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Foreword 

Most generations face significant challenges a number of which result 
in significant levels of disaster. Some of these are human induced with 
conflict leading to wars being the most common. Others are induced 
naturally, pandemics and extreme geophysical and weather events 
being the most prominent. 

However, it is arguable that the challenges faced by the current 
generation are at the extreme of such challenges. Clearly human con-
flict and the looming possibility of nuclear war is a massive issue, but 
I would also note that natural challenges driven by human demogra-
phy and climate change pose extremely difficult issues of resource use 
for the future. Here the potential for science (including social science 
and engineering) to aid with prediction and mitigation is probably 
at its greatest ever. The use of science in this way goes back mil-
lennia. The key is that, properly used, science can enable complex 
problems to be addressed by suitable policy. Manifestly this is far 
from straightforward. 

To return to my subject. This book deals with an important sub-
set of the current challenges. The first is the potential for devastat-
ing epidemics of which the recent COVID pandemic provides a harsh 
reminder, but the second is a relatively new challenge of cyber secu-
rity. The ubiquitous use of cyber systems in human activity is well 
known and their vulnerability is thus a constant concern. 

In this book the author has used the observation that population 
biology and its application in dealing with epidemics has a similar 
mathematical structure to the apparatus needed for dealing with 
cyber security. The recent COVID pandemic has generated a wider 
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understanding of the key epidemiological issues and how interven-
tions can be used to mitigate the impact of the disease dynamics. 
This understanding is obviously varied within different societies, but 
key concepts appear to be part of most policy dialogue. 

The mathematical apparatus for dealing with epidemiological 
problems has been developed over many years and continues to be 
developed in providing guidance to policy. The author then takes 
his fundamental observation and uses the mathematical apparatus 
developed in population biology to apply to cyber security problems. 
His preface develops these ideas in some detail and is a justification 
of the author’s aim to provide understanding of the cyber domain to 
better aid policy. 

Each of the individual chapters addresses a different and arguably 
more complicated issues of cyber security. I will not deal with them 
here as the author provides a summary of major insights in each 
chapter which are a helpful guide to the reader. There is a con-
siderable amount of work in this book and the author’s aim is to 
produce numerically literate readers who are capable of addressing 
key issues in the field. To this end he provides much detailed analysis 
and the potential to help with complicated problems that can only 
be addressed via computational methods. 

A reasonable question is has he succeeded? I would argue that he 
has. It is a formidable and important work. I recommend it to you. 

Professor Sir John Beddington CMG FRS 
UK Government Chief Scientific Adviser 2008–2013 
Emeritus Chair of Natural Resource Management 

Oxford University 



Preface 

The most secure computer is the one unplugged from the 
network 

– US Department of Defense 

Welcome to the Journey 

Cyber variability surrounds us – from problems with our personal 
electronics, to cyber crime in which cyber systems are held hostage, 
to threats on the critical infrastructure such as power or water plants 
being “taken down” by adversaries. We cannot both get away from 
these issues and live in the modern world. 

This book is a contribution towards a theory of cyber variability, 
intended to inform the training of students and analysts (Dell Tech-
nologies, 2023) and provide a starting point for researchers. Maturing 
analytic capability for the study of cyber variability requires both a 
conceptual and modeling framework, a way for analysts to access 
this framework, and tests of the ideas developed in the framework. 
We (you, the reader, and I) will explore all of these. I also hope 
that people who are not modelers will read the book, conclude that 
cyber variability and its implications can be modeled, and that it is 
important to build groups that do such modeling. 

When thinking about cyber variability there is an obvious and 
important role for systems engineering with a focus on specifics 
of particular systems, but there is also a role for the analysis of 
cyber operations at a level higher than the details of the specific 
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operational systems. Often, the lack of a common analytical frame-
work results in poor decision-making (Burris et al. 2010). Opera-
tions research/operational analysis (US/UK terminology) is a scien-
tific approach to operational problems and will guide us in mapping 
from a top level conceptual framework to second level characteristics, 
metrics, and predictions. 

Cyberspace is an odd domain (King and Gallagher 2020); indeed 
it is even difficult to define – we tackle that below – and I boldface 
it here because a definition is included both in the main text (below) 
and the glossary. If you are completely new to analytical thinking 
about cyber problems, I suggest that you take a look at Danzig 
(2014), Singer and Friedman (2014), and Libicki (2016). Danzig 
(2014) and King and Gallagher (2020) are available by download 
and broadly cover, in slightly different ways, the landscape of cyber 
security from an United States perspective. Libicki (2016) is a won-
derfully informative introduction to cyber system variability, and 
is  something to  both read from cover  to  cover  and  have  on  your  
shelf (physical or electronic) to dip into from time to time. You 
will see that his ideas appear throughout this book, and we can 
start with advice given on page 1 that “when facing a problem 
such as the threat from cyberspace it pays to be serious but not 
desperate”. 

King and Gallagher (2020) provide a non-technical, sweeping, and 
well documented summary of some of the issues that we model in this 
book including 

• A summary of the major public and private cyber threats; 
• An overview of the recent major cyber operations publicly 

attributed to China (10 between 2006 and 2019), Russia (7 between 
2007 and 2019), Iran (7 between 2011 and 2019), North Korea (5 
between 2014 and 2019), and non-state actors (9 between 2011 and 
2019); 

• A strategy for layered cyber deterrence; 
• The need to strengthen norms of international engagement and 

non-military tools; 
• The need to promote national resilience (we will discuss resilience 

in detail later, but for now think of it as both the ability to fend off 
cyber attacks and recover quickly from attacks that are successful); 

• Ways to reshape the cyber ecosystem towards greater security. 
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Furthermore, King and Gallagher (2020) identify major public- and 
private- sector cyber threats to the United States as attacks on elec-
tions and other democratic processes, espionage that undermines the 
military and defense industry, targeting civilian intelligence agencies, 
loss of leadership in research and development, cybercrime and ran-
someware used for financial gain, theft of intellectual property, and 
putting critical civilian infrastructure at risk. Each of these is an 
important problem by itself. Zetter (2014) tells the story of Stuxnet, 
considered by many to be the first digital weapon, in an engaging 
and informative manner. It is also worth looking at both the section 
on cyber-related matters in the National Defense Authorization Act 
(NDAA; in the last few years this has been Title XV of the act and 
the most recent ones are easily found through a web search) and 
Arquilla and Ronfeldt (1997) who offered a view of this topic at the 
turn of the millennium – this book is still interesting, from both a 
historical perspective of more than 25 years and ideas that remain 
fresh. 

Cyber attack broadly has three components (Libicki 2016, 
pp. 268–269): (i) generally understanding the vulnerabilities asso-
ciated with the target, (ii) specifically searching for particular vul-
nerabilities and gaining a detailed understanding of the operations 
of the target, and once these are done, (iii) investing time and effort 
to conduct the attack and monitor its consequences. The target can 
recognize potential attack in (i) and (ii) and realized attack (iii) when 
it occurs. 

We can broadly classify cyber security incidents as (i) Advanced 
Persistent Threat (APT, which we will call Simultaneous Cyber 
Operations) which is often cyber espionage, (ii) Distributed Denial of 
Service (DDOS), (iii) destructive cyber attacks, and iv) other cyber 
attacks, particularly cyber crime. Libicki (2016, Table 1.1, p. 6) lists 
43 cyber attacks between 2005 and 2014 that consisted of nine APTs, 
six DDOSs, six destructive attacks, and 21 other attacks. His anal-
ysis gives a broad overview of the kinds of attacks, and discusses 
some detailed mechanisms, including an analogy from public health 
concerning botnets, in which users suffer little from being part of 
botnets but their victims can suffer a great deal; this is an argument 
for “herd immunity” in cyber space. 

Perhaps the most famous example of a destructive cyber attack 
is Stuxnet (for more details see Chapter 1). However, in 2007 
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(3 years before Stuxnet), the Department of Homeland Security and 
Idaho National Laboratory (https://inl.gov/) conducted an exper-
iment, the Aurora Generator Test, in which a generator received 
compromised instructions and went into self-destruct mode (Zetter 
2014, Libicki 2016), showing that digital code could destroy a piece 
of physical equipment. At least 4 years of work getting makers of 
control systems to understand the vulnerabilities of their products 
preceded this test (Zetter 2014, p. 142). One important message of 
the Aurora test is that experimental tests of the ideas we are devel-
oping in this book are possible; indeed a major role of theory is to 
guide the experiments. For more details about the Aurora test, see 
Zetter (2014, pp. 160–164ff). The most important point here is that 
it is possible to conduct experiments on the effects of cyber com-
promise, subsequently we will discuss the possibility of experiments 
to measure the rates co-compromise. 

The Problems are Subtle 

Regardless of your background, we are embarking an exciting and 
subtle adventure. Part of the subtlety is seeing how analysis, by 
which I mean mathematical and computational modeling, can inter-
face with broader policy goals (e.g. White House 2023) that are 
rarely even stated quantitatively. When doing such work, I often 
re-read the instructions that Philip Morse, founder of the Anti-
Submarine Warfare Operations Research Group (ASWORG) dur-
ing World War Two (Morse 1977, Budiansky 2013), had read to 
members of ASWORG at least monthly “Our job is to help win the 
war, not to run it ourselves. We are novices at a task which has 
been worked at and thought about for many years. Our sole value is 
due to our specialized scientific ability. We begin to be useful when 
we can combine with our scientific training a practical background 
gained from contact with operating personnel. This practical back-
ground can only be obtained when the operating personnel trust us 
and like us” (Budiansky 2013, pp. 188–189). The oral history given 
by Phil DePoy (Sheldon 2016) provides an excellent overview of the 
ASWORG and its descendant, the Operations Evaluation Group at 
the Center for Naval Analyses, and a good overview of the operational 
perspective. 

https://inl.gov
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In order for our analytical models to change the way cyber security 
colleagues think about their work, we must gain their trust. Other-
wise, as in the subtitle of Ambrus et al. (2014) we become irrelevant 
actors. Gupta (2014) visualizes a ladder for the way analysts and 
policy makers can interact, with the lowest rung being informal and 
unstructured interactions and the highest rung being formalized, cen-
tralized, continuous, and structured participatory involvement. Our 
goal is to climb this ladder in order to influence the way that peo-
ple think about cyber security problems while maintaining analytical 
independence and creativity. 

To do this, we will link population biology and cyber variability 
in a manner that does not require security clearance. But once you 
have developed the requisite skills, you might expect that your future 
work will be classified. 

Target Audience: This Book Might Be Written for You 

My goal is to show the role of models and modeling in helping us 
thinking about and understanding the cyber domain, with the objec-
tive of providing input to decision-makers about how to play their 
operational hand. 

Like my other books, this one is a mixture of research mono-
graph and pedagogic text. That is, we will tackle new, unsolved, and 
important problems. In the course of doing this, I hope to expand 
your personal problem-solving kit (rather than just dazzle with a 
compendium of results), so that you are better prepared for tackling 
new problems. 

I wrote this book with three main audiences in mind: 

• Population biologists. If you are a population biologist, I hope that 
you will discover that broadening one’s horizons about what it 
means to study a problem in “disease” opens a wealth of interesting 
and important questions and new opportunities for research. 

• Cyber security analysts. If you already work on cyber security or 
cyber variability, I hope that you will discover new approaches to 
problems that interest you and an invigorated desire to learn some 
of the mathematical biology described in this book. If you pay 
attention to, rather than simply skip over, the equations you will 
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see that they are an embodiment of ideas and that the technical 
details are really not that hard to master. 

• New operations analysts. Operations analysis is a synthetic field, 
which is why, for example, the tradition in the Operations Eval-
uation Group of the Center for Naval Analyses was to encourage 
people to continue to have an interest in their disciplinary field 
(Mangel 1982, 2017). In general, simpler tools are better than com-
plex ones and are more likely to deliver results that people need. 
But many new analysts come from an academic training where 
“harder is better” prevails. I hope that you will discover how pow-
erful it is to use elementary mathematics in mature ways. 

I hope that the book finds other readers too. Perhaps you are a hacker 
who would like a framework for thinking about cyber compromise 
and response to it; this is for you as well. Regardless of background, 
I encourage you to read Thompson (2022) as a non-technical com-
panion to this book, but with a similar focus on models as tools for 
understanding the world and communicating about it while at the 
same time knowing the limits of models. 

If you are not at all familiar with disease modeling (although, 
because of the coronavirus pandemic, I am confident that you are 
familiar at least with the loose use of terminology, such as “grow 
exponentially”, “basic reproductive rate”, or “host threshold den-
sity”) that is no problem. In Chapter 1, we will explore the metaphor 
linking disease modeling and cyber variability. Other places to start 
learning about disease modeling are the short papers by Bjørnstad 
et al. (2020a,b; 2000b) or Chapter 10 in Murray (2002). 

I expect that this is my last book (although I did so when I 
wrote The Theoretical Biologist’s Toolbox (Mangel 2006)), so I have 
also included career advice and appreciate forbearance of readers for 
that. 

Mathematical Analysis, Computation, and 

Potential Projects 

We will understand the population biology of cyber systems using 
mathematical analysis and numerical computation, and I will suggest 
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potential projects. The advantage of mathematical analysis is that 
we can demonstrate things that are true about the system we are 
considering. But often the system is too complicated for the math-
ematical analysis to be tractable, in which case we will use numer-
ical computation to study its properties. In that case, one has to 
pick specific values of parameters and I will often suggest at the 
end of a section that you code a version of the model, confirm 
the results shown, and then explore what happens when param-
eters take different values. In particular, we expect some changes 
in the quantitative behavior as parameters change, but is there a 
change in the qualitative behavior? If yes, can you explain what 
is going on? In general, I will have conducted sensitivity analy-
ses when selecting the particular results, and I will try to never 
mislead you. 

Other times, I will suggest a Potential Project, which involves 
a re-conceptualization of some aspect of what we have done. Often 
these will be research topic for which I do not know what will happen. 
I will separate such topics in a box like this 

Potential project: Write a list now of what you hope to 
achieve by reading this book. 

and hope that you follow through on some of these suggestions. 

Key Definitions and the Focus of This Book 

The phrase “cyber security” evokes a wide range of interpretations 
(Sloan 2012, Chapter 6, Singer and Friedman 2014). For that reason, 
we now begin in earnest with some key definitions. Definitions are 
boldfaced at the time of introduction, and there is a glossary of 
terminology, symbols, and equations at the end of the book. 

• A cyber asset is any kind of electronic information technology 
that may be operationally important in its own right or opera-
tionally important because of a linkage to other cyber assets or an 
enabled physical system  whose performance depends upon the 
proper functioning of the cyber system. 
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• When cyber assets are linked they form a cyber system or cyber 
infrastructure. Stewart  et al. (2010) offer two definitions of 
cyber infrastructure: “Cyberinfrastructure consists of computing 
systems, data storage systems, advanced instruments and data 
repositories, visualization environments, and people, all linked 
together by software and high performance networks to improve 
research productivity and enable breakthroughs not otherwise pos-
sible” and “Cyberinfrastructure consists of computational sys-
tems, data and information management, advanced instruments, 
visualization environments, and people, all linked together by 
software and advanced networks to improve scholarly produc-
tivity and enable knowledge breakthroughs and discoveries not 
otherwise possible.” We will not be more specific than this, 
keeping with the idea that cyber systems are more easily rec-
ognized than defined (as Prisig (1999) notes about the word 
“quality”). 

• A cyber asset is compromised when its expected and actual 
behavior differ in significant ways. Note that this definition says 
nothing about how the compromise occurred. Because of nat-
ural variability, sometimes called noise, and operational factors 
cyber assets may wear out (Mangel and Brown 2022). The cyber 
asset is then compromised, and although this may also be an 
issue of cyber security it is not considered a cyber attack. Cyber 
co-compromise occurs when an uncompromised cyber asset has 
its behavior changed significantly after interacting with a previ-
ously compromised asset. 

• A cyber attack occurs when compromise of a cyber asset is 
caused by an adversary. Cyber assets can be protected or hardened 
against attack, but few remain permanently invulnerable. When a 
cyber asset is compromised it may be repaired by humans or by 
other cyber assets. 

• A Cyber Protection Team (CPT) is a trained group of experts 
who both maintain defense against attack and return compromised 
cyber assets to their functional state. Cyber assets successfully 
returned to operational status are reset/restored. We will use 
models to explore how one can structure the capabilities (e.g. the 
skills) and operations (e.g. timing of visits) of CPTs. 
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We thus interpret the terms cyber system, cyber infrastructure, 
and cyber space as broadly as possible. Valeriano and Maness (2015, 
pp. 23–24) provide a variety of definitions but settle on that of Nye 
(2011), which I paraphrase to include computers, networks, digital 
and cellular communication systems, fiber optic cables, and space 
based systems. Nye (2010, 2017) suggests that we conceptualize 
cyberspace as a hybrid of physical and virtual (informational) sys-
tems. The physical asset follows laws of physics and economics, and 
political jurisdiction. On the other hand, the informational asset is 
often embedded in a network with increasing returns to scale with 
more difficult jurisdiction. In addition, attacks on the informational 
asset have relatively small cost when compared to destruction of 
physical assets (which is one of the reasons that escalation from cyber 
to kinetic attacks, which we discuss in Chapter 3, is such a thorny 
topic). 

There are many different mechanisms of cyber vulnerability and 
attack, including but not limited to: denial of service, direct attacks, 
phishing, reverse engineering, spoofing, and malware. Similarity, 
there are many different kinds of defensive counter measures, includ-
ing but not limited to: security architecture, management of vul-
nerability, hardware protection, secured coding, digital hygiene, and 
protocol for responding to breaches. There is an enormous literature 
on the different mechanisms involved in cyber vulnerability, attack, 
and defense (Miller 2020, Microsoft 2022, Verizon 2022). 

You will see that we do not need to model the specific mecha-
nisms or cyber threats to understand the broader and higher conse-
quences of cyber compromise. To focus at this higher level, we can 
conceive of cyber capabilities as consisting of cyber dependence (how 
much an actor depends upon cyber assets), the ability to conduct 
cyber offense, and the ability to conduct cyber defense in response 
to an attack. An example of such an assessment is given by Valeriano 
and Maness (2015, Table 2.1) for 10 countries ranging from Estonia 
and Israel to China, Russia, and the United States. 

The use of mathematical models for understanding the broader 
and higher level consequences of disease has a long and rich his-
tory (Edelstein-Keshet 1988, Anderson and May 1991, Murray 2002, 
Keeling and Rouhani 2008). Our goal is to translate those ideas for 
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an improved understanding of the variability and security of cyber 
systems. 

Things that are Helpful to Know 

One of the powers of mathematics is that things which appear to be 
completely different on the surface are the same at a deeper level. 
I assume that you know or are motivated to learn: 

• How to interpret a differential equation by understanding that dx 
dt 

denotes the rate of change of the variable x(t) with time t. Of  
course, the more calculus you know, the better off you will be. 
Indeed, Richard Feynman told Herman Wouk when Wouk admit-
ted that he did not know calculus “You’d better learn it. It’s the 
language that God speaks” (Wouk 2010, p. 5). Long before Feyn-
man, Galileo wrote in 1623 that “nature is a book written in the 
language of mathematics”. Crease (2018, p. 68) wrote that “The 
most important lesson to be found in Galileo’s image is the need to 
keep developing and revising the metaphors with which we speak 
about science.” 

There are some instances in which I go into a bit more mathe-
matical detail about a topic; such sections are denoted by ∗ and 
can be skipped if you wish. 

• A few basic probability distributions such as the normal (Gaussian) 
distribution with mean µ and standard deviation σ, the binomial 
distribution that has its foundation in coin flipping, and the Pois-
son distribution in which  a single parameter  λ characterizes the 
rate which events occur. 

• Knowledge of a computer language. I have written the codes in 
R and implemented them in R Studio. Kadowaki (2023) is a nice 
starting point if you are unfamiliar with R but want to learn it. 
I have not posted code because if you want to really master the 
ideas here, you need to develop computer code yourself. 

With the exception of R, the mathematical terminology will be 
clarified as we go along. If you are not familiar with these notions, 
keep in mind the comment of Crease (2018, p. 105): “When you 
are fully literate [in mathematics], nothing comes as a surprise. But 
mathematicians are made not born; in infancy they are not yet 
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mathematicians and have to learn it – and in such learning often 
experience extensive transformations and reorganization of mathe-
matical knowledge that they have only partially acquired.” 
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Summary of Major Insights 

Each chapter ends with a non-technical summary of insights devel-
oped in the chapter. The full collection of insights follows here, to 
give you a sense of where we are going. There may be terms that you 
do not recognize, but they will appear in the appropriate chapter 
and be defined in the glossary as well. 

Chapter 1: Process Modeling in Population Biology 

and Cyber Systems 

• The Resilience Stack provides a way for us to think about the 
hierarchical nature of cyber attack and defense. 

• We cannot talk about redundancy unless we have in mind how the 
cyber system is to be used and how to evaluate its performance or 
the performance of the enabled physical system. 

• The methods of population biology are natural tools for under-
standing the dynamics of compromise and variability in cyber sys-
tems. Three key ideas from population biology relevant to cyber 
systems are: 

(1) Populations (of organisms or cyber assets) consist of individ-
uals with different characteristics and successful modeling of 
the dynamics of populations must have level of description 
that matches the question of interest. 

(2) Populations have dynamics on many different time scales, but 
often reach steady or quasi-steady states (which may include 

xxxi 
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periodic behavior [limit cycles]) in which dynamic processes 
are balanced. 

(3) Populations of organisms are governed by the fundamental law 
of biology – evolution by natural selection – acting on expected 
lifetime reproductive success of individuals as a proxy for the 
long-term representation of genes in the population. Although 
there is no similar fundamental law for cyber system, the 
notion of fitness maps into the performance of a cyber sys-
tem or the physical system that it enables. 

Chapter 2: The Pulse Attack Model (PAM) 

• Following a pulse attack, compromise may persist even when the 
system reaches a quasi-steady state long after the attack has ended. 
Whether this happens or not is determined by co-compromise rate 
parameter in the cyber system and this is a property of the cyber 
network under the control of the defender. 

• Consequently in anticipation of cyber attack, the very first pro-
active defensive measure is to ensure that the co-compromise 
rate parameter is less than the threshold for persistence of co-
compromise, which is a design parameter of the system. 

• Cybersecurity drills can ensure that the co-compromise rate is 
below the threshold value by measuring the co-compromise rate 
parameter. 

• There may also be design tradeoffs between the rate at which com-
promised cyber assets are discovered and removed to be reset and 
the rate at which they are returned to the uncompromised state. 
When this tradeoff exists, there is an optimal rate of removal to 
resetting that minimizes the maximum level of compromise (thus 
maximizing the minimum level of performance) but also a range of 
values of rate of removal to resetting that is consistent with mak-
ing performance pretty good during the attack while eliminating 
compromise after the attack ends. 

Chapter 3: The Fundamental Model of Simultaneous 

Cyber Operations 

• During persistent cyber operations, both sides will experience per-
manent degradation in which the steady state of uncompromised 
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cyber assets less than the initial number of uncompromised cyber 
assets is reached. This may correspond to a permanent degrada-
tion in performance of the cyber system or the enabled physi-
cal system, depending upon the parameters of the performance 
function and the number of uncompromised cyber assets in the 
steady state. 

• The four-dimensional steady state of consisting of the uncompro-
mised and compromised cyber assets of each side is unique and 
stable, meaning that regardless of the initial states of the cyber 
adversaries, the steady state will ultimately be approached. The 
approach to this steady state can include spiraling into it, rather 
than a monotonically approaching it. 

• The value of the attack to the attacker can be determined from the 
probability of escalation by the adversary to a kinetic attack or a 
cyber attack on critical civilian infrastructure and the reduction 
in the performance of the adversary’s cyber system or enabled 
physical system. These values also reach steady state values. 

• Resilience, defined as the time to return to a near fully uncom-
promised cyber system if the cyber attack were to end, depends 
on both the rate at which compromised cyber assets are moved 
into the resetting pool and the rate at which they are moved from 
resetting to the uncompromised pool. 

• It is a general property of simultaneous cyber operations that there 
are variables whose values shift from shrinking to growing or vice 
versa. An awareness of this property, as an anticipated and almost 
unavoidable phenomenon, is very important for decision-makers, 
who often pay great attention to trends but do not expect that they 
will reverse, or maybe even recognize that reversals are possible. 
Our analysis shows that a trend could shift direction without any 
outside influence. 

Chapter 4: Beyond Determinism: Stochastic Versions 

of the PAM and FMSCO 

• The Stochastic Simulation Algorithm (SSA) allows us to move 
beyond the determinism implicit in ordinary differential equation 
(ODE) models of cyber systems. In particular, the SSA allows 
interpretation of the ODE models in terms of the conditional mean 
for an underlying stochastic birth and death process. 
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• A stochastic version of the PAM, operationalized by the SSA, pro-
duces distributions, rather than point estimates, of quantities such 
as the minimum number of uncompromised cyber assets, the time 
to recover to nearly all uncompromised cyber assets for the case in 
which the rate of co-compromise is below the threshold for persis-
tence of compromise, or the minimum number of uncompromised 
cyber assets and the number of uncompromised cyber assets in 
the steady state for the case in which the rate of co-compromise 
exceeds the threshold for persistence of compromise. 

• A stochastic version of the FMSCO, operationalized by the SSA, 
produces distributions for the steady state number of compromised 
and uncompromised cyber assets for each adversary and correla-
tions between those values. 

• In the stochastic version of the FMSCO knowledge by the X-side 
decision maker of the number of its uncompromised cyber assets 
says something about the number of uncompromised cyber assets 
held by the Y-side. 

• Most importantly, for both the PAM and FMSCO using the SSA 
gives us a way to determine the range of variability due to fluctua-
tions in the random processes underlying cyber attack and recov-
ery. The SSA prevents us from misinterpreting variability as skill. 

Chapter 5: Extensions of the Pulse Attack Model 

The PAM is intended as heuristic tool that has much in common 
with many systems but is not intended to model any specific system. 
The extensions of the PAM show the power of such an approach 
for developing understanding and quantitative predictions in cyber 
systems: 

• The equations of the PAM generalize when there are multiple pulse 
attacks over time. In such a case, one needs to specify the times 
of the peak, dispersal parameter, and rate parameter of each of 
the attacks. Even when the rate of co-compromise is less than the 
threshold for the persistence of co-compromise, the cyber system 
may not recover fully and whether it does or not depends upon 
the timing and intensity of the pulses. 

• By including the probability that the defender initiates either a 
kinetic attack or a cyber attack on critical civilian infrastructure, 
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the attacker can use the PAM to determine the attack rate parame-
ter a that is consistent with a targeted reduction in performance of 
the defender’s cyber system or enabled physical system but below 
a threshold value for the probability that the defender responds 
with a kinetic attack or attack on critical civilian infrastructure. 
The PAM thus becomes a planning tool for the attacker. 

• When a Cyber Protection Team (CPT) is required for restoration 
of compromised cyber assets, another time dependency is intro-
duced into the equations for the PAM. Regardless of whether the 
CPT visits on a regular schedule or according to threshold number 
of compromised assets, the PAM generalizes directly, and should 
stimulate research by the defenders about the operation and effec-
tiveness of CPTs. 

• A straightforward extension of the PAM allows us to consider sit-
uations in which cyber assets that are restored to uncompromised 
status can be temporarily hardened to cyber attack, losing that 
defense over time. None of the qualitative conclusions based on 
the basic PAM, particularly concerning the role of the threshold 
level of co-compromise for the persistence of compromise in the 
steady state, change. 

• A straightforward extension of the PAM allows us to consider sit-
uations in which assets are divided into those critical for the per-
formance of the cyber system or the enabled physical system and 
those that have secondary roles, such as reducing the rate of attack 
on the critical cyber assets. In this case the number of differen-
tial equations in the model expands because we must track the 
dynamics of the two kinds of cyber assets. This extension allows 
us to study the role of protection of critical assets by secondary 
cyber assets. In particular, we can explore how performance of the 
cyber system or enabled physical system is shaped by the param-
eters characterizing the protection provided by secondary cyber 
assets and the rate at which critical cyber assets are returned to 
operational status. 

• When cyber assets may be destroyed during an attack, the total 
number of cyber assets is no longer constant and we must make 
an assumption about the way destroyed cyber assets are replaced 
(or not). When destroyed cyber assets are not replaced so that the 
total number of cyber assets declines, the parameters of the perfor-
mance function interact with the probability of destruction of an 
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cyber asset during attack to determine how much steady state per-
formance is degraded by the loss of cyber assets. When destroyed 
cyber assets are replaced from an on-hand pool of uncompromised 
cyber assets, the extension of the PAM allows us to determine the 
size of the reserve pool to maintain a sufficient level of perfor-
mance. When destroyed cyber assets are replaced from an off-site 
pool of uncompromised cyber assets, a delay (the time for uncom-
promised replacement cyber assets to reach the cyber system) is 
introduced into the equations for the PAM. Such a delay can lead 
to oscillations into the dynamics of uncompromised cyber assets 
long after the pulse attack has ended. 

• To design cyber systems that are Flexible, Adaptive, and Robust 
we can envision the parameters of the PAM, particularly the rates 
at which resetting cyber assets are returned to uncompromised 
states and at which compromised cyber assets are moved from 
the compromised pool to the resetting pool, as design parameters 
with a total resource constraint. Furthermore, we can add a third 
resource whose role is to reduce the rate of external attack. These 
considerations lead to a straightforward extension of the PAM. 
Although optimization of steady state dynamics or performance is 
clearly possible, sweeping over parameter values shows the optima 
for the number of cyber assets in the steady and performance and 
that a broad range of values that are close to optimum. That is, 
the surfaces characterizing the minimum and steady state levels of 
performance are relatively flat around the peak. The surfaces are 
broader when rate of co-compromise is less than the threshold for 
the persistence of co-compromise. 

• Ultimately, one may choose to adapt the performance function in 
response to or anticipation of cyber attack. In this case the param-
eters of the performance function can be combined with those char-
acterizing the dynamics of the cyber system to allow analysis of 
the tradeoff between the dynamics of the cyber system and per-
formance of the cyber system or the enabled physical system. 

Chapter 6: Extensions of the Fundamental Model of 

Simultaneous Cyber Operations 

• As with the PAM, we have seen how the FMSCO generalizes, which 
is what makes it a powerful starting point. That is, because the 
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FMSCO is not specific to any particular cyber system but has 
much in common with many cyber systems and with small modi-
fications can capture other specific situations. 

• When X-side cyber assets are used to hold compromise of the 
Y-side assets, performance of the X-side cyber system or enabled 
physical system may substantially decline. This is determined by 
the interaction of the midpoint of the X-side performance function 
and the number of X-side cyber assets needed to hold Y-side cyber 
assets in compromise. A similar conclusion applies for Y-side cyber 
assets holding X-side assets. 

• Delays in the detection of compromise (moving compromised 
cyber assets from the compromised pool to the restoring pool) 
and restoration (returning cyber assets in the restoring pool to 
the uncompromised pool) may convert steady states that are 
approached monotonically to steady states that are spiral points. 
In such a case, one sides’s uncompromised cyber assets may tem-
porarily fall below a threshold for a kinetic response or an attack 
on critical civilian cyber systems. This important possibility needs 
to be clearly communicated to decision-makers. 

Chapter 7: Including a Distribution of Vulnerability in 

the Pulse Attack Model 

• The rate of compromise can be modified to include vulnerability 
to attack by assuming that cyber assets with different levels of 
vulnerability are compromised at rates proportional to their vul-
nerability. The gamma density pinned down at 0 is a flexible means 
of capturing a distribution of vulnerability to compromise. 

• The gamma density can be discretized into N values of vulner-
ability and the PAM expanded to include N equations for the 
dynamics of cyber assets with different vulnerabilities. 

• When vulnerability has a discrete distribution, key decisions have 
to be made about (i) how co-compromise occurs and (ii) when 
cyber assets are reset, how the vulnerability of reset assets is 
determined. In this chapter, we assumed that there is a single 
pool of compromised assets and that co-compromise occurs at rate 
determined only by the rate of co-compromise, consistent with the 
assumption that the mechanism of external compromise and inter-
nal co-compromise are different. We investigated two choices for 
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the vulnerability of reset cyber assets. In the first choice, reset 
cyber assets had vulnerability determined by the distribution of 
vulnerability at the time of the pulse attack. In the second choice, 
reset cyber assets return to the uncompromised pool with min-
imum vulnerability and then become more vulnerable as time 
goes on. 

• When the co-compromise rate parameter is lower than the thresh-
old for the persistence of compromise and cyber assets are returned 
proportional to the initial distribution of vulnerability, the overall 
number of uncompromised cyber assets and performance decline 
during the pulse attack but after the attack ends both return to 
the their values before the pulse attack. The numbers of cyber 
assets with different vulnerability decline during the attack and 
increase following the attack. However, because more vulnerable 
cyber assets decline at higher rates than less vulnerable assets, the 
distribution of vulnerability after the attack is different than before 
the attack and mean vulnerability may change from its value before 
the attack. 

• When the co-compromise rate parameter is lower than the thresh-
old for the persistence of compromise and cyber assets are returned 
with minimum vulnerability but then become more vulnerable as 
time progresses, during the pulse attack the overall numbers of 
uncompromised cyber assets and performance decline; after the 
attack ends both return to the their values before the pulse attack. 
In this case, there are transients in the number of cyber assets with 
different vulnerability, but ultimately all cyber assets have maxi-
mum vulnerability (unless other action is taken). 

• When the co-compromise rate parameter is greater than the 
threshold for persistence of compromise and cyber assets are 
returned proportional to the initial distribution of vulnerability, 
during the pulse attack the overall numbers of uncompromised 
cyber assets and performance decline. After the attack ends com-
promise persists in the cyber system so that performance is per-
manently degraded. The numbers of cyber assets with different 
vulnerabilities decline during the attack and increase following the 
attack but not to their original levels. However, because more vul-
nerable cyber assets decline at higher rates than less vulnerable 
ones, the distribution of vulnerability after the attack is different 
than before the attack. 
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• When the co-compromise rate parameter is greater than the 
threshold for the persistence of compromise and cyber assets are 
returned with minimum vulnerability but then become more vul-
nerable as time progresses, during the pulse attack the over-
all numbers of uncompromised assets and performance decline. 
After the attack ends compromise persists in the cyber system so 
that performance is permanently degraded. The numbers of cyber 
assets with different vulnerabilities increase following the attack 
but not to their original numbers. Because more vulnerable cyber 
assets decline at higher rates than less vulnerable ones, the mix-
ture of vulnerability after the attack is different than before the 
attack. 

Chapter 8: Bon Voyage: Future Directions 

• Fruitful directions for future research include explicit models of the 
cyber system of the enabled physical system, incorporating human 
factors into the PAM and the FMSCO, and moving beyond dyadic 
interactions to consider multilateral cyber security agreements. 

• Modeling the cyber system of the enabled physical system increases 
both the fidelity to operational situations and the complexity of 
the mathematical model but it will likely lead to new insights. 
Focus on a particular system, such as an electric grid and utility 
company is an appropriate starting point. 

• Human factors are another natural extension of the PAM and 
FMSCO because humans are deeply involved in both creating com-
promise in cyber systems (e.g. by sharing thumb drives that carry 
malware) and detecting compromise (by recognizing anomalous 
situations). Modeling human factors will also expand the number 
of equations in the PAM and FMSCO. 

• A Multilateral Cyber Security Agreement (MCSA) will help move-
ment towards a global approach to shared cyber defense and 
response when cyber attacks occur. In this case a specific exam-
ple of a performance function related to cyber systems is national 
Gross Domestic Product (GDP) as a function of national Broad 
Band Penetration (BBP), illustrated using nations that are mem-
ber of the Organization for Economic Cooperation and Develop-
ment (OECD). From it we learn: 
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(1) When the likelihood of cyber attack increases with the BBP 
of a nation and cyber resources can be allocated from BBP 
to unilateral defense, thereby reducing the number of success-
ful attacks, there is a threshold level of BBP below which no 
defense is predicted (because adversaries will direct attacks to 
nations with larger BBP). After that, resources allocated to 
defense increase but at a decreasing rate, so that the fraction 
of BBP dedicated to defense is predicted to rise, level off, and 
fall for the largest values of BBP. 

(2) Multilateral defense requires an assumption about to depend-
ability of cyber security cooperation. When cooperation is 
guaranteed, nations are able to increase GDP relative to uni-
lateral defense for all levels of BBP, with the largest relative 
gains going to nations with smaller BBP. 

(3) When cooperation is not guaranteed, we must understand a 
nation’s perception of how likely other nations are to deliver 
on their commitment to the cooperative security agreement. 
As a nation’s perception of the trustworthiness of other nations 
declines, the gain from participating in a MCSA declines. Sim-
ulation methods allow us to assess the gain to a nation by 
participating in a MCSA and predict the fraction of nations 
joining the MSCA, illustrated with the OECD nations. 



Chapter 1 

Population Biology and Process 
Modeling of Cyber Operations 

The important thing in science is not so much to obtain new 
facts as to discover new ways of thinking about them 

– Sir William Bragg 

But it’s like an infectious disease, isn’t it? Immunologists would 
have a field day researching the viral spread of compromising 
photographs on social media. I’d venture that the Spanish flu 
and Ebola combined couldn’t touch the speed of photographic 
mortification spreading through cyberspace 

– Pearson (2017, p. 12) 

1.1. Introduction 

The broad idea underlying this book is that the development of cyber 
strategy (National Research Council 2010, Schneider 2020) will be 
improved by the development and use of process based model-
ing. With such models one describes the dynamics of the system of 
interest with explicit state (and often time) dependent functions of 
how the system changes (Pilowsky et al. 2022). 

A cyber attack can be a single event or continuous, or some-
thing between those extremes. There are arguments that effective 
cyber strategies will involve Persistent Cyber Operations (PCO) 
(e.g. Goldman 2020, Nakasone 2020). That is “Continuous action 
in cyberspace for strategic effect has become the norm, and thus 
the command [USCYBERCOM] requires a new strategic concept” 

1 
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(Nakasone 2020, p. 2). When multiple actors conduct PCOs, the 
result will be Simultaneous Cyber Operations (SCO). Our  
(yours, the reader, and mine) goal is to contribute to the development 
of the required new strategic concepts and methods. 

There are compelling arguments that a fruitful way to make 
predictions about the consequences of future cyber attacks is to con-
duct empirical inductive research (Gartze 2013, Maness and Vale-
riano 2016, Valeriano and Maness 2015, Rid 2012, Valeriano et al. 
2018). Historical precedents for such work are the papers by Huth and 
Russett (1988) and Lebow and Stein (1990) concerning deterrence 
and the escalation of crises. Kreps and Schneider (2019) describe 
an experiment focused on the American public in which effect- and 
means-based routes to escalation in response to a cyber attack are 
explored. They found support for escalation through cyber thresh-
olds; we will investigate this topic in Chapter 3. 

Such inductive research in cyber incidents will allow us to replace 
worst-case speculation (Koppel 2015) by more nuanced understand-
ing (Gomez and Whyte 2021). For example, the millions of daily 
intrusions into the US Department of Defense cyber systems are 
mainly routine scans from cyber criminals or nation-state adver-
saries intending to steal data rather than disrupt a cyber system 
(Lindsay and Gartzke 2018). There is now a sufficient body of data 
that one can analyze past cyber attacks and their consequences in 
order to make strong predictions about future attacks (in addition 
to the citations at the start of this paragraph, see Gross et al. (2018) 
and Warner (2020)). Valeriano and Maness (2015, p. 72) conclude 
that the “goal of theory is to generally explain the past, present, and 
future according to a set of foundations and ideas that guide interpre-
tation and investigations. With theory there must come predictions” 
(italics added). 

I fully concur, although we will develop a complementary 
approach to inductive, empirical study via deductive, process-based 
modeling. Process-based models allow us to reach beyond the empir-
ical data, but be guided by it, and use deductive predictions to help 
guide data collection in the future (since the number of choices for 
what kind of data to collect is essentially unbounded). Put more 
simply, our goal is to show that cyber attack and its consequences 
can be modeled, in a way that theory conforms with experience 
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(Nakasone 2020, referring to Clausewitz) and leads to new insights 
and predictions. 

1.2. The Disease Metaphor for Cyber Variability 

In July 2018, shortly after I began consulting at APL, I made a 
trip there and spent a few days talking with many colleagues about 
the problems on which they worked. It was then that I met Jim-
mie McEver and as we sat together he drew a picture (Figure 1.1, 
upper panel) of the problems of cyber compromise that he was think-
ing about. I responded by drawing the analogue from the popula-
tion biology of disease (Figure 1.1, lower panel). In that analogy 
there are susceptible (S), infected (I), and recovered individuals. 
When the link between recovered and susceptible individuals exists 

Fig. 1.1. Upper panel: A cleaned up version of a figure that Jimmie McEver 
drew on a white board at APL when we first met in July 2018. Lower panel: 
A cleaned up version of the figure that I drew after seeing his, explaining that 
there we many tools in population biology that can be used to make the metaphor 
between cyber systems and disease systems more precise. 
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because recovered individuals lose resistance to the disease organ-
ism, the model is the S[usceptible]I[infected]R[ecovered]S[usceptible] 
(SIRS) model; when recovery is permanent, the model is 
the S[usceptible]I[infected]R[ecovered](SIR) model. Such functional 
analogies from biology (Axelrod 2014), as well as other fields 
(Perkovich and Levite 2017), can lead to better understanding of 
the dynamics of compromise and recovery in cyber systems. 

Terms from disease biology, including worm, reinfection, and out-
break appear throughout the cyber literature. It is even possible that 
mutations occur, as in the Conficker worm described by Zetter (2014, 
p. 54). Zetter also uses terms that include self-replicating (i.e. repro-
ducing) worms (p. 58); inoculation (against self-infection) (p. 65), 
spreading mechanisms (p. 93) and writes that once Stuxnet spread 
in the world, it had “out-of-control spreading” (Zetter 2014, p. 357) 
and that copies of Stuxnet were “found in the wild” (Zetter 2014, 
p. 352). The Stuxnet virus also adapted to changes in the operating 
systems that it attacked (Bellovin et al. 2018, p. 270). Segal (2018 
p. 326) also uses the word contagion. 

As with disease organisms (and physical weapons), we can think 
of a payload and a delivery system. That is, a cyber weapon first 
has to reach the targeted cyber component (delivery), after which 
it may begin to compromise the target (payload). As in the natural 
world, there are many kinds of payloads and delivery systems. We 
will subsume these by the parameters characterizing the rates of 
attack, discovery of compromise, and return to the uncompromised 
state. 

Clearly disease models are a metaphor for cyber compromise. 
Aristotle defined metaphor as a procedure in which the properties of 
one thing can be used to learn about the properties of another thing. 
Indeed, the Greek word metaphora translates to “to carry from one 
thing from another” (Reames 2024). Mathematical metaphors allow 
us to see that systems which appear to be very different actually have 
much in common with each other. The question is how far can we 
push the metaphor and what can we learn from it. Disease modeling 
is thus a lens (sensu Crease 2008, p. 178) that allows one kind of sci-
ence (population biology) to approach another (cyber systems) in a 
focused manner. This focus allows the methods and thinking of first 
type of modeling to explore the second. Lafferty et al. (2008) dis-
cuss how models from the population biology of disease can be used 
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to understand and confront the infectiousness of terrorist ideology. 
They too recognize disease models as a metaphor, and consider ways 
of making the metaphor practical, including goals for future research 
and remaining open questions (p. 204). Thompson (2022), in a book 
with a focus on models for climate, disease, and economics, has a 
superb  chapter  on models as metaphors.  

1.2.1. On cyber and natural ecosystems 

The congruence between the visuals in Figure 1.1 is due the com-
monalities of the complexity in biological and cyber systems; Jimmie 
McEver had already been thinking hard about complexity in cyber 
systems for many years (Davis et al. 2000, McEver et al. 2019). Here’s 
a modification of a table on page 204 of their paper, with correspond-
ing thoughts about complexity in biological systems (Mangel et al. 
1996, especially Appendix II, Levin 1998, 1999, 2003): 

• Biological and cyber systems show interdependence, with the impli-
cations that cyber systems, like biological systems, are not easily 
understood by decomposing them into component parts because 
the relevant behaviors and vulnerabilities in one part or level of 
the system affect those in other parts of the system. 

• Biological and cyber systems have many kinds of nonlinearities 
(in biology, “density dependent dynamics”) with the implication 
that projecting forward from current conditions is more compli-
cated than linear extrapolation, there may be multiple states of 
the systems, and rapid and unexpected transitions. 

• Biological and cyber systems are open because new elements of 
the system are regularly introduced and/or current elements are 
regularly removed. Because forces outside of the system act on it, 
one must take care when focusing only on processes inside a preset 
boundary. 

• Biological and cyber systems are characterized by a variety of tem-
poral and spatial scales so that system properties and behaviors 
that are relevant for decision makers and users of cyber systems 
or managers of human interactions with biological systems exist 
simultaneously at multiple levels. The key to successful modeling 
of the dynamics of such systems is to find the level of description 
and the tools that match the questions of interest. 



6 Fighting the Virus: How Disease Modeling Can Enhance Cybersecurity 

• Biological and cyber systems are embedded in networks of 
interactions so that causality is not always obvious, and in cyber 
systems responsibility and accountability are often not clearly 
definable. 

• Biological and cyber systems show emergence in which novel sys-
tem properties and behaviors appears at holistic levels from behav-
iors and interactions among the system elements. Such emergent 
properties and behaviors cannot be simply explained as the aggre-
gate behavior of the system assets. 

• The performance of biological systems is generally governed evo-
lution by natural selection whereas cyber systems are governed by 
goals set by humans that are often vague, changing, unrealistic or 
conflicting. 

• Biological and cyber systems show adaptation and innovation in 
which both the individual members of populations and the rules 
by which the system operates change, and intervention may stim-
ulate adaptation (e.g. the evolution of resistance to pesticides in 
biological systems). 

• Biological and cyber systems are not fully transparent so that there 
are often multiple hypotheses about why observed behaviors occur, 
and often insufficient evidence, time, or information to fully dis-
criminate between them (Chamberlin 1897, Hilborn and Mangel 
1997). 

We now turn to modeling in population biology, and will construct 
equations for the dynamics of the SIRS model in the lower panel of 
Figure 1.1. 

1.2.2. Modeling in population biology 

If you are coming from a background in physical sciences or engi-
neering, you may expect that models require precise knowledge of 
the rules governing the dynamics of the system; if you are coming 
from statistical disease ecology, you may expect that the purpose of 
models is to fit data. Two of the giants of population biology in the 
20th century, Robert May and John Maynard Smith (Figure 1.2) 
provided advice about this expectation in Graeme Farmelo’s mag-
nificent book on the great equations of modern science (Farmelo 
2002). 
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Fig. 1.2. Two of the 20th century giants in ecological and evolutionary model-
ing, Robert May (left) and John Maynard Smith (right) moved to biology from 
physics and engineering respectively. We still have much to learn from them. 
Photo credits: Judith May and the University of Sussex respectively. 

Maynard Smith (2002, pp. 196–197) noted that biological systems 
are inherently complex, but we tend to begin with simple models with 
just one or a few equations. He then wrote “How can simple equa-
tions help us in the face of all these complications?”. The answer has 
a number of parts: (i) we isolate the phenomenon of interest, (ii) with 
a mixture of empirical work and intuition we hypothesize a mecha-
nism driving the phenomenon, (iii) we test our guess by constructing 
equations that capture the proposed mechanism, solve (analytically 
or numerically) these equations and discover if “they generate the 
kind (italics in the original) of behaviour [British English in the orig-
inal] that we observe”. He concluded “In other words, we hope that 
our equations will predict qualitatively the right behaviour. Precise 
numerical fit is usually too much to hope for”. Perhaps the biggest 
reason for qualitative predictions is that in any model we leave out a 
lot. But to make our models as complicated as the natural world itself 
makes them intractable. This begs the question as to why make math-
ematical models at all, rather than just sticking with verbal ones? 
Maynard Smith (2008, p. 211) addressed this point as well. First, 
constructing a mathematical model requires having an absolutely 
clear idea of what one assumes (even if it is a guess that ultimately 
gets modified). Second a good model will lead to testable predictions, 
and even qualitative predictions, such as the direction of change in 
the value of an output variable in response to a change in an input 
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variable, allow empirical work to be guided by the models. And being 
able to use models to guide empirical work is a very valuable goal. 

McElreath and Boyd (2007, p. 1) reinforce this idea when writing 
about mathematical models in the study of social evolution: “Mathe-
matical models and the tools used to analyze them constitute the the-
oretician’s laboratory. Simple mathematical models are experiments 
aimed at understanding the causal relationships that drive important 
natural phenomena . . .  These models are always too simple to make 
accurate predictions or even accurately represent how any real behav-
ior evolves. Nonetheless, they have proven to be extremely valuable 
because they help us understand processes too complex to grasp by 
verbal reasoning alone.” 

May (2002, p. 2016) described his career path from astrophysics 
to theoretical ecology, writing that “It struck me that the equations 
that ecologists were using were in some important ways different from 
the more familiar ones of physics. The differences are not mainly in 
the technical nature of the equations, but rather that the equations of 
physics purport to give an exact account of whatever they are describ-
ing. . . [in the physical sciences] the more precise the information you 
put into the equations the more precise will be the equation’s pre-
diction. In population biology, things are often very different. There, 
the equations commonly refer to models of living systems that are 
always much too complicated to be amenable to the representational 
equations of the type beloved of physicists.” 

He then elaborated: “The models of biological communities tend 
rather to be of a very general, strategic kind – they are caricatures of 
reality. Just as a good caricature catches the essential truth behind 
the thing it is trying to depict but is forgivably vague about the 
unimportant details, so the most we can expect of the equations of 
population biology is that they capture the key points of the situation 
they are describing. So, for biologists studying animal populations, 
their equations are cartoons of reality, not the perfect mirror images 
sought by physicists. That’s not to say that these biological equa-
tions are not vital to our understanding of nature. As the British 
mathematical biologist John Maynard Smith has noted, ‘Mathemat-
ics without natural history is sterile, but natural history without 
mathematics is muddled.’” 
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When reviewing a book on mathematical principles of immunol-
ogy and virology, Bangham and Asquith (2001) wrote: “It is a 
widespread fallacy that what mathematics contributes to biology is 
quantification of an otherwise innumerate science. But experimental 
biologists have long been expert at measuring and quantifying. The 
real contribution of mathematics lies in a precise qualitative frame-
work of reasoning. Experiment, however, is in no sense superior to 
theory, nor vice versa: both are necessary ingredients of a proper 
understanding of nature. An experiment done with no theoretical 
framework to analyze or interpret the results is meaningless; theory 
in the absence of experiment remains mere theory” (italics added). 
Valeriano and Maness (2015, p. 46) concur: “Without theory, key 
aspects of cyber dynamics can be left unexplained, unexplored, or 
ignored. What processes are at work, why are they chosen, and how 
are they used? What predictions can be made, and what leads to 
the generation of these predictions in the first place?” If we view 
tactical outcomes in cyberspace as battle of wits rather than brawn 
using computer code rather than kinetic means (Lindsay and Gartzke 
2018), tools that help sharpen thinking are extremely valuable. The 
techniques of the population biology of disease are such tools. 

When applying the ideas from population biology, we will always 
have in mind the essential tension between the specific conclusions 
from a general model and the general conclusions from a specific 
model. By moving between these poles, we will learn much about 
cyber security from population biology. 

Although a model may have technical aspects beyond the reach 
of some policymakers, lawyers, and judges, to be effective it needs 
to be presented in a manner that does not leave those individuals 
in  a “modeling vacuum” (sensu Sulyok 2021, p. 292) where they 
simply have to trust that the assumptions and analysis of the model 
are sound. This void can be filled. For example, models are widely 
used in multilateral investment treaties and are used to (i) assess 
whether the evidence of a nation substantiates and risk and (ii) assess 
during a dispute whether a regulation was a reasonable response to 
an identified risk (Sulyok 2021, p. 215). Thompson (2022) discusses 
other ways we can bridge the gap between modelers and policy or 
decision-makers. 
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1.2.3. Characteristics of a good process model 

Our goal is to develop a process based model of a cyber system that 
can be used to explore the roles of attack and maintenance rates, 
detection capability, and other design parameters on the dynamics, 
particularly how compromise of the cyber system propagates, and 
effects the performance of the cyber system or the enabled phys-
ical system responds. Using the model will help identify what to 
measure to be able to assess vulnerability to cyber attack, the con-
sequences of attack, and to identify design tradeoffs and routes to 
defense. 

A good process model has at least these features 

• A good process model should force one to think about the mecha-
nisms underlying the system one is studying (Solow 2023). Thus, 
we should not expect for a model to “come off the shelf” and nec-
essarily fit the system of interest. At the same time, a good process 
model should have much in common with many other cyber sys-
tems. One can then make changes to details of the model to make 
it particular to a specific cyber system. One of the (delightful) 
tensions of modeling in population biology is that these important 
points slightly contradict each other, and it is our job to figure out 
how to resolve this tension. 

• A good process model should lead to unexpected predictions. If we 
are not sometimes surprised by the outcome of a model, then the 
predictions were built into it through the underlying assumptions. 

• A good process model should guide us in the collection of empirical 
data. 

• Especially for cyber systems, a good process model should be 
designed to help the development of strategic thinking, which some 
authors (Lin and Zegart 2019, p. 5) consider to be underdeveloped 
because so much specific information about cyber operations is 
classified (they note that in the early 2000s, the phrase “offensive 
cyber operations” was classified). However, even though many mili-
tary cyber operations are classified, non-military users of cyber sys-
tems are frequently discovering, attributing, and mitigating cyber 
compromise. Doing so brings more data into the public domain. 
We should expect a multiplicity of ways to achieve persistence in 
the cyber domain (Smeets and Lin 2018) and a good process model 
will help identify the routes. 
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• A good process model should provide a quantitative framework for 
existing qualitative descriptions for the behavior of cyber systems 
(Smeets and Lin 2018). 

1.2.4. The equations of the SIR and SIRS models 

With these ideas in mind, let us construct a dynamical model for the 
SIR and SIRS models in Figure 1.1. If you are already a quantitative 
population biologist, you will find this section easy going. 

1.2.4.1. Symbology 

To begin, we need symbols for the three pools of individuals in 
Figure 1.1. Letting t denote time, it makes sense to let S(t), I(t), 
and R(t) denote the number of Susceptible, Infected, and Recovered 
individuals at time t, and adopting one of the most common nota-

dS dItions from calculus, we denote their rates of change by , and  dt , dt 
dR respectively. Next, we need assumptions about how these rates of dt 
change are determined and make the following assumptions: 

• Susceptible individuals become infected at a rate proportional to 
the product of the number of susceptible individuals and the num-
ber of infected individuals with proportionality constant β, i.e. 
βS(t)I(t). 

• Infected individuals move from the infected pool to the recovery 
pool at a rate proportional to their numbers with proportionality 
constant µ, i.e. µI(t). 

• Individuals recover at a rate proportional to the size of the recov-
ering pool, with proportionality constant γ, i.e. γR(t). These indi-
viduals join the susceptible pool in the SIRS model (γ >  0), or 
remain in the recovery pool in the SIR model (γ = 0).  

1.2.4.2. The dynamic equations 

Susceptible individuals who become infected move from the suscep-
tible to infected pool; infected individuals who start recovery move 
from the infected to recovery pool; and when individuals lose immu-
nity (the SIRS model), recovered individuals losing immunity move 
to the susceptible pool. Thus, the rates of change of the three kinds 
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of individuals are 

dS 
= − βI(t)S(t) +  γR(t)

dt 

dI 
= βI(t)S(t) − µI(t)

dt 

dR 
= µI(t) − γR(t)

dt 

When we add these three equations, the sum of the right sides is 
zero. That is, the rate of change of the sum of the three pools is 
zero, which means the population has a constant size (there are no 
births, deaths, immigration, or emigration or that all of those pro-
cesses somehow balance each other). If we let N denote the constant 
size, then N = S(t) +  I(t) +  R(t). The assumption of constant total 
size is handy because it allows us to reduce the three equations to 
two by writing R(t) =  N − S(t) − I(t); we will exploit this property 
in the next chapter. 

In general, we will adopt the convention of not writing the time 
dependence of dynamical variables on the right side of equations. 

1.2.4.3. Always confirm understanding by checking units 

One of the fundamental principles of applied mathematical modeling 
is that things in the actual world have units and the units on the two 
sides of an equation have to match. Let us employ this principle to 
determine the units of β, γ and µ, using  [•] to mean the units of 
whatever is inside the brackets. We also employ the fiction that dS 

dt 
is just a fraction (it is much more special than that), so that the 
numerator has units of individuals and the denominator has units of 

susceptible individuals time. We conclude [dS ] =  ; the same will be true dt time 

for the units of dI and dR with change of the adjective to infected ordt dt 
recovering. The right side of each equation needs to have units that 
match. 

First consider the term βSI (where I am dropping the notation 
susceptible individuals of time dependence). This has to have units and time 

since I has units of infected individuals, β must have the admittedly 
weird units 1/(infected individuals · time). You will sometimes see 

people replace βSI by βN SI, making  β a pure rate with units 1/time. 
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Reasoning as follows for the other parameters, we conclude that γ 
and µ are rates with units of 1/time. 

1.2.4.4. Starting population sizes 

In order to describe how the population changes, we need to give 
starting population sizes, which are called initial conditions. By 
convention, the starting time is usually t = 0, so that we specify 
S(0) = S0 and I(0) = I0, from  which  R(0) = N − S0 − I0. One natu-
ral starting question is “what happens to a population of susceptible 
individuals when an infection is introduced?” and we might think to 
set S0 = N, I0 = 0  and  R0 = 0. But  if  I = 0, then the right side 
of these equations tells us the population will not change. This is a 
problem, which we often solve by modifying the question to “what 
happens if we introduce one infected individual into a population 
of otherwise susceptible individuals?” and thus set S0 = N − 1 and  
I0 = 1. This kind of reasoning leads to the calculation of the number 
of new cases caused by a single infected individual entering an oth-
erwise susceptible population (this is called the basic reproductive 
rate R0 of a disease). 

The broader idea is that there somehow has to be an “injection” of 
infected individuals into the susceptible population. For cyber sys-
tems, we do this in Chapter 2 with a single pulse of attack or in 
Chapter 3 with continuous attack. 

1.2.4.5. Metaphor again: On individuals and populations 

None of the equations we just discussed focus on a particular indi-
vidual but on populations of individuals, and they is why they are 
so powerful. When an individual is sick, depending on the severity of 
the illness they could rest, take over the counter medication, or seek 
medical attention. But if we want to understand how an illness will 
spread in a population, we have to focus on the interactions between 
the disease agent and the individuals in the population, and on the 
interaction between healthy and sick individuals in the population. 
In a similar way, when one’s computer is having problems, depending 
on the severity of the problem one might turn it off and back on, run 
program to defeat malware, or seek professional help. But if we want 
to understand how a computer virus or other malware will spread in 
a network of computers, we have to focus on the interaction between 
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the malware and uncompromised computers and on the interactions 
between uncompromised and compromised computers. 

1.3. Our Long Term Goals, Pasteur’s Quadrant, and the 

Resilience Stack 

I have these long term goals in mind. First, to use key ideas from pop-
ulation biology to develop a systems dynamics model to explore the 
roles of attack and maintenance rates, detection capability, and other 
design parameters on the dynamics, particularly how compromise of 
the cyber system propagates, and performance of the enabled phys-
ical system responds. Second, with the goal of understanding what 
are the important variables and how they affect performance, our 
models will be heuristic ones that are not specific to any particu-
lar situation but have much in common with many cyber systems. 
Libicki et al. (2015) note that heuristic models allow us to increase 
understanding of important variables, rather to make precise predic-
tions, and that such models provide a framework for thinking about 
cyber security choices (also see Mangel and McEver 2021). We seek 
to develop what Henderson and Taimina (2020) call active intuition, 
where “active” emphasizes that our intuition develops and grows 
by exploring the properties of our models and the predictions we 
obtain from them. Third, we will use the models to help identify 
what to measure to be able to assess vulnerability to cyber attack, 
the consequences of attack on performance of the cyber or enabled 
physical system, and to identify design tradeoffs and routes to 
defense. 

These motivations are rooted in the particular application to 
cyber systems, but throughout we will seek fundamental understand-
ing and this leads us to Pasteur’s Quadrant (Stokes 1997, Mangel 
2023). 

1.3.1. Working in Pasteur’s Quadrant 

In his book on technological change, Pasteur’s Quadrant, Donald 
Stokes (1997) argued that a single axis between basic and applied 
science is the wrong way to think about the process of research. 
Rather, one must focus attention in a plane. One axis of assessment 
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Fig. 1.3. Stokes’s (1997) vision of science is that in every scientific endeavor we 
may ask about application – is there consideration of use motivating this work – 
and whether or not there is a quest for fundamental understanding. Niels Bohr 
provides the canonical example of an individual whose work was not motivated by 
consideration of use but involved the deep search for fundamental understanding 
and Thomas Edison one whose work was motivated by consideration of use but 
did not search for fundamental understanding. Louis Pasteur’s work from the 
time of his PhD was motivated by an important applied problem (Debré 1994) 
while he simultaneously sought fundamental understanding. Following Stokes, 
the left quadrant is unnamed; you might think what kind of work is done in that 
quadrant. 

is whether the work is motivated by consideration of use and the 
other is whether there is a quest for fundamental understanding. 
The plane can then be divided into the four quadrants (Figure 1.3), 
(1) No consideration of use and quest for fundamental understanding; 
(2) Consideration of use and a quest for fundamental understanding; 
(3) Consideration of use and no quest for fundamental understand-
ing; and (4) No consideration of use and no quest for fundamental 
understanding. 

Stokes called the quadrant “not motivated by consideration of 
use and search for fundamental understanding” Bohr’s Quadrant 
(although we are now clearly aware of the uses of Bohr’s work under-
standing the atom), the one “motivated by consideration of use and 
no search for fundamental understanding” Edison’s Quadrant, and 
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the one “motivated by consideration of use and search for fundamen-
tal understanding” Pasteur’s Quadrant. The fourth quadrant remains 
unnamed. 

Pasteur’s entire career involved work that was motivated by an 
important applied problem but simultaneously sought fundamental 
understanding (Debré 1994). Pasteur said “There is no such thing as 
a special category of science called applied science; there is science 
and there are its applications, which are related to one another as 
the fruit is related to the tree that has borne it”. One great advan-
tage of working in Pasteur’s Quadrant is that we are most likely 
to develop transferrable methods when we seek fundamental under-
standing. Working in Pasteur’s Quadrant is a theme of this book, 
since we are motivated by specific problems of cyber systems but 
seek fundamental understanding. 

When considering a model, we should ask if the assumptions make 
sense and if they are consistent with what we know about the phys-
ical world. But, we should banish the word “realistic” because sci-
ence by its very nature focuses on some things and ignores others, 
cannot capture all of reality. Caswell (1988), in a discussion of the 
roles of theory and models in ecology, gives a particularly interesting 
example. At a poster session on the terrestrial ecology of pine forests 
during the IVth International Congress of Ecology, he counted the 
number of posters in which 1, 2, 3, up to 6 factors were varied in 
the experiments. The vast majority of papers varied 1 or 2 factors, 
about which Caswell wrote “Surely no pine forest ecologist would 
argue that nutrient cycling is completely determined by two or three 
factors, and that all others are irrelevant . . . the absence of other fac-
tors in the experimental design would be accepted as criticism of such 
a study only if it could be argued that those factors might change 
the answers to the questions is under investigation” (Caswell 1988, 
pp. 40–41). 

So it is with modeling: we cannot model the entire world, so we 
must decide which factors are relevant to the questions that we ask 
(see Clark and Mangel (2000, Chapter 4) for a sequence of mod-
els in response to a sequence of more and more complicated ques-
tions). Then we need to ask about the fidelity of the assumptions to 
the natural world, whether the internal logic of the theory is such 
that the predictions flow from the assumptions or allows surprise 
predictions, and what happens when the predictions are confronted 
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with data (Agutter and Tuszynski 2011, Serevido et al. 2014, Shou 
et al. 2015). 

The resilience stack will help us frame the applied motivation, 
so we consider that next. 

1.3.2. The resilience stack 

An attack on a cyber system first requires compromise by gain-
ing access to cyber assets that interface with the external world. 
Once the attacker is inside the cyber system, the second stage of 
internal co-compromise can commence, in which compromised assets 
infect non-compromised assets. Compromised assets may immedi-
ately reduce the performance of the cyber system or the enabled 
physical system, or the adversary may hide compromise until ready 
to execute the attack. A successful cyber attack requires a weakness 
in software or hardware used by the defender, code that can exploit 
this weakness, and a method for propagating the exploiting code 
(Lachow and Grossman 2018). 

In many cases, cyber assets that interface with external world can 
be protected by external hardness (Libicki et al. 2015) in which anti-
malware prevents attackers from entering the cyber system (Gartzke 
and Lindsay 2015). Cyber assets that do not interface with the exter-
nal world can similarly be protected from co-compromise by internal 
hardness. External and internal hardness rely on a variety of mech-
anisms (Gartzke and Lindsay 2015, National Academies of Sciences, 
Engineering, and Medicine 2017, Carlin 2018). 

However, it is now clear that external and internal hardness are 
necessary but not sufficient for both a reliable and resilient cyber 
system (National Academies of Sciences, Engineering, and Medicine 
2017). That is, we should assume that attackers will get through 
defenses (Libicki et al. 2015). In this case, resilience of the cyber 
system (and thus performance of the cyber system or the enabled 
physical system) requires some form of Defensive Counter Measure 
(DCM, sensu Mangel and McEver (2021)) that returns the system to 
a state closer to the one before the attack. Protection from external 
compromise and internal co-compromise may not be effective (e.g. 
the installed anti-malware does not defend) or may lose its effective-
ness over time (e.g. the attacker discovers a way to circumvent the 
anti-malware currently installed). 
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Goldman (2020, p. 40) notes that “The core research ques-
tion . . . is how to deter cyber attacks when you cannot reliably defend 
against them”. The resilience stack allows a way to frame the answer 
to this question. Cyber systems are hierarchical. Clearly the best 
defense is to avoid attack in the first place. If one cannot avoid attack, 
then cyber assets can be dedicated to preventing the attack from 
entering the cyber system, i.e. resisting attack. When an attack can-
not be resisted, i.e. the attacker enters the cyber system, one can pre-
pare by hardening the cyber assets so that they are robust to attack, 
and by having redundant cyber assets, so that if one cyber asset fails 
others can take over the mission. But even hardened, redundant sys-
tems may fail against significantly sophisticated cyber tools so that 
assets will need to be repaired, reset, or even replaced. Replacement 
is a form of modularity by which the cyber system can be continue to 
be resilient to attack. Finally, when none of these methods work one 
needs to adapt by developing new assets or configurations of existing 
assets. 

Farsangi et al. (2019), in a book on resilience in a wide range 
of physical systems, note that the concept of resilience has received 
considerable attention since 2010 because of the recognition that haz-
ards and threats – both physical and cyber – cannot perpetually be 
averted. However, they also note that there is considerable debate 
on how to define resilience, which can have many meanings. Farsangi 
et al. (2019, p. v) choose to define resilience as “the capability of a 
system of a system to maintain or promptly recover its functionality 
in  the face of  extreme events”.  

In cyber systems, McEver et al. (2019) call the hierarchy described 
above the Resilience Stack (Figure 1.4), where resilience is the prop-
erty of a system to function in the face of threats, rather than fail 
due to them (Singer and Friedman 2014). A resilient system, as char-
acterized in Figure 1.4, will attempt to resist attack, but then will be 
able to function under degraded conditions caused by an attack, and 
will recover following the attack. Clearly, if the system can recovery 
quickly enough from a cyber attack, there is less concern than if the 
recovery is very slow (Singer and Friedman 2014). 

We focus on resistance, recovery, and robustness and explore how 
process based models from population biology inform thinking about 
these issues. These parts of the resilience stack have a natural ana-
logue in the population biology of disease. Organisms can avoid 
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Fig. 1.4. The hierarchical nature of resilience in cyber systems (slightly modi-
fied from McEver et al. (2019)). Clearly it is best to avoid attack in the first place. 
If one cannot avoid attack, then the attack can be resisted. Even with resistance 
to attack, some attacks will succeed, so that one needs cyber systems that are 
robust to attack. Even with robustness, some attacks will succeed, so that one 
needs the ability to recover from the attack. It is also possible that the attack will 
be so severe that one needs the ability to reconstitute and ultimately adapt the 
system. The foci of our work are resistance, robustness, and recovery, highlighted 
in the red box. 

attack (Ruxton et al. 2018) and if attacked can either resist (i.e. 
control) the disease organism or tolerate the damage caused by it 
(Read et al. 2008, R̊aberg et al. 2009, Merrill et al. 2021, Wilber 
et al. 2024). Similarly, Singer and Friedman (2014, pp. 155–156; 
pp. 174–177) argue that the we should strive to build cyber sys-
tems “where the parallel for measuring offense and defense isn’t war, 
but biology . . . the body has built up a capacity of both resistance 
and resilience, fighting off what is most dangerous and, as Vint Cerf 
puts it, figuring out how to ‘fight through the intrusion’ . . . Just the 
mere existence of such a system [a defense that can outsmart the 
adversary] would always sow doubt in the offense that the attack 
is going to work”. We should also expect that resistance, tolerance, 
and resilience depend upon the characteristics of the cyber system 
and the kinds of perturbations it experiences (for ecological exam-
ples, see Roopnarine et al. 2022, Sherrat and Stefan, 2024). We will 
see how quantitative models can make our intuition about resilience 
more precise. 

Libicki (2016, p. 27ff, particularly his Figures 4.1 and 4.2) provides 
a metaphor for the resilience stack. A cyber system can be “noise-
tolerant” (agoras) or “noise intolerant” (castles). About the former, 



20 Fighting the Virus: How Disease Modeling Can Enhance Cybersecurity 

he writes “With agoras, the risk from a single piece of bad informa-
tion is low, but the benefit of having day-to-day access to the world of 
information is comparatively high (think Wall Street). . . Recognizing 
that most individual pieces of information are of little use, possibly 
false, and usually transient, processes are defended from corruption 
by putting out more lines to the rest of the world. New informa-
tion can be used to evaluate the old information, and the sophisti-
cated agglomeration of information is the best path to making good 
decisions.” About the latter he writes “With castles, the risk from 
bad information and hence bad instructions is high, but the benefit 
from having day-to-day access to the world of external information 
is comparatively low (think nuclear plants)”. Like a physical castle, 
a cyber system that is a castle “protects itself through a series of 
enclosures: the open field of fire, the moat, the wall, and within the 
castle, the keep. Each obstacle challenges the intruder, and when one 
is breached, attention shifts to maintaining the next obstacle and, 
if possible, throwing the attacker back beyond the earlier breached 
obstacles”. 

In short, we are wise to design cyber systems with the assumption 
that they will be breached and the attacker with then have access to 
large parts of or all of the system. In general, as systems grow more 
complex there are more routes to failure, and the resilience stack thus 
grows in importance. Recognizing this fragility in complex systems 
encourages us to think about how to make them anti-fragile so that 
they can possibly gain from disorder (Taleb 2012), which is a topic 
beyond the scope of this book. 

1.4. The Dynamics of Cyber Attack 

Often, once a cyber tool is used for an attack, the defender will be 
able to explore its properties and develop defenses that defeat that 
particular cyber tool, so that cyber tools are weapons whose effec-
tiveness often rapidly decreases in time (Dipert 2010, Gartzke 2013, 
Smeets 2017). The attacker then needs to develop a new tool, which 
may take considerable time. In such a case, cyber attacks will come 
in pulses or waves. To incorporate these pulses in a mathematical 
model requires a mathematical description of the pulses. We model 
a single  pulse attack using the classical Gaussian distribution (bell 
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shaped curve), which requires specifying a mean tpeak (which is the 
time at which the pulse peaks) and dispersion (standard deviation), 
which we denote by  σ. 

We adopt the symbol I(t) to  denote the  relative intensity of 
a pulse attack as a function of time (put aside the SIRS or SIR 
models in which the same symbol is used for the number of infected 
individuals), writing it as 

1 
−(tpeak −t)2 /2σ2 

I(t) =  √ e (1.1)
2πσ 

Equation (1.1) characterizes the relative intensity of the attack, 
and we multiply it by the attack rate parameter a to deter-
mine the absolute intensity of the attack, aI(t). Setting t = tpeak √ 
in Eqn. (1.1) that the maximum intensity of the attack is a/ 2πσ. 

The properties of the Gaussian distribution are well tabulated, 
so that we can readily assign times to the putative start and end of 
the attack. For example, 99.7% and 95.5% of the probability of the 
Gaussian distribution in Eqn. (1.1) is contained in [tpeak − 3σ, tpeak + 
3σ] and  [tpeak − 2σ, tpeak +2σ] respectively. Thus, if we say the attack 
starts when its intensity is less than a fraction of percent of its the 
maximum intensity, the start time is tpeak − 3σ. Similar reasoning 
applies to the end time. 

A persistent cyber attack is one in which the attacker always has 
a new tool ready when the current one fails. Persistent cyber opera-
tions between nations arise in part due to the cyber security dilemma 
(Buchanan 2016): as nations secure themselves they induce (not nec-
essarily deliberately) fear in other nations. Even when the attacker 
does not always have a new tool ready, cyber deterrence is difficult, 
in part because of the difficulty in finding the correct response for a 
given cyber attack (Libicki 2018a), especially in public cyber insti-
tutions (Kostyuk 2021), and maximizing cyber security may require 
persistent operations in the cyber system of the adversary (Buchanan 
2016, p. 52). There are also arguments for not relying solely on deter-
rence but for initiating persistent operations (e.g. Fischerkeller et al. 
2020), including the possibility that if the attack rate is sufficiently 
low, it may be concealed from the adversary (Green and Long 2019). 
Thus, there is need to balance cyber offense and defense (Slayton 
2016/2017). 
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For persistent operations, we will assume that intensity of the 
attack is much smaller than the maximum intensity of a single pulse 
attack. For example, we will sometimes set the persistent level of 
attack to be the average value of aI(t). 

Valeriano and Maness (2015, p. 82ff) constructed a Dyadic Cyber 
Incident Database (DCID) that allowed them to make a wide range 
of inferences about cyber attacks, which they broadly classify as 
either cyber incidents (111 in the DCID) or cyber disputes (45 in the 
DCID). Their cyber incident is more or less our pulse cyber attack 
and their cyber dispute is more or less our persistent cyber attack. 
They also note that although there 126 possible dyad interactions in 
the DCID, only about 20 rivals engage in cyber conflict. 

We are thus led to conceive of the attack rate continuum 
(Figure 1.5 upper panel). In the next chapters, we will focus on the 
extremes (pulse attack, persistent attack) because they are amenable 
to analysis. 

However, many situations will involve the intermediary situation 
in which attack consists of a series of pulses (Figure 1.5, lower panel). 
To model this situation, we consider a time horizon that runs from 0 
to a maximum  time  T . During this time interval, we allow J separate 
pulse cyber attacks. We then specify the peak tj , standard deviation 
σj , and the maximum the intensity aj (which ranges from 0, i.e. the 
cyber attack is ineffective even at its peak, to a maximum value amax) 
of the jth pulse attack. 

With this notation, we the relative intensity of the jth attack is 

1 
−(tj −t)2 /2σ2 

Ij (t) =  √ e j (1.2)
2πσj 

and total intensity of attack is 

J 
� 

IT (t) =  aj Ij (t) (1.3) 
j=1 

In the lower panel of Figure 1.5, aj and σj are random variables. 
Then each choice of the aj and σj will generate a different realization 
of the pulse attack even if the peak times are the same. If you would 
like the pulse to be flatter at the peak, experiment by changing the 
power of (tj − t) from 2 to something larger, but be warned that 
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Fig. 1.5. At the extremes (upper panel), a cyber attack occurs only once, with 
a pulse characterized by Eq. (1.1) or continuously with attack rate given by the 
average value of the pulse. Most situations (lower panel) will sit between these 
cases and consist of a series of pulses. The extremes of either a pulse attack or 
continuous attack are amenable to analysis, while the intermediary cases are best 
studied by simulation; four different realizations of the multiple pulse attack are 
shown here. 

√ 
the normalization constant 1/ 2πσj also needs to change. When 
there are multiple pulses, as in the lower panel, it is reasonable 
to expect that the frequency and the intensity of the attack will 
interact as they affect the state of the cyber system (Miller et al., 
2011, 2012). This is a really interesting question, but also beyond the 
scope of this book and one that can be answered using the tools we 
develop. 

Potential project: Generate analogues of the lower 
panel in Figure 1.5 for pulse attacks that are wider than 
the Gaussian model and for which the parameters of the 
attack are correlated with each other. 
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1.4.1. Two examples of cyber attack: More about 

Stuxnet and Volt Typhoon 

Now that we have a vision of the pulse attack, I want to pause with 
the formulation of the model to discuss two examples of cyber attack. 

1.4.1.1. More about Stuxnet 

Zetter (2014) describes Stuxnet as the world’s first digital weapon, 
aimed against centrifuges that Iran was using to enrich uranium, 
and gives a detailed account of its development, mechanisms, and 
consequences. Zetter gets into detailed mechanisms, such as zero-
day exploits and reinfection of scrubbed computers by worms hiding 
in the network, that we will forgo. 

The Stuxnet virus attacked a specific line of Siemens Pro-
grammable Logic Controllers (PLCs) of the Iranian centrifuges. PLCs 
are “small computers, generally the size of a toaster, that are used in 
factories around the world to control things like the robot arms and 
conveyor belts of assembly lines” (Zetter 2014, p. 17). For most of 
the book we do not explicitly model the cyber system of the enabled 
physical system, but return to it in Chapter 8 as a direction of future 
research. 

Control systems of the enabled physical system are vulnerable in 
part because such systems “don’t get replaced for years and don’t 
get patched on a regular basis the way general computers do. The 
life-span of a standard desktop PC is three to five years, after which 
companies upgrade to new models. But the life-span of a control 
system can be two decades. And even when a system is replaced, 
new models have to communicate with legacy systems, so they often 
contain many of the same vulnerabilities as the old ones.” (Zetter 
2014, p. 147). There are many similar control systems (e.g for water-
treatment and power plants, dams, bridges, and train stations, smart 
TVs and power meters, uninterruptible power systems) connected 
via the Internet of Things. For example, in 2012 a researcher in the 
UK identified more than 10,000 connected control systems (Zetter 
2014, p. 148); since 2012 the number of connected control systems 
has grown enormously. 

The first thing that Stuxnet did after getting into a machine was 
to explore the software and if “Stuxnet found itself on a system 
that didn’t have the Siemens software installed, it simply shut itself 
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down. It still sought other machines to infect, but it wouldn’t launch 
its payload on any machine that didn’t have the Siemens software 
installed. Any system without the software was just a means to 
Stuxnet’s end.” (Zetter 2014, p. 28). It is likely that Stuxnet was 
launched against a group of five companies in Iran, leading to 12,000 
infections at those initial targets that spread to more than 100,000 
machines in more than 100 countries (Zetter 2014, p. 97). Once 
Stuxnet infected a controller, the compromise took time to become 
apparent, in part because Stuxnet first conducted surveillance of the 
infected cyber asset, in part to convince the human operators that all 
was okay. Thus, there was a period of time (ranging from 35 to almost 
300 days, depending upon the intensity of the attack) before damage 
to the centrifuges (increasing internal pressure) began in earnest. 

However Stuxnet, which had taken years and considerable invest-
ment to develop, only lasted a few weeks before it was understood 
and rendered ineffective (of course, by then the damage to the cen-
trifuges had been done) (Zetter 2014, p. 178, 318). 

1.4.1.2. Volt Typhoon 

A May 2023 post by the Microsoft Threat Intelligence Team 
(Microsoft 2023) described the attack by the Volt Typhoon botnet. 
After investigation, Microsoft staff concluded that the Volt Typhoon 
attack was sponsored by China with the goal of disrupting critical 
communications infrastructure between the United States and Asia 
in the future and that the attack began in the summer of 2021. Volt 
Typhoon targeted critical infrastructure in Guam and the United 
States. The targets included communications, manufacturing, util-
ity, transportation, construction, maritime, government, information 
technology, and education sectors. From the characteristics of the 
attack, Microsoft concluded that the attacker’s goal was to perform 
espionage and maintain access without being detected for as long as 
possible. One of the motivations for the release of the May 2023 post 
was to bring the attack to the intention of the broader community. 

Volt Typhoon is an example of stealth, hands-on keyboard activ-
ity and what Microsoft calls “living off the land” https://www.mi 
crosoft.com/en-us/security/blog/2018/09/27/out-of-sight-but-not-in 
visible-defeating-fileless-malware-with-behavior-monitoring-amsi-and 
-next-gen-av/). Volt Typhoon used the command line to (i) collect 

https://www.microsoft.com/en-us/security/blog/2018/09/27/out-of-sight-but-not-invisible-defeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av/
https://www.microsoft.com/en-us/security/blog/2018/09/27/out-of-sight-but-not-invisible-defeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av/
https://www.microsoft.com/en-us/security/blog/2018/09/27/out-of-sight-but-not-invisible-defeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av/
https://www.microsoft.com/en-us/security/blog/2018/09/27/out-of-sight-but-not-invisible-defeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av/
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data, including credentials from local and network systems, 
(ii) archive those data for exfiltration, and (iii) persist in the target 
system using the stolen valid credentials. Additionally, according to 
Microsoft, Volt Typhoon “tries to blend into normal network activ-
ity by routing traffic through compromised small office and home 
office (SOHO) network equipment, including routers, firewalls, and 
VPN hardware” and used open-source tools to hide itself. Briefly, the 
attack proceeded as follows: 

• Volt Typhoon achieved initial access through external nodes of 
the cyber network interfacing with the outside world and then 
tried to use privileges from a compromised system to extract the 
credentials of the currently attacked device and gain access to other 
components of the network with the stolen credentials. 

• Once initial compromise was achieved, the Volt Typhoon human 
attackers conducted keyboard operations through the command 
line of the compromised software. Microsoft notes that “some of 
these commands appear to be exploratory or experimental, as the 
operators adjust and repeat them multiple times”. 
• That is, rather than employing malware in post-compromise oper-

ations, the attackers used “living-off-the-land commands” (as mil-
itary forces do) to “obtain information on the system, discover 
additional devices on the network, and exfiltrate data”. 

The Microsoft report goes into more details – including examples 
of code – for access to credentials, discovering system information, 
collection of information from web browser applications, and how the 
Volt Typhoon command and control operated. The report then turns 
to specific mechanisms for defense against Volt Typhoon, again with 
specifics of code to illustrate how defense works. These specifics of 
attack and defense are beyond the scope of our work. 

1.4.1.3. Are these pulse attacks? 

Are Stuxnet and Volt Typhoon pulse attacks? Clearly not, in the 
sense that Eqn. (1.1) is not a precise representation of the attacks. 
On the other hand, both attacks had a beginning, and a peak, and 
an end, as in Eqn. (1.1). Thus, we might say that model for the 
pulse attack in Eqn. (1.1) captures key features of Stuxnet and Volt 
Typhoon, while leaving many other features to be elaborated. This is 
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part of the art of mathematical modeling – deciding which features 
of the world are key to communicate, and then finding a way to 
communicate ideas about those features. Thus one of your goals is to 
start developing the art of modeling, knowing that at the end of this 
book there will still be much to be done to resolve your discontent 
with Eqn. (1.1) (if you have any) and other models that we will 
develop. 

1.5. Performance of the Cyber System or the Enabled 

Physical System 

Cyber systems exist to do something, which may range from a col-
lection of PCs networked at night for parallel computations (in my 
research group we did this many years ago), through communica-
tions systems, to enabling a physical system such as a power plant, 
aircraft guidance system, or even a car. In the case of the physical sys-
tem, for a particular application one needs to model the specifics of 
that system. For example, Mangel and McEver (2021) used a coupled 
oscillator model of the electric grid to understand how compromise of 
smart meters can lead to grid failure via reverse engineering, but also 
introduced a more generic model of performance (also used in Mangel 
and Brown 2022). In this generic model, Mangel and McEver (2021) 
assumed that performance of the cyber system or the enabled phys-
ical system was determined by the numbers of uncompromised and 
compromised cyber assets. 

In this book, we use a simpler metric of performance, assuming 
that performance depends only on the number of uncompromised 
cyber assets. In particular we assume that the relative performance 
of the cyber system or the enabled physical system in its usual tasks 
is measured on a scale from 0 to 1, and depends only on the number 
x uncompromised cyber assets, modeled as 

� 
1 

φ(x) =  (1.4)x50−x 
σx1 +  e 

This performance function depends on the two parameters x50 

and σx. Since the exponential in the denominator is 0 when x = x50, 
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making the fraction equal to 1/2, x50 is the number of uncompro-
mised assets giving performance of 50%. 

The parameter σx determines how rapidly performance rises as 
the number of uncompromised cyber assets increases. When σx is 
small compared to the range of X values, performance will rise 
sharply (be “knife-edged”), as with the black line in Figure 1.6. As σx 

becomes larger, the knife-edge smooths to a S-shaped curve, which 
henceforth is called sigmoidal. We will call σx the performance shape 
parameter. 

We now have a clear quantitative description of the concept of 
redundancy in the Resilience Stack. Consider, for example, the black 
curve in Figure 1.6. Here the same performance is achieved as long 
as there are more than about 500 uncompromised cyber assets. For 
the green curve, we can draw the same conclusion as long as there 
about more than 600 uncompromised cyber assets, but for the blue 
curve there have to be more than 700 uncompromised assets for high 
performance. This is a major insight: we cannot talk about redun-
dancy unless we have in mind how the cyber system is to be used 
and how to evaluate its performance. 

� � 

Fig. 1.6. The performance function φ(x) =  1 depending upon the
x50−x 

σx1+e 

number of uncompromised cyber assets, x, x50, at which performance is 50%, 
and the dispersion parameter σx that characterizes the rise of performance from 
a small value to close to 1. For this figure, the parameters are x50 = 350 and σx = 
25, 50, or 75 (black, green, or blue lines, respectively. See the text for a discussion 
of how we can now capture the notion of redundancy from the Resilience Stack. 
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The shape of the three curves in Figure 1.6 depends upon the 
relative values of x50 and σx when compared to the total number 
of cyber assets. If XT denotes the total number of cyber assets, the 
shapes of the curves and the y-axis in Figure 1.6 will be the same 
as long as x50 = 350XT /1000 and σx = 25XT /1000, 50XT /1000, or 
75XT /1000 but the x-axis will now range from 0 to XT . If  this is  not  
immediately clear, try explaining Eqn. (1.4) out-loud to yourself or 
to a colleague. 

Potential project: Eqn. (1.4) is only one of many ways 
to generate sigmoidal or S-shaped curves. Another of my 

γxfavorites is φ(x) =  
x γ +xγ , with two parameters x50 and 
50 

γ > 0. Without numerical computation provide an inter-
pretation for x50. (If you are new to this kind of thinking, 
asks what happens when x = x50.) Then explore the shape 
of φ(x) for different values of γ (say γ = 2, 4, 6, 8, 10). 

Clearly, when one has a particular application in mind, it is better 
to construct a specific model for the performance of the cyber or 
enabled physical system. In this book, we will mainly use Eqn. (1.4) 
or slight variations, but here is something to keep in mind as you 
read forward: cyber systems are often linked to one another and for 
a physical system to be enabled by a cyber system, the physical 
system will often have its own cyber assets. Such cases lead to linked 
performance functions. 

For example, suppose that the performance of the enabled physi-
cal system when the performance of the cyber system is φ(x), denoted 

φ50 −φ(x) 

by P(φ(x)), is similar to Eqn. (1.4) 
⎡   

⎣P(φ(x)) = 
1 

⎦ (1.5) 
σφ1 +  e 

where φ50 is the value of performance φ(x) of the  cyber system giving  
50% performance of the enabled physical system and σφ is a dispersal 
parameter capturing the rapidity of the rise in performance as φ(x) 
ranges from values near 0 to values near 1. In Figure 1.7, I show one 
visualization of the linkage between the focal cyber system and the 
cyber system of the enabled physical system. We will return to these 
ideas in Chapter 8. 
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Fig. 1.7. The linkage between the performance of a cyber system and an 
enabled physical system that also has cyber assets. The left figure shows the 
performance of the cyber system φ(x) as a function of the number of uncompro-
mised cyber assets. Note that φ(x) is  on  the  y-axis. This links to the cyber assets 
of enabled physical system through performance P(φ(x)) through Eqn. (1.5), so 
that performance of the cyber system is now on the x-axis, as in the right figures. 
In those figures, φ50 is 0.75 (i.e. performance of the cyber system has to be at 
least 75% to obtain 50% performance of the enabled physical system). The three 
panels on the right show performance of the enabled physical system when the 
dispersal parameter is 0.05, 0.1, or 0.2. To illustrate the linkage, assume that 
600 cyber assets as uncompromised. We then draw a vertical line to the curve 
in the left panel, showing that performance of the cyber system is slightly more 
than 0.70. In the three right panels, we then draw a vertical line at 0.7, let it 
intersect the curve and then draw a horizontal line to the y-axis in order to read 
off the performance of the enabled physical system. 
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1.6. An Example of the Metaphor: Reverse Engineering 

of Advanced Metering Infrastructure to Compromise 

the Electric Grid 

In Figure 1.8, I show the of the cyber system model that we used 
(Mangel and McEver 2021) to study how reverse engineering via 
compromise of Advanced Metering Infrastructure (AMI) can lead to 
instability in electric grids. 

In this model of the cyber system, there are five kinds of cyber 
assets: 

• Uncompromised and vulnerable cyber assets can be compromised 
either externally or internally. A fraction   of these cyber assets 
are decoys with no functionality but instrumented to detect com-
promise with high probability. 

• Uncompromised cyber assets that are currently invulnerable to 
either external or internal compromise are temporarily protected 
against malware, but as time progresses their anti-malware soft-
ware ages and is no longer effective. 

Fig. 1.8. The cyber system model in Mangel and McEver (2021) contains cyber 
assets that are uncompromised and vulnerable, uncompromised and currently 
invulnerable (hardened), compromised, and resetting/restoring (and thus tem-
porarily unavailable system; metaphorically “in the shop”). A fraction η of the 
cyber assets (shown only for uncompromised and vulnerable assets) are decoys 
that do not contribute to functionality of the physical system and are unable to 
co-compromise. 



32 Fighting the Virus: How Disease Modeling Can Enhance Cybersecurity 

• Compromised cyber assets are infected by malware. 
• Once compromise is detected, defensive counter measures are 

activated to discover and send compromised assets to the reset-
ting/restoring pool. 

• Cyber assets in the resetting/restoring pool do not contribute to 
performance of the cyber system or the enabled physical system. 
• After some amount of time, cyber assets that are being reset/ 

restored return to the cyber system temporarily invulnerable 
(effective anti-malware installed) or still vulnerable (either no anti-
malware installed or the installed anti-malware is ineffective). 

Each of the cyber assets and the probability of detecting com-
promise has dynamics that must be modeled, leading to a series 
of ordinary differential equations. When these dynamics are cou-
pled to a metric of performance of the cyber system or the enabled 
physical system, we are able to study the dynamics of compromise 
and how it affects performance. We (Mangel and McEver 2021) 
coupled the model of compromise of the cyber system to the syn-
chronous motor model of an electric grid (Filatrella et al. 2008, Liu 
et al. 2013) to illustrate Electric Power Research Institute scenario 
AMI.27 (NESCOR 2013) for reverse engineering of Advanced Meter-
ing Infrastructure, showing how smart meters sending misleading 
signals about power demand can lead to load-side failure of the elec-
tric grid, and derive a condition for failure of the grid in terms of the 
number of compromised assets at the time of detection of compromise 
and the dissipation parameter of the synchronous motor model. 

We begin (Chapters 2 and 3) with models that are simultaneously 
simplifications (with fewer pools of cyber assets) and extensions of 
the one shown in Figure 1.8. Then, we will slowly build additional 
complexity into the model of the cyber systems. 

1.7. Summary of Major Insights 

• The Resilience Stack provides a way for us to think about the 
hierarchical nature of cyber attack and defense. 

• We cannot talk about redundancy unless we have in mind how the 
cyber system is to be used and how to evaluate its performance or 
the performance of the enabled physical system. 
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• The methods of population biology are natural tools for under-
standing the dynamics of compromise and variability in cyber sys-
tems. Three key ideas from population biology relevant to cyber 
systems are: 

(1) Populations (of organisms or cyber assets) consist of individ-
uals with different characteristics and successful modeling of 
the dynamics of populations must have level of description 
that matches the question of interest. 

(2) Populations have dynamics on many different time scales, but 
often reach steady or quasi-steady states (which may include 
periodic behavior [limit cycles]) in which dynamic processes 
are balanced. 

(3) Populations of organisms are governed by the fundamental law 
of biology – evolution by natural selection – acting on expected 
lifetime reproductive success of individuals as a proxy for the 
long-term representation of genes in the population. Although 
there is no similar fundamental law for cyber system, the 
notion of fitness maps into the performance of a cyber sys-
tem or the physical system that it enables. 
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Chapter 2 

The Pulse Attack Model 

A model should be as simple as it can be but no simpler 

– Albert Einstein 

We now begin the modeling project in earnest, focusing on a single 
cyber attack. A pulse attack can have many origins. For example, the 
attacker may use a cyber tool for which the defender rapidly develops 
a defense, thus reducing the rate of attack. Alternatively, the attacker 
may simply want to demonstrate its capabilities or gather infor-
mation about its adversary’s network (Buchanan 2016, p. 130) and 
intentionally slow and then end the attack. Regardless, we will see 
that the long-term effects of a pulse attack depends on characteristics 
of the defender’s cyber network. 

In June 2022, after a visit to the Johns Hopkins University 
Applied Physics Laboratory, Charles Fraccia wrote to Christine Fox 
asking about epidemiological models of ransomware for the spread 
and infection of victim organizations. His thinking was that institu-
tion size and technology backbone would be “major factors that could 
be quantified (in such an epidemiological model) and help determine 
where to concentrate defenses at a specific time . . .  blunting the 
exponential dynamics of infectious models . . .  [and] would improve 
our defensive targeting capabilities rather that hoping for 0-full herd 
immunity model that we currently have” (quotation with permission 
of Charles Fraccia). Fraccia is the CEO of a company focusing on 
solving digital biosecurity challenges and improving manufacturing 
operations security, co-founder of an international organization that 
addresses threats unique to the bioeconomy and enables coordination 
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among stakeholders to facilitate a robust and secure industry, and a 
member of the Information Science and Technology study group of 
DARPA (the US Defense Advanced Research Projects Agency). His 
question deserves serious attention. 

The Pulse Attack Model (PAM), whose basic version we 
develop in this chapter, is one answer to the questions raised by 
Charles Fraccia. As we go through the development, I expect that you 
will be thinking “but what about including . . .”. Please be patient – in 
Chapter 5 we explore various extensions of the PAM. In this chapter, 
we assume that the defender knows the characteristics of the the pulse 
attack, and model the dynamics of cyber compromise, performance, 
and what the defender can do to mitigate the effect of the attack. 

2.1. Dynamics of Uncompromised and Compromised 

Assets 

We assume that there is a single pulse attack, with relative intensity 
given by Eqn. (1.1) and total intensity aI(t), where a is the attack 
rate parameter, there are no decoy cyber assets, and after resetting 
all cyber assets return to the system unhardened and therefore vul-
nerable to attack once again (Figure 2.1). 

We assume that the total number of cyber assets is constant, 
denoted by XT . This in the analogue of the assumption in the pop-
ulation biology of disease that there are no deaths from the dis-
ease (Murray 2002, Merl et al. 2009). We relax this assumption in 
Chapter 5. 

Cyber assets are then of three types 

x(t) = Number of uncompromised cyber assets at time t 

x0(t) = Number of compromised cyber assets at time t 

xr(t) = Number of resetting cyber assets at time t (2.1) 

Since the total number of cyber assets is constant, xr(t) =  XT − 
x(t) − x0(t). 

To determine the dynamics of these variables we assume 

• Uncompromised assets are compromised at rate aI(t)x(t). 
• Once an asset is compromised, it can co-compromise other cyber 

assets and uncompromised cyber assets are co-compromised at rate 
acox(t)x0(t), where aco is the co-compromise rate parameter, 
which we delve into shortly. 
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Fig. 2.1. In the basic Pulse Attack Model (PAM), we simplify the model in 
Figure 1.8 by eliminating the decoy cyber assets and assuming that all reset 
cyber assets return to the uncompromised pool vulnerable to attack. In contrast 
to Figure 1.8, the rate of attack is time dependent, with relative intensity given by 
Eqn. (1.1). We describe the cyber system by three pools of cyber assets (uncom-
promised, compromised, and resetting), which are symbolically denoted by the 
circles. Uncompromised cyber assets are attacked at rate aI(t) and the arrow 
pointing from the attack to the uncompromised cyber assets shows that attack. 
Once compromised, cyber assets move to the compromised pool; this is shown by 
the arrow pointing downward. That compromised cyber assets can co-compromise 
uncompromised ones is captured by the second arrow pointing downward from 
the uncompromised pool to the compromised pool. The arrow pointing from the 
compromised pool to the resetting pool characterizes the removal of compromised 
cyber assets to resetting, and the arrow pointing from the resetting pool to the 
uncompromised pool shows the return of reset cyber assets to operational status. 
The number of cyber assets is dynamic, so that within the pools I have written 
x(t) and  x0(t). 
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• Compromised assets are moved to the resetting/recovery pool at 
rate rxx0(t), either through specific detection of compromise or 
through regular maintenance. 

• Cyber assets in the resetting pool are returned to the uncompro-
mised state at rate bxr = b(XT − x(t) − x0(t)), where b is the rate 
or resetting/restoration. 

Thus dynamics of the uncompromised and compromised cyber 
assets are 

dx 

dt 
= −axI(t) − acoxx0 + b(XT − x − x0) (2.2) 

dx0 

dt 
= axI(t) +  acoxx0 − rxx0 (2.3) 

To further interpret the terms on the right sides of Eqns. (2.2) and 
(2.3) note that the units of the left sides of these equations are cyber 
assets per time, that is [dx/dt, dx0/dt] ∼ cyber assets/time. 

� 
We already discussed aI(t) in Chapter 1 (Eqn. (1.1)): a/ (2π)σ is 

the maximum rate of attack occurring at t = tpeak and I(t) is  the  time  
dependent intensity of attack given by Eqn. (1.1). Uncompromised 
cyber assets are compromised at a rate proportional to the intensity 
of attack times the number of uncompromised cyber assets at the 
current time. Since compromised cyber assets appear at the same rate 
at which uncompromised cyber assets disappear, we have accounted 
for the first terms on the right sides of Eqns. (2.2) and (2.3). Since 
I(t) is dimensionless and xI(t) has units of cyber assets so that for 
axI(t) to have units of cyber assets/time (in order to match the left 
of Eqn. (2.2)), a must have units of 1/time, making it a pure rate. 

The middle terms on those right sides account for the process 
by which already compromised cyber assets x0(t) compromise the 
currently uncompromised cyber assets x(t). Thus, aco characterizes 
the rate at which co-compromise of cyber assets occurs. But note 
that it is not a pure rate, because to match the units of cyber assets/ 
time the units of aco must be 1/(cyber assets · time). With  these  
units the product acoxx0 has units 

[1/(cyber assets · time)] · cyber assets2=cyber assets/time. 

When we envision uncompromised and compromised assets as 
components of a population, using their product can be called 
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a “mass action” model, which has its origin in chemical kinetics 
(Coveney and Highfield 2023, pp. 118–119) and has been applied 
in population biology for more than century (e.g. Lotka 1924/1956, 
Gause 1934/2019, Kostitzin 1939, Goodstein 2007) with enormous 
success. During World War I, Frederick Lanchester pioneered the 
use of mass-action models in operational situation (Lanchester 1917) 
and they continue to be used to model the kinetics of combat (e.g. 
Taylor 1983, Keane 2011) and search (e.g. submarines looking for 
convoys or anti-submarine warfare aircraft looking for submarines 
(Wadington 1973,1 McCue 2022)). 

The third terms on the right sides of Eqns. (2.2) and (2.3) involve 
b and rx, which are also pure rates, with units 1/time characterizing 
how rapidly cyber assets that are being reset return to the uncompro-
mised state (b) and how rapidly cyber assets that are compromised 
are removed from the compromised pool to be reset (rx). 

If all cyber assets are uncompromised at t = 0, the initial condi-
tions for Eqns. (2.2) and (2.3) are x(0) = XT and x0(0) = 0. These 
equations are readily solved by numerical routines for ordinary dif-
ferential equations that are available in R, such as deSolve (Soetaert 
et al. 2018) and other languages have similar packages. For the com-
putations in this chapter, I used the 4th order Runge Kutta method 
in deSolve. 

In Table 2.1, I summarize the symbols used in this model; their 
numerical values for computation are given in the caption to the first 
figure with numerical results. 

Our general focus is about how ideas from the population biology 
of disease can inform cyber security, but sometimes we will look in 
the opposite direction. For example, recall that in our discussion of 
the SIR and SIRS models in the previous chapter, we noted that at 
least one infected individual has to be “injected” into a population 
of only susceptible and recovered individuals if there are going to be 
any interesting dynamics. That is, in analogy to Figure 2.1, the SIR 
and SIRS models need a pulse of infection to start the dynamics. 
This is usually done by starting with a positive number of infected 
individuals, but also could be caused by a pulse of disease agent, 

1For readers who are biologists: this is the same Waddington of the epigenetic 
landscape. 



40 Fighting the Virus: How Disease Modeling Can Enhance Cybersecurity 

Table 2.1. Variables, Parameters and their Interpretation 

Symbol Interpretation 

x(t) Uncompromised cyber assets at time t 
x0(t) Compromised cyber assets at time t 
XT Total number of cyber assets 
a Attack rate parameter 
aco Co-compromise rate parameter 
I(t) Relative intensity of the cyber attack 
tpeak Time at which relative intensity peaks 
σ Standard deviation of relative intensity 
b Rate at which cyber assets are reset and returned to operation 
rx Rate at which compromised cyber assets are moved to resetting 

as in the anthrax attacks in the United States about 25 years ago 
(Ingelsby et al. 2002, Wein et al. 2003), where the model of a pulse 
attacks fits nicely. 

2.1.1. Interpretation of the co-compromise rate 

parameter 

We model the rate of co-compromise as proportional to the prod-
uct of the number of uncompromised assets x and the number 
of compromised assets x0, with proportionality constant aco. The  
co-compromise rate parameter aco is determined by the structure of 
the cyber network. Determining that rate for a network of a given 
structure is both important and amenable to modeling and empir-
ical study. Doing so is beyond the scope of this book, but a good 
starting point is Easley and Kleinberg (2010). Clearly, the only way 
to ensure no co-compromise is that there are no links between the 
different cyber assets, which also means no passing of thumb drives 
between the operators of those assets. In this case, if one of the 
cyber assets in this network is compromised, it cannot pass the com-
promise to any other cyber asset. However, this is really not a cyber 
network, but a collection of independent cyber assets. Singer and 
Friedman (2014) describe this as “under-entitlement” of access and 
clearly aco = 0. On the other hand, if every cyber asset is connected 
directly or indirectly to every other cyber asset, when one of them 
becomes compromised, unless action is taken, compromise will pass 
to all other cyber assets, regardless of which cyber asset is initially 
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compromised. In this case aco will take is maximum value. Singer 
and Friedman (2014) describe this as “over-entitlement” of access. 

There will be many intermediate cases. For example, the full net-
work might be divided into subnetworks in which cyber assets are 
connected to each other but the subnetworks are not connected. In 
this case we expect aco to take an intermediate value between 0 and 
its maximum possible value. When the subnetworks have a connec-
tion between them, we expect that aco will be larger than it is when 
the subnetworks are not connected but smaller than the maximum 
value of aco. 

The value of for every network will sit between under-aco 

entitlement and over-entitlement of access, and determining the 
appropriate network structure is an important and non-trivial matter 
(but also beyond the scope of this book). When designing a commu-
nications network, for example, we might consider both the number 
of messages transmitted and their importance, the quality of the 
messages transmitted (e.g. what is the probability that a message is 
garbled), the cost of sending messages, and the probability that an 
important message is not transmitted. 

Potential project: Sketch out how you would draw the 
situations described in the above two paragraphs. Then 
think about how to explore how properties of the network 
such as the number of connections between one cyber asset 
and others and the time between compromise of an cyber 
asset and discovery determine the rate at which compro-
mise is passed between assets. Can you design an experi-
ment to measure properties of your networks? 

Chapter 3 in Libicki (2016), on how to compromise a computer, 
provides many examples of the mechanisms of compromise and 
co-comprise and discusses the Apple individual Operating Systems 
(iOSs) for iPhones and iPads that provide a high level of defense and 
how it is achieved. 

2.1.2. The differential equation for the relative 

intensity I(t) of the pulse attack 

When using deSolve In R, we need to append a differential equation 
for the pulse to Eqns. (2.2) and (2.3). 
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The equation of the pulse is 

1 
−(tpeak −t)2 /2σ2 

I(t) =  √ e (2.4)
2πσ 

We differentiate Eqn. (2.4) using the chain rule from calculus: 

� � 
dI 1 d 

−(tpeak −t)2 /2σ2 
= √ e 

dt 2πσ dt 
� � 

1 tpeak − t
−(tpeak −t)2/2σ2 

= √ e 
σ22πσ 

� � 
tpeak − t 

= I (2.5)
σ2 

� � 
dI (tpeak −t)

We then append the equation = I to Eqns. (2.2)dt σ2 

and (2.3), with the initial condition determined by setting t = 0  in  
−t2 /2σ2 

√ 1 peak Eqn. (2.4), so that I(0) = e . 
2πσ 

2.2. The Persistence of Compromise 

Intuition suggests that once the attack starts the number of uncom-
promised assets will decline and the number of compromised assets 
will rise; numerical solution of Eqns. (2.2), (2.3), and (2.5) con-
firms that this is the case (Figure 2.2), with similar qualitative 
properties but quantitative differences according to the rate of 
co-compromise aco. 

But note that what happens after the attack ends is both qualita-
tively and quantitatively different. In the upper panel in Figure 2.2, 
after attack ends ultimately all compromise is removed, whereas in 
the lower panel compromise persists long after the attack has ended. 
This is something that we should understand and explain. 

Long after attack has ended (so that the relative intensity of the 
pulse I(t) is vanishingly small), the steady states of Eqns. (2.2) and 

dx0(2.3) are obtained by setting dx = = 0. Using overline to denote dt dt 
the steady state, a little bit of algebra leads to 

b(XT − x − x0) =  acox · x0 (2.6) 

acox · x0 = rxx0 (2.7) 
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Fig. 2.2. The dynamics of uncompromised (black) and compromised (red) 
cyber assets when the relative intensity of attack is shown by the dotted blue 
line (scaled to XT · I(t)/max(I(t) to have comparable ordinate values). Com-
mon parameters to both panels are a = 0.2, XT = 1000, tpeak = 50, σ  = 10, b  = 
0.2, rx = 0.2 The rate of co-compromise is aco = 0.0001 in panel a) or aco = 0.0003 
in panel b. The major qualitative difference is the extinction or persistence of 
compromise following the end of the pulse attack. This is something we should 
explain. 

Clearly, x0 = 0 is a solution to Eqn. (2.7) and when this is true 
Eqn. (2.6) implies that x = XT . This corresponds to Figure 2.2(a). 

If x0 = 0, then Eqn. (2.7) implies that the steady state level of 
uncompromised cyber assets is x = rx/aco. We use this in Eqn. (2.6) 
and solve for the level of compromised cyber assets to obtain 

b(XT − x) b(XT − x) 
x0 = = (2.8) 

acox + b rx + b 

We interpret the right side of Eqn. (2.8) as follows: XT −x is the num-
ber of cyber assets that are either compromised or being reset. The 
fraction of these cyber assets that are compromised is determined 



�

�

44 Fighting the Virus: How Disease Modeling Can Enhance Cybersecurity 

bby the ratio rx+b . When  rx b is very small (so that compromised 
bcyber assets are moved into resetting very slowly), rx+b ≈ 1 and  

most of the cyber assets that are compromised or being reset will be 
in the compromised state. On the other hand, when b rx is very 

bsmall, rx+b ≈ b/rx and the rate limiting step in returning compro-
mised assets to operational status will be resetting. In this case most 
of the cyber assets that are compromised or being reset will be stuck 
in the resetting pool, waiting to return to operational status. 

The numerator on the right side of Eqn. (2.8) is positive only when 
XT > x and since x = rx/aco, we conclude that if XT > x = rx/aco 

compromise will persist in a steady state long after the attack has 
ended. 

That is, there is a threshold level of the co-compromise rate 
parameter 

= rx/XT (2.9)acoth 

with the interpretation that if aco is less than this threshold, compro-
mise will not persist in the steady state and if aco is greater than this 
threshold, compromise will persist in the steady state even absent 
external attack. For the parameters used to generate Figure 2.2, the 
threshold level of co-compromise is acoth 

= 0.0002, which is larger 
than the value of aco used in Figure 2.2(a) and smaller than the 
value of aco used in Figure 2.2(b). 

This conclusion can be summarized in a plot showing the steady 
state level of uncompromised cyber assets as a function of the 
co-compromise rate parameter. When aco < acoth 

, x = XT , and oth-
erwise x smoothly declines as the rate of co-compromise increases 
(Figure 2.3, upper panel). 

To explore the consequences of the co-compromise rate parameter 
on performance, we use the performance function in Eqn. (1.4) with 
x50 = 500, 600 or 700 and once again sweep over a range of values 
for aco (Figure 2.3, lower panel). From the analysis in Eqns. (2.6– 
2.8) we know that when aco is less than the threshold value rx/XT 

compromise will be 0 in the steady state following recovery from the 
attack. Hence for those values of aco we have x = XT . When the 
co-compromise rate parameter exceeds the threshold value, we have 
x = rx/aco (upper panel, Figure 2.3). Using these steady state values 
in the performance function φ(x) allows us to plot steady state per-
formance as a function of the co-compromise rate parameter (lower 
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Fig. 2.3. Upper panel: Sweeping over values of the co-compromise rate param-
eter aco allows us to plot the steady state level of uncompromised cyber assets as 
a function of aco. Lower panel: By combining the steady state value of uncompro-
mised cyber assets with the performance metric in Eqn. (1.4) we are able to plot 
steady state performance as a function of the co-compromise rate parameter. In 
this panel σ = 100 and three values of x50 are used in the performance function. 

panel, Figure 2.3). Furthermore, note that even when compromise is 
extinguished long after the attack ends (i.e. aco is less than 2 · 10−4), 
if x50 is sufficiently large performance is close to but not exactly 1 
(left side of the lower panel). 

We thus conclude that in anticipation of cyber attack, the very 
first pro-active measure is to ensure that the co-compromise rate 
parameter is less than rx/XT . This is a property  of the design of  
the cyber network, which is under the control of the defender. One 
can envision cyber attack “drills” by seeing how quickly “malware” 
moves through a network. Singer and Friedman (2014, pp. 211–214) 
explicitly call for such drills. 

As a simultaneous check on our analysis and an interesting aside, 
we can compute the number of cyber assets in the resetting pool 
at the steady state when aco exceeds the threshold value (there are 
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none when aco is less than the threshold because compromise does 
not persist). Since xr = xr = XT − x − x0. Using the far right side 
of Eqn. (2.8), a little bit of algebra shows that 

rx 
xr = (XT − x) (2.10) 

rx + b 

As a check that you both understand the analysis and can explain 
it, verbalize (preferably to a colleague), your interpretation of 
Eqn. (2.10) when rx b or when b rx. 

2.2.1. The analogue in the population biology 

of disease∗ 

Readers who are familiar with the population dynamics of disease 
know about the concept of a Host Threshold Density (HTD) that is 
required for disease to persist in a population. In this section, we will 
briefly explore the connection between the HTD and the threshold 
level of co-compromise. 

We consider the Susceptible(S(t))-Infected(I(t))-Recovered 
(R(t))-Susceptible (SIRS) model with a closed population (such as a 
cold or non-fatal flu going through a boarding school (Murray 2002)) 
so that S(t) +  I(t) +  R(t) =  N , the total population size. Here are 
the SIRS equations once more 

dS 
= −βIS + γR 

dt 

dI 
= βIS − µI 

dt 

dR 
= µI − γR 

dt 

where β characterizes the rate at which already infected individuals 
infect susceptible individuals, γ is the rate at which recovered indi-
viduals become susceptible to the disease again, and µ is  the rate at  
which infected individuals move into the recovered pool. 

Because of the assumption of the closed population, we can 
rewrite the dynamics of susceptible individuals as 

dS 
= −βIS + γ(N − I − S)

dt 
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The steady states, again denoted by overline, satisfy βI · S = γ(N − 
I − S) and  βI · S = µI. One solution of these equations is I = 0  and  
S = N , in which case the disease is extirpated. 

When I > 0, so that the disease persists in the population, since 
βI · S = µI we conclude S = µ/β so that we can write the βI · S = 
γ(N − I − S) as  

 � 
µ 

µI = γ N − I − 
β 

We solve this equation for the number of infected individuals in the 
steady state and find 

 � 
γ µ 

I = N − (2.11)
µ+ γ β 

and conclude that the disease will persist if N > β
µ . 

This is the biological analogue of Eqn. (2.9). The mathematics 
leading to these equations is the same, but what we do with the 
mathematics differs because of the difference in the question about 
cyber and biological systems. 

2.3. Design Tradeoffs Between The Discovery of 

Compromise and Restoration from Compromise 

In addition to aco, the parameters b and rx in Eqns. (2.2) and (2.3) 
are ostensibly under the control of the defender. Furthermore both 
are pure rates; let us start thinking of them as resources with values 
chosen by the defender. In this section, we assume their values are 
constrained by an overall resource level. The most general assump-
tion, if constraint is linear, is that cbb+crrx = R, where  cb and cr are 
costs of a unit of b and rx respectively, and R is the total resource 
level. It is easy to envision more complicated constraints. For exam-
ple, password changes and software updates are (should be) done 
on a regular schedule (rather than in response to infection) so that 
their cost is proportional to the total number of cyber assets. For 
ease of computation, in the sense that we do not have to introduce 
additional parameter values, I will set cb = cr = 1.  

To explore the dynamics of the cyber assets and performance 
as b and rx covary, I set R = 0.4, which is the sum of b and rx 
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Fig. 2.4. A sweep over rx, with  b = 0.4 − rx allows us to track the maximum 
number of compromised cyber assets (solid line) and the final or quasi-steady 
state number of compromised assets (dotted line) as a function of rx. In light of 
Eqn. (2.9) we expect that compromise will persist once rx falls below the value 
corresponding to the threshold level of co-compromise. We see this clearly in the 
dotted curve. 

used to generate the results shown in Figure 2.2. I then used all the 
previous parameters, particularly the value of aco and let rx range 
from 0.04 (i.e. 10% of R) to 0.36 (90% of R), set b = 0.4 − rx, 
solved Eqns. (2.2), (2.3), and (2.5) and used Eqn. (1.4) to assess 
performance with x50 = 300 and σx = 200. 

First consider the dynamics of compromised cyber assets 
(Figure 2.4). Based on our understanding of the threshold level of 
co-compromise, we expect that as rx decreases, compromised cyber 
assets will persist in the steady state, long after the attack itself has 
ended. This is indeed the case (dotted curve in Figure 2.4). Further-
more, during the attack the maximum number of compromised cyber 
assets increases as rx decreases (upper panel in Figure 2.4). 

The dynamics of uncompromised cyber assets (Figure 2.5) tell the 
complementary story. That is (lower panel), for sufficiently high rx, 
there are only uncompromised cyber assets in the steady state and 
the steady state number of uncompromised cyber assets declines as rx 

declines. On the other hand, the minimum number of uncompromised 
cyber assets (upper panel in Figure 2.5) rises and then falls as rx 

increases. Thus rx and b interact to determine the minimum number 
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Fig. 2.5. The dynamics of uncompromised assets tell a story complementary 
to the one in the previous figure, with a twist. The complementary part is shown 
in the lower panel, in which the steady state (final) number of uncompromised 
cyber assets is XT is large enough, and otherwise declines as rx declines. The twist 
is shown in the upper panel, in which the minimum number of uncompromised 
cyber assets has a peak as rx varies from 10% of R to 90% of R. This is our first 
hint of a design tradeoff in the choices of rx and b. 

of uncompromised cyber assets. For example, for very small values of 
b reset uncompromised cyber assets will accumulate in the resetting 
pool but only slowly return to the uncompromised pool. 

Since performance is determined only by the number of uncom-
promised cyber assets, we expect that performance will mirror the 
number of uncompromised cyber assets. This is indeed the case 
(Figure 2.6). Indeed the upper panels of Figures 2.5 and 2.6 are vir-
tually identical. Because of the sigmoidal nature of the performance 
function the linear relationship between the steady state level of 
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Fig. 2.6. Because performance depends only on the number of uncompromised 
cyber assets, both minimum performance (upper panel) and steady state perfor-
mance (lower panel) are similar to the upper and lower panels of the previous 
figure. 

uncompromised cyber assets and steady state performance becomes 
a nonlinear one. Note, for example, that when rx = 0.2, the steady 
state number of uncompromised cyber assets is about 600, i.e. about 
60% of the total number of assets but that performance is about 0.8, 
i.e. 80% of maximum possible performance. 

These observations give us an inkling of the design tradeoff, assess-
ing how b and rx affect performance. Indeed, one can immediately 
think of all sorts of interesting maxi-min questions such as how to 
choose rx, given the constraint between it and b. Perhaps even more 
interesting is the determination of a range of values of rx in which per-
formance is pretty good. For example, if we were satisfied with perfor-
mance greater than 0.9, examination of the lower panel in Figure 2.6 
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suggests that values of rx bigger than about 0.25 will do the job. We 
will return to this question in Chapter 5, when we consider extensions 
of the PAM. 

Modeling the tradeoff between rx and b allows us to understand 
how the discovery of compromise and the return cyber assets to the 
uncompromised pool interact. Libicki (2016, p. 84) considers that the 
most difficult question is the discovery of compromise. Intuition tells 
us that putting all resources into rx is likely to be unwise, and our 
results confirm this. 

Potential project: When aco is less than the thresh-
old value, we know that compromise will ultimately 
be eliminated, so that we can define resilience follow-
ing an attack as the time it takes for the cyber sys-
tem to return to a high fraction of uncompromised 
assets. Develop a code to explore how such recovery time 
depends upon rx, using the same constraint between it 
and b that we have used. (We return to this question in 
Chapter 5.) 

2.4. Summary of Major Insights 

• Following a pulse attack, compromise may persist even when the 
system reaches a quasi-steady state long after the attack has ended. 
Whether this happens or not is determined by co-compromise rate 
parameter in the cyber system and this is a property of the cyber 
network under the control of the defender. 

• Consequently in anticipation of cyber attack, the very first pro-
active defensive measure is to ensure that the co-compromise 
rate parameter is less than the threshold for persistence of co-
compromise, which is a design parameter of the system. 
• Cyber security drills can ensure that the co-compromise rate is 

below the threshold value by measuring the co-compromise rate 
parameter. 

• There may also be design tradeoffs between the rate at which com-
promised cyber assets are discovered and removed to be reset and 
the rate at which they are returned to the uncompromised state. 
When this tradeoff exists, there is an optimal rate of removal to 
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resetting that minimizes the maximum level of compromise (thus 
maximizing the minimum level of performance) but also a range of 
values of rate of removal to resetting that is consistent with mak-
ing performance pretty good during the attack while eliminating 
compromise after the attack ends. 



Chapter 3 

The Fundamental Model of 
Simultaneous Cyber Operations 

Cyber conflict is relatively new and the dynamics still relatively 
unknown. Any act of cyber deterrence is best thought of as an 
experiment. Some will work, some will not. The best hope is to 
think, act, and then watch and learn, as with any experiment 

– Healey (2018, p. 191) 

Simultaneous Cyber Operations (SCOs) occur when multiple 
actors conduct cyber operations against each other continuously in 
cyberspace, and affecting, often degrading, the normal operation of 
the cyber system or enabled physical systems of each other. In this 
case we replace the attack rate aI(t) by a constant attack rate (e.g. 
simply a). 

The simplest, and most common, case is a dyadic interaction, 
with two adversaries, which we denote by the X-side and the Y-side, 
with persistent attacks at constant rates. It is important to note 
that unlike symbols representing mathematical variables, which are 
in italics, I use normal font for the two adversaries. 

Instead of a single network as in the PAM (Figure 2.1), we 
now have two interacting networks (Figure 3.1). I will call this 
the Fundamental Model of Simultaneous Cyber Operations 
(FMSCO). In Chapter 6, we will explore a variety of extensions of 
the FMSCO, so I hope you will be patient if your favorite modifica-
tion is not included here. 

53 
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Fig. 3.1. In the Fundamental Model of Simultaneous Cyber Operations 
(FMSCO) two adversaries, the X-side and the Y-side, conduct persistent per-
sistent attacks at constant rates. Instead of a single network as in the Pulse 
Attack Model (PAM), there are two interacting networks, which have similar 
dynamics for co-compromise and recovery as the PAM. We thus characterize 
each side by the number of uncompromised/up cyber assets x(t), y(t), compro-
mised/down cyber assets x0(t), y0(t), and xr(t), yr (t) recovering/resetting cyber 
assets at time t. When the total numbers of cyber assets XT , YT are constant, 
xr(t) =  XT −x(t)−x0(t), yr(t) =  YT −y(t)−y0(t)). Note that unlike in the PAM, 
there is no co-compromise in the FMSCO (at least for now). 

Before looking at the next section, try to formulate the dynamical 
equations for X-side and Y-side assets by yourself or in collaboration 
with a colleague just from the picture of the networks. 

3.1. Dynamics of the Cyber Assets 

We denote by XT , x(t) and  x0(t) the total number of X-side cyber 
assets, the number of uncompromised X-side cyber assets, and the 
number of compromised X-side cyber assets with similar symbology 
for the Y-side cyber assets. We also assume that cyber assets are 
neither permanently removed or added, so that the number of X-side 
cyber assets resetting at time t is xr(t) =  XT − x(t) − x0(t), with a 
similar expression for yr(t). We will not make use of xr(t) and  yr(t) 
explicitly until extensions of the FMSCO in Chapter 6. 



55 Fundamental Model of Simultaneous Cyber Operations 

When the dynamics follow mass action 

• Uncompromised X-side cyber assets decline due compromise by the 
Y-side at a rate proportional to the current numbers of uncom-
promised cyber assets on both sides (recall that there is no co-
compromise) and increase at a rate proportional to the number 
that restored to operational status 

dx 
= −axy + b(XT − x − x0) (3.1) 

dt 

• Compromised X-side cyber assets increase due to compromise by 
the Y-side and decline as they are moved to resetting 

dx0 
= axy − rxx0 (3.2)

dt 

There is an analogous system of equations for the Y-side cyber 

dt 

assets: 

dy 

dt 
= − cxy + d(YT − y − y0) (3.3) 

dy0 
= cxy − ryy0 (3.4) 

The rates rx, b, ry and d are key because they determine the ability 
of the X-side and Y-side to sustain cyber operations and determine 
performance of the cyber system or enabled physical system (e.g. 
Stanton and Tilton 2020). 

The full system of four equations is rapidly solved numerically 
using deSolve, but easily visualizing the solution and understanding 
the dynamics of this four-dimensional system are not so simple and 
will occupy much of this chapter. In Table 3.1, I show the parameters 
for the base case computations. 

3.2. Performance of the Cyber System or the Enabled 

Physical System 

We continue to use Eqn. (1.4) to characterize the performance of the 
X-side cyber system or enabled physical system, and adopt a simi-
lar form for the performance of the Y-side cyber system or enabled 
physical system, so that when y of the total YT of the Y-side cyber 
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Table 3.1. Variables, Parameters, and their Interpretation and Values for the 
FMSCO 

Value in the 
Symbol Interpretation base case 

XT Total number of X-side cyber assets 40 
YT Total number of Y-side cyber assets 120 
a Rate at which Y-side cyber assets compromise X-side 0.006 

cyber assets 
rx Rate at which compromised X-side cyber assets move 0.1 

to resetting 
b Rate at which resetting X-side cyber assets return to 0.05 

operational status 
c Rate at which X-side cyber assets compromise Y-side 0.0008 

cyber assets 
ry Rate at which compromised Y-side cyber assets move 0.1 

to resetting 
d Rate at which compromised Y-side cyber assets 0.045 

return to operational status 

assets are uncompromised the performance functions are 
� � 

1 
φ(x) =  , and x50−x 

σx1 +  e 
� � 

1 
φy(y) =  (3.5)y50−y 

σy1 +  e 

Here the parameters y50 and σy have interpretation similar to those 
in the performance function for the X-side: y50 is the number of 
uncompromised Y-side assets giving 50% performance and σy deter-
mines how rapidly performance rises as the number of uncompro-
mised Y-side cyber assets increases, as in Figure 1.6. 

In Table 3.2, I show the parameters for the performance functions 
used in computations. 

3.3. Escalation to a Kinetic Attack or Cyber Attack on 

Critical Civilian Infrastructure 

It is natural to envision cyber attacks in conjunction with kinetic 
attacks, and there are already examples of that. What about a cyber 
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Table 3.2. Functions and Parameters Characterizing Performance 

Symbol Interpretation Formula or Value 

φx(x) Performance of the X-side cyber system or the Eqn. (1.4) 
enabled physical system when X(t) =  x 

φy (y) Performance of the Y-side cyber system or the Eqn. (3.5) 
enabled physical system when Y (t) =  y 

x50 Level of uncompromised X-side cyber assets 14 
giving 50% performance 

σx Shape parameter for the X-side performance 4 
function 

y50 Level of uncompromised Y-side cyber assets 65 
giving 50% performance 

σy Shape parameter for the Y-side performance 15 
function 

attack leading to a kinetic response? When the actors are nations, 
the cyber security dilemma (Buchanan 2016, p. 20ff) has the sub-
dilemmas of interpretation and response. With the former, a nation 
must determine the intentions of its adversary – how deeply will the 
persistent cyber operations go? This dilemma occurs in situations in 
which information is limited; Buchanan (2016, p. 96, 188) argues that 
nations will generally assume the worst about a cyber intrusion, so 
that escalation may occur not only during a crisis but in anticipation 
of one. 

Clearly, the responses to an adversary’s cyber operations vary on 
a spectrum of intensity but there is a major transition in response if 
a nation chooses to escalate to a kinetic attack or cyber attack on 
critical civilian infrastructure. Using cyber assets to cripple or destroy 
the cyber assets and/or the enabled physical system of an adversary 
has the potential to lead to either a physical (kinetic) attack or to 
an attack on critical civilian infrastructure such as hospitals, dams, 
and power systems. It is now generally agreed that international law 
applies in cyberspace and that nations should not destroy critical 
civilian infrastructure of other nations in peacetime (Buchanan 2016, 
pp. 134–135). 

Reasons why escalation may not occur, in terms of both cyber and 
kinetic attacks, include (i) attribution is difficult (the attack may be 
done by rogue entities or third parties), increasing the possibility of 
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mistakes in the response; (ii) if the victim has not prepared a list of 
potential targets of the adversary, responding may require too much 
time; and (iii) the cyberattack may be accidental or inadvertent—or 
its effects greatly exceeded the attacker’s intentions (Libicki 2016, 
p. 328). 

Even so, there is the real possibility of escalation from cyber 
to kinetic attacks, and issues include ethical considerations (Dipert 
2010), counter-actions to reduce escalation (Kostyuk et al. 2018), 
and that the thresholds for such escalation are generally unknown to 
cyber adversaries (Geers 2010, Singer and Friedman 2014, Farrell and 
Glaser 2018, Rovner 2020). Arguments can be made that escalation 
to a kinetic attack is unlikely (Borghard and Lonergan 2019). On the 
other hand, the limits of coercion by cyber methods may increase the 
likelihood of attack on critical civilian infrastructure (Borghard and 
Lonergan 2017). 

In cyber operations to date, adversaries behaved in ways to cause 
strategic effects but avoid escalation to armed conflict (Singer and 
Friedman 2014 Valeriano and Maness 2015, Warner 2020, Nakasone 
2020). But this is not guaranteed for the future. Indeed, Singer and 
Friedman (2014, p. 136) quote an unnamed US military official saying 
“If you shut down our power grid, maybe we will put a missile down 
one of your smokestacks.” On the other hand, Valeriano and Maness 
(2015, p. 54, 61ff) argue that the possibility of escalation to a kinetic 
attack or a cyber attack on critical infrastructure is one route to 
the emergence of restraint in cyber operations. Game extensions of 
the FMSCO (e.g Basar and Olsder 1982, Alpcan and Basar 2011, 
McNamara 2020) are beyond the scope of this book, but are likely a 
fruitful area of future research. 

For these reasons, we will treat escalation as a probabilistic event, 
assuming that the goal of each nation during simultaneous cyber 
operations is to achieve the highest level of compromise of the adver-
sary’s assets without escalation by the adversary to a kinetic attack 
or a cyber attack on critical infrastructure (Smeets and Lin 2018). 

For the Y-side attack on the X-side, we let Ux(x, x0) denote the  
probability that the X-side escalates when it has x uncompromised 
cyber assets and x0 compromised cyber assets. Understanding when 
an adversary will respond with a kinetic attack is involves the compli-
cated matter of human behavior; we discuss this topic in Chapter 8. 
To treat escalation as a probabilistic event, we assume that the 
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probability of escalation to a kinetic attack is determined by the 
absolute number of compromised assets x0 and the relative perfor-

φx(XT )mance of the X-side cyber system or enabled physical sys-
φx(x) 

tem when there are x uncompromised cyber assets. We expect that 
the likelihood of escalation will increase as the number of compro-
mised cyber assets increases and as performance decreases, which is 
why φx(x) is in the denominator in the previous expression. That 
is, because φx(XT ) is always greater than or equal to φx(x) the  
ratio φx(XT )/φx(x) increases as the number of uncompromised cyber 
assets decreases. To determine the probability of a kinetic response, 
we weight these by parameters the number of compromised cyber 
assets and relative performance by ηx0 and ηφ respectively. We thus 
capture the X-side behavior as it depends upon the level of compro-
mise and the reduction in performance of its cyber system or enabled 
physical system. For example, if ηx0 = 0, what matters to the X-side 
is the performance of its cyber system or enabled physical system, 
whereas if ηφ = 0 what matters is the level of compromised assets, 
regardless of performance. In general, we expect that both of the 
weighting parameters will be non-zero. 

For the mathematical form describing the probability of escala-
tion, I use an exponential distribution (which we will discuss in more 
detail at the start of Chapter 4) 

� � �� 
φx(XT )

− ηx0 x0+ηφ φx(x)Ux(x, x0) = 1  − e (3.6) 

Potential project: Since  x0 = 0 when cyber operations 
commence, the first term in the exponent of Eqn. (3.6) is 
identically 0 and the ratio of the performance functions 
is 1. Thus, we require ηφ to be small for the probability of 
escalation to be small when SCOs start. In computations, 
I set  ηφ = ηφ = 0.02. An alternative to Eqn. (3.6) allowing 

φx(XT )
−[ηx0 x0+ηφ( −1)]

φx(x)any choice of ηφ is Ux(x, x0) = 1  − e 
and I encourage you to explore the differences between the 
two choices, both analytically and numerically. 

We might ask: could the Y-side know the values of x and x0? 
For now, we will assume that the Y-side can monitor performance 



� �

� �

60 Fighting the Virus: How Disease Modeling Can Enhance Cybersecurity 

to infer a value for the number of uncompromised cyber assets and 
observed the X-side cyber system long enough to infer a value of x0 

and return to this question at the end of Chapter 5. 
We define the value to the Y-side when attacking the X-side, 

Vyx(x, x0) as the reduction in the number of X-side cyber assets 
and performance of the X-side cyber system without escalation to 
a kinetic response by the X-side. When the X-side assets are x and 
x0, the probability of no kinetic response is 1 − Ux(x, x0) and  the  

φx(x)reduction in performance is 1 − . The value to the Y-side 
φx(XT ) 

in the attack is then 

φx(x)
Vyx(x, x0) =  1 − (1 − Ux(x, x0)) (3.7)

φx(XT ) 

There is an analogous set of equations for the value of the X-side 
attacking the Y-side (Table 3.3, which also includes parameters used 
for computations). As an exercise, I suggest that you write out a list 
of the parameters that determine Vyx(x, x0). 

Intuition suggests that the X-side will be most likely to initiate a 
kinetic response or a cyber attack on critical civilian infrastructure 
when it has many compromised cyber assets and few uncompromised 
cyber assets, and this is the case (Figure 3.2, upper panel). I show 
the value for the Y-side when attacking the X-side in the lower panel 
of Figure 3.2. The parameters of the performance function for the 
X-side are such that the Y-side gains very little in terms of declin-
ing performance of the X-side until the number of uncompromised 
cyber assets is reduced below about 20. After that, there is a grad-
ual increase in Vyx(x, x0), which rises to a peak and then declines. 
A figure such as Figure 3.2 allows decision-makers of the Y-side to 
select an attack rate with maximal effect, which we discuss in more 
detail in Chapter 6. 

3.4. Dynamics of the FMSCO: Numerical Results 

We first consider the situation when simultaneous cyber operations 
initiate from no compromise on either side so that the initial condi-
tions are x(0) = XT , x0(0) = 0, y(0) = YT , and  y0(0) = 0. We expect 
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Table 3.3. Functions and Parameters Characterizing Escalation 

Formula or Value 
Symbol Interpretation in the base case 

Ux(x, x0) Probability that the X-side escalates to a 
kinetic attack or an attack on critical 

Eqn. (3.6) 

Uy (y, y0) 

ηx 

infrastructure given x uncompromised and 
x0 compromised X-side cyber assets 

Probability that the Y-side escalates to a 
kinetic attack or an attack on critical 
infrastructure given y uncompromised and 
y0 compromised Y-side cyber assets 

Parameter characterizing the x0 dependent 
increase in the probability that the X-side 
escalates to a kinetic attack or attack on 

In analogy to 
Eqn. (3.6) 

0.02 

ηy 

critical civilian cyber infrastructure 
Parameter characterizing the y0 dependent 
increase in the probability that the Y-side 
escalates to a kinetic attack or attack on 

0.02 

ψx 

critical civilian cyber infrastructure 
Parameter characterizing the performance 
dependent increase in the probability that 
the X-side escalates to a kinetic attack or 

0.02 

attack on critical civilian cyber 
infrastructure 

ψy Parameter characterizing the performance 
dependent increase in the probability that 
the Y-side escalates to a kinetic attack or 

0.02 

attack on critical civilian cyber 
infrastructure 

Vyx(x, x0) 

Vxy(y, y0) 

The value of the Y-side attacking the X-side 
when there are to x uncompromised and 
x0 comprised X-side cyber assets 

The value of the X-side attacking the Y-side 
when there are to y uncompromised and 
y0 comprised Y-side cyber assets 

Eqn. (3.7) 

In analogy to 
Eqn. (3.7) 

that the number of uncompromised cyber assets will decline and the 
number of compromised cyber assets will increase. After exploring 
this case in detail, we consider initial conditions with different levels 
of compromised and compromised assets. As in Chapter 2, I used the 
RK4 option in the R package deSolve to solve Eqns. (3.1)–(3.4). 
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Fig. 3.2. Heat maps showing the probability that the X-side escalates to a 
kinetic attack or cyber attack on critical civilian infrastructure of the Y-side as 
a function of the number of uncompromised and compromised cyber assets from 
Eqn. (3.6) (upper panel) and the value to the Y-side of attack on the X-side from 
Eqn. (3.7) (lower panel). 

3.4.1. Starting with only uncompromised cyber assets 

In Figures 3.3 and 3.4, I respectively show the dynamics of uncom-
promised and compromised cyber assets, the probabilities that either 
side escalates to a kinetic attack or a cyber attack on critical civil-
ian infrastructure, and the value to each side of the attack on the 
other. 

The numbers of uncompromised cyber assets of both sides decline 
monotonically in time towards steady state values (upper panel 
Figure 3.3) and the numbers of compromised cyber assets increase 
(lower panel, Figure 3.3), showing transient behavior before reaching 
the steady states. We denote the steady states by x, y, x0, and  y0 

and explore them in greater detail in Sections 3.5 and 3.6. 
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Fig. 3.3. The dynamics of cyber assets when simultaneous cyber operations are 
initiated with both sides having only uncompromised assets. Upper panel: The 
dynamics of X-side (black) and Y-side (red) uncompromised cyber assets. Lower 
panel: The dynamics of the corresponding compromised cyber assets. Note the 
different scales of the y-axes. 

Because the probabilities of escalation depend upon both the 
numbers of compromised and uncompromised cyber assets, they too 
show a transient before reaching steady state values (Figure 3.4, 
upper panel). The transient behavior is less clear in the values of 
attack (Figure 3.4, lower panel). 

As with the persistence of compromise in the PAM, the transient 
properties of compromise in the FMSCO are something to explain in 
the FMSCO. 
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Fig. 3.4. Upper panel: The probability that the X-side (black) or the Y-side 
(red) escalates to either a kinetic attack or a cyber attack on critical civilian 
infrastructure after simultaneous cyber operations are initiated. Lower panel: The 
values to the X-side of attacking the Y-side (black) and of the Y-side to attacking 
the X-side (red) after simultaneous cyber operations are initiated. 

Furthermore: 

• The steady state does not mean that some cyber assets are per-
manently compromised and others permanently uncompromised, 
but rather that cyber assets are constantly transitioning between 
compromised and uncompromised pools in a way that is balanced; 
see Mangel and Brown (2022) for additional examples and expla-
nation. 
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• The mechanism leading to a positive steady state value of com-
promised assets in Figure 3.3 is very different than in Figure 2.2. 
In the lower panel of Figure 3.3 there is no co-compromise and a 
steady state of compromised cyber assets is reached because attack 
is continuous, while in Figure 2.2 the steady state of compromised 
cyber assets is reached even after offensive cyber operations have 
stopped because the co-compromise rate parameter aco exceeds the 
threshold value given in Eqn. (2.9). 

• The steady state values in Figure 3.3 imply that one should expect 
that the performance of the cyber system or the enabled physical 
system permanently degrades. As discussed in the previous section, 
this may drive an increased risk of escalation to a kinetic attack 
or cyber attack on critical civilian infrastructure. 
• The origin of the transient in the lower panel of Figure 3.3 will 

become clear in Section 3.6 but we can gain intuition with reference 
to Figure 3.1. When the X-side cyber assets are compromised, they 
go into the compromised pool from which there is waiting time, 
roughly 1/rx, before they move into the resetting/recovery pool, 
from which there is also a waiting time, roughly 1/b, before  the  
cyber assets are returned to uncompromised operational status. 
These waiting times lead to a pulse in compromised cyber assets, 
which ultimately settles down to a steady state as the flow of cyber 
assets into and out of the resetting pool match. 

3.4.2. Starting with a mixture of uncompromised, 

compromised, and resetting cyber assets 

The initial conditions could also be a mixture of uncompromised, 
compromised, and recovering cyber assets even if there is no previous 
cyber attack because natural variation can also lead to compromised 
assets (Mangel and Brown 2022). We can explore this idea by select-
ing a variety of values for x(0) and y(0) surrounding the steady state 
(x, y). These are the colored dots in Figure 3.5. 

To do so, we specify either the initial number of compromised 
cyber assets or the initial number resetting cyber assets since choos-
ing one of them and knowing the number of uncompromised cyber 
assets determines the other. Here, I specified the number of com-
promised cyber assets, so that the number of resetting cyber assets 
is then the difference between the total number of cyber assets 
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Fig. 3.5. The solution of Eqns. (3.1)–(3.4) as trajectories in the phase plane 
of uncompromised X-side cyberassets/uncompromised Y-side cyber assets. The 
steady state of Eqns. (3.1)–(3.4) is the large black dot and the starting values 
for the number of uncompromised cyber assets x(0) and y(0) (the colored and 
small back dots) were chosen to surround the steady state. The starting values for 
compromised cyber assets were x0(0) = ax(0)y(0)/rx and y0(0) = cx(0)y(0)/ry , 
as explained in the text. Each color corresponds to one of the trajectories in 
Figure 3.6. All trajectories flow towards the steady state. 

and the sum of the compromised and uncompromised cyber assets. 
I chose  x0(0) [and by analogy, y0(0)] by noting that dx0/dt = 0  in  
Eqn. (3.2) when the terms on the right side balance. Thus if we set 
x0(0) = ax(0)y(0)/rx the initial conditions correspond to a momen-
tary steady value for the number of compromised X-side assets. Sim-
ilarly, I set y0(0) = cx(0)y(0)/ry . In choosing these initial conditions, 
we have to confirm that the choice does not exceed the total number 
of assets, i.e. that x(0) + x0(0) ≤ XT and y(0) + y0(0) ≤ YT . 

In the next section, we will show that the steady state (x, y) is  
stable and unique, so that regardless of the starting point all trajecto-
ries go towards it (Figure 3.5). It appears that the trajectories cross, 
in contradiction of one of the fundamental properties of ordinary 
differential equations (Hartman 1973). This is perception caused by 
the projection of the four-dimensional solution x/x0/y/y0 into the 
x/y plane. Were we to add the additional two variables (x0 and y0) 
and visualize in a four-dimensional space, the trajectories would not 
cross. Of course, in a three-dimensional world that is not possible, 
and we will subsequently explore ways to visualize the dynamics. 
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Fig. 3.6. The dynamics for X-side cyber assets (upper panels) and Y-side cyber 
assets (lower panels), determined from the solution of Eqns. (3.1)–(3.4). Each 
color represents the trajectory starting from one of the similarly colored dots in 
Figure 3.5. Regardless of the starting point, trajectories lead to the same steady 
state values. 

We can also visualize the approach to the steady state as tem-
poral dynamics, rather than the phase plane. Here (Figure 3.6) 
we see a smooth rise or decline from the initial value to the 
steady state of uncompromised assets and also a lack of transients 
as in the upper panel of Figure 3.3. This is due in part to the 
choice of initial conditions for the number of compromised assets. 
For example, if we set x0(0) = 0.25ax(0)y(0)/rx and y0(0) = 
0.25cx(0)y(0)  some starting points  lead  to a smooth rise to the  
steady state, while others to a transient overshoot. The analysis in 
Sections 3.5 and 3.6 will allow us to understand the origin of this 
behavior. 

3.4.3. Design considerations: The 

resilience-performance tradeoff 

As in Chapter 2, we recognize that b (Eqn. (3.1)) and rx 

(Eqn. (3.2)) are rates that represent operational capabilities of 
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moving compromised cyber assets from the compromised pool to 
the resetting pool (rx, Figure 3.1) and restoring cyber assets from 
the resetting pool to the uncompromised pool (b, Figure 3.1). Thus, 
we can envision a tradeoff between b and rx, in the sense that their 
sum is constrained. The most general form of a linear tradeoff would 
be cbb + crrx is a constant. As in Chapter 2, I will set the constants 
cb = cr = 1 so that we do not need additional parameters, and in 
light of Table 3.1, for computations assume b + rx = 0.15. 

We now sweep over values of b, determining the dynamics of the 
cyber system and performance of the cyber system or the enabled 
physical system for a range of values of b, with  rx determined by the 
constraint that rx = 0.15 − b. Once the system reaches the steady 
state we compute steady state performance of the X-side assets from 
Eqn. (3.5). For computations, I let b range from 0.015 to 0.135, 
divided into 50 equal values. 

Intuition developed in Chapter 2 suggests that there will be an 
intermediate value of b that maximizes performance. The reason-
ing is similar to that from Chapter 2: When b is very large, once 
compromised cyber assets reach the resetting pool they are quickly 
repaired and sent back to uncompromised status. However, a large 
value of b means that rx must small, so there will be a queue of 
cyber assets in the compromised pool waiting to be moved to the 
resetting/restoring pool. When b is very small so that rx is large 
compromised cyber assets are moved quickly from the compromised 
pool to the resetting pool, but then a queue builds in the resetting 
pool, while cyber assets are metaphorically waiting for restoration 
and movement to the uncompromised pool. Our intuition about the 
intermediate value of b is indeed the case (Figure 3.7, upper panel). 
The symmetric nature of steady state performance can be under-
stood once we have a better grasp of the nature of the steady states 
(Section 3.5). 

To compute resilience, imagine that once the steady state is 
reached, attack stops suddenly so that a = 0 in Eqns. (3.1) and 
(3.2). Because there is no co-compromise, the cyber system will fully 
recover, and we characterize resilience of the system by the time at 
which performance reaches a high fraction of the maximum steady 
state performance. 
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Fig. 3.7. An example of design considerations. Upper panel: Steady state per-
formance of the X-side cyber system or the enabled physical system as the reset-
ting rate b varies when it and the rate rx at which compromised cyber assets are 
moved to resetting are constrained so that b+rx = 0.15, which is the sum of their 
values in Table 3.1. The dotted line corresponds to steady state performance that 
is 80% of the maximum steady state performance. Lower panel: The recovery 
of performance after attack ends, measured by the time it takes performance to 
reach 80% of the maximum steady state performance. 

Equations (3.1) and (3.2) become 

dx 
= b(XT − x − x0) (3.8) 

dt 

dx0 
= − rxx0 (3.9)

dt 
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so that the number of compromised assets x0(t) declines exponen-
tially at rate rx and the number of uncompromised assets rises 
constantly towards x(t) =  XT . Performance will also increase in time, 
towards its maximum value determined by Eqn. (3.5). Suppose we 
define the resilience of the cyber system as the time it takes for per-
formance to reach 80% of its maximum value). For the parameters 
in Tables 3.1 and 3.2, intermediate values of b that give the fastest 
recovery in performance (Figure 3.7, lower panel). We conclude that 
for these parameters, there is minimal tradeoff between performance 
and resilience. 

Potential project: We have not yet addressed the pos-
sible tradeoff between cyber offense and defense (Slater 
2017). That is, suppose that the attack rate parameter of 
the X-side, c, is also viewed  as a resource  and  is incor-
porated into the resource constraint, as in cbb + crrx + 
ccc, where now cb, cr and cc are the unit costs of the 
resources b, rx and c. Explore this with your version of the 
FMSCO. 

3.4.4. Analytical characterization of resilience* 

Equations (3.8) and (3.9) are linear first order differential equations, 
so we can obtain their explicit solutions. The solution of Eqn. (3.9) is 
x0(t) =  x0e

−rxt . We use this in Eqn. (3.8) and simultaneously move 
bx to the left side so that Eqn. (3.8) becomes 

dx 
+ bx = bXT − bx0e −rxt (3.10)

dt 

We next note that 

dx 
−bt d bt]+ bx = e [xe 

dt dt 

so that we can rewrite Eqn. (3.10) as 

−bt d 
−rxt e [xe bt] =  bXT − bx0e (3.11)

dt 
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so that 

d bt − bx0e −rxt bt bt − bx0e
(b−rx)t[xe bt] =  bXT e e = bXT e (3.12)

dt 

We integrate this equation from t = 0 when  x = x, to  t when the 
number of uncompromised cyber assets is x(t). Doing so gives 

bt − x = XT (e 
bx0 

x(t)e bt − 1) − (e(b−rx)t − 1) (3.13)
b − rx 

Moving x to the right side and multiplying by e−bt gives 

−bt −bt) − 
bx0 −rxt − e −bt)x(t) =  e x + XT (1 − e (e (3.14) 

b − rx 

which we can rearrange as 

−rxt − e−bte
−bt − bx0x(t) =  XT + (x − XT )e (3.15)

b − rx 

Let us pause to interpret the three terms on the right side of 
Eqn. (3.15). When t = 0, the exponentials are equal to 1, so that the 
third term on the right side vanishes and XT on the first and second 
terms of the right side cancel, so that we have x(0) = x, which  is  
the assumption about the cyber assets of the X-side being in the 
steady state when the attack stops. Since always x − XT < 0, the 
second term on the right side is negative and declines towards 0 as 
time increases. What about the third term, particularly the fraction 
−rxt

−e−bte , since  we  know  that  bx0 > 0? If b > rx, the denomina-b−rx 

tor  of this fraction  is positive,  and  the  numerator is as well  since  
−bte < e−rxt and the fraction is positive. Similarly, if b < rx both 
the denominator and numerator are negative so that the fraction is 
positive. We thus conclude that because of the negative sign in front 
of the fraction, the third term on the right side is always a reduction 
in the number of uncompromised cyber assets. 

We can then determine the resilience of the cyber system by set-
ting x(t) in Eqn. (3.15) to a large fraction of the total number of cyber 
assets, and finding the time at which this occurs, either graphically 
or by a numerical root solving process. 
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Potential project: Our analysis will run into problems 
if b = rx since then the third term on the right side of 
Eqn. (3.15) is undefined. Although it is very unlikely that 
these two rates would be precisely equal, it is worth think-
ing about them. When that b = rx, Eqn. (3.12) becomes 

bt − bx0 
d 
[xe bt] =  bXT e 

dt 

Solve this equation and plot its solution. Then let rx in 
Eqn. (3.15) be different from b but close to it (e.g. 10% on 
either side), plot the solutions of Eqn. (3.15), and interpret 
the results. Finally, explore the properties of the fraction 
in Eqn. (3.15) either by Taylor expansion of the expo-
nentials or application of L Hoptial’s rule of introductory 
calculus. 

3.5. Analysis of the Steady State 

The nonlinearity in Eqns. (3.1)–(3.4) is very simple.1 However, know-
ing that more complicated equations are ahead of us in subse-
quent chapters, we will not look for mathematically special solutions. 
Instead, we will apply more general methods that have been used in 
the study of the dynamics of populations for more than a century 
(e.g. Bazykin 1998). The program that we follow is: 

• Phase plane characterization of the steady states (Section 3.5.1). 
• Perturbation analysis to characterize the nature of stability of the 

steady states (Section 3.5.2). This section has a ∗ next to it. 
• Visualizing slices of the four-dimensional phase space (Section 

3.5.3). 

These steps can be followed for any of the extensions in subsequent 
chapters, so we work them out carefully in detail here. The future is 

1That is, this nonlinearity is very simple because it involves only quadratic terms 
that appear symmetrically in each of the four equations and one might be tempted 
to look for special ways of solving these equations (Davis 1962) as we did with 
the pulse attack model after the attack ended. 
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up to you. In accomplishing these steps, especially the phase plane 
and perturbation analysis, I will call on more advanced mathematical 
methods than we have used this far. A brief introduction to those 
methods can be found in Mangel (2006, Chapter 2), a more advanced 
treatment in Epstein (1997), and a thorough treatment in Edelstein-
Keshet (1988), Murray (2002), or any junior-senior college level book 
on differential equations. 

3.5.1. Phase plane characterization of the steady 

states 

The steady states x, x0, y and y0 obtained by setting the left sides of 
Eqns. (3.1)–(3.4) equal to 0 satisfy 

ax · y = b(XT − x − x0) (3.16) 

ax · y = rxx0 (3.17) 

cx · y = d(YT − y − y0) (3.18) 

cx · y = ryy0 (3.19) 

Equation (3.17) implies that x0 = ax · y/rx so that Eqn. (3.16) 
becomes 

ax · y = b(XT − x − ax · y/rx) (3.20) 

We solve this equation for y as a function of x by first rewriting it as 

ax · y[1 + b/rx] =  b(XT − x) (3.21) 

Solving for y gives 

b(XT − x) XT − x 
y = = γ (3.22) 

ax(1 + b/rx) x 

where γ is the combination of parameters 

b 
γ = (3.23) 

a(1 + b/rx) 

We treat Eqns. (3.18) and (3.19) similarly and write 

cx · y = d(YT − y − cx · y/ry) (3.24) 
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so that 

cx · y(1 + d/ry) +  dy = dYT (3.25) 

If we define δ = c(1 + d/ry) then Eqn. (3.25) becomes 

dYT 
y = (3.26)

δx + d 

We can find x by setting the right sides of Eqns. (3.22) and (3.26) 
equal to each other, then y from either one of them, and then x0 and 
y0 follow directly from Eqns. (3.17) and (3.19); see Figure 3.8 for a 
graphical illustration. 

Setting the right sides of Eqns. (3.22) and (3.26) equal to each 
other 

dYT XT − x 
= γ (3.27)

δx + d x 

and simplifying gives the quadratic equation 

2 dYT
δx + x + d − δXT − dXT (3.28)

γ 

This quadratic equation has one positive and one negative solution 
(demonstrate that for yourself), so we conclude that the steady state 
of the FMSCO is unique. We will next explore its stability, both via 
perturbation analysis and visually. 

3.5.2. Perturbation analysis to characterize the 

nature of stability of the steady state* 

We now know that the steady state (x, x0, y, y0) is unique and 
appears to be stable, as determined by numerical computation. We 
can gain more understanding of the steady state by conducting a 
formal stability analysis. We set 

x(t) =  x + x (t) 

x0(t) =  x0 + x0 (t) 

y(t) =  y + y (t) 

y0(t) =  y0 + y0 (t) (3.29) 
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Fig. 3.8. The steady state conditions in Eqns. (3.16) and (3.18) lead to two 
curves that relate x and y (Eqns. (3.22) and (3.26)). When these curves inter-
sect, we determine x by setting the and y, and  then  x0 and y0 follow directly 
from Eqns. (3.17) and (3.19). Thus, this is the steady state of the full four-
dimensional system and visual inspection shows that they are the same values as 
those obtained by running the dynamics forward and shown in Figures 3.3–3.6. 

where indicates a small number and the initial conditions for the 
second terms on the right-hand side of Eqn. (3.29) are understood to 
be proportional to so that we are starting the equations “not too 
far” from the steady state. Thus, for example, x (0) = c1 , where  c1 

is a constant that is of the order of 1, with the other initial condi-
tions set similarly. We refer to any variable with a subscript as a 
perturbation term. 

In the steady states Eqns. (3.1)–(3.4) become 

dx 
= 0 =  − a(x + x )(y + y ) +  b(XT − x − x − x0 − x0 )

dt 
(3.30) 

dx0 
= 0 =  a(x + x )(y + y ) − rxx0 (3.31)

dt 

dy 
= 0 =  − c(x + x )(y + y ) +  d(YT − y − y − y0 − y0 ) (3.32) 

dt 

dy0 
= 0 =  c(x + x )(y + y ) − ryy0 (3.33)

dt 

We simplify Eqns. (3.30)–(3.33) by multiplying the right sides out, 
ignoring terms that are products of x , y , x0 and y0 , because they 
are proportional to 2 , and apply the steady state conditions. 
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Equations (3.30)–(3.33) lead to a set of four linear equations for 

dt 

the dynamics of the perturbation terms 

dx 

dt 
= − (ay + b)x − axy − bx0 (3.34) 

dy 

dt 
= − (cx + d)y − cyx − dy0 (3.35) 

dx0 

dt 
= a(xy + yx ) − rxx0 (3.36) 

dy0 
= c(yx + xy ) − ryy0 (3.37) 

Using vector and matrix notation, we write Eqns. (3.34)–(3.37) 
as 

⎛ ⎞ ⎡ ⎤ ⎛ ⎞ 
x −(ay + b) −ax −b 0 x 

d ⎜ ⎟ ⎢ ⎥ ⎜ ⎟y −cy −(cx + d) 0  −d y 
⎜ ⎟ ⎢ ⎥ ⎜ ⎟= × 
⎝ ⎠ ⎣ ⎦ ⎝ ⎠dt x0 ay ax −rx 0 x0 

y0 cy cx 0 −ry y0 

(3.38) 

The key to understanding the dynamics of the perturbation terms 
is to look at the eigenvalues and eigenvectors of the matrix, denoted 
by M, on the right side of Eqn. (3.38). The eigenvalues and eigenvec-
tors of M can be determined using the R command “ev ←eigen(M)” 
and then separately calling the eigenvalues or eigenvectors with the 
commands “(values ← ev$values)” and “(vectors ← ev$vectors)” 
respectively. Note that the matrix in Eqn. (3.38) is sufficiently simple 
that one could compute the eigenvectors by hand, but this will not 
be true in extensions of the FMSCO that we discuss in Chapter 6. 

For the parameters in Table 3.1 the eigenvalues are 

λ1 = −0.100 (3.39) 

λ2 = −0.0459 (3.40) 

λ3 = −0.106 + 0.0556i (3.41) 

λ4 = −0.106 − 0.0556i (3.42) 

Two of the eigenvalues are real and negative and the real part of the 
complex eigenvalues is also negative. This confirms that the numeri-
cal results that the steady state is locally stable. Since it is unique, 
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it is also globally stable. The complex eigenvalues are conjugates of 
each other, so that there is a single period of oscillation associated 
with the decay to the steady state. 

3.6. Looking at Slices of the Four-dimensional 

Phase Space 

Equations (3.1)–(3.4) describe the dynamics of the two cyber systems 
in a four-dimensional phase space. This is hard to visualize! McPeek 
and colleagues (McPeek 2017, 2022, McPeek et al. 2022) suggested 
that we look at slices of the phase space to help visualize what is 
happening. 

We can obtain a sense of how the cyber system moves from 
the initial state x(0) = XT , x0(0) = 0, y(0) = YT , y0(0) = 0 
towards the steady state by examining slices of the four-dimensional 
phase space in the four phase planes corresponding to (i) uncom-
promised X-side cyber assets/uncompromised Y-side cyber assets 
(upper left panel in Figure 3.9), (ii) uncompromised X-side cyber 
assets/compromised X-side cyber assets (upper right panel in Figure 
3.9); (iii) uncompromised Y-side cyber assets/compromised Y-side 
cyber assets (lower left panel in Figure 3.9); and (iv) compromised 
X-side cyber assets/compromised Y-side cyber assets (lower right 
panel in Figure 3.9). 

In the phase plane of uncompromised cyber assets (upper left 
panel Figure 3.9) by t = 300, uncompromised X-side cyber assets 
have dropped to less than half of their initial value, on the way to the 
steady state that is around 16; uncompromised Y-side cyber assets 
have dropped by 25% at the same time, on their way to the steady 
state that is around 85. Far from the steady state, the trajectory is 
almost linear, only showing nonlinear behavior near the steady state. 

The trajectory in the the phase plane of X-side cyber assets (upper 
right panel in Figure 3.9) shows curvature from the outset, which 
accounts for the overshoot of compromised cyber assets shown in 
Figure 3.3. The trajectory in the phase plane of Y-side cyber assets 
(lower left panel in Figure 3.9) also shows curvature, similarly corre-
sponding to the overshoot in the dynamics. 

The trajectory in the phase plane for compromised cyber assets 
of both the X-side and Y-side (lower right panel in Figure 3.9) is 
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Fig. 3.9. Slices through the four-dimensional space when SCOs are initiated with only uncompromised cyber assets. In all 
panels, the arrows represent the direction in which cyber cyber assets move towards the steady state, shown by the black 
dot. Time is implicit in the trajectory, so I labeled various times along the trajectories. Upper left: The phase plane for 
uncompromised X-side and Y-side cyber assets. Since x(0) = 40 and y(0) = 120 we conclude that there is a relatively rapid 
decline in the number of uncompromised X-side cyber assets. Upper right: Phase plane of X-side cyber assets. Lower left: 
Phase plane of Y-side cyber assets. Lower right: Phase plane of X-side and Y-side compromised cyber assets. See text for 
details and interpretation. 
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perhaps the most interesting. Here, as in upper left panel, the tra-
jectory in the phase plane is nearly linear, but the flow along that 
line is unlike the other three slices in the phase space because early 
on the flow is away from the steady state. Indeed, since the dynam-
ics start at x0(0) = y0(0) = 0, it must be that in the full phase 
space the trajectory climbs above the x0/y0 plane and thus goes 
“over” the steady state (x0, y0) while making a large excursion before 
“turning around” in the phase space and approaching the steady 
state. 

We have learned a lot about the dynamics of the cyber system 
from these slices in the phase space. Sadly, I still do not know how 
to fully capture four-dimensional dynamics in a three-dimensional 
world. 

3.6.1. Summary of the analysis of the FMSCO 

Our combined analytical tools (computational and analytical) have 
shown that there is a unique, stable steady state for the dynamical 
equations characterizing the FMSCO. Approach to this steady state 
involves transient behavior of the numbers of uncompromised and 
compromised cyber assets, depending upon their values at the time 
that simultaneous cyber operations are initiated. 

3.7. Extensions of the FMSCO 

I hope that you have ideas about extending the FMSCO. We will 
do two kinds of extension in this book. The first extensions do not 
require new analysis, but rather applying what we have done thus far 
to modifications of the FMSCO. You can think of them as exercises 
or projects. The second extensions require additional new kinds of 
analyses; we will tackle many of them in Chapter 6. 

For example, extensions that do not require new analysis, but 
rather applying what we have done thus far to are: 

• Including co-compromise in the FMSCO. Perhaps the biggest dif-
ference between the PAM and the FMSCO is that the former 
includes co-compromise and the latter does not. In Chapter 6, we 
will modify Eqns. (3.1)–(3.4) to include co-compromise and discuss 
various aspects of these modified equations. 
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• Using one’s own cyber assets to hold the adversary’s cyber assets 
in a compromised state. When one side‘s cyber assets are used to 
hold the adversary’s cyber assets in the compromised state (Long 
2018) we need to consider an additional pool for the cyber assets. 
These are cyber assets that are uncompromised but committed to 
holding the adversary’s cyber assets, which expands the number of 
differential equations in the FMSCO. We also do this in Chapter 6. 

Extensions that require new analysis are: 

• Stochastic versions of the PAM and FMSCO. Ordinary differential 
equation models using mass action can be seen as a conditional 
mean of a stochastic population process (Gillespie and Mangel 
1981, Mangel and Brown 2022). We will explain this in detail in 
Chapter 4. With stochastic models, the steady states of ordinary 
differential equation models are replaced by steady state distri-
butions of outcomes. We will explore the connection between the 
ordinary differential equation and stochastic models, and gain new 
insights about cyber attack and defense. 

• Including a distribution of vulnerability to cyber attack. In  cyber  
systems with many kinds of cyber assets some cyber assets are 
likely more vulnerable to attack than others (Libicki 2018). One 
way to capture this is to modify the attack terms axy and cxy in 
Eqns. (3.1)–(3.4) so that the rates of attack have a temporal dis-
tribution that evolves as cyber attack occurs and more vulnerable 
assets are compromised. In Chapter 7, we will explore including 
a distribution of the rates of compromise in the PAM. I leave the 
further generalization of those ideas to the FMSCO to you. 

3.8. Summary of Major Insights 

• During persistent cyber operations, both sides will experience per-
manent degradation in which the steady state of uncompromised 
cyber assets less than the initial number of uncompromised cyber 
assets is reached. This may correspond to a permanent degradation 
in performance of the cyber system or the enabled physical system, 
depending upon the parameters of the performance function and 
the number of uncompromised cyber assets in the steady state. 

https://attack.In
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• The four-dimensional steady state of consisting of the uncompro-
mised and compromised cyber assets of each side is unique and 
stable, meaning that regardless of the initial states of the cyber 
adversaries, the steady state will ultimately be approached. The 
approach to this steady state can include spiraling into it, rather 
than a monotonically approaching it. 

• The value of the attack to the attacker can be determined from the 
probability of escalation by the adversary to a kinetic attack or a 
cyber attack on critical civilian infrastructure and the reduction 
in the performance of the adversary’s cyber system or enabled 
physical system. These values also reach steady state values. 

• Resilience, defined as the time to return to a near fully uncom-
promised cyber system if the cyber attack were to end, depends 
on both the rate at which compromised cyber assets are moved 
into the resetting pool and the rate at which they are moved from 
resetting to the uncompromised pool. 

• It is a general property of simultaneous cyber operations that there 
are variables whose values shift from shrinking to growing or vice 
versa. An awareness of this property, as an anticipated and almost 
unavoidable phenomenon, is very important for decision-makers, 
who often pay great attention to trends but do not expect that they 
will reverse, or maybe even recognize that reversals are possible. 
Our analysis shows that a trend could shift direction without any 
outside influence. 
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Chapter 4 

Beyond Determinism: Stochastic 
Versions of the PAM and FMSCO 

All the business of war, and indeed all the business of life, is 
to find out what you don’t know by what you do; what I called 
‘guessing what was on the other side of the hill’ 

– The Duke of Wellington 

In titling this chapter, I riff off of the title of the book by Brian 
McCue Beyond Lanchester with subtitle Stochastic Granular Attri-
tion Combat Processes (McCue 2020). There is a long history of using 
Ordinary Differential Equation (ODEs) models both in population 
biology (e.g. Gause 1934/2019) and military operations research (e.g. 
Lanchester 1917, Taylor 1983). At the same time, we recognize that 
fluctuations and stochasticity are common rather than rare in the 
natural world, so that there is a need to understand in what sense 
the deterministic ODEs are representative of the underlying stochas-
tic processes that have more fidelity to the operational (or biological) 
situation. 

Intuition suggests that the ODE models for populations are in 
some way representative of the mean of an underlying stochastic pro-
cess and it is this connection that we want illuminate (e.g. Leslie and 
Gower 1958, Bartlett et al. 1960, Barnett 1962, Mangel and Ludwig 
1977, Mangel 1994). McCue (2020) analyzes both Gause’s classic 
experiments in population biology and classic military encounters 
such as the battle of Trafalgar, showing how distributions of outcomes 
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arise. In stochastic versions of the PAM and the FMSCO, we intro-
duce random components to the dynamics, so that instead of steady 
states and single numbers for quantities such as numbers of uncom-
promised cyber assets, performance, and recovery time, we obtain 
distributions. 

To understand these extensions of the model in Chapters 2 and 3, 
you need to understand only the basic rules of probability and the 
exponential distribution, which we review in the context of search 
theory (also see Chapter 2 of Mangel 2006). 

4.1. Probability of Detection in Search 

Washburn (1981/2014) conducted an experiment in which students 
(military officers who were doing advanced degrees at the Naval Post-
graduate School) played games of search and detection against each 
other. This is clearly a situation in which intelligent agents were 
searching and evading, and yet when he analyzed the data, Wash-
burn found that the empirical time to detection fit the exponential 
distribution (which underlies the stochastic versions of the ordinary 
differential equation models) very well (graph in the lower panel of 
Figure 4.1). 

If the time to detection follows an exponential distribution with 
rate parameter λ 

Pr[detection by time t] = 1  − e −λt (4.1) 

so that the probability that the target remains undetected at time 
t is e−λt . This leads to the very interesting “memoryless” property, 
understood in the following sense. Suppose that we are interested 
in p(t, s) = Pr[no detection by time t + s given no detection by 
time t]. We first recall the definition of conditional probability that 
Pr[A given B] = Pr[A and B]/Pr[B], where A and B are any two 
events with Pr[B > 0] (Feller 1968, Mangel 2006). In our case A 
is the event of no detection by time t + s and B is the event of no 
detection by time t so that event B is included in event A so that 

−λ(t+s)e 
−λs p(t, s) =  

−λt 
= e (4.2) 

e 



85 Beyond Determinism: Stochastic Versions of the PAM and FMSCO 

Fig. 4.1. Upper panel: the title page and frontispiece of Lanchester’s 1917 book 
that pioneered the use of ordinary differential equations in the analysis of military 
operations and the cover of the first of the two volume classic by James G. Taylor 
(1983) in which those methods are extended. Lower panel: Cover of another clas-
sic, this one by Alan Washburn (1981/2014) on search theory, the set up for 
military officers playing games of search and detection, and the results in which 
the empirical data fit a distribution characterizing random search (see text for 
more details). 

Thus, the failure of search up to time t is “forgotten” as one goes 
forward in time; the search is called “random” (for further details, 
see Mangel 2006). 

But surely, military officers playing this search and detection 
game were not forgetting what they had done! There are at least 
two explanations of what might be going on. The first (proposed by 
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Brian McCue) is that although each player remembers their actions, 
the other player – through movement of their own – eliminates the 
utility of that memory. The second is that there are other variables, 
which we may not know about, affecting utility of the memory. 

There is something almost mystical in the way that simple mathe-
matics can effectively capture complicated situations in nature. This 
was noted long ago by Eugene Wigner in a brilliant and accessible 
essay on mathematics and science (Wigner 1960). 

Let us apply the concept of memoryless to the detection of cyber 
compromise by a defender. To do so, we assume that at time t = 0,  
the attacker has compromised a cyber asset and wishes to know the 
probability PU (t) that the compromise remains undetected at time t 
in the future. We also assume that the probability that the defender 
detects compromise between time t and t + dt, where  dt is a small 
increment of time, is λdt + o(dt) where  o(dt) represents terms that 
are higher powers of dt such as dt2, dt3 and so forth. For compromise 
to remain undetected at time t + dt, it must be undetected at time t 
and not detected in the interval between t and t + dt. If we assume 
that detection of compromise is memoryless, these are independent 
events so that according to the rules of probability we multiply the 
probability of these events together giving 

PU (t + dt) =  PU (t)(1 − λdt + o(dt)) (4.3) 

Simple algebra allows us to rearrange this equation to 

PU (t + dt) − PU (t) o(dt) 
= −λPU (t) +  (4.4)

dt dt 

We now let dt approach 0, in which case the left side of Eqn. (4.4) 
becomes the derivative dPU /dt and the higher-order terms o(dt)/dt 
on the right side vanish, leading to 

dPU 
= −λPU (4.5)

dt 

and since compromise is undetected at t = 0, the solution is 
PU (t) =  e−λdt so that corresponding probability of detection by time 
t is PD(t) = 1  − e−λt . 

If this was your first experience of the Landau order notation 
o(dt) and it is a bit mysterious, that is just fine because we will 
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explore it further. And if the assumption that the rate of detection of 
compromise is constant troubles you, that is fine too because we will 
change that assumption in future chapters. We made that assumption 
here for its heuristic value and as a of warm up for the rest of this 
chapter. 

4.2. Stochastic Version of the Pulse Attack Model 

To begin, we rewrite Eqns. (2.2) and (2.3) as difference equations. 
As above, we imagine a small interval of time dt and let dx = x(t + 
dt) − x(t), dx0 = x0(t + dt) − x0(t). 

With this notation the ODEs for the PAM are equivalent to 

dx = (−axI(t) − acoxx0 + b(XT − x − x0))dt + o(dt) (4.6) 

dx0 = (axI(t) +  acoxx0 − rxx0)dt + o(dt) (4.7) 

in the sense that if we divide both sides by dt and then let  dt → 0 
we obtain Eqns. (2.2) and (2.3). 

Our goal is to go from these deterministic equations to a stochas-
tic version that captures much of the same behavior in the mean 
but allows us to look at distributions, rather than point values, of 
states across time. Gillespie (1977, 2001, 2007) developed two kinds 
of methods for determining the probabilities of the possible changes 
in the states (here the numbers of uncompromised and compromised 
assets). The Stochastic Simulation Algorithm (SSA) fixes time 
steps and asks questions: (1) given the values of the state variables at 
time t, is there a change in them in the next dt units of time and (2) if 
there is change, which state changes and by how much? The key here 
is to choose dt sufficiently small that only one of the state variables 
changes, as is done in the derivation of the probability distribution 
for the Poisson process (Mangel 2006, pp. 95–100). The τ-Leaping 
Algorithm also asks two questions (1) given the current values of 
the state variables, what is the time τ to the next change of any of 
the state variables and (2) what is the probability distribution of the 
change in the state variables? In this case there can be changes in 
more than one state between t and t + τ . 

The SSA described is time-driven and the τ -Leaping Algorithm 
is event driven. The latter is particularly handy when one is more 
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interested in outcomes of interactions, such as the probability of suc-
cess in a stochastic competition (Mangel and Ludwig 1977) or the 
outcome of stochastic versions of the Lanchester equations for bat-
tle (Mangel 1979, McCue 2020). I have used τ -leaping in other work 
(Mangel and Bonsall 2008, Szekely et al. 2014); for our purposes 
the SSA is sufficiently speedy for computation (which is the great 
advantage of the τ -Leaping Algorithm) and, I believe, allows clearer 
understanding of the relationship between the ordinary differential 
equations and the stochastic processes of interest. 

4.2.1. The stochastic simulation algorithm 

In analogy to the PAM, we imagine a stochastic variables X(t) 
[uncompromised cyber assets] and X0(t) [compromised cyber assets] 
and continue to assume that the relative rate of attack I(t) is deter-
ministic with the same structure as before. From the right-hand sides 
of Eqns. (4.6) and (4.7), we recognize three sub-processes affecting 
the dynamics of the states 

• Compromise (either by attack or co-compromise) of an uncompro-
mised cyber asset. This event decreases X(t) by 1 (first two terms 
on the right-hand side of Eqn. (4.6)) and increases X0(t) by 1  (first  
two terms on the right-hand side of Eqn. (4.7)). 

• Return of a resetting cyber asset to the uncompromised state. In 
this case X(t) increases by 1 and X0(t) does not change (third 
term on the right-hand side of Eqn. (4.6)). 

• Removal of a compromised cyber asset to the resetting pool. (third 
term on the right-hand side of Eqn. (4.7)) in which case X(t) does  
not change and X0(t) decreases by 1. 

We assume that the time interval dt is so short that only one of these 
changes occurs. 

We let pchange(x, x0, dt) denote the probability that the system 
changes in the next dt units of time given X(t) =  x, X0(t) =  x0, 
where x and x0 are now generic values for the two random variables, 
not the solution of the ODEs. We assume that the probability of a 
change has an exponential distribution with rate parameter λ(x, x0) 
given by 

λ(x, x0) =  axI(t) +  acoxx0 + b(XT − x − x0) +  rxx0 (4.8) 
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That is, in the SSA the rate of the transition process is determined 
by summing the right hand sides of the ODEs motivating the model, 
treating every term as positive. The probability of no change is then 

−λ(x,x0)dt pnochange(x, x0, dt) =  e (4.9) 

If there is no change, X(t + dt) =  X(t) and  X0(t + dt) =  X0(t). 
The probability of change in the next dt units of time is 

−λ(x,x0)dt pchange(x, x0, dt) = 1  − e (4.10) 

and there are three possible transitions. Letting dX = X(t + dt) − 
X(t) and  dX0 = X0(t + dt) − X0(t) we can denote these transitions 
by 

T1 = {dX = −1, dX0 = 1} 
T2 = {dX = 1, dX0 = 0} 
T3 = {dX = 0, dX0 = −1} (4.11) 

Given that a change has occurred, we next assign probabilities pi 
to the transitions Ti for i = 1, 2, 3. With reference to the ODES in 
Eqns. (4.6) and (4.7), the rate of the transition T1 is R1 = axI(t) +  
acoxx0, of  T2 is R2 = b(XT − x − x0), and of T3 is R3 = rxx0. These  
rates sum to λ(x, x0), as they must because they capture all that 
could take place. We define the probability of the different transitions 
as the relative contributions of each of the transitions to λ(x, x0) 

axI(t) +  acoxx0 
p1(x, x0) =  

axI(t) +  acoxx0 + b(XT − x − x0) +  rxx0 

b(XT − x − x0) 
p2(x, x0) =  

axI(t) +  acoxx0 + b(XT − x − x0) +  rxx0 

rxx0 
p3(x, x0) =  (4.12)

axI(t) +  acoxx0 + b(XT − x − x0) +  rxx0 

With these definitions, we ensure that the sum of the pi(x, x0) is  1.  
When a change occurs, we use Eqns. (4.10)–(4.12) to determine 

which transition occurred; when it is transition i we have 

{X(t + dt),X0(t + dt)} = {X(t),X0(t)} + Ti (4.13) 

where we add the components of these vectors individually. 
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To determine which transition occurs and evolution of the stochas-
tic process {X(t),X0(t)},  we use  Monte Carlo  simulation.  

4.2.2. Why not stochastic differential equations?∗ 

More mathematically inclined readers may wonder why we are using 
a discrete time stochastic process instead of Stochastic Differential 
Equations (SDEs). It is a worthwhile question. That is, why not 
replace Eqns. (2.2) and (2.3) by 

dX = [−axI(t) − acoXX0 + b(XT − X − X0)]dt + σ1(X, X0)dB1 

dX0 = [aXI(t) +  acoX0 − rxX0]dt + σ2(X, X0)dB2 

where dB1 and dB2 are increments in standard Brownian motion 
and σ1(X, X0) and  σ2(X, X0) are the standard deviations attached 
to the Brownian increments. 

If you are not one of the more mathematically inclined readers but 
would like to know about standard Brownian motion, introductions 
are given in Mangel (1985) and Mangel (2006); a more advanced but 
accessible treatment is in Thygessen (2023). 

In brief, there are three reasons why SDEs are beyond the scope 
of this book: 

• Philosophical Which stochastic calculus is applicable? SDEs are 
generally interpreted following Ito or Stratonovich, depending 
upon how one views the correlation between increments in the 
dBi. But Krener (1979) showed that there are many more possible 
interpretations of the relevant stochastic calculus. 

• Mechanism We can be pretty certain that the σi are not constants, 
but depend upon the state variables, which is why I wrote them as 
σ1(X, X0) and  σ2(X, X0). One way to determine them is to return 
to the underlying birth and death process and use it to model 
the choice of the σi, as in the papers of Leslie and Gower (1958), 
Bartlett et al. (1960), Barnett (1962), and Mangel and Ludwig 
(1977). Thus, we would have to wrestle with these processes in 
order to make sense of the parametrization of the SDEs. 

• Mathematical complexity One advantage of the SDE approach is 
that it allows one to describe the probability density of uncom-
promised and compromised assets and recovery times in terms of 
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partial differential equations. For even the simplest problem that 
we study, these are at least three-dimensional (t, x, and  x0) par-
tial differential equations that require either approximate solutions 
(e.g. Mangel and Ludwig 1977) or tricky numerical schemes. Doing 
so is beyond the level of this book. 

If you are a lover of SDEs (as am I), these reasons are not meant 
to discourage you, but rather to encourage future work on stochastic 
version of the PAM and FMSCO, but we will stick with the discrete 
time stochastic process. 

4.2.3. Implementation of the stochastic simulation 

algorithm 

For numerical implementation, I use the same values for a, aco, b, rx 

and T as in Chapter 2. 
The first decision is to choose the time interval dt for use in 

Eqns. (4.10) and (4.13). That is, we divide the time interval of inter-
est [0,T ] into  N pieces, so that dt = T/N . Recall that when we 
solved the ODES in Chapter 2, we used the fourth order Runge Kutta 
numerical scheme included in the package deSolve. That scheme is 
fourth order, which means that the error in iterating from one time 
step to the next is o(dt4) (Abramowitz and Stegun 1965, p. 896). 
For the results in Chapter 2, I used dt = 0.05, so that the error 
was o(0.054) = 6.25 10−6 . However, Eqn. (4.13) – the iteration of 
the stochastic process – is like an Euler numerical scheme, so that 
it has error o(dt2). Clearly, the same choice of dt = 0.05 will not 
provide the accuracy we need for the stochastic simulation. But 
we need to remember that the smaller dt is, the longer the simu-
lation will take to run, so setting dt = 0.053 = 0.000125 may not 
be advisable, For the results in this section, I set dt = 0.00625 
and we will see that it is a sufficiently small time interval, in 
the sense that the mean of the stochastic trajectories matches the 
deterministic one. 

Here is pseudo-code to implement the SSA; 

• Step 1: Import the parameters from the ODEs used in Chapter 2, 
setting dt = 0.00625. This determines the time-like dimension of 
the stochastic process by setting N = T/dt. Set  the  number  of  

https://o(0.054)=6.25
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iterations of the simulation, S. For results shown in the next sec-
tion, I set S = 500. To ensure that the pulse attack has the new 
dimension N , recompute it with the new value of dt and let I[n] 
denote the relative intensity of the pulse at time step n. 

• Step 2: Dimension and initialize the stochastic process, using 
the subscript “sim” denote simulation variables. The simulated 
stochastic process has dimensions Xsim[S, N ] and  X0,sim[S, N ]. 
That is, Xsim[s, n] is the number of uncompromised assets in sim-
ulation s at time step n. Assuming that the initial condition is 
a fully uncompromised cyber system (as is appropriate for the 
pulse attack), for every s = 1, . . . , S  set Xsim[s, 1] = XT and 
X0,sim[s, 1] = 0. 

• Step 3: As the first check on the choice of dt, iterate forward 
assuming that the changes in the stochastic process always follow 
the mean changes of X(t) and  X0(t). Since this will be a deter-
ministic computation, we need to do it only once and I drop the 
variable s in this step. Thus we cycle from n = 1  to  n = N , use  
the notation EdX and EdX0 to denote the mean changes in X(t) 
and X0(t) and  write  

EdX = dt · (−aXsim[n] · X0,sim[n] − aco · Xsim[n] · X0,sim[n] 

+ b · (XT − Xsim[n] − X0,sim[n]) 

EdX0 = dt · (aXsim[n] · X0,sim[n] +  aco · Xsim[n] · X0,sim[n] 

− rxXsim[n]) 

Xsim[n + 1]  =  Xsim[n] +  EdX 

X0,sim[n + 1]  =  X0,sim[n] +  EdX0 

(when coding this step we replace · by ∗, but these are equations, 
not computer code, and good writing practice calls on us to use the 
dot rather than the asterisk). If we have done a good job choosing 
dt, the trajectories generated in this step should be close to the 
solution of the ODE. 

• Step 4: We are now ready to implement the full SSA. In a com-
puter code we cannot generally use mathematical symbols, so I will 
use text for symbols in the equations that are above. For exam-
ple, in both my code and pseudocode instead of using λ, I  write  
lambda. We cycle over simulations, i.e. from s = 1  to  s = S. For  
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each simulation, we cycle over time, i.e. from n = 1  to  N − 1. 
At each n we first compute the transition rate (Eqn. (4.8)) 

lambda = a · Xsim[s, n] · I[n] +  aco · Xsim[s, n] · X0,sim[s, n] 

+ b(XT − Xsim[s, n] − X0,sim[s, n]) + rx · X0,sim[s, n] 

and from this determine whether the values of the states change 
or not. Letting pnc denote the probability of no change, from 
Eqn. (4.10) we have 

pnc = exp(−lambda · dt) 

We now draw a random number uniformly distributed between 
0 and 1; let’s denote it by Z (e.g. the command in R is Z = 
runif(1, 0, 1)). If Z < pnc then no change occurs; go to Step 5. If 
Z >= pnc then a change occurs in the stochastic process; go to 
Step 6. 

• Step 5: Since no change occurs 

Xsim[s, n + 1]  =  Xsim[s, n] 

X0,sim[s, n + 1]  =  X0,sim[s, n] 

We then increment n to n + 1.  If  n + 1  < N , we  return to  Step  4  
in the same replicate of the simulation. If n + 1 =  N and s < S  
we increment s to s +  1 and  return to Step 4 in the  next  replicate  
of the simulation. If neither of these situations holds, we are done 
with the simulation and ready to visualize results (go to Step 7). 

• Step 6: We reach this step when a change occurs in the system, 
so need to determine which of the three transitions occurs using 
Eqn. (4.12) by setting 

a · Xsim[s, n] · I[n] +  aco · Xsim[s, n] · X0,sim[s, n] 
p1 = 

lambda 

b(XT − Xsim[s, n] − X0,sim[s, n]) 
p2 = 

lambda 

rxX0,sim[s, n] 
p3 = 

lambda 

Now draw another random number uniformly distributed between 
0 and 1, continuing to use the symbol Z, and with it determine 
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which of the transitions occur. If Z < p1 then transition 1 occurs 
so that 

Xsim[s, n + 1]  =  Xsim[s, n] − 1 

X0,sim[s, n + 1]  =  X0,sim[s, n] + 1  

If If Z ≥ p1 and Z < p1 + p2 then transition 2 occurs so that 

Xsim[s, n + 1]  =  Xsim[s, n] + 1  

X0,sim[s, n + 1]  =  X0,sim[s, n] 

Finally, if Z ≥ p1 + p2 then transition 3 occurs so that 

Xsim[s, n + 1]  =  Xsim[s, n] 

X0,sim[s, n + 1]  =  X0,sim[s, n] − 1 

As in Step 5, we then increment n to n +1.  If  n +1  < N , we  return  
to Step 4 in the same replicate of the simulation. If n +1  =  N and 
s < S  we increment s to s +  1 and  return to Step  4 in  the next  
replicate of the simulation. If neither of these situations hold, we 
are done with the simulation and ready to visualize results (go to 
Step 7). 

• Step 7: Our simulation is complete, and we are ready to visualize. 
I will not write pseudocode for that. 

4.3. Results for the Stochastic PAM 

Since qualitative behavior of the differential equations depends upon 
whether the co-compromise rate parameter aco exceeds the threshold 
for persistence r/XT of compromise or not, we consider the results 
in two sub-sections. In each case we explore the dynamics of com-
promise and the distribution of the minimum value of the number 
of uncompromised cyber assets, and recovery times when aco is less 
than r/XT or the quasi-steady state distribution of the number of 
compromised assets when aco is greater than r/XT . Before reading 
on, think a bit about what you expect might happen in the stochastic 
model. 
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4.3.1. aco is less than the threshold value for the 

persistence of compromise 

The upper panel in Figure 4.2, reproduces the results from Chap-
ter 2, using the ODE model, with the addition of the time at which 
the number of uncompromised assets return to 98% of XT (verti-
cal dotted line). As before the blue dotted line is the pulse attack, 
the black line is the number of uncompromised cyber assets and 
the red line is the number of compromised cyber assets. The middle 
panel shows the trajectory of uncompromised cyber assets (black), 
identical to the black trajectory in the upper panel) and the trajec-
tory of the conditional mean in the SSA (Step 3). In this panel, 
I have offset time by 1 unit because otherwise the curves sit on 
top of each other. The lower panel shows the first 10 trajectories 
of the SSA. All trajectories are identical before attack starts and 
long after attack ends because in this case compromise does not per-
sist (i.e. a single red line) but during attack there is variation in 
the number of uncompromised cyber assets. It is this variation that 
interests us. 

Two ways of capturing the variability in compromise and recovery 
are shown in Figure 4.3. In the upper panel, I show the distribution 
of the minimum number of uncompromised cyber assets, which varies 
from about 450 to about 550 with a peak around 500. That is, there 
is a 20% variation in the minimum number of uncompromised cyber 
assets simply due to natural fluctuations. 

In the lower panel, there is similar variation in the time to return 
to 0.98XT (i.e. a range from about 95 to 115 with a peak around 
100). In this case, the distribution is much less symmetrical than 
that for the number of uncompromised cyber assets. 

Remember that there is no difference in the underlying parame-
ters, so that all of the variation in Figure 4.3 is caused by fluctuations 
in the underlying birth and death processes. From this observation, 
we learn that one needs to careful in asserting that the trajectory 
with a minimum of 450 uncompromised cyber assets is more poorly 
defended than one with a minimum of 550 uncompromised cyber 
assets, or that recovery that takes until t = 115 is more poorly done 
than recovery that takes until t = 95. We should not let stochasticity 
mislead us. 
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Fig. 4.2. Upper panel: The dynamics of the ODE model from Chapter 2 [the 
vertical dotted line corresponds to the time at which the number of uncompro-
mised cyber assets reaches 0.98 XT ] when  aco is less than the threshold value 
for the persistence of compromise. Middle panel: the number of uncompromised 
cyber assets from the ODE model (black) and the conditional mean trajectory 
computed in Step 3 of the SSA (red) for the PAM [the trajectory from the ODEs 
is plotted at time corresponding to n + 1 so that the curves do not sit on top 
of each other]. Lower panel: the first 10 trajectories from the SSA for the PAM 
when aco is less than the threshold value in the lower panel. 
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Fig. 4.3. We compare the solution of the ODEs and the results of the SSA 
for the PAM when aco is less than the threshold value for the persistence of 
compromise by considering the distribution of the minimum value of the number 
of uncompromised cyber assets (upper panel) and the time to recover to 0.98XT 

(lower panel). The vertical dotted lines show the values obtained from the ODES. 

4.3.2. aco exceeds the threshold value for the 

persistence of compromise 

Figure 4.4 is the analogue of Figure 4.2 for the situation in 
which compromise persists. Here the dynamics are more interesting. 
For example, compare the middle panels of the two figures. In addi-
tion to the persistence of compromise the conditional mean trajectory 
computed in Step 3 of the SSA shows slow oscillations. 

Now compare the lower panels in Figures 4.2 and 4.4. In 
Figure 4.2, a long enough time after the attack ends, compromise 
has disappeared and all simulated trajectories converge. On the other 
hand, in Figure 4.4, because compromise persists, we continue to see 
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Fig. 4.4. The dynamics when aco exceeds the threshold value for the persistence 
of compromise in the PAM. Upper panel: ODE model from Chapter 2 (as before 
the pulse attack is shown in blue, uncompromised cyber assets in black, and 
compromised assets in red). Middle panel: the number of uncompromised cyber 
assets from the ODE model (black) and the conditional mean trajectory computed 
in Step 3 of the SSA (red) [in which the trajectory from the ODEs is plotted at 
time corresponding to n + 1 so that the curves do not sit on top of each other]. 
Lower panel: the first 10 trajectories from the remaining steps in the SSA for the 
PAM. 

fluctuations around the deterministic level of long term compromise. 
That is, in this case, the cyber system will not reach a steady state 
but continue to have properties that are “random-walk” like. In a 
beautiful (but mathematically sophisticated) paper, Parsons (2018) 
shows that this kind of behavior is expected when the original ODE 
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system has logistic-like properties, that is, beginning at small val-
ues, population numbers rise rapidly at first and then settle down to 
a steady state. If you are one of the more mathematically inclined 
readers, taking a look at Parsons’s paper is well worth it. 

Figure 4.5 is the analogue of Figure 4.3. The upper panel – 
concerning the minimum value of uncompromised cyber assets – tells 
the same story as the upper panel in Figure 4.3, but with more pro-
nounced effect: now the range is from about 300 to 400 uncompro-
mised cyber assets, with a peak around 350, so that the range is 
closer to 30%. 

We can no longer discuss recovery time, as in the lower panel in 
Figure 4.3, but we can discuss the distribution of uncompromised 
cyber assets at the terminal time T , which we can interpret as the 

Fig. 4.5. We compare the solution of the ODEs and the results of the SSA for 
the PAM when aco exceeds the threshold value for the persistence of compromise 
by considering the distribution of the minimum number of uncompromised cyber 
assets (upper panel) and the number of compromised cyber assets at the time 
horizon (lower panel). The vertical dotted lines show the values obtained from 
the ODES. 
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long-term distribution of uncompromised cyber assets. In this case, 
the range is more than 200 with a peak around 670 – again a range 
close to 30%. 

The main conclusion from these results is similar to the case in 
which aco is less than the threshold value: those managing the cyber 
systems that have the minimum number of compromised assets or 
the maximum number of uncompromised cyber assets at the termi-
nal time are not particularly “good” but rather lucky, just the way 
Napoleon wanted his generals. 

Potential project: To address the question of whether 
the slow oscillations are a result of the numerical scheme 
that will disappear for smaller values of dt or a property 
of the nonlinear conditional mean, code the SSA for the 
PAM and explore behavior for smaller values of dt. 

4.4. Stochastic Version of the FMSCO 

The stochastic version of the FMSCO proceeds in a similar way as 
in the previous section, so I skip some of the details and all of the 
pseudocode. 

We begin by writing Eqns. (3.1)–(3.4) in differential notation. 

dx = (−axy + b(XT − x − x0))dt + o(dt) (4.14) 

dx0 = (axy − rxx0)dt + o(dt) (4.15) 

dy = (−cxy + d(YT − y − y0))dt + o(dt) (4.16) 

dy0 = (cxy − ryy0)dt + o(dt) (4.17) 

Assuming that we have chosen the time interval dt properly, 
so that the probability of only one event between t and t + dt is 
very high, there are now six transitions to consider for the random 
process {X(t),X0(t), Y  (t), Y0(t)}. In analogy to Eqn. (4.8) we set 
λ(x, x0, y, y0) =  axy + b(XT −x −x0)+  rxx0 + cxy + d(YT − y − y0)+  
ryy0}, so that the six transitions and their probabilities are 

• T1={dX = −1, dX0 = 1, dY  = 0, dY0 = 0}, which occurs with 
probability axy/λ(x, x0, y, y0); 
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• T2={dX = 1, dX0 = 0, dY  = 0, dY0 = 0}, which occurs with 
probability b(XT − x− x0)/λ(x, x0, y, y0); 

• T3={dX = 0, dX0 = −1, dY  = 0, dY0 = 0}, which occurs with 
probability rxx0/λ(x, x0, y, y0); 

• T4={dX = 0, dX0 = 0, dY  = −1, dY0 = 1}, which occurs with 
probability cxy/λ(x, x0, y, y0); 

• T5={dX = 0, dX0 = 0, dY  = 1, dY0 = 0}, which occurs with 
probability d(YT − y − y0))/λ(x, x0, y, y0); and 

• T6={dX = 0, dX0 = 0, dY  = 0, dY0 = −1}, which occurs with 
probability ryy0/λ(x, x0, y, y0). 

There are now four random variables: Xsim[s, n], X0,sim[s, n], 
Ysim[s, n] and  Y0,sim[s, n]. The SSA generalizes readily (which one 
of its powers), so I do not repeat it here. Rather, let’s look at the 
results. For the results that follow, I used dt = 0.0015625. 

4.5. Results for the SSA Version of the FMSCO 

Our first check is to compare the conditional mean dynamics, the 
generalization of Step 3 of the SSA, with the solution of the ordi-
nary differential equations (Figure 4.6). These curves sit on top of 
each other when corrected for the offset of 1.0; the difference in the 
closeness of the curves in the left panels and right panels is due to 
the scale of the y-axes. 

The next step, which is also a check on the choice of the time 
increment dt, is to look at individual replicates of the SSA and the 
solution of the ODEs (Figure 4.7). In this case, we see that the repli-
cates surround the deterministic trajectories, and again the variation 
in the height of the fluctuations is due to the scale of the y-axes. 

The continued analogy with the previous section is a compari-
son of the steady state distributions of uncompromised cyber assets, 
approximated by the values of the stochastic variables close to the 
time horizon (Figure 4.8). In addition to the distributions, I show 
the steady state values of the ODEs as a vertical dotted line. 

In Figure 4.9, I show the correlation between uncompromised and 
compromised X-side and Y-side cyber assets (upper panels), uncom-
promised X-side and uncompromised Y-side cyber assets (lower left 
panel), and compromised X-side and compromised Y-side cyber 
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Fig. 4.6. As a check on the time step for the SSA version of the FMSCO, we compare the solution of the ODEs (black) 
and the conditional mean, generated in analogy to Step 3 of SSA (red, off set by +1.0 so that the two curves do not sit on 
each other for uncompromised X-side and Y-side cyber assets (left panels) and compromised X-side and Y-side cyber assets 
(right panels). Note the diff erence in the scales of the panels on the right (as well as those on the left). 
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Fig. 4.7. The fi rst 10 replicates of the SSA (diff erent colors) version of the FMSCO and the solution of the ODEs (white) 
for uncompromised (left panels) and compromised cyber assets (right panels). 
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Fig. 4.8. Steady state distributions, determined by the values of the stochastic variables close to the time horizon, of 
uncompromised (left panels) and compromised (right panels) cyber assets for the SSA version of the FMSCO. As with 
Figures 4.3 and 4.5, the vertical dotted lines are the steady state solution of the ODEs. 
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Fig. 4.9. The correlation between uncompromised and compromised X-side cyber assets (upper left panel), uncompromised 
and compromised Y-side cyber assets (upper right panel, uncompromised X-side and uncompromised Y-side cyber assets 
(lower left panel), and compromised X-side and compromised Y-side cyber assets (lower right panel) generated by the SSA 
version of the FMSCO. Since the number of cyber assets must take integer values, we see white spaces in these results. Such 
gaps should not be over interpreted. 
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assets (lower right panel) generated by the SSA version of the 
FMSCO. None of these results are particularly surprising, but they 
are comforting in confirming and quantifying our intuition. 

The lower left panel in Figure 4.9 suggests an interesting insight: 
that the knowledge by the X-side decision maker of the number of 
its uncompromised cyber assets says something about the number 
of uncompromised cyber assets held by the Y-side. Furthermore the 
rate of change of the uncompromised cyber assets held by the X-side 
tells a decision-maker something about the rate of change of uncom-
promised cyber assets on the Y-side. In the lower right panel the vir-
tually flat line through the points tells us that knowledge of the level 
of compromise of one’s own cyber assets tells little about the level of 
compromise of the opponent’s cyber assets (because we do not know 
the dynamics of the adversary’s resetting pool). 

Potential project: If we returned to the deterministic 
FMSCO, the analogue of the lower left panel in Figure 
4.9 would be a single line. Use Eqns. (2.2) and (2.3) to 
determine that line. 

4.6. Summary of Major Insights 

• The SSA allows us to move beyond the determinism implicit in 
ODE models of cyber systems. In particular, the SSA allows inter-
pretation of the ODE models in terms of the conditional mean for 
an underlying stochastic birth and death process. 

• A stochastic version of the PAM, operationalized by the SSA, pro-
duces distributions, rather than point estimates, of quantities such 
as the minimum number of uncompromised cyber assets, the time 
to recover to nearly all uncompromised cyber assets for the case in 
which the rate of co-compromise is below the threshold for persis-
tence of compromise, or the minimum number of uncompromised 
cyber assets and the number of uncompromised cyber assets in 
the steady state for the case in which the rate of co-compromise 
exceeds the threshold for persistence of compromise. 
• A stochastic version of the FMSCO, operationalized by the SSA, 

produces distributions for the steady state number of compromised 
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and uncompromised cyber assets for each adversary and correla-
tions between those values. 

• In the stochastic version of the FMSCO knowledge by the X-side 
decision maker of the number of its uncompromised cyber assets 
says something about the number of uncompromised cyber assets 
held by the Y-side. 

• Most importantly, for both the PAM and FMSCO using the SSA 
gives us a way to determine the range of variability due to fluctua-
tions in the random processes underlying cyber attack and recov-
ery. The SSA prevents us from misinterpreting variability as skill. 
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Chapter 5 

Extensions of the Pulse 
Attack Model 

Learning an equation “is a journey that takes places in three 
stages. We begin naively without knowing the equation. We are 
led. . . to  comprehend  it,  often  accompanied  by  dissatisfaction  
and frustration. Finally, the experience of learning it transforms 
the way we experience the world” 

– Crease (2008, p. 14) 

Whenever I have spoken about the population biology of disease 
and cyber security illustrated by the PAM and FMSCO of Chapters 
2 and 3, listeners have responded enthusiastically with their ideas 
about how to extend the basic models. I hope that you too have 
extensions in mind. There are many possible extensions of the PAM 
and FMSCO and although I only treat some of them, this and the 
next chapter are a considerable fraction of the book. 

In this chapter, we will consider at different levels of depth the 
following extensions of the PAM: 

• Multiple pulse attacks over time; 
• Including the perspective of the attacker, cognizant of the possi-

bility of escalation, when choosing the attack rate parameter a; 
• Including Cyber Protection Teams for restoring compromised 
assets, with associated delays in restoration; 

• Allowing cyber assets to return still vulnerable to attack or tem-
porarily hardened against attack; 

109 
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• Differentiation of cyber assets according to how critical they 
are to performance of the cyber system or the enabled physical 
system; 

• Attack leading to the loss of cyber assets because they are so 
severely damaged that they cannot be restored; 

• Resources can be allocated to reducing attack, detecting compro-
mise, or restoration; 

• Adaptation of the performance function. 

Each of these extensions leads to modification of either the equations 
for the dynamics of the cyber assets or the additional new equations. 
In each case, we consider motivation for the extension, modification 
of the model, and (in most of the cases) results. 

For convenience, I repeat the equations for the PAM and perfor-
mance of the cyber system or enabled physical system here: 

dx 
= − axI(t) − acoxx0 + b(XT − x − x0) (5.1) 

dt 

dx0 
= axI(t) +  acoxx0 − rxx0 (5.2)

dt 

1 
−(tpeak −t)2/2σ2 

I(t) =  √ e (5.3)
2πσ 

1 
φ(x) =  (5.4)

(x50 −x)/σx)1 +  e 

Recall the behavior of these equations: when aco is less than the 
threshold value for persistence of compromise, uncompromised cyber 
assets decline during the attack but ultimately all cyber assets return 
to a fully uncompromised state. When aco is greater than the thresh-
old value for the persistence of compromise, a positive fraction of the 
cyber assets remain compromised in the steady state. Unless other-
wise noted for computations, I set x50 = 400 and σx = 150 in the 
performance function. 

In a number of situations in this chapter, we have to explicitly 
track the number of cyber assets in the restoration pool, which we 
denote by xr(t). When cyber assets are neither destroyed nor added, 
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Eqns. (5.1) and (5.2) are equivalent to 

dx 

Summing these three equations shows that (x+x0 +xr) = 0,  which  

dt 
= − axI(t) − acoxx0 + bxr (5.5) 

dx0 

dt 
= axI(t) +  acoxx0 − rxx0 (5.6) 

dxr 

dt 
= rxx0 − bxr (5.7) 

d 
dt 

is equivalent to the assumption that the total number of cyber assets 
is constant, as in Eqns. (5.1) and (5.2). But when the total number 
of assets can change over time, we need to use Eqns. (5.5)–(5.7). 

5.1. Multiple Pulse Attacks Over Time 

The basic PAM of Chapter 2 has single pulse attack for simplicity of 
getting into the ideas and mathematical analysis. However, allowing 
multiple pulse attacks, as in Eqns. (1.2) and (1.3) and the lower panel 
in Figure 1.5 may sometimes provide higher fidelity to operational 
situations. 

In this case, the model for pulse attacks becomes 

dx 
= − axIT (t) − acoxx0 + b(XT − x − x0) (5.8) 

dt 

dx0 
= axIT (t) +  acoxx0 − rxx0, (5.9)

dt 

where 

J 
� 1 

−(tj −t)2 /2σ2 

IT (t) =  aj √ e j (5.10) 
j=1 

2πσj 

and tj , σj and aj are the time of the peak, the width, and the attack 
rate parameter of the jth pulse. 

A complicating factor here is choosing the parameters of the mul-
tiple pulses. This is a situation where simulation can allow one to 
explore many realizations of the paths of recovery during multiple 
pulse attacks. It is a nice open problem for you to explore. 
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Potential project: The simplest case of multiple attacks 
is the one in which there are two pulses. Even when aco is 
less than the threshold for the persistence of compromise, 
full recovery of the cyber system may not occur. Whether 
full recovery does occur or not will depend on the inten-
sity, dispersal parameters, and timing of the two peaks. 
Explore recovery of the cyber system and performance as 
a function of these parameters, and then see if you can 
generalize to more than two pulse attacks. 

5.2. The Attacker’s Perspective: Performance and the 

Probability of a Kinetic Response 

In Chapter 3, we considered the probability that one adversary in 
the FMSCO will initiate a kinetic response or an attack on civilian 
cyber infrastructure (Eqn. (3.6)). We can do the same with the PAM 
by asking how the defender responds to the pulse attack and thereby 
explore how the attacker could choose the attack rate parameter a. 

To do so, we sweep over values of a. We previously used a = 2.0; 
I will sweep over values of a ranging from 0.3 to 6.0. 

In Figure 5.1, I show the dynamics of the uncompromised cyber 
assets (left panels) and performance (right panels) for aco less than 
its threshold value (upper panels) or more than its threshold (lower 
panels). These results are similar to those in Chapter 2: the number 
of uncompromised cyber assets declines during the attack, and then 
either fully recovers or compromise persists according to the value 
of aco. Performance, because of its sigmoidal form, may not show the 
same level of decline. Indeed, for small values of a, performance when 
aco is less than the threshold value for the persistence of compromise 
barely drops at all. This effect can be seen clearly if we plot the 
minimum value of performance as a function of a, as in Figure 5.2. 

Why would the attacker choose a small value of a? One possibility 
is that the attacker wishes to intimidate, rather than really attack, 
by showing that the attacker can enter the defender’s cyber system. 
Another possibility is limiting the upper value of a is that in response 
to an attack that substantially degrades performance, the defender 
mounts a response that is either kinetic or a cyber attack on critical 
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Fig. 5.1. The dynamics of the uncompromised cyber assets in the PAM (left panels) and performance (right panels) for 
aco less than (upper panels) or greater (lower panels) than the threshold value for the persistence of compromise. 
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Fig. 5.2. Minimum performance of the cyber system or enabled physical system 
in the PAM as a function of the attack rate parameter a when aco is less than 
the threshold (solid line) or greater than the threshold (dotted line) value for the 
persistence of compromise. 

civilian infrastructure. We refer to either of these a response by the 
defender. 

5.2.1. Determining the response of the defender 

A simple way of determining whether the defender will respond or not 
is to assume that the defender decides on action only after the peak 
of the pulse attack occurred. When the attacker can estimate the 
threshold minimum performance corresponding to a response from 
the defender, we can simply draw a horizontal line Figure 5.2, see 
where it intersects the curve, and then draw a vertical line from 
that intersection to the x-axis to determine the limit on a so that 
the defender does not initiate a response. Determining this threshold 
value of minimum performance is a role for intelligence services and 
thus beyond the scope of this book. The assumption that the defender 
waits until performance has bottomed out may seem like a stretch, 
since it has the flavor of “Let’s see how bad it gets before we take 
action”, but is plausible for a defender who does not want to escalate 
the interaction. 
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Alternatively, once the attack begins the defender constantly mon-
itors performance and and at each time decides whether to respond 
or not. Thus, we envision a function pr(φ) giving the probability 
that the defender responds when performance is φ. It is likely that 
if performance exceeds a value φ1 associated with natural variation 
in the cyber system (sensu Mangel and Brown 2022) the probability 
of a response will be 0 and if performance is less than a value φ2 

the probability of response will be maximal, denoted by pmax, which  
need not be 1. The easiest way to connect the points (φ2, pmax) and  
(φ1, 0) is by a straight line (Figure 5.3). We will call this the hockey 
stick model for response to cyber attack, in analogy to the shape of 
a hockey stick (for a recent examples of use in fisheries management 
see Punt et al. 2014, Siple et al. 2018, Link et al. 2020). 

A little bit of algebra gives us the equation for the line between 
(φ2, pmax) and  (φ1, 0) 

⎧ 
⎪

pmax φ ≤ φ2 
⎪ 
⎪ 
⎨ pmax 

pr(φ) =  (φ1 − φ) if  φ2 < φ ≤ φ1 (5.11) 
⎪ φ1 − φ2 
⎪ 
⎪ 
⎩ 
0  if  φ > φ1 

One reason for choosing a line between (φ2, pmax) and  (φ1, 0) is 
that there is only one line between two points, the number of curves 

Fig. 5.3. The hockey stick model for response by the defender to a cyber attack 
(Eqn. (5.11)). In this case, the x-axis is performance, which ranges from 0 to 1, 
and the y-axis is the probability that the defender responds to the cyber attack. 
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between them is infinite. You may want to explore what happens if 
a curve is used instead of a line to join these points. 

When the defender constantly monitors performance and decides 
at each time whether or not to initiate a response, we ask “What 
is the probability, denoted by Pr(t), that the defender initiates a 
response at time t, given that a response has not be initiated yet?”. 
Since the defender is not the aggressor, we know that Pr(0) = 0. To 
compute its value for subsequent times, we once again take advan-
tage of the differential equations of the PAM producing solutions in 
discrete time. That is when T is the time horizon and dt is the time 
step, there are N = T/dt  values for the time variable and we let 
tn = n · dt denote the nth time, where n runs from 0 to N . 

As an attack proceeds, the defender can initiate a response only 
once (although once it is initiated all sorts of things might happen – 
we put that aside for now). The probability that a response is initi-
ated at time tn is the product of no response initiated before then, 
1 − Pr(tn−1) and a response initiated at time tn, which  is  pr(φ(tn)). 
We thus obtain the iteration equation 

Pr(tn) =  (1  − Pr(tn−1))pr(φ(x(tn))) (5.12) 

In Figure 5.4, I show the result of Eqn. (5.12) for the base case 
parameters of the PAM, when aco less than the threshold value for 
persistence of compromise. The upper left panel shows the reduction 
and recovery of performance during and after the pulse. The upper 
right panel shows the probability of a response as a function of time, 
determined from Eqn. (5.11) and the lower panel shows the probabil-
ity of response at time t given that the defender has not responded 
yet, determined from Eqn. (5.12). We see that pr(φ(t)) and Pr(t) 
have similar shapes. 

Using Figure 5.4 is a way of thinking along the temporal path. 
We can generalize the notion of thinking along the path in the fol-
lowing way. Each choice of the attack rate parameter a corresponds 
to a minimum level of performance, as in Figure 5.1, and of the 
maximum probability of a response by the defender, as in the lower 
panel of Figure 5.4. We can then sweep over values of a, and plot 
maximum probability of a response by the defender versus minimum 
performance of the defender’s cyber system or enabled physical sys-
tem, as in Figure 5.5. 
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Fig. 5.4. Illustration of the process for computing the probability of a response 
to the cyber attack, Eqn. (5.12), for the base case parameters of the PAM. The 
upper left panel shows performance of the cyber system or enabled physical sys-
tem as a function of time, with decline during the attack and recovery after the 
attack ends (because aco is less than the threshold value for the persistence of 
compromise). The upper right panel shows pr(φ(t)), computed from Eqn. (5.11) 
with pmax = 0.2, φ1 = 0.85, and φ2 = 0.50. The lower panel shows the probability 
that a response is initiated at time t, given that one has not been initiated until 
then, Pr(t), computed from Eqn. (5.12). 

This figure illustrates how the PAM can be used by the attacker 
in strategic considerations of the trade off between reduction in the 
performance of the defender’s system and the probability of escala-
tion by the defender. Although the attacker is unlikely to know the 
defender’s response function precisely, exploring different response 
functions and thresholds can support assessment of the robustness 
of a planned attack, or assess the value of investing in intelligence to 
determine the defender’s response function. 

5.3. Visits by a Cyber Protection Team is Required 

for Restoration 

In many operational situations special a Cyber Protection Team 
(CPT) needs to be called for restoring compromised assets, so that 
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Fig. 5.5. Upper panel: A sweep over values of the attack rate parameter a, 
allows us to characterize both minimum performance and the maximum proba-
bility of a response by the defender. The attacker can then use the plot in one of 
two ways. First, the attacker may set the target reduction in performance (lower 
left panel, with a target level of performance of 0.60), from there draw a vertical 
line until it intersects the the curve and a horizontal line from the intersection to 
the y-axis in order to determine the maximum probability of a response by the 
defender (here about 12.5%) Alternatively (lower right panel), the attacker may 
set an acceptable level for the probability of response by the defender (10% in this 
case), then draw a horizontal line until it intersects the curve and a vertical line 
from the point of intersection to the x-axis in order to determine the reduction 
in performance associated with the target level of probability of response (in this 
case performance drops to about 0.65). 

movement from the restoring pool to the uncompromised pool is 
time dependent. Two ways to think about modeling CPTs are these. 
First, the CPTs might have regularly scheduled visits to the location 
(physical or virtual) of the cyber system, in which case restoration 
occurs only at times when the team is visiting. We can capture this 
idea with a function C(t) that is 1 when the CPT is visiting and 0 
otherwise. We then replace Eqn. (5.1) by 

dx 
= − axI(t) − acoxx0 + b(XT − x − x0)C(t) (5.13) 

dt 



119 Extensions of the Pulse Attack Model 

Second, CPTs may be called to visit the cyber system only when 
the number of cyber assets requiring restoration crosses a threshold, 
i.e. when xr = XT − x − x0 > xth where xth is the threshold for 
the CPT to visit. We rearrange this condition as XT − xth > x(t) +  
x0(t) and  let  H(x, x0|xth) denote a function that is 1 when XT − 
xth > x(t) +  x0(t) and 0 otherwise, where the vertical bar separates 
the dynamical variables and the threshold for calling the CPT. The 
dynamics are then 

dx 
= − axI(t) − acoxx0 + b(XT − x − x0)H(x, x0|xth) (5.14) 

dt 

You might reasonably wonder if using Eqn. (5.14) should also include 
a delay, since we can expect that CPTs do not instantaneously appear 
once the threshold is crossed. I agree, and later in the chapter we will 
discuss modification of the equations for the PAM when delays occur. 
After that, you may want to return to this section and explore some 
of these ideas once more. 

Potential project: Develop models for the time depen-
dent function C(t) in Eqn. (5.13) and the threshold func-
tion H(x, x0|xth) in Eqn. (5.14). Then modify the basic 
PAM to explore the dynamics of the cyber system and 
performance. 

5.4. Cyber Assets Restored Still Vulnerable or 

Temporarily Hardened to Attack 

We now truly expand the PAM, in that we will move from two dif-
ferential equations to three differential equations, which does not 
sound like a big increase until one thinks of it as a 50% increase 
in the complexity of the model. In particular, we assume that when 
cyber assets are restored a fraction fh are hardened against cyber 
attack and thus have reduced vulnerability, in that the rate at which 
they become compromised is ρaI(t), where ρ <  1. The remaining 
fraction 1 − fh of restored assets are not hardened against attack. 

We assume that (i) hardened cyber assets lose their hardening 
at rate g, (ii) the rate at which hardened cyber assets return to 
operational status is less than the rate b at which vulnerable cyber 
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assets are returned to operational status, and (iii) the reduction in 
the rate of return to operational status depends on ρ. In  particular  in  
the dynamics for the hardened cyber assets, we replace b by ργ b, to  
capture how hardening a cyber asset slows its return to operational 
status. Here γ is a parameter that relates hardening with the rate of 
restoration. For example, if γ = 0, hardened cyber assets are restored 
at the same rate as vulnerable assets and when γ = 1, the reduction 
in the rate of restoration is the same as the reduction in the rate of 
attack. I encourage you to explore other choices of γ, thinking about 
the operational difference between γ <  1 and  γ >  1. 

Finally, we need to make a decision about the rate of 
co-compromise; I am going to assume that hardened and vulnera-
ble cyber assets are co-compromised at the same rate. If you prefer 
different assumptions than these, that is great – and I encourage you 
to code up the equations and explore them. 

The total number of uncompromised cyber assets, which still 
determines performance, is now x(t) =  xh(t) +  xv(t) where  xh(t) 
and xv(t) are the number of hardened and vulnerable uncompro-
mised cyber assets at time t respectively. The dynamics of the cyber 
assets are now 

dxh 
= − aρxhI(t) − acoxhx0 − gxh + fhρ

γ b(XT − xh − xv − x0)
dt 

(5.15) 

dxv 
= − axvI(t) − acoxvx0 + gxh + (1  − fh)b(XT − xh − xv − x0)

dt 
(5.16) 

dx0 
= aI(t)[ρxh + xv] +  aco(xh + xv)x0 − rxx0 (5.17)

dt 

Assuming that hardened and vulnerable cyber assets contributed 
equally to performance (see the next section for an alternative), we 
set xtot = xh + xv so that performance is 

1 
φ(x) =  (5.18)

(x50−xtot)/σx)1 +  e

As a check on the formulation, we set ρ = 1, in which case there 
is no difference between hardened and vulnerable cyber assets and 
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the dynamics of uncompromised cyber assets are obtained by adding 
Eqns. (5.15) and (5.16) 

d 
(xh + xv) =  − a(xh + xv)I(t) − aco(xh + xv)x0

dt 

+ b(XT − xh − xv − x0) (5.19) 

Setting x = xh + xv we obtain Eqn. (5.1). This kind of check on your 
analysis is always good to do, no matter how experienced you are. 
When ρ = 1, the PAM is now a three-dimensional dynamical system. 

For computations, I used the same parameters as in Chapter 2 for 
the basic PAM and appended the new parameters that capture the 
reduction in the rate of attack due to hardening ρ = 0.1, 0.25, 0.50 
or 0.75, the rate at which hardening is lost g = 0.001, γ = 1,  and  
the fraction of restored cyber assets that are hardened fh = 0.5. For 
the initial conditions, I assumed no compromise at t = 0  and  that  
hardened and vulnerable cyber assets were initially each 0.5XT . 

As before, we separate the numerical results according to the value 
of aco. We will focus on the dynamics of cyber assets rather than per-
formance, to explore the effects of hardening cyber assets on system 
dynamics. You might want to code the equations and explore the 
dynamics of performance. 

5.4.1. aco is less than the threshold value for the 

persistence of compromise 

In this case, we expect that following the attack, cyber assets will 
fully restore and compromise will be extinguished. In Figure 5.6, I 
show the dynamics of the assets for the four values of ρ. 

Because aco is less than the threshold value for persistence of 
compromise, after the attack ends the system recovers to a fully 
uncompromised state; this is captured in the gray line which sums 
xh(t) and  xv(t). Some other noteworthy features of Figure 5.6 are: 

• It is only when ρ <  0.5 (the two lower panels) that the decline 
of hardened cyber assets is noticeably slower than the decline of 
vulnerable cyber assets. 

• Because hardening is lost continuously in time and proportional to 
the number of hardened cyber assets (Eqn. (5.15)) the number of 
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Fig. 5.6. The dynamics of cyber assets for ρ = 0.75, 0.5, 0.25 or 0.1 (upper left, 
upper right, lower left, and lower right panels, respectively) when aco is less than 
the threshold value for the persistence of compromise.The pulse attack is shown as 
a blue line, vulnerable uncompromised cyber assets as solid black line, hardened 
uncompromised cyber assets as a dashed black line, total uncompromised cyber 
assets as a gray line, and compromised cyber assets as a red line. 

hardened cyber assets declines slightly even before the pulse attack 
starts. 

• For much the same reason, the number of hardened cyber assets 
slowly declines long after the attack. 

Potential project: These observations suggest modify-
ing Eqns. (5.15) and (5.16) to include regular upgrades of 
vulnerable cyber assets so that they are hardened, even 
in the absence of attack. How would the relevant equa-
tions change? In this case, it would also be worthwhile 
to explore how performance depends upon the rate of 
upgrading when there are multiple pulse attacks. 

5.4.2. aco is greater than the threshold value for the 

persistence of compromise 

In this case, following the attack compromise persists. In Figure 5.7, 
the gray lines showing the total number of uncompromised cyber 
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Fig. 5.7. The dynamics of cyber assets for ρ = 0.75, 0.5, 0.25, or 0.1 (upper 
left, upper right, lower left, and lower right panels, respectively) when aco is 
greater than the threshold value for the persistence of compromise. The pulse 
attack is shown as a blue line, vulnerable uncompromised cyber assets as solid 
black line, hardened uncompromised cyber assets as a dashed black line, total 
uncompromised cyber assets as a gray line, and compromised cyber assets as a 
red line. 

assets and the red line the number of compromised cyber assets as 
a function of time reach essentially similar steady state levels as ρ 
varies. 

When compared to the situation in which aco is less than the 
threshold value: 

• In this case, both vulnerable and hardened cyber assets reach 
steady states (as opposed to the previous case in which hardened 
cyber assets start to decline after the pulse attack ends). Since the 
co-compromise rate parameter is sufficiently high to ensure that 
there is a continual stream of compromised cyber assets, both hard-
ened and vulnerable cyber assets are returned from the resetting 
pool and thus reach a steady state. 
• At first it may appear non-intuitive that smaller values of ρ lead 

to lower steady states for the number of hardened cyber assets. 
I will leave this for you to explain, but offer the reminder that the 
rate of restoring hardened cyber assets is ρb. 
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5.5. Differentiation of Cyber Assets According to How 

Critical they are to Performance of the Cyber 

System or the Enabled Physical System 

In operational settings, it is generally true that some cyber assets are 
more critical to performance of the cyber system or the enabled 
physical system than other assets. In the simplest case, we imagine 
two kinds of cyber assets, now denoted by x1(t) and  x2(t), with 
contributions to the performance of the cyber system v1 and v2 > 
v1, respectively. If v1 = 0 those cyber assets contribute nothing to 
performance. Let us refer to cyber assets of type 1 as less critical or 
secondary, and of type 2 as critical. 

Performance when there are x1 and x2 of each kind of cyber asset 
is then 

1 
φ(x1, x2) =  (5.20)

x50−(v1x1+v2x2) 
σx1 +  e 

If we set v1 = v2 = 1 in Eqn. (5.20), we have the metric of perfor-
mance we used previously.  

We make these additional assumptions: 

• The contributions to performance of the two cyber assets are v1 = 
0.2 and  v2 = 1.0. For computations, I assume that the total number 
of cyber assets of each type are X1T = 800 and X2T = 200. 

• Cyber assets of type 1 reduce the attack rate on cyber assets of 
type 2. In particular, when the number of cyber assets of type 1 is 
x1 the attack rate on cyber assets of the second kind is e−δx1 aI(t), 
where  >  0 is a parameter. I chose   by assuming that when cyber 
assets of type 1 are at their maximum X1T , the rate of attack on 
the second kind of assets is reduced to 20% of its maximum value, 

−δX1Ti.e. that e = 0.2. 
• There is no difference between the two kinds of cyber assets in the 

rates of attack or discovery of compromise, but critical cyber assets 
take longer to restore, in the sense that the rate of restoration of 
critical assets is ρb, where  ρ <  1 has a different meaning than in 
the previous section. 

• In addition to the possibility of co-compromise, in which compro-
mised cyber assets of type i compromise cyber assets of type i at 
rates aco1 and aco2 , there may be cross co-compromise, in which 
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Fig. 5.8. When some cyber assets are more critical for performance of the cyber 
system or enabled physical system, performance depends upon the numbers of 
less critical cyber assets x1 and more critical cyber assets x2. Here  σx = 100 and 
x50 = 200, 300, 400, or 500 (upper left, upper right, lower left, and lower right 
panels, respectively). Note the difference in the numerical scales of the heat maps, 
which is not reflected in the colors. 

compromised cyber assets of type i compromise operational cyber 
assets of type j = i. We denote these rate parameters by aco12 and 
aco21 , respectively. 

In Figure 5.8, I show the performance function, Eqn. (5.20), for 
σx = 100 and four values of x50. These heat maps are in accord with 
our intuition: performance is highest when the numbers of assets are 
closest to their maximum values, and the regions of high performance 
shrink as x50 increases. 

To warm up for the next section, I write the dynamics for the 
cyber assets using extensions of Eqns. (5.5)–(5.7). The notation 
extends in a natural way, so that now x1(t) and  x2(t) are  the num-
bers of uncompromised cyber assets of each type at time t, x10(t) and  
x20(t) are the numbers of compromised cyber assets of each type at 
time t, x1r(t) and  x2r(t) are the numbers of cyber assets of each type 
in the restoring pools at time t, and  rx1 and rx2 are the rates at which 
compromised cyber assets of each type are moved to the restoring 
pool. The dynamics of the two kinds of cyber assets are then 
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Secondary assets: 

dx1 
= − ax1I(t) − x1(aco1 x10 + aco21 x20) +  bx1r (5.21)

dt 

dx10 
= aI(t)x1 + x1(aco1 x10 + aco21 x20) − rx1x10 (5.22)

dt 

dx1r 
= rx1x10 − bx1r (5.23)

dt 

Critical assets: 

dx2 
= − ae −δx1 x2I(t) − x2(aco2 x20 + aco12 x10) +  ρbx2r (5.24)

dt 

dx20 
= ae −δx1 x2I(t) +  x2(aco2 x20 + aco12 x10) − rx2x20 (5.25)

dt 

dx2r 
= rx2x20 − ρbx2r (5.26)

dt 

I will leave the check of the logic to you, that is to determine the 
conditions in which these equations collapse to Eqns. (5.1) and (5.2). 

When solving Eqns. (5.21)–(5.26), I set the cross co-compromise 
rate parameters equal to 0, i.e. aco21 = aco12 = 0. I then tried to 
match the other parameters with those in Chapter 2, i.e. X1T = 
800,X2T = 200 (so that there the total number of cyber assets is 
1000), a = 0.2, b  = 0.2 and  rx1 = rx2 = 0.2 so that the rates of attack, 
restoration of cyber assets of type 1, and movement of compromised 
cyber assets to the restoration pool are the same as before. I set 
ρ = 0.5 and    = 0.002. To determine the co-compromise rate param-
eters, I set thresholds for co-compromise to be aco1thr 

= rx1/X1T 

and aco2thr 
= rx2/X2T , which would be the threshold levels of the 

co-compromise rate parameters if we only had cyber assets of type 1 
or type 2. I continue to refer to these as the threshold values for 
the persistence of compromise and set co-compromise rate parame-
ters to be 0.5 or 1.5 times the values of the thresholds. We will only 
explore consequences when the co-compromise rate parameters are 
either both below or both above these threshold values; I leave the 
other cases to you. 

The newest concepts in Eqns. (5.21)–(5.26) are  , the protec-
tion of critical cyber assets provided by secondary cyber assets, and 
ρ, the reduction (relative to secondary cyber assets) in the rate of 
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restoration of critical cyber assets. The best situation for the cyber 
system is that both   and ρ are high – the secondary cyber assets 
provide more protection for larger values of   (Eqn. (5.24)) and crit-
ical cyber assets are restored to operational status with larger values 
of ρ (although we require ρ ≤ 1). Note that the steady states of 
Eqns. (5.21)–(5.23) are independent of both   and ρ, and the steady 
states of Eqns. (5.24)–(5.26) are independent of  . We will focus on 
minimum performance during the pulse attack. 

We will sweep over values of   and ρ and examine performance of 
the cyber system or enabled physical system. I let ρ range from 0.1 
(critical cyber assets require roughly an order of magnitude longer 
to be restored than secondary assets) to 1.0 (critical cyber assets are 
restored at the same rate as secondary cyber assets) and   range 
from 6.412 · 10−5 to 3.745 · 10−3 so that the rate of attack when 
secondary cyber assets were at their maximum ranged between 5% 
and 95% of the rate of attack if there were no protection provided 
by the secondary cyber assets. 

5.5.1. Dynamics of cyber assets, performance, and 

tradeoffs when the co-compromise rate 

parameters are less than the threshold values 

for the persistence of compromise and there is 

no cross co-compromise 

In Figure 5.9, I show the dynamics of cyber assets (upper panels) and 
performance (lower panels) for the four values of x50 in Figure 5.8, 
both as absolute values (left panels) and relative values (right 
panels). 

In the upper panels, the solid lines correspond to secondary cyber 
assets and the dotted lines to critical cyber assets; black lines are 
uncompromised cyber assets and red lines are compromised assets. 
The dotted blue line is the pulse. The role of secondary cyber assets 
in reducing the rate of attack on critical cyber assets is made clear 
by considering the relative numbers of each kind of cyber asset, i.e. 
x1(t)/X1T and x2(t)/X2T , as in the upper right panel. The decline 
of critical cyber assets lags that of secondary assets. 

The pattern of decline and recovery of performance in the lower 
left panel, where the pulse is a faint gray line, as a function of 
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Fig. 5.9. The dynamics of the numbers of cyber assets (upper left panel) and 
performance (lower left panel) and their relative values (right panels) when the 
co-compromise rate parameters are less than the thresholds for the persistence of 
compromise. In the upper panels, the solid lines correspond to secondary cyber 
assets and the dotted lines to critical cyber assets; black lines are uncompromised 
cyber assets and red lines are compromised cyber assets. The dotted blue line is 
the pulse. The role of secondary cyber assets in reducing the rate of attack on 
critical cyber assets is made clear by considering the relative numbers of each kind 
of cyber asset, i.e. x1(t)/X1T and x2(t)/X2T , as in the upper right panel. The 
decline of critical cyber assets lags that of secondary assets. The pattern of decline 
and recovery of performance in the lower left panel, where the pulse is a faint gray 
line, as a function of x50 is consistent with Figure 5.8. When we consider relative 
performance (lower right panel), we see that there is an interaction between the 
value of x50 and the minimum value of relative performance, which could not be 
anticipated. 

x50 is consistent with our intuition from Figure 5.8. When we con-
sider relative performance (lower right panel), we see that there is 
an interaction between the value of x50 and the minimum value of 
relative performance, which could not be anticipated (or maybe it 
could – what is your intuition?). 

In Figure 5.10, I show minimum performance of the cyber sys-
tem or enabled physical system for the four values of x50 in the 
performance function. Some aspects of the figure are easily explained. 
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Fig. 5.10. Minimum performance of the cyber system or enabled physical sys-
tem for the co-compromise rate parameters less than the thresholds for the per-
sistence of compromise, as we sweep over values of δ and ρ in Eqns. (5.21)–(5.26) 
for σx = 100 and x50 = 200, 300, 400, or 500 (upper left, right, lower left, and 
lower right panels, respectively) in the performance function in Eqn. (5.20). Note 
the difference in the scales. 

For example, the lower left corner – where   and ρ are the smallest – 
shows the worst performance, and the upper right corner shows the 
best performance. The four panels are qualitatively similar (although 
there is a shrinking of the best performance region as x50 increases, 
but the quantitative metrics (i.e. the scale of the heat map) differ 
considerably – by almost an order of magnitude as x50 increases 
from 200 to 500. This is not surprising in light of the performance 
function Eqn. (5.20), but it does raise an interesting question: How 
would this figure change if we scaled minimum performance by 
initial performance, φ(X1T ,X2T )? I leave this question for you to 
answer. 

Potential project: As we discussed in Chapter 2, even 
if there is a full recovery of the cyber system and perfor-
mance following the pulse attack, the rate at which recov-
ery occurs – resilience – may vary with parameters. How 
does resilience vary with   and ρ? Before computation, 
think about the problem and make qualitative predictions. 



130 Fighting the Virus: How Disease Modeling Can Enhance Cybersecurity 

5.5.2. Dynamics of cyber assets, performance, and 

tradeoffs when the co-compromise rate 

parameters are greater than the threshold 

values for the persistence of compromise and 

there is no cross co-compromise 

Figure 5.11 is the analogue of Figure 5.9. As expected, neither cyber 
assets nor performance fully recover following the end of the pulse 
attack. Somewhat surprising (to me at least) is that critical cyber 
assets and performance show a small transient during recovery (best 
seen in the right panels). 

Figure 5.12 is the analogue of Figure 5.10. The qualitative and 
quantitative patterns are similar to when the co-compromise rate 
parameters are smaller than the threshold values for the persistence 
of compromise. The quantitative values are smaller than in the pre-
vious case because once the attack starts the number of uncompro-
mised cyber assets is reduced by both external attack and internal 
co-compromise, with the associated effect on performance. 

Fig. 5.11. The analogue of Figure 5.9 when the co-compromise rate parameters 
are greater than the thresholds for the persistence of compromise. 
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Fig. 5.12. The analogue of Figure 5.10 when the co-compromise rate parame-
ters are greater than the thresholds for the persistence of compromise. 

These figures raise the question: in a world of limited resources, 
how do we pick the “best” (or at least good) values of   and ρ? We  
will explore a simpler version of this of this question subsequently in 
this chapter. Before that, however, we explore what happens when 
some cyber assets may be destroyed during the pulse attack. 

Potential project: Even without cross co-compromise, 
the parameter space could be expanded simply by choos-
ing one of aco1 or aco2 to be larger than the threshold 
for the persistence of compromise and the other less than 
the threshold for the persistence of compromise. When we 
allow for cross co-compromise, we need to choose aco21 and 
aco12 as well. Intuition suggests that a good starting point 
has them less than the co-compromise rate parameters, 
but there is still a lot of work to be done here! 

5.6. Cyber Assets may be Permanently Destroyed 

During Attack 

Until now, we assumed that cyber assets are neither added nor 
removed from the cyber system, which allowed us to write the 
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number of assets in the resetting/restoring pool at time t as xr(t) =  
XT − x(t) − x0(t). 

We now relax that assumption, and allow a fraction fd of cyber 
assets to be destroyed during the pulse attack. Such assets are collo-
quially said to be “bricked”, because the attack turns a computer or 
other cyber device into nothing more than a brick. Thus, the total 
number of cyber assets varies over time, and we have to treat the 
size of the restoring pool explicitly, as in Eqns. (5.5)–(5.7). 

We continue to use a sigmoidal performance function, but in this 
case keep x50 constant and vary σx in Eqn. (5.4). In Figure 5.13, 
I show four possible sigmoids, in which σx ranges from 50 to 300. 
When x50 = 50 there is great redundancy in the system – the num-
ber of uncompromised cyber assets can fall to less than 600 before 
performance begins to drop. On the other hand, when x50 = 300 per-
formance smoothly declines (in a nearly linear fashion). Note that if 
σx is sufficiently large the performance of the cyber system or the 
enabled physical system is positive even when there are no uncom-
promised cyber assets. This is more likely to occur with a physical 
system that has backup technology than an only cyber system with a 
physical backup (e.g. a cyber communications system that also has a 
stand alone radio as a backup). We can envision measuring the per-
formance function by conducting operational experiments and there 
are reasons to expect a range of values of σx, which is why we will 
consider the range of values here. 

Fig. 5.13. Four sigmoidal performance functions with the same value x50 = 
300 but different values of the dispersion parameter σx (denoted by σx in the 
caption). 
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When cyber assets are destroyed during an attack, even if aco is 
less than the threshold for co-compromise, the number of uncompro-
mised cyber assets and performance will no longer return to their 
values at the start of the attack because the number of remain-
ing uncompromised cyber assets will be smaller than the original 
number. 

5.6.1. The disease analogy 

The analogy of cyber assets being destroyed during an attack is like 
individuals dying in the SIR or SIRS models. In disease modeling, we 
often also include reproduction and mortality from the disease. For 
example, if only susceptible individuals reproduce and only infected 
individuals die, the SIRS equations become 

dS 
= rS(t) − βI(t)S(t) +  γR(t)

dt 

dI 
= βI(t)S(t) − (µ + m)I(t)

dt 

dR 
= µI(t) − γR(t)

dt 

The new terms on the right sides of these equations are rS(t) in  the  
equation for the rate of change of susceptible individuals and mI(t) 
for infected individuals. Both parameters r and m are positive: r is 
the per-capita (per-individual) birth rate in the population and m is 
the per-capita rate of mortality from the disease. Since µ + m ≥ µ 
more individuals leave the infected pool than move to the recovery 
pool. 

How would you modify these equations if individuals – regardless 
of their disease status – were subject to additional, non disease-
related mortality? If individuals, regardless of disease status 
reproduced? 

5.6.2. The consequences of cyber assets being 

destroyed during the pulse attack 

When a fraction fd of cyber assets are destroyed during the pulse 
attack, we replace Eqn. (5.6) by dx0 = ax(1 − fd)I(t) +  acoxx0 −dt 
rxx0. We now have to decide what happens when cyber assets are 
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destroyed. Three possibilities of increasing complexity are 

• Destroyed cyber assets are not replaced, so that the total number 
of cyber assets declines in time. In this case, we are interested in 
the interaction between fd and σx. 

• Destroyed cyber assets are replaced from an at-hand pool of 
uncompromised assets, whose size at time t is denoted by xp(t), 
with initial size XP . Since the replacement cyber assets are 
at-hand, we assume that replacement of destroyed cyber assets 
is virtually instantaneous. In this case, there will be interaction 
between fd, XP , and  σx. 

• Destroyed cyber assets are replaced from a pool of uncompromised 
assets that is physically remote from the focal cyber system so that 
there is a time delay τ in replacing the destroyed cyber assets. 
We will assume that the remote pool is sufficiently large that we 
can ignore the possibility of its exhaustion. Now the interaction 
of interest is between fd, τ , and  σx. Furthermore, we now have to 
deal with an entirely new kind of model – a differential equation 
with a delay.  

For computations, I set aco less than the threshold for persistence 
of compromise, because we know that in this case if no assets were 
destroyed during the cyber attack, cyber assets and performance 
will return to their values before the attack started. For illustra-
tive dynamics, I use fd = 0.1, and for sweeps over the fraction of 
cyber assets destroyed let fd range from 0.01 to 0.3 in increments 
of 0.01. 

Possible project: Repeat the calculations we are about 
to do for the situation in which aco exceeds the threshold 
for the persistence of compromise. 

5.6.3. Destroyed cyber assets are not replaced 

When destroyed cyber assets are not replaced, we replace Eqns. 
(5.5)–(5.7) by 

dx 
= − axI(t) − acoxx0 + bxr (5.27)

dt 
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dx0 
= ax(1 − fd)I(t) +  acoxx0 − rxx0 (5.28)

dt 

dxr 
= rxx0 − bxr (5.29)

dt 

In Figure 5.14, I show the dynamics of cyber assets and per-
formance. We track uncompromised cyber assets x(t), compromised 
cyber assets x0(t), restoring cyber assets xr(t) and their total xtot, 
which will be less than XT because of the destroyed cyber assets. 
The steady state number of cyber assets (all of which are uncompro-
mised) is about 880 for fd = 0.1. This suggests a rule of thumb such 

Fig. 5.14. Dynamics of cyber assets (upper panel) and performance (lower 
panel) during a pulse attack with aco less than its threshold value for the persis-
tence of compromise and fd = 0.1, so that 10% of the compromised cyber assets 
are destroyed as a result of attack. We now track uncompromised x(t), compro-
mised x0(t), and restoring cyber assets xr(t) and their total xtot, which will be 
less than XT because of the destroyed cyber assets. 
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as “after the attack the fraction of remaining assets is about 1 − fd”. 
We can explore this rule of thumb by sweeping over values of fd. 

Regarding performance (the lower panel of Figure 5.14): σx = 50  
or 100 leads to a small or modest reduction in performance during the 
pulse attack but a full or nearly full recovery of performance (even 
though there is a reduction in the total number of cyber assets) 
long after the attack ends, while σx = 200 or 300 leads ultimately 
to recovery of uncompromised cyber assets but at a lower number 
than their initial number, so that performance does not fully recover 
(especially for σx = 300). 

A sweep over fd shows us that both minimum perfor-
mance (Figure 5.15, upper panel) and steady state performance 
(Figure 5.15, lower panel) decline as fd increases. For both minimum 

Fig. 5.15. Minimum (upper panel) and steady state performance (lower panel) 
as the probability that a cyber asset is destroyed in the attack fd ranges from 
0.01 to 0.3. 
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and steady state performance, we see slight nonlinearities in the 
decline (more so for steady state than minimum performance). Also 
note that as fd increases, there is separation of recovery in the steady 
state, in that for large values of fd, recovery of performance is still 
complete for σx = 50 but is not for σx = 100. 

Potential project: Code the relevant extension of the 
PAM and sweep over values of σx, for example from σx = 
50 to 400 in steps of 25 or 50, and then make heat maps of 
minimum and steady state performance with fd and σx. 

5.6.4. Destroyed cyber assets are replaced 

instantaneously from an on-hand reserve pool 

When destroyed cyber assets are replaced from an on-hand pool of 
reserve uncompromised cyber assets, we append the contribution of 
the replacement pool to Eqn. (5.27), taking into account that the 
pool can be exhausted (i.e. it is possible to have a replacement pool 
with 0 cyber  assets  in  it) so that we have  

dx 

dt 
= − axI(t) − acoxx0 + bxr +min(xp, axfdI(t)) (5.30) 

dx0 

dt 
= ax(1 − fd)I(t) +  acoxx0 − rxx0 (5.31) 

dxr 

dt 
= rxx0 − bxr (5.32) 

dxp 

dt 
= − axfdI(t), with the requirement that xp(t) ≥ 0 (5.33) 

In order to choose the initial size for the pool, XP , let us consider 
the dynamics of cyber assets that are destroyed during the attack. 
Denoting them by xd(t), we have xd(0) = 0 because no cyber assets 
are destroyed before the pulse attack starts and 

dxd 
= axfdI(t) (5.34) 

dt 

t
which has the solution xd(t) =  fd 0 ax(s)I(s)ds. We again treat the 
integral as the sum of small increments. Using the same notation as 
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previously, we let tn = n · dt, where  n runs from 0 to N = T/dt, and  
we can write simple iteration equation for xd(t). Namely, xd(0) = 0 
and xd(tn) =  xd(tn−1) +  ax(tn)fdI(tn)dt (which is a discrete form of 
the differential equation Eqn. (5.34)). 

When we solve Eqn. (5.34) for a single value of fd, we  obtain  
the trajectory of the cyber assets destroyed during the pulse attack 
(upper panel of Figure 5.16); if we sweep over values of fd, the  values  
of xd(T ) are the cumulative number of destroyed cyber assets (lower 
panel of Figure 5.16). In the lower panel, there is a nearly linear 

Fig. 5.16. Upper panel: Choosing a single value of fd (here 0.1) allows us to 
follow the trajectory of uncompromised cyber assets that are destroyed during 
the attack. Lower panel: Sweeping over values of fd and plotting xd(T ) as  a  
function of fd allows us to see the wider relationship between the probability of 
destruction of an uncompromised cyber asset and the cumulative number of cyber 
assets destroyed during the attack. 
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relationship between xd(T ) and  fd over the entire range of fd; we  
could expect that because Eqn. (5.34) is linear in fd. Fitting a line 
that goes through the origin (when fd = 0 no assets are destroyed 
during the attack) the upper point in the lower panel, gives xd(T ) =  
1150fd. These results suggest that XP around 900–1200 times fd will 
likely give further insights into the consequences of destruction of 
cyber assets. To begin, we consider the dynamics of the cyber assets 
(Figure 5.17). The most relevant trajectory is the one corresponding 
to the pool (xp(t), shown in gold). Here, we see that when the initial 
pool size is too small, the pool exhausts before the attack has ended 
(Xp = 180, 200, or 220) and that when the pool is sufficiently large 
(Xp = 240) the pool stays positive, but is almost exhausted, during 
the attack. Very large values of Xp lead to cyber assets remaining 
in the pool after the attack ends. In this figure, we also see that the 
steady state number of uncompromised cyber assets is less than XT 

when the pool exhausts but XT when the pool does not exhaust. 
In Figure 5.18, I show performance when fd = 0.2, the disper-

sal parameter varies from 50 to 300 in increments of about 2.5, and 
the size of the replacement pool varies XP varies from 150 to 250. 
I also show the contours for which performance is 0.95, 0.85, and 
0.75. When XP is sufficiently large, the contours are essentially 
vertical lines, which we understand to mean that with sufficiently 

Fig. 5.17. The dynamics of uncompromised (black), compromised (red), and 
cyber assets in the pool of uncompromised replacement cyber assets (gold) for 
pool sizes of 180, 200, 220, and 240 cyber assets (upper left, right; lower left, 
right, respectively) when fd = 0.2. 
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Fig. 5.18. Steady state performance when fd = 0.2, the dispersal parameter in 
the performance function varies from 50 to 300, and initial size of the replacement 
pool varies from 150 to 250 cyber assets. The contours for which performance is 
0.95, 0.85, and 0.75 are the white lines, moving from left to right. 

large reserve pools performance will only depend upon the dispersal 
parameter in the performance function. As XP becomes smaller – 
corresponding to possible exhaustion of the replacement pool – the 
contours of performance bend to the left, which we understand to 
mean a more knife edge performance function is needed to maintain 
the same level of performance by keeping the exponents in Eqn. (5.4) 
positive. 

This figure begs the question: is it possible to make the dispersal 
parameter smaller, and thus performance larger for the same number 
of cyber assets; we will return to this question in the last section of 
the chapter. 

Potential project: Conduct a sweep over fd and XP and 
examine how the minimum and steady state numbers of 
uncompromised cyber assets, and minimum and steady 
state performance depend upon fd and XP . Then think 
about how you would incorporate a cost of maintaining 
the pool. 

5.6.5. Destroyed cyber assets are replaced from a 

storage facility, leading to a delay 

We now assume that there is a lag τ between the time that a cyber 
asset is destroyed and replaced so that at time t uncompromised 
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cyber assets are increased at rate bxr(t) from the restoring pool and 
at rate ax(t − τ)fdI(t − τ) from the replacement pool. Hence the 
dynamics of cyber assets are 

dx 
= − ax(t)I(t) − acox(t)x0(t) +  bxr(t) +  ax(t − τ)fdI(t − τ)

dt 
(5.35) 

dx0 
= ax(t)(1 − fd)I(t) +  acox(t)x0(t) − rxx0(t) (5.36) 

dt 

dxr 
= rxx0(t) − bxr(t) (5.37) 

dt 

Because Eqn. (5.35) involves the current time t and the previous 
time t − τ at which compromised cyber assets were destroyed, the 
time dependence of the state variables is explicit on the right sides 
of these equations. We now have a differential delay equation. Such 
equations often occur in population biology (MacDonald 1989) and, 
we now see that they naturally arise in the study of cyber system vari-
ability. One property of differential-delay equations is that delays can 
introduce oscillations in systems that will otherwise not have them. 
We will briefly explore that idea here and in more detail in the next 
chapter. 

When aco is less than the threshold value for the persistence of 
compromise, as in Figure 5.19, we expect the extinction of compro-
mise so that all cyber assets are uncompromised in the steady state. 
As the delay in replacing destroyed cyber assets increases, the number 
of uncompromised cyber assets (solid black line) falls further below 
the number of uncompromised cyber assets when none are destroyed 
(dotted black line). I leave it to you to either imagine or compute 
the differences in performance, but note that recovery is complete. 
Although I have not shown them here, as τ declines the dotted and 
solid black trajectories become closer and closer. Whether a delay of 
30–90 time units is operationally sensible is not a question that we 
can answer in the abstract, but spurs thinking about the location of 
the replacement pool relative to the focal cyber system. 

When aco is greater than the threshold for persistence of com-
promise, as in Figure 5.20, in the steady state the same level of 
uncompromised and compromised cyber assets is reached, regardless 
of the value of the delay. Note however, (i) that the distance between 
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Fig. 5.19. The dynamics of cyber assets during a pulse attack in which aco is 
less than the threshold for the persistence of compromise after the attack, 10% 
of assets are destroyed during the attack and have to be replaced from a pool 
that is 30, 60, or 90 time units away (upper panel, lower left, and lower right 
panels, respectively). The pulse is shown as a thin dotted line, the dynamics 
of uncompromised cyber assets in the absence of destruction as a black dotted 
line, the number of uncompromised, compromised, and total cyber assets as solid 
black, red, and gray lines, respectively. 

the dotted and solid black lines is less than in Figure 5.19 (why is 
that – think about the role of aco), and (ii) after the pulse attack 
ends, the solid black line oscillates around the dotted black line. One 
interpretation is that co-compromise is more dominant than destruc-
tion of uncompromised cyber assets. This conclusion will depend 
on the values of aco and fd and would be an interesting sensitivity 
study. 

We can understand oscillations in terms of the processes of 
destruction and compromise of cyber assets: cyber assets that are 
destroyed during the pulse attack are replaced at the same rate at 
which they are destroyed but unlike the previous situation, when aco 

is less than the threshold for the persistence of compromise, some 
of the replacement cyber assets are co-compromised after they enter 
the cyber system. This leads to the number of uncompromised cyber 
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Fig. 5.20. The dynamics of cyber assets during a pulse attack in which aco is 
greater than the threshold for the persistence of compromise, 10% of assets are 
destroyed during the attack and have to be replaced from a pool that is 30, 60, 
or 90 time units away (upper, middle and lower panels, respectively). The pulse 
is shown as a thin dotted line, the dynamics of uncompromised cyber assets in 
the absence of destruction as a black dashed line, the number of uncompromised, 
compromised, and total cyber assets as solid black, red, and gray lines, respec-
tively. The left panels can be compared to the three panels in the previous figure. 
The right panels show expanded time and number scales to give a better sense of 
the oscillations. 

assets when destruction occurs to be temporarily greater than the 
number in the absence of destruction of cyber assets during the 
attack. Ultimately, all cyber assets are replaced so that the gray 
lines in Figure 5.20 approach the initial number of uncompromised 
cyber assets, but now there is a mixture of compromised and uncom-
promised assets in the steady state. 
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Potential project: The oscillations in Figure 5.20 are 
relatively small compared to the steady state value, so 
we might just think of them as some kind of unexplained 
“noise”, but to paraphrase Nero Wolfe, in a world of cause 
and effect all explanations attributed to noise should be 
approached carefully. Code this model, and explore how 
other choices of parameter values affect the size of the 
oscillations. 

5.7. Allocation of Resources to Defense, Detection of 

Compromise, and Restoration from Compromise, 

Under a Constraint on Total Resources 

In Chapter 2, we considered a design tradeoff between the rate of 
detection of compromise rx and the rate resetting b of compromised 
cyber assets to the uncompromised state. In this section, we expand 
on the design tradeoffs on restoring and attack rate parameters from 
Chapter 2 to think about how to design cyber systems that are Flex-
ible, Adaptive, and Robust (FAR). 

Previously, we envisioned resource allocation to be captured in 
the parameters b and rx of Eqns. (5.1) and (5.2), and explored the 
situation in which their sum was constrained to be a constant. We 
now expand the resource space to include a resource c that can be 
used to reduce the rate of compromise during attack. In particular, 

axI(t)we assume that the rate of attack is now 1+γc , where  γ is a param-
eter chosen so that c has the same units as b and rx. We assume 
that resources are constrained in the sense that cbb+ crrx + ccc ≤ R, 
where R is the limit on resources and cb, cr, and cc are the unit costs 
of the relevant parameters b, rx, c  respectively. As before, for simplic-
ity these costs are all set to 1 (I leave alternatives for you to explore). 

For example, suppose that we are thinking about how to construct 
a Cyber Protection Team. We can allocate people and equipment to 
(i) reduce the rate of attack (c), (ii) detect compromised cyber assets 
and move them to the  restoring pool  (rx), or (iii) restore compro-
mised assets to operational status (b). How does performance depend 
on our choice of allocation, given the resource constraint? 

We could approach this as an optimization problem, asking for 
the optimal allocations of resources. Such a problem can be solved 
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by the method of dynamic programming (e.g. Dixit and Pindyck 
1994, Bertsekas 1995, Mangel 2015) in its deterministic or stochastic 
versions, depending upon which dynamics we assume for the cyber 
system, or approximate dynamic programming (Powell 2011, Hackett 
and Bonsall 2018, 2019). 

However, in order to assess the flexibility, adaptive nature, and 
robustness of allocation decisions, we want more than points that 
correspond to the optimal allocations. To do so, we need to more 
fully explore the relationships between performance and allocations. 
We continue to use the performance functions in Figure 5.13. 

When we include resource allocation to reduce the rate of com-
promise, Eqns. (5.1) and (5.2) become 

dx axI(t) 
= − − acoxx0 + b(XT − x − x0) (5.38) 

dt 1 +  γc 

dx0 axI(t) 
= + acoxx0 − rxx0 (5.39)

dt 1 +  γc 

For the numerical exploration, I let c range from 0 to 0.95R in 
25 steps. (As an exercise: can you explain why it is sensible to set 
c = 0 but not sensible to set c = R?) I then considered 9 splits of the 
remaining resources, R− c, to  b and rx, letting the ratio b : rx range 
from 10%:90% to 90%:10%, i.e. b was a fraction 0.1, 0.2, . . . ,  0.9 of  the  
remaining resources and rx the rest. I set γ = 50 for computations. 

In the following results, I show line graphs of the minimum and 
quasi-steady state values of x(t) (y-axis) as a function of the fraction 
of resources allocated to reducing the rate of compromise (x-axis), 
c/R, and color code the lines for the split of R between b and rx. 
I show the minimum and quasi-steady state values of x(t) using  
heat maps in which the y-axis is the fraction of resources allocated 
to defense, c/R and the x-axis is the percentage of the remaining 
resources, R− c, allocated to restoring (i.e. b). 

5.7.1. aco less than the base case threshold for the 

persistence of compromise 

In Figure 5.21, I show the minimum and quasi-steady states of the 
number of uncompromised cyber assets. For both minimum and 
steady state values, there is a broad range of values of c for which the 
minimum or quasi-steady state is approximately constant as long as 
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Fig. 5.21. Upper panel: The minimum number of uncompromised cyber assets 
x(t), when aco is less than the base case threshold for the persistence of compro-
mise, as a function of the fraction of resources allocated to reducing the rate of 
compromise by external attack c/R for the nine different allocations of the remain-
ing resources R− c to b and rx. Lower panel: The quasi-steady state number of 
uncompromised cyber assets x(t), when aco is less than the base case threshold 
for the persistence of compromise as a function of the fraction of resources allo-
cated to reducing the rate of compromise due to external attack c/R for the nine 
different allocations of the remaining resources R− c to b and rx. 

b does not get too big. For fixed c, as the allocation of the remaining 
resources R− c towards b increases, both minimum and steady state 
values of the number of uncompromised resources decline, which we 
can interpret as investing too much in restoring from compromise 
and not enough in detection of compromise. The declines of all the 
curves as c/R approaches the maximum value of 0.95. Is this con-
sistent with your answer to the question I posed above on the range 
of c? 
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Fig. 5.22. Upper panel: The minimum number of uncompromised cyber assets, 
when aco is less than the base case threshold value for the persistence of compro-
mise as a function of the fraction of resources allocated to reducing the rate of 
compromise c/R for the 9 different allocations of the remaining resources R−c to 
b and rx. The white line shows the contour of 600 uncompromised cyber assets. 
Lower panel: The quasi-steady state number of uncompromised cyber assets and 
the contour of 950 uncompromised cyber assets. Note the difference in the scales 
of the two maps. 

In Figure 5.22, I use a heat map to illustrate the same ideas, as 
well as contours for minimal and quasi-steady state numbers of cyber 
assets. Once again we see the very broad and flat regions of minimal 
and steady state numbers of uncompromised resources. Clearly, there 
is an optimal combination of parameters that maximizes both the 
minimum number and the steady state number of uncompromised 
cyber assets, but the “very good” number region is broad and wide. 

In Figures 5.23 and 5.24, I show the minimum and quasi-steady 
state performance for the four values of the dispersal parameter σ 
in the performance function, and contours of 80% minimum perfor-
mance, and 90% steady state performance. 
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Fig. 5.23. Minimum performance for σ = 50, 100, 200, and 300 (upper left, upper right, lower left, and lower right panels, 
respectively), when aco is less than the base case threshold for the persistence of compromise, as a function of the fraction of 
resources allocated to reducing the rate of compromise c/R for the nine different allocations of the remaining resources R− c 
to b and rx, with the contour line showing 80% performance. Note the diff erence in the scales of the upper and lower heat 
maps. 
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Fig. 5.24. Quasi-steady state performance for σ = 50, 100, 200, and 300 (upper left, upper right, lower left, and lower right 
panels, respectively), when aco is less than the base case threshold for the persistence of compromise, as a function of the 
fraction of resources allocated to reducing the rate of compromise c/R for the nine different allocations of the remaining 
resources R− c to b and rx, with the contour line showing 90% performance. Note the diff erence in the scales of the upper 
and lower heat maps. 
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We again see very broad regions of good performance – both at 
the minimum and the steady state – but we also to be careful when 
thinking about generalizing. When σ = 50, as in the upper left hand 
panels of Figures 5.23 and 5.24 performance is high because the num-
ber of cyber assets never falls below the midpoint (x50 = 300) of the 
performance function. Clearly the story would change with a differ-
ent midpoint value (a good sensitivity analysis for you to do). At the 
other limit, when σx = 300, the contour of 90% steady state per-
formance makes clear which combinations of parameters will deliver 
good performance and which will fail to do so. 

When aco is less than the threshold for persistence of compromise, 
compromise will be extinguished and the system will recover to a 
fully uncompromised steady state. This suggests that we consider 
how the recovery time, which I will define to be the time to reach 
0.97XT depends on the parameters. But there is a subtlety: The 
threshold value for compromise is acothr 

= rx/XT and as we sweep 
over allocations to b and rx when aco is fixed it may exceed rx/XT , 
leading to persistence of compromise. Thus, we expect that there will 
be parameter combinations in which recovery does not occur. 

As shown in Figure 5.25 there is a large region of the plane where 
recovery does not occur at all, because the allocations to c and b mean 
that aco, which is fixed, exceeds rx/XT and that compromise persists. 
To emphasize this point, in Figure 5.26, I show the trajectories of 

Fig. 5.25. Recovery time as a function of the fraction of resources allocated 
to reducing the rate of compromise c/R for the nine different allocations of the 
remaining resources R − c to b and rx, with the contour line showing 90% per-
formance. The broad brown region at t = 300 corresponds to reaching the time 
horizon without any recovery. 
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Fig. 5.26. Trajectories of the number of uncompromised cyber assets during 
and after the pulse attack, for allocation to defense c = 0.095, 0.21, 0.33, or 0.45 
when R = 0.6 for all nine splits between b and rx. Even for the smallest value of 
c, the 90% (to b)-10% (to rx) split of resources leads to persistence of compromise 
after the pulse ends, for reasons discussed in the text. This holds true even when 
c = 0.  

x(t) as the allocation to c is about 15.8%, 35.6%, 55.0%, or 80% 
of R. Even  when  c is small (or even 0, as it was in Chapter 2), an 
allocation of resources that is too heavily weighted to restoration (b) 
leads to the persistence of compromise. As the allocation of resources 
to reducing the rate of compromise increases, the constraints on the 
b : rx allocation become more restrictive. 

We conclude that the seemingly good idea of using resources to 
reduce the rate of compromise requires concomitant attention to the 
allocations of resources to the detection of compromise and restora-
tion of compromised resources. 

5.7.2. aco greater than the base case threshold for the 

persistence of compromise 

When aco is greater than the base case threshold value for the per-
sistence of compromise, we expect that the effects described in the 
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Fig. 5.27. The comparison figure for Figure 5.21 when aco exceeds the base 
case value for the persistence of compromise. 

previous section will be amplified. We find 

• Line graphs of the minimum and steady state numbers of uncom-
promised cyber assets (Figure 5.27) have narrower regions of high 
numbers of uncompromised cyber assets. 

• Heat maps of the minimum and quasi-steady state numbers of 
uncompromised cyber assets (Figure 5.28) have more constricted 
regions of a high number of uncompromised cyber assets. 
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Fig. 5.28. The comparison figure for Figure 5.22 when aco exceeds the base 
case threshold for the persistence of compromise. 

• Heat maps of minimum performance (Figure 5.29) have a much 
more constrained regions of acceptable performance, and the con-
tours shrinks more rapidly than when aco is less than the base case 
threshold for the persistence of compromise. 

• Heat maps of quasi-steady state performance (Figure 5.30) show 
similar shrinkage of the contour of acceptable steady state perfor-
mance. 

Potential project: These summary points may make you 
think of the constraint surface in three dimensions: b, c, 
and rx. If you like making three-dimensional graphs, give 
it a try! 
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Fig. 5.29. The comparison figure for Figure 5.23 when aco exceeds the base case threshold for the persistence of compromise. 
Note the diff erence in the scales. 
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Fig. 5.30. The comparison figure for Figure 5.24 when aco exceeds the base case threshold for the persistence of compromise. 
Note the diff erence in the scales. 
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5.8. Adaptation of the Performance Function 

In the resilience stack (Figure 1.4), adaptation of the cyber system is 
the deepest level of resilience. Throughout this book, we conducted 
various sensitivity analyses of performance by varying the parame-
ters x50 and σx of the performance function. For example, in this 
chapter for sensitivity analyses we used four values for σx, but we 
kept x50 constant throughout, recognizing that many of the quan-
titative results would change with a different value of x50 (which is 
why I suggested it as another worthwhile sensitivity analysis). 

Potential project: Keeping the sigmoidal form in Eqn. 
(5.4), envision an adaptation in which σx and are 
resources and that adaptation involves them changing 
within a resource constraint. The constraint equation now 
becomes cbb+crrx +ccc+cx50 x50 +cσx σx ≤ R. Explore  the  
dynamics of cyber assets and performance and character-
ize the broad tradeoffs in this five-dimensional parameter 
space. Then imagine the cyber system has experienced a 
pulse attack and afterwards the performance function is 
to be adapted. How would you do this? 

x50 

5.9. Summary of Major Insights 

The PAM is intended as heuristic tool that has much in common 
with many systems but is not intended to model any specific system. 
The extensions of the PAM show the power of such an approach 
for developing understanding and quantitative predictions in cyber 
systems: 

• The equations of the PAM generalize when there are multiple pulse 
attacks over time. In such a case, one needs to specify the times of 
the peak, dispersal parameter, and rate parameter of each of the 
attacks. Even when aco is less than the threshold for the persistence 
of co-compromise, the cyber system may not recover fully and 
whether it does or not depends upon the timing and intensity of 
the pulses. 
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• By including the probability that the defender initiates either a 
kinetic attack or a cyber attack on critical civilian infrastruc-
ture, the attacker can use the PAM to determine the attack rate 
parameter a that is consistent with a targeted reduction in per-
formance of the defender’s cyber system or enabled physical sys-
tem but below a threshold value for the probability that the 
defender responds with a kinetic attack or attack on critical civil-
ian infrastructure. The PAM thus becomes a planning tool for the 
attacker. 

• When a CPTs is required for restoration of compromised cyber 
assets, another time dependency is introduced into the equations 
for the PAM. Regardless of whether the CPTs visit on a regular 
schedule or according to threshold number of compromised assets, 
the PAM generalizes directly, and should stimulate research by the 
defenders about the operation and effectiveness of CPTs. 

• A straightforward extension of the PAM allows us to consider sit-
uations in which cyber assets that are restored to uncompromised 
status can be temporarily hardened to cyber attack, losing that 
defense over time. None of the qualitative conclusions based on 
the basic PAM, particularly concerning the role of the threshold 
level of co-compromise for the persistence of compromise in the 
steady state, change. 

• A straightforward extension of the PAM allows us to consider sit-
uations in which assets are divided into those critical for the per-
formance of the cyber system or the enabled physical system and 
those that have secondary roles, such as reducing the rate of attack 
on the critical cyber assets. In this case the number of differen-
tial equations in the model expands because we must track the 
dynamics of the two kinds of cyber assets. This extension allows 
us to study the role of protection of critical assets by secondary 
cyber assets. In particular, we can explore how performance of the 
cyber system or enabled physical system is shaped by the param-
eters characterizing the protection provided by secondary cyber 
assets and the rate at which critical cyber assets are returned to 
operational status. 

• When cyber assets may be destroyed during an attack, the total 
number of cyber assets is no longer constant and we must make 
an assumption about the way destroyed cyber assets are replaced 
(or not). When destroyed cyber assets are not replaced so that the 
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total number of cyber assets declines, the parameters of the perfor-
mance function interact with the probability of destruction of an 
cyber asset during attack to determine how much steady state per-
formance is degraded by the loss of cyber assets. When destroyed 
cyber assets are replaced from an on-hand pool of uncompromised 
cyber assets, the extension of the PAM allows us to determine the 
size of the reserve pool to maintain a sufficient level of perfor-
mance. When destroyed cyber assets are replaced from an off-site 
pool of uncompromised cyber assets, a delay (the time for uncom-
promised replacement cyber assets to reach the cyber system) is 
introduced into the equations for the PAM. Such a delay can lead 
to oscillations into the dynamics of uncompromised cyber assets 
long after the pulse attack has ended. 

• To design cyber systems that are Flexible, Adaptive, and Robust 
we can envision the parameters of the PAM, particularly the rates 
at which resetting cyber assets are returned to uncompromised 
states and at which compromised cyber assets are moved from 
the compromised pool to the resetting pool, as design parameters 
with a total resource constraint. Furthermore, we can add a third 
resource whose role is to reduce the rate of external attack. These 
considerations lead to a straightforward extension of the PAM. 
Although optimization of steady state dynamics or performance is 
clearly possible, sweeping over parameter values shows the optima 
for the number of cyber assets in the steady and performance and 
that a broad range of values that are close to optimum. That is, 
the surfaces characterizing the minimum and steady state levels of 
performance are relatively flat around the peak. The surfaces are 
broader when rate of co-compromise is less than the threshold for 
the persistence of co-compromise. 
• Ultimately, one may choose to adapt the performance function in 

response to or anticipation of cyber attack. In this case the param-
eters of the performance function can be combined with those char-
acterizing the dynamics of the cyber system to allow analysis of 
the tradeoff between the dynamics of the cyber system and per-
formance of the cyber system or the enabled physical system. 



Chapter 6 

Extensions of the Fundamental 
Model of Simultaneous Cyber 

Operations 

[One could] . . . think of the rain of cyberattacks like rain itself, 
something that cannot be stopped by any conceivable means but 
the damage from which can be reduced. Coming inside when 
it rains, covering what may be damaged if it gets wet, fixing 
holes, as well as building soundly and away from floodplains 
all can convert what could be a disaster into something merely 
annoying . . .Rain has to be endured. It is foolish not to spend a 
dollar to prevent ten dollars’ worth of damage (over the lifetime 
of such an investment); it is equally foolish to spend ten dollars 
to save a dollar’s worth of damage. The trick, therefore, is to 
find the lowest-cost approach to dealing with what cannot be 
entirely avoided 

– Libicki (2016, p. 81) 

Because most of the extensions of the FMSCO that we consider are 
relatively straightforward, the level of detail in this chapter is less 
than in the previous chapter. By the time we have reached the end 
of this chapter, we will have developed and gone beyond the model 
that is the starting point in Mangel and McEver (2021). 

As we go forward, there will be times in which we add additional 
pools of cyber assets; I will sometimes show the appropriate modifi-
cation of Figure 3.1 and other times leave it to you to sketch it. 
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Our starting point is the equations of the basic FMSCO 

dx 
= − axy + b(XT − x − x0) (6.1) 

dt 

dx0 
= axy − rxx0 (6.2)

dt 

dy 
= − cxy + d(YT − y − y0) (6.3) 

dt 

dy0 
= cxy − ryy0 (6.4)

dt 

with each adversary having a sigmoidal performance function, 
denoted by φx(x) and  φy(y), respectively. We will assume that oper-
ations commence with all cyber assets of both sides uncompromised. 

We consider: 

• Including co-compromise in Eqns. (6.1)–(6.4). 
• Allowing a fraction restored cyber assets to be hardened to cyber 
attack, becoming more vulnerable over time. This is in direct anal-
ogy to Eqns. (5.15)–(5.17) and increases the number of equations 
in the model. 

• Requiring that each adversary needs to commit some of its own 
cyber assets to holding the opponent’s assets in a compromised 
state. That is, even if an adversary can block the ultimate goal 
of an attack, if the attacker commits its cyber assets to maintain 
compromise of its opponent’s cyber assets that are not the pri-
mary target but are linked to it, an attack can continue. Buchanan 
(2018 p. 45) gives the example of an attack on the US Chamber 
of Commerce (USCC) in which the FBI helped the remove intrud-
ers from the network, but months later it was discovered that a 
smart thermostat and a wireless printer in one of the USCC facil-
ities were still communicating with computers in China. In the 
language of population biology, the smart thermostat and wire-
less printer were refuges (Gause 1934/2019) for compromise. This 
extension also expands the number of equations characterizing 
simultaneous cyber operations. When an adversary’s own cyber 
assets are used to hold the compromised cyber assets of the oppo-
nent, we can consider this to be a “latent cyber risk”, in that 
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the adversary already has access to the opponent’s cyber system 
(Danzig 2014). 

• Including delays in moving compromised cyber assets to the restor-
ing pool or from the restoring pool to the uncompromised pool. 
As in the previous chapter, delays may induce oscillations and 
the question becomes “how big must those delays be in order to 
noticeably affect the dynamics of the cyber system?” 

There is always more that one can do. For example, we could add 
decoy cyber assets that appear to be high value but in fact have no 
effect on performance. Such decoys can assist in detection of compro-
mise (Mangel and McEver 2021) and lead to the adversary misusing 
its cyber assets. 

6.1. Including Co-compromise 

We include co-compromise in Eqns. (6.1)–(6.4) exactly as in the 
PAM. Thus, we let aco and cco denote the co-compromise rate param-
eters used to characterize the rate X-side and Y-side cyber assets 
cause their own uncompromised cyber assets to become compromised 
and have 

dx 
= − axy − acoxx0 + b(XT − x − x0) (6.5) 

dt 

dx0 
= axy + acoxx0 − rxx0 (6.6)

dt 

dy 
= − cxy − ccoyy0 + d(YT − y − y0) (6.7) 

dt 

dy0 
= cxy + ccoyy0 − ryy0 (6.8)

dt 

We expect that including co-compromise will lead to lower values 
of the numbers of uncompromised cyber assets, which is something 
that you should confirm either numerically or analytically. 

Furthermore, the ideas that we developed about resilience follow-
ing the end of the pulse attack apply here if we imagine that at 
some point the Y-side ends the cyber attack on the X-side, so the 
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Eqns. (6.5) and (6.6) become 

dx 
= − acoxx0 + b(XT − x − x0)

dt 

dx0 
= acoxx0 − rxx0

dt 
I have not numbered these equations because they correspond exactly 
to the PAM following an attack. 

6.2. Cyber Assets are Restored Hardened to Attack 

(and Lose Hardening Over Time) or Still Vulnerable 

to Attack 

In this case, we generalize Eqns. (5.15)–(5.17) to the FMSCO 

dxh 
= −aρxxh(yh + yv) − acoxhx0 − gxxh

dt 

+ fxhb(XT − xh − xv − x0) (6.9) 

dxv 
= −axv(yh + yv) − acoxvx0 + gxxh

dt 

+ (1  − fxh)b(XT − xh − xv − x0) (6.10) 

dx0 
= aI(ρxxh + xv)(yh + yv) +  aco(xh + xv)x0 − rxx0 (6.11)

dt 
� � 

1 
φx(xh, xv) =  (6.12)

x50 −(xh+xv) 

σx1 +  e 

dyh 
= −cρyyh(xh + xv) − ccoyhy0 − gyyh + fyhd(YT − yh − yv − y0)

dt 
(6.13) 

dyv 
= −cyv(xh + xv) − ccoyvy0 + gyyh

dt 

+ (1  − fyh)d(XT − yh − yv − y0) (6.14) 

dy0 
= cI(ρyh + yv)(xh + xv) +  cco(yh + yv)y0 − ryy0 (6.15)

dt 
� � 

1 
φy(yh, yv) =  (6.16)

y50−(yh+yv) 

σy1 +  e 
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There is nothing conceptually or computationally difficult with this 
extension even though it doubles the number of equations. Visualiza-
tion of results is more complicated because of the additional dynamic 
variables; I leave this to you. 

6.3. Cyber Assets are Required to Hold the Adversary 

in a Compromised State 

We now assume that when the X-side is successful at compromis-
ing the Y-sides’s cyber assets, the X-side must commit ηx of its 
own cyber assets per Y-side cyber asset to continue to hold the the 
Y-side cyber assets in a compromised state. Similarly, the Y-side 
commits ηy of its assets per compromised X-side asset. We thus add 
two new dynamic variables xc(t) and  yc(t), which are, respectively, 
the numbers of the X-side and Y-side cyber assets committed at 
time t to holding the opponent’s cyber assets in a compromised 
state. For each adversary, uncompromised cyber assets are then 
of two types: a pool of uncompromised cyber assets that can be 
used for attack and performance, and a pool of uncompromised 
cyber assets that is committed to holding the opponent’s assets 
(Figure 6.1). 

Including the committed pool means that successful compromise 
of Y-side cyber assets by the X-side causes a decline in X-side cyber 
assets at rate ηxcxy. In addition, when Y-side cyber assets move 
from the compromised pool to the recovery pool, there is a concomi-
tant increase in X-side cyber assets at rate ηxryy0. Similar reasoning 
applies to Y-side assets. 

We need to make an additional decision about what happens to 
cyber assets that are being used to hold the adversary in compromise 
when the adversary escapes from compromise. 

We will assume that when the adversary escapes compromise, 
the cyber assets that were holding the compromise return to the 
uncompromised pool. An interesting alternative, which I leave for 
you to explore, is that the committed cyber assets are returned to 
the compromised pool (i.e. the adversary both escapes compromise 
and compromises the assets that were holding it). 

Excluding co-compromise, we append dynamics for the commit-
ted assets to Eqns. (6.1)–(6.4) and obtain a new six-dimensional 
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Fig. 6.1. When each adversary uses some of its own cyber assets to hold com-
promise on the other side, the pool of uncompromised cyber assets is composed 
of a sub-pool that is available for attack and a sub-pool that is uncompromised 
but not available for attack because it is holding the opponent’s cyber assets. 
To reduce clutter in the figure, I have not shown the rates of compromise, co-
compromise, movement from the compromised to recovery pool, or from the recov-
ery pool to the uncompromised pool. 

dynamical system 

dx 
= − axy − ηxcxy + b(XT − x − xc − x0) +  ηxryy0

dt 
(6.17) 

dxc 
= ηxcxy − ηxryy0 = ηx(cxy − ryy0)

dt 
(6.18) 

dx0 
= axy − rxx0

dt 
(6.19) 

dy 
= − cxy − ηyaxy + d(YT − y − yc − y0) +  ηyrxx0

dt 
(6.20) 

dyc 
= ηy(axy − rxx0)

dt 
(6.21) 

dy0 
= cxy − ryy0

dt 
(6.22) 
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Note that if we set ηx = ηy = 0 and understand that xc(0) = 
yc(0) = 0, Eqns. (6.17)–(6.22) reduce to Eqns. (6.1)–(6.4). 

For computations, I used the base case parameters for FMSCO, 
set ηx = ηy = 1 and assumed that for the X-side performance func-
tion x50 = 14  and  σx = 4 and for the Y-side performance function 
y50 = 65  and  σy = 15. 

In Figure 6.2, I show the dynamics of uncompromised and com-
promised cyber assets in the basic FMSCO on the left panels. I also 
show their totals xtot(t) =  x(t) +  x0(t) and  ytot(t) =  y(t) +  y0(t). 
As in Chapter 3, the totals are less than XT or YT because cyber 
operations are continuous. In the right panels, I show the dynamics 

Fig. 6.2. Illustrating the effect of having to commit cyber assets to hold com-
promise in the adversary when ηx = ηy = 1. The upper panels correspond to the 
X-side cyber assets and the lower panels to the Y-side cyber assets. On the left 
I show the dynamics of uncompromised cyber assets, compromised cyber assets 
and their totals (x, x0, xtot) and  (y, y0, ytot) respectively in lower panels) for the 
basic FMSCO. On the right, I show the dynamics when cyber assets (xc and yc, 
respectively) are required for holding compromise of the adversary’s cyber assets. 
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of uncompromised, compromised, and committed cyber assets and 
their totals when cyber assets are required to hold compromise in 
the adversary’s assets. 

The totals xtot(t) =  x(t) +  x0(t) +  xc(t) < XT and ytot(t) =  
y(t) +  y0(t) +  yc(t) < YT but note that these totals may be higher 
than the total for the FMSCO without this extension. This happens 
because uncompromised cyber assets are freed up when the adver-
sary’s cyber assets escape compromise, so holding compromise is in 
some sense a kind of refuge. Note that because we are including com-
promised cyber assets in the total, this conclusion would hold even 
if we assumed that when the adversary escapes compromise it also 
compromises the cyber assets that were holding it. 

The story with performance (Figure 6.3) is also interesting. 
In the basic FMSCO, the steady state value of the number of 

Fig. 6.3. The dynamics of performance for the X-side and the Y-side cyber 
systems or enabled physical systems (left and right, respectively) in the basic 
FMSCO (solid lines) and when cyber assets are required to hold compromise in 
the adversary (dotted lines). 
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compromised assets X-side cyber assets is x = 15.8, so that per-
formance is considerably reduced (solid line in the left panel of 
Figure 6.3) but still above 50%, since x50 = 14. However, because 
the steady state number of X-side cyber assets that are uncom-
promised and uncommitted when assets are required to hold com-
promise in the adversary is x = 10.1, performance of the X-side 
cyber or enabled physical system drops considerably (dotted line in 
Figure 6.3). 

The steady states of the Y-side cyber assets are virtually the same 
whether cyber assets are required for compromise or not. Indeed, 
the the number of uncompromised cyber assets is slightly higher 
(y = 86.8) when cyber assets are required to hold compromise than 
when they are not (y = 85.3), because as the X-side cyber assets 
escape compromise, the Y-side cyber assets holding it are returned 
to the uncompromised pool. Since y50 = 65, these steady state val-
ues convert to virtually the same performance, with performance 
slightly higher when cyber assets have to be committed to holding 
compromise. 

As before, we have to be careful not generalize these results but 
I did not pick the parameters to make them come out this way. 
However, the message is that (i) we can model the situation when 
cyber assets are required to hold compromise of the adversary’s cyber 
assets and (ii) it may make a difference for performance of the cyber 
system or enabled physical system. I leave the sensitivity analysis 
and parameter sweeps to you. 

6.4. Delays in Detection of Compromise or Restoration 

from Compromise 

To explore the effects of delays, we return to the basic equations for 
the FMSCO, and include delays in just the X-side dynamics for sim-
plicity of computation (fewer parameters) and analysis (fewer new 
equations). We denote the delay in moving cyber assets from the 
compromised pool to the restoring pool by τd (where the subscript 
d denotes detection of compromise) and the delay in restoring com-
promised cyber assets the to uncompromised pool by τr. 

In this case, we explicitly introduce the number of X-side cyber 
assets in the recovery pool, xr(t) but because we continue with the 
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other assumptions of the FMSCO (particularly no destruction of 
cyber assets during attack) we do not need to introduce the number 
of Y-side cyber assets in the recovery pool (it is still YT −y(t)−y0(t)) 
so that Eqns. (6.1)–(6.4) become 

dx 
= − ax(t)y(t) +  bxr(t − τr) (6.23) 

dt 

dx0 
= ax(t)y(t) − rxx0(t − τd) (6.24) 

dt 

dxr 
= rxx0(t − τd) − bxr(t − τr) (6.25) 

dt 

dy 
= − cxy + d(YT − y − y0) (6.26) 

dt 

dy0 
= cxy − ryy0 (6.27)

dt 

We consider both dynamics and the phase plane of the cyber 
assets. Recall that for the basic FMSCO, the numbers of uncompro-
mised cyber assets declined smoothly in time from XT and YT to 
their steady state values x and y and the numbers of compromised 
cyber assets had transient peaks followed by a monotonic decay to 
their steady state values x0 and y0. Furthermore, the phase plane 
for uncompromised cyber assets had spiral steady state. The phase 
plane for compromised cyber assets in the FMSCO was essentially a 
straight line from x0(0) = 0, y0(0) = 0 that overshot the steady state 
(because these phase planes are two-dimensional projections of the 
four-dimensional system that is FMSCO) and then returned to the 
steady state x0, y0 on the same straight line. 

6.4.1. Numerical results 

For computations, I held τd = 4 (i.e. 4 days to detect compromise 
and move a compromised cyber asset to the restoring pool), and 
let τr = 4, 8 or  12 (i.e.  4, 8, or 12 days  to restore a cyber  asset  
to the uncompromised state). I used the package dede in deSolve 
to obtain solutions of Eqns. (6.23)–(6.27). In all cases, I assumed 
that the initial conditions corresponded to only uncompromised 
cyber assets for each adversary. In Figure 6.4, I show the dynam-
ics and phase planes for uncompromised cyber assets. In Figure 6.5, 
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Fig. 6.4. The dynamics (left side of each panel) and phase planes (right side of 
each panel) for uncompromised cyber assets when τd = 4 for three values of τr. 
For comparison, the dynamics or phase plane of the basic FMSCO are shown by 
a solid black line and the dynamics or phase plane of the extension with a delay 
are shown by the dotted red line. 

I show the dynamics and phase planes for compromised cyber assets, 
respectively. 

In Figure 6.4 when τr = 4, t the delay in moving to the reset-
ting pool is relatively small, so that the dynamics of uncompromised 
Y-side cyber assets are monotonic and the dynamics uncompromised 
X-side cyber assets are transitory, which shows in the phase plane 
as a deviation from the basic FMSCO. When τr = 8, the devia-
tion in the phase plane from the basic FMSCO is larger but the 
has the  same  qualitative  features as when  τr = 4. However, when 
τr = 12, uncompromised cyber assets have notable oscillations and 
the phase plane trajectory appears to cross itself before spiraling in 
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Fig. 6.5. The dynamics (two left plots in each panel) and phase planes (right 
plot in each panel) for compromised assets when τd = 4 for three values of τr. 
For comparison, the dynamics or phase plane of the basic FMSCO are shown by 
a solid black line and the dynamics or phase plane of the extension with a delay 
are shown by the dotted red line. 

to the steady state (this apparent crossing is due to projecting from 
the four-dimensional phase space to two-dimensional phase plane). 

In Figure 6.5, we see that even with the smallest delay, compro-
mised Y-side cyber assets show a transient and compromised X-side 
cyber assets show a brief oscillation. These dynamics are captured 
in the phase plane by a large excursion away from the steady state 
before reaching it. For τr = 8, the dynamics of the compromised 
cyber assets now show (strongly damped) oscillations. In the phase 
plane, these oscillations are captured by the trajectory briefly cycling 
around the steady state. For the largest value of τr = 12, compro-
mised cyber assets now show stronger oscillations, and the trajectory 
in the phase plane is clearly that associated with a spiral point. 
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Why is a calculation like this important? It is almost guaranteed 
that in operational cyber systems there will be delays in the detection 
of compromise and restoration to the uncompromised state. We have 
seen that if the delays are sufficiently large, the number of uncom-
promised cyber assets can spiral in to the steady state. During that 
spiral, the number of uncompromised cyber assets may fall below a 
threshold for a kinetic response or cyber attack on the adversary’s 
critical civilian infrastructure. However, falling below this threshold 
is only temporary, and a defender may make a different decision 
about the response given such knowledge. 

Potential project*: Conduct a perturbation analysis 
similar to the one in Chapter 3 to analyze the properties 
of the steady state when the equations for the FMSCO 
include delays. There is a rich mathematical literature on 
differential equations with delays (some starting points are 
Driver 1977, Cooke and Grossman 1982, Dye1984, Mur-
doch et al. 1987, 2003, Bhunia et al. 2023) that may help 
guide your work. 

6.5. Summary of Major Insights 

• As with the PAM, we have seen how the FMSCO generalizes, which 
is what makes it a powerful starting point. That is, because the 
FMSCO is not specific to any particular cyber system but has 
much in common with many cyber systems and with small modi-
fications can capture other specific situations. 

• When X-side cyber assets are used to hold compromise of the 
Y-side assets, performance of the X-side cyber system or enabled 
physical system may substantially decline. This is determined by 
the interaction of the midpoint of the X-side performance function 
and the number of X-side cyber assets needed to hold Y-side cyber 
assets in compromise. A similar conclusion applies for Y-side cyber 
assets holding X-side assets. 

• Delays in the detection of compromise (moving compromised 
cyber assets from the compromised pool to the restoring pool) 
and restoration (returning cyber assets in the restoring pool to 
the uncompromised pool) may convert steady states that are 
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approached monotonically to steady states that are spiral points. 
In such a case, one sides’s uncompromised cyber assets may tem-
porarily fall below a threshold for a kinetic response or an attack 
on critical civilian cyber systems. This important possibility needs 
to be clearly communicated to decision-makers. 



Chapter 7 

Including a Distribution in 
Vulnerability in the Pulse 

Attack Model 

Variation is prominent in biological systems and is the foundation for 
the theory of evolution by natural selection; indeed variation has been 
called the core of biology (Berry 1989). In the population biology of 
disease there is a large literature concerning variation in infectivity 
of pathogens and in defenses by hosts. A good entry point is Brouwer 
et al. (2019). 

Because there is no genetic variation during the production of 
cyber components, we might think that cyber assets as metaphorical 
species either have no variation in vulnerability to compromise, or 
variation that is so small it can be ignored. In some cases, this is 
probably a very good assumption. In other cases, it might not. For 
example, Alan Brown (Johns Hopkins University Applied Physics 
Laboratory) collected data on a network of 7000 computers using 
the Microsoft Windows Operating System (OS) over the period from 
July 2019 to March 2020, and identified a subset of 334 computers 
that appeared consistently in the data, had virtually the same initial 
OS release (OS build in the Microsoft terminology) but different 
updates, and did not revert to a previous OS during the monitoring 
period (details in S1 Appendix in Mangel and Brown 2022). 

In Figure 7.1 (upper left panel), I show the results of those analy-
ses. Here we see that the vast majority of the computers were indeed 
using the most recent OS. Mangel and Brown (2022) then used a 
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Fig. 7.1. Distribution of Operating Systems (OSs) in an actual (upper left panel) and simulated (upper right and both 
lower panels) cyber systems. In all cases, the the x-axis is the most recent OS release and the y-axis is the number of 
computers/cyber assets using a particular OS. The upper left panel was based on about 335 computers from a network of 
about 7000 computers between July 2019 and March 2020 (Mangel and Brown 2022). I show the relative distribution of the 
current OS, where the diameter of the circle is proportional to the base-10 logarithm of the counts of that OS in the data. 
The other three panels show a simulated cyber system in which the probability that a cyber asset is updated is 1 − e −θ , so  
that larger values of θ indicate higher rates of updates. In each of those panels, squares show the most recent OS, and circles 
show the fraction of the 1000 simulated cyber assets in the respective OS. For ease of viewing, the fraction is multiplied by 3. 
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population model in which the probability of updating an OS in a 
unit interval of time was 1 − e−θ, where  θ is a parameter. Three 
results from Mangel and Brown (2022) are also shown in Figure 7.1. 
As θ increases from 0.025 to 0.1 (upper right, lower left, and lower 
right panels), the representation of less current OS declines, so that 
the lower right panel looks much like the upper left panel. But we 
can also easily imagine that the OS of the focal cyber system is not 
updated rapidly – leading to a wide distribution of OS being used, 
as in the upper right panel. If the vulnerability of the cyber system 
to compromise declines as the OS updated, we can easily imagine a 
distribution of vulnerability. 

Potential project: Collect  your  own data on operating  
systems in a population of computer users. It does not 
need to be as complicated as the procedure described in 
Mangel and Brown (2022). For example, I am a user of 
the Apple OS, and know lots of people who also are, so I 
might just ask them what MacOS they use (mine, at this 
time, is 15.3.2). What inferences can you make about the 
distribution of variation in operating systems? 

Because of such variation, in this chapter we explore what would 
happen if we included a distribution of vulnerability in the rate of 
compromise. Since interpretations are easier with the PAM, I focus 
on it and leave extensions of these ideas to the FMSO to you. Fur-
thermore, we will  close  with an open problem,  which I hope  one  of  
you will solve. 

7.1. Characterizing the Distribution of Vulnerability 

We denote vulnerability by the symbol v with the understanding 
that cyber assets xv with vulnerability v are compromised at rate 
avxv I(t) during the pulse attack. We assume that v >  0, because 
otherwise the cyber asset would not be vulnerable to attack. The 
gamma density (Mangel 2006) is a very good tool for modeling the 
distribution of vulnerability among the cyber assets. 

There are a number of different formulations of the gamma den-
sity; here I show form that is used in R. In this case, we think of 
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˜vulnerability as a random variable V having gamma density with 
shape parameter av and scale parameter sv (explained in more detail 
below) so that 

1 av −1 −v/sv dv + o(dv)Pr[v ≤ Ṽ ≤ v + dv] =  v e (7.1) 
saΓ(av)v 

where o(dv) represents terms that are higher power in dv and 
Γ(a) is the classical gamma function of applied mathematics. 
One way to think about the gamma function is this. If we let 

1 av −1 −v/svf (v) =  v e , since vulnerability has to take some value, saΓ(av )v 
� �

∞ ∞ av −1 −v/sv dv = 0 f (v)dv = 1. Consequently, we conclude that 0 v e 
� 
∞a av −1s Γ(av), so that Γ(av) =  v e−v/sv dv/sa. Richard  Feynman  v 0 v 

used this property of probability densities to integrate complicated 
functions in his head (Feynman 1985). 

˜When vulnerability V is characterized by Eqn. (7.1), the mean 
2and variance of vulnerability are E(Ṽ ) =  avsv and V ar(Ṽ ) =  avs sov 

that the coefficient of variation (standard deviation divided by the 
mean) squared is CV  2 = 1/av . Try showing this using the iteration 
property of the gamma function that Γ(z + 1)  =  zΓ(z) (also see 
Mangel 2006 for hints). 

We use a discrete distribution for values of vulnerability 
v1, v2, . . . , vN and assume that a discrete analogue of Eqn. (7.1) char-
acterizes their probabilities, so that we write 

N 
� 

av −1 −vn/sv / av −1 −v /svnPr[Ṽ = vn] =  v e v e (7.2)n n 
n =1 

In this equation, I have replaced the normalization constant involv-
ing the gamma function in Eqn. (7.1) by its discrete equivalent, using 
0 n as an index so that we do not confuse the numerator and denom-

�Ninator. It is clear that Pr[Ṽ = vn] = 1 (Figure 7.2).n=1 
To simplify writing in the next section, we set 

N 
� 

a−1 −vn/s/ a−1 −v /snfn = v e v e (7.3)n n 
n =1 

so that Pr[Ṽ = vn] =  fn. We refer to the fn as the initial distribution 
of vulnerability. 
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Fig. 7.2. Upper panel: The continuous gamma density, corresponding to Eqn. 
(7.1) with av = 2  and  sv = 1/2 so that the mean vulnerability E(Ṽ ) =  1.  
Lower panel: A discrete gamma density for five values of vulnerabilities taking 
the discrete values vn = (0.50, 1.00, 1.25, 1.50, and 2.00). The mean of this 
discrete distribution is 1.01. 

7.2. The PAM with a Discrete Distribution of 

Vulnerability 

We now modify Eqns. (2.2) and (2.3) to take into account a distri-
bution of vulnerability to attack of the cyber assets, in which cyber 
assets with vulnerability vn will be compromised at rate avnI(t) dur-
ing the pulse attack. However, we must make additional decisions 
about what happens after that. Here are the two key questions and 
the answers that we will use. 

(1) How do vulnerability and co-compromise interact? We will 
assume that vulnerability applies only to external attack, so that 
there is only one pool of compromised cyber assets and that the 
mechanism of co-compromise is such that all cyber assets are 
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equally vulnerable to co-compromise, regardless of how hardened 
they are to external attack. 

(2) After resetting, what is the vulnerability of cyber assets that 
return to the uncompromised pool? We explore two answers to 
this question. First, we assume that cyber assets return to the 
uncompromised pool in proportion to the distribution of initial 
vulnerabilities fn. Second, we assume that all cyber assets return 
to the uncompromised pool hardened with minimum vulnerabil-
ity and then become more vulnerable over time. 

If you do not like these choices, that is fine and it means you 
should change the models given below and explore the your answers. 

These assumptions allow us to retain single pools for compromised 
and resetting assets, and to expand to N pools of uncompromised 
assets (Figure 7.3). 

7.3. Formulation of the Dynamics 

In light of these assumptions, the generalization of Eqns. (2.2) and 
(2.3) will have one equation for each of the uncompromised assets, 
and one equation for the compromised assets. 

7.3.1. Cyber assets return according to initial 

vulnerability 

In this case, the rate of return of cyber assets with vulnerability 
vn is fn times the total rate of return to the uncompromised pool, 

�Nb(XT − − x0). Thus, the generalization of Eqns. (2.2) and n=1 xn 

(2.3) is 

� � 
N 
�dxn 

= − axnvnI(t) − acoxnx0 + fnb XT − xn − x0 ,
dt 

n=1 

for n = 1  to  N (7.4) 

dx0 

dt 

N N 
� � 

= aI(t) xnvn + acox0 xn − rxx0 (7.5) 
n=1 n=1 
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Fig. 7.3. When cyber assets differ in the vulnerability to attack, the pool of 
uncompromised assets is subdivided into the number of assets xn with vulnera-
bility vn. For simplicity we assume that once compromised, all cyber assets are 
moved to the compromised pool x0, after which they are able to co-compromise. 
Compromised cyber assets are moved to the resetting pool and from there back 
to the uncompromised pool, returning according to the initial distribution of vul-
nerability or hardened to attack, and becoming more vulnerable over time. 

Assuming that we start in an uncompromised state, the initial con-
ditions for these equations are x0(0) = 0 and xn(0) = fnXT . 

For computations, I set N = 5 and used the distribution fn shown 
in the lower panel of Figure 7.2. 

7.3.2. Cyber assets return with minimum 

vulnerability, which increases over time 

In this case, all reset cyber assets return to the pool x1 (vulnerability 
equal to 0.5 corresponds to n = 1 in Figure 7.3). What happens after 
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that? We will assume that except for n = 5 vulnerability increases 
in time, in the sense that cyber assets move from vulnerability vn to 
vulnerability vn+1 at rate ηxn, where  η is a parameter. Hence, the 
dynamics for cyber assets with minimum vulnerability are 

� � 
N 
�dx1 

= −ax1v1I(t) − acox1x0 + b XT − xn − x0 − ηx1 (7.6)
dt 

n=1 

Cyber assets with intermediate vulnerability (n = 2, 3, 4) increase 
as hardened cyber assets lose vulnerability and decline as they lose 
hardening. Hence 

dxn 
= −axnvnI(t) − acoxnx0 + ηxn−1 − ηxn, for n = 2, 3, 4 

dt 
(7.7) 

The most vulnerable cyber assets (n = 5) increase as cyber assets 
with vulnerability v4 lose their hardening so that 

dx5 
= −ax5v5I(t) − acox5x0 + ηx4 (7.8)

dt 

The dynamics of the compromised assets are still described by 
Eqn. (7.5). 

7.4. Results 

We separate the results according to whether the co-compromise rate 
parameter aco is smaller or larger than the threshold for the persis-
tence of compromise. Although there is now a distribution of vul-
nerability among cyber assets, the basic intuition from Chapter 2 
still holds: When aco is less than the threshold, long after the pulse 
attack has ended almost all cyber assets will have recovered to the 
uncompromised state. When aco is greater than the threshold, we 
know that compromise persists in the quasi-steady state. 

Each figure of the results has four panels: The upper left panel 
shows the trajectories of the pulse, uncompromised, and compro-
mised cyber assets; the upper right panel shows the trajectories of 
the uncompromised cyber assets with different vulnerabilities; the 
lower left panel shows the trajectory of mean vulnerability; and the 
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lower right panel shows the trajectory of performance. Because the 
upper left and lower right panels show results with all cyber assets 
combined, they are directly comparable to results in Chapter 2. The 
upper right and lower left panels are the new ones and inform us 
about the temporal behavior of vulnerability. 

7.4.1. aco is less than the threshold for persistence 

of compromise 

In Figure 7.4, I show the dynamics of the system when reset cyber 
assets return with vulnerability proportional to the discrete distribu-
tion shown in the lower panel of Figure 7.2. The upper left and lower 
right panels are comforting and accord with the results in Chapter 2 
and our intuition. After the pulse ends, compromise is extinguished 
and the system returns to essentially all uncompromised cyber assets 
(upper left panel). The result of attack is a decline in performance of 
the cyber system or the enabled physical system, followed by return 
to full performance (the lower right panel). 

Note the dynamics of the distribution of vulnerability as cyber 
assets are reset (upper right panel). During the pulse attack, the 
numbers of all cyber assets decline, with the relative decline deter-
mined by the vulnerability. Long after the attack ends, the distri-
bution of cyber assets has a different distribution of vulnerability 
than the initial distribution of vulnerability. In particular, there are 
more of the least vulnerable assets in the quasi-steady state than 
at the start of the attack. This happens because we are not forc-
ing the number of cyber assets with vulnerability vn to be fixed. 
Rather, all assets go into the single compromised pool and from 
there to resetting, and the fraction of that pool being reset to least 
vulnerable does not depend upon the number of current least vul-
nerable assets (in biology, we would say that there is no frequency 
dependence). 

The consequence of these dynamics is that during the attack 
mean vulnerability declines (because the more vulnerable assets are 
removed at higher rates than the less vulnerable ones). After the 
pulse attack ends, the mean vulnerability increases, but does not 
return to its initial state. 

When cyber assets return hardened but then become more vul-
nerable over time (Figure 7.5) the upper left and lower right panels 
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Fig. 7.4. The dynamics of the cyber assets and performance of the cyber or enabled physical system when aco is less 
than that the critical threshold for persistence of compromise and cyber assets are returned with vulnerability proportional 
to the initial distribution of vulnerability. The upper left panel shows the pulse attack (dotted blue line) and the total 
numbers of uncompromised and compromised cyber assets (black and red lines, respectively). The lower left panel shows 
mean vulnerability before, during, and after the pulse attack. The upper right panel shows the dynamics of the cyber assets 
separated according to vulnerability. The lower right panel shows the performance of the cyber system or enabled physical 
system. Note the diff erent scale on the x-axes of the upper and lower panels. 
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Fig. 7.5. The dynamics of the cyber assets and performance of the cyber or enabled physical system when aco is less 
than that the critical threshold for persistence of compromise in the steady state and cyber assets are returned at maximum 
hardening but then become more vulnerable as time progress. The upper left panel shows the pulse attack (dotted blue 
line) and the total numbers of uncompromised and compromised cyber assets (black and red lines, respectively). The upper 
right panel shows the dynamics of the cyber assets separated according to vulnerability. The lower left panel shows mean 
vulnerability before, during, and after the pulse attack. The lower right panel shows the performance of the cyber system or 
enabled physical system. Note the diff erent scale on the x-axes of the upper and lower panels. 
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are similar to those in Figure 7.4, but the other two panels are very 
different. Because cyber assets return with minimum vulnerability 
and become more vulnerable over time, the number of cyber assets 
with vulnerability v1 (the least vulnerable) peaks shortly after the 
attack ends; after that the numbers of cyber assets with vulnerabil-
ity classes 1–4 decline as the most vulnerable class x5 increases until 
essentially all cyber assets are at the highest vulnerability. 

The consequence for mean vulnerability (Figure 7.5, lower left 
panel) is an increase and then decrease in mean vulnerability during 
the attack but then a rise towards maximum vulnerability as the 
quasi-steady state is approached. 

7.4.2. aco is greater than the threshold for 

persistence of compromise 

When aco exceeds the threshold value, we know that compromise 
will persist in the quasi-steady state. As in the previous section, the 
upper left and lower right panels of Figures 7.6 and 7.7 match the 
results shown in Chapter 2. Thus, we should focus on the distribution 
of vulnerability over time. 

When cyber assets are reset with vulnerability proportional to 
the initial distribution (Figure 7.6), in the quasi-steady state all 
cyber assets are at lower levels than their starting values (upper 
right panel), and in accord with our intuition the quasi-steady state 
levels are ranked according to vulnerability. In this case, mean vul-
nerability in the quasi-steady state returns to its initial value (lower 
left panel) because the numbers of all cyber assets are reduced from 
their initial values. 

When cyber assets are reset with minimum vulnerability and then 
lose hardening as time progresses, we still have a peak (Figure 7.7, 
upper right panel). However, in the quasi-steady state least vul-
nerable cyber assets predominate because co-compromise is contin-
ually removing cyber assets that are more vulnerable, which are 
then reset and returned at minimum vulnerability. The consequence 
(Figure 7.7, lower left panel) is a rise in mean vulnerability as the 
attack starts and more vulnerable cyber assets are removed, a min-
imum of mean vulnerability at the peak of the attack, and then 
increase to a quasi-steady state value of mean vulnerability between 
them. 
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Fig. 7.6. The dynamics of the cyber system and performance of the cyber or enabled physical system when aco is greater than 
the threshold for persistence of compromise in the steady state and cyber assets are returned with vulnerability proportional 
to the initial distribution of vulnerability. The upper left panel shows the pulse attack (dotted blue line) and the total 
numbers of uncompromised and compromised cyber assets (black and red lines, respectively). The upper right panel shows 
the dynamics of the cyber assets separated according to vulnerability. The lower left panel shows mean vulnerability before, 
during, and after the pulse attack. The lower right panel shows the performance of the cyber system or enabled physical 
system. Note the diff erent scale on the x-axes of the upper and lower panels. 
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Fig. 7.7. The dynamics of the cyber system and performance of the cyber or enabled physical system when aco is greater 
than the threshold and cyber assets are returned at maximum hardening but then become more vulnerable as time progress. 
The upper left panel shows the pulse attack (dotted blue line) and the total numbers of uncompromised and compromised 
cyber assets (black and red lines, respectively). The upper right panel shows the dynamics of the cyber assets separated 
according to vulnerability. The lower left panel shows mean vulnerability before, during, and after the pulse attack. The lower 
right panel shows the performance of the cyber system or enabled physical system. Note the different scale on the x-axes of 
the upper and lower panels. 
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7.5. A Continuous Distribution of Vulnerability and an 

Open Question* 

One could approximate the continuous distribution for vulnerability 
by taking N in Eqn. (7.2) pretty large and setting the upper value of 
vulnerability to a value where the continuous distribution is close to 
0. For example, suppose we set maximum vulnerability vmax = 5 and  
let N = 100, with the nth vulnerability class vn = 0.05 + 4.95N

n−
− 
1
1 , 

so that v1 = 0.05 and vN = 5.00 and each increment in vulnerability 
is 0.05. We would then have 100 ordinary differential equations char-
acterizing the dynamics of cyber assets with different vulnerability 
but they would be no more difficult to solve than what we have done 
(at least in principle). 

Dwyer et al. (2000, pp. 116–117) showed how one can incorporate 
a continuous distribution of vulnerability into the equations for the 
SIR model of disease and thus understand how the distribution of 
vulnerability changes over time. To apply these ideas to the dynam-
ics of cyber systems without wanting to assume perfect hardening 
of cyber assets after restoration requires extending the methods of 
Dwyer to the SIRS model of disease. In the context of cyber systems, 
it raises the question of how the continuous distribution of vulnera-
bility changes when cyber assets are restored to the uncompromised 
state. This is an interesting, open but difficult question. 

7.6. Summary of Major Insights 

• The rate of compromise can be modified to include vulnerability 
to attack by assuming that cyber assets with different levels of 
vulnerability are compromised at rates proportional to their vul-
nerability. The gamma density pinned down at 0 is a flexible means 
of capturing a distribution of vulnerability to compromise. 

• The gamma density can be discretized into N values of vulner-
ability and the PAM expanded to include N equations for the 
dynamics of cyber assets with different vulnerabilities. 

• When vulnerability has a discrete distribution, key decisions have 
to be made about (i) how co-compromise occurs and (ii) when 
cyber assets are reset, how the vulnerability of reset assets is 
determined. In this chapter, we assumed that there is a single 
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pool of compromised assets and that co-compromise occurs at rate 
determined only by the rate of co-compromise, consistent with the 
assumption that the mechanism of external compromise and inter-
nal co-compromise are different. We investigated two choices for 
the vulnerability of reset cyber assets. In the first choice, reset 
cyber assets had vulnerability determined by the distribution of 
vulnerability at the time of the pulse attack. In the second choice, 
reset cyber assets return to the uncompromised pool with min-
imum vulnerability and then become more vulnerable as time 
goes on. 

• When the co-compromise rate parameter is lower than the thresh-
old for the persistence of compromise and cyber assets are returned 
proportional to the initial distribution of vulnerability, the overall 
number of uncompromised cyber assets and performance decline 
during the pulse attack but after the attack ends both return to 
the their values before the pulse attack. The numbers of cyber 
assets with different vulnerability decline during the attack and 
increase following the attack. However, because more vulnerable 
cyber assets decline at higher rates than less vulnerable assets, 
the distribution of vulnerability after the attack is different than 
before the attack and mean vulnerability may change from its value 
before the attack. 

• When the co-compromise rate parameter is lower than the thresh-
old for the persistence of compromise and cyber assets are returned 
with minimum vulnerability but then become more vulnerable as 
time progresses, during the pulse attack the overall numbers of 
uncompromised cyber assets and performance decline; after the 
attack ends both return to the their values before the pulse attack. 
In this case, there are transients in the number of cyber assets with 
different vulnerability, but ultimately all cyber assets have maxi-
mum vulnerability (unless other action is taken). 

• When the co-compromise rate parameter is greater than the 
threshold for persistence of compromise and cyber assets are 
returned proportional to the initial distribution of vulnerability, 
during the pulse attack the overall numbers of uncompromised 
cyber assets and performance decline. After the attack ends com-
promise persists in the cyber system so that performance is per-
manently degraded. The numbers of cyber assets with different 
vulnerabilities decline during the attack and increase following the 
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attack but not to their original levels. However, because more vul-
nerable cyber assets decline at higher rates than less vulnerable 
ones, the distribution of vulnerability after the attack is different 
than before the attack. 

• When the co-compromise rate parameter is greater than the 
threshold for the persistence of compromise and cyber assets are 
returned with minimum vulnerability but then become more vul-
nerable as time progresses, during the pulse attack the overall num-
bers of uncompromised assets and performance decline. After the 
attack ends compromise persists in the cyber system so that per-
formance is permanently degraded. The numbers of cyber assets 
with different vulnerabilities increase following the attack but not 
to their original numbers. Because more vulnerable cyber assets 
decline at higher rates than less vulnerable ones, the mixture of 
vulnerability after the attack is different than before the attack. 
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Chapter 8 

Bon Voyage: Future Directions 

The story of the War of Atonement [the October 1973 Yom 
Kippur War] demonstrates the extent to which the human ele-
ment is the key to the outcome of war . . .Even in the era of 
technology, the human element still stands at the centre of the 
picture 

– Herzog (2003, p. xvi) 

I hope that you have enjoyed our exploration of how mathematical 
models from the population biology of disease can inform, facilitate, 
and enhance cyber security. One pleasure for me has been to see 
how relatively simple mathematics used in mature ways can lead to 
sophisticated understanding.1 

There is much more to do! In this chapter, I will discuss three 
directions that I believe are fruitful. The first direction is explicit 
modeling of the cyber system of the enabled physical system. In this 
case, instead of a generic performance function we will focus on the 
electric grid. This involves a modest extension of the PAM. 

The second direction is the inclusion of human factors, particu-
larly operator attention, in the models for the dynamics of compro-
mise and resetting. This will require the development of new models 

1For example, we have not used game theory (e.g. Maynard Smith 1982, Axel-
rod 1984/2006, Axelrod and Iliev 2014, McNamara and Leimar 2020, Aurell et al. 
2022) to treat adversarial strategies, dynamic programming (Alpcan and Basar 
2011, Mangel and Clark 1988, Clark and Mangel 2000, Mangel 2015) to treat opti-
mization, or Bayesian methods (Koch, 2007, Hobbs and Hooten 2015, McElreath 
2020) to treat the uncertainty that is common in cyber system operations. 

191 
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that capture the dynamics of human attention to compromise that 
are then linked to the PAM or FMSCO. 

The third extension involves moving beyond dyadic interactions 
to multiple cyber actors. In this case, I suggest that we think about 
how cooperative Multilateral Cyber Security Agreements can 
be modeled. To help focus ideas, I will also be specific about the 
performance function. There is a large biological literature on coop-
erative defense and cooperative foraging and I will point towards 
some of it. 

You can think of this send off chapter as a collection of three 
Potential projects. 

8.1. Modeling the Cyber System of the Enabled 

Physical System 

Using the generic sigmoidal performance function for the enabled 
physical system allowed us to develop general principles. In specific 
applications, however, we require a model of the enabled physical 
system. For example, Mangel and McEver (2021) used a nonlinear 
oscillator model of the electric grid (Filatrella et al. 2008) to explore 
how compromise of smart meters can lead to instability in the electric 
grid. But even there, the cyber components of the grid were not 
modeled. 

In general, to enable a physical system by a cyber system requires 
cyber components in the enabled physical system. The closest we 
came to modeling the cyber components of the enabled physical sys-
tem was Eqn. (1.5) and Figure 1.7 when we considered that per-
formance of the enabled physical system might not be a sigmoidal 
function of the number of uncompromised cyber components, but a 
sigmoidal function of the performance of the cyber system itself. 

For definiteness, to help us think about the cyber components 
that link the focal cyber system and the enabled physical system let 
us  focus on an electric  grid providing  power to consumers  (National  
Research Council 2013). Libicki (2016 pp. 187–188) noted 

Power grids are an obvious target for disruption. In 2013, the 
director of national intelligence deemed a large-scale cyberat-
tack on the nation’s critical infrastructure (of which the elec-
tric grid is the most prominent part) the greatest short-term 
threat to the nation’s security. One analyst has calculated that 
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even a temporary shutdown of the power grid could cost the 
United States 700 billion dollars (that is, more than the defense 
budget) . . .  

. . . It might seem odd that a power grid that worked well 
before the Internet arrived could be so vulnerable, but over 
the last several decades, power companies have concluded that 
it is far cheaper to have each of thousands of power stations, 
transmission lines, and distribution centers answer to a central 
information service than to send people on trucks to check on 
equipment every time something does or might happen. Therein 
lies a problem if hackers can work their way into the electric 
grid system and send it the kind of commands that tamper 
with, say, voltage levels. Overloaded circuits, for instance, can 
create a cascading failure that takes down entire systems. 

Let us thus envision a situation as in Figure 8.1, where the left 
cyber system corresponds to the utility company and the right cyber 
system corresponds to the generating plant: 

• The cyber system of the utility company receives input from con-
sumers (here shown as a partially blue arrow when the input is 
uncompromised and a partially red arrow when the input is com-
promised) and external attack (solid red arrow). 

• The cyber components of the utility company follow dynamics sim-
ilar to the PAM, and send signals that are uncompromised (green) 
or compromised (red) to the cyber system of the generating plant. 

• The cyber components of the generating plant also follow dynamics 
similar to the PAM, and send signals that are uncompromised 
(green) or compromised (red) to the generator, and these signals 
determine the behavior of the generator. 

I hope that it is clear why we did not begin the book here. The 
additional cyber system doubles the number of equations and param-
eters describing the dynamics of the cyber system. In addition, we 
need to model the dynamics of the generator responding to the cyber 
system controlling it. 

Potential project*: Convert these verbal and visual 
models to a set of equations for the two cyber systems. 
Then explore linking the nonlinear oscillator model for a 
generator (Filatrella et al. 2008) to the two sets of PAM-
like equations and explore the consequences. 
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Fig. 8.1. A model that explicitly accounts for the cyber component of the 
electric grid. There are now two cyber systems. The first one (left panel) inter-
acts with users of the electric grid, receiving input from the users and possibly 
being subject to attack (see Mangel and McEver 2021 for an example). This 
cyber system then interacts with the cyber system that controls electric genera-
tor and associated transmission features (right panel), and sends signals to the 
generator. 

8.2. Human Factors, Particularly Operator Attention 

Cyber security is not just a technical matter (Danzig 2014, Meyer 
2024). Indeed, Lindsay and Gartzke (2018, p. 199) write “No dis-
cussion of coercion would be complete without some attention to 
the psychological dimension”. Libicki et al. (2015) asked about 20 
cyber security officers what they would do if provided more money 
for cyber security, and a majority of them gave solutions that were 
human-centric. 

Libicki (2016, p. 26, 43ff) notes the important role of human fac-
tors in the redundancy component of the resilience stack, writing that 
redundancy “gets easier if human judgment can be applied – that is, 
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if these computers are information gatherers for human decision 
makers”. In fact, Libicki asks the rhetorical question “Is cyberse-
curity a technology or a people problem?”, giving the answer yes, 
and considers (Libicki 2016, p. 65) that “The most reliable measure 
(and counter-countermeasure) is a smart analyst who can use human 
experience and intuition to detect when malware rather than legiti-
mate traffic is touching the sensors and infer tools from instances of 
sensor disturbance. But while software scales well (in that it can be 
used anywhere), humans do not; furthermore, the ones that can do 
these jobs are expensive. Not surprisingly, the optimal man-machine 
ratios will shift over time. If serious infections are rare (for example, 
if the average organization goes years between attacks), scalability is 
less important, and throwing smart people at the infection in order 
to extract tool signatures can be justified.” 

The Aurora generator test (Zetter 2014) provides a good exam-
ple of human factors. In that case operators who monitored the 
grid for anomalies “weren’t told of the attack before it occurred 
never noticed anything amiss on their monitors. The safety system 
that was designed to ride out little spikes and valleys that normally 
occurred on the grid also never registered the destructive interrup-
tion. ‘We could do the attack, essentially open and close a breaker so 
quickly that the safety systems didn’t see it,’ said Perry Pederson, 
who headed DHS’s control-system security program at the time and 
oversaw the test” (Zetter 2014, p. 164). 

Our discussion in Chapter 5 about the probability of a kinetic 
response has an implicit human factor in it. Indeed, Libicki (2016, 
p. 225) writes “The attacker always has to factor in some likeli-
hood that an attack will engender a response. The questions are: 
how likely and how bad? A lot depends on the likelihood in the mind 
of the attacker that the target of the contemplated attack detects the 
cyberattack (something that is not obvious in a corruption attack), 
identifies the attacker correctly with an actionable level of confidence, 
judges that these attacks crossed some threshold, decides to strike 
back even in the face of counter-threats that the attacker can make to 
ward off retaliation, can strike back, and thereby cause the attacker 
real pain.” 

Thompson (2022, p. 10) writes that “. . .  the human brain is also 
an inseparable and vital part of modern decision-making systems. 
Going further, this is a partnership: the human brain is responsible 
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for constructing models; models provide quantitative and qualita-
tive insights; the brain can integrate these with other, non-modeled 
insights; and the upshot is a system that can be better than either 
brain or model acting alone.” Consideration of human factors could 
include: 

• Assuming that users of cyber systems will have both security train-
ing, and may not learn much or may forget what they have learned. 

• Recognizing that nodes of the cyber system that interface with the 
external world are another weak link in the chain of security, and 
human attention to those nodes may have big payoffs. 

• Recognizing that unlike machines which are usually limited in the 
kinds of inputs that they receive, humans have many inputs work-
ing simultaneously, sometimes providing contradictory informa-
tion, and humans are good are noticing anomalies. Libicki (2016, 
p. 44) gives the following example concerning a USB-based attack: 
“A hacker could embed keyboard-like programs into a USB device 
that the users, having no ostensible reason to believe it is not 
a memory device, stick into a computer. Unbeknownst to the 
user, the USB device could be entering malicious commands via 
simulated keystroke into the computer (which a computer will 
accept even if not a response to a query). One of these commands 
could have the computer similarly infect all USB devices conse-
quently linked to the computer, which then infect other comput-
ers they are inserted into. This is a tricky but not unstoppable 
hack. One approach is to have all USB devices signed for what 
they are and what they are allowed to do; this would require 
coordination among a great number of vendors (including some 
who have since left the business and whose devices thus would 
no longer work once signatures became mandatory). A far  sim-
pler approach is for a computer’s operating system to announce 
to the user what device it is (and hence what privileges it has 
been accorded). A person inserting a USB memory stick, but pro-
grammed to act as a keyboard, into a machine would be greeted by 
a message that a keyboard had been inserted. Many users would 
then balk and unplug the stick. Not all users would, but any attack 
that requires spreading the USB throughout the organization with-
out anyone noticing it would have slim chances of success” (italics 
added). 
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Recognizing an anomalous situation may be difficult for either 
a person or a machine. For example, one of the analysts trying to 
understand Stuxnet “believed the attackers deliberately used weak 
encryption and a standard protocol to communicate with the servers 
because they wanted the data traveling between infected machines 
and the servers to resemble normal communication without attract-
ing unusual attention. And since communication with the servers was 
minimal – the malware transmitted only limited information about 
each infected machine – the attackers didn’t need more advanced 
encryption to hide it” (Zetter 2014, p. 63). 

This very brief discussion of an important topic suggests that we 
need to modify Figure 8.1 to include operator attention in both cyber 
systems, as in Figure 8.2. 

Adding operator attention requires an additional set of equations, 
and the associated assumptions. Perhaps the best way to develop 
them is to personally experience the cyber operational that you 

Fig. 8.2. A model that explicitly considers the cyber components that enable 
the physical system when operator attention is included, with the electric grid as 
a motivation. See text for explanation. 
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are trying to model (Mangel 1982). For now, here is a potential 
project. 

Potential project: Focus on the PAM and incorpo-
rate operator attention via an explicit model for the 
detection of compromise, allowing detection to depend 
upon any combination of the number of compromised 
cyber assets, the rate at which cyber assets are com-
promised, or reduction in performance. When compro-
mise is detected, allow the operator to introduce defensive 
counter-measures (sensu Mangel and McEver 2021) by 
choosing to increase either rx or b, but with a reduc-
tion in performance. Code the model and explore its 
consequences. 

The classic works of Janis and Mann (1976, 1977) and Sage (1981) 
remain some of my favorite pieces on operator attention. Starting 
points for more recent literature include: Pirolli (2009) who applies 
ideas from biological foraging theory to the adaptive interaction 
between humans and machines searching for information; Kahneman 
(2012) who provides a great place to start learning about human 
thinking; McDermott (2010) who discusses decision making under 
uncertainty with cyber issues in mind; and Johnson et al. (2017), 
who offer a model of human visual attention and workload when 
controlling robots. 

8.3. Beyond Dyadic Interactions: Towards Multilateral 

Cyber Security Agreements 

Until now, we focused on dyadic interactions and had very general 
performance functions in both the PAM and the FMSCO. An impor-
tant future direction is to increase the number of potential cyber 
actors (now assumed to be nations) and be very specific about perfor-
mance. Since this topic is very different from the PAM and FMSCO 
and is important, I provide detailed steps on how you can get started. 

Valeriano and Maness (2015, p. 201) offer guidelines for justice 
and behavior in cyber space and write: “There is a need to move 
toward creating a global monitoring system to share in collective 
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defense and punishment when cyber violations occur.” In March 
2023, the White House released a document describing a national 
cyber security strategy (White House 2023) based on five pillars. One 
pillar is “Forge International Partnerships to Pursue Shared Goals”. 
In this chapter, we will develop ideas that provide a conceptual frame-
work for collective action described by the guideline of Valeriano and 
Maness (2015) and the pillar of the White House document. In doing 
this, we will think about joint operations in cyberspace (White 2020) 
and cumulative deterrence (Tor 2017). 

I want us to envision and think about how to model a Multi-
lateral Cyber Security Agreement (MCSA) that captures the 
interests of many member nations of the international community 
simultaneously (Sandler 2004, Benvenisti and Nolte 2018, Zabierek 
et al. 2021). Transparency (Chayes and Chayes 1995) is important 
in a MCSA and mathematical modeling helps in this case because it 
requires a precise statement of ideas. There is already a tradition in 
international law of using mathematical models and statistical mod-
els as proof of causality (e.g. in the Gulf War Reparations Claims 
(Sulyok 2021, p. 308)). We can also aim to help lawyers and policy 
makers become better consumers of models (Sulyok 2021, Thompson 
2022). 

There are analogies in the population biology of disease. For exam-
ple, the Global Influenza Surveillance and Response Network (the 
“flu network” (Kapczynski 2016, Stein 2020)), established in 1952, is 
a multilateral global heath cooperative and played a key role in the 
early recognition of the COVID-19 pandemic. The successful global 
eradication of smallpox (Fenner 1982, Henderson 1987) was based 
on a collaborative effort by nations of the world. Although not yet 
completed the Global Polio Eradication Initiative launched in 1988 
is a multilateral effort (Aylward and Tangermann 2011, Chumakov 
et al. 2021). 

8.3.1. Some ideas from international law 

Even though progress has been made (Schmitt and Vihul 2017) many 
legal aspects of cyber conflict remain blurry (Singer and Friedman 
2014, p. 122 ff). For example, it is already clear that the equivalent 
of Article 5 of the NATO Treaty, which asserts that attack on one 
member shall be considered an attack on all members, is not directly 
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applicable to cyber attack (or if it is, then it applies in a much more 
nuanced way). Part of this issue is one of attribution: when a cyber 
attack occurs, to respond one needs to answer “who did it?” with 
sufficient confidence. Such confidence may often be lacking (Rid and 
Buchanan 2015). For this reason, we focus only on cooperative cyber 
defense and ignore questions about cyber counter-attack. 

We will assume that nations will join a MCSA if they do better by 
joining, accounting for relevant costs, than by going alone in defense. 
In such a case, coordination in global cyberspace (Trachtman 2013, 
p. 112) can be formulated as the stag hunt game (Binmore 1994, 
p. 120ff, Skyrms 2004). The fundamental idea is that in a population 
of hunters, individuals are able to capture rabbits by themselves but 
require the cooperation of and trust in other individuals to capture 
a stag. Thus participation in the stag hunt requires that the individ-
ual’s expected share of the stag is bigger than the expected catch of 
rabbits when working alone. 

It is beyond the scope of this chapter to try to review the history of 
environmental treaties. Some starting points are Chayes and Chayes 
(1996), Barrett (2003), Andresen (2014), Gupta (2014), and Brunnée 
(2018). For example, a variety of Multilateral Environmental Agree-
ments (MEAs) incorporate scientific analysis as foundational. These 
include the International Convention for the Regulation of Whaling 
(1947), the Agreement on the Conservation of Polar Bears (1973), 
the Convention on the Conservation of Migratory Species of Wild 
Animals (1979), the Convention for the Conservation of Antarctic 
Marine Living Resources (1980), and the The Montreal Protocol on 
Substances that Deplete the Ozone Layer (1987). The current text 
for any of these agreements can be quickly found by an internet 
search. 

Sulyok (2021, p. 352ff) calls for an approach incorporating science 
in law that is “hybrid”, in the sense of neither purely legal/policy 
nor purely modeling, arguing that such a hybrid approach provides 
a firm framework for framing legal questions that have consider-
able scientific and/or modeling components. This approach does not 
require that decision or policy makers become modelers, but does 
require that modelers describe their assumptions and results in a 
way that the key ideas are accessible to decision or policy makers. 
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8.3.2. An overview of what needs to be done 

We begin with a a specific metric of performance. For definiteness, I 
chose the connection with Broad Band Penetration (BBP) and 
Gross Domestic Product (GDP) for countries in the Organiza-
tion for Economic Cooperation and Development (OECD). 
We will see that these can be related using a simple linear regression. 

Cyber attack will reduce the available BBP of a nation, which 
then reduces GDP according to the linear regression characterizing 
performance. We then ask (i) if a nation can allocate some of its BBP 
to defense (as an organism can allocate some of its energetic reserves 
to defense against pathogens), how does performance (GDP) vary 
with allocation to defense and (ii) if there is the possibility of joining 
a MCSA, when is it advantageous for a nation to join and how does 
that depend on the behavior of other nations? 

We first compute the defense that maximizes the national value, 
defined as the GDP obtained when some of BBP is allocated to 
defense rather than towards GDP. We will see that there is an opti-
mal level of BBP to dedicate to defense, and that the peak (for the 
parameters we use) is broad. 

Multilateral defense depends on the behavior of nations. A start-
ing assumption is that each nation honors its multilateral commit-
ment with certainty. We can then compare GDP when a nation goes 
it alone or to the GDP if it joins the MCSA. Alternatively, a nation 
may not fully trust the other nations to honor their commitment 
so that we require a National Trust Factor (NTF) that is the 
probability characterizing a nation’s belief that other members of 
the MCSA will honor their commitments to monitoring and defense. 
The NTF emerges through repeated interactions between nations 
(e.g. Axelrod 1984/1986) and characterizes how a nation views the 
the propensity of other nations to comply with previous agreements, 
which itself is determined by a variety of factors such as efficiency of 
the agreement, the interests of other nations, and international norms 
(Chayes and Chayes 1995). It is, at least in principle, something that 
can be determined from experience and government policy. 

Since the NTF is a probability, we can use a simulation to create 
multiple realizations of national values obtained by joining a MCSA 
or not. This is different from the simulations employed in Chapter 4. 
There, we drew random numbers to determine if a change in the state 
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variables occurred in the next bit of time, and then which change 
occurred given that there was a change. We used the deterministic 
dynamics of the PAM to guide setting up the probabilities of change. 

In this case, we repeatedly draw random variables to determine 
a nation’s BBP and its NTF, and use these to compute the national 
values that determine whether it joins the MCSA or not. Thus, over 
multiple realizations of the simulation, we capture the probability or 
frequency with which a given nation joins the MCSA. 

Once this simulation for a hypothetical set of nations is completed, 
we can apply it to assembling the MCSA for OECD countries. In this 
case, we would use the BBP for each OECD country, rather than 
simulating value of BBP, but still draw NTFs randomly, with the 
goal of computing the fraction of nations joining a MCSC that is 
initiated by a fraction of the OED nations. 

8.3.3. Some details to get you started 

I just outlined a challenging plan of research, so now give a few details 
to get you started. 

8.3.3.1. Broad band penetration and gross domestic product 

in OECD countries 

In Figure 8.3, I show the relationship between GDP and BBP in 
OECD countries. When fitting the line, I treated Ireland and Lux-
embourg as outliers, which left 35 data points, and henceforth refer 
to these as the OECD nations. We will use the fitted line as the 
performance function for assessing consequences of cyber attack and 
both unilateral and multilateral cooperative defense; it is GDP = 
3.84 + 1.17 · BBP . 

To fit the data in Figure 8.3 to a beta density (Hilborn and 
Mangel 1997, Mangel 2006), we first map the data onto the interval 
[0,1] by introducing a variable X representing a scaled version of the 
data, using a minimum value of BBP equal to 15.3 and a maximum 
value equal to 50.3 (i.e. 35 BBP units higher than the minimum), so 
that 

BBP − 15.3 
X = (8.1)

35 
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Fig. 8.3. The relationship between BBP, measured as total subscriptions per 
100 inhabitants and per capita GDP, measured as 1000s of USD per person annu-
ally from OECD data (OECD 2017). For the regression, I considered Luxembourg 
and Ireland as outliers. The fitted line is GDP = 3.84 + 1.17 · BBP . 

Next we assume that X has a beta density with parameters α and β 

Γ(α + β)
f (x|α, β) =  x α−1(1 − x)β−1 (8.2)

Γ(α)Γ(β) 

where Γ(·) is the gamma function from Chapter 7. As there, we can 
Γ(α+β)think of as a normalization constant. Γ(α)Γ(β) 

If a random variable has density given by Eqn. (8.2), its mean 

and variance are α and αβ respectively. If mx and vxα+β (α+β)2(α+β+1) 

are the mean and variance of a beta distributed random variable and 
mx(1 − mx) > vx then the method of moments estimates for the 
parameters are 

� � 
mx(1 − mx)

α = mx − 1 
vx 

� � 
mx(1 − mx)

β = (1  − mx) − 1 (8.3) 
vx 

This can be verified by substituting Eqns. (8.3) into the formulas for 
mean and variance below Eqn. (8.2) and seeing that they reduce to 
mx and vx. 
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Fig. 8.4. A histogram of the OECD data shown in Figure 8.3 and the beta 
density fitted to it by using the method of moments. 

In Figure 8.4, I show a histogram of the OECD data and the fitted 
beta density. 

8.3.3.2. Cyber attack and its consequences 

We let λ(b) denote the annual number of cyber attacks on a nation 
with BBB = b, modeled as 

� �βab 
λ(b) =  λmin (8.4)

bmin 

depending on parameters λmin characterizing the minimum rate of 
attack, which occurs when BBP is the minimum value bmin, and  
βa characterizing how the rate of attack varies as BBP exceeds the 
minimum value. Figure 8.5 shows this function for λmin = 50, bmin = 
10 βa = 1.35, and set the maximum value of b to 60. 

We then assume that the loss of BBP due to attack is [λ(b)la]
k 

where la is the loss per attack and k is a shape parameter. Setting 
l̃a(b) =  λ(b)la, if a country with BBP = b executes no defense, its 
resulting BBP is b−l̃  

a(b)
k . I illustrate this in Figure 8.6 with la = 0.05 

and ka = 1.05. 
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Fig. 8.5. The rate of cyber attack on nations as BBP varies from a minimum 
� �βa 

value of 10 to a maximum value of 60, based on λ(b) =  λmin 
b with 

bmin 

parameters λmin = 50, bmin = 10  and  βa = 1.35. 

Fig. 8.6. The reduction in BBP due to cyber attack following Eqn. (8.1), loss 
per attack la, and overall reduction in BBP a power function of expected loss. 
For a nation with BBP b in the absence of cyber attack, BBP after cyber attack, 
absent defense, is b− [λ(b)la]

k = b− l̃  a(b)
k . 
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8.3.3.3. Defense maximizing national value 

Libicki et al. (2015, p. 2) note that “the proper goal of a cybersecurity 
program (or policy) is to minimize the combined cost of expenditures 
on cybersecurity plus the expected costs arising from cyberattacks”. 
We now ask what happens if a nation with BBP b allocates some of 
its BBP, which we still call cyber assets, to defense, thus reducing 
BBP available for economic activity and in consequence GDP. To 
capture this idea, we assume when z BBP cyber assets are allocated 
to defense, the fraction of attacks that are successful is e−ωz, where  
ω is a measure of the effectiveness of defense. 

With this formulation, the net BBP for a nation with initial BBP 
b that allocates z assets to cyber defense is 

−ωz ]kabnet(b, z) =  b − [l̃a(b)e − z (8.5) 

The total cost to a nation is the sum of BBP assets used in defense 
and those lost to attack, so that for a nation with BBP b allocating 
z assets to defense, the cost is 

−ωz ]kaC(b, z) =  z + [l̃a(b)e (8.6) 

Taking the derivative of C(b, z) with respect to z and setting it 
equal to 0 gives the cost minimizing defense 

z ∗ (b) =  
1

log 
�

l̃a(b)
ka ωka 

  
(8.7)

ωka 

For computations, I used ω = 0.2 and set the maximum possible 
level of defense to be zmax = 10; for the other parameters in the 
model, this constraint was not binding. In Figure 8.7, I show the 
allocation to defense as an absolute function of BBP (left panel) and 
as a fraction of national BBP (right panel). We see that i) when a 
nation’s BBP is small enough, the optimal allocation to defense is 0 
and ii) otherwise the allocation to defense is an increasing function 
of BBP at a decreasing rate of increase so that the fraction of BBP 
dedicated to unilateral defense has a broad peak and then declines. 
Unilateral defense here is analogous to baseline defenses described 
by Buchanan (2016, p. 185). 
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(a) (b) 

Fig. 8.7. The cost minimizing defense, Eqn. (8.7), as a function of BBP (left 
panel) and the fraction of BBP allocated to defense when the cost minimizing 
defense is used (right panel). 

(a) (b) 

Fig. 8.8. Left panel: GDP if there were no cyber attacks at all (red line), cyber 
attack with no defense, cyber attack with optimal defense, and cyber attack with 
twice the optimal defense as a function of BBP. Right panel: GDP with no defense 
and unilateral optimal defense for the OECD countries in Figure 8.3. 

Each choice of defensive allocation z in Eqn. (8.7) leads to a net 
level of BBP 

−ωz∗(b)]kabnet(b, z ∗ (b)) = b − z ∗ (b) − [l̃a(b)e (8.8) 

which then determines GDP  based on the  regression line in Figure  
8.3. In Figure 8.8, I show GDP if there were no cyber attacks at 
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all (as a reference case), with no defense, with optimal defense and 
twice the optimal defense (left panel). We conclude that, given the 
other parameters in the model, it is better to over-defend (twice the 
optimal level of defense) than to not defend at all. In the right panel 
of Figure 8.8, I show GDP if there is no cyber defense and if there is 
optimal cyber defense for the OECD countries. 

The results in Figure 8.8b show that, given the other parameters 
in the model, there is an advantage of unilateral cyber defense (Eqn. 
(8.7)) over a wide range of BBP for the OECD countries. We now 
turn to multilateral defense. 

Potential project: Suppose that GDP was a nonlinear 
function of BBP, so that a country with BBP b has GDP 
g(b). In that case, GDP (b, z) =  g(bnet(b, z)). What can be 
said about the GDP maximizing defense? 

8.3.4. Modeling the MCSA 

These preliminaries take us to the point where we can think about 
the MCSA: 

(1) Imagine N nations each of which chooses to participate in the 
MCSA or not, with the BBP of nation n denoted by bn. Each  
nation commits a fraction δMCSA of its defensive BBP z ∗(bn) to  
multilateral cyber defense. δMCSA is something to be negotiated 
between the nations participating in the MCSA. 

(2) Thus, the defensive BBP from the MCSA is the sum of the allo-
cations from each nation, that is the sum of δMSCAz ∗(bn) for  
n = 1, 2, . . . , N . We are now faced with a modeling decision 
about how the total defensive BBP in the MCSA are allocated 
between the participating nations. Clearly all the nations cannot 
obtain all of the defensive BBP in the MCSA, so a starting point 
is to assume that each of the nations participating in the MCSA 
receives an equal fraction of the joint defensive BBP. A nation’s 
total defensive BBP is then the sum of (1 − δMCSA)z ∗(bn) (the 
BBP it is not sharing) and the share of the defensive BBP in 
the MCSA. 
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Potential project: Think about other ways that 
the total defensive BBP in the MCSA =zMCSA 

�NδMSCA n=1 z ∗(bn) could be allocated across the nations 
and how the enhanced defense could be defined. 

(3) When nations are guaranteed to honor the MCSA, given the total 
defensive BBP each nation can then compute GDP with unilat-
eral cyber defense and multilateral cyber defense for the OECD 
countries and by comparing them decide whether to participate 
in the MCSA or not. 

(4) When nations are not guaranteed to honor the MCSA, the sim-
plest case is that the NTF is constant across all nations. Then 
an individual nation would simply reduce the defensive BBP 
from the MCSA by multiplying by the NTF and proceed as just 
described. 

(5) The situation is more complicated when each nation has its own 
NTF, but readily treated by simulation methods. We would start 
each run of the simulation of the behavior of N nations by draw-
ing the BBP and NTF of each nation. Values of BBP could be 
drawn from the beta density associated with Figure 8.4 (i.e. Eqn. 
(8.2)). To give N nation its own NTF, φn, I would also  use  a beta  
distribution with specified mean and variance. For example, in 
Figure 8.9 I show two beta distributions with the common mean 
to 0.7, but variance either 0.02 or 0.2. 

(6) In each run of the simulation, we cycle over nations and for each 
nation compute its GDP if it goes alone and its total defense 
and then GDP if it participates in the MCSA. We then would 
allow each nation to join the MCSA or not. By repeated running 
this simulation, with randomly drawn BBP and NTF for each 
nation, we will generate a distribution for the number of nations 
participating in the MCSA. 

When this is done, we are ready for the prize: Assembling a MCSA 
for the OECD nations. To do so, imagine that a small number Ninit 

of the OECD nations have decided that they want to establish a 
MCSA. We no longer would need to choose the BBP randomly, 
because they are known for the OECD nations, but still need to 
choose the NTFs from a distribution. It makes sense to me that the 
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(a) (b) 

(c) (d) 

Fig. 8.9. Left panels: Two choices for the beta density of NTFs. Both distribu-
tions have the same mean (0.7) but the variance is 0.02 in the upper panel and 0.2 
in the lower panel. We might describe the upper panel as “most nations trust each 
other somewhat” and the lower panel as “some nations are very trusting, while 
others are very untrusting”. In the right panels, I show examples of simulated 
NTFs. 

NTFs of the initializing nations should be at least the mean value or 
higher. After the MCSA is initialized by those first Ninit nations, we 
can ask sequentially if the remaining nations would choose to join 
the MCSA or not, by comparing GDP with unilateral defense and 
GDP with multilateral defense, and then making a rational choice 
(Hechter 1987, Guzman 2008) of joining the MCSA if GDP is larger 
when in the MCSA than GDP when the nation goes it alone. 

Simulation has a role to play here too. Without specific knowledge 
of the policies of the nations, there is no a priori  means for choosing 
the initial nations or the order in which nations choose to join the 
MCSA or not. To deal with this problem, we can randomly re-order 
the OECD nations in each run of the simulation (which can be done 
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using the “Sample” package in R without replacement) and follow the 
procedure described in the previous paragraph. Each replicate of the 
simulation will generate the fraction of the nations joining the MSCA, 
so that after all of the replicates are run we have a distribution for 
the fraction of nations joining the MCSA. 

8.4. Create Your Own Voyage 

These examples (modeling the cyber system of the enabled physical 
system, modeling human factors in the PAM and the FMSCO, and 
modeling a MCSA) are exactly that – examples of future directions. 
Of course, I hope that some of you will work on them (and if so, 
please let me know!). 

More importantly, I hope that all of you will feel sufficiently 
emboldened to embark on a voyage of your own choosing. All success 
in that endeavor. 

8.5. Final Advice from Pasteur 

I would love to tell you that this is the best moment of my life. 
But I feel this happy when I finish a song or when I crack 
the code to a bridge that I  love.  For  me  the reward  is  the  
work – Taylor Swift on the receipt of her record-breaking fourth 
Grammy Award for Album of the Year (4 Feb 2024). 

In his biography of Pasteur, Debré (1994) writes that in 1894, the 
72 year old Pasteur met 28 year old Charles Nicolle in the hallway, 
asked him about himself and his work, and then advised “We must 
work”. Debré (1994) noted Nicolle followed the advice, worked, and 
received the Nobel Prize in Physiology or Medicine in 1928 for his 
research on typhus. 

We must work and, like Taylor Swift, know that the reward is the 
work. Bon voyage – there is much to be done and little time to be lost. 

8.6. Summary of Major Insights 

• Fruitful directions for future research include explicit models of 
the cyber system of the enabled physical system, incorporating 
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human factors into the PAM and the FMSCO, and moving 
beyond dyadic interactions to consider multilateral cyber security 
agreements. 

• Modeling the cyber system of the enabled physical system increases 
both the fidelity to operational situations and the complexity of 
the mathematical model but it will likely lead to new insights. 
Focus on a particular system, such as an electric grid and utility 
company is an appropriate starting point. 

• Human factors are another natural extension of the PAM and 
FMSCO because humans are deeply involved in both creating com-
promise in cyber systems (e.g. by sharing thumb drives that carry 
malware) and detecting compromise (by recognizing anomalous 
situations). Modeling human factors will also expand the number 
of equations in the PAM and FMSCO. 

• A MCSA will help movement towards a global approach to 
shared cyber defense and response when cyber attacks occur. In 
this case a specific example of a performance function related to 
cyber systems is national GDP as a function of national BBP, illus-
trated using nations that are member of the OECD. From it we 
learn: 

– When the likelihood of cyber attack increases with the BBP of a 
nation and cyber resources can be allocated from BBP to unilat-
eral defense, thereby reducing the number of successful attacks, 
there is a threshold level of BBP below which no defense is pre-
dicted (because adversaries will direct attacks to nations with 
larger BBP). After that, resources allocated to defense increase 
but at a decreasing rate, so that the fraction of BBP dedicated 
to defense is predicted to rise, level off, and fall for the largest 
values of BBP. 

– Multilateral defense requires an assumption about to depend-
ability of cyber security cooperation. When cooperation is guar-
anteed, nations are able to increase GDP relative to unilateral 
defense for all levels of BBP, with the largest relative gains going 
to nations with smaller BBP. 

– When cooperation is not guaranteed, we must understand a 
nation’s perception of how likely other nations are to deliver 
on their commitment to the cooperative security agreement. 
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As a nation’s perception of the trustworthiness of other nations 
declines, the gain from participating in a MCSA declines. Sim-
ulation methods allow us to assess the gain to a nation by par-
ticipating in a MCSA and predict the fraction of nations joining 
the MSCA, illustrated with the OECD nations. 
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Appendix 

Glossary of Terminology, 
Symbols, Equations 

Glossary of Terminology 

The attack rate parameter a multiplies the relative intensity of 
attack in the Pulse Attack Model. 

The beta probability density is used to model a random vari-
able whose values fall between 0 and 1. It depends upon two param-

Γ(α+β)eters α and β and has the form f (x|α, β) =  xα−1(1 − x)β−1 
Γ(α)Γ(β) 

Γ(α+β)where Γ(·) is the  gamma function. We  can  think  of  as aΓ(α)Γ(β) 

normalization constant. 

Broad Band Penetration (BBP) is the number of subscrip-
tions to fixed and mobile broadband services divided by the number 
of residents in a country (OECD 2017). 

Cyber co-compromise occurs when an uncompromised cyber 
asset has its behavior changed significantly after interacting with a 
previously compromised asset. 

The co-compromise rate parameter determines the rate at 
which already compromised cyber assets lead to the compromise of 
currently uncompromised assets. 
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A cyber asset is any kind of electronic information technol-
ogy that may be operationally important in its own right or opera-
tionally important because of a linkage to other cyber assets or an 
enabled physical system. Cyber assets are characterized uncompro-
mised, compromised, or being restored/reset from compromise. 

The co-compromise rate parameter aco determines how 
uncompromised cyber assets are compromised by already compro-
mised cyber assets. Due to co-compromise, cyber assets move from 
the uncompromised to compromised pool at rate acox(t)x0(t). 

A cyber asset is compromised when its expected and actual 
behavior differ in significant ways. 

A cyber attack occurs when compromise of a cyber asset is 
caused by an adversary. Cyber assets can be protected or hardened 
against attack, but few remain permanently invulnerable. When a 
cyber asset is compromised it may be repaired by humans or by 
other cyber assets. 

To account for cyber assets that are critical to performance, in  
the simplest case, we imagine two kinds of cyber assets, now denoted 
by x1(t) and  x2(t), with contributions to the performance of the 
cyber system v1 and v2 > v1, respectively, so that the performance 
function when there are xi uncompromised cyber assets of each type 
is φ(x1, x2) =  1 

x50−(v1x1+v2x2) 
σx1+e 

When cyber assets are linked they form a cyber system or cyber 
infrastructure. We will not be more specific than this, keeping with 
the idea that cyber systems are often more easily recognized than 
defined. 

A Cyber Protection Team (CPT) is a trained group of experts 
who both maintain defense against attack and return compromised 
cyber assets to their functional state. 

A cyber system is a collection of cyber assets that act to per-
form a particular mission. 
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Decoy cyber assets are components of a cyber system with 
no functionality, but instrumented to detect compromise with high 
probability. 

An enabled physical system is an electrical (e.g. communi-
cations) or mechanical (e.g. a power generator) whose performance 
depends upon the functioning of a focal cyber system. 

Escalation to a kinetic attack or cyber attack on critical 
civilian infrastructure occurs when a nation‘s response to a cyber 
attack is a kinetic attack or cyber attack on critical civilian infras-
tructure. 

The exponential distribution characterizes the positive values 
˜that a random variable Z can take. It depends upon on parameter 

λ; Z̃ follows an exponential distribution when below the equation in 
the exponential distribution: 

−λzPr[Z̃ ≤ z] = 1  − e 

In its basic form the Fundamental Model of Simultaneous 
Cyber Operations (FMSCO) two adversaries, denoted by the 
X-side and the Y-side, conduct persistent persistent attacks at con-
stant rates. Instead of a single network as in the Pulse Attack 
Model (PAM), there are two interacting networks, which have sim-
ilar dynamics for co-compromise and recovery as the PAM. With the 
assumption that the total number of cyber assets XT and YT remain 
constant, there are four dynamical variables: the numbers x(t), y(t) of  
uncompromised cyber assets of each side and the number x0(t), y0(t) 
of compromised cyber assets of each side, following the dynamics 

dx 
= − axy + b(XT − x − x0)

dt 

dx0 
= axy − rxx0

dt 

dy 
= − cxy + d(YT − y − y0)

dt 

dy0 
= cxy − ryy0

dt 
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The keys to understanding the readiness of the two cyber systems are 
the rates of detection of compromise rx (the X-side) and ry (the 
Y-side) at which  compromised X-side and Y-side cyber assets are 
moved to resetting/recovery, and the rates of recovery b (X-side) 
and d (Y-side) at which cyber assets are moved from the resetting/ 
recovery pool to the uncompromised pool. 

The gamma density characterizes the values that a random 
˜variable V >  0 takes  by  a  shape and scale parameters av and 

1 av −1 −v/svsv, respectively, with probability density f(v) =  v e ,saΓ(av )v 

where Γ(av) is  the  gamma function.  Then mean and variance  of  Ṽ 
2are E(Ṽ ) =  avsv and V ar(Ṽ ) =  avs .v 

The gamma function is arises in classical applied mathemat-
�

1 ∞ av −1ics and is defined by Γ(av) =  sa v e−v/sv dv. It  satisfies  0v 

Γ(z + 1)  =  zΓ(z). 

Gross Domestic Product (GDP) is the monetary value of 
goods and services bought by the final user produced in a country in 
a given  period of  time.  

A cyber asset is hardened against cyber attack when it has 
reduced vulnerability to the cyber attack. In general, not all cyber 
assets are hardened after being restored, restoring a hardened cyber 
asset may take longer than restoring a a more vulnerable cyber asset, 
and hardening is lost over time. 

Heuristic models are not specific to any particular cyber system 
but have much in common with many cyber systems and allow us to 
increase understanding of important variables (rather to make pre-
cise predictions) developing active intuition, where “active” empha-
sizes that our intuition develops and grows. Heuristic models help 
identify what to measure to be able to assess vulnerability to cyber 
attack, the consequences of attack on performance of the cyber or 
enabled physical system, and to identify design tradeoffs and routes 
to defense. 

The hockey stick model for response to cyber attack charac-
terizes the probability that a defender responds to a cyber attack 



219 Appendix: Glossary of Terminology, Symbols, Equations 

either kinetically or by an attack of critical civilian infrastructure. 
It is a function pr(φ) giving the probability that the defender initi-
ates a response given that one has not yet started when performance 
is φ, with three parameters. There is no response if performance is 
greater than φ1, and maximum probability of response, pmax, when  
performance  is less than  φ2. A straight line connects those points 
(Figure 5.3) and the equation for the probability of response is 

⎧ 
⎪ ⎪

pmax φ ≤ φ2 
⎪ 
⎨ 

p (φ) =  
pmax 

(φ1 − φ) if  φ2 < φ ≤ φ1 (1)r 
⎪ φ1 − φ2 
⎪ 
⎪ 
⎩ 
0  if  φ > φ1 

A Multilateral Cyber Security Agreement (MCSA) is an 
agreement between nations to allow them to share in collective mon-
itoring and defense against cyber attack. 

The National Trust Factor (NTF) is the probability char-
acterizing a nation’s belief that other members of a Multilateral 
Cyber Security Agreement will honor their commitments to mon-
itoring and defense. 

The Organization for Economic Cooperation and Devel-
opment (OECD) is an intergovernmental organization founded in 
1961 to advise governments on how to develop policies that will 
make the lives of their citizens better. Member nations work to pol-
icy that drives reform around the world. For more information see 
https://www.oecd.org/en/about.html. 

Research in Pasteur’s Quadrant is motivated by an important 
applied problem and seeks fundamental understanding of the system 
of interest. It can be called applied basic research and compared to 
Bohr’s Quadrant of pure basic research and Edison’s quadrant of 
pure applied research. 

The performance function of the cyber system or the enabled 
physical system is a value between 0 and 1, determined by the num-
ber of uncompromised cyber assets (see Mangel and McEver 2021 for 
an alternative), denoted by x, and performance is denoted by φ(x). 

https://www.oecd.org/en/about.html
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We assume a sigmoid function for performance φ(x) =  1 ,x50−x 
σx1+e 

where x50 is the number of uncompromised cyber assets giving 
performance of 50%, and σx determines how rapidly performance 
rises as the number of uncompromised cyber assets increases. When 
the performance of an enabled physical system depends upon the 
performance of the cyber system, we use P(φ(x)) to denote the 
performance of the physical system and assume that it too is a 
sigmoid. 

In process-based modeling one describes the dynamics of the 
system of interest with explicit state (and often time) dependent 
functions of how the system changes. Such models allow us to reach 
beyond the empirical data, but be guided by it, and use deduc-
tive predictions to help guide data collection in the future (since 
the number of choices for what kind of data to collect is essentially 
unbounded). 

A pulse attack characterizes the time dependence of an adver-
sary’s attack on a cyber system and is modeled using a Gaussian 
distribution (a bell shaped curve) with mean tpeak (which is the 
time at which the pulse peaks) and dispersion (standard deviation) 
σ so that the relative intensity of a pulse attack as a function of 

√ 1 −(tpeak−t)2/2σ2 
time, I(t), is I(t) =  e . To determine the abso-

2πσ 
lute intensity of the attack, we multiply relative intensity by the 
attack rate parameter a, so that the rate of attack at time t 
is aI(t). 

In its basic form the Pulse Attack Model (PAM) tracks the 
dynamics in response to a single pulse attack of uncompromised 
x(t) and compromised x0(t) assets at time t in a cyber system in 
which the total number of cyber assets XT is constant.The dynamical 
equations are 

dx 
= − axI(t) − acoxx0 + b(XT − x − x0)

dt 
dx0 

= axI(t) +  acoxx0 − rxx0
dt 
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where a is the attack rate parameter, I(t) is the  relative inten-
sity of a pulse attack, and  aco is the rate of co-compromise. 

The relative intensity of a pulse attack is modeled by as 
Gaussian distribution I(t) =  √ 1 e−(tpeak−t)2/2σ2 

. 
2πσ 

The resilience stack captures the hierarchical nature of attack 
and defense in cyber systems, in the sense that the best defense is 
to avoid attack in the first place, but when attack cannot be avoided 
it can be resisted; when resistance is unsuccessful and anticipating 
that the attacker enters the cyber system, the cyber system can be 
hardened so that it is robust to attack or may have redundant cyber 
assets, so that if one cyber asset fails others can take over the mis-
sion. Since even hardened, redundant systems may fail against some 
sophisticated cyber tools assets will need to be repaired, reset, or 
even replaced. 

A compromised cyber asset is restored or reset after compro-
mise is detected (usually requiring some time) and the cyber asset is 
repaired sufficiently to return to operational status. 

Resources are rate parameters such as b and rx in the PAM or 
b, rx, d  and ry in the FMSCO ostensibly under the control of the 
defender, who can choose their values, subject to a constraint such 
as cbb + crrx = R for the PAM, where cb and cr are costs of a unit 
of b and rx, respectively, and R is the total resource level. 

Simultaneous Cyber Operations (SCOs) occur when multi-
ple actors conduct cyber operations against each other, resulting in 
continuous action in cyberspace. 

The SIRS and SIR models are classical ones in the population 
biology of disease, characterizing the dynamics of Susceptible (S), 
Infected (I), and recovered individuals. In the SIRS model, recovered 
individuals lose their immunity to the disease as time progresses and 
once more become susceptible to it. When there is no loss of immu-
nity we have the SIR model. Letting t denote time, the symbols 
S(t), I(t), and R(t) denote the number of Susceptible, Infected, and 
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Recovered individuals at time t. If total population size is constant, 
they follow the dynamics 

dS 
= − βI(t)S(t) +   R(t)

dt 

dI 
= βI(t)S(t) +  µI(t)

dt 

dR 
= µI(t) −  R(t)

dt 

In stochastic versions of the PAM and the FMSCO, we intro-
duce random components to the dynamics, so that instead of steady 
states and single numbers for quantities such as numbers of uncom-
promised cyber assets, performance, and recovery time, we obtain 
distributions. 

The Stochastic Simulation Algorithm (SSA) and τ-Leaping 
Algorithm are two ways of developing stochastic versions of the 
Pulse Attack Model and Fundamental Model of Simultane-
ous Cyber Operations in which the terms on the right hand side 
of ordinary differential equation are used to compute the probability 
of change in the relevant state variable. 
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