Parameter 1D-CNN LSTM
Before After Before After
hyperparameter | hyperparameter | hyperparameter | hyperparameter
tuning tuning tuning tuning
Accuracy 0.981 0.974 0.981 0.981
Precision 0.982 0.975 0.981 0.981
Recall 0.981 0.974 0.981 0.981
Fl-score 0.981 0.974 0.980 0.981
Macro average of | 0.98 0.97 0.98 0.98
F1-score
Weighted average |0.98 0.97 0.98 0.98
of Fl-score

LSTM maintains consistent performance throughout, achieving an Accuracy of
0.981, Precision of 0.981, Recall of 0.981, and F1-Score of 0.980 both before and
after hyperparameter tuning. Its Macro Average and Weighted Average of F1-Score
remain steady at 0.98, showcasing the model’s robustness to tuning and its ability to
deliver reliable performance without feature filtering.

Unsupervised Learning
(a) With FCBF + IG, with SMOTE

K-Means Clustering outperforms DBSCAN, both pre- and post-tuning (as per
Table 6). Before tuning, K-Means yields an Accuracy of 0.80, Precision of 0.84,
Recall of 0.80, and F1-Score of 0.79. After tuning with both BO-GP and BO-TPE,
the metrics were improved to an Accuracy of 0.85, Precision of 0.85/0.86, Recall of
0.85, and F1-Score of 0.85, with which it showed a strong effect of hyperparameter
tuning.

Table 6 Model performance with FCBF + IG, with SMOTE

Parameter | K Means clustering DBSCAN
Before After After Before After
hyperparameter | hyperparameter | hyperparameter | hyperparameter | hyperparameter
tuning tuning tuning tuning tuning
(BO-GP) (BO-TPE)
Accuracy | 0.80 0.85 0.85 0.39 0.40
Precision | 0.84 0.85 0.86 0.42 0.16
Recall 0.80 0.85 0.85 0.39 0.40
Fl-score |0.79 0.85 0.85 0.30 0.23
Macro 0.77 0.84 0.84 0.34 0.29
average of
Fl-score
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However, DBSCAN fails to attain comparable results and attains lower values
for all of the evaluated metrics. The hyperparameter tuning done by BO-TPE, while
slightly boosting its score, still failed to put it ahead of K-Means.

The combination of FCBF + IG and SMOTE seems to be effective in improving
the performance of both algorithms, especially for K-Means.

(b) With FCBF + IG, Without SMOTE

K-Means Clustering performs better than DBSCAN, both before and after tuning
(as per Table 7). Before tuning, K-Means achieves an Accuracy of 0.79, Precision
of 0.84, Recall of 0.79, and F1-Score of 0.77. After tuning with both BO-GP and
BO-TPE, the metrics improved to an Accuracy of 0.85/0.83, Precision of 0.85/0.84,
Recall of 0.85/0.83, and F1-Score of 0.85/0.83, with which it presented a strong
effect of hyperparameter tuning.

However, DBSCAN could not achieve comparable results and achieved lower
values for all the above metrics. The hyperparameter tuning done by BO-TPE,
although slightly boosting its score, still failed to position it ahead of K-Means.

The FCBF + IG feature selection appears to be effective in improving the
performance of both algorithms, especially for K-Means.

(c) FCBF, with SMOTE

K-Means Clustering outperformed DBSCAN, both before and after tuning (as per
Table 8). Before tuning, K-Means achieved an Accuracy of 0.77, Precision of 0.83,
Recall of 0.77, and F1-Score of 0.75. After tuning using both BO-GP and BO-
TPE, the metrics became an Accuracy of 0.89/0.83, Precision of 0.89/0.83, Recall
of 0.89/0.83, and F1-Score of 0.89/0.83, with which it presented a strong effect of
hyperparameter tuning.

DBSCAN is unable to reach comparable performance; its scores are lower for
all metrics. Even after hyperparameter tuning with BO-TPE, it still does not match

Table 7 Model performance with FCBF + IG, without SMOTE

Parameter | K Means clustering DBSCAN
Before After After Before After
hyperparameter | hyperparameter | hyperparameter | hyperparameter | hyperparameter
tuning tuning tuning tuning tuning
(BO-GP) (BO-TPE)
Accuracy | 0.79 0.85 0.83 0.39 0.40
Precision | 0.84 0.85 0.84 0.42 0.16
Recall 0.79 0.85 0.83 0.39 0.40
Fl-score |0.77 0.85 0.83 0.30 0.23
Macro 0.75 0.84 0.82 0.34 0.29
average of
F1-score
Weighted |0.77 0.85 0.83 0.30 0.23
average of
Fl-score
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Table 8 Model performance with FCBF, with SMOTE

Parameter | K Means clustering DBSCAN
Before After After Before After
hyperparameter | hyperparameter | hyperparameter | hyperparameter | hyperparameter
tuning tuning tuning tuning tuning
(BO-GP) (BO-TPE)
Accuracy |0.77 0.89 0.83 0.38 0.40
Precision | 0.83 0.89 0.83 0.23 0.16
Recall 0.77 0.89 0.83 0.38 0.40
Fl-score |0.75 0.89 0.83 0.24 0.23
Macro 0.72 0.88 0.82 0.29 0.29
average of
F1-score
Weighted | 0.75 0.89 0.83 0.24 0.23
average of
F1-score

K-Means. It may be that DBSCAN is not well-suited for this dataset or needs more
careful parameter tuning and exploration of different hyperparameter spaces.

The FCBF feature selection and SMOTE class imbalance handling seem to be
effective in improving the performance of both algorithms, especially for K-Means.

(d) FCBF, Without SMOTE

K-Means Clustering outperforms DBSCAN, both before and after tuning (as per
Table 9). Before tuning, K-Means achieves an Accuracy of 0.79, Precision of 0.84,
Recall of 0.79, and F1-Score of 0.77. After tuning using both BO-GP and BO-TPE,
the metrics improved to an Accuracy of 0.88/0.83, Precision of 0.89/0.83, Recall
of 0.88/0.83, and F1-Score of 0.88/0.83, with which it presented a strong effect of
hyperparameter tuning.

DBSCAN struggles to achieve comparable performance, with lower scores across
all metrics. While hyperparameter tuning with BO-TPE slightly improves its perfor-
mance, it still lags behind K-Means. It’s possible that DBSCAN is not well-suited
for this particular dataset or requires more careful parameter tuning and exploration
of different hyperparameter spaces.

The FCBF feature selection appears to be effective in improving the performance
of both algorithms, especially for K-Means.

(e) Without Feature Selection, with SMOTE

K-Means Clustering outperforms DBSCAN, both before and after tuning (as per
Table 10). Before tuning, K-Means achieves an Accuracy of 0.82, Precision of 0.82,
Recall of 0.82, and F1-Score of 0.81. After tuning using both BO-GP and BO-TPE,
the metrics improved to an Accuracy of 0.85/0.84, Precision of 0.85/0.84, Recall
of 0.85/0.84, and F1-Score of 0.85/0.83, with which it presented a strong effect of
hyperparameter tuning.
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Table 9 Model performance with FCBF, without SMOTE

Parameter | K Means clustering DBSCAN
Before After After Before After
hyperparameter | hyperparameter | hyperparameter | hyperparameter | hyperparameter
tuning tuning tuning tuning tuning
(BO-GP) (BO-TPE)
Accuracy |0.79 0.88 0.83 0.38 0.40
Precision | 0.84 0.89 0.83 0.29 0.16
Recall 0.79 0.88 0.83 0.38 0.40
Fl-score |0.77 0.88 0.83 0.24 0.23
Macro 0.75 0.87 0.83 0.29 0.29
average of
F1-score
Weighted | 0.77 0.88 0.83 0.24 0.23
average of
F1-score

Table 10 Model performance without feature selection, with SMOTE

Parameter | K Means clustering DBSCAN
Before After After Before After
hyperparameter | hyperparameter | hyperparameter | hyperparameter | hyperparameter
tuning tuning tuning tuning tuning
(BO-GP) (BO-TPE)
Accuracy |0.82 0.85 0.84 0.38 0.39
Precision | 0.82 0.85 0.84 0.41 0.43
Recall 0.82 0.85 0.84 0.38 0.39
Fl-score |0.81 0.85 0.83 0.32 0.36
Macro 0.80 0.85 0.83 0.34 0.37
average of
F1-score
Weighted | 0.81 0.85 0.83 0.32 0.36
average of
F1-score

DBSCAN fails to have comparable performance and underperforms in all evalu-
ation metrics. Although it was marginally improved with BO-TPE hyperparameter
optimization, the performance still lagged behind K-Means. It might also be a case
that DBSCAN does not suit well with the given dataset or is rather sensitive to careful
hyperparameter tuning and extensive search for different hyperparameter spaces.

(f) Without Feature Selection, Without SMOTE

K-Means Clustering outperformed DBSCAN, both before and after tuning (as per
Table 11). Before tuning, K-Means achieved an Accuracy of 0.68, Precision of 0.72,
Recall of 0.68, and F1-Score of 0.68. After tuning using both BO-GP and BO-TPE,
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the metrics improved to an Accuracy of 0.87, Precision of 0.87, Recall of 0.87, and
F1-Score of 0.87, with which it presented a strong effect of hyperparameter tuning.

DBSCAN can not perform nearly as well; the scores on all metrics are worse. With

BO-TPE hyperparameter tuning, its performance improves slightly but remains much
worse than K-Means. It might be that DBSCAN simply does not perform well for
this dataset or needs further tuning of parameters and the search of more appropriate
hyperparameter spaces.

Performance Review

()
(b)

(©
(d)

(e)

()
(€9)

Feature Selection

The Fast Correlation-Based Filter (FCBF) method was employed to reduce
the dimensionality of the feature space. This technique effectively decreased
training time without compromising performance metrics (accuracy, precision,
recall, F1-score).

Supervised Learning

XGBoost, Decision Trees, and Random Forests exhibited performance improve-
ments through hyperparameter tuning. These models demonstrated enhanced
predictive accuracy and efficiency.

In contrast, hyperparameter tuning had a minimal impact on the performance
of LSTM and CNN models. This suggests that these deep learning models are
inherently robust and may require different optimization strategies.
Unsupervised Learning

K-Means clustering achieved moderate accuracy (80%) with feature selec-
tion and SMOTE. However, hyperparameter optimization using Bayesian Opti-
mization with Gaussian Processes (BO-GP) significantly boosted performance
to approximately 89%. This indicates the potential of K-Means for anomaly
detection when combined with appropriate techniques.

Table 11 Model performance without feature selection, without SMOTE

Parameter | K Means clustering DBSCAN
Before After After Before After
hyperparameter | hyperparameter | hyperparameter | hyperparameter | hyperparameter
tuning tuning tuning tuning tuning
(BO-GP) (BO-TPE)
Accuracy | 0.68 0.87 0.87 0.38 0.40
Precision | 0.72 0.87 0.87 0.41 0.16
Recall 0.68 0.87 0.87 0.38 0.40
Fl-score |0.68 0.87 0.87 0.32 0.23
Macro 0.68 0.86 0.86 0.34 0.29
average of
Fl-score
Weighted | 0.68 0.87 0.87 0.32 0.23
average of
Fl-score
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DBSCAN consistently underperformed, suggesting its limitations in handling
this specific dataset. Further investigation or alternative clustering methods
might be necessary.

Limitations

(a)
(b)

(©)
(d)

(e)

(€]
(h)

®
)

6

Data Limitations

A primary challenge lies in obtaining comprehensive labeled datasets that accu-
rately represent the diverse spectrum of cyberattacks. Simulating novel threats
is particularly difficult, hindering the development of robust models capable of
detecting emerging attacks.

Computational Constraints

Training and deploying complex IDPS models demand significant computa-
tional resources. High-performance computing infrastructure is essential for
handling large datasets and computationally intensive algorithms.

Encrypted Traffic

The prevalence of encrypted traffic poses a significant obstacle to effective
intrusion detection. Decrypting traffic for analysis introduces privacy concerns
and computational overhead.

Scalability

As network traffic grows exponentially, IDPS systems must adapt to handle
increasing data volumes while maintaining performance. Scalability requires
robust infrastructure and efficient algorithms.

Evasion Techniques

The ongoing evolution of cyberattacks necessitates continuous model updates
to counter emerging evasion tactics. This demands a dynamic approach to threat
detection.

Conclusion

This research aimed to develop a machine learning-based Intrusion Detection
and Prevention System (IDPS) capable of operating effectively in a 5G network
environment.

The developed IDPS successfully demonstrated the potential of machine learning

for real-time intrusion detection and prevention. Key findings include:

Feature Selection: FCBF proved effective in enhancing model efficiency without
sacrificing performance.

Supervised Learning: Hyperparameter tuning optimized traditional machine
learning models, while deep learning models showed resilience to hyperparameter
changes.

Unsupervised Learning: K-Means clustering, when combined with feature
selection and oversampling, exhibited promising results for anomaly detection.
Data Balancing: SMOTE was instrumental in improving overall model perfor-
mance by addressing class imbalance.
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OpIDS-DL: Optimizing Intrusion )
Detection in IoT Networks: A Deep e
Learning Approach with Regularization

and Dropout for Enhanced Cybersecurity

A. Pappurajan®, Vinothkumar Kolluru®, Y. Sunil Raj®,
Sudeep Mungara, Advitha Naidu Chintakunta,
and Charan Sundar Telaganeni

Abstract The rapid proliferation of Internet of Things (IoT) devices has ampli-
fied the complexity of securing network infrastructures against sophisticated cyber-
attacks. Traditional intrusion detection systems (IDS) struggle to generalize in
dynamic IoT environments, where data is high-dimensional and often imbalanced.
This study presents an advanced neural network-based intrusion detection framework
tailored for IoT networks, focusing on optimizing detection accuracy while mitigating
overfitting through dropout and L2 regularization techniques. Utilizing a comprehen-
sive IoT intrusion dataset, we conducted extensive preprocessing, including feature
scaling, outlier removal, and correlation analysis, to enhance model reliability and
performance. Three model architectures were developed and evaluated: a baseline
model without regularization, a dropout-only model, and a fully optimized model
with both dropout and L2 regularization. Experimental results demonstrate that the
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fully optimized model achieved an accuracy of 87%, outperforming baseline models
by effectively balancing recall and precision, especially for minority attack classes.
Our findings underscore the critical role of regularization in neural network perfor-
mance for IoT intrusion detection, suggesting that such models can provide robust
defense mechanisms against evolving cybersecurity threats. Future research will
explore ensemble methods, sequential architectures, and real-time data pipelines to
refine IoT network security further.

Keywords IoT - Intrusion detection + Neural network security + Dropout and
regularization - Anomaly detection + Cybersecurity in IoT networks

1 Introduction

The growth of the Internet of Things (IoT) has revolutionized industries and daily
life, enabling seamless connectivity across diverse devices in applications ranging
from smart homes to industrial automation [1, 2]. However, this connectivity also
exposes IoT networks to significant cybersecurity threats, necessitating robust intru-
sion detection systems (IDS) that can handle the unique characteristics of IoT envi-
ronments, such as constrained computational resources and high data diversity [3, 4].
Traditional security techniques often fall short in these settings due to their limited
adaptability and inadequate handling of high-dimensional and imbalanced data [5—
7]. This limitation has driven recent research toward utilizing deep learning models,
particularly neural networks, to capture complex data patterns and detect anomalous
activities effectively in IoT networks [8, 9].

Deep learning (DL) techniques, including convolutional neural networks (CNN),
long short-term memory (LSTM), and feed-forward neural networks, have shown
promising results in addressing these challenges by identifying intricate relationships
in network traffic data and adapting to evolving attack patterns [10, 11]. However, DL
models for IoT intrusion detection must also incorporate mechanisms like dropout
and regularization to prevent overfitting, as they often suffer from imbalances across
attack types [12]. This paper proposes a neural network-based IDS for IoT networks
optimized through dropout and L2 regularization to enhance model generalizability
and mitigate overfitting issues, especially in scenarios involving rare attack types.
Experimental evaluations on a comprehensive IoT intrusion dataset validate the
model’s efficacy, highlighting its ability to achieve high accuracy across multiple
attack classes while maintaining robustness against data imbalance.

The rest of this paper’s structure is as follows: Sect. 2 provides the related work.
Section 3 introduces the basic steps of Transient search optimization and Differential
Evolution. Section 4 describes the developed IoT security model. Section 5 presents
the results and discussion. Finally, the conclusion and future works are discussed in
Sect. 5.
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2 Related Works

The expansion of IoT networks has brought significant advancements across various
sectors. Yet, it has also introduced numerous cybersecurity vulnerabilities due to
the interconnected nature of devices with limited resources and security constraints.
Conventional IDS designed for traditional networks often fail to address [oT-specific
challenges, leading researchers to explore deep learning-based IDS solutions. Recent
studies demonstrate that DL models, though used in various applications such as
Health, Agriculture, and so on, are highly effective in identifying and classifying
complex patterns in IoT traffic, making them well-suited for intrusion detection in
this domain [13].

CNN s are frequently used in IoT IDS to capture spatial correlations in data, which
can help identify characteristic traffic patterns of different types of attacks. A study
by Wang et al. [14] implemented CNNs to detect DDoS attacks in IoT networks,
achieving high detection accuracy by analyzing packet-level features in network
traffic data [14]. Another CNN-based approach, presented by Chen et al. [15], high-
lighted how convolutional layers can be fine-tuned to detect packet header-level
anomalies where many attack signatures are present [15]. For sequential data such
as network traffic flows, LSTMs have proven effective due to their ability to model
temporal dependencies. Zhao et al. [20] showed that LSTM networks could success-
fully identify multi-stage attacks by learning the sequential patterns associated with
each attack stage. However, while LSTMs excel in temporal analysis, they tend to
be computationally intensive, posing a challenge for real-time IoT IDS applications
[16].

Hybrid models combining CNNs with LSTMs or other architectures have been
explored to leverage spatial and temporal information. For instance, a CNN-
LSTM hybrid first captures spatial features through CNNss, but the increased model
complexity limits its deployment on resource-constrained IoT devices [17-20].

DL models for IDS are susceptible to overfitting, especially given the typi-
cally imbalanced nature of IoT intrusion datasets. Regularization techniques such as
dropout and L2 regularization have been widely employed to address this. Dropout
is commonly used to mitigate overfitting by randomly “dropping” neurons during
training, preventing the model from overly relying on specific features. Recent
studies, such as those by Thakkar A, have demonstrated that L2 regularization
improves model stability, especially for models trained on imbalanced datasets where
certain attack classes are underrepresented [21]. Techniques like Synthetic Minority
Over-sampling Technique (SMOTE) and class-weight adjustments have been applied
in deep learning models to mitigate this issue.

The literature demonstrates that deep learning-based IDS solutions, particularly
those leveraging CNN, LSTM, and hybrid models, hold promise for securing loT
networks. Regularization techniques like dropout and L2 regularization are essen-
tial for improving model generalizability, while lightweight architectures are key to
deploying IDS on resource-constrained devices. Despite advancements, challenges
such as data imbalance, real-time detection, and efficient model deployment remain



92 A. Pappurajan et al.

active research areas. This study builds on these foundations by optimizing neural
network-based IDS through dropout and L2 regularization, explicitly tailored for IoT
environments.

3 Proposed Technique—Intrusion Detection in IoT

The Internet of Things (IoT) environment faces inherent security vulnerabilities
due to its diverse and distributed network structure. These IoT systems, typically
encompassing smart devices like cameras and sensors deployed in smart homes or
industrial settings, are prone to attacks such as SYN flood and Distributed Denial of
Service (DDoS).

Figure 1 shows the IoT network exposed to security attacks such as SYN flood/
DDoS. Here, to mitigate these issues, IDS, an external component like OpIDS-DL,
could perform better. This research aims to design an intrusion detection system
(IDS) to identify anomalies and potential attacks based on network traffic patterns.

Figure 2 explores the proposed methodology, starting with the dataset, prepro-
cessing, feature selection, model selection, and evaluation.

(a) Dataset Overview

The dataset comprises several key features instrumental for intrusion detection,
including Flow-related, flag counts, protocol indicators, statistical measures, and
class distribution. Binary features indicating protocols like HTTP, DNS, and TCP
help detect protocol-specific attacks, including DNS spoofing and HTTP floods.

Fig. 1 IoT environment exposed to security issues
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Fig. 2 Schematic overview of the IDS model development and evaluation pipeline

Descriptive statistics like minimum, maximum, average, and standard deviation
values for packet size and intervals aid in detecting deviations from regular traffic.

Due to the dataset’s imbalance—certain attack types, such as DDoS-ICMP_
Flood, have higher representation than others, such as MITM-ArpSpoofing—careful
preprocessing is essential to prevent model bias.

(b) Data Preprocessing

Data preprocessing is critical to ensure that the IDS model is accurate and generaliz-
able. The preprocessing steps included data cleaning, feature scaling, and encoding.
Outliers in flow-related measurements were identified and removed using the 3-sigma
rule, which excludes data points exceeding three standard deviations from the mean:

X_
7= "H
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Zis the standardized value, X is the original data point, pis the mean, and ¢ is the stan-
dard deviation. This step minimizes the influence of extreme values, leading to a more
stable model. Standardization was applied to normalize the feature distributions. For
a feature X, the standardized value was computed as:

— i
o

X
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where Xscaled is the Scaled feature, X is the original feature value, is the mean
of the feature, and ¢ is the standard deviation of the feature. Ordinal encoding was
applied to binary categorical features. Binary features, such as protocol indicators,
were encoded using ordinal encoding:
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Xencoded = {0, ifthefeatureisabsentl, ifthefeatureispresent 3)

(c) Exploratory Data Analysis (EDA)

The EDA began with summarizing feature statistics, such as mean, median, quartiles,
and standard deviations. For instance, analysis of flow duration for different attack
types revealed that DDoS-TCP Flood attacks typically had longer durations than
benign traffic, suggesting a detection signature. Strong correlations, such as between
State and Rate, indicated potential redundancy.

Figures 3 and 4 display the key features chosen based on domain knowledge. Three
neural network configurations were developed and evaluated for optimal IDS perfor-
mance. This model included dropout layers and L2 regularization to prevent overfit-
ting. Additional dense layers with ReLU activation were integrated, with a dropout
rate of 0.3 and a regularization penalty to balance model complexity and general-
ization. For a thick layer 1, the pre-activation z(1) and activation a(l) were computed
as:

z(l) = Wa(l — 1) +b() 4

a(l) = f(z(1)) )

where z(1) is pre-activation at layer 1, an (1) is activation at layer 1, W(1) is the weight
matrix of layer 1, b(l) is the bias vector of layer 1, f is the activation function, an (1
— 1) is activation from the previous layer. The activation function f used was the
Rectified Linear Unit (ReLU): f(x) = max(0, x). Serving as a control, this model did
not employ regularization techniques, facilitating performance comparison with the
more complex models. L2 regularization helps balance overfitting to frequent attack
classes and underperforming on rare attack types.
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Adding the lambda regularization parameter will penalize all the parameters
except intercept, then the model will generalize the model, and the data won’t be
overfit.

Figure 5 describes the process flow in the proposed technique. Here, dropout
was applied during training to deactivate neurons randomly. For a given neuron, the
output dropout was:
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Fig. 3 Heatmap illustrating correlations among dataset features

Fig. 4 Box plots and histograms of selected features across classes
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Fig. 5 Architecture diagram of neural network configurations

Ydropout = {O, withprobabilityl—pz, withprobabilityp ®)
p

where p is retention probability, y is the neuron output without dropout. This
technique forces the model to learn redundant and robust patterns.

(d) Model Evaluation

Model performance was assessed using accuracy, precision, recall, and F1-score,
focusing on reducing false negatives (missed attacks) and false positives (false
alarms). Confusion matrices for each model highlighted strengths in DDoS detec-
tion while revealing challenges with underrepresented classes, such as MITM. These
insights will guide model refinements in future work.

TP + TN

Accuracy = )
TP + TN + FP + FN
- TP

Precision = ———— (10)

TP + FP

TP
Recall = ——— (11
TP + FN

Precision - Recall
Fl =2

. — (12)
Precision + Recall

where TP is True Positive, TN is True Negative, FP is False positive, and FN is False
Negative.
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Table 1 Evaluation metrics for intrusion detection models

Model configuration Accuracy Precision Recall F1-score
Complete model (Dropout + L2) 0.94 0.92 0.90 0.91
Baseline model (no regularization) 0.85 0.80 0.78 0.79
Model with dropout only 0.90 0.88 0.86 0.87

Table 1 shows that a balanced approach reduces overfitting with dropout and regu-
larization. High risk of overfitting; acts as a control model. Effective regularization
with dropout layers, but lacks L2 constraints.

4 Results and Discussion

The final model, enhanced with dropout and regularization, emerged as the most
effective among all tested configurations, achieving an accuracy of 87%. However,
its performance on rarely encountered attack types, such as Recon, was notably poor.
Accuracy comparison and loss trends are depicted in Fig. 6.

Baseline Model

The baseline model, devoid of regularization techniques such as dropout or L2 regu-
larization, relied entirely on the training data to learn patterns. As aresult, it performed
exceptionally well on the training data but exhibited poor generalization to unseen
data.

Figure 7 demonstrates the accuracy of the model where an imbalance is iden-
tified. This imbalance became evident through significant fluctuations in accuracy
and loss across epochs. However, sharp oscillations emerged as training progressed,
particularly after epoch 8, where validation accuracy spiked while training accuracy
stagnated.

Figure 8 demonstrates the loss graph that further substantiates these findings. In
the initial epochs, the loss for training and validation datasets decreased sharply,

Accuracy comparison of models across epochs. Loss trends for the baseline and complete models.

Fig. 6 Accuracy and loss trends for baseline and full models
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Fig. 7 No regularization model accuracy over epochs

indicating rapid learning. However, by epoch 3, the training loss plateaued, while the
validation loss fluctuated, especially between epochs 8 and 10. These observations
highlight the limitations of the baseline model when regularization techniques are
absent.

Fig. 8 No regularization model loss over epochs
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Fig. 9 Overlay of training and validation loss for both models

Full Model (With Regularization)

Training and validation accuracy steadily increased, converging by epoch 10 and
stabilizing at 87%. The close alignment between training and validation accura-
cies indicated strong generalization and minimized overfitting. After the first 10
epochs, the loss values stabilized, demonstrating that the regularization techniques
successfully balanced learning and avoided overfitting.

Figure 9 describes the overall loss for both models. The introduction of regu-
larization was instrumental in transforming the model into a reliable and practical
solution for real-world applications. Exploring advanced data balancing techniques
or feature engineering may help mitigate these limitations and enhance the model’s
robustness.

Figure 10 demonstrates the summary of the performance metrics. The complete
model achieves better generalization with more consistent performance across
training and validation sets, making it more robust for real-world applications.
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Fig. 10 Summary of performance metrics for baseline and complete models

5 Conclusion

This study showed how well neural networks, including those with dropout and regu-
larization techniques, can internally detect IoT intrusions. The complete model had
the best performance across all the models, supporting the argument that regulariza-
tion is an essential element of the model design for cybersecurity purposes. In the
future, researchers need to use more advanced neural architectures, like CNNs and
RNNS, to understand sequential information load better, ensemble approaches, and
SMOTE to fix class imbalance. Additionally, it is beneficial to use real-time data
pipelines to continuously improve the model monitoring so that it learns to detect
new and evolving threats.
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Abstract A noticeable departure from conventional methods is evident in the
dynamic domain of technology, enabling users to seamlessly transfer entire code snip-
pets into generative Al models for comprehensive error correction and modification.
This fundamental change in interactions brings about crucial challenges, primarily
emphasizing preserving codebase integrity and safeguarding sensitive data. This
paper introduces a machine learning-powered sensitive data loss prevention firewall
explicitly designed for generative AI models. A pre-trained CodeBERT model was
fine-tuned using transfer learning, leveraging its word embedding and attention mech-
anism capabilities to perform the downstream task of code-text filtering. The model
was trained on a diverse dataset comprising Java and Python code samples sourced
from GitHub and textual data from the Ubuntu Dialogue Corpus on Kaggle. Thus,
a novel code-text filtering system was developed, effectively separating code from
text and comments within documents and then blocking this code from proceeding
to generative Al applications.
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1 Introduction

In this rapidly evolving technological landscape, the emergence of generative Al
applications presents a significant challenge for organizations. Departing from tradi-
tional methods of seeking information or debugging errors, users can now effortlessly
copy and paste entire documents, including intricate lines of code, into generative Al
systems for analysis and generation. At the heart of these challenges is the recognition
that code, serving as the digital backbone of an organization, is an asset of paramount
value. Implicitly regarded as sensitive information, the integrity of code is pivotal for
maintaining intellectual property, ensuring the confidentiality of business strategies,
and safeguarding a competitive edge. The potential risk of unintentional data leakage
substantially threatens organizational security and reputation. Therefore, it’s imper-
ative to emphasize that any code generated or manipulated within the organization
must remain within its confines. While banning generative Al is neither practical nor
conducive to productivity, a more strategic approach involves implementing a robust
firewall to prevent sensitive data from leaving the organization.

2 Existing Work and Its Limitations

Kuzina et al. [1] focused on detecting sensitive information in unstructured records,
primarily medical datasets. Deep learning models like BERT outperformed others,
while rule-based models were the least effective [1].

Ahmed et al. [2] studied context-dependent and independent data. They used
tweets for context-dependent data, employing NER to identify sensitive information,
while a rule-based model detected sensitive information in structured data. For image
data, OCR was used, and deep learning models like CNN and LSTM excelled in
handling unstructured data [2].

Guha et al. [3] targeted PII and NPI, using an N-gram with TF-IDF for feature
extraction and an artificial neural network for information loss prevention, achieving
strong results [3].

Chong [4] worked with mixed datasets, using a rule-based technique with regular
expressions and a fine-tuned BERT model to detect sensitive data. The BERT model
performed well without needing a large corpus [4].

Shi et al. [5] introduced a CRF-BiLSTM-CNN model for sensitive data discovery
in manufacturing enterprises, focusing on personal information, financial records,
and proprietary business data. Validated with the People’s Daily corpus, it outper-
forms traditional methods but depends on high-quality training data [5].

Zhang et al. [6] use machine learning to de-identify PHI in EHRs across diverse
datasets. Their approach, combining rule-based screening with metadata features,
overcomes the limitations of traditional methods, though improvements could be
made with hybrid models for better scalability [6].
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Rehan [7] emphasizes AI’s crucial role in enhancing cloud security for sensi-
tive data through anomaly detection and threat intelligence, improving threat detec-
tion and compliance while addressing ethical concerns, thus strengthening defenses
against cyber threats [7].

Matthias et al. [8] provided a systematic overview of techniques for protecting
sensitive data, including differential privacy, k-anonymity, and synthetic data gener-
ation. They categorize these methods to assist practitioners in selecting suitable
approaches while emphasizing that context is essential and no single method is
universally effective [8].

Wen et al. [9] explored using large language models (LLMs) to detect sensitive
topics in online content moderation, particularly mental well-being. Their analysis
of five LLMs on two online datasets shows that GPT-40 outperforms others [9].

Petrolini et al. [10] used Reddit data to identify sensitive topics like religious
beliefs, sexual orientation, and political opinions. Neural networks were employed
for classification, providing a probability score for content relevance to these topics
[10].

Generative Al and LLMs make copying entire code and sensitive text easy, yet
existing research often overlooks code sensitivity. Rule-based systems work well
for structured data but can miss edge cases, while machine learning needs extensive
data and struggles with NLP tasks. A hybrid approach combining both methods is
standard, with profound learning showing promise for detecting sensitive data in
NLP.

3 Proposed Methodology

3.1 Fine-Tuning CodeBERT Using Transfer Learning

CodeBERT, developed by Microsoft, is trained on natural and programming
languages using the CodeSearchNet dataset, supporting languages like Java, Python,
Ruby, Go, PHP, and JavaScript, as shown in Fig. 1. It is based on the transformer
architecture and employs the RoBERTa-base model, featuring 125 million parame-
ters, 12 encoder layers, and a maximum sequence length 512. Words are represented
as 768-dimensional vectors to capture contextual similarity, while a self-attention
mechanism assesses input relevance, combining word values into context vectors for
the final output. Initially designed for code completion, this model demonstrates a
robust understanding of the syntax and structure of both programming and natural
languages [11].

Based on its features, It was fine-tuned using transfer learning for code-text
filtering tasks. Once the model was fine-tuned, a web application was developed to
interact with it. Users can submit their prompts through the web application, which
sends the input to the model. The model processes the prompt, separates the code
from the text, and displays the results to the user, highlighting any potential presence
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Fig. 1 System design

of sensitive code. This allows users to review and recheck the content before sending
it to the generative Al. The text portion can be safely sent to the generative Al, and
the output is displayed back to the user through the web application. In contrast, the
code portion prevents proceeding into the generative Al systems.

3.2 Data Acquisition Process

The dataset was collected systematically with around 18,896 Python code files from
TensorFlow’s GitHub repository and 42,993 Java files from various GitHub sources.
Textual data was sourced from the Ubuntu Dialogue Corpus on Kaggle, resulting in
a broad corpus of 269 million words. This dataset is organized in .csv files.

3.3 Tokenization and Labeling

In this project, the CodeBERT model’s AutoTokenizer is crucial for aligning with the
CodeBERT architecture and converting text and code into numerical representations,
as shown in Fig. 2. Using the AutoTokenizer from the Hugging Face library, codes
were tokenized and labeled 1, while comments and text were labeled 0. The entire
content was tokenized in a loop, with sequences adjusted to a uniform length 512
through padding or truncation. The data was then converted into PyTorch tensors
and datasets.
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Fig. 2 Tokenization and labeling of code and text

3.4 Data Splitting

A split ratio 0.2 is used, allocating 20% of the data for testing and 80% for training.

3.5 Finetuning

CodeBERT was fine-tuned using a supervised learning approach, where tokenized
files containing code, comments, and text were input, as well as corresponding
labels for each token. Attention masks guide the model’s focus on relevant sections.
This process utilized CodeBERT’s word embeddings and attention mechanisms to
enhance understanding of code and natural language structures.

Finetuning Hyperparameters-To optimize the model for accurately filtering and
distinguishing between code and text, several key hyperparameters were fine-tuned:

Epochs: The model was trained for 1000 epochs to ensure sufficient learning.

e Batch Size: A batch size of 8 to balance training stability and efficiency.
Early Stopping: Set with a patience of 5 to prevent overfitting by stopping training
when validation performance ceases to improve.

e Optimizer: The Adam optimizer was used for its efficiency and ability to handle
sparse gradients.
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3.6 Inference

Testing the fine-tuned model involves tokenizing new text samples and processing
them through the saved CodeBERT model, as shown in Fig. 3. The model labels
tokens based on learned probabilities using a softmax function. Tokens garnering
a probability surpassing 50% are designated as code tokens, receiving a label of 1.
Post-processing converts these tokens back to text to analyze the model’s predictions.

4 Results

For evaluation purposes, various types of text based on real-life scenarios were
provided to the finetuned model to reflect typical prompts for a generative Al appli-
cation. These prompts may contain code, comments, and text mixed in any fashion,
such as text interspersed with code or code interspersed with text. The evaluation
included documents of 5 types.

Document predominantly containing code.

Document predominantly containing text with minimal code.
Document containing only code.

Document containing only text.

Document with code in all coding languages supported by CodeBERT.

AR

Fig. 3 Inference
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4.1 Evaluation Metrics Calculation

Figure 4 illustrates an instance of document type 1, consisting predominantly of
code, which was provided as input to the finetuned CodeBERT model for evaluation.

Figures 5 and 6 show the model’s output, with Fig. 5 displaying the filtered code
parts and Fig. 6 displaying the filtered text parts. The total number of words in the
input Java document is 261, of which 202 belong to the code part, and 59 are text
words. However, the model classified 176 words as code and 86 as text. Out of the 86
words in the text part generated by the model, 27 were incorrectly classified, and one

Fig. 4 Input Java document
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Fig. 5 Code part filtered by finetuned CodeBERT model

word in the code part was incorrectly categorized. Several metrics were calculated to
evaluate the finetuned CodeBERT model’s performance: accuracy, precision, recall,
and F1-score.

These metrics are defined as follows:

True Positives (TP): Correctly classified code words.

False Positives (FP): Text words incorrectly classified as code.
True Negatives (TN): Correctly classified text words.

False Negatives (FN): Code words incorrectly classified as text.

Given the following data:

Total words: 261

Actual code words: 202

Actual text words: 59

Model’s code words: 176

Model’s text words: 86
Misclassified text words as code: 27
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Fig. 6 Text part filtered by finetuned CodeBERT model

e Misclassified code words as text: 1.

Derived values are:

e TP=175,FP =27, TN =59, FN = 1.

The metrics calculation formulas are as follows:

Accuracy = (TP +TN)/(TP + TN + FP + FN)

Precision = (TP) /(TP + FP)

Recall = (TP)/(TP + FN)

F1 — score =2 % [(precision x recall) [ (precision + recall)]

113
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Based on the formulas (1), (2), (3), and (4), the metrics are calculated and tabulated

in Table 1.

Table 1 Evaluation metrics

Serial no. Metric Value
table

1 Accuracy 0.893

2 Precision 0.866

3 Recall 0.994

4 Fl-score 0.926
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Fig. 7 Comparison of evaluation metrics across 5 document types

4.2 Performance Analysis

Figure 7 compares the calculated metrics across instances from other document types
based on the evaluation metrics calculation method demonstrated in the previous
section for a document of type 1.

Initially trained in Java and Python, the model demonstrates effective transfer
learning by accurately distinguishing between code and text in additional languages,
such as Go, PHP, Ruby, and JavaScript, which CodeBERT supports.

This research aims to ensure the model accurately classifies and identifies code.
While it is acceptable if some text is misclassified as code, code must always be
correctly identified, highlighting the need for high recall. The model effectively
understands code structure and semantics, but it sometimes confuses text that appears
in both code and natural language. Despite this, the model achieved an average accu-
racy of 91.4% and an average recall of 90.4%. Future work will focus on improving
the model’s ability to distinguish between these contexts more accurately.

5 Conclusion

New Al tools offer more straightforward ways to share code but raise concerns about
data leaks. Rather than imposing bans, firewalls can be implemented to safeguard
sensitive information while allowing the advantages of Al In this paper, a novel
code-text filtering system was successfully developed to distinguish code from text
and comments within documents efficiently. This system can later be integrated with
afirewall to block the code portion from being transmitted to generative Al. The issue
of encrypted communication, such as that in ChatGPT, introduces an additional layer
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of complexity, possibly requiring SSL decryption or secure browser plugins. The
focus should be on balancing adopting new technologies with maintaining security.
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Abstract Data integrity protection is achievable using error detection and correction
techniques with reliable and efficient computing. Traditional methods are resource-
intensive and often irreversible, limiting efficiency. This research explores reversible
logic as a solution to these limitations. Reversible circuits can detect errors and
reset to the original state, mitigating data corruption. Integrating reversible logic into
computer architectures presents challenges and prospects. Error detection and correc-
tion techniques are essential to ensure accurate and reliable calculations in modern
electronic systems. The traditional error detection and correction methods often rely
on complex and power-hungry algorithms. However, reversible logic has emerged
as a promising model that offers unique advantages such as low power consump-
tion and information retention. This article explores the basics of reversible logic,
discusses the challenges associated with error detection and correction, presents the
most advanced methods, and highlights the potential future directions in this field.

Keywords Error detection and correction - Data integrity - Reversible logic -
Cryptography - Quantum computing - Vulnerability first section

1 Introduction

In modern computer systems, data integrity is a significant concern. The data is
vulnerable to errors during storage and transmission, and robust error detection and
correction techniques are needed. However, the conventional approaches available
are struggling with resource-intensive procedures and irreversible operations that
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hinder their overall effectiveness. Reversible logic has emerged as a promising model
for efficient error detection and correction while minimizing resource usage. Hence,
delve into the reversible logic field, error detection, and correction, and present the
innovative approach with data integrity protection.

Itis possible to design efficient error detection and correction circuits by exploiting
the unique properties of reversible logic gates [1]. Although the challenges still
exist, the transformative impact of inversion logic on error detection and correc-
tion warrants further exploration and study. The application of reverse logic offers
a promising path to data integrity improvement and error detection and correc-
tion advancement in computer systems, paving the way for efficient and reliable
technology.

Error detection and correction are essential to ensure accurate and reliable calcu-
lations in modern electronic systems. The faults can occur due to various factors,
including noise, faulty components, environmental disturbances, or even inherent
imperfections in the manufacturing process. The traditional error detection and
correction methods often rely on complex algorithms and additional hardware,
increasing power consumption and circuit complexity [2]. Reversible logic has
become a promising model offering unique error detection and correction advan-
tages. Reversible logic gates are a special type of gate that exhibits bi-directionality,
meaning they have a one-to-one mapping between input and output states. Unlike
the conventional irreversible gates, the reversible gates can perfectly recover input
from output, making them ideal for error correction.

The benefit of reverse logic extends beyond error correction. The reversible
circuits can significantly reduce power consumption due to their inverting nature since
no information is lost during the computations. This energy-conserving property
makes reversible logic attractive, particularly for low-power and power-constrained
applications such as mobile devices, embedded systems, and quantum computing.

Data integrity is the certainty that the data remains accurate, reliable, and unaltered
throughout its life cycle and is crucial in various areas, including finance, healthcare,
and critical infrastructure. The reversible logic’s inherent ability to preserve infor-
mation offers innovative solutions to safeguard data against corruption, errors, and
unauthorized alterations. This research article aims to provide a broad review of error
detection and correction techniques using reversible logic. We will explore the basics
of reversible logic, discuss error detection and correction challenges, present the
most advanced methods, and highlight potential future directions. By analyzing and
synthesizing existing knowledge, this article sheds light on the potential of reversible
logic as an efficient and energy-efficient solution for fault detection and correction in
electrical systems [3]. The article explains the uses of reversible logic, especially in
data integrity in encryption, watermarking and steganography, error detection, and
correction. Further, this article also describes the advantages and disadvantages of
reversible logic in data integrity. The next part details the state-of-the-art approaches
used for data integrity using reversible logic.
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2 Reversible Logic in Encryption

Reversible logic is utilized in Quantum Key Distribution protocols to ensure the bidi-
rectional and information-preserving exchange of encryption keys and enhance the
integrity of the key exchange process. Quantum Key Distribution (QKD) is a revolu-
tionary cryptographic technique that leverages the principles of quantum mechanics
to enable secure communication and the exchange of encryption keys. Unlike clas-
sical key exchange methods, which are vulnerable to eavesdropping, QKD offers
provable security by exploiting the unique properties of quantum states. It is pivotal
in ensuring data integrity and confidentiality in secure communication [4].

The Quantum Key Distribution relies on several key components and principles
to achieve its security objectives. QKD uses quantum states, typically in the form of
photons, to encode information. These quantum states are susceptible to measurement
disruptions, which makes eavesdropping detectable. The quantum entanglement
creates correlated quantum states between the sender (Alice) and the receiver (Bob).
Any eavesdropper (Eve) attempt to intercept the quantum states disrupts their entan-
glement, revealing her presence. Alice sends quantum states to Bob, who measures
them. The choice of measurement basis is communicated publicly; however, the
measurements made are kept secret until a later step. Alice and Bob compare a subset
of their measurement results to assess the error rate. A high error rate indicates the
presence of interference or eavesdropping. After error rate monitoring, Alice and
Bob publicly announce their measurement bases and discard measurement results
where the bases do not match. They use the remaining correlated results to derive a
secure encryption key.

2.1 Data Integrity Enhancement Using QKD

QKD contributes to data integrity by guaranteeing the confidentiality and integrity
of the encryption key used for secure communication. QKD’s fundamental security
lies in its ability to detect eavesdropping attempts. Any unauthorized interception
or measurement of quantum states disturbs their entanglement, leading to a notice-
able increase in the error rate. This detection mechanism ensures that encrypted
data remains confidential and unaltered during transmission. QKD provides encryp-
tion keys that are immune to attacks by quantum computers. This feature safeguards
encrypted data against potential threats posed by future quantum computing advance-
ments. Using quantum states and entanglement in QKD ensures that even subtle
alterations or tampering with the transmitted quantum states are detectable. This
tamper detection mechanism reinforces data integrity by preventing unauthorized
changes to the encrypted information. QKD generates a fresh encryption key for
each communication session. Even if a key from a previous session were compro-
mised, the data transmitted in that session would remain confidential and unaltered,
ensuring forward secrecy.
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QKD has numerous practical applications beyond secure communication. QKD
can be used to protect financial transactions and assure the confidentiality and
integrity of sensitive financial data. Government and military agencies use QKD
to safeguard classified information and communications. Medical institutions can
use QKD to protect patient records and sensitive healthcare data. QKD ensures the
security of critical infrastructure systems, preventing unauthorized access and data
tampering. QKD can enhance the integrity of electronic voting systems, ensuring the
confidentiality and authenticity of votes.

Quantum Key Distribution is a groundbreaking technology that provides secure
communication and significantly contributes to data integrity by protecting encryp-
tion keys against eavesdropping and quantum attacks. Its applications span various
sectors where data confidentiality and integrity are paramount.

The Quantum-inspired synthesis techniques draw inspiration from quantum
computing principles and algorithms. They leverage concepts like quantum gates,
quantum circuits, and quantum cost models for reversible logic circuit synthesis.
The Quantum-inspired synthesis techniques exploit the quantum superposition and
entanglement properties in reversible circuit optimization for specific applications

[5].

2.2 Homomorphic Encryption

Reversible logic contributes to the efficiency of homomorphic encryption schemes,
enabling computations of encrypted data without compromising data integrity.
Homomorphic encryption is an advanced cryptographic technique that allows calcu-
lations to be performed on the encrypted data without decrypting it initially. This
breakthrough in cryptography has profound implications for enhancing data privacy
and security while preserving data integrity. To understand how homomorphic
encryption enhances data integrity, let’s explore its key concepts. Homomorphic
encryption begins with data encryption, much like traditional encryption methods.
However, unlike conventional encryption, homomorphic encryption permits certain
mathematical operations to be performed on the encrypted data without betraying
its listing. “homomorphism” refers to the mathematical property of preserving
the relationships between data elements. In homomorphic encryption, the oper-
ations performed on encrypted data will yield meaningful results when the data
is decrypted. Homomorphic encryption supports various mathematical operations,
including addition, multiplication, and more, depending on the homomorphic scheme
used [6].

2.2.1 Enhancing Data Integrity with Homomorphic Encryption

Homomorphic encryption enhances data integrity in several ways: privacy, secure
outsourcing, data aggregation, and secure computation. Homomorphic encryption
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ensures that the data remains confidential even when computations are performed.
This privacy protection is essential for maintaining the integrity of sensitive informa-
tion. Organizations can securely outsource data processing tasks to third parties like
cloud service providers without revealing the content of the data. This reduces the risk
of data exposure or tampering. Homomorphic encryption enables secure data aggre-
gation, allowing multiple parties to collectively analyze data without sharing the raw
information. This aggregation process maintains data integrity by preventing unau-
thorized access to individual data points. The encrypted data can undergo compu-
tations on remote servers without decryption. This secure computation ensures that
data remains intact and unaltered during processing [7].

While homomorphic encryption offers significant advantages for data integrity, it
also presents challenges like computational overhead, complexity, limited supported
operation, and key management. Performing operations on encrypted data is compu-
tationally intensive, potentially slowing down data processing. Implementing and
managing homomorphic encryption systems can be complex and require special-
ized expertise. The set of supported mathematical operations depends on the specific
homomorphic encryption scheme, and not all operations may be feasible. Proper key
management is crucial to guarantee the security and integrity of encrypted data. The
loss or compromise of encryption keys may lead to data loss or exposure.

Homomorphic encryption has applications in various domains, including health-
care, financial services, data analytics, secure voting systems, etc. These can be
protecting patient data during medical research and analysis while preserving
data integrity, securely analyzing financial transactions for fraud detection without
exposing sensitive information, performing privacy-preserving data analytics on
encrypted data to maintain data integrity, and ensuring the integrity and privacy
of electronic voting systems.

Homomorphic encryption stands at the forefront of data privacy and security
technologies, allowing organizations to perform operations on encrypted data while
preserving its integrity and confidentiality. Its applications continue to expand as
data privacy concerns grow in our increasingly digital world. The reversible logic,
which focuses on information preservation and bidirectional operations, signifi-
cantly enhances data integrity in the encryption process. It ensures that data remains
unaltered during encryption and decryption, detects errors, and provides a founda-
tion for quantum-resistant encryption methods, reinforcing the overall security and
trustworthiness of encrypted data.

3 Watermarking and Steganography Using Reversible
Logic

Watermarking and steganography are techniques used to embed hidden information
within digital media while preserving data integrity and concealing hidden data.
These techniques become even more robust and secure when coupled with reversible



122 P. Kadbe et al.

logic, ensuring original data remains unaltered during the embedding and extraction
processes.

3.1 Watermarking Using Reversible Logic

Watermarking is a technique used to embed hidden information known as a water-
mark into digital media. The goal is to add this watermark so that it is imperceptible
to the users but can still be extracted later for various purposes, including copy-
right protection, authentication, and data integrity verification. When combined with
reversible logic, watermarking becomes a powerful tool for ensuring data integrity
while embedding hidden information [8].

Reversible logic is particularly valuable in watermarking because it can preserve
data integrity and reversibility, which are crucial aspects of the watermarking process.
The reversible logic gate ensures that the original digital media, often called the host
or cover data, remains unchanged during the watermark embedding process. This
preservation of the data integrity of the host is essential. The reversible logic allows
for both the embedding of the watermark into the host data and the extraction of
the watermark from the watermarked data. This bidirectional capability ensures that
the original host data can be fully restored. The watermarks created using reversible
logic are robust against various attacks and transformations the watermarked data
may undergo, like compression, cropping, or noise addition. The watermark can be
accurately extracted even in the presence of such alterations.

3.1.1 Use Cases of Watermarking with Reversible Logic

Reversible logic-based watermarking finds applications in various domains,
including copyright protection, authentication, digital forensics, and data integrity
verification. Content creators and media producers use reversible logic watermarking
to embed copyright information, ownership details, or licensing data into their digital
media. This allows for identifying copyrighted materials and facilitates legal enforce-
ment against unauthorized use. The watermarks created using reversible logic can
serve as the authentication markers. They provide a means to verify digital media’s
authenticity and integrity, ensuring that it has not been tampered with or altered. In
digital forensics, the reversible logic watermarking can embed the hidden informa-
tion for tracking purposes. This can aid in investigations and the tracking of digital
assets. The watermarks can carry information about the digital media’s original state,
enabling data integrity verification. This is particularly useful in situations where
tampering or unauthorized alterations are of concern.

While reversible logic-based watermarking offers substantial benefits, chal-
lenges and considerations include capacity versus data integrity, security, detection,
and algorithm selection. Balancing the amount of hidden information (watermark
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capacity) with preserving data integrity is challenging. The high-capacity water-
marking may result in noticeable alterations to the host data. Ensuring that the
watermark remains secure and immune to unauthorized extraction or tampering is
crucial, and detecting the presence of watermarks and extracting them accurately is
an essential aspect of watermarking. The choice of the watermarking algorithm and
its parameters can impact data integrity and the ability to extract the watermarks.

The reversible logic-based watermarking enhances data integrity by enabling the
embedding and extraction of hidden information while preserving the integrity of
the host data. It has diverse applications where secure communication, authentica-
tion, and data integrity are paramount. The reversible logic ensures that the original
multimedia content remains unchanged during the watermark embedding, which is
critical for maintaining data integrity. The reversible logic allows for bidirectional
embedding and extraction of the watermarks. The ability to reverse the watermarking
process ensures the original content is fully restored. The reversible watermarking
can withstand attacks like compression and noise while enabling watermark extrac-
tion with very high accuracy. The watermarks created using reversible logic serve as
the authentication markers, providing a way to verify the authenticity and integrity
of the multimedia content.

3.2 Steganography Using Reversible Logic

Steganography is the art of hiding secret information within innocuous carrier files
so that the presence of hidden data is not apparent. Steganography conceals secret
information within seemingly innocuous carrier files like images, audio, or text in a
way that does not arouse suspicion. When combined with reversible logic, steganog-
raphy becomes a powerful tool for hiding information while ensuring data integrity
and extracting hidden data without any loss.

The reversible logic enhances steganography in several ways: information preser-
vation, bidirectional embedding extraction, and robustness. The reversible logic
ensures the original carrier file remains unchanged despite hidden data. The reversible
logic allows for embedding secret data into the carrier file and extracting hidden data
from the steganographic data. This bidirectional capability ensures that the original
carrier file can be fully restored. The steganography using reversible logic tends to
be robust against various attacks and transformations that the steganographic data
may undergo, such as compression, format conversion, or noise addition. The hidden
data can be accurately extracted even in the presence of such alterations [9].

3.2.1 Use Cases of Steganography with Reversible Logic
Steganography with reversible logic has numerous practical applications like secure

communication, covert data transfer, concealment, authentication, and data integrity.
Individuals and organizations can use reversible logic-based steganography to
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communicate sensitive information covertly, ensuring that the data remains confi-
dential while appearing ordinary. In situations where transmitting sensitive infor-
mation openly is impossible, reversible steganography allows data to be transferred
concealed, bypassing detection. The data can be hidden within the files or messages
without arousing suspicion. For example, sensitive text or files can be embedded
within images or audio recordings. The reversible logic-based steganography serves
as a means of authentication and data integrity verification. The presence of a hidden
message is used to confirm that the carrier file has not been tampered with.

The reversible logic-based steganography allows hidden embedding and extrac-
tion of information, preserving the integrity of the carrier file. It has diverse applica-
tions in the fields where secure communication, data concealment, and data integrity
verification are of predominant importance. Steganography becomes highly effective
in maintaining data integrity when combined with reversible logic. The reversible
logic ensures that the carrier file remains unchanged despite hidden data, which
is crucial for data integrity. The reversible logic gates enable the bidirectional
embedding and extraction of the secret data. This reversibility ensures that the
original carrier file can be fully restored. The reversible steganography provides
secure communication, where sensitive information can be hidden within seemingly
innocuous files. The reversibility ensures that the original content is recoverable by
authorized parties. Like watermarking, steganography can serve as an authentication
and data integrity verification method. Steganography is used in various domains,
including information security, covert communication, and digital forensics.

While the use of reversible logic in watermarking and steganography offers signif-
icant advantages in terms of data integrity, there are some challenges and considera-
tions. Striking a balance between the amount of hidden data capacity and preserving
data integrity can be challenging. High-capacity embedding may result in noticeable
alterations to the carrier file. Ensuring that the secret information remains secure
and immune to unauthorized extraction or tampering is somewhat crucial. Detecting
the presence of watermarks or hidden data, especially in steganography, is a critical
aspect of these techniques. Choosing a watermarking or steganography algorithm and
its parameters can impact the data integrity and ability to extract hidden information.

The reversible logic enhances watermarking and steganography by ensuring the
preservation of data integrity and bidirectional embedding or extraction. These
techniques find applications in various domains requiring secure communication,
authentication, and data integrity.

4 Reversible Logic: A Foundation for Error Detection
and Correction

Asreversible logic allows the original values to be recovered from the output, it differs
from the irreversible counterparts. This makes it easier to detect errors by comparing
the original input and the received output, utilizing the essential characteristics of
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the reversible gates. If there is any difference, then it indicates the presence of a bug
in the system.

4.1 Reversible Logic and Data Integrity

Reversible logic can be used to detect errors by creating some parity bits or checksums
that represent the state of the data. Any changes in the data are reflected in the
parity bits, allowing errors to be detected. In addition to detection, reversible logic
also enables error correction. The erroneous bits can be corrected by comparing the
detected errors with the generated parity bits, restoring the original data. In storage
systems, such as hard drives or SSDs, the reversible logic can detect and correct errors
due to physical media degradation or noise during data retrieval. In communication
networks, reversible logic-based error detection and correction ensures that data
remains accurate during transmission, even in noise and interference. In critical
space missions, where data transmission is susceptible to cosmic rays and other
environmental factors, the reversible logic ensures that data sent from space probes
is received accurately on Earth.

The emergence of quantum computers poses new challenges to error detection
and correction, and research into post-quantum error correction using reversible logic
is ongoing. Implementing reversible logic-based error detection and correction can
be complex and requires specialized hardware and algorithms. Developing industry
standards for integrating reversible logic in error detection and correction techniques
ensures interoperability.

Reversible logic’s inherent ability to preserve information provides a solid
foundation for error detection and correction techniques. By leveraging reversible
computing, data integrity can be maintained in critical applications, ranging from
data storage systems to space exploration. As technology continues to evolve, the
role of reversible logic in error detection and correction remains essential to ensure
the reliability and accuracy of digital data.

4.2 Data Encryption

Data encryption is a fundamental concept in information security designed to protect
the confidentiality and integrity of the data. It involves transforming plain text data,
which means the original, = but readable data, into cipher text data, which means
encrypted data using an encryption algorithm and an encryption key. While encryp-
tion primarily addresses data confidentiality, preserving data integrity is equally
critical in the encryption process.

An encryption algorithm is a set of mathematical rules and operations that convert
plain text data into cipher text and vice versa. It ensures that the encryption and
decryption processes are reversible. The encryption key is a secret information the
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encryption algorithm uses to perform the encryption and decryption operations. The
choice of the key determines the security of the encryption process. Plain text data
represents the original data that needs to be protected. This can include text, files,
messages, or digital information. Cipher text data is the result of encrypting plain text
data using the encryption algorithm and the encryption key. It appears as random,
unreadable characters and is meant to be secure from unauthorized access [10].

4.2.1 Data Integrity in Encryption

While data encryption primarily focuses on data confidentiality, it also significantly
impacts data integrity. The encryption process itself should not introduce errors or
data corruption. The data integrity ensures that the encrypted data accurately repre-
sents the original plain text data. Here, encryption helps protect data from unautho-
rized modification during transmission or storage. Any tampering with the cipher
text can be detected when data integrity is maintained. Hence, maintaining data
integrity during encryption involves carefully handling the encryption process. The
encryption algorithm should be reversible, meaning that decryption should accu-
rately recover the original plain text from cipher text without any loss or corruption
of data. Adding cryptographic authentication mechanisms like digital signatures or
message authentication codes can further ensure data integrity by detecting any unau-
thorized changes in the data. The proper key management practices, including key
generation, storage, and distribution, are essential to prevent data loss or corrup-
tion due to unauthorized access to encryption keys. Data integrity is integral to
encryption, ensuring the encrypted data remains accurate and unaltered throughout
its life cycle. In the following sections, we will explore how reversible logic, with its
information-preserving properties, enhances data integrity in the encryption process.

4.3 Error Correction with Reversible Logic

Beyond error detection, reversible logic enables error correction, a crucial aspect of
preserving data integrity. When errors are detected, reversible reasoning can pinpoint
the location of the errors in the data. Using the information about error locations, the
reversible logic can reconstruct the original error-free data, and this reconstruction
ensures that data integrity is maintained. The unique properties of reversible logic,
including its bidirectional nature and information preservation, make it an ideal foun-
dation for error detection and correction techniques. By leveraging these properties,
organizations can detect and rectify errors in critical data, ensuring that it remains
accurate and reliable in the face of various challenges to data integrity [11].
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4.4 Error Detection in Data Storage Systems

Reversible logic is applied in data storage systems, such as hard drives and solid-
state drives, to detect and report errors. The parity bits or checksums generated
using reversible logic are stored along with the data. During the data retrieval, these
bits detect errors resulting from factors like media degradation or noise. Detected
errors trigger error reporting mechanisms, allowing for proactive data management
and maintenance. This ensures that data remains reliable even in long-term storage.
Beyond detection, the reversible logic enables error correction in data storage. The
reversible logic is used to identify the location of erroneous bits within stored data.
Based on error locations, the reversible logic reconstructs the original data, correcting
errors and preserving data integrity [12].

4.5 Error Detection in Communication Networks

Reversible logic is instrumental in ensuring data integrity in communication
networks. Data packets transmitted over networks often include parity bits generated
through reversible logic. These parity bits are used at the receiving end for real-time
error detection. Any errors introduced during transmission are promptly identified,
and in cases of detected errors, data packets can be re-transmitted to ensure that the
correct data is received. In addition to error detection, the reversible logic enables
error correction in communication networks. The error locations within data packets
are identified using reversible logic, facilitating efficient error correction. The original
error-free data is reconstructed to ensure the information is accurate.

4.6 Error Resilience in Space Missions

Space missions are highly susceptible to cosmic rays and other environmental factors
that can corrupt data during transmission. Reversible logic is crucial in detecting
and correcting errors in data transmitted from space probes to Earth, ensuring that
mission-critical data such as images and telemetry is received accurately and without
corruption. These practical applications illustrate the versatility and importance
of reversible logic in preserving data integrity in various domains. Whether safe-
guarding data in storage systems, ensuring reliable communication over networks,
or supporting space exploration missions, the reversible logic provides a founda-
tion for error detection and correction techniques essential for maintaining digital
information’s accuracy and reliability [13].
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5 Utilizing Reversible Circuits for Error Detection

The efficient detection of errors with reversible circuits incorporates error detection
modules to analyze the output and identify the inconsistencies. The advantage of the
feedback mechanism is that it restores the faulty bits to their original state to provide
error detection.

5.1 Definition and Properties of Reversible Logic Gates

Reversible logic gates are a special type of logic gate with a dual property, meaning
that each input combination corresponds to a single output combination and vice
versa. Unlike the conventional irreversible gates, the reversible gates can retrieve
input from output without loss of information. This property is obtained by ensuring
that the number of input and output bits are the same. Some commonly used reversible
gates include Toffoli, Fredkin, Peres, and Feynman gates. These gates play an essen-
tial role in reversible logic synthesis, where reversible circuits are designed using a
combination of reversible gates to perform desired functions.

5.2 Reversible Logic Synthesis Techniques

The reversible logic synthesis involves transforming a given irreversible logic circuit
into an equivalent reversible logic circuit. Various synthesis techniques have been
developed to achieve this transformation. A common approach is gate-level synthesis,
which aims to decompose the irreversible circuit into a network of reversible gates.
This method uses reversible gate libraries and algorithms such as the Universal
Reversible Logic Gate (URLG) library or BDD-based synthesis techniques to imple-
ment circuits efficiently. Another technique is permutation-based synthesis, which
exploits the inherent permutation properties of reversible gates. By representing the
desired logical function as a permutation matrix, the synthesis process focuses on
finding a sequence of reversible gates to achieve the desired permutation. Reversible
logic has applications in several fields due to its energy and information-saving
nature.

5.3 Quantum Calculation

The reversible logic is essential to quantum computing because it maintains
the consistency and reversibility of quantum states. The quantum gates such as
ControlledNOT gate and Toffoli gate are reversible gates commonly used in quantum
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circuits. Quantum computation is a revolutionary paradigm that exploits the princi-
ples of quantum mechanics to execute calculations exponentially faster than classical
computers. Reversible logic plays a pivotal role in quantum computation, enabling
the creation of efficient quantum circuits that adhere to the fundamental principles
of quantum mechanics. This section explores the diverse applications of reversible
logic in quantum computation, from quantum gates to algorithm development and
quantum error correction.

5.4 Quantum Algorithms and Reversible Logic

This section explores reversible logic applied in developing quantum algorithms,
showecasing its critical role in efficiently solving complex problems.

5.4.1 Shor’s Algorithm

Shor’s Algorithm is a groundbreaking quantum algorithm developed by mathemati-
cian Peter Shor in 1994. It is designed to solve one of the most challenging problems
in classical computing, which is called integer factorization. This algorithm cata-
pulted quantum computing into the spotlight due to its potential to efficiently factor
large numbers, which has significant implications for cryptography and security.
The integer factorization involves finding the prime numbers that multiply together
to form a given composite number. It may seem like a straightforward mathematical
problem, but it becomes exponentially more complex as the size of the number to be
factored increases. This inherent difficulty forms the basis for many cryptographic
systems, including RSA, which relies on the difficulty of factoring the product of
two large prime numbers [14].

Shor’s Algorithm leverages the power of quantum parallelism and quantum
Fourier transforms to factor large numbers efficiently. Shor’s algorithm begins with
selecting a random integer, the common factor for factoring the number. Quantum
parallelism allows multiple factors to be tested simultaneously. Shor’s Algorithm
employs a quantum Fourier transform to create superposition states of different peri-
odicity values where the reversible logic plays a significant role. The reversible gate
ensures the transformation can be undone, allowing emerging quantum interference
patterns. The quantum state is measured, collapsing it to a specific period value. The
classical post-processing steps extract the factors from the estimated period.

The reversible gates create superposition states, allowing multiple candidate
values to be tested simultaneously. The quantum Fourier transform is a central compo-
nent of Shor’s Algorithm, and its reversibility ensures that the transformation can
be reversed if needed. By efficiently factoring the large numbers, Shor’s Algorithm
has the potential to break widely used cryptographic schemes. The reversible logic
ensures that the algorithm’s operation can be performed in both forward and reverse
directions, facilitating the factorization process. Shor’s Algorithm showcases the
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remarkable capabilities of quantum computation and its’ reliance on reversible logic
to perform complex calculations efficiently. It also highlights the need for post-
quantum cryptographic solutions to maintain data security in a world with quantum
computers, which have the potential to revolutionize cryptography.

54.2 Grover’s Algorithm

Grover’s algorithm, proposed by Lov Grover in 1996, is another significant quantum
algorithm that focuses on a different problem, such as an unstructured search. Its
ability to search an unsorted database or perform an exhaustive search is signifi-
cantly faster than classical algorithms. The reversible logic plays a crucial role in
the implementation and operation of Grover’s Algorithm. The unstructured search
problem involves finding a specific item in an unsorted database of N items. Classical
computing typically requires searching through all N items, which takes O(N) time.
Grover’s Algorithm, however, achieves a quadratic speedup, allowing it to perform
the search in roughly O(,/N) time.

Grover’s Algorithm relies on quantum parallelism and the principle of amplitude
amplification to enhance search efficiency. The quantum state is initialized to a super-
position of all possible states. The reversible logic gates facilitate the creation of this
superposition state. The oracle function is essentially a black box that flips the sign
of the amplitude of the target item, which is used to mark the target item. Amplitude
amplification is achieved through iterations of two primary operations, the Grover
Diffusion Operator and the Oracle function. The Grover Diffusion Operator enhances
the amplitude of the correct solution and decreases the amplitudes of incorrect solu-
tions. After sufficient iterations, a measurement is performed to collapse the quantum
state. The measured state is more likely to be the target item.

The reversible gates allow the creation of superposition states where all possible
states are considered simultaneously. This enables quantum parallelism and speeds
up the search process. The oracle function used in Grover’s Algorithm is reversible.
It reverses the amplitude of the target item, making it distinguishable during the
amplification process. The Grover Diffusion Operator is a key part of amplitude
amplification, which relies on reversible logic gates to enhance the amplitude of
the correct solution and decrease the amplitude of incorrect solutions. This step
significantly improves the algorithm’s efficiency.

The Grover’s Algorithm demonstrates the power of quantum computation in
solving complex problems efficiently. It highlights the importance of reversible
logic in quantum algorithms by enabling the creation of superposition states,
reversible oracle functions, and amplitude amplification, contributing to the remark-
able speedup of algorithms in unstructured search tasks. The use of reversible logic
in quantum simulation enables efficient quantum systems modeling.
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6 Advantages of Reversible Logic in Data Integrity

Reversible logic underpins the efficient operation of quantum gates and algo-
rithms and plays a crucial role in quantum error correction and the advancement of
quantum cryptography. As quantum computing continues to evolve, the integration
of reversible logic remains pivotal in harnessing the full potential of this revolutionary
technology.

6.1 Low Consumption

The energy-conserving property of inversion logic makes it very attractive for low-
power computing. It has been used in low-power arithmetic and data processing
units, reversible microprocessors, and energy-efficient digital signal processing. The
reversible logic has potential applications in nano-scale devices and nanocomputers.
The reversible nature of these circuits can mitigate the effects of inherent quantum
noise and reduce power consumption, making them suitable for emerging nano-scale
technologies.

6.2 Energy and Power Advantages of Reversible Logic

One of the key advantages of the reversible logic is its energy efficiency. In conven-
tional irreversible circuits, the bits of information are irreversibly lost during compu-
tation, resulting in energy dissipation. Conversely, the reversible logic ensures that
no information is lost, leading to lower energy consumption. The power advantages
of the reversible logic stem from its underlying principles. As the reversible gates
have a one-to-one mapping between inputs and outputs, they do not produce heat
due to information loss. Consequently, reversible circuits generate less power dissi-
pation, making them highly desirable for applications where power consumption
is critical. The reversible logic offers several benefits, including designing energy-
efficient circuits and preserving information during computation. These advantages
make reversible logic an attractive error detection and correction paradigm, enabling
accurate and reliable calculation while minimizing power consumption.

6.3 Error Detection Techniques Using Reversible Logic

Error detection is essential in ensuring data integrity and computation integrity
in electronic systems. Several techniques have been proposed for error detection
within the framework of reversible logic. These techniques focus on identifying
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and reporting errors that can occur during the computation in reversible circuits.
These reversible logic error correction techniques provide mechanisms for detecting
and correcting errors that may occur during the computation. Accurate and reliable
calculations can be achieved by integrating error correction into the reversible circuits
while minimizing the impact of mistakes.

6.4 Advantages, Challenges and Limitations

Several challenges need to be addressed despite the promises in reversible logic. The
efficient reversible circuit design poses a significant obstacle due to less complexity
and fewer gates. The limited number of gates and costs associated with error detection
cause additional barriers that must be managed carefully. Although the error detection
and correction techniques using reversible logic offer significant advantages, some
challenges and limitations must be addressed here.

7 Advantages of Reversible Logic-Based Error Detection
and Correction

Several notable advantages exist of integrating reversible logic for error detection
and correction. The reversible circuits allow precise error determination, improving
data integrity and resorting faulty bits to their original state, ensuring high fault toler-
ance. This makes it an energy-efficient solution by minimizing the power dissipation
associated with error correction.

7.1 Trade-Offs Between Error Detection/Correction
Capabilities and Circuit Complexity

Increasing reversible logic circuits’ error detection and correction capabilities often
results in larger circuit sizes and increased complexity. Also, adding the auxiliary
bits and ports needed for error detection and correction can result in higher resource
usage and longer computation times. The designers must carefully consider these
tradeoffs to balance error range and circuit complexity.
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7.2 Error Propagation and Its Impact on Reversible Logic
Circuits

The errors in reversible logic circuits can propagate and affect the subsequent calcu-
lations. The error propagation can lead to incorrect output values, making it difficult
to detect and correct errors. Hence, developing effective techniques for analyzing and
minimizing error propagation is essential for robust error detection and correction in
reversible logic circuits.

7.3  Fault Tolerance and Error Correction Overheads

The error-tolerant reversible circuits and error correction techniques introduce addi-
tional costs regarding auxiliary bits, ports, and computational resources. These over-
heads can affect the overall circuit performance, power consumption, and area utiliza-
tion. Hence, the task is to balance the benefits of error correction with the costs
involved in an ongoing research challenge. Addressing these challenges and limita-
tions is crucial in advancing the field of error detection and correction with reverse
logic. Future research efforts should focus on developing innovative techniques that
improve error detection and correction while minimizing circuit complexity and
cost. Overall, error detection and correction using reversible logic offers promising
opportunities for achieving accurate and reliable computations in electronic systems.
Thus, taking advantage of the unique properties of reversible logic, such as energy
efficiency and information retention, significant progress can be made in improving
the reliability and durability of circuits and electronic systems.

8 State-of-the-Art Approaches

In recent years, significant research efforts have been devoted to detecting and
correcting errors using reversible logic. Some of the most advanced approaches focus
onimproving error detection, optimizing error correction techniques, and discovering
new ways to detect and correct errors based on reversible logic. The following section
provides an overview of some notable modern approaches.

8.1 Advanced Error Detection Techniques

The researchers have proposed advanced error detection techniques that exploit
unique properties of reversible logic. These techniques improve error coverage,
reduce circuit complexity, and improve fault tolerance. One such approach is using
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error detection codes based on reversible logic gates such as Peres and Toffoli
gates. These codes use reversible gates to detect errors introduced during compu-
tation. These codes detect high errors while minimizing resource usage by care-
fully designing the encoding and decoding scheme. Additionally, the researchers
explored machine learning techniques to detect the mistakes in reversible logic
circuits. These models detect anomalous behavior and identify potential errors in
real-time by training machine learning models on a large data set of reversible circuit
simulations.

8.2 Enhanced Error Correction Techniques

The advances in error correction techniques using reversible logic focus on improving
error correction and reducing associated costs. One technique worth noting is
the development of optimized reversible error correction codes. Researchers have
proposed a new encoding scheme that provides efficient error correction while mini-
mizing the required bits and auxiliary ports. These optimized codes balance error
correction and circuit complexity, making them suitable for practical implementa-
tion. In addition, advances in error correction algorithms and decoding techniques
have contributed to more efficient error correction. Techniques such as syndrome-
based decoding algorithms and neural network-based error correction algorithms
have shown promising results in achieving high accuracy and low cost.

8.3 Integration with Emerging Technologies

Reversible logic-based error detection and correction techniques and emerging tech-
nologies, such as quantum computing and nanotechnology, have also been explored.
In quantum computing, inversion logic is fundamental to detecting and correcting
errors in quantum circuits. Researchers have been working on integrating reversible
error detection and correction techniques into quantum circuits to improve the relia-
bility and fault tolerance of quantum computing. In nanotechnology, reversible logic
has shown potential for error detection and correction in nano-sized devices. The
reversible nature of these circuits can minimize the effects of inherent quantum noise
and improve the accuracy of calculations. Researchers have explored applying reverse
logic-based error detection and correction techniques in nano-scale computing
systems.
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8.4 Performance Evaluation Metrics

Different performance evaluation metrics have been proposed to evaluate the effec-
tiveness of error detection and correction techniques using inverse logic. The metrics
such as error detection rate, error correction rate, circuit complexity (e.g., number of
ports and auxiliary bits), power consumption, and area utilization are commonly
used to evaluate the performance of error detection and correction techniques.
These metrics provide information about the trade-off between error range, circuit
complexity, and resource usage. Using these performance metrics, the researchers
can compare different approaches, identify areas for improvement, and guide the
development of error correction and detection techniques with more efficient and
reliable errors by reversible logic. The most advanced methods to detect and
correct errors using reversible logic have focused on improving error detection tech-
niques, improving error correction, exploring integration with other technologies,
and emerging and developing performance measures. These advances pave the way
for more efficient and reliable reversible logic-based error detection and correction
systems, improving the reliability and accuracy of electronic systems.

9 Integration into Existing Computing Architectures

Integrating existing computer architectures is essential to make the logic-based
reversible debugging techniques possible for real-world applications. For seamless
compatibility, this involves the proper interfaces and protocol development. Addi-
tionally, the adaptability and scalability of reversible logic techniques need to be
considered across different computing platforms.

9.1 Future Directions and Research Opportunities

The error detection and correction field using reversible logic offers interesting
avenues for future research and development. As reversible logic continues to grow,
researchers can explore the following directions to advance the art in the field.

9.2 New Error Detection and Correction Schemes

The further exploration of new error detection and correction schemes using
reversible logic is essential. The researchers were able to investigate the develop-
ment of codes specifically suitable for reversible logic circuits, taking into account
the unique properties and constraints of reversible gates. This includes discovering
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new coding schemes, error detection algorithms, and error correction techniques,
delivering improved performance, reduced complexity, and fault tolerance. In addi-
tion, integrating the concepts of quantum error correction and fault-tolerant compu-
tation into reversible logic opens new avenues for error detection and correction.
The research in this area contributes to developing more efficient and reliable error
detection and correction techniques for reversible circuits.

9.3 Integration with Emerging Technologies

Integrating reversible logic-based error detection and correction techniques with
emerging technologies has great potential. The researchers can explore how
reversible reasoning can be applied alongside quantum computing, neural simu-
lation computing, and other emerging computing models to improve error resilience
and overall system performance. In quantum computing, the reversible logic can
design fault-tolerant quantum circuits with enhanced error detection and correc-
tion. Studying the interaction between reversible logic and quantum error correc-
tion codes leads to advances in fault-tolerant quantum computing. Furthermore,
exploring reversible logic for error detection and correction techniques in nano-scale
devices such as nano-computing and molecular computing contributes to developing
electrical systems.

9.4 Power Optimization Techniques

Energy efficiency is a significant benefit of reversible logic, and the research focuses
on developing power optimization techniques that are particularly suitable for error
detection and correction circuits using reversible logic. This includes exploring new
methods to minimize power consumption during active error detection and correc-
tion, optimizing the use of extra bits, and investigating low-power design approaches
for reversible circuits.

9.5 Error Propagation Analysis and Mitigation

Understanding and minimizing the error propagation in inverting logic circuits is
essential for improving error detection and correction. Future research may focus
on developing effective techniques for analyzing fault propagation paths, identi-
fying potential fault hot spots, and developing strategies to minimize the impact
of error propagation. The accuracy and reliability of inverting logic circuits can be
significantly improved by reducing error propagation.
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10 Conclusion

The ability to detect and correct errors and restore data integrity explored reversible
logic’s potential. The error detection and correction using reversible logic offers
promising opportunities for accurate and reliable calculations in electronic systems.
With its energy-saving and information-preserving properties, the reversible logic
provides a unique foundation for designing error detection and correction mecha-
nisms that reduce power consumption and preserve data integrity.

This research paper has provided a comprehensive review of reversible logic
for error detection and correction techniques. We discussed the fundamentals of
reversible logic, including the definition and properties of reversible logic gates,
reversible logic synthesis techniques, and their applications in various fields. We
have explored various error detection techniques, such as parity-based and syndrome-
based methods and fault-tolerant reversible circuits. In addition, we looked at
error correction techniques, including reversible Hamming codes, reversible Reed
Solomon codes, and reversible LDPC codes.

Furthermore, we have highlighted the challenges and limitations in this area,
such as the trade-off between error detection/correction and circuit complexity,
error propagation and usability considerations, and fault tolerance. We discussed the
most advanced methods, including advanced error detection techniques, debugging
techniques, integration of emerging technologies, and performance metrics.

To further develop the field of error detection and correction with reversible logic,
we have identified several directions and future research opportunities. These include
discovering new error detection and correction schemes, integrating reversible logic
into emerging technologies, developing power optimization techniques, analyzing
and minimizing error propagation, and detecting and correcting errors in inverted
quantum circuits. We can improve the reliability, efficiency, and applicability of
reversible logic error detection and correction techniques by addressing these
research directions. This will contribute to developing more powerful and energy-
efficient electronic systems, paving the way for future advances in computing and
beyond.
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Abstract Due to cyber threats’ increasing complexity and severity, reversible logic
has gained significant attention as a promising computing paradigm with the potential
for energy efficiency and low power consumption in recent years. This article exam-
ines the potential advantages of reversible logic in cyber security. On enhancing cyber
security solutions, we explored its theoretical foundations, implementation methods,
and potential impact. Additionally, we discussed the integration of reversible logic
with existing security mechanisms. The comprehensive review findings accentuate
the value of reversible logic as a secure and efficient tool for developing cybersecurity
solutions. This research article intends to impart present knowledge by comprehen-
sively reviewing reversible logic and its potential applications in cyber security. This
article sheds light on the promising avenues for utilizing reversible logic to develop
robust and efficient cybersecurity solutions by exploring the theoretical foundations,
implementation methodologies, integration strategies, advantages, and challenges.
Finally, the aggregation presented in this article can inspire further research in this
field.
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1 Introduction

The speedy growth of technology and the internet brings many benefits along with
new challenges, especially in the area of cyber security in today’s world. Cyber
threats, hacking, data breaches, and identity theft pose significant risks to indi-
viduals, organizations, and nations. They often cannot keep up with increasingly
sophisticated cyber attacks, while traditional security measures are somewhat effec-
tive. The Reversible logic, a computing paradigm that allows computation without
loss of information, is emerging as a potential solution for improving cyber security.
The reversible logic gates ensure that all input information can be unambiguously
recovered from the output, unlike the traditional irreversible gates, allowing precise
control and verification of computations. The application of reversible logic in cyber
security removes a few limitations of conventional security measures and promises
innovative solutions for protecting sensitive information. The main intention of this
research is to explore the potential for enhancing cyber security measures by exam-
ining the theoretical foundations, implementation methods, integration strategies,
benefits, and challenges associated with reversible logic [1].

The article is organized as follows. Section 2 briefly overviews the theoretical
foundation of reversible logic, including reversible gates, circuits, synthesis tech-
niques, and computational models. Moreover, Sect. 3 explores different implemen-
tations of reversible logic, focusing on design techniques, optimization algorithms,
and performance evaluation approaches. In contrast, Sect. 4 discusses various cyber
security applications of reversible logic, including encryption, authentication mech-
anisms, intrusion detection, and secure data storage. Section 5 discusses integrating
reversible logic into existing security mechanisms and describes synergies between
reversible logic and traditional security measures. Section 6 analyzes the benefits
and challenges of reversible logic-based cybersecurity solutions, including energy
efficiency, scalability, and potential security vulnerabilities.

Section 7 presents the case studies and experimental results to showcase the prac-
tical application of reversible logic in real-world cyber security scenarios. Finally,
Sect. 8 concludes the article by summarizing the key findings and emphasizing
the significance of reversible logic in enhancing cyber security while providing
recommendations for future research and practical implementations.

2 Reversible Logic: Theoretical Foundations

The reversible logic gates are primal building blocks that enable computations to
be carried out in a manner that allows perfect information recovery from the output.
Unlike irreversible gates, reversible gates ensure that each input aggregation maps to a
unique output aggregation, enabling bidirectional computations. Common examples
of reversible gates include the Toffoli gate, Fredkin gate, and Peres gate [2].
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The reversible circuits are composed of different interconnected reversible logic
gates designed to perform specific computations, maintaining reversibility. These
circuits are characterized by the absence of information loss and the ability to regress
the system’s state back to its initial state. Reversible circuits play an important role in
achieving efficient reversible computing and have applications in various domains,
including cryptography, error correction, and quantum computing.

2.1 Reversible Logic Synthesis Techniques

Reversible logic synthesis is the process of transforming an irreversible logic spec-
ification into an equivalent reversible logic circuit. Various techniques have been
developed to synthesize reversible logic, including Boolean logic-based approaches
and quantum-inspired methods.

Boolean logic-based synthesis techniques mainly focus on manipulating Boolean
functions to achieve reversibility. These methods involve the application of trans-
formation rules and algorithms to decrease the number of gates and optimize
the efficiency of the designed circuit. Examples of Boolean logic-based synthesis
techniques include Shannon decomposition, Bennett decomposition, and Multiple
Control Toffoli Network (MCTN) synthesis.

The Quantum-inspired synthesis techniques draw inspiration from quantum
computing principles and algorithms. They leverage concepts like quantum gates,
quantum circuits, and quantum cost models for reversible logic circuit synthesis.
The Quantum-inspired synthesis techniques exploit the quantum superposition and
entanglement properties in reversible circuit optimization for specific applications

[3].

2.2 Quantum and Classical Reversible Computing Models

Reversible computing models can be categorized into quantum reversible computing
and classical reversible computing. Quantum reversible computing employs the prin-
ciples of quantum mechanics like superposition and entanglement to perform the
computations. The Quantum gates like the Hadamard gate, CNOT gate, and T gate
form the basis of quantum reversible circuits. Quantum reversible computing has the
potential to provide significant computational advantages, particularly in specific
cryptographic algorithms and optimization problems.

The classical reversible computing models focus on achieving reversibility within
the classical computing architectures, and these models aim to minimize energy dissi-
pation with reduced heat generation during computations. Techniques like adiabatic
computing, quantum computing, and reversible CMOS circuits have been developed
to realize classical reversible computing models [4].
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2.3 Formalism and Mathematical Representations
of Reversible Logic

Encryption refers to the science of spoofing a message so that only the intended
recipient can decrypt the received message. Encryption is central to data security.
It not only ensures the message’s confidentiality but also helps provide message
integrity, authentication, and digital signatures. The first message or document sent
is called plaintext; the obfuscated version is ciphertext. Plaintext and ciphertext are
binary strings of the same length. Ob obfuscating the original plaintext is encryp-
tion, whereas decryption is the original plaintext restoration process. Cryptography
is categorized broadly as private key and public key cryptography. The encryption
or public key should be known to the outside world, and a private decryption or
private key should be kept secret. Commonly used private key encryption algorithms
comprise Data Encryption Standard, Advanced Encryption Standard, Blowfish, RC4,
and public key encryption such as AES and elliptical curve encryption. Plaintext
messages can be hidden in two ways. Steganography obscures the message’s exis-
tence, while encryption makes the message incomprehensible to foreigners through
various text transformations.

Formalism and mathematical representation are necessary in analyzing and
designing reversible logic circuits. Formal languages like Permutation Reversible
(PBR) logic, Reversible Structured Vectors (RSV), and RevLib provide a standard-
ized way to describe and model reversible circuits.

Mathematical representations like matrices and permutation functions are used
for reversible logic gates and circuit representation behavior. The matrices enable a
concise representation of reversible gates, whereas permutation functions describe
the input—output relationships of the reversible circuits. These formalism and mathe-
matical representations are used to analyze, synthesize, and optimize reversible logic
circuits.

Hence, understanding the theoretical foundations of reversible logic is essen-
tial for effectively utilizing it in cybersecurity applications. The reversible logic
gates and circuits, synthesis techniques, quantum, classical reversible computing
models, and formalism provide the necessary tools and frameworks for designing
and implementing secure and efficient reversible logic-based cyber security solutions.

3 Implementation Methodologies

Implementing reversible logic gates requires suitable technologies to realize
reversible operations without introducing any information loss. Several technolo-
gies have been explored for reversible logic gate implementations, including CMOS
(Complementary Metal Oxide Semiconductor), quantum computing platforms, and
emerging technologies like adiabatic and optical computing [5].
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3.1 Reversible Logic Gates Using Different Technologies

The CMOS-based reversible logic gates leverage well-established CMOS technology
widely used in conventional computing systems. The reversible CMOS circuit utilizes
specialized circuit designs and logic transformations to ensure reversibility. These
circuits can be optimized for energy efficiency and integrated into existing CMOS-
based systems with relatively low overhead.

Quantum computing platforms like qubits-based quantum systems provide a
robust framework for implementing reversible logic gates. Quantum gates like CNOT
and Toffoli are inherently reversible and can be used for reversible circuit construc-
tion. The quantum-inspired reversible logic can exploit the unique properties of
quantum systems to achieve efficient reversible computations.

Emerging technologies such as adiabatic logic and optical computing offer poten-
tial avenues for reversible logic implementations. The adiabatic logic circuit uses
the energy conservation principle to achieve reversibility and has shown promising
low-power applications. Optical reversible computing leverages light-based signals
and optical components for reversible logic gates and circuit realization, enabling
high-speed and energy-efficient computations.

3.2 Design and Optimization Techniques for Reversible
Circuits

Designing efficient reversible circuits requires techniques that minimize gate count,
reduce circuit complexity, and optimize performance metrics. Several design and
optimization techniques have already been proposed in the literature.

The Gate-level synthesis approaches aim to generate reversible circuits directly
from a given logic specification. Techniques like Shannon decomposition, Peres
decomposition, and Binary Decision Diagram (BDD) [6] based synthesis are
commonly employed to decompose the logic functions and construct reversible
circuits.

The technology-independent synthesis technique generates reversible circuits
without relying on specific technology constraints. These techniques consider various
factors to optimize the circuit structure, including gate count, garbage outputs,
and ancillary inputs. Examples of technology-independent synthesis algorithms
include ESOP-based synthesis, template-based synthesis, and Multiple Control
Toffoli Network (MCTN) syntheses [7].

Optimization techniques such as gate count minimization, garbage output reduc-
tion, and delay optimization aim to improve the efficiency and performance of
reversible circuits. Methods like gate count optimization using template matching,
encoding techniques, and reversible logic synthesis with application-specific opti-
mizations have been proposed to achieve these objectives.
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3.3 Reversible Logic Synthesis Algorithms and Tools

Several synthesis algorithms and tools have been developed to facilitate the imple-
mentation of reversible logic. These tools automate the process of transforming
irreversible logic specifications into equivalent reversible logic circuits.

Tools such as RevKit, RevLib, and RevComp provide comprehensive environ-
ments for reversible logic synthesis, optimization, and analysis. They offer function-
alities like gate-level synthesis, technology mapping, optimization of circuits, and
performance evaluation.

The reversible logic synthesis algorithms like Exact Synthesis and Heuristic
Synthesis employ different strategies for reversible circuit generation. The Exact
Synthesis algorithms guarantee optimal solutions but may suffer from scalability
issues for larger circuits. The Heuristic Synthesis algorithms provide approximate
solutions with improved scalability and are suitable for larger circuits [8].

3.4 Performance Evaluation of Reversible Logic
Implementations

Benchmarking and performance evaluation are essential for assessing the effective-
ness of reversible logic implementations. Various metrics evaluate reversible circuits’
quality and efficiency, including gate count, circuit depth, garbage outputs, and power
consumption.

Benchmark suites like RevLib provide standardized benchmarks for evaluating
the performance of reversible logic implementations. These benchmarks include
various circuit sizes and complexities, enabling fair comparisons among synthesis
algorithms and respective deployments.

Performance evaluation methodologies such as simulation and formal verifica-
tion are employed to validate the correctness and functionality of the reversible
circuits. The simulation-based approaches involve testing circuits using various input
vectors and verifying the required output behavior. The formal verification tech-
niques, such as equivalence checking and model checking, mathematically ascertain
the correctness of the reversible circuits.

4 Cyber Security Applications

As the digital landscape continues to expand, the importance of robust cybersecu-
rity measures becomes increasingly evident. The implementation methodologies for
reversible logic involve selecting appropriate technologies, designing and optimizing
circuits, employing synthesis algorithms and tools, and evaluating the performance of



Enhancing Cyber Security Through Reversible Logic 145

reversible logic implementations. These methodologies are vital in realizing efficient
and practical reversible logic-based cyber security solutions.

4.1 Cryptography: Secure Key Generation, Encryption,
and Decryption

Cryptography is the fundamental aspect of cyber security, and reversible logic can
enhance cryptographic algorithms and protocols. Reversible logic can be leveraged
to generate a secure key and perform encryption and decryption operations.

The reversible logic is characterized by operations that can be perfectly reversed,
making it particularly valuable in cyber security applications where data integrity,
confidentiality, and traceability are paramount. Reversible logic ensures that data
remains unaltered during cryptographic operations, making it suitable for tasks that
require data integrity, such as digital signatures. Encryption algorithms can employ
reversible logic to protect sensitive information from unauthorized access. The bidi-
rectional nature of reversible logic enables traceability, allowing actions to be tracked,
monitored, and audited with precision.

Reversible logic is a foundation for the cryptographic techniques that safeguard the
data in transit and at rest. Cryptography forms the foundation of cyber security, and
the reversible logic brings unique capabilities to the field, enabling secure encryption,
decryption, and digital signatures. The reversible logic can be used in symmetric and
asymmetric encryption schemes, ensuring data confidentiality through secure key-
based transformations. The reversible logic plays a vital role in creating and verifying
the digital signatures, which are critical for authentication and non-repudiation.

Reversible encryption ensures that the data transmitted over networks remains
confidential and unaltered, safeguarding sensitive information from eavesdroppers.
Reversible cryptography protects data stored in databases or physical storage devices,
mitigating the risk of unauthorized access or tampering.

Intrusion detection systems (IDS) use reversible logic to monitor and respond
to cyber threats. Reversible logic algorithms recognize network traffic patterns and
anomalies, helping identify potential intrusions. The bidirectional nature of reversible
logic allows for real-time analysis and response to suspicious activity, enabling rapid
threat mitigation. Reversible logic-powered IDS can detect and respond to cyber
threats in real time, reducing the risk of data breaches. Reversible logic-based algo-
rithms can identify unusual patterns in network traffic, flagging potential attacks or
vulnerabilities. Cryptographic authentication protocols like TLS (Transport Layer
Security) and SSH (Secure Shell) rely on reversible logic to secure network commu-
nication between clients and servers. In compliance with data protection regulations
(e.g., GDPR), reversible cryptography helps organizations protect user privacy by
encrypting personally identifiable information (PII) and other sensitive data.

The advent of quantum computing challenges classical encryption schemes, and
research in post-quantum cryptography using reversible logic is ongoing. There is
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a need to develop hardware implementations of reversible logic for faster and more
efficient cryptographic operations in resource-constrained environments—the devel-
opment of standardized reversible logic-based cryptographic algorithms to ensure
interoperability and security.

The reversible logic is poised to revolutionize the field of cyber security, offering
solutions for data protection, intrusion detection, and threat mitigation. Its unique
properties, like bidirectional operations and information preservation, make it a valu-
able tool in safeguarding digital assets from cyber threats. As the cyber security
landscape continues to evolve, reversible logic is expected to play an increasingly
significant role in ensuring digital systems and data security and integrity.

4.1.1 Symmetric Encryption

In symmetric encryption, reversible logic is employed to encrypt and decrypt data
using the same key. The encryption process is designed to be reversible, ensuring
that the original data can be accurately reconstructed when decrypted.

4.1.2 Asymmetric Encryption

In asymmetric encryption (public key cryptography), reversible logic enables the
creation and use of key pairs for secure communication. Public keys can be
used for encryption, while private keys are required for decryption. Reversible
transformations ensure that data remains confidential during transmission.

4.2 Reversible Logic in Intrusion Detection and Prevention

Intrusion detection and prevention systems are essential components of cyber secu-
rity, and the reversible logic brings unique advantages to these systems, enabling
real-time monitoring and response to cyber threats. Intrusion detection and intrusion
prevention systems rely on reversible logic for their core principles.

Reversible logic-based algorithms recognize patterns and anomalies in network
traffic, data packets, and system behavior. These algorithms are designed to identify
the deviations from standard patterns which may indicate potential intrusions. The
bidirectional nature of reversible logic is well-suited for real-time analysis. It allows
IDS and IPS systems to continuously monitor the incoming and outgoing network
traffic, enabling immediate responses to suspicious activities.

The reversible logic-based intrusion detection and prevention systems have
numerous applications in enhancing cyber security. The reversible logic-powered
IDS can detect and respond to cyber threats in real time. This rapid response capa-
bility reduces the risk of data breaches and system compromises. The reversible logic-
based algorithms excel at identifying unusual patterns or behaviors in the network
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traffic or system logs, which is crucial for flagging potential attacks, zero-day vulner-
abilities, or unauthorized activities. The IDS and IPS systems can use reversible logic
to create and update the pattern-based signatures for known threats. The signatures
serve as reference points for detecting previously identified attack patterns. The bidi-
rectional analysis capabilities of reversible logic enable deep packet inspection and
traffic analysis, allowing IDS and IPS systems to examine data at a granular level and
detect threats or policy violations. The reversible logic provides traceability, making
it possible to log and audit actions taken by the IDS or IPS. This information can be
invaluable for forensic investigations following a security incident.

The reversible logic-based intrusion detection and prevention systems enhance
cyber security by providing real-time threat monitoring and rapid response capabili-
ties. These systems play a crucial role in safeguarding the networked environments,
ensuring potential threats are detected and mitigated before they cause significant
damage. As cyber threats evolve, the application of reversible logic in intrusion
detection and prevention remains a key component of comprehensive cyber security
strategies. The secure key generation is crucial for cryptographic systems. Reversible
logic can generate random and secure cryptographic keys by exploiting the property
of reversibility. The reversible circuit generates keys with high entropy. It ensures
that the keys can be uniquely recovered from the outputs—encryption algorithms like
symmetric and asymmetric encryption schemes benefit from reversible logic. The
reversible circuits implement efficient and secure encryption algorithms by opti-
mizing the gate count and minimizing the power consumption. The reversible logic
enables the design of lightweight and energy-efficient encryption algorithms suitable
for resource-constrained devices.

Similarly, the reversible logic is utilized in the decryption process. The reversible
circuits provide an efficient and secure decryption algorithm that recovers the original
plain text from encrypted data. The reversibility property ensures that the decryption
process is error-free and maintains the security of the cryptographic system [9].

4.2.1 Authentication and Access Control Mechanisms

The authentication and access control mechanisms are crucial in ensuring the
systems’ and data’s security and integrity. The reversible logic can be integrated
into authentication protocols to enhance efficiency and security.

Reversible logic can enable the design of authentication schemes resistant to
replay attacks, where an attacker intercepts and replays previously captured authen-
tication messages. The authentication protocols can ensure that each authentication
message is uniquely processed, preventing unauthorized access by reversible circuits.

The access control mechanisms like access control lists and role-based access
control can also benefit from reversible logic. Reversible circuits can implement
access control policies more efficiently and securely. The reversible logic-based
access control mechanisms provide fine-grained access control, minimizing gate
count and reducing the overhead associated with access control enforcement [10].
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4.2.2 Intrusion Detection and Prevention Systems

The intrusion detection and prevention system is vital in safeguarding systems and
networks from unauthorized access and malicious activities. The reversible logic can
contribute to designing and implementing efficient and effective IDPS solutions.

The reversible logic can be integrated into the IDPS algorithm to enhance anomaly
detection capabilities. The IDPS processes and analyzes the network traffic data
with reduced power consumption and improved accuracy by employing reversible
circuits. The reversible logic-based IDPS detects complex attack patterns, reduces
false positives, and provides real-time intrusion detection.

Moreover, reversible logic can be utilized to develop intrusion prevention mech-
anisms. The reversible circuits can efficiently implement intrusion prevention algo-
rithms that respond to the detected threats by blocking or mitigating malicious activi-
ties. The reversible logic-based IDPS enhances system resilience, minimizes resource
consumption, and mitigates the impact of cyber attacks [11].

4.2.3 Secure Data Storage and Retrieval Techniques

Secure data storage and retrieval are the captious facets of cyber security. The
reversible logic is employed to enhance the security and efficiency of the data storage
and retrieval mechanisms.

The reversible circuits are utilized for secure data encryption and storage. The
sensitive information is encrypted and stored securely by integrating reversible logic
into the data storage systems. The reversible logic-based data storage solutions ensure
data integrity, confidentiality, and efficient retrieval.

The data retrieval mechanisms also benefit from the reversible logic. The
reversible circuits can provide an efficient and secure method for retrieving stored
data. The reversible logic-based retrieval techniques can minimize the gate count,
reduce latency, and enable safe access to stored information.

S Integration with Existing Security Mechanisms

In the ever-evolving cybersecurity landscape, integrating reversible logic with
conventional cryptographic algorithms represents a promising approach to enhance
data protection, security, and efficiency. The reversible logic can be integrated with
traditional cryptographic algorithms to improve security, efficiency, and resilience.
The cryptographic algorithms benefit from the reversibility property and exploit its
advantages by incorporating reversible logic components.
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5.1 Techniques for Integrating Reversible Logic
with Conventional Cryptography

Reversible logic can be used to optimize the key generation process and encryp-
tion and decryption operations for symmetric encryption algorithms. The reversible
circuits can improve the efficiency of key scheduling and expansion procedures,
resulting in more secure and faster encryption/decryption processes [12]. The
reversible logic can enhance key generation, distribution, and exchange protocols
in asymmetric encryption algorithms. The reversible circuits can enable efficient
and secure generation of public—private key pairs and facilitate secure key exchange
between the communicating parties.

The hash functions essential for data integrity verification can also be improved
with reversible logic. The reversible circuits can enhance the performance of hash
function computations, reduce power consumption, and provide secure hashing oper-
ations. The reversible key management techniques focus on securely generating,
storing, and exchanging cryptographic keys. These methods ensure that crypto-
graphic keys are handled efficiently and securely, reducing the risk of key compro-
mise. The Quantum Key Distribution protocols use reversible logic for secure key
exchange, ensuring that keys remain confidential and tamper-evident.

5.2 Reversible Encryption Algorithms

Reversible data hiding techniques leverage the reversible logic to embed data within
media files like images, audio, or video in a way that allows the original content to
be reconstructed perfectly after extracting the hidden data. This is very useful for
watermarking, steganography, and covert communication. In the least Significant
Bit Substitution, the reversible logic is applied to replace the least significant bits
of data with some hidden information. The subtle changes do not affect the overall
quality or functionality of the media [13]. LSB substitution is commonly used in
image and audio watermarking where additional information, such as copyright data,
is embedded without degrading the visual or auditory quality. These techniques
showcase the versatility and utility of reversible logic in enhancing various aspects
of conventional cryptography. They ensure that the encryption, decryption, and data-
hiding operations are secure and perfectly reversible, enabling the original data to be
retrieved without any loss of information. As the field of reversible logic continues
to evolve, these integration methods are poised to play a pivotal role in improving
the security and efficiency of cryptographic systems.
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5.3 Complementary Roles of Reversible Logic and Existing
Security Measures

The reversible logic can complement the existing security measures by providing
additional layers of protection and addressing specific security challenges. Inte-
grating reversible logic with existing security measures is a powerful approach
to bolster data protection, privacy, and resilience. Reversible logic is pivotal in
preserving data integrity by ensuring that cryptographic operations do not result in
data loss or corruption. Integrating with existing security measures guarantees that
the data remains intact, enhancing the overall security of data storage, transmission,
and processing.

5.3.1 Enhanced Encryption

Encryption is a cornerstone of cyber security, protecting the data from unautho-
rized access and ensuring confidentiality. Bidirectional and efficient properties of
reversible logic enhance the existing encryption methods. Reversible logic optimizes
the encryption processes, allowing for secure and efficient bidirectional transforma-
tions. This results in more substantial encryption schemes that resist attacks while
minimizing computational overheads. Authentication mechanisms verify the iden-
tity of users and devices, preventing unauthorized access and ensuring trust in digital
interactions. The reversible logic strengthens authentication by providing a secure
foundation for cryptographic key exchange and user identity verification. By inte-
grating reversible logic, the authentication protocols become more resilient to various
attacks, including impersonation and man-in-the-middle attacks [14].

The complementary role of reversible logic and existing security measures
enhances secure data storage and transmission, safeguarding sensitive information
from unauthorized access and tampering. The reversible logic bolsters the resilience
of cryptographic systems by ensuring the preservation of data integrity, optimizing
encryption processes, and strengthening the authentication mechanisms.

5.3.2 Data Integrity in Cyber Security

Data integrity is a foundational concept in cyber security. It refers to the assurance
that the data remains unchanged and uncorrupted throughout its life cycle. Data
integrity is essential to maintain trust in digital interactions, preventing unauthorized
alterations, and safeguarding sensitive information. The data should resist unautho-
rized modifications, ensuring its original state can be preserved. Mechanisms should
be implemented to identify and rectify accidental or deliberate data corruption. The
data integrity should be maintained from creation through storage, transmission, and
processing [15].
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The reversible logic ensures that the data remains unaltered during cryptographic
operations. This is particularly valuable when data is encrypted or decrypted as it
guarantees that original data can be reconstructed without any loss or corruption. By
preserving the data integrity, the reversible logic helps detect unauthorized modi-
fications or tampering attempts. The system can raise alarms or initiate corrective
actions if data integrity is compromised. The reversible logic maintains the data
integrity across the entire data life cycle, ensuring that data remains unchanged during
storage, transmission, and processing. Integrating reversible logic with existing secu-
rity measures strengthens data integrity protection, assuring stakeholders that their
digital assets are secure and unaltered. This synergy enhances the overall cyber
security framework, bolstering trust and reliability in digital interactions.

The intrusion detection and prevention systems can benefit from reversible logic
by integrating it with an existing anomaly detection algorithm [16]. The reversible
circuits can enhance anomaly detection accuracy by analyzing network traffic
patterns in a reversible and energy-efficient manner; by combining reversible logic-
based IDPS with the traditional signature-based detection methods, comprehensive
and robust intrusion detection capabilities can be achieved.

Reversible logic can also be integrated into an access control mechanism to
augment effectiveness. Fine-grained access control can be achieved, ensuring that
only authorized entities can access sensitive resources by incorporating reversible
circuits into access control systems. Reversible logic-based access control mecha-
nisms can complement existing authentication and authorization systems, providing
an additional layer of security.

Furthermore, the reversible logic can enhance the resilience of cryptographic
protocols against side-channel attacks. The side channel attacks exploit the informa-
tion leakage via the physical implementation of cryptographic algorithms. Hence, the
vulnerability of cryptographic systems to such attacks can be reduced by designing
reversible circuits that minimize side-channel leakage.

5.4 Addressing Security Vulnerabilities and Enhancing
Resilience Through Reversible Logic

The reversible logic can address specific security vulnerabilities and enhance the
resilience of systems against potential attacks. In an era marked by increasing cyber
security threats and vulnerabilities, this section explores how reversible logic can
address security vulnerabilities and enhance resilience across various information
technology and cyber security domains. A constantly evolving threat landscape char-
acterizes the digital landscape. Cyber adversaries employ sophisticated techniques
to exploit vulnerabilities and compromise systems, making it essential to address
security weaknesses proactively [17].
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5.4.1 Common Security Vulnerabilities

Security vulnerabilities include software, network, social engineering, and crypto-
graphic weaknesses. Software Vulnerabilities include weaknesses in software code
that attackers, such as buffer overflows or injection attacks, can exploit. The network
vulnerabilities show flaws in network configurations that expose systems to unautho-
rized access or data interception. In social engineering, human psychology is manip-
ulated to deceive individuals into disclosing sensitive information or performing
actions that compromise security. The cryptographic weaknesses explore vulner-
abilities in encryption algorithms that could be exploited to decrypt encrypted
data.

5.4.2 Role of Reversible Logic in Addressing Vulnerabilities

The ability of reversible logic to preserve data integrity addresses many common
security vulnerabilities. Like mitigating software vulnerabilities by ensuring that
the data remains unaltered during cryptographic operation, the reversible logic can
protect against data corruption resulting from software vulnerabilities. The reversible
logic also enhances encryption processes, safeguarding data in transit and mitigating
network vulnerabilities. Reversible logic contributes to addressing vulnerabilities
by optimizing encryption [18]. Strong encryption protects data even if a software
vulnerability is exploited, rendering stolen data unreadable. Enhanced encryption
reduces the risk of unauthorized access to data transmitted over networks addressing
network vulnerabilities.

Cyber resilience involves proactive measures to minimize vulnerabilities and
strategies for effective response and recovery. Reversible logic contributes to cyber
resilience in several ways, such as reducing attack surface, efficient recovery, and
adaptive security. By mitigating vulnerabilities, the reversible logic minimizes the
attack surface available to cyber adversaries, making it more difficult for them to
exploit weaknesses. The optimized encryption and data integrity preservation of
reversible logic simplifies data recovery processes after security incidents, mini-
mizing downtime. The bidirectional nature of reversible logic allows for adap-
tive security measures, enabling organizations to respond dynamically to emerging
threats.

Reversible logic protects against data corruption caused by software vulnera-
bilities, ensuring data integrity. The reversible logic can be employed to ensure
the integrity and authenticity of software updates, preventing malicious updates
from compromising systems. The reversible logic strengthens network encryption,
protecting data in transit and mitigating network vulnerabilities. Adaptive security
measures enabled by reversible logic help networks respond effectively to emerging
threats.

The research into post-quantum cryptography using reversible logic to address
vulnerabilities is exposed by quantum computing. Developing industry standards for
integrating reversible logic into existing security measures ensures interoperability



Enhancing Cyber Security Through Reversible Logic 153

and security. Raising awareness about reversible logic’s benefits and applications
addresses vulnerabilities and enhances resilience.

Reversible logic offers innovative solutions to address security vulnerabilities and
enhance cyber resilience. By preserving data integrity, optimizing encryption, and
enabling adaptive security measures, the reversible logic contributes to developing
robust cybersecurity strategies. As cyber threats continue to evolve, the integration of
reversible logic is poised to play a pivotal role in bolstering the security and resilience
of digital systems and organizations.

5.4.3 Addressing Security Vulnerabilities and Enhancing Resilience
Through Reversible Logic

Understanding security vulnerabilities is crucial to safeguarding information and
systems from cyber threats in an increasingly connected digital world. This section
explores organizations’ evolving threat landscape and common security vulnerabil-
ities. The digital landscape is constantly in flux, with cyber adversaries developing
new techniques and tools to exploit vulnerabilities. Understanding the dynamics of
this landscape is essential for adequate cyber security. Cybercriminals and state-
sponsored actors employ increasingly sophisticated methods to breach security
defenses. Organizations of all sizes and industries are the potential targets, and
attackers often tailor their strategies to specific targets. Adopting emerging tech-
nologies such as IoT and cloud computing introduces new attack vectors and
vulnerabilities.

6 Advantages and Challenges

Various advantages and challenges related to cyber security enhancement through
reversible logic are discussed below.

6.1 Energy Efficiency and Low Power Consumption Benefits

One of the momentous advantages of reversible logic is its energy efficiency and
low power consumption characteristics. The reversible circuits inherently minimize
information loss, reducing heat dissipation and energy consumption. This energy
efficiency is particularly beneficial for resource-constrained devices and systems with
limited power budgets, such as IoT devices and mobile platforms. Hence, energy
consumption can be optimized by integrating reversible logic into cyber security
solutions, leading to longer battery life, reduced operational costs, and a smaller
environmental footprint.
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6.2 Scalability and Fault-Tolerant Features

The reversible logic offers scalability and fault-tolerant capabilities that can benefit
cyber security applications. The reversible circuits can be designed and optimized to
handle large-scale computations efficiently. As the reversible logic circuits exhibit
no information loss, they can be easily expanded or replicated without introducing
errors, making them suitable for scaling up cryptographic systems and security mech-
anisms. Furthermore, reversible logic-based systems can incorporate fault detection
and correction techniques, ensuring robustness against transient faults and hardware
failures.

6.3 Security Concerns and Potential Attack Vectors

While the reversible logic offers advantages, it also introduces new security concerns
and potential attack vectors. The reversible circuits can be vulnerable to various
attacks like side-channel attacks, timing attacks, and fault attacks. The side channel
attacks exploit information leakage from the physical implementation of reversible
circuits, while timing attacks can leverage the unique properties of reversible logic
gates to extract sensitive information. The fault attacks can target reversible circuits to
induce errors, compromising security. It is also essential to carefully analyze the secu-
rity implications of reversible logic-based solutions and employ countermeasures to
mitigate these vulnerabilities.

6.4 Overheads and Trade-Offs

Implementing reversible logic-based cyber security solutions may involve certain
overheads and tradeoffs. The reversible circuits typically require additional gates and
ancillary inputs to ensure reversibility, which can increase the gate count and circuit
complexity. This may result in increased hardware costs, latency, and resource utiliza-
tion. Additionally, the reversible logic synthesis techniques and optimization algo-
rithms may introduce computational overheads and design complexities. Tradeoffs
between security, efficiency, and resource utilization must be carefully considered
while designing and implementing reversible logic-based cybersecurity solutions.
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6.5 Availability of Design Tools and Expertise

The availability of design tools and expertise in reversible logic synthesis and
implementation is still limited compared to the traditional security methodolo-
gies. Designing efficient and secure reversible logic-based cybersecurity solutions
requires specialized knowledge and continuously evolving tools. The development
of user-friendly design tools and the availability of skilled professionals in reversible
logic design are crucial to accelerate the adoption and practical implementation of
reversible logic in cyber security.

Hence, the reversible logic offers energy efficiency, scalability, fault-tolerant
features, and the potential to enhance cyber security. However, potential attack
vectors and overheads must be carefully addressed in light of security concerns.
By considering these advantages and challenges, researchers and practitioners can
harness the potential of reversible logic to develop secure, efficient, and resilient
cybersecurity solutions.

7 Case Studies and Experimental Results

Several case studies have showcased the practical applications of reversible logic
in real-world cybersecurity scenarios. These case studies highlight the benefits and
effectiveness of reversible logic in addressing specific security challenges.

7.1 Case Studies Demonstrating the Application of Reversible
Logic in Real-World Cyber Security Scenarios

One case study focuses on the integration of reversible logic into cryptographic
algorithms. The study demonstrates the implementation of a reversible logic-based
encryption algorithm that offers improved security and energy efficiency compared
to traditional algorithms. The case study includes performance evaluations like
encryption/decryption speed, power consumption, and security analysis.

Another case study explores the use of reversible logic in intrusion detection
systems. The study presents a reversible logic-based anomaly detection algorithm
that detects network intrusions with higher accuracy and reduced power consump-
tion. Experimental results demonstrate the effectiveness of the reversible logic-based
approach in detecting known and unknown intrusion patterns.

Furthermore, a case study examines the integration of reversible logic into access
control mechanisms. The study presents a reversible logic-based access control
model that enhances fine-grained access control and reduces gate count in access
control systems. The case study includes performance evaluations like access latency,
scalability, and security analysis.
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7.2 Experimental Evaluations and Comparative Analyses
of Reversible Logic-Based Security Solutions

The experimental evaluations and comparative analysis are conducted to assess the
performance and effectiveness of reversible logic-based security solutions compared
to traditional security approaches.

For instance, an experimental evaluation compares reversible logic-based encryp-
tion algorithms’ performance with conventional encryption algorithms. The review
includes metrics like encryption or decryption speed, power consumption, and
security analysis. The results demonstrate the advantages of reversible logic-based
encryption regarding security and energy efficiency.

Another comparative analysis focuses on the effectiveness of reversible logic-
based intrusion detection systems compared to the traditional approaches. The study
includes metrics like detection accuracy, false positive rate, and resource utilization.
The result showcases the superiority of reversible logic-based intrusion detection in
terms of accuracy and energy efficiency.

Additionally, a comparative analysis examines the performance of reversible
logic-based access control mechanisms compared to traditional access control
systems. The study includes metrics like access latency, gate count, and security
analysis. The results demonstrate the benefits of reversible logic-based access control
in terms of efficiency and fine-grained access control.

These case studies, experimental evaluations, and comparative analyses contribute
to the body of knowledge by providing empirical evidence of the practical application,
performance, and advantages of reversible logic in cyber security. They offer insights
into reversible logic-based security solutions’ feasibility, effectiveness, and potential
in real-world scenarios.

8 Conclusion and Future Scope

The reversible logic provides unique advantages, including energy efficiency, scala-
bility, fault-tolerant features, and the potential to address security vulnerabilities. The
cryptographic algorithms can be more secure and efficient by leveraging reversible
logic. The access control mechanisms can achieve fine-grained control, and intrusion
detection and prevention systems can enhance their accuracy and energy efficiency.
The Reversible logic also offers benefits in secure data storage and retrieval.

However, the integration of reversible logic in cyber security also presents chal-
lenges. Security concerns, potential attack vectors, overheads, and the availability of
design tools and expertise must be carefully addressed. The vigilance is required to
mitigate vulnerabilities, analyze security implications, and develop countermeasures
against potential threats.

To advance the reversible logic-based cyber security field, future research should
explore emerging trends like quantum reversible logic, machine learning integration,
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hardware implementation, and reversible logic in blockchain technology. Addition-
ally, addressing open challenges related to security analysis, scalability, design tools,
standardization, and practical deployments will contribute to the practical adoption
of reversible logic in cybersecurity applications.

By combining theoretical advancements, experimental evaluations, and case
studies, researchers and practitioners can harness the potential of reversible logic
to develop secure, efficient, and resilient cybersecurity solutions. The collabora-
tion among academia, industry, and government organizations is essential for inter-
disciplinary research and practical implementation of reversible logic-based cyber
security measures.

In conclusion, reversible logic offers a valuable avenue to enhance cyber secu-
rity, and its integration holds excellent potential for developing robust and efficient
security solutions in an ever-evolving digital landscape.

The field of reversible logic and its application in cyber security continues to
evolve, presenting several emerging trends and directions for future research.

With the furtherance of quantum computing, exploring the integration of
reversible logic with quantum computing platforms and quantum algorithms holds
promise for enhancing cyber security. Research on quantum reversible logic can
contribute to developing secure quantum communication protocols, quantum-
resistant encryption algorithms, and quantum error correction techniques.

Integrating machine learning techniques with reversible logic can open new
avenues for improving cyber security. Research can focus on developing reversible
logic-based machine-learning algorithms for anomaly, malware, and intrusion detec-
tion. Exploring the application of reversible logic in privacy-preserving machine
learning can also be a fruitful area of investigation.

Further advancements in hardware technologies, such as nanoscale devices,
quantum dot cellular automata, and emerging nonvolatile memory technologies, can
enable more efficient and compact hardware implementations of reversible logic.
Research focuses on developing novel reversible logic-based hardware architectures
for secure and energy-efficient computing systems.

The integration of reversible logic in blockchain technology enhances the secu-
rity and scalability of blockchain networks. Research explores reversible logic
for efficient consensus protocols, secure transaction processing, and data privacy
preservation in blockchain systems.

Open challenges and research gaps still need to be addressed, while the reversible
logic shows promise in enhancing cyber security.

Further research is needed to analyze reversible logic-based security solutions’
implications and vulnerabilities. Hence, developing rigorous security analysis frame-
works, addressing potential attack vectors, and investigating countermeasures against
security threats are essential focus areas.

As reversible logic scales up to larger circuits and complex systems, scala-
bility becomes a significant challenge. Research explores techniques for optimizing
reversible logic synthesis, reducing gate count, and improving the efficiency of
large-scale reversible circuits.
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Developing user-friendly design tools and methodologies for reversible logic-
based cybersecurity solutions is crucial for broader adoption. Research focuses
on creating efficient synthesis algorithms, optimization techniques, and simulation
tools that facilitate the design and implementation of reversible logic-based security
systems.

Establishing standardized benchmarks and performance metrics for evaluating
reversible logic-based cybersecurity solutions is essential for fair comparisons and
benchmarking. The research also contributes to developing standardized bench-
marks, performance evaluation methodologies, and benchmark suites specific to
reversible logic-based security applications.
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Abstract In the digital age, traditional password-based authentication systems are
increasingly vulnerable to sophisticated cyberattacks, such as phishing, creden-
tial theft, and social engineering. Security paradigms are shifting towards contin-
uous, non-intrusive methods that adapt to user behavior and context to address
these limitations. This paper explores an advanced authentication framework that
integrates continuous behavioral biometrics with passive authentication techniques
to strengthen security beyond traditional methods such as passwords. The system
captures and analyzes user behavior (e.g., typing patterns, gestures) alongside passive
signals (e.g., location, device, time) to continuously validate user identity. The
authentication system dynamically adapts to detect anomalies and mitigate fraud
in real time by utilizing data from both behavioral and contextual sources. This
adaptive, multi-layered approach enhances security, particularly in sensitive financial
applications, by providing continuous monitoring and real-time fraud detection.
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1 Introduction

Traditional password-based authentication has long been the cornerstone of digital
security. However, it is increasingly proving inadequate in the face of modern cyber-
security threats. Passwords are often easy to guess, reused across multiple accounts,
or stored insecurely [1]. Users frequently choose weak passwords that are vulner-
able to brute-force attacks or phishing schemes, and even strong passwords can be
compromised through sophisticated methods like keylogging, database breaches, or
social engineering. As attackers evolve, passwords have become a single point of
failure, placing sensitive data and systems at risk. Data breaches have increased
in scope and frequency in recent years, with leaked credentials frequently acting
as an attacker’s point of access. According to industry studies, many breaches are
caused by weak or stolen passwords [2]. These hacks affect consumers’ and service
providers’ trust in addition to causing financial harm. Furthermore, because platforms
and devices are becoming increasingly interconnected, a single password breach can
result in extensive illegal access and expose private and company data. A potential
remedy for the shortcomings of password-based systems is behavioral biometrics.
Behavioral biometrics analyzes patterns in human behavior, including typing speed,
mouse movements, touchscreen gestures, and gait, for authentication, in contrast to
traditional authentication approaches that rely on static credentials. This dynamic and
ongoing approach provides users real-time behavior tracking during a session [3].
Behavioral biometrics-powered continuous authentication provides a more reliable
security layer by passively confirming the user’s identity without interfering with
their experience. This method is thought to be the secure, frictionless authentication
of the future.

This survey aims to explore the latest developments in behavioral biometrics,
emphasizing passive and continuous authentication methods. Identity verification
techniques have changed significantly over the past ten years, moving away from
static, one-time logins and toward ongoing user behavior tracking. This survey aims
to give a thorough overview of the significant techniques and technologies being
created and used in various sectors, including online retail, healthcare, and finance
[4, 5]. This paper will shed light on recent advancements and show how the security
landscape is changing due to these new methods. Although there are many advan-
tages to continuous and passive behavioral authentication, such as increased security
and user convenience, its implementation has certain obstacles. This survey will
objectively assess these strategies’ efficacy in practical applications, gauging how
well they reduce security breaches and enhance user experience. It will also cover
the possible drawbacks, including scaling problems, false positives, and privacy
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concerns. This study will evaluate the advantages and disadvantages of both contin-
uous and passive authentication through a thorough analysis of previous research,
offering a fair assessment of its place in future authentication systems.

2 Background and Literature Review

A. Evolution of Authentication Mechanisms

Authentication mechanisms have evolved significantly over time, adapting to the
growing complexity of cybersecurity threats. Initially, passwords were the primary
method of securing access to systems. However, as attackers developed methods to
steal or crack passwords, reliance on this single-factor authentication became insuf-
ficient. The implementation of two-factor authentication (2FA), which mandates that
users authenticate their identity using two separate factors—something they own (like
a token or phone) and something they know (like a password—was the following
significant change[6]. Although this method increased security, it caused additional
friction for users, discouraging some of them from using it. Another advancement
was the introduction of biometric authentication, which includes voice, facial, and
fingerprint recognition. Passwords could be replaced by a more user-friendly and
safe option: biometrics. On the other hand, physical biometrics are static and subject
to theft or spoofing. This opened the door for the most recent development in authen-
tication techniques, behavioral biometrics, which examines ongoing patterns in user
activity.

B. Behavioral Biometrics: Definition and Scope

Behavioral biometrics refers to the identification and authentication of individuals
based on their unique patterns of behaviour [7]. Unlike physical biometrics, which
rely on physical traits (fingerprints, iris scans), behavioral biometrics capture how
users interact with devices. Common examples include:

Typing dynamics: The rhythm, speed, and pressure applied while typing.
Mouse movements: How users move, click, and interact with a mouse or touchpad.
Touchscreen gestures: The patterns of swipes, taps, and pinches on a smartphone
or tablet.

Gait analysis: How a person walks, detected through mobile device sensors.
Device handling: How a user holds and tilts their device while using it.

Behavioral biometrics are dynamic, continuously gathering data on how users
interact with devices, in contrast to physical biometrics rely on static, physical traits
that remain constant over time (such as fingerprints and iris patterns). Because an
attacker would have to duplicate one characteristic and a whole behavioral profile,
they are less vulnerable to theft or spoofing. Moreover, behavioral biometrics provide
greater resilience over extended usage by adjusting to minute modifications in a
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user’s behavior. They can also be gathered passively during routine user engagement,
enhancing security without interfering with user activity.

C. Continuous Authentication versus One-Time Authentication

Traditional authentication methods, such as password entry or biometric scanning,
involve one-time authentication—users verify their identity once when logging in.
Then, they are granted continuous access until they log out, or the session ends. This
method does, however, come with security dangers because an intruder may manage
to stay hidden the entire time they are in. Continuous authentication, on the other
hand, keeps an eye on users during their session by examining behavioral patterns,
including typing speed, mouse movement, or device handling, to make sure the person
utilizing the system is still the authorized user [8, 9]. By constantly assessing identity,
this technique lowers the possibility of unauthorized access or session hijacking if
an attacker takes over mid-session. With continuous authentication, the system never
fully trusts any session without continual verification—a change from a static to a
dynamic paradigm.

D. Passive Authentication

Passive authentication refers to the process of verifying a user’s identity without
requiring explicit action on their part. Instead of entering a password or scanning a
fingerprint, users are authenticated based on patterns collected in the background,
such as how they type, scroll, or interact with a device [10—12]. This passive detection
occurs continuously throughout the session, ensuring the legitimate user is consis-
tently validated without additional prompts. The enhanced user experience is the main
advantage of passive authentication. Passive systems facilitate seamless engagement
and uninterrupted productivity by eliminating the need for frequent authentication
requests. Simultaneously, security is preserved since the system keeps an eye out for
any irregularities in behavior that could point to fraud or illegal access. Thus, passive
authentication is an appealing alternative to contemporary authentication systems
since it combines strong security with user comfort.

Buttons, and navigating the screen. By examining mouse trajectories, click
velocity, scroll behavior, and pointer movement velocity; systems can create a behav-
ioral profile that allows user differentiation [13, 14]. Because these patterns rely on
habits, motor abilities, and even hardware, they are challenging to duplicate. Partic-
ularly useful in differentiating between authentic users and imposters—even if the
latter have stolen login credentials—are mouse and touchpad biometrics. The tech-
nology is widely used in continuous authentication, especially in environments like
online banking, where unauthorized access needs to be detected in real-time.

E. Touchscreen and Swiping Behavior

Touchscreen interactions on mobile devices offer yet another rich source of biometric
data about behavior. Users display distinct patterns on touchscreens in pinch, zoom,
swipe, and tap [15]. Finger pressure, swipe speed, and the angle at which the device
is held are some variables that affect these activities. Because touchscreen behavior
enables passive user monitoring without frequent credential input, it is beneficial
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for continuous authentication [16]. By examining these motions, mobile devices
can confirm the user’s identification throughout the session. One way to be sure an
unauthorized user has not taken over is to track a person’s usual swipe gesture for
unlocking their phone or interacting with apps. This type of authentication is prevalent
in mobile banking and healthcare apps, where sensitive data requires robust security
but minimal friction for the user.

F. Gait Analysis

Gait analysis is a behavioral biometric that recognizes persons based on their gait
patterns using sensors found on mobile devices, such as gyroscopes and accelerom-
eters. Everybody has a different gait, which is impacted by walking rhythm, stride
length, and body composition. Systems can continuously verify people while they
walk or move with their smartphones by collecting data from various sensors [17].
This approach is constructive with mobile devices, where the user frequently holds
the phone in motion. When an unauthorized user manipulates a device, such as after a
phone has been stolen, gait analysis can identify this. Research shows that gait-based
authentication can achieve high accuracy rates, especially when combined with other
behavioral data like typing or touchscreen interaction. It offers an additional security
layer for mobile apps, smartwatches, and wearable devices.

G. Device Handling (Grip, Tilt, Motion)

Device handling biometrics examine how users hold, tilt, and move their phones or
tablets when interacting with them physically. Every person has a unique style of
holding and manipulating their device, impacted by hand size, grip strength, and even
posture. These variables can be watched over time to verify a user’s identification
[18]. For example, when unlocking a smartphone or interacting with apps, sensors
can detect the angle at which the device is held, the force used to press buttons, and
how the phone is tilted during use. If an attacker gains access to the device, changes in
handling patterns can trigger security alerts or re-authentication requirements [19].
Device handling biometrics are especially useful for mobile authentication, where
passive and unobtrusive methods are preferred to enhance security without disrupting
the user experience. This technique is increasingly being integrated into smartphones,
wearable devices, and smart home systems for continuous protection.

3 Passive Behavioral Authentication

Figure 1 illustrates a continuous behavioral biometrics and passive authentication
system that significantly enhances security beyond traditional password mecha-
nisms. The User Device serves as the entry point, collecting two types of data:
behavioral data (e.g., typing patterns, gestures) and passive data (e.g., location,
time, and device information). This information is sent to two primary engines. The
Behavioral Biometrics Engine processes the behavioral data, analyzes user patterns,
and performs continuous monitoring to detect real-time anomalies. It compares
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Fig. 1 A continuous behavioral biometrics and passive authentication system that significantly
enhances security beyond traditional password mechanisms

current behaviors with historical data stored in the Behavioral Data Store, which
is continuously updated with real-time results.

Simultaneously, the Passive Authentication Engine processes contextual signals
like the user’s device, location, and use time, validating these signals against stored
passive data in the Passive Data Store. The behavioral and passive authentication
results are sent to the Authentication System, where they are aggregated and analyzed
to decide—whether to allow access, prompt for re-authentication, or block the user
based on any detected anomalies or suspicious behavior.

The Security Alert System also plays a critical role by generating risk alerts if any
irregularities are identified during the authentication process. It promptly notifies
the user and system administrators, ensuring swift responses to potential threats.
This system provides adaptive security by continuously monitoring user behavior
and passive signals, allowing for real-time detection of fraud or unauthorized access,
thus offering a more dynamic and robust alternative to static password-based systems.

A. How Passive Detection Works

Without requiring direct input or actions from the user, passive behavioral authenti-
cation works by continuously observing a user’s interactions and behavior patterns
in the background. Passive detection works seamlessly while users engage with their
devices, unlike typical authentication systems requiring users to input passwords,
passcodes, or biometric data actively [20, 21]. Through monitoring multiple behav-
ioral biometrics, including mouse movements, touchscreen gestures, typing patterns,
and device handling, passive authentication systems generate a behavioral profile
specific to every user. To verify that the user is authentic, these systems continuously
match the user’s activity to the pre-established profile. Because of this discreet, real-
time monitoring, passive detection is quite helpful for continuous authentication
without interfering with the user experience.
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B. Applications in Modern Systems

Passive behavioral authentication is growing in sectors where user comfort and secu-
rity are vital considerations. Passive detection is a technique used in banking to
track user behavior on online banking platforms. If the system notices anomalous
behavior, including distinct typing patterns or strange mouse movements, it may
flag the session for additional verification or re-authentication [22]. This lessens
the likelihood of fraud without interfering with authorized users’ banking experi-
ences. Passive authentication aids in the security of e-commerce transactions by
continuously confirming the customer’s identity while they explore, add products to
their cart and finish the transaction. Reducing the need for additional authentication
enhances the user experience and lowers the likelihood of fraudulent purchases. In
corporate security, passive behavioral biometrics protect sensitive data within organi-
zations. Employee behavior is monitored as they access systems, handle confidential
documents, or perform critical operations. Any anomalies—such as unusual activity
during a session—can trigger a security response, ensuring that only authorized
personnel can access sensitive information.

C. Impact on User Experience

One of the key advantages of passive behavioral authentication is its ability to reduce
friction in the user experience. Traditional authentication methods, such as pass-
words, PINs, or biometric scans, require users to perform active steps to verify their
identity. This can disrupt workflow and lead to frustration, especially when users must
re-authenticate multiple times during a session. Passive authentication, on the other
hand, operates in the background silently and constantly verifies the user without
demanding any further input [23]. Because there are fewer disruptions overall, the
experience is more seamless and fluid. Users must not constantly enter passwords or
credentials to work, browse, or shop. Passive authentication appeals to consumers
and service providers since it balances usability and safety by increasing convenience
without sacrificing security.

D. Security Benefits

Passive behavioral authentication improves security by detecting abnormalities and
possible breaches in real-time. Since it monitors a user’s actions at all times during a
session, it can quickly identify any variations from normal behavior that would point
to unauthorized access [24]. For instance, if an attacker manages to access a device or
account, their actions—Ilike typing, navigating the mouse, or using the device—will
probably differ from those of a genuine user [25]. The system can detect these vari-
ations immediately and then take appropriate action—locking the account, alerting
the user, or requesting more verification, for example. An essential line of defense
against risks like session hijacking—where an attacker gets access after the user logs
in—is provided by this real-time monitoring. Traditional authentication techniques,
such as passwords, provide no defense against mid-session threats because they only
verify identification at the beginning of a session. This vulnerability is addressed by
passive behavioral authentication, which provides proactive defense against insider
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and external threats by continuously confirming the user. This makes it an effective
tool for corporate systems, financial services, and healthcare, requiring maximum
security with the least disturbance.

4 Comparison to Traditional Authentication

A. Security Improvements

Traditional password-based systems have long been the cornerstone of digital secu-
rity but come with significant vulnerabilities. Passwords can be stolen, guessed, or
compromised through phishing attacks, and once breached, an attacker can gain full
access to a system. Additionally, many users reuse passwords across multiple plat-
forms, amplifying the risk if one system is breached. Behavioral biometrics that are
passive and continuous enhance security by offering dynamic, multi-layered authen-
tication [26]. In contrast to passwords, behavioral biometrics rely on an individual’s
distinct behavior patterns, such as mouse clicks, typing rhythms, and device handling.
Because they would need to duplicate not just one credential but the whole behavioral
profile of the authentic user, this makes it considerably more difficult for attackers
to spoof. Furthermore, even if an attacker manages to obtain access, their distinct
interaction patterns will allow for detection thanks to continuous authentication,
which continuously observes activity throughout a session. One significant benefit
of real-time anomaly detection over standard one-time authentication is that, if suspi-
cious activity is discovered, it can quickly set off alarms or require re-authentication,
thereby avoiding illegal access in the middle of a session.

B. User Experience

One of the main criticisms of traditional authentication methods is the friction they
introduce to the user experience. Passwords, PINs, and biometric scans require active
user input, interrupting workflow or online interactions. Repeated logins and re-
authentications can frustrate users, particularly in environments where high-security
demands frequent credential checks [27]. Especially in passive and continuous forms,
behavioral biometrics provide a much more smooth and convenient experience. These
techniques authenticate users in the background, obviating the need for user inter-
vention [28]. For instance, passive monitoring is carried out on typing patterns,
mouse movements, and touchscreen motions when people perform their jobs. As a
result, fewer login attempts or extra authentication procedures are required, which
minimizes disruptions while preserving a high level of security.

Continuous behavioral authentication significantly increases user happiness by
lowering barriers and improving usability, especially in settings where security
usually causes friction (e.g., online banking and corporate networks). As a result, a
less intrusive and more secure system is created, providing a seamless user experience
that is difficult to do with conventional techniques.
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C. Case Studies

Several industries have successfully implemented continuous and passive behavioral
biometrics, with notable improvements in security and user experience. Here are a
few examples:

e Banking and Financial Services: The internet platforms of major banks have been
equipped with passive behavioral biometrics to identify fraudulent transactions
and unapproved account access. These systems track user behavior on banking
apps, including typing, swiping, and navigating, to identify patterns that might
point to identity theft or account takeover[29]. Since most consumers are unaware
that they are being continuously validated, case studies have demonstrated a
significant decrease in fraud with little to no impact on the user experience.

e E-commerce: Behavioral biometrics are employed in online retail to protect
transactions without interfering with the customer’s shopping experience[30].
E-commerce platforms, for example, monitor customers’ mouse movements,
scrolling patterns, and keyboard patterns as they shop, add products to their carts,
and complete the checkout process. Because of this, users can access accounts
with varied interaction patterns, and the system can detect potentially fraudulent
activity without requiring them to go through additional authentication processes.
Retailers have reported higher consumer satisfaction and decreased fraud rates.

e Corporate Security: Behavioral biometrics are utilized in the workplace to safe-
guard confidential company information and systems. Employees’ typing, mouse
movements, and interactions with internal platforms are continuously used to
authenticate them[31]. In one case study, a sizable organization used continuous
authentication to monitor employee sessions, thereby reducing insider threats
and unlawful access. The solution improved security without interfering with
workflow by enabling the identification and thwarting of possible breaches in
real-time.

These case studies demonstrate that continuous and passive behavioral biometrics
are not just theoretical solutions—they have been proven effective in real-world
scenarios, offering robust security with minimal impact on user experience.

5 Challenges and Limitations

A. Data Privacy and Ethical Concerns

There are serious ethical and data privacy issues when collecting behavioral data
for authentication reasons. By its very nature, behavioral biometrics is the ongoing
gathering and examination of users’ distinct interaction patterns, such as the rhythm
of their typing, the movements of their mouse, or the way they grip their device
[32]. Although this data is extremely valuable for security, it also raises concerns
about the appropriate level of monitoring and the handling, storage, and use of such
sensitive data. Even for security reasons, being continuously watched over may seem
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intrusive to many people. It is imperative to guarantee that data is gathered with
informed consent, preserved securely, and utilized exclusively for authentication.
Striking a balance between enhancing security and protecting user privacy is one
of the most pressing ethical challenges in implementing passive and continuous
behavioral authentication systems. This often involves adhering to stringent data
protection regulations, such as GDPR, and implementing transparent data usage
policies.

B. Accuracy and False Positives

While behavioral biometrics have demonstrated considerable potential, accuracy
remains a challenge, especially in real-world, diverse environments. Erroneous detec-
tions, or false positives, occur when valid users are labeled imposters due to behav-
ioral patterns being altered by factors such as user weariness, stress, or device modi-
fications [33]. When users are forced to continually re-authenticate or verify their
identity, these errors might negatively impact their experience. However, a secu-
rity risk is associated with false negatives, which occur when an attacker imitates a
user’s behavior just enough to evade detection. A critical area of ongoing study is
lowering false positives and raising the overall accuracy of continuous authentica-
tion systems. Improvements are reducing errors in machine learning models, which
can recognize and adjust to minute behavioral changes. However, the systems still
encounter difficulties in contexts where behavior might vary considerably.

C. Scalability

Another significant limitation is the scalability of behavioral biometric systems, espe-
cially when deployed across diverse platforms and user populations [34]. Since every
user’s behavioral profile differs, large-scale applications like corporate networks
and banking platforms with millions of users require systems to process and store
enormous volumes of data in real time [35]. Furthermore, variations in usage situ-
ations (e.g., office vs. mobile) and technology (e.g., different computers or cell-
phones) can impact the precision of biometric readings, making it challenging to
deploy a universal solution that functions flawlessly for everyone. Developing scal-
able, platform-neutral systems that can manage this degree of complexity without
sacrificing accuracy and performance is a significant obstacle to the advance-
ment of behavioral biometrics in the future. Solutions to effectively handle and
analyze large datasets may include integrating distributed computing and cloud-based
infrastructures.

D. Adversarial Attacks

Like any security system, behavioral biometric systems are not immune to adversarial
attacks. Attackers might try to imitate or modify a user’s behavioral habits to trick
continuous authentication systems. An attacker might attempt to mimic the victim’s
actions, for instance, if they have access to video footage of them typing or using a
gadget. We call this kind of attack behavioral spoofing. Furthermore, to get around
the system, more cunning opponents might employ machine learning to examine
and replicate a user’s biometric data [36]. Developers are developing anti-spoofing
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techniques and systems that recognize unusual efforts to alter behavioral patterns to
counter such attacks. However, since there is an ongoing arms race between attackers
and defenders, behavioral biometric systems must continuously improve to counter
new adversarial threat types and stay effective.

6 Conclusion

Integrating continuous behavioral biometrics and passive authentication offers a
robust alternative to traditional password-based security systems. As the system
architecture depicts, this approach combines real-time user behavior monitoring (e.g.,
typing patterns, gestures) with contextual signals (e.g., location, time, device infor-
mation) to dynamically validate user identities. The Behavioral Biometrics Engine
and Passive Authentication Engine work in tandem, analyzing both active and passive
data streams to detect anomalies, which the Authentication System further assesses.
A Security Alert System alerts users and administrators if suspicious behavior is
detected, enabling timely responses to potential threats. This multi-layered system
enhances security by continuously adapting to changes in user behavior and context,
offering real-time fraud detection and reducing the reliance on static credentials like
passwords. By leveraging behavioral and contextual data, this adaptive authentication
model provides enhanced protection, particularly for sensitive financial applications,
where security breaches can be costly.
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Abstract This manuscript presents a thorough analysis of the ensemble model
created using the Greedy Approach focusing specifically for security domain. The
objective of this research is to achieve the optimal combination of the 5 base classifiers
to achieve optimal performance metrics. The proposed greedy ensemble approach
is simulated on the credit card dataset towards determining frauds, to validate its
effectiveness and efficiency. After analysis of the obtained results, it is evident that
it achieves F1 score of 0.83 which is substantially higher than 0.79 of the random
approach. Thus, it can be safely concluded that the greedy approach can be utilized
for devising ensemble modeling. Thus, the current research work can be consid-
ered as a contributing step towards practical security issues such as fraud detection,
malware classification, and intrusion detection.
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1 Introduction

Ensemble learning is a well-known approach in machine learning (ML) that combines
the output from many models to produce a common set of outputs depending on a set
of parameters [1]. Results are substantially more accurate when ensemble techniques
are used. While some ML models excel at modelling a certain characteristic of the
data, others excel at modelling a different component of the data. It combines various
models to improve the stability and prognostication power of the model. Each model’s
variances and biases are offset by the robustness of the models as a whole as shown
in Fig. 1. This offers a composite prediction with a final accuracy that surpasses that
of the individual models [1]. Considering the efficiency of ensemble modeling, it has
been widely employed in various domains namely education, healthcare, agriculture
and many more.

Ensemble methods can be divided into two groups: Sequential ensemble tech-
niques and Parallel ensemble techniques. Sequential ensemble techniques involve
training the base learners consecutively. One example of a sequential ensemble is
Boosting where base models depend on the output of each other. The output of one
base model is sequentially fed to the other. All base learners may not be given equal
importance as incorrectly classified data points may be given more importance in
training the next model. Gradient boosting and Adaptive Boosting (AdaBoost) are
common boosting algorithms [2].

Parallel ensemble techniques involve training the base learners parallelly [3]. A
common example of a parallel ensemble is Bagging. It trains multiple weak learners
such as Decision Tree in parallel and outputs the aggregated result of all base models.
The sample generated to train each weak learner may or may not be identified as
samples are fetched with replacement technique. Hence, base models can be trained
independently. Random Forest is the common bagging algorithm that overcomes the
limitations of overfitting in its base learner.

In ML, optimization refers to changing hyper-parameters to enhance the func-
tionality of the algorithm [4]. The trade-off between bias and variance is determined
by the hyperparameters. The process of optimization involves several strategies. The
cost function is minimized using the Gradient Descent technique, which lowers the
error [5]. The objective is to achieve a local minimum where the cost function can

Fig. 1 Ensembling approach
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no longer be decreased. It is done if global optimum cannot be achieved. This is
done by determining the hyperparameter learning rate, leading to determination of
step-size at each iteration. Choosing a learning rate which is neither too low nor too
high, is a crucial step in this process [6]. During stochastic gradient descent, data
points are chosen randomly during each iteration, making gradient descent a random
component. The idea of evolution is inspired by genetic algorithms. Here, certain
models that produce inferior results are discarded while good models are retained. To
further improve the results, these models are altered with the help of other models.
Models are referred to as variations of the earlier form when this process is repeated
several times.

The objective of this research work is to create a new ensemble model using greedy
optimization techniques in order to find an ensemble model yielding the optimum
performance metrics such as accuracy, precision, recall, and Fl-score. The main
objective of the current research work is as follows:

e Comparison of various classifiers on the basis of performance metrics like
accuracy, precision, recall and F1 score.

e Determining various simulations applied to execute the proposed greedy approach
to develop an ensemble model using a combination of classifiers.

e Comparison of the proposed hybrid ensemble model to the base model.

This paper is organized as follows: Sect. 2 describes the related work, Sect. 3
explains the methodology, Sect. 4 is the analysis of research questions, Sect. 5
concludes research work.

2 Related Work

Several researchers have worked on the optimization of base learners. The tabular
comparison of the state-of art work done in this area is given in Table 1 which clearly
demonstrates the efficacy of ensemble modeling in the various domains highlighting
its significance [7].

The comparative analysis clearly establishes the efficacy of ensemble modeling
over base learners in various domains [15]. Carrying out the research further,
authors in current research work presents the applicability of greedy optimization
on ensemble modeling and shows the superiority of the proposed method by simu-
lating on the credit card dataset. The prime objective or motive behind selection of
credit card dataset is unprecedented growth in the domain of fraudulent transactions
during the past decade. Hence, an efficient method in this domain is of paramount
significance considering its impact on social and economical reputation of a nation
at international level.
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Table 1 Comparative evaluation of the state-of-art in ensemble modelling

Citation | Year | Dataset Methods Results Main contribution | Research gap
[8] 2024 | » Popular ¢ Greedy * Improved Proposed Greedy Not defined
regression optimization regression Deep Stochastic
benchmark strategy accuracy Configuration
datasets from * Boosting « Enhanced Networks
KEEL negative generalization | Ensemble
* Various sizes correlation performance
of regression learning
datasets framework
evaluated
[9] 2024 | » Kaggle Dataset | * Ensemble * 99.6% accuracy | To advance the Higher
Technique: and MAE of preventive computational
Stacking 0.003 maintenance complexity
system
[10] 2023 | » Breast Cancer | e Snapshot ¢ Accuracy of t-distributed Tradeoff
Dataset Ensemble 86.6%, higher | stochastic neighbor | between
Technique than the embedding accuracy and
state-of-art employed for cost
dimensionality
reduction
[11] 2022 | * Vinho Verde ¢ Classification « Dataset Reduced dataset Impact of
wine dataset techniques: reduction size from 13 to 9 preprocessing
Random Forest, without impact | attributes on
Decision Tree, on performance performance
KNN, ANN + Random Forest
outperforms all
classifiers
[12] 2022 | » Benchmark « Hybrid layered  Superior Developed hybrid | Predictor
time series data |  based greedy generalization | layered based deletion based
sets ensemble performance greedy ensemble on lowest
reduction reduction accuracy and
(HLGER) architecture diversity
[13] 2022 |+ 8 Datasets * Sequential * Better Developed Optimization
taken from Ensemble prediction and | sequential of
PROMISE and Modelling lesser values of | ensemble model for | maintenance
ECLIPSE Error Metrics software fault cost
repository prediction
[13] 2021 | Not mentioned | Branch and * High Better May lead to
Bound Performance Generalization overfitting
Algorithm * Lesser no. of Performance
rules
[14] 2018 | » Dataset of * Bayesian * Ensemble Improved detection | Not
potentially fake | network learning of high-value wine | mentioned
wines classifiers improves BNC | forgeries
synthesized * Multilayer and MLP
from real perceptron classifiers
samples * Sequential significantly
minimal
optimization
« Ensemble
Learning:
Bagging and

Boosting
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3 Methodology

The prime goal of this research is to construct a classification model, which will
boost the accuracy and dependability of forecasts. Results of classification models
are trained using 5 ML models namely Logistic Regression (LR), Support Vector
Machine (SVM), K-Nearest Neighbour (KNN), Naive Bayes (NB), Decision Tree
(DT) which are combined to create a hybrid ensemble model using a greedy
approach on one of its performance metrics. This ensemble approach outperforms
the base models in terms of performance, utilizing a step-by-step methodology. The
dataset used for this research work is pertaining to Credit Card Fraud Detection
Dataset taken from Kaggle (https://www.kaggle.com/datasets/yashpaloswal/fraud-
detection-credit-card). The dataset includes credit card transactions performed by
European cardholders in September 2013. There were 492 frauds out of 284,807
transactions in this dataset of transactions that took place over the course of 2 days.
It only has input variables that are numbers. The original features and further
background information about the data are concealed due to confidentiality concerns.

3.1 Preprocessing

During building an optimal hybrid ensemble model, the data needs to be prepro-
cessed. This Credit Card Fraud dataset consists of 31 columns and 284,907 data rows.
To implement the preprocessing, there are mainly 3 steps namely removal of incor-
rect values, missing values and the outlier. Although there are various approaches to
manage missing values. The most popular method for removing rows and columns
is to use the pandas ‘dropna()’ function. This technique is not needed in the consid-
ered dataset as considered dataset has no missing values. Second preprocessing step
is dimensionality reduction which retains only the significant features removing the
least significant features conserving the computational requirements. Here, the down-
loaded dataset has already gone under this process and the columns from V1 till V28
have been reduced to the current form. The last method in preprocessing is to convert
the data from categorical values to numeric values. Since the dataset consists of only
numeric data, this step can also be skipped.

3.2 Training

In this research work, authors have split the dataset into 85% for training and 15%
for testing giving test_size = 0.15, random_state = 0 and stratify = y.


https://www.kaggle.com/datasets/yashpaloswal/fraud-detection-credit-card
https://www.kaggle.com/datasets/yashpaloswal/fraud-detection-credit-card
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3.3 Optimization Technique

During current research work, an incremental greedy approach is adopted to deter-
mine the best suited ensemble model on the chosen dataset. F1 score is the property
on which the greedy approach will follow.

In the first step, results from base models are taken into consideration and they
are sorted in decreasing order of accuracy. This is done because models having better
performance is preferred over other models. As outputs of each step are taken into
account before going to the next step, this can be called a variation of Boosting
Technique. However, current research work has one restriction that iterations of a
single base model for ensemble models is limited to 2. This means that a model can
occur only in 3 ways: Not present at all, present once and present 2 times. This limits
the chances of getting stuck in an infinite loop while selecting the models greedily.

The optimization technique used in creating the final ensemble model is Greedy
Approach. Using this approach, each model is added to the ensemble model array
sequentially and on the basis of the F1 score produced at each iteration, the picking
of the classifier is done. This process is continued till the number of base learners in
the sorted array exhaust. Finally, results from the generated ensemble are combined
using a maximum vote approach.

3.4 Proposed Approach Algorithm

This section contains a basic algorithm of the adopted optimization technique. Certain
parts of the algorithm are assumed to be calculated with the help of helper functions.
The flowchart for proposed methodology is illustrated in Fig. 2.

Algorithm of Greedy Ensemble:
1. Create an empty array of size n, where n is the number of individual
classifiers.
2. Insert the F1 score of each classifier in the array.
Sort the array in decreasing order.
Pick the first element of the array, and add to the estimator array as the base
ensemble.
Compute the base model F1 Score.
Pick the next element from the array and add to the Estimator array.
Compute the F1 score.
If the F1 score is greater than previously obtained F1 score, add this model
to the final ensemble. Else, Discard this iteration.
9. Repeat Step 6,7, and 8 for Twice the same model.
10. Repeat steps from Step 6 for each of the subsequent models in the array

>

el

Final Time Complexity :
O(nlogn)
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This section discusses the different research objectives as mentioned earlier. The

dataset is split into 85% training samples and 15% testing samples.

(A) Comparison of various classifiers on the basis of performance metrics like

accuracy, precision, recall and F1 score.

This section presents the performance metrics of various base classifiers. This
comparative analysis is carried out to determine the order in which base classi-
fiers must be considered during development of ensemble model. The performance
metrics viz. Accuracy, Presion, Recall and F1 score are illustrated in Table 2 which
clearly illustrates that KNN yields best performance and thus it will be considered
first among all 5 base ML models. The same is pictorially illustrated in Fig. 3.

Table 2 Comparative analysis of base models

Classifier Accuracy Precision Recall F1 score
LR 0.99 0.84 0.71 0.77
NB 0.97 0.06 0.81 0.11
SVM 0.99 0.95 0.59 0.73
KNN 0.99 0.96 0.71 0.82
DT 0.99 0.80 0.71 0.75

Fig. 3 Visualization of comparative analysis of base models



A Greedy Hybrid Ensemble Approach for Security Applications: Fraud ... 185

(B) Determining various simulations applied to execute the proposed greedy
approach to develop an ensemble model using a combination of classifiers?

This research work uses the greedy algorithm to create a hybrid ensemble model
which yields the maximum F1 score. Since, there are 5 classifiers, each will be
tested twice for including them in the final model. Thus, there will be 10 iterations
in total as illustrated in Table 3. Thus, the final model obtained from the above-
mentioned approach is: 2KNN + 1 LR + 2 DT + 1 NB, yielding the F1 score as
0.833. Hence, this is the optimum value of the F1 score that can be reached using
the above-mentioned hybrid ensemble model.

(C) Comparison of the proposed hybrid ensemble model to the base model.

This research work takes the base model computed by repeating the classifiers in
random fashion. This model is created to draw a comparison between the optimal
approach and other random approaches. Table 4 provides a statistical comparison
between these two models on the basis of F1 score. The same is graphically illustrated
in Fig. 4.

Now, from the results shown in this section, it is pretty clear that ensemble
approach outperforms base ML models. Further, greedy ensemble model is compared
with randomly created ensemble model which further strengthens the effectiveness of
greedy approach. From the results, it can be assuredly claimed that greedy ensemble
approach is an effective method and hence can be applied in various domains in real
life.

Table 3 Iterations of the model

Iteration no. Model used Recall F1 score

1 1KNN 0.82 Model accepted
2 2KNN 0.82 Model accepted
3 2KNN + ILR 0.82 Model accepted
4 2KNN + 2LR 0.79 Model rejected
5 2KNN + ILR + 1DT 0.81 Model rejected
6 2KNN + 1LR + 2DT 0.83 Model accepted
7 2KNN + 1LR + 2DT + 1SVM 0.82 Model rejected
8 2KNN + 1ILR + 2DT + 2SVM 0.82 Model rejected
9 2KNN + ILR + 2DT + INB 0.83 Model accepted
10 2KNN + ILR + 2DT + 2NB 0.79 Model rejected

Table 4 Comparative analysis of greedy approach and random approach

Model used Recall F1 score
7LR +5DT+5SVM + 5 KNN 4 5 NB Random approach 0.79
2KNN+1LR+2DT+ 1 NB Greedy approach 0.83
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Fig. 4 Comparison of random approach versus greedy approach

5 Conclusion

This research work presents a thorough analysis of the ensemble model created using
the Greedy Approach. The objective of this research was to identify the optimal
combination of the 5 classifiers which can yield the maximum F1 Score. For the
same, authors proposed a greedy ensemble approach which is simulated on credit
card dataset. In order to validate the effectiveness of proposed method, it is evaluated
on credit card dataset. The produced results are compared with base ML models and
randomly chosen ensemble model. The obtained results demonstrate and validate the
efficacy of proposed approach and hence it can yield an optimal solution to predict
the fraudulent cases. The application of proposed approach may surely go beyond
this scenario as classification tasks are frequently carried out in numerous domains
namely agriculture, healthcare, education and many more.
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and Manik Rakhra

Abstract Current research work aims to explore three different ensemble optimiza-
tion techniques namely Base Ensemble, Dynamic Ensemble Selection (DES), and
Greedy Optimization. This analysis is carried out to determine the trade-off among
predictive accuracy and the computational requirement in Ensemble modeling. This
work also seeks to investigate optimization paradigms —Dynamic Ensemble Selec-
tion Performance (DESP), K-Nearest Oracles Eliminate (KNORA-E) and K-Nearest
Oracles Union (KNORA-U) in the context of DES and growing and pruning strate-
gies based on Greedy Optimization. Considered ensemble optimization techniques
have been experimentally implemented on the credit card dataset and the results
reveal that Greedy Optimization with growing and pruning strategies outperforms
the other ones by achieving the highest accuracy of 0.72. Thus, results advocate
the significance of greedy optimization and hence can be implemented in various
applications including security-critical applications such as identification of threat
mitigations that requires high accuracy and low computational power.
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1 Introduction

In the recent past, a growing interest has been seen in the applicability of ensemble
models owing to their ability of creating an optimal productive model by combining
various machine learning (ML) models [1]. Ensemble modeling aim to produce one
optimal predictive model by combining several base models. Examples of simplest
ensemble techniques are max voting, averaging and weighted averaging [2]. In max
voting, prediction by each base model is considered as a vote and the class with
maximum votes is the final prediction. In weighted averaging, models are given
preference in terms of weights i.e., higher prioritized models are assigned higher
weights and the one with lower preference is given lower weight [3]. These assigned
weights are considered to evaluate the weighted average which is used for final
prediction. The advanced ensemble techniques are stacking, bagging and boosting
[4].

The optimization techniques for ensemble aim to apply various strategies to
enhance performance and accuracy in ML. Several techniques such as momentum
methods, aggregation methods, hybrid optimization and structural changes of neural
networks are proposed by authors in Sharma et al. [5]. These techniques are primarily
focusing on improvement of selection process, hyper-parameters tuning, and lever-
aging diversity among models aiming to achieve better generalization but at lesser
computational costs. This can be achieved by modifying the algorithm so that it runs
in less time with limited resources [6].

As discussed earlier, current research work focuses on exploring 3 optimization
techniques in order to find the best trade-off among predictive accuracy and the
computational requirement. In DES, a prediction is made by automatically selecting a
portion of the ensemble members. Greedy optimization techniques improve accuracy
of ensemble methods in ML by strategically selecting base learners and combining
them to optimize predictive performance [7].

This research work also aims to overcome the limitation in investigating opti-
mization paradigms in the context of DES and growing and pruning strategies based
on Greedy Optimization. DES based models are the models which utilize the nearest
neighbor technique to achieve dynamic classifier selection for every instance. In
DESP, the classifiers are ranked according to a predefined schema. The approaches
KNORA-E and KNORA-U use a model where the best performing classifiers are
selected based on the k-nearest neighbors of the given instance. Greedy Optimization
models are based on both adding and removing.

This work examines the advantages and disadvantages of both DES and Greedy
Optimization approaches in order to determine the best way to enhance ensemble
models. Current research work is organized into various sections. The objective of
study is put in Sect. 1 while the related work carried out by different researchers is
presented in Sect. 2. Proposed methodology is well elaborated in Sect. 3 while results
are discussed in Sect. 4. The conclusion and future work is presented in Sect. 5.



Optimizing Ensemble Models for Security Applications ... 191

2 Related Work

Several researchers have worked on the optimization of base learners. The tabular
comparison of the state-of art work done in this area is given in Table 1. The presented
table shows the efficacy of ensemble modeling in the various domains and highlight
the significance of applying optimization in ensemble modeling [8]. The authors
in this research work present the applicability of greedy optimization on ensemble
modeling and shows the superiority of the proposed method by simulating it on the
credit card dataset.

3 Methodology

The major goal of this research is to construct a classification model to boost the
accuracy and dependability of forecasts. Suggested ensemble model uses 5 base
ML models namely Logistic Regression (LR), Support Vector Machine (SVM), K-
Nearest Neighbour (KNN), Naive Bayes (NB), and Decision Tree (DT) which are
combined using a greedy approach. Using greedy approach, a model is added if it
outperforms the current performance metrics. Following are 5-steps used in proposed
methodology as illustrated in Fig. 1.

3.1 Data Collection

The dataset used for this research work is Credit Card Fraud Detection Dataset
(https://www.kaggle.com/datasets/yashpaloswal/fraud-detection-credit-card).

3.2 Data Preprocessing

In order to clean data so that it produces accurate results using proposed model,
missing value and noise needs to be eliminated from the data through data prepro-
cessing techniques. In order to preprocess, libraries such as sklearn—train_test_split,
StandardScaler and MinMaxScaler are imported with the reading dataset. Also, rows
containing missing values are deleted. Finally, the data is splitinto training and testing
sets.
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Fig. 1 Proposed Methodology

3.3 Ensemble Model

As mentioned earlier, the proposed work uses 5 base models and the ensemble model
is created using greedy approach. Here, the performance metrics of 5 base models
are compared and multiple copies of outperforming base model is included in the
ensemble model as long as it improves the performance. When it demonstrates a
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decline in the performance, the next best performing base model is included in the
ensemble model.

3.4 Optimization Technique

To optimize the ensemble model, greedy ensemble and dynamic ensemble
approached are tried. In the greedy model authors used 2 different methods namely
growing and pruning. Here, growing starts with no model and model is added to
the ensemble model based on results i.e., models are added in a greedy manner. It
provides enhanced efficiency as a small number of models can provide escalated
accuracy. On the contrary, pruning starts by including all the models and models are
removed from ensemble model if it deteriorates its efficiency.

Thus, the list of all the models is maintained and from the list of the models,
the model is added or removed, based on the performance. The dynamic ensemble
methods used are DESP, KNORA-E, KNORA-U. It selects subsets of the model just-
in-time. KNORA-E and KNORA-U uses the K-nearest neighbor approach to locate
data closest to predicted value. KNORA-E reduces neighbor value to the smallest
value while KNORA-U selects all the neighboring classifiers which have at least
one correct value. DESP, uses FIRE-DES selection schema to select most competent
classifiers.

3.5 Algorithms

This section presents the algorithm of the adopted optimization technique. The
performance of each model in the ensemble is evaluated using the historical records
stored. DESP is implemented in a k-nearest neighbors (KNN) fashion, whereby a
set of similar training examples is selected for every new instance. Further on, it
assesses models’ performances using those analogous training examples. Models
that performed well in that region are used to forecast the current event. This tech-
nique modifies the ensemble according to each instance by focusing the attention on
models that have performed well for similar instances previously, which might lead
to better predictive accuracy with different datasets.
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Input:
1. A pool of classifiers|C = {¢;,cy, ... Cp )
2. A new instance lx to be classified
3. A set of training instances with known labels
4. A parameter |k for the number of nearest neighbors

Algorithm of DESP:

Step 1: Identify the k-nearest neighbors of lx from the training set using a dis-
tance metric.

Step 2: For each classifier E‘, in |Z, evaluate the performance of E on the k-nearest
neighbors by calculating the number of correct predictions.

Step 3: Select a subset of classifiers C'CC that achieved the best performance on
the k-nearest neighbors.

Step 4: For the selected subset ’C' , obtain the predictions for the new instance l;
SteES: Combine the predictions of the classifiers in E to get the final prediction
for x.

Algorithm of KNORA-E:

Step 1: Identify the k-nearest neighbors of lx from the training set using a distance
metric.

Step 2: For each classifier E in |E, Check if E, correctly classifies all k-nearest
neighbours, if yes add E, to E

Step 3: If no classifier meets the strict criterion; gradually relax the condition by
reducing the number of neighbours that each classifier must correctly classify until
at least one classifier is selected.

Step 4: For the selected subset E, obtain the predictions for the new instance &
SteE 5: Combine the predictions of the classifiers in |C' to get the final prediction
for x.

Algorithm of KNORA-U:

Step 1: Identify the k-nearest neighbors of Ix from the training set using a distance
metric.

Step 2: For each classifier E in E, Check if E correctly classify at least one k-
nearest neighbours, if yes add E toC’

Step 3: For the selected subset E, obtain the predictions for the new instance &
SteE 4: Combine the predictions of the classifiers in |C' to get the final prediction
for [x.

3.6 Applications of Security in Ensemble Optimization

This section outlines some domains where ensemble optimization can be employed
in real-life particularly in security related applications.
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1. Fraud Detection in Financial Systems: Ensemble models optimized with DESP,
KNORA-E, KNORA-U, and Greedy Optimization are particularly effective at
identifying fraudulent transactions in financial systems. These methods can be
employed to scrutinize extensive transaction datasets and enhance detection
precision through the integration of numerous classifiers.

2. Intrusion Detection Systems (IDS): These methods can improve Intrusion
Detection Systems by combining classifiers to identify network intrusions with
increased accuracy. Dynamic selection can adaptively identify the most effective
models for recognizing novel patterns in cyberattacks.

3. Malware Detection: Optimization techniques can be utilized to categorize files
as malicious or benign by employing datasets containing information derived
from file metadata, network activity, and system logs.

4. Spam Filtering: Spam detection in emails or texts can utilize ensemble learning
to discern patterns of phishing or malicious material, thereby minimizing false
positives and enhancing security.

5. Biometric Authentication Systems: For systems employing fingerprints, facial
recognition, or other biometric data, ensemble models enhance classification
accuracy by integrating multiple base classifiers.

This widened list serves as the motivation behind undertaking the research work
of optimizing an efficient ensemble model. Although the authors have validated the
effectiveness of proposed work using credit card related dataset but the same can be
employed in any domain.

4 Results and Discussion

This section discusses and present the visualization of the results. As mentioned
earlier, the dataset is related to credit cards and have been collected from kaggle. The
dataset is divided into 85% training samples and 15% testing samples.

4.1 Results of Ensemble Modelling

Authors have implemented 5 ML models—linear regression classification model,
decision tree classification model, support vector classification model, k-nearest
neighbor classification model and naive bayes classification model. Out of the 5
models, SVM classification model provides highest accuracy of 0.74 while naive
bayes gives lowest accuracy of 0.40. Although, precision for both these models are
comparablei.e.,0.67 and 0.7. The accuracy of proposed ensemble is 0.70. The perfor-
mance metrics of base 5 models and ensemble model is presented in Table 2 and
Fig. 2.
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Table 2 Comparative analysis of base models

LR DT SvC KNN NBC Ensemble
Accuracy 0.67 0.73 0.74 0.69 0.40 0.70
Precision 0.65 0.65 0.67 0.65 0.7 0.7
Recall 0.68 0.69 0.72 0.7 0.41 0.41
Fl1-score 0.66 0.65 0.65 0.65 0.37 0.37

Fig. 2 Visualization of comparative analysis of base models

4.2 Simulation Results of Various Techniques

Authors optimized the ensemble model using greedy and dynamic approach. Greedy
approach used two methods namely growing and pruning. The dynamic ensemble
methods used are DESP, KNORA-E, KNORA-U. Out of the 2 optimized techniques,
greedy approach provided the highest level of accuracy of 0.72. Apart from accuracy,
greedy method also yielded highest precision, recall and F1-score as shown in Table 3.
The same is graphically illustrated in Fig. 3. It is worth noting that although the
Dynamic approach also obtained higher accuracy than the base ensemble, it is lower
than the greedy ensemble approach. Out of 3 dynamic techniques, KNORA-U yielded
the lowest accuracy of 0.705 in comparison to 0.71 given by other two methods.

4.3 Results of Proposed Model

As mentioned earlier, the performance yielded by Greedy algorithms shows highest
precision, recall and F1-score. While the base ensemble model gives the accuracy of
0.703 as demonstrated in Table 4 and Fig. 4.
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Table 3 Comparative analysis of Greedy and Dynamic Ensembling techniques
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Ensemble Greedy Dynamic
Pruning Growing DESP KNORA-U KNORA-E

Accuracy 0.70 0.72 0.72 0.71 0.70 0.71

Precision 0.7 0.66 0.65 0.5 0.48 0.5

Recall 0.41 0.71 0.67 0.53 0.43 0.53

Fl-score 0.37 0.65 0.66 0.51 0.45 0.51

Fig. 3 Visualization of comparative analysis of ensembling techniques

analyssof emsernbling Ensemble | Greedy

techniques Pruning Growing
Accuracy 0.70 0.72 0.72
Precision 0.7 0.66 0.65
Recall 0.41 0.71 0.67
F1-score 0.37 0.65 0.66

Thus the comparative analysis demonstrated in this section clearly indicates that
ensemble model always outperforms base ML models. Although greedy model gives
better performance in comparison to dynamic model; dynamic model outperforms
base ensemble models. Thus this research work clearly advocates the efficacy and
effectiveness of ensemble model over base ML models.
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Fig. 4 Comparison of random approach versus greedy approach

5 Conclusion

This study presents a comprehensive evaluation of ensemble optimization techniques
to improve classification accuracy using a credit card fraud detection dataset. The
prime objective of the research is to validate the effectiveness of ensemble modeling.
Itis clearly demonstrated using the experimental evaluation that Greedy Optimization
approach, employing both growing and pruning strategies, achieved the highest accu-
racy at 0.72 outperforming dynamic ensemble methods. This makes Greedy Opti-
mization particularly suitable for applications demanding precision with manageable
computational costs. The results indicate that while DES techniques are valuable
for instance-based dynamic model selection, Greedy Optimization provides a more
computationally efficient alternative for real-world predictive tasks. These findings
highlight the significance of optimization in ensemble modeling, suggesting Greedy
Optimization as an effective strategy for enhanced model performance across diverse
datasets. Future work could explore the integration of hybrid methods or additional
datasets to further refine ensemble strategies and expand their application across
various domains.
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Strategic Deployment of Machine )
Learning in Combating Email Spam Speshee
and Cyber Threats

Sarita Mohanty and Anupa Sinha

Abstract With the popularity of email as a significant communication tool in the
digital environment, the emergence of cyber threats seeking to exploit email as
an essential service comes through email scams commonly referred to as email
spam that has proven to be a vector for more serious attacks such as phishing or
malware distribution. This paper examines using several machine learning (ML)
models in fighting against email-based threats and how they can bolster cyberse-
curity defenses. This study uses traditional models such as Logistic Regression and
Decision Trees, as well as advanced algorithms, including Random Forests, Gradient
Boosting, MLP, GRU, and LSTM, to generate a detailed analysis of each of these
models concerning the accuracy, precision, recall, and F1 score. Furthermore, the
performance of these models is optimized using Particle Swarm Optimization (PSO).
Our results demonstrate the need to tailor cybersecurity frameworks to continuously
adapt to the escalating cyber threat landscape by adopting advanced ML techniques.

Keywords Machine learning - Email spam - Cybersecurity - Particle swarm
optimization * Neural networks - Logistic regression * Random forest

1 Introduction

With the increase of cyber threats, mainly by email spam in the age of widespread
digital communication, it has become a significant concern of cybersecurity. Spam
has become the favored vector for malicious entities to exploit email systems, often
the cornerstone of both personal and professional life in conveying a catalog of
cyber attacks, from phishing to malware deployment. Traditional spam detection
and prevention methods have struggled to keep up with the complexity and volume

S. Mohanty (<) - A. Sinha
Department of Computer Science and Engineering, Kalinga University, Naya Raipur, India
e-mail: mohantysarital 04 @ gmail.com

A. Sinha
e-mail: anupa.sinha@kalingauniversity.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 203
M. Yang et al. (eds.), Demystifying Al and ML for Cyber-Threat Intelligence,

Information Systems Engineering and Management 43,
https://doi.org/10.1007/978-3-031-90723-4_14


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-90723-4_14&domain=pdf
mailto:mohantysarita104@gmail.com
mailto:anupa.sinha@kalingauniversity.ac.in
https://doi.org/10.1007/978-3-031-90723-4_14

204 S. Mohanty and A. Sinha

of email-based threats, which continue to grow. The adequacy of such fixed and
isolated security measures demands evolving paradigms to accommodative, more
dynamic, and adaptive security measures. The growing problem of Agile planning
becomes more and more tractable using Machine learning (ML), a technique able to
learn from and adapt to new data, without explicit programming [1, 2].

Email spam, often defined as unsolicited and almost always malicious content,
not only fills up inboxes but is also used to launch more damaging security breaches.
Spam is dynamic, and its enormous volume undermines the efficiency of conven-
tional, often rule-based, spam detection systems, which cannot evolve as quickly
as spam tactics. Spam emails have consequently improved their sophistication to
spoof legitimate communications [3, 4], making them more challenging to detect
and dangerous.

During the rapid growth of the Internet of Things (IoT) in recent decades, the
Internet of Things has become an integral part of modern life. It has become a corner-
stone for developing smart cities and the basis for different social media platforms
and applications. Aditya et al. [5] and Aski and Sourati [6] parallel the proliferation
of IoT with an increase in spam, posing serious challenges against cybersecurity
efforts globally.

Many researchers have devised ways of detecting and stomping out spam and
spammers. These methods generally fall into two main categories: Behavioral
pattern-based and semantic analysis-based. While each category is effective in its
place, each has drawbacks and limitations. More spam emails are created, which
can, in theory, be anonymized anywhere in the world; as the internet and global
communications networks grow, so does the volume of malicious emails [7].

Spam remains prevalent despite the development of sophisticated anti-spam tech-
nologies. Spams containing links to malicious websites—where personal informa-
tion can be stolen from innocent people—are particularly harmful. In addition, spam
emails can bring down the server’s memory and processing- capacity, making server
response slower. Realizing this, organizations must rigorously evaluate spam detec-
tion technologies and determine spam to the extent of network intrusion identification
and elimination. Common practices include allowlists and blocklists, mail header
analysis, and keyword verifications to filter incoming emails [8, 9].

For example, 40 percent of all social network users engage in spamming. Spam-
mers use popular social networking platforms to attack specific sectors, reviews, and
fan pages, deliberately inserting malicious links in the seemingly innocuous content.
Malicious emails tend to share similar traits, however, primarily if they target the
same audiences or targets. By analyzing these characteristics, we can increase email
detection and classification ability for various types of emails. The process heavily
depends on Al extracting features from message headers, subjects, and bodies to
classify them as spam or legitimate [10, 11]. However, there is an excellent need for
state-of-the-art machine-learning algorithms that can be used to detect mail.

Spam and GPMS

For now, spam detection often relies on learning-based classifiers. The spam emails
bypass classical classification techniques due to these patterns, which are unique
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to spam emails. Nevertheless, the application of these learning-based models in the
field of spam detection is cumbersome due to several factors, including the subjective
nature of spam, concept drift, linguistic nuances, processing overhead, and delays in
text analysis [12].

Machine learning in cybersecurity employs the strengths of pattern recognition
and anomaly detection that are common in this field and necessary for detecting
and fighting email threats. Because of vast amounts of data to sort through and
differentiate benign from malicious emails, machine learning algorithms can find and
analyze hidden patterns or anomalies invisible to human-minded analysts. One of
the main reasons for being ML-based is that ML-based systems allow the continuous
update of their models in response to new threats as a fundamental basis [13, 14].

This research examines several machine learning models to see which ones work
best for spam detection. We look at the old standards like Decision Trees and Logistic
Regression, the newer computational models like Support Vector Machines (SVM),
and neural network designs like MLP, GRU, and LSTM. The models’ non-linear data
handling characteristics, processing speed, sensitivity, and specificity differ. Central
to our work is a comprehensive evaluation of the models, including six fundamental
performance measures essential for gauging each model’ s effectiveness in real-world
settings: accuracy, precision, recall, and F1 score [15].

Lastly, although there are several obstacles to using machine learning models for
spam detection, the following demonstrates that advancements in the field may still
be made without compromising on interest, utility, or quality in the future. They are
the dataset demands for training and the computational required to get processed
or optimized. In addition, this introduction explores how optimization techniques
like Particle Swarm Optimization (PSO) can be employed strategically to improve
the performance of machine learning models. Further, using PSO enables us to fine-
tune the algorithm parameters that better facilitate our model’s ability to classify and
predict unseen data [16] accurately.

Machine learning integration with cybersecurity operations has the potential to
revolutionize how spam filters detect and respond at a speed and scale previously
unattainable. Strategically, this deployment sits squarely in the context of the modern
cybersecurity frameworks that tend to desire to counteract threats preemptively
instead of reactively. This paper provides a call for employing advanced techniques to
build more resilience. And proactive defenses against email spam that keep growing
[17].

2 Literature Review

For the last 10 years, email spam, commonly known as bulk or unsolicited email,
has emerged as a cyber security issue. Spambots that scrape email addresses from
the Internet have made traditional spam filters less effective; however, spurred by
increasingly sophisticated spam tactics and the need for more sophisticated solutions
that attempt to catch spammers by their syntax. Because there are strong models
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and methodologies for creating new spam detection and filtering systems, machine
learning is a huge step forward in the spam detection field [18].

Deep learning methods for cyber security, including intrusion detection systems
and spam detection databases, are reviewed in this overview by Tait et al. [19].
Here, they test their models on 35 widely-used cyber datasets, which are classified
according to the kinds of traffic they include, such as data sent over the Internet or
a network. According to Tait et al. [19], deep learning models outperform standard
machine or lexicon-based intrusion and spam detection models. This suggests that
deep learning might help combat sophisticated cyber threats.

In their study on supervised learning methods for spam email delivery, Vyas et al.
[20] found that, while the Naive Bayes strategy yields results relatively fast, machines
such as SVM and ID3 provide high accuracy but grow somewhat more slowly. Here,
emphasize the trade-off between efficiency and accuracy while selecting a machine
learning method for spam identification.

Machine learning models for spam detection cannot afford to do feature selection.
Yang et al. [21] used numerous supervised learning methods and demonstrated using
the N-Gram algorithm for feature selection. One specific classifier strongly suited
for text analysis and spam detection is N-Grams, which predict the probability of the
next word in a sequence depending on the previous words.

Their work reviewed the existing approaches to email spam filtering and
summarised the effectiveness of different proposed systems and the accuracy
measurements under various parameters. Based on the many blogs that address email
spam filtering, I checked with a few datasets like ECML and UCI datasets. I discussed
the prevalence of Naive Bayes and SVM algorithms used to filter emails. The review
of their work draws attention to the repeatedly finding ways to upgrade spam bug
filtering precision and react to the changing email attacks.

In their work presented in the survey of intelligent spam email detection models,
artificial immune systems were presented. For example, they noted that supervised
learning algorithms are exceptionally adopted because of their accuracy and consis-
tency. Moreover, the study highlighted the efficiency of multi-algorithm frame-
works over single-algorithm solutions and showed that more effective spam detection
strategies could be inferred by combining different methods.

Zhuang et al. [22] described different learning-based spam filtering approaches.
Other features were explained in spam emails, and economic and ethical spam issues
were reviewed. According to their study, the speed and high accuracy of the Naive
Bayes classifier make it particularly effective among different learning algorithms,
constituting an indispensable reference for building and improving learning.

The strand of literature on machine learning applications for spam detection
shows a clear trend toward more sophisticated, efficient, and adaptive solutions.
The more complex and abundant spam becomes, the more complicated and abun-
dant the content being labeled becomes, and the more critical machine learning
(particularly advanced machine learning models, such as deep learning and ensemble
methods) becomes. These studies illustrate the importance of dynamic defenses,
mainly driven by machine learning approaches—to a dynamic threat landscape and
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provide a solid basis for ongoing research and application in machine learning-driven
spam detection.

3 Methodology

To assess how well different machine learning classifiers identify spam emails,
this study’s methodology section details the analytical methodologies and processes
employed. This all-inclusive study of machine learning strategies for fighting email-
based cyber threats covers experimental design, data collection, model training,
optimization, and performance assessment.

Experimental Setup and Data Collection

Our study relies on a primary dataset of labeled email messages, with spam
versus non-spam, extracted from publicly available spam detection repositories. The
primary datasets used include:

Enron Dataset: Large sets of emails from employees at the Enron Corporation
have been widely used for machine learning tasks such as spam detection and are
available as this dataset. An example of a mixed set of corporate and spam emails
that serves to test spam detection algorithms is this.

Spam Assassin Corpus: This corpus is another key resource used to study publicly
available marked content for spam emails. The datasets available relate to diverse
email characteristics, including content-based attributes such as the body text and
metadata attributes such as sender information and header details.

Classifier Selection and Training

Several machine learning classifiers were used for text classification and spam detec-
tion effectiveness. The standard data split was used to train each classifier (75%
sampling for training, 25% sampling for test). That implementation ran with Python’s
sci-kit-learn and TensorFlow libraries, which are standard for machine learning tasks
in the industry.

Performance Metrics

The effectiveness of each classifier was assessed using key performance metrics: We
experiment with accuracy, recall, precision, F1-score, and training time. This kind
of metrics enables the evaluation and comparison of classifier performance in terms
of efficiency and effectiveness in spam detection, i.e., evaluating and comparing one
classifier with the other.

Application of Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) was used to classify performance improvement
further. As a bioinspired optimization technique, PSO is applied to the hyperparam-
eters tuning of the machine learning model for high precision between spam and
legitimate emails.
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Data Visualization and Analysis

Results were visualized using various charts and graphs to depict the performance
of the classifiers clearly.

Bar Charts: Fitted to compare accuracy, recall, precision, and F1-score among
multiple classifiers.

Confusion Matrices: The true positives, false positives, true negatives, and false
negatives are provided for each of the Random Forest and SVM classifiers as further
details about its performance.

Horizontal Bar Chart: Showed training times of each classifier and illustrated
trade-offs in the accuracy and computational efficiency.

ROC Curves: As classifiers, they showed each locator’s diagnostic ability and
effectiveness in discriminating spam from non-spam emails judged by the area under
the curve (AUC).

We can evaluate the capabilities and limits of different machine learning classifiers
for performing spam detection through this approach. This research tests the efficacy
of traditional and contemporary machine learning models through structured training,
optimization, and evaluation. Still, it also provides critical insights for their practical
use in email security for dealing with current and future cyber threats.

4 Result and Discussion

This study designates a comprehensive evaluation of the machine learning classifiers
for detecting and reducing cyber threats within emails. A series of metrics and visu-
alization techniques are applied to empirical evidence supporting the strategic use of
these classifiers.

This bar chart shown in Fig. 1 meticulously displays the accuracy, recall, preci-
sion, and F1-score of several classifiers, including Logistic Regression, KNN, Deci-
sion Trees, Extra Trees, Random Forest, Gradient Boosting, MLP, GRU, LSTM, for
comparison. This figure shows that all of the classifiers do a good job.

Of detecting spam emails and contributing significantly to making email security
better. No one classifier can guarantee an effective spam detection system with low
false favorable rates and high accurate positive rates.

This confusion matrix, as shown in Fig. 2, displays the results of the Random
Forest classifier, which is an essential tool in the spam detection arsenal. The matrix
shows the classifier’s performance in real-life scenarios, which includes the number
of true positives, true negatives, false positives, and false negatives. If you want to
know where the deployed machine learning model is strong and where it is weak,
you need these thorough breakdowns.

The following horizontal bar chart in Fig. 3 reveals the training times of
various classifiers used for spam detection. In environments where resources and
response times are the paramount factors to achieve, it is essential to understand the
computational efficiency of each classifier.
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Fig. 1 Performance metrics comparison of different classifiers

Fig. 2 Confusion matrix for random forest classifier
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Fig. 3 Training time comparison for various classifiers

Figure 4 shows the global best fitness with particle swarm optimization (PSO),
which monitors the optimization process to boost the classifier’s performance. The
trend illustrates the role of PSO in tuning the models to a greater extent to achieve
higher accuracy in spam detection.

An overview of the performance of the SVM classifier in classifying spam and
nonspam emails is given by the confusion matrix shown in Fig. 5. It then discusses

Fig. 4 Performance of PSO over epochs
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Fig. 5 Confusion matrix for SVM classifier

how many correct and incorrect classification numbers help evaluate and improve
the modeling accuracy.

The Receiver Operating Characteristic (ROC) curve shown in Fig. 6 best compares
the diagnostic ability of several different classifiers (Logistic Regression, Random
Forest, SVM, etc.). AUC represents the effectiveness of discriminating classes for
each model as a visual and quantitative measure of model performance.

These visualizations and tables support the paper’s narrative with empirical
evidence of the capability and efficiency of machine learning techniques shown
in Table 1 for threat identification and mitigation in anonymous email abuse. This
evidence supports the paper’s thesis of agents who can effectively and efficiently
mitigate the dangerous use of anonymous email abuse. Therefore, these insights are
critical to improving strategic cyber security deployment.
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Fig. 6 ROC curve for different classifiers

Table 1 Performance metrics of classifiers for spam email detection

Classifier | Accuracy (%) | Recall (%) |Precision (%) |Fl-score (%) | Training time (s)
Logistic 92.81 92.81 92.84 92.82 0.6
KNN 95.00 95.04 95.09 95.05 0.0
Decision | 96.54 96.54 96.54 96.54 0.7
tree

Extra trees | 97.53 97.53 97.55 97.53 1.5
Random |97.68 97.68 97.69 97.68 1.9
forest

Gradient | 95.85 95.85 95.86 95.85 26.2
Boosting

MLP 96.30 96.30 96.30 96.30 30.4
(Keras)

GRU 96.40 96.40 96.40 96.40 59.6
(Keras)

LSTM 96.60 96.60 96.60 96.60 64.8
(Keras)

5 Conclusion

This investigation of strategic machine learning deployment to win the fight against
email spam has provided several key insights and further contributions to the cyber-
security field. A comparative analysis of different machine learning classifiers was
first done, finding significant differences in performance, with ensemble methods like
Random Forest and even advanced neural networks outperforming them. Moreover,
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these models demonstrated high accuracy and outperformed precision and recall,
which were instrumental in bringing down false positives and providing reliable
spam detection.

Particle Swarm Optimization was the tool that helped us refine the models, espe-
cially when tuning the hyperparameters that influence how quickly the models train
and run once trained. The fact that models could use PSO to find the configuration
that gave them the highest degree of accuracy demonstrated the ability of PSO to do
so under the characteristics of the original dataset, which includes a wide variety of
email content from multiple sources.

Additionally, this study uncovered the problems of deploying machine learning
solutions in the real world: the amount of data preprocessing necessary and the
computational requirements required to train even the simplest machine learning
models. However, the research also showed that spam was a dynamic phenomenon,
constantly evolving to stay ahead of the game against traditional detection techniques.
That highlights the need to develop adaptive systems to reconfigure their parameters
to counter new threats.

Finally, the facts of this research promote an educated defense against spam detec-
tion, recommending that models be improved in succession with further modeling
and integration of machine learning into overall cybersecurity plans. Future work
will explore the ability of unsupervised learning models and deep learning tech-
niques to detect sophisticated spam tactics without a considerable amount of labeled
data. Moreover, positioning these machine learning models in the context of network
security, alongside anomaly detection systems, threat monitoring, and others, will
enhance cyber defenses against the multiplicity of cyber threats.
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Abstract Al-powered multi-layered Phishing Defense Framework (AIPDF) is
developed in response to the increasing complexity and sophistication of phishing
attacks in the digital age. Traditional cybersecurity measures often fail to address
these evolving threats, necessitating a more dynamic, intelligent, and multi-faceted
approach. AIPDF leverages Al, machine learning, and blockchain technologies to
provide comprehensive, real-time defense mechanisms against phishing, ensuring
more accurate detection and faster response. The Al-powered multi-layered Phishing
Defense Framework (AIPDF) is designed to counter evolving phishing threats by
integrating multiple layers of defense. Each layer addresses different aspects of
phishing attacks, from real-time anomaly detection to automated incident response.
The framework combines Al-powered phishing detection engines, blockchain-based
email authentication, and real-time threat intelligence to enhance email security.
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It also incorporates multi-factor authentication and user training to ensure contin-
uous protection. This system enables rapid detection and response to phishing
attacks while providing cybersecurity infrastructure transparency, adaptability, and
resilience. Future iterations of the framework can integrate additional AI/ML models
and extend to broader cybersecurity challenges.

Keywords Phishing detection + Al in cybersecurity + Blockchain email validation *
Real-time threat detection - Multi-layered defense + Automated incident response

1 Introduction

Phishing attacks have become one of the most prevalent and damaging cyber threats,
targeting individuals and organizations worldwide. Sensitive information, including
login credentials, bank account information, and other personal details, are usually
tricked into being revealed using phony emails or websites [1]. Phishing techniques
have become more complex as hackers continue to change their strategies. They now
use artificial intelligence, clever domain names, and innovative social engineering to
create compelling messages [2]. More effective protection mechanisms are needed
because the availability of phishing kits on the dark web has significantly reduced
the barrier to entry for cybercriminals.

In growing cyber threats, single-layered security solutions have proven inadequate
in providing comprehensive protection. Multi-layered defense systems are essential
because they offer multiple layers of security, boosting the possibility that an attack
will be intercepted and neutralized before it can do any damage [3, 4]. Multi-layered
defenses can identify malicious activities in phishing cases at several stages, including
email transmission, malware execution, and suspicious user behavior. This strategy
can prevent or at least lessen damage even if one protective layer fails [5]. Multi-
layered systems strengthen the overall security posture by reducing the possibility
of false positives while simultaneously increasing detection accuracy.

As phishing attacks grow, conventional security measures struggle to keep pace.
Static filters are often bypassed by more sophisticated, modern kinds of phishing,
which conventional rule-based or heuristic approaches frequently struggle to identify
[6]. Because of this, there is an urgent need for intelligent, adaptable systems that
can change and grow in response to new dangers. The capacity to analyze massive
amounts of data in real time, identify subtle trends, and produce insights that humans
or simple algorithms could miss makes artificial intelligence (AI) a possible option
[7, 8]. Al-enabled multi-layered defensive systems can provide enterprises with auto-
mated, real-time phishing detection and reaction. To provide a more effective and
transparent defense against complex phishing threats, this research aims to create
and assess an Al-powered phishing defense framework that blends machine learning,
blockchain technology, and real-time threat intelligence.
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2 Background and Literature Review

2.1 Evolution of Phishing Attacks and Techniques

Since the mid-1990s, when phishing attacks first appeared, they have evolved
substantially. Phishing techniques from the past primarily consisted of spoof emails
that led victims to fake websites intended to steal personal data [9]. On the other
hand, phishing tactics have advanced significantly in sophistication. Attackers today
use techniques like whaling, which goes after senior executives, and spear phishing,
which sends tailored communications to particular people or organizations. Addi-
tional sophisticated methods include vishing (voice phishing), which uses phone
calls to obtain information, and clone phishing, which replicates safe emails with
harmful links. The popularity of “phishing-as-a-service” has made it simpler for
adversaries to launch intricately planned campaigns [10]. Because of this, it is now
harder to identify phishing using conventional protection mechanisms, calling for
more sophisticated solutions like Al-powered systems.

2.2 Traditional Phishing Defense Mechanisms Strengths
and Limitations

Blocklists, spam filters, two-factor authentication (2FA), and heuristic-based detec-
tion are examples of traditional phishing protection techniques. These methods have
significant drawbacks even if they provide minimal security [11]. While heuristic
approaches and spam filters can identify well-known phishing patterns, they are less
successful in identifying new, zero-day phishing assaults that employ creative evasion
techniques. Although blocklists are reactive and can only be updated after a phishing
attempt has been detected, they can prevent harmful websites [12]. Even with the
extra protection layer that 2FA provides, some highly skilled phishing attempts can
get past it. These drawbacks emphasize the demand for more alert and sophisticated
systems that can instantly recognize new phishing attacks.

2.3 Role of Al in Cyber Security

Al has completely changed a lot of cyber security, especially in identifying and
thwarting online attacks. Artificial intelligence (Al) is well-suited to spotting patterns
and abnormalities that can point to phishing assaults since it can quickly evaluate
massive datasets [13]. A subset of artificial intelligence called machine learning
algorithms can be trained on historical phishing data to identify phishing attempts
based on various characteristics such as email content, sender reputation, and user
behavior. Al systems can also continuously learn from new threats, allowing adaptive



218 P. Bhujbal et al.

protection mechanisms that improve with time [14, 15]. Artificial intelligence (AI)
can potentially enhance phishing detection and response times by shortening the
interval between detecting and stopping an attack.

Overview of related work: Al in phishing detection, blockchain in email
authentication, threat intelligence systems.

Recent studies have explored the application of Al in phishing detection with
promising results. Machine learning models like decision trees, support vector
machines (SVM), and deep learning techniques such as convolutional neural
networks (CNN) and recurrent neural networks (RNN) have been widely used for
phishing detection [16]. These models determine whether an email is malicious by
examining various email properties, such as content, links, and metadata. There
has been an increasing interest in email authentication with distributed ledger tech-
nology regarding blockchain. By offering a safe, decentralized method of sender
identity validation, blockchain can lessen the possibility of phishing attempts [17].
Furthermore, the usage of threat intelligence systems—which incorporate real-time
inputs from several cybersecurity sources—to proactively identify and counteract
phishing threats is growing. These technologies provide a more dynamic and well-
coordinated approach to cybersecurity defense by gathering, analyzing, and sharing
data about new threats.

3 Proposed Methodology

The Al-powered multi-layered Phishing Defense Framework (AIPDF) depicted in
Fig. 1 is designed to provide comprehensive protection against phishing attacks
through advanced detection techniques and user-centric security measures. At its
core, the Incident Detection and Response Layer identifies anomalies in real-time.
Once a phishing attempt is detected, this layer isolates the email and notifies the user
while initiating automated incident response protocols to quickly and efficiently
contain the threat.

Next, the Email Filtering Layer thoroughly analyses all incoming emails. The
Al-powered phishing detection engine within this layer checks the authenticity of
senders and scrutinizes email content, including attachments and links. By doing
so, it prevents malicious emails from reaching the user. Complementing this, the
Attachment and Malware Scanning Layer focuses on detecting harmful attachments
and malware. It uses Al to identify potential malware and zero-day exploits that
might otherwise bypass traditional security systems.

The Multi-Factor Authentication (MFA) and Dynamic Access Layer employ
context-aware access control and behavioral biometrics to secure user accounts
further, ensuring that only authorized users can access sensitive information. This
layer adapts based on the context of the user’s actions, making unauthorized access
significantly more difficult.

The User Layer plays a crucial role by continuously training users to recognize
phishing threats. Through behavioral biometrics and a User Awareness and Training
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Module, this layer helps enhance the user’s cyber security skills while monitoring
their behavior to detect potential breaches.

A unique aspect of this framework is the Blockchain-Based Email Validation
Layer, which uses blockchain technology for email authentication. Distributed
Ledger Technology (DLT) facilitates sharing phishing incidents and email validation
across the network, bolstering the system’s overall robustness.

Finally, the Real-Time Threat Intelligence Layer integrates the latest threat intelli-
gence feeds and updates the Al models used across the framework. It ensures contin-
uous learning and adaptation to new phishing threats while promoting collaborative
Al learning, allowing the framework to evolve and remain effective against emerging
attack vectors. This multi-layered approach enhances proactive and reactive phishing
defenses, ensuring comprehensive email security.

4 Summary and Discussions

4.1 Summary

The Al-powered multi-layered Phishing Defense Framework (AIPDF) integrates
several defense layers, each focusing on a distinct component of email communica-
tion and cybersecurity threats, to offer complete protection against phishing assaults.
Real-time anomaly detection is built into the Incident Detection and Response Layer,
which isolates potentially harmful emails before they reach the user [18]. The system
ensures that threats are rapidly neutralized by automatic incident response, reducing
the potential for damage. Proactive defense is made possible by sophisticated
anomaly detection algorithms and isolation methods.

The Email Filtering Layer scans and analyzes emails for phishing indicators using
an Al-powered phishing detection engine. Emails are evaluated for content and sender
validity using URL reputation analysis and Natural Language Processing (NLP). By
utilizing several preventative techniques, the system successfully screens out harmful
emails before they are seen by the user [19]. The Attachment and Malware Scan-
ning Layer, which focuses on finding malware in email attachments, complements
this [20]. Al-based methods find known and unidentified dangers, such as zero-
day exploits. This layer thoroughly covers all possible attachment-based dangers by
integrating scanning engines with the email system.

The framework in the Blockchain-Based Email Validation Layer also utilizes
blockchain technology. By using Distributed Ledger Technology (DLT) to document
and exchange phishing instances, blockchain establishes a decentralized system for
email authentication, guaranteeing the legitimacy of email senders [21]. This method
assists in identifying and thwarting phishing efforts in addition to authenticating valid
senders. In addition, the Real-Time Threat Intelligence Layer incorporates threat
intelligence streams to prevent new phishing techniques. The framework’s AI models
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are updated regularly in response to fresh threat intelligence, and collaborative Al
learning makes sure the system changes to meet new security risks.

The Multi-Factor Authentication (MFA) and Dynamic Access Control Layer use
behavioral biometrics for continuous authentication and context-aware access control
methods to bolster access security. Adaptive MFA approaches ensure only autho-
rized users can access sensitive data by dynamically adjusting security based on user
behavior [22, 23]. Ultimately, reducing the likelihood of phishing attacks is greatly
aided by the User Awareness and Training Layer. Users are informed about phishing
dangers through ongoing training and awareness initiatives, and behavioral moni-
toring assists in identifying any strange activity. This layer allows users to identify
and react to phishing efforts, improving the overall cybersecurity posture.

4.2 Discussions

Ensuring real-time protection against phishing requires the Incident Detection and
Response Layer. The technology can quickly identify anomalous patterns in email
correspondence—which can point to a phishing attempt—thanks to the application of
anomaly detection algorithms. By identifying questionable emails and triggering an
automated reaction, the technology shortens the time hackers might take advantage
of users [24]. By taking a proactive stance, threats are dealt with before they can
cause damage, enhancing the system’s overall security. The automated response and
real-time detection integration provide a solid base for the multi-layered security
system.

Strong defense against email-based threats is offered by the combination of the
Attachment and Malware Scanning Layer and the Email Filtering Layer. Al-powered
phishing detection uses sophisticated content analysis tools, like natural language
processing (NLP) and URL reputation analysis, to improve the system’s capacity to
distinguish between fraudulent and legitimate emails [25-27]. The system ensures
that harmful payloads are prevented from reaching consumers, even if they evade
the initial phishing detection, by checking email attachments for malware and iden-
tifying zero-day exploits. Attackers find it challenging to use email as a gateway for
distributing malware or phishing scams because of the combined resilience of these
two levels.

Using blockchain technology to verify email senders’ legitimacy, the Blockchain-
Based Email Validation Layer offers a fresh strategy against phishing. Because
blockchain is decentralized and unchangeable, it is the perfect technology for
preserving the integrity of email correspondence. The technology makes it more
difficult for phishing attempts to succeed by recording hostile activity and certifying
senders by storing phishing occurrences on a distributed ledger [28]. This method
is transparent and dependable. Thanks to this innovation, email authentication
procedures now have far greater security and trustworthiness.

The Al models in the framework are kept up to speed with the most recent phishing
techniques thanks to the Real-Time Threat Intelligence Layer. The system can react to
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new threats as they materialize, thanks to the constant integration of threat intelligence
streams. Furthermore, the framework can change and adapt based on shared data from
many sources thanks to collaborative Al learning [29]. This layer guarantees the
defense system is resilient against novel attack techniques while enhancing phishing
detection accuracy.

Finally, by guaranteeing that system access is highly secure, the Multi-Factor
Authentication (MFA) and Dynamic Access Control Layer add another line of
defense. Adaptive MFA and behavioral biometrics combine to offer a flexible and
reliable authentication solution that modifies security protocols in response to user
activity. By enabling users to participate actively in the phishing defense, the User
Awareness and Training Layer enhances these technical defenses. Using ongoing
training and oversight, users improve their ability to identify phishing attempts and
react suitably, diminishing the probability of successful assaults.

Together, these layers create a holistic defense framework that addresses the
complexities of modern phishing attacks, offering a strong, adaptable, and proactive
cybersecurity solution.

5 Conclusion

The Al-powered multi-layered Phishing Defense Framework (AIPDF) offers a
comprehensive and adaptive approach to phishing detection, combining several
layers of defense that integrate Al, blockchain, and threat intelligence. Key contribu-
tions include the real-time detection of phishing attempts, validation of email authen-
ticity via blockchain, and proactive incident response mechanisms. The framework
emphasizes continuous user training and behavioral monitoring, ensuring that cyber-
security’s technical and human aspects are addressed. The findings suggest that by
leveraging advanced anomaly detection algorithms, collaborative Al learning, and
multi-factor authentication, AIPDF significantly enhances real-time threat detec-
tion and response. Its layered approach reduces the risk of phishing attacks and
ensures rapid incident mitigation, contributing to improved cybersecurity resilience.
For future research, extending the framework’s integration with more sophisticated
AI/ML models could enhance phishing detection accuracy. Additionally, broadening
its application to other cyber threats such as ransomware, social engineering, and data
breaches may make it a more versatile and powerful tool for cybersecurity in diverse
environments.
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Abstract At the same time, electronic voting has emerged as an alternative voting
method that could reduce voter turnout and inequality. Traditional international elec-
tions pose a challenge to the importance of stability and transparency. Elections are
still centralized and controlled by an organization. Some issues that can arise in
the traditional election process include managing and operating the organization’s
storage space and systems. This article examines historical voting systems used by
some countries and organizations. Blockchain is perhaps the most unique technology
today that promises to expand the power of electronic voting. The technology offers
the opportunity to support blockchain decisions such as cryptographic perspective
and transparency of principles in electronic voting. The course is designed to follow
the basic rules of the electronic voting process and complete the final analysis. The
system uses end-to-end electronic voting scores for higher education after in-depth
evaluation.

Keywords Ethereum - Voting - Decentralized * Blockchain

1 Introduction

Whether it is traditional elections or electronic voting (e-voting), voting is the foun-
dation of democracy today. People Electronic voting is seen as a solution that will
attract young voters. Many features and security must be specified to achieve strong
electronic voting, including transparency, accuracy, verification, performance and
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data integrity fairness, confidentiality/stealth, legality, and distribution. Blockchain
technology is supported by the collaboration of many people at the intersection [1].
In traditional voting, we use different voting methods such as EVM and ballot paper,
where we use machines to control the voting process, the voter receives a ballot paper
(paper), and the polling station releases the candidates. However, traditional elec-
tions have many disadvantages, such as paper processing, being time-consuming,
having no direct leadership accountability, and machine damage. Bulk updates do
not allow users to update multiple projects simultaneously [2]. One way to solve the
security problem is to use blockchain technology. Blockchain technology has many
applications [3].

Blockchain can secure transactions using cryptographic algorithms that protect
against manipulation and fraud. Many researchers have proposed voting via
blockchain to increase the accuracy and transparency of voting [4-6]. Question:
The report also discusses the current status of some blockchain projects. Now, it
is designed for a small selection on-site in applications, offices, meeting rooms,
etc. Statistically, I am reasonable, honest, ambitious, successful, and strong. It
also provides vote verification, secret ballot, vote, and public evidence. Blockchain
technology is used to accomplish this task.

1.1 System of Paper Voting

Voting is the most optional. It will be used until electronic voting is done. The ballot
paper consists of a ballot paper and a voting card. The ballot papers are available to
all voters but cannot be seen. The disadvantages of this system are time and speed.

1.2 Online Voting System

The new platform for safe voting and voting is the online voting system. Online
voting is a website where votes are submitted online through a web browser. Voters
worldwide have the right to vote online. Calls have been made from central offices
for online voting. The application offers an alternative to the long, understandable,
secure, and easy process for voters. Voters can easily vote for local candidates without
going to the polls and save time. This application divides the following contents into
three groups according to users.

Admin Panel: This category is used only by the members of the Election Commis-
sion to manage the entire election process, including the registration of candidates
and voters.

Voter Panel: This panel is only available to anyone with the right to vote (i.e.,
people who are 18 years old or older). These are the primary users of the application
development.
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The new platform for safe voting and voting is the online voting system. Online
voting is a website where votes are submitted online through a web browser. Voters
worldwide have the right to vote online. Central offices have made calls for online
voting. The application offers an alternative to the long, understandable, secure, and
easy process for voters. Voters can easily vote for local candidates without going to
the polls and save time. This application divides the following contents into three
groups according to users.

2 Literature Review

The primary purpose of our project is to provide a secure voting platform and prove
that electronic solutions can be implemented using blockchain. When everyone with
a computer or mobile phone can vote, citizens and members can make all operational
decisions, or at least people will have open minds and policies because landowners
and leaders will have more fun. This will eventually bring people to justice [7]. The
process [8] is similar to an election, and the electronic voting process is the same as the
previous voting. So this article will review blockchain technology and how it can be
used for electronic voting. Each vote will be counted as one item. These votes will be
counted, and the results will be announced immediately. Secret or secret ballots play
a significant role in many countries. This process can affect the vote, undervote, etc.,
and has many disadvantages. We have started to investigate further to overcome this
problem [9]. He [10] stated that electronic voting should provide security by being
transparent (privacy is important) and not allowing re-election. He suggests using
an innovative contract-based electronic voting application that allows users with a
valid EOA to vote on the contract (once per address). However, this decision does not
include an accurate address verification process because voters receive voting rights
from the central government. He said electronic elections should provide security
by being transparent (confidential) and not allowing re-election. He suggests using
an innovative contract-based electronic voting application that allows users with a
valid EOA to vote on the contract (once per address). However, this solution does
not have an actual address verification process because voters based on EOs receive
voting rights from the central government. In this paper [11], we implemented and
tested an intelligent contract-based electronic voting on the Ethereum network using
blockchain technology and the Solidity wallet.

A study by [12] shows that weak electronic voting has the potential to affect
voter privacy and integrity, leading to false votes being entered into the system or
votes being miscounted. In a private [13] blockchain, only the entity that owns the
blockchain can grant anyone the authority to use the blockchain and vote. In this
model, the government owns the election process and, therefore, is responsible for
allowing its citizens to vote using blockchain technology. The government is also the
only entity that puts voters on the blockchain. On private [14] blockchains, creating
ablock and changing the nonce (mining process) before obtaining a signature should
be cost-effective on public blockchains, as fewer nodes exist. The rise of digital voting
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increases security, efficiency, and fairness. Designed to prevent fraud by limiting the
speed of new ballots being processed on electronic machines, the device has been
used in many countries where elections are held.

In addition to predicting future developments, this literature review [15] discusses
the challenges and solutions to scalable blockchain-based electronic voting systems.
They analyze the proposals from previous studies, their implementation, analysis,
and various cryptographic solutions to evaluate the cost and time. They analyze the
performance, advantages, and limitations of different systems and the most common
methods for blockchain scalability. Singh et al. [16] blockchain technology is one
way to solve the problems that often occur in elections. Its benefits also make the
body more secure. Electronic voting has been controversial in the United States
since 2001, when the government announced the process in the summer of 2003.
Considering these issues, integrating blockchain technology into electronic voting
has become a good way to go [17-19]. Today, the development of technology has
improved the lives of many people. The paper has many more uses than today’s ballot
papers. The potential of legacy systems continues to grow and threatens security and
transparency [20]. Electronic voting should make receiving and counting ballots in
elections easy, convenient, and secure. Advances in mobile, wireless, and network
technologies have led to the emergence of new applications that will make the voting
process easier and more efficient [21]. Blockchain-based electronic voting systems
provide instant review and verification of the voting process. The transparency of
Blockchain allows independent auditors and stakeholders to monitor voting activi-
ties and verify the accuracy of the vote count. This increases the electoral process’s
transparency, accountability, and trust [22]. By using smart contracts and encryption
technology, the system ensures the integrity and confidentiality of the vote while
completing public verification. Most citizens do not comply with this restriction and
avoid their obligations. In this case, electronic voting is generally considered a good
option. Blockchain technology is a new technology that can provide immutable,
transparent, anonymous, distributed, and real solutions [23]. According to the Times
of India, on January 24, 2009, 1.1 million fake votes were found in Delhi. Later,
according to areport by India News, in June 2013, The Election Commission detected
30,000 illegal voters at the Hilla Dikshit polling station. Another source, claimed by
LJP (LJP) president Ram Vilas Paswan, said there were 30 voters in Bihar [24].
The system is designed to ensure secure voting, save money, reduce waiting time,
eliminate discrepancies due to various errors, increase efficiency, and ensure work
without physical exertion. Therefore, reliable elections will help in the development
of democratic institutions. Thanks to our initiative, voters can now vote from the
comfort of their homes, saving time and reducing voter errors [25]. In democratic
countries, election security is a matter of national security. For ten years, computer
security has been working on electronic voting to reduce the cost of elections nation-
wide. Since the beginning of democratic elections, voting has been done by paper
and pencil. Replacing traditional pen and paper with new options is important to
prevent fraud and make the voting process detectable and verifiable [26]. Create an
electronic voting system that meets the needs of legislators. Our current elections are
conducted using EVMs, which have been proven to be hackable and tamper-proof in
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many places. This creates doubts about the election among candidates and the public.
Hyperledger developers assumed that commercial blockchains would operate on a
single trust system [27]. At this stage, technology is essential to help meet people’s
needs. Considering that today’s majority do not trust politicians and elections are
important in today’s democracies, the increasing use of technology poses new chal-
lenges to democracy. Elections are important in deciding who will govern a country
or institution, or we can say that elections are events that determine the future of a
country [28]. Election security is an important issue during elections in a country.
Computer security has been working on many electronic voting systems for years
to increase security and reduce energy costs. Elections in India are conducted by
voting in front of EVMs. EVMs have replaced India’s local, state, and parliamen-
tary elections [29]. With the popularity of blockchain technology, electronic voting
systems increasingly use blockchain technology as a central storage to make the
voting process more transparent, efficient, and secure to prevent tampering with
data [30]. This study is divided into two parts: a control group and a voting group.
The main purpose of voting (for citizens of a country) is to find the leader of their
choice [31]. The application of blockchain technology has attracted great attention
as a secure and open online election. To ensure the efficiency and reliability of the
voting process, this paper focuses on the design and implementation of online voting
systems based on blockchain technology [32]. When a hundred guides are matched,
voters can choose their favorite candidates from the group. People can share a hyper-
link to vote (as long as they know the link), and people who know the link can vote,
and only one vote can be cast per browser. Weakness in voting, re-voting, and rejec-
tion of votes [33]. This has caused doubts about the election among candidates and
the public. This article aims to analyze the use of blockchain technology to create a
decentralized electronic voting system [34, 35].

3 Proposed Methodology

During this process, the administrator logs in to the system from the imported account.
You can use the security key and password to import your account or the file. The two
parts of the job are money and content. Administrators can add candidates through
the Add Candidate function defined in the smart contract on the left side. When
you click it, a box will open with details such as the candidate’s name and the
political party they represent. By calling this function, an instance of the model is
created to store the object as a variable. Data is stored using the data provided in the
user interface that feeds the data to the converter. It makes a smart contract, uses a
template to execute it, and stores it as a brilliant contract instance. NOTE: Create a
new template for each new candidate. This latest challenge is the need to exchange
contracts on the blockchain. This is not the driver of the mining price; it is only for
miners to verify the blocks. After the manager and the candidate sign the transaction,
the information is entered into the system via a smart contract. This smart contract
creates a smart contract based on the competitor’s product, where all the information
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Fig. 1 Flow chart of voting system

about the competitor’s product is stored. Voters first log in to the system. They can
do this by creating a new account or registering a new one in the system. When
voting, they sign the transaction by verifying it using a signature code or token. Once
a transaction is signed, it is broadcast to the network and mined using methods such
as Boot. Since most votes are public, the vote data is not encrypted, but we encrypt
it for security purposes, as shown in Fig. 1.

Voting registration is done using Html/CSS/Bootstrap on the front end and SQL
on the back end, and it stores the user’s personal information, e.g., this can be consid-
ered an Aadhar database. Biometric devices will be used as evidence. The voter will
provide their ID/address information as an access certificate if the user is valid.
Administrators enter the system by sending money. Funds can be sent using key
encryption. Both stores are linked to accounts and their associated content. Admin-
istrators can use the “Add Candidate” function to add new candidates. When clicked,
a card with details such as the candidate’s name and the political party they represent
will appear. Calling this function creates an instance of the template sentence that
stores the input as a variable. Data is stored using app.js. This will contrast with the
data provided in the UIL. App.js creates smart contracts and uses objects to imple-
ment and store them as smart contracts. Note: 17 new events are made for each new
contestant. This new feature is a contract on the blockchain called transactions. It
works in a monitoring mode only and does not change the blockchain value’s state
except for the mining value of the leader miner who adds the block to the blockchain
for external verification. The whole process is shown in Figs. 2, 3, 4, 5, 6.
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Fig. 2 This is the login page of the admins

Fig. 3 Admin dashboard

4 Result and Discussion

This Is the Voter Dashboard Or Voter Page; in This Voter, Can Only Vote Once The
Voter Not Voted looks like in Fig. 7. Once they vote, they will not vote again, and
the page will look like this: they can only see who they voted for but can’t edit or
cancel their vote.
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Fig. 4 Add voter details

Fig. 5 Position details
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Fig. 6 Add candidates and all candidates list

Fig.7 Successfully voted

5 Conclusion

Companies in organizations such as presidential, parliamentary, and various office
elections currently use the system. Additional fees for electronic voting will be
determined according to the decision’s requirements. Blockchain-based electronic
voting is designed to meet the requirements of the electronic voting process. All
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votes in the blockchain are cryptographically linked, block by block. If other blocks
have the same duration, the block with the highest signature value is selected.
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BLESS: Blockchain-Enhanced
Intelligent Security System Using BPSO ek
and AVOA for Smart Home Network

Amrutanshu Panigrahi, Nilachakra Dash, Abhilash Pati, Bibhuprasad Sahu,
Bidya Bhusan Panda, and Ghanashyam Sahoo

Abstract Blockchain and machine learning assure data, resilience, and intelligent
threat detection, including blockchain and machine learning. The tamper-resistant
blockchain protects sensitive information with a decentralized storage mechanism;
machine learning adds the’ smartness’ in real-time concerning emerging risks in this
home. However, a more systematic framework that integrates secure storage mech-
anisms and streamlined, accurate classification of IoT data must be developed to
enhance threat detection capabilities. To bridge this gap, the present work presents
BLESS, a hybrid model designed explicitly for IoT security within a smart home
combining Binary Particle Swarm Optimization (BPSO) and African Vulture Opti-
mization Algorithm (AVOA) for feature selection, and as the fitness evaluator, it uses
a Support Vector Machine. For secure data storage, BLESS has used a Blockchain
Inter Planetary File System (IPFS) server so that management is decentralized and
has tamper-proofing of IoT data. The model was tested using two prominent IoT
datasets, NSL-KDD and UNSW-NB15. It shows an accuracy of 98.97% and 97.75%,
which surpasses standalone BPSO and AVOA in accuracy, precision, recall, speci-
ficity, and Fl-score. All these results show that BLESS is very effective for robust
adaptive threat detection. Future work would be in the direction of scaling BLESS for
other applications in IoT and improving feature selection with enhanced capabilities
toward adaptability and accuracy.
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1 Introduction

The Internet of Things (IoT) is an interconnected global system of physical devices,
services, and people that aims to make people’s lives easier and better by connecting
everyday objects and services with unique identifiers for communication and collab-
oration. Manufacturing, transportation, and use statistics are just a few areas that may
benefit from the information sharing made possible by the Internet of Things. One
of the most common applications of the Internet of Things is in smart homes, which
provide users with an enhanced quality of life by implementing automated appliance
controls and assistive services. By employing context awareness and predetermined
restrictions that emerge from situations inside the home environment, devices that
are part of the Internet of Things (IoT) work together to improve consumer results
[1].

Through a home-based application, smart homes provide services that enable indi-
viduals to live their lives in a safer, more comfortable, and more convenient manner.
However, the essential thing to remember is that each of these applications gener-
ates a substantial amount of personal data that may be transferred to various service
providers. As a consequence of this, hostile attackers may target the functionalities
of the network that are responsible for the interchange of data [2]. A bright house
is connected to the internet and may have a variety of innovative gadgets controlled
by its residents. In the house, every appliance serves an essential purpose for the
person and their loved ones. An intelligent home network built on the Internet of
Things links various smart devices, including smartphones, innovative laptops, and
wearables [3]. Homeowners might make their lives easier and safer by enhancing
the accessibility and security of their homes. Customers and system developers have
been motivated to do extensive studies to take advantage of the smart home’s valuable
features, including monitoring behaviors and even safety testing [4].

It is possible to find solutions to these issues by using blockchain-like technolo-
gies and unified computing networks similar to the cloud. Blockchain technology
comes with a time-stamped collection of harmful-proof documentation controlled
by a network of independent networks [5]. The blockchain architecture comprises a
sequence of blocks connected via straightforward cryptography. Rigidity, decentral-
ization, and transparency are core concepts that all blockchain technologies possess.
All three roles have performed exceptionally well, allowing them to gain experience
in every conceivable kind of digital money technology. These technologies include
the functionalities of mobile vehicles, cellular devices, and embedded systems.
Despite the security and anonymity of blockchain technology, specific issues persist
in its implementation. An illustration of this is the increasing intricacy of Sybil
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assaults, which include the creation of several fraudulent identities to dominate the
community [6].

1.1 Objective

This research mainly focuses on providing a model for security in the smart home.
The proposed hybrid method adopts the Binary Particle Swarm Optimization (BPSO)
and African Vultures Optimization Algorithm (AVOA) as a feature selection algo-
rithm. In addition, the proposed model BLESS implements the Support Vector
Machine (SVM) as the fitness calculator. The objectives of this research work can
be summarized as follows:

e To include the BPSO and AVOA methods for selecting appropriate features.

e Toinclude SVM as the fitness calculator for calculating the fitness function of the
BPSO and AVOA.

e To develop BLESS, a hybrid model with an SVM classifier for effectively
classifying the loT-based data.

e To evaluate the performance of the proposed model using different machine
learning-based evaluative parameters.

2 Literature Survey

Andoni et al. [7] conducted a comprehensive examination of many alterna-
tive blockchain applications inside a peer-to-peer resource-sharing network and
published their results. The research offers comprehensive insights into the execu-
tion and functionalities of diverse smart home networks, including security within
the smart grid, artificial intelligence (AI), data analytics, and payment systems.
Conversely, their study inadequately covered subjects pertinent to smart homes, like
smart home security and financial planning for smart cities. Khan et al. [8] presented
a user-centric blockchain architecture to improve the security of edge data transfer
inside the Internet of Things. J. Wu et al. [9] introduced a software-defined blockchain
interface to discern changing configurations.

Khan et al. [10] contributed to maintaining secrecy and integrity. This sensor
provides secure data collection, encryption, and querying for applications specifically
designed for smart homes. The information sent back and forth between the person,
the gateway, the network operator, and the system is preserved, which helps to ensure
that the information is verified and that privacy is maintained. In this day and age
of digital technology, the exponential expansion of Internet of Things (IoT) devices
presents enterprises with various design issues connected to privacy and security.
Previous studies suggest blockchain technology is a crucial response to data security
issues associated