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Preface  

In the evolving landscape of modern technology, Cyber-Physical Systems (CPS) 

represent the forefront of innovation, blending the physical and digital worlds 

seamlessly. However, as these systems become increasingly interconnected and 

complex, new challenges arise. In complex systems composed of numerous 

interacting components, the necessity for adaptation or expansion often becomes 

evident. Minor adjustments, such as a simple software update, might subtly alter 

component behavior, undermining key assumptions about the broader system. 

How can we design systems that are not only powerful but also robust, adaptable, 

and scalable? Conventional top-down design approaches often fall short meeting 

these requirements, particularly when addressing the ongoing design, operation, 

and maintenance of such complex systems. One promising answer lies in the 

fascinating field of swarm intelligence. 

Swarm systems utilize simple local interactions to produce sophisticated, 

emergent behaviors similar to those observed in natural entities like flocks of birds 

or colonies of ants. Inspired by this potential, Engineering Swarms for Cyber-

Physical Systems aims to guide readers through the entire journey of applying 

swarm intelligence in CPS, from conceptual modeling to final deployment. 

This book is structured to be a one-stop resource for engineers, researchers, 

and students. It begins with an introduction to swarm intelligence, illustrating 

its vast potential through examples from robotics, manufacturing, and search-

and-rescue operations. We then explore the core principles of modeling, design 

methods—including machine-learning approaches—and simulation techniques. 

A highlight of the book is its hands-on character: programming examples and 

practical insights are woven throughout, enabling you to translate theoretical 

concepts into real-world applications effortlessly. 

Our aspiration is that this book will serve not only as a technical guide but 

also as a source of inspiration. Whether you are an experienced engineer or 

a curious researcher, you will find the tools and knowledge needed to create 

innovative swarm-based CPS solutions. 

Thank you for taking this journey with us. Together, let’s explore the future 

of engineering swarms and unlock the potential of intelligent, adaptive systems. 

Happy designing! 



https://taylorandfrancis.com
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Chapter 1 

Swarm Intelligence in 
Cyber-Physical Systems 

Swarm intelligence is a concept adapted from nature to complex technical 
systems of various application domains including smart grids, cities, or 
mobility, and industry 4.0. Swarms of bees, birds, fish, and other organisms 
demonstrate how a self­organizing behavior can solve complex tasks without 
a central control entity dictating rules and goals to the individual agents 
within the swarm. This chapter aims to give a general overview of the typical 
terminologies for swarm intelligence concepts in general and motivates the 
engineering of swarm intelligence for CPSs. 

1.1 Basic Terminology 

A swarm consists of individual, simple, and homogeneous agents [86]. Swarm 
behavior describes social animal behaviors that exhibit a strong innate or 
developed inclination to collaboratively achieving a common global objective, 
such as foraging, nest­building, or defending against enemies. Thus, swarm 
intelligence is based on the coordination and control mechanisms that exist in 
natural swarms, which operate in dynamic and diverse environments. Despite 
the complexity of their goals, individual agents in a swarm typically follow 
simple rules and interact locally with their peers and surroundings. By doing 
so, they generate collective behavior that enables the swarm to solve complex 
tasks. This makes the swarm scalable, adaptable, and robust to changing 
conditions. 

In nature, swarm behavior is often observed in animals that exhibit 
eusocial behavior, like honeybees, ants, termites, and naked mole rats [275]. 
Eusociality is characterized by several distinctive features, including 
cooperative care of offspring, where individuals within the group collaborate 
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to nurture offspring, extending their care even to those that are not direct 
descendants. Additionally, eusocial species often exhibit a clear division of 
labor, with distinct castes or groups specializing in specific tasks within 
the colony. Another hallmark of eusociality is the reproductive division of 
labor, where reproduction is taken care of by a subset of the individuals 
within the group, often a reproductive queen and a few males. This 
specialization in reproduction ensures a well­organized and efficient social 
structure. Furthermore, a key characteristic is the presence of overlapping 
generations in the swarm. This stands in contrast to species where parents 
typically perish before the offspring reach maturity. These features collectively 
define and distinguish eusocial behavior in various animal species. Given 
proper abstraction, eusocial behavior can be an inspiring model for CPS 
swarm systems. 

A very early definition of a swarm was rather simple, referring to a group 
of animals executing a joint movement pattern. This is still reflected in the 
traditional definition that can be found in the Oxford Dictionary, where a 
swarm is “A large or dense group of flying insects”. The first formal definition 
was given by Farley and Clark in 1954 as “a system which changes its basic 
structure as a function of its experience and environment” [110]. The term 
swarm intelligence was first introduced in 1989 by Beni and Wang [33]. 
It was used to describe the dynamics of a group of cellular robots that 
could execute an intelligent collective behavior. This marks the starting 
point at which swarm intelligent behaviors were studied outside of natural 
sciences [333]. Bonabeau and Meyer [40] in 2001 effectively summarized all 
the necessary characteristics of a natural system to call it a swarm intelligence 
system: “Social insects work without supervision. Their teamwork is largely 
self­organized, and coordination arises from the different interactions among 
individuals in the colony. Although these interactions might be primitive (one 
ant merely following the trail left by another, for instance), taken together, 
they result in efficient solutions to difficult problems (such as finding the 
shortest route to a food source among a myriad of possible paths). The 
collective behavior that emerges from a group of social insects has been dubbed 
swarm intelligence.” The extension of the same concepts to swarm robotics 
was captured by the definitions of Şahin and Spears [320] in 2005: “Swarm 
robotics is the study of how a swarm of relatively simple physically embodied 
agents can be constructed to collectively accomplish tasks that are beyond the 
capabilities of a single one” and “Swarm robotics emphasizes self­organization 
and emergence while considering the issues of scalability and robustness.” 

Animals exhibiting various evolved swarm behaviors to collaboratively 
achieve common goals, such as foraging, nest building or defending against 
enemies have long inspired swarm intelligence in robotics and advancements 
in CPS developments. The observed swarm intelligence models gain an 
understanding of the principle patterns and rules that the agents execute 
in a natural system. This also gives insights into the conditions, rules, and 
interactions that lead to a swarm behavior. Moreover, research has shown 
that an individual member of a swarm is typically incapable of finding an 
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optimal solution on its own [131]. Instead, a successful solution often arises 
from the collective behavior of the swarm as a whole. 

From a CPS perspective, an engineered swarm comprises a collection 
of agents that can vary in complexity from relatively simple entities like 
swarm robotic research platforms with small, basic robots equipped with few 
sensors to highly complex systems such as autonomous cars. As a swarm, 
these agents reach a common global goal collaboratively using relatively 
straightforward behavior rules, which are implemented locally by each agent. 
When individuals interact with each other and/or their environment following 
well­designed rules, they can exhibit collective behavior capable of solving 
complex tasks effectively. Systems designed based on swarm intelligence 
typically exhibit characteristics, such as parallel and distributed processing 
and control, scalable performance, adaptability to dynamic variations, and 
resilience to losses and failures of individual components [333]. 

1.1.1 Swarm-Intelligent Behavior 

To determine whether a system is truly swarm­intelligent, we propose 
considering the following two cases [333]. 

1. If the system’s functionality remains intact  even when operated by 
a single swarm member it does, not qualify as a swarm­intelligent 
system. If there is only one active agent, the system retains its full 
set of capabilities. In this scenario, these capabilities do not depend 
on any swarm behavior, even if multiple agents are concurrently in 
operation [333]. An illustrative case is the concept of “sweeping,” also 
known as uniform coverage, which can be achieved by a single swarm 
agent or multiple agents collaborating to cover a designated area. To 
address a coverage problem within a fixed area using a UAV swarm, a 
simple approach is to distribute the UAVs across the area. Each UAV 
independently executes a sweeping algorithm for its assigned section of 
the map, without any interaction with other swarm members during the 
algorithm’s execution. The sole drawback of employing a single UAV in 
this context is that it might take longer to complete the task. 

2. As the  swarm size increases, the overall performance ratio improves, 
indicating the presence of a swarm­intelligent system. If the overall 
performance per member decreases as the swarm size increases across 
the entire size range, the system faces scalability issues rather than 
benefiting from larger population sizes. For instance, increasing the 
number of cars on a street boosts the capacity to transport people and 
goods. However, as cars interfere with each other, the incremental gain 
in transport capacity diminishes once a certain density is reached. Thus, 
in this scenario a car’s operation does not benefit from the presence of 
additional vehicles. 



4 Engineering Swarms of Cyber-Physical Systems 

A comprehensive examination of this test, along with supporting empirical 
data, can be found in the work by Hamann et al. [153]. In such a swarm­
intelligent system, the agents reach their global objective according to locally 
executed rules from which the overall behavior emerges through the inter­
swarm interactions. In the case of CPS swarms, the behaviors displayed 
by each individual CPS are based on a local set of rules. These rules can 
be as simple as mapping sensor inputs to actuator outputs or as complex 
as evaluating and analyzing local information before taking action. These 
behaviors require interactions with the physical world, which encompass the 
environment as well as other CPSs [122]. To perform these interactions, the 
CPS reads and interprets sensory data, processes it, and drives the actuators 
accordingly. This sequence of interactions is known as the basic behavior, 
which is repeated either indefinitely or until a desired state is achieved [333]. 

1.1.2  A Taxonomy on Biologically-Inspired 
Swarm Intelligence Algorithms 

Swarm intelligence algorithms are inspired by the field of biology. Most 
algorithms mimic the behavior of a natural system and apply it to an 
engineering problem. Thus, swarm intelligence algorithms are usually referred 
to as nature­inspired [155]. Apart from biology, other research fields like 
physics and chemistry also inspire the development of algorithms. However, 
in the proposed taxonomy, these fields are not considered. Although these 
algorithms are nature­inspired they do not demonstrate swarm intelligence 
behavior. This also holds for evolutionary computation, self­organizing neural 
networks, and cellular automata. There are other frameworks that draw 
inspiration from nature or natural processes but are not considered swarm­
intelligent. Among them are biomimetic algorithms, which rely on mimicking 
biological processes and models. Examples include flower pollination 
algorithm [416], great salmon run [259], and dolphin echolocation [196]. 
Other more generically nature­inspired algorithms mimic physical or chemical 
laws instead of biological ones. Some examples of these types of algorithms 
include simulated annealing [206], spiral optimization [375], water cycle 
algorithm [107], and galaxy­based algorithm [349]. Other notable examples 
include the fireworks algorithm and its variants [376], the swarm chemistry 
particle algorithms [323], and various variants of the harmony search 
algorithm [129]. These examples exhibit the characteristic properties of swarm 
intelligence, but their local rule set does not have a specific biological source 
of inspiration. Given the vast array of inspiration sources and the ocassionally 
indistinct boundaries between algorithms, it can be challenging to pinpoint 
categories or processes that can be definitely identified as recognized sources 
of inspiration for swarm­intelligent behavior [333]. 

In this section, we exclude the theoretical and mathematical descriptions 
of individual swarm intelligence algorithms, as these have already been 
extensively covered by various authors including Bonabeau et al. [39], 
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Figure 1.1: Taxonomy of nature-inspired swarm intelligence algorithms. 

Camazine et al. [53], Garnier et al. [131], Blum and Li [36], Floreano and 
Mattiussi [122], Parpinelli and Lopes [281], Binitha and Sathya [35], Yang et 
al. [417], Krause et al. [214], Hassanien and Emary [155], Yang et al. [418], 
among others. 

For classifying swarm intelligence algorithms, this is not accurate enough 
as many nature­inspired algorithms actually do not relate to swarm 
behavior [145]. Therefore, we propose the taxonomy of models for existing 
and possible future swarm intelligence algorithms based on their sources 
of inspiration, as seen in Figure 1.1. The purpose of this categorization– 
organisms and evolution–is not to present a complete taxonomy of swarm 
intelligence inspirations. Instead, it aims to highlight the diversity of natural 
inspirations and emphasize that only a few swarm intelligence algorithms 
are currently suitable for use in swarms of CPSs. The biggest issue is their 
applicability for swarms of CPSs. For instance, Ant Colony Optimization [88] 
would require individual CPSs to utilize the environment for information 
exchange through stigmergy. Possibly future use of swarming CPSs might 
turn this requirement into an advantage. 

⏎ 
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Swarm intelligence is not limited to natural systems alone but can 
be applied to any complex system comprising multiple interacting 
components that can exhibit useful properties like collective decision-making, 
regulation, homeostasis, and periodic patterns. Thus, the key to utilizing any 
collective system-whether composed of living components or not-as a source 
of inspiration for designing a swarm-intelligent system lies in understanding 
why and how it functions effectively [333]. Thus, behaviors as described in 
Section 1.1.1 should be extracted, abstracted, and translated to the CPS 
swarm domain. 

1.1.3 Multi-Agent vs. Swarm Systems 

Both terms appear frequently in literature, making it challenging to 
distinguish between multi-agent and swarm systems. Characteristics typical of 
one system often appear in the other. A common feature is that both multi-
agent systems and swarm systems consist of multiple agents or CPSs that 
cooperate. Additionally, attributes such as interaction types, local intelligence, 
and distributed knowledge are partially assigned to both systems. 

Therefore, categorizing systems into a single class is often impractical. 
In the following sections, we will further analyze characteristics that provide 
sufficient evidence to classify a system as multi-agent, swarm, or, as is often 
the case, irrelevant in the first place. 

Emergence and Homogeneity 

Swarm systems are considered to be bio-inspired drawing their behavior 
from organisms like ants, bees and fish, etc. In such systems, we argue the 
swarm members are numerous, relatively simple, and homogeneous [333]. 
The simplicity of each agent implies that a single swarm member would be 
incapable of achieving the overall system’s goal independently. Additionally, 
the global goal is typically unknown to the individual agents. This is where the 
concept of emergence becomes crucial: The interactions and local rules with 
limited local knowledge of the simple swarm members lead to an emergent 
global behavior through collective interaction [333]. 

In multi-agent systems, it is assumed that each agent can accomplish the 
task independently. It (i) simply takes longer if we only use one instead of 
many agents, or (ii) only a portion of the global goal will be achieved due 
to the agent’s heterogeneity or specialization. Thus, the individual agent has 
the ability to reach the global goal without necessarily relying on emergent 
behavior. 

Distributed Operation 

Another key characteristic of swarm systems is the lack of a central control 
that leads to emergent behavior. Due to the simple and local rules and the 
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interactions among the agents, a swarm system is, per se, a distributed system 
with distributed knowledge [333]. 

For a multi­agent system, distributed processing is not mandatory. The 
agents can also be controlled centrally such that parts of the task are fulfilled 
in a distributed manner. 

1.2  Motivation to Engineer Swarm Intelligence 

for CPSs 

With the increasing number of interconnected CPSs, individual and 
hierarchical control becomes impossible. The latest Study of Juniper Research 
in 2018 suggests that the quantity of interconnected devices will increase 
steadily and reach 50 billion by the year 20221 . In contrast to static 
environments, the growing interconnectivity of components in modern and 
future technical systems has increased the complexity of system design and 
operation in dynamic environments. This necessitates greater adaptability, 
flexibility, and robustness. The systems that integrate multiple interacting 
components exist at various scales, ranging from System on Chip (SoC) that 
form the computational core of ubiquitous modern devices like smartphones, 
to Internet of Things (IoT), which links billions of edge devices, and the 
Internet of Everything (IoE), which encompasses people, processes, data, and 
devices. In essence, the world is transforming into a truly interconnected and 
collective realm, characterized by the proliferation of systems that combine 
numerous interacting components at different scales [333]. 

In this respect, CPSs have emerged as a leading domain for exploring 
and implementing multi­component systems, characterized by a strong inter-
connection between computational (software­side) and physical (hardware-
side) resources [224]. The National Science Foundation defines CPSs as 
“Engineered systems that are built from, and depend upon, the seamless 
integration of computation and physical components.”. They integrate various 
domains, such as sensing, computation, control, and networking, into physical 
objects and their infrastructure, enabling interaction [123]. Thus, CPSs 
represent a major paradigm in the framework of collective and connected 
systems, as well as a vertical study of systems: They are inherently 
transdisciplinary, generalizing and expanding individual sub­fields such as 
embedded systems, robotics, and networking, by simultaneously merging 
concepts from cybernetics, mechatronics, design, and process science [226, 
333]. Additionally, aspects related to decision autonomy, system integration, 
cyber­security, control, scalability, optimization, validation, and verification, 
play a major role in CPSs’ design and control. Furthermore, CPSs function 
within the physical world, which is characterized by constant dynamic 
changes, unpredictable events, and external conditions that are difficult to 

1Study of Juniper Research, https://www.juniperresearch.com/press/ 
press­releases/iot­connections­to­grow­140­tohit­50­billion, June 2018. 

https://www.juniperresearch.com/press/press-releases/iot-connections-to-grow-140-tohit-50-billion
https://www.juniperresearch.com/press/press-releases/iot-connections-to-grow-140-tohit-50-billion
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model, and the involvement of other CPSs and human agents [333]. Hence, 
the CPS model is well­suited to describe and reason on the plethora of 
complex and interacting components that are being deployed, connected, 
and integrated with our everyday lives. This results in a multitude of 
interconnected and interacting components that are best characterized by 
the concept of Cyber­Physical System of Systems (CPSoS), which refers to a 
vast and distributed complex system of CPSs. In essence, this creates an 
ecosystem of CPSs that operate at multiple scales and interconnect with 
one another [274]. In a CPSoS2 model, the design and control challenges 
become even more complex as individual component autonomy must be 
integrated with explicit considerations for interdependence and coordination, 
interoperability, distributed control, and emergence of behaviors. This high 
complexity necessitates methods that should achieve the following goals: 

•  Distributed control, supervision and management. 

•  Local coordination among the composing subsystems. 

•  Partial autonomy of the subsystems. 

•  Capability of dynamic reconfiguration of the system as a whole on 
different time scales. 

•  Evolution of the overall system during its operation. 

•  Possibility of generating useful emerging behaviors at the system 
level [104]. 

From the above­mentioned list of goals and characteristics for CPSs, it is 
evident that they align with the concept of a swarm system and the typical 
features expected in a swarm­intelligent designed system. Applying swarm 
intelligence to CPSs is not an entirely new idea. Significant progress has been 
made in the swarm robotics domain in this regard, particularly in recent 
years [153, 332]. However, applying the concepts of swarm intelligence to more 
general CPSs, particularly to real­world CPSs that are large, heterogeneous, 
multi­scale, and autonomous, remains a challenge yet to be fully mastered. 

For the successful design and development of a swarm intelligence solution 
for CPS swarms, it is important to consider both the physical and cyber 
aspects of the involved CPSs. The optimization, networking, and physical 
embodiment aspects of these systems require the seamless integration of 
software agents, mechatronic devices, and communications, unifying them into 
a cohesive whole [224, 226]. A CPS can be modeled as a swarm consisting of 
multiple components, with each component 

•  integrating one or more physical devices (sensors, actuators, communi-
cation, memory, processors, etc.), 

2Given that a CPSoS is a CPS itself, in the following, we will use the acronym CPS to 
refer in a general sense to either a single CPS or to a CPS swarm to make a distinction, if 
relevant. 
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•  acting autonomously (i.e., control is distributed and/or decentralized), 

•  responding and possibly adapting to changing conditions, and 

•  locally communicating and interacting with other swarm components to 
possibly produce effective and useful behaviors at the system level [333]. 

Nevertheless, two fundamental problems can be identified in the design 
and deployment of CPS swarms [333]: 

1. Formalization  of CPSs from a swarm intelligence perspective: This 
process involves extracting and generalizing properties and parameters 
that are shared among various CPSs, which are significant for designing 
swarm­intelligent behavior. 

2. Open  research topics of the swarm intelligence domain itself (see 
Chapter 7 for more details). 

A good example of a CPS is the consideration of an autonomous car as 
done in Schranz et al. [333]: At a smaller scale, each of the major components 
of the car (e.g., the anti­blocking system) can be described as CPSs. At a 
larger scale, a fleet of autonomous cars interacts and communicate with each 
other. This can be used as a representation of a CPS swarm. To obtain real­
time sensor and traffic data, the cars in the swarm will need to communicate 
with other CPSs that are present in the surrounding environment and the 
supportive infrastructure. These CPSs can constitute an additional swarm 
that facilitates interaction between different swarms of CPSs. Since there is 
no specific limit to the number of devices or swarms, it is possible to create 
a large­scale, multi­level swarm system that incorporates hierarchies where 
required (e.g., to a central monitoring entity), integrating many CPSs that 
interact with multiple CPS swarms. 



Chapter 2 

Principles of Swarm 
Intelligence 

A swarm system belongs to the family of self­organizing systems. Swarm 
intelligence is derived from the natural behavior exhibited by social animals. 
Their behavior tends to be adaptive, robust, and scalable [52]. These are 
desirable properties of an autonomous system that can be replicated with 
swarm intelligence approaches in the design of real­world technical systems. 
All three properties add additional behavioral patterns to systems that use 
swarm intelligence (see Figure 2.1). Additionally, a swarm is characterized 
by a critical number of members, micro rules and macro plans, positive 
and negative feedback, interactions through direct or indirect communication 
leading to emergent behavior, super linear effects and the ability to balance 
exploration and exploitation. 

In summary, a group or collection of individuals can be classified as a 
swarm when it displays swarm behavior that includes all the aforementioned 
properties and characteristics. 

2.1 Micro and Macro Level 

In a swarm­intelligent system, local (micro) level changes drive the global 
(macro) level behavior through bottom­up causation. This allows agents to 
function in a coordinated manner without the need for central control. 

There are two main approaches for modeling a self­organizing system, 
following the micro­level (also known as local or microscopic) and the macro­
level (also known as global or macroscopic) perspective [164]. On the micro 
level, each system agent has its own local state space and local behavior. 
Hence, each agent is explicitly represented. Macro­level modeling does not 
look inside each agent but has a global perspective. Thus, the macro level 
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Figure 2.1: The advantages of a swarm: Adaptivity, robustness, and scalability 
(adapted from [292]). 

only considers the global state of interest and how this state changes over 
time. Detailed knowledge of an agent’s operation is thus not required for the 
macro level. It is more important to model the level of abstraction to work on 
a global task level. Thus, the macro level abstracts agents’ details away, e.g., 
their position or the state in the sequence of action. 

Especially for modeling swarms of CPSs, the distinction between the micro 
and macro levels plays a crucial but contrasting role. The overall goal is defined 
at the macro level, involving the operation of multiple swarm agents, while 
each agent follows behavior defined at the micro level. 

2.2 Emergence 

In the design of a technical system the main question arises with regard to 
predictability of the system’s behavior. Additionally, predictability is related 
to controllability that affects the ability to control the system and achieve 
a desired configuration and/or output. Due to the property of emergence, 
predictability and controllability are properties that are inherently hard to 
achieve in swarm­intelligent systems that follow a bottom­up approach. Thus, 

⏎ 
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emergence is directly correlated with micro and macro behaviors. Emergence is 
generated with local decisions and local interactions on a micro level that lead 
to a system function on the macro level. The most important characteristic 
is that this emergence can produce completely new properties that were 
unimaginable when considering only the micro or the macro level [153]. This 
aligns with Aristotle’s principle that “the whole is greater than the sum of its 
parts”. Thus, understanding the indivdiual components of a self­organizing 
system is only part of the solution. While these components can be simple 
and easy to comprehend it is their interplay that leads to emergence, creating 
entirely new solutions [32]. 

In swarm systems, predictability and controllability are not the only 
challenges; any parameter or configuration setting can significantly impact 
the resulting dynamics of a swarm­intelligent system. 

2.3 Feedback 

Interactions between agents are characterized by either synergy (cooperation 
or positive sum) or friction (conflict or negative sum) [161, 140, 38], also known 
as feedback loops in complex systems theory [273]. These feedback loops lead 
to non­linear dynamics of swarm systems, thereby creating complex behavior. 

Agents are assumed to be goal­directed: They try to maximize their fitness, 
satisfaction or utility. When both agents gain fitness, the interaction is said 
to be synergetic. When both lose fitness, the interaction is characterized by 
friction. When one gains while the other loses, the interaction is competitive. 
If the losses match the gains, it is considered zero­sum. Since agents seek to 
maximize their fitness, they prefer synergetic interactions, and try to avoid 
friction. However, since interactions are local, agents do not a priori know 
which interactions with other agents will be most beneficial for the overall 
behavior. They can discover this through trial­and­error, which mirrors the 
evolutionary dynamics of blind variation and natural selection of the fittest 
(most synergetic) interactions. 

Nevertheless, friction is not always a negative characteristic. Positive 
feedback typically increases fitness, or other parameters that could lead to 
permanent growth [153]. Still, at a certain point of time increasing values 
do not produce any growth, but rather start disturbing each other as the 
resources are finite. This is where negative feedback has its positive role that 
stabilizes the systems final state. This again could lead to local maxima or 
minima that necessitate monitoring a self­organizing system’s behavior. 

2.4 Scalability 

Swarm intelligence algorithms are able to produce complex and scalable swarm 
behaviors from simple and local rules, thus, on a micro­level. Scalability is 
a crucial aspect of a swarm system, enabling it to perform effectively with 
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varying numbers of swarm members and problem sizes. As noted in [85], a 
swarm is able to maintain its function and interaction among its parts even 
as its size increases, without the need for a redefinition of its interaction 
mechanism. This means that the addition or removal of swarm members will 
not result in a significant decline in performance, as long as the number of 
members does not fall below a certain critical mass1 [333]. One cornerstone 
of implementing scalability is to restrict the agents’ communication to the 
interaction with their local neighborhood instead of to all agents. In contrast, 
an all­to­all broadcasting mechanism will likely break scalability due to 
communication demands increasing superlinearly with swarm size. 

2.5 Adaptivity 

Adaptivity represents the ability of a swarm to adapt to dynamic 
environments, to cope with different tasks that could also appear unforeseen, 
and to still fulfill its mission and reach the macro­level goal. Thus, an 
adaptive system uses a sequence of operators applied through an adaptive 
plan to produce a performance that is tailored to and observable within the 
environment. These sequences produce different system responses dependent 
on the environment. Thus, the selection of the right, applicable sequence of 
operators is the task of the adaptive plan that defines the performance, i.e., 
the fitness from the operations on the environment [163]. 

2.6 Robustness 

The vision of autonomous systems is to design a robust system behavior 
that can cope with a variety of unforeseeable errors and perturbations 
without human supervision. The reason for this is a paradigm shift from 
monolithic systems to large networked systems with many independent and 
constantly changing components. Robustness is the ability of a swarm to 
adapt to variations in swarm size, environmental changes or other disturbances 
affecting the system or the environment. Redundancy is a mechanism through 
which biological systems adapt to their environments [371]. In technical 
systems, redundancy involves cost considerations and, for static systems, 
management challenges. 

The term robustness has different meanings dependent on the community 
in which it is used [221]. In the swarm robotics community, robustness is the 
ability of a system to cope with erroneous input2, system errors, disturbances 
or attacks affecting specific agents or subsystems during execution [114]. 
This leads to other advantages, for instance, the dependability of a system. 

1It should be noted that it is not yet clarified what this critical threshold (the minimum 
number of swarm members) should be [153]. 

21990. IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-
1990 defines robustness as “The degree to which a system or component can function 
correctly in the presence of invalid inputs or stressful environmental conditions.” 
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Generally, in a distributed system errors and small variations in input do not 
affect the correctness of the system’s execution process. Moreover, the system 
as a whole exhibits graceful degradation: When arbitrary agents or links are 
removed or damaged, the quality of the output is likely to deteriorate, but 
very gradually. Thus, damaging, subverting or removing an agent may still 
leave the overall function intact. This is what produces robustness. This is 
not the case in a centralized system’s control, where any malfunction of the 
controller represents a possible single point of failure. 

Up to now, robustness is more or less a “descriptive” characteristic, 
without formally defined measures. As we can see in the following 
contributions by different authors, there is no formally defined technique 
that ensures the robustness of a swarm with respect to either global or local 
behavior. 

2.7 Communication 

Autonomous agents in a swarm need to continuously exchange information. 
Even a single byte, such as an agent’s velocity or relative position, is essential 
for maintaining autonomy in a swarm system. 

Communication in a swarm system can occur both directly and indirectly. 
In the direct communication an agent uses a communication medium such 
as Wi­Fi or infrared to transmit information to its immediate neighbor. 
This can be a one to one message to a single neighbor or a one to many 
message to several surrounding neighbors. Indirect communication involves 
an agent generating a message and sharing it with the environment, for 
example, through an access point, allowing other agents to collect the message 
either randomly or intentionally. The shared communication medium might 
be a specific location where agents deposit and retrieve messages. Indirect 
communication methods like depositing pheromone values, are commonly used 
by social insects and other animals for survival, whereas direct communication 
through message exchange is prevalent in the robotics domain. 

Pheromone­based communication is one of the most prevalent indirect 
communication methods used by social animals [411]. Pheromones are 
complex chemical substances that facilitate intraspecific communication 
by being deposited into the environment by an agent and detected by 
others. These chemicals convey intricate messages that trigger behavioral 
and developmental changes within a swarm. This form of communication is 
widely adopted by various animals ranging from yeast and small insects like 
ants and bees to mammals such as dogs and humans [120, 294]. In swarm 
systems pheromone communication has been simulated using substances 
like alcohol [125], phosphorescent paint [240], light [133, 18], and infra-
red [285, 391]. Figure 2.2 illustrates a bio­inspired artificial pheromone­based 
system that mimics ants pheromone­based communication. 
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Figure 2.2: Example of an artificial pheromone system, COSΦ [18], that was 
developed for swarm robotic applications. In this scenario, a leader is releasing 
pheromones and five followers are following the leader. The pheromone trail is 
evaporating over time. 

2.8 Superlinearity 

We anticipate enhanced performance in a swarm due to synergy effects and 
other factors including: 

•  Synergy effects: When agents collaborate they can achieve more than 
the sum of their individual capabilities. Their interactions can lead to 
innovative solutions that isolated agents could not achieve. 

•  Task specialization: Agents in a swarm can specialize in specific tasks 
performing them more efficiently allowing the swarm to benefit from 
diverse expertise and skills. 

•  Parallel processing: Tasks can be distributed among agents, enabling 
them to work simultaneously. This can significantly reduce the time 
needed to complete complex tasks. 

•  Adaptive behavior: Swarms can adapt to changing environments or 
tasks dynamically, optimizing their performance over time based on 
feedback and learning. 

If the performance of a single agent is given as an execution time T1 to 
complete the task, we would expect multiple agents to perform the task faster. 
In the following, we define performance Pf as the reciprocal value of the 
execution time of a task: 

1 
Pf = 

T 

In a perfectly scaling architecture, we would expect that n agents are able 
T1to fulfill a task in Tn = time. 
n 

There are cases where the collaboration of agents provides a synergistic 
effect. In such cases, the performance even exceeds linear scaling, so that 

⏎ 
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Tn  < T1 . An example of such a task is a scenario in which a swarm 
n 

efficiently solves a complex puzzle through collective problem­solving. Each 
agent contributes to discovering different parts of the solution, significantly 
speeding up the process. A more dynamic, though admittedly ferocious, 
example is a hunting party tracking elusive prey. A single agent, or in this 
case, a hunter, would be very inefficient since the prey could easily elude the 
hunter. However, a coordinated group of hunters would be significantly more 
efficient. 

In an extreme case, the performance of a single agent could be even zero 
while being a positive number for the swarm. Consider a scenario where robots 
need to clean an area by pushing obstacles out of the way. If a single robot 
encounters an obstacle that is too heavy to move on its own, it won’t be able 
to complete its task. However, with the cooperation of multiple robots these 
obstacles can be successfully pushed aside. 

Such cases are considered to exhibit superlinear performance. Increasing 
the number of agents in a group is anticipated to result in the group 
accomplishing more work compared to a smaller group under the same 
conditions and timeframe. In a group exhibiting real swarm­intelligent 
behavior, such a superlinear characteristic is highly desired. This characteristic 
indicates that the effect of the overall system is greater than the sum of 
the effects of its individual parts. The effective design of swarm­intelligent 
behavior relies on the synergies of cooperation among individual swarm 
members. Only when these interactions enhance the performance of each 
member can the overall system be considered well­designed. This means that 
within the bounds of a feasible swarm size, not only the efficiency of the 
whole swarm but also the efficiency of each individual swarm member has to 
increase. We refer to this as the swarm effect, 

Pf large swarm Pf small swarm > ,  (2.1)
sizelarge swarm sizesmall swarm 

where Pfi represents any quantitative performance metric of the swarm i 
in which larger metric values identify a higher or better swarm performance 
and sizei represents the size of that swarm, given by the number of swarm 
members. As indicated in the formula, the average performance per agent 
increases with the swarm size provided the swarm is performing effectively. 
This principle is shown in Figure 2.3 that illustrates the expected performance 
scaling properties of three different systems: 

(a) The performance of an imaginary algorithm or swarm model that scales 
linearly with O(n) as the dashed line in Figure 2.3, where n is the 
number of swarm members, without considering physical constraints or 
limitations, is not practical in the real world. 

(b) The  performance scaling of an algorithm that accounts for sharing 
resources with other algorithm instances or a swarm model that views 
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Figure 2.3: The swarm performance illustrated as a function of the number of 
swarm members, extracted from various experiments [37, 153]. Line (a) shows the 
hypothetically linear scale of a disembodied algorithm with swarm size. Line (b) 
presents the logarithmic scaling of a disembodied algorithm that requires shared 
resources among its instances when implemented for a parallel execution. Finally, 
line (c) shows the typical scaling of physically embodied swarms (or of physics-
considering simulation of such agents) [333]. 

space as a shared resource for agents will scale with O(log n) as 
the dotted line in Figure 2.3, or even slower, due to the increased 
communication and coordination overhead that comes with a larger 
number of members. 

(c) The  solid hat­shaped curve depicted in Figure 2.3 represents the 
performance of a physically embodied swarm system operating in the 
real world. 

With a very low swarm size or density of agents N < C1, the swarm shows 
almost no performance. This can be traced to the low connectivity between the 
agents that is not high enough to allow for cooperation and interaction. As the 
size of the swarm increases, the performance of the system improves due to the 
swarm effect, where interactions between members lead to greater efficiency. 
Once the swarm reaches a size of N > C1, it can take advantage of these 
interactions to scale in a super­linear fashion. This high level of performance 
can be maintained within a certain size range of C1 > N ≥ C3, and even 
beyond C3, the performance remains above a logarithmic scale. However, the 
overall peak performance of the swarm system is reached at a threshold of 
C2, beyond which the addition of more swarm members results in a decline 
in average performance due to crowding and other factors. Once the swarm 

⏎ 
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size surpasses another critical level of N > C4, the performance of the system 
deteriorates and eventually leads to a total loss of performance. 

Adding agents to perform a task together typically adds overhead due to 
several factors: 

•  Additional communication: As the number of agents increases, 
the amount of information that needs to be exchanged among them 
also increases. The demand for richer communication for the swarm 
to function effectively [243] can lead to higher latency and potential 
bottlenecks if the communication infrastructure is not optimized for 
scalability. 

•  Coordination of movements: Ensuring that all agents move and act 
in a coordinated fashion requires complex algorithms that can introduce 
delays. Misalignment in timing or direction can reduce the overall 
effectiveness of the swarm. Offline optimization of tasks [5] is limited 
due to uncertainties in environmental parameters. For example, a robotic 
drone could be delayed by wind conditions or unexpected obstacles. 

•  Resource contention: Multiple agents may need access to shared 
resources, such as data or physical space, which can lead to conflicts or 
inefficiencies if not managed properly using assignment algorithms [271]. 

•  Increased complexity in decision­making: With more agents, the 
complexity of decision­making increases, as there are more possible 
interactions and dependencies to consider [245]. This can slow down 
response time and reduce overall efficiency. 

Note, however, that a swarm is not always formed for performance 
reasons. For example, it could be acceptable for a swarm system to have 
a dropping performance for an increasing number of agents if other qualities 
are prioritized, such as: 

•  Robustness and dependability: A swarm system is less likely to fail 
completely if individual agents are capable of taking over the tasks of 
failed members, ensuring continued operation. 

•  Maintainability: With a modular design, individual components or 
agents can be easily exchanged or repaired without disrupting the entire 
system. 

•  Extensibility: If there is future demand, it is possible to enhance 
the system’s performance by adding more agents, allowing for scalable 
solutions to problems as they arise. 

2.9 Exploration and Exploitation 

Swarm members being loosely coupled, can operate in two distinct modes. 
In exploration mode they disperse to explore the environment or, in case 
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of an optimization algorithm [276], to explore a solution space to gather 
information. Conversely, in exploitation mode, they utilize the gathered 
knowledge to maximize reward, such as acquiring food or identifying the 
optimal solution within the explored area. 

One typically needs to strike a balance between exploration and 
exploitation to achieve optimal results. If the exploration part is emphasized 
too much, swarm members can get lost in a large search space without 
providing a valuable contribution. Conversely, a swarm that concentrates 
excessively on exploitation might overlook more lucrative areas. Exploration 
and exploitation do not have to follow a strict sequence; some algorithms 
like Ant Colony Optimization [90] include both concepts simultaneously. The 
problem of exploration and exploitation is also not limited to swarms, but is 
a common problem whenever there is uncertainty in a system that needs to 
be explored at a cost. A famous example for this conflict in probability theory 
and machine learning is given by the multi­armed bandit problem [195], where 
numerous slot machines, each creating rewards according to a specific, but 
unknown probability distribution, need to be explored and then exploited for 
maximizing gain. 



Chapter 3 

Modeling Swarms of 
Cyber-Physical Systems 

A model of a system is a simplified representation derived from an actual 
(technical) system. Modeling a swarm of CPSs helps to lower the level 
of abstraction, streamline and formalize the technical system. We aim to 
identify a representation for each agent that is familiar to us and meets 
the microlevel requirements necessary for contributing to macro­level swarm 
behavior [248]. During abstraction we omit parts of the CPS to get a simplified 
system that is easier to understand. This is a typical task for engineers who 
must discern while still capturing the overall CPS mission. To enhance this 
understanding, we formally define the mission using logical descriptions and 
mathematics [153]. Concluding with a formal description of the system, we 
aim to understand how the self­organizing system behaves under various 
configurations and potentially in different environments. 

In a self­organizing system γ, where γ ∈ Γ with Γ as the configuration 
space, we can only observe the actual configuration at a specific, discrete time 
step t with γt, γt+1, γt+2, . . . However, each initialization γ0 gives another 
sequence of the system over time. To really understand a self­organizing 
system, abstraction and simplification are a must. Therefore, we consider a 
simpler system ϕ with a smaller configuration space ϕ ∈ Φ with dim(Φ) ≪ 
dim(Γ). Hence, we want to find a mapping f that allows us to map the 
configurations γ to the simpler, abstracted configuration ϕ leading to f : Γ 7→ 
Φ. From one time step to the other, from t to t + 1, we consider an update 
rule g on the real configuration g : Γ 7→ Γ, thus g(γt) = γt+1, and an update 
rule h for the abstracted configuration h : Φ 7→ Φ, thus h(ϕt) = ϕt+1. This is 
summarized in Figure 3.1. Finally, the abstraction implemented by f needs to 
be chosen carefully such that after the updates through g and h the correct, 
but abstracted model, remains the right one in the next time step. 
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Figure 3.1: The modeling and abstraction of a self-organizing system adapted 
from [153]. 

Nevertheless, always keep in mind: “Essentially, all models are wrong, but 
some are useful” (George Box, 1976). In other words, all models abstract 
details from reality; while no model can perfectly capture its complexities, 
they can still provide valuable insights and guide decision­making in uncertain 
situations. 

3.1 Modeling Principles 

Generally, there is no common modeling approach for self­organizing systems 
or swarms of CPSs specifically [153]. Various models have been developed 
to work for different setups. Autonomic characteristics like self­configuration, 
self­optimization, self­healing, self­protecting and self­awareness schemes can 
be modeled by for example graph rewriting [72], L­systems [298], matrix 
rewriting [353], rewriting game theory [61], reaction­diffusion models [211]. 
In this book chapter we will not explain all the modeling approaches as they 
are quite diverse from application to application. We rather focus on use­case-
specific models (Section 3.2 and Section 3.3) that we worked on in different 
projects. 

When designing a model for a system, the first step is to determine which 
components should be represented as discrete elements and which should be 
modeled as continuous entities. There are four significant aspects where this 
decision profoundly influences the design and behavior of the model: Time, 
space, states of agents, and interaction. When we use a discrete micro­level 
model [165, 366], the behavior is usually event­driven: Each time an event 
occurs in the system, nodes may change their internal states and produce 
local output, which is sent to other nodes. This behavior can be modeled 
by finite automatons. Since many systems are too complex to be modeled in 
detail, probabilities can be used to describe the behavior. This leads to the 
concept of stochastic automations. In a continuous micro­level model [164], 
the state of each node changes continuously over time. The behavior of a node 
can be described by a local differential equation, which takes the input values 

⏎ 
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of other nodes into account. There are numerous modeling techniques, which 
have already been used [248], including 

•  Maxwell’s demon, a model to explore the concept of entropy, 

•  Turing machine, a model to explore the concept of computation, 

•  Cellular automaton, a model for complex systems to perform discrete 
micro­level modeling, and 

•  Von Neumann’s self­reproducing automation, a model to explore the 
logic behind self­reproduction. 

Generally, a system’s model is always influenced by its environment and 
the application it is intended for. This influence helps us to identify the most 
key features. When modeling an application as a self­organizing swarm, we 
must consider a set of potential swarm members and their characteristics. 
These agents can either be of the same type (homogeneous swarm), or 
different types (heterogeneous swarm). Additionally, we have established 
criteria to determine whether an agent is eligible to be a swarm member 
in the application. These criteria include whether a swarm member 

•  Is accompanied by a reasonable number of other swarm members in the 
system, 

•  Exhibits an appropriate level of abstraction for modeling, 

•  Can detect and respond to information from the local neighborhood and 
environment, and 

•  Is plausible and understandable, fostering trust during the modeling 
process for the proposed solution [336]. 

3.1.1 Challenges 

When modeling a system as a swarm of CPSs several questions need to be 
addressed [336]: 

1.  What are the most representative agents and the correspond-
ing level of abstraction? 
A swarm consists of agents that interact with the environment and with 
each other. Each agent serves as a digital twin, an abstraction of a 
real CPS. An initial step in modeling a swarm algorithm requires a 
decision on which entity will serve as an agent within the swarm. As 
described in the beginning of Section 3.1, we consider several criteria 
to support this decision. However, determining the appropriate level of 
abstraction can be challenging: For instance, in a search and rescue 
task (see Section 3.3 for more details), we could consider robots as 
agents at a higher abstraction level treating robots of the same type 
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as agents. Alternatively, we could choose a lower abstraction level 
and model individual hardware components (Central Processing Unit 
(CPU), memory, motor blocks, etc.) as agents. 

2.  How to deal with inhomogeneities among agents? 
Agents are inherently heterogeneous: Even minor variations in 
deployment can lead to differences in their reactions or behaviors, 
potentially resulting in unintended system outputs. For instance, in a fab 
setting (see Section 3.2 for more details), there is no standardized type of 
machine, as each can run different processes locally. Consequently, each 
machine has a unique set of parameters influencing its operation (e.g., 
furnaces use batch­processing and waiting too long to fill up the batch 
machine could waste time in the production process). This variability 
must be considered during the modeling process. 

3. How to implement the necessary local swarm communication 
paradigms in the specific use case with the chosen agents? 
Communication paradigms for swarm algorithms include direct 
communication and indirect communication. In direct communication 
agents send messages to other agents. In indirect communication, also 
referred to as stigmergy, agents leave information in the environment 
for other agents to “pick up”. Dependent on the level of abstraction the 
communication is performed literally among the agents. If the agents are 
already represented as digital twins in the central computer system, thus 
even more abstracted than only on CPS level, the communication can 
easily be implemented as local messages within the computer system 
or in local memory for stigmergy. The latter case also lightens the 
requirements for abstraction of the CPSs, as it is not necessary to equip, 
for instance, machines or products with additional local computational 
or communication intelligence. 

4.  How to implement a self­organizing solution on top of a 
working system? 
Typical technical systems already include a set of mechanisms, rules, 
priority classes, etc., that trigger the sequence of task execution. 
Therefore, it is important to decide which parts of the system should 
run as they are, and which parts should be abstracted away—step­by-
step. For example in case of priority classes, that also grow historically, 
the classes could be reduced to a single one by introducing swarm­based 
local rules and interactions. 

5.  How to validate the approach? 
Testing and predicting the performance of a given self­organizing 
algorithm is difficult. Historical data that might exist for a running 
system, or the implementation of baseline algorithms should be used 
to compare with system. As the sequence of processed behavior is 
not deterministic, but rather stochastically differs dependent on the 
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initial condition and initial parameters, the validation process requires 
multiple simulation runs. Another challenge that arises is debugging a 
failed validation. While simulation runs might inform the user that the 
intended level of service for a given system is not achieved for some 
test cases, pinpointing the specific problem and rectifying it can be very 
challenging for a swarm system. This is because even a minor behavioral 
change in an agent can result in unexpected and undesired emergent 
behavior at the system level. Utilizing deterministic simulations with 
seeded random number generators can aid in the debugging process, 
but they do not address the overarching issue of applying a corrective 
solution. 

3.2 Use Case: Models in the Production Plant 

Scheduling in modern production plants that follow the flexible job shop 
principle presents a challenging, dynamic problem within the context of 
Industry 4.0. A typical application is the production of Integrated Circuits 
(ICs) in the semiconductor manufacturing industry [138]. Particularly, we 
consider the processing of wafers to create ICs at the so­called front end of 
line processing. In contrast to the high­volume production of memory ICs 
and CPUs, the logic and power sector manufactures fabricate specialized 
ICs in low­volume batches in the same plant. For this example, we consider 
the requirements and constraints of the leading semiconductor manufacturer 
Infineon Technologies AG [175]. They need to schedule between 400 and 
1200 stations in their production plant producing more than 1500 different 
products in around 300 process steps each. The steps for a product include 
various processes including lithography, doping, oxidation, etching, and 
measuring [138]. 

In this use case several constraints influence the scheduling process, 
including the need for secondary resources, constraints from machines with 
equipment tooling, time couplings and batch processing. The production 
process involves successive steps that often loop back, requiring the same 
machines or machine groups to be used repeatedly. Furthermore, the 
production plant is required to meet various global objectives, such as 
maximizing machine utilization, throughput time, delivery reliability, and 
minimizing Work in Progress (WIP). The presence of a wide range of product 
diversity, coupled with the historical growth of the industrial plant, further 
amplifies the complexity of the system [336]. With all these constraints 
and requirements, we can consider the job shop scheduling problem as NP­
hard [130]. 

Existing dispatching rules are based on heuristics and can only be used on a 
subset of the plant. Similarly, linear optimization methods can only cope with 
a subset of the plant and not with the large, and dynamic search space of an 
entire fab [222]. The reason is the excessive computation time needed for the 
calculation. Thus, these methods do not exploit the full optimization potential. 
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In the production plant this leads to bottlenecks that cannot be prevented, and 
WIP waves that will be generated. Summarized, no optimal solution for job 
shop scheduling has been developed so far using linear optimization, especially 
a solution that can be computed in polynomial time [425]. 

This situation paves the way for a different approach, a modeling and 
optimization of the production plant from the bottom­up. 

3.2.1 Swarm Member Candidates 

With the general problem formulation in the beginning of this Section 3.2 we 
identify a number of possible agents in the production plant that can act as 
swarm members and can be modeled in a network model [336]. 

Lots (L) can form swarms with lots of the same product type 
(homogeneous swarms), or swarms with lots of multiple product types 
(heterogeneous swarms). Lots follow a specific recipe through the production 
plant, which prescribes the order of processing steps, but not the specific 
machine on which to perform the next required processing step. Typically, 
there are multiple machines that can perform the same process. Therefore, 
the lots could decide which machine to prefer over the other. Additionally 
lots can manipulate their own priority that allows a lot to be promoted in the 
machine’s queue. The path that is taken through the production plant by a 
lot is called a route. It is obvious that lots of a similar product type will share 
parts of their recipes. Therefore, in a stable load situation of the production 
plant, lots of the same and similar product types can be expected to share 
parts of their routes. 

Machines (M) have the local information of the processes they can 
perform and their utilization. Given the presence of various machine types 
within the production plant, they can be organized into either multiple 
cooperating homogeneous swarms or a heterogeneous swarm with diverse 
capabilities. The neighborhood of each machine is determined locally and 
dynamically based on the recipes of the incoming and outgoing lots. Thus, the 
neighborhood represents not necessarily machines that are physically close, 
but rather those that are close according to the recipe of a lot. Machines can 
take decisions locally and can, if necessary, select which lot to process next 
by re­ordering their queue. Furthermore, they can locally communicate with 
other machines in their neighborhood, and could ask for lots that have their 
available specific processing type. 

Workcenters (W), with W ⊂ M , consist of multiple related machines 
that could be of the same or similar type. They have attributes very similar 
to single machines. A workcenter can calculate when lots will be processed 
internally and can use the makespan information (the time between the start 
and the end of a lot’s production) to calculate when the lots currently being 
processed will be finished. 

Processes (P) can represent virtual swarm members. Thus, they have a 
view on all machines that they can potentially be run on. This also includes 
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the machine’s current and total workload. Therefore, they can forecast the 
workload, the times for re­tooling at the machines, and have information on 
batching requirements of batch machines. 

3.2.2  Network Model 

For this scenario, we adopt a network model approach. The production plant 
is presented as a graph with the tuple G = (V, E), with the notation V for the 
set vertices or nodes, and E for the the set of edges. We have everything that 
is needed for this type of modeling: Nodes that represent the machines and 
form a local neighboorhood together with edges that indicate a dynamic path 
through the production plant from one node to (many) other(s). Different 
from the classical graph theory, nodes and edges can be added or removed 
dynamically, nodes can even move (if we model them as robots). Additionally, 
characteristics of possible topologies (e.g., star, bus, ring) are not important 
as these change dynamically with the nodes and edges as well. 

Considering the swarm member candidates from the previous Section 3.2.1, 
we apply the network model leading to a network consisting of a production 
plant with machines, queues, processes, lots, and recipes. The production plant 
P consists of several sets or workcenters of machines W m 

1= {Mm 

where m is the machine type. Each machine Mm has a queue Qm 
i i 

2,Mm , . . . }, 
and every 

machine in a workcenter W m can perform a process P m. A set of lots L = 
{lt , lt , . . . } needs to be processed in the plant, with t as the product type. 
Every product type t is characterized by a recipe Rt that outlines the specific 

21

sequence of processing steps required to manufacture the product. Each lot lt n 

has the flexibility to select the appropriate machines Mm for each necessary i 

process step P m from the available options. 

Based on this formal representation, the recipes can be interpreted as a 
directed graph G = (V, E) that represents the possible connections between 
the machines within the plant. The nodes V correspond to the machines Mm ,i 

and the edges E are established between two machines Mi
m and Mj

p if there 

exists a lot lt with a recipe Rt that includes consecutive processes P m and P p.n 

A route R can be defined as an ordered list of machines capable of executing 
the successive processes outlined in the recipe. The taken routes are a sub­
graph of G with Gr ⊆ G. 

3.3  Use Case: Models in Search and Rescue 

Applications 

The SAR use case envisions a heterogeneous swarm of UAVs and Unmanned 
Ground Vehicles (UGVs) that is deployed in a highly dynamic disaster 
environment. Their task is to support first responders in real­time by locating 
human casualities or trapped individuals and providing first aid to those 
found. The use case of the acpCPS swarms can be described as follows: The 
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swarm of UAVs cover a defined area and collectively search for victims. As 
soon as a UAVs discovers a victim, it switches from the coverage to a tracking 
task. By tracking the victim it continuously reports the current victim’s 
location to a specific UGV. The target UGV to be informed is selected by 
the UAV using a specific cost function, for instance, the distance of the UGV 
to the victim. Finally, the UGV is assumed to rescue the victim by navigating 
to the location provided by the UAV. As soon as the UGV reaches the victim, 
it returns to its base, and the UAV rejoins the coverage task of the UAV 
swarm to locate other possible victims. We implemented this use case in the 
CPSwarm1 project (for more details on the project, please visit [25]). 

The constellation of this mission is well suited for testing swarms of CPSs 
and swarm behaviors because it can benefit from several swarm characteristics 
(see Chapter 2 for more details): The scalability of a swarm enables the 
addition of more CPSs while executing a mission. An example is the case 
where the area to be covered is larger than expected. Robustness of a swarm 
guarantees a mission execution in challenging environments where individual 
CPSs can fail. Furthermore, unlike fully centralized control, such a swarm can 
continue to operate even in scenarios where connectivity is limited or sparse. 
The swarm functions autonomously as a self-organized system composed of 
diverse members, making mission-critical decisions based on the demands of 
the dynamic environment. 

3.3.1 Model-Driven Engineering of CPS Swarms 

For a use case like SAR, we need a well-defined model of the CPSs and 
the desired local behaviors, with scalability across different abstraction 
levels being crucial [225]. To design a multi-scale model, we must consider 
both the hardware and software components of individual CPSs, as well 
as the overall composition of the entire swarm of CPSs. The process of 
modeling a CPS swarm involves making several decisions, which encompass: 
(i) Deployment specifics, such as determining the number, type, and 
placement of CPS within the swarm. (ii) Hardware considerations for each 
CPS, including communication technology, interfaces, onboard sensors and 
actuators, processing unit, and memory. (iii) Specifying the desired local 
behavior of individual CPS units and the overall global behavior of the CPS 
swarm [345]. 

This leads us to a model-driven engineering process that starts from 
modeling the CPS hardware, their local individual behavior, and their global 
behavior in a swarm. Finally, this approach results in behavior code that 
can be deployed to and executed on the CPSs. These steps rely on a 
hierarchically organized set of behaviors that collectively form the controller 
of each individual CPS. These behaviors are based on a well-defined library of 
behavior models, which are linked to an automated code generation process, 
enabling the assembly of executable code for each CPS [345]. Based on the 

1CPSwarm website: https://www.cpswarm.eu/[Online; accessed 19-December-2024]. 

https://www.cpswarm.eu/
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multi­scale modeling approach, it is possible to validate the swarm behavior. 
This is achieved by an abstract simulation allowing for rapid prototyping of 
the CPS behavior to observe the resulting and the desired swarm behavior. 
All results can be found in Sende et al. [345]. 

3.3.2 Hardware Modeling 

When beginning to model a CPS we examine its architecture, focusing on 
the hardware components, their interfaces and interactions. For creating 
hardware models we utilize Systems Modeling Language (SysML) [15], an 
extension of Unified Modeling Language (UML), that focuses on modeling 
systems with block diagrams. To advance the modeling of CPS swarms, we 
enhanced the Block Definition Diagram (BDD) and Internal Block Diagram 
(IBD) by incorporating a CPS swarm profile [335]. It includes three types of 
diagrams [345]: 

•  Swarm composition diagram: We developed a swarm composition 
diagram that extends the BDD, enabling the modeling of the entire 
swarm. The diagram details the specific types and quantities of CPSs 
used within the swarm. 

•  Hardware composition diagram: This diagram is designed to extend 
the BDD that allows the modeling of individual hardware components 
installed utilized by the CPSs. The hardware composition diagram 
specifies the types of hardware components in use and defines their 
inputs, outputs, and other parameters. 

•  Swarm member internal diagram: We designed the swarm member 
internal diagram to extend the IBD to model the internal structure of 
a single CPS. This diagram specifies how the behaviors can interact 
with the environment or other CPSs by defining sensors, actuators, 
and communication interfaces and their parameters. On the one hand, 
sensors are inputs to collect information from the environment, on the 
other hand, actuators are outputs to interact with the environment. A 
communication interface, however, can provide both, inputs and outputs 
to the swarm behaviors and thus, enables coordination between CPSs. 

3.3.3 Behavior Modeling 

The behavior models describe how the individual CPS behaves, also when 
interacting with the environment and other CPSs in the modeled swarm. 
This way, the behavior models define the software components for each CPS. 
The individual connected behaviors are the steps each CPS must execute 
locally to collectively achieve the global mission that envisioned by the swarm 
system’s designer. The design of local behaviors for the individual swarm 
members is a difficult task, as the emergent global swarm behavior is not easily 
predictable [1]. Modeling the behavior on different abstract levels supports 
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the process to generate the desired global behavior as it can be executed on 
different levels of realism and detail [345]. With this bottom­up approach, we 
can iteratively refine the individual local behaviors until we achieve a global 
swarm behavior. 

Behavior State Machines 

Once a complete mission is defined, we typically identify a set of distinct 
behaviors for each CPS in the swarm to execute, ensuring the various tasks 
of the mission are accomplished. These individual behaviors are treated 
as atomic in the modeling process, making them simple to describe and 
implement. By combining these simple behaviors, we can create more complex 
behaviors to accomplish intricate missions. A widely used yet powerful 
approach is to employ Finite State Machines (FSMs), where each state 
represents a simple behavior, and the transitions between states depict the 
shift from one behavior to another. Thus, the entire FSM design describes 
a complex behavior. During operation, each CPS runs an FSM, consistently 
remaining in a defined state, though this state may differ among CPSs. Hence, 
complex swarm behaviors can emerge where CPSs play different roles based 
on their interactions [345]. 

The transitions between the behaviors described as states in a FSM 
are triggered by events. These events can either originate locally, such 
as from sensor outputs or the behavior itself, or from the environment, 
like communication activities between CPSs or external commands from 
a global control station. The exchange of events between CPSs facilitates 
the coordination of local swarm behaviors. Events are processed locally and 
autonomously by each CPS individually as specified in their behavior FSMs. 
Through the exchange of events, CPSs can exert an impact on each other’s 
behavior changes. These events are characterized by a distinct Identifier (ID), 
a timestamp, and a unique sender ID. Additionally, events can carry associated 
data, which is transmitted between behaviors. 

The UML behavior FSMs [68] serve as the foundation for the behavior 
FSM model. Simple behaviors are represented by simple states, while 
composite or submachine states are used to model complex behaviors. 
Composite states enable the modeling of one state using another FSM, while 
submachine states facilitate the encapsulation of generic FSM that can be 
utilized in multiple states. In the realm of CPS swarm behaviors, we introduce 
four distinct behavior types, each denoted by a specific color code as illustrated 
in Figure 3.2. 

•  Swarm behaviors, represented by the green elements, are simplistic 
behaviors that execute specific swarm algorithms. These algorithms give 
rise to emergent swarm behaviors, such as aggregation or exploration. 

•  Swarm functions in blue are simple behaviors that carry out a singular 
function encompassing the interaction between CPSs. Examples include 
task allocation or the exchange of position information. 
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Figure 3.2: The behavior library structure [345]. 

•  Hardware functions, depicted by the yellow elements, are straightfor-
ward behaviors that perform singular functions involving hardware 
interaction. Examples include moving to a designated location or 
controlling an actuator. 

Each behavior is given a distinct name and a brief description, and is 
characterized by its behavior type as well as its respective inputs and outputs. 

It should be noted that in related literature, such a granular differentiation 
between various behavior types is not commonly found. For example, swarm 
behaviors and swarm functions are termed collective behavior in [45] and basic 
swarm behavior in [337]. In [124], the term “constituent behavior” is employed 
to refer to any kind of simple behavior, including hardware functions. However, 
we intentionally introduce the distinction between behavior types to promote 
a structured and organized design of the behavior FSMs. This is facilitated 
through the use of hierarchically nested states, as outlined in the UML 
standard. This enables the abstraction of behavior details at higher levels. For 
instance, an aggregation behavior can be implemented independently of the 
method employed for exchanging position information between CPSs. Events 
can be utilized to trigger a state change within the sub FSM or cause the 
higher­level behavior to terminate, thus also concluding the currently running 
sub­behavior. 

Behavior Libraries 

To enable frequently recurring behaviors and functionalities to be defined 
only once, the behaviors are organized into libraries. The library structure 
we propose is illustrated in Figure 3.2, with each color corresponding to 
a different behavior type as previously defined. The libraries are organized 
based on the level of hardware abstraction, which facilitates the separation 
of concerns. They comprise software artifacts that are modeled as states 
within the FSMs. The Swarm Library is hardware­independent and contains 
the complex behaviors modeled as FSMs, in addition to swarm behaviors 
and swarm functions. It utilizes a Communication Library, which provides a 

⏎ 
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communication interface between CPSs. The Abstraction Library abstracts 
the hardware specifics and provides functions related to hardware, as well as 
functionalities to access sensors and actuators using hardware­specific drivers. 

The Swarm Library consists of swarm behaviors executed by individual 
CPSs, resulting in the global behavior of the swarm. They are platform­
independent and can be reused across different types of CPSs. The library 
is divided into three sub­libraries based on the previously introduced swarm 
behaviors. Firstly, the Complex Behaviors Library contains FSMs that model 
complex, high­level mission behaviors such as SAR, and are defined as UML 
composite or submachine states. Secondly, the Swarm Behaviors Library 
comprises individual swarm algorithms that exhibit emergent behavior. These 
swarm algorithms are typically based on biological inspiration or are generated 
automatically, such as through evolutionary optimization. Examples include 
flocking, phototaxis, or collective transport, and they are defined as UML 
simple states that are used in the complex behavior FSMs. Lastly, the Swarm 
Functions Library includes simple swarm­related tasks that do not lead to 
emergent behavior, but rather enable the functioning of the swarm behaviors. 
Examples include the exchange of position information, task allocation, or 
computation of the average velocity of the swarm. They are defined as UML 
simple states to be used in the complex behavior FSMs. 

The Communication Library provides a set of communication services 
to the swarm, which are built on top of an arbitrary network interface. These 
services encompass various functionalities, such as transmitting telemetry data 
from the CPSs to the command and control station, facilitating the exchange 
of events between CPSs, as well as between CPSs and the command and 
control station, and enabling remote access to parameters of the CPSs within 
the swarm. This library was developed as part of this work and is available 
on GitHub [297]. 

The Abstraction Library provides a set of functions and interfaces that 
abstract away the hardware specifics of the CPSs. It allows the development 
of high­level routines from an application­oriented perspective, raising the 
level of abstraction from a platform­dependent point of view. This enables 
developers to focus on describing how the CPSs should behave in order 
to complete a high­level task or reach an application­specific goal, without 
being concerned with the underlying hardware implementation details. This 
is achieved by providing a set of CPS­specific libraries in order to access 
platform­specific information of a acCPS in a standard and coherent way. 

The Abstraction Library is designed to provide a higher­level interface for 
accessing the hardware of the CPSs, allowing developers to focus on high­level 
tasks and goals rather than low­level hardware details. The library is composed 
of three layers, with each layer adding a level of hardware abstraction. The 
bottom layer, Hardware Drivers, includes all the drivers for sensors and 
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actuators that are mounted on the CPSs. The middle layer, Sensing and 
Actuation, is responsible for providing sensor information and controlling the 
CPSs using their actuators. The Hardware Drivers layer establishes a direct 
connection with the hardware, while the Sensing and Actuators layer employs 
software to offer an initial level of abstraction by implementing intricate 
functionalities needed by the higher layer. At the topmost layer, the Hardware 
Functions layer encompasses a collection of high­level functions that represent 
sophisticated routines executed by a CPS, involving a combination of sensors 
and actuators. These functions are used to define the states of the FSMs as 
UML simple states. 

3.3.4 Code Generation 

The responsibility of the code generator is to convert the FSM models into 
executable code that can be deployed on the CPSs. The generation process is 
based on templates, which are suitable for structures that are schematic and 
repetitive. With template­based generation, a basic set of templates is defined, 
which is then populated with data extracted from the algorithm specification. 

The templates consist of a static part that appears in the output as­is and 
a dynamic part that is replaced by input data using a template meta­code. 
The meta­code includes directives that are processed by a template engine 
along with the input data to produce the final source code. To target different 
runtime platforms, different templates are used. The code generator uses a set 
of templates written in the Velocity Template Language (VTL) to generate 
executable code. 

The code generator processes the data in the form of FSM models of 
complex behaviors, which are translated into State Chart XML (SCXML) 
files. These files contain all the necessary information for the code generator, 
including the type of functionality used to select the appropriate template 
and the definition of the Application Programming Interface (API) executed 
in a given state. 

SMACH is a Python­based project that provides a framework for the 
implementation and execution of FSM­based algorithms. The code generator, 
which is part of this project, uses the SCXML file and a set of templates to 
produce Python code that implements the designed FSM. This code generator 
is available on GitHub [296]. 

3.3.5 Modeling on the Example of the SAR Use Case 

In this section, we will show how the formal approaches proposed earlier can 
be applied to a heterogeneous swarm of CPSs. We will describe how we model 
the hardware and software components that were used in our experimental 
evaluation. Our main objective is to demonstrate the feasibility of deploying 
software onto CPSs based on the models created using formal methods. The 
diagrams were created using the modeling tool Modelio. Subsequently, the 
data was exported for additional processing by the code generator, utilizing 
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the CPSwarm Modeler module. This module can be found on GitHub [295], 
providing the necessary functionality for the generation of code based on the 
exported data. 

We have selected the SAR use case to showcase the formal approaches 
proposed in this section. CPSs have various applications in such missions, 
such as creating a situational overview, providing logistic support, serving 
as a repeater or surrogate for other CPSs, and clearing debris, as reported 
in Murphy et al. [262]. To make the SAR use case more manageable 
for deployment on prototype platforms that do not necessitate specialized 
hardware, our focus is primarily on two tasks: Locating human casualties 
or individuals trapped in the disaster site and providing initial medical 
assistance. To accomplish this, we implement a heterogeneous swarm 
comprising both UAVs and UGVs. The mission of the heterogeneous CPSs 
swarm can be described as follows: The UAVs cover a designated area to 
search for victims, while the UGVs remain inactive. Once a victim is detected 
by a UAV, it switches to tracking mode and continuously tracks the victim’s 
position, which is communicated to the UGVs. An arbitration process is 
initiated by the UAV to select the most suitable UGV to reach the victim, 
based on a cost value provided by the UGV, such as the distance to the 
victim. The chosen UGV navigates to the victim using the received position 
information from the UAV, and once the victim is rescued, the UGV returns 
to its starting position while the UAV resumes coverage to search for a new 
victim. 

As an example, we will focus on modeling the UAVs, including their 
hardware models and behavior implementation based on Robot Operating 
System (ROS) [300], while omitting the simpler UGV models for brevity. To 
simplify the SAR use case, we will refer to victims as targets. 

Hardware Models 

The authors of this work have custom­made the UAV platform as prototypes. 
The UGV platform is based on an off­the­shelf RC truggy. The UAV prototype 
platform is represented by an extended SysML IBD model, as depicted in 
Figure 3.3. The model defines the inputs such as sonar range finders, camera, 
and Ultra Wideband (UWB) localization. The outputs for controlling the 
locomotion and a communication interface for inter­CPS communication and 
communication with the command and control station are also specified. 
Further information on this modeling process can be found in [332]. 

Behavior Implementation 

To represent the behavior of the UAVs, we utilize a two­level FSM hierarchy 
denoted as H = {L1, L2}. This hierarchy effectively models the swarm 
behaviors using a collection of swarm and hardware functions sourced from 
various libraries. The implementation of these behavior libraries is built upon 
ROS, an open­source framework specifically designed to simplify the creation 
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Figure 3.3: The hardware model of the UAV prototype [345]. ⏎ 
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Figure 3.4: The UAV SAR mission processes [345]. 

of robot software. ROS has gained widespread adoption in the robotics 
community due to its exceptional flexibility and extensive hardware platform 
support, making it the de facto standard in the field. 

The first level L1 in the hierarchy defines the parallel processes that are 
executed on each UAV, as depicted in Figure 3.4. The SarBehavior state 
models the actual SAR behavior required to complete the mission and is 
itself a complex behavior modeled as a L2 FSM. The missionAbort event 
allows for the immediate termination of the SarBehavior, along with any 
currently running behavior in the corresponding L2 FSM. Therefore, an event 
broadcasted by the command and control station to all CPSs can stop the 
entire mission. There are various swarm and hardware functions executed in 
parallel, which are specified in detail in Tables 3.1 and 3.2, respectively. 

The UAV FSM hierarchy L2 consists of the second level, which models the 
behavior of the UAV during the SAR mission. It is depicted in Figure 3.5. 
When a UAV is powered on, it starts in the Idle state. Upon receiving the 
launch event from the command and control station, the UAV transitions to 
the TakeOff state and ascends to the designated altitude. Once the desired 
altitude is reached, the UAV enters the Loitering state and remains stationary. 
The actual SAR mission starts when the missionStart event is received. The 
coverage state is the initial state of the SAR behavior, during which the UAV 
searches for targets. If a target is detected, the TargetMonitoring state triggers 
the targetFound event, leading the UAV to the SelectRover state. During this 
state, the UAV communicates with all available UGVs and selects the closest 
one to move towards the target. As the selected UGV moves towards the 
target, the UAV performs the Tracking behavior to keep track of the target’s 

⏎ 
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Figure 3.5: The complex SAR behavior of the UAVs [345]. 

location until it is reached by the UGV. It informs the UGV about changes in 
position through the targetUpdate event. If the targetRescued event is received 
from the UGV, the target is safe, and the UAV restarts the “Coverage” 
behavior to search for other targets. If the target is lost before being rescued, 
the UAV enters the LocalCoverage state, which allows it to circle around the 
last known target position to find the target again. If the target is found, the 
UAV selects the most suitable UGV again. If the target cannot be found, the 
UAV restarts the “Coverage” behavior. 

The SAR mission’s FSMs utilize behaviors and functions from the Swarm 
Library and the Abstraction Library. Table 3.3 and Table 3.1 present the 
swarm behaviors and functions used in the SAR mission, respectively. The 
complete libraries are available as ROS stacks, the behaviors [341] as well as 
the functions [342], and their details can be found in the links provided in 

⏎ 
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Table 3.1: The swarm functions used in the SAR mission as part of the Swarm 
Library [345]. 

Behavior Input Output Description 

TargetMonitoring 
camera 

footage 

IDs of tar-

gets 

Manages targets being detected by 

the swarm. It uses the on­board cam-

era to detect targets and exchanges 

information about targets with the 

other CPSs in the swarm. 

SelectRover 

target ID, 

target posi-

tion 

UGV ID, 

target 

ID, target 

position 

Assigns the closest idle UGV for 

rescuing a target using the targetAs-

signed event. 

Table 3.2: The hardware functions used in the SAR mission as part of the 
Abstraction Library [345]. 

Behavior Input Output Description 

MissionAbort ­ ­ Lets a UAV land. 

TakeOff altitude ­ Lets a UAV lift off. 

Table 3.3: The swarm behaviors used in the SAR mission as part of the Swarm 
Library [345]. 

Behavior Input Output Description 

Coverage 

coverage 

area 

boundaries 

target 

ID, target 

position 

Lets a UAV fly over the mission area 

in search of targets. It terminates 

once it finds a target. 

Tracking target ID 
target posi-

tion 

Lets a UAV keep track of a target 

that has been found. It informs other 

CPSs about position changes using 

the targetUpdate event. 

LocalCoverage 

last known 

target posi-

tion 

target 

ID, target 

position 

Lets a UAV search the local neigh-

borhood for a lost target. This 

exploits the fact that a target has 

a high probability of still being close 

to the current position of the UAV. 

the footnotes. The hardware functions of the Abstraction Library utilized in 
the SAR mission are listed in Table 3.2. There are other modules pertaining 
to different levels of the Abstraction Library released on GitHub. For more 
information, please refer to the repositories of the Hardware Functions [343] 
and Sensing and Actuation [344] libraries, as specified in the footnotes. The 
events that trigger state changes in the behavior are summarized in Table 3.4. 

⏎ 

⏎ 

⏎ 
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Table 3.4: Events used in the SAR mission [345]. 

Identifier Data Sender 

launch ­ command and control station 

missionStart ­ command and control station 

missionAbort ­ command and control station 

targetFound target ID, target position swarm member 

targetUpdate target ID, target position swarm member 

targetLost target ID, target position swarm member 

targetRescued target ID swarm member 

targetAssigned target ID, UGV ID swarm member 

3.4 Use Case: Models in Edge Computing 

The shift toward local processing at the edge brings critical benefits that 
address future computing challenges, including enhanced security, improved 
reliability, reduced latency, and lower energy consumption. Managing this 
edge infrastructure, often called the edge continuum, creates a dynamic and 
adaptable computing environment. 

In this use case, we examine a network of Edge Micro Data Centers 
(EMDCs) within the edge continuum (see Figure 3.6), where intelligence 
is distributed across the nodes, creating a decentralized environment. 
This distribution enhances the edge’s autonomy and granularity in local 
decision­making within a regional context, reducing dependence on a central 
coordination point. This is particularly crucial for real­time applications such 
as autonomous driving or the monitoring and control of smart grids. The 
stability and performance of edge infrastructure are increasingly challenged by 
stringent requirements for latency and autonomy, distribution across multiple 
locations, limited local size, multi­tenancy, the involvement of multiple 
operators, and local management, with components operating concurrently 
and asynchronously. 

These challenges are further intensified by the rapid growth of i) connected 
devices and their data exchange capabilities, ii) intelligence embedded in 
edge devices, iii) the breakdown of monolithic applications into smaller 
components, and iv) the scale, speed, and complexity of interactions among 
devices in a zero­trust environment. As a result, orchestrating edge and cloud 
interactions, particularly in resource allocation, workload scheduling, and data 
management, is becoming increasingly complex (see Figure 3.6 for details on 
the architecture [334]). 

To tackle these challenges, we propose an approach centered on 
autopoietic systems—self­organizing, self­regulating, and self­repairing. AI­
driven optimization methods, such as swarm intelligence, have been 
successfully applied in cloud environments and are central to our design. 
Our framework uses swarm agents to represent demand and supply entities. 
Demand swarm agents optimize operations at the pod level, while supply 
swarm agents manage tasks such as workload placement and caching within 

⏎ 
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Figure 3.6: Schematic architecture demonstrating the inter-edge resource allocation in clusters: Nodes, pool of resources and the overall
edge-cloud interaction [334]. 

. 
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EMDCs. Communication between these agents is facilitated by synthetic 
hormones, with supply agents detecting these signals to make informed 
resource allocation decisions. Inspired by ant foraging behavior, the ant 
algorithm is applied to optimize workload­node assignments, using pheromone 
trails to guide future decisions. For further information, refer to Schranz et 
al. [334]. 

3.4.1 Modeling Agents in the Edge Continuum 

Our agent­based approach employs two distinct types of swarm agents: 
Demand and supply swarm agents. These agents work collaboratively within 
an EMDC environment, managing tasks such as pod placement, storage 
management, and caching optimization. The model represents an edge 
continuum comprising resources, queues, pods, and processes. 

Demand Swarm Agents 

Applications are decomposed into a set of services S, each represented by 
collection of related pods P s s s , . . . }, where s denotes a specific 

service. Each service s is characterized by a set of resources Rs, detailing the 
{pa = , p1 2

sprocessing steps required to execute the individual pods. Each pod pj has the 
flexibility to select from suitable nodes Nn to execute the necessary process i 

steps P r . 

Demand swarm agents operate at the pod level within the EMDC 
architecture, equipped with a pod­level description that contains contextual 
information about the workload, such as workload type, performance 
requirements, data dependencies, and latency constraints. These agents 
leverage this information to make intelligent decisions regarding workload 
placement and resource allocation, enhancing the overall efficiency of the 
system. 

Supply Swarm Agents 

The EMDC E encompasses various sets of nodes, each with different resource 
types Nr 

21= {Nr, Nr , . . . }, where r represents the resource type(s). A typical 
EMDC node may offer multiple resource types, whereas a node with a single 
resource type might represent, for example, a CPU within a larger resource 
pool. In this context, we consider resources such as CPU, FPGA, RAM, and 
NVMe, each with specific capacities and an associated queue Qr

i . 

Supply swarm agents operate at the node level within the EMDC, 
representing individual nodes characterized by their available resources and 
respective capacities. These agents play a crucial role in the efficient allocation 
of resources to incoming workloads, ensuring optimal processing and resource 
utilization. 



41 Modeling Swarms of Cyber-Physical Systems 

Agent Collaboration and Self­Organization 

Collaboration between demand and supply swarm agents is facilitated through 
swarm intelligence algorithms. Demand swarm agents autonomously identify 
the most suitable nodes for workload placement, while supply swarm agents 
select the optimal workloads to process based on their available resources and 
capacities. This collaborative, self­organizing decision­making process allows 
the system to dynamically allocate workloads to nodes, optimizing processing 
performance, reducing latency, and maximizing resource utilization. 

Our agent­based model is designed to exhibit autopoietic characteristics, 
promoting self­organization, regeneration, and regulation within the edge 
continuum. Through continuous interaction and adaptation to varying 
workloads and resource conditions, demand and supply agents foster emergent 
behaviors that enhance the system’s resilience and operational efficiency. 

3.4.2 Challenges in Modeling Agents for EMDCs 

Agent­based modeling of an EMDC presents several challenges that must be 
addressed during the modeling process. 

Pool of Resources 

Beyond the nodes in an EMDC, we consider a pool of resources as 
an innovative addition to the current definitions of the edge continuum. 
This enhancement allows for the allocation of individual resources for pod 
processing, separate from the traditional node­based processing capabilities, 
which consist of multiple resources. The resource pool is integrated into 
the EMDC and can be accessed by edge or edge­cloud management as 
needed. This approach helps prevent resource limitations, minimizes latency, 
and ensures the stability of other pods’ performance by protecting their 
assigned resources from being exhausted. Currently, technologies like Compute 
Express Link (CXL) are being integrated into CPUs (by Intel and AMD), 
memory, and storage components (e.g., by Samsung), with PCIe switches 
anticipated by 2025. Aside from hardware development, the primary challenge 
lies in orchestrating these resource pools effectively. Current hub­and-
spoke orchestration mechanisms are insufficient for managing such ad hoc 
configurability. 

Application Types 

Different services correspond to various application types, each with unique 
response time requirements: 

•  Long­Running Applications (LRAs): These applications instantiate 
long­standing pods to support iterative computations in memory or 
continuous request­response cycles. Examples include processing frame-
works like Storm [367], Flink [121], and Kafka Streams [189]; latency-
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sensitive database applications like HBase [157] and MongoDB [254]; and 
data­intensive in­memory computing frameworks like TensorFlow [378]. 

•  Batch Processing: This method is typically employed when large 
volumes of data need to be processed at once, with results stored 
for later use. Batch processing can occur on a scheduled basis or at 
regular intervals and includes two types: Regularly recurring requests 
and opportunistic requests with minimal or no SLA (Service Level 
Agreement) requirements. 

•  Stream Processing: This approach handles large data volumes that 
require real­time processing. 

Future workloads are expected to become even more complex, with 
LRAs, batch processes, and stream processes increasingly interconnected. This 
will complicate the task of categorizing applications and fine­tuning their 
corresponding agents. 

Relationships among Pods 

Demand swarm agents represent pods P s derived from a specific service s, 
and these pods may have various interdependencies. Pods may need to be 
processed in parallel or have dependencies on one another. When a pod 
underperforms, the current system may generate additional pods to meet the 
required response times for the service s. However, these interrelationships 
are not currently considered in scheduler and orchestration optimization. 
For instance, strategically placing interacting services in proximity can 
significantly enhance performance: 

•  Service Clustering: For services comprising multiple microservices that 
frequently interact, placing microservices within the same region can 
improve performance. 

•  Database Proximity: Pods with heavy database dependencies should be 
positioned close to the database to minimize latency and enhance overall 
performance. 

Addressing these challenges involves refining the scheduling and 
orchestration processes to leverage these pod relationships, thereby optimizing 
system performance and efficiency. 



Chapter 4 

Engineering Swarm 
Behavior 

Designing behavior in CPS swarms presents a significant challenge. We’ve 
placed a strong emphasis on distinguishing between micro­level and macro­
level modeling of behavior, as detailed in Section 2.1. The mission of the swarm 
is primarily defined at a global macro level. To accomplish this mission, we 
must translate local rules into executable code on controllers and processing 
units within each CPS, incorporating hardware­related CPS functionalities 
such as sensors and actuators. 

4.1 Basic CPS Swarm Behavior 

Figure 4.1 provides a taxonomy of swarm behaviors, based on the classification 
proposed by Schranz et al. [337]. In the subsequent sections, we’ll start by 
providing a comprehensive overview of this taxonomy. For an exhaustive 
description of the pre­existing categories, we kindly direct interested readers 
to [45, 337]. 

Spatial Organization 

These behaviors enable robots in a swarm to navigate their environment, 
enabling them to organize themselves or objects spatially. 

•  Aggregation causes individual robots to converge in a specific area of 
the environment, enhancing spatial proximity among swarm members 
and encouraging further interactions. 

•  Dispersion operates in contrast to aggregation, as it drives 
individual robots to spread across the environment. Dispersion can be 
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Figure 4.1: Taxonomy of swarm behaviors (extended from [337]). 

advantageous in scenarios where spreading out allows for more extensive 
coverage of the environment or helps avoid congestion and overcrowding 
in certain areas. 

•  Pattern formation orchestrates the arrangement of the robot swarm 
into specific shapes. A notable instance is chain formation, where robots 
align in a line, often to establish multi­hop communication between 
distant points. 

•  Self­assembly interconnects robots to establish structures, either 
through physical connections or virtual communication links. An 
interesting variant is morphogenesis, where the swarm autonomously 
transforms into a predefined shape, exhibiting remarkable adaptability. 

•  Object clustering and assembly empowers the swarm of robots to 
manipulate spatially distributed objects, crucial for various construction 
processes, allowing for the efficient clustering and assembly of objects 
within the environment. 

⏎ 
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Navigation 

These behaviors facilitate the coordinated movement of a robot swarm within 
an environment: 

•  Collective exploration guides the swarm of robots to navigate 
cooperatively through the environment, serving various purposes such 
as gaining a comprehensive situational understanding, searching for 
specific objects, monitoring the surroundings, or establishing a robust 
communication network. 

•  Coordinated motion orchestrates the movement of the robot swarm 
in a structured formation, which can take on well­defined shapes like 
a straight line or adopt more flexible arrangements, such as flocking, 
enhancing their collective mobility and adaptability. 

•  Collective transport empowers the robot swarm to collaboratively 
transport objects that exceed the weight or size capabilities of individual 
robots. It enables the efficient movement of bulky or heavy items by 
leveraging the combined strength and coordination of the swarm. 

•  Collective localization facilitates the robots within the swarm in 
determining their precise position and orientation relative to one another 
by establishing a local coordinate system across the entire swarm. 

Decision Making 

These behaviors enable robots within a swarm to reach a unified decision on 
a given matter: 

•  Consensus empowers individual robots in the swarm to reach 
agreement or convergence towards a single, shared choice among 
multiple alternatives, fostering cohesive decision­making. 

•  Task allocation dynamically assigns emerging tasks to individual 
robots in the swarm, aiming to optimize the overall performance of the 
swarm system. When robots possess diverse capabilities, tasks can be 
distributed accordingly to enhance system efficiency. 

•  Within the swarm of robots, collective fault detection identifies 
deficiencies in individual robots, enabling the identification of outliers 
or deviations from the desired swarm behavior, often attributed to 
hardware failures. 

•  Collective perception combines locally sensed data from robots in 
the swarm into a comprehensive view, facilitating informed collective 
decision­making. This behavior allows the swarm to reliably classify 
objects, allocate the appropriate number of robots to specific tasks, or 
determine optimal solutions to global problems. 
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•  Synchronization aligns the frequency and phase of oscillators among 
robots in the swarm, ensuring a shared understanding of time. 
This synchronization enables robots to perform actions synchronously, 
contributing to coordinated and time­sensitive activities. 

•  Group size regulation empowers robots in the swarm to form 
groups of desired sizes. If the swarm’s size exceeds the specified group 
size, it autonomously divides into multiple groups by simultaneously 
maintaining optimal group cohesion and function. 

Miscellaneous 

There are additional behaviors exhibited by swarm robots that do not fall 
into the aforementioned categories: 

•  Self­healing enables the swarm to recover from faults stemming from 
individual robot deficiencies. The objective here is to minimize the 
impact of robot failures on the overall swarm, thus enhancing its 
reliability, resilience, and performance. This concept aligns with the 
collective fault detection mentioned before. 

•  Self­reproduction empowers a swarm of robots to either generate new 
robots or replicate the patterns created by multiple individuals within 
the swarm. The aim is to enhance the swarm’s autonomy by eliminating 
the necessity for human engineers to manually create new robots. 

•  Human­swarm interaction allows humans to control the swarm 
robots or receive information from them. This interaction can occur 
remotely, such as through a computer terminal, or in close proximity 
within a shared environment, facilitated through visual or acoustic cues. 

4.2 Use Case: Collective Motion 

Collective motion in the form of a flocking behavior, is a natural phenomenon 
seen in bird flocks, fish schools, and molecule movement [52]. These organisms 
coordinate their movement to enhance performance, such as fish evading 
predators and maintaining group structure or birds flying in energy­efficient 
V­formations. Inspired by this, various algorithms have been derived from 
biological examples or developed newly to address challenges in swarm 
robotics. Overall, these studies address how large groups of simple, small, 
often identical robots can collectively perform complex tasks that single robots 
cannot. A self­organized collective motion occurs when a swarm of robots 
moves cohesively, using local interactions to exchange essential information 
like positions, velocities, or angles. 

Reynolds [311] established the foundation for modeling flocking behavior 
in artificial systems using so­called Boids agents. The model achieves cohesion 
through attraction between robots and prevents collisions via repulsive 
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interactions, while alignment ensures the swarm moves in the same direction 
at the same speed. This model assumes that each robot knows its neighbors’ 
headings in a noise­free environment. Another method, the Self­Propelled 
Particles (SPP) approach, uses principles from statistical physics to achieve 
flocking in robots. The SPP model uses virtual attractive and repulsive forces 
between swarm entities to achieve self­organized collective motion [395]. There 
are two main approaches to reach flocking behavior: The alignment rule and 
the position­based rule. The alignment rule involves sharing angle information 
among agents to agree on their headings [394], but it requires sophisticated 
measurement and communication tools for reliable orientation sharing. The 
position­based rule, which only requires agents to detect their neighbors’ 
positions, is a more cost­effective choice. Swarm cohesiveness and alignment 
are achieved using just relative position data [116]. However, it should be 
mentioned that, although these algorithms are cost­efficient, relying solely on 
relative position data results in slower response times and reduced robustness. 

The SPP concept was utilized in the Standard Vicsek Model [394], an 
early method for flocking. This model, designed to study the effects of 
noise and particle size on order transitions, yielded promising results with 
a velocity alignment rule, where each particle adjusts its trajectory to align 
with the average heading of its neighbors. While velocity alignment proved 
useful, Couzin et al. [73] introduced another model for three­dimensional 
environments, considering three interactions—attraction, alignment, and 
repulsion—in distinct zones to simulate animal group behavior transitions. 

These foundational flocking models have inspired numerous studies 
in swarm robotics. For example, Cucker and Smale [74] proposed a 
method where informed agents direct a uniformed swarm using the velocity 
alignment rule. This model updates agents’ velocities based on a Laplacian 
framework, regulating velocity differences with neighbors, and inspired real­
world experiments [385]. However, these frameworks require exchanging both 
velocity and alignment data, demanding significant onboard processing, which 
is challenging for small robots with limited power and processing capabilities. 

Several studies have focused on implementing collective motion without 
relying on orientation information. For example, velocity alignment is achieved 
implicitly through pairwise repelling forces [244]. Other approaches include 
using position­based attraction and repulsion [370], inelastic collisions between 
isotropic agents [150], and various collective control strategies [118]. These 
methods avoid orientation sharing and offer distinct advantages. 

Therefore, reducing the information exchanged between robots can 
minimize hardware complexity and cost. Additionally, studies show that 
alignment without explicit orientation exchange lowers the swarm’s energy 
consumption. Ferrante et al. [116, 117] developed a similar approach with 
the Active Elastic Sheet (AES) model, which uses elastic interaction based 
on relative position for collective motion. The AES model’s performance is 
well­documented, addressing factors like network architecture[386], robustness 
against measurement noise [427], and behavior under external force to guide 
the swarm [305]. To explain the AES model in more detail, consider a swarm 
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system of N robots moving in a two­dimensional arena. The motion of 
the ith robot is determined by attraction­repulsion forces from its closest 
neighbors. The positions x⃗i and orientations θi of the robots can be calculated 
mathematically, as described in [116, 117]. The robots are deployed in an ideal 
environment with negligible noise in the original signals. Thus, it is possible 
to eliminate disturbance terms and present a modified model as shown in 
Equation (4.1): 

�T˙ θ̇ i ⃗ ⊥x⃗i = (v0 + α F⃗i.n̂i)n̂i , = β Fi.n̂ , n̂i = cos(θi) sin(θi) , (4.1)i 

 

where, α and β are inverse transitional and rotational parameters, and v0 is a 
biasing speed. n̂i is a unit vector parallel to the heading direction of the robot 
i, and n̂⊥ is a unit vector perpendicular to it. The interactions between robot i 

i and its neighbors si will generate a linear force F⃗i to maintain the distance 
within the swarm. This force can be obtained using Equation (4.2): 
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 k r⃗ij 1
F⃗i = − (|r⃗ij | − lij ) ψ = n̂i . (4.2),

lij |r⃗ij | N
j∈Si i=1 

kHere, is the spring constant, and lij is the natural length connecting 
lij 

robots i and j. The distance between the ith and jth robots is represented 
as r⃗ij = x⃗j − x⃗i. Initially, the ith robot is connected to its neighboring 
robots Si through virtual springs, establishing the formation of the robots 
at the initial stage. Thus, this spring connection remains constant despite 
changes in distance between robots during the experiments. The alignment 
of the entire swarm determines the collective flock’s performance. The degree 
of alignment, ψ, is the metric used to indicate the alignment status of the 
robots. A minimum value of ψ = 0 indicates the robots are non­aligned, while 
a maximum value of ψ = 1 means they are perfectly aligned. 

Figure 4.2 shows two robots in the swarm and the resultant force F⃗i acting 
on one of the robots, determined from interactions with all neighbors. The 
figure indicates that the resultant force has a component perpendicular to the 
robot’s current direction, causing rotation and eventually leading to alignment 
between the robots. 

Although AES­based algorithms show promising results, virtual elastic 
interactions can cause fluctuations, leading to instability and reduced 
robustness, especially with noisy measurements. However, viscoelastic 
interactions can mitigate these fluctuations, improving both stability and 
robustness. Thus, using viscoelastic links is expected to enhance flock 
motion while maintaining formation stability. In addition to the model’s 
structure describing collective behavior, parameters play a crucial role in 
the swarm performance. These parameters are typically tuned empirically, 
but optimization techniques can significantly enhance performance. Therefore, 
several works have focused on optimizing AES model parameters to improve 
the performance of the computer model and make it more suitable for real­
world applications using mobile robots. In the work of Raufi et al. [305], a 
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Figure 4.2: The schematic description of elastic interaction (from [26]). 

Table 4.1: The values of the control parameters for AES, AES-TCACS, AES-GA 
and OCM algorithms. 

Model Parameters 

Methods α β k c v0 

AES [116] 

AES­TCACS 

AES­GA [27] 

OCM [28] 

[305] 

0.01 

0.066 

0.3696 

0.0262 

0.12 

0.97 

0.9124 

0.5627 

5 

1.28 

3.5329 

1.0 

0 

0 

0 

1.7503 

0.002 

0.05 

0.05 

0.075 

Tabu Continuous Ant Colony System (TCACS) [193] was used to tune the 
AES model parameters by minimizing the force among robots and maximizing 
their alignment. The results showed better performance compared to the 
original parameters. Other studies [26, 27] improved the collective motion 
of the AES model using Particle Swarm Optimization (PSO) and Genetic 
algorithms, respectively. The cost function minimized virtual forces between 
swarm individuals, alignment error, and convergence time. This approach 
significantly enhanced collective motion behavior and swarm shape stability, 
outperforming both the original study [116] and the TCACS­optimized 
study [305]. However, these works did not consider measurement noise and 
its impact on collective motion behavior. In a recent study, Bahaidarah et 
al. [28] proposed an Optimized Collective Motion algorithm that employs 
viscoelastic interactions between robots to enhance robustness against various 
disturbances such as measurement noise, environmental factors, and modeling 
uncertainties. This underscores the algorithm’s suitability for real­world 
robotic applications. The model parameters are automatically tuned using 
PSO optimization to achieve (i) minimal control effort, (ii) rapid alignment, 
and (iii) noise robustness. 

Figure 4.3 illustrates four different experiments with swarms controlled by 
different algorithms listed in Table 4.1. 

⏎ 

⏎ 
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Figure 4.3: Swarm collective exploration controlled by (a) AES, (b) AES-TCACS, 
(c) AES-GA, and (d) OCM. 

4.3  Use Case: Strategies to Mislead UAV 

Swarms 

The core concept involves deploying defender UAVs into an attacking UAV 
swarm with the goal of misleading the swarm without causing further harm. 
Rather than relying on physical methods to remove the attacking UAVs from 
the sky or deploying defensive UAV swarms that engage in combat and risk 
collateral damage, we explore a strategy where a small number of defender 
UAVs infiltrate the attacking swarm to divert it from its intended mission. 
Figure 4.4 illustrates this scenario: (a) Shows a swarm targeting a specific 
objective, while (b) depicts defender UAVs infiltrating the swarm to mislead 
it. This approach has been largely overlooked in existing research [354], making 

⏎ 
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(a) (b) 

Figure 4.4: Main idea of the scenario, in which (a) UAVs are attacking a target 
and (b) defenders are induced into the attacking swarm to mislead it [354]. 

this work pioneering towards developing an intelligent and adaptable solution 
for redirecting swarm behavior intended for malicious activities. 

In our initial exploration of how to divert a swarm from its mission, we 
equip both the attacking UAV swarm and the defending UAVs with the 
same algorithms. Our approach involves first selecting appropriate attacking 
algorithms and then designing effective defending algorithms. Given that the 
hostile swarm is assumed to be targeting a specific objective, we focused on 
target­oriented swarm algorithms inspired by nature, such as group hunting 
and foraging behaviors observed in animals and fungi. We selected the Grey 
Wolf Optimizer (GWO) [247] and the Slime Mould Algorithm (SMA) [228] for 
this study, both of which emulate natural strategies for locating food sources. 

We equip the defending UAVs with the same algorithms as the attacking 
UAVs, slightly modified to divert the attackers from their original target. The 
primary goal of the defenders is to steer the attacking UAVs away from their 
target by influencing their movement. The scenario is set in a continuous 2D 
area containing a static target M at position m = [xm, ym]. Here, a swarm 
of attacking UAVs ai ∈ A (where i = 1, . . . , I) and a smaller set of defending 
UAVs dj ∈ D (where j = 1, . . . , J with J < I) operate according to the 
local rules of their swarm algorithms. Each UAV is aware of its position, 
with pi = [xi, yi] for attackers and pj = [xj , yj ] for defenders. The attacking 
swarm aims to locate and reach the target M using the Grey Wolf Optimizer 
(GWO) [247] and the Slime Mould Algorithm (SMA) [228]. All UAVs are 
equipped with processing, storage, and communication capabilities. 

The defenders aim to redirect the attackers by modifying the fitness 
function qm slightly from the original GWO and SMA functions. The modified 
fitness function also aims to minimize the distance to the target, with a smaller 
distance indicating better fitness. Fitness values are shared among all UAVs, 
allowing defenders to inject misleading fitness values to deceive the attacking 
swarm. The defenders must avoid injecting random values, as this would result 
in being disregarded by the attackers. Instead, they must move in conjunction 
with the attacking swarm, gradually diverting it from the target. The fitness 

⏎ 
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function for the defenders is modeled as follows:

qm(pj ,m) = q(pj ,m)− ϕ, ϕ ∈ R, (4.3)

where
dim
 

pj

q(pj ,m) = (pj −m)2, (4.4)
j

with pj being the position of the defender UAV, m the position of the
target, and ϕ a fixed value allowing defenders to achieve a better fitness
relative to the attackers. The value of ϕ is arbitrary and determined through
experimentation, where a low value results in minor distraction and a high
value in significant distraction.

To effectively steer the attacking swarm, defenders need to move
strategically. Preliminary experiments revealed that moving defenders to a
fixed point, such as a static fake target, is ineffective due to the dynamic
nature of the attacking swarm. Therefore, the next position pj(t + 1) of a
defender UAV is calculated as follows:

[ ]

1√
pj(t+ 1) = pj(t) + v (t) · (1− c) · 2

max 1 , (4.5)√
2

where pj(t) is the current position, vmax is the maximum velocity of a UAV per
time step, and c is the crowd factor, a value in the interval [0, 1]. The crowd
factor balances between leaving the attacking swarm (c = 0) and following
it (c = 1), allowing defenders to stay close enough to influence the attackers
gradually. The vector [ 1√ , 1√ ] is of unit length but can be oriented to direct

2 2

UAVs towards a specific direction (e.g., bottom right).
Figure 4.5 presents the results of the GWO simulations, illustrating (a)

the probability hP of attackers winning as the number of defenders increases,
and (b) the discrete probability density of the achieved hits over time with
varying numbers of defenders. As anticipated, the presence of more defenders
improves hP , as a greater number of defending fake-wolves exerts a stronger
influence on the entire swarm. Details of the results can be found in a paper
by Simonjan et al. [354].

4.4 Use Case: The Principle of Hormones

for Production Plants

As already described in Section 3.2, the production of logic and power
integrated circuits (ICs) in the semiconductor industry is inherently dynamic
and complex [138]. Unlike the high-volume production of memory ICs, the
logic and power sector features wafer production with a vast product mix,
frequent system changes, and a large number of processing steps involving
numerous machines [203]. Weekly operations can involve approximately



53 Engineering Swarm Behavior 

(a) 

(b) 

Figure 4.5: GWO simulation results: (a) Probability hP that attackers win over 
an increasing number of defenders and (b) probability density of achieved hits over 
time and increasing number of defenders [354]. ⏎ 

105 tasks across 103 machines [379]. Optimizing this process for work in 
progress (WIP) and flow factor presents an NP­hard challenge [130]. Existing 
dispatching rules and linear optimization methods struggle to handle the 
NP­hard search space [222], limiting their ability to account for the entire 
system behavior due to computational complexity, and thus failing to fully 
exploit optimization potential in job­shop scheduling within semiconductor 
production systems [203]. 
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To address these challenges, we propose modeling the production plant 
as a self­organizing system of agents that interact non­linearly, as described 
in Section 3.2. This approach aims to achieve near­optimal solutions within 
feasible computation times. Such a system can adapt to environmental 
changes, scale with the number of agents, and maintain robustness against 
single points of failure due to its reliance on local interactions [160]. Utilizing 
local rules and interactions helps circumvent the extensive computation times 
associated with centrally performed linear optimization. 

One promising self­organizing approach involves algorithms inspired by 
biological hormone systems. These artificial hormone systems mimic the 
biological endocrine system, which regulates cellular metabolism in the 
body [358, 387]. As part of the broader class of self­organizing systems, 
they exhibit properties like scalability, adaptability, and robustness [292], 
making them suitable for coordinating complex agents in networked technical 
applications [43, 98, 356]. Such algorithms are particularly valuable for large 
cyber­physical systems, such as those found in the semiconductor industry, 
where traditional control or scheduling mechanisms reach their operational 
limits. 

The artificial hormone algorithm is designed using a bottom­up approach 
to represent both the urgency of processing a lot and the demand for incoming 
lots by machines. In this system, artificial hormones are generated at machines 
and diffuse through the production environment, aligning with the processing 
steps of the lots. The lots function as swarm members that are attracted to 
machines based on the hormone levels present. The algorithm relies on five 
key parameters, each with specific mechanisms described below. Table 4.2 
provides an initial set of parameter values used for preliminary simulations. 
The algorithm outlines the calculations and decision­making processes that 
influence the handling of lots, offering flexibility in implementation. For 
instance, hormone­related computations can be performed directly at the 
machines or within a networked monitoring and control layer [101]. 

Hormone Model Each processing step is associated with a specific 
hormone type. Hormones can exist at any machine, and multiple hormone 
types can coexist at a single machine. At each simulation tick, hormones 
degrade exponentially at a rate α: 

hormone amount = hormone amount · (1 − α) (4.6) 

An evaporation rate of 0 means that hormones do not degrade, while the 
maximum value of 1 indicates immediate degradation. 

Hormone Production by Machines to Attract Lots Each machine 
produces a hormone corresponding to its process type. Machines performing 
the same process type produce the same hormone. If a machine handles 
multiple process types, it generates hormones for each type in equal parts. 
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Table 4.2: Suggested algorithm parameters. 

Parameter Value 

α 0.3 

β 1 

γ 0.5 

δ 0.2 

ε 0.8 

Machines aim to maximize their working time by attracting enough lots into 
their queues. The hormone output of a machine is calculated as follows: 

1 
hormone output = , (4.7)

lots in queue + β 

where β is a smoothing factor greater than zero. 

Machine Linking A machine A is upstream­linked to machine B if a recipe 
includes processes of both machines in consecutive steps. If each machine 
performs only one process, the link strength from this recipe is 1. Otherwise, 
the link strength is 2 divided by the number of processes supported. If the 
sequence appears in other recipes, the link strength accumulates. 

Hormone Diffusion Upstream When upstream links exist, a fraction γ 
of the hormone at a machine diffuses upstream: 

upstream hormone = hormone amount · γ (4.8) 

hormone amount = hormone amount − upstream hormone (4.9) 

Each upstream­connected machine receives a proportional share of the 
upstream hormone 

link strength 
added hormone = upstream hormone · � , (4.10)

link strengths 

where link strength refers to the upstream link strength for the given hormone 
between the respective machines, and link strengths denotes the sum of all 
upstream link strengths for the hormone from the sending machine. 

Hormone Diffusion by Incoming Lots Incoming lots cause a portion δ 
of the corresponding hormone at a machine to diffuse upstream: 

upstream hormone = hormone amount · δ (4.11) 

hormone amount = hormone amount − upstream hormone (4.12) 

⏎ 
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The upstream hormone is added to the machine from which the lot arrived,
allowing the flow of lots to self-stabilize:

added hormone = upstream hormone (4.13)

Lot Prioritization by Timing A lot’s base priority is determined by its
remaining Raw Process Time (RPT) and Planned Cycle Time (PCT):

remaining RPT
base priority = (4.14)

remaining PCT

Hormone Attraction of Lots The priority of a lot is influenced by
hormones present at the machine where the lot is waiting:

 

attraction = h εii · , (4.15)
i=0

where hi represents the hormone of the process that is i steps ahead in the
lot’s recipe, with h0 being the hormone of the current process. The factor ε
indicates the influence strength of the hormone.

The lot’s priority is then calculated as:

priority = base priority · attraction. (4.16)

At each machine, lots are processed based on their priority, and if batch
processing is used, all eligible lots are processed together in a batch.

The algorithm was implemented and tested using a NetLogo simulation
model. The simulation results show that the artificial hormone system
improves overall production time and the flow factor by approximately 5%.
Further details and the evaluation of the algorithm can be found in Elmenreich
et al. [101].

4.5 Design Behaviors using the Concept of

Evolution

When designing a swarm robotic system, several decisions must be made,
including the choice of the robot model and its capabilities, the planned
number of robots, the control system, the software model, and the algorithms
to be employed. A major challenge is given by the fact that decisions on
one aspect can influence the possible degrees of freedom at another level. For
instance, choosing a simple robot with a limited number of sensors would
necessitate a control system that relies on the close cooperation of a large
number of robots to accomplish the task. The challenge of determining the
system architecture at multiple levels is akin to the hardware-software co-
design approach used for embedded systems [407].
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Figure 4.6: Proposed design methodology [112]. ⏎ 

Following a design process supported by evolutionary optimization, we 
propose a methodology that addresses the key decision points faced by 
designers of robot swarm experiments. For a given experiment, we identify five 
major components to be designed, as depicted in Figure 4.6. These five major 
components are derived from the system architecture of a self-organizing 
system design process described in Fehervari and Elmenreich [112]: 

Task description: Set of requirements that the solution has to meet. 

Simulation setup: Describes the simulation model and the relations 
between the system’s components and their environment. 

Evolvable decision unit: The evolvable representation of the local rules. 

Interaction interface: Describes how the decision unit interacts with its 
environment. 

Search algorithm: A meta-heuristic algorithm responsible for finding novel 
and better solutions. 

Objective function: The cost function guiding the search algorithm. 

Engineering problems usually begin with a task description clearly 
outlining the goals and constraints. This description serves as a contract 
outlining the expectations of the desired system at a high level of abstraction. 
Thus, the task description significantly influences the simulation model used 
and the target function. In a further step, an efficient system model is 
developed based on the task description. This model should accurately 
capture the essential aspects of the system to be simulated while abstracting 
from unnecessary factors. It is important to note, however, that this step 
should not delve into how individual components are rendered or how they 
interact, as that would preempt some important decisions. For this reason, 
we divide the process into two units: The interaction interface unit and the 
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evolvable decision unit. The former focuses on strategically planning the 
interactions between system components and their environment, specifying 
communication methods (such as sensors) and the underlying interfaces 
(such as protocols). The latter focuses on the actual representation of the 
system components, which may include one or more model types depending 
on the homogeneity of the system. The reason for separating this part 
from the system model is the need for an evolutionary approach, which 
requires “evolvable” representations. In other words, components must be 
able to generate adaptive genetic diversity, which is typically achieved by 
defining mutation or crossover operators [10]. Given the variety of available 
representations, careful consideration by the designer is essential because of 
the often different properties associated with each representation. 

An important part of the evolutionary process is the algorithm that 
optimizes candidate solutions. This can be viewed as an efficient search 
algorithm that operates on candidate solutions represented by the component 
representation. Both the component representation and the search algorithm 
can be implemented independently against a well­defined interface defining 
how the search algorithm can access and evaluate candidate solutions. This 
allows optimization and candidate representation to be chosen separately. 
There can be an advantage of using a particular search algorithm with a 
particular candidate representation; for example, evolving neural network 
structures would benefit from a niche formation mechanism that prevents 
innovations from dying out prematurely, and restricting recombination to 
compatible descendants among the pool of neural network solutions [363]. 

To guide the evolutionary process towards a desired solution, an objective 
(or fitness) function needs to be defined that either indicates the quality 
of a particular candidate solution or at least allows for the comparison of 
the quality of two candidate solutions. Designing a proper objective function 
is crucial for the overall evolutionary optimization approach. The objective 
function should be readily accessible, either continuous or sufficiently fine­
grained, and should clearly favor the desired solutions while avoiding the 
reward of undesirable ones. A good objective function should not only assess 
high scores to proper solutions but also form a smooth fitness landscape, 
avoiding, whenever possible, local maxima that could trap the evolutionary 
search. Designing such a practical function is often difficult, even for domain 
experts [183]. 

4.6 Framework for Evolutionary Design 

4.6.1 Architecture 

The architecture of FREVO is strictly component­based, where the steps of 
evolutionary design are divided into individual components. This architecture 
makes it possible to develop a single component and easily replace individual 
components. Therefore, different configurations can be easily evaluated to 
find the most appropriate configuration for a given problem. Each component 
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implements a particular feature of the evolutionary approach. The problem 
component defines the specifics of a CPS controller, environment, and fitness 
function. The representation component defines how the CPS controller is 
represented. The optimization component defines the method for finding the 
optimal candidate representation. The ranking component defines how the 
candidate representations are ranked based on their performance. 

FREVO is implemented in the Java programming language and follows 
the object-oriented programming paradigm for encapsulating components. 
Each component is defined by an abstract class, standardizing the interfaces 
between parts such as for example agent representation, simulation and 
optimization algorithm. Therefore, new components can be used in a 
setting with existing components completing the overall system. Creating 
a component is guided by a built-in component generator, which helps the 
software developer generate the required code framework in the context of the 
class hierarchy. FREVO is released under an open source license, supporting 
the sharing of research ideas and technical solutions. The source code is freely 
available.1 

The FREVO GUI guides a user step by step through the configuration 
process. This is done by selecting a component for each task of the evolution 
process. A single configuration of components is called a FREVO session. Such 
sessions and the results of the optimization process can be exported and saved 
for import for later use. 

Problem Definition 

The problem definition in FREVO defines the parts related to the task to be 
achieved, including the environment and the interaction possibilities of the 
agents, but not the implementation or optimization of the behaviors. The 
problem definition thus consists of the formulation of a goal, the simulation 
model, and the interaction interface for the agents within the simulation. 
In the case of CPS systems, the interaction interface models the behavior 
of sensors and actuators, and the environment is implemented as a physical 
simulation model. Candidate controller representations are linked to sensors 
and actuators, with each sensor serving as input and each actuator as output. 

The problem definition also implements an objective function and the 
means for evaluating the values of the objective function in the course of 
one or multiple simulation runs. Thus, the fitness assessment typically occurs 
in the phenotype space, where the behavior in the simulated environment is 
observed. The genotype, which refers to the implementation of a controller, 
typically cannot be assessed without executing it in a simulation. The 
objective function then guides the heuristic optimization process in finding 
the optimal candidate representation. 

There are two problem definition types: AbstractSingleProblem evolves 
a CPS candidate for cooperative task execution in a swarm setup, 

1FREVO Github: https://github.com/smartgrids­aau/Frevo [Online; accessed: 05-
February­2025]. 

https://github.com/smartgrids-aau/frevo
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while AbstractMultiProblem involves evolving and evaluating multiple 
representations against each other, suitable for competitive multi­agent 
systems. The former applies to homogeneous multi­agent systems, ranking 
candidates by fitness, while the latter suits competitive systems, with fitness 
evaluated relative to other agents. Tournament algorithms rank candidate 
pools, as seen in scenarios like soccer games: To determine the best team 
among several soccer teams, the teams play each other until a tournament 
winner is determined. An example of a soccer team use case, where two teams 
compete against each other in an evaluation, is presented in [111]. 

Developing a new problem definition involves defining the interface 
between sensor inputs, actuator outputs, and candidate representation; 
implementing simulation for evaluation; and calculating fitness based on 
performance measures, all guided by predefined system interfaces. Given 
existing components, developers can focus on implementing new problems 
without concern for representation, optimization, or ranking components. 
Complex simulations can leverage external simulators from model libraries 
or custom interfaces as detailed in Section 4.6.4. 

Candidate Representation 

The candidate representation models the internal structure of the CPS 
controller. It is a generic structure that is evolvable, for instance, an Artificial 
Neural Network (ANN). It encodes the behavior of the CPSs, including 
reactive behavior to stimuli via the sensors. A candidate representation, when 
viewed together with the problem definition, represents a possible solution 
to the given problem. Every representation must define the genetic operators 
such as mutation, crossover and selection. For supporting the user in analyzing 
the representation, different output formats can be implemented. Typically, 
the representation is derived from the AbstractRepresentation class and is 
common among all agents. For heterogeneous multi­agent problems, one can 
choose the bulk representation to evaluate a set of candidates with distinct 
representations. 

Currently, FREVO supports the following representations: 

•  Fully­meshed net : This is a recurrent ANN with a fully meshed 
architecture providing mutual connections between any two neurons. 
Throughout evolution, both the biases of the neurons and the connection 
weights undergo alterations. During run­time, this network has some 
memory due to possibilities of feedback loops. 

•  Three­layered net : This is a feed­forward, non­recurrent ANN 
incorporating one hidden layer. The biases of the neurons and the 
connection weights evolve similarly. Unlike the fully meshed ANN, this 
architecture is tailored for simpler problems, substantially reducing the 
search space. 
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•  NEAT : In this model, the ANN adapts by evolving the connectivity 
between neurons, following the NeuroEvolution of Augmenting 
Topologies (NEAT) method introduced in [363]. 

•  HebNet : Incorporating Hebbian learning, this recurrent, fully intercon-
nected ANN endows synapses with plasticity enabling real­time learning. 
In this setup, both plasticity and initial weights are evolved with 
Hebbian learning occuring during the simulation runs. 

•  Simple bulk representation: This is a combination of multiple 
representations as described above. 

Optimization Method 

The optimization method aims to find the candidate representation 
that maximizes fitness, as the problem definition specifies. It employs 
genetic operators from the candidate representation to generate new 
candidates in each generation, replacing the least effective candidates. This 
iterative heuristic search progressively produces candidates with improved 
performance. The search continues until a termination criterion specified 
within the optimization method is met. Examples of termination criteria 
include reaching a maximum number of generations or consecutive generations 
without fitness improvement. 

The optimization methods currently offered by FREVO are as follows: 

•  Random search: A baseline comparison technique in which randomly 
generated candidates replace those with low fitness. 

•  NNGA: This is an Evolutionary Algorithm (EA) that maximizes the 
population diversity. It supports multiple populations and several 
ranking algorithms. It is based on the Neural Network Genetic 
Algorithm (NNGA) described in [100]. It is well­suited for evolving any 
type of representation. 

•  GASpecies: This is an EA that classifies candidates into species. 
Species are determined by a similarity function defined in the candidate 
representation. Within each species, candidates share the same fitness 
value. 

•  CEA2D : It is a cellular EA that arranges all candidates on a 2D torus 
surface. Genetic operations are executed in a local context, resulting 
in improved diversity and slower convergence compared to traditional 
evolutionary algorithms. 

•  Novelty search: This is an EA that prioritizes behavioral diversity over 
fitness. Its implementation is based on rtNEAT in [362]. 

•  Novelty species : This is an EA that rewards behavioral diversity across 
different species. 
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Ranking Algorithm 

The ranking algorithm sorts candidate representations based on their 
performance, i.e., fitness value. The ranking algorithm is also responsible for 
parallelization to decrease the overall simulation time of the optimization 
process by deciding which evaluations can run in parallel on a multi­threaded 
system. Problems where the fitness of a candidate can be obtained directly by 
a simulation run require a so­called absolute ranking. Two types of absolute 
rankings are currently implemented in FREVO: 

•  Absolute ranking : A ranking algorithm that sorts candidates by the 
fitness value returned from the problem component. It supports multi-
threading to decrease the time needed for optimization. 

•  Novelty ranking : A ranking algorithm that sorts candidates based on 
their novelty in the behavioral space. 

In contrast, problems that necessitate pairwise evaluations between the 
candidates follow the structure of an AbstractMultiProblem. For this type, a 
full tournament ranking and a ranking based on the Swiss system are provided. 
The Swiss system, inspired from chess tournaments, can provide a ranking 
with fewer comparisons at the cost of ranking accuracy [99]. 

4.6.2 Graphical User Interface 

The GUI of FREVO provides a convenient means to assess an evolutionary 
design process component swiftly, showcasing the underlying modular 
architecture (see Figure 4.7). This visual representation illustrates FREVO’s 
GUI, where an example problem has been evolved, with the “Select Problem 
Component” window displayed. 

The top­left “Configure Session” panel facilitates session configuration by 
guiding users through selecting a problem, optimization algorithm, candidate 
representation, and ranking method step by step. This streamlined process 
expedites the testing of new components. Each selection prompts a new 
window for configuration, with options for fine­tuning parameters. 

Below, the “Control” panel enables users to initiate, halt, or reset the 
optimization process. Progress can be tracked in real­time through the 
“Statistics” panel on the right and the “Console” panel below. The “Statistics” 
panel presents graphs illustrating the evolution of fitness and diversity 
across generations, while the “Console” panel displays output from active 
components. Upon completion of optimization, results can be accessed from 
the panel on the left that let’s the user inspect the latest generation. Here, 
users can save or replay the results for further analysis. Clicking “Replay” 
allows a closer examination of each candidate representation from the last 
generation, including visualization of resulting behavior in simulation. 

The top menu provides options for saving and restoring previous 
sessions and managing components, including the “Component Creator”. 
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Figure 4.7: Screenshot of the FREVO GUI showing the evolution of an example 
problem. 

This tool automates skeleton code generation, aiding software developers in 
implementing new components for the model library. 

4.6.3 Workflow 

When executing FREVO with existing components, initiating optimization 
requires just a few clicks. First, users select the desired problem, followed by 
the optimization method, candidate representation, and ranking algorithm. 
Optimization continues after clicking the play button until the selected 
termination criterion is met. The statistics panel displays two graphs: One 
depicting the best fitness value of each generation and another showing the 
diversity in each generation (refer to Figure 4.7). 

The component creator in the top menu can be utilized to model a new 
problem. A code skeleton is generated after selecting the component type, 
name, package, and description. This code is placed in a subdirectory of the 
components directory in FREVO, accompanied by comments guiding further 
implementation (see Figure 4.8). Additionally, an XML file named after the 
component is created, allowing the definition of configuration parameters, 
sensor inputs, and actuator outputs for the CPS. 

The primary task involves implementing the evaluateCandidate method, 
where the candidate representation is evaluated through simulation, either 

⏎ 
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Figure 4.8: Screenshot of the source code skeleton of a newly created problem. 

directly within FREVO or by invoking an external simulator. Consequently, 
the environment and CPS must be implemented. Sensor inputs of the CPS are 
passed to the getOutput method of the candidate representation, which returns 
the actuator output(s). A suitable performance measure is then implemented 
to compute the fitness value of the simulation run. 

Once a component’s implementation is complete, it needs to be compiled 
and automatically loaded upon FREVO launch. The new component then 
appears in the component selection window, enabling the aforementioned 
workflow. This process remains consistent when creating other components, 
with the generated code skeleton and implementation tailored to their specific 
requirements. 

4.6.4 External Simulators 

External simulators are used in domain-specific simulations. To achieve this, 
the evaluateCandidate function of the problem component must invoke the 
simulator and provide the candidate representation (i.e., the CPS controller). 
Consequently, the simulator must incorporate the exact representation to 
enable FREVO to evolve an optimal solution. This can be accomplished 
through two approaches: In a compact way through code generation that 
is then run in the simulation, or in a modular fashion, by transmitting only 
the inputs and outputs between FREVO and the simulation. 

In the compact approach, the simulator’s code needs to be recompiled 
with the newly created representation in each generation. Subsequently, the 
simulator is executed directly from FREVO, returning the fitness value for 
optimization. This method is preferable for CPSs lacking file system or 
network communication capabilities. 

Alternatively, the modular approach entails implementing the simulation 
after achieving the desired candidate representation. In each generation, the 
parameters defining the representation are then transmitted to the simulator, 
either through files or network communication. The actions performed by 

⏎ 
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individual CPSs within the simulator are fully determined by the candidate 
representation, whose parameters are evolved by FREVO. FREVO executes 
the simulator, which logs the performance measure into a log file. Upon 
completion of the simulation, the corresponding fitness value is computed 
by the evaluateCandidate method. 

4.7  Why Evolutionary Optimization Needs 

Simulation 

In this chapter, we have explored the design of self­organizing systems 
through evolutionary methods, focusing specifically on swarm robotics. We 
introduce the FREVO framework, which leverages evolutionary optimization 
to address challenges in decision­making and hardware­software co­design. 
FREVO is a modular component­based system that can be adapted for 
various applications. Its components are categorized to facilitate simulation, 
representation of candidates, optimization methods, and algorithm ranking. 
The system includes a user­friendly GUI for configuring sessions, selecting 
components, and executing the optimization processes. 

Typically, evolutionary approaches rely on assessing the value of a fitness 
or cost function for a given implementation. This often involves conducting 
experiments where swarm members interact within an environment similar to 
their intended operational context, collaborating to solve typical problems. 
However, fitness values typically are obtained by post­experiment analysis, 
which in turn demands reinforcement learning techniques capable of handling 
delayed rewards. While theoretically feasible with real hardware, the practical 
constraints of conducting thousands of experiments can be prohibitively 
cumbersome. The challenges include not only the logistical issues of 
experimentation but also the substantial costs associated with deploying a 
large number of capable swarm robots, especially when such robots are not 
mass­produced. Consequently, simulation becomes an indispensable tool in 
swarm engineering. 

In the upcoming chapter, we will explore the pivotal role of simulation in 
the development and analysis of swarm robotics and cyber­physical systems. 
We will examine why simulation is an essential tool for advancing our 
understanding of swarm dynamics and overcoming the practical challenges 
associated with real­world testing, which can be complex, costly, and 
logistically demanding. The chapter will provide a comprehensive overview 
of different swarm simulation techniques, including agent­based models and 
multi­agent systems. We will review a range of simulation tools and platforms, 
focusing on their capabilities, advantages, and limitations. Emphasis will be 
placed on the practical aspects of using these tools, such as cost efficiency and 
the ability to handle large­scale swarm scenarios in a time­efficient manner, 
making them especially valuable for researchers with limited resources. We 
will also address the inherent challenges of swarm simulation, including 
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the limitations in modeling accuracy and the difficulties in replicating real­
world conditions. The discussion will cover how simulation integrates with 
hardware development to validate results and how emerging technologies, like 
AI and machine learning, are transforming the landscape of swarm simulation. 
Through this exploration, we aim to shed light on how simulation can 
effectively complement physical experiments, offering insights and solutions 
for designing, testing, and optimizing swarm systems. We will highlight both 
the benefits and drawbacks of simulation platforms, drawing on examples such 
as the bio­inspired swarm aggregation mechanism BEECLUST and its various 
simulations across different frameworks. By understanding these dynamics, 
researchers can better navigate the complexities of swarm robotics and cyber­
physical systems, ultimately advancing the field with more innovative and 
cost­effective approaches. 



Chapter 5 

Simulating Swarms of 
Cyber-Physical Systems 

Real­world implementation and evaluation of a swarm robotics scenario that 
often requires a huge number of robots is very complex, costly, and requires 
large settings. Therefore, simulation platforms for swarm systems are a very 
popular and efficient choice for a research project in an early stage. This 
motivated researchers to develop many swarm simulation platforms that 
successfully replicated the bio­inspired mechanisms of swarm robotics. These 
simulation frameworks, predominantly open­source, have enabled several 
research groups, even those with limited budgets, to conduct swarm studies 
involving a large number of robots. 

There are many benefits and drawbacks in using simulation software 
instead of a real­world robotic platform. The main advantage is the cost 
efficiency of the simulation platforms that are mostly designed for open­
source operating systems (OS) such as Linux. Although their speed and 
performance are limited to the host system performance, they can implement 
complex swarm tasks in a low­cost, time­efficient manner. Additionally, 
simulation software offers various benefits that make them an ideal choice 
for early career researchers and students, such as the ability to share code 
and experimental configurations with other researchers. This process allows 
to easily maximize the replicability of research works. The biggest drawback 
in using simulation software is the poor modeling and reduced abstraction 
that introduces inaccuracy when simulating large numbers of robots in a 
swarm scenario. Even internal and external conditions are hard to model 
and often present a poor environment for virtual swarm robotics platforms. 
Additionally, there are many uncertainties and complexities at various levels, 
from individual behavior to collective behavior. Consequently, the results 
obtained from simulation software often do not align with the outcomes 
observed in real­world­robot experiments. 
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Table 5.1: List of simulation platforms commonly used for swarm robotics. 

Simulation Platform Operating System (OS) Level Open­source Application 2D/3D 
AirSim [348] Linux/Win Physics Yes Generic 3D 
ARGoS [290] Linux/Mac Physics Yes Swarm 2D & 3D 
BeeGround [229] Linux/Mac/Win Physics Yes Swarm 2D & 3D 
Gazebo [209] Linux/Mac/Win Physics Yes Generic 3D 
Kilombo [179] Linux Abstract Yes Swarm 2D 
MASON [236] Linux/Mac/Win Abstract Yes Generic 2D & 3D 
MESA [239] Linux/Win Abstract Yes Generic 2D 
NetLogo [382] Linux/Win Abstract Yes Generic 2D 
OpenHRP [190] Linux/Win Physics Yes Generic 3D 
PyCX [324] Linux/Win Abstract Yes Generic 2D 
SCRIMMAGE [81] Linux/Mac Physics Yes Generic 3D 
Stage [392] Linux/Mac Physics Yes Swarm 2D 
Swarm­sim [60] Linux/Mac/Win Abstract Yes Swarm 2D & 3D 
USARSim [56] Linux/Mac/Win Physics Yes Generic 2D & 3D 
V­rep [315] Linux/Mac/Win Physics No Generic 3D 
Webots [246] Linux/Mac/Win Physics Yes Generic 3D 

As an example for the extensive work on the implementation of a 
robotic swarm scenario, the bio­inspired swarm aggregation mechanism, 
BEECLUST [327], has been simulated numerous times with different settings 
in various simulation frameworks. These setting include pheromone­based 
aggregation in PyCX simulator [23], a study of swarm interaction in 
NetLogo software [37], fuzzy­based decision making in Stage [22], aggregation 
in a complex environment in BeeGround [401], and a source exploration 
scenario in Webots [11]. However, while these studies implemented the same 
bio­inspired aggregation behavior, they did not consider the honeybees’ 
diversity (behavioral and physical heterogeneities). Hence, they did not 
replicate similar results observed from real­life honeybee and real­robot swarm 
experiments [374, 329] as this abstraction level was already too high. Similar 
limitations were also seen in other swarm algorithms, such as flocking. 

Table 5.1 lists some of the popular softwares that have been created for 
the usage of simulating CPS swarm scenarios and applications. Simulation 
softwares can model agents at various complexity levels, ranging from abstract 
simulators like PyCX and NetLogo that do not represent the physical 
properties of real robots, to physics­based realistic simulators like ARGoS 
and Gazebo which consider all the physical parameters of a mobile robot. 
The reality level of the simulator directly relies on the PC’s processing 
power. Nowadays, high­performance PCs allow us to implement large swarm 
experiments with physics­based simulation very close to reality. 

5.1 Simulation Requirements 

The main reason for using simulation software instead of real robots is to 
have a cost­effective approach to investigate new ideas in a time­efficient 
manner. While a trade­off exists between the precision of implementation and 
associated costs, the consensus among researchers is that in the initial phases 

⏎ 
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of a project involving swarm scenarios, simulations represent the optimal 
approach. As a result, simulation software for CPS swarms are becoming 
increasingly popular among small and large research labs. Therefore, to 
perform a reliable swarm experiment in simulation, the utilized simulation 
platform must have the following criteria: 

1. It  must support a fully decentralized process in which each robot 
can have its own control system and parameters locally. It is very 
important that each robot in the simulation platform operates in 
a decentralized manner with its own internal controller. Although 
having a central controller can simplify the implementation of a swarm 
experiment, replicating this setup in a real­world scenario would be 
complex especially when dealing with a large number of robots or when 
robots are deployed over vast distances such as 100s of kilometers apart. 

2. It should consider the  physical properties of a real­world robotic 
platform as much as possible, including aspects such as motors and 
gears, friction, mass, power consumption, and more. Nonetheless, it is 
crucial to bear in mind that the ultimate objective is to deploy swarm 
behaviors in real­world scenarios, resolving human problems effectively 
in the practical application phase. Therefore, a realistic simulation of a 
swarm system will allow us to replicate the behaviors of the swarm on 
real robots with minimum effort. 

3. It should replicate the physical properties of the real­world  environ-
ment, such as light, shadow, color, and texture. Similarly to the previous 
case a simulation must be capable of handling environmental conditions 
and replicating physical properties as closely as possible to real­world 
conditions. 

4. The  simulated sensors must be realistic enough to model various 
physical measurements such as velocity, force, position in 2D and 3D, 
and heading angle. However, the real­world implementations always 
include some level of false data due to noise in the sensory system. Hence, 
it is instructive to consider this noise incorporating both systematic and 
random errors. 

5. It should support long­term autonomy and provide enough memory 
and processing power so that a swarm can converge to a stable state. 
This is also important when we implement the swarm behavior using 
real robots that need to work hours and hours before recharging their 
batteries or transferring recorded data to an external storage facility. 

6. Last  but not the least, the simulator must support open­source 
development so that researchers can customize it to fit their applications. 
Commercialized simulation software that lacks support for open­source 
development will not serve as a versatile platform for everyone, from 
early career researchers to established researchers. 
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A CPS swarm simulator must follow these essential criteria to enable a 
reliable swarm experiment and be an attractive simulation platform that 
maximizes replicability. However, the significance of each criterion depends 
on the type of simulation output being planned. For example, in using a 
simulator to act as a 3D space containing particles like robots acting as gas 
molecules, the physical consideration is limited to molecules’ properties rather 
than defining motors and gears. Therefore, we first need to define whether we 
go for an abstract or a physics­based simulation software. 

5.2 Abstract Simulation 

Abstract simulation tools, also known as kinematic­based or particle­based 
simulations, are powerful tools for the conceptual investigation of swarm 
behaviors. However, these simulation platforms do not consider the physical 
properties of the systems; hence, they allocate entire processing power on 
executing inter­agent interactions in a very large­size swarm. One of the early 
swarm simulation examples was Boids model developed by Reynolds [311]. 
The swarm flocking was achieved through three behaviors: I.e., collision 
avoidance, velocity matching, and flock centering. These behaviors were 
implemented with the assumption that individual agents have access to 
the distances and directions of their local neighbors. Other related studies 
proposed mathematical models describing the collective motion of the swarm, 
such as the model proposed by Vicsek et al. [394]. In a very interesting work 
by Schmickl et al. [328], they used an abstract simulation to show a fascinating 
behavior of a life­like system. They simulated thousands of particles in tens of 
thousands of simulation runs to show emerging patterns of artificial cell life 
cycles. In this kind of simulation, each agent is a particle in a 2D or 3D space 
that freely roams and interacts with others. Parameters such as linear and 
angular velocities, radius of sensing, size of the agent, basic dynamic model, 
and more, are yet to be considered in the experiments. In another study, 
Ferrante et al. [116] introduced a self­propelled collective motion mechanism 
using a two­dimensional active elastic sheet (AES) model to simulate swarm 
agents as particles using an abstract simulation. This type of particle­based 
setting was also used to model interaction networks for collective motion [386]. 
The AES model was adopted in other studies and several extensions of 
the model with optimization approaches were implemented using abstract 
simulations [28, 26]. 

Abstract simulation is extensively utilized to explore control engineering 
mechanisms implemented at a theoretical level. These studies are typically 
conducted using general programming platforms such as MATLAB® . For 
example, in [172], a swarm coordination protocol was investigated considering 
the non­linearity of the agents’ dynamics, which mainly focused on the design 
of a robust control system for robotic swarms. In another study focused on the 
robotic shepherding task [171], an abstract simulation of sheep and dogs was 
developed considering the real dynamics of shepherding dogs to the sheep. The 
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Figure 5.1: Example of a shepherding scenario in an abstract simulation. The 
positions of the dogs are shown with blue diamonds and the sheep with red circles. 
The target point is marked by a red star. At the beginning, the dogs were scattered 
around the target area. From 25 to 40 seconds, the sheep were guided towards the 
goal. After 40 seconds, one group of sheep had arrived and the dogs began to assist 
the other flock. At 50 seconds, the two flocks of sheep were combined into one large 
herd and the herding task was completed. 

simulation output offered valuable insights before the actual implementation 
of the robotic system. Figure 5.1 illustrates the shepherding control strategy 
and the agents’ trajectories in an abstract simulation. Similar implementation 
of the theoretical swarm system was also utilized in several research works 
including, formation control [409, 408, 410]. 

Many studies opt for abstract simulation due to the ease of implementing 
swarm systems in this environment. In this chapter, we introduce 
an open­source abstract simulation framework programmed in NetLogo, 
SwarmFabSim [390]. 

5.2.1 SwarmFabSim: A NetLogo Implementation 

NetLogo is a popular agent­based simulation platform widely utilized for 
simulation of self­organized systems in research and education [404]. It is 
a freely available tool that boasts extensive documentation and is actively 
maintained, ensuring a robust and stable code base. NetLogo provides users 
with numerous extensions, further expanding its functionality and versatility 
for various simulation purposes. The simulation software is widely recognized 
for its extensive use in educational settings, particularly for teaching agent­
based modeling and complex systems. However, it is important to note that 
NetLogo is not limited to educational purposes only. It has demonstrated its 
maturity as a platform capable of conducting simulations involving several 

⏎ 
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thousand agents in a reasonable computing time. This has been confirmed 
through studies such as those by Railsback et al. [303] and [302], which 
emphasize the platform’s ability to handle large­scale simulations effectively. 
For our own performance results we refer the reader to Umlauft et al. [390]. 
The NetLogo homepage proudly showcases a vast collection of over 3000 
research papers published in the last decade that have employed NetLogo 
as their simulation platform of choice. This extensive list is a testament 
to the widespread adoption and credibility of NetLogo within the scientific 
community for conducting a diverse range of simulations and research studies. 

NetLogo provides researchers and modelers with an interactive user 
interface, enabling them to easily prototype and experiment with their 
models. Its user­friendly interface allows for intuitive visualization of model 
behavior and dynamics, facilitating the exploration and analysis of simulation 
results. Moreover, NetLogo offers a powerful feature called BehaviorSpace, 
which enables the configuration of batch simulations. Researchers can define 
multiple parameter settings and specify the desired number of replications 
to be run. BehaviorSpace automates the simulation runs, collecting and 
logging the results to files for further analysis. This capability allows efficient 
exploration of different scenarios, sensitivity analysis, and statistical analysis 
of simulation results. The log files generated by NetLogo simulations can be 
easily postprocessed using various tools, including popular statistical analysis 
software such as R or spreadsheet applications such as Excel. Researchers 
have the flexibility to choose their preferred tool for statistical evaluation, 
data visualization, and further analysis. 

Furthermore, NetLogo supports direct integration with other programming 
languages, such as Python. This allows researchers to take advantage of the 
capabilities of Python libraries and tools for data manipulation, analysis, and 
visualization. The seamless integration between NetLogo and Python [151] 
or R [381] allows the use of advanced statistical methods, machine learning 
algorithms, and custom analysis pipelines to gain deeper insights from 
simulation results. Overall, the combination of NetLogo’s log files and its 
interoperability with other programming languages provides researchers with 
a comprehensive toolkit for analyzing and interpreting simulation outputs in 
a flexible and customizable manner. 

In NetLogo, simulations are time­based and operate on a discrete scale 
using ticks. Agents in the simulation are categorized into different types, called 
“breeds”, and these agents can interact with each other in various ways. These 
interactions can occur through direct proximity to a two­dimensional plane 
of patches, through connections defined by a network topology, or indirectly 
through the use of residual information in the environment. 

We implemented the SwarmFabSim simulation framework in NetLogo 
implementing the use case and the modeling approach for swarms in 
production plants as described in Section 3.2. This framework supports 
dispatching and scheduling modes, single­lot oriented and batch machines, 
and an arbitrary number of machine and lot types. SwarmFabSim is a 
modular system comprising multiple code modules that communicate through 
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Figure 5.2: SwarmFabSim: Screenshot of the user interface. ⏎ 

a callback architecture. The user interface, as depicted in Figure 5.2, along 
with the configuration files, enables users to interact and customize the 
SwarmFabSim framework to align with their specific requirements of the 
fabrication model. 

The simulation scenario is defined using a set of plain text configuration 
files: 

META contains the names of MFILE, RFILE, and LFILE config files. This 
file bundles the associated config files together. The name of the META 
config file to be used is set through the “config fname” input field on 
the UI or the BehaviorSpace settings. 

MFILE is a configuration file that encompasses the machine definitions 
within the simulation scenario. For each machine type, denoted as m, 
this file specifies various attributes: 

•  Process ID: It determines the specific process, represented by P m , 
that the machine can perform. 
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•  Number of Machines: It denotes the total count of machines 
available for this particular type. 

•  Processing Time: It indicates the time required for the machine to 
complete a single task. 

•  Batch Size: This parameter defines the number of lots that can be 
processed as a batch. If the batch size is set to one, the machine 
operates in a single­lot orientation. 

•  Maximum Waiting Time: For a batch machine, this value indicates 
the longest time the machine will wait for a batch to be filled before 
starting the process. 

RFILE serves as a repository for all production recipes, denoted as Rt, which 
are utilized for manufacturing various lot types t. These recipes are 
essentially straightforward lists that outline the sequential process steps, 
represented by P m, in the specific order they need to be executed. 

LFILE specifies the production quantities for each lot type t based on their 
corresponding recipe Rt . It defines the number of lots that should be 
produced for each specific lot type, indicating the desired quantity of 
output according to the prescribed recipe. 

The callback architecture depicted in Figure 5.3 is implemented through 
the API defined in the file hooks.nls. The main code invokes a hook 
function contained in hooks.nls whenever an algorithm has the potential 
to perform an action. Subsequently, the corresponding algorithm function 
is invoked from the hook function, enabling the desired functionality to be 
executed. In order to install an algorithm, you need to provide a file named 
“algorithm­name.nls” that implements the algorithm based on the hook API. 
Additionally, you should add the algorithm to the UI chooser labeled as 

Figure 5.3: SwarmFabSim architecture [390]. ⏎ 
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“algorithm” to make it accessible for selection. Furthermore, the algorithm 
functions should be incorporated into the appropriate hook functions within 
the hooks.nls file for callback purposes. It is also possible for algorithms to 
utilize helper functions available in the “helper-api.nls” file to streamline their 
implementation and enhance their functionality. These helper functions offer 
additional functionality and can be leveraged by algorithms to facilitate their 
operations. 

The reader is considered to be aware that while our approach draws 
inspiration from semiconductor manufacturing, it can be easily adapted to 
other industries that employ flexible job-shop scheduling. This adaptability 
is achieved by modifying the configuration files that define the specific 
parameters of the given industry setting. 

The complete NetLogo source code of SwarmFabSim, along with a 
collection of configuration files, is openly accessible in a dedicated GitHub 
repository [389]. Users can freely explore, utilize, and contribute to the 
development of SwarmFabSim through this open-source platform. 

5.3 Physics-based Simulation 

Physics-based simulation considers (all) the physical parameters of a robot 
and the surrounding environment. This type of simulation requires higher 
processing power; hence, a simulation task becomes more complex when the 
population of the swarm is increased. Many simulation platforms support 
physics-based simulation, as mentioned in Table 5.1. ARGoS1 and Webots2 

are two successful platforms that are widely used for swarm robotics 
applications. They generate realistic outputs for multi-robot experiments by 
implementing robot and robot-to-robot physical contact. The main drawback 
of using the physics-based simulation for large swarm experiments is the 
computational complexity and limitations resulting from the memory size 
and processors of the host computer. Although this limits the implementation 
of large population experiments, there are programming techniques that 
reduce the issue, e.g., deactivating visualization of experiments. There 
are many successful implementations of swarm behaviors using physics-
based simulation, such as task allocation [48], self-adaptive communication 
strategy [119], cooperative navigation [95] and swarm controller design [124] 
in ARGoS; collision-free flocking [29] and formation control [169] in Webots; 
aggregation [22] and foraging [2] in Stage; and swarm navigation and collision 
avoidance [264, 309] in Gazebo. 

Most simulation software contains a comprehensive list of libraries for 
commonly used robots; hence, we can easily select a robot from the list and 
use it. Figure 5.4 illustrates an example of mobile robots available on the 
Webots platform. Furthermore, most simulation platforms allow us to define 
a new robot and import the robot’s mechanical design, sensory system, and 

1ARGos website: https://www.argos-sim.info/[Online; accessed: 19-December-2024]. 
2Cyberbotics website: https://cyberbotics.com/[Online; accessed: 19-December-2024]. 

https://www.argos-sim.info/
https://cyberbotics.com/
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Figure 5.4: Physics-based models of some of the available robot libraries in Webots 
software; (left) large and (right) small mobile robots. 

physical properties. For example, in [11], a simulated Mona robot model was 
developed and used to implement an exploration scenario in a swarm system 
(see Figure 5.5). In this example, infrared sensors, DC motors, LEDs, and 
power systems were virtualized and modeled in the simulation. 

(a) (b) 

Figure 5.5: (a) Mona, an open-source, cost-effective robot designed for swarm 
robotics [17], and (b) a virtual model of Mona in Webots [11]. ⏎ 

Another example of importing a new robot into the Webots software 
is shown in Figure 5.6(b). The Colias micro-robot, widely used for swarm 
robotic research, is modeled with great detail. The model is equipped with an 
RGB camera, three IR proximity sensors, and a power system similar to the 
one developed for the real robot. The detailed model shown in Figure 5.6(c) 
is mainly for presentation purposes; therefore, the simulator’s visualization 
function must be deactivated if we need to run experiments with a larger 
number of robots (> 25 robots) on a standard desktop computer. 

Physics-based simulations are increasingly used in more complex 
decentralized swarm systems. Typically they are is used in the form of a 
feasibility study before the swarm controller is tested with real-world robots. 
For example, in Hu et al. [169], a framework for a fault-tolerant Search 

⏎ 
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(a) (b) (c) 

Figure 5.6: (a) Colias, an open-source micro-robot developed for swarm robotic 
applications [19], (b) a virtual model of Colias in Webots and (c) a detailed CAD 
model of Colias. 

& Rescue mission was built with a heterogeneous swarm system. They 
implemented a complex controller to steer the flock and an autonomous 
game-theoretic decision-making algorithm. It is obvious that developing such 
a complex system with a communication network and heavy computation 
directly on real robots is very challenging. Therefore, the physics-based 
simulation, in particular Webots, was chosen to test the proposed system 
by simplifying communication networks and tracking the system using a 
central observer. Figure 5.7 illustrates the scenario proposed in the Webots 
simulation. Other similar studies on formation control of multi-agent systems 
were presented in McCord et al. [241] and in Rekabi et al. [308] that simulated 
large multi-UAV systems in Gazebo. There are many more examples of 
multi-robot systems tested in physics-based simulations prior to real-robot 
implementations. In Aranda et al. [14], a formation control of a multi-UAV was 
simulated in Cobaye software [396], also a physics-based simulator. Another 
study in Baumann and Martinoli [30] proposed a modular framework for 
the navigation of a multi-robot system. The framework was implemented 
in Webots and the swarm robotics platform Khepera-IV. Moreover, for a 
multi-robot path planning system in a robotic manufacturing scenario, an 
optimal sequential task allocation was proposed in Brown et al. [47] which 
was simulated in Webots as well. 

Another research direction in CPS swarms involves multi-vehicle and 
connected vehicle platoons. Recently, numerous studies have focused on the 
control challenges of multi-vehicle systems. These strategies are predominantly 
tested using physics-based simulations. For instance, vehicle fleet target 
tracking [352] has been simulated in CARLA [93], model predictive 
control [400] simulated in Prescan/Matlab/V2X, and Unreal Engine [128] has 
been utilized to simulate overtaking [413] and adaptive cruise control [415] in 
multi-vehicle systems. Figure 5.9 shows examples of multi-vehicle experiments 
using physics-based simulations. 

Moreover, physics-based simulation are widely used for machine learning 
in swarm systems. Training a model using deep reinforcement learning is a 
time-consuming process. The system needs to run for thousands of iterations 

⏎ 
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t = 0 s 

Rescuers Lost robot 

Virtual target 

(a)

t = 10 s 

(b)

t = 20 s 

(c)

t = 30 s 

(d)

t = 40 s 

(e)

t = 50 s 

(f )

Figure 5.7: The Search & Rescue mission began at t = 0 s. Ten seconds later,
rescuers were on their way to the virtual target. At t = 30 s, they had formed a
pentagon around the target. By t = 40 s, the lost robot had been contained and was
being guided home. Unfortunately, two of the rescuers (marked by White crosses)
had stopped working due to an unexpected fault. At t = 50 s, the remaining rescuers
had created a new triangular formation to guide the lost robot back to the starting
point [169]. ⏎ 

Figure 5.8: (a) The system architecture delineating the proposed human-swarm
Interaction utilizing Omnipotent Virtual Giant, as detailed in Jang et al. [178].
Experimental validation showcasing (b) the relocation of holographic objects of
robots and (c) the subsequent movement of real robots towards these relocated
objects. Dashed arrows indicate the remaining trajectory to the target objects.

to train a good model. Therefore, developing models for swarm systems

using real robots can be very difficult and almost impossible due to the

autonomy time of the robotic platforms and their limitations in processing

and memory units. Researchers tend to use physics-based simulation to

train the model before they transfer it to real robots. As an illustration,
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Figure 5.9: Screenshots of simulation examples of multi-vehicle simulations using 
(a) Unreal Engine [414]and (b) Webots [168]. ⏎ 

Hu et al. [170] established an autonomous exploration task employing a 
multi-robot system. In this scenario, a model was trained through deep 
reinforcement learning within the Gazebo simulation environment. Figure 5.10 
illustrates the training phase that has been done in Gazebo and real robot 
experiments with TurtleBot3 robots. A similar study proposed a collective 
navigation and obstacle avoidance system based on a federated reinforcement 
learning approach [268]. It was implemented with real robots, TurtleBot2, 
after the model was developed in Gazebo. In another study, a collision 
avoidance approach was developed in which robots were trained using deep 
reinforcement learning in Stage simulation [108]. A decentralized scenario with 
individual robots that generate paths considering a limited sensory system 
was investigated. There are many successful examples of using physics-based 
simulation for robotic swarm systems, such as human-swarm interaction to 
train artificial neural networks [75] and obstacle avoidance of robot swarms 
using a trained artificial pheromone system [265, 264]. 

(a)

(b)
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Figure 5.10: (a) Gazebo environment for training and (b) real-world experiment 
using three TurtleBot3 Waffle Pi mobile robots [170]. ⏎ 

Physics­based simulations are also combined with real robots in the 
development of mixed­reality missions. In these settings, a larger population 
is usually developed in a simulation software, and a few of these robots 
represent real robots in a real­world setting. A recent work of Jang et 
al. [178] presents an interesting implementation of a mixed­reality human­
swarm interaction where real robots are deployed in the presence of virtual 
robots in a bespoke developed Unity­based simulation platform. A human 
operator supervises a swarm by interacting with simulated robots [139]. An 
additional instance of mixed­reality human­swarm interaction is demonstrated 
in Patel et al. [284, 283], enabling human interaction with the swarm at both 
environmental and swarm levels. 

(a)

(b)
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5.3.1 BeeGround: A Simulation Platform 

BeeGround [229] is an open­source simulation platform developed on the 
Unity Development Engine [127]. The main purpose of developing BeeGround 
was to make a fast and reliable swarm simulation accessible for everyone, 
with the capability of simulating swarm scenarios from a very abstract level 
to advanced detailed physical models. This allows researchers to increase 
and tune the level of modeling as needed. With Unity’s physics engine and 
design interface, a plug­and­play package was developed, allowing researchers 
to implement a swarm scenario and environments of varying sizes, obstacle 
placements, and swarm populations to develop desired swarm controllers. 
Different sensors and other modules can be easily added or removed. The 
actuation mechanism can be altered, or the agent can be swapped out entirely. 
In addition, Unity supports TensorFlow 2.0 integration that expands the 
application of BeeGround for machine learning in swarm robotic systems. 
Figure 5.11 shows a swarm scenario developed using the BeeGround platform 
implementing a cue­based aggregation with a large swarm of Mona robots. 

Before starting a simulation, we can customize the swarm’s behavioral and 
physical parameters. We start by setting up an area where the size, shape, 
and presence of obstacles can be defined to create a variety of scenarios. For 
example, when using the cue­based bio­inspired algorithm, BEECLUST, an 
additional heat map can be loaded that is used by the agents to reference the 
temperature conditions within a region. The swarm parameters provide users 
with the capability to define key aspects such as population size, initial agent 
positions within the arena, and various kinematic constraints. Furthermore, 
integration packages for ROS­Unity facilitate the incorporation of well­
established ROS projects into Unity, allowing for the seamless publication 
and subscription to topics between the two platforms. Detailed programming 
in Unity is not expounded upon here, given the extensive library of learning 
resources within the development engine and the availability of an active 
community for assistance and comprehension. Instead, we provide an overview 
of the components necessary to start and operate BeeGround. 

Robot Modeling: Unity Engine scripts have two main components that form 
the basis of the robot’s controller: A start function and an update function. 
The start function is analogous to the initialization phase of the robot and is 
executed at the start of the simulation. The update function is similar to a 
while loop and is continually executed throughout the simulation. The robot’s 
behavior is determined within this update function. 

We can define a robot by either importing a standard Unified Robotic 
Description Format (URDF) file or constructing one within the Unity 
Environment. Rigid body components can be added to the robot, which will 
be affected by the physics engine. This allows for the application of forces, 
torques, and collisions within the engine’s fixed update function. Joints can 
also be implemented, which enables the creation of wheels and robotic limbs. 
Moreover, sensors such as cameras and range finders can be created using the 
tools provided by the Unity development engine. 
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Arena Configuration: The initial step in configuring the arena is to specify 
its size in standard units. BeeGround will then create a walled­off area with the 
given dimensions. Afterwards, the user can input an occupancy grid to place a 
cubic unit of obstacles in the environment. Furthermore, Unity provides other 
assets that can be used to create more intricate obstacles if desired. 
Swarm Parameters: Bees, which are models of robots, can be created 
from the beginning with adjustable parameters, ranging from abstract to 
physics­based simulation. Instead of the Bee agent, custom robot models can 
be used for swarm generation. Furthermore, BeeGround allows the swarm 
population and placement to be specified, thus enabling some extraordinary 
testing scenarios. 
Simulation Parameters: For ease of use, the length of a simulation and the 
number of repetitions can be specified in this section. Additionally, the speed 
of the simulation can be adjusted while it is running. This feature offers great 
versatility for running extended experiments with multiple repetitions that 
are necessary for statistically analyzing the outcomes. 
Bio­inspired­specific Parameters: The environmental conditions, such as 
humidity, temperature, light, and more are essential for bio­inspired swarm 
robotics scenarios. To create a realistic simulation platform for robotics swarm 
applications, these environmental properties must be incorporated into the 
simulator. For example, a heat map was included in Wang et al. [401] to test 
the honeybee aggregation algorithm in a complex environment. This heat map 
was made up of an array of temperatures that the agents used as a reference 
for their waiting times. We can use multiple layers of these arrays to introduce 
environmental properties from different sources and models. 

We can also create dynamic models of the environmental conditions that 
vary over the course of an experiment. These environmental characteristics 
can interact with the robots, for example, to create a bio­inspired pheromone 
communication system. To log swarm experiments, we record various 
parameters of the agents, such as position and orientation, every second 
to observe the behavior of the swarm over time. The output logs can be 
tailored to the user’s requirements, as other parameters, such as velocities 
and rotations, are accessible through the Unity interface. 

As previously mentioned, faster simulations can be achieved by reducing 
or deactivating the physics, although this comes at the cost of accuracy. 
This allows us to simulate swarm behaviors with thousands of robots, as 
illustrated in Figure 5.12. This capability of running experiments with very 
large swarm populations opens up new research directions that have not been 
explored before. For example, in Kiszli and Arvin [207], a bio­inspired cue­
based aggregation was studied with a large swarm robotic system. It was found 
that the original goal of BEECLUST aggregation could not be generalized as 
a result of a barricade effect observed from experiments with large swarms. 
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Figure 5.11: BeeGround UI featuring arena with a gradient cue with a large 
size swarm. The Object Hierarchy provides an overview of all the elements in the 
environment, such as robots, walls, obstacles, and cues. The Simulation Display 
is a graphical representation of the simulation. The Configuration Window allows 
users to adjust the settings for the BeeGround simulation, including the agents and 
their behavioral parameters. The Asset/Model Folders is a library of all the assets 
related to the simulation. Finally, the Console/Debug Log Window tracks all errors 
or debugging information that occur during the simulation [229]. 

Figure 5.12: An example of BEECLUST aggregation in the BeeGround with 1000 
robots in an environment with a single gradient cue (from [229]). 

⏎ 
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Chapter 6 

Swarm Robotic Platforms  

Numerous robots have been developed for use as swarm robotic platforms, 
such as Spiderino [181] and Colias [19], each tailored for a particular task 
mimicking bio­inspired behaviors and scenarios. Additionally, various general­
purpose mobile robots like e­puck [249] and Thymio [250], have been widely 
employed in robotic swarm applications. Swarm robotic platforms typically 
share common features such as small size, low­cost and a preference for open­
source hardware and software. Furthermore, it is crucial to have versatile 
robots that are easy to program and modular, enabling the re­utilization of 
robots in multi­purpose tasks. We will examine the fundamental capabilities 
and explore the basic functionalities of a swarm robotic platform chosen for 
swarm applications. 

6.1 Sensors 

To interact with the environment and other robots, a reliable sensory system is 
essential for a swarm robotic system. Standard sensors such as short­ and long­
range IR and ultrasonic proximity sensors, as well as low­resolution cameras, 
are commonly used. Long­range IR sensors are especially popular because 
of their simplicity, as they operate by driving a photodiode to transmit and 
reading IR values from a phototransistor as a receiver. These sensors enable 
robots to identify other members of the swarm and distinguish themselves and 
others, from obstacles or other elements in the environment. This capability 
is important for the localization of the swarm [233]. The range of these 
sensors can vary from 10 cm to a few meters, depending on the IR radiance 
intercity (measured in mW/sr, milliwatts per steradian). Reflected IR from 
obstacles, such as walls or other objects follows the fundamental principles of 
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electromagnetic radiation and can be mathematically modeled as, 

α cos θ 
s(x, θ) = + β, (6.1) 

x2 

where s(x, θ) represents the recorded value from the sensor, with x denoting 
the distance of the obstacle from the sensor, and θ indicating the angle 
of incidence with the surface. The variables α and β encompass various 
parameters, including the reflectivity coefficient, the output power of emitted 
IR, the sensitivity of the sensor, and the ambient light effect. These parameters 
are typically estimated empirically. Consequently, white and dark surfaces 
exhibit different ratios of reflection and absorption of IR radiations. This 
distinction is a critical consideration when devising an experimental setup 
for a swarm system. In swarm robotics, understanding the surrounding 
environment is a crucial requirement for a robot. They need to detect 
neighboring robots before an interaction starts; hence, several sensors are 
placed around a robot. As an example, Figure 6.1 illustrates the sensory 
reading of the Colias micro-robot that detected another robot in front. The 
varying intensity of the IR readings from multiple receivers enables the robot 
to estimate the relative position and orientation of neighboring robots using 
the following equation: 

 ns

ϕ = atan 









 

ŝi sin(γi) 
i=1 
ns

ŝi cos(γi) 
i=1 









 
, (6.2) 

where ϕ is the estimated bearing of a neighbor, ns is the number of sensors 
used by the robot, γi is the angular distance of the ith sensor with respect 
to the robot’s head, and ŝi is the IR intensity received by the sensor i. By 
employing simple data analysis on the robot’s microcontroller, the robot can 
detect neighboring robots and estimate their position and bearing. 

In addition to IR proximity sensors, existing swarm robotic platforms are 
also equipped with various off-the-shelf sensors, They have been used as cue 
markers which measure, which measure ambient light illumination have been 
particularly popular. They have been used as cue markers in in honeybee 
aggregation [329] and to simulate pheromone trails in ant-like exploration [18]. 
The more sophisticated version can also read RGB colors (as shown in 
Figure 6.2), which facilitates implementing multi-layer pheromone systems, as 
demonstrated by Liu et al. [231]. More details about the pheromone system 
and its implementation for swarm robotics will be discussed later in this 
chapter. 

6.2 Actuators 

Swarm robotic platforms employ various types of actuation mechanisms 
that have been used to actuate swarm robotic platforms. For instance, 
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Figure 6.1: An example of a swarm robotic platform, equipped with six IR sensors, 
where Robot A receives IR from Robot B that has a 0◦ orientation (from [19]). 

Figure 6.2: An example of a multi-layer pheromone system (from [231]). 

Spiderino [181] uses six legs for walking on the floor, Kilobots [316] move 
on smooth surfaces by vibrating their three legs, UAVs in the CoCoRo 
project [330] used thrusters for underwater swimming, and drones in 
Crazyswarm [293] use propellers for flight. However, due to their simplicity 
of control, wheeled robots are the most common actuation mechanism in 
swarm robotics. There are also hybrid mechanisms such as tracks and wheels 
developed by Mondada et al. [252], so called treels, that make navigation 
simpler and smoother. 

In terms of wheeled robots, there are various types of wheels 
configurations such as differential drive (two and four wheels), car­type 
steering, omnidirectional and synchronous drive, among others. Due to the 
mechanical and control simplicity of the two­wheel robots, many swarm 

⏎ 

⏎ 
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robotic platforms have two wheels with a differential drive steering mechanism, 
which controls the trajectory of the robot by controlling the left and right 
wheel independently. 

6.3 Communication 

There are various types of communication used for swarm robotic platforms, 
direct communications using, e.g., IR, Wi­Fi, Bluetooth as communication 
technology to send specific messages, and implicit communication, commu-
nication over the environment, for example, pheromone­based. The direct 
form of communications is implemented by: (i) One­to­one, where a robot can 
directly talk to another robot and share information, (ii) one­to­many, where a 
robot can broadcast its messages to many individuals (leader to followers), (iii) 
many­to­one, where several robots communicate with an individual (followers 
to leader), and (iv) many­to­many, where swarm members communicate with 
each other without having a priority between them. As passing messages are 
always very specific to the underlying communication technology, we will focus 
on stigmergic, pheromone­based communication in the next section. 

6.3.1 Pheromone-based Communication 

Pheromones are a chemical substance that are detected by members of the 
same species, causing them to act in a certain way [194]. These substances 
play a vital role in facilitating communication among a diverse array of 
organisms, ranging from yeast and insects to mammals. Vertebrates have been 
discovered to use pheromone­based communication. Research has revealed 
that humans can experience physiological and psychological reactions due to 
chemosignals [263]. Many animals rely on pheromones as their main form of 
communication, but, to the best of our knowledge and the swarm perspective, 
social insects make the most out of this method. Pheromones enable extensive 
communication among a group of insects, creating a shared memory­like 
effect. Moreover, the utilization of pheromones serves to optimize the collective 
behavior of social insect groups. For instance, ants employ pheromones and 
feedback systems to efficiently locate the shortest route from their nest to a 
food source. 

As an example of pheromone­based communication in social insects, 
Monomorium pharaonis called Pharaoh’s ants, which are usually found in 
human habitats, use multiple types of pheromones that are important for 
their foraging behavior in dynamic and competitive environments [177]. For 
example, they generate a complex combination of pheromone trails between 
the food source and the nest using three distinct types of pheromones (i) non-
volatile attractive pheromones, (ii) volatile attractive pheromones, and (iii) 
repellent pheromones. In another example, bumblebees, Bombus hortorum, 
leave chemical cues on flowers that allow detection and avoidance of recently 
depleted flowers [103]. Similarly, chemical cues enhance the efficiency of bee 
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colonies’ foraging behaviors, as they prevent meaningless visits to depleted 
flowers. Another type of pheromones in nature are queen pheromones that 
characterize the queen and other members, which are essential to maintain 
the colony. For example, if the queen fails for any reason, including viruses 
and pesticides, the secretion of the queen pheromone in the colony decreases, 
causing the colony to collapse [365]. 

Pheromones in Robotics 

Pheromone­based communication is one of the bio­inspired communication 
mechanisms widely used in swarm robotics. It requires a simple capability 
for an individual robot since it only needs local sensing. Additionally, the 
environment plays the role of memory; hence, individuals only need to have 
limited local memory. Moreover, we can optimize the performance of a swarm 
system using a combination of multiple types of pheromones and feedback 
mechanisms. And, most importantly, the system is fully decentralized without 
requiring a central control. 

One of the first works inspired by pheromone communication was 
introduced by Russell [318]. This work used cinnamon camphora, known 
as Camphor, as the implementation of trail pheromones for trail 
following behaviors for robotic systems, which embodied odor release and 
detection functionalities. It showed the applicability of pheromone­based 
communication in robotic systems. In another research work [125], they used 
ethanol to simulate a pheromone for the robotic system. 

Furthermore, numerous studies have suggested robotic systems that 
leverage Radio­Frequency Identification (RFID) tags as a medium for 
pheromonal communication [7, 159, 202]. RFID tags were attached to the 
floor where the robots operate. The tags store data transmitted by the 
robots passing above and eliciting the corresponding behavior depending on 
its nature. This principle works like pheromones in nature. Recent studies 
have involved virtual environments in implementing artificial pheromones for 
the communication of swarm robotic systems. As an illustration, Campo 
et al. [54] introduced a mechanism for path selection in a foraging robot 
swarm employing virtual ants. In this approach, robots engaged in local 
transmission and reception of messages. Although this work implemented 
virtual pheromones only within robots, the other works created a virtual 
map to mark the deposited pheromones accessible to all robots [307, 317]. 
The robots are outfitted with virtual sensors, accessing shared virtual 
environments among all robots, which incorporate overhead tracking and 
control. There are many interesting implementations of artificial pheromone 
communications, for instance, Kilogrid [391] developed for Kilobot micro­
robot, Phormica [321] implemented with e­puck. Several researchers have 
implemented pheromone­based communications by various means. Garnier 
et al. [131] simulated pheromones by projecting light from a ceiling mounted 
video projector. 



89 Swarm Robotic Platforms 

Figure 6.3: On the left is the Colias micro-robot and on the right is the Colias 
bottom board, featuring pheromone sensing capability. Various modules of Colias 
include A) main processor, B) IR proximity sensors, C) digital camera, D) micro-
motors with gearhead, E) 22 mm wheels, F) pheromone detectors (light intensity 
sensors), G) battery recharging unit, H) main switch, and J) ISP programming port 
(from [266]). 

COSΦ is an open-source artificial pheromone system for swarm robotics 
that uses light-based pheromone trails [18]. The utilization of an LCD screen 
served as the arena for robots to engage with pheromones, visually represented 
as illuminated spots on the screen. Through a tracking system facilitated by a 
camera positioned above the arena, the system continually updated the robots’ 
position, orientation, and ID, generating virtual pheromones in response. 
COSΦ offers several advantages: (i) It boasts a notably high resolution 
for pheromone implementation in comparison to other approaches, (ii) its 
highly flexible nature allows for the implementation of diverse environments, 
including variations in pheromone trail thickness, evaporation rate, and 
diffusion, and (iii) it employs a cost-effective configuration featuring a basic 
digital camera [212]. A flat LCD screen enhances the accessibility for a wide 
range of researchers. The Colias microrobot [19], shown in Figure 6.3, was 
deployed for the implementation of artificial pheromone communication. It 
has been extended in several studies [267, 231, 266] to include diffusion, wind 
effect, multi-layer pheromones, which are phenomena almost ever present in 
nature. Figure 6.4 illustrates a cue-based aggregation scenario in the presence 
of pheromones implemented by an artificial pheromone communication. 

Artificial Pheromone System 

The artificial pheromone system COSΦ comprises two integral components: A 
pheromone system and a tracking system. The pheromone system calculates 
and displays the pheromone on a flat LCD screen that is placed horizontally, 
representing the environment in which the robots are operating [18]. The 
tracking system tracks the robots and sends their data to the pheromone 
system [212]. An example of an artificial pheromone environment with real-
world mobile robots is shown in Figure 6.5. 

⏎ 
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Figure 6.4: The first row presents sample experiments conducted without diffusion
and with fast cue speed, devoid of pheromone injection. In contrast, the second
row illustrates sample experiments conducted with diffusion and fast cue speed,
incorporating pheromone injection, captured at time instances t = 0 s, t = 100 s,
and t = 200 s from left to right (from [266]).

The pheromone system models multiple types of artificial pheromones
and their interactions simultaneously. The brightness of a grayscale image
is represented as I1, which is a two-dimensional matrix with the size of
the resolution of the LCD screen. It is determined by Φ, which is a two-
dimensional matrix of the same size as I that represents the intensity of
the pheromone. Each element of I is equivalent to the brightness of the
corresponding pixel. The brightness of the image at position (x, y), I(x, y),
is expressed with

 

n

I(x, y) = ciΦi(x, y). (6.3)
i=1

The intensity of the ith pheromone at position (x, y) is represented by
Φi(x, y), and ci is the influence of the ith pheromone on the screen. I(x, y)
is calculated by multiplying Φi(x, y) and ci and summing them up, which
means that n pheromones can be overlapped. To illustrate how the model
works, the combination of three different pheromones with different effects on
the screen can be displayed on a single-pixel after the calculation of I(x, y)
using Equation 6.3.

During the operation of the system, the amount of pheromones released
on the screen is continuously adjusted at discrete intervals. The intensity of
the modified pheromone is expressed with

k+1 grad k ln(2)
Φi (x, y) =− u · Φi (x, y)− Φ k

e i (x, y)
iΦ (6.4)

grad k+ κi∇ Φi (x, y) + ιi(x, y).

In the given expression, Φk+1
i (x, y) denotes the intensity of the ith

pheromone at discrete time k + 1, while Φk
i (x, y) represents the intensity

1Bold font parameters in this section indicate two-dimensional vector.

⏎ 
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Figure 6.5: The experimental setup employed for the pheromone system in Na et 
al. [266] encompasses a PC dedicated to tracking robots and generating pheromones, 
a digital camera for monitoring robot positions, a horizontally positioned 42” LCD 
screen, an aluminum frame encircling the arena, and the presence of Colias mobile 
robots. 

grad kof the ith pheromone at discrete time k. The quantity Φ (x, y) is ai 

two­dimensional vector describing the gradient of pheromone intensity at 
the position (x, y) and is defined mathematically by Equation 6.5. The 
symbol u signifies the velocity vector responsible for linearly shifting the 
pheromone across the arena. The term eiΦ governs the evaporation rate 
of the ith pheromone and is characterized by its half­life, κi denotes the 
diffusion constant of the ith pheromone, and ιi(x, y) corresponds to a newly 
injected pheromone at the position (x, y) on the screen. The spatio­temporal 
development pheromone intensity model is derived from a simplified version 
of the Navier­Stokes equation, representing the fluid flow model. 

grad k Φi
k(x + 1, y) − Φi

k(x − 1, y)
Φ (x, y) = i+i 2 (6.5)

Φ k(x, y + 1) − Φ k(x, y − 1)i i j. 
2 

By recalculating Equation 6.4 for each value of (x, y), it is possible to compute 
new pheromone intensities from their prior states, which consequently 
determine the new pixel values of the grayscale image displayed on the screen. 

The parameters on the right­hand side of Equation 6.4 can be 
divided into two categories: Environmental effects and pheromone injection. 
Environmental effects, such as evaporation rate eΦ, diffusion constant κ, 
and velocity vector u (where i is omitted to generalize), have a constant 
influence on the pheromone released in the arena while the system is running. 
In contrast, the injection of pheromone ι(x, y) only affects the intensity of 

⏎ 
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pheromone in the arena when certain conditions are met, such as when robots
stop. Under these conditions, the pheromone is injected in a circular shape
with a given intensity. The injection of pheromone ιi(x, y) is defined as

{

√

sΦ, if (x− xr)2 + (y − yr)2 ≤ lΦ/2
ιi(x, y) = (6.6)

0, otherwise

where (xr, yr) respectively represent coordinates of a robot and (x, y) the
position of the pheromones in the arena, sΦ is the intensity of injected
pheromone at a time, and lΦ is the diameter of injected pheromone. In a
circle with a diameter of lΦ, where the center of the circle is positioned at the
robot’s coordinates (xr, yr), pheromone is uniformly injected at a rate of sΦ.

Environmental Effects on Pheromones

The versatility of the system is enhanced by environmental effects, which
enable it to replicate realistic conditions that influence the spread of
pheromones in the environment over time.

Evaporation is the transformation of a liquid’s surface into a gas. Volatile
chemicals, such as pheromones, evaporate as well. In various studies on the
kinetic properties of pheromones, the half-life of the pheromone is used as a
measure [398]. This is the amount of time it takes for the pheromone to reduce
by half, denoted as eiΦ in Equation 6.4.

Diffusion is the process by which molecules move from a region of higher
concentration to a region of lower concentration. Incorporating diffusion
into the pheromone system is essential for realism, as the diffusion of
pheromones significantly influences swarm behavior. Therefore, instead of
using the mathematical definition of diffusion, κi ▽

2 Φi(x, y), Gaussian blur
is employed to simulate diffusion. This approach has the benefit of being able
to replicate faster diffusion with fewer computational resources. The intensity
of pheromone at the position (x, y) after application of the Gaussian blur is
given by

Φk+1
( )

i
(x, y) = ω ∗Φk

i
(x, y) =

 

a
 

b (6.7)
ω(s, t)Φk

i
(x− s, y − t),

s=−a t=−b

where Φk+1
i (x, y) is the intensity of the ith pheromone at the discrete time

k+1, Φk
i (x, y) is the intensity of the ith pheromone at the discrete time k and

ω is a two dimensional kernel matrix with a size of (2a+1)× (2b+1) defined
as

1 2 2x +y

ω(x, y) = e− 22σ , w ∈ ×
πσ2

R
2a+1 2b+1, (6.8)

2

where σ is a standard deviation of the Gaussian distribution of the kernel
matrix. Equation 6.8 indicates that the elements of ω are determined by
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the Gaussian distribution. This blur technique is advantageous due to its 
computational efficiency, as well as its capacity to provide more intuitive 
control of the diffusion rate and area. Integrating Gaussian blur into the 
pheromone system aligns with diffusion properties for two key reasons in the 
context of our study: (i) Gaussian blur results in a decrease in the higher 
intensity of pheromone and an increase in the lower intensity, and (ii) the total 
pheromone quantity remains constant following each computational step. 

Pheromone Shift changes the position of the released pheromone in real 
and dynamic settings. Advection, which is the movement of any fluid, such as 
air, that carries pheromone from one place to another, is a natural cause of this 
shift. The flow of the released pheromone in the same direction is represented 
by u · ∇Φ(x, y). The two­dimensional velocity vector is expressed with 

∂Φi(x, y) ∂Φi(x, y) 
u · ∇Φi(x, y) = ux · + uy · , (6.9)

∂x ∂y 

where ux, uy respectively represents the speed along x­axis and y­axis. 
The use of pheromones in swarm systems as a communication mechanism 

offers scalability of collective behaviors without the need for direct 
communication between agents. For example, a single ant and a large swarm 
of ants can use the same pheromone trail to forage without increasing 
communication costs. This technique has found application in diverse research 
domains, including optimization [87], vehicle routing [361], and robotics [54, 
391, 321, 266]. However, there are still some challenges to overcome before 
pheromone­based communication can be widely adopted, such as designing 
controllers for individual agents that can maximize the performance of the 
entire swarm [91]. 

Swarm robotic systems that employ pheromone­based communication 
demonstrate advanced collective behaviors suitable for real­world applications. 
For example, in Alfeo et al. [7], a vehicle swarm effectively manages waste 
in a simulated urban setting, surpassing traditional methods. Furthermore, 
pheromone­based communication is proposed as an optimal solution to 
manage large­scale autonomous vehicle traffic with a focus on avoiding 
collisions [265]. Such systems have also been adapted for urban construction 
scenarios [9]. Beyond these studies, numerous other practical applications of 
pheromone­based communication are emerging, where complex coordination 
of large­scale swarm robotic systems are required. 

6.4 Swarm Robotic Research Platforms 

The collective behavior of a swarm emerges from interactions between simple 
robots that simultaneously has an indirect relationship with the behavior of 
each individual robot of the swarm. It is observed that a simple modification 
of an individual’s behavior (such as velocity and sensitivity) could result in a 
significant positive or negative impact on the collective behavior of the swarm 
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system. These can happen due to both hardware and software heterogeneity. 
The robotic platforms developed for a swarm system must be able to reliably 
imitate swarm behaviors which are mainly found in nature, such as birds 
flocking [385] and honeybees aggregation [329]. The robots must be designed 
with a compact size allowing implementation of large­scale swarm behaviors in 
the laboratory settings at low cost. To implement a variety of swarm behaviors 
on the individual robots, the design of the the robotic platform mechatronics 
must be versatile up to a specific level to (i) simplify replication and (ii) ensure 
platform homogeneity. 

In the subsequent sections, we present a compilation of swarm robotic 
platforms utilized in research and education (refer to Table 6.1). These 
platforms have been specifically designed for swarm robotics applications 
or are commonly employed to implement swarm behaviors. The table is 
structured as follows: Entries are categorized based on the environment in 
which they operate, terrestrial, aerial, aquatic, and/or space. Each entry 
includes information on the type of application, the project or product name, 
the robot type, the swarm size (typically reflecting the number of robots 
used in the referenced evaluation), and the fundamental swarm behaviors 
corresponding to the definitions outlined in Section 4.1. We differentiate 
between various types of swarm robotic platforms including UGV, UAV, 
Unmanned Surface Vehicle (USV), or Unmanned Underwater Vehicle (UUV). 
The table and the explanation is an updated and extended version from 
Schranz et al. [337]. Be aware that other, probably more sophisticated 
robotic research platforms exist, which are not included. In this table 
and corresponding sections we focus only on platforms developed with the 
intention of using them in swarm robotic applications, specifically for research 
and education. 

6.4.1 Terrestrial 

The probably best known swarm of robots is the Kilobots swarm [316]. 
Kilobots have a diameter of only 33 mm, they move with the help of vibration 
motors, and the communication is implemented with IR light mounted on the 
bottom of the robot to reflect off the ground. Their most famous application 
is self­assembling, where they form different shapes using 1,024 Kilobots [412]. 
The Kilobot is available open­source2 or commercially at K­Team3 . 

Another widely used swarm robotic platform is Jasmine. Also this 
plattform is available open­source4. It was mainly built for large­scale swarm 
robotic experiments, where each robot is equipped with a set of sensors 
for touch, proximity, distance, and color. A similar aim regarding large­
scale swarms was also actively pursued with the swarm robotic platform 
Alice [55]. A bunch of additional sensors, such as linear cameras extend the 

2Kilobot website: http://www.kilobotics.com/ [Online; accessed 26­March­2023]. 
3K­Team website: https://www.k­team.com/ [Online; accessed 26­March­2023]. 
4Jasmine website: http://www.swarmrobot.org/ [Online; accessed 26­March­2023]. 

http://www.kilobotics.com/
https://www.k-team.com/
http://www.swarmrobot.org/
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basic capabilities. A series of research platforms building upon each other is 
given with AMiR [20], Colias [19] (open­source5 and commercially6 available), 
and Mona [24] (open­source7 and commercially8 available). The platform R­
One [242] is also designed for usage as a swarm robotic platform. As a support 
for close to swarm intelligence experiments it uses a camera tracking system for 
ground­truth localization and a server­side located software connecting all the 
pieces. The Elisa­3 swarm robotic platform, open­source and commercially9 

available, uses an Arduino microcontroller, including a large variety of sensors 
including eight IR proximity sensors, three­axis accelerometer, and four 
ground sensors. The swarm robotic platform has the capability to recharge 
autonomously using a charging station. The communication in the swarm is 
performed either via IR or radio. The Khepera IV [355] is designed for any 
indoor lab application. The technical features including a Linux core, color 
camera, WLAN, Bluetooth, USB Host, accelerometer, gyroscope, microphone, 
loudspeaker, three top RGB LEDs, and improved odometry makes this swarm 
robotic platform a compact and complete research platform for swarms in 
different scenarios. The Khepera IV is commercially available at K­Team10 . 
The GRITSbot [288] is the open­source11 swarm robotic platform used in 
the Robotarium12 at Georgia Tech, Atlanta. The Robotarium is a physical 
environment that provides remote access to a large swarm of robots. Scholars, 
researchers and anybody interested in this topic can upload code to run 
experiments remotely. Coming with features like automatic registration of 
robots with a server, autonomous charging, wireless code upload to the robots, 
and automatic sensor calibration makes the Robotarium attractive for remote 
research experiments. The swarm robotic platforms in the Robotarium use 
wheeled locomotion and are equipped with a set of different sensors, for 
example, distance and light sensors. 

The e­puck robot [249], together with its successor e­puck2, represent an 
educational and research robot designed to ease programming and control of 
a robot’s behaviors. It uses diverse sensors, such as IR proximity sensors, a 
CMOS camera, and a microphone. The e­puck is available open­source13 or 

5Colias open source website: https://github.com/Farshad­Arvin/Mona­Platform/ 
blob/master/Mona­Test.ino [Online; accessed 26­March­2023]. 

6Colias commercial website: http://www.visomorphic.com/ [Online; accessed 26­March-
2023]. 

7Mona open source website: https://github.com/MonaRobot [Online; accessed 26-
March­2023]. 

8Mona commercial website: https://ice9robotics.co.uk/ [Online; accessed 26­March-
2023]. 

9Elisa­3 website: https://www.gctronic.com/doc/index.php/Elisa­3 [Online; accessed 
26­March­2023]. 

10K­Team website: https://www.k­team.com/ [Online; accessed 26­March­2023]. 
11GRITSbot website: https://github.com/robotarium/gritsbot_2 [Online; accessed 26-

March­2023]. 
12Robotarium website: https://www.robotarium.gatech.edu/ [Online; accessed 26-

March­2023]. 
13e­puck open source website: http://www.e­puck.org/ [Online; accessed 26­March-

2023]. 

https://github.com/farshad-arvin/mona-platform/blob/master/Mona-Test.ino
http://www.visomorphic.com/
https://github.com/monarobot
https://ice9robotics.co.uk/
https://www.gctronic.com/doc/index.php/elisa-3
https://www.k-team.com/
https://github.com/robotarium/gritsbot_2
https://www.robotarium.gatech.edu/
http://www.e-puck.org/
https://github.com/farshad-arvin/mona-platform/blob/master/Mona-Test.ino
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commercially at GCtronic14. An extension of the e­puck presents the Xpuck. 
It has additional aggregated raw processing power (as used in modern mobile 
system­on­chip devices) of two teraflops on board. Thus, higher­individual 
robot computation can be achieved, for instance, image processing using 
the ArUco Marker tracking [187]. The Thymio II robot [312] is built on 
understanding of programming and robotic concepts by using a wide range 
of sensors, e.g., temperature, IR distance, accelerometer, and microphone. 
It supports both, visual and text­based programming using Blocky. The 
Thymio II is available both open­source and commercially15. Another platform 
for open­source16 swarm robotics development for education and research 
purposes is called Pheeno [406]. Custom modules allow the adaption of the 
platform according to the user’s needs. Using IR sensors, it interacts with the 
environment. The Spiderino platform [181] is a six­legged open­source17 robot 
with spider­like locomotion. The basis forms a hexpod toy that is additionally 
enhanced with a PCB on top. This Printed Circuit Board (PCB) includes an 
Arduino microcontroller, a WLAN module, and several reflective IR sensors 
to allow robot control. 

In the project I­Swarm (Intelligent Small­World Autonomous Robots for 
Micro­manipulation) the goal is to develop micro robots to form a swarm. The 
robot has a small size of only 3 × 3 × 3 mm3, it is battery­free powered with 
solar energy, uses vibration motors to perform locomotion, and IR transceivers 
for communication [347]. The goal was to build a swarm of 1000 robots [347]. 
The robot’s prototypes are exhibited in the technical museum in Munich, 
Germany. 

The idea behind the open­source swarm robotics platform Zooids18 

is different: It handles both the interaction among the robots and the 
display/interaction to human operators. Thus, it offers a new class of human­
computer interfaces. The control of the swarm is performed through light 
patterns projected from the top using an overhead projector [223]. The APIS19 

(Adaptable Platform for Interactive Swarm) has multiple components: The 
swarm robotic platforms, the test environment for the swarm including the 
necessary infrastructure, and the simulation framework [82]. The focus is on 
experiments related to human­swarm interaction. For such interactions, the 
robotic platforms are equipped with an additional OLED display and a buzzer. 
The Wanda [201] platform follows a special composition that could be used, 
for instance, to clean up the environment with a swarm. In addition, the 
authors implemented a robot­specific tool chain from design, simulation to 

14e­puck commercial website: https://www.gctronic.com/e­puck.php [Online; accessed 
26­March­2023]. 

15Thymio website: https://www.thymio.org [Online; accessed 26­March­2023]. 
16Pheeno website: https://discourse.ros.org/t/pheeno­a­low­cost­ros­compatible-

swarm­robotic­platform/2698 [Online; accessed 26­March­2023]. 
17Spiderino website: https://spiderino.nes.aau.at [Online; accessed 26­March­2023]. 
18Zooids website: https://github.com/ShapeLab/SwarmUI [Online; accessed 26­March-

2023]. 
19APIS website: https://github.com/wvu­irl/reu­swarm­ros (software only) [Online; 

accessed 26­March­2023]. 

https://www.gctronic.com/e-puck.php
https://www.thymio.org
https://discourse.ros.org/t/pheeno-a-low-cost-ros-compatibles-warm-robotic-platform/2698
https://spiderino.nes.aau.at
https://github.com/shapelab/swarmui
https://github.com/wvu-irl/reu-swarm-ros
https://discourse.ros.org/t/pheeno-a-low-cost-ros-compatibles-warm-robotic-platform/2698
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deployment. Another wheeled robot is the Mechalino, that will be available 
open­source under Github20. Mechalino is a robot built from 3D­printed and 
commercial­off­the­shelf components. It is small and low­cost, but also very 
modular concept, allowing for extending the platform with extra sensors, 
actuators or computational capabilities if needed. 

In the swarm logistics domain the authors in Jones et al. [186] built the 
DOT, a swarm robotic platform that is remotely accessible and comes with 
a complete toolchain to develop, simulate, and deploy code on the platform. 
In addition, to 5G and multiple cameras, it comes with a lifting platform 
on top. The WsBot [230] is another experimental platform for Industry 4.0 
applications with a wireless charge system. It is manly designed with forklifts 
to achieve intelligent behaviors individually or in groups, where all agents are 
interconnected over Wi­Fi. The Milli­Robot [167] is equipped with magnetic 
hardware with up to 288 degrees of freedom and is proposed for general 
swarm robotic research activities. The authors introduce random dithering 
and argue to achieve a 100% success rate (i.e., no deadlocking). Another 
swarm robotic platform is the mROBerTO 2.0 [106] limited in size equipped 
with a locomotion mechanism that utilizes stepper motors to foucs on complex 
trajectories. This allows the robot to micro­step down to 1/32 of a full step. 

The Droplet [208] is a swarm robotic platform for teaching and research. 
The spherical robot is able to organize and cluster into complex shapes with 
its neighbors. They use vibration motors for their locomotion. A specialty 
is that the robotic platforms charge and communicate via a powered floor 
that is equipped with alternating stripes of positive charge and ground. It 
is available as an open­source project21 . The Swarm­bots [253, 149] can 
assemble themselves to different geometric 3D shapes. The robots are built by 
a number of simpler, insect­like robots that use relatively cheap components 
(the design is open­source22). These robots can perform self­assembly and 
self­organization to adapt to the current situation in their environment. This 
assembling capability allows the robots in swarm formation to transport 
objects that would be too heavy for an individual robot. The follow­up 
project of the Swarm­bots is the Swarmanoid project. This project counts 
as the very first attempt to study the integration of design, development, and 
control of a swarm of heterogeneous, open­source23 swarm robotic platforms. 
The swarm in the Swarmanoid project presents three different types of 
autonomous robots, each equipped with various sensors: i) Eye­bots are 
UAVs that have the ability to attach to an indoor ceiling, ii) hand­bots 
are UGVs that are able to climb, and iii) foot­bots are UGVs that have 
a self­assembling capability [89]. The ARGroHBotS [277] is another swarm 
robotic platform where the user can adjust parts of the hardware (mainly 

20Mechalino Github page: https://github.com/smartgrids­aau/Mechalino_Arena [On-
line; accessed 26­March­2023]. 

21Droplet website: https://code.google.com/archive/p/cu­droplet/ [Online; accessed 
26­March­2023]. 

22Swarm­bots website: http://www.swarm­bots.org/ [Online; accessed 26­March­2023]. 
23Swarmanoid website: http://www.swarmanoid.org/ [Online; accessed 26­March­2023]. 

https://github.com/smartgrids-aau/mechalino_arena
https://code.google.com/archive/p/cu-droplet/
http://www.swarm-bots.org/
http://www.swarmanoid.org/
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3D printed pieces) to set it up for specific implementations. Additionally, 
the platforms allow remote access. The Termes robots [286] use modular 
blocks and create large structures without communication or GPS localization. 
They utilize the concept of stigmergy that is inspired by the way living 
termites build their nests. The Termes robots themselves have the abilities 
to climb and carry blocks to create these structures in unstructured, rough 
environments. Symbrion and Replicator [199] are two sibling projects, that 
develop autonomous swarm robotic platforms. They can be used as single 
entities or can be physically connected to form special patterns. The main 
goal of these projects was to focus on the possibility to achieve evolvability 
of robot organisms. PolyBots [96] are self­reconfigurable robots. They have 
various types of locomotion options and object manipulation modules that 
are interchangeable to form a number of shapes, for example, an earthworm 
type to slither through obstacles, or a spider to stride over hilly terrain. These 
robots find application especially in unknown environments or multiple task 
challenges. Further modular robots that allow self­configuration with similar 
robotic technologies include M­TRAN [261], M­TRAN II [217] and M­TRAN 

24III [218] (available as open­source project), ATRON [46], CONRO [57], 
Sambot [403], Molecube [429], Puzzlebot [420], to name a few25 . 

Finally, a remarkable new field of the application of swarm robotic 
platforms is the acoustic swarm [176] that creates speech zones representing a 
self­distributing wireless microphone array. In their experiments the authors 
showed that their swarm is able to localize and separate three to five 
concurrent speech sources without the usage of external infrastructure (such 
as a camera system). 

6.4.2 Aerial 

There are already multiple miniature UAVs available that form a good basis 
for research in aerial swarm robotic systems. A comprehensive overview of such 
small­scale UAVs can be found in Cai et al. [50] and Swetha et al. [373]. Off­
the­shelf Micro Air Vehicles (MAVs) are available in a wide range of models 
and are widely used in the gaming industry, and other businesses for video 
and photography. Unfortunately, their flight controllers are typically closed so 
that we cannot develop and test custom algorithms (e.g., Qualcomm Flight 
Pro26, DJI M10027). A UAV that is designed specifically for usage in swarms 
is the MAV presented by Roberts et al. [313]. These UAVs are equipped with 
three rate gyroscopes, three accelerometers, one ultrasonic sensor, and four 
IR sensors. It has been co­developed in the Swarmanoid project [89]. In the 

24M­TRAN website: https://www.wevolver.com/wevolver.staff/m­tran [Online; ac-
cessed 26­March­2023]. 

25For a full list, the reader is referred to https://en.wikipedia.org/wiki/ 
Self­reconfiguring_modular_robot [Online; accessed 26­March­2023]. 

26Qualcomm Flight Pro website: https://www.lantronix.com/products/ 
qualcomm­flight­pro­development­kit/ [Online; accessed 26­March­2023]. 

27DJI M100 website: https://www.dji.com/at/matrice100/info\#specs [Online; ac-
cessed 26­March­2023]. 

https://www.wevolver.com/wevolver.staff/m-tran
https://en.wikipedia.org/wiki/Self-reconfiguring_modular_robot
https://www.lantronix.com/products/qualcomm-flight-pro-development-kit/
https://www.dji.com/at/matrice100/info\#specs
https://en.wikipedia.org/wiki/Self-reconfiguring_modular_robot
https://www.lantronix.com/products/qualcomm-flight-pro-development-kit/
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Distributed Flight Array [280] each UAV makes up a module of a larger array, 
but has only a single rotor. The individual modules are able to self­assemble 
to form a multi­rotor system, where all vehicles must cooperate constantly 
for a coordinated flight. To achieve this behavior, they exchange information 
among each other and, using the neighbor’s information, they adjust local 
parameters. The Crazyflies, available both open­source and commercially28 , 
are used to realize a swarm of UAVs indoors. They are equipped with multiple 
sensors, e.g., accelerometer, gyroscope, magnetometer, and a high precision 
pressure sensor [293]. They have quite a low weight of 27 g that reduces danger 
for humans during the experiments. For the localization the Crazyflies need 
an external tracking system such as OptiTrack29. Another indoor swarm can 
be build with the FINken­III [158]30 and its predecessors. They are equipped 
with optical flow, IR distance, and a tower of four sonar ranging sensors. 

6.4.3 Aquatic 

In the CoCoRo (Collective Cognitive Robotics) project [330] a huge swarm 
of 41 heterogeneous UUVs has been developed. For the experiments they 
use three types of vehicles: A base station USV, an exploration UUV, and a 
UUV for relaying information between the base station and the explorers. 
Communication is achieved using sonar and electric fields. The primary 
envisioned applications include environmental monitoring, assessing water 
pollution and evaluating the effects of global warming. The UUV Monsun [278] 
uses two different types of communication: An acoustic underwater modem 
for information exchange and a camera to recognize and follow other 
swarm members. The CORATAM (Control of Aquatic Drones for Maritime 
Tasks) [62] project develops swarms of USVs for future environmental 
monitoring, sea life localization, and sea border patrolling. The USV platforms 
are available open­source31 and execute swarm algorithms generated using 
evolutionary computation [94]. Another project is concentrating on the 
development of indoor USVs specifically the microUSV [146] which measures 
just 23 cm in length. They are still in the early stages and are currently 
capable of following waypoints. Nevertheless, indoor USVs for swarm robotics 
application are really necessary to perform behavioral deployment and 
research at low cost. 

28bitcraze Crazyflies website: https://www.bitcraze.io/crazyflie­2­1/ [Online; ac-
cessed 26­March­2023]. 

29Optitrack website: https://optitrack.com/ [Online; accessed 26­March­2023]. 
30FINken website: https://www.ci.ovgu.de/SwarmLab/Robots/FINkens.html [Online; 

accessed 26­March­2023]. 
31CORATAM website: http://biomachineslab.com/projects/ 

control­of­aquatic­drones­for­maritime­tasks­coratam/ [Online; accessed 26-
March­2023]. 

https://www.bitcraze.io/crazyflie-2-1/
https://optitrack.com/
https://www.ci.ovgu.de/swarmlab/robots/finkens.html
http://biomachineslab.com/projects/control-of-aquatic-drones-for-maritime-tasks-coratam/
http://biomachineslab.com/projects/control-of-aquatic-drones-for-maritime-tasks-coratam/
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6.4.4  Outer Space 

The NASA developed the Swarmies32 for space exploration. The main goal 
is to collect material samples such as water, ice, or useful minerals on Mars. 
This application is referred to as in­situ resource utilization. Simultaneously, 
NASA launched a swarmathon33 to motivate students in the development 
of swarm algorithms based on ant foraging. In the experiments 20 Swarmies 
can travel a linear distance of 42 km in 8 hours. This is the same distance 
that was covered by Mars rover Opportunity in 11 years. Another innovative 
project was accepted by the NASA Innovative Advanced Concepts program, 
namely the Marsbees [192]. Their objective is to enhance Mars exploration 
using flying swarm robotic platforms. They have the size of a bumblebee and 
self­explore the environment. The Mars rover Opportunity serves as base and 
charging station. 

6.5  Project: How to Build your own 

Swarm Robot 

6.5.1  A Robot with Legs: Spiderino 

The Spiderino robot is an example of a legged robot that is aimed at swarm 
robotic experiments and educational purposes. Two major challenges for 
building a swarm robot, cost and size, are particularly difficult to master 
when it comes to legged robots. For instance, if a leg is equipped with two 
servo motors, one for lifting the leg and the other for moving it forward or 
backward, a robot with six legs would require several servo motors to operate 
and control. One possibility would be reducing the number of legs, but that 
would complicate the movement and possibly require extra sensors for the 
control system. For example, biped walkers require sensory systems to keep 
balance while moving over unknown ground. When aiming at a system which 
is statically stable at all stages of their stride, at least four legs are required. 
A quadruped following this principle would lift only one leg at a time and 
select the sequence of movements so that the center of gravity is always 
above the area spanned by the feet on the ground. Turtles are frequently 
mentioned as an example of a gait that maintains static stability. However, in 
reality, a turtle’s stride can also include phases where the body is supported 
only by two diagonally opposite legs [6, 428]. For a sixed­legged robot, an 
effective gait involves lifting three legs at a time while maintaining stability 
with the other three legs. This approach allows for faster movement compared 
to the statically stable one­leg­at­a­time gait used by quadrupes. Therefore, 
the challenge remains: How can we design the mechanics in a cost­efficient 
and compact way. 

32Swarmies website: https://www.nasa.gov/content/meet­the­swarmies­robotics-
answer­to­bugs [Online; accessed 26­March­2023]. 

33Swarathon website: https://swarmathon.cs.unm.edu/ [Online; accessed 26­March-
2023]. 

https://www.nasa.gov/content/meet-the-swarmies-robotics-answer-to-bugs
https://swarmathon.cs.unm.edu/
https://www.nasa.gov/content/meet-the-swarmies-robotics-answer-to-bugs
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Table 6.1: Classification of research platforms for swarm robotics (adapted from 
Schranz et al. [337]). ⏎ 

Environ-
ment 

Application Project/ Product 
Name 

Robot 
Type 

No. of 
Robots 

Basic Swarm Behaviors Availability 

Terres-
trial 

Research 
and 
Education 

Kilobots 

UGV 

1024 [316] pattern formation, coordinated motion open-source, 
commercial 

Jasmine 60 [198] 

aggregation, collective exploration, 
coordinated motion, task allocation, 
collective perception, self-healing 
(partially), human-swarm interaction 
(Zooids, APIS) 

open-source 

n.a. 

open-source, 
commercial 
n.a. 
open-source, 
commercial 
commercial 
open-source 

open-source, 
commercial 
n.a. 
open-source, 
commercial 

open-source 

n.a. 
open-source 

n.a. 

open-source 

n.a. 
open-source 

n.a. 
n.a. 

Alice 20 [132] 
AMiR 6 [21] 
Colias 14 [19] 
Mona 30 [17] 
R-One n.a. 
Elisa-3 38 [137] 

Khepera IV 10 [289] 
GRITSbot 100 [287] 
E-Puck 16 [8] 

Xpuck 16 [187] 
Thymio II 8 [387] 

Pheeno 4 [405] 
Spiderino n.a. 
I-Swarm n.a. 
Zooids 32 [223] 
APIS 6 [82] 
Wanda 11 [200] 
Mechalino 4 

DOTS 20 [186] 
WsBot 2 [230] 
Milli-Robot 16 [167] 
mROBerTo n.a. 
Droplet n.a. 

aggregation, self-assembly, object 
clustering and assembly, collective 
exploration, coordinated motion, 
collective transport (partially), 
collective perception 

open-source 

open-source 

n.a. 

open-source 

n.a. 

open-source 

Swarm-bot 35 [149] 
Swarmanoid n.a. 
ARGroHBots 15 [277] 
Termes 5 [286] 
Symbrion and 
Replicator 

n.a. 

PolyBot 32 [96] 
M-Tran III 24 [218] 
ATRON 7 [46] 
CONRO 8 [57] 
Sambot 15 [407] 
Molecube 8 [429] pattern formation, self-assembly, 

self-reproduction Puzzle Bot 9 [420] 
Acoustic Swarm 5 [176] collective exploration, coordinated mo-

tion, collective perception 
open-source 

Aerial 

MAV 

UAV 

n.a. n.a. n.a.Distributed 
Flight Array 

9 [279] self-assembly, coordinated motion 

Crazyflie 2.1 49 [293] aggregation, collective exploration, 
coordinated motion, collective 
localization, collective perception 

open-source, 
commercial 
n.a.FINken-III n.a. 

Aquatic 
Environ-
mental 
Monitoring 

CoCoRo UUV 
41 [330] aggregation, collective exploration, 

collective localization, task allocation 
n.a. 

open-source 

open-source 

Monsun n.a. 
CORATAM USV 

12 [94] 
microUSV 4 [146] 

Outer 
Space 

Space 
Exploration 

Swarmies UGV 201 collective exploration, collective local-
ization 

n.a. 

Marsbee UAV 3 [192] collective exploration, coordinated mo-
tion, task allocation 
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Figure 6.6: Spiderino robot (left) and its components. 

In the case of the Spiderino robot, the control system has been put atop an 
existing system that comes form a Hexbug Spider toy model (see Figure 6.6). 
The Hexbug Spider toy is a remote controlled plastic toy featuring six legs 
being controlled by two motors, one for moving the robot forward or backward 
and the other for turning the robot. A smart mechanical design enables the 
robot to move by lifting three legs at a time in the direction the robot’s head 
is facing. The toy, being mass-produced, comes at a retail price between 15 
and 30 e, making the system economically attractive even if the parts for the 
remote control are removed and not used in the robot. 

To build your own Spiderino robot, follow these steps: 

Electronics: The PCB file of Spiderino is available for download at the 
Spiderino website35. The main board is a two-layer, circular board of 80 mm 
diameter. The top layer contains most of the components, including 

• Socket for Arduino Pro Mini. 

• Connector for an ESP8266 WiFi Module. 

• Socket for motor driver (POLOLU Motor DRV-DRV8835). 

• Three-way power switch. 

• Three-pin configuration jumper. 

• 5 resistors and 2 LEDs, both in 1206 SMD format. 

35Spiderino website: https://spiderino.nes.aau.at/index.php/downloads/[Online; 
accessed26-March-2023]. 

⏎ 

https://spiderino.nes.aau.at/index.php/downloads/
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Connecting the WiFi module is optional since the robot can also be 
programmed through a USB cable and is capable of operating without a WiFi 
connection. 

The bottom layer of the PCB includes 6 connectors for sensor boards and 
connectors for the two DC motors. 

The sensor board is a very small 10 by 10 mm 2­layer PCB that connects 
through four pins to the main board. Two pins are used for GND and VCC, 
while the other two pins contain a digital I/O and an analog input. The board 
can fit different sensors. The current sensor boards have an optical CNY70 
distance sensor that points radially outward from the robot. Up to six sensor 
boards can be fit onto the robot, but it is also possible to have a configuration 
with fewer sensors. 

Mechanical structure: In addition to the PCB, a Hexbug Spider toy robot 
and two 3D­printed adapters are required. The toy’s main body has to be 
separated from its head containing the IR remote control interface since 
control will be implemented through the PCB. The main board is connected 
through screws to a 3D­printed adapter board that holds the battery and 
contains a cut­out for the motor cables. This part is glued to another conical 
adapter that fits the lower part of a Hexbug Spider toy robot, which contains 
the motors and provides a mechanism for coordinated leg actuation. 

Programming: The robot’s control program has to be uploaded to the 
Arduino Pro Mini. The Pro Mini can be programmed with Arduino IDE 
(available for Windows, Linux, and MacOS systems) in C or Atmel assembly 
language. The C­language API consists of functions for controlling the 
robots’ motion and reading the sensors. Its implementation is documented 
in the technical documentation available for download at the Spiderino 
webpage[180]. 

6.5.2 A Wheeled Robot: Mona 

Mona wheeled robot [17] is an open­source miniature robot that was mainly 
developed for long­term swarm robotics applications. It was first tested for 
a Perpetual Robot Swarm [24] system that aimed to develop a low­power 
robotic system with extremely long autonomy time, over weeks or months. 
Mona is an autonomous mobile robot with five proximity sensors, utilizes 
an AVR microcontroller as its main controller and can be programmed by 
popular Arduino IDE. The Mona robot has been commercialized36 however 
it is still an open­source platform. 

Two off­the­shelf DC motors with direct reduction gears were used as the 
main actuator. As shown in the architecture of the robot in Figure 6.7, a 
symmetrical differential driven configuration is used to control the robot’s 

36Mona robot commercial website: https://ice9robotics.co.uk/ [Online; accessed 26-
March­2023]. 

https://ice9robotics.co.uk/
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Figure 6.7: (left) Mona robot main platform. (right) The architecture of the basic 
platform [17]. 

Figure 6.8: The Mona main-board and various sub-modules. 

motion with two motors. The robot’s wheelbase is 80 mm with 28 mm 
wheel diameters. The rotational speed of each motor is independently 
controlled through a pulse-width modulation channel of the controller, which 
is connected to a H-bridge motor driver. 

⏎ 

⏎ 
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To build your own Mona robot, one has to consider three crucial steps: 

Electronics: The PCB file of the Mona is available online37. It is a two-layer 
PCB and most of the components are on the top board. The main board has 
six functions (as shown in Figure 6.8) including: (1) The main controller that 
is an ATMEGA328, (2) communication connectors supporting RS232, serial 
peripheral interface, I2C (Inter-Integrated Circuit) and ISP, (3) IR proximity 
sensors, (4) motor driver and feedback link from motor encoders, (5) USB 
port and asynchronous serial data module used for programming the robot 
with Arduino, and (6) 3.7 V LiPo battery and the charging unit. 

Mechanical structure: The main PCB also acts as the chassis of the robot, 
so motors, battery and all mechanical components sit on the main-board. This 
makes the assembly and controlling of the robot easier. In terms of mechanical 
structure, there are two parts—wheels and motor brackets—that must be 3D 
printed. The CAD design of the parts is also shared at the Mona GitHub. 

Programming: The robot is compatible with most of the open-source 
programming platforms. Although the architecture of the robot enables 
programming Mona with any Arduino-based platforms via a USB cable, any 
programming language that is available for the AVR µCs, including C, C++, 
Java, Pascal, Basic, and Assembly can also be used for programming the 
robot. Hence, any software platform and IDE that support ISP can be used 
for programming the robot. 

The latest version of the Mona robot was equipped with an ESP32 
micro-controller providing additional functionality such as WiFi, Bluetooth 
and RGB LEDs. There are various available examples of robotic modules 
used for undergraduate engineering students. It includes a library (Mona.h), 
several examples for controlling motors and an autonomous obstacle avoidance 
scenario available at: https://github.com/MonaRobot/Mona-Arduino. 

6.5.3 Another Wheeled Robot: Mechalino 

The design of Mechalino is guided by the requirements for 

•  A low-cost robot (around 150 e per robot) so that a swarm of these 
robots is still affordable, 

•  Using wheels with good grip and stepper motors to have accurate 
movement control, 

•  Having a mostly cylindrical body in order to avoid getting stuck on 
edges, 

37Mona Test Github: https://github.com/Farshad-Arvin/Mona-
Platform/blob/master/Mona-Test.ino [Online; accessed 26-March-2023]. 

https://github.com/monarobot/mona-arduino
https://github.com/Farshad-arvin/Mona-Platform/blob/master/Mona-Test.ino
https://github.com/Farshad-arvin/Mona-Platform/blob/master/Mona-Test.ino
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Figure 6.9: Mechalino components: Chassis, wheel, axle, mainboard, battery. 

•  Providing an area on top for adding a marker that can be detected by 
an overhead camera. 

While still reasonably priced, Mechalino is designed to support ROS and 
provide the processing power for running more elaborated algorithms and 
evaluations onboard. It is equipped with a STM32F4 Microcontroller Unit 
(MCU). The software and hardware design is available under an open­source 
license38 . For easy reproducibility of the hardware, the design aims to use 
standard components in combination with parts that are easily producible 
via 3D printing. Figure 6.9 shows the main components of a Mechalino robot. 
The assembled prototype is shown in Figure 6.10. The color markers on top 
allow for the accurate detection of the position and orientation of the robot 
from an overhead camera. The robot has a low center of gravity, facilitating 
precise movement. On the hand hand, the low ground clearance requires to 
operate the robot on a smooth surface. Mechalino is still under development 
and is being continuously improved. 

To build your own Mechalino robot, follow these steps: 

Electronics: The PCB file is available for download at the Mechalino 
webpage. The two­layer PCB fits the microcontroller, an ESP8266, a GY-
521 gyroscope/acceleration sensor, two driving circuits for the left and the 
right motor and distance sensors. 

38Mechalino website: https://github.com/smartgrids-aau/Mechalino_Arena [Online; 
accessed 26-March-2023]. 

⏎ 

https://github.com/smartgrids-aau/mechalino_arena
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Figure 6.10: Assembled Mechalino with ArUco marker on top. 

Mechanical structure: The main body features a 3D-printed chassis with 
cut-outs for the motors and the battery. At the top, there are screw holes for 
attaching the main board, also allowing for a possible second-layer processing 
board. The wheels are pressureless standard rubber wheels from a model shop. 
A 3D-printed sleeve ensures a snug fit to the stepper motor axles. 

Programming: The robot can be programmed in C++ and in ROS using 
MicroPython39 . A hardware abstraction layer needs to be uploaded onto 
the STM32F4, which is available at the project page. Programming is done 
through a cable, while the ESP8266 is utilized for communication at runtime. 

39MicroPython website: https://micropython.org/ [Online; accessed 24-December-2024]. 

⏎ 

https://micropython.org/


Chapter 7 

Open Challenges and 
Outlook 

As applications become more complex, there are specific challenges that 
need to be addressed. Traditional technical solutions involve creating a final 
product that includes numerous components and sub­components. Each of 
these components has a significant size and complexity of its own and 
must interact with other components to provide their services in a specified 
manner. Even minor changes to a component’s services or interface could 
potentially disrupt the entire system’s functionality. Existing examples have 
shown potential for using swarm­based approaches in engineering in order to 
address issues that come with the growing complexity of systems via a self­
organizing approach. In addition, technical applications become more complex 
due to an increasing number of networked components being involved on 
both sides, the environment and the technical solution. The previous chapters 
have introduced several examples showing how swarm­based approaches can 
be successfully employed in such an environment. However, these examples 
might just mark the beginning of using swarm systems as a new paradigm for 
designing and operating systems. The complexity of applications in terms of 
functionality, components, and dependencies among these components will 
rise further, which means that we can expect the existing challenges to 
grow, as well in their importance. To face these challenges, new methods, 
techniques, and approaches need to be developed. By successfully solving 
these challenges, integrating swarm­based approaches to overcome existing 
technological boundaries will be a promising direction to explore and increase 
the efficiency of technical applications. The following sections are adapted and 
extended from Schranz et al. [333]. 
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7.1 Challenges in Swarms of CPSs 

As already discussed in Section 1.2, the modeling, design and control 
challenges for CPS swarms become even more difficult as the autonomy 
of individual components must be combined with explicit attention to 
interdependencies and coordination, interoperability, distributed control and 
emergence of behaviors. Swarm intelligence can bring potential advantages in 
terms of adaptability, robustness, and scalability to systems. However, several 
research challenges remain, especially when it comes to particular applications. 
For example, applying swarm intelligence to the physical domain, aka CPSs. 
In this domain, the limitations of embedded systems have to be considered, as 
well as an incomplete knowledge of the state of the physical world. Addressing 
these challenges not only helps to overcome current limitations but also paves 
the way for future applications of swarm systems in various fields. 

7.1.1 Challenges Deriving CPS and Swarm Properties 

Today’s technical systems are usually predictable and controllable. For 
example, entering a target temperature in an oven causes the expected 
reaction, namely that the oven heats up to the set temperature and maintains 
this temperature. In swarm systems, these properties are often not directly 
given, since such a system is characterized by local rules, interactions and 
thus the emergence of the global system goal from the bottom up. A control 
input for a swarm system is, therefore neither easy to realize, nor is it 
guaranteed that the result of an input is easily predictable. In the design of 
CPS systems, the question of predictions, for instance, about the next system 
state, movement, or information, has a direct impact on the ability to give the 
system certain configurations, such as manipulating parameters, controlling 
individual movements, or assigning specific tasks. Thus, in addition to the 
issues of predictability and controllability, any parameter setting, even if only 
slightly adjusted, can significantly affect the behavior and dynamics of an 
intelligent swarm system. In particular, for a CPS swarm system, predicting 
such effects is difficult because modeling of the physical parts of the system 
is usually subject to uncertainty [333]. 

In recent years, there have been several research works addressing these 
topics, in particular related to network science [135] and the observability 
of complex systems [232]. Many systems are characterized by a number of 
parameters, numerical and structural, whose effects on the resulting dynamics 
in a complex system can often be extreme, leading to phase transitions [360, 
76, 42], self­organized criticality [402] and deterministic chaotic behaviors [369, 
423]. 

In CPS swarms, these parameter effects come from several sources that 
are typically hard to model, including environmental effects such as weather, 
earthquakes, the (partially) unpredictable behavior of humans, or any other 
random disturbance coming from the real world. The difficulty lies in creating 
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precise models for timely adaptation to exhibit the desired robustness to the 
dynamics of the environment [34]. Therefore, swarm­intelligent systems may 
instead find limited use in life­critical applications such as the control of an 
airplane—a clear definition of the possible behaviors of the system cannot be 
provided in a CPS swarm system. 

Literature reports several works on the analysis of formal models 
for optimization or decision­making scenarios. They mostly use the Ant 
Colony Optimization (ACO) and the PSO models in combination with 
optimization problems and analyze stability and convergence properties. 
The analyzed scenarios often rely on constrained models, such as simplified 
algorithms or additional assumptions [65]. Examples include using a random 
dynamical system, for PSO [105], Lyapunov stability analysis [188], or 
deriving graphical parameters from dynamical systems theory [383]). In 
many practical applications, ACO and PSO models become too complex 
for complete theoretical analysis [333]. Typically, performance analysis is 
done via empirical procedures, possibly restricted on the assumption of 
defined theoretical properties [333]. Examples of such an approach involve 
using a specifically designed objective function for convergence analysis of a 
PSO approach [66], reviewing self­adaptive PSO algorithms related to stable 
points in parameter selection [154], parameter optimization studies [422], 
running numerical tests and results using test matrices associating multi­
target tracking and measurement [44], and applying experimental analysis 
of how particular design choices affect the quality and the shape of the Pareto 
front approximations generated in multi­objective ACO [235]. 

In contrast to swarm intelligence systems in general, a formal model 
of CPS swarms to evaluate predictability and controllability is much more 
sensitive. In CPS swarms, we do not only consider the swarm itself, but also 
the different performance objectives, metrics, constraints, requirements, and 
disturbances coming from the real­world problem scenario. In addition to 
that, we have the cyber (behaviors and interactions) and physical (hardware-
related) characteristics of each individual CPS. This means that each variation 
of the CPS, its behaviors, the scenario they operate impose a new set of 
configurations and thus, challenges in practice. This makes it difficult to 
abstract general properties and reuse results across different scenarios [333]. 

Nevertheless, with extensive mathematical abstractions it is possible to 
identify and analyze a basic set of swarm behaviors, including, foraging [58, 
136, 95, 162], coverage [424, 338, 237, 69], aggregation and pattern 
formation [134, 13, 136], and cooperative tracking [424, 142, 340] (see 
Section 1.1.1 and Section 4.1 for more details); an extensive, and well­discussed 
list of swarm behaviors can be found in Brambilla et al. [45], Bayindir [31], 
and Schranz et al. [332]. 

7.1.2 Challenges Designing the Local Rules 

The design of swarm intelligence often follows a bottom­up approach, 
where the desired global behavior is implicitly determined by defining local 
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interaction rules. This requires solving an inverse problem using heuristics to 
guide the design of the local rules. In swarm intelligence scenarios that are 
not tied to a physical scenario, for instance, generic optimization applications 
of swarm intelligence [301], the definition of heuristics that lead to a desired 
global behavior is easy because they are predetermined by the optimization 
goal. 

However, in embodied swarm applications, such as CPS swarms, this 
task is much more complex due to the multi­layered, uncertain and hardly 
predictable structure of the environment. Therefore, most of the work in 
this direction is devoted to the automatic synthesis of behavioral and 
interaction rules for swarm robots. In Fehervari and Elmenreich [111], 
artificial evolutionary techniques (provided by FREVO [359]; see Section 4.5 
for more details) are used to generate neural controllers for homogeneous 
robot soccer teams. In Gomes et al. [144] they apply novelty seeking to 
generate neural controllers for homogeneous robot swarms. Ferrante et al. [115] 
generate controllers for robots by combining the use of an evolutionary 
approach with a formal language. In Lopes et al. [234], supervisory control 
theory, a formal language based on a discrete­event representation of the 
system, is used to automatically generate controllers with built­in proofs 
and wider reusability in different robotic systems. Similarly, in Francesca et 
al. [124], the automatic design of robot swarm control software is achieved by 
generating a probabilistic finite state machine resulting from an optimization 
process that maximizes a task­specific objective function. Furthermore, in 
Tuci et al. [384], different evolutionary approaches are used to generate 
task assignment mechanisms that efficiently adapt robot behavior to the 
environment. 

In general, these approaches, even if exemplified in a specific application 
case, can be extended to other domains. For example, adapting an algorithm 
from autonomous ground robots to autonomous aerial vehicles should be 
possible after considering additional constraints (aerial vehicles cannot easily 
bump into each other without damage) and degrees of freedom (height 
as a third dimension). All of these works, among others, mark valuable 
contributions to the automatic generation of rules that can be reused or 
expanded for the more general case of CPSs. However, it is important to 
acknowledge that these approaches have only been validated in relatively 
simple scenarios and have been applied exclusively to homogeneous swarms. 
As a result, these methods need to be better equipped to handle the 
complexities of heterogeneous swarms in CPSs. 

Furthermore, these methods face challenges when dealing with large 
and complex search spaces, leading to what is commonly known as the 
dimensionality curse. Consequently, current automatic generation systems 
may not be feasible for systematic use when synthesizing complex behaviors 
required by CPS swarms. It is worth noting that a convergence between model­
checking methods [64] for general CPSs and automatic rule synthesis and 
verification in physical swarms will be necessary to provide guarantees in 
both the design and control stages of CPS swarms. Such a combination would 
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ensure a systematic and reliable approach to address the challenges associated 
with CPS swarm systems. 

7.1.3 Real-World Deployment Challenges 

To date, most of the work implemented and tested on physical swarms 
has focused on swarm robotic research platforms. These works typically 
involve small, simple robots with basic sensors and limited data exchange 
capabilities. Although they exhibit interesting self­organizing behaviors, they 
serve mainly as test demonstrations and are difficult to scale for real­
world applications. Their reliability, predictability, and efficiency need to 
be reevaluated when the same approach is to be applied to complex tasks 
in realistic environments. In contrast, contemporary technological advances 
have produced impressive individual CPS and robotic systems. Examples 
include self­driving cars developed by companies such as Uber and Google, 
remarkably stable quadrupedal robots such as Boston Dynamics’ Spot, and 
advanced humanoid robots such as Boston Dynamics’ Atlas, Hanson Robotics’ 
Sophia, and Honda’s Asimo. These systems are highly complex mechanically, 
algorithmically, and behaviorally. Compared to these cutting­edge examples, 
the tasks performed by current swarms of robots seem rudimentary. The 
question arises whether swarm robotics or specifically CPS swarms, can 
progress from being study objects to becoming systems producing real­world 
systems that can reliably perform useful tasks. 

This transition may require a move away from overly simplified robot 
models and controls toward designs that achieve a better balance between 
simplicity and the ability to perform complex tasks effectively and reliably. 
It could entail transitioning from minimal resource usage and restricted 
information exchange to a more extensive utilization of sensor data and 
enhanced information sharing. Intel’s Shooting Star [310] drone swarm 
provides an illustrative example in this regard. During the opening ceremony 
of the 2018 Winter Olympics, Intel orchestrated an impressive aerial show 
with 1218 drones. Although labeled as a swarm, the system is not really 
swarm intelligent; it operates as a partially distributed system with a central 
controller. Individual drones follow pre­computed trajectory scripts and rely 
on a precise external positioning system for navigation. The main idea is 
that to effectively perform real­world tasks, it might be essential to abandon 
overly restrictive assumptions and adopt a pragmatic, balanced approach 
by combining bottom­up swarm intelligence design with top­down methods 
whenever feasible. 

Another significant challenge associated with the implementation of 
real swarm systems is the maintenance of such systems throughout their 
operational lifetime. As discussed in previous research [97], although they are 
swarm systems, complex technical systems that must operate reliably over a 
long period of time will require maintenance to ensure uninterrupted service. It 
remains an open question whether maintaining a swarm system with its unique 
characteristics will be more accessible or more challenging than traditionally 
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designed technical applications. In essence, maintaining a system composed 
of numerous autonomous components will be a challenging task. However, 
multiple components within the system can also provide opportunities for 
internal monitoring and troubleshooting. A relevant example is given in 
Christensen et al. [63], where failed robots are promptly detected and isolated 
from the swarm of robots, demonstrating the potential for addressing problems 
within the system itself. 

7.1.4 How to Address the Challenges 

In order to enhance the potential for formal analysis and promote the 
systematic reuse of results in swarm intelligence, it is advantageous to 
position swarm intelligence within the wider framework of complex systems 
and network science. This approach allows the adoption of sophisticated 
mathematical and modeling tools commonly used in the study of complex 
systems, which can help characterize properties such as evolution over time, 
stability, and structural/topological aspects. The focus on structural and 
topological properties has recently gained significant attention, as information 
flow plays a crucial role in self­organization and emergence [143, 79]. 

In addition, it is vital to identify the relationship between swarm 
intelligence and the fields of game theory and multi­agent systems [351]. 
Although this connection has yet to be adequately explored, exploiting 
insights from game theory and adopting mechanism design approaches can 
provide viable alternatives for generating interaction rules and analyzing the 
formal properties of swarm intelligence systems. Concepts such as equilibrium 
in game theory and interaction rule design through mechanism design [272, 41] 
present promising avenues for automatic rule generation. Given the current 
limitations of CPS swarms, it is expected that the study of physical swarms 
should align more closely with the multi­agent systems field while focusing 
on self­organizing behavior and scalability. The distinction between swarms 
and decentralized multi­agent systems is not always clearly defined. A recent 
survey of multi­robot systems [70] shows that the properties required for 
distributed control algorithms include locality of sensing and communications, 
scalability, security, contingency, and task­oriented considerations, similar 
to those addressed in research on swarm robotics [31]. This suggests that 
the differences between the two concepts are often semantic rather than 
substantive, with considerable overlap between them (for more details refer 
to the discussion in Section 1.1.3). 

7.2 Future Trends and Directions 

As pointed out in the introduction, there is a growing presence of complex 
dynamic systems that are increasingly collective and connected. These systems 
may be cyber or physical or, more generally, both, constituting a cyber­
physical system. Given the nature and characteristics of these systems, swarm 
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intelligence will play an essential role in addressing the upcoming challenges. 
Given the vast solution possibilities and diverse challenges, new swarm models 
may be needed, and new fields of application will open up. In the following, we 
discuss where these new models might come from for inspiration and in what 
kinds of future applications swarm intelligence will prove to be a relevant tool. 
Finally, we outline general open research topics on CPS swarms. 

7.2.1 Future Inspirations 

Until today, most swarm intelligence models and algorithms have been 
inspired by social interactions within animal groups and animal societies [281]. 
Such observations are expected to remain a constant source of inspiration for 
new swarm intelligence models. However, we can also expand the range of 
potential inspiration models to include organic, inorganic, and social systems 
with similar fundamental properties. We can identify essential microscopic 
behaviors and local interaction rules by reducing these models to the 
key functional elements required in most swarm intelligence models. These 
microscopic interactions generate self­organizing behavior as an emergent 
feature at the macroscopic level. 

One challenge is to build and extract abstract models from natural 
sources of inspiration. This includes exploring decentralized and time­efficient 
techniques from the specific scenarios studied in different research disciplines. 
Secondly, these models need to be used to build new models and address the 
problem complexity of real­world CPS applications. 

The following sections illustrate specific areas that can provide new ideas 
for swarm intelligence model development. In some cases, a model has already 
been used as inspiration for swarm intelligence development. However, their 
potential to inspire swarm intelligence systems has yet to be fully exploited, so 
even an example known to have inspired swarm intelligence algorithms could 
be used to make new and potentially (more) disruptive contributions. 

Biology 

Animal societies have been the primary source of inspiration in swarm 
intelligence. Researchers and swarm intelligence practitioners have drawn 
inspiration primarily from cooperative animal societies, largely ignoring 
predator­prey systems and other conflicting scenarios [281]. However, to 
address cyber threats and the interaction among multiple, potentially 
competing CPSs, it is necessary to study non­collaborative systems. Research 
in population dynamics [174], game theory [351], and evolutionary game 
theory [322] has provided applicable models and ideas for the development 
of novel swarm intelligence systems. A promising approach involves the 
integration of autonomous robots into existing animal societies. Successful 
integration has been demonstrated with honeybees, fish, cockroaches, and 
cows [251, 326, 399]. This emerging field offers the potential to create a 
bio­hybrid system, or social cyborg, that combines the unique capabilities 
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of robots and animals in a mutually beneficial and symbiotic way. 
(Programmable) Bacteria serve as an inspiration for current and future 
research in various fields, including social intelligence. Their foraging [281] and 
collective decision­making abilities have allowed them to thrive and spread in 
challenging environments, making them a subject of interest for researchers 
seeking to develop new methods for solving complex problems [350]. In 
addition to their natural abilities, bacteria can also be programmed through 
genetic engineering techniques, providing opportunities for precise control 
and manipulation of their behavior [184]. For example, bacteria can be 
programmed to produce specific proteins or enzymes or respond to certain 
environmental signals. One exciting application of programmed bacteria is in 
the field of medicine. Recent research has shown that a swarm of magnetically­
guided bacteria can be used to deliver drugs directly to tumors within the 
body, potentially improving the efficacy of cancer treatments [113]. This 
approach offers a promising alternative to traditional drug delivery methods, 
which can have harmful side effects and may not effectively target cancer cells. 

Chemistry and Physics 

Molecular networks have been studied across various fields [191], particularly 
for modeling complex diseases such as cancer and schizophrenia [147]. In 
these networks, nodes represent molecules like genes, RNA, and proteins; the 
edges represent their relationships. These network structures could inspire 
the design of complex interactions between agents in a swarm, as they 
exhibit outstanding properties such as scalability and resilience. For instance, 
the physiological interaction network of a single cell comprises thousands 
of chemical reactions that alter the concentration levels of hundreds or 
thousands of chemical components. Despite the enormous complexity and 
size of these networks, they exhibit quick and flexible dynamics while 
staying within precisely controlled bounds, thereby ensuring the survival 
of the organism. The properties of molecular and bacterial networks, 
characterized by their flexibility, robustness, scalability, and emergent 
complexity resulting from simple interactions, share remarkable similarities 
with the desired characteristics of swarm intelligence. Conducting laboratory 
experiments under controlled conditions provides an opportunity to study 
the characteristics of these networks. Because of the relatively small scale, a 
study can be conducted, for instance, on a few microliters of fluid in a cuvette 
or a small agar plate on a laboratory desk. Thus, these networks present 
ideal subjects for systematic exploration to provide valuable inspiration for 
developing future swarm intelligence algorithms. 

Nanonetworks refer to a set of nanomachines that are interconnected and 
have various capabilities such as computation, data storage, sensing, and 
actuation. The research on nanonetworks has focused primarily on their 
non­traditional communication types, such as electromagnetic or molecular 
communication [3]. In particular, molecular communication between cells 
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using synthesis, transformation, emission, propagation, and reception of 
molecules has the potential to inspire swarm intelligence [4]. One of the 
main advantages of molecular communication is its ability to function in 
environments that are not conducive to electromagnetic signals, such as inside 
the human body. This makes it a promising avenue for designing swarm 
intelligence systems operating in similar environments, such as healthcare or 
environmental monitoring applications. Moreover, molecular communication 
offers a high degree of security and privacy due to the localized nature of 
the communication. Nanonetworks have already been successfully employed 
in biomedical applications such as drug delivery, in­vivo sensing, and 
monitoring glucose levels for diabetes patients. They have also been used in 
environmental applications such as pollution monitoring. Therefore, the study 
of nanonetworks and their communication mechanisms could serve as a rich 
source of inspiration for the design of future swarm intelligence algorithms. By 
leveraging the capabilities of nanonetworks, swarm intelligence systems could 
potentially achieve higher efficiency, scalability, and robustness in a wide range 
of applications. 

Human Cognition 

Humans also employ self­organizing strategies to interact with each other to 
solve various tasks [213, 215, 109], such as the collective patterns observed 
in crowd dynamics. Experimental studies have been conducted to identify 
corresponding behavioral rules, such as investigations of pedestrian behavior 
in single avoidance tasks [258]. In a study by Tavakoli et al. [377], they 
observed the coordination abilities of humans with limited perception in an 
environmentally distributed environment. This first experiment aimed to learn 
human­inspired behavior before formal strategies, potentially adaptable to 
CPS swarms, were developed. Surprisingly, compared to the multitude of 
algorithms derived from (eu)social animals, very little research has focused 
on extracting behaviors from human groups or societies to convert them into 
swarm intelligence algorithms [282]. This is unexpected since humans, being 
the creators of advanced and complex societies and cultures, are a readily 
available source of inspiration, easily accessible through natural language 
communication. 

Interdisciplinary Approaches 

The swarm­like concept of active matter consists of numerous individual 
agents following simple rules, resulting in collective behaviors and movements. 
Active matter combines representations from various disciplines, such as 
biology, physics, computer graphics, and robotics. A well­studied model in 
this domain is the self­propelled particle model proposed by Vicsek et al. [394] 
in 1995. This model has been extended to simulate various realistic systems, 
including self­replicating morphogenesis, in which swarms form structures that 
create new similar structures [328]. 
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The researchers described collective motion in active solids and crystals, 
applying elasticity­based mechanisms to achieve self­organization [117, 116]. 
These models can be adapted to study the collective movement of CPS 
swarms, such as pattern formation or morphogenesis. They offer robustness to 
heterogeneity, which can be derived analytically and is particularly suitable 
for CPSs. 

7.2.2 Promising Future Applications 

Although the current implementation of swarm intelligence in real­world 
scenarios remains limited, we recognize the vast potential for its application 
in a wide range of practical situations. As Bonabeau and Meyer have pointed 
out, the possibilities for swarm intelligence application are limited only by our 
imagination [40]. This statement strongly supports our hypothesis, stated in 
the introduction, regarding the ubiquitous presence of swarm intelligence in 
meeting the challenges of an increasingly interconnected world. 

Swarm intelligence has already been successful in various complex opti-
mization scenarios in the form of algorithms such as ACO [84] and PSO [197], 
where swarm members encode individual solution candidates. However, 
physically embedded swarm algorithms have seen limited applications so 
far, with most engineering solutions following more traditional top­down or 
centralized approaches. 

We expect that swarm intelligence will increasingly find applications in 
real­world scenarios where a top­down approach lacks sufficient information, 
a centralized approach is computationally infeasible, or real­time constraints 
impede the ability to find optimal solutions. These situations often arise in 
complex CPSs or scenarios without existing infrastructure, where the need 
is to provide ad­hoc working solutions without the ability to first establish 
an infrastructure framework (e.g., in disaster scenarios [78]). Furthermore, we 
foresee significant potential for swarm applications when transitioning from 
well­defined environments such as planned factories or warehouses to more 
complex environments such as traffic systems, urban environments, social 
networks, extreme/hostile environments, or uncharted territories. 

Looking ahead, we consider the next frontier for swarm intelligence in 
CPS swarms. In this regard, we highlight specific application scenarios that 
are currently (partially) unattainable but have the potential to take full 
advantage of swarm characteristics. Much research already exists, many of 
which await system integration to meet future application requirements. In 
the following examples, we describe the intended application of CPS swarms, 
outline their swarm characteristics, and identify areas of research that require 
further investigation to achieve the desired applications, where the term “CPS 
swarm” can be understood as an umbrella term. 



118 Engineering Swarms of Cyber-Physical Systems 

Autonomous Driving and Smart Traffic 

Autonomous driving is a prominent and much discussed topic, presenting 
various computational challenges in dynamic environments requiring real­
time processing capabilities. This is where the concept of swarm intelligence 
becomes relevant: Thousands of cars, each with different levels of autonomy, 
as well as the road infrastructure, collaborate to find common solutions. 
Applying a swarm model to autonomous cars and infrastructure in an 
intelligent traffic management system offers several benefits, including reduced 
traffic congestion, coordinated creation of emergency lanes, improved traffic 
flow, and reduced carbon emissions. One potential application is swarm 
or fleet navigation, incorporating information from other swarm members, 
infrastructure, and the dynamic environment. 

Modeling networked autonomous cars and smart infrastructure as a swarm 
is both feasible and beneficial for several reasons: 

1. Each CPS can retrieve and evaluate information locally, following local 
rules. 

2. Local information can be exchanged between CPSs to form a global or 
swarm­level perspective. 

3. The infrastructure is relatively known in advance or subject to slight 
dynamics, such as accidents or construction sites. 

A central traffic management system would have difficulty coordinating and 
managing each CPS participating in the traffic. At the same time, individual 
CPSs may cooperate locally, potentially leading to emergent behaviors. 

While transportation logistics already makes extensive use of ant­
and bee­inspired algorithms for route optimization [255, 421, 306, 426, 
346], the concept of smart traffic remains relatively unexplored. However, 
the media frequently talks about swarms of autonomous cars and 
smart infrastructure [126, 339, 168], indicating the growing interest in 
such applications. However, implementing these swarms requires careful 
consideration, especially in terms of management. Questions arise, such as: 
What motivates CPSs to form a swarm? What common features, properties, 
or sensor data should CPSs share? How do CPSs join or leave a swarm? 
What decision­making processes should prioritize local driver goals, swarm 
goals, or global smart traffic goals? What is the optimal number of CPSs 
needed to form and benefit from a swarm? Integrating the data obtained 
from the infrastructure into the autonomous car swarm could further improve 
the decision­making process to achieve the above goals. 

The technology to realize CPS swarms in smart traffic partially 
exists today. Local retrieval and evaluation of sensor data in cars is 
already common practice, and efforts are underway to develop standardized 
communication protocols for vehicle­to­vehicle and vehicle­to­infrastructure 
communication, collectively called Vehicle to Everything (V2X) [59]. V2X 
involves communication between cars and smart infrastructure integrating 
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physical elements like streets, cameras, traffic lights with digital infrastructure 
like sensors and communication networks. Communication technologies such 
as 5G [12] and Ultra­Wideband [152] offer high levels of security, low latency, 
and high data rates, enabling self­location and real­time data exchange 
between CPSs. These advances enable a swarm of autonomous cars to share 
and react to real­time local information, adapting to dynamic situations. For 
example, in Ulbrich et al. [388], the authors describe a swarm behavior module 
that selects and summarizes sensor data and performs trajectory planning for 
an autonomous car. In Li et al. [227], they develop swarm­intelligence­based 
local rules to enable the efficient operation of interconnected autonomous cars 
on arterials. 

Honda’s SAFE SWARMTM concept is an example of improving traffic 
by using information from vehicles in front, including onboard sensors, 
systems, and V2X [256] communication. Implementing an efficient and 
effective intelligent traffic system would likely require a complete redesign 
of the existing architecture for real­time data collection, processing, and 
analysis. In addition to the swarm system, a central Traffic Management 
System (TMS) could be implemented to fulfill several supporting roles. First, 
the TMS would function as a data submission system, ensuring that local 
event information is available to all other cars so they can plan their routes 
accordingly. Second, the TMS would provide an overview of global traffic 
situations by integrating and merging information about individual road 
swarms. This would provide a global understanding of traffic conditions and 
facilitate more effective decision­making. The data exchange process between 
cars and the TMS can be further enhanced by incorporating information from 
the intelligent road infrastructure. By integrating data from sensors embedded 
in the infrastructure, such as traffic lights or cameras, the overall system can 
gather more complete and accurate information about road conditions. In 
summary, the development of an intelligent traffic system would involve not 
only the implementation of a swarm system for autonomous cars but also 
the implementation of a central TMS. This would require a new architecture 
for real­time data collection, processing, and analysis. By incorporating 
information from both the vehicles and the smart road infrastructure, the 
system can achieve higher levels of efficiency and effectiveness in managing 
traffic flows. 

Emergency Response 

The presence of professional first responder teams in emergency situations 
is critical to saving lives and restoring essential services. Traditional first 
responder teams consist of police, military, firefighters, and rescue units 
from civil protection agencies. However, the use of CPSs swarms can greatly 
enhance and facilitate emergency response activities. These CPS swarms, 
including different types of robots such as all­terrain or flying robots [78, 325], 
can work collaboratively with human teams, creating a heterogeneous, multi­
human CPS swarm. These mixed teams can effectively handle accidents at 
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industrial or power plants, as well as environmental disasters such as wildfires, 
floods, storms and earthquakes. CPS agents within the swarm have the 
potential to navigate destroyed or inhospitable environments more efficiently 
and safely than humans. They can collect multi­sensor data, coordinate with 
human team members, focus on areas of interest like potential survivors, 
remove obstacles, restore structures and save lives. In essence, a CPS swarm 
can serve as a dynamic and distributed augmented sensor­actuator system, 
providing invaluable support to human first responders in effectively and 
efficiently conducting their missions. 

Joint teaming with CPS swarms is feasible under several conditions: 
(i) Each individual swarm member can operate under local rules and is 
independent of the fixed infrastructure. (ii) The infrastructure is often 
disrupted, with blocked or unstable paths, making it a dynamic environment. 
(iii) Individual information can be exchanged between swarm members, other 
swarms and local control stations. (iv) A dynamic ad­hoc communication 
infrastructure is established to replace the pre­existing infrastructure that may 
no longer be available. This allows for intra­ and inter­swarm communication, 
as well as communication between the swarm and control centers. (v) High­
level decision making can be done in the control centers, balancing local 
autonomy with system­level decision making. (vi) Swarm members and human 
teammates can interact and exchange information transparently at the local 
level. (vii) Cooperative and collaborative behaviors are encouraged at the 
individual level to enable effective behaviors to emerge at the global level. 

To effectively deploy mixed teams (heterogeneous swarms) in real­world 
scenarios, substantial progress is still needed, particularly in autonomous 
decision­making, data exchange and fusion, and operation in complex and 
unexplored environments. Research efforts are underway to address these 
challenges in heterogeneous swarms, such as those involving drones and ground 
rovers working together to provide first aid or guide victims to emergency 
exits. For example, Saez­Pons et al. [319] developed an autonomous robot 
swarm for SAR applications. They used social potential fields to generate 
formations and navigate while maintaining them. Although several other 
projects in this area [80, 238, 372], none have yet produced applicable results 
for real­world missions. The design and deployment of a heterogeneous swarm 
for such missions involve various open questions, including determining the 
number, type, and initial location of robots [71]. 

In the context of human interaction in mixed teams, it is essential to design 
intuitive and seamless methods for multimodal dialogue and data exchange 
between humans and CPS. This requires developing user­friendly interfaces 
and controls [148, 314, 216, 92]. Infrastructure, including communication 
networks, is often destroyed in emergency response applications, such as post­
earthquake scenarios. Therefore, new relaying concepts are needed to enable 
the CPS swarm to create its own communication network. For example, 
Hauert et al. [156] developed a swarm of autonomous micro aerial vehicles 
capable of deploying and managing an ad­hoc Wi­Fi network. Furthermore, 
the highly coordinated and collaborative nature of the swarm members is 
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crucial in the disrupted environment. This coordination can be achieved by 
exchanging status updates or, if bandwidth permits, by sharing complete 
images and detected points of interest. It is important to develop compact 
image processing algorithms that align with local processing capabilities. 

Environmental Monitoring 

Monitoring Earth’s threatened ecosystems is an emerging application for 
large­scale autonomous CPS swarms. These swarms can function as active 
sensor networks that adapt based on previously collected and assessed habitat 
data. This enables monitoring points of interest with greater accuracy, 
achieved by increasing the density of CPSs or improving the frequency of 
measurements at specific locations. 

Supporting environmental monitoring through CPS swarms is feasible 
due to several factors: (i) Each individual swarm member operates under 
local rules, facilitating autonomous behavior. (ii) Information exchange occurs 
between CPSs to determine new collective behaviors. (iii) The natural 
environment being monitored is generally unknown and subject to dynamic 
and unpredictable events. (iv) Environment monitoring is intended to avoid 
disruption from external intruders, emphasizing the need for a high degree 
of autonomy. (v) Cooperation among individual swarm members leads to 
emergent behavior, enabling achieving monitoring objectives. 

Swarms are well suited to operate in unexpected environments and 
can compensate for the loss or failure of swarm members. Therefore, this 
technology is an ideal candidate for long­term autonomous operation [83] 
during unpredictable events in unknown environments. For environmental 
monitoring, lightweight and efficient communication protocols between 
CPS [331] are especially appropriate. Excessive communication can disrupt 
the natural communication network of the ecosystem. Minimizing CPS 
communication and actions preserves the undisturbed nature of the 
environment, making it easier to analyze authentic natural behavior and 
processes. Therefore, adopting a principle such as “act only when necessary, 
but do so intelligently and gently” aligns with the behavioral optimization 
found in natural organisms. In addition, light and efficient communication 
protocols contribute to energy conservation. Since these swarms are typically 
deployed for months or even years to monitor ecosystems, smart energy 
consumption must align with the observation time. 

A CPS swarm designed for environmental monitoring can consist of 
actively moving agents, allowing them to perform a crucial task at the 
termination of the monitoring process: Self­removal of the swarm from 
ecosystems in an environmentally friendly and sustainable manner, ensuring 
no harm is done. Several research projects are known to have successfully 
used real robots for environmental monitoring, including subCULTron [380], 
CORATAM [94], and CoCoRo [330]. 
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Electric Energy Grids 

Electric energy grids are highly complex interconnected systems and, there-
fore, prime candidates for swarm­based solutions. Venayagamoorthy [393] 
identifies several application areas where computational intelligence can be 
used in electric power grids, such as algorithms for energy and power flow 
management, voltage and reactive power control, dynamic load forecasting, 
and vehicle­to­grid integration. Although swarm algorithms are not explicitly 
mentioned as examples, many of these coordination tasks might benefit 
from swarm intelligence approaches. In addition to using swarm­based 
optimization algorithms such as PSO, there are approaches that directly 
model a portion of the electric power grid as a swarm. For example, 
Elmenreich et al. [102] present an example of coordinating homes in a 
neighborhood using a swarm­like approach to demand management. This 
approach uses geographic proximity to ensure fairness among consumers 
in the neighborhood. Steber et al. [364] describe a virtual mass storage 
system consisting of distributed battery energy storage units installed in 
homes with rooftop photovoltaic systems. Another example is the SmartGRID 
concept presented in Huang et al. [173], which proposes a decentralized and 
interoperable grid scheduling framework using a swarm­intelligent approach. 
Ramachandran et al. [304] proposes a hybrid swarm­immune­based auction 
system to coordinate generation and consumption in a smart microgrid. Black 
electrification using microgrids is another application that integrates small 
off­grid systems into an interconnected microgrid, as discussed in Kirchhoff et 
al. [205]. This approach, known as black­based electrification, is particularly 
relevant for rural, underdeveloped areas [220, 260]. 

The consideration of using CPS swarms to model electric power networks is 
compelling for several reasons: (i) The increasing use of distributed renewable 
energy sources is leading to more decentralized systems. (ii) Renewable 
energy sources such as solar PV and wind power cannot easily adjust their 
output to meet higher demand, making centralized control challenging. (iii) 
Electrification of transportation leads to increased electricity consumption 
by numerous individual consumers. These factors require a transition from 
centralized control of a few manageable power plants to a self­organized, 
swarm­like system in which generators, storage, and consumers interconnect 
in a distributed manner. 

Practical deployment of CPS swarm models in real power grids requires 
significant research progress. Given the critical nature of electric power grids 
as essential infrastructure, validation and testing of such systems prior to 
deployment is a frequent requirement and an open question with respect 
to the current state of the art. Without validation and testing before 
deployment, implementing new control strategies, even in a small part of 
the system, can cause oscillations and affect the stability of the overall 
system [141]. Addressing this challenge may involve simulation at a granularity 
and accuracy so that the reality gap is neglicible [257] or the application of 
CPS swarm models within smart microgrids [357]. Smart microgrids provide 
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an environment large enough to benefit from a swarm­based approach while 
being isolated from the national grid, reducing potential risks. 

Space Missions 

Space missions offer tempting opportunities to use swarm­based CPS 
approaches. One compelling application is the inspection of communication 
satellites, where swarms can be used to assess hull damage and ensure 
optimal performance. In addition, coordinated swarms can be instrumental in 
addressing the space debris issue by performing disposal operations. Another 
interesting concept involves using a cluster of reflective spheres to measure 
the gravitational force of asteroids in our solar system. These missions involve 
exploring water, raw materials, and potential life on planets and exoplanets, 
which serve as potential precursors to human colonization efforts. 

Key features required for these missions include low­cost performance 
and fault tolerance, which can be achieved by using large CPS swarms that 
operate autonomously in unknown environments [368]. Establishing reliable 
communication channels to relay the data collected by the swarm back to 
Earth is crucial. For example, the Marsbees concept [219] envisages using 
the Mars rover as a base and recharging station for these autonomous 
CPS swarms. The Japan Aerospace Exploration Agency is taking this idea 
further by envisaging swarms of autonomous machines to prepare the ground, 
excavate and build facilities for astronauts on the Moon and Mars [419]. 
The first real­world tests were related to networking and communication in 
different spheres including Nodes [51], Proba­3 [291], and KickSat [204]. 

The feasibility of using CPS swarms for such visionary applications stems 
from several factors: (i) Each individual CPS operates based on local rules, 
which allows for autonomous behavior. (ii) Local information is exchanged 
between the CPS and stations on Earth, potentially using relay stations 
in planetary orbits. (iii) These deployment scenarios involve dynamic and 
unknown environments with no prior knowledge of the infrastructure. (iv) 
Centralized control is impractical due to the significant time delays between 
swarm operation and human intervention. (v) Successful achievement of 
mission objectives requires effective cooperation between individual swarm 
members. 

Currently, the above missions still rely heavily on costly ground control 
for their operations. However, the ultimate vision is establishing autonomous 
satellite formations, as human intervention causes communication delays and 
associated costs. Formations are closely linked to the motion of spacecraft, 
which is influenced by factors such as gravity, solar radiation pressure, and 
atmospheric drag, causing deviations from the motion patterns observed 
on Earth [77]. The development of motion models becomes crucial for the 
guidance, navigation, and control of these formations. When direct exploration 
of planetary surfaces becomes feasible, autonomous swarms can be used. 
However, challenges remain related to transportation to the planet, launch 
procedures, navigation, ground surveying, and data retrieval. Factors such as 



124 Engineering Swarms of Cyber-Physical Systems 

planet­specific temperatures, ground conditions, and gravity must be carefully 
considered during these operations. 

Medical Applications 

The field of medicine has shown a growing interest in using swarms to solve 
complex problems, such as cancer treatment. In healthcare, nanoparticles are 
important because they can leak out of blood vessels and go to their target 
sites. Nanoparticles play a key role in healthcare as they can penetrate blood 
vessels and target specific sites in the body. Although these particles are too 
small to be individually programmed, they can be prepared for swarm­based 
applications by changes to their coating, charge, or size. Suppose a group of 
nanoparticles exhibits swarming behavior. In that case, they have the potential 
to navigate to target cancer cells, carry a healing coating, be activated by 
external stimuli, and effectively destroy target tissues. Unlike other drugs 
that are dispersed throughout tissues, a swarm of nanoparticles has greater 
intelligence and can target diseased tissue more precisely. 

Several factors support the use of nanoparticle swarms in medical 
applications: (i) Each individual nanoparticle operates based on local rules, 
which allows for autonomous behavior. (ii) Local information is exchanged 
between nanoparticles and possibly with an external monitoring station 
outside the body. (iii) In such scenarios, there is no existing infrastructure. (iv) 
The environment is a human or animal body, which is partly unknown and 
highly dynamic. (v) Achieving the desired goals requires cooperation between 
individual nanoparticles, leading to emergent behavior. 

However, some fundamental questions remain unanswered when it comes 
to designing a swarm of nanoparticles for cancer therapy. For example, how to 
establish communication between individual swarm members, between swarm 
members and the environment, and between the swarm and the outside 
world? In addition, the implementation of swarm characteristics related to 
complexity, local intelligence, and local processing poses challenges. The 
swarm system must be simple, reconfigurable, cost­effective, scalable, and 
verifiable. Addressing these issues could provide insights into implementing 
more complex tasks such as optimization, computation, decision­making, 
construction, self­assembly, and collective movement within the swarm. 

This vision of cancer treatment based on nanoparticle swarms is still in 
its early stages. However, it raises the question of whether other medical 
applications could be realized by injecting the swarm into the human 
body. Further research is needed to fully understand the possibilities and 
implications of this exciting medical frontier. 

Human Networks 

Human organizations and social networks, powered by Web 2.0 (defined as 
the transition from static websites to dynamic user­generated content and 
social media), represent collective systems. The swarm­like nature of social 
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networks becomes apparent when a large number of individuals interact and 
communicate locally, shaping global behavioral patterns such as online trends 
and the popularization of products or ideas. 

In this context, swarm intelligence methodologies can be applied to study 
such systems from a swarm point of view. Human networks communicating 
over the Internet come with the advantage to provdie vast amount of 
available online data sources. Analytical prediction and evaluation through 
simulation can help to predict and potentially control the behavior of other 
complex systems. Furthermore, swarm intelligence could find a direct practical 
application within human networks in two main ways: As an integral part of 
the network itself and as a physical service that can be used, traded, and 
negotiated by the network. We already use different types of digital assistants 
like Alexa [299], Siri [16], Cortana [166]) in our daily lives, which can be 
seen as some of the most advanced examples of CPSs in the real world. 
They communicate with people via text or speech, have full connectivity, 
are often mobile, perform computations to facilitate precise interactions with 
people, and exhibit proactive behavior such as suggesting or reminding tasks. 
With continuous advances, these digital assistants are becoming increasingly 
autonomous and capable of decision­making, adaptation, and lifelong learning. 
In the future, we can envisage the delegation of many tasks to these digital 
partners, allowing them to work on our behalf 24/7. When we reach this 
stage, the digital ‘society of us’ will parallel our physical society, among other 
things, performing information searches, making connections, and engaging 
in commerce. 

The CPS swarm approach provides a framework for managing large­
scale systems consisting of billions of agents. This approach offers several 
advantages: (i) Agents in a swarm act autonomously and are guided by a 
set of behavioral rules that reflect the personality traits and preferences of 
their human counterparts. (ii) Agents cooperate locally based on the concepts 
of a dynamic social neighborhood, while exchanging and sharing global 
information. (iii) The environments in which agents operate, including the 
emerging Web 3.0 and the physical world, which are highly dynamic, difficult 
to predict, and inherently parallel and distributed. (iv) Digital assistants, 
a form of CPS swarm, are designed to provide services based on gathered 
information. In a swarm of digital assistants, there is a constant exchange of 
information, searching, negotiation and trading between members. (v) Each 
agent in the swarm is inherently selfish and represents the preferences of its 
human double. However, with appropriate rules of interaction, socially aware 
patterns can emerge globally. 

There are many practical applications for CPS swarms of digital assistants. 
For example, with appropriate consent and privacy protection, the continuous 
exchange of information between digital assistants can enable the tracking 
of physical locations. This capability could play a key role in scenarios 
such as epidemic tracking, where potential exposures can be identified and 
containment measures automatically implemented. In emergency situations, 
swarm assistants can take advantage of real­time information sharing to guide 
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the safe escape of individuals in a crowd, allowing for the emergence of 
a collective escape plan. Another possible application is coming from the 
circulation of fake news on social networks that presents a serious problem. 
Cooperation between different web miners working for different entities is 
often limited, which hinders the collection of comprehensive information and 
effective inference. Using a collaborative CPS swarm, a large amount of 
information can be collected in parallel, shared among members, and used 
for coordinated analysis and inference, allowing for more effective detection 
of fake news. Looking to the future, CPS swarms of digital assistants could 
work together to find, negotiate and trade with other CPS swarms operating 
directly in the physical world. This multi­level interaction between CPS 
swarms opens up new possibilities for service provision and the resolution of 
complex tasks. In addition, sensing as a service is a growing business approach 
in IoT, where users pay for data collected by specific sensors. This concept can 
be extended to swarms of CPSs, allowing them to offer sensing and actuation 
services in different locations. Members of the digital swarm can then find and 
negotiate the use and cost of available CPS resources for specific tasks, sharing 
experiences and collaborating with each other. This creates a complex society 
of CPS swarms interacting at multiple levels. Blockchain technology, known 
for its decentralized and distributed nature, will play a fundamental role in 
enabling secure transactions and building trust between swarm members. 

In summary, CPS swarm approaches provide a powerful framework for 
managing large­scale systems, and digital assistants serve as conspicuous 
examples of CPS swarms. The potential applications of CPS swarms are 
diverse, ranging from tracking epidemics and responding to emergencies, to 
combating fake news and creating complex societies of interacting swarms. 

7.2.3 Research Challenges 

As swarm intelligence is still a relatively young topic, several crucial open 
research questions remain. In the previous subsections, we discussed domain­
specific topics related to specific innovative applications. However, it is 
essential to note that many other application­specific research questions 
are not mentioned here. These issues are highly dependent on the specific 
context of the application. Additionally, there are general themes in swarm 
systems that are independent of the domain or application. We will use 
the example of CPS swarms to illustrate these themes. A swarm of 
CPSs faces several requirements that need to be addressed. These include 
designing, programming, and implementing highly distributed and connected 
digital technologies embedded in a wide range of devices. In addition, 
designing increasingly autonomous physical systems with diverse dynamics is 
challenging while meeting several critical constraints. In addition, addressing 
systems of systems with a high degree of autonomy is key to ensure scalability, 
adaptability, robustness, complexity management, safety, and security, and 
establishing trust between people and swarms. In order to provide an overview 
of open research topics in swarm systems, we group general topics into the 
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following categories. It is important to note that these categories address only 
a subset of the general topics, as a discussion of all the underlying details 
would be beyond the scope of this book. 

Modeling 

Creating models from natural or other sources of inspiration is an important 
topic in the research community. As mentioned in Section 7.2.1, many 
untapped sources of inspiration can still be explored. This research area also 
includes fine­tuning application­specific parameters for existing algorithms. 
In addition, algorithmic topics cover scalability, degree of control, degree of 
convergence, and the delicate balance between exploitation and exploration 
[418]. Furthermore, combining different sources of inspiration can be used 
to solve complex modern problems with self­organizing capabilities. The key 
idea is to adapt the application­specific swarm intelligence algorithms to fit 
the underlying problem definition. 

Design 

As swarms of CPS continue to proliferate in different application contexts 
and experience increasing acceptance, the challenge of designing systems that 
can efficiently achieve predefined goals while remaining flexible, reliable, and 
adaptable to changing conditions is becoming increasingly daunting. 

The design of the next generation CPS must address multiple broad 
challenges, as described by Isaac et al. [67]. These challenges include: 
(i) Integration of complex, heterogeneous large systems, (ii) Interaction 
between people and systems, (iii) Dealing with uncertainty, (iv) Measuring 
and validating system performance, (v) Enriching systems with learning 
capabilities and (vi) System design. 

From a fundamental point of view, individual theories provide formal 
descriptions of different aspects of CPS design, covering physical, technical, 
organizational, and human­system interaction aspects. However, these 
disciplines are not fully integrated into a single system theory. In other 
words, while methodologies, representations, and tools exist to address specific 
aspects of CPS design, there is still an open challenge in providing support 
for the complete design life cycle. In addition, a formal design methodology 
must include a process that iteratively revisits and refines micro­level behavior 
and bridges the gap between local and global behavior. Although Brambilla 
et al. [45] describe behavior­based design and automated design methods for 
CPS swarms, there is currently no implemented toolchain that can map these 
design processes. One possible approach to address this gap is the CPSwarm 
workbench [25], which integrates several tools to guide CPS swarm designers 
through the entire lifecycle, covering the design, optimization, simulation, and 
deployment phases. 
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Validation and Verification 

Verification and validation in CPS swarms cover a wide range of systems 
and systems of systems, including hardware, software, information, processes, 
personnel, and facilities. It is crucial to explore robust methodologies for 
validating swarm behavior in CPSs. Whenever possible, it is important to 
define detailed standardized KPIs, scenarios, test areas, and benchmarks to 
ensure the reusability of measurement methodologies. The results obtained 
from verification and validation activities should feed back into the design 
specifications, model definitions, and validation. 

Human in the Loop 

Enabling human interactions with swarm systems [269, 210] offers many 
advantages, as CPSs can leverage humans’ cognitive and sensory­motor 
capabilities. In contrast, humans can use CPSs in closed­loop interactions 
as augmented external sensor­actuator systems. Nevertheless, the design 
and implementation of such mixed­initiative systems [182] present scientific 
and technological challenges. These challenges encompass various aspects, 
including the physical performance of two­way interactions (between single 
CPSs or swarms of CPSs and humans), the presentation of the complex state 
of the distributed CPS to humans, and the dissemination of information 
or commands from humans to humans and CPS swarms. Considerable 
research has been devoted to the development of bi­directional interaction and 
dialogue interfaces and modalities, exploring the use of various multimodal 
interfaces [148, 49, 270, 185] for proximal interaction with swarms. 

However, allowing direct interaction of human operators within a swarm 
system introduces new potential risks. The presence of humans can negatively 
impact the security, safety, stability, and reliability of the system response if 
they act irresponsibly or maliciously. These aspects have not received much 
attention to date but will become major concerns in the near future, especially 
with respect to security and privacy at all levels. 
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[43] Laszlo Böszörmenyi, Manfred del Fabro, Marian Kogler, Mathias Lux, 
O. Marques, and Anita Sobe. Innovative Directions in Self­organized 
Distributed Multimedia Systems. Multimedia Tools and Applications, 
Springer, 51(2):525–553, 2011. 
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Vestergaard, and René Vestergaard. Rewriting game theory as a 
foundation for state­based models of gene regulation. In International 
Conference on Computational Methods in Systems Biology, pages 257– 
270. Springer, 2006. 

[62] Anders  Lyhne Christensen, Sancho Oliveira, Octavian Postolache, 
Maria João de Oliveira, Susana Sargento, Pedro Santana, Lúıs Nunes, 
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Barry Lennox, and Farshad Arvin. Federated reinforcement learning for 
collective navigation of robotic swarms. IEEE Transactions on Cognitive 
and Developmental Systems, 2023. 

[269] Jawad  Nagi. Symbiotic interaction between humans and robot 
swarms. PhD thesis, Department of Informatics, University of Lugano, 
Switzerland, 2016. 

[270] Jawad Nagi, Alessandro Giusti, Luca Gambardella, and Gianni A. Di 
Caro. Human­swarm interaction using spatial gestures. In Proceedings 
of the 27th IEEE/RSJ International Conference on Intelligent Robots 
and Systems, pages 3834–3841, 2014. 



154 Engineering Swarms of Cyber-Physical Systems 

[271] Changjoo Nam and Dylan A. Shell. Assignment algorithms for modeling 
resource contention in multirobot task allocation. IEEE Transactions 
on Automation Science and Engineering, 12(3):889–900, 2015. 

[272] Yadati Narahari, Dinesh Garg, Ramasuri Narayanam, and Hastagiri 
Prakash. Game theoretic problems in network economics and mechanism 
design solutions. Springer, 2009. 

[273] Mark EJ Newman.  The structure and function of complex networks. 
SIAM review, 45(2):167–256, 2003. 

[274] Claus Ballegaard Nielsen, Peter Gorm  Larsen, John Fitzgerald, Jim 
Woodcock, and Jan Peleska. Systems of systems engineering: Basic 
concepts, model­based techniques, and research directions. ACM 
Computing Surveys, 48(2), Sep 2015. 

[275] Martin A. Nowak, Corina E. Tarnita, and Edward O. Wilson.  The 
evolution of eusociality. Nature, 466(7310):1057–1062, Aug 2010. 

[276] Olusegun  Olorunda and Andries P. Engelbrecht. Measuring explo-
ration/exploitation in particle swarms using swarm diversity. In 2008 
IEEE Congress on Evolutionary Computation (IEEE World Congress 
on Computational Intelligence), pages 1128–1134, 2008. 

[277] Nestor  I. Ospina, Eduardo Mojica­Nava, Luis G. Jaimes, and 
Juan M. Calderón. Argrohbots: An affordable and replicable ground 
homogeneous robot swarm testbed. IFAC­PapersOnLine, 54(13):256– 
261, 2021. 

[278] Christoph Osterloh, Thilo Pionteck, and Erik Maehle. MONSUN II: A 
small and Inexpensive AUV for Underwater Swarms. In Proceedings of 
the 7th German Conference on Robotics, pages 1–6, 2012. 

[279] Raymond Oung.  The Distributed Flight Array: Summary. https:// 
www.youtube.com/watch?v=fcradVE9uts, 2013. [Online; accessed 30-
January­2020]. 

[280] Raymond Oung and Raffaello D’Andrea. The Distributed Flight Array. 
Mechatronics, 21(6):908–917, 2011. 

[281] Rafael  S. Parpinelli and Heitor S. Lopes. New inspirations in 
swarm intelligence: A survey. International Journal of Bio­Inspired 
Computation, 3(1):1–16, 2011. 

[282] Rafael  S Parpinelli and Heitor S Lopes. New inspirations in 
swarm intelligence: A survey. International Journal of Bio­Inspired 
Computation, 3(1):1–16, 2011. 

https://
www.youtube.com/watch?v=fcradVE9uts


Bibliography  155 

[283] Jayam Patel and Carlo Pinciroli. Improving human performance using 
mixed granularity of control in multi­human multi­robot interaction. 
In 2020 29th IEEE International Conference on Robot and Human 
Interactive Communication (RO­MAN), pages 1135–1142. IEEE, 2020. 

[284] Jayam Patel, Yicong Xu, and Carlo Pinciroli. Mixed­granularity human­
swarm interaction. In 2019 International Conference on Robotics and 
Automation (ICRA), pages 1059–1065. IEEE, 2019. 

[285] David Payton, Mike Daily, Regina Estowski, Mike Howard, and Craig 
Lee. Pheromone robotics. Autonomous Robots, 11(3):319–324, 2001. 

[286] Kirstin Hagelskjaer Petersen, Radhika  Nagpal, and Justin K Werfel. 
Termes: An Autonomous Robotic System for Three­dimensional 
Collective Construction. Robotics: science and systems VII, 2011. 

[287] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, 
Eric Feron, and Magnus Egerstedt. The robotarium: A remotely 
accessible swarm robotics research testbed. In 2017 IEEE International 
Conference on Robotics and Automation (ICRA), pages 1699–1706. 
IEEE, 2017. 

[288] Daniel Pickem, Myron Lee, and Magnus  Egerstedt. The GRITSBot 
in its Natural Habitat – a Multi­robot Testbed. In Proceedings of 
the IEEE International Conference on Robotics and Automation, pages 
4062–4067, 2015. 

[289] Carlo Pinciroli and Giovanni Beltrame.  Swarm­oriented Programming 
of Distributed Robot Networks. Computer, 49(12):32–41, 2016. 

[290] Carlo Pinciroli,  Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne 
Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni 
Di Caro, Frederick Ducatelle, et al. Argos: a modular, parallel, multi­
engine simulator for multi­robot systems. Swarm intelligence, 6(4):271– 
295, 2012. 

[291] G.  Porter. Models of Proba­3 designs. http://www.esa.int/ 
spaceinimages/Images/2016/05/Models_of_Proba-3_designs, 
2016. [Online; accessed 9­July­2019]. 

[292] Christian  Prehofer and Christian Bettstetter. Self­organization in 
communication networks: principles and design paradigms. IEEE 
Communications Magazine, 43(7):78–85, 2005. 

[293] James  A. Preiss, Wolfgang Hönig, Gaurav S. Sukhatme, and Nora 
Ayanian. Crazyswarm: A large Nano­quadcopter Swarm. In Proceedings 
of the International Conference on Robotics and Automation, pages 
3299–3304, 2017. Software available at https://github.com/ 
USC-ACTLab/crazyswarm. 

https://github.com/USC-ACTLab/crazyswarm
http://www.esa.int/spaceinimages/Images/2016/05/Models_of_Proba-3_designs
http://www.esa.int/spaceinimages/Images/2016/05/Models_of_Proba-3_designs
https://github.com/USC-ACTLab/crazyswarm


156 Engineering Swarms of Cyber-Physical Systems 

[294] George  Preti, Charles J. Wysocki, Kurt T. Barnhart, Steven J. 
Sondheimer, and James J. Leyden. Male Axillary Extracts Contain 
Pheromones that Affect Pulsatile Secretion of Luteinizing Hormone and 
Mood in Women Recipients1. Biology of Reproduction, 68(6):2107–2113, 
06 2003. 

[295] CPSwarm  H2020 project. CPSwarm Modeler. https://github. 
com/cpswarm/modelio-cpswarm-modeler, 2019. [Online; accessed 23-
March­2023]. 

[296] CPSwarm  H2020 project. CPSwarm Code Generator. https:// 
github.com/cpswarm/code-generator, 2020. [Online; accessed 23-
March­2023]. 

[297] CPSwarm H2020 project. CPSwarm Communication Library.  https: 
//github.com/cpswarm/swarmio, 2022. [Online; accessed 23­March-
2023]. 

[298] Przemyslaw  Prusinkiewicz, Mitra Shirmohammadi, and Faramarz 
Samavati. L­systems in geometric modeling. International Journal of 
Foundations of Computer Science, 23(01):133–146, 2012. 

[299] Amanda Purington, Jessie G Taft, Shruti Sannon, Natalya N Bazarova, 
and Samuel Hardman Taylor. Alexa is my new bff: Social roles, user 
satisfaction, and personification of the amazon echo. In Proceedings 
of the 2017 CHI Conference Extended Abstracts on Human Factors in 
Computing Systems, pages 2853–2859, 2017. 

[300] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, 
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: 
an open­source robot operating system. In Proceedings of the ICRA 
Workshop on Open Source Software in Robotics, May 2009. 

[301] Deepak Rai and Kirti Tyagi.  Bio­inspired optimization techniques: 
a critical comparative study. ACM SIGSOFT Software Engineering 
Notes, 38(4):1–7, 2013. 

[302] Steven  Railsback, Daniel Ayllón, Uta Berger, Volker Grimm, Steven 
Lytinen, Colin Sheppard, and Jan Christoph Thiele. Improving 
execution speed of models implemented in netlogo. Journal of Artificial 
Societies and Social Simulation, 2017. 

[303] Steven  F Railsback and Volker Grimm. Agent­based and individual­
based modeling: a practical introduction. Princeton university press, 
''2nd'' edition, 2019. 

[304] Bhuvaneswari Ramachandran, Sanjeev K. Srivastava, Chris S. Edring-
ton, and David A. Cartes. An intelligent auction scheme for smart 
grid market using a hybrid immune algorithm. IEEE Transactions on 
Industrial Electronics, 58(10):4603–4612, 2011. 

https:////github.com/cpswarm/swarmio
https://github.com/cpswarm/modelio-cpswarm-modeler
https://github.com/cpswarm/code-generator
https://github.com/cpswarm/code-generator
https://github.com/cpswarm/modelio-cpswarm-modeler
https:////github.com/cpswarm/swarmio


,

Bibliography  157 

[305] Mohsen Raoufi, Ali Emre Turgut, and Farshad Arvin.  Self­organized 
collective motion with a simulated real robot swarm. In Proceedings 
of the Annual Conference Towards Autonomous Robotic Systems, pages 
263–274. Springer, 2019. 

[306] Martin Reed, Aliki Yiannakou, and Roxanne Evering.  An ant colony 
algorithm for the multi­compartment vehicle routing problem. Applied 
Soft Computing, 15:169–176, 2014. 

[307] Andreagiovanni Reina, Alexander Cope, Eleftherios Nikolaidis, James 
Marshall, and Chelsea Sabo. Ark: Augmented reality for kilobots. IEEE 
Robotics and Automation Letters, PP:1–1, 05 2017. 

[308] Fatemeh  Rekabi, Farzad A Shirazi, Mohammad Jafar Sadigh, and 
Mahmood Saadat. Distributed output feedback nonlinear h∞ formation 
control algorithm for heterogeneous aerial robotic teams. Robotics and 
Autonomous Systems, 136:103689, 2021. 

[309] Fatemeh Rekabi­Bana, Junyan Hu, Tomáš Krajńık, and Farshad Arvin. 
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[360] Ricard V. Solé, Susanna C. Manrubia, Bartolo Luque, Jordi Delgado, 
and Jordi Bascompte. Phase transitions and complex systems: Simple, 
nonlinear models capture complex systems at the edge of chaos. 
Complexity, 1(4):13–26, 1996. 

[361] Kian  Lun Soon, Joanne Mun­Yee Lim, and Rajendran Parthiban. 
Coordinated traffic light control in cooperative green vehicle routing 
for pheromone­based multi­agent systems. Applied Soft Computing, 
81:105486, 2019. 

[362] Kenneth  Stanley. rtNEAT C++. https://nn.cs.utexas.edu/ 
?rtNEAT, 2006. [Online; accessed 23­March­2023]. 

[363] Kenneth O. Stanley and Risto Miikkulainen. Evolving Neural Networks 
through Augmenting Topologies. Evolutionary Computation, 10(2):99– 
127, 2002. 

[364] David Steber, Peter Bazan, and Reinhard German. Swarm ­ increasing 
households’ internal pv consumption and offering primary control power 
with distributed batteries. In Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics), volume 9424, pages 3–11. Springer Verlag, 
2015. 

[365] Nathalie  Steinhauer, Kelly Kulhanek, Karina Antúnez, Hannelie 
Human, Panuwan Chantawannakul, Marie­Pierre Chauzat, and Dennis 
van Engelsdorp. Drivers of colony losses. Current Opinion in Insect 
Science, 26:142 – 148, 2018. 

[366] John D Sterman.  System dynamics modeling: tools for learning in a 
complex world. California management review, 43(4):8–25, 2001. 

[367] Apache Storm.  https://storm.apache.org/. [Online; accessed 8-
August­2024]. 

[368] Daniel P Stormont. Robot swarms for planetary exploration. In 
Proceedings of the 4th International Conference and Exposition on 
Robotics for Challenging Situations and Environments, pages 347–352, 
2000. 

[369] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications 
to Physics, Biology, Chemistry, and Engineering. Studies in 
Nonlinearity. Avalon Publishing, 2014. 

https://storm.apache.org/
https://nn.cs.utexas.edu/?rtNEAT
https://nn.cs.utexas.edu/?rtNEAT


Bibliography  163 
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