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Preface

A cyber-physical system (CPS) is a complex system embedding advanced com-
putation, communication, and control techniques into physical spaces, and is
usually built up with a set of networked agents such as sensors, actuators, con-
trol processing units, and communication devices. Although the development
of CPS facilitates efficient and real-time collaboration between elements, the
open nature of communication networks makes it rather vulnerable to mali-
cious attacks. Given that the applications of CPSs vary regarding aerospace,
transportation, and power grids, which are always safety critical, researchers
have acknowledged the importance of designing a system with secure algo-
rithms.

This book first characterizes the properties required for a secure system
and possible security threats. Driven by the concerns of deception attacks
on communication channels, we are studying secure detection and control in
an adversarial environment. New designs on detection and control algorithms
will be developed in this book, providing acceptable system performance in
the presence of attacks.

Chapter 3 investigates the binary hypothesis testing in an adversarial envi-
ronment, where a detector determines the true state of an unknown parameter
using m sensors. Among these sensors, n out of them can be compromised by
the adversary and send arbitrary data. The exponential rate, at which the
worst-case probability of detection error goes to 0, is adopted to depict the
system performance. This problem is then formulated as a game between de-
tector and attacker, where the former player attempts to maximize this rate
and the latter intends to minimize it. We study both cases where m > 2n and
m ≤ 2n, and obtain an equilibrium strategy pair of detection rules and attack
schemes for both cases.

Inspired by the fact that the unreliable data transmission can degrade
the performance of traditional control algorithms, Chapter 4 discusses the re-
silient consensus in multi-agent systems, where some of the agents might be
misbehaving. Specifically, a continuous-time second-order system is consid-
ered, where the agent’s dynamics are governed by both position and velocity
states. To avoid continuous communication and control, we propose an impul-
sive secure algorithm. Based on this strategy, signal transmissions and control
actions only occur at (aperiodic) sampling instants. After creating a “safe re-
gion” with the position states from neighbors, each benign agent derives its
control signal with a value inside this region. Sufficient conditions related to

xi



xii Preface

the network topology and the maximum number of tolerable faulty nodes are
finally derived. As a result, the position states of benign agents are asymptot-
ically synchronized, and the velocity states converge to 0.

Chapter 5 also studies the problem of resilient consensus in multi-agent
systems. At this time, we intend to propose secure algorithms that not only
facilitate the agreement among benign agents, but also guarantee that the
agreement is within the convex hull formed by benign agents’ initial states.
Toward this end, a resilient consensus algorithm is given, where at each time,
the normal agent sorts its received values on one dimension, computes two
“middle points” based on the sorted values, and moves its state toward these
middle points. An explicit approach is further given for the computation
of middle points through linear programming. Compared with the existing
works, our approach is applicable to general multi-dimensional systems and
introduces lower computational complexity. As the consensus among agents
arguably forms the basis of distributed computing, the aforementioned results
represent a first step toward the development of secure coordination protocols.

Chapter 6 focuses on another important application of multi-agent sys-
tems, namely the resilient containment control in the presence of multiple
leaders. Both the leaders and followers can be malicious. In contrast to the
leaderless consensus, the objective of this problem is not to achieve an agree-
ment, but to drive the normal followers to the convex hull formed by normal
leaders. To this aim, we design secure protocols for both the first-order and
second-order systems. Through convex analysis and Lyapunov functions, con-
vergence and resiliency of the proposed algorithms are theoretically proved.

In summary, this book considers the secure detection and control in
the presence of deception attacks. All of the proposed approaches are well-
supported by numerical examples besides theoretical analysis.
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1

Introduction

This chapter presents introduction of the book. First, we state the background
and motivation of this research. Then, major contributions are highlighted,
followed by the outline of this book.

1.1 Background

1.1.1 Cyber-Physical System

The cyber-physical systems (CPSs) refer to a new class of engineered systems,
serving as integrations of computation, networking, and physical processes [8].
Particularly, the cyber worlds, via embedded computers, control and monitor
the physical processes through communication networks (Figure 1.1). Com-
pared with the traditional systems, CPS is typically built up with sets of
networked agents: sensors, actuators, control units, etc., and can be regarded
as a network of interacting elements with physical inputs and outputs. The
ability to interact with physical worlds through computation, communication,
and control techniques facilitates efficient and real-time collaboration between
elements.

The applications of CPS lie in the sensor-based communication-enabled
autonomous systems. Because of growing advancements in embedded systems
and communication technologies, more and more systems have revealed the
characteristics of CPS. For example, in transportation systems, a wireless
sensor network continuously monitors the road condition and transmits the
processed information to a computational node to make real-time decisions
and control. Other types of CPSs include smart grids, medical monitoring,
multi-robot networks, and so on. We list a few of CPS applications in Table 1.1.

1.1.2 Security-Related Issues in CPS

CPS applications involve components that interact through communication
networks. Despite the enormous advantages brought by such systems, the open
nature of communication networks makes the system much more vulnerable to

DOI: 10.1201/9781003409199-1 1
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2 Introduction

FIGURE 1.1: Cyber-physical systems: The sensor networks collect the mon-
itoring information from the physical processes and transmit it to the com-
puting systems. By dealing with the knowledge coming from the plants, the
computing systems, through sensor networks, provide real-time control com-
mands to the physical processes.

TABLE 1.1: Applications of CPSs.

Applications Issues/Aspects Reference

Transportation
Design of Cyber-physical vehicle systems [127], [7], [112]

Road monitoring [131], [101]
Distributed car control system [85], [70]

Health care
Design of health-care devices [52], [78],[59]

Development of medical application platform [48]
Early detection on physical abnormality [46]

Smart buildings
Design of smart bulidings [75], [144]

Energy management in smart homes [143], [65]

Smart grid
Improvement of energy efficiency [160],[159]

Energy systems modeling [57]
Energy resource management [109],[43]
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FIGURE 1.2: Reported number of cyber incidents in U.S. received and re-
sponded by ICS-CERT with fiscal year [56].

potential cyber attacks. Annual reports from the Industrial Control Systems
Cyber Emergency Response Team (ICS-CERT) witness the increasing cyber
attacks on control systems (Figure 1.2).

Table 1.2 lists some well-known cyber incidents in history. For many years,
malicious attackers have targeted the cyber or communication layers of con-
trol systems and managed the critical infrastructures. One concrete example
is an incident in 2010 caused by an advanced computer worm, Stuxnet. By
targeting the Supervisory Control and Data Acquisition (SCADA) systems,
Stuxnet destroyed the energy facilities, and was particularly responsible for
causing substantial damage to Iran’s nuclear program. Another instance is the
Ukraine Power System Attacks in 2015–2016. At least three power regions in
Ukraine were announced to be compromised by cyber attackers. By invading
the monitoring and management systems, this attack resulted in failures of
seven substations of 110KV and 23 substations of 35KV, and led to hours of
blackouts in more than half of the region. More details of these two attacks are
demonstrated in Figures 1.3 and 1.4, adopted from [68] and [1], respectively.

The above cyber incidents highlight potential threats to control systems.
Since most of the CPS applications are safety-critical, the failure of these
systems could lead to large economic losses and even cause irreparable harm
to public health [19]. Thus more and more research attention has been paid
to the security of CPS.

1.1.3 Security Goals and Threats

Information security focuses on three objectives: confidentiality, integrity,
and availability, which are collectively known as CIA, as shown in Fig-
ure 1.5. Specifically, confidentiality refers to the ability to keep the infor-
mation secret from unauthorized ones. Integrity is to ensure the accuracy and
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TABLE 1.2: Some cyber incidents in history.

Year Name Description
2010 Stuxnet The world’s first publically known digital weapon,

causing substantial damage to Iran’s nuclear pro-
gram.

2013 New York
Dam

An Iranian hactivist group launched a cyber attack
against the control system for Bowman Dam in New
York.

2014 Citibank By launching cyber attacks on Citibank, the attacker
has stolen tens of millions of dollars.

2014 German
Steel Mill

A steel mill in Germany suffered a cyber attack,
which resulted in massive damage to the system.

2015 Ukraine
Power Grid
Attack No. 1

The first known successful cyber-attack on a coun-
try’s power grid.

2016 “Kemuri”
water

company

By intruding into the programmable logic circuits
(PLCs), the attackers manipulated control applica-
tions and altered water treatment chemicals.

2016 Ukraine
Power Grid
Attack No. 2

Cyber-attackers tripped breakers in 30 substa-
tions, causing blackout incidents which affected over
225, 000 customers in the region of Lavno-Franklvst
of Ukraine.

2017 Uber Data
Breach

Hackers accessed a server containing personal infor-
mation of more than 57 million Uber drivers and
riders. They demanded a $100,000 ransom to delete
their copy of data.

2019 Venezuela
Power
Outage

The populace in Venezuela suffered a power blackout
which is suspected to have been caused by hackers
backed by U.S. Intelligence.

trustworthiness of data. Availability, on the other hand, guarantees that the
data, network resources, or services are continuously available to the legiti-
mate users whenever they need them.

In general, an adversary, by taking control of sensors or actuators in the
communication networks, can deteriorate the system security in terms of con-
fidentiality, integrity, or availability. Accordingly, Cardenas et al. classify the
cyber attacks against CPSs into three types: eavesdropping, deception, and
denial-of-service (DoS) attack [20], which are detailed below:

• Eavesdropping attacks: An adversary infers the states of systems by taking
advantage of unsecured communications to access the transmitted data.
The systems under this attack will suffer privacy disclosure. For example, a
healthcare CPS requires the patients’ health information to be transmitted
to the doctors. Yet, by using the internet-connected medical devices, users
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FIGURE 1.3: The attack procedure of Stuxnet[68].1

FIGURE 1.4: The summary of Ukraine power outage attacks [1].

may unwittingly expose their sensitive data to an attacker. This attack is
difficult to be detected as the systems appear to be operating normally.

• Deception attacks: Also known as integrity attacks, where an adversary
maliciously modifies the transmitted data. The receiver, after receiving
this false data, is fooled into believing this incorrect version of reality to

1Reproduced with permission of ©2013 IEEE.
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FIGURE 1.5: CIA Triangle: Three goals in information security.

be true and act in a way that benefits the attacker. Because the conflict
of interests among parties is almost inevitable, deception attacks are com-
monly encountered in systems. Some of the common deception attacks
include replay attack [99] and false data injection attack [83].

• DoS attacks: The attacker intentionally jams or blocks the communica-
tion channels so that the receiver fails to receive certain packets from the
sender. Compared with deception attacks, DoS attacks are more realiz-
able because of their easy implementation and limited system knowledge
requirement. Abundant historical cyber incidents highlighted the hazard
of DoS attacks.

Figure 1.6 offers a general abstraction of security threats in CPS, where the
adversary can deteriorate the system performance by launching cyber attacks
on communication channels.

1.2 Contributions of the Book

Inspired by the above security concerns, particularly the ones induced by
deception attacks, this book focuses on secure detection and control in cyber-
physical systems, with the aim of designing resilient algorithms or architec-
tures that survive CPS attacks. The main contents and contributions of this
book are highlighted as follows:

• Secure Detection in Wireless Sensor Networks (Chapter 3):

Wireless sensor networks (WSNs) are key components in the emergent
CPSs. They are particularly deployed as interfaces through which data
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FIGURE 1.6: A general abstraction of cyber security threats in CPS [35].2

are collected from the physical layer and transferred to the cyber layer,
as well as interfaces through which commands/instructions are injected
from the cyber layer to the physical layer. WSNs may include hundreds
of spatial sensors which interact to solve complex tasks such as detec-
tion, estimation, and control. However, at the same time, the extensive
use of sensors also makes networks vulnerable to potential attacks, such
as message manipulations, false data injections, etc. Driven by such se-
curity concerns, this book considers secure detection in WSNs, where a
detector determines the true state of an unknown parameter through the
measurements of multiple sensors. Given that an attacker maliciously mod-
ifies some sensor’s measurements, the detection performance can be easily
compromised. To address this issue, a secure detector is presented which
achieves the optimal detection performance under attacks. By formulating
this problem as a game between the detector and attacker, an optimal at-
tack strategy is also developed, which forms a Nash equilibrium with the
proposed optimal detector.

• Resilient Consensus in Adversarial Environment (Chapters 4 and 5):

CPSs require the interaction among different components. Multi-Agent
System (MAS), which has emerged over the years, is one of the ma-
jor technological paradigms regulating interactions among autonomous

2Reproduced with permission from ©2019 Elsevier.
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entities. As such, it has the potential to support CPS in implementing a
highly distributed architecture [14]. The concept of MAS has been widely
used in applications like transportation, signal processing, and sensor net-
works. In many of these applications, the agents must agree upon certain
quantities of interest, at which point a consensus is said to be achieved.
However, most existing algorithms to facilitate consensus are rather frag-
ile: their performance will be greatly degraded due to the proliferation of
“misbehaving” agents, i.e., the agents whose information is manipulated
by malicious attacks or who refuse to follow the prescribed algorithms. In
view of this challenge, this book develops resilient consensus algorithms,
which mitigate the impacts of misbehaving agents and guarantee the con-
sensus of the rest benign ones. Particularly, we present two algorithms. The
first one, through impulsive control, facilitates the resilient consensus in
continuous-time second-order systems with aperiodic communication sig-
nals and control actions. The second one, on the other hand, achieves the
resilient agreement within the convex hull of benign agents’ initial states.
In comparison with the existing works, one major breakthrough of this
approach is that the applicability has been extended to multi-dimensional
spaces with reduced computational cost. Since the consensus arguably
forms the foundation for distributed computing, these results lay a solid
foundation for future works to develop resilient coordination protocols.

• Resilient Containment Control in Adversarial Environment (Chapter 6):

The existing consensus algorithms often focus on the leaderless scenarios.
Yet, in practice, there might be the case that one or more leaders exist
among these agents. The single leader case is well studied in the leader-
following consensus problems. Containment control, on the other hand,
comes from the existence of multiple leaders in MASs, where the follow-
ers aim to move towards the convex hull spanned by multi-leaders. This
book further investigates the resilient containment control in adversarial
environments, where both the leaders and followers can be misbehaving.
We propose secure protocols for both the first-order and second-order sys-
tems. Through convex analysis and Lyapunov functions, convergence and
resiliency of the proposed algorithms are theoretically proved. Namely,
they guarantee that the benign followers eventually move into the convex
hull formed by benign leaders, in spite of the network misbehaviors. To the
best of our knowledge, this is the first work regarding secure containment
control.

1.3 Outline of the Book

The remainder of this book is organized as follows:
Chapter 2 reviews the related works to CPS security, including the exist-

ing approaches in information security and automatic control. Some technical
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preliminaries are also provided in this chapter, which would be useful in the
analysis required in subsequent chapters.

In Chapter 3, the sequential detection in WSNs is investigated, where the
detector determines the true state of an unknown parameter based on the
measurements from m sensors, and the attacker deteriorates the detection
performance by compromising n (≤ m) sensors’ measurements. The exponent
rate, at which the worst-case probability of detection error goes to 0, is adopted
as the performance metric. This problem is formulated as a game between the
detector and attacker. We study both cases where m > 2n and m ≤ 2n. In
each case, certain optimal strategies are proposed for both players, with which
a Nash equilibrium is achieved.

Chapters 4–6 consider the resilient distributed control in MASs. Partic-
ularly, the leaderless consensus problem is discussed in Chapters 4 and 5,
aiming at achieving consensus under malicious nodes. Towards this end, Chap-
ter 4 proposes an impulsive resilient consensus algorithm in continuous-time
second-order systems, allowing the synchronization of position states through
aperiodic communication and control signals.

In Chapter 5, a “middle points”-based algorithm is alternatively proposed,
which is also applicable to multi-dimensional systems. By solving middle
points through a linear programming, the proposed strategy introduces a re-
duced computational complexity in high-dimensional spaces. Despite the pres-
ence of misbehaviors, it not only ensures that the benign agents exponentially
reach an agreement but also improves the consensus accuracy by guaranteeing
that the agreement is within the convex hull formed by benign agents’ initial
states.

Chapter 6 discusses another important application in MASs, i.e., contain-
ment control in the presence of multiple leaders. In practice, misbehaving
agents may exist, which deteriorate the system performance by either mis-
leading the normal followers to leave the convex hull formed by leaders or
destroying the convex formation of leaders. To deal with this issue, resilient
algorithms are respectively presented for first-order and second-order systems,
driving the normal followers into the convex hull spanned by normal leaders.
Under certain topological conditions, both algorithms are proved to be re-
silient enough to tolerate a number of malicious nodes.

Finally, Chapter 7 summarizes the book and presents several new perspec-
tives regarding CPS security.
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Literature Review

The security of CPS relies on the integration of cyber and physical layers, as
well as the different ways they are affected by decision-makers [122]. There-
fore, this field lies in the intersection of computer science and control sys-
tems. In this chapter, an in-depth survey of the existing techniques on related
topics, including information technology (IT) security and secure control, is
presented.

2.1 Related Work in Information Security

CPS applications arise in critical infrastructures like transportation, environ-
ment, and electricity grids. Such systems are typically built on IP/TCP-based
communication networks. Therefore, the first question would be: can CPS
security be handled purely with IT solutions?

An important tool in information technology for securing systems is au-
thentication. It enables organizations to protect their resources, including com-
puter systems, databases, websites, and other network-based applications or
services, by ensuring that only authenticated users (or processes) can get ac-
cess to them.

Historically, biometrics have been used as the most common method for
authentication [12]. Usual biometric authentication methods include finger-
print identification, voice analysis, face recognition, et al. There are a number
of advantages to biometric authentication. It can provide accurate, secured ac-
cess to information, as fingerprints, voice, and iris represent absolutely unique
data sets. Meanwhile, these identities can be verified without resorting to
documents that might be stolen or lost.

Secure communications between authorized parties can also be guaranteed
with the help of cryptographic methods. One mature solution is digital signa-
ture; see Figure 2.1. To achieve it, each entity should store the public keys for
others and the private key for its own. Apart from the plaintext, the sender
also transmits the digital signature to the receiver by the following opera-
tions: The plaintext is processed using hash functions to generate a message
digest; the sender then uses its private key to encrypt the message digest,
forming a digital signature that can be decrypted with its public key. Upon
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FIGURE 2.1: An overview of the concept of digital signature [2].

receiving the message, data decryption and verification processes are hence
required: the receiver first hashes the received plaintext into message digest
1, decrypts the message digest 2 from the digital signature using the sender’s
public key, and finally compares the two digests to verify the information
([96]). A digital signature gives a recipient strong confidence to believe that
the message was sent from a legal sender and has not been tampered by a
third party.

Other security tools developed by IT society include challenge/response
mechanisms (where one side presents a challenge to be answered and the other
side presents a correct answer to the challenge to get authenticated [28]) and
trusted timestamps (which add extra security to digital signatures by keeping
secure track of the creation and modification time of a document [31]). The
aforementioned authentication and verification tools can test the integrity of
messages and thus limit the vulnerability to cyber attackers.

Incorporating the traditional IT methods into system design, such as en-
cryption and authentication of transmitted messages, is important. However,
it cannot serve as a full solution to CPS security [122]. On one hand, many
encryption algorithms are computationally expensive, especially for embedded
systems [119]. As a consequence, they are likely to introduce large time de-
lays to the closed-loop system. Furthermore, the above mechanisms can often
be subverted by inevitable human errors and design flaws, which create vul-
nerabilities for external adversaries [19]. For example, a birthday attack can
abuse the communication between parties by taking advantage of the collision
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of hash functions [11, 45]. Therefore, even if certain communication channels
have been encrypted, malicious attackers can never be completely ruled out
and may lead to undesired actions of the controller. This is especially unde-
sirable as most of the CPS applications are safety-critical: they must provide
acceptable system performance even under attacks. On the other hand, IT
security mainly focuses on the protection of information at the cyber layer of
systems. As shown in Figure 1.1, the communication networks of CPSs en-
able the deep coupling of cyber and physical worlds, imposing fundamental
challenges for the pure cyber security tools. Particularly, feedback loops inher-
ent to CPSs imply the interdependence of the security of cyber and physical
worlds. It is thus desired to investigate how attacks at the cyber layer affect
the estimation and control performance at the physical layer. In particular,
control engineers aim at improving the system security by taking advantage
of the dynamics of physical plants.

In summary, the topic of cyber attacks is not of interest just to the IT
security community but must be studied from a comprehensive system and
infrastructure perspective. Researchers therefore argue for the need to draw
new design and analysis tools from control theory.

2.2 CPS Security from Control Perspective

The feedback loops in CPSs have implications on the underlying physical
dynamics and highlight the study of cyber security from a system and control
point-of-view. Particularly, CPS security should pay its attention not only to
the underlying communication networks but also to the sensors and actuators
forming feedback loops. In this section, we shall present a brief review of the
control-oriented secure measures, as demonstrated in Figure 2.2.

2.2.1 Prevention

Prevention mechanisms have been proposed in literature to avoid the infor-
mation leakage of dynamic systems. Dibaji et al. [35] classify the existing
methods into two classes: cryptography and randomization.

Cryptography, as detailed in Section 2.1, is a long-standing research of
interest in computer science and information security. Randomization, on the
other hand, is a defensive tool that aims at confusing the potential attackers
by introducing randomness to the true states. It is especially useful when the
adversaries can leverage the deterministic updating rules to predict and obtain
key information about the systems.

Differential privacy (DP) [41] is one of the standard approaches using ran-
domization. In the last decades, researchers have resorted to DP in the design
of privacy-preserving algorithms with the aim of protecting various objectives,
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FIGURE 2.2: Classification of security measures from system and control per-
spective.

including control commands [55, 141], initial states [54, 105], network topol-
ogy [121], and training data in distributed machine learning [139, 25]. Other
schemes based on randomization can be found in [98, 49]. For example, Mo
et al. [98] propose an average consensus algorithm to guarantee the privacy
of initial states and asymptotic consensus on the exact average of the initial
values by masking the transmitted data with well-designed random noises.
The idea of randomization has also been proposed in the setting of adversar-
ial machine learning [53]. Generally, there exists a trade-off between systems’
utility and privacy. Works including [123, 132, 88] explore this trade-off as
well.

2.2.2 Resilient Algorithms

System resilience is an ability of the system to withstand a disruption within
acceptable degradation parameters and continue to carry out its mission in
the face of adversity [118, 150]. Resilience may not be an inherent attribute
of the system but can be established through the dedicated design of control
and optimization strategies.

Resilience-increasing algorithms have been widely studied in the control
community. As an important measure, the game-theoretic approach has been
successfully applied to model the interplay between the system operator and
attacker. The defender provides system resilience by maximizing the cost for
the attacker to deteriorate the system [26, 42, 152] or minimizing the damage
that an attacker can introduce to the system [116, 36, 76]. Depending on the
model of players, different game strategies have been proposed. For example,
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TABLE 2.1: Solution concepts and security game scenarios between attacker
and defender [89].

Attacker
Defender

Active Passive

Active Nash Equilibrium Stackelberg Equilibrium
Passive Stackelberg Equilibrium Nash Equilibrium

communication channels may suffer from eavesdropping and jamming (DoS)
attacks. Eavesdropping is a passive attack, where the adversary only listens to
the network without interacting with it. Jamming, on the other hand, can be
active by blocking the channels such that the operator is impossible to com-
municate with. The interaction and solution concepts between passive/active
players are captured in Table 2.1. Specifically, if an eavesdropper only pas-
sively receives the “leaking” information from channels, it can be modeled
as a follower in a Stackelberg game [44] playing against a defender who is
a leader and employs active measures. Similarly, the interplay between an
active attacker and a passive defender is also reasonably viewed as a Stack-
elberg game. On the other hand, in the scenario where both players behave
actively or either side has an information advantage, the Nash equilibrium [91]
becomes a reasonable solution concept. In addition, other approaches from a
game-theoretic view have been proposed as well. For instance, non-cooperative
games are formulated and addressed in multi-agent systems [156]. In [116], a
zero-sum game is suggested for detection under deception attacks.

Apart from the game-theoretic methods, a group of works increases sys-
tem resilience through redundancy: deploying additional nodes and channels
to enhance the network robustness [73, 130, 33, 154, 153]. These methods are
proved efficient, especially in multi-agent systems, as the redundant agents
and links “compensate” for the attacking or faulty signals on misbehaving
ones and will be further discussed in Chapter 5. Moreover, system resilience
can alternatively be enhanced with trust-based approaches by protecting the
availability and integrity of a small subset of elements and guaranteeing the
correct information spread along the paths formed by these trusted elements
[3, 117, 4, 161, 155]. Since device hardening is costly, the set of trusted com-
ponents must be small and deployed at crucial points. Particularly, Abbas
et al. [4] show if the set of trusted agents induce a connected dominating set,
the network is able to tolerate any number of misbehaving nodes and achieve
resilient consensus.

2.2.3 Attack Detection and Isolation

Finally, attack detection and isolation has received considerable attention from
researchers, which usually identifies and removes the existence of an attack by
monitoring its influence on the outputs of CPSs.
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One commonly adopted strategy from control community is to construct
an observer-based detection mechanism, by taking into account the dynamics
of physical systems and addressing how this model can be used to identify
the anomaly [111, 93]. With this mechanism, one estimates the system states
with an observer, and make decision on possible misbehaviors based on the
residuals generated by the estimation. One concrete example is Bad Data
Detection (BDD) of power systems [30, 22, 102]. The system seeks estimates of
the state variables that best fit the meter measurements. As errors could enter
the meter measurements due to device failures, malicious attacks, etc., BDD
is introduced to protect the state estimation. It calculates the measurement
residual and compare its Euclidean norm with a prescribed threshold. Once
the norm exceeds this threshold, an alarm will be triggered. Given that an
attacker can inject arbitrary signals into the system, some works consider
malicious data as an unknown input with no a priori knowledge. An unknown
input observer (UIO) is thus designed, ensuring the estimation always track
the actual state, regardless of the value and distribution of the unknown inputs
[23, 111, 93, 148, 149]. This fact enables UIO to figure out the attacking signals
based on the system models. Besides, Luenberger observers are also widely
used [40, 87].

The concept of physical watermarking also emerges in the context of detec-
tion and isolation, especially for replay attacks [99, 63, 62]. In replay attacks,
the adversary records a sequence of system outputs and later replay them to
the operator. If the system is operating in steady state, these replayed sig-
nals will be statistically identical to the outputs of the system under normal
operation, posing significant challenges to the classical detection rules. To ad-
dress this issue, Mo et al. [100] develop a detection method by injecting the
well-designed noisy input, termed as watermarked signal, to physical systems.
As the attacker is unaware of this physical watermark, the system cannot be
adequately emulated and hence achieves improved detection performance.

The aforementioned model-based approaches is enabled by its ability to
recognize the abnormities in system dynamics. On the other hand, data-based
methods have also been popular. By posing the intrusion detection as statis-
tical learning problems, machine learning algorithms, such as support vector
machines, self-organizing maps, Bayesian networks, etc, are used in literature
to classify the measurements as being either secure or attacked [108, 120, 61].

2.3 Technical Preliminaries

After reviewing the related work on CPS security, this subsection introduces
some useful technical preliminaries, which would be applied in the rest of
book.
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2.3.1 Graph Theory

This section reviews some fundamentals of graph theory. When dealing with
MASs, it is common to model the communication network with a graph
G = {V, E}, where V is the set of agents, and E ⊂ V × V is the set of edges,
modeling the information flow or influence between agents, and typically real-
ized through communication or sensing. The edge eij ∈ E indicates that agent
i can directly receive information from agent j. Simple graphs satisfy that
eii /∈ E , ∀i ∈ V.

A graph is said to be undirected if and only if eij ∈ E implies eji ∈ E .
The neighborhood of an agent i ∈ V is then defined as Ni = {j ∈ V|eij ∈ E}.
Otherwise, the graph is referred to be a directed graph (or digraph). In this
case, the set of in-neighbors and out-neighbors of agent i might be different,
and are respectively defined as N+

i ≜ {j ∈ V|eij ∈ E},N−
i ≜ {j ∈ V|eji ∈ E}.

2.3.2 Network Robustness

Network robustness is a connectivity measure for graphs. Specifically, it for-
malizes the notion of sufficient local redundancy of information flow in the
network, and thus is useful for the study of resilient distributed algorithms
which use only local information [71].

The notions of network robustness are based on the r-reachability as de-
fined below:

Definition 2.1 (r-reachable) In a graph G(V, E), a subset S ⊆ V is said to
be r-reachable if it contains a vertex that has at least r (in-)neighbors from
outside S. That is, there exists i ∈ S such that Ni\S 1.

Based on this notion, network robustness, first introduced in [72], is for-
mally defined as follows:

Definition 2.2 (r-robust) A network modeled by G = {V, E} is said to be
r-robust, if for any pair of disjoint and nonempty subsets V1,V2 ⊊ V, at least
one of the sets is r-reachable.

The notion of r-robustness can be further generalized as follows: for r ∈
Z+, let X r

S ⊆ S, such that each agent in X r
S has at least r neighbors outside

of S, namely
X r

S = {i ∈ S : |Ni\S| ≥ r}. (2.1)

Definition 2.3 ((r, s)-robust) A network modeled by G = {V, E} is said to
be (r, s)-robust, if for any pair of disjoint and nonempty subsets V1,V2 ⊊ V,
at least one of the following statements holds:
1)
∣
∣X r

V1

∣
∣ = |V1|;

2)
∣
∣X r

V2

∣
∣ = |V2|;

3)
∣
∣X r

V1

∣
∣+
∣
∣X r

V2

∣
∣ ≥ s.

1In directed graphs, we replace Ni with N
+

i .
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Clearly, a (r + s − 1)-robust graph is (r, s)-robust as well. The following
lemma also shows the basic properties of the robust graphs:

Lemma 2.1 ([72]) For a (r, s)-robust graph G = {V, E} with |V| = N , the
following holds:

(a) G is (r′, s′)-robust, where 0 ≤ r′ ≤ r and 1 ≤ s′ ≤ s, and in particular,
it is r-robust.
(b) r ≤ ⌈N/2⌉, where ⌈·⌉ is the ceiling function. Also, if G is a complete graph,
then it is (r′, s)-robust for all 0 < r′ ≤ ⌈N/2⌉ and 1 ≤ s ≤ N

In [4], the authors extend the notions of robustness by incorporating
trusted nodes. Specifically, given a graph G = {V, E}, let T ⊆ V be a set
of trusted nodes. Then, given a non-empty subset S ⊆ V, define YS ⊆ S, such
that each agent in YS has at least one trusted neighbor outside of S, that is,

YS = {i ∈ S : (Ni\S) ∩ T ̸= ∅}.

Then let us denote Zr
S as

Zr
S = X r

S ∪ YS ,

where X r
S is defined in (2.1). Note that Zr

S is the subset of nodes in S with
each of the agents in Zr

S has either at least r neighbors outside of S, or at least
one trusted neighbor outside of S. Moreover, we say that a set S is r-reachable
with T if the corresponding Zr

S is non-empty. Now, let us define the notions
of r-robustness and (r, s)-robustness with T as follows [4]:

Definition 2.4 (r-robust with T ) A network modeled by G = {V, E} is
said to be r-robust with T , if for any pair of disjoint and nonempty subsets
V1,V2 ⊊ V, at least one of the sets is r-reachable with T .

Definition 2.5 ((r, s)-robust with T ) A network modeled by G = {V, E}
is said to be (r, s)-robust with S, if for any pair of disjoint and nonempty
subsets V1,V2 ⊊ V, at least one of the following statements hold:
1)
∣
∣Zr

S1

∣
∣ = |S1|;

2)
∣
∣Zr

S2

∣
∣ = |S2|;

3)
∣
∣Zr

S1

∣
∣+
∣
∣Zr

S2

∣
∣ ≥ s;

4)
(
Zr

S1
∪ Zr

S2

)
∩ T ̸= ∅.

Moreover, in many applications of MASs, it is desired to drive the states of
some agents (followers) towards the states of another group of agents (leaders).
To characterize the network’s capability of tolerating the misbehaving nodes
in such scenarios, Usevitch et al. [134] give the notion of network robustness
with respect to a certain subset S, where S ⊆ V is a nonempty subset of V:

Definition 2.6 (strongly r-robust w.r.t. S) A network modeled by G =
{V, E} is said to be strongly r-robust w.r.t S if for any nonempty subset S ′ ⊆
V\S, S ′ is r-reachable.
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Intuitively, the network robustness is a connectivity measure for graphs.
It claims that for any two disjoint and nonempty subsets of agents, there are
“many” agents within these sets that have a sufficient number of neighbors
outsides. Compared with the classical k-connectivity 2, the notion of network
robustness is more pertinent to quantify the local connectivity of nodes, and
thus is adopted widely in characterizing the network topology of achieving
local-information-based algorithms. We would also use these notions to eval-
uate the performance of distributed algorithms proposed in Chapters 4–6.

2.3.3 Sarymsakov Matrix

Another important tool would be the Sarymsakov matrix. Given a row
stochastic matrix A = (aij), define the directed graph G(A) associated with it

as G(A) = {V, E}, where (i, j) ∈ E if and only if aij > 0. Given any row stochas-
tic matrix A = {aij}, its associated digraph is defined as G(A) = {V, E}, where
eij ∈ E if and only if aij > 0. We first have the below result:

Lemma 2.2 ([114]) The digraph G(A) has a spanning tree if and only if A
has a simple eigenvalue λ = 1.

For a set V ′ ⊂ V, its one-stage consequent indice [125] is defined by

FA(V ′) = {j : aij > 0 for some i ∈ V ′}.
Namely, FA(V ′) is the set of nodes who have influence on the ones in V ′.

Based on the one-stage consequent indices, the Sarymsakov matrix is for-
mally defined below [145]:

Definition 2.7 (Sarymsakov matrix): A row stochastic matrix A is said to
be Sarymsakov, if for any disjoint nonempty sets V1,V2 ⊊ V, one of following
statements hold:
1) FA(V1) ∩ FA(V2) ̸= ∅;
2) FA(V1) ∩ FA(V2) = ∅ and |FA(V1) ∪ FA(V2)| > |V1 ∪ V2|.
Namely, Sarymsakov matrix means that, either V1 and V2 have some common
influencing nodes, or the total number of their influencing nodes is greater than
that of being influenced. The below results provide some important properties
of Sarymsakov matrices:

Lemma 2.3 ([145]) Let A be a set of stochastic matrices. For each sequence
of matrices A1, A2, . . . from A, if there is an integer α ≥ 1 such that for each
k ≥ α and any Ai ∈ A, the matrix Ak . . . A2A1 belongs to the Sarymsakov
class, then Ak . . . A2A1 converges to a rank-one matrix 1cT as k → ∞.

Lemma 2.4 ([15]) For any Sarymsakov matrix A, its associated graph G(A)
is rooted. On the other hand, if G(A) is rooted and has a self-arc at each
vertex, A is Sarymsakov.

2A network is with k-connectivity, if it remains connected after removing any k−1 nodes
from the network.
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Sequential Detection with
Byzantine Sensors

3.1 Introduction

Wireless sensor network (WSN) is a vital part of CPS, as strong sensing ca-
pability is one of the major driving factors for CPS applications. This chapter
considers the binary hypothesis testing in WSN, where a detector determines
the true state of an unknown parameter through the measurements of m
sensors. On the other hand, an attacker aims at degrading the detection per-
formance by modifying some sensors’ measurements. In practice, it may get
access to the sensors and send arbitrary messages or break the communica-
tion channels between the sensors and detector to tamper with the transmitted
data. Such sensors, whose information is fully controlled by the adversary, are
called Byzantine sensors. Due to the limited resources of the adversary, we
assume that at most n out of these m sensors are Byzantine.

According to Kerckhoffs’s principle [126], i.e., the security of a system
should not rely on its obscurity, we assume that the adversary knows exactly
the hypothesis testing algorithm used by the detector. On the other hand, the
detector only knows the number of Byzantine sensors n, but does not know
the exact set of the compromised sensors. The exponential rate, at which
the probability of detection error goes to zero, is adopted to indicate the
performance of the detector. We formulate this problem as a game between
the detector and attacker, in which the former attempts to maximize this
rate, while the latter intends to minimize it. We respectively investigate the
cases where m > 2n and m ≤ 2n, and propose optimal strategy pairs for both
players to achieve a Nash-equilibrium. The efficiency of proposed detector in
the absence of attacker is finally discussed.
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3.2 Related Work

Detection under Byzantine attack has been extensively studied in literatures
(see [21, 90, 97, 60, 128]). For example, in [9], Bayram et al. propose a re-
stricted Neyman-Pearson (NP) framework for composite hypothesis testing
in the presence of prior distribution uncertainty. The optimal decision rule
according to the restricted NP criterion is analyzed in their work. In [90],
the authors took the respective of an intruder and found the optimal at-
tacks to minimize the Kullback-Leibler (K-L) divergence of the manipulated
measurements.

Moreover, different from [60, 128, 90], where the manipulated measure-
ments are assumed to be independent, this chapter assumes that the Byzan-
tine sensors may collude with each other. We believe this collusion model is
more general and realistic, although adding analysis complexity. What’s more,
instead of making extra assumption on the false information from malicious
sensors, like [5, 138], we suppose the malicious data can take any value. Sim-
ilar attack model can also be found in [97]. However, the authors only focus
on one-step detector, while we consider an infinite time sequence of detectors,
which is more challenging. Besides, the problem in this chapter is formulated
in a game-theoretic way, while the aforementioned works take the perspective
of either an attacker or a system manager.

Some research concerning secure detection has been studied in a game-
theoretic manner. For example, in [138], Vamvoudakis et al. consider the
problem of estimating a binary random variable based on sensor measure-
ments that may have been corrupted by an attacker. The estimation problem
is formulated as a zero-sum partial information game. Then game-theoretic
approaches are applied to derive the optimal detector. However, as that in
[97], they focus on one-step scenario, while the strategy of each player in this
chapter consists of an infinite sequence of behaviors. Note also that the binary
sensor model in [138] restricts its application, and the explicit equilibrium is
only obtained under certain conditions.

3.3 Problem Formulation

We consider the problem of detecting an unknown binary state θ ∈ {0, 1}
with m sensors’ measurements. At each time k, the measurement vector y(k)
is defined as:

y(k) ≜ [y1(k) y2(k) . . . ym(k)] ∈ Rm, (3.1)

where yi(k) is the scalar measurement from sensor i at time k. The following
assumptions on sensor measurement yi(k) are made:
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1) Given θ, all measurements {yi(k)}i=1,...,m,k=1,... are independent and
identically distributed (i.i.d.).

2) For any Borel-measurable set S ⊆ R, the probability of yi(k) belongs
to S satisfies the following equation:

P(yi(k) ∈ S) =

{

ν(S) if θ = 0

µ(S) if θ = 1
, (3.2)

where µ and ν are the probability measure on R. We further assume that
ν and µ are absolutely continuous with respect to each other. Hence, the
log-likelihood ratio λ : R → R of yi(k) is well defined as

λ(yi(k)) ≜ log

(
dµ

dν
(yi(k))

)

, (3.3)

where dµ/dν is the Radon-Nikodym derivative.
We denote by Y (k) as the row vector of all measurements from time 1 to

time k:
Y (k) ≜ [y(1) y(2) . . . y(k)] ∈ Rmk. (3.4)

At time k, define the detector fk : Rmk → [0, 1] as a mapping from the
measurement space Y (k) to the interval [0, 1]. The system follows the detection
strategy like this: if fk(Y (k)) = γ ∈ [0, 1], the system decides the detection

value θ̂ to be 1 with probability γ, and decides θ̂ to be 0 with probability
1− γ. The system’s strategy f ≜ (f1, f2, . . .) is defined as an infinite sequence
of detectors from time 1 to time infinity.

3.3.1 Attack Model

An attacker intends to disturb the detection state of the system by modifying
sensors’ measurements. However, because of the limited resource, it can only
compromise n out of m sensors in the system. The set of the compromised
sensors is denoted as I = {i1, . . . , in}, which is fixed over time. We assume
that the system knows the number n, but it does not know the exact set I.

To simplify notations, let us define:

yI(k) ≜ [yi1(k) yi2(k) . . . yin(k)] ∈ Rn, (3.5)

and
YI(k) ≜ [yI(1) yI(2) . . . yI(k)] ∈ Rnk. (3.6)

Now we consider the knowledge of the attacker. We assume that the at-
tacker knows the probability measure ν and µ, the total number of sensors
m, as well as the true state θ. We further characterize the attacker by its
knowledge of the measurement vector:

1) An attacker is called a weak attacker if at any time k, it knows the
measurement vector YI(k) from the compromised sensors;

2) An attacker is called a strong attacker if at any time k, it knows the
measurement vector Y (k) from all sensors.
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Remark 3.1 In practice, if the channel between the detector and sensors is
not encrypted, then the attacker could potentially learn by eavesdropping on
the measurements Y (k) from all sensors and thus is a strong attacker. On
the other hand, if the communication channel is encrypted and the attacker
cannot listen to the communication between the uncompromised sensors and
detector, then it is more suitable to assume a weak attacker model.

For simplicity, let us denote by Ỹ (k) as the measurement vector known by
the attacker at time k. From the above definition, we have

Ỹ (k) ≜

{

YI(k) for a weak attacker

Y (k) for a strong attacker
.

At each time k, the attacker adds a random bias vector ya(k) according to
its knowledge of the system Ỹ (k) to the true measurement y(k). As a result,
the system has to make its decision based on the manipulated measurement
y′(k) which can be defined as

y′(k) = y(k) + ya(k) ≜ [y′1(k) y′2(k) . . . y′m(k)], (3.7)

where y′i(k) is the manipulated measurement of sensor i at time k. Similar to
(3.3), we define the log-likelihood ratio of y′i(k) as follows:

λ(y′i(k)) ≜ log

(
dµ

dν
(y′i(k))

)

. (3.8)

We further define

ya(k) = [ya1 (k) ya2 (k) . . . yam(k)] ≜ g(I, θ, k, Ỹ (k)), (3.9)

where yai (k)i=1,...,m is the bias measurement vector added to sensor i at time

k, and yai (k) = 0 for i /∈ I. Obviously, g is a function of I, θ, Ỹ (k) and k. As
a result, g characterizes the attacker’s action for all possible scenarios. Hence,
we can use g to denote the attacker’s strategy. Similar to the definition of
Y (k), we further define the manipulated measurements from time 1 to k to
be:

Y ′(k) = [y′(1) y′(2) . . . y′(k)] ∈ Rmk. (3.10)

3.3.2 Asymptotic Detection Performance

Under attacks, the probability that the system makes a wrong decision at time
k is

e(θ, I, k) ≜
{

Efk(Y
′(k)) when θ = 0

1− Efk(Y
′(k)) when θ = 1

. (3.11)

In this chapter, we are concerned with the worst-case scenario. To this end,
let us define

ϵ(k) ≜ max
θ=0,1,|I|=n

e(θ, I, k), (3.12)
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which denotes the worst-case probability of detection error considering all
possible sets of compromised sensors and true state θ.

At each time k, we want to design a system strategy fk to minimize ϵ(k).
However, since the computation of expectation usually involves complicated
integration, we consider the asymptotic detection performance instead. Define
the rate function as

ρ ≜ lim inf
k→∞

− log ϵ(k)

k
. (3.13)

Remark 3.2 ρ indicates the rate that the probability of detection error goes to
0, which represents the detection performance of the system. From the defini-
tion (3.11)–(3.13), one can prove that ρ is always non-negative. If ρ > 0, then
the probability of error will exponentially decay to 0, and a larger ρ indicates
a shorter time for this convergence.

From (3.11), it is trivial to know that the worst-case rate ρ is a function
of both detection strategy f and attacker’s strategy g. Therefore, in the rest
of this chapter, we will use ρ(f, g) instead to indicate this relationship.

3.3.3 Optimal Detection Rate for a Single Sensor in the Ab-
sence of Attacker

To simplify the presentation of the detection and attack strategies proposed
later, in this subsection, we present the best rate can be achieved when only
one sensor’s measurements are used under the condition that the attacker is
absent. We use C to denote this optimal rate.

From [24], this optimal decay rate is given by

C ≜ sup
0<t<1

− log
[

E(etλ(yi(k))|θ = 0)
]

, (3.14)

where λ(yi(k)) is the log-likelihood ratio defined in (3.3).

3.3.4 Nash-Equilibrium Strategy Pair

From the former discussion, clearly, the detector wants to maximize ρ(f, g) to
decrease the detection error, while the attacker wants to minimize it to make
the error larger. Thus, in this section, we formulate the problem as a game
between the detector and adversary, and intend to propose a pair of strategy
(f∗, g∗), such that for any strategies f and g, the following inequality holds:

ρ(f∗, g) ≥ ρ(f∗, g∗) ≥ ρ(f, g∗). (3.15)

As a result, the pair of strategy (f∗, g∗) reaches a Nash-equilibrium [44]. In
other words, if the detector implements f∗, then there is no incentive for the
adversary to deviate from g∗, and vice versa.
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Remark 3.3 In this section, we only provide one pair of equilibrium strategies
in each case we investigate. However, it is worth noticing that the equilibrium
strategy pair satisfying (3.15) may not be unique.

3.4 Equilibrium Strategies for m > 2n

We first investigate the case when no more than half of the sensors are com-
promised by the attacker.

Before going on, we introduce the function s(y, i, j) : Rm × N × N, where
1 ≤ i ≤ j ≤ m, which satisfies the following two conditions:

1) For any permutation matrix P , s(PyT , i, j) = s(y, i, j).

2) If y1 ≤ y2 ≤ · · · ≤ ym, s(y, i, j) =
∑j

l=i yl.

Remark 3.4 The function s(y, i, j) can be interpreted as the summation from
the ith element in vector y to the jth one after sorting in the ascending order.

From the definition of s(y, i, j), we have the following proposition:

Proposition 3.1 For y, y′ ∈ Rm, and ||y− y′||0 ≤ n, the following inequali-
ties holds:

1) If j + n ≤ m, then s(y′, i, j) ≤ s(y, i+ n, j + n);
2) If i− n ≥ 1, then s(y′, i, j) ≥ s(y, i− n, j − n).

To simplify notation, let us further define

min
m−2n

(y) ≜ s(y, 1,m− 2n), (3.16)

med
m−2n

(y) ≜ s(y, n+ 1,m− n), (3.17)

max
m−2n

(y) ≜ s(y, 2n+ 1,m). (3.18)

Then we have the following lemma:

Lemma 3.1 For y, y′ ∈ Rm, and ||y − y′||0 ≤ n, the following inequalities
hold:

min
m−2n

(y) ≤ med
m−2n

(y′) ≤ max
m−2n

(y). (3.19)

Proof The proof of Lemma 3.1 can be immediately achieved from Propo-
sition 1 by substituting n+ 1 to i, and m− n to j.

We are now ready to prove the main theorems of this section. We first
derive a detection strategy which achieves the detection rate ρ ≥ m − 2n
against any possible attack. After that, we propose an attack strategy and
further prove that the rate for any detector cannot exceed m−2n against this
attack. Therefore, the Nash-equilibrium is established.
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3.4.1 Optimal Detection Strategy

At each time k, consider the following detection strategy f∗
k :

1) Compute the sum of log-likelihood ratio from time 1 to time k for each
sensor i:

Λ′
i(k) =

k∑

t=1

λ(y′i(t)), (3.20)

where λ(y′i(t)) is the log-likelihood ratio defined in (3.8).
Denote

Λ′(k) ≜ [Λ′
1(k) Λ′

2(k) . . . Λ′
m(k)]. (3.21)

2) Compute medm−2n(Λ
′(k)), and compare it to 0 to generate θ̂ as follows:

θ̂ =







0 if med
m−2n

(Λ′(k)) < 0

1 if med
m−2n

(Λ′(k)) ≥ 0
. (3.22)

The system’s strategy is defined as f∗ ≜ (f∗
1 , f

∗
2 , . . .).

Remark 3.5 If (3.20) is done in a recursive fashion, then the computational
complexity incurred at each k is O(m). The computational complexity for
(3.22) is O(m log(m)), which can be achieved by first sorting Λi(k) in the
ascending order and then summing the middle m − 2n elements. Therefore,
the total computational complexity at each time step k is O(m log(m)).

We now have the first theorem in this chapter:

Theorem 3.1 For any attack strategy g, the following inequality holds:

ρ(f∗, g) ≥ (m− 2n)C.

Proof Define

Λi(k) =

k∑

t=1

λ(yi(t)), (3.23)

and
Λ(k) ≜ [Λ1(k) Λ2(k) . . . Λm(k)], (3.24)

where Λi(k) is defined in (3.23). Since the attacker can only manipulate up to
n sensors, ||Λ(k)− Λ′(k)||0 ≤ n. From Lemma 3.1, we have

min
m−2n

(Λ(k)) ≤ med
m−2n

(Λ′(k)) ≤ max
m−2n

(Λ(k)). (3.25)

Consider the situation when the true state θ = 0. Following the above
strategy f∗, the system will make a wrong decision if medm−2n(Λ

′(k)) ≥ 0.
As a result,

e(θ = 0, I, k) = P0( med
m−2n

(Λ′(k)) ≥ 0)

≤ P0( max
m−2n

(Λ(k)) ≥ 0),

where the inequality comes from (3.25).
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Notice that maxm−2n(Λ(k)) ≥ 0 if and only if there exists an index set K
with cardinality m− 2n, i.e., |K| = m− 2n such that

∑

i∈K

Λi(k) ≥ 0.

As a result,

e(θ = 0, I, k) ≤ P0




⋃

|K|=m−2n

{
∑

i∈K

Λi(k) ≥ 0

}



≤
∑

|K|=m−2n

P0

(
∑

i∈K

Λi(k) ≥ 0

)

=

(
m

2n

)

P0

(
m−2n∑

i=1

Λi(k) ≥ 0

)

,

where the last equality holds because of the symmetry between sensors.
By Cramer’s theorem [124],

− lim sup
k→∞

logP0(
∑m−2n

i=1 Λi(k) ≥ 0)

k
= (m− 2n)C.

Therefore,

− lim sup
k→∞

log e(θ = 0, I, k)
k

≥ (m− 2n)C. (3.26)

Similarly, one can prove that

− lim sup
k→∞

log e(θ = 1, I, k)
k

≥ (m− 2n)C. (3.27)

Combining the two inequalities (3.26) and (3.27), we get the conclusion
that

ρ(f∗, g) ≥ (m− 2n)C.

3.4.2 Optimal Attack Strategy

We consider the attack strategy g∗ which flips the distribution of the compro-
mised sensor measurements. Formally it is defined as follows:

1) The attacker generates i.i.d. random variables y′i(k), where i = 1, . . . ,m
and k = 1, . . . , such that the distribution of y′i(k) satisfies

P(y′i(k) ∈ S) =

{

µ(S) if θ = 0

ν(S) if θ = 1
. (3.28)
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2) Compute yai (k) as follows:

yai (k) =

{

y′i(k)− yi(k) if i ∈ I
0 if i /∈ I . (3.29)

Theorem 3.2 For any detection strategy f , the following inequality holds:

ρ(f, g∗) ≤ (m− 2n)C.

Proof Consider the following two cases:
1) True state θ = 0 and sensor 1, 2, ..., n are compromised. In this case, at

each time k, the sensor measurement y(k) follows the following distribution:

y(k) ∼ µ× . . .× µ
︸ ︷︷ ︸

n

× ν × . . .× ν
︸ ︷︷ ︸

n

× ν × . . .× ν
︸ ︷︷ ︸

m−2n

.

2) True state θ = 1 and sensor n + 1, n + 2, ..., 2n are compromised. In
this case, at each time k, the sensor measurement y(k) follows the following
distribution:

y(k) ∼ µ× . . .× µ
︸ ︷︷ ︸

n

× ν × . . .× ν
︸ ︷︷ ︸

n

×µ× . . .× µ
︸ ︷︷ ︸

m−2n

.

We use the probability measure µa and νa to denote the distribution of y(k)
in above two cases, respectively. Notice that for both cases, sensor 1 to sensor
n will follow the distribution µ, and sensor n+ 1 to sensor 2n will follow the
distribution ν.

Now we consider the following optimization problem which intends to min-
imize the probability of error in the above two cases:

min Pµa
(θ̂ = 1) + Pνa

(θ̂ = 0), (3.30)

where the first term indicates the probability of detection error in the first case,
and the second term denotes this probability in the second case.

It is well-known optimal solution for (3.30) is the Bayes detector which is
defined as follows [10]:

fB(Y
′(k)) =







0 if
m∑

i=2n+1

Λ′
i(k) < 0

1 if

m∑

i=2n+1

Λ′
i(k) ≥ 0

.

Furthermore,

lim inf
k→∞

log(Pµa
(θ̂ = 1) + Pνa

(θ̂ = 0))

k

= lim inf
k→∞

log(e(θ = 0, I, k) + e(θ = 1, I, k))
k

= lim inf
k→∞

log
log(maxθ(e(θ, I, k)))

k
.
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As a result, Bayes detector is also optimal in the sense that the rate ρ(f, g∗) is
maximized. Notice that, this optimal detector only relies on the measurements
from sensor 2n+1 to sensor m for its decision. From Cramer’s theorem [124],

− lim sup
k→∞

logP0(
∑m

i=2n+1 Λ
′
i(k) ≥ 0)

k
= (m− 2n)C,

and

− lim sup
k→∞

logP1(
∑m

i=2n+1 Λ
′
i(k) < 0)

k
= (m− 2n)C,

Therefore, Bayes detector will distinguish the above two cases with the rate
(m−2n)C. Because of its optimality, no detector can distinguish the above two
cases with better than this rate against g∗. In other words, for any detection
strategy f ,

ρ(f, g∗) ≤ (m− 2n)C.

One can further prove that under such attacks, the best rate (m − 2n)C
can also be achieved by the optimal detection strategy f∗ defined in (3.20)-
(3.22). As a result, from Theorem 3.1 and Theorem 3.2, we can immediately
derive the following theorem:

Theorem 3.3 The strategy pair (f∗, g∗) forms a Nash-equilibrium such that

ρ(f, g∗) ≤ ρ(f∗, g∗) ≤ ρ(f∗, g),

where f∗ is the optimal detection strategy defined in (3.20)–(3.22), g∗ is the
optimal attack strategy defined in (3.28)–(3.29), and ρ(f∗, g∗) = (m− 2n)C.

3.5 Equilibrium Strategies for m ≤ 2n

In this section, we consider the case when more than half of the sensors are
compromised.

We begin with the attack strategy g∗ defined as below:

1) The attacker generates i.i.d. random variables y′i(k), where i = 1, . . . ,m
and k = 1, . . . , such that

P(y′i(k) ∈ S) =

{

µ(S) if θ = 0

ν(S) if θ = 1
. (3.31)

2) Compute yai (k) as follows:
If θ = 0,

yai (k) =

{

y′i(k)− yi(k) if i ∈ J1

0 if i /∈ J1

; (3.32)
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If θ = 1,

yai (k) =

{

y′i(k)− yi(k) if i ∈ J2

0 if i /∈ J2

, (3.33)

where J1,J2 are the subsets of the compromised sensors set when θ = 0 and
θ = 1, respectively, with |J1| = ⌈m

2 ⌉, and |J2| = ⌊m
2 ⌋.

In other words, under g∗, the attacker will flip the measurements’ distri-
bution of sensors in set J1,J2, when θ = 0 and 1, respectively.

Remark 3.6 The reason why the adversary will not implement the same
strategy as (3.28)–(3.29) in the situation m ≤ 2n is that under such attacks,
the detector can easily figure it out by simply flipping the compromised sen-
sors’ measurements back if it knows the strategy of the adversary. Thus, the
detection rate ρ would not be minimized.

Theorem 3.4 For any detection strategy f , the following inequality holds:

ρ(f, g∗) = 0.

Proof Consider the following two cases:
1) True state θ = 0, I = {1, . . . , n}, and J1 = {1, . . . , ⌈m/2⌉}, then

the distribution of the sensor measurement y(k) at each time k is as follows:

y(k) ∼ µ× µ× . . .× µ
︸ ︷︷ ︸

⌈m
2
⌉

× ν × ν × . . .× ν
︸ ︷︷ ︸

m−⌈m
2
⌉

.

2) True state θ = 1, I = {m− n+ 1, . . . , m}, and J2 =
{⌈m/2⌉+ 1, . . . , m}, then the distribution of the sensor measurement y(k)
at each time k is as follows:

y(k) ∼ µ× µ× . . .× µ
︸ ︷︷ ︸

⌈m
2
⌉

× ν × ν × . . .× ν
︸ ︷︷ ︸

m−⌈m
2
⌉

.

Since the distribution of y(k) is identical, no detector can distinguish the above
two cases. Therefore, Theorem 3.4 follows immediately.

From Theorem 3.4, we have the next theorem:

Theorem 3.5 For any detection strategy f , the strategy pair (f, g∗) forms a
Nash-equilibrium such that

ρ(f, g∗) = 0 ≤ ρ(f, g),

where g∗ is the attack strategy defined in (3.31)–(3.33).

Proof The proof of Theorem 3.5 is obvious since ρ is always nonnegative.

Remark 3.7 Since g∗ in (3.28)–(3.29) and (3.31)–(3.33) only requires the
attacker’s knowledge of the compromised sensors’ measurements. Hence, equi-
librium strategy pair in Theorems 3.3 and 3.5 can be achieved by even the weak
attacker.
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3.6 Extension

In practice, the attacker may not be present consistently. Thus, the system
with all sensors uncompromised may operate for some time. Usually, the per-
formance of the detection rule when there is no attacker at all is referred to
by efficiency, while the performance when the attacker is present is referred
to by security. In this section, we investigate the efficiency of our proposed
detection strategy.

Theorem 3.6 Under the detection rule (3.20)–(3.22), when all the sensors
are benign, the detector will achieve the detection rate of (m− n)C.

Proof Since there is no attacker in this situation, we will use ρ(f∗) rather
than ρ(f∗, g) to denote the detection rate.

Consider the situation when θ = 0. Notice that

e(θ = 0, I = ∅, k) = P0(s(Λ(k), n+ 1,m− n) ≥ 0).

Hence, we are interested in the probability of the event {s(Λ(k), n+1,m−n) ≥
0}.

Notice that

e(θ = 0, I = ∅, k) = P0(s(Λ(k), n+ 1,m− n) ≥ 0)

≤ P0(s(Λ(k), n+ 1,m) ≥ 0)

≤
(
m

n

)

P0

(
m−n∑

i=1

Λi(k) ≥ 0

)

.

Then, from Cramer’s theorem [124],

− lim sup
k→∞

log e(θ = 0, I = ∅, k)
k

≥ (m− n)C.

On the other hand, we assume P0(Λi(k) ≥ 0) = M, and from [124],

− lim sup
k→∞

logM

k
= C. (3.34)

If Λ1(k) < 0, . . . ,Λn(k) < 0, and Λn+1(k) ≥ 0, . . . ,Λm(k) ≥ 0, then the con-
sidered event {s(Λ(k), n+1,m−n) ≥ 0} will happen. Therefore, the probability
of it is lower bounded by

(
m
n

)
Mm−n(1−M)n. As a result,

− lim sup
k→∞

log e(θ = 0, I = ∅, k)
k

≤ − lim sup
k→∞

log
((

m
n

)
Mm−n(1−M)n

)

k

= (m− n)C.
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Similar results can be achieved under the condition θ = 1. As a result,

ρ(f∗) = (m− n)C.

Remark 3.8 We notice that the rate in Theorem 3.6 is not optimal because
ρ(f) is not maximized, since one can prove that if the attacker is absent, then
the Bayes detector [10] will achieve the best rate of mC. This means that
in order to increase the security, we sacrifice the system’s efficiency to some
degree. One can further derive that the larger the n is, the more resilient the
detector will be under attacks, but at the same time, the more performance
degradation will occur during normal operation when the attacker is absent.
Therefore, there exists a trade-off between security and efficiency, which can
be tuned by choosing a suitable parameter n.

3.7 Numerical Example

In this part, we provide numerical examples to verify the theoretical results
established in the previous subsections. We assume that the sensor’s measure-
ment {yi(k)}i=1,...,m,k=1,... follows the distribution N (−1, 1)1 when θ = 0,
and follows N (1, 1) when θ = 1. From (3.14), one can derive that the optimal
decay rate of a single sensor is C = 0.5.

Since the situation when m ≤ 2n is trivial, we only focus on the case
where m > 2n. We first assume m = 7, and n varies from 0 to 3. Figure
3.1 shows that under the detection strategy f∗ defined in (3.20)-(3.22) and
attack strategy g∗ defined in (3.28)-(3.29), the detection rate ρ(f∗, g∗) finally
approaches 0.5(m− 2n), i.e., (m− 2n)C, which is consistent with our result.

3.8 Conclusion

This chapter studies the binary hypothesis testing in an adversarial environ-
ment. The detector determines the true state of an unknown parameter based
on the measurements from m sensors, out of which n sensors might be arbi-
trarily compromised. The exponent rate, at which the worst-case probability
of detection error goes to 0, is adopted as the performance metric. Obviously,
the attacker intends to deteriorate the detection performance by maximizing
this rate, while the detector wants to minimize it. This problem is thus for-
mulated as a game between these two players. We study both cases where

1N (a, b) represents the Gaussian distribution with mean equals to a, and variance equals
to b.



32 Sequential Detection with Byzantine Sensors

FIGURE 3.1: Detection rate when m = 7 and m > 2n under the proposed
optimal strategy pair.2

m > 2n and m ≤ 2n, and obtain an equilibrium strategy pair for the players
under both cases.

2Reproduced with permission of ©2013 IEEE.



4

Resilient Consensus of
Second-Order Systems through
Impulsive Control

4.1 Introduction

Recent advances in signal processing and cooperative control have led to grow-
ing research interests in multi-agent systems (MASs). One of the most impor-
tant focuses in MASs is the canonical consensus. Given a set of autonomous
agents, it seeks an agreement upon certain quantities of interest and has wide
applications in biological, social, and engineering worlds, like animal groups,
sensor networks, and robotic teams [107].

Considerable attention has been paid to the development of consensus al-
gorithms in MASs with first-order dynamics; see [106, 115, 142] for examples.
Meanwhile, inspired by many real-world applications, there are also growing
interests in second-order consensus algorithms, where the agents are governed
by both position and velocity states. The insights into the second-order con-
sensus problems also shed light on introducing more realistic dynamics into
the individual agent’s model based on the general framework of MASs and are
especially meaningful for the implementation of cooperative control strategies
in engineering networked systems [157].

In these years, various algorithms have been proposed to achieve the
second-order consensus (see [113, 158, 51]). Such protocols are normally based
on the hypothesis that every computing agent is trustworthy and cooperate to
follow the algorithms throughout their execution. Nevertheless, as the scale of
the network increases, it becomes more difficult to secure every agent. On one
hand, autonomous agents will communicate with each other to make control
decisions. This opens the system to malicious attacks. On the other hand,
some agents may not be willing to follow the given rules if they weigh their
private interests more than the public ones. It is reported that most of the ex-
isting algorithms are fragile to such network misbehaviors, which can prevent
the network from reaching an agreement ([72, 32, 130]). Since the consensus
algorithms have been widely applied in safety-critical systems, and serve as
the basis of distributed computing and control, the studies on resilient consen-

DOI: 10.1201/9781003409199-4 33

https://doi.org/10.1201/9781003409199-4


34 Resilient Consensus of Second-Order Systems through Impulsive Control

sus have gained a growing research attention. Particularly, it aims to design
distributed protocols to guarantee the agreement among non-faulty ones.

In this chapter, we investigate the resilient consensus in continuous-time
second-order MASs, where some nodes might be faulty or adversarial. Despite
such malicious and unexpected behaviors, the normal agents still aim to reach
an agreement among each other. To further avoid the continuous communi-
cation among nodes, a resilient impulsive algorithm is proposed, where the
signal transmission and control action are allowed at the aperiodic sampling
instants. At each sampling time, the normal agent removes the most extreme
values in the neighborhood and derives its control signal with the remaining
ones. Sufficient conditions related to the network topology and tolerable num-
ber of misbehaving nodes are established to achieve the resilient consensus
while reducing the communication cost.

4.2 Related Work

The resilient consensus of first-order systems has been studied in the literature
over years. Most approaches adopt the idea of simply ignoring the suspicious
values. For instance, Dolev et al. consider the approximate resilient agreement
in a complete network [38] with some of nodes being faulty. In order to overrule
the malicious effects from misbehaving agents, a Mean-Subsequence Reduced
(MSR) algorithm is developed, where each normal node discards the most
extreme values from neighbors and makes updates with the average of the
remaining ones. This protocol has then inspired a series of protocols (see
[64, 137]). In a more recent work [72], the authors present a modified version
of MSR, named as Weighted-MSR. Compared with that in MSR, the normal
node only excludes the most suspicious ones that are strictly larger or smaller
than its own. Different from [38], the exact consensus can be guaranteed.
Moreover, instead of the complete graph, the resilience of Weighted-MSR is
characterised in terms of network robustness. These strategies are proved to
secure the normal agents from being seriously affected by the misbehaviors,
and thus ensure the (approximate) resilient agreement in hostile environment.

Dibaji et al. recently generalize the above results to the second-order sys-
tems [32, 34]. To facilitate the agreement, equidistant sampling intervals are
required to discretize the system and synthesize the controller. This assump-
tion yet prevents their results from being applied to systems with time-varying
or even uncertain sampling period. Moreover, the velocity information is re-
quired in their works for the design of control signal. As a contrast, in this
chapter, we study the resilient consensus in the network with uncertain sam-
pling interval and using only position information. Adopting the common idea
of most resilient protocols, each healthy agent ignores the most extreme states
in its updates. The main contributions are summarized as below:
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1. Despite the fact that the second-order consensus has been widely inves-
tigated in the literature for benign environment, the unpredictable be-
havior of misbehaving nodes complicates the convergence analysis and
prevents the methods therein from being directly applied. To overcome it,
we present an equivalent model of the closed-loop system, by integrating
the attack model with resilient controller.

2. The coupling between position and velocity states also makes it difficult
to directly use the analysis methods of first-order resilient algorithms,
whose efficiency is proved through convex analysis. We therefore resort
to Sarymsakov matrices to exploit key features of the equivalent model.
Sufficient topological conditions are finally derived to ensure the resilient
consensus.

4.3 Problem Formulation

Let us consider a second-order system with n agents, who cooperate over the
network G = {V, E}. The dynamics of agent i ∈ V, is described by

ẋi(t) = vi(t),

v̇i(t) = ui(t),
(4.1)

where ui(t) denotes the control input, and xi(t), vi(t) ∈ R are respec-
tively the position and velocity states of agent i. In this chapter, we con-
sider the scenario where the communication among agents possibly occur
only at sampling instants. The sequence of sampling time {tk} satisfies that
0 = t0 < t1 < . . . < tk < . . . and limk→∞ tk = ∞.

Let hk = tk−tk−1 be the sampling period between tk and tk−1. We further
assume that h ≤ hk ≤ h, ∀k ∈ Z, where h and h are respectively the lower
and upper bounds for sampling intervals.

Remark 4.1 For simplicity and clear presentation of our ideas, this part con-
siders the system with scalar states. However, the entire analysis can be readily
extended to multi-dimensional scenarios, by applying the developed algorithm
to each entry of the vector states.

Remark 4.2 Compared with the existing work with sampled control (e.g. [80,
158]), the sampling period in this work is not necessary to be constant and
thus allowed to be aperiodic.

Consensus in the multi-agent network (4.1) is said to be achieved if the
following hold for any initial states and any i, j ∈ V:

lim
t→∞

|xi(t)− xj(t)| = 0,

lim
t→∞

|vi(t)| = 0.
(4.2)
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4.3.1 Attack Model

In this chapter, an adversarial environment is discussed, where some of the
agents might be faulty or misbehaving. For simplicity, let us denote the set of
such agents as A. Any agent i ∈ A is the one that either manipulated by the
attacker, or failing to follow the pre-defined update rule. On the other hand,
the normal or benign agents will always obey the control strategy, whose set is
denoted as R. Without loss of generality, let R = {1, 2, ..., B}, where B ≜ |R|.
Clearly, R∩A = ∅ and R∪A = V.

Given the limited energy of adversaries, it is reasonable to assume an
upper bound on the number of misbehaving nodes. In specific, the network
misbehaviors could be characterized by the following manner:

Definition 4.1 The network is said to under an f -local attack if for any
normal agent, no more than f misbehaving ones exist in its neighborhood,
i.e., |A ∩ Ni| ≤ f, ∀i ∈ B.

Note the considered f -local attack model is first introduced in [66], and
has been widely adopted in the study of networked systems since then (see
[69, 38, 72, 130] for examples). In this thesis, we focus on the worst-case
situation, where no restrictions are imposed on the transmitted information of
agent i ∈ A. Specifically, the misbehaving agents are allowed to send arbitrary
and different data to different neighbors. They could even collude with each
other to decide on the false values to be transmitted.

The network misbehaviors would greatly jeopardize the performance of
standard consensus algorithms, e.g., [84]. As one might imagine, if no security
strategies equipped, even a single misbehaving node could be able to control
the evolution of normal states on its desire.

4.3.2 Resilient Consensus

The above security concerns necessitate the design of resilient consensus pro-
tocol, aiming to achieve the below objective:

Resilient consensus: The multi-agent network (4.1) achieves resilient
consensus, if (4.2) holds for any initial states and any i, j ∈ R, regardless of
the misbehaviors.

Hence through resilient protocols, the network could be avoided of be-
ing seriously affected by the network misbehaviors. To proceed, the following
assumption is also imposed regarding G = (V, E):

Assumption 4.1 For any normal agent, it has at least 2f + 1 neighbors.
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4.4 Resilient Impulsive Algorithms

This section provides a resilient consensus protocol. To avoid the continuous
information exchange among agents, for each agent an impulsive control signal
is designed to occur at only sampling instants. Furthermore, given that the
velocity states of agents are often unavailable in practical applications, we
involve the controller with only position states.

While the misbehaving agents can perform arbitrarily, the normal ones
should always follow the designed protocol. More specifically, each normal
agent i ∈ R updates as outlined in Algorithm 5.1:

Algorithm 4.1 Resilient impulsive consensus protocol

At any time t ∈ R>0 do
if t = tk then

1) Collect the values xj(tk), j ∈ Ni in Xi(tk).

2) In Xi(tk), remove f largest values that are higher than agent i’s own state
xi(tk). If there are less than f values higher than xi(tk), then remove all
of them. Similarly, remove f smallest values that are less than xi(tk). If
there are less than f values lower than xi(tk), then remove all these values.

3) Denote Ji(tk) as the set of agents whose values are retained after 2).
Design ui(tk) as

ui(tk) =
[

ξ1
∑

j∈Ji(tk)

aij(tk)(xj(tk)− xi(tk))

− ξ2(xi(tk)− xi(tk−1))
]

δ(t− tk),

(4.3)

where δ(·) is the Dirac impulsive function, aij(tk) > 0 and
∑

j∈Ji(tk)
aij(tk) < 1, ξ1, ξ2 are design parameters chosen according to

the conditions in (4.12) given later.

else

ui(t) = 0.

end if

In view of the proposed strategy, it adopts a similar idea to that of many
resilient algorithms, namely to discard the most suspicious values. In what
follows, we shall theoretically prove the efficiency of such a protocol.
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4.5 Convergence Analysis

To evaluate the performance of the proposed resilient algorithm, we first
present the following lemma:

Lemma 4.1 Consider the digraph G = (V, E). Suppose the network is under
f -local attack and the normal agent i updates with the proposed strategy. Under
Assumption 4.1, there exists a nonempty set Mi(tk) ⊂ Ni ∩ R and weights
{āij(tk)}, such that the control input (4.3) is mathematically equivalent to

ui(tk) =
[

ξ1
∑

j∈Mi(tk)

āij(tk)(xj(tk)− xi(tk))

− ξ2(xi(tk)− xi(tk−1))
]

δ(t− tk),

(4.4)

with the weights satisfying that
∑

j∈Mi(tk)
āij(tk) < 1.

Proof We prove the result by construction. Note that at most 2f values
in Xi(tk) would be discarded. Therefore, under Assumption 4.1, one obtains
that Ji(tk) ̸= ∅. Then let us consider the following cases:

• Ji(k)∩A = ∅, i.e., there is no adversarial agent in Ji(k). In this scenario,
the construction of āij(tk) is trivial by simply making it equal aij(tk).

• Ji(k) ∩ A ̸= ∅. Now suppose some misbehaving agents exist in Ji(tk).
Consider any agent j ∈ Ji(tk) ∩ A. Since xj(tk) is retained by agent i, it
must hold that either there are f values in Xi(tk) no less than xj(tk), or
agent i’s own value xi(tk) is not less than xj(tk). Similarly, it is also true
that either f neighboring values are not greater than xj(tk), or xi(tk) ≤
xj(tk). As no more than f faulty ones exist in agent i’s neighborhood,
one could always find a pair of normal agents p, q ∈ Ni ∪ {i}, such that
xp(tk) ≤ xj(tk) ≤ xq(tk). Hence, we have xj(tk) = γxp(tk)+ (1−γ)xq(tk)
for some 0 ≤ γ ≤ 1. By setting āip(tk) = aip(tk) + γaij(tk) and āiq(tk) =
aiq(tk)+ (1− γ)aij(tk), the contribution of any misbehaving node j can be
transformed to that of two normal ones (i.e., agents p and q). Moreover,
āip(tk)+āiq(tk) = aip(tk)+aij(tk)+aiq(tk). By repeating the above analysis
for each misbehaving agent in Ji(tk), the conclusion can be derived and
the proof completes.

As indicated by Lemma 4.1, the evolution of any normal agent’s state
only relies on the benign ones in its neighborhood. Hence, the misbehaving
agents are unable to have arbitrary control over these normal ones. As a result,
the healthy agents are protected from being affected by the misbehaviors too
much.

Based on (6.3), let us define Ā(tk) ≜ (āij(tk)) with

āii(tk) = 1−
∑

j∈Mi(tk)

āij(tk) > 0, ∀i ∈ R. (4.5)
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The below result will be helpful in our further analysis:

Lemma 4.2 Consider the digraph G = (V, E). Suppose the network is under
f -local attack, satisfies Assumption 4.1 and is with (2f + 1)-robustness. Let
Ā(tk) be the one established by (4.5) at time t = tk. Then for each k ∈ N,
Ā(tk) = {āij(tk)} is a Sarymsakov matrix.

Proof Consider any disjoint and nonempty subsets R1,R2 ⊊ V. Under
Definition 2.2, there must exist an agent, denoted as agent i, in R1∪R2, such
that it has at least 2f + 1 neighbors outsides. Without loss of generality, let
i ∈ R1 who has more than 2f+1 neighbors outside R1. Since no more than 2f
values would be discarded, at least one of these 2f + 1 ones would be retained
by agent i. As indicated by the proof of Lemma 4.1, this value must either be
a normal agent’s state or a convex combination of two normal agents’ states.
Hence there exists some normal node j ∈ R\R1 such that j ∈ FĀ(tk)(R1).
Then one of the following cases must hold:

1) j ∈ FĀ(tk)(R2), then FĀ(tk)(R1) ∩ FĀ(tk)(R2) ̸= ∅;
2) j /∈ FĀ(tk)(R2) and FĀ(tk)(R1)∩FĀ(tk)(R2) = ∅. Note that for any l ∈

R1, āll(tk) > 0 and thus l ∈ FĀ(tk)(R1). Similarly, p ∈ FĀ(tk)(R2), ∀p ∈ R2.
Therefore, (FĀ(tk)(R1)∪FĀ(tk)(R2)) ⊃ (R1 ∪R2 ∪ {j}), where last three sets
are disjoint. Hence, |FĀ(tk)(R1)∪FĀ(tk)(R2)| ≥ |R1|+|R2|+1 > |R1|+|R2| =
|R1 ∪R2|.

Recalling Definition 2.7, any Ā(k) is Sarymsakov.

In view of Lemma 4.1, the network with resilient impulsive control can be
described by the following equations:

ẋi(t) = vi(t),

v̇i(t) = 0, t ∈ (tk, tk+1],

∆vi (tk) = −ξ1
∑

j∈R

l̄ij (tk)xj (tk)− ξ2 (xi (tk)− xi (tk−1)) ,
(4.6)

where ∆vi (tk) = vi
(
t+k
)
− vi (tk) , vi (tk+1) = vi

(
t+k
)
= limt→t+

k
vi(t) and

l̄ij(tk) =







∑

j∈Mi(tk)
āij(tk), j = i

−āij(tk), j ∈ Mi(tk)
0, j ̸= i and j /∈ Mi(tk)

.

Consider the close-loop system dynamics at sampling times:

xi(tk+1) = xi(tk) + hk+1vi(t
+
k ), (4.7)
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and

vi(t
+
k+1)

= vi(t
+
k )− ξ1

∑

j∈R

l̄ij (tk+1)xj (tk+1)− ξ2 (xi (tk+1)− xi(tk))

= vi(t
+
k )− ξ1

∑

j∈R

l̄ij (tk+1) [xj(tk) + hk+1vj(t
+
k )]− ξ2hk+1vi(t

+
k )

= (1− ξ2hk+1)vi(t
+
k )− ξ1

∑

j∈R

l̄ij (tk+1)xj(tk)− ξ1hk+1

∑

j∈R

l̄ij (tk+1) vj(t
+
k ).

(4.8)

Inspired by [84], let us define auxiliary states as x̃i(k) = xi(tk) and ṽi(k) =
xi(tk) + 2/ξ2vi(t

+
k ). From (4.7) and (4.8), one has

x̃i(k + 1) =
(

1−
ξ2hk+1

2

)

x̃i(k) +
ξ2hk+1

2
ṽi(k),

ṽi(k + 1) =
ξ2hk+1

2
x̃i(k) +

(

1−
ξ2hk+1

2

)

ṽi(k)− (2/ξ2 − hk+1)ξ1
∑

j∈R

l̄ij (tk+1) x̃j(k)

− ξ1hk+1

∑

j∈R

l̄ij (tk+1) ṽj(k).

Now let x̃(k) = [x̃1(k), . . . , x̃B(k)]
T , ṽ(k) = [ṽ1(k), . . . , ṽB(k)]

T and y(k) =
[x̃(k); ṽ(k)]. Then

y(k + 1) = W (k + 1)y(k), (4.9)

where

W (k) =

[
W11(k) W12(k)
W21(k) W22(k)

]

, (4.10)

and

W11(k) =
(

1− ξ2hk

2

)

I,

W12(k) =
ξ2hk

2
I,

W21(k) =
ξ2hk

2
I − ξ1

( 2

ξ2
− hk

)

L̄(k),

W22(k) =
(

1− ξ2hk

2

)

I − ξ1hkL̄(k),

(4.11)

with L̄(k) = {l̄ij(tk)} and F (k) = [0B; L̄(k)].
Clearly, the network achieves resilient consensus, if and only if

limk→∞ y(k) = β12B for some β ∈ R. Therefore, it is sufficient to study the
convergence of (4.9). To this end, we first characterise W (k) in the following
lemma:
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Lemma 4.3 If the parameters in (4.3) satisfy that

0 <ξ2 < 2/h,

0 <ξ1 < min

{

(ξ2h)
2

2h(2− ξ2h)
,
2− ξ2h

2h

}

,
(4.12)

then W (k) is Sarymsakov at each step k.

Proof We shall first show W (k) is row stochastic at any k. Given
1BL̄(k) = 0, each row of W (k) sums to 1. Under (4.12), the non-zero elements

of W11(k) and W12(k) are strictly positive. Moreover, since ξ1 < (ξ2h)
2

2h(2−ξ2h)
,

one has

ξ2hk

2
− ξ1

( 2

ξ2
− hk

)

l̄ii(k)

>
ξ2h

2
− (ξ2h)

2

2h(2− ξ2h)

( 2

ξ2
− h
)

= 0,

(4.13)

where the first inequality is because l̄ii(k) < 1, ∀i ∈ B. Similarly, we obtain
that

(

1− ξ2hk

2

)

− ξ1hk l̄ii(k) >
(

1− ξ2h

2

)

− ξ1h

>
(

1− ξ2h

2

)

− 2− ξ2h

2h
h = 0.

(4.14)

Since each non-diagonal element in W21(k) and W22(k) is non-negative under
(4.12), W (k) is row-stochastic.

Then for simplicity, define µ = ξ2hk/2, ν1 = ξ1(2/ξ2−hk) and ν2 = ξ1hk.
Thus

W (k) =

[
(1− µ)I µI

µI − ν1L̄(k) (1− µ)I − ν2L̄(k)

]

. (4.15)

Let λ be the eigenvalue of W (k). One has

det(λI −W (k)) =

B∏

i=1

[
(λ2 − 2λ(1− µ) + λν2γi + (1− 2µ)

+ (µν2 + µν1 − ν2)γi
]
,

where γi, i = 1, 2, . . . , B are the eigenvalues of L̄(k). Let Q(λ) = λ2 − 2λ(1−
µ) + λν2γi + (1 − 2µ) + (µν2 + µν1 − ν2) γi. Then Q(1) = µν2γi + µν1γi. As
0 < µ < 1 and ν1, ν2 > 0, λ = 1 implies γi = 0 for some i. On the other hand,
if γi = 0: Q(λ) = [λ − (1 − 2µ)](λ − 1). Now invoking Lemmas 2.4 and 4.2,
G(Ā(k)) is rooted and thus L̄(tk) has one simple eigenvalue γi = 0. As µ > 0,
1−2µ ̸= 1. Hence, λ = 1 is the simple eigenvalue of W (k). In view of Lemma
2.2, G(W (k)) contains a spanning tree.
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Finally, we notice that each diagonal entries of W (k) is strictly positive.
Hence, any vertex in G(W (k)) has a self-arc. Recalling Lemma 2.4, the proof
completes.

With the above preparations, we are now ready to present the main result:

Theorem 4.1 Consider the digraph G = (V, E). Suppose the network is under
f -local attack, satisfies Assumption 4.1 and is with (2f + 1)-robustness. If
(4.12) holds, then the network achieves resilient consensus with rule (4.3).

Proof For simplicity, let us define

W (k, s) ≜ W (k)W (k − 1) . . .W (s), (4.16)

for any k ≥ s, where W (k, k) = W (k). In view of Lemma 4.3, each W (k)
is Sarymsakov. Since the set of Sarymsakov matrices is closed under matrix
multiplication, any W (k, s) belongs to the Sarymsakov class as well.

Next from (4.9), one has

y(k) = W (k, 1)y(0).

Given Lemma 2.3, there exists some β ∈ R such that

lim
k→∞

W (k, 1)y(0) = β12B .

Therefore, for any yl(k), l ∈ {1, 2, ..., 2B}, which is the l-th entry of y(k), one
has

lim
k→∞

|yl(k)− β| = 0. (4.17)

By the definition of yl(k), one concludes that for any i, j ∈ R,

lim
t→∞

|xi(t)− xj(t)| = 0. (4.18)

Similarly, for any i ∈ R,

lim
t→∞

|vi(t)| = lim
t→∞

ξ2
2
|ṽi(k)− x̃i(k)| = 0. (4.19)

The proof thus completes.

Remark 4.3 Note in [84], where the problem is formulated in normal oper-
ation, W (k) is proved to be stochastic, indecomposable and aperiodic (SIA).
By further assuming that {W (k)} belongs to a finite set, the convergence of
W (k, s) is guaranteed. However, since the algorithm proposed in this chapter
turns to (indirectly) change the communication topology under arbitrary and
misleading misbehavior, W (k) is indeed drawn from an infinite set hence pre-
vents the analysis in [84] from being directly applied. Therefore, we have drawn
support from Sarymsakov matrix. Combining it with (2f + 1)-robust network,
the connectivity of G(W (k)) is obtained. Moreover, our analysis removes the
additional assumption that h(k) should be chosen from a finite set.
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FIGURE 4.1: A three-robust communication network.

FIGURE 4.2: Trajectory of agents’ states under algorithm in [84].1

4.6 Numerical Example

In this section, a numerical example is presented to illustrate and verify the
theoretical results established above by considering the three-robust network
given in [72] (see Fig. 4.1). Assume agent 5 is misbehaving. In order to deteri-
orate the consensus procedure, it follows a malicious way and sends false data
as x5(t) = 50 sin(10t)+15 cos(12t), which is unknown to others. On the other
hand, the normal nodes always obey the proposed strategy. Firstly, Figure 4.2
presents the performance of the traditional second control consensus algo-
rithm in [84]. The results show that the benign agents would be affected by
the misbehaviors and never synchronized, necessitating resilient controllers.

To compare, we next test the algorithm proposed in this work. Let h =
0.15 and h̄ = 0.25. The sampling instants are randomly chosen from [h, h̄].
According to (4.12), we design ξ2 = 5 < 2/h̄ and ξ1 = 0.9 < min{26.45, 1.5}.
From Figure 4.3, the consensus is achieved among benign agents, regardless
the faulty one.

1Reproduced with permission from ©2013 IEEE.
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FIGURE 4.3: The Trajectory of agents’ states under Algorithm 4.1.2

4.7 Conclusion

In this chapter, we consider the resilient consensus of second-order systems.
Despite some misbehaving agents, secure protocols are desired to facilitate
the agreement among normal nodes. Towards this goal, an impulsive resilient
controller is presented, allowing the communication and control action occur
at aperiodic sampling instants. Under certain topological conditions, such al-
gorithm is proved to be resilient to the f -local attack. Future work will focus
on the design of secure protocols via asynchronous impulsive control.

2Reproduced with permission from ©2013 IEEE.



5

Resilient Multi-Dimensional
Consensus in Adversarial
Environment

5.1 Introduction

In Chapter 4, we introduce a resilient algorithm to facilitate the agreement
among benign agents in an adversarial environment. However, in some cases,
the global objective is not only to facilitate consensus but also to drive the
final agreement to some value related to agents’ initial states. One of the most
important focuses is the average consensus. Given a set of autonomous agents
(such as sensors, vehicles, etc.), this problem seeks a distributed protocol that
the agents can utilize to reach a common decision/agreement on the average of
their initial values. Take an example in social networks, where each individual
begins with a subjective opinion on a certain topic. Through talking with
others and modifying the prejudice accordingly, the agents are supposed to
agree on a fair view on this subject.

Although considerable attention has been paid to the development of av-
erage consensus algorithms [106, 115, 142], as reviewed in Chapter 4, these
protocols are rather fragile to misbehaving agents. These agents can either
prevent the network from reaching an agreement, or dictate the final consen-
sus value on their desires [130].

Given such security concerns, this chapter considers the resilient consen-
sus in general multi-dimensional spaces. As reported in [129], in the presence
of misbehavior, no distributed rule can facilitate the exact average consen-
sus of the benign agents’ initial states. As a compromise, in this chapter, we
develop a resilient algorithm such that it guarantees the agreement within
the convex hull of these states. To limit the influence of network misbehavior
on normal agents, a “middle points”-based protocol is proposed, where each
healthy agent computes two “middle points” based on the information from
its neighbors and modifies its state towards these points each time. We fur-
ther show that the computation of middle points can be efficiently achieved by
linear programming with a lower computational complexity. Assuming that
the number of malicious agents is (locally/globally) upper bounded, sufficient
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conditions on the network topology are presented to guarantee that the be-
nign agents exponentially achieve the resilient consensus. Since the consensus
arguably forms the foundation for distributed computing, the results in this
chapter represent a first step for future works of developing resilient coordi-
nation protocols in networked systems.

5.2 Related Work

The resilient consensus has been addressed in the literature over decades. The
well-known algorithms, including MSR and W-MSR, have been reviewed ex-
tensively in Section 4.2. We note, these strategies ensure the resilient consen-
sus in uni-dimensional systems where agents’ states are assumed to be scalars.
The final agreement is guaranteed to be within the range limited by the min-
imum and maximum values of normal nodes’ initial states. The implication
on scalar variables, however, produces crucial limitations in various practical
applications such as vehicle formation control on a 2D-plane. A naive way to
generalize the results on a scalar system to a multi-dimensional system is to
apply MSR or W-MSR to each entry of the state vectors. The region that the
final value converges to can be immediately identified as a multi-dimensional
“box.” Particularly, each edge of this “box” is limited by the minimum and
maximum values of benign agents’ initial state in one dimension. A question
thus arises naturally: is this result too conservative? Or are there any alter-
natives that can provide better convergence results?

To answer these questions, resilient consensus in multi-dimensional spaces
has been investigated, aiming at achieving a more accurate agreement within
the convex hull formed by healthy agents’ initial states. In order to ensure
system security, each normal node seeks a resilient convex combination each
time, referring to be a point within the convex hull of its benign neighboring
states. Some works achieve this through Tverberg points (see [136, 135] for
examples). While the results therein are elegant, the calculation of Tverberg
points is rather costly and almost impossible in many cases ([6]), and these
works unfortunately do not provide an efficient way to do it. This leads to
a major concern on applying Tverberg points to facilitate resilient vector
consensus. This work, thereby, follows another line of research. The main
contributions are summarized below:

1. Instead of Tverberg points, we propose the resilient protocol through the
intersection of convex hulls. More specifically, the normal agents focus on
the system dimensions alternatively and sort the received states at one di-
mension each time. Then each benign agent computes two “middle points”
based on the sorted values, and moves its states towards an average of these
points. By proving that the middle points achieve resilient convex combi-
nation, we conclude the effects of the faulty nodes on system performance
are limited.
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2. An explicit approach for the computation of middle points is also given,
which is based on the intersection of convex hulls and can be implemented
by linear programming. Note that this calculation only requires a subset
of the neighboring states. Since the cardinality of the subset is fixed, the
computational cost is free from the network complexity. Compared with
most of the existing works, the proposed strategy is achieved with a lower
computational complexity.

3. In this chapter, we are interested in the requirement on networks to achieve
the resilient consensus and hereby focus on the more general incomplete
graphs. Sufficient topological conditions are established to facilitate the
resilient agreement. Since the idea behind canonical consensus serves as
a fundamental principle in many distributed coordination settings, this
method provides a powerful tool in handling misfunctioning components
in multi-dimensional networked systems.

5.3 Problem Formulation

Consider a group of N agents who cooperate over the undirected graph G =
{V, E}. At any time k ≥ 0, let xi(k) ∈ Rd denote the current state of agent
i. The agents are said to reach a (distributed) consensus if and only if there
exists a constant x̄, such that limk→∞ xi(k) = x̄ holds for every agent i. In

particular, if x̄ = 1/N
∑N

i=1 x
i(0), an average consensus is achieved.

Observe that many practical applications fit into the framework of average
consensus (e.g., [115, 146]). Various strategies have been developed to facilitate
it in the literatures (see [103] and [106] for examples), the details of which are
omitted here due to the space limitation.

5.3.1 Resilient Consensus Problem

It is worth noticing that an implicit assumption for the effectiveness of the
existing approaches is that all agents are reliable throughout the execution,
and cooperate to achieve the desired value. However, as the number of local
agents increases, certain concerns arise that make this assumption to be vi-
olated. As discussed before, the strong dependence of distributed algorithms
on the communication infrastructures creates lots of vulnerabilities for cyber
attacks, where the transmitted information might be manipulated by exter-
nal adversaries. Additionally, “non-participant” agent may exist, who deviates
from the normal update rule and sends out self-designed information to its
neighbors for its own benefits. Clearly, such misbehaviors would degrade the
performance of consensus protocols: they can either prevent the benign agents
from reaching a consensus, or manipulate the final agreement to be false. In
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fact, as shown in [130], a single “stubborn” agent can cause all agents to agree
on an arbitrary value, by simply keeping this value constant.

These security concerns lead to the study of resilient consensus proto-
cols. That is, we intend to present a secure strategy to achieve the agreement
among healthy agents while raising its resilience so as to avoid being influenced
by the network misbehaviors too much. By saying “resilient,” we aim to
achieve the following objectives, regardless of the choice of initial states and
even in the adversarial environment:

1) Agreement: As k goes to infinity, it holds that xi(k) = x̄ with some x̄ ∈ Rd,
for any benign agent i;

2) Validity: At any time and for any benign agent, its state remains in the
convex hull of all benign agents’ initial values.

We elucidate these conditions as below. Firstly, the states of the benign
agents should converge to the same constant value even in the presence of
misbehaving ones. In addition, they are not allowed to leave the convex hull
of their initial states throughout the procedure. It is observed that if a 1D
problem is considered, the validity condition would be equivalent to the stan-
dard one adopted in the existing literatures [38, 64, 137, 29, 72, 32]. That is,
the states of benign agents should always remain in the interval formed by
the minimum and maximum of their initial values.

There has been much work proved to be effective in this simple case (e.g.,
MSR in [38] and W-MSR in [72]). A naive way to tackle this problem in multi-
dimensional spaces is by simply applying the existing scalar protocols to each
component of the state vectors. Nevertheless, we should note that the region
that benign agents converge to is only guaranteed as a multi-dimensional
“box”, each edge of which is limited by the minimum and maximum values
of their initial states at one dimension. The validity condition thus fails to be
ensured. To see this, we present a two-dimensional illustration in Figure. 5.1,
indicating this naive way cannot guarantee the convergence to a point inside
the convex hull of normal agents’ initial states. Therefore, this chapter intends
to address this problem and come up with an alternate method satisfying both
Conditions 1) and 2).

5.3.2 Attack Model

We define A as the set of malicious/adversarial agents. Any agent i ∈ A could
either be the adversarial one with the value being manipulated by the attacker,
or the non-participant agent who does not follow the standard updating rule.
On the other hand,R is the collection of regular/benign agents who will always
follow the predefined updating strategy and compute the desired function. It
is clear that R∩A = ∅ and R∪A = V.
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FIGURE 5.1: A 2D illustration with agents marked with circles. The location
of the node indicates its initial value. With the direct application of existing
algorithms to each dimension, the final agreement is ensured to be within the
rectangle represented by oblique lines. However, a better solution satisfying
the validity condition of converging to the solid triangle is expected.1

In this chapter, we characterize the network misbehaviors by the scope of
threats:

1) (f -total attack model) There are at most f misbehaving agents in the
network. That is, |A| ≤ f .

2) (f -local attack model) There are at most f misbehaving agents in the
neighborhood of any agent. That is, |A ∩ Ni| ≤ f , for any agent i ∈ V.
Clearly, f -total attack model is a special case of the f -local one. In the

following, we shall provide different conditions to facilitate the consensus under
these different models.

As before, we focus on the worst-case situation, where no restrictions are
imposed on the transmitted information of agent i ∈ A. That is, both ad-
versarial and non-participant agents are allowed to send out arbitrary and
different data to their neighbors. Furthermore, the faulty agents could also
collude among themselves to decide on the deceptive values to be communi-
cated.

In this chapter, we impose the following assumption on network topology:

Assumption 5.1 For any i ∈ V, it is held that |Ni| ≥ (d+ 1)f + 1.

1Reproduced with permission from ©2019 Elsevier.



50 Resilient Multi-Dimensional Consensus in Adversarial Environment

5.4 A Resilient Multi-Dimensional Consensus Strategy

To simplify notations, the following definitions are given beforehand:

Definition 5.1 Consider a set C ⊂ Rd with cardinality m2. For some n ∈ Z≥0

and n ≤ m, let S(C, n) be the set of all its subset with cardinality m− n.

It is clear that the set S(C, n) contains
(
m
n

)
elements, and each of them is

associated with a convex hull. The intersection of all these convex hulls plays
a crucial role in our algorithm, which is formally defined below:

Definition 5.2 Consider a set C ⊂ Rd with cardinality m. For some n ∈ Z≥0

and n ≤ m, we define Ψ(C, n) as

Ψ(C, n) ≜
⋂

S∈S(C,n)

Conv(S). (5.1)

In view of Definition 5.2, Ψ(C, n) is a subset of convex hulls formed by any
m− n points in C.

5.4.1 Description of the Resilient Algorithm

In this part, we shall provide a resilient solution to the multi-dimensional
consensus. Each normal agent i ∈ R starts with an initial state xi(0) ∈ Rd.
At any instant k ≥ 0, it makes updates as outlined in Algorithm 5.1.

We make some explanations on Algorithm 5.1. At each time k, the normal
agents sort the p-th entry of the received values, where p varies alternatively in
{1, 2, ..., d}. We refer yi(k) and zi(k) as the “middle points” in this chapter. We
would prove later that these points are “safe” as they belong to the convex hull
formed by benign states. Calculating them requires a subset of neighboring
states and involves exactly (d + 1)f + 1 points in X i(k). As will be shown
later (in Section 5.5.4), the proposed protocol is of more lightweight than the
existing ones proposed in [94, 151]. Moreover, the update law (5.2) always
involves the normal agent’s own state. As claimed in [72], this mechanism
helps to keep more useful information at each step. Finally, as every fault-free
agent is only required to access the information in its neighborhood, Algorithm
5.1 can be implemented in a distributed manner.

5.4.2 Computation of “Middle Points”

This part discusses the computation of yi(k) in Step 3, by which zi(k) can be
calculated similarly. For simplicity, we omit the time index k in the sequel of
this subsection.

2To be more precise, C should be defined as a multi-set since we allow duplicate elements
in the set, e.g., the states of m agents shall be counted as m points even if some of them
may be identical.
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Algorithm 5.1 Resilient multi-dimensional consensus algorithm

1: Receive the states from all neighboring agents j ∈ Ni, and collect these
values in X i(k).
2: Let p = (kmod d) + 1. Sort points in X i(k) according to their p-th entries
in an ascending order. Initialize Yi(k) and Zi(k) as empty.
3: Based on the sorted points, pick up the first (d+ 1)f + 1 ones and collect
them in Yi(k). Clearly, each point in Yi(k) has a smaller p-th entry than all the
ones in X i(k)\Yi(k). Calculate any point yi(k), such that yi(k) ∈ Ψ(Yi(k), f).
4: Similarly, pick up the last (d+1)f +1 ones of the sorted points and collect
them in Zi(k). Compute any point zi(k) ∈ Ψ(Zi(k), f).
5: Agent i updates its local state as:

xi(k + 1) =
xi(k) + yi(k) + zi(k)

3
. (5.2)

6: Transmit the new state xi(k + 1) to all neighbors j ∈ Ni.

For simplicity, we denote κ = (d + 1)f + 1. Note that Ψ(Yi, f) is an
intersection of r ≜

(
κ
f

)
convex hulls, each of which is formed by a set of

p = df +1 points. For each of these sets, we define the matrix with the points
in it as

Yj =
[
xj1 xj2 · · · xjp

]
∈ Rd×p.

Let us denote
Y ≜ diag {Yj , j = 1, 2, . . . , r} ∈ Rdr×pr

For example, suppose Yi = {x1, x2, x3} and f = 1. One has

Y1 =
[
x1 x2

]
, Y2 =

[
x1 x3

]
, Y3 =

[
x2 x3

]
,

and

Y =





Y1 0 0
0 Y2 0
0 0 Y3



 .

The following lemma provides an equivalent representation of Ψ(Yi, f) in
terms of equality and inequality constraints:

Lemma 5.1 ([140, Lemma 4]) Let C ∈ Rr×r be the circulant matrix with
the first row as

[
1 −1 0 · · · 0

]
. Then

Ψ(Yi, f) =

{
1

r
(1′

r ⊗ Id)Y β

}

for all β ∈ Rpr such that
[
(C ⊗ Id)Y(
Ir ⊗ 1′

p

)

]

β =

[
0dr

1r

]

,

β ≥ 0pr.

(5.3)
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Note that any point in Ψ(Yi, f) is acceptable. We could, thereby, choose
any β∗ satisfying (5.3). Then yi = (1′

r ⊗ In)Y β∗/r. There are various manners
to achieve this end. For example, Phase I method proposed in [13, Section 11.4]
can be adopted by solving the following linear programming:

max α

s.t.

[
(C ⊗ Id)Y(
Ir ⊗ 1′

p

)

]

β =

[
0dr

1r

]

,

βi ≥ α, i = 1, 2, ..., pr.

(5.4)

We will prove in Corollary 5.1 that Ψ(Yi, f) ̸= ∅. Therefore, one can always
find some β∗ such that the optimal value α∗ ≥ 0. The computational complex-
ity of achieving β∗ could be O

(
(pr)3

)
[13]. Moreover, since the cardinality of

Yi is fixed as (d+1)f+1, this computational cost is free from |Ni|. Therefore,
the algorithm will not introduce higher complexity in the network where agent
i has a large number of neighbors.

Remark 5.1 Note that, compared with the simple approach to directly use
the existing scalar algorithms (like W-MSR) to each dimension of the state
vectors, the proposed algorithm inevitably introduces a higher computational
cost, especially when d or f is large. However, on the other hand, it would pro-
vide a better convergence result as shown in Figure 5.1. This fact indicates the
trade-off between the high consensus accuracy and low computational complex-
ity, and our work enables a fine tuning of this trade-off. To see this, one can
choose to divide the d dimensions into several groups and apply our algorithm
within each group. Clearly, a larger group indicates a more accurate result but
a higher computational cost. In practice, it might be the case that certain com-
ponents of the system variables represent more critical information. Then, one
can choose to use Algorithm 5.1 on the group of these critical ones to better
protect the system, while applying W-MSR to the other components to reduce
computational burden.

5.5 Algorithm Analysis

This section is devoted to the theoretical analysis of Algorithm 5.1. We shall
show that the proposed algorithm is both realizable and resilient.

5.5.1 Realizability

In order to demonstrate its realizability, we shall first show the existence of
yi(k) and zi(k). To this end, it is helpful to introduce Helly’s Theorem as
below, which is a key supporting technique of this chapter:
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Helly’s Theorem [27]. Let X1, . . . , Xp be a finite collection of convex subsets
in Rd, with p > d. If the intersection of every d+1 of these sets is nonempty,
then the whole collection has a nonempty intersection. That is,

p
⋂

j=1

Xj ̸= ∅.

Below is an immediate result of Helly’s Theorem:

Corollary 5.1 Let C be a set with cardinality m in Rd. For any n ∈ Z≥0, if
m ≥ n(d+ 1) + 1, then the following relation holds

Ψ(C, n) ̸= ∅.

Proof The result is obvious when n = 0. Thus we only focus on the sce-
nario when n ≥ 1.

According to Definition 5.2, Ψ(C, n) is a intersection of
(
m
n

)
convex hulls,

and it is trivial to prove that
(
m
n

)
> d holds. On the other hand, each of these

convex hulls is created by excluding n elements of C. Then consider any d+1
of them, they discard at most n(d+1) points in all. Since m ≥ n(d+1)+1, it
must be the case that at least one element in C is retained by all of them. This
indicates that any (d+1) convex hulls must have a nonempty intersection. By
applying Helly’s Theorem, our proof is completed.

Invoking Corollary 5.1, Yi(k),Zi(k) ̸= ∅. Therefore, yi(k) and zi(k) are
well-defined.

5.5.2 Resiliency: Validity

To prove that Algorithm 5.1 ensures the validity condition of resilient consen-
sus, it would be beneficial to define a set

Si(k) ≜ Ψ(X i(k), f). (5.5)

Recall that X i(k) is the collection of states from j ∈ Ni. In this chapter, we
interpret Si(k) as a “safe kernel” as illustrated in Figure 5.2.

The below results would be helpful:

Lemma 5.2 Consider two collections of sets {Ai}i∈I and {Bj}j∈J . If for
any j ∈ J , there exists an i∗ ∈ I such that Ai∗ ⊂ Bj, then

⋂

i∈I

Ai ⊂
⋂

j∈J

Bj .

Proof Denote a subset of {Ai}i∈I as {Ai∗}i∗∈I , such that {Ai∗}i∗∈I con-
tains all Ai∗ which has a superset in {Bj}j∈J . The proof is then completed by
noticing that

⋂

i∈I

Ai ⊂
⋂

i∗∈I

Ai∗ ⊂
⋂

j∈J

Bj .
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FIGURE 5.2: A 2D illustration of “safe kernel.” Suppose agent i ∈ R has five
neighbors and each of their states is represented by the location of a circle.
Let f = 1. The green region denotes the safe kernel Si(k) = Ψ(X i(k), 1).3

Lemma 5.3 Consider any set C1 with cardinality m1 and C2 with cardinality
m2. If C1 ⊂ C2, then for any n ≤ m1, the following statement holds:

Ψ(C1, n) ⊂ Ψ(C2, n).

Proof We shall prove that every set S2 in S(C2, n) is a superset for some
set S1 in S(C1, n). To see this, notice that

S2 = C2\Sc
2 ⊃ (C2\Sc

2) ∩ C1
= C1\ (Sc

2 ∩ C1) ,

where Sc
2 = C2\S2 is a set with cardinality n. Notice that Sc

2∩C1 has cardinality
no greater than n, which means that C1\ (Sc

2 ∩ C1) is a superset of some set in
S(C1, n). The proof is thus finished by invoking Lemma 5.2.

From Algorithm 5.1, it is clear that Yi(k),Zi(k) ⊂ X i(k). In view of
Lemma 5.3, one has yi(k), zi(k) ∈ Si(k), namely the middle points are always
within the safe kernel.

Now consider the validity condition of resilient consensus. For simplicity,
we denote the convex hull formed by the benign agents’ states at time k as
Ω(k). The following proposition presents the non-expansion property of Ω(k):

Proposition 5.1 (Validity) Consider the network G = (V , E). Suppose the
misbehaving agents follow either f -local or f -total attack model. With Algo-
rithm 5.1, the following relation holds at any k ≥ 0:

Ω(k + 1) ⊂ Ω(k). (5.6)

3Reproduced with permission from ©2019 Elsevier.
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Proof Consider the scenario under either f -local or f -total attacks. For
a benign agent i, there exist no less than |X i(k)| − f benign ones in its neigh-
borhood. By definitions, one obtains that Si(k) is included in the convex hull
formed by any |X i(k)| − f neighboring values. Hence, it is trivial to derive
that Si(k) is a subset of the convex hull of the benign neighbors’ states, that
is, Si(k) ⊂ Ω(k). Recall (5.2), one directly has that xi(k + 1) ∈ Ω(k) as it is
a convex combination of some points in Ω(k).

Because the above relation holds for any normal node, one has Ω(k+1) ⊂
Ω(k).

Hence, the safe kernel is “safe” in the sense that it is contained in the
convex hull formed by benign states. With two middle points in it, Algorithm
5.1 guarantees the validity condition of resilient consensus. That is, the healthy
agents would never move out of the convex hull formed by their initial values,
namely Ω(0), despite the influence of the misbehaving ones.

5.5.3 Resiliency: Agreement

We first introduce the below lemma:

Lemma 5.4 Let C be a set with |C| = (d + 1)n + 1. The following relations
hold for any linear function l(x):

1) If there exists at least dn + 1 points x̄ in C, such that l(x̄) ≤ m, then for
any point y ∈ Ψ(C, n), l(y) ≤ m holds;

2) If there exists at least dn+ 1 points x̄ in C, such that l(x̄) ≥ M , then for
any point z ∈ Ψ(C, n), l(z) ≥ M holds.

Proof By Corollary 5.1, Ψ(C, n) ̸= ∅. We then show the rationale of the
statements as follows:

1) There exist dn+ 1 points x̄ in C such that l(x̄) ≤ m. Consider the convex
hull formed by these x̄’s. Clearly, any element x in this convex hull also
has l(x) ≤ m. We could infer from Definition 5.2 that Ψ(C, n) is a subset
of this convex hull, and thus the first statement holds.

2) The second statement is proved in a similar manner as above.

For simplicity, let lp(x) = eTp x, a linear function that returns the p-th entry

of x ∈ Rd. Then among all lp(x)’s, where x ∈ X i(k), we respectively denote
mp(k) and Mp(k) as the (df +1)-th smallest and largest values. From Lemma
5.4, the next result gives the bounds on middle points:

Corollary 5.2 Consider the network G = (V, E). Suppose normal agent i ∈ R
updates by Algorithm 5.1, then it holds that:

yip(k) ≤ mp(k),

zip(k) ≥ Mp(k).
(5.7)
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Now it is ready to provide the main results. In what follows, we shall
present sufficient conditions on network topology, under which the agreement
condition of resilient consensus will be guaranteed:

Proposition 5.2 (Agreement) Consider the network G = (V, E). Suppose
the misbehaving agents follow an f -local attack model. If the network is with
((d + 1)f + 1)-robustness, then with Algorithm 5.1, all the benign agents are
guaranteed to achieve consensus exponentially, regardless of the actions of
misbehaving agents.

Proof To proceed, at any p ∈ {1, 2, ..., d}, let us respectively denote mp(k)
and Mp(k) as the minimum and maximum value among the p-th components
of normal agents’ states at time k. That is,

mp(k) ≜ min
i∈R

xi
p(k),

Mp(k) ≜ max
i∈R

xi
p(k).

(5.8)

As a direct result of Proposition 5.1, mp(k + 1) ≥ mp(k) and Mp(k + 1) ≤
Mp(k) for any p and k.

To establish the achievement of consensus, it is equivalent to prove that
the benign agents reach an agreement at any dimension. Due to the symmetry
between different dimensions, without loss of generality, we would only focus
on the first component of local states. The temporal difference is thereby defined
as ∆1(k) = M1(k) − m1(k). We attempt to show that ∆1(k) asymptotically
approaches 0.

For notation convenience, the following definitions are further imposed for
any k̄ ≥ k, and any ϵ ∈ R:

VM (k, k̄, ϵ) ≜ {i ∈ V : xi
1(k̄) > M1(k)− ϵ},

Vm(k, k̄, ϵ) ≜ {i ∈ V : xi
1(k̄) < m1(k) + ϵ}.

(5.9)

Note that the subscript is dropped in the above notations for the sake of brevity.
Clearly, VM (k, k̄, ϵ) [resp. Vm(k, k̄, ϵ)] includes all agents whose state’s first
component is greater [resp. less] than M(k)− ϵ [resp. m(k)+ ϵ] at time k̄. We
then define

RM (k, k̄, ϵ) ≜ VM (k, k̄, ϵ) ∩R,

Rm(k, k̄, ϵ) ≜ Vm(k, k̄, ϵ) ∩R,
(5.10)

which contains only benign agents in VM (k, k̄, ϵ) and Vm(k, k̄, ϵ), respectively.
Suppose that M1(k) ̸= m1(k), i.e., ∆1(k) > 0 at some time step k such

that p = (kmod d) + 1 = 1. Define ϵ0 = ∆1(k)/2. It is easy to know that
RM (k, k, ϵ0) and Rm(k, k, ϵ0) are disjoint. Furthermore, since each of these
sets contains a benign agent with the first component being M1(k) or m1(k),
both of them are nonempty. As the network is ((d + 1)f + 1)-robust, there
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exists one benign node in either RM (k, k, ϵ0) or Rm(k, k, ϵ0) that has at least
(d+ 1)f + 1 neighboring agents outside its set.

Without loss of generality, let i ∈ RM (k, k, ϵ0) be such an agent who has
no less than (d + 1)f + 1 neighbors in V\RM (k, k, ϵ0). Moreover, under the
f -local attack model, no less than df +1 points in agent i’s neighborhood have
their first components upper bounded by M1(k) − ϵ0. Therefore, one has that
m1(k) ≤ M1(k)− ϵ0.

Invoking Corollary 5.2, yi1(k) ≤ m1(k) ≤ M1(k)− ϵ0. We thus obtain that

xi
1(k + 1) =

1

3
(xi

1(k) + yi1(k) + zi1(k))

≤ 2

3
M1(k) +

1

3
(M1(k)− ϵ0)

= M1(k)−
1

3
ϵ0.

(5.11)

It is pointed out that this upper bound also applies to any benign agent in
V\VM (k, k, ϵ0), as it will apply its own value for updates.

Similarly, if the benign agent j ∈ Rm(k, k, ϵ0) has at least (d + 1)f + 1

neighbors outside its set, we know that zi1(k) ≥ M
l ≥ m1(k) + ϵ0 and shall

have an analogous result that xj
1(k + 1) ≥ m1(k) + ϵ0/3, which again, is the

lower bound for every benign agent in V\Vm(k, k, ϵ0).
Define ϵ1 = ϵ0/3. From former discussions, one knows that at least one

benign agent in RM (k, k, ϵ0) has its first component decreased to below M1(k)−
ϵ1, or one benign agent in Rm(k, k, ϵ0) has its first component increased to
above m1(k) + ϵ1, or both. As a result, it must be either RM (k, k + 1, ϵ1) ⊊

RM (k, k, ϵ0), or Rm(k, k + 1, ϵ1) ⊊ Rm(k, k, ϵ0), or both.
Then consider the update at k+ 2. For any normal agent in V\VM (k, k+

1, ϵ1), it is trivial to see that

xi
1(k + 2) =

1

3
(xi

1(k + 1) + yi1(k + 1) + zi1(k + 1))

≤ 1

3
(M1(k)− ϵ1) +

2

3
M1(k + 1)

≤ 1

3
(M1(k)− ϵ1) +

2

3
M1(k)

= M1(k)− ϵ2,

(5.12)

with ϵ2 = ϵ1/3. Thereby, RM (k, k + 2, ϵ2) ⊂ RM (k, k + 1, ϵ1). Hence, for
each 1 ≤ t ≤ d, we can recursively define ϵt = ϵ0/3

t and obtain that
RM (k, k + d, ϵd) ⊂ RM (k, k + 1, ϵ1) ⊊ RM (k, k, ϵ0). Similarly, Rm(k, k +
d, ϵd) ⊊ Rm(k, k, ϵ0).

Note that ϵd < ϵ0, and therefore the sets RM (k, k + d, ϵd) and Rm(k, k +
d, ϵd) are still disjoint. If both sets are nonempty, as above, one can conclude
that at least one of the following statements is true: RM (k, k + 2d, ϵ2d) ⊊

RM (k, k + d, ϵd), or Rm(k, k + 2d, ϵ2d) ⊊ Rm(k, k + d, ϵd).
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Hence, for any κ ≥ 1, as long as both RM (k, k + κd, ϵκd) and Rm(k, k +
κd, ϵκd) are nonempty, we can repeat the above analysis and conclude that
at least one of these two sets will shrink at the next time step. Since
|RM (k, k, ϵ0)| + |Rm(k, k, ϵ0)| ≤ |R|, there must be the case that either
RM (k, k + d|R|, ϵd|R|) = ∅, or Rm(k, k + d|R|, ϵd|R|) = ∅, or both. We as-
sume the former statement holds. From (5.9), at time step k + d|R|, all the
fault-free agents have their first elements being at most M1(k) − ϵd|R|, i.e.,
M1(k + d|R|) ≤ M1(k) − ϵd|R|. On the other hand, from Proposition 5.1, we
have m1(k + d|R|) ≥ m1(k). As a result,

∆1(k + d|R|) ≤
(

1− 1

2 · 3d|R|

)

∆1(k). (5.13)

Therefore we conclude that ∆1(k) vanishes exponentially.

The next result elaborates a different condition for the proposed algorithm
to succeed in f -total threats:

Proposition 5.3 (Agreement) Consider the network G = (V, E). Suppose
the misbehaving agents follow an f -total attack model. If the network is with
(df + 1, f + 1)-robustness, then with Algorithm 5.1, all the benign agents are
guaranteed to achieve consensus exponentially, regardless of the actions of
misbehaving agents.

Proof Proposition 5.3 is proved in a similar manner to that of Proposition
5.2. The essential point is that if VM (k, k+κd, ϵκd) and Vm(k, k+κd, ϵκd) are
nonempty and disjoint, and if both of these sets contain some benign agents,
then under (df + 1, f + 1)-robust graph, there exists at least one benign agent
in either VM (k, k+ κd, ϵκd) or Vm(k, k+ κd, ϵκd) that has no less than df +1
neighboring agents outside its set. Suppose the benign agent i ∈ VM (k, k +
κd, ϵκd) is such a node. Following a similar proof procedure of Proposition
5.2, we know that agent i will always apply a state that has its first entry
being no more than M1(k)− ϵκd for updating under Algorithm 5.1. The result
can be finally concluded by applying the proof techniques as before.

Remark 5.2 By definitions, we note that a ((d + 1)f + 1)-robust graph is
(df + 1, f + 1)-robust as well, but not vice versa. That is to say, the network
which is able to tolerate f -local attacks could also survive the f -total ones,
while the converse is not true. This observation is consistent with the fact that
the f -globally bounded threats are special versions of locally bounded ones.

Given the above results, one thus immediately concludes that the proposed
algorithm facilitates the resilient consensus, as stated in the following:

Theorem 5.1 Consider the network G = (V, E). Suppose the network satis-
fies one of the following conditions:
1) under f -local attack model, and is ((d+ 1)f + 1)-robust,
2) under f -total attack model, and is (df + 1, f + 1)-robust.
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With Algorithm 5.1, benign agents exponentially achieve the resilient consen-
sus, regardless of the actions of misbehaving ones. That is, as k → ∞,

xi(k) = xj(k) = x̂ for any i, j ∈ R, (5.14)

where x̂ ∈ Ω(0).

Proof The theorem is immediately achieved as both the validity and agree-
ment conditions have been established in Propositions 5.1–5.3.

Theorem 5.1 indicates that under certain topological conditions, the safe
kernel approach guarantees all benign agents reach an agreement on a weighted
average of their initial states. It protects the local states of benign agents
from being driven to arbitrary values and thus could withstand the compro-
mise of partial agents while providing a desired level of security. Furthermore,
since its convergence does not depend on the actions of misbehaving agents,
it works effectively even in the worst-case scenario, where the faulty agents
could have full knowledge of graph topology, updating rules, etc., and could
also be Byzantine agents that are able to send different information to dif-
ferent neighbors. Finally, let us consider the scenario when there is no faulty
agents at all, i.e., |F| = 0. Theorem 5.1 shows that the proposed strategy only
guarantees a ‘decent’ solution (i.e., within Ω(0)) instead of the exact average
value. This implies that in order to increase the system’s resilience, we sacri-
fice its performance during normal operations. Hence, there exists a trade-off
between security and optimality.

5.5.4 Remarks on the Safe Kernel

We finally make some remarks on the safe kernel. Consider the consensus
procedure. At every step, the normal agent i obtains the states in its neigh-
borhood, whereas up to f of them might be faulty. To ensure its state updated
in a safe manner, agent i hopes to use only good inputs. Yet as it has no knowl-
edge on the identities of these values, it intends to achieve a resilient convex
combination, which lies in the convex hull of any |Ni| − f neighboring states.

Different from [136, 135], where Tverberg points are applied, this chap-
ter, inspired by Helly’s Theorem, achieves the resilient convex combination
through the intersection of convex hulls. Let us recall the safe kernel Si(k)
illustrated in Figure 5.2. From Definitions 5.1 and 5.2, it intuitively ignores
the effects from combination of any f values. At any time, the healthy agent
modifies its state towards this kernel. The impacts of malicious agents on the
benign ones are thus limited, with formal proof given in Proposition 5.1.

Note that, in [94, 151], the safe kernel Si(k) is required to be exactly cal-
culated. Although the results therein are elegant, a major concern of applying
them is the high-computational complexity. More specifically, Si(k) is the in-

tersection of
(
|Ni|
f

)
convex hulls, and existing approaches for the computation

of this intersection are usually #p-hard ([110]). Moreover, since this compu-
tation depends on every state in X i(k), these algorithms may fail in a large
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neighborhood where node i has a large number of neighbors. As a contrast,
although the proof of this work is established on Si(k), we indeed do not need
to compute the whole kernel, but two “middle points” insides. As shown in
Section 5.4.2, this step can be achieved by a linear programming, the compu-
tational complexity of which will not increase within a larger neighborhood.

5.6 Discussions on the Network Failing to Meet Suffcient

Conditions

Observe that in Assumption 5.1, we assume the network is with large connec-
tivity so that every agent has a sufficient number of neighbors. Furthermore,
the resiliency analysis shows that the network robustness required to achieve
the consensus increases linearly with the dimension of the agents’ state. Thus,
a natural question arises: what if the network is not “connected” or “robust”
enough to meet these assumptions? This section is devoted to investigating
this issue. To highlight the results, we focus on the standard consensus set-
tings.

A naive way to handle this problem works as follows. Suppose the given
network can tolerate f (locally/globally) faulty agents only when the system
dimensionality is no more than d′(< d). Then one could group every d′ of
the d components together (if d is not divisible by d′, then there is a single
group whose cardinality is strictly less than d′.). At any time step, Algorithm
5.1 is applied within every group by every benign agent. The updated results
will then be rejoined in order as a d-dimensional vector to be broadcast to its
neighbors. It is worth pointing out that this approach fails to guarantee the
validity condition but instead only restricts the achieved agreement within the
convex hull on every d′ (or less) dimensions in a group. Particularly, if d′ = 1,
its performance will degrade to that of directly applying W-MSR.

The above attempt is based on the existing network and is rather straight-
forward. Another possible solution is by adding some well-designed “trusted”
agents in the network. The trusted nodes are the ones who are well protected
and cannot be compromised by any attacker. If we denote the set of such
agents as T . Clearly T ⊂ R.

Then let us consider the scenario where the network holds a subset of
“trusted” agents. As before, each normal agent needs to create a safe kernel
based on its neighboring states. However, this procedure could be simplified
with its trusted neighbors, as listed in Algorithm 5.2.

As indicated in this algorithm, if the trusted neighbors exist, the middle
points are established only by their states. Hence we can relax Assumption
5.1 to be:

Assumption 5.2 For any i ∈ V, it is held that either T ∩ Ni ̸= ∅ or |Ni| ≥
(d+ 1)f + 1.
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Algorithm 5.2 Resilient multi-dimensional consensus algorithm in the pres-
ence of trusted agents

1: Receive the states from all neighboring agents j ∈ Ni, and collect these
values in X i(k).
2: Let p = (kmod d) + 1. Sort points in X i(k) according to their p-th entries
in an ascending order.
3: If T ∩ Ni ̸= ∅, that is, agent i has at least one trusted neighbor, let yi(k)
and zi(k) respectively be the states of trusted neighbors who have the smallest
and largest p-th entries. Otherwise, calculate yi(k) and zi(k) as in Steps 3–4
of Algorithm 5.1.
4: Agent i updates its local state as:

xi(k + 1) =
xi(k) + yi(k) + zi(k)

3
. (5.15)

5: Transmit the new state xi(k + 1) to all neighbors j ∈ Ni.

With the above notions, the resilience result can be established as below:

Theorem 5.2 Consider the network G(V, E). Suppose the network satisfies
one of the following conditions:
1) under f -local attack, and is ((d+ 1)f + 1)-robust with T ,
2) under f -total attack, and is (df + 1, f + 1)-robust with T .
With Algorithm 5.2, benign agents exponentially achieve the resilient consen-
sus, regardless of the actions of misbehaving ones.

Proof This proof is established in an analogous manner as before. The
major difference is as follows:

Consider f -local attack model. Suppose both RM (k, k+t, ϵt) and Rm(k, k+
t, ϵt) are nonempty. There exists i ∈ RM (k, k+t, ϵt)∪Rm(k, k+t, ϵt) such that
it either has no less than (d+ 1)f + 1 neighbors outside its respective set, or
has a trusted neighbor outsides. Hence it always applies a state, namely yi(k),
which has its first entry being no more than M1(k) − ϵt for updating. One
could develop similar results in an f -total attack scenario. The whole proof is
however omitted due to the space limitation.

Remark 5.3 In special scenarios where T forms a connected dominating set,4

the network is with any robustness with T . According to Theorem 5.2, it can
tolerate any number of misbehaving nodes and achieve the resilient consensus
in multi-dimensional spaces. We will further study this case in Section 5.7.

4A set T ⊂ V is a connected dominating set if 1) For any i ∈ V, there exists some j ∈ T

such that j ∈ Ni; and 2) T induce a connected graph [4].
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FIGURE 5.3: A (3, 2)-robust communication network.5

5.7 Numerical Example

In this section, we provide a numerical example to verify the theoretical results
established in the previous sections.

The (3, 2)-robust graph in Figure 6.1 is chosen as the communication
network,6 where the node set is V = {1, 2, . . . , 20}. Proposition 5.3 indi-
cates that the network can tolerate a single misbehaving node in a two-
dimensional system. This agent intends to prevent others from reaching a
correct consensus by violating the rule in Algorithm 5.1 and setting its states
as x2

1(k) = 4.5 ∗ sin(k/5) and x2
2(k) = k/25 + 1 at any time k. On the other

hand, the benign agents are initialized randomly within [−3, 3] × [0, 5] and
always follow (5.2) for updates.

The performance of Algorithm 5.1 is tested in Figures 5.4 and 5.5. The
result shows that the states of benign agents are guaranteed to be within
the convex hull of their initial states at any time and they finally achieve a
common value, which validates the established results. Since the malicious

5Reproduced with permission from ©2019 Elsevier.
6This network is established based on the (3, 2)-robust network given in [73] and The-

orem 1 therein, which shows how to construct an (r, s)-robust digraph with an existing
(r, s)-robust one.
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FIGURE 5.4: The trajectory of local states under Algorithm 5.1, where the
area surrounded by the dashed lines is the convex hull of the initial states of
benign agents.7

agent is unable to affect the final agreement too much, our protocol helps to
improve the system security.

5.8 Conclusion

Due to their wide applications, the distributed coordination in networked sys-
tems has attracted much research interest. In this work, we are interested
in the achievement of consensus under malicious agents. A resilient “middle
points” based algorithm is proposed in this work, which is also applicable in
the high-dimensional spaces. By solving the middle points through a linear
programming, the proposed strategy introduces a lower computational com-
plexity than most of the existing works. Under certain network topology, it
guarantees the benign agents exponentially reach an agreement within the
convex hull of their initial states. Finally, as the consensus arguably forms
the foundation for distributed computing, the results in this chapter lay a
solid foundation for future works to develop resilient coordination protocols
in other consensus-based problems.

7Reproduced with permission from ©2019 Elsevier.
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FIGURE 5.5: The states of normal agents xi(k), ∀i ∈ R.8

8Reproduced with permission from ©2019 Elsevier.



6

Resilient Containment Control
in Adversarial Environment

6.1 Introduction

This chapter investigates another important problem in networked systems,
namely containment control. The existing consensus problems often focus on
the leaderless coordination of agents. However, in practice, there might exist
one or multiple leaders for these agents. Distributed coordination with a single
leader has been widely discussed in the leader-following cases [50, 104, 162].
On the other hand, containment control problems are proposed to address
the scenario where a group of followers is guided by multiple leaders. Instead
of facilitating the consensus, such problems seek for appropriate distributed
algorithms that the followers could utilize to move into the convex hull spanned
by the leaders.

In this chapter, we consider the problem of containment control in an ad-
versarial environment, where some of the agents (who can be either leaders
or followers) are misbehaving. Despite the influence of network misbehaviors,
the normal followers aim to move towards the convex hull formed by the
normal leaders. To this end, resilient containment control is investigated in
this work. We propose secure protocols for both first-order and second-order
systems, where each normal follower ignores the most extreme values in its
neighborhood and modifies its state based on the remaining ones. Sufficient
conditions related to the network topology and the maximum number of toler-
able faulty nodes are finally derived to guarantee the achievement of resilient
containment. Numerical examples are also provided in the end to verify our
theoretical results.

6.2 Related Work

Study of containment control is motivated by the natural phenomena and has
potential and important applications in practice [16, 77, 47]. For example,
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the male silkworm moths will end up within the convex hull spanned by the
female silkworm moths by detecting pheromone released by females. Another
example involves a group of vehicles where only some of them are equipped
with necessary sensors to detect obstacles. The vehicles with these sensors
can be regarded as “leaders” while the others are “followers.” The leaders
first form a safety area based on their knowledge of obstacles. Then, through
containment control, the followers can stay within the convex hull formed by
the leaders and thus remain safe as well.

Since the early work [58], where a Stop-Go policy is proposed to realize
the containment control under a fixed topology, much research effort has been
devoted to this field (see [95, 92, 81, 77, 37, 82]). Given different system dy-
namics, the containment control of linear and Euler-Lagrangian systems are
respectively considered in [77, 92]. Apart from stationary leaders, the con-
tainment control in the presence of multiple dynamics leaders is considered
in [74] as well. In addition, Meng et al. [95] propose a finite-time realiza-
tion to achieve a faster convergence. It is worth noticing that the existing
works are proposed in benign environment where both computing agents and
communication channels are trustworthy enough. Nevertheless, the increasing
vulnerabilities of networks to both internal and external misbehaviors call for
the resilient protocols working efficiently in adversarial environment.

As reviewed in Chapters 4 and 5, resilient control of networked systems
has been studied over decades. However, despite the elegant results achieved
regarding resilient consensus and optimization (see [69, 38, 72, 130, 133] for ex-
amples), few research efforts have been devoted to the security of containment
control. Hence we address this issue and seek a secure protocol to guarantee
the normal followers move to the convex hull formed by the benign leaders
even in adversarial environment. As a start work, this chapter focuses on
simple scalar systems. The main contributions are two-fold:

1. Resilient containment control is investigated for both first-order and
second-order systems. To enhance its security, we adopt the similar idea to
most resilient strategies. That is, at each time, a normal follower removes
the most extreme values in its neighborhood and creates a safe region.
Only the values in this region would be applied in the subsequent updat-
ing stage. We provide sufficient conditions on network topology such that
the proposed strategy always results in a “virtual” network with a united
spanning tree,1 regardless of the misbehaviors.

2. Through the convexity analysis and using a Lyapunov function, we prove
that the largest distance from the normal followers to the convex hull
spanned by the normal leaders will converge to 0. Therefore, the resilience
of the proposed strategies is guaranteed.

1The digraph is said to have a united spanning tree if for each of the follower nodes,
there exists at least one leader node that has a directed path to it [77].
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6.3 Problem Formulation

Let us consider a group of n agents. These agents cooperate over the network
modeled by a digraph G = {V, E}. We define the agents which do not have
any in-neighbors as leaders, while the others as followers. The sets of leaders
and followers are respectively denoted by L and F . The target of containment
control is to drive the followers into the convex hull spanned by the multiple
leaders.

6.3.1 Attack Model

This chapter considers the containment control in an adversarial environment
where some of the agents might be faulty or misbehaving. Such misbehav-
ing ones can deteriorate the system performance by misleading the normal
followers to leave the convex hull of normal leaders or destroying the convex
formation of leaders.

With the same notations as in Chapter 5, let us denote the set of faulty or
misbehaving agents as A. Any agent i ∈ A could either be the one whose value
is manipulated by the attacker, or the one who fails to follow the standard
updating rule. On the other hand, the normal or benign agents will always
adopt the prescribed control strategy, and are collected in the set R. Both the
leaders and followers can be normal or adversarial. For notation convenience,
we denote the normal leaders and followers by LR and FR respectively.

This chapter still assumes the f -local attack model given in Definition 4.1.
We aim to develop control algorithms which work correctly despite a limited
number of failures without knowledge of their locations. As before, apart from
this upper bound, we do not impose any restrictions on the values of false data.

The network misbehaviors would greatly jeopardize the performance of
standard containment control algorithms, e.g., [18, 95, 92]. As one might imag-
ine, if the normal agents are not equipped with any security strategies, even
a single misbehaving node could be able to control the evolutions of normal
states on its desire.

6.3.2 Resilient Containment Control

The above security concerns necessitate the study of resilient containment
control. Let xi(k) ∈ R be the state of agent i at kth instant. In this chapter,
we focus on the stationary leaders. Particularly, denote mL ≜ min

i∈LR

xi and

ML ≜ max
i∈LR

xi respectively be the minimum and maximum states of normal

leaders. The resilient containment control aims to solve the following problem:
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Resilient Containment Control Objective: For any initial states and
network misbehaviors, it holds that

lim
k→∞

xi(k) ∈ δ, ∀i ∈ FR,

where δ ≜ [mL,ML].
Therefore, through resilient protocols, the network could be avoided of

being affected by the illegal behaviors too much. The purpose of this chapter
is to determine the conditions under which normal followers resiliently move
to δ, regardless of the actions of adversarial nodes. Both the first-order and
second-order systems will be investigated in the following sections.

6.4 Resilient Containment Control of First-Order

Systems

We first consider the first-order systems, where the dynamic for each agent is
described by

xi(k + 1) = xi(k) + ui(k). (6.1)

where ui(k) stands for the control input. While the misbehaving agents can
perform arbitrarily, the normal ones should always follow the designed proto-
col. In particular, for the stationary leaders discussed, ui(k) = 0, ∀i ∈ LR. For
the normal follower i ∈ FR, it makes update as outlined in Algorithm 6.1.

Algorithm 6.1 Resilient containment control of first-order systems

1: Receive the states from all in-neighboring agents j ∈ N+
i . Form these

values in a list X i(k), and sort X i(k) in an ascending order.
2: In X i(k), remove f largest values that are higher than agent i’s own state,
i.e., xi(k). If there are less than f values higher than xi(k), then remove all
of them.
3: Similar as that in Step 2, remove f smallest values that are lower than
xi(k). If there are less than f values lower than xi(k), then remove all these
values.
4: Denote Ji(k) as the set of agents whose values are retained at this time
step. Agent i applies the control input as:

ui(k) =
∑

j∈Ji(k)

dij(k)(x
j(k)− xi(k)), (6.2)

such that dij(k) ≥ η and 1 − ∑

j∈Ji(k)
dij(k) ≥ η for some 0 < η < 1.

Combining it with (6.1) yields the new state xi(k + 1).
5: Transmit xi(k + 1) to all out-neighbors j ∈ N−

i .



Resilient Containment Control of First-Order Systems 69

In view of Algorithm 6.1, it adopts a similar idea to that in most resilient
protocols. At every step, the normal follower i obtains the states in its neigh-
borhood, whereas up to f of them might be faulty. To ensure its state is
updated safely, agent i needs to exclude the misleading information. Yet as it
has no knowledge of the identities of these values, it ignores the most extreme
ones, which are naturally referred to as be the largest or smallest numbers in
this uni-dimensional system. In what follows, we shall theoretically prove the
efficiency of such a protocol.

To proceed, we first introduce the following lemma:

Lemma 6.1 Suppose the network G = (V, E) is under f -local attack. If each
normal follower i ∈ FR has at least 2f+1 in-neighbors and makes update based
on Algorithm 6.1, then there exists a nonempty set M+

i (k) ⊂ N+
i ∩ R and

a set of weights {d̄ij(k)}, such that the dynamic of agent i is mathematically
equivalent to

xi(k + 1) = d̄ii(k)x
i(k) +

∑

j∈M+

i
(k)

d̄ij(k)x
j(k). (6.3)

Moreover, the following results hold:

a) Each weight in (6.3) is strictly positive, and d̄ii(k) +
∑

j∈M+

i
(k) d̄

i
j(k) = 1;

b) For any normal agent in Ji(k), i.e., w ∈ Ji(k) ∩ R, it holds that w ∈
M+

i (k). Moreover, d̄iw(k) ≥ η.

c) d̄ii(k) ≥ η.

Proof Since each normal follower has more than 2f + 1 in-neighbors, it
is trivial to obtain that Ji(k) ̸= ∅.

Clearly (6.1)-(6.2) can be expressed as

xi(k + 1) = dii(k)x
i(k) +

∑

j∈Ji(k)

dij(k)x
j(k), (6.4)

where dii(k) = 1−∑j∈Ji(k)
dij(k) ≥ η. Thus every weight in the above equation

is strictly positive. To show its equivalence to (6.3), we use the similar argu-
ments as in Lemma 4.1. For the sake of completeness, we provide full proof
here and consider the following cases:

• Ji(k) ∩ A = ∅, i.e., there is no adversarial agent in Ji(k).

• Ji(k) ∩ A ≠ ∅.

As for the first case, the construction of d̄ij(k) is trivial by simply making it

equal dij(k). Hence we focus on the second case where some misbehaving agents

exist in Ji(k). Consider any agent l ∈ Ji(k) ∩ A. Since xl(k) has been kept
by agent i, it must be the case that either there are f neighboring values no
less than xl(k), or agent i’s own value xi(k) is not less than xl(k). Similarly,
it is also true that either f neighboring values are not greater than xl(k), or
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xi(k) ≤ xl(k). As there are at most f faulty ones in agent i’s neighborhood, one
could always find a pair of normal agents p, q such that xp(k) ≤ xl(k) ≤ xq(k).
Hence, we have xl(k) = γ(k)xp(k) + (1 − γ(k))xq(k) for some 0 ≤ γ(k) ≤ 1.
By setting d̄ip(k) = dip(k) + γ(k)dil(k) and d̄iq(k) = diq(k) + (1− γ(k))dil(k), the
contribution of adversarial node l can be transformed to that of two normal
ones, i.e., agents p and q. Hence one establishes the first part of this lemma.
Claims b) and c) are then shown by noticing that for any w ∈ {i}∪(Ji(k)∩R),
d̄iw(k) ≥ diw(k) holds.

Invoking Lemma 6.1, the misbehaving agents cannot have arbitrary control
over the local states of normal agents. They can at most influence the “choice”
of the convex combination weights d̄ij(k). As a result, the proposed strategy
protects the normal agent from being significantly affected by the misbehaving
ones.

With d̄ij(k) introduced in (6.3), let G(D̄(k)) = (R, Ē(k)) be the “virtual”

graph associated with D̄(k) = {d̄ij(k)}. We thus have the below result regard-

ing G(D̄(k)) = (R, Ē(k)).

Lemma 6.2 Suppose the network G = (V, E) is under f -local attack and is
strongly (3f + 1)-robust w.r.t L. Consider the graph G(D̄(k)) = (R, Ē(k)) in-
duced by Algorithm 6.1. For any normal follower and at any time, there always
exists at least one normal leader that has a directed path to it in G(D̄(k)).

Proof Consider the network G = (V, E). Since it is strongly (3f+1)-robust
w.r.t L, there exists a nonempty set S1 ⊂ FR ⊂ V\L such that for any i ∈ S1,
it holds that |N+

i \FR| ≥ 3f+1. As |N+
i ∩A| ≤ f and V\FR = L∪A, one has

|N+
i ∩ LR| ≥ 2f + 1, which also implies that LR ̸= ∅. Namely, there always

exist some normal leaders. According to Algorithm 6.1, agent i discards at
most 2f neighboring values. Hence, at least one normal leader will be kept in
Ji(k) at any time. Combining this with the second part of Lemma 6.1, agent i
always has this normal leader as a in-neighbor in the induced graph G(D̄(k)).

Next denote F1
R ≜ FR\S1 ⊂ V\L. If F1

R ̸= ∅, one can construct another
set S2 ⊂ F1

R containing all agents who has at least 3f + 1 neighbors outside
F1

R. Because the network is strongly (3f + 1)-robust w.r.t L, it holds that
S2 ̸= ∅. Then focus on any agent j ∈ S2. Since |N+

j \F1
R| ≥ 3f + 1, as

analyzed before, there always exists at least one normal agent in either LR

or S1, labeled as m, whose value will be retained by agent j. Note that agent
m either is a normal leader, or adopts a normal leader’s state for updates.
Recalling Lemma 6.1 again, there always exists a normal leader who has a
directed path to agent j with length no more than 2 in G(D̄(k)).

Similarly, if F2
R ≜ F1

R\S2 ̸= ∅, we define S3 ⊂ F2
R and collect all agents

who have no less than 3f + 1 neighbors outside F2
R in S3. An analogical

conclusion could then be derived that for each l ∈ S3, at least one agent in
LR ∪S1 ∪ S2, whose value will be kept in Jl(k). Hence a “virtual” path exists
from a benign leader to agent l.
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Therefore, we can recursively define Fτ
R ≜ Fτ−1

R \Sτ . As long as Fτ
R ̸= ∅,

let Sτ+1 ⊂ Fτ
R be the collection of agents who has at least 3f + 1 neighbors

outside Fτ
R. Repeating the above analysis gives one similar results that any

agent in Sτ+1 always retains some agent’s value in LR ∪S1 ∪ S2 ∪ ... ∪ Sτ .
Hence it can be reached by some normal leaders with the length no more than
τ + 1. The proof thus completes.

Next let us recall the sequence of sets, namely {Si}, defined in the above
proof. It is easy to conclude that some n ≤ |FR | exists such that

⋂n
i=1 Si =

FR .
With the above preparations, it is now ready to give the below result:

Theorem 6.1 Suppose the network G = (V, E) is under f -local attack and is
strongly (3f + 1)-robust w.r.t L. Then the controller given by Algorithm 6.1
achieves the resilient containment control. Specifically, all normal followers
will converge to δ regardless of the network misbehaviors.

Proof Firstly, we note that since the network is strongly (3f + 1)-robust
w.r.t L, each agent i ∈ FR has at least 3f + 1 in-neighbors. To see this,
suppose there exists a normal follower i with at most 3f in-neighbors. Choose
S ′ ⊆ V\L = {i} (defined in Definition 2.6). Then S ′ can be at most 3f -
reachable, implying that the graph is not strongly (3f + 1)-robust w.r.t. L.
Since f ≥ 0, the conditions of Lemma 6.1 hold.

For notation convenience, let mF (k) ≜ mini∈FR
xi(k) and MF (k) ≜

maxi∈FR
xi(k) respectively be the minimum and maximum value of normal

followers’ states at time k. In order to prove the state of each normal follower
finally converge to the interval δ = [mL,ML], the below cases are considered:

1) All normal followers are initially within δ, namely ∀i ∈ FR, xi(0) ∈ δ;

2) There exists some i ∈ F1 ⊂ FR such that xi(0) > ML, while for any
j ∈ FR\F1, x

j(0) ∈ δ. That is, the initial states of some normal followers
are greater than ML, while the others are initially within δ;

3) There exists some i ∈ F2 ⊂ FR such that xi(0) < mL, while for any
j ∈ FR\F2, x

j(0) ∈ δ;

4) There exists some i ∈ F3 ⊂ FR such that xi(0) > ML, some j ∈ F4 ⊂ FR

such that xj(0) < mL, and for other l ∈ FR\(F3 ∪ F4), x
l(0) ∈ δ.

Case 1): We shall prove by induction. Suppose at some time k, xi(k) ∈
δ, ∀i ∈ FR. In view of (6.3), each normal follower updates its state based on a
convex combination of some points in δ. Hence xi(k+1) ∈ δ, which completes
our proof.

Case 2): In this case, we show that MF (k) ≤ ML as k → ∞. The proof is
comprised of two claims:
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Claim 1: MF (k) is non-increasing. This can be easily obtained since at
time k + 1, each healthy follower updates as

xi(k + 1) = d̄ii(k)x
i(k) +

∑

j∈M+

i
(k)

d̄ij(k)x
j(k) ≤ MF (k). (6.5)

Claim 2: As long as MF (k) > ML, it will decrease after a finite time.
To see this, let us consider the sequence of sets {Si}i=1,2,...,n. From former
discussions, one knows every agent i in S1 retains at least one normal leader
in Ji(k). Define γ0 = MF (k)−ML > 0. Hence

xi(k + 1) = d̄ii(k)x
i(k) +

∑

j∈M+

i
(k)

d̄ij(k)x
j(k)

≤ (1− η)MF (k) + η(MF (k)− γ0)

= MF (k)− ηγ0,

(6.6)

where the inequality holds due to Claim b) of Lemma 6.1 and we place the
largest possible weight on MF (k). At k + 2, the state of agent i is upper
bounded by

xi(k + 2) = d̄ii(k + 1)xi(k + 1)

+
∑

j∈M+

i
(k+1)

d̄ij(k + 1)xj(k + 1)

≤ η(MF (k)− ηγ0) + (1− η)MF (k + 1)

≤ η(MF (k)− ηγ0) + (1− η)MF (k)

= MF (k)− η2γ0

< MF (k),

(6.7)

where the first inequality holds by invoking Claim c) of Lemma 6.1. Recur-
sively, one concludes the state of any agent in S1 will always be smaller than
MF (k) from k + 1.

For the normal follower j in S2. As discussed before, agent j always has
an in-neighbor either in LR or S1. Recalling (6.5) yields xj(k+ 1) ≤ MF (k).
At k + 2, if one of agent j’s in-neighbors belongs to LR, the state of agent j
is updated as

xj(k + 2) = d̄jj(k + 1)xj(k + 1) +
∑

l∈M+

j
(k+1)

d̄jl (k + 1)xl(k + 1)

≤ (1− η)MF (k) + η(MF (k)− γ0)

= MF (k)− ηγ0.

(6.8)
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On the other hand, if this in-neighbor is in S1, then the state is upper bounded
by

xj(k + 2) = d̄jj(k + 1)xj(k + 1) +
∑

l∈M+

j
(k+1)

d̄jl (k + 1)xl(k + 1)

≤ (1− η)MF (k) + η(MF (k)− ηγ0)

= MF (k)− η2γ0,

(6.9)

where the inequality is due to the fact that agent j has a direct neighbor in S1

whose state is upper bounded by (6.6) and whose weight is lower bounded by
η (by invoking Lemma 6.1.b)). Combining the above two relations gives that
xj(k+2) ≤ MF (k)−η2γ0. As before, one knows for any agent in S2, its value
will be less than MF (k) from k + 2.

Similarly, one can repeat the above analysis and conclude for any agent in
Sτ , its state will definitely decrease below MF (k) after τ steps. Hence, from
k + n, every normal follower has its state strictly less than MF (k). Namely
MF (k + n) < MF (k). Since n ≤ |FR |, thus the proof of Step 2 completes.

In view of Claims 1 and 2, we know that MF (k) ≤ ML as k → ∞. Based
on (6.3), note also that mF (k) ≤ mL at any k > 0. Hence all normal followers
finally converge to δ.

Case 3): The analysis of this case is similar to that of Case 2). One knows
as k goes to infinity, the state of any normal follower will converge to δ.

Case 4): Combining Cases 2) and 3), the proof completes.

6.5 Resilient Containment Control of Second-Order

Systems

Given that a broad class of autonomous agents (e.g., vehicles, sensors) requires
a double-integrator model (see, for examples, [16, 86] and [39]), this section
discusses the resilient containment control in second-order systems. In partic-
ular, each follower i ∈ F is governed by both position and velocity states as
below:

xi(k + 1) = xi(k) + vi(k),

vi(k + 1) = vi(k) + ui(k),
(6.10)

where ui(k) ∈ R is the control signal. For the normal follower i ∈ FR, it
follows the updating rule as stated in Algorithm 6.2.

Remark 6.1 Note that ρ is introduced in the control law (6.11) to stabilize
the double-integrator dynamics. Furthermore, vj(k) = 0 for any j ∈ LR.
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Algorithm 6.2 Resilient containment control of second-order systems

1-3: Steps 1 to 3 are the same as those in Algorithm 6.1.
4: Denote Ji(k) as the set of agents whose values are retained at this time
step. Agent i applies the control input as:

ui(k) = −2ρvi(k) +
∑

j∈Ji(k)

dij(k)(x
j(k)− xi(k)). (6.11)

In the above equation, ρ > 0, each weight dij(k) ≥ η, and
∑

j∈Ji(k)
dij(k) ≤ 1 − η for some 0 < η < 1. Combining it with (6.10)

yields the new state xi(k + 1).
5: Transmit xi(k + 1) to all out-neighbors j ∈ N−

i .

To show the resiliency of Algorithm 6.2, Lemma 6.3 would be needed. The
proof is established in a similar manner to that of Lemma 6.1 and hence
omitted.

Lemma 6.3 Suppose the network G = (V, E) is under f -local attack. If each
normal follower i ∈ FR has at least 2f + 1 in-neighbors and makes update
based on Algorithm 6.2, then there exists a nonempty set M+

i (k) ⊂ N+
i ∩ R

and a set of weights {d̄ij(k)}, such that its control law (6.11) is mathematically
equivalent to

ui(k) = −2ρvi(k) +
∑

j∈M+

i
(k)

d̄ij(k)(x
j(k)− xi(k)), (6.12)

where each weight is strictly positive and
∑

j∈M+

i
(k) d̄

i
j(k) ≤

∑

j∈Ji(k)
dij(k) ≤

1− η. Furthermore, for any w ∈ Ji(k)∩R, it also holds that w ∈ M+
i (k) and

d̄iw(k) ≥ η.

As analyzed before, Algorithm 6.2 equivalently leads to a network
G(D̄(k)) = (R, Ē(k)) associated with D̄(k) = {d̄ij(k)}. Furthermore, apply-
ing the same argument as that in the proof of Lemma 6.2, one obtains the
below result:

Lemma 6.4 If G = (V, E) is under f -local attack and is strongly (3f + 1)-
robust w.r.t L, then for any normal follower and at any time, there always
exists at least one normal leader that has a directed path to it in G(D̄(k)) =
(R, Ē(k)).

Before moving on, we also need the following lemma:

Lemma 6.5 ([79]) Let Y be a nonempty closed convex set in Rd. For any
yi ∈ Rd, it holds that

∣
∣
∣

∣
∣
∣

l∑

i=1

aiyi − PY

( l∑

i=1

aiyi
)∣
∣
∣

∣
∣
∣ ≤

l∑

i=1

ai||yi − PY(y
i)||,

where each ai ≥ 0 and
∑l

i=1 a
i = 1.
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Now we are in position of presenting the below result:

Theorem 6.2 Suppose the network G = (V, E) is under f -local attack and is
strongly (3f + 1)-robust w.r.t L. If √1− η < ρ < 1, then the controller given
by Algorithm 6.2 achieves the resilient containment control. Specifically, all
normal followers will converge to δ regardless of the network misbehaviors.

Proof As analyzed in the proof of Theorem 6.1, the conditions of Lemma
6.3 hold.

Then motivated by that in [147], let us introduce an auxiliary variable as
ϕi(k) ≜ xi(k) + vi(k)/ρ. Hence ϕi(k) = xi(k), ∀i ∈ LR . Now from (6.10) and
(6.12), one has the below relations for any i ∈ FR:

xi(k + 1) = (1− ρ)xi(k) + ρϕi(k),

ϕi(k + 1) = (1− ρ)ϕi(k) +
(

ρ− 1/ρ
∑

j∈M+

i
(k)

d̄ij(k)
)

xi(k)

+ 1/ρ
∑

j∈M+

i
(k)

d̄ij(k)x
j(k).

(6.13)

Then define the following Lyapunov function:

V (k) ≜ max
i∈FR

(
max(|xi(k)− Pδ(x

i(k))|, |ϕi(k)− Pδ(ϕ
i(k))|)

)
. (6.14)

Namely V (k) is the maximum of all the distance from xi(k) and ϕi(k) to
the set δ among normal followers. Also note that for any j ∈ LR, |xj(k) −
Pδ(x

j(k))| = 0 and |ϕj(k)− Pδ(ϕ
j(k))| = 0.

At time k + 1, consider any i ∈ FR. In view of (6.13) and Lemma 6.5, it
holds that

|xi(k + 1)− Pδ(x
i(k + 1))|

≤(1− ρ)|xi(k)− Pδ(x
i(k))|+ ρ|ϕi(k)− Pδ(ϕ

i(k))|
≤V (k).

(6.15)

On the other hand, given that
∑

j∈M+

i
(k) d̄

i
j(k) ≤ 1 − η < ρ2 < 1, one has

0 < ρ− 1/ρ
∑

j∈M+

i
(k) d̄

i
j(k) < 1. Hence

|ϕi(k + 1)− Pδ(ϕ
i(k + 1))|

≤(1− ρ)|ϕi(k)− Pδ(ϕ
i(k))|+

(

ρ− 1/ρ
∑

j∈M+

i
(k)

d̄ij(k)
)

|xi(k)− Pδ(x
i(k))|

+ 1/ρ
∑

j∈M+

i
(k)

d̄ij(k)|xj(k)− Pδ(x
j(k))|

≤
(

1− 1/ρ
∑

j∈M+

i
(k)∩LR

d̄ij(k)
)

V (k)

≤V (k).

(6.16)
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As (6.15) and (6.16) hold for any i ∈ FR, V (k+1) ≤ V (k). Next we shall
study the limit of V (k). To this end, we make the following claims:

Claim 1): For any i ∈ FR, if |xi(t)−Pδ(x
i(t)| ≤ ϵ1V (k) for some t ≥ k and

0 ≤ ϵ1 < 1, then there exists 0 ≤ ϵ2 < 1, such that |xi(t+1)−Pδ(x
i(t+1)| ≤

ϵ2V (k) holds.
To see this, let us recall (6.15) again. One thus has

|xi(t+ 1)− Pδ(x
i(t+ 1))|

≤(1− ρ)|xi(t)− Pδ(x
i(t))|+ ρ|ϕi(t)− Pδ(ϕ

i(t))|
≤(1− ρ)ϵ1V (k) + ρV (t)

≤(1− ρ)ϵ1V (k) + ρV (k)

=((1− ρ)ϵ1 + ρ)V (k).

(6.17)

Claim 1) is concluded by letting ϵ2 = (1− ρ)ϵ1 + ρ.
Claim 2): For any i ∈ FR, if there exists an agent in Ji(k)∩R, labeled as

l, such that |xl(t) − Pδ(x
l(t)| ≤ ϵ3V (k) for some t ≥ k and 0 ≤ ϵ3 < 1, then

there exists 0 ≤ ϵ4 < 1 such that |ϕi(t+ 1)− Pδ(ϕ
i(t+ 1)| ≤ ϵ4V (k).

Recall Lemma 6.4 and Eqn. (6.16), we have

|ϕi(t+ 1)− Pδ(ϕ
i(t+ 1))|

≤(1− ρ)|ϕi(t)− Pδ(ϕ
i(t))|+

(

ρ− 1/ρ
∑

j∈M+

i
(t)

d̄ij(t)
)

|xi(t)− Pδ(x
i(t))|

+ 1/ρ
∑

j∈M+

i
(t)

d̄ij(t)|xj(t)− Pδ(x
j(t))|

≤
(

1− 1/ρ
∑

j∈M+

i
(t)

d̄ij(t)
)

V (t) + 1/ρ
∑

j∈M+

i
(t)\{l}

d̄ij(t)V (t) +
ϵ3
ρ
d̄il(t)V (k)

≤
(

1− 1− ϵ3
ρ

d̄il(t)
)

V (k)

≤
(

1− 1− ϵ3
ρ

η
)

V (k).

(6.18)

Setting ϵ4 = 1− (1− ϵ3)η/ρ yields Claim 2).
Claim 3): For any i ∈ FR, if |ϕi(t)−Pδ(ϕ

i(t)| ≤ ϵ5V (k) for some t ≥ k and
0 ≤ ϵ5 < 1, then there exists 0 ≤ ϵ6 < 1 such that |xi(t+ 1)−Pδ(x

i(t+ 1)| ≤
ϵ6V (k).

This claim is made from (6.15). That is,

|xi(t+ 1)− Pδ(x
i(t+ 1))|

≤(1− ρ)|xi(t)− Pδ(x
i(t))|+ ρ|ϕi(t)− Pδ(ϕ

i(t))|
≤(1− ρ)V (k) + ρϵ5V (k).

(6.19)

By letting ϵ6 = 1− ρ(1− ϵ5), the proof of this claim completes.
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Finally let us consider the set S1 defined in the proof of Lemma 6.2. For any
i ∈ S1, it has some normal leaders in its in-neighborhood. Then from (6.16),
|ϕi(k+1)−Pδ(ϕ

i(k+1))| < V (k) holds by noticing that
∑

j∈M+

i
(k)∩LR

d̄ij(k) >

0. Based on Claims 1)–3) and Lemmas 6.3–6.4, one knows limk→∞ V (k) = 0
and thus the proof of this theorem finishes.

In view of Theorems 6.1 and 6.2, the convergence of the proposed algo-
rithms does not depend on the actions of misbehaving agents. Hence they work
resiliently even in the worst-case scenario, where the misbehaving agents could
have full knowledge of graph topology, updating rules, etc, and could also be
able to send different information to different out-neighbors. Therefore, Algo-
rithms 6.1 and 6.2 can be safely used under any assumptions involving faults
or attacks, as long as no more than f misbehaving nodes exist in the normal
follower’s in-neighborhood.

Remark 6.2 As indicated in Theorems 6.1 and 6.2, the maximum number of
allowable misbehaving nodes depends directly on the communication topology.
Particularly, the network should be strongly (3f +1)-robust w.r.t L, to ensure
that each normal follower is capable of tolerating at most f attacks in its in-
neighborhood. That is, the network needs to be “connected” enough to increase
its resilience. This also indicates a trade-off between reducing communication
burden and system security.

Remark 6.3 Invoking Lemmas 6.1 and 6.3, both resilient algorithms result in
the control law being equivalent to the containment control under a switching
topology. Therefore, in such cases, the final states of all normal followers might
not be constant, although remain in the convex hull spanned by the stationary
leaders [18].

6.6 Numerical Example

In this section, we provide some numerical examples to illustrate the proposed
algorithms and verify the theoretical results established before.

We consider the communication network given by Figure 6.1, in which L =
{1, 2, 3, 4} and F = {5, 6, 7, 8}. Clearly the graph is strongly 4-robust w.r.t.
L. Theorems 6.1 and 6.2 indicate that the network should be able tolerate a
single misbehaving node. To verify this, we consider two examples.

In our first example, first-order systems are considered. Suppose the leader
agent 1 is compromised. It intends to followers from getting into the desired
interval by setting its states as x1(k) = 10 ∗ sin(k/5) + 2 at any k ≥ 0. On
the other hand, the normal agents are initialized with x2(0) = 3, x3(0) =
2.5, x4(0) = 1.2, x5(0) = −2, x6(0) = 6, x7(0) = 2, x8(0) = 3.2, and normal
followers always make updates based on the predefined algorithms.
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FIGURE 6.1: Communication topology.

FIGURE 6.2: Local states of each agent according to the containment control
algorithm in [17], where the dashed and solid lines represent the states of
normal leaders and followers, respectively.2

Firstly, Figure 6.2 presents the performance of the traditional containment
control algorithm ([17]) in this adversarial environment. The results show
that the normal followers would be seriously affected by the misbehaviors and
move out of the convex hull formed by normal leaders, necessitating resilient
controllers.

As a comparison, we next illustrate the performance of Algorithm 6.1. Set
η = 0.1. For simplicity, let the updating weights be dij(k) = (|J i(k)| + 1)−1

for each j ∈ J i(k), which satisfies that dij(k) ≥ η and 1−∑j∈Ji(k)
dij(k) ≥ η.

The result is depicted in Figure 6.3, showing that normal followers ultimately
move into the convex hull spanned by the normal leaders, which validates
Theorem 6.1.

As another example, we investigate the scenario for second-order systems.
In this case, follower 5 is misbehaving, which randomly sets its state within

2Reproduced with permission of ©2013 IEEE.
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FIGURE 6.3: Local states of each agent along iteration in first-order system,
where the dashed and solid lines represent the states of normal leaders and
followers, respectively.3

FIGURE 6.4: Local states of each agent along iteration in second-order system,
where the dashed and solid lines represent the states of normal leaders and
followers, respectively.4

the range [0, 3.5]. ρ is set to be 0.75 in Algorithm 6.2, satisfying that
√
1− η <

ρ < 1. Despite the misbehaviors, results in Figure 6.4 verify the effectiveness
of the proposed strategy.

3Reproduced with permission of ©2013 IEEE.
4Reproduced with permission of ©2013 IEEE.
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6.7 Conclusion

In this chapter, we consider resilient containment control with stationary lead-
ers. Despite some misbehaving agents, secure protocols are desired to drive the
normal followers into the convex hull spanned by the normal leaders. Towards
this goal, two resilient algorithms respectively for first-order and second-order
systems are presented. It is proved that both algorithms are resilient to the
f -local attack as long as the network is strongly 3f + 1 robust w.r.t L.

Future work involves the extension of our results to the more general high-
dimensional spaces, to guarantee that all normal followers converge to the
convex hull spanned by normal leaders. As mentioned in the introduction,
the main idea in resilient protocols is to discard the most extreme values in
the normal agents’ neighborhoods. However, as the vector space is equipped
with a partial order, how to define “extreme” is one of the most challenges
in resilient multi-dimensional algorithms. Furthermore, topological conditions
should be developed under which each normal follower could be reached by
at least one normal leader in the “virtual” network. Alternatively, one can
also simply apply Algorithms 6.1 and 6.2 to each entry of the vector state.
This approach guarantees the normal followers converge to the minimum hy-
perrectangle containing normal leaders’ states and hence protects them from
being arbitrarily affected. Although the normal followers may fail to converge
to the convex hull formed by these states, this approach secures the system
to some extent.



7

Conclusions and Future Work

This chapter concludes the whole book by summarizing its contents and high-
lighting its major contributions. Moreover, some future research perspectives
with regard to CPS security will be discussed.

7.1 Conclusions

In this book, resilient detection and control in CPSs is discussed, which is
particularly motivated by the security concerns of deception attacks on com-
munication channels. Throughout this book, we consider the attack model
where the number of compromised sensors/agents is upper bounded. Note
this upper bound might be determined by the a priori knowledge about the
quality of sensors. It can also be viewed as a design parameter, which indi-
cates the resilience level that the system is willing to introduce. Yet, despite
this upper bound, we do not pose any assumptions on the patterns or values
of the malicious data introduced by the adversary. Namely, the compromised
components are allowed to transmit arbitrary data. They could also collude
among themselves to decide on the deceptive values to be communicated. On
the other hand, the system operator or benign agents only know this upper
bound but have no information on the identities of others. Working against
this attack model, the following problems have been addressed in an the book:

Driven by the fact that existing distributed algorithms may fail in an ad-
versarial environment with unreliable communication channels, the resilient
coordination of MASs is discussed in Chapters 4–6. Specifically, a continuous-
time second order MAS is considered in Chapter 4. Under malicious nodes,
the benign ones still aim to achieve an agreement among themselves. To-
wards this end, an impulsive consensus algorithm is proposed, which, by using
position states only, facilitates the resilient consensus among benign nodes
while avoiding the continuous transmission and control actions.

In many applications of MASs, the agents not only hope to achieve an
agreement, but also want this value “fairly” represents their initial states. As
the average consensus can never be achieved in an adversarial environment,
Chapter 5 seeks for a resilient algorithm which facilitates the agreement within
the convex hull formed by the benign agents’ initial states. Yet, when dealing
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with high-dimensional systems, the computation cost increases inevitably with
the system dimensionality. To address this issue, an efficient approach is also
proposed to relieve this burden through linear programming. Compared with
the existing solutions, our approach introduces lower complexity.

Besides the leaderless consensus, the resilient containment control with
multiple leaders is finally investigated in Chapter 6. Regardless of the network
misbehavior, resilient controllers are designed to drive the benign followers
to move into the convex hull formed by benign leaders. Both the first-order
and second-order systems are considered, where convexity analysis and the
Lyapunov approach are respectively adopted to validate the efficiency of the
proposed algorithms.

7.2 Future Work

On the basis of the aforementioned research works, this section further comes
up with some new perspectives on the security and resilience of cyber-physical
systems. They are briefly summarized as follows.

7.2.1 Secure Coordination in MASs

In this book, some results on resilient consensus has been obtained. Since the
consensus among agents serves as the basic objective in distributed coordina-
tion, this book provides tools to increase the resiliency of other consensus-
based formulations as well. For example, in distributed optimization, the
agents aim to agree on the minimizer of a global objective function. As proved
in [130], any distributed algorithm that is guaranteed to output a globally op-
timum value in the absence of adversaries, can be arbitrarily co-opted by
network misbehaviors. This means there exists a trade-off between the opti-
mality and security. To be specific, by combining the solutions in distributed
optimization and resilient consensus, a secure distributed optimization algo-
rithm can be proposed, which protects the benign agents from being seriously
affected by the misbehaviors. On the other hand, given the aforementioned
trade-off, we have to sacrifice the optimality of this algorithm during normal
operations with an aim to increase its security. That is, the resilient strategy
will lead to a “sub-optimal” solution in the absence of misbehaviors. In this
case, a characterization of the “distance-to-optimality” will be studied. Other
examples include distributed estimation in sensor networks, formation control
of multi-robot systems, etc.

Another interesting topic is to analyze the security in MASs with game-
theoretic tools. For example, the distributed optimal control is to minimize the
cost function of a network in a dynamical process with an optimal strategy.
The attacker, on the other hand, intends to maximize this cost by injecting
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malicious data to the update of agents. This problem may be formulated as a
zero-sum game and addressed by mathematical tools in that field.

7.2.2 Applications to the Secure Coordination of More Com-
plicated Cyber-Physical Systems

We are expecting the theoretical results in this book can be applied to en-
hance the security of practical systems. Yet, we should note that the theoret-
ical works focus more on the level of control and optimization while ignoring
the physical constraints. For example, one problem that will be encountered
in the physical implementation is that MASs are usually composed of au-
tonomous components that have limited communication capabilities. There-
fore, it is important to equip the control algorithms with robust mechanisms
such that they could account for the errors caused by the communication lim-
itations like sensing noises, time delays, quantization, etc. The conventional
methodologies to address this issue include the introduction of quantizers and
the implementation of asynchronous communication actions. Moreover, since
dedicated hardware can only operate at some maximum frequency (e.g., a
physical device can only broadcast a message or evaluate a function for a
finite number of times in any finite period of time), the event/self-triggered
sampling and control can contribute to the physical implementation. However,
the aforementioned strategies need to be designed very carefully in the pres-
ence of malicious and unexpected behaviors, as the cunning attackers can take
advantage of the asynchrony in communication to prevent non-faulty compo-
nents from reaching control objectives [34]. A possible solution to enhance the
system resiliency is to introduce randomization in the control rules so that
the adversary cannot predict the update times in advance.

What’s more, in this book, we assume the local agents only interact
through communication networks. Nevertheless, in practical systems, there
might exist physical couplings among agents. A prospective aspect lies in
the power system operation, where multiple generation units cooperatively
achieve primary targets, such as frequency/voltage regulations, load power
sharing, and economic dispatch. These generators are connected through elec-
trical wires in the physical layer and thus electrically coupled. To make these
targets immune from malicious cyber attacks, resilient control schemes are re-
quired to better coordinate multiple components, where physical constraints,
such as power flow equations [67], must be taken into account.

7.2.3 Privacy Preserving in Networked Control Systems

As the distributed control systems become more widespread, concerns are
growing about how these systems collect and make use of the privacy-sensitive
data obtained from participating individuals. In many applications, these in-
dividuals may not want to disclose their real-time information when cooper-
ating with others to complete a global task. For example, in social networks, a
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group of participants would like to employ a consensus algorithm to achieve a
common opinion on a subject while keeping their personal comments on this
subject secret. Hence, data privacy has become one of the most emerging top-
ics in CPSs. To protect it, one common approach is differential privacy, which
limits the disclosure of private information by introducing randomness into
the protected data. In general, there exists a trade-off between data privacy
and utility. Hence, the coming problems are how to design the random vari-
ables and how to guarantee the control and optimization performance under
this randomness.
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Distributed control gains design for consensus in multi-agent systems
with second-order nonlinear dynamics. Automatica, 49(7):2107–2115,
2013.

[159] Fumin Zhang and Zhenwu Shi. Optimal and adaptive battery discharge
strategies for cyber-physical systems. In Decision and Control, 2009
Held Jointly with the 2009 28th Chinese Control Conference. CDC/CCC
2009. Proceedings of the 48th IEEE Conference In Proceedings of the
48th IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, pages 6232–6237. IEEE, 2009.



Bibliography 99

[160] Fumin Zhang, Zhenwu Shi, and Wayne Wolf. A dynamic battery model
for co-design in cyber-physical systems. In Distributed Computing Sys-
tems Workshops, 2009. ICDCS Workshops’ 09. 29th IEEE International
Conference In 2009 29th IEEE International Conference on Distributed
Computing Systems Workshops, pages 51–56. IEEE, 2009.

[161] Chengcheng Zhao, Jianping He, and Qing-Guo Wang. Resilient dis-
tributed optimization algorithm against adversarial attacks. IEEE
Transactions on Automatic Control, 2019.

[162] Wei Zhu and Daizhan Cheng. Leader-following consensus of
second-order agents with multiple time-varying delays. Automatica,
46(12):1994–1999, 2010.


	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Authors
	1. Introduction
	1.1. Background
	1.1.1. Cyber-Physical System
	1.1.2. Security-Related Issues in CPS
	1.1.3. Security Goals and Threats

	1.2. Contributions of the Book
	1.3. Outline of the Book

	2. Literature Review
	2.1. Related Work in Information Security
	2.2. CPS Security from Control Perspective
	2.2.1. Prevention
	2.2.2. Resilient Algorithms
	2.2.3. Attack Detection and Isolation

	2.3. Technical Preliminaries
	2.3.1. Graph Theory
	2.3.2. Network Robustness
	2.3.3. Sarymsakov Matrix


	3. Sequential Detection with Byzantine Sensors
	3.1. Introduction
	3.2. Related Work
	3.3. Problem Formulation
	3.3.1. Attack Model
	3.3.2. Asymptotic Detection Performance
	3.3.3. Optimal Detection Rate for a Single Sensor in the Absence of Attacker
	3.3.4. Nash-Equilibrium Strategy Pair

	3.4. Equilibrium Strategies for m > 2n
	3.4.1. Optimal Detection Strategy
	3.4.2. Optimal Attack Strategy

	3.5. Equilibrium Strategies for m ≤ 2n
	3.6. Extension
	3.7. Numerical Example
	3.8. Conclusion

	4. Resilient Consensus of Second-Order Systems through Impulsive Control
	4.1. Introduction
	4.2. Related Work
	4.3. Problem Formulation
	4.3.1. Attack Model
	4.3.2. Resilient Consensus

	4.4. Resilient Impulsive Algorithms
	4.5. Convergence Analysis
	4.6. Numerical Example
	4.7. Conclusion

	5. Resilient Multi-Dimensional Consensus in Adversarial Environment
	5.1. Introduction
	5.2. Related Work
	5.3. Problem Formulation
	5.3.1. Resilient Consensus Problem
	5.3.2. Attack Model

	5.4. A Resilient Multi-Dimensional Consensus Strategy
	5.4.1. Description of the Resilient Algorithm
	5.4.2. Computation of Middle Points

	5.5. Algorithm Analysis
	5.5.1. Realizability
	5.5.2. Resiliency: Validity
	5.5.3. Resiliency: Agreement
	5.5.4. Remarks on the Safe Kernel

	5.6. Discussions on the Network Failing to Meet Suffcient Conditions
	5.7. Numerical Example
	5.8. Conclusion

	6. Resilient Containment Control in Adversarial Environment
	6.1. Introduction
	6.2. Related Work
	6.3. Problem Formulation
	6.3.1. Attack Model
	6.3.2. Resilient Containment Control

	6.4. Resilient Containment Control of First-Order Systems
	6.5. Resilient Containment Control of Second-Order Systems
	6.6. Numerical Example
	6.7. Conclusion

	7. Conclusions and Future Work
	7.1. Conclusions
	7.2. Future Work
	7.2.1. Secure Coordination in MASs
	7.2.2. Applications to the Secure Coordination of More Complicated Cyber-Physical Systems
	7.2.3. Privacy Preserving in Networked Control Systems


	Bibliography

