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Preface

Technology has developed at a very fast rate in the recent past, and this has 
greatly impacted society in aspects such as communication and transport. One 
of the most innovative technologies is the Internet of Vehicles (IoV), which 
can change the world of transportation and build a system of autonomous and 
intelligent vehicles connected to an interconnected network. However, with the 
increased connectivity arises a new cybersecurity challenge that stems from 
the fact that vehicles are now susceptible to cyber threats that can threaten 
their safety, reliability, and efficiency. These challenges form the core motiva-
tion for this book: the urgent need to develop robust cybersecurity solutions for 
autonomous vehicles (AVs) operating within the IoV ecosystem.

Some of the most critical bus systems used in modern vehicles are the con-
troller area network (CAN). CAN bus is the network which controls the flow 
of information between the electronic control units (ECUs) within the vehicle. 
Although it is a crucial component in managing the overall functioning of 
AVs, the CAN bus was not developed with security as a consideration. Its lack 
of security mechanisms exposes vehicles to serious vulnerabilities, including 
message injection attacks. In such attacks, hackers can inject malicious com-
mands into the CAN bus, which leads the ECUs to perform certain actions that 
they were not supposed to, which may lead to malfunctions, accidents, or even 
fatalities. CAN bus is its reliance on message prioritisation based on CAN 
IDs. Lower CAN ID values are prioritised for transmission, which presents an 
opportunity for attackers to manipulate high-priority messages and disrupt the 
normal functioning of the vehicle. This calls for new strategies to address this 
threat that cannot be solved by conventional security measures.

In response to these challenges, this book introduces a novel intrusion 
detection system (IDS) specifically designed for AVs, which leverages data 
prioritisation in CAN IDs to enhance threat detection and mitigation. To be 
more precise, the IDS analyses the sequence of CAN bus messages and fil-
ters the data flow, which increases the efficiency of anomaly and cyber threat 
detection. We have incorporated machine learning and deep learning frame-
works into the IDS in order to analyse CAN bus traffic and identify the pres-
ence of any malicious activities in real time with a high level of accuracy. By 
employing classifiers like support vector machines (SVM), k-nearest neigh-
bours (KNN), and neural networks, the system has been able to maintain an 
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accuracy rate of more than 99% in identifying between the genuine data and 
the possible threats with minimal false alarms.

This book provides a comprehensive examination of the cybersecurity 
risks faced by AVs, with a particular emphasis on CAN vulnerabilities and 
the innovative use of data prioritisation within CAN IDs. Through filling the 
research gap between the theoretical studies and practical implementations, it 
offers a new method for improving vehicle security. This approach is not only 
beneficial for researchers but also offers industry professionals helpful meth-
ods that can be used to protect actual AV systems. Readers will find this book 
invaluable as both a reference guide and a practical manual for improving the 
cybersecurity of autonomous vehicles. Researchers can use the models and 
frameworks presented here to further advance the field of vehicular cybersecu-
rity, exploring new directions in data prioritisation and attack detection. These 
solutions can be used by industry professionals and engineers to improve the 
safety of current and future autonomous vehicle networks, making the IDS 
system flexible for use in various aspects of the IoV.



ix

About the Authors

Mr. Ahmed Alruwaili is a researcher specialising in cyber security, artificial 
intelligence, and quantum computing. He received his Bachelor of Computer 
Science in computer science and information from Aljouf University, Saudi 
Arabia, in 2013, and a Master of Information Technology with a focus on cyber 
security from Deakin University, Australia, in 2019. Currently, he is pursuing 
his PhD at Victoria University, Australia, where he focuses on enhancing secu-
rity frameworks for the Internet of Vehicles. His research bridges theoretical 
concepts and practical applications in areas such as cyber security, artificial 
intelligence, game theory, distributed systems security, machine autonomy, 
and quantum computing. An active member of the Institute for Systems and 
Technologies of Information, Control and Communication (INSTICC), and the 
Australian Information Security Association (AISA), Mr. Alruwaili is commit-
ted to contributing to the academic community and staying at the forefront of 
developments in his field.

Dr. Sardar M. N. Islam (Naz) is currently a professor at Victoria University, 
Australia. He is also a distinguished visiting professor of artificial intelligence 
at UnSri and a distinguished visiting professor of quantum technologies and 
computing at BIT; adjunct professor of IT and business at Armstrong Insti-
tute, Melbourne; and editor-in-chief of International Transactions on Artifi-
cial Intelligence. Professor Islam adopts a global and humanistic approach 
in his research and academic works. He has published 31 scholarly authored 
academic books and 4 edited books with prestigious international publishers 
in different disciplines, including computer science. Professor Islam has also 
published approx. 250 articles, including some of the leading international 
journal articles in his specialised research areas.

Dr. Iqbal Gondal is Associate Dean in Cloud, Systems and Security, and Dep-
uty Director (cybersecurity) Sir Lawrence Wackett Defence & Aerospace Cen-
tre (SLWDAC) in Royal Melbourne Institute of Technology (RMIT), Austra-
lia. He has worked in industry and academia for 25 years in both Singapore and 
Australia. He was the director of Internet Commerce Security Lab (ICSL) for 
seven years to conduct translational research in cybersecurity. Previously, he 
was the director of ICT strategy for the faculty of IT in Monash, India. He is a 
fellow of Institute of Engineers Australia, member of IEEE USA, and graduate 



x  About the Authors

member of Australian Institute of Company Directors (GAICD). Dr. Gondal 
worked as a research fellow and a senior software systems engineer for seven 
years in Singapore and Australia with Delphi (GM), Singapore Manufactur-
ing Technology (SimTech) centre, and other industries working on design and 
development, project management, system design and integration, SCADA, 
intelligent techniques, adaptive systems, and wireless switches for financial 
services. He has published over 219-refereed conference and journal papers, 
and he is a an experienced HDR supervisor. Dr. Gondal was a member of the 
University Governing Council & Engineering Advisory Committee, Non-Exec 
Director of Oceania Cyber Security Centre, and University engagement for the 
Defence Science Institute.



xi

Figures

	 1.1	 The typical in-vehicle network architecture� 3
	 2.1	 The IoV network model� 10
	 2.2	 The automation levels introduced by NHTSA� 12
	 3.1	 A schematic depiction of the SVM� 25
	 3.2	 An example of a decision tree� 26
	 3.3	 An example of the RF model� 27
	 3.4	 An example of KNN� 28
	 3.5	 A neural network architecture� 30
	 3.6	 The architecture of CNN� 31
	 3.7	 The RNN architecture� 33
	 3.8	 The internal architecture of LTSM� 34
	 4.1	 The proposed IDS framework� 36
	 4.2	 The combined datasets� 37
	 4.3	 Distribution of the normality of the dataset� 37
	 4.4	 The correlation between different features� 39
	 4.5	 The preparation phase process� 40
	 4.6	 Splitting data based on its priority� 41



http://taylorandfrancis.com


xiii

Tables

	 2.1	 The similarities between robotics and autonomous vehicles� 13
	 3.1	 The CAN bus message frame standard� 16
	 3.2	 The format of the identifier of CAN messages� 17
	 5.1	 The performance of each ML algorithm� 45
	 5.2	 The performance of each DL algorithm� 46
	 5.3	� The performance of all selected algorithms before applying  

the proposed model� 46



http://taylorandfrancis.com


xv

Abbreviations

ACK	 Acknowledge
AVs	 Autonomous vehicles
CAN	 Controller area network
CNN	 Convolutional neural network
CRC	 Cyclic redundancy check
DBN	 Deep belief network
DCNN	 Deep convolutional neural network
DDoS	 Distributed denial of service
DEL	 Delimiter
DL	 Deep learning
DLC	 Data length code
DNN	 Deep neural network
DT	 Decision tree
ECUs	 Electrical control units
EDP	 Extended data page
ELM	 Extreme learning machine
EOF	 End of frame
FN	 False negative
FP	 False positive
GAN	 Generative adversarial network
GPS	 Global positioning system
GRU	 Gated recurrent units
ID	 Identifier
IDE	 Identifier extension
IDS	 Intrusion detection system
IFS	 Inter frame space
IID	 Identically distributed
IoT	 Internet of Things
IoV	 Internet of Vehicles
IVN	 Intra-vehicle networks
KNN	 K-nearest neighbour
LIN	 Local interconnect network
LSTM	 Long short-term memory
MARL	 Multi-agent reinforcement learning



xvi  Abbreviations

MAS	 Multi-agent system
ML	 Machine learning
MOST	 Media Oriented Systems Transport
NHTSA	 National Highway Traffic Safety Administration
NN	 Neural network
Rbf	 Radial basis function
RF	 Random forest
RNN	 Recurrent neural network
RPM	 Radiation portal monitors
RTR	 Remote transmission request
SOF	 Start of frame
SVM	 Support vector machine
TML	 Traditional machine learning
TN	 True negative
TP	 True positive
VANETs	 Vehicular ad hoc networks
V2C	 Vehicle-to-Cloud
V2I	  Vehicle-to-Infrastructure
V2T	 Vehicle-to-Personal Device
V2R	 Vehicle-to-Roadside
V2S	 Vehicle-to-Sensors
V2V	 Vehicle-to-Vehicle



DOI: 10.1201/9781003610908-1� 1

1Introduction

1.1  BACKGROUND

In the modern era concerning the development of distributed autonomous sys-
tems, machines have become more independent and productive in their opera-
tions, which has led to the emergence of a new concept known as “multi-agent 
systems”. Ferber and Gutknecht [1] define multi-agent systems as a group 
of agents interacting together in the same environment to achieve a goal. 
The agent has the ability to make a decision based on its interaction with 
the surrounding environment, thus achieving independence and enhancing 
intelligence [2]. The features of these systems are characterised by agency, 
independence, negotiation, cooperation, communication, and interaction [2]. 
These systems are used widely in many fields, such as computer science and 
engineering [3]. These systems are linked according to the field of their use.

In the past few years, new integrated technologies have changed many dif-
ferent fields and turned them into more advanced data communication systems 
called the Internet of Things (IoT). These technologies include smart homes, 
smart health, and smart transportation systems [4]. According to recent estimates, 
the number of devices connected to the Internet has increased to 25 billion [5]. 
With the increase in the number of vehicles connected to the Internet, IoT pre-
sented a new theme in the vehicular networks field, known as the Internet of 
Vehicles (IoV) [6]. The IoV is a networked, open, and integrated system with con-
trollability, operationalisation, credibility, and high manageability. It is an inte-
gration of multiple agents such as vehicles, users, things, and networks [7]. This 
integration between the intelligent multi-agents for the IoV has some advantages 
and disadvantages during communication and interaction between the parties.

One of the key areas where the IoV network is expected to have a sig-
nificant impact is in the field of robotics. As a technology field, robotics deals 
with the design, construction, operation, and application of robots. Robots are 
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machines that can perform a series of complex actions automatically, often 
programmed by a computer [8]. According to [9], robots have several key 
properties that distinguish them from other machines, including their ability 
to sense their environment, move and manipulate objects, and make decisions 
based on their programming and sensor data. The advantages of robotics are 
many, and these include their ability to work consistently and accurately, oper-
ate in hazardous or inaccessible environments, and perform tasks that are too 
dangerous or tedious for humans [10].

The usage of robots has increased significantly in recent years, and they 
are being used in different sectors such as manufacturing, health care, agricul-
ture, and transportation. In the transportation industry, robotics is being used 
to facilitate individual mobility, particularly through autonomous vehicles [11]. 
Autonomous vehicles can drive and navigate without human intervention, so 
they are made possible through the integration of various technologies, such 
as multi-agent systems (MAS), the IoT, and vehicular networks (VANET), 
which make up the Internet of Vehicles network [7]. Different types of robots 
are being used in various industries, such as industrial robots in manufactur-
ing, service robots in cleaning and security, and medical robots in surgical 
and other medical procedures. The potential of robotics is vast, and it offers 
numerous opportunities for innovation. Therefore, this research highlights the 
emergence of the IoV network and its impact on the field of robotics, specifi-
cally on autonomous vehicles.

Since the number of vehicles connected to the Internet is growing, the 
amount of data from the vehicles’ networks are increasing as well [12]. Many 
modern vehicles have a certain level of automation, such as a lane-keeping 
framework, adaptive cruise control, crash-warning systems, self-parking 
technology, etc. [13]. In the next few years, fully autonomous vehicles will be 
available for individuals [14]. These refinements will encourage individuals to 
adopt autonomous vehicles to facilitate mobility, especially for those who do 
not drive because of age or disability.

Network communications are frequently employed in intra-vehicle net-
works (IVN) [15]. IVN systems need to connect to the Internet more fre-
quently as a result of the IoV technology’s rapid growth; in order to provide 
online communication and real-time traffic updates. In addition, autonomous 
vehicles (AVs) contain multiple electrical control units (ECUs) communicating 
through different protocols and busses. These buses include controller area 
network (CAN), FlexRay, local interconnect network (LIN), or the Media 
Oriented Systems Transport (MOST) [16]. Figure  1.1 illustrates the typical 
IVN architecture. The FlexRay and MOST have proven that they are faster 
than CAN but are more expensive. Consequently, our research will focus on 
CAN in the internal context of autonomous vehicles.
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FIGURE 1.1  The typical in-vehicle network architecture

1.2  SCOPE

Autonomous vehicles contain a variety of communication technologies that 
can be used for entertainment, customer service, diagnostics, and internal con-
trol. Any of these technologies might be used as a threat by the malicious 
users. This book focuses on internal communication security, specifically in 
the CAN bus.

1.3  PROBLEM

Despite the enormous benefits of autonomous vehicles, many studies have 
shown that AVs can have a negative impact on drivers’ security, privacy, and 
quality of life [7, 17]. This is because the AV systems, including the CAN bus, 
transmit data between ECUs. These ECUs manage vehicle subsystems such 
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as gearbox, engine, speed, airbag, etc. The transmitted data between ECUs 
through CAN bus faces security challenges like data encryption and user 
authentication, which will affect the CAN bus security system [18]. This means 
the data will be vulnerable because it is coming from different nodes. One of 
these nodes could be used to perform a distributed denial of service (DDoS) 
attack to take the network down. Hackers could take control of AVs, resulting in 
traffic collisions and devastating consequences, including death [17, 19]. Thus, 
the lack of security protections like user authentication and message encryption 
makes the ECUs in the CAN bus vulnerable to cyber-attacks. These factors 
emphasise the critical necessity for security mechanisms to safeguard the CAN 
bus essential [6]. Recently, one solution that has gained researchers’ attention 
for reducing such security challenges is the intrusion detection system (IDS), 
which is a process that uses machine learning (ML) and deep learning (DL) to 
monitor the CAN bus network [14]. This involves monitoring data sent between 
the different ECUs and alerting the system to any suspicious activity.

1.4  SIGNIFICANCE AND PRACTICAL 
IMPORTANCE OF THIS RESEARCH

This research can demonstrate its significance in many situations. By protect-
ing IoV from cyber threats, it may deter the possibility of severe damage to 
people and infrastructure and prevent governments from losing a lot of money. 
This research will contribute to the subject by improving the training model by 
reducing the time required for training and enhancing the quality of data. This 
will enhance the safety of the vehicle network and the system for moving people 
in the real world. As far as we know, there is no work published yet that classi-
fies transmitted messages on CAN bus for effective intrusion detection system.

1.5  RESEARCH AIMS AND 
RESEARCH QUESTIONS

This research aims to devise an intrusion detection system that uses ML and 
DL to recognise whether the data originates from a real node or a hacker node 
connected to the CAN bus. This research addresses the following research 
question: “How can machine learning and deep learning be leveraged to 
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enhance the cybersecurity of autonomous vehicles communication, con-
sidering the dynamic and complex nature of AVs networks and the threat 
landscape?”

Objectives:

•	 To investigate the current state of cybersecurity in AV networks and 
identify the major threats and vulnerabilities that pose a risk to their 
communication.

•	 To explore the potential of machine learning and deep learning 
techniques in enhancing the cybersecurity of AV networks and miti-
gating the identified threats.

•	 To develop a machine learning and deep learning-based IDS for 
detecting cybersecurity threats in AV networks.

•	 To evaluate the performance and effectiveness of the proposed solu-
tion through a series of experiments.

•	 To identify the limitations and challenges associated with using 
machine learning and deep learning in AV cybersecurity and pro-
pose recommendations for future research.

The research will provide valuable insights into the design and opti-
misation of IDSs for AVs and help enhance the overall cybersecurity of AV 
networks. The proposed IDS prototype can be integrated into existing AV sys-
tems to provide effective protection against cyber-attacks.

1.6  METHODOLOGY OF THE RESEARCH

The research methodology is divided into two parts. The first part conducts 
an extensive literature review search on the evolution of autonomous vehi-
cle security and understanding of in-vehicle network architecture and CAN 
security methods through in-vehicle IDS design. In the second part, we will 
first choose a public dataset that includes the CAN messages that have been 
attacked on the network. Second, the dataset will be analysed and processed to 
implement the IDS. This is followed by devising a lightweight IDS capable of 
detecting security threats in the CAN bus network. The need for a lightweight 
IDS is crucial for the security of AVs since they rely on low-power units with 
limited computational capabilities. Finally, the effectiveness of IDS in detect-
ing attacks will be evaluated by measuring the incidence of true positive, false 
positive, true negative, and false negative results.
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1.7  CONTRIBUTIONS OF THE BOOK

The following are the main contributions of this book:

•	 In this book, a novel model which is based on the nature of the AV 
data has been proposed. The proposed model distinguishes all high-
priority messages for training the deep learning algorithms. At the 
same time, all low-priority messages are used for machine learning 
algorithms.

•	 The proposed architecture ensures the continuous flow of high and 
low-priority data, with no collisions.

•	 Proposed techniques classification performance in detecting threats 
on the CAN bus network has been compared with well know models.

•	 Our work contributes to the field of intrusion detection by address-
ing two critical challenges: minimising classification errors and 
reducing the computational burden of the system. By employ-
ing a balanced class and a limited number of attributes, we aim 
to improve the accuracy of intrusion detection while ensuring that 
the system can operate efficiently on low-power devices commonly 
used in autonomous vehicles.

1.8  BOOK OUTLINE

This book is organised into six chapters. Chapter  1 is a description of the 
study’s background, scope, problem, research aim, research questions, and 
methodology. Chapter 2 presents an overview of the literature on multi-agent 
systems, Internet of Vehicles, and autonomous vehicles specification as the 
theoretical basis of our research. In-depth information about the CAN bus pro-
tocol and intrusion detection system presented in Chapter 3, which describes 
the method used to mitigate the vulnerabilities in the CAN bus protocol. 
Chapter 4 explains the proposed solution and presents details of the imple-
mentation steps. Chapter 5 covers the relevant results and discussion regarding 
the research question. Finally, the conclusion of the book and future research 
ideas on this topic are stated in Chapter 6.
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2Theoretical Lens

2.1  MULTI-AGENT SYSTEMS

Multi-agent systems (MAS) are defined as agents interacting in the same envi-
ronment to achieve a certain goal [1]. MAS is an application, and it operates 
independently in an environment using protocols and languages to interact 
with other agents [20]. The individual agent has the ability to make a deci-
sion based on his interaction with the surrounding environment and so in this 
way achieves independence and intelligence [2]. Furthermore, it has some fea-
tures that are characterised by agency, independence, negotiation, cooperation, 
communication, and interaction [2]. These systems are used widely in many 
fields [3] and are linked according to the field of their use. This section focuses 
on the communication, application, and learning aspects of MAS.

Communication in multi-agent systems is an important component. 
Failure of the connection can mean consequences and increases the cost to 
the agent [21]. MAS features are a particular mechanism that makes them 
simple to implement and that can handle complicated protocols for interaction 
with the vehicle to communicate with the environment [22]. These systems 
were examined by Campos-Rodriguez et al. [2], who identified aspects that 
might impact the distributed network system, and they considered vehicles 
and infrastructure (such as corridors, signals, pedestrians, etc.) as agents. 
Communications can be classified into multiple systems. Agents are referred 
to as local communication [23, 24], blackboard [25], or mobile communica-
tions, which fall under local communications. However, MAS can be used to 
develop distributed applications for complex systems [2].

Regarding MAS applications, Campos-Rodriguez et al. [2] reviewed the 
applications of multi-agent systems in the automotive industry, focusing on 
traffic regulation and road balancing. Müller and Fischer [26] investigated 152 
applications across industries that made use of MAS methods. Both Kober et al. 
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[27], who looked at robotic control, and Shakshuki and Reid [28], who explored 
multi-agent applications in the healthcare business, have shown that there 
are efficient reinforcement learning (RL) methodologies that can be applied 
to robots in the real world. However, Derakhshan and Yousefi [29] in their 
research concentrated on the applications that use wireless sensor networks.

The relationship between multi-agent systems and artificial intelligence 
has attracted the interest of many researchers. Artificial intelligence has led to 
the development of new methods (e.g., machine learning) that make it easier 
for researchers to devise complex data analytics applications. Agent learning is 
defined as the process of training an agent by entering information, results, and 
procedures to ensure that he achieves a specific goal. This process is carried out 
through three methods: active learning, interactive learning, and consequence-
based learning [30]. Machine learning algorithms have accurate characteristics 
and also have advantages and drawbacks in producing models that perform clas-
sification, regression, clustering, and behavioural learning. Hernandez-Leal et al. 
[31] presented a new classification for deep multi-agent emerging RL techniques 
based on a summary of how classical MAS research concepts, including behaviour, 
learning communication, and opponent modelling were merged into deep multi-
agent reinforcement learning (MARL) domains. Challenges in multi-agent learn-
ing such as partial observability, continuous state and action spaces, and transfer 
learning were examined by Nguyen et al. [32]. The use of deep MARL approaches 
in fully cooperative games was examined in depth by Oroojlooy and Hajinezhad 
[33]. Zhang et al. [34] conducted a targeted literature review to find MARL algo-
rithms with theoretical convergence guarantees and complexity analysis.

Multi-agent systems have shown their suitability as a solution for distrib-
uted systems such as automated vehicles. However, MAS does have certain 
challenges such as the interaction between agents, which remains a serious 
issue because it passes messages (containing personal information) between 
the agents [2], and as a result, it breaks the information’s confidentiality. 
Nevertheless, our study will not attempt to fix these issues since they are 
outside its scope. MAS was mentioned to understand the concept behind the 
Internet of Vehicles, which will be explained next.

2.2  AN OVERVIEW OF INTERNET  
OF VEHICLES

In recent years, new integrated technologies have transformed many diverse 
industries into advanced data communication networks referred to as the 
Internet of Things (IoT), which is applied in different fields such as smart 
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houses, smart transportation systems, and smart health systems [4]. This inte-
gration has increased the number of devices connected to the Internet to 25 bil-
lion [8], including vehicles. As a result, the concept of the Internet of Vehicles 
(IoV) is now part of vehicular networks [6]. IoV is an open, integrated network 
system with controllability, operability, reliability, and high manageability, 
which integrates several agents such as vehicles, users, objects, and networks 
[7]. However, this integration between the intelligent multi-agents may give 
the IoV some advantages and disadvantages regarding communication and 
interaction between the parties. This section will discover the progress made 
in communication that led to the IoV and subsequent security challenges.

Several studies had focused on the classifications of communication in 
IoV. Abu Talib, Abbas [35] categorised the IoV’s communication into three 
types: Vehicle-to-Infrastructure (V2I), communication between vehicles and 
road infrastructure, such as traffic signals and road sensors; Vehicle-to-Vehicle 
(V2V), direct communication between vehicles to share information about traf-
fic conditions, hazards, and other relevant data; and Vehicle-to-Cloud (V2C), 
communication between vehicles and cloud services for data storage, process-
ing, and access to various applications. While Sharma presented the most com-
prehensive classification of IoV’s communication, Chauhan [36] categorised 
IoV’s communication into five categories: Vehicle-to-Vehicle (V2V); Vehicle-
to-Sensors (V2S), communication with sensors within or around the vehicle; 
Vehicle-to-Infrastructure (V2I); Vehicle-to-Roadside Units (V2R), interac-
tion with roadside units that facilitate data exchange; and Vehicle-to-Personal 
Devices (V2T), communication with personal devices such as smartphones and 
wearables [36]. On the other hand, a study by Yang and Wang [7] proposed 
the IoV network model. Figure 2.1 illustrates the IoV network model proposed, 
divided into two parts: an individual model and a swarm model. The individual 
model is the interactions that occur in one vehicle, whether the interactions 
between a human with an environment, a vehicle with an environment or things 
with an environment. This model focuses on the interactions within the vehicle’s 
intra-network. The swarm model focuses on scenarios with multiple humans, 
vehicles, objects, and networks, where IoV provides services and applications 
through swarm intelligence, crowd sourcing, and crowd sensing [7].

A human is referred to as any person connected to the IoV, whether 
drivers, passengers, or beneficiaries of road services, such as pedestrians or 
cyclists. Vehicles are referred to as all connected vehicles that benefit from the 
services provided by the IoV, and they are vehicles with computing and storage 
capabilities that can connect to the Internet. The term “things” refers to any 
device connected to the IoV other than humans and vehicles, including light 
signals, sensors, etc. Environment refers to an environment where interactions 
between the user, vehicles, and objects take place. Many challenges potentially 
arise as a result of these interactions in IoV communications.
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The integration of many technologies, standards, and services into the 
vehicular Internet has led to security challenges such as the complexity in car-
rying out its tasks, as it must connect users, other vehicles, and infrastructure 
consisting of numerous networks [22]. According to Zhang and Wu [37], IoV 
contains many vulnerabilities due to its insecure environment. The exploitation 
of data flows by malicious people through vulnerabilities can have devastating 

FIGURE 2.1  The IoV network model
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effects [38]. Hickey [39] reviewed the mitigation techniques used in infrastruc-
ture systems because of their feasibility in analysing the security problem from 
the perspective of effort and impact. Zhang and Wu [37] proposed a location-
based service programme to solve security and privacy challenges. Similarly, 
Rivas and Barceló-Ordinas [38] attempted to solve the security problems of 
vehicular ad hoc networks (VANETs) by surveying the latest trends and con-
cluded the security challenges that should be considered are security, misbehav-
ing and faulty nodes, and secure data aggregation. On the other hand, Sun and 
Wu [17] discussed the security and privacy in IoV. They classified the attack 
in IoV into five types: attacks on authentication, availability attacks, secrecy 
attacks, routing attacks, and data authenticity attacks.

Most studies have shown the importance of detecting possible threats to 
IoV communication [13]. The study published in 2019 investigated cyber secu-
rity threats to wireless vehicle networks, responses, and challenges [40]. Abu 
Talib et al. [35] explored the security threats, responses, and potential chal-
lenges in the VANETs and IoV domains. Zhou et al. [41] claim that machine 
learning algorithms on IoV can improve their efficiency by utilising the fed-
eral learning model. In conclusion, each of these threats has corresponding 
implementation methods and security requirements to ensure security in IoV. 
However, our research endeavours will focus on autonomous vehicle security 
since it is an important issue.

2.3  ROBOTICS

Robotics is the branch of technology that deals with robot design, construc-
tion, operation, and application [8]. A robot serves as an apparatus intended to 
perform intricate functions independently from human control. Robots have 
several key properties that distinguish them from other machines. These prop-
erties include the ability to sense their environment, to move and manipulate 
objects, and make decisions based on their programming and the data they 
collect from their sensors. Some of the key advantages of robotics include 
their ability to work accurately and consistently, operate in hazardous or inac-
cessible environments, and perform tasks that are too dangerous or tedious 
for humans. There are several different types of robots, including industrial 
robots, which are used in manufacturing and other industrial settings; ser-
vice robots, which are used for tasks such as cleaning and security; and medical 
robots, which are used for surgical and other medical procedures. Robotics can 
be used in a variety of fields, including manufacturing, health care, agricul-
ture, and transportation [10]. In the transportation industry, robotics is being  
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used to facilitate the individual’s mobility as autonomous vehicles, which are 
vehicles that are capable of navigating and driving without human intervention.

2.4  AUTONOMOUS VEHICLES

As the prevalence of Internet-connected automobiles increases, so does the 
volume of data within their networks [12]. Numerous contemporary vehicles 
possess varying degrees of automation, such as lane maintenance systems, 
adaptive speed regulators, collision alerts, and self-parking capabilities [13]. 
The National Highway Traffic Safety Administration (NHTSA) has classi-
fied these automation stages into six distinct levels, from zero automation to 
entirely automated vehicles, as illustrated in Figure 2.2 [42].

In the forthcoming future, fully autonomous vehicles will be accessible 
for personal use [14]. These advancements will likely incentivise individuals 
to embrace self-driving cars, enhancing mobility for those who are unable 
to drive due to age or disability. The development of autonomous vehicles is 
occurring rapidly and significantly influencing both society and individuals. 
However, certain obstacles may hinder their widespread adoption. Despite the 
numerous advantages of self-driving vehicles, they may adversely affect driver 
safety, privacy, and overall well-being.

Autonomous vehicles are engineered to operate and navigate indepen-
dently, without the need for human direction. They utilise sensor data and 
artificial intelligence to adapt to their surrounding environment. As vehicles’ 
autonomy level escalates, the quantity of electronic control units (ECUs), also 
known as sensors, augments. These ECUs disseminate data via numerous pro-
tocols, with the controller area network (CAN bus) being the most renowned. 
Despite the vast potential of the CAN bus, elevated sophistication may give 
rise to amplified security risks. Given that data is derived from multiple nodes, 
one of these nodes could potentially be exploited by a hacker intending to 

FIGURE 2.2  The automation levels introduced by NHTSA
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initiate a distributed denial of service (DDoS) attack, thereby destabilising the 
network. Cybercriminals could seize control of intelligent vehicles, leading to 
disastrous traffic accidents and potentially causing fatalities [17, 19].

The relationship between robotics and autonomous vehicles is close, 
as many of the technologies used in autonomous vehicles, such as sensors, 
machine learning algorithms, and advanced control systems, are also used in 
robotics. In fact, many of the key components of autonomous vehicles, such as 
the cameras, light detection and ranging (LiDAR) sensors, and radar sensors 
that are used for perception and localisation, are based on technologies that 
were originally developed for use in robotics [10]. Table 2.1 shows the similari-
ties between robotic and autonomous vehicles.

TABLE 2.1  The similarities between robotics and autonomous vehicles

ROBOTIC AUTONOMOUS VEHICLES

The development of 
advanced 
technologies for 
automating complex 
tasks

This involves designing and 
constructing robots capable 
of performing a wide range 
of functions, such as 
manufacturing, cleaning, 
surgery, and more.

This involves the 
development of vehicles 
that are capable of 
navigating and driving 
without human input.

Rely on sensors and 
other technologies for 
perception and 
decision-making

Sensors allow robots to 
gather information about 
their environment and 
make decisions about 
how to move and interact 
with objects.

Sensors such as cameras, 
LiDAR, and radar are used 
to gather information 
about the vehicle’s 
surroundings and make 
decisions about navigating 
and avoiding obstacles.

Rely on advanced 
algorithms and 
machine learning 
techniques to process 
the data sensors 
collect and make 
decisions

Machine learning 
algorithms enable robots 
to learn from experience 
and improve their 
performance over time.

Machine learning 
algorithms enable the 
vehicle to learn from its 
experiences on the road 
and improve its decision-
making capabilities.

The potential to 
revolutionise the way 
we live and work

This includes the potential 
to automate many tasks 
that are currently 
performed by humans, 
which could lead to 
increased productivity 
and efficiency in a variety 
of industries.

This includes the potential 
to improve the safety and 
efficiency of the 
transportation system, 
which could lead to 
reduced traffic congestion 
and fewer accidents on 
the road.
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Overall, robotics and autonomous vehicle technologies are similar as both 
rely on similar technologies like sensors and machine learning algorithms, 
and both have potential to revolutionise how we live and work. Both fields are 
rapidly evolving and are likely to continue to have a major impact on a wide 
range of industries in the coming years.
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3Exploring CAN 
Bus Security
Insights and  
Analysis

3.1  CONTROLLER AREA NETWORK

Data within the car’s internal network is transmitted and sent through four pro-
tocols, the most famous being the control area network (CAN), which is cost-
effective, resistant to electrical interference, and has the ability to correct errors. 
The advantage of the CAN bus lies in the transmission speed at a connection rate 
of 1Mbps [43]. Accordingly, it is widely used in modern automobile factories. 
CAN was developed in 1986 by Robert Bosch. CAN has been used in a wide 
range of systems, such as medical instruments, industrial control systems, and 
modern vehicles, since the publication of the ISO 11898 standard in 1994 [15].

In modern autonomous vehicles, nodes are electronic control units 
(ECUs), which communicate through CAN bus broadcasts. CAN bus message 
frames are 111 bits long, with the first bit being the start of frame (SOF), fol-
lowed by an arbitration field of 12 bits. The arbitration field has two subfields: 
the identifier contains 11 bits and 1 bit for the RTR field (remote transmission 
request). The identifier controls the messages’ priority. Control field is a com-
bination of identifier extension (IDE) (1 bit), reserved (1 bit), and data length 
code (DLC) (4 bits). Data field (0 to 8 bytes) contains 8 data fields. Check 
field (16 bits) is divided into cyclic redundancy check (15 bits) and delimiter 
(DEL) (1 bit). Furthermore, ACK field (2 bits) is split between acknowledge-
ment (1 bit) and delimiter (DEL) (1 bit). Lastly, the CAN bus message frames 
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TABLE 3.1  The CAN bus message frame standard

Start of fram
e (SO

F) (1 bit)

Arbitration  
field (12 bits)

Control field 
(6 bits)

Data field
(0 to 8 bytes)

Check field
(16 bits)

ACK field 
(2bits)

End of fram
e (7 bits)

Inter fram
e space (3 bits)

ID
 (11 bits)

RTR (1 bit)

ID
E (1 bit)

Reserved (1 bit)

D
LC

 (6 bits)

Data

C
RC

 (15 bits)

D
EL (1 bit)

A
C

K
 (1 bit)

D
EL (1 bit)

0 . . . 7

end with two fields, end of frame (EOF) (7 bits) and inter frame space (IFS) (3 
bits). Table 3.1 depicts the CAN bus message frame standard [44].

The SAE J1939 protocol mandates a certain format for the identifier of 
CAN messages. The ID may be 11 bits in length or 29 bits in the expanded 
format. All available evidence and John Deere specifications point to the 
enhanced 29 bit format being in use here [45].

Bit numbers are labelled “CAN 29 BIT ID POSITION” as shown in 
Table 3.2. Each field’s breakdown is as follows:

•	 Priority (28–26) determines arbitration priority, 0 being the highest 
and 7 being the lowest priority.

•	 Extended Data Page (EDP) (25): used in combination with DP to 
specify different message definitions.

•	 Data Page (24): used with EDP to determine message definitions.
•	 PDU Format (23–16): defines the parameter group to which the 

message belongs; indicates the kind of data being sent.
•	 PDU Specific (15–8): the address of the device to which the mes-

sage will be sent.
•	 Source Address (7–0): is the device’s address that is the message’s 

original sender.

CAN bus is typically made to ensure there is dependable communication in 
autonomous vehicles [46]. As an illustration, the CAN network uses the carrier 
sense multiple access with collision detection protocol, which enables nodes 
to intercept unencrypted data sent over the network by hackers. Furthermore, 
the lack of security measures like user authentication and message encryp-
tion makes the ECUs in the CAN bus vulnerable to cyber-attacks [47]. These 
factors make it necessary to devise security mechanisms to safeguard the 
CAN bus [48]. In-vehicle intrusion detection has garnered increasing attention 
and has been studied in a variety of academic fields. CAN bus security has 
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TABLE 3.2  The format of the identifier of CAN messages [41]

CAN EXTENDED 
FRAME FORMAT

S
O
F

IDENTIFIER 11 BITS S
R
R

I
D
E

IDENTIFIER EXTENSION 18 BITS R
T
R

J1939 FRAME 
FORMAT

S
O
F

PRIORITY EDP DP PDU FORMAT (PF)  
6 BITS (MSB)

S
R
R

I
D
E

PF
(CONT.)

PDU SPECIFIC (PS)
(DESTINATION ADDRESS. GROUP 

EXT. OR PROPRIETARY)

SOURCE ADDRESS R
T
R

3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

J1939 FRAME BIT 
POSITION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

CAN 29 BIT ID 
POSITION

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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attracted researchers’ attention due to vehicle network weaknesses. According 
to experts, most attacks targeting modern vehicles occur through the CAN 
bus [49]. Several studies have presented approaches to detecting attacks on the 
CAN bus. Research has suggested detecting the attack based real-time infor-
mation [50, 51]. Meanwhile, other studies concentrated on a different approach 
by examining the if dummy packets have been injected and/or missing packets 
[52, 53]. All these studies have helped to mitigate the CAN bus vulnerabilities 
but presented some challenges.

3.2  SEVERITY OF PROBLEM

The increase in the number of components in the vehicle led to certain prob-
lems in the increased communication demand between these components. As 
a result, the CAN bus protocol was designed for the purpose of regulating the 
communication between these components. Security issues were not consid-
ered when developing the CAN bus protocol. With the great increase in the 
number of cars connected to the Internet, these problems have raised security 
concerns. Security professionals have stated that this protocol breaches confi-
dentiality, integrity, and availability [43–53]. Confidentiality ensures that data 
is transmitted in an encrypted form and can only be viewed by the authorised 
entity. Integrity ensures that the data transmitted through the CAN bus proto-
col has not been tampered with or modified. Availability refers to as ensuring 
continuity and uninterrupted data flow.

Confidentiality breaches originate from the lack of data encryption in 
the CAN bus protocol since encryption can cause problems in delaying data 
arrival resulting in wrong decisions by the AVs. Integrity breaches are due 
to the CAN bus protocol’s lack of authentication. Although the CRC field in 
the CAN messages framework can mitigate this problem, it shows that the 
sender of the message was not verified, which raises concerns about whether 
the attacker sent this packet or not. Availability issues result from depending 
on the message priority feature of the CAN bus protocol. A DoS attack may 
cause the network to disconnect, as the nature of this attack is to send high-
priority messages, preventing other ECUs from communicating.

Moreover, data privacy issues arose because the data is one of the most 
important assets. In their research, Chandwani et al. [54] classified data 
into three categories: driver behaviour data, vehicle safety data, and vehicle 
security data. Protecting all this data is very important, so data privacy in 
the vehicle must be preserved. The severity of the attack on the CAN bus 
protocol is measured by the number of permissions the attacker obtained to 
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attack by controlling one of the nodes inside the vehicle [55]. Attacks that tar-
get the vehicle and have high priority are more harmful and destructive than 
attacks through messages of lower priority. Developing fully safe AVs requires 
improving the quality of threat detection. The CAN bus system has been used 
to transmit data inside modern vehicles. The data transfer speed is up to 1 
megabit per second. Nodes are not marked as masters or followers on the CAN 
bus, and all nodes are equal. Therefore, the communication between ECUs is 
arranged in the order of priority messages. High-priority messages will pass 
through the CAN bus straight away while low-priority messages are delayed. 
Vulnerabilities in the CAN bus protocol enable the injection of malicious 
messages into the in-vehicle network. These injected messages are abnormal 
network behaviours, which were categorised into three types of attacks (DoS 
attacks, fuzzy attacks, and spoofing attacks) depending on their severity to the 
AVs network. A DoS attack represents the injected messages with the CAN 
ID “0000”. The most dominant value is “0000”. This attack can limit com-
munication between nodes by sending high-priority messages causing delays 
in low-priority messages. This delay can cause problems when the CAN bus 
is exposed to a DDoS attack because the attack depends on sending high-
priority messages, which may cause a system failure. Fuzzy attack represents 
the injected messages with completely random CAN ID and DATA values. 
The risk of this attack is that it does not require reverse engineering and may 
cause the vehicle to lose functionality and availability. These injected mes-
sages could also be high or low-priority CAN ID. Spoofing attack represents 
the messages with a fake CAN ID. This identifier is likely to be a high-priority 
message, and the risk is that it is difficult to differentiate between messages 
because there is no mechanism to authenticate messages on the CAN bus.

3.3  SOLUTIONS IMPLEMENTED 
ON CAN BUS

Security CAN bus has drawn researchers’ attention to find solutions. The 
solutions that most studies have come up with are related to encryption and 
authentication [56–59]. Although these solutions have been useful in a network 
segmentation, their effectiveness is limited due to complexity of the vehicle 
systems. ECUs do not have the computational power to perform complex 
tasks; these solutions require time and space. The intrusion detection systems 
can help to solve this task with minimal costs in time and space.

Intrusion detection systems can provide effective protection against 
attacks that other security attack detection systems may not be able to detect. 
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Several studies have catagorised the intrusion detection systems into four main 
classes: signature-based IDS, specification-based IDS, anomaly-based IDS, 
and hybrid-based IDS. Signature-based IDS relies on previous information to 
determine the nature of the attack already known through the signature [60, 
61]. Specification-based IDS is an approach using data traffic specifications 
to identify normal behaviour of the traffic, and this approach can detect both 
known and unknown attacks on the network [62, 63]. Anomaly-based IDS is 
an approach that does not rely on prior information to detect a network attack. 
This approach depends on the packet’s frequency, messages content, or other 
features [64, 65]. Anomaly-based IDS includes two primary phases: a training 
phase to describe typical CAN bus traffic behaviour and an execution phase 
to compare real-time traffic with previous information to find abnormalities. 
Finally, hybrid IDS utilises a hybrid approach of different intrusion detection 
techniques to detect abnormal behaviours [66, 67].

Anomaly-based IDS has two subcategories: frequency-based IDS and 
ML-based IDS. The former focuses on the time frequency to analyse CAN 
messages sent over the bus. This approach was implemented in [65, 68] by 
examining the arrival time of messages and comparing them with the time of 
the previous message, the researchers were able to detect known and unknown 
threats in the CAN network. The latter is ML-based IDS, which enables super-
vised and unsupervised learning to detect threats on the CAN bus. Consequently, 
this approach is the core of the solution to our study, as machine learning-based 
intrusion detection systems have proven effective in many different systems.

3.4  MACHINE LEARNING AND 
INTRUSION DETECTION SYSTEM

Machine learning plays an essential role in protecting autonomous vehicles 
from cyber-attacks. The transport industry anticipates that ML is the future 
of autonomous vehicles because it can rapidly detect and prevent cyber threats 
[69]. Several studies have used ML to examine its ability to detect attacks in 
various areas [70–73]. ML is categorised into three techniques, namely, super-
vised, unsupervised, and semi-supervised learning (also known as reinforce-
ment learning) [74, 75]. Supervised learning is a form of a machine learning 
technique in which machines learn from labelled data. Supervised learning is 
categorised into classification and regression. Unsupervised learning analyses 
and clusters unlabelled datasets using machine learning methods. These algo-
rithms find hidden data patterns without human interaction. Its capacity to find 
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similarities and contrasts makes it perfect for exploratory data analysis, cross-
selling, consumer segmentation, and picture identification. Semi-supervised 
learning is a combination of supervised and unsupervised learning. Several 
new forms of learning such as deep learning, transfer learning, and federated 
learning have emerged due to refinements in the functionality of the three pri-
mary categories. Next, we describe the literature review that has been done on 
ML techniques in in-vehicle network security and other fields.

3.4.1  ML-Based IDS for Securing CAN Bus

Machine learning can play important role in developing cybersecurity solu-
tions based on the log files collected from the cyber-attacks. In a study pub-
lished in 2019, Zolanvari et al. [72] compared several ML algorithms to detect 
cyber-attacks in water storage systems. The results showed the SVM had 
an accuracy of 85%. A study by Ahmed Khan et al. [71] has shown that the 
k-nearest neighbour (KNN) can be used in detecting cyber-attacks in a gas 
pipeline, and the model’s accuracy reached more than 91%. Similarly, a cyber-
attack was detected using the deep neural networks (DNN) algorithm on the 
power system dataset by [70]. In 2019 Yan et al. [73] used the extreme learning 
machine (ELM) method to detect threats for securing cyber-physical systems. 
The results of the aforementioned studies show that ML can be used in differ-
ent fields to predict known and unknown cyber-attacks.

In terms of the AV application, machine learning has the ability to detect 
an attack on a CAN bus network [76, 77]. Two studies [76, 77] explored the 
CAN bus system, identified security risks, and discussed their solutions. In 
Chowdhury et al.’s [78] research, the authors employ global positioning sys-
tem (GPS) data to identify drivers using the random forest approach, and their 
work achieved an accuracy of 82%. The study described in [79] illustrates 
many types of driver identification characteristics in which the authors gather 
trip-based data to verify a driver. Traditional machine learning techniques 
such as SVM, naïve Bayes, and random forest are used to obtain 88% accu-
racy. Effective IDS using an SVM for monitoring CAN traffic presented by 
Avatefipour et al. [80]. Their experimental findings show that the proposed 
model has an accuracy of more than 90%. They utilised open datasets for 
intrusion detection in CAN bus traffic to ensure the model remained effective. 
An enhanced SVM-based IDS model was presented by Al-Saud et al. [81]. 
The model achieved high performance and resilience against just DoS attacks. 
Similarly, Alshammari et al. [76] proposed two ML algorithms to classify 
threats to the AV system, and, subsequently, the accuracy of SVM and KNN 
for detecting fuzzy and DoS attacks reached 96%.
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Xiao et al. [82] proposed an RNN-based algorithm for the CAN bus net-
work intrusion detection system. When compared to the LSTM and generative 
adversarial network (GAN) models, the experimental results reach more than 
95% utilising appropriate hyper-parameters. Martìnez et al. [83] proposed an 
accurate, personalised driving assistance system using 21 unique features such 
as different vehicle features’ speed, distance, direction, pressure, etc. Extreme 
learning machine, a novel ML approach used in this research, achieves 75% 
accuracy for 11 drivers, 88% for 5 drivers, and 90% for 3 drivers.

In conclusion, in-vehicle intrusion detection is a growing area of research 
in many different disciplines. The CAN bus protocol employs intrusion detec-
tion to monitor and identify any abnormal communication between ECUs by 
using traditional machine learning (TML) techniques [69, 84]. Due to the rapid 
development of in-vehicle networks and rising critical threats, TML-based 
IDS must be updated to meet the current environment’s security requirements.

3.4.2 � Deep Learning-Based IDS for  
Securing CAN Bus

Deep learning, a subset of machine learning, differs from traditional ML meth-
ods as it does not necessitate feature engineering. Instead, DL learns data pat-
terns through self-optimising algorithms [85]. Raw data can be directly used 
in DL algorithms for regression, classification, and decision-making without 
pre-processing. Additionally, DL operates in supervised, unsupervised, or 
reinforcement learning settings [86]. Due to its ability to learn patterns that 
ML cannot, DL is increasingly employed in vehicular networks [68], offering 
solutions to diverse security challenges in automotive networks.

DL is crucial for in-vehicle communications as it addresses the learning 
problem. McMahan et al. [87] outlined a practical deep learning approach 
based on an iterative model, averaging across five different model designs and 
four datasets through comprehensive empirical evaluation. The results demon-
strated the method’s flexibility for unbalanced and incongruent distributions 
with informally, identically distributed (IID) data characterising this scenario. 
A 2020 study combined convolutional neural network (CNN) and gated recur-
rent units (GRU) for detecting cyber-attacks in IoT settings [88].

Regarding AV security, Zhu et al. [89] proposed a DL-based technique 
using LSTM-based intrusion detection. They targeted CAN through spoof-
ing, replay, and flooding attacks. To overcome LSTM’s high computation time, 
they suggested a mobile edge-assisted multi-task model. This model demon-
strated over 80% accuracy and 0.61 ms latency. Hossain et al. [90] presented 
an LSTM-NN-based IDS, asserting that IDS could identify DoS, fuzzing, and 
spoofing attacks on the CAN bus network. Song et al. [91] developed a deep 
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convolutional neural network (DCNN) model called Inception-ResNet, creat-
ing an IDS to detect DoS, fuzzing, gear, and radiation portal monitors (RPM) 
attacks in real-time in-vehicle systems. After training the CNN classifier, real 
CAN messages are inputted to identify suspicious messages. Despite achiev-
ing a detection rate of over 80% and a low error rate, the model’s computa-
tional cost and memory usage were not effective. Further research is needed to 
examine the efficiency of sophisticated cyber-attacks.

A DL model developed by [92] is a cloud-based IDS for in-vehicle net-
works that investigates various attacks, such as DoS, command injection, and 
malware. The model achieved an accuracy rate exceeding 86%, prompting fur-
ther research to improve detection rates, particularly for these attacks. Lokman 
et al. [92] proposed a deep learning-based IDS for in-vehicle networks, with 
a 91% detection rate compared to other auto-encoder variants. Further inves-
tigation is necessary to demonstrate the IDS’s effectiveness against a broader 
range of cyber-attacks. Seo et al. [93] developed a DL-based intrusion detec-
tion system to monitor CAN bus networks for DDoS, RPM, gear, and fuzzy 
attacks. Utilising only CAN bus data for training, the model could differenti-
ate between normal and unknown messages, recognising all four attacks with 
95% accuracy. Zhang et al. [94] proposed a deep learning algorithm-based 
intrusion detection system for in-vehicle networks, achieving detection accu-
racy between 97.0% and 98.0%. Despite its performance, the model could only 
properly identify two attacks. The results were analysed in a simulated envi-
ronment, warranting further investigation.

In a particular study [68], the authors proposed an intrusion detection sys-
tem for in-vehicle networks that is rooted in deep neural network principles. 
Upon acquiring CAN bus data for training, feature vectors were integrated 
into a probabilistic model. The DNN then ascertained the likelihood of a given 
packet being either harmful or safe. The authors implemented unsupervised 
pre-training of a deep belief network (DBN) to fine-tune the parameters, 
enhancing the accuracy of detection. In the realm of CAN network security, 
Lin et al. [95] devised a deep learning-based intrusion detection system that 
specifically pinpoints three categories of attacks. During the training phase, 
a deep denoising auto-encoder, which incorporates a feature extraction meth-
odology, is employed to train the model. Yang et al. [96] proposed an intru-
sion detection system that utilises a recurrent neural network. The introduced 
model has a high success rate in identifying spoofing attacks within the CAN 
bus network, indicating the need for additional research to detect a variety of 
cyber-attacks.

In summary, numerous studies have been undertaken to evaluate threat 
detection using deep learning-based intrusion detection systems. Despite this, 
these systems have exhibited certain limitations, underscoring the urgent need 
for more research in this domain.
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3.5 RELATED WORK

This section employs the algorithm that has been chosen for this book.

3.5.1 ML Algorithms

3.5.1.1 Support Vector Machine

Support vector machine (SVM) is a powerful machine learning model 
renowned for its high performance in classification tasks [97, 98], making it a 
viable tool for detecting cyber-attacks on in-vehicle communication systems 
in autonomous vehicles. SVM operates by constructing a hyperplane or a set 
of hyperplanes in a high-dimensional space, which is used for classification, 
regression, or outlier detection. The primary goal is to create a boundary that 
maximises the margin between different classes in the training data, thereby 
allowing for more accurate and robust classification of unseen data [99].

In the context of in-vehicle communication in AVs, SVM can be employed 
to distinguish between normal traffic patterns and potential threats. This dis-
tinction is achieved by using the training data to define an optimal hyperplane 
that separates the different classes of network traffic. New, unseen data is then 
classified based on which side of the hyperplane it falls on. SVM has been 
shown to perform well in scenarios where the number of dimensions is greater 
than the number of samples [100], making it well-suited for high-dimensional 
in-vehicle communication data.

The mathematical formulation of SVM is as follows [102, 103]:
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where w is the normal vector to the hyperplane, O( )xi  are the input vec-
tors, 6i refers to the distance to the accurate margin, and it is such that for all 
i from 1 to n, the value of 6i is greater than or equal to zero, yi are the class 
labels (+1 for one class, −1 for the other), C is regularisation parameter, and b 
is the bias.

Figure 3.1 showcases a visual representation of SVM, where the support 
vectors are the data points closest to the hyperplane, and the goal is to maxi-
mise the distance between these points and the hyperplane [98].

While SVM exhibits considerable efficiency, it’s not devoid of constraints. 
The selection of the kernel function has a substantial impact on the model’s 
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performance, but unfortunately, there isn’t a one-size-fits-all solution that is 
optimal for every scenario. Additionally, SVM doesn’t inherently offer prob-
ability estimates, which could be advantageous in certain applications. Lastly, 
the SVM can demand significant computational resources, particularly when 
dealing with large datasets, which could restrict its use in environments with 
limited resources [103].

Despite these limitations, the ability of SVM to manage high-dimensional 
data, coupled with its resilience against overfitting, makes it an indispensable 
asset, particularly in the realm of secure in-vehicle communication within 
autonomous vehicles.

3.5.1.2  Decision Tree

The decision tree (DT) is a potent statistical instrument employed for data 
classification, prediction, interpretation, and manipulation [104]. As one of the 
most efficacious methods in the field of data mining, it finds a wide range of 
applications in numerous scientific domains [104]. As a supervised learning 
algorithm, it is visualised as a tree-like model composed of different nodes, 
namely root nodes, internal nodes, and terminal or leaf nodes [104].

FIGURE 3.1  A schematic depiction of the SVM
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Root nodes are the decision-making points that segregate records into diverse 
subsets, embodying the various choices [104]. Internal nodes contribute further 
to the tree’s division, generating either new internal nodes or terminal nodes. 
Terminal or leaf nodes signify the final decision within the DT [104]. An example 
of a decision tree structure is represented in Figure 3.2. DT is adept at efficiently 
handling vast and intricate datasets and simplifying their complexity [105].

To relate this to the context of detecting attacks on in-vehicle communica-
tion in autonomous vehicles, consider how a decision tree might be employed. 
The tree’s branches could represent different properties or features of the 
network traffic, such as message identifier, payload size, and time intervals 
between messages. These features can help differentiate normal operation 
from potential cyber-attacks. Each leaf node of the tree could then represent 
a decision—is this normal network traffic or a potential cyber-attack? By 
training the decision tree on known examples of both normal operation and 
cyber-attacks, it can learn to make accurate decisions when presented with 
new, unknown network traffic data. However, to improve the detection rate 
and handle large datasets, the decision tree can be incorporated with other 
machine learning models or techniques [104].

3.5.1.3  Random Forest

Random forest (RF), an extension of the decision tree model [106], serves as an 
influential mechanism for identifying cyber threats within the in-vehicle com-
munication system of autonomous vehicles. This model operates through the con-
struction of multiple decision trees, each one uniquely generated from random 
subsets of the original training dataset [106]. Consequently, the resulting forest 

FIGURE 3.2  An example of a decision tree



3  •  Exploring CAN Bus Security  27

comprises trees that are distinct from one another, thereby reducing the risk of 
overfitting and noise that typically plague single decision tree models [106].

In the context of cyber-attack detection, each decision tree within the RF 
model evaluates different aspects of the AV communication data, offering a 
comprehensive approach to detecting anomalous patterns that could signal 
potential threats. After each tree has made its prediction, these outcomes are 
aggregated, and the most frequently occurring prediction is selected as the 
final classification. This “majority voting” system ensures that the RF model’s 
overall decision is robust against potential errors or anomalies in individual 
trees’ predictions [106].

Figure 3.3 provides a visual representation of this random forest model. 
It is essential to note that RF’s strength lies in its ability to maintain the sim-
plicity of individual decision trees, while its ensemble nature dramatically 
increases the effectiveness and reliability of the cyber threat detection process 
in AV communication systems. By adopting such a model, the resilience and 
security of in-vehicle communication in AVs can be significantly improved.

3.5.1.4  K-Nearest Neighbours

The k-nearest neighbours (KNN) is a robust supervised machine learning tech-
nique used for classification, regression, and, crucially, outlier identification 
[107], making it apt for detecting attacks on in-vehicle communication in AVs.  

FIGURE 3.3  An example of the RF model
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This technique is favoured for its simplicity in execution, its ability to handle 
complex tasks, and its time-efficiency [107].

KNN operates by predicting the appropriate classification for test data 
through the calculation of the distance between the test data and all points in the 
training set [99]. The KNN algorithm is unique due to its non-parametric and 
instance-based learning attributes. Non-parametric implies that the algorithm 
does not depend on predefined training parameters; instead, it retains the training 
data and leverages it during the classification process of the test point [107]. This 
characteristic contributes to KNN’s high performance in machine learning tasks.

Furthermore, KNN’s effectiveness is influenced by the distribution of 
training points, which is determined by the measure of similarity between data 
points [107]. This feature is particularly useful in the context of AVs, where 
data distribution could reflect different driving conditions, vehicle statuses, or 
potential cybersecurity threats. Figure 3.4 shows an example of KNN [107].

FIGURE 3.4  An example of KNN
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To locate the nearest neighbours to a test point—an essential step in 
detecting anomalies or potential attacks—the Euclidean distance equation is 
employed as follows [108]:
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3.5.1.5  Naïve Bayes

The naïve Bayes method is a probabilistic classifier rooted in the simple Bayes 
theorem [109], which is particularly useful in detecting attacks on in-vehicle 
communication systems in AVs. This technique strives to estimate the prob-
ability of each feature occurring within each class, ultimately returning the 
class with the highest probability. The Bayes theorem equation is represented 
as follows [109]:
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The model proves effective due to the relative ease of calculating 
probabilities. It is referred to as “naïve” because it assumes that each 
parameter is independent of the others. Despite this simplification, the 
naïve Bayes classifier often achieves accuracy comparable to more com-
plex models [109].

In the context of in-vehicle communication in AVs, the naïve Bayes method 
can be employed to identify anomalous patterns or potential cyber-attacks. By 
analysing the probabilities of various communication patterns, the classifier 
can detect unusual activities that might be indicative of an attack. This enables 
the rapid identification of potential threats and helps safeguard the vehicle’s 
communication system from malicious intrusions.

3.5.2  DL Algorithms

3.5.2.1  Neural Network

Neural networks (NNs) are a widely used deep learning approach, known for 
their superior performance in pattern recognition compared to SVMs [110]. 
Inspired by the human brain, these networks consist of interconnected algo-
rithms, or neurons, that aim to identify hidden associations within datasets. 
NNs are used in the context of AVs to analyse sensor data, anticipate vehicle 
behaviour, and identify abnormalities that may suggest assaults on in-vehicle 
communication systems.
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There are typically three main layers in a neural network model: (i) the 
input layer, which contains the input feature vector; (ii) the output layer, 
which displays outcomes; and (iii) the hidden layer, which lies between 
the input and output layers and contains neurons connected to both [110]. 
Figure 3.5 illustrates the feed-forward neural network architecture, a com-
mon type of NN.

The three key constituents of artificial neural networks are the architec-
ture, input and activation functions, and the weight of the input connections. 
While the network design and functionalities remain consistent throughout 
training, the weight values critically affect the NN’s performance. During 
training, weights are adjusted to achieve a desired output [110].

One limitation of NNs is their “black box” nature, which makes it chal-
lenging to interpret their decision-making processes. However, despite this 
limitation, their ability to process complex feature data, particularly in detect-
ing anomalies in in-vehicle communication, justifies their adoption as an 
essential tool in AV security.

3.5.2.2  Convolutional Neural Network

Convolutional neural networks (CNNs) have attracted considerable interest in 
the field of autonomous vehicles, predominantly due to their high performance 
on multi-dimensional data, which makes them highly effective at detecting 
anomalies in in-vehicle communication data. As depicted in Figure 3.6 [111, 
112], their name is derived from the mathematical convolution operation that 
they employ across multiple layers of their network architecture.

FIGURE 3.5  A neural network architecture
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FIGURE 3.6  The architecture of CNN
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CNNs are versatile, employing both supervised and unsupervised learn-
ing techniques, which makes them highly adaptable for intrusion detection 
systems (IDS) in AVs, even when dealing with unlabelled data. Their architec-
ture is especially well-suited for processing and interpreting visual data, such 
as images from the plethora of cameras present in AVs. This ability is crucial 
in detecting suspicious activities that could indicate unauthorised physical 
tampering with the vehicle or cyber-attacks targeting the in-vehicle communi-
cation system [111].

One of the distinguishing features of CNNs is their weight-sharing and 
pooling operations, which enable them to efficiently handle high-dimensional 
data with fewer parameters compared to traditional neural networks. This fea-
ture translates into robust training performance and a heightened ability to 
discern complex patterns within the data.

3.5.2.3  Recurrent Neural Network

Recurrent neural networks (RNNs) are a class of deep learning networks 
designed for processing sequential data [111], making them particularly useful 
for detecting attacks on in-vehicle communication systems in AVs. RNNs are 
distinguished by a feedback loop structure that enables them to maintain state 
information over time, as the most recent output is dependent on both the current 
input and previous output [111, 113]. This unique feature enables RNNs to anal-
yse sequences of telemetric data from AVs and identify patterns that may signify 
potential cyber-attacks. Figure 3.7 showcases the architecture of an RNN.

In the context of in-vehicle communication security, RNNs play a critical 
role in detecting abnormal patterns in sequential data, which may indicate 
cyber-attacks on AV systems. Although they may not be suitable for some 
applications, such as understanding frames in videos or text blocks (where 
convolutional neural networks might be more appropriate), RNNs remain an 
essential tool for processing sequence data and ensuring the security of in-
vehicle communication in AVs.

While RNNs excel at handling time-dependent data, they often face chal-
lenges when dealing with long sequences, due to issues such as vanishing 
and exploding gradients. These issues can hinder the network’s capacity for 
effective data-driven learning. Consequently, more advanced variants such as 
long short-term memory (LSTM) networks have emerged to circumvent these 
restrictions.

3.5.2.4  Long Short-Term Memory

Long short-term memory, a sophisticated variant of recurrent neural networks 
(RNNs), has emerged as a vital tool for in-vehicle communication security in 
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FIGURE 3.7  The RNN architecture
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AVs. Its strength lies in its ability to process extended sequences of time-series 
data [114, 115], a critical feature when dealing with streams of sensor data or 
intricate vehicle routing information.

LSTM networks tackle two critical issues often associated with RNNs—
the vanishing and exploding gradient problems. These problems can impair 
the learning process and predictive performance of the network. The LSTM’s 
unique internal architecture, depicted in Figure 3.8, enables it to circumvent 
these issues, thereby ensuring more effective learning from long sequences of 
data [116].

However, this enhanced capability comes with a caveat—LSTM networks 
are more computationally demanding due to their complex architecture. This 
demand can potentially limit their deployment in resource-constrained envi-
ronments. Despite this, the rapid advancements in computational power con-
tinue to broaden the scope of LSTM applications in AVs.

In the context of in-vehicle communication security, LSTM can be pivotal 
in detecting anomalous patterns in data sequences, which may signify poten-
tial cyber-attacks. Consequently, it plays a crucial role in safeguarding AVs 
against security threats and fostering safer, more reliable autonomous trans-
portation systems.

FIGURE 3.8  The internal architecture of LTSM
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4Research 
Design

4.1  PROPOSED SOLUTION

The development of efficient intrusion detection systems will reduce the 
severity of this problem. Depending on the nature of the data transmitted 
on the CAN bus, the focus is on CAN ID since it contains information 
that will determine the importance of the message; and secondly, it will 
affect the flow of data sent in the CAN network. We proposed adding a step after 
the pre-processing phase of the data and before the training phase. This 
step distinguishes between high-priority and low-priority messages. High-
priority messages will be sent to deep learning algorithms since they are 
more accurate and efficient. To maintain data flow and ensure no collisions 
occur, all low-priority messages will be sent to machine learning algorithms 
as they offer high accuracy and speed in prediction. According to the struc-
ture of the CAN bus message frame standard, the feature responsible for 
setting priority is CAN ID. The lower the ID number, then the higher will 
be its priority.

Specifically, according to the format of the identifier of CAN mes-
sages, the arbitration priority was determined, with 0 being the highest and 
7 the lowest priority. So an identifier with 0 is a top priority on the network. 
Theoretically, a threshold has been set at 1 to demonstrate the priority of mes-
sages and to evaluate how well the model performs, whereas the CAN ID sent 
over the CAN bus is in hexadecimal format; it should be converted to decimal 
values. The CAN ID will undergo a conditional statement (if CAN ID is less 
than 1, the message will be passed to deep learning algorithms, otherwise, it 
will be passed to machine learning algorithms). Figure 4.1 illustrates the steps 
for implementing the proposed model. This will improve the effectiveness of 
the model for detecting threats in the CAN network, in addition to accelerating the 
prediction process in DL and ML algorithms.

https://doi.org/10.1201/9781003610908-4
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4.2  EXPERIMENT

4.2.1  Dataset Description

The dataset called “car-hacking dataset” proposed by [93] contains Hyundai’s YF 
Sonata CAN network traffic, including both normal and attack messages. Datasets 
were generated by recording CAN traffic from a real vehicle’s OBD-II port when 
message injection attacks took place. The dataset was generated via two meth-
ods. The first data set was collected under non-attack conditions, whereas the 
second dataset was gathered from the vehicle experiencing attacks on its inter-
nal networks. The car-hacking datasets include four types of attack in CSV files, 
which include DoS attack, fuzzy attack, spoofing the drive gear, and spoofing 

FIGURE 4.1  The proposed IDS framework



4  •  Research Design  37

the RPM. All the CSV files have the same features: Timestamp, CAN ID, DLC, 
Data Field (0–7), and Flag. All datasets were integrated into one CSV file using 
a Python script, as shown in Figure 4.2. The Timestamp feature indicates the 
time in seconds that was captured (s). The CAN ID identifies CAN messages and 
represents their priority in hexadecimal format. Smaller CAN ID values suggest 
higher priority messages. DLC denotes the number of bytes, from 0 to 8, and 
these values shift depending on the vehicle type. The Data feature holds the data 
to be transmitted between the nodes. Lastly, the Flag feature has two numeric 
values, namely 0 and 1, which represent normal and attack, respectively.

The target distribution of normal and abnormal messages in the dataset 
is shown in Figure 4.3. It is very clear that abnormal messages are fewer than 

FIGURE 4.2  The combined datasets

FIGURE 4.3  Distribution of the normality of the dataset
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normal messages. However, if we train our model on this dataset, it will be 
significantly biased towards normal messages. In the data preparation step, we 
will undertake data balancing to counteract the model’s inherent bias.

4.2.2  Dataset Preparation

Dataset preparation is one of the most crucial and challenging aspects of any 
machine learning or deep learning activity. The quality of the dataset impacts 
the model’s performance and training process, so we need to ensure that data-
set is suitable, has no missing values or/and outliers, or is not in a format that 
the model cannot understand. In order to develop a high-performance model 
that would accurately predict respective classes and work well on the untested 
new input dataset, the dataset must be cleaned, prepared, and transformed 
before employing any method. In general, addressing missing values, elimi-
nating unnecessary columns, looking for any independent features, turning all 
of the category columns into numerical columns, and eliminating outliers are 
all aspects of the data preparation process. In the proposed system, we have 
executed data cleaning and data transformation on the combined dataset that 
we get from merging all the attacks CSVs and the normal run data text file.

4.2.2.1  Data Pre-Processing

Due to the big size of the dataset, which has 17,558,347 instances and it 
includes a significant amount of duplicate and missing data. All the missing 
data and duplicate values were identified through exploratory data analysis and 
screening. The essential steps for data prepossessing are described in more 
detail in this subsection.

Firstly, we noted that the data that had less than 8 bytes contained only 
missing values. When we looked for the source of these missing values by 
filtering the data that had missing values, we discovered that all the instances 
were normal messages. This was the case when we filtered only the data that 
had missing values. Since our dataset already includes many normal messages, 
we eliminated missing and duplicate values since they do not affect the mod-
el’s performance. Another feature that was removed from the dataset was due 
to its redundancy of DLC feature, which represents the number of bytes. This 
feature does not affect performance; the Timestamp feature was also elimi-
nated because it may trigger data overfitting. After that, the dataset was very 
unbalanced, causing our model to be biased towards normal messages; hence, 
we included an equal amount of normal messages and attack messages to bal-
ance the dataset. Because machine learning and deep learning models can 
only operate on numerical values, the next step was to turn the non-numerical 
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values into numerical ones. The Flag in the dataset contained non-numerical 
values such as R, which represents normal data, and T, which represents the 
type of attack (DoS, RPM, gear, and fuzzy). We converted these values into 0 
and 1, where 0 denotes the normal messages and 1 stands for attack messages. 
Next, the hexadecimal values of the CAN ID and all the data values were con-
verted into decimal values via the “int” function with a base of 16. Figure 4.4 
shows the correlation between the different features after the data-cleaning 
process.

4.2.2.2  Data Transformation

The dataset contains values with varying scales; certain features are more 
extreme than others, which might compromise the model’s accuracy. For this 
reason, we have used data transformation or feature scaling to the dataset to 
enhance the model’s accuracy. Feature scaling is a method for normalising the 

FIGURE 4.4  The correlation between different features
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variety of independent variables or data features. Typically, it is done during 
the data pre-processing step and is frequently referred to as data normalisation 
within the context of data processing. We have re-scaled the feature values 
within a range between 0 and 1, without affecting the properties of the original 
data. To do that, we have used a minimum-maximum normalisation equation. 
This is referred to as Equation (4), which is written as follows:
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−
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The normalised output values are denoted by X’, while the original val-
ues are denoted by X. The max(x) is the maximum feature values and min(x) 
stands for the minimum feature values. We undertook this technique by 
importing MinMaxScaler from the Sklearn library, which is used for scaling 
down the features in the range. The Flag column in the dataset contains quali-
tative values “normal and abnormal”, we converted it using LabelEncoder fit-
ted so that it became 0 and 1. The total amount of data remaining after the data 
pre-processing phase amounts to 908,764 rows. Figure 4.5 shows the process 
that we have executed in the data preparation phase. Following that, our pro-
posed step turns to training the model, as previously explained in Section 4.1.

4.2.3  Training Phase

Following the data pre-processing phase, we have the final cleaned data ready 
for training. Now the dataset in the training process will be divided into two 

FIGURE 4.5  The preparation phase process
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datasets “DL dataset” and “ML dataset”. Each dataset will train the model 
through certain algorithms. Doing this will ensure the efficiency of the train-
ing process and speed up the model’s work and, subsequently, ensure they 
can work together in parallel. The first dataset, i.e. “DL dataset”, is for high-
priority data that will be trained on deep learning algorithms to detect threats 
accurately; this category contains about 454,289 rows of data. The second 
dataset, “ML dataset”, comprises 454,475 rows of low-priority data, which 
will be trained on traditional machine learning algorithms. Figure 4.6 shows 
the process of splitting data based on its priority.

4.2.3.1  Machine Learning-Based Intrusion Detection

After pre-processing the data and applying our proposed solution by sorting 
the data according to priority, we have 454,475 data values out of a total of 
908,764 for the machine learning dataset. We divided the dataset into train-
ing and testing sets with a training size of 80% of the total data and a testing 
size of 20% of the total data with a randomised set of 42 cases to execute the 
model’s training and evaluate its performance. The testing dataset contains 
90,895 data values, while the training dataset contains 363,580 data values. 
This step was done utilising the train_test_split with the scikit_learn library 
to split the dataset.

Since our dataset is labelled, we have used several supervised learn-
ing algorithms. These algorithms have been selected since they are widely 
employed in security and have shown excellent performance [117]. The 
machine learning algorithms used are support vector machine (SVM), random 

FIGURE 4.6  Splitting data based on its priority
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forest classifier, decision tree classifier, k-nearest neighbours, and naïve Bayes 
classifier.

4.2.3.2  Deep Learning-Based Intrusion Detection

To showcase models to exhibit great accuracy and performance on the test 
dataset with machine learning algorithms, we also tested the deep learning 
models to see how they work with the given dataset. We have 454,289 data val-
ues out of a total of 908,764 for the deep learning dataset after pre-processing 
the data and applying our proposed solution by sorting the data by priority and 
the attacks’ severity. This dataset is further divided into two datasets: firstly, 
80% of the data for the training set and it contains 363,431 of the selected data-
sets for deep learning algorithms; and secondly, 20% of the data for the testing 
consisting of 90,858 data values.

Deep learning models like neural networks, long short-term memory, 
recurrent neural networks, and convolution neural networks are often used 
for classifying messages as attack and normal due to their ability to handle 
sequence data, high-dimensional data, and non-linear relationships. A neural 
network consists of an input layer, one or more hidden layers, and an output 
layer. Each node, or artificial neuron, is connected to others and has a weight 
and threshold that goes along with it. If the output exceeds the threshold value 
of the node, it will be activated and provide data to the next layer. Otherwise, 
no data is transmitted to the network’s next tier. We have used simple neural 
networks with an input layer with 256 units or neurons, three hidden layers 
with 128, 64, and 32 units with activation function as the hyperbolic tangent 
function “tanh”, and an output layer of 1 unit with an activation function as 
sigmoid. Since the target is in binary form, “binary_crossentropy” is a loss 
function and “adam” (adaptive moment estimation) is an optimiser. The train-
ing of the data runs on 10 epochs with 64 batch size; validation data used is 
the test dataset that we created using splitting the dataset into training and 
testing sets with an 80:20 ratio. All other deep learning algorithms have the 
same structure as described for the simple neural network. Getting different 
models with great accuracy and performance on the test dataset with machine 
learning algorithms, we tested the deep learning models to see how they work 
with the given dataset.
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5Results and 
Discussion

5.1  MODEL EVALUATION METRICS

After selecting the machine learning and deep learning models, the final step 
in the process is to evaluate the models, using statistical methods, while dif-
ferent metrics are used to evaluate model performance. The Sklearn library is 
used to calculate different metrics on each model; specifically, these are accu-
racy, precision, recall, F1-score, sensitivity, and specificity. The performance 
will be evaluated according for four metrics: true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN), where TP is the number 
of correctly detected attack predictions classified as an attack, and TN is the 
number of correctly detected normal predictions classified as normal. In the 
meantime, FP stands for the number of detected normal predicted and classi-
fied as attacks, while FN is the number of falsely detected attacks predicted 
and classified as normal.

Accuracy is a derivative of the confusion matrix, which is a metric for 
evaluating a model’s efficiency. Accuracy can be defined mathematically as 
follows: TP + TN.

Accuracy
TP TN

TP TN FP FN
=

+
+ + +

� (5)

Precision is a classification metric that reveals how many are true positive 
predictions that have been labelled as positive. In other words, it shows a pro-
portion of instances classified as a real attack among all of the cases classified 
as an attack. Precision can be defined mathematically as follows:

Precision
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TP FP
=

+
� (6)

https://doi.org/10.1201/9781003610908-5
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Recall represents the cases identified correctly among all positive cases. 
Mathematically, recall is defined in the following way:

Recall
TP

TP
=

+ FN
� (7)

An F1-score indicates the accuracy of the model on a dataset. The F1-score 
is a method for integrating the model’s precision and recall, which is defined 
as the harmonic mean of precision and recall. The mathematical definition of 
the F1-score is written here:

F score
Precision Recall

Precision Recall
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Sensitivity is the true positive rate (TPR), which means its ability to deter-
mine the attack cases correctly. While specificity is the true negative rate 
(TNR), it is able to determine the normal cases correctly. Sensitivity and speci-
ficity can be defined mathematically as follows:

Sensitivity
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�  (9)

Specificity
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5.2  RESULTS

5.2.1  ML-Based IDS Model Results

The following machine learning algorithms were used on low-priority data 
due to their ability to deliver high performance and efficiency, characterised 
by their fast operational speed. We used standard model evaluation metrics to 
assess the effectiveness of these machine learning algorithms. Table 5.1 illus-
trates the performance of the algorithms.

The results show that SVM performed well as compared to other ML 
algorithms we used parameters: C=1.2 and kernel = ‘rbf’, and it gave us an 
accuracy of 99.91%. The precision, recall, and F1-score rates were all 100%. 
Similarly, KNN showed high performance where the accuracy rate reached 
99.82% and a precision rate of 99%. Meanwhile, the recall and F1-score 
reached 100%. Conversely, the RF algorithm achieved the third best accuracy 
rate of 97.42% with a precision rate of 94%. Recall rates of 98% and F1-score 
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of more than 96% were achieved. However, RF and DT had a convergent accu-
racy rate of around 97.42% for the RF algorithm and over 97% for the DT 
algorithm. The naïve Bayes algorithm has the lowest recall rate at approxi-
mately 96%. Considering all performance metrics, we found that the SVM 
algorithm performs better than the other four TML in classifying normal and 
attack messages.

5.2.2  DL-Based Model Results

The DL algorithms have been used for intrusion detection classification tasks 
[82]. Due to their performance in classification challenges, basic neural net-
works (NN), long short-term memory (LSTM), recurrent neural networks 
(RNN), and convolution neural networks (CNN) are utilised as deep learning 
models for determining if a message is an attack or normal. The proposed 
models showed excellent performance in deep learning algorithms. Table 5.2 
summarises the performance results of deep learning algorithms after the data 
has been divided according to its priority and attacks severity. We employed 
basic neural networks in the training phase with 256 input units; 128, 64, 32 
hidden units with tanh activation; and 1 sigmoid output unit. Given that the 
objective is binary, binary_crossentropy is utilised as a loss function, and 
adam serves as an optimiser.

The training dataset contains 10 epochs and 64 batches, while the valida-
tion dataset was constructed by dividing the train dataset on an 80:20 ratio. All 
other deep learning methods have the same structure as the basic neural net-
work. Here NN achieved the highest accuracy rate of 99.96%, followed by the 
CNN algorithm, which reached 97.58%, while the RNN algorithm was in third 
place with an accuracy of more than 97.31%. Furthermore, LSTM showed the 
poorest accuracy of all deep learning algorithms; their performance improved 
after applying the proposed solution. Finally, considering all performance 
metrics of the DL models, we reported that the NN algorithm achieved the 
best performance out of all other DL algorithms.

TABLE 5.1  The performance of each ML algorithm

MODELS ACCURACY PRECISION RECALL F1-SCORE SENSITIVITY SPECIFICITY

SVM 99.91 100 100 100 0.99 0.99

Random forest 97.42   94   98   96 0.97 0.97

KNN 99.82   99 100 100 0.99 0.99

Decision tree 97.06   93   99   96 0.98 0.96

Naïve Bayes 96.11   92   97   94 0.96 0.95
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5.3  COMPARISON OF THE 
PROPOSED SOLUTION

It is pertinent to state here that our approach to data processing has achieved the 
desired goal of improving the accuracy of intrusion detection on the CAN bus. 
The selected algorithms achieved more accurate results compared to previ-
ous studies. By comparing them in our proposed solution, the proposed model 
achieved high performance in all algorithms. This is in addition to accelerat-
ing the intrusion detection process in the CAN system. Table 5.3 shows all the 
values calculated from various metrics on different models before applying the 
proposed model.

TABLE 5.2  The performance of each DL algorithm

MODELS ACCURACY PRECISION RECALL F1-SCORE SENSITIVITY SPECIFICITY

NN 99.96 100 100 100 0.99 0.99

LSTM 96.53   96   99   97 0.98 0.92

RNN 97.31   97   99   98 0.98 0.94

CNN 97.58   97 100   98 0.99 0.93

TABLE  5.3  The performance of all selected algorithms before applying the 
proposed model

MODELS ACCURACY PRECISION RECALL F1 SCORE SENSITIVITY SPECIFICITY

SVM 99.90 100 100 100 0.99 0.99

Random forest 95.96   96   96   96 0.96 0.95

KNN 99.78 100 100 100 0.99 0.99

Decision tree 93.55   91   96   94 0.96 0.90

Naïve Bayes 91.17   90   93   91 0.93 0.89

NN 99.95 100 100 100 0.99 0.99

LSTM 96.31   95   98   96 0.97 0.95

RNN 95.82   93   99   96 0.98 0.92

CNN 94.24   94   94   94 0.94 0.94
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5.4  DISCUSSION

We proposed a new architecture based on the nature of AV data. The proposed 
solution is built on supervised learning models that are trained on the dataset 
that includes four different types of attacks: DoS attacks, fuzzy attacks, drive 
gear spoofing, and RPM spoofing.

The results of our experiment showed that the proposed model achieved 
superior performance and speed in detecting threats on the CAN bus network 
compared to other models. Our proposed model can detect threats based on 
their severity because it classifies traffic in a CAN bus into abnormal and nor-
mal. According to the format of the identifier of CAN messages, messages 
follow a priority approach and range from 0 to 7, whereby messages of lower 
value are more important. Furthermore, they have the right to pass through the 
CAN bus first, while messages with lower priority are delayed.

The proposed model distinguished all high-priority messages and trans-
formed them into deep learning algorithms. The results of the DL algorithms 
have shown high accuracy and effectiveness in detecting highly severe threats 
(under the three categories: DoS attacks, fuzzy attacks, and spoofing) that can 
disrupt the system. The NN algorithm achieved the highest accuracy rate of 
99.96%, compared with the other algorithms. Meanwhile, all messages with 
low priority have been passed to ML algorithms which achieved high-perfor-
mance results and speed in detecting threats. Two of the five used ML algo-
rithms achieved an accuracy of more than 99%, namely SVM and KNN. The 
proposed model ensures the continuity of high and low-priority data flow, with 
no collision, and certainly ensures its security.

It can be conclusively stated that the research queries outlined in the 
introduction have been thoroughly addressed. The model proposed herein, 
underpinned by machine learning (ML) and deep learning (DL) algorithms, 
manifests a potential to bolster the security framework of autonomous vehicles 
(AVs) by identifying threats with notable accuracy. A meticulous analysis of 
CAN messages facilitated the discernment of the severity of attacks targeting 
AVs’ internal networks, highlighting “priority in CAN ID” as a salient deter-
minant for both, the targeting of the CAN bus, and the classification of mes-
sages. The implementation of this method resulted in a reduction of message 
waiting time, thereby minimising latency.

The objectives initially outlined have been met through the development 
of an intrusion detection system (IDS) proficient in identifying attacks on 
the CAN bus network with remarkable precision and minimal latency. The 
devised system fortifies the security of the CAN bus network by detecting four 
distinct types of threats: denial of service (DoS) attacks, fuzzy attacks, gear 
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spoofing, and RPM spoofing. However, all four types of threats were treated 
as anomalies (abnormal data), further reinforcing the comprehensive nature 
of our system’s threat detection capabilities. Empirical evidence demonstrates 
that our proposed system can detect attacks with a negligible error rate, thereby 
enhancing public trust in the security mechanisms of autonomous vehicles 
(AVs) and potentially accelerating the widespread acceptance and adoption of 
AVs within the automotive industry.
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6Conclusions 
and Future 
Research

6.1  CONCLUSIONS

New security dangers arise as car connectivity is made possible with networks or 
made more complex over time because communication methods like the CAN net-
work are still insecure and open to intrusion. For this reason, in-vehicle commu-
nication systems now require much attention to address automobile cybersecurity. 
This study proposed a lightweight classification model for intrusion detection for 
in-vehicle network security using machine learning and deep learning methods. 
Our proposed method minimises classification errors by utilising a balanced class 
and a limited number of attributes to speed up intrusion detection. IDS has been 
made more efficient by focusing on the important data transmitted in the CAN bus 
network. The models are trained using dataset, and they appropriately categorised 
each message as an attack or normal with an accuracy of above 99% on the CAN 
bus dataset. It is noted that three algorithms provide more than 99.5% accuracy, 
which means that these models will classify intrusion accurately with 0.005% error.

6.2  FUTURE RESEARCH

This study presented a machine learning model that aims to enhance the secu-
rity of AVs’ communication by detecting cyber-attacks using machine learning 
and deep learning algorithms. However, several avenues for future work can be 
explored to further advance this area of research.

https://doi.org/10.1201/9781003610908-6
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One potential direction for future work is to optimise the model’s accu-
racy and robustness by incorporating additional data sources and refining the 
feature selection process. For instance, the model can be trained on larger data-
sets, including various attack scenarios and network conditions, to improve 
its ability to detect and prevent cyber-attacks. Additionally, hyperparameter 
tuning can be applied to enhance the model’s performance and generalizabil-
ity. Secondly, the model’s effectiveness and reliability can be further assessed 
through real-world testing and validation. This can be accomplished by col-
laborating with AV manufacturers and cybersecurity experts to conduct a rig-
orous evaluation in simulated and field tests. This is critical to ensuring the 
model’s practical application and utility in real-world settings.

Moreover, integrating the intrusion detection system (IDS) with other 
cybersecurity measures such as firewalls and encryption protocols can be 
investigated to provide comprehensive protection for AVs. The research can 
also explore developing a hybrid approach that integrates traditional and 
machine learning-based IDS methods. Additionally, the study’s findings can 
be extended to other autonomous systems, such as robots and drones to address 
cybersecurity issues in the field of robotics. Finally, the model’s scalability 
and applicability can be assessed to determine its potential for deployment in 
large-scale autonomous systems. The study can investigate the integration of 
the proposed model with the emerging 5G networks to enhance the security 
and reliability of autonomous systems.

In conclusion, this study provides a promising approach for enhancing 
the security of AVs communication using machine learning and deep learning 
algorithms. However, future research and development are essential to opti-
mise the model’s performance and extend its applicability to other autonomous 
systems such as robots and drones. Nevertheless, the findings of this study 
have significant implications for the safe and secure deployment of autono-
mous systems, contributing to the advancement of the field of robotics and 
cybersecurity.



51

References

	 1.	 Ferber, J. and O. Gutknecht, A meta-model for the analysis and design of orga-
nizations in multi-agent systems. In Proceedings International Conference on 
Multi Agent Systems (Cat . No. 98EX160), 1998. IEEE.

	 2.	 Campos‐Rodriguez, R., L. Gonzalez‐Jimenez, F. Cervantes‐Alvarez, F. Amezcua‐
Garcia, and M. Fernandez‐Garcia, Multiagent Systems in Automotive Applications. 
Multi-agent Systems. InTech, Sep. 13, 2017. doi: 10.5772/intechopen.69687.

	 3.	 Balaji, P.G. and D. Srinivasan (Eds.), An introduction to multi-agent systems. 
In Innovations in multi-agent systems and applications-1, 2010. Studies in 
Computational Intekkigence, Vol 310. Springer. pp. 1–27.

	 4.	 Fadhil, J.A. and Q.I. Sarhan, Internet of Vehicles (IoV): A survey of challenges 
and solutions. In 2020 21st International Arab Conference on Information 
Technology (ACIT), 2020. IEEE.

	 5.	 Cañedo, J. and A. Skjellum, Using machine learning to secure IoT systems. In 
2016 14th Annual Conference on Privacy, Security and Trust (PST), 2016.

	 6.	 Qureshi, K.N., et al., Internet of vehicles: Key technologies, network model, 
solutions and challenges with future aspects. IEEE Transactions on Intelligent 
Transportation Systems, 2020. 22(3): pp. 1777−1786.

	 7.	 Yang, F., et al., An overview of internet of vehicles. China Communications, 
2014. 11(10): pp. 1–15.

	 8.	 Guo, L., et al., A secure mechanism for big data collection in large scale internet 
of vehicle. IEEE Internet of Things Journal, 2017. 4(2): pp. 601−610.

	 9.	 Arooj, A., et al., Big data processing and analysis in internet of vehicles: 
Architecture, taxonomy, and open research challenges. Archives of Computational 
Methods in Engineering, 2022. 29: pp. 793–829.

	 10.	 Milakis, D., et al., Development and transport implications of automated vehicles 
in the Netherlands: Scenarios for 2030 and 2050. European Journal of Transport 
and Infrastructure Research, 2017. 17(1): pp. 63−85.

	 11.	 Texas Instruments. Introduction to the Controller Area Network (CAN); Application 
Report SLOA101; Texas Instruments: Dallas, TX, USA, 2002; pp. 1–17.

	 12.	 Lin, X., et al., GSIS: A secure and privacy-preserving protocol for vehicular 
communications. IEEE Transactions on Vehicular Technology, 2007. 56(6): 
pp. 3442–3456.

	 13.	 Sun, Y., et al., Security and privacy in the Internet of Vehicles. In 2015 
International Conference on Identification, Information, and Knowledge in the 
Internet of Things (IIKI), 2015. IEEE.

	 14.	 Lokman, S.-F., A.T. Othman, and M.-H. Abu-Bakar, Intrusion detection system 
for automotive Controller Area Network (CAN) bus system: A review. EURASIP 
Journal on Wireless Communications and Networking, 2019. 2019(1): p. 184.

	 15.	 Hasan, K.F., Overall, A., Ansari, K., Ramachandran, G.S., & Jurdak, R. Security, 
Privacy and Trust: Cognitive Internet of Vehicles. ArXiv, 2021. abs/2104.12878.

https://doi.org/10.5772/intechopen.69687


52  References

	 16.	 Miftah, E., A. Sayouti, and H. Medromi, Multi-agent systems and its applica-
tion to control vehicle underwater. International Journal of Applied Information 
Systems, 2015. 9(7): pp. 29−38.

	 17.	 Wrona, Z., Buchwald, W., Ganzha, M., Paprzycki, M., Leon, F., Noor, N., & Pal, 
C.-V. Overview of Software Agent Platforms Available in 2023. Information, 
2023. 14(6): p. 348. https://doi.org/10.3390/info14060348

	 18.	 Ouaissa, M., et al., A secure vehicle to everything (V2X) communication model 
for intelligent transportation system. In Computational intelligence in recent 
communication networks, 2022. Springer. pp. 83−102.

	 19.	 Choy, M.C., D. Srinivasan, and R.L. Cheu, Neural networks for continuous 
online learning and control. IEEE Transactions on Neural Networks, 2006. 
17(6): pp. 1511–1531.

	 20.	 Choy, M.C., D. Srinivasan, and R.L. Cheu, Cooperative, hybrid agent architec-
ture for real-time traffic signal control. IEEE Transactions on Systems, Man, 
and Cybernetics- Part A: Systems and Humans, 2003. 33(5): pp. 597−607.

	 21.	 Lander, S.E., Issues in multiagent design systems. IEEE Expert, 1997. 12(2): 
pp. 18–26.

	 22.	 Müller, J.P. and K. Fischer, Application impact of multi-agent systems and tech-
nologies: A survey. In Agent-oriented software engineering, 2014. Springer.

	 23.	 Kober, J., J.A. Bagnell, and J. Peters, Reinforcement learning in robotics: A survey. 
The International Journal of Robotics Research, 2013. 32(11): pp. 1238–1274.

	 24.	 Shakshuki, E. and M. Reid, Multi-agent system applications in healthcare: 
Current technology and future roadmap. Procedia Computer Science, 2015. 52: 
pp. 252–261.

	 25.	 Derakhshan, F. and S. Yousefi, A review on the applications of multiagent sys-
tems in wireless sensor networks. International Journal of Distributed Sensor 
Networks, 2019. 15(5): p. 1550147719850767.

	 26.	 Lhotská, L., Learning in multi-agent systems: Theoretical issues. In International 
Conference on Computer Aided Systems Theory, 1997. Springer.

	 27.	 Hernandez-Leal, P., B. Kartal, and M.E. Taylor, A survey and critique of multia-
gent deep reinforcement learning. Autonomous Agents and Multi-Agent Systems, 
2019. 33(6): pp. 750−797.

	 28.	 Nguyen, T.T., N.D. Nguyen, and S. Nahavandi, Deep reinforcement learning for 
multiagent systems: A review of challenges, solutions, and applications. IEEE 
Transactions on Cybernetics, 2020. 50(9): pp. 3826−3839.

	 29.	 Oroojlooy, A. and D. Hajinezhad, A review of cooperative multi-agent deep rein-
forcement learning. Applied Intelligence, 2019. 53, 13677–13722.

	 30.	 Zhang, K., Z. Yang, and T. Başar, Multi-agent reinforcement learning: A selec-
tive overview of theories and algorithms. Handbook of Reinforcement Learning 
and Control, 2021: pp. 321−384.

	 31.	 Abu Talib, M. et al., Systematic literature review on Internet-of-Vehicles com-
munication security. International Journal of Distributed Sensor Networks, 
2018. 14(12): p. 1550147718815054.

	 32.	 Sharma, N., N. Chauhan, and N. Chand, Security challenges in Internet of 
Vehicles (IoV) environment. In 2018 First International Conference on Secure 
Cyber Computing and Communication (ICSCCC), 2018. IEEE.

	 33.	 Zhang, L., et al., Practical secure and privacy-preserving scheme for value-added 
applications in VANETs. Computer Communications, 2015. 71: pp. 50–60.

https://doi.org/10.3390/info14060348


References  53

	 34.	 Rivas, D.A., et al., Security on VANETs: Privacy, misbehaving nodes, false 
information and secure data aggregation. Journal of Network and Computer 
Applications, 2011. 34(6): pp. 1942−1955.

	 35.	 Hickey, J., Vice President, Vínsula. Telephone interview, 2012, October.
	 36.	 Buinevich, M. and A. Vladyko, Forecasting issues of wireless communication 

Networks’ cyber resilience for an intelligent transportation system: An overview 
of cyber attacks. Information, 2019. 10(1): p. 27.

	 37.	 Zhou, J., Zhang, S., Lu, Q., Dai, W.W., Chen, M., Liu, X., Pirttikangas, S., Shi, Y., Zhang, 
W., & Herrera-Viedma, E.E. A Survey on Federated Learning and its Applications for 
Accelerating Industrial Internet of Things. ArXiv, 2021. abs/2104.10501.

	 38.	 Committee, A.I.a.S., Electrical services, 2021 [cited 2022 04/04]. Available from: 
https://nationalindustryinsights.aisc.net.au/industries/electrotechnology/electrical- 
services.

	 39.	 Farsi, M., K. Ratcliff, and M. Barbosa, An overview of controller area network. 
Computing & Control Engineering Journal, 1999. 10(3): pp. 113−120.

	 40.	 Bosch, R., CAN specification. Robert Bosch GmbH, Postfach, 1991. p. 50.
	 41.	 Huang, J. and K.B. Kesler, Tractor Hacking, 2021. Available online: https:// 

tractorhacking.github.io/ (accessed on 20/8/2023).
	 42.	 Ren, K., et al., The security of autonomous driving: Threats, defenses, and future 

directions. Proceedings of the IEEE, 2019. 108(2): pp. 357–372.
	 43.	 Bozdal, M., et al., Evaluation of can bus security challenges. Sensors, 2020. 

20(8): p. 2364.
	 44.	 Gmiden, M., M.H. Gmiden, and H. Trabelsi, An intrusion detection method for secur-

ing in-vehicle CAN bus. In 2016 17th International Conference on Sciences and 
Techniques of Automatic Control and Computer Engineering (STA), 2016. IEEE.

	 45.	 Bozdal, M., M. Samie, and I. Jennions, A survey on can bus protocol: Attacks, 
challenges, and potential solutions. In 2018 International Conference on 
Computing, Electronics & Communications Engineering (iCCECE), 2018. IEEE.

	 46.	 Song, H.M., H.R. Kim, and H.K. Kim, Intrusion detection system based on the 
analysis of time intervals of CAN messages for in-vehicle network. In 2016 
International Conference On Information Networking (ICOIN), 2016. IEEE.

	 47.	 Miller, C. and C. Valasek, Adventures in automotive networks and control units. 
Def Con, 2013. 21(260–264): pp. 15−31.

	 48.	 Marchetti, M. and D. Stabili, Anomaly detection of CAN bus messages through 
analysis of ID sequences. In 2017 IEEE Intelligent Vehicles Symposium (IV), 
2017. IEEE.

	 49.	 Taylor, A., N. Japkowicz, and S. Leblanc, Frequency-based anomaly detection 
for the automotive CAN bus. In 2015 World Congress on Industrial Control 
Systems Security (WCICSS), 2015. IEEE.

	 50.	 Chandwani, A., S. Dey, and A. Mallik, Cybersecurity of onboard charging 
systems for electric vehicles—review, challenges and countermeasures. IEEE 
Access, 2020. 8: pp. 226982–226998.

	 51.	 Cho, K.-T. and K.G. Shin, Viden: Attacker identification on in-vehicle net-
works. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and 
Communications Security, 2017.

	 52.	 Lu, Z., et al., LEAP: A lightweight encryption and authentication protocol for 
in-vehicle communications. In 2019 IEEE Intelligent Transportation Systems 
Conference (ITSC), 2019. IEEE.

https://tractorhacking.github.io/
https://tractorhacking.github.io/
https://nationalindustryinsights.aisc.net.au/industries/electrotechnology/electrical-services
https://nationalindustryinsights.aisc.net.au/industries/electrotechnology/electrical-services


54  References

	 53.	 Farag, W.A., CANTrack: Enhancing automotive CAN bus security using intui-
tive encryption algorithms. In 2017 7th International Conference on Modeling, 
Simulation, and Applied Optimization (ICMSAO), 2017. IEEE.

	 54.	 Jukl, M. and J. Čupera, Using of tiny encryption algorithm in CAN-Bus com-
munication. Research in Agricultural Engineering, 2016. 62(2): pp. 50−55.

	 55.	 Shepherd, S.J., The tiny encryption algorithm. Cryptologia, 2007. 31(3): pp. 
233–245.

	 56.	 Studnia, I., et al., A language-based intrusion detection approach for automotive 
embedded networks. International Journal of Embedded Systems, 2018. 10(1).

	 57.	 Jin, S., J.-G. Chung, and Y. Xu, Signature-based intrusion detection system 
(IDS) for in-vehicle can bus network. In 2021 IEEE International Symposium 
on Circuits and Systems (ISCAS), 2021. IEEE.

	 58.	 Larson, U.E., D.K. Nilsson, and E. Jonsson, An approach to specification-based 
attack detection for in-vehicle networks. In 2008 IEEE Intelligent Vehicles 
Symposium, 2008. IEEE.

	 59.	 Olufowobi, H., et al., Saiducant: Specification-based automotive intrusion detec-
tion using controller area network (can) timing. IEEE Transactions on Vehicular 
Technology, 2019. 69(2): pp. 1484−1494.

	 60.	 Hoppe, T., S. Kiltz, and J. Dittmann, Applying intrusion detection to automotive 
it-early insights and remaining challenges. Journal of Information Assurance 
and Security (JIAS), 2009. 4(6): pp. 226−235.

	 61.	 Ling, C. and D. Feng, An algorithm for detection of malicious messages on CAN 
buses. In 2012 National Conference on Information Technology and Computer 
Science, 2012. Atlantis Press.

	 62.	 Weber, M., et al., Embedded hybrid anomaly detection for automotive CAN 
communication. In 9th European Congress on Embedded Real Time Software 
and Systems (ERTS 2018), 2018.

	 63.	 Grimm, D., M. Weber, and E. Sax, An extended hybrid anomaly detection 
system for automotive electronic control units communicating via ethernet. In 
Proceedings of the 4th International Conference on Vehicle Technology and 
Intelligent Transport Systems, 2018.

	 64.	 Kang, M.-J. and J.-W. Kang, Intrusion detection system using deep neural net-
work for in-vehicle network security. PLoS One, 2016. 11(6): p. e0155781.

	 65.	 Ali, E.S., Hasan, M.K., Hassan, R., Saeed, R.A., Hassan, M.B., Islam, S., Nafi, 
N.S., & Bevinakoppa, S. Machine Learning Technologies for Secure Vehicular 
Communication in Internet of Vehicles: Recent Advances and Applications. 
Security and Communication Networks, 2021, 8868355:1-8868355:23.

	 66.	 Aboelwafa, M.M., et al., A  machine-learning-based technique for false data 
injection attacks detection in industrial IoT. IEEE Internet of Things Journal, 
2020. 7(9): pp. 8462–8471.

	 67.	 Khan, I.A., et al., HML-IDS: A hybrid-multilevel anomaly prediction 
approach for intrusion detection in SCADA systems. IEEE Access, 2019. 7: pp. 
89507−89521.

	 68.	 Zolanvari, M., et al., Machine learning-based network vulnerability analysis of 
industrial Internet of Things. IEEE Internet of Things Journal, 2019. 6(4): pp. 
6822–6834.

	 69.	 Yan, W., L.K. Mestha, and M. Abbaszadeh, Attack detection for securing cyber 
physical systems. IEEE Internet of Things Journal, 2019. 6(5): pp. 8471−8481.



References  55

	 70.	 Thomas, T., A.P. Vijayaraghavan, and S. Emmanuel, Machine learning 
approaches in cyber security analytics, 2020. Springer.

	 71.	 Talpur, A. and M. Gurusamy, Machine learning for security in vehicular net-
works: A comprehensive survey. IEEE Communications Surveys & Tutorials, 
2021. 24(1): pp. 346–379.

	 72.	 Alshammari, A., et al., Classification approach for intrusion detection in vehicle 
systems. Wireless Engineering and Technology, 2018. 9(4): pp. 79–94.

	 73.	 Nazakat, I. and K. Khurshid, Intrusion detection system for in-vehicular com-
munication. In 2019 15th International Conference on Emerging Technologies 
(ICET). 2019. IEEE.

	 74.	 Chowdhury, A., Chakravarty, T., Ghose, A., Banerjee, T., & Balamuralidhar, 
P. Investigations on Driver Unique Identification from Smartphone’s GPS Data 
Alone. Journal of Advanced Transportation, 2018. pp. 1–11.

	 75.	 Moreira-Matias, L. and H. Farah, On developing a driver identification meth-
odology using in-vehicle data recorders. IEEE Transactions on Intelligent 
Transportation Systems, 2017. 18(9): pp. 2387−2396.

	 76.	 Avatefipour, O., et al., An intelligent secured framework for cyberattack detec-
tion in electric vehicles’ CAN bus using machine learning. IEEE Access, 2019. 
7: pp. 127580–127592.

	 77.	 Al-Saud, M., et al., An intelligent data-driven model to secure intravehicle 
communications based on machine learning. IEEE Transactions on Industrial 
Electronics, 2019. 67(6): pp. 5112–5119.

	 78.	 Xiao, J., H. Wu, and X. Li, Internet of Things meets vehicles: Sheltering 
in-vehicle network through lightweight machine learning. Symmetry, 2019. 
11(11): p. 1388.

	 79.	 Martínez, M.V., et al., Driving behavior signals and machine learning: A person-
alized driver assistance system. In 2015 IEEE 18th International Conference on 
Intelligent Transportation Systems, 2015. IEEE.

	 80.	 Kieu, T., B. Yang, and C.S. Jensen, Outlier detection for multidimensional time 
series using deep neural networks. In 2018 19th IEEE International Conference 
on Mobile Data Management (MDM), 2018. IEEE.

	 81.	 Mao, Q., F. Hu, and Q. Hao, Deep learning for intelligent wireless networks: A 
comprehensive survey. IEEE Communications Surveys & Tutorials, 2018. 20(4): 
pp. 2595–2621.

	 82.	 LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): 
pp. 436–444.

	 83.	 McMahan, B., et al., Communication-efficient learning of deep networks from 
decentralized data. In Artificial Intelligence and Statistics, 2017. PMLR.

	 84.	 Li, B., et al., DeepFed: Federated deep learning for intrusion detection in indus-
trial cyber–physical systems. IEEE Transactions on Industrial Informatics, 
2020. 17(8): pp. 5615–5624.

	 85.	 Zhu, K., et al., Mobile edge assisted literal multi-dimensional anomaly detec-
tion of in- vehicle network using LSTM. IEEE Transactions on Vehicular 
Technology, 2019. 68(5): pp. 4275−4284.

	 86.	 Hossain, M.D., et al., LSTM-based intrusion detection system for in-vehicle can 
bus communications. IEEE Access, 2020. 8: pp. 185489−185502.

	 87.	 Song, H.M., J. Woo, and H.K. Kim, In-vehicle network intrusion detection using 
deep convolutional neural network. Vehicular Communications, 2020. 21: p. 100198.



56  References

	 88.	 Lokman, S.F., et al., Deep contractive autoencoder-based anomaly detection for 
in- vehicle controller area network (CAN). In Progress in engineering technology, 
2019. Springer. pp. 195−205.

	 89.	 Seo, E., H.M. Song, and H.K. Kim, GIDS: GAN based intrusion detection system 
for in-vehicle network. In 2018 16th Annual Conference on Privacy, Security 
and Trust (PST), 2018. IEEE.

	 90.	 Zhang, J., et al., Intrusion detection system using deep learning for in-vehicle 
security. Ad Hoc Networks, 2019. 95: p. 101974.

	 91.	 Lin, Y., et al., An evolutionary deep learning anomaly detection framework for in- 
vehicle networks-CAN bus. IEEE Transactions on Industry Applications, 2020. 1: 
pp. 1–14.

	 92.	 Yang, Y., Z. Duan, and M. Tehranipoor, Identify a spoofing attack on an in-
vehicle CAN bus based on the deep features of an ECU fingerprint signal. Smart 
Cities, 2020. 3(1): pp. 17−30.

	 93.	 Cortes, C. and V. Vapnik, Support-vector networks. Machine Learning, 1995. 
20(3): pp. 273–297.

	 94.	 Zhang, X., et al., Soil liquefaction prediction based on bayesian optimization and 
support vector machines. Sustainability, 2022. 14(19): p. 11944.

	 95.	 Patle, A. and D.S. Chouhan, SVM kernel functions for classification. In 2013 
International Conference on Advances in Technology and Engineering (ICATE), 
2013. IEEE.

	 96.	 Safavian, S.R. and D. Landgrebe, A survey of decision tree classifier methodology. 
IEEE Transactions on Systems, Man, and Cybernetics, 1991. 21(3): pp. 660−674.

	 97.	 Song, Y.-Y. and L. Ying, Decision tree methods: Applications for classification 
and prediction. Shanghai Archives of Psychiatry, 2015. 27(2): p. 130.

	 98.	 Faris, H., Hassonah, M., Al-Zoubi, A., Mirjalili, S., & Aljarah, I. A multi-verse 
optimizer approach for feature selection and optimizing SVM parameters based 
on a robust system architecture. Neural Computing and Applications, 2018. 30: 
pp. 2355–2369. https://doi.org/10.1007/s00521-016-2818-2.

	 99.	 Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. Support vector 
machines. IEEE Intelligent Systems and their applications, 1998. 13(4): pp. 18–28.

	100.	 Hsu, C. W., Chang, C. C., & Lin, C. J. A practical guide to support vector clas-
sification, 2003.

	101.	 Hofmann, T., Schölkopf, B., & Smola, A. J. Kernel methods in machine learn-
ing, 2008.

	102.	 Breiman, L., Random Forests. Machine Learning, 2001. 45(1): pp. 5–32.
	103.	 Peterson, L.E., K-nearest neighbor. Scholarpedia, 2009. 4(2): p. 1883.
	104.	 Akanbi, O.A., I.S. Amiri, and E. Fazeldehkordi, Chapter 3—research method-

ology. In O.A. Akanbi, I.S. Amiri, and E. Fazeldehkordi, (Eds.), A machine-
learning approach to phishing detection and defense, 2015. Syngress: Boston. 
pp. 35–43.

	105.	 Lewis, D.D., Naive (Bayes) at forty: The independence assumption in informa-
tion retrieval. In Machine learning: ECML-98, 1998. Springer Berlin Heidelberg: 
Berlin, Heidelberg.

	106.	 Itchhaporia, D., et al., Artificial neural networks: Current status in cardiovas-
cular medicine. Journal of the American College of Cardiology, 1996. 28(2):  
pp. 515–521.

https://doi.org/10.1007/s00521-016-2818-2


References  57

	107.	 Alom, M.Z., et al., A state-of-the-art survey on deep learning theory and archi-
tectures. Electronics, 2019. 8(3): p. 292.

	108.	 Phung, V.H. and E.J. Rhee, A deep learning approach for classification of cloud 
image patches on small datasets. Journal of Information and Communication 
Convergence Engineering, 2018. 16(3): pp. 173−178.

	109.	 Xin, Y., et al., Machine learning and deep learning methods for cybersecurity. 
IEEE Access, 2018. 6: pp. 35365−35381.

	110.	 Gers, F.A., J. Schmidhuber, and F. Cummins, Learning to Forget: Continual 
Prediction with LSTM. Neural Computation, 2000. 12(10): pp. 2451−2471.

	111.	 Graves, A., et al., A novel connectionist system for unconstrained handwriting 
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
2009. 31(5): pp. 855−868.

	112.	 Graves, A. and J. Schmidhuber, Framewise phoneme classification with bidi-
rectional LSTM networks. In Proceedings. 2005 IEEE International Joint 
Conference on Neural Networks, 2005.

	113.	 Wu, X., et al., Top 10 algorithms in data mining. Knowledge and Information 
Systems, 2008. 14(1): pp. 1–37.

	114.	 Matarić, M. J., The robotics primer. Intelligent Robotics and Autonomous 
Agents series, 2007. MIT Press, Cambridge, USA.

	115.	 Haidegger, T., Taxonomy and standards in robotics. In Encyclopedia of robotics, 
2021. Springer Nature: Berlin, Germany. pp. 1–10.

	116.	 Murphy, R.R., Introduction to AI robotics, 2019, MIT Press.
	117.	 Bartoš, M., V. Bulej, M. Bohušík, J. Stanček, V. Ivanov, and P. Macek, An over-

view of robot applications in automotive industry. Transportation Research 
Procedia, 2021. 55: pp. 837–844.



http://taylorandfrancis.com


59

Appendix

https://github.com/Ahmed-Alruwaili/AVs-Security/blob/master/Lightwight_
IDS_.ipynb

Importing Libraries

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler
from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report,  
  confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
from tensorflow.keras.layers import LSTM, Dense,  
  SimpleRNN, Convolution1D
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
import numpy as np
import csv
threshold = t = 1

Loading the Dataset

from google.colab import drive
drive.mount("/content/drive")

df1 = pd.read_csv('/content/drive/MyDrive/datasets/DoS_ 
	 dataset.csv',
	 names = �['CAN ID', 'DLC', 'DATA[0]', 'DATA[1]',  

'DATA[2]', 'DATA[3]', 'DATA[4]', 'DATA[5]', 
'DATA[6]', 'DATA[7]', 'Flag'])

https://github.com/Ahmed-Alruwaili/AVs-Security/blob/master/Lightwight_IDS_.ipynb
https://github.com/Ahmed-Alruwaili/AVs-Security/blob/master/Lightwight_IDS_.ipynb
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df2 = pd.read_csv('/content/drive/MyDrive/datasets/Fuzzy_ 
	 dataset.csv',
	 names = �['CAN ID', 'DLC', 'DATA[0]', 'DATA[1]',  

'DATA[2]', 'DATA[3]', 'DATA[4]', 'DATA[5]', 
'DATA[6]', 'DATA[7]', 'Flag'])

df3 = pd.read_csv('/content/drive/MyDrive/datasets/gear_ 
	 dataset.csv',
	 names = �['CAN ID', 'DLC', 'DATA[0]', 'DATA[1]', 	

'DATA[2]', 'DATA[3]', 'DATA[4]', 'DATA[5]', 
'DATA[6]', 'DATA[7]', 'Flag'])

df4 = pd.read_csv('/content/drive/MyDrive/datasets/RPM_ 
	 dataset.csv',
	 names = �['CAN ID', 'DLC', 'DATA[0]', 'DATA[1]',  

'DATA[2]', 'DATA[3]', 'DATA[4]', 'DATA[5]', 
'DATA[6]', 'DATA[7]', 'Flag'])

Mounted at /content/drive

list_ = []
csv.register_dialect('skip_space', skipinitialspace=True)
with open('/content/drive/MyDrive/datasets/normal_run_ 
	 data.txt', 'r') as f: reader=csv.reader(f , delimiter=' ',  
	 dialect='skip_space')
	 for item in reader:
		  list_.append(item)

normal_run_data = pd.DataFrame(list_)
normal_run_data.drop([0,1,2,4,5], axis = 1, inplace = True)
normal_run_data.columns = ['CAN ID','DLC','DATA[0]',  
	 'DATA[1]', 'DATA[2]', 'DATA[3]', 'DATA[4]', 'DATA[5]',  
	 'DATA[6]', 'DATA[7]']
normal_run_data['Flag'] = 'R'

# merging all the 5 datasets

df = pd.concat([df1,df2,df3,df4, normal_run_data])

Exploratory Data Analysis

print('DoS dataset shape : ', df1.shape)
print('Fuzzy dataset shape : ', df2.shape)
print('Gear dataset shape : ', df3.shape)
print('RPM dataset shape : ', df4.shape)
print('Normal run data shape : ', normal_run_data.shape)
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	 DoS dataset shape : (3665771, 11)
	 Fuzzy dataset shape : (3838860, 11)
	 Gear dataset shape : (4443142, 11)
	 RPM dataset shape : (4621702, 11)
	 Normal run data shape : (988872, 11)

# Shape of the dataset df.shape
# Distribution of the target variable that is Flag
target = df['Flag'].value_counts().sort_index()
fig_width = 1000 / 300 # ≈ 3.333 inches
fig_height = fig_width
plt.figure(figsize=(fig_width, fig_height), dpi=300)
sns.barplot(
	 x=target.index,
	 y=target.value,
	 edgecolor=’black,
	 linewidth=1.5,
	 palette=palette)
plt.title('Target Distribution',fontsize=20)
plt.xlabel(‘Flag’, fontsize=15)
plt.ylabel(‘Count, fontsize=15)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.tight_layout()
plt.show()
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# Data types of all the columns of the dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
Float64Index: 17558347 entries, 1478198376.389427 to  
988871.0 Data columns (total 11 columns):

# COLUMN DTYPE

0 CAN ID object

1 DLC object

2 DATA[0] object

3 DATA[1] object

4 DATA[2] object

5 DATA[3] object

6 DATA[4] object

7 DATA[5] object

8 DATA[6] Object

9 DATA[7] Object

10 Flag object

dtypes: object(11)  
memory usage: 1.6+ GB

# summary statistics for all the columns 
df.describe(include = 'object')
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CAN ID DLC DATA 
[0]

DATA 
[1]

DATA 
[2]

DATA 
[3]

DATA 
[4]

DATA 
[5]

DATA 
[6]

DATA 
[7]

FLAG

count 17558346 17558346 17558346 17558346 17548217 17401006 17401006 17350400 17296949 17296946 17357682

unique 2048 7 256 256 257 256 256 257 257 256 2

top 0316 8 00 00 00 00 00 00 00 00 R

freq 1481995 16368810 5793523 6936263 9526345 7441374 7235336 5981003 9899470 8936383 15026165
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Dataset Preparation

1.  Data Cleaning

# Check for the missing  
values df.isnull().sum()

CAN ID 1

DLC 1

DATA[0] 1

DATA[1] 1

DATA[2] 10130

DATA[3] 157341

DATA[4] 157341

DATA[5] 207947

DATA[6] 261398

DATA[7] 261401

Flag 200665

dtype: int64

df[df.duplicated()].shape

# Check for incorrect values in the dataset column 
DATA[2] as R is not the valid value for this bit column 
df[df['DATA[2]']=='R']

   (16573115, 11)
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CAN ID DLC DATA[0] DATA[1] DATA[2] DATA[3] DATA[4] DATA[5] DATA[6] DATA[7] FLAG

1.478198e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN

1.478198e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN

1.478198e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN

1.478198e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN

1.478198e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ...

1.478201e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN

1.478201e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN

1.478201e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN

1.478201e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN

1.478201e+09 05f0 2 01 00 R NaN NaN NaN NaN NaN NaN
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# removing those incorrect data

df = df[df['DATA[2]']!='R']

df = df[df['DATA[6]']!='R']

df = df[df['DATA[5]']!='R']

df.dropna(inplace = True)

# Removing DLC column as it has only one value 8 in it
try:
	 df.drop('DLC', axis = 1, inplace = True)
	 except:
		  pass
# Removing duplicates if any  
df.drop_duplicates(inplace = True)

# Making the dataset balanced to remove biasing and overfitting  
  of the models
df_T = df[df['Flag'] == 'R']
df_R = df[df['Flag'] == 'T'].iloc[:df_T.shape[0],]

df = pd.concat([df_R,df_T])

t=654 # adjust the threshold

# Converting the hexadecimal values to  
decimal values for col in df.columns[:-1]:
	 df[col] = df[col].apply(lambda x: int(str(x),16))

#df['Flag'].value_counts()
df['CAN ID'].describe()

count 908764.000000

mean 805.947920

std 522.835131

min 0.000000

25% 305.000000

50% 654.000000

75% 1118.000000

max 2047.000000

Name: CAN ID, dtype: float64

fig,ax =plt.subplots(2,4,figsize=(20,8))

ax[0,0].hist(df['DATA[0]'],color='blue',  
edgecolor ='k') ax[0,0].set_title('CAN ID')
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ax[0,1].hist(df['DATA[1]'],color='orange', edgecolor ='k')  
ax[0,1].set_title('DATA[1]')

ax[0,2].hist(df['DATA[2]'],color='green', edgecolor ='k') 
ax[0,2].set_title('DATA[2]')

ax[0,3].hist(df['DATA[3]'],color='purple', edgecolor ='k')  
ax[0,3].set_title('DATA[3]')

ax[1,0].hist(df['DATA[4]'],color='blue', edgecolor ='k') 
ax[1,0].set_title('DATA[4]')

ax[1,1].hist(df['DATA[5]'],color='orange', edgecolor ='k')  
ax[1,1].set_title('DATA[5]')

ax[1,2].hist(df['DATA[6]'],color='green', edgecolor ='k') 
ax[1,2].set_title('DATA[6]')

ax[1,3].hist(df['DATA[7]'],color='purple', edgecolor ='k')  
ax[1,3].set_title('DATA[7]')

fig.subplots_adjust(top=0.9)
fig.suptitle('Distribution of Different Data Bits',fontsize=20)

plt.show()
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f,ax=plt.subplots(figsize=(10,8))

plt.title('Correlation between the different features',  
  fontsize = 20)  
sns.heatmap(df.corr(),annot=True,linecolor="blue", 
  fmt=".2f",ax=ax)

plt.show()
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2.  Data Transformation

# Label encoding the target variable and converting  
R, T into 0,1 en = LabelEncoder()
df['Flag'] = en.fit_transform(df['Flag'])

# The threshold has been set at 1 theoretically to demonstrate 
the priority of messages

ML_dataset = df[df['CAN ID']>=t]

DL_dataset = df[df['CAN ID']<t]

# Splitting into X(features) and y(target)

X_ml = ML_dataset.drop('Flag', axis = 1)

y_ml = ML_dataset[['Flag']]

# Splitting the dataset into train, test data

X_train, X_test, y_train, y_test = train_test_split(X_ml,  
	 y_ml, test_size=0.2, random_state = 42)

# Normalizing the  
dataset scaler =  
MinMaxScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

ML_dataset.shape
	 (454475, 10)

X_train.shape
	 (363580, 9)

X_test.shape
	 (90895, 9)

Machine Learning Modelling

1.  Support Vector Machine

# Initializing the model
svm = SVC(C = 1.5, kernel = 'rbf',random_state = 42)

# Fitting on the train dataset  
svm.fit(X_train_scaled, y_train)

# Making predictions on the test data
predictions = svm.predict(X_test_scaled)
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# Model Evaluation
accuracy_svm = round(accuracy_score(y_test, predictions)*100,3) 
print('Accuracy Score of SVM : ', accuracy_svm)

print('-'*50)

print('Classification Report : ')

print(classification_report(y_test, predictions))

print('-'*50)

cm = confusion_matrix(y_test, predictions)

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)

Accuracy Score of SVM 99.919

Classification Report:
precision recall f1-score support

0� 1.00 1.00 1.00 29227

1� 1.00 1.00 1.00 61668

	 accuracy 1.00 90895

	 macro avg� 1.00 1.00 1.00 90895

	weighted avg� 1.00 1.00 1.00 90895

Sensitivity : 0.9997604954323057
Specificity : 0.9989135370046053

2.  Random Forest Classifier

# Initializing the model

rfc = RandomForestClassifier(criterion = 'gini',  
	 n_estimators =10, max_depth = 3, random_state = 42)

# Fitting on the train dataset  
rfc.fit(X_train_scaled, y_train)

# Making predictions on the test data
predictions = rfc.predict(X_test_scaled)

# Model Evaluation
accuracy_rfc = round(accuracy_score(y_test, predictions)*100,3) 
print('Accuracy Score of Random Forest Classifier : ',  
accuracy_rfc)

print('-'*50)
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print('Classification Report : ')

print(classification_report(y_test, predictions))

print('-'*50)

cm = confusion_matrix(y_test, predictions)

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)

Accuracy Score of Random Forest Classifier : 97.423

Classification Report:
precision recall f1-score support

0� 0.94 0.98 0.96 29227

1� 0.99 0.97 0.98 61668

	 accuracy 0.97 90895

	 macro avg� 0.97 0.97 0.97 90895

	weighted avg� 0.97 0.97 0.97 90895

Sensitivity : 0.9770075615013515
Specificity : 0.9729195044431471

3.  KNN Classifier

# Initializing the model
knn = KNeighborsClassifier(n_neighbors = 5, weights = 
'distance')

# Fitting on the train dataset  
knn.fit(X_train_scaled, y_train)

# Making predictions on the test data

predictions = knn.predict(X_test_scaled)

# Model Evaluation

accuracy_knn = round(accuracy_score(y_test, predictions)*100,3)

print('Accuracy Score of K Neighbors Classifier : ', accuracy_knn)

print('-'*50)

print('Classification Report : ')  
print(classification_report(y_test, predictions))

print(‘-‘*50)

cm = confusion_matrix(y_test, predictions)
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sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)

Accuracy Score of K Neighbors Classifier : 99.828

Classification Report:
precision recall f1-score support

0� 0.99 1.00 1.00 29227

1� 1.00 1.00 1.00 61668

	 accuracy 1.00 90895

	 macro avg� 1.00 1.00 1.00 90895

	weighted avg� 1.00 1.00 1.00 90895

Sensitivity : 0.9997262804940638
Specificity : 0.99760005189077

4.  Decision Tree Classifier

# Initializing the model

dct = DecisionTreeClassifier(max_depth = 3, random_state = 42)

# Fitting on the train dataset  
dct.fit(X_train_scaled, y_train)

# Making predictions on the test data
predictions = dct.predict(X_test_scaled)

# Model Evaluation

accuracy_dct = round(accuracy_score(y_test, predictions)*100,3)

print('Accuracy Score of Decision Tree Classifier : ', accuracy_dct)

print('-'*50)

print('Classification Report : ') print(classification_
report(y_test, predictions))

print('-'*50)

cm = confusion_matrix(y_test, predictions)

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)
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Accuracy Score of Decision Tree Classifier : 97.065

Classification Report:
precision recall f1-score support

0� 0.93 0.99 0.96 29227

1� 0.99 0.96 0.98 61668

	 accuracy 0.97 90895

	 macro avg� 0.96 0.97 0.97 90895

	weighted avg� 0.97 0.97 0.97 90895

Sensitivity : 0.9853902213706505
Specificity : 0.9636602451838879

5.  Naïve Bayes Classifier

# Initializing the model

gnb = GaussianNB()

# Fitting on the train dataset  
gnb.fit(X_train_scaled, y_train)

# Making predictions on the test data

predictions = gnb.predict(X_test_scaled)

# Model Evaluation

accuracy_gnb = round(accuracy_score(y_test, predictions)*100,3)

print(‘Accuracy Score of Naïve Bayes Classifier : ‘, accuracy_gnb)

print('-'*50)

print('Classification Report : ')  
print(classification_report(y_test, predictions))

print('-'*50)

cm = confusion_matrix(y_test, predictions)

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])
print('Sensitivity : ', sensitivity)

specificity = cm[1,1]/(cm[1,0]+cm[1,1])
print('Specificity : ', specificity)
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Accuracy Score of Naive Bayes Classifier : 96.11

Classification Report:
precision recall f1-score support

0� 0.92 0.97 0.94 29227

1� 0.98 0.96 0.97 61668

	 accuracy 0.96 90895

	 macro avg� 0.95 0.96 0.96 90895

	weighted avg� 0.96 0.96 0.96 90895

Sensitivity : 0.9659903513874157
Specificity : 0.9587792696374132

accuracy_scores = [accuracy_svm, accuracy_rfc, accuracy_knn, 
accuracy_dct, accuracy_gnb]

model_names = ['Support \nVector Machine','Random Forest 
\nClassifier',

	� 'K Nearest \nNeighbors' ,'Decision Tree \nClassifier', 
'Naive Bayes \nClassifier']

plt.figure(figsize=(15,5))

plt.grid(b=True, which='major', axis='y')

plt.title('Comparing Accuracy of ML Models',fontsize=15) 
colors=['red','orange','green','magenta','blue']

plt.xticks(fontsize=12)

plt.yticks(fontsize=12) 
plt.ylabel('Accuracy',fontsize=12) 
plt.xlabel('Models',fontsize=12)

bar = plt.bar(model_names,accuracy_scores,edgecolor='black',
color=colors, linewidth=2, alpha =0.5)

def autolabel(rects):

	 for rect in rects:
		  h = rect.get_height() 
		  plt.text(rect.get_x()+rect.get_width()/2, 
		  0.5*(h), '%f'%(h),
			   ha='center', va='bottom',fontsize=15)

autolabel(bar)
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Deep Learning Modelling

# Splitting into X(features) and y(target)

X_dl = DL_dataset.drop('Flag', axis = 1)

y_dl = DL_dataset[['Flag']]

# Splitting the dataset into train, test data

X_train, X_test, y_train, y_test = train_test_split(X_dl, 
y_dl, test_size=0.2, random_state = 42)

# Normalizing the dataset

scaler = MinMaxScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

# Reshaping for fitting into the deep learning models

x_train = np.reshape(X_train_scaled, (X_train_scaled.
shape[0],X_train_scaled.shape[1],1))

x_test = np.reshape(X_test_scaled, (X_test_scaled.
shape[0],X_test_scaled.shape[1],1))

DL_dataset.shape

X_train.shape
	 (454289, 10)
	 (363431, 9)

X_test.shape
	 (90858, 9)

1.  Simple Neural Network

# Initializing model
nn = Sequential()

# Input layer with 256 units

nn.add(Dense(256, input_dim=x_train.shape[1], activation = 
'tanh'))

nn.add(Dense(128, activation = 'tanh'))

nn.add(Dense(64, activation = 'tanh'))

nn.add(Dense(1, activation ='sigmoid'))
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# defining loss function, optimizer, metrics and then 
compiling model nn.compile(loss='binary_crossentropy', 
optimizer='adam',metrics=['accuracy'])

# training the model on training dataset
history = nn.fit(x_train, y_train, epochs=10, batch_
size=64,validation_data=(x_test, y_test))

Epoch 1/10

5679/5679 [=============================] - 31s 5ms/step - 
loss: 0.0320 - accuracy: 0.9889 - val_loss: 0.0073 - val_
accuracy: 0.9980 Epoch 2/10

5679/5679 [=============================] - 28s 5ms/step - 
loss: 0.0054 - accuracy: 0.9986 - val_loss: 0.0047 - val_
accuracy: 0.9989 Epoch 3/10

5679/5679 [=============================] - 25s 4ms/step - 
loss: 0.0037 - accuracy: 0.9990 - val_loss: 0.0029 - val_
accuracy: 0.9993

Epoch 4/10

5679/5679 [=============================] - 29s 5ms/step - 
loss: 0.0026 - accuracy: 0.9993 - val_loss: 0.0031 - val_
accuracy: 0.9992 Epoch 5/10

5679/5679 [=============================] - 27s 5ms/step - 
loss: 0.0022 - accuracy: 0.9993 - val_loss: 0.0027 - val_
accuracy: 0.9993 Epoch 6/10

5679/5679 [=============================] - 27s 5ms/step - 
loss: 0.0018 - accuracy: 0.9995 - val_loss: 0.0014 - val_
accuracy: 0.9997 Epoch 7/10

5679/5679 [=============================] - 31s 6ms/step - 
loss: 0.0018 - accuracy: 0.9995 - val_loss: 0.0016 - val_
accuracy: 0.9996
Epoch 8/10

5679/5679 [=============================] - 26s 4ms/step - 
loss: 0.0014 - accuracy: 0.9996 - val_loss: 0.0024 - val_
accuracy: 0.9994 Epoch 9/10

5679/5679 [=============================] - 28s 5ms/step - 
loss: 0.0014 - accuracy: 0.9996 - val_loss: 0.0016 - val_
accuracy: 0.9996 Epoch 10/10
5679/5679 [=============================] - 28s 5ms/step - 
loss: 0.0012 - accuracy: 0.9997 - val_loss: 0.0011 - val_
accuracy: 0.9997
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# Evaluation

predictions = nn.predict(x_test)

prediction = []

for i in predictions:

	 if i[0]>0.5:

		  prediction.append(1)

	 else:

		  prediction.append(0)

accuracy_nn = round(accuracy_score(y_test, prediction)*100,3)

print('Test Accuracy of Neural Network : ', accuracy_nn)

print('-'*50)

print('Classification Report : ')

print(classification_report(y_test, prediction)) print('-'*50)

cm = confusion_matrix(y_test, prediction)

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)

2840/2840 [==============================] - 5s 2ms/step

Test Accuracy of Neural Network 99.969

Classification Report:
precision recall f1-score support

0� 1.00 1.00 1.00 61828

1� 1.00 1.00 1.00 29030

	 accuracy 1.00 90858

	 macro avg� 1.00 1.00 1.00 90858

	weighted avg� 1.00 1.00 1.00 90858

Sensitivity : 0.9999514782946238
Specificity : 0.9991388219083707
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2.  Long Short-Term Memory

# Initializing model

lst = Sequential()

# input layer and LSTM layer with 256 neurons

lst.add(LSTM(units=256, return_sequences=True, input_shape= 
(x_train.shape[1],1))) lst.add(Dense(128, activation = 'tanh'))

lst.add(Dense(64, activation = 'tanh'))

lst.add(Dense(32, activation = 'tanh'))

# output layer with sigmoid activation

lst.add(Dense(1, activation='sigmoid'))

# defining loss function, optimizer, metrics and then 
compiling model lst.compile(loss='binary_crossentropy', 
optimizer='adam',metrics=['accuracy'])

# training the model on training dataset

history = lst.fit(x_train, y_train, epochs=10, batch_
size=64,validation_data=(x_test, y_test))

Epoch 1/10

5679/5679 [==============================] - 353s 62ms/
step - loss: 0.1909 - accuracy: 0.9186 - val_loss: 0.0991 - 
val_accuracy: 0.9675 Epoch 2/10

5679/5679 [==============================] - 339s 60ms/
step - loss: 0.0620 - accuracy: 0.9791 - val_loss: 0.0422 - 
val_accuracy: 0.9868

Epoch 3/10

5679/5679 [==============================] - 354s 62ms/
step - loss: 0.0432 - accuracy: 0.9867 - val_loss: 0.0309 - 
val_accuracy: 0.9913 Epoch 4/10

5679/5679 [==============================] - 352s 62ms/
step - loss: 0.0409 - accuracy: 0.9882 - val_loss: 0.0758 - 
val_accuracy: 0.9783 Epoch 5/10

5679/5679 [==============================] - 353s 62ms/
step - loss: 0.0346 - accuracy: 0.9902 - val_loss: 0.0234 - 
val_accuracy: 0.9924 Epoch 6/10

5679/5679 [==============================] - 355s 62ms/
step - loss: 0.0300 - accuracy: 0.9915 - val_loss: 0.0392 - 
val_accuracy: 0.9889

Epoch 7/10

5679/5679 [==============================] - 355s 63ms/
step - loss: 0.0275 - accuracy: 0.9921 - val_loss: 0.0203 - 
val_accuracy: 0.9935 Epoch 8/10
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5679/5679 [==============================] - 358s 63ms/
step - loss: 0.0277 - accuracy: 0.9923 - val_loss: 0.0180 - 
val_accuracy: 0.9944 Epoch 9/10
5679/5679 [==============================] - 362s 64ms/
step - loss: 0.0272 - accuracy: 0.9924 - val_loss: 0.0232 - 
val_accuracy: 0.9930

Epoch 10/10

5679/5679 [==============================] - 353s 62ms/
step - loss: 0.0296 - accuracy: 0.9915 - val_loss: 0.0216 - 
val_accuracy: 0.9931

# Evaluation

predictions = lst.predict(x_test)

prediction = []
for i in predictions:
	 if i[0]>0.5:
		  prediction.append(1)
	 else:
		  prediction.append(0)

accuracy_lst = round(accuracy_score(y_test, prediction)*100,3)

print('Test Accuracy of LSTM : ', accuracy_lst)

print('-'*50)

print('Classification Report : ')

print(classification_report(y_test, prediction))

print('-'*50)

cm = confusion_matrix(y_test, prediction)

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])
\ print('Sensitivity : ', sensitivity)

specificity = cm[1,1]/(cm[1,0]+cm[1,1])
print('Specificity : ', specificity)

2840/2840 [==============================] - 43s 15ms/step

Test Accuracy of LSTM 96.539

Classification Report:
precision recall f1-score support

0� 0.96 0.99 0.97 61828

1� 0.97 0.92 0.94 29030

	 accuracy 0.97 90858

	 macro avg� 0.97 0.95 0.96 90858

	weighted avg� 0.97 0.97 0.97 90858

Sensitivity : 0.9866565310215436
Specificity : 0.9200826730967964
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3.  Recurrent Neural Network

# Initializing model
rnn = Sequential()

# input layer and RNN layer with 128 neurons

rnn.add(SimpleRNN(units=256, return_sequences=True, input_ 
shape=(x_train.shape[1],1)))

rnn.add(Dense(128, activation = 'relu'))

rnn.add(Dense(64, activation = 'relu'))

rnn.add(Dense(32, activation = 'relu'))

# output layer with sigmoid activation

rnn.add(Dense(1, activation='sigmoid'))

# defining loss function, optimizer, metrics and then 
compiling model rnn.compile(loss='binary_crossentropy',op
timizer='adam',metrics=['accuracy']) #rnn.compile(loss=0.1,
optimizer='adam',metrics=['accuracy'])

# training the model on training dataset

history = rnn.fit(x_train, y_train, epochs=10, batch_
size=64,validation_data=(x_test, y_test))

Epoch 1/10
5679/5679 [==============================] - 149s 26ms/
step - loss: 0.1188 - accuracy: 0.9540 - val_loss: 0.0619 - 
val_accuracy: 0.9792

Epoch 2/10

5679/5679 [==============================] - 139s 24ms/
step - loss: 0.0647 - accuracy: 0.9765 - val_loss: 0.0626 - 
val_accuracy: 0.9789

Epoch 3/10

5679/5679 [==============================] - 140s 25ms/
step - loss: 0.0475 - accuracy: 0.9850 - val_loss: 0.0377 - 
val_accuracy: 0.9884

Epoch 4/10

5679/5679 [==============================] - 134s 24ms/
step - loss: 0.0397 - accuracy: 0.9886 - val_loss: 0.0412 - 
val_accuracy: 0.9878

Epoch 5/10

5679/5679 [==============================] - 141s 25ms/
step - loss: 0.0341 - accuracy: 0.9903 - val_loss: 0.0322 - 
val_accuracy: 0.9907

Epoch 6/10
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5679/5679 [==============================] - 140s 25ms/
step - loss: 0.0331 - accuracy: 0.9907 - val_loss: 0.0228 - 
val_accuracy: 0.9929

Epoch 7/10

5679/5679 [==============================] - 134s 24ms/
step - loss: 0.0312 - accuracy: 0.9913 - val_loss: 0.0269 - 
val_accuracy: 0.9930

Epoch 8/10

5679/5679 [==============================] - 146s 26ms/
step - loss: 0.0303 - accuracy: 0.9915 - val_loss: 0.0213 - 
val_accuracy: 0.9940

Epoch 9/10

5679/5679 [==============================] - 137s 24ms/
step - loss: 0.0288 - accuracy: 0.9920 - val_loss: 0.0198 - 
val_accuracy: 0.9942

Epoch 10/10

5679/5679 [==============================] - 135s 24ms/
step - loss: 0.0281 - accuracy: 0.9921 - val_loss: 0.0197 - 
val_accuracy: 0.9942

# Evaluation

predictions = rnn.predict(x_test)
prediction = []
for i in predictions:
	 if i[0]>0.5:
		  prediction.append(1)
	 else:
		  prediction.append(0)

accuracy_rnn = round(accuracy_score(y_test, prediction)*100,3)

print('Test Accuracy of RNN : ', accuracy_rnn)

print('-'*50) print('Classification Report : ')

print(classification_report(y_test, prediction))

print('-'*50)

cm = confusion_matrix(y_test, prediction)

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)

2840/2840 [==============================] - 23s 8ms/step
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Test Accuracy of RNN : 97.311

Classification Report:
precision recall f1-score support

0� 0.97 0.99 0.98 61828

1� 0.97 0.94 0.96 29030

	 accuracy 0.97 90858

	 macro avg� 0.97 0.97 0.97 90858

	weighted avg� 0.97 0.97 0.97 90858

Sensitivity : 0.9866565310215436
Specificity : 0.9442645539097485

4.  Convolution Neural Network

# Initializing model

cnn = Sequential()

# Input layer with CNN with 128 neurons

cnn.add(Convolution1D(256, kernel_size=3, activation='tanh', 
input_shape=(x_train.shape[1],1)))

# Hidden layers with 100 and 64 units and tanh as activation 
function

cnn.add(Dense(128, activation='tanh'))

cnn.add(Dense(64, activation='tanh'))

cnn.add(Dense(32, activation='tanh'))

# output layer with sigmoid activation

cnn.add(Dense(1, activation='sigmoid'))

# defining loss function, optimizer, metrics and then 
compiling model cnn.compile(loss='binary_crossentropy',op
timizer='adam',metrics=['accuracy'])

# training the model on training dataset

history = cnn.fit(x_train, y_train, epochs=10, batch_
size=64,validation_data=(x_test, y_test),)

Epoch 1/10
5679/5679 [==============================] - 60s 9ms/step - 
loss: 0.2493 - accuracy: 0.8975 - val_loss: 0.1720 - val_
accuracy: 0.9328 Epoch 2/10
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5679/5679 [==============================] - 58s 10ms/
step - loss: 0.1625 - accuracy: 0.9369 - val_loss: 0.1580 - 
val_accuracy: 0.9378 Epoch 3/10

5679/5679 [==============================] - 56s 10ms/
step - loss: 0.1483 - accuracy: 0.9426 - val_loss: 0.1435 - 
val_accuracy: 0.9453 Epoch 4/10

5679/5679 [==============================] - 51s 9ms/step - 
loss: 0.1398 - accuracy: 0.9458 - val_loss: 0.1337 - val_
accuracy: 0.9479

Epoch 5/10
5679/5679 [==============================] - 57s 10ms/
step - loss: 0.1337 - accuracy: 0.9478 - val_loss: 0.1365 - 
val_accuracy: 0.9481 Epoch 6/10

5679/5679 [==============================] - 58s 10ms/
step - loss: 0.1279 - accuracy: 0.9502 - val_loss: 0.1276 - 
val_accuracy: 0.9507 Epoch 7/10

5679/5679 [==============================] - 53s 9ms/step - 
loss: 0.1234 - accuracy: 0.9522 - val_loss: 0.1207 - val_
accuracy: 0.9534

Epoch 8/10

5679/5679 [==============================] - 57s 10ms/
step - loss: 0.1197 - accuracy: 0.9540 - val_loss: 0.1147 - 
val_accuracy: 0.9558 Epoch 9/10

5679/5679 [==============================] - 51s 9ms/step - 
loss: 0.1169 - accuracy: 0.9554 - val_loss: 0.1240 - val_
accuracy: 0.9534 Epoch 10/10

5679/5679 [==============================] - 54s 9ms/step - 
loss: 0.1144 - accuracy: 0.9565 - val_loss: 0.1114 - val_
accuracy: 0.9576

# Evaluation

predictions = cnn.predict(x_test)

prediction = []

for i in predictions:

	 if i[0]>0.5:

		  prediction.append(1)

	 else:

		  prediction.append(0)

accuracy_cnn = round(accuracy_score(y_test, predic-
tion)*100,3)

print('Test Accuracy of CNN : ', accuracy_cnn)

print('-'*50)
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print('Classification Report : ')

print(classification_report(y_test, prediction))

print('-'*50)

cm = confusion_matrix(y_test, prediction)

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)

2840/2840 [==============================] - 10s 3ms/step

Test Accuracy of CNN : 97.582

Classification Report:
precision recall f1-score support

0� 0.97 1.00 0.98 61828

1� 0.99 0.93 0.96 29030

	 accuracy 0.98 90858

	 macro avg	 0.98 0.96 0.97 90858

	weighted avg	 0.98 0.98 0.98 90858

Sensitivity : 0.996441741605745
Specificity : 0.9318980365139511

accuracy_scores = [accuracy_nn, accuracy_lst, accuracy_rnn, 
accuracy_cnn]

model_names = �['Neural Network', 'Long Short Term\nMemory', 
'Recurrent Neural \nNetwork', 'Convolution 
Neural \nNetwork']

plt.figure(figsize=(10,5))

plt.grid(b=True, which='major', axis='y')

plt.title('Comparing Accuracy of DL Models',fontsize=15)

colors=['red','orange','green','magenta']

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.ylabel('Accuracy',fontsize=12)

plt.xlabel('Models',fontsize=12)
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bar = plt.bar(model_names,accuracy_scores,edgecolor='black',
color=colors, linewidth=2, alpha =0.5) def autolabel(rects):

	 for rect in rects:

		  h = rect.get_height() 

		  plt.text(rect.get_x()+rect.get_width()/2, 0.5*(h), '%f'%(h),

			   ha='center', va='bottom',fontsize=15)

autolabel(bar)
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