

 Engineering Swarms of
Cyber-Physical Systems

Melanie Schranz
Lakeside Labs, Klagenfurt, Austria

Wilfried Elmenreich
University of Klagenfurt, Klagenfurt, Austria

Farshad Arvin
Durham University, Durham, UK

A SCIENCE PUBLISHERS BOOK

First edition published 2026
by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2026 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and

publisher cannot assume responsibility for the validity of all materials or the consequences of

their use. The authors and publishers have attempted to trace the copyright holders of all material

reproduced in this publication and apologize to copyright holders if permission to publish in this

form has not been obtained. If any copyright material has not been acknowledged please write and

let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,

transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or

hereafter invented, including photocopying, microfilming, and recording, or in any information

storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.

copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,

Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact

mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are

used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data (applied for)

ISBN: 978-1-032-04715-7 (hbk)

ISBN: 978-1-032-04733-1 (pbk)

ISBN: 978-1-003-19446-0 (ebk)

DOI: 10.1201/9781003194460

Typeset in Times New Roman

by Prime Publishing Services

http://www
https://dx.doi.org/10.1201/9781003194460
mailto:mpkbookspermissions@tandf.co.uk
http:copyright.com

Preface

In the evolving landscape of modern technology, Cyber-Physical Systems (CPS)

represent the forefront of innovation, blending the physical and digital worlds

seamlessly. However, as these systems become increasingly interconnected and

complex, new challenges arise. In complex systems composed of numerous

interacting components, the necessity for adaptation or expansion often becomes

evident. Minor adjustments, such as a simple software update, might subtly alter

component behavior, undermining key assumptions about the broader system.

How can we design systems that are not only powerful but also robust, adaptable,

and scalable? Conventional top-down design approaches often fall short meeting

these requirements, particularly when addressing the ongoing design, operation,

and maintenance of such complex systems. One promising answer lies in the

fascinating field of swarm intelligence.

Swarm systems utilize simple local interactions to produce sophisticated,

emergent behaviors similar to those observed in natural entities like flocks of birds

or colonies of ants. Inspired by this potential, Engineering Swarms for Cyber-

Physical Systems aims to guide readers through the entire journey of applying

swarm intelligence in CPS, from conceptual modeling to final deployment.

This book is structured to be a one-stop resource for engineers, researchers,

and students. It begins with an introduction to swarm intelligence, illustrating

its vast potential through examples from robotics, manufacturing, and search-

and-rescue operations. We then explore the core principles of modeling, design

methods—including machine-learning approaches—and simulation techniques.

A highlight of the book is its hands-on character: programming examples and

practical insights are woven throughout, enabling you to translate theoretical

concepts into real-world applications effortlessly.

Our aspiration is that this book will serve not only as a technical guide but

also as a source of inspiration. Whether you are an experienced engineer or

a curious researcher, you will find the tools and knowledge needed to create

innovative swarm-based CPS solutions.

Thank you for taking this journey with us. Together, let’s explore the future

of engineering swarms and unlock the potential of intelligent, adaptive systems.

Happy designing!

https://taylorandfrancis.com

Preface iii

List of Figures viii

List of Tables xii

List of Acronyms xiii

1. Swarm Intelligence in Cyber-Physical Systems 1

1.1 Basic Terminology 1
1.1.1 Swarm-Intelligent Behavior 3
1.1.2 A Taxonomy on Biologically-Inspired Swarm Intelligence 4

Algorithms
1.1.3 Multi-Agent vs. Swarm Systems 6

1.2 Motivation to Engineer Swarm Intelligence for CPSs 7

2. Principles of Swarm Intelligence 10

2.1 Micro and Macro Level 10
2.2 Emergence 11
2.3 Feedback 12
2.4 Scalability 12
2.5 Adaptivity 13
2.6 Robustness 13
2.7 Communication 14
2.8 Superlinearity 15
2.9 Exploration and Exploitation 18

Contents

3. Modeling Swarms of Cyber-Physical Systems 20

3.1 Modeling Principles 21
3.1.1 Challenges 22

3.2 Use Case: Models in the Production Plant 24
3.2.1 Swarm Member Candidates 25
3.2.2 Network Model 26

3.3 Use Case: Models in Search and Rescue Applications 26
3.3.1 Model-Driven Engineering of CPS Swarms 27
3.3.2 Hardware Modeling 28
3.3.3 Behavior Modeling 28
3.3.4 Code Generation 32
3.3.5 Modeling on the Example of the SAR Use Case 32

3.4 Use Case: Models in Edge Computing 38
3.4.1 Modeling Agents in the Edge Continuum 40
3.4.2 Challenges in Modeling Agents for EMDCs 41

4. Engineering Swarm Behavior 43

4.1 Basic CPS Swarm Behavior 43
4.2 Use Case: Collective Motion 46
4.3 Use Case: Strategies to Mislead UAV Swarms 50
4.4 Use Case: The Principle of Hormones for Production Plants 52
4.5 Design Behaviors using the Concept of Evolution 56
4.6 Framework for Evolutionary Design 58

4.6.1 Architecture 58
4.6.2 Graphical User Interface 62
4.6.3 Workflow 63
4.6.4 External Simulators 64

4.7 Why Evolutionary Optimization Needs Simulation 65

5. Simulating Swarms of Cyber-Physical Systems 67

5.1 Simulation Requirements 68
5.2 Abstract Simulation 70

5.2.1 SwarmFabSim: A NetLogo Implementation 71
5.3 Physics-based Simulation 75

5.3.1 BeeGround: A Simulation Platform 81

6. Swarm Robotic Platforms 84

6.1 Sensors 84
6.2 Actuators 85
6.3 Communication 87

6.3.1 Pheromone-based Communication 87

vi Engineering Swarms of Cyber-Physical Systems

6.4 Swarm Robotic Research Platforms 93
6.4.1 Terrestrial 94
6.4.2 Aerial 98
6.4.3 Aquatic 99
6.4.4 Outer Space 100

6.5 Project: How to Build your own Swarm Robot 100
6.5.1 A Robot with Legs: Spiderino 100
6.5.2 A Wheeled Robot: Mona 103
6.5.3 Another Wheeled Robot: Mechalino 105

7. Open Challenges and Outlook 108

7.1 Challenges in Swarms of CPSs 109
7.1.1 Challenges Deriving CPS and Swarm Properties 109
7.1.2 Challenges Designing the Local Rules 110
7.1.3 Real-World Deployment Challenges 112
7.1.4 How to Address the Challenges 113

7.2 Future Trends and Directions 113
7.2.1 Future Inspirations 114
7.2.2 Promising Future Applications 117
7.2.3 Research Challenges 126

Bibliography 129

Index 169

 Contents vii

1.1 Taxonomy of nature-inspired swarm intelligence algorithms. 5
2.1 The advantages of a swarm: Adaptivity, robustness, and scalability 11

(adapted from [292]).
2.2 Example of an artificial pheromone system, COSΦ [18], that was 15

developed for swarm robotic applications. In this scenario, a leader

is releasing pheromones and five followers are following the leader.
The pheromone trail is evaporating over time.

2.3 The swarm performance illustrated as a function of the number of 17
swarm members, extracted from various experiments [37, 153].
Line (a) shows the hypothetically linear scale of a disembodied
algorithm with swarm size. Line (b) presents the logarithmic
scaling of a disembodied algorithm that requires shared resources
among its instances when implemented for a parallel execution.
Finally, line (c) shows the typical scaling of physically embodied
swarms (or of physics-considering simulation of such agents) [333].

3.1 The modeling and abstraction of a self-organizing system 21
adapted from [153].

3.2 The behavior library structure [345]. 30
3.3 The hardware model of the UAV prototype [345]. 34
3.4 The UAV SAR mission processes [345]. 35
3.5 The complex SAR behavior of the UAVs [345]. 36
3.6 Schematic architecture demonstrating the inter-edge resource 39

allocation in clusters: Nodes, pool of resources and the overall
edge-cloud interaction [334].

4.1 Taxonomy of swarm behaviors (extended from [337]). 44
4.2 The schematic description of elastic interaction (from [26]). 49
4.3 Swarm collective exploration controlled by (a) AES, 50

(b) AESTCACS, (c) AES-GA, and (d) OCM.

4.4 Main idea of the scenario, in which (a) UAVs are attacking a 51
target and (b) defenders are induced into the attacking swarm
to mislead it [354].

List of Figures

4.5 GWO simulation results: (a) Probability hP that attackers win 53

over an increasing number of defenders and (b) probability

density of achieved hits over time and increasing number of

defenders [354].

4.6 Proposed design methodology [112]. 57

4.7 Screenshot of the FREVO GUI showing the evolution of an 63

example problem.

4.8 Screenshot of the source code skeleton of a newly created problem. 64

5.1 Example of a shepherding scenario in an abstract simulation. The 71

positions of the dogs are shown with blue diamonds and the sheep

with red circles. The target point is marked by a red star. At the

beginning, the dogs were scattered around the target area. From

25 to 40 seconds, the sheep were guided towards the goal. After

40 seconds, one group of sheep had arrived and the dogs began

to assist the other flock. At 50 seconds, the two flocks of sheep
were combined into one large herd and the herding task was

completed.

5.2 SwarmFabSim: Screenshot of the user interface. 73

5.3 SwarmFabSim architecture [390]. 74

5.4 Physics-based models of some of the available robot libraries in 76

Webots software; (left) large and (right) small mobile robots.

5.5 (a) Mona, an open-source, cost-effective robot designed for 76
swarm robotics [17], and (b) a virtual model of Mona in

Webots [11].

5.6 (a) Colias, an open-source micro-robot developed for swarm 77

robotic applications [19], (b) a virtual model of Colias in

Webots and (c) a detailed CAD model of Colias.

5.7 The Search & Rescue mission began at t = 0 s. Ten seconds later, 78

rescuers were on their way to the virtual target. At t = 30 s,

they had formed a pentagon around the target. By t = 40 s, the

lost robot had been contained and was being guided home.

Unfortunately, two of the rescuers (marked by White crosses)

had stopped working due to an unexpected fault. At t = 50 s, the

remaining rescuers had created a new triangular formation to guide

the lost robot back to the starting point [169].

5.8 (a) The system architecture delineating the proposed human-swarm 78

Interaction utilizing Omnipotent Virtual Giant, as detailed in Jang

et al. [178]. Experimental validation showcasing (b) the relocation

of holographic objects of robots and (c) the subsequent movement

of real robots towards these relocated objects. Dashed arrows

indicate the remaining trajectory to the target objects.

 ix List of Figures

5.9 Screenshots of simulation examples of multi-vehicle simulations 79

using (a) Unreal Engine [414] and (b) Webots [168].

5.10 (a) Gazebo environment for training and (b) real-world 80

experiment using three TurtleBot3 Waffle Pi mobile robots [170].
5.11 BeeGround User Interface (UI) featuring arena with a gradient 83

cue with a large size swarm. The Object Hierarchy provides an

overview of all the elements in the environment, such as robots,

walls, obstacles, and cues. The Simulation Display is a graphical

representation of the simulation. The Configuration Window allows

users to adjust the settings for the BeeGround simulation, including

the agents and their behavioral parameters. The Asset/Model Folders

is a library of all the assets related to the simulation. Finally, the

Console/Debug Log Window tracks all errors or debugging

information that occur during the simulation [229].

5.12 An example of BEECLUST aggregation in the BeeGround 83

with 1000 robots in an environment with a single gradient cue

(from [229]).

6.1 An example of a swarm robotic platform, equipped with six 86

IR sensors, where Robot A receives IR from Robot B that has a 0º

orientation (from [19]).

6.2 An example of a multi-layer pheromone system (from [231]). 86

6.3 On the left is the Colias micro-robot and on the right is the 89

Colias bottom board, featuring pheromone sensing capability.

Various modules of Colias include A) main processor, B) IR

proximity sensors, C) digital camera, D) micro-motors with

gearhead, E) 22 mm wheels, F) pheromone detectors (light

intensity sensors), G) battery recharging unit, H) main switch,

and J) In-System Programming (ISP) programming port

(from [266]).

6.4 The first row presents sample experiments conducted without 90
diffusion and with fast cue speed, devoid of pheromone injection.
In contrast, the second row illustrates sample experiments

conducted with diffusion and fast cue speed, incorporating
pheromone injection, captured at time instances t = 0 s, t = 100 s,

and t = 200 s from left to right (from [266]).

6.5 The experimental setup employed for the pheromone system in 91

Na et al. [266] encompasses a PC dedicated to tracking robots

and generating pheromones, a digital camera for monitoring

robot positions, a horizontally positioned 42” LCD screen, an

aluminum frame encircling the arena, and the presence of Colias

mobile robots.

x Engineering Swarms of Cyber-Physical Systems

6.6 Spiderino robot (left) and its components. 102
6.7 (left) Mona robot main platform. (right) The architecture of the 104

basic platform [17].
6.8 The Mona main-board and various sub-modules. 104
6.9 Mechalino components: Chassis, wheel, axle, mainboard, battery. 106

6.10 Assembled Mechalino with ArUco marker on top. 107

 List of Figures xi

3.1 The swarm functions used in the SAR mission as part of the 37
Swarm Library [345].

3.2 The hardware functions used in the SAR mission as part of the 37
Abstraction Library [345].

3.3 The swarm behaviors used in the SAR mission as part of the 37
Swarm Library [345].

3.4 Events used in the SAR mission [345]. 38
4.1 The values of the control parameters for AES, AES-TCACS, 49

AES-GA and OCM algorithms.
4.2 Suggested algorithm parameters. 55
5.1 List of simulation platforms commonly used for swarm robotics. 68
6.1 Classification of research platforms for swarm robotics (adapted 101

from Schranz et al. [337]).

List of Tables

List of Acronyms

ACO Ant Colony Optimization

AES Active Elastic Sheet

ANN Artificial Neural Network
API Application Programming Interface

BDD Block Definition Diagram
CPS Cyber-Physical System

CPSoS Cyber-Physical System of Systems

CPU Central Processing Unit

EA Evolutionary Algorithm

FREVO Framework for Evolutionary Design

FSM Finite State Machine

GUI Graphical User Interface

IBD Internal Block Diagram

IC Integrated Circuit

ID Identifier
IoE Internet of Everything

IoT Internet of Things

IMU Inertial Measurement Unit

IR Infrared

ISP In-System Programming

MCU Microcontroller Unit

NEAT NeuroEvolution of Augmenting Topologies

OS Operating System

PCB Printed Circuit Board

PSO Particle Swarm Optimization

PCT Planned Cycle Time

RFID Radio-Frequency Identification
ROS Robot Operating System

RPT Raw Process Time

SAR Search and Rescue

SCXML State Chart XML

xiv Engineering Swarms of Cyber-Physical Systems

SoC System on Chip

SPP Self-Propelled Particles

SysML Systems Modeling Language

TCACS Tabu Continuous Ant Colony System

TMS Traffic Management System
UAV Unmanned Aerial Vehicle

UI User Interface

UGV Unmanned Ground Vehicle

UML Unified Modeling Language
URDF Unified Robotic Description Format
USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

UWB Ultra Wideband

WIP Work in Progress

VTL Velocity Template Language

V2X Vehicle to Everything

Chapter 1

Swarm Intelligence in
Cyber-Physical Systems

Swarm intelligence is a concept adapted from nature to complex technical
systems of various application domains including smart grids, cities, or
mobility, and industry 4.0. Swarms of bees, birds, fish, and other organisms
demonstrate how a self­organizing behavior can solve complex tasks without
a central control entity dictating rules and goals to the individual agents
within the swarm. This chapter aims to give a general overview of the typical
terminologies for swarm intelligence concepts in general and motivates the
engineering of swarm intelligence for CPSs.

1.1 Basic Terminology

A swarm consists of individual, simple, and homogeneous agents [86]. Swarm
behavior describes social animal behaviors that exhibit a strong innate or
developed inclination to collaboratively achieving a common global objective,
such as foraging, nest­building, or defending against enemies. Thus, swarm
intelligence is based on the coordination and control mechanisms that exist in
natural swarms, which operate in dynamic and diverse environments. Despite
the complexity of their goals, individual agents in a swarm typically follow
simple rules and interact locally with their peers and surroundings. By doing
so, they generate collective behavior that enables the swarm to solve complex
tasks. This makes the swarm scalable, adaptable, and robust to changing
conditions.

In nature, swarm behavior is often observed in animals that exhibit
eusocial behavior, like honeybees, ants, termites, and naked mole rats [275].
Eusociality is characterized by several distinctive features, including
cooperative care of offspring, where individuals within the group collaborate

2 Engineering Swarms of Cyber-Physical Systems

to nurture offspring, extending their care even to those that are not direct
descendants. Additionally, eusocial species often exhibit a clear division of
labor, with distinct castes or groups specializing in specific tasks within
the colony. Another hallmark of eusociality is the reproductive division of
labor, where reproduction is taken care of by a subset of the individuals
within the group, often a reproductive queen and a few males. This
specialization in reproduction ensures a well­organized and efficient social
structure. Furthermore, a key characteristic is the presence of overlapping
generations in the swarm. This stands in contrast to species where parents
typically perish before the offspring reach maturity. These features collectively
define and distinguish eusocial behavior in various animal species. Given
proper abstraction, eusocial behavior can be an inspiring model for CPS
swarm systems.

A very early definition of a swarm was rather simple, referring to a group
of animals executing a joint movement pattern. This is still reflected in the
traditional definition that can be found in the Oxford Dictionary, where a
swarm is “A large or dense group of flying insects”. The first formal definition
was given by Farley and Clark in 1954 as “a system which changes its basic
structure as a function of its experience and environment” [110]. The term
swarm intelligence was first introduced in 1989 by Beni and Wang [33].
It was used to describe the dynamics of a group of cellular robots that
could execute an intelligent collective behavior. This marks the starting
point at which swarm intelligent behaviors were studied outside of natural
sciences [333]. Bonabeau and Meyer [40] in 2001 effectively summarized all
the necessary characteristics of a natural system to call it a swarm intelligence
system: “Social insects work without supervision. Their teamwork is largely
self­organized, and coordination arises from the different interactions among
individuals in the colony. Although these interactions might be primitive (one
ant merely following the trail left by another, for instance), taken together,
they result in efficient solutions to difficult problems (such as finding the
shortest route to a food source among a myriad of possible paths). The
collective behavior that emerges from a group of social insects has been dubbed
swarm intelligence.” The extension of the same concepts to swarm robotics
was captured by the definitions of Şahin and Spears [320] in 2005: “Swarm
robotics is the study of how a swarm of relatively simple physically embodied
agents can be constructed to collectively accomplish tasks that are beyond the
capabilities of a single one” and “Swarm robotics emphasizes self­organization
and emergence while considering the issues of scalability and robustness.”

Animals exhibiting various evolved swarm behaviors to collaboratively
achieve common goals, such as foraging, nest building or defending against
enemies have long inspired swarm intelligence in robotics and advancements
in CPS developments. The observed swarm intelligence models gain an
understanding of the principle patterns and rules that the agents execute
in a natural system. This also gives insights into the conditions, rules, and
interactions that lead to a swarm behavior. Moreover, research has shown
that an individual member of a swarm is typically incapable of finding an

3 Swarm Intelligence in Cyber-Physical Systems

optimal solution on its own [131]. Instead, a successful solution often arises
from the collective behavior of the swarm as a whole.

From a CPS perspective, an engineered swarm comprises a collection
of agents that can vary in complexity from relatively simple entities like
swarm robotic research platforms with small, basic robots equipped with few
sensors to highly complex systems such as autonomous cars. As a swarm,
these agents reach a common global goal collaboratively using relatively
straightforward behavior rules, which are implemented locally by each agent.
When individuals interact with each other and/or their environment following
well­designed rules, they can exhibit collective behavior capable of solving
complex tasks effectively. Systems designed based on swarm intelligence
typically exhibit characteristics, such as parallel and distributed processing
and control, scalable performance, adaptability to dynamic variations, and
resilience to losses and failures of individual components [333].

1.1.1 Swarm-Intelligent Behavior

To determine whether a system is truly swarm­intelligent, we propose
considering the following two cases [333].

1. If the system’s functionality remains intact even when operated by
a single swarm member it does, not qualify as a swarm­intelligent
system. If there is only one active agent, the system retains its full
set of capabilities. In this scenario, these capabilities do not depend
on any swarm behavior, even if multiple agents are concurrently in
operation [333]. An illustrative case is the concept of “sweeping,” also
known as uniform coverage, which can be achieved by a single swarm
agent or multiple agents collaborating to cover a designated area. To
address a coverage problem within a fixed area using a UAV swarm, a
simple approach is to distribute the UAVs across the area. Each UAV
independently executes a sweeping algorithm for its assigned section of
the map, without any interaction with other swarm members during the
algorithm’s execution. The sole drawback of employing a single UAV in
this context is that it might take longer to complete the task.

2. As the swarm size increases, the overall performance ratio improves,
indicating the presence of a swarm­intelligent system. If the overall
performance per member decreases as the swarm size increases across
the entire size range, the system faces scalability issues rather than
benefiting from larger population sizes. For instance, increasing the
number of cars on a street boosts the capacity to transport people and
goods. However, as cars interfere with each other, the incremental gain
in transport capacity diminishes once a certain density is reached. Thus,
in this scenario a car’s operation does not benefit from the presence of
additional vehicles.

4 Engineering Swarms of Cyber-Physical Systems

A comprehensive examination of this test, along with supporting empirical
data, can be found in the work by Hamann et al. [153]. In such a swarm­
intelligent system, the agents reach their global objective according to locally
executed rules from which the overall behavior emerges through the inter­
swarm interactions. In the case of CPS swarms, the behaviors displayed
by each individual CPS are based on a local set of rules. These rules can
be as simple as mapping sensor inputs to actuator outputs or as complex
as evaluating and analyzing local information before taking action. These
behaviors require interactions with the physical world, which encompass the
environment as well as other CPSs [122]. To perform these interactions, the
CPS reads and interprets sensory data, processes it, and drives the actuators
accordingly. This sequence of interactions is known as the basic behavior,
which is repeated either indefinitely or until a desired state is achieved [333].

1.1.2 A Taxonomy on Biologically-Inspired
Swarm Intelligence Algorithms

Swarm intelligence algorithms are inspired by the field of biology. Most
algorithms mimic the behavior of a natural system and apply it to an
engineering problem. Thus, swarm intelligence algorithms are usually referred
to as nature­inspired [155]. Apart from biology, other research fields like
physics and chemistry also inspire the development of algorithms. However,
in the proposed taxonomy, these fields are not considered. Although these
algorithms are nature­inspired they do not demonstrate swarm intelligence
behavior. This also holds for evolutionary computation, self­organizing neural
networks, and cellular automata. There are other frameworks that draw
inspiration from nature or natural processes but are not considered swarm­
intelligent. Among them are biomimetic algorithms, which rely on mimicking
biological processes and models. Examples include flower pollination
algorithm [416], great salmon run [259], and dolphin echolocation [196].
Other more generically nature­inspired algorithms mimic physical or chemical
laws instead of biological ones. Some examples of these types of algorithms
include simulated annealing [206], spiral optimization [375], water cycle
algorithm [107], and galaxy­based algorithm [349]. Other notable examples
include the fireworks algorithm and its variants [376], the swarm chemistry
particle algorithms [323], and various variants of the harmony search
algorithm [129]. These examples exhibit the characteristic properties of swarm
intelligence, but their local rule set does not have a specific biological source
of inspiration. Given the vast array of inspiration sources and the ocassionally
indistinct boundaries between algorithms, it can be challenging to pinpoint
categories or processes that can be definitely identified as recognized sources
of inspiration for swarm­intelligent behavior [333].

In this section, we exclude the theoretical and mathematical descriptions
of individual swarm intelligence algorithms, as these have already been
extensively covered by various authors including Bonabeau et al. [39],

5 Swarm Intelligence in Cyber-Physical Systems

Ants

1) Insects Cockroaches

Termites
N
at
u
re
-i
n
sp
ir
ed

 s
w
ar
m

 i
n
te
ll
ig
en
ce

 a
lg
o
ri
th
m
s

Bees

2) Flying Animals Fireflies

BatsFish

Organisms Krill
3) Sea Life

Copepods

4) Plants
Algal blooms

5) Fungus

6) Bacteria

7) Quadrupeds

1) Genetic Algorithm

2) Differential Evolution

Evolution
3) Evolution Strategy

4) Evolutionary Programming

Figure 1.1: Taxonomy of nature-inspired swarm intelligence algorithms.

Camazine et al. [53], Garnier et al. [131], Blum and Li [36], Floreano and
Mattiussi [122], Parpinelli and Lopes [281], Binitha and Sathya [35], Yang et
al. [417], Krause et al. [214], Hassanien and Emary [155], Yang et al. [418],
among others.

For classifying swarm intelligence algorithms, this is not accurate enough
as many nature­inspired algorithms actually do not relate to swarm
behavior [145]. Therefore, we propose the taxonomy of models for existing
and possible future swarm intelligence algorithms based on their sources
of inspiration, as seen in Figure 1.1. The purpose of this categorization–
organisms and evolution–is not to present a complete taxonomy of swarm
intelligence inspirations. Instead, it aims to highlight the diversity of natural
inspirations and emphasize that only a few swarm intelligence algorithms
are currently suitable for use in swarms of CPSs. The biggest issue is their
applicability for swarms of CPSs. For instance, Ant Colony Optimization [88]
would require individual CPSs to utilize the environment for information
exchange through stigmergy. Possibly future use of swarming CPSs might
turn this requirement into an advantage.

⏎

6 Engineering Swarms of Cyber-Physical Systems

Swarm intelligence is not limited to natural systems alone but can
be applied to any complex system comprising multiple interacting
components that can exhibit useful properties like collective decision-making,
regulation, homeostasis, and periodic patterns. Thus, the key to utilizing any
collective system-whether composed of living components or not-as a source
of inspiration for designing a swarm-intelligent system lies in understanding
why and how it functions effectively [333]. Thus, behaviors as described in
Section 1.1.1 should be extracted, abstracted, and translated to the CPS
swarm domain.

1.1.3 Multi-Agent vs. Swarm Systems

Both terms appear frequently in literature, making it challenging to
distinguish between multi-agent and swarm systems. Characteristics typical of
one system often appear in the other. A common feature is that both multi-
agent systems and swarm systems consist of multiple agents or CPSs that
cooperate. Additionally, attributes such as interaction types, local intelligence,
and distributed knowledge are partially assigned to both systems.

Therefore, categorizing systems into a single class is often impractical.
In the following sections, we will further analyze characteristics that provide
sufficient evidence to classify a system as multi-agent, swarm, or, as is often
the case, irrelevant in the first place.

Emergence and Homogeneity

Swarm systems are considered to be bio-inspired drawing their behavior
from organisms like ants, bees and fish, etc. In such systems, we argue the
swarm members are numerous, relatively simple, and homogeneous [333].
The simplicity of each agent implies that a single swarm member would be
incapable of achieving the overall system’s goal independently. Additionally,
the global goal is typically unknown to the individual agents. This is where the
concept of emergence becomes crucial: The interactions and local rules with
limited local knowledge of the simple swarm members lead to an emergent
global behavior through collective interaction [333].

In multi-agent systems, it is assumed that each agent can accomplish the
task independently. It (i) simply takes longer if we only use one instead of
many agents, or (ii) only a portion of the global goal will be achieved due
to the agent’s heterogeneity or specialization. Thus, the individual agent has
the ability to reach the global goal without necessarily relying on emergent
behavior.

Distributed Operation

Another key characteristic of swarm systems is the lack of a central control
that leads to emergent behavior. Due to the simple and local rules and the

7 Swarm Intelligence in Cyber-Physical Systems

interactions among the agents, a swarm system is, per se, a distributed system
with distributed knowledge [333].

For a multi­agent system, distributed processing is not mandatory. The
agents can also be controlled centrally such that parts of the task are fulfilled
in a distributed manner.

1.2 Motivation to Engineer Swarm Intelligence

for CPSs

With the increasing number of interconnected CPSs, individual and
hierarchical control becomes impossible. The latest Study of Juniper Research
in 2018 suggests that the quantity of interconnected devices will increase
steadily and reach 50 billion by the year 20221 . In contrast to static
environments, the growing interconnectivity of components in modern and
future technical systems has increased the complexity of system design and
operation in dynamic environments. This necessitates greater adaptability,
flexibility, and robustness. The systems that integrate multiple interacting
components exist at various scales, ranging from System on Chip (SoC) that
form the computational core of ubiquitous modern devices like smartphones,
to Internet of Things (IoT), which links billions of edge devices, and the
Internet of Everything (IoE), which encompasses people, processes, data, and
devices. In essence, the world is transforming into a truly interconnected and
collective realm, characterized by the proliferation of systems that combine
numerous interacting components at different scales [333].

In this respect, CPSs have emerged as a leading domain for exploring
and implementing multi­component systems, characterized by a strong inter-
connection between computational (software­side) and physical (hardware-
side) resources [224]. The National Science Foundation defines CPSs as
“Engineered systems that are built from, and depend upon, the seamless
integration of computation and physical components.”. They integrate various
domains, such as sensing, computation, control, and networking, into physical
objects and their infrastructure, enabling interaction [123]. Thus, CPSs
represent a major paradigm in the framework of collective and connected
systems, as well as a vertical study of systems: They are inherently
transdisciplinary, generalizing and expanding individual sub­fields such as
embedded systems, robotics, and networking, by simultaneously merging
concepts from cybernetics, mechatronics, design, and process science [226,
333]. Additionally, aspects related to decision autonomy, system integration,
cyber­security, control, scalability, optimization, validation, and verification,
play a major role in CPSs’ design and control. Furthermore, CPSs function
within the physical world, which is characterized by constant dynamic
changes, unpredictable events, and external conditions that are difficult to

1Study of Juniper Research, https://www.juniperresearch.com/press/
press­releases/iot­connections­to­grow­140­tohit­50­billion, June 2018.

https://www.juniperresearch.com/press/press-releases/iot-connections-to-grow-140-tohit-50-billion
https://www.juniperresearch.com/press/press-releases/iot-connections-to-grow-140-tohit-50-billion

8 Engineering Swarms of Cyber-Physical Systems

model, and the involvement of other CPSs and human agents [333]. Hence,
the CPS model is well­suited to describe and reason on the plethora of
complex and interacting components that are being deployed, connected,
and integrated with our everyday lives. This results in a multitude of
interconnected and interacting components that are best characterized by
the concept of Cyber­Physical System of Systems (CPSoS), which refers to a
vast and distributed complex system of CPSs. In essence, this creates an
ecosystem of CPSs that operate at multiple scales and interconnect with
one another [274]. In a CPSoS2 model, the design and control challenges
become even more complex as individual component autonomy must be
integrated with explicit considerations for interdependence and coordination,
interoperability, distributed control, and emergence of behaviors. This high
complexity necessitates methods that should achieve the following goals:

• Distributed control, supervision and management.

• Local coordination among the composing subsystems.

• Partial autonomy of the subsystems.

• Capability of dynamic reconfiguration of the system as a whole on
different time scales.

• Evolution of the overall system during its operation.

• Possibility of generating useful emerging behaviors at the system
level [104].

From the above­mentioned list of goals and characteristics for CPSs, it is
evident that they align with the concept of a swarm system and the typical
features expected in a swarm­intelligent designed system. Applying swarm
intelligence to CPSs is not an entirely new idea. Significant progress has been
made in the swarm robotics domain in this regard, particularly in recent
years [153, 332]. However, applying the concepts of swarm intelligence to more
general CPSs, particularly to real­world CPSs that are large, heterogeneous,
multi­scale, and autonomous, remains a challenge yet to be fully mastered.

For the successful design and development of a swarm intelligence solution
for CPS swarms, it is important to consider both the physical and cyber
aspects of the involved CPSs. The optimization, networking, and physical
embodiment aspects of these systems require the seamless integration of
software agents, mechatronic devices, and communications, unifying them into
a cohesive whole [224, 226]. A CPS can be modeled as a swarm consisting of
multiple components, with each component

• integrating one or more physical devices (sensors, actuators, communi-
cation, memory, processors, etc.),

2Given that a CPSoS is a CPS itself, in the following, we will use the acronym CPS to
refer in a general sense to either a single CPS or to a CPS swarm to make a distinction, if
relevant.

9 Swarm Intelligence in Cyber-Physical Systems

• acting autonomously (i.e., control is distributed and/or decentralized),

• responding and possibly adapting to changing conditions, and

• locally communicating and interacting with other swarm components to
possibly produce effective and useful behaviors at the system level [333].

Nevertheless, two fundamental problems can be identified in the design
and deployment of CPS swarms [333]:

1. Formalization of CPSs from a swarm intelligence perspective: This
process involves extracting and generalizing properties and parameters
that are shared among various CPSs, which are significant for designing
swarm­intelligent behavior.

2. Open research topics of the swarm intelligence domain itself (see
Chapter 7 for more details).

A good example of a CPS is the consideration of an autonomous car as
done in Schranz et al. [333]: At a smaller scale, each of the major components
of the car (e.g., the anti­blocking system) can be described as CPSs. At a
larger scale, a fleet of autonomous cars interacts and communicate with each
other. This can be used as a representation of a CPS swarm. To obtain real­
time sensor and traffic data, the cars in the swarm will need to communicate
with other CPSs that are present in the surrounding environment and the
supportive infrastructure. These CPSs can constitute an additional swarm
that facilitates interaction between different swarms of CPSs. Since there is
no specific limit to the number of devices or swarms, it is possible to create
a large­scale, multi­level swarm system that incorporates hierarchies where
required (e.g., to a central monitoring entity), integrating many CPSs that
interact with multiple CPS swarms.

Chapter 2

Principles of Swarm
Intelligence

A swarm system belongs to the family of self­organizing systems. Swarm
intelligence is derived from the natural behavior exhibited by social animals.
Their behavior tends to be adaptive, robust, and scalable [52]. These are
desirable properties of an autonomous system that can be replicated with
swarm intelligence approaches in the design of real­world technical systems.
All three properties add additional behavioral patterns to systems that use
swarm intelligence (see Figure 2.1). Additionally, a swarm is characterized
by a critical number of members, micro rules and macro plans, positive
and negative feedback, interactions through direct or indirect communication
leading to emergent behavior, super linear effects and the ability to balance
exploration and exploitation.

In summary, a group or collection of individuals can be classified as a
swarm when it displays swarm behavior that includes all the aforementioned
properties and characteristics.

2.1 Micro and Macro Level

In a swarm­intelligent system, local (micro) level changes drive the global
(macro) level behavior through bottom­up causation. This allows agents to
function in a coordinated manner without the need for central control.

There are two main approaches for modeling a self­organizing system,
following the micro­level (also known as local or microscopic) and the macro­
level (also known as global or macroscopic) perspective [164]. On the micro
level, each system agent has its own local state space and local behavior.
Hence, each agent is explicitly represented. Macro­level modeling does not
look inside each agent but has a global perspective. Thus, the macro level

11 Principles of Swarm Intelligence

Figure 2.1: The advantages of a swarm: Adaptivity, robustness, and scalability
(adapted from [292]).

only considers the global state of interest and how this state changes over
time. Detailed knowledge of an agent’s operation is thus not required for the
macro level. It is more important to model the level of abstraction to work on
a global task level. Thus, the macro level abstracts agents’ details away, e.g.,
their position or the state in the sequence of action.

Especially for modeling swarms of CPSs, the distinction between the micro
and macro levels plays a crucial but contrasting role. The overall goal is defined
at the macro level, involving the operation of multiple swarm agents, while
each agent follows behavior defined at the micro level.

2.2 Emergence

In the design of a technical system the main question arises with regard to
predictability of the system’s behavior. Additionally, predictability is related
to controllability that affects the ability to control the system and achieve
a desired configuration and/or output. Due to the property of emergence,
predictability and controllability are properties that are inherently hard to
achieve in swarm­intelligent systems that follow a bottom­up approach. Thus,

⏎

12 Engineering Swarms of Cyber-Physical Systems

emergence is directly correlated with micro and macro behaviors. Emergence is
generated with local decisions and local interactions on a micro level that lead
to a system function on the macro level. The most important characteristic
is that this emergence can produce completely new properties that were
unimaginable when considering only the micro or the macro level [153]. This
aligns with Aristotle’s principle that “the whole is greater than the sum of its
parts”. Thus, understanding the indivdiual components of a self­organizing
system is only part of the solution. While these components can be simple
and easy to comprehend it is their interplay that leads to emergence, creating
entirely new solutions [32].

In swarm systems, predictability and controllability are not the only
challenges; any parameter or configuration setting can significantly impact
the resulting dynamics of a swarm­intelligent system.

2.3 Feedback

Interactions between agents are characterized by either synergy (cooperation
or positive sum) or friction (conflict or negative sum) [161, 140, 38], also known
as feedback loops in complex systems theory [273]. These feedback loops lead
to non­linear dynamics of swarm systems, thereby creating complex behavior.

Agents are assumed to be goal­directed: They try to maximize their fitness,
satisfaction or utility. When both agents gain fitness, the interaction is said
to be synergetic. When both lose fitness, the interaction is characterized by
friction. When one gains while the other loses, the interaction is competitive.
If the losses match the gains, it is considered zero­sum. Since agents seek to
maximize their fitness, they prefer synergetic interactions, and try to avoid
friction. However, since interactions are local, agents do not a priori know
which interactions with other agents will be most beneficial for the overall
behavior. They can discover this through trial­and­error, which mirrors the
evolutionary dynamics of blind variation and natural selection of the fittest
(most synergetic) interactions.

Nevertheless, friction is not always a negative characteristic. Positive
feedback typically increases fitness, or other parameters that could lead to
permanent growth [153]. Still, at a certain point of time increasing values
do not produce any growth, but rather start disturbing each other as the
resources are finite. This is where negative feedback has its positive role that
stabilizes the systems final state. This again could lead to local maxima or
minima that necessitate monitoring a self­organizing system’s behavior.

2.4 Scalability

Swarm intelligence algorithms are able to produce complex and scalable swarm
behaviors from simple and local rules, thus, on a micro­level. Scalability is
a crucial aspect of a swarm system, enabling it to perform effectively with

13 Principles of Swarm Intelligence

varying numbers of swarm members and problem sizes. As noted in [85], a
swarm is able to maintain its function and interaction among its parts even
as its size increases, without the need for a redefinition of its interaction
mechanism. This means that the addition or removal of swarm members will
not result in a significant decline in performance, as long as the number of
members does not fall below a certain critical mass1 [333]. One cornerstone
of implementing scalability is to restrict the agents’ communication to the
interaction with their local neighborhood instead of to all agents. In contrast,
an all­to­all broadcasting mechanism will likely break scalability due to
communication demands increasing superlinearly with swarm size.

2.5 Adaptivity

Adaptivity represents the ability of a swarm to adapt to dynamic
environments, to cope with different tasks that could also appear unforeseen,
and to still fulfill its mission and reach the macro­level goal. Thus, an
adaptive system uses a sequence of operators applied through an adaptive
plan to produce a performance that is tailored to and observable within the
environment. These sequences produce different system responses dependent
on the environment. Thus, the selection of the right, applicable sequence of
operators is the task of the adaptive plan that defines the performance, i.e.,
the fitness from the operations on the environment [163].

2.6 Robustness

The vision of autonomous systems is to design a robust system behavior
that can cope with a variety of unforeseeable errors and perturbations
without human supervision. The reason for this is a paradigm shift from
monolithic systems to large networked systems with many independent and
constantly changing components. Robustness is the ability of a swarm to
adapt to variations in swarm size, environmental changes or other disturbances
affecting the system or the environment. Redundancy is a mechanism through
which biological systems adapt to their environments [371]. In technical
systems, redundancy involves cost considerations and, for static systems,
management challenges.

The term robustness has different meanings dependent on the community
in which it is used [221]. In the swarm robotics community, robustness is the
ability of a system to cope with erroneous input2, system errors, disturbances
or attacks affecting specific agents or subsystems during execution [114].
This leads to other advantages, for instance, the dependability of a system.

1It should be noted that it is not yet clarified what this critical threshold (the minimum
number of swarm members) should be [153].

21990. IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-
1990 defines robustness as “The degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions.”

14 Engineering Swarms of Cyber-Physical Systems

Generally, in a distributed system errors and small variations in input do not
affect the correctness of the system’s execution process. Moreover, the system
as a whole exhibits graceful degradation: When arbitrary agents or links are
removed or damaged, the quality of the output is likely to deteriorate, but
very gradually. Thus, damaging, subverting or removing an agent may still
leave the overall function intact. This is what produces robustness. This is
not the case in a centralized system’s control, where any malfunction of the
controller represents a possible single point of failure.

Up to now, robustness is more or less a “descriptive” characteristic,
without formally defined measures. As we can see in the following
contributions by different authors, there is no formally defined technique
that ensures the robustness of a swarm with respect to either global or local
behavior.

2.7 Communication

Autonomous agents in a swarm need to continuously exchange information.
Even a single byte, such as an agent’s velocity or relative position, is essential
for maintaining autonomy in a swarm system.

Communication in a swarm system can occur both directly and indirectly.
In the direct communication an agent uses a communication medium such
as Wi­Fi or infrared to transmit information to its immediate neighbor.
This can be a one to one message to a single neighbor or a one to many
message to several surrounding neighbors. Indirect communication involves
an agent generating a message and sharing it with the environment, for
example, through an access point, allowing other agents to collect the message
either randomly or intentionally. The shared communication medium might
be a specific location where agents deposit and retrieve messages. Indirect
communication methods like depositing pheromone values, are commonly used
by social insects and other animals for survival, whereas direct communication
through message exchange is prevalent in the robotics domain.

Pheromone­based communication is one of the most prevalent indirect
communication methods used by social animals [411]. Pheromones are
complex chemical substances that facilitate intraspecific communication
by being deposited into the environment by an agent and detected by
others. These chemicals convey intricate messages that trigger behavioral
and developmental changes within a swarm. This form of communication is
widely adopted by various animals ranging from yeast and small insects like
ants and bees to mammals such as dogs and humans [120, 294]. In swarm
systems pheromone communication has been simulated using substances
like alcohol [125], phosphorescent paint [240], light [133, 18], and infra-
red [285, 391]. Figure 2.2 illustrates a bio­inspired artificial pheromone­based
system that mimics ants pheromone­based communication.

15 Principles of Swarm Intelligence

Figure 2.2: Example of an artificial pheromone system, COSΦ [18], that was
developed for swarm robotic applications. In this scenario, a leader is releasing
pheromones and five followers are following the leader. The pheromone trail is
evaporating over time.

2.8 Superlinearity

We anticipate enhanced performance in a swarm due to synergy effects and
other factors including:

• Synergy effects: When agents collaborate they can achieve more than
the sum of their individual capabilities. Their interactions can lead to
innovative solutions that isolated agents could not achieve.

• Task specialization: Agents in a swarm can specialize in specific tasks
performing them more efficiently allowing the swarm to benefit from
diverse expertise and skills.

• Parallel processing: Tasks can be distributed among agents, enabling
them to work simultaneously. This can significantly reduce the time
needed to complete complex tasks.

• Adaptive behavior: Swarms can adapt to changing environments or
tasks dynamically, optimizing their performance over time based on
feedback and learning.

If the performance of a single agent is given as an execution time T1 to
complete the task, we would expect multiple agents to perform the task faster.
In the following, we define performance Pf as the reciprocal value of the
execution time of a task:

1
Pf =

T

In a perfectly scaling architecture, we would expect that n agents are able
T1to fulfill a task in Tn = time.
n

There are cases where the collaboration of agents provides a synergistic
effect. In such cases, the performance even exceeds linear scaling, so that

⏎

16 Engineering Swarms of Cyber-Physical Systems

Tn < T1 . An example of such a task is a scenario in which a swarm
n

efficiently solves a complex puzzle through collective problem­solving. Each
agent contributes to discovering different parts of the solution, significantly
speeding up the process. A more dynamic, though admittedly ferocious,
example is a hunting party tracking elusive prey. A single agent, or in this
case, a hunter, would be very inefficient since the prey could easily elude the
hunter. However, a coordinated group of hunters would be significantly more
efficient.

In an extreme case, the performance of a single agent could be even zero
while being a positive number for the swarm. Consider a scenario where robots
need to clean an area by pushing obstacles out of the way. If a single robot
encounters an obstacle that is too heavy to move on its own, it won’t be able
to complete its task. However, with the cooperation of multiple robots these
obstacles can be successfully pushed aside.

Such cases are considered to exhibit superlinear performance. Increasing
the number of agents in a group is anticipated to result in the group
accomplishing more work compared to a smaller group under the same
conditions and timeframe. In a group exhibiting real swarm­intelligent
behavior, such a superlinear characteristic is highly desired. This characteristic
indicates that the effect of the overall system is greater than the sum of
the effects of its individual parts. The effective design of swarm­intelligent
behavior relies on the synergies of cooperation among individual swarm
members. Only when these interactions enhance the performance of each
member can the overall system be considered well­designed. This means that
within the bounds of a feasible swarm size, not only the efficiency of the
whole swarm but also the efficiency of each individual swarm member has to
increase. We refer to this as the swarm effect,

Pf large swarm Pf small swarm > , (2.1)
sizelarge swarm sizesmall swarm

where Pfi represents any quantitative performance metric of the swarm i
in which larger metric values identify a higher or better swarm performance
and sizei represents the size of that swarm, given by the number of swarm
members. As indicated in the formula, the average performance per agent
increases with the swarm size provided the swarm is performing effectively.
This principle is shown in Figure 2.3 that illustrates the expected performance
scaling properties of three different systems:

(a) The performance of an imaginary algorithm or swarm model that scales
linearly with O(n) as the dashed line in Figure 2.3, where n is the
number of swarm members, without considering physical constraints or
limitations, is not practical in the real world.

(b) The performance scaling of an algorithm that accounts for sharing
resources with other algorithm instances or a swarm model that views

17 Principles of Swarm Intelligence

Figure 2.3: The swarm performance illustrated as a function of the number of
swarm members, extracted from various experiments [37, 153]. Line (a) shows the
hypothetically linear scale of a disembodied algorithm with swarm size. Line (b)
presents the logarithmic scaling of a disembodied algorithm that requires shared
resources among its instances when implemented for a parallel execution. Finally,
line (c) shows the typical scaling of physically embodied swarms (or of physics-
considering simulation of such agents) [333].

space as a shared resource for agents will scale with O(log n) as
the dotted line in Figure 2.3, or even slower, due to the increased
communication and coordination overhead that comes with a larger
number of members.

(c) The solid hat­shaped curve depicted in Figure 2.3 represents the
performance of a physically embodied swarm system operating in the
real world.

With a very low swarm size or density of agents N < C1, the swarm shows
almost no performance. This can be traced to the low connectivity between the
agents that is not high enough to allow for cooperation and interaction. As the
size of the swarm increases, the performance of the system improves due to the
swarm effect, where interactions between members lead to greater efficiency.
Once the swarm reaches a size of N > C1, it can take advantage of these
interactions to scale in a super­linear fashion. This high level of performance
can be maintained within a certain size range of C1 > N ≥ C3, and even
beyond C3, the performance remains above a logarithmic scale. However, the
overall peak performance of the swarm system is reached at a threshold of
C2, beyond which the addition of more swarm members results in a decline
in average performance due to crowding and other factors. Once the swarm

⏎

18 Engineering Swarms of Cyber-Physical Systems

size surpasses another critical level of N > C4, the performance of the system
deteriorates and eventually leads to a total loss of performance.

Adding agents to perform a task together typically adds overhead due to
several factors:

• Additional communication: As the number of agents increases,
the amount of information that needs to be exchanged among them
also increases. The demand for richer communication for the swarm
to function effectively [243] can lead to higher latency and potential
bottlenecks if the communication infrastructure is not optimized for
scalability.

• Coordination of movements: Ensuring that all agents move and act
in a coordinated fashion requires complex algorithms that can introduce
delays. Misalignment in timing or direction can reduce the overall
effectiveness of the swarm. Offline optimization of tasks [5] is limited
due to uncertainties in environmental parameters. For example, a robotic
drone could be delayed by wind conditions or unexpected obstacles.

• Resource contention: Multiple agents may need access to shared
resources, such as data or physical space, which can lead to conflicts or
inefficiencies if not managed properly using assignment algorithms [271].

• Increased complexity in decision­making: With more agents, the
complexity of decision­making increases, as there are more possible
interactions and dependencies to consider [245]. This can slow down
response time and reduce overall efficiency.

Note, however, that a swarm is not always formed for performance
reasons. For example, it could be acceptable for a swarm system to have
a dropping performance for an increasing number of agents if other qualities
are prioritized, such as:

• Robustness and dependability: A swarm system is less likely to fail
completely if individual agents are capable of taking over the tasks of
failed members, ensuring continued operation.

• Maintainability: With a modular design, individual components or
agents can be easily exchanged or repaired without disrupting the entire
system.

• Extensibility: If there is future demand, it is possible to enhance
the system’s performance by adding more agents, allowing for scalable
solutions to problems as they arise.

2.9 Exploration and Exploitation

Swarm members being loosely coupled, can operate in two distinct modes.
In exploration mode they disperse to explore the environment or, in case

19 Principles of Swarm Intelligence

of an optimization algorithm [276], to explore a solution space to gather
information. Conversely, in exploitation mode, they utilize the gathered
knowledge to maximize reward, such as acquiring food or identifying the
optimal solution within the explored area.

One typically needs to strike a balance between exploration and
exploitation to achieve optimal results. If the exploration part is emphasized
too much, swarm members can get lost in a large search space without
providing a valuable contribution. Conversely, a swarm that concentrates
excessively on exploitation might overlook more lucrative areas. Exploration
and exploitation do not have to follow a strict sequence; some algorithms
like Ant Colony Optimization [90] include both concepts simultaneously. The
problem of exploration and exploitation is also not limited to swarms, but is
a common problem whenever there is uncertainty in a system that needs to
be explored at a cost. A famous example for this conflict in probability theory
and machine learning is given by the multi­armed bandit problem [195], where
numerous slot machines, each creating rewards according to a specific, but
unknown probability distribution, need to be explored and then exploited for
maximizing gain.

Chapter 3

Modeling Swarms of
Cyber-Physical Systems

A model of a system is a simplified representation derived from an actual
(technical) system. Modeling a swarm of CPSs helps to lower the level
of abstraction, streamline and formalize the technical system. We aim to
identify a representation for each agent that is familiar to us and meets
the microlevel requirements necessary for contributing to macro­level swarm
behavior [248]. During abstraction we omit parts of the CPS to get a simplified
system that is easier to understand. This is a typical task for engineers who
must discern while still capturing the overall CPS mission. To enhance this
understanding, we formally define the mission using logical descriptions and
mathematics [153]. Concluding with a formal description of the system, we
aim to understand how the self­organizing system behaves under various
configurations and potentially in different environments.

In a self­organizing system γ, where γ ∈ Γ with Γ as the configuration
space, we can only observe the actual configuration at a specific, discrete time
step t with γt, γt+1, γt+2, . . . However, each initialization γ0 gives another
sequence of the system over time. To really understand a self­organizing
system, abstraction and simplification are a must. Therefore, we consider a
simpler system ϕ with a smaller configuration space ϕ ∈ Φ with dim(Φ) ≪
dim(Γ). Hence, we want to find a mapping f that allows us to map the
configurations γ to the simpler, abstracted configuration ϕ leading to f : Γ 7→
Φ. From one time step to the other, from t to t + 1, we consider an update
rule g on the real configuration g : Γ 7→ Γ, thus g(γt) = γt+1, and an update
rule h for the abstracted configuration h : Φ 7→ Φ, thus h(ϕt) = ϕt+1. This is
summarized in Figure 3.1. Finally, the abstraction implemented by f needs to
be chosen carefully such that after the updates through g and h the correct,
but abstracted model, remains the right one in the next time step.

21 Modeling Swarms of Cyber-Physical Systems

Figure 3.1: The modeling and abstraction of a self-organizing system adapted
from [153].

Nevertheless, always keep in mind: “Essentially, all models are wrong, but
some are useful” (George Box, 1976). In other words, all models abstract
details from reality; while no model can perfectly capture its complexities,
they can still provide valuable insights and guide decision­making in uncertain
situations.

3.1 Modeling Principles

Generally, there is no common modeling approach for self­organizing systems
or swarms of CPSs specifically [153]. Various models have been developed
to work for different setups. Autonomic characteristics like self­configuration,
self­optimization, self­healing, self­protecting and self­awareness schemes can
be modeled by for example graph rewriting [72], L­systems [298], matrix
rewriting [353], rewriting game theory [61], reaction­diffusion models [211].
In this book chapter we will not explain all the modeling approaches as they
are quite diverse from application to application. We rather focus on use­case-
specific models (Section 3.2 and Section 3.3) that we worked on in different
projects.

When designing a model for a system, the first step is to determine which
components should be represented as discrete elements and which should be
modeled as continuous entities. There are four significant aspects where this
decision profoundly influences the design and behavior of the model: Time,
space, states of agents, and interaction. When we use a discrete micro­level
model [165, 366], the behavior is usually event­driven: Each time an event
occurs in the system, nodes may change their internal states and produce
local output, which is sent to other nodes. This behavior can be modeled
by finite automatons. Since many systems are too complex to be modeled in
detail, probabilities can be used to describe the behavior. This leads to the
concept of stochastic automations. In a continuous micro­level model [164],
the state of each node changes continuously over time. The behavior of a node
can be described by a local differential equation, which takes the input values

⏎

22 Engineering Swarms of Cyber-Physical Systems

of other nodes into account. There are numerous modeling techniques, which
have already been used [248], including

• Maxwell’s demon, a model to explore the concept of entropy,

• Turing machine, a model to explore the concept of computation,

• Cellular automaton, a model for complex systems to perform discrete
micro­level modeling, and

• Von Neumann’s self­reproducing automation, a model to explore the
logic behind self­reproduction.

Generally, a system’s model is always influenced by its environment and
the application it is intended for. This influence helps us to identify the most
key features. When modeling an application as a self­organizing swarm, we
must consider a set of potential swarm members and their characteristics.
These agents can either be of the same type (homogeneous swarm), or
different types (heterogeneous swarm). Additionally, we have established
criteria to determine whether an agent is eligible to be a swarm member
in the application. These criteria include whether a swarm member

• Is accompanied by a reasonable number of other swarm members in the
system,

• Exhibits an appropriate level of abstraction for modeling,

• Can detect and respond to information from the local neighborhood and
environment, and

• Is plausible and understandable, fostering trust during the modeling
process for the proposed solution [336].

3.1.1 Challenges

When modeling a system as a swarm of CPSs several questions need to be
addressed [336]:

1. What are the most representative agents and the correspond-
ing level of abstraction?
A swarm consists of agents that interact with the environment and with
each other. Each agent serves as a digital twin, an abstraction of a
real CPS. An initial step in modeling a swarm algorithm requires a
decision on which entity will serve as an agent within the swarm. As
described in the beginning of Section 3.1, we consider several criteria
to support this decision. However, determining the appropriate level of
abstraction can be challenging: For instance, in a search and rescue
task (see Section 3.3 for more details), we could consider robots as
agents at a higher abstraction level treating robots of the same type

23 Modeling Swarms of Cyber-Physical Systems

as agents. Alternatively, we could choose a lower abstraction level
and model individual hardware components (Central Processing Unit
(CPU), memory, motor blocks, etc.) as agents.

2. How to deal with inhomogeneities among agents?
Agents are inherently heterogeneous: Even minor variations in
deployment can lead to differences in their reactions or behaviors,
potentially resulting in unintended system outputs. For instance, in a fab
setting (see Section 3.2 for more details), there is no standardized type of
machine, as each can run different processes locally. Consequently, each
machine has a unique set of parameters influencing its operation (e.g.,
furnaces use batch­processing and waiting too long to fill up the batch
machine could waste time in the production process). This variability
must be considered during the modeling process.

3. How to implement the necessary local swarm communication
paradigms in the specific use case with the chosen agents?
Communication paradigms for swarm algorithms include direct
communication and indirect communication. In direct communication
agents send messages to other agents. In indirect communication, also
referred to as stigmergy, agents leave information in the environment
for other agents to “pick up”. Dependent on the level of abstraction the
communication is performed literally among the agents. If the agents are
already represented as digital twins in the central computer system, thus
even more abstracted than only on CPS level, the communication can
easily be implemented as local messages within the computer system
or in local memory for stigmergy. The latter case also lightens the
requirements for abstraction of the CPSs, as it is not necessary to equip,
for instance, machines or products with additional local computational
or communication intelligence.

4. How to implement a self­organizing solution on top of a
working system?
Typical technical systems already include a set of mechanisms, rules,
priority classes, etc., that trigger the sequence of task execution.
Therefore, it is important to decide which parts of the system should
run as they are, and which parts should be abstracted away—step­by-
step. For example in case of priority classes, that also grow historically,
the classes could be reduced to a single one by introducing swarm­based
local rules and interactions.

5. How to validate the approach?
Testing and predicting the performance of a given self­organizing
algorithm is difficult. Historical data that might exist for a running
system, or the implementation of baseline algorithms should be used
to compare with system. As the sequence of processed behavior is
not deterministic, but rather stochastically differs dependent on the

24 Engineering Swarms of Cyber-Physical Systems

initial condition and initial parameters, the validation process requires
multiple simulation runs. Another challenge that arises is debugging a
failed validation. While simulation runs might inform the user that the
intended level of service for a given system is not achieved for some
test cases, pinpointing the specific problem and rectifying it can be very
challenging for a swarm system. This is because even a minor behavioral
change in an agent can result in unexpected and undesired emergent
behavior at the system level. Utilizing deterministic simulations with
seeded random number generators can aid in the debugging process,
but they do not address the overarching issue of applying a corrective
solution.

3.2 Use Case: Models in the Production Plant

Scheduling in modern production plants that follow the flexible job shop
principle presents a challenging, dynamic problem within the context of
Industry 4.0. A typical application is the production of Integrated Circuits
(ICs) in the semiconductor manufacturing industry [138]. Particularly, we
consider the processing of wafers to create ICs at the so­called front end of
line processing. In contrast to the high­volume production of memory ICs
and CPUs, the logic and power sector manufactures fabricate specialized
ICs in low­volume batches in the same plant. For this example, we consider
the requirements and constraints of the leading semiconductor manufacturer
Infineon Technologies AG [175]. They need to schedule between 400 and
1200 stations in their production plant producing more than 1500 different
products in around 300 process steps each. The steps for a product include
various processes including lithography, doping, oxidation, etching, and
measuring [138].

In this use case several constraints influence the scheduling process,
including the need for secondary resources, constraints from machines with
equipment tooling, time couplings and batch processing. The production
process involves successive steps that often loop back, requiring the same
machines or machine groups to be used repeatedly. Furthermore, the
production plant is required to meet various global objectives, such as
maximizing machine utilization, throughput time, delivery reliability, and
minimizing Work in Progress (WIP). The presence of a wide range of product
diversity, coupled with the historical growth of the industrial plant, further
amplifies the complexity of the system [336]. With all these constraints
and requirements, we can consider the job shop scheduling problem as NP­
hard [130].

Existing dispatching rules are based on heuristics and can only be used on a
subset of the plant. Similarly, linear optimization methods can only cope with
a subset of the plant and not with the large, and dynamic search space of an
entire fab [222]. The reason is the excessive computation time needed for the
calculation. Thus, these methods do not exploit the full optimization potential.

25 Modeling Swarms of Cyber-Physical Systems

In the production plant this leads to bottlenecks that cannot be prevented, and
WIP waves that will be generated. Summarized, no optimal solution for job
shop scheduling has been developed so far using linear optimization, especially
a solution that can be computed in polynomial time [425].

This situation paves the way for a different approach, a modeling and
optimization of the production plant from the bottom­up.

3.2.1 Swarm Member Candidates

With the general problem formulation in the beginning of this Section 3.2 we
identify a number of possible agents in the production plant that can act as
swarm members and can be modeled in a network model [336].

Lots (L) can form swarms with lots of the same product type
(homogeneous swarms), or swarms with lots of multiple product types
(heterogeneous swarms). Lots follow a specific recipe through the production
plant, which prescribes the order of processing steps, but not the specific
machine on which to perform the next required processing step. Typically,
there are multiple machines that can perform the same process. Therefore,
the lots could decide which machine to prefer over the other. Additionally
lots can manipulate their own priority that allows a lot to be promoted in the
machine’s queue. The path that is taken through the production plant by a
lot is called a route. It is obvious that lots of a similar product type will share
parts of their recipes. Therefore, in a stable load situation of the production
plant, lots of the same and similar product types can be expected to share
parts of their routes.

Machines (M) have the local information of the processes they can
perform and their utilization. Given the presence of various machine types
within the production plant, they can be organized into either multiple
cooperating homogeneous swarms or a heterogeneous swarm with diverse
capabilities. The neighborhood of each machine is determined locally and
dynamically based on the recipes of the incoming and outgoing lots. Thus, the
neighborhood represents not necessarily machines that are physically close,
but rather those that are close according to the recipe of a lot. Machines can
take decisions locally and can, if necessary, select which lot to process next
by re­ordering their queue. Furthermore, they can locally communicate with
other machines in their neighborhood, and could ask for lots that have their
available specific processing type.

Workcenters (W), with W ⊂ M , consist of multiple related machines
that could be of the same or similar type. They have attributes very similar
to single machines. A workcenter can calculate when lots will be processed
internally and can use the makespan information (the time between the start
and the end of a lot’s production) to calculate when the lots currently being
processed will be finished.

Processes (P) can represent virtual swarm members. Thus, they have a
view on all machines that they can potentially be run on. This also includes

26 Engineering Swarms of Cyber-Physical Systems

the machine’s current and total workload. Therefore, they can forecast the
workload, the times for re­tooling at the machines, and have information on
batching requirements of batch machines.

3.2.2 Network Model

For this scenario, we adopt a network model approach. The production plant
is presented as a graph with the tuple G = (V, E), with the notation V for the
set vertices or nodes, and E for the the set of edges. We have everything that
is needed for this type of modeling: Nodes that represent the machines and
form a local neighboorhood together with edges that indicate a dynamic path
through the production plant from one node to (many) other(s). Different
from the classical graph theory, nodes and edges can be added or removed
dynamically, nodes can even move (if we model them as robots). Additionally,
characteristics of possible topologies (e.g., star, bus, ring) are not important
as these change dynamically with the nodes and edges as well.

Considering the swarm member candidates from the previous Section 3.2.1,
we apply the network model leading to a network consisting of a production
plant with machines, queues, processes, lots, and recipes. The production plant
P consists of several sets or workcenters of machines W m

1= {Mm

where m is the machine type. Each machine Mm has a queue Qm
i i

2,Mm , . . . },
and every

machine in a workcenter W m can perform a process P m. A set of lots L =
{lt , lt , . . . } needs to be processed in the plant, with t as the product type.
Every product type t is characterized by a recipe Rt that outlines the specific

21

sequence of processing steps required to manufacture the product. Each lot lt n

has the flexibility to select the appropriate machines Mm for each necessary i

process step P m from the available options.

Based on this formal representation, the recipes can be interpreted as a
directed graph G = (V, E) that represents the possible connections between
the machines within the plant. The nodes V correspond to the machines Mm ,i

and the edges E are established between two machines Mi
m and Mj

p if there

exists a lot lt with a recipe Rt that includes consecutive processes P m and P p.n

A route R can be defined as an ordered list of machines capable of executing
the successive processes outlined in the recipe. The taken routes are a sub­
graph of G with Gr ⊆ G.

3.3 Use Case: Models in Search and Rescue

Applications

The SAR use case envisions a heterogeneous swarm of UAVs and Unmanned
Ground Vehicles (UGVs) that is deployed in a highly dynamic disaster
environment. Their task is to support first responders in real­time by locating
human casualities or trapped individuals and providing first aid to those
found. The use case of the acpCPS swarms can be described as follows: The

27 Modeling Swarms of Cyber-Physical Systems

swarm of UAVs cover a defined area and collectively search for victims. As
soon as a UAVs discovers a victim, it switches from the coverage to a tracking
task. By tracking the victim it continuously reports the current victim’s
location to a specific UGV. The target UGV to be informed is selected by
the UAV using a specific cost function, for instance, the distance of the UGV
to the victim. Finally, the UGV is assumed to rescue the victim by navigating
to the location provided by the UAV. As soon as the UGV reaches the victim,
it returns to its base, and the UAV rejoins the coverage task of the UAV
swarm to locate other possible victims. We implemented this use case in the
CPSwarm1 project (for more details on the project, please visit [25]).

The constellation of this mission is well suited for testing swarms of CPSs
and swarm behaviors because it can benefit from several swarm characteristics
(see Chapter 2 for more details): The scalability of a swarm enables the
addition of more CPSs while executing a mission. An example is the case
where the area to be covered is larger than expected. Robustness of a swarm
guarantees a mission execution in challenging environments where individual
CPSs can fail. Furthermore, unlike fully centralized control, such a swarm can
continue to operate even in scenarios where connectivity is limited or sparse.
The swarm functions autonomously as a self-organized system composed of
diverse members, making mission-critical decisions based on the demands of
the dynamic environment.

3.3.1 Model-Driven Engineering of CPS Swarms

For a use case like SAR, we need a well-defined model of the CPSs and
the desired local behaviors, with scalability across different abstraction
levels being crucial [225]. To design a multi-scale model, we must consider
both the hardware and software components of individual CPSs, as well
as the overall composition of the entire swarm of CPSs. The process of
modeling a CPS swarm involves making several decisions, which encompass:
(i) Deployment specifics, such as determining the number, type, and
placement of CPS within the swarm. (ii) Hardware considerations for each
CPS, including communication technology, interfaces, onboard sensors and
actuators, processing unit, and memory. (iii) Specifying the desired local
behavior of individual CPS units and the overall global behavior of the CPS
swarm [345].

This leads us to a model-driven engineering process that starts from
modeling the CPS hardware, their local individual behavior, and their global
behavior in a swarm. Finally, this approach results in behavior code that
can be deployed to and executed on the CPSs. These steps rely on a
hierarchically organized set of behaviors that collectively form the controller
of each individual CPS. These behaviors are based on a well-defined library of
behavior models, which are linked to an automated code generation process,
enabling the assembly of executable code for each CPS [345]. Based on the

1CPSwarm website: https://www.cpswarm.eu/[Online; accessed 19-December-2024].

https://www.cpswarm.eu/

28 Engineering Swarms of Cyber-Physical Systems

multi­scale modeling approach, it is possible to validate the swarm behavior.
This is achieved by an abstract simulation allowing for rapid prototyping of
the CPS behavior to observe the resulting and the desired swarm behavior.
All results can be found in Sende et al. [345].

3.3.2 Hardware Modeling

When beginning to model a CPS we examine its architecture, focusing on
the hardware components, their interfaces and interactions. For creating
hardware models we utilize Systems Modeling Language (SysML) [15], an
extension of Unified Modeling Language (UML), that focuses on modeling
systems with block diagrams. To advance the modeling of CPS swarms, we
enhanced the Block Definition Diagram (BDD) and Internal Block Diagram
(IBD) by incorporating a CPS swarm profile [335]. It includes three types of
diagrams [345]:

• Swarm composition diagram: We developed a swarm composition
diagram that extends the BDD, enabling the modeling of the entire
swarm. The diagram details the specific types and quantities of CPSs
used within the swarm.

• Hardware composition diagram: This diagram is designed to extend
the BDD that allows the modeling of individual hardware components
installed utilized by the CPSs. The hardware composition diagram
specifies the types of hardware components in use and defines their
inputs, outputs, and other parameters.

• Swarm member internal diagram: We designed the swarm member
internal diagram to extend the IBD to model the internal structure of
a single CPS. This diagram specifies how the behaviors can interact
with the environment or other CPSs by defining sensors, actuators,
and communication interfaces and their parameters. On the one hand,
sensors are inputs to collect information from the environment, on the
other hand, actuators are outputs to interact with the environment. A
communication interface, however, can provide both, inputs and outputs
to the swarm behaviors and thus, enables coordination between CPSs.

3.3.3 Behavior Modeling

The behavior models describe how the individual CPS behaves, also when
interacting with the environment and other CPSs in the modeled swarm.
This way, the behavior models define the software components for each CPS.
The individual connected behaviors are the steps each CPS must execute
locally to collectively achieve the global mission that envisioned by the swarm
system’s designer. The design of local behaviors for the individual swarm
members is a difficult task, as the emergent global swarm behavior is not easily
predictable [1]. Modeling the behavior on different abstract levels supports

29 Modeling Swarms of Cyber-Physical Systems

the process to generate the desired global behavior as it can be executed on
different levels of realism and detail [345]. With this bottom­up approach, we
can iteratively refine the individual local behaviors until we achieve a global
swarm behavior.

Behavior State Machines

Once a complete mission is defined, we typically identify a set of distinct
behaviors for each CPS in the swarm to execute, ensuring the various tasks
of the mission are accomplished. These individual behaviors are treated
as atomic in the modeling process, making them simple to describe and
implement. By combining these simple behaviors, we can create more complex
behaviors to accomplish intricate missions. A widely used yet powerful
approach is to employ Finite State Machines (FSMs), where each state
represents a simple behavior, and the transitions between states depict the
shift from one behavior to another. Thus, the entire FSM design describes
a complex behavior. During operation, each CPS runs an FSM, consistently
remaining in a defined state, though this state may differ among CPSs. Hence,
complex swarm behaviors can emerge where CPSs play different roles based
on their interactions [345].

The transitions between the behaviors described as states in a FSM
are triggered by events. These events can either originate locally, such
as from sensor outputs or the behavior itself, or from the environment,
like communication activities between CPSs or external commands from
a global control station. The exchange of events between CPSs facilitates
the coordination of local swarm behaviors. Events are processed locally and
autonomously by each CPS individually as specified in their behavior FSMs.
Through the exchange of events, CPSs can exert an impact on each other’s
behavior changes. These events are characterized by a distinct Identifier (ID),
a timestamp, and a unique sender ID. Additionally, events can carry associated
data, which is transmitted between behaviors.

The UML behavior FSMs [68] serve as the foundation for the behavior
FSM model. Simple behaviors are represented by simple states, while
composite or submachine states are used to model complex behaviors.
Composite states enable the modeling of one state using another FSM, while
submachine states facilitate the encapsulation of generic FSM that can be
utilized in multiple states. In the realm of CPS swarm behaviors, we introduce
four distinct behavior types, each denoted by a specific color code as illustrated
in Figure 3.2.

• Swarm behaviors, represented by the green elements, are simplistic
behaviors that execute specific swarm algorithms. These algorithms give
rise to emergent swarm behaviors, such as aggregation or exploration.

• Swarm functions in blue are simple behaviors that carry out a singular
function encompassing the interaction between CPSs. Examples include
task allocation or the exchange of position information.

30 Engineering Swarms of Cyber-Physical Systems

C
om

m
unication	L

ibrary

Hardware	Functions

Sensing	and	Actuation

Hardware	Drivers

Abstraction	Library

Swarm	Functions

Swarm	Behaviors

Swarm	Library

Complex	Behaviors

Figure 3.2: The behavior library structure [345].

• Hardware functions, depicted by the yellow elements, are straightfor-
ward behaviors that perform singular functions involving hardware
interaction. Examples include moving to a designated location or
controlling an actuator.

Each behavior is given a distinct name and a brief description, and is
characterized by its behavior type as well as its respective inputs and outputs.

It should be noted that in related literature, such a granular differentiation
between various behavior types is not commonly found. For example, swarm
behaviors and swarm functions are termed collective behavior in [45] and basic
swarm behavior in [337]. In [124], the term “constituent behavior” is employed
to refer to any kind of simple behavior, including hardware functions. However,
we intentionally introduce the distinction between behavior types to promote
a structured and organized design of the behavior FSMs. This is facilitated
through the use of hierarchically nested states, as outlined in the UML
standard. This enables the abstraction of behavior details at higher levels. For
instance, an aggregation behavior can be implemented independently of the
method employed for exchanging position information between CPSs. Events
can be utilized to trigger a state change within the sub FSM or cause the
higher­level behavior to terminate, thus also concluding the currently running
sub­behavior.

Behavior Libraries

To enable frequently recurring behaviors and functionalities to be defined
only once, the behaviors are organized into libraries. The library structure
we propose is illustrated in Figure 3.2, with each color corresponding to
a different behavior type as previously defined. The libraries are organized
based on the level of hardware abstraction, which facilitates the separation
of concerns. They comprise software artifacts that are modeled as states
within the FSMs. The Swarm Library is hardware­independent and contains
the complex behaviors modeled as FSMs, in addition to swarm behaviors
and swarm functions. It utilizes a Communication Library, which provides a

⏎

31 Modeling Swarms of Cyber-Physical Systems

communication interface between CPSs. The Abstraction Library abstracts
the hardware specifics and provides functions related to hardware, as well as
functionalities to access sensors and actuators using hardware­specific drivers.

The Swarm Library consists of swarm behaviors executed by individual
CPSs, resulting in the global behavior of the swarm. They are platform­
independent and can be reused across different types of CPSs. The library
is divided into three sub­libraries based on the previously introduced swarm
behaviors. Firstly, the Complex Behaviors Library contains FSMs that model
complex, high­level mission behaviors such as SAR, and are defined as UML
composite or submachine states. Secondly, the Swarm Behaviors Library
comprises individual swarm algorithms that exhibit emergent behavior. These
swarm algorithms are typically based on biological inspiration or are generated
automatically, such as through evolutionary optimization. Examples include
flocking, phototaxis, or collective transport, and they are defined as UML
simple states that are used in the complex behavior FSMs. Lastly, the Swarm
Functions Library includes simple swarm­related tasks that do not lead to
emergent behavior, but rather enable the functioning of the swarm behaviors.
Examples include the exchange of position information, task allocation, or
computation of the average velocity of the swarm. They are defined as UML
simple states to be used in the complex behavior FSMs.

The Communication Library provides a set of communication services
to the swarm, which are built on top of an arbitrary network interface. These
services encompass various functionalities, such as transmitting telemetry data
from the CPSs to the command and control station, facilitating the exchange
of events between CPSs, as well as between CPSs and the command and
control station, and enabling remote access to parameters of the CPSs within
the swarm. This library was developed as part of this work and is available
on GitHub [297].

The Abstraction Library provides a set of functions and interfaces that
abstract away the hardware specifics of the CPSs. It allows the development
of high­level routines from an application­oriented perspective, raising the
level of abstraction from a platform­dependent point of view. This enables
developers to focus on describing how the CPSs should behave in order
to complete a high­level task or reach an application­specific goal, without
being concerned with the underlying hardware implementation details. This
is achieved by providing a set of CPS­specific libraries in order to access
platform­specific information of a acCPS in a standard and coherent way.

The Abstraction Library is designed to provide a higher­level interface for
accessing the hardware of the CPSs, allowing developers to focus on high­level
tasks and goals rather than low­level hardware details. The library is composed
of three layers, with each layer adding a level of hardware abstraction. The
bottom layer, Hardware Drivers, includes all the drivers for sensors and

32 Engineering Swarms of Cyber-Physical Systems

actuators that are mounted on the CPSs. The middle layer, Sensing and
Actuation, is responsible for providing sensor information and controlling the
CPSs using their actuators. The Hardware Drivers layer establishes a direct
connection with the hardware, while the Sensing and Actuators layer employs
software to offer an initial level of abstraction by implementing intricate
functionalities needed by the higher layer. At the topmost layer, the Hardware
Functions layer encompasses a collection of high­level functions that represent
sophisticated routines executed by a CPS, involving a combination of sensors
and actuators. These functions are used to define the states of the FSMs as
UML simple states.

3.3.4 Code Generation

The responsibility of the code generator is to convert the FSM models into
executable code that can be deployed on the CPSs. The generation process is
based on templates, which are suitable for structures that are schematic and
repetitive. With template­based generation, a basic set of templates is defined,
which is then populated with data extracted from the algorithm specification.

The templates consist of a static part that appears in the output as­is and
a dynamic part that is replaced by input data using a template meta­code.
The meta­code includes directives that are processed by a template engine
along with the input data to produce the final source code. To target different
runtime platforms, different templates are used. The code generator uses a set
of templates written in the Velocity Template Language (VTL) to generate
executable code.

The code generator processes the data in the form of FSM models of
complex behaviors, which are translated into State Chart XML (SCXML)
files. These files contain all the necessary information for the code generator,
including the type of functionality used to select the appropriate template
and the definition of the Application Programming Interface (API) executed
in a given state.

SMACH is a Python­based project that provides a framework for the
implementation and execution of FSM­based algorithms. The code generator,
which is part of this project, uses the SCXML file and a set of templates to
produce Python code that implements the designed FSM. This code generator
is available on GitHub [296].

3.3.5 Modeling on the Example of the SAR Use Case

In this section, we will show how the formal approaches proposed earlier can
be applied to a heterogeneous swarm of CPSs. We will describe how we model
the hardware and software components that were used in our experimental
evaluation. Our main objective is to demonstrate the feasibility of deploying
software onto CPSs based on the models created using formal methods. The
diagrams were created using the modeling tool Modelio. Subsequently, the
data was exported for additional processing by the code generator, utilizing

33 Modeling Swarms of Cyber-Physical Systems

the CPSwarm Modeler module. This module can be found on GitHub [295],
providing the necessary functionality for the generation of code based on the
exported data.

We have selected the SAR use case to showcase the formal approaches
proposed in this section. CPSs have various applications in such missions,
such as creating a situational overview, providing logistic support, serving
as a repeater or surrogate for other CPSs, and clearing debris, as reported
in Murphy et al. [262]. To make the SAR use case more manageable
for deployment on prototype platforms that do not necessitate specialized
hardware, our focus is primarily on two tasks: Locating human casualties
or individuals trapped in the disaster site and providing initial medical
assistance. To accomplish this, we implement a heterogeneous swarm
comprising both UAVs and UGVs. The mission of the heterogeneous CPSs
swarm can be described as follows: The UAVs cover a designated area to
search for victims, while the UGVs remain inactive. Once a victim is detected
by a UAV, it switches to tracking mode and continuously tracks the victim’s
position, which is communicated to the UGVs. An arbitration process is
initiated by the UAV to select the most suitable UGV to reach the victim,
based on a cost value provided by the UGV, such as the distance to the
victim. The chosen UGV navigates to the victim using the received position
information from the UAV, and once the victim is rescued, the UGV returns
to its starting position while the UAV resumes coverage to search for a new
victim.

As an example, we will focus on modeling the UAVs, including their
hardware models and behavior implementation based on Robot Operating
System (ROS) [300], while omitting the simpler UGV models for brevity. To
simplify the SAR use case, we will refer to victims as targets.

Hardware Models

The authors of this work have custom­made the UAV platform as prototypes.
The UGV platform is based on an off­the­shelf RC truggy. The UAV prototype
platform is represented by an extended SysML IBD model, as depicted in
Figure 3.3. The model defines the inputs such as sonar range finders, camera,
and Ultra Wideband (UWB) localization. The outputs for controlling the
locomotion and a communication interface for inter­CPS communication and
communication with the command and control station are also specified.
Further information on this modeling process can be found in [332].

Behavior Implementation

To represent the behavior of the UAVs, we utilize a two­level FSM hierarchy
denoted as H = {L1, L2}. This hierarchy effectively models the swarm
behaviors using a collection of swarm and hardware functions sourced from
various libraries. The implementation of these behavior libraries is built upon
ROS, an open­source framework specifically designed to simplify the creation

3
4

E
n
g
in
eerin

g
 S
w
a
rm

s o
f C

y
b
er-P

h
y
sica

l S
y
stem

s

Figure 3.3: The hardware model of the UAV prototype [345]. ⏎

35 Modeling Swarms of Cyber-Physical Systems

SAR	Mission

SarBehavior

MissionAbort

missionAbort

Even
TargetMonitoring

complex behaviors

swarm behaviors

swarm functions

hardware functions

Figure 3.4: The UAV SAR mission processes [345].

of robot software. ROS has gained widespread adoption in the robotics
community due to its exceptional flexibility and extensive hardware platform
support, making it the de facto standard in the field.

The first level L1 in the hierarchy defines the parallel processes that are
executed on each UAV, as depicted in Figure 3.4. The SarBehavior state
models the actual SAR behavior required to complete the mission and is
itself a complex behavior modeled as a L2 FSM. The missionAbort event
allows for the immediate termination of the SarBehavior, along with any
currently running behavior in the corresponding L2 FSM. Therefore, an event
broadcasted by the command and control station to all CPSs can stop the
entire mission. There are various swarm and hardware functions executed in
parallel, which are specified in detail in Tables 3.1 and 3.2, respectively.

The UAV FSM hierarchy L2 consists of the second level, which models the
behavior of the UAV during the SAR mission. It is depicted in Figure 3.5.
When a UAV is powered on, it starts in the Idle state. Upon receiving the
launch event from the command and control station, the UAV transitions to
the TakeOff state and ascends to the designated altitude. Once the desired
altitude is reached, the UAV enters the Loitering state and remains stationary.
The actual SAR mission starts when the missionStart event is received. The
coverage state is the initial state of the SAR behavior, during which the UAV
searches for targets. If a target is detected, the TargetMonitoring state triggers
the targetFound event, leading the UAV to the SelectRover state. During this
state, the UAV communicates with all available UGVs and selects the closest
one to move towards the target. As the selected UGV moves towards the
target, the UAV performs the Tracking behavior to keep track of the target’s

⏎

36 Engineering Swarms of Cyber-Physical Systems

SarBehavior

Idle

TakeOff

launch

Coverage

SelectRover

targetFound

aborted

targetFoundLocal	Coverage

targetLost

targetRescued

Tracking

succeeded

missionStart

Loiteringsucceeded

complex behaviors

swarm behaviors

swarm functions

hardware functions

Figure 3.5: The complex SAR behavior of the UAVs [345].

location until it is reached by the UGV. It informs the UGV about changes in
position through the targetUpdate event. If the targetRescued event is received
from the UGV, the target is safe, and the UAV restarts the “Coverage”
behavior to search for other targets. If the target is lost before being rescued,
the UAV enters the LocalCoverage state, which allows it to circle around the
last known target position to find the target again. If the target is found, the
UAV selects the most suitable UGV again. If the target cannot be found, the
UAV restarts the “Coverage” behavior.

The SAR mission’s FSMs utilize behaviors and functions from the Swarm
Library and the Abstraction Library. Table 3.3 and Table 3.1 present the
swarm behaviors and functions used in the SAR mission, respectively. The
complete libraries are available as ROS stacks, the behaviors [341] as well as
the functions [342], and their details can be found in the links provided in

⏎

37 Modeling Swarms of Cyber-Physical Systems

Table 3.1: The swarm functions used in the SAR mission as part of the Swarm
Library [345].

Behavior Input Output Description

TargetMonitoring
camera

footage

IDs of tar-

gets

Manages targets being detected by

the swarm. It uses the on­board cam-

era to detect targets and exchanges

information about targets with the

other CPSs in the swarm.

SelectRover

target ID,

target posi-

tion

UGV ID,

target

ID, target

position

Assigns the closest idle UGV for

rescuing a target using the targetAs-

signed event.

Table 3.2: The hardware functions used in the SAR mission as part of the
Abstraction Library [345].

Behavior Input Output Description

MissionAbort ­ ­ Lets a UAV land.

TakeOff altitude ­ Lets a UAV lift off.

Table 3.3: The swarm behaviors used in the SAR mission as part of the Swarm
Library [345].

Behavior Input Output Description

Coverage

coverage

area

boundaries

target

ID, target

position

Lets a UAV fly over the mission area

in search of targets. It terminates

once it finds a target.

Tracking target ID
target posi-

tion

Lets a UAV keep track of a target

that has been found. It informs other

CPSs about position changes using

the targetUpdate event.

LocalCoverage

last known

target posi-

tion

target

ID, target

position

Lets a UAV search the local neigh-

borhood for a lost target. This

exploits the fact that a target has

a high probability of still being close

to the current position of the UAV.

the footnotes. The hardware functions of the Abstraction Library utilized in
the SAR mission are listed in Table 3.2. There are other modules pertaining
to different levels of the Abstraction Library released on GitHub. For more
information, please refer to the repositories of the Hardware Functions [343]
and Sensing and Actuation [344] libraries, as specified in the footnotes. The
events that trigger state changes in the behavior are summarized in Table 3.4.

⏎

⏎

⏎

38 Engineering Swarms of Cyber-Physical Systems

Table 3.4: Events used in the SAR mission [345].

Identifier Data Sender

launch ­ command and control station

missionStart ­ command and control station

missionAbort ­ command and control station

targetFound target ID, target position swarm member

targetUpdate target ID, target position swarm member

targetLost target ID, target position swarm member

targetRescued target ID swarm member

targetAssigned target ID, UGV ID swarm member

3.4 Use Case: Models in Edge Computing

The shift toward local processing at the edge brings critical benefits that
address future computing challenges, including enhanced security, improved
reliability, reduced latency, and lower energy consumption. Managing this
edge infrastructure, often called the edge continuum, creates a dynamic and
adaptable computing environment.

In this use case, we examine a network of Edge Micro Data Centers
(EMDCs) within the edge continuum (see Figure 3.6), where intelligence
is distributed across the nodes, creating a decentralized environment.
This distribution enhances the edge’s autonomy and granularity in local
decision­making within a regional context, reducing dependence on a central
coordination point. This is particularly crucial for real­time applications such
as autonomous driving or the monitoring and control of smart grids. The
stability and performance of edge infrastructure are increasingly challenged by
stringent requirements for latency and autonomy, distribution across multiple
locations, limited local size, multi­tenancy, the involvement of multiple
operators, and local management, with components operating concurrently
and asynchronously.

These challenges are further intensified by the rapid growth of i) connected
devices and their data exchange capabilities, ii) intelligence embedded in
edge devices, iii) the breakdown of monolithic applications into smaller
components, and iv) the scale, speed, and complexity of interactions among
devices in a zero­trust environment. As a result, orchestrating edge and cloud
interactions, particularly in resource allocation, workload scheduling, and data
management, is becoming increasingly complex (see Figure 3.6 for details on
the architecture [334]).

To tackle these challenges, we propose an approach centered on
autopoietic systems—self­organizing, self­regulating, and self­repairing. AI­
driven optimization methods, such as swarm intelligence, have been
successfully applied in cloud environments and are central to our design.
Our framework uses swarm agents to represent demand and supply entities.
Demand swarm agents optimize operations at the pod level, while supply
swarm agents manage tasks such as workload placement and caching within

⏎

39
M
o
d
elin

g S
w
a
rm

s o
f C

y
b
er-P

h
y
sica

l S
y
stem

s

Figure 3.6: Schematic architecture demonstrating the inter-edge resource allocation in clusters: Nodes, pool of resources and the overall
edge-cloud interaction [334].

.
⏎

40 Engineering Swarms of Cyber-Physical Systems

EMDCs. Communication between these agents is facilitated by synthetic
hormones, with supply agents detecting these signals to make informed
resource allocation decisions. Inspired by ant foraging behavior, the ant
algorithm is applied to optimize workload­node assignments, using pheromone
trails to guide future decisions. For further information, refer to Schranz et
al. [334].

3.4.1 Modeling Agents in the Edge Continuum

Our agent­based approach employs two distinct types of swarm agents:
Demand and supply swarm agents. These agents work collaboratively within
an EMDC environment, managing tasks such as pod placement, storage
management, and caching optimization. The model represents an edge
continuum comprising resources, queues, pods, and processes.

Demand Swarm Agents

Applications are decomposed into a set of services S, each represented by
collection of related pods P s s s , . . . }, where s denotes a specific

service. Each service s is characterized by a set of resources Rs, detailing the
{pa = , p1 2

sprocessing steps required to execute the individual pods. Each pod pj has the
flexibility to select from suitable nodes Nn to execute the necessary process i

steps P r .

Demand swarm agents operate at the pod level within the EMDC
architecture, equipped with a pod­level description that contains contextual
information about the workload, such as workload type, performance
requirements, data dependencies, and latency constraints. These agents
leverage this information to make intelligent decisions regarding workload
placement and resource allocation, enhancing the overall efficiency of the
system.

Supply Swarm Agents

The EMDC E encompasses various sets of nodes, each with different resource
types Nr

21= {Nr, Nr , . . . }, where r represents the resource type(s). A typical
EMDC node may offer multiple resource types, whereas a node with a single
resource type might represent, for example, a CPU within a larger resource
pool. In this context, we consider resources such as CPU, FPGA, RAM, and
NVMe, each with specific capacities and an associated queue Qr

i .

Supply swarm agents operate at the node level within the EMDC,
representing individual nodes characterized by their available resources and
respective capacities. These agents play a crucial role in the efficient allocation
of resources to incoming workloads, ensuring optimal processing and resource
utilization.

41 Modeling Swarms of Cyber-Physical Systems

Agent Collaboration and Self­Organization

Collaboration between demand and supply swarm agents is facilitated through
swarm intelligence algorithms. Demand swarm agents autonomously identify
the most suitable nodes for workload placement, while supply swarm agents
select the optimal workloads to process based on their available resources and
capacities. This collaborative, self­organizing decision­making process allows
the system to dynamically allocate workloads to nodes, optimizing processing
performance, reducing latency, and maximizing resource utilization.

Our agent­based model is designed to exhibit autopoietic characteristics,
promoting self­organization, regeneration, and regulation within the edge
continuum. Through continuous interaction and adaptation to varying
workloads and resource conditions, demand and supply agents foster emergent
behaviors that enhance the system’s resilience and operational efficiency.

3.4.2 Challenges in Modeling Agents for EMDCs

Agent­based modeling of an EMDC presents several challenges that must be
addressed during the modeling process.

Pool of Resources

Beyond the nodes in an EMDC, we consider a pool of resources as
an innovative addition to the current definitions of the edge continuum.
This enhancement allows for the allocation of individual resources for pod
processing, separate from the traditional node­based processing capabilities,
which consist of multiple resources. The resource pool is integrated into
the EMDC and can be accessed by edge or edge­cloud management as
needed. This approach helps prevent resource limitations, minimizes latency,
and ensures the stability of other pods’ performance by protecting their
assigned resources from being exhausted. Currently, technologies like Compute
Express Link (CXL) are being integrated into CPUs (by Intel and AMD),
memory, and storage components (e.g., by Samsung), with PCIe switches
anticipated by 2025. Aside from hardware development, the primary challenge
lies in orchestrating these resource pools effectively. Current hub­and-
spoke orchestration mechanisms are insufficient for managing such ad hoc
configurability.

Application Types

Different services correspond to various application types, each with unique
response time requirements:

• Long­Running Applications (LRAs): These applications instantiate
long­standing pods to support iterative computations in memory or
continuous request­response cycles. Examples include processing frame-
works like Storm [367], Flink [121], and Kafka Streams [189]; latency-

42 Engineering Swarms of Cyber-Physical Systems

sensitive database applications like HBase [157] and MongoDB [254]; and
data­intensive in­memory computing frameworks like TensorFlow [378].

• Batch Processing: This method is typically employed when large
volumes of data need to be processed at once, with results stored
for later use. Batch processing can occur on a scheduled basis or at
regular intervals and includes two types: Regularly recurring requests
and opportunistic requests with minimal or no SLA (Service Level
Agreement) requirements.

• Stream Processing: This approach handles large data volumes that
require real­time processing.

Future workloads are expected to become even more complex, with
LRAs, batch processes, and stream processes increasingly interconnected. This
will complicate the task of categorizing applications and fine­tuning their
corresponding agents.

Relationships among Pods

Demand swarm agents represent pods P s derived from a specific service s,
and these pods may have various interdependencies. Pods may need to be
processed in parallel or have dependencies on one another. When a pod
underperforms, the current system may generate additional pods to meet the
required response times for the service s. However, these interrelationships
are not currently considered in scheduler and orchestration optimization.
For instance, strategically placing interacting services in proximity can
significantly enhance performance:

• Service Clustering: For services comprising multiple microservices that
frequently interact, placing microservices within the same region can
improve performance.

• Database Proximity: Pods with heavy database dependencies should be
positioned close to the database to minimize latency and enhance overall
performance.

Addressing these challenges involves refining the scheduling and
orchestration processes to leverage these pod relationships, thereby optimizing
system performance and efficiency.

Chapter 4

Engineering Swarm
Behavior

Designing behavior in CPS swarms presents a significant challenge. We’ve
placed a strong emphasis on distinguishing between micro­level and macro­
level modeling of behavior, as detailed in Section 2.1. The mission of the swarm
is primarily defined at a global macro level. To accomplish this mission, we
must translate local rules into executable code on controllers and processing
units within each CPS, incorporating hardware­related CPS functionalities
such as sensors and actuators.

4.1 Basic CPS Swarm Behavior

Figure 4.1 provides a taxonomy of swarm behaviors, based on the classification
proposed by Schranz et al. [337]. In the subsequent sections, we’ll start by
providing a comprehensive overview of this taxonomy. For an exhaustive
description of the pre­existing categories, we kindly direct interested readers
to [45, 337].

Spatial Organization

These behaviors enable robots in a swarm to navigate their environment,
enabling them to organize themselves or objects spatially.

• Aggregation causes individual robots to converge in a specific area of
the environment, enhancing spatial proximity among swarm members
and encouraging further interactions.

• Dispersion operates in contrast to aggregation, as it drives
individual robots to spread across the environment. Dispersion can be

44 Engineering Swarms of Cyber-Physical Systems

Aggregation

Dispersion

Spatial Organization Pattern Formation

Self-Assembly

Object Clustering and Assembly

Collective Exploration

Coordinated Motion
Navigation

Collective Transport

Collective Localization

Swarm Behaviors Consensus

Task Allocation

Collective Fault Detection
Decision Making

Collective Perception

Synchronization

Group Size Regulation

Self-Healing

Miscellaneous Self-Reproduction

Human-Swarm Interaction

Figure 4.1: Taxonomy of swarm behaviors (extended from [337]).

advantageous in scenarios where spreading out allows for more extensive
coverage of the environment or helps avoid congestion and overcrowding
in certain areas.

• Pattern formation orchestrates the arrangement of the robot swarm
into specific shapes. A notable instance is chain formation, where robots
align in a line, often to establish multi­hop communication between
distant points.

• Self­assembly interconnects robots to establish structures, either
through physical connections or virtual communication links. An
interesting variant is morphogenesis, where the swarm autonomously
transforms into a predefined shape, exhibiting remarkable adaptability.

• Object clustering and assembly empowers the swarm of robots to
manipulate spatially distributed objects, crucial for various construction
processes, allowing for the efficient clustering and assembly of objects
within the environment.

⏎

45 Engineering Swarm Behavior

Navigation

These behaviors facilitate the coordinated movement of a robot swarm within
an environment:

• Collective exploration guides the swarm of robots to navigate
cooperatively through the environment, serving various purposes such
as gaining a comprehensive situational understanding, searching for
specific objects, monitoring the surroundings, or establishing a robust
communication network.

• Coordinated motion orchestrates the movement of the robot swarm
in a structured formation, which can take on well­defined shapes like
a straight line or adopt more flexible arrangements, such as flocking,
enhancing their collective mobility and adaptability.

• Collective transport empowers the robot swarm to collaboratively
transport objects that exceed the weight or size capabilities of individual
robots. It enables the efficient movement of bulky or heavy items by
leveraging the combined strength and coordination of the swarm.

• Collective localization facilitates the robots within the swarm in
determining their precise position and orientation relative to one another
by establishing a local coordinate system across the entire swarm.

Decision Making

These behaviors enable robots within a swarm to reach a unified decision on
a given matter:

• Consensus empowers individual robots in the swarm to reach
agreement or convergence towards a single, shared choice among
multiple alternatives, fostering cohesive decision­making.

• Task allocation dynamically assigns emerging tasks to individual
robots in the swarm, aiming to optimize the overall performance of the
swarm system. When robots possess diverse capabilities, tasks can be
distributed accordingly to enhance system efficiency.

• Within the swarm of robots, collective fault detection identifies
deficiencies in individual robots, enabling the identification of outliers
or deviations from the desired swarm behavior, often attributed to
hardware failures.

• Collective perception combines locally sensed data from robots in
the swarm into a comprehensive view, facilitating informed collective
decision­making. This behavior allows the swarm to reliably classify
objects, allocate the appropriate number of robots to specific tasks, or
determine optimal solutions to global problems.

46 Engineering Swarms of Cyber-Physical Systems

• Synchronization aligns the frequency and phase of oscillators among
robots in the swarm, ensuring a shared understanding of time.
This synchronization enables robots to perform actions synchronously,
contributing to coordinated and time­sensitive activities.

• Group size regulation empowers robots in the swarm to form
groups of desired sizes. If the swarm’s size exceeds the specified group
size, it autonomously divides into multiple groups by simultaneously
maintaining optimal group cohesion and function.

Miscellaneous

There are additional behaviors exhibited by swarm robots that do not fall
into the aforementioned categories:

• Self­healing enables the swarm to recover from faults stemming from
individual robot deficiencies. The objective here is to minimize the
impact of robot failures on the overall swarm, thus enhancing its
reliability, resilience, and performance. This concept aligns with the
collective fault detection mentioned before.

• Self­reproduction empowers a swarm of robots to either generate new
robots or replicate the patterns created by multiple individuals within
the swarm. The aim is to enhance the swarm’s autonomy by eliminating
the necessity for human engineers to manually create new robots.

• Human­swarm interaction allows humans to control the swarm
robots or receive information from them. This interaction can occur
remotely, such as through a computer terminal, or in close proximity
within a shared environment, facilitated through visual or acoustic cues.

4.2 Use Case: Collective Motion

Collective motion in the form of a flocking behavior, is a natural phenomenon
seen in bird flocks, fish schools, and molecule movement [52]. These organisms
coordinate their movement to enhance performance, such as fish evading
predators and maintaining group structure or birds flying in energy­efficient
V­formations. Inspired by this, various algorithms have been derived from
biological examples or developed newly to address challenges in swarm
robotics. Overall, these studies address how large groups of simple, small,
often identical robots can collectively perform complex tasks that single robots
cannot. A self­organized collective motion occurs when a swarm of robots
moves cohesively, using local interactions to exchange essential information
like positions, velocities, or angles.

Reynolds [311] established the foundation for modeling flocking behavior
in artificial systems using so­called Boids agents. The model achieves cohesion
through attraction between robots and prevents collisions via repulsive

47 Engineering Swarm Behavior

interactions, while alignment ensures the swarm moves in the same direction
at the same speed. This model assumes that each robot knows its neighbors’
headings in a noise­free environment. Another method, the Self­Propelled
Particles (SPP) approach, uses principles from statistical physics to achieve
flocking in robots. The SPP model uses virtual attractive and repulsive forces
between swarm entities to achieve self­organized collective motion [395]. There
are two main approaches to reach flocking behavior: The alignment rule and
the position­based rule. The alignment rule involves sharing angle information
among agents to agree on their headings [394], but it requires sophisticated
measurement and communication tools for reliable orientation sharing. The
position­based rule, which only requires agents to detect their neighbors’
positions, is a more cost­effective choice. Swarm cohesiveness and alignment
are achieved using just relative position data [116]. However, it should be
mentioned that, although these algorithms are cost­efficient, relying solely on
relative position data results in slower response times and reduced robustness.

The SPP concept was utilized in the Standard Vicsek Model [394], an
early method for flocking. This model, designed to study the effects of
noise and particle size on order transitions, yielded promising results with
a velocity alignment rule, where each particle adjusts its trajectory to align
with the average heading of its neighbors. While velocity alignment proved
useful, Couzin et al. [73] introduced another model for three­dimensional
environments, considering three interactions—attraction, alignment, and
repulsion—in distinct zones to simulate animal group behavior transitions.

These foundational flocking models have inspired numerous studies
in swarm robotics. For example, Cucker and Smale [74] proposed a
method where informed agents direct a uniformed swarm using the velocity
alignment rule. This model updates agents’ velocities based on a Laplacian
framework, regulating velocity differences with neighbors, and inspired real­
world experiments [385]. However, these frameworks require exchanging both
velocity and alignment data, demanding significant onboard processing, which
is challenging for small robots with limited power and processing capabilities.

Several studies have focused on implementing collective motion without
relying on orientation information. For example, velocity alignment is achieved
implicitly through pairwise repelling forces [244]. Other approaches include
using position­based attraction and repulsion [370], inelastic collisions between
isotropic agents [150], and various collective control strategies [118]. These
methods avoid orientation sharing and offer distinct advantages.

Therefore, reducing the information exchanged between robots can
minimize hardware complexity and cost. Additionally, studies show that
alignment without explicit orientation exchange lowers the swarm’s energy
consumption. Ferrante et al. [116, 117] developed a similar approach with
the Active Elastic Sheet (AES) model, which uses elastic interaction based
on relative position for collective motion. The AES model’s performance is
well­documented, addressing factors like network architecture[386], robustness
against measurement noise [427], and behavior under external force to guide
the swarm [305]. To explain the AES model in more detail, consider a swarm

�

48 Engineering Swarms of Cyber-Physical Systems

system of N robots moving in a two­dimensional arena. The motion of
the ith robot is determined by attraction­repulsion forces from its closest
neighbors. The positions x⃗i and orientations θi of the robots can be calculated
mathematically, as described in [116, 117]. The robots are deployed in an ideal
environment with negligible noise in the original signals. Thus, it is possible
to eliminate disturbance terms and present a modified model as shown in
Equation (4.1):

�T˙ θ̇ i ⃗ ⊥x⃗i = (v0 + α F⃗i.n̂i)n̂i , = β Fi.n̂ , n̂i = cos(θi) sin(θi) , (4.1)i

where, α and β are inverse transitional and rotational parameters, and v0 is a
biasing speed. n̂i is a unit vector parallel to the heading direction of the robot
i, and n̂⊥ is a unit vector perpendicular to it. The interactions between robot i

i and its neighbors si will generate a linear force F⃗i to maintain the distance
within the swarm. This force can be obtained using Equation (4.2):

N

 k r⃗ij 1
F⃗i = − (|r⃗ij | − lij) ψ = n̂i . (4.2),

lij |r⃗ij | N
j∈Si i=1

kHere, is the spring constant, and lij is the natural length connecting
lij

robots i and j. The distance between the ith and jth robots is represented
as r⃗ij = x⃗j − x⃗i. Initially, the ith robot is connected to its neighboring
robots Si through virtual springs, establishing the formation of the robots
at the initial stage. Thus, this spring connection remains constant despite
changes in distance between robots during the experiments. The alignment
of the entire swarm determines the collective flock’s performance. The degree
of alignment, ψ, is the metric used to indicate the alignment status of the
robots. A minimum value of ψ = 0 indicates the robots are non­aligned, while
a maximum value of ψ = 1 means they are perfectly aligned.

Figure 4.2 shows two robots in the swarm and the resultant force F⃗i acting
on one of the robots, determined from interactions with all neighbors. The
figure indicates that the resultant force has a component perpendicular to the
robot’s current direction, causing rotation and eventually leading to alignment
between the robots.

Although AES­based algorithms show promising results, virtual elastic
interactions can cause fluctuations, leading to instability and reduced
robustness, especially with noisy measurements. However, viscoelastic
interactions can mitigate these fluctuations, improving both stability and
robustness. Thus, using viscoelastic links is expected to enhance flock
motion while maintaining formation stability. In addition to the model’s
structure describing collective behavior, parameters play a crucial role in
the swarm performance. These parameters are typically tuned empirically,
but optimization techniques can significantly enhance performance. Therefore,
several works have focused on optimizing AES model parameters to improve
the performance of the computer model and make it more suitable for real­
world applications using mobile robots. In the work of Raufi et al. [305], a

49 Engineering Swarm Behavior

Figure 4.2: The schematic description of elastic interaction (from [26]).

Table 4.1: The values of the control parameters for AES, AES-TCACS, AES-GA
and OCM algorithms.

Model Parameters

Methods α β k c v0

AES [116]

AES­TCACS

AES­GA [27]

OCM [28]

[305]

0.01

0.066

0.3696

0.0262

0.12

0.97

0.9124

0.5627

5

1.28

3.5329

1.0

0

0

0

1.7503

0.002

0.05

0.05

0.075

Tabu Continuous Ant Colony System (TCACS) [193] was used to tune the
AES model parameters by minimizing the force among robots and maximizing
their alignment. The results showed better performance compared to the
original parameters. Other studies [26, 27] improved the collective motion
of the AES model using Particle Swarm Optimization (PSO) and Genetic
algorithms, respectively. The cost function minimized virtual forces between
swarm individuals, alignment error, and convergence time. This approach
significantly enhanced collective motion behavior and swarm shape stability,
outperforming both the original study [116] and the TCACS­optimized
study [305]. However, these works did not consider measurement noise and
its impact on collective motion behavior. In a recent study, Bahaidarah et
al. [28] proposed an Optimized Collective Motion algorithm that employs
viscoelastic interactions between robots to enhance robustness against various
disturbances such as measurement noise, environmental factors, and modeling
uncertainties. This underscores the algorithm’s suitability for real­world
robotic applications. The model parameters are automatically tuned using
PSO optimization to achieve (i) minimal control effort, (ii) rapid alignment,
and (iii) noise robustness.

Figure 4.3 illustrates four different experiments with swarms controlled by
different algorithms listed in Table 4.1.

⏎

⏎

50 Engineering Swarms of Cyber-Physical Systems

Figure 4.3: Swarm collective exploration controlled by (a) AES, (b) AES-TCACS,
(c) AES-GA, and (d) OCM.

4.3 Use Case: Strategies to Mislead UAV

Swarms

The core concept involves deploying defender UAVs into an attacking UAV
swarm with the goal of misleading the swarm without causing further harm.
Rather than relying on physical methods to remove the attacking UAVs from
the sky or deploying defensive UAV swarms that engage in combat and risk
collateral damage, we explore a strategy where a small number of defender
UAVs infiltrate the attacking swarm to divert it from its intended mission.
Figure 4.4 illustrates this scenario: (a) Shows a swarm targeting a specific
objective, while (b) depicts defender UAVs infiltrating the swarm to mislead
it. This approach has been largely overlooked in existing research [354], making

⏎

51 Engineering Swarm Behavior

(a) (b)

Figure 4.4: Main idea of the scenario, in which (a) UAVs are attacking a target
and (b) defenders are induced into the attacking swarm to mislead it [354].

this work pioneering towards developing an intelligent and adaptable solution
for redirecting swarm behavior intended for malicious activities.

In our initial exploration of how to divert a swarm from its mission, we
equip both the attacking UAV swarm and the defending UAVs with the
same algorithms. Our approach involves first selecting appropriate attacking
algorithms and then designing effective defending algorithms. Given that the
hostile swarm is assumed to be targeting a specific objective, we focused on
target­oriented swarm algorithms inspired by nature, such as group hunting
and foraging behaviors observed in animals and fungi. We selected the Grey
Wolf Optimizer (GWO) [247] and the Slime Mould Algorithm (SMA) [228] for
this study, both of which emulate natural strategies for locating food sources.

We equip the defending UAVs with the same algorithms as the attacking
UAVs, slightly modified to divert the attackers from their original target. The
primary goal of the defenders is to steer the attacking UAVs away from their
target by influencing their movement. The scenario is set in a continuous 2D
area containing a static target M at position m = [xm, ym]. Here, a swarm
of attacking UAVs ai ∈ A (where i = 1, . . . , I) and a smaller set of defending
UAVs dj ∈ D (where j = 1, . . . , J with J < I) operate according to the
local rules of their swarm algorithms. Each UAV is aware of its position,
with pi = [xi, yi] for attackers and pj = [xj , yj] for defenders. The attacking
swarm aims to locate and reach the target M using the Grey Wolf Optimizer
(GWO) [247] and the Slime Mould Algorithm (SMA) [228]. All UAVs are
equipped with processing, storage, and communication capabilities.

The defenders aim to redirect the attackers by modifying the fitness
function qm slightly from the original GWO and SMA functions. The modified
fitness function also aims to minimize the distance to the target, with a smaller
distance indicating better fitness. Fitness values are shared among all UAVs,
allowing defenders to inject misleading fitness values to deceive the attacking
swarm. The defenders must avoid injecting random values, as this would result
in being disregarded by the attackers. Instead, they must move in conjunction
with the attacking swarm, gradually diverting it from the target. The fitness

⏎

52 Engineering Swarms of Cyber-Physical Systems

function for the defenders is modeled as follows:

qm(pj ,m) = q(pj ,m)− ϕ, ϕ ∈ R, (4.3)

where
dim

pj

q(pj ,m) = (pj −m)2, (4.4)
j

with pj being the position of the defender UAV, m the position of the
target, and ϕ a fixed value allowing defenders to achieve a better fitness
relative to the attackers. The value of ϕ is arbitrary and determined through
experimentation, where a low value results in minor distraction and a high
value in significant distraction.

To effectively steer the attacking swarm, defenders need to move
strategically. Preliminary experiments revealed that moving defenders to a
fixed point, such as a static fake target, is ineffective due to the dynamic
nature of the attacking swarm. Therefore, the next position pj(t + 1) of a
defender UAV is calculated as follows:

[]

1√
pj(t+ 1) = pj(t) + v (t) · (1− c) · 2

max 1 , (4.5)√
2

where pj(t) is the current position, vmax is the maximum velocity of a UAV per
time step, and c is the crowd factor, a value in the interval [0, 1]. The crowd
factor balances between leaving the attacking swarm (c = 0) and following
it (c = 1), allowing defenders to stay close enough to influence the attackers
gradually. The vector [1√ , 1√] is of unit length but can be oriented to direct

2 2

UAVs towards a specific direction (e.g., bottom right).
Figure 4.5 presents the results of the GWO simulations, illustrating (a)

the probability hP of attackers winning as the number of defenders increases,
and (b) the discrete probability density of the achieved hits over time with
varying numbers of defenders. As anticipated, the presence of more defenders
improves hP , as a greater number of defending fake-wolves exerts a stronger
influence on the entire swarm. Details of the results can be found in a paper
by Simonjan et al. [354].

4.4 Use Case: The Principle of Hormones

for Production Plants

As already described in Section 3.2, the production of logic and power
integrated circuits (ICs) in the semiconductor industry is inherently dynamic
and complex [138]. Unlike the high-volume production of memory ICs, the
logic and power sector features wafer production with a vast product mix,
frequent system changes, and a large number of processing steps involving
numerous machines [203]. Weekly operations can involve approximately

53 Engineering Swarm Behavior

(a)

(b)

Figure 4.5: GWO simulation results: (a) Probability hP that attackers win over
an increasing number of defenders and (b) probability density of achieved hits over
time and increasing number of defenders [354]. ⏎

105 tasks across 103 machines [379]. Optimizing this process for work in
progress (WIP) and flow factor presents an NP­hard challenge [130]. Existing
dispatching rules and linear optimization methods struggle to handle the
NP­hard search space [222], limiting their ability to account for the entire
system behavior due to computational complexity, and thus failing to fully
exploit optimization potential in job­shop scheduling within semiconductor
production systems [203].

54 Engineering Swarms of Cyber-Physical Systems

To address these challenges, we propose modeling the production plant
as a self­organizing system of agents that interact non­linearly, as described
in Section 3.2. This approach aims to achieve near­optimal solutions within
feasible computation times. Such a system can adapt to environmental
changes, scale with the number of agents, and maintain robustness against
single points of failure due to its reliance on local interactions [160]. Utilizing
local rules and interactions helps circumvent the extensive computation times
associated with centrally performed linear optimization.

One promising self­organizing approach involves algorithms inspired by
biological hormone systems. These artificial hormone systems mimic the
biological endocrine system, which regulates cellular metabolism in the
body [358, 387]. As part of the broader class of self­organizing systems,
they exhibit properties like scalability, adaptability, and robustness [292],
making them suitable for coordinating complex agents in networked technical
applications [43, 98, 356]. Such algorithms are particularly valuable for large
cyber­physical systems, such as those found in the semiconductor industry,
where traditional control or scheduling mechanisms reach their operational
limits.

The artificial hormone algorithm is designed using a bottom­up approach
to represent both the urgency of processing a lot and the demand for incoming
lots by machines. In this system, artificial hormones are generated at machines
and diffuse through the production environment, aligning with the processing
steps of the lots. The lots function as swarm members that are attracted to
machines based on the hormone levels present. The algorithm relies on five
key parameters, each with specific mechanisms described below. Table 4.2
provides an initial set of parameter values used for preliminary simulations.
The algorithm outlines the calculations and decision­making processes that
influence the handling of lots, offering flexibility in implementation. For
instance, hormone­related computations can be performed directly at the
machines or within a networked monitoring and control layer [101].

Hormone Model Each processing step is associated with a specific
hormone type. Hormones can exist at any machine, and multiple hormone
types can coexist at a single machine. At each simulation tick, hormones
degrade exponentially at a rate α:

hormone amount = hormone amount · (1 − α) (4.6)

An evaporation rate of 0 means that hormones do not degrade, while the
maximum value of 1 indicates immediate degradation.

Hormone Production by Machines to Attract Lots Each machine
produces a hormone corresponding to its process type. Machines performing
the same process type produce the same hormone. If a machine handles
multiple process types, it generates hormones for each type in equal parts.

�

55 Engineering Swarm Behavior

Table 4.2: Suggested algorithm parameters.

Parameter Value

α 0.3

β 1

γ 0.5

δ 0.2

ε 0.8

Machines aim to maximize their working time by attracting enough lots into
their queues. The hormone output of a machine is calculated as follows:

1
hormone output = , (4.7)

lots in queue + β

where β is a smoothing factor greater than zero.

Machine Linking A machine A is upstream­linked to machine B if a recipe
includes processes of both machines in consecutive steps. If each machine
performs only one process, the link strength from this recipe is 1. Otherwise,
the link strength is 2 divided by the number of processes supported. If the
sequence appears in other recipes, the link strength accumulates.

Hormone Diffusion Upstream When upstream links exist, a fraction γ
of the hormone at a machine diffuses upstream:

upstream hormone = hormone amount · γ (4.8)

hormone amount = hormone amount − upstream hormone (4.9)

Each upstream­connected machine receives a proportional share of the
upstream hormone

link strength
added hormone = upstream hormone · � , (4.10)

link strengths

where link strength refers to the upstream link strength for the given hormone
between the respective machines, and link strengths denotes the sum of all
upstream link strengths for the hormone from the sending machine.

Hormone Diffusion by Incoming Lots Incoming lots cause a portion δ
of the corresponding hormone at a machine to diffuse upstream:

upstream hormone = hormone amount · δ (4.11)

hormone amount = hormone amount − upstream hormone (4.12)

⏎

56 Engineering Swarms of Cyber-Physical Systems

The upstream hormone is added to the machine from which the lot arrived,
allowing the flow of lots to self-stabilize:

added hormone = upstream hormone (4.13)

Lot Prioritization by Timing A lot’s base priority is determined by its
remaining Raw Process Time (RPT) and Planned Cycle Time (PCT):

remaining RPT
base priority = (4.14)

remaining PCT

Hormone Attraction of Lots The priority of a lot is influenced by
hormones present at the machine where the lot is waiting:

attraction = h εii · , (4.15)
i=0

where hi represents the hormone of the process that is i steps ahead in the
lot’s recipe, with h0 being the hormone of the current process. The factor ε
indicates the influence strength of the hormone.

The lot’s priority is then calculated as:

priority = base priority · attraction. (4.16)

At each machine, lots are processed based on their priority, and if batch
processing is used, all eligible lots are processed together in a batch.

The algorithm was implemented and tested using a NetLogo simulation
model. The simulation results show that the artificial hormone system
improves overall production time and the flow factor by approximately 5%.
Further details and the evaluation of the algorithm can be found in Elmenreich
et al. [101].

4.5 Design Behaviors using the Concept of

Evolution

When designing a swarm robotic system, several decisions must be made,
including the choice of the robot model and its capabilities, the planned
number of robots, the control system, the software model, and the algorithms
to be employed. A major challenge is given by the fact that decisions on
one aspect can influence the possible degrees of freedom at another level. For
instance, choosing a simple robot with a limited number of sensors would
necessitate a control system that relies on the close cooperation of a large
number of robots to accomplish the task. The challenge of determining the
system architecture at multiple levels is akin to the hardware-software co-
design approach used for embedded systems [407].

57 Engineering Swarm Behavior

Figure 4.6: Proposed design methodology [112]. ⏎

Following a design process supported by evolutionary optimization, we
propose a methodology that addresses the key decision points faced by
designers of robot swarm experiments. For a given experiment, we identify five
major components to be designed, as depicted in Figure 4.6. These five major
components are derived from the system architecture of a self-organizing
system design process described in Fehervari and Elmenreich [112]:

Task description: Set of requirements that the solution has to meet.

Simulation setup: Describes the simulation model and the relations
between the system’s components and their environment.

Evolvable decision unit: The evolvable representation of the local rules.

Interaction interface: Describes how the decision unit interacts with its
environment.

Search algorithm: A meta-heuristic algorithm responsible for finding novel
and better solutions.

Objective function: The cost function guiding the search algorithm.

Engineering problems usually begin with a task description clearly
outlining the goals and constraints. This description serves as a contract
outlining the expectations of the desired system at a high level of abstraction.
Thus, the task description significantly influences the simulation model used
and the target function. In a further step, an efficient system model is
developed based on the task description. This model should accurately
capture the essential aspects of the system to be simulated while abstracting
from unnecessary factors. It is important to note, however, that this step
should not delve into how individual components are rendered or how they
interact, as that would preempt some important decisions. For this reason,
we divide the process into two units: The interaction interface unit and the

58 Engineering Swarms of Cyber-Physical Systems

evolvable decision unit. The former focuses on strategically planning the
interactions between system components and their environment, specifying
communication methods (such as sensors) and the underlying interfaces
(such as protocols). The latter focuses on the actual representation of the
system components, which may include one or more model types depending
on the homogeneity of the system. The reason for separating this part
from the system model is the need for an evolutionary approach, which
requires “evolvable” representations. In other words, components must be
able to generate adaptive genetic diversity, which is typically achieved by
defining mutation or crossover operators [10]. Given the variety of available
representations, careful consideration by the designer is essential because of
the often different properties associated with each representation.

An important part of the evolutionary process is the algorithm that
optimizes candidate solutions. This can be viewed as an efficient search
algorithm that operates on candidate solutions represented by the component
representation. Both the component representation and the search algorithm
can be implemented independently against a well­defined interface defining
how the search algorithm can access and evaluate candidate solutions. This
allows optimization and candidate representation to be chosen separately.
There can be an advantage of using a particular search algorithm with a
particular candidate representation; for example, evolving neural network
structures would benefit from a niche formation mechanism that prevents
innovations from dying out prematurely, and restricting recombination to
compatible descendants among the pool of neural network solutions [363].

To guide the evolutionary process towards a desired solution, an objective
(or fitness) function needs to be defined that either indicates the quality
of a particular candidate solution or at least allows for the comparison of
the quality of two candidate solutions. Designing a proper objective function
is crucial for the overall evolutionary optimization approach. The objective
function should be readily accessible, either continuous or sufficiently fine­
grained, and should clearly favor the desired solutions while avoiding the
reward of undesirable ones. A good objective function should not only assess
high scores to proper solutions but also form a smooth fitness landscape,
avoiding, whenever possible, local maxima that could trap the evolutionary
search. Designing such a practical function is often difficult, even for domain
experts [183].

4.6 Framework for Evolutionary Design

4.6.1 Architecture

The architecture of FREVO is strictly component­based, where the steps of
evolutionary design are divided into individual components. This architecture
makes it possible to develop a single component and easily replace individual
components. Therefore, different configurations can be easily evaluated to
find the most appropriate configuration for a given problem. Each component

59 Engineering Swarm Behavior

implements a particular feature of the evolutionary approach. The problem
component defines the specifics of a CPS controller, environment, and fitness
function. The representation component defines how the CPS controller is
represented. The optimization component defines the method for finding the
optimal candidate representation. The ranking component defines how the
candidate representations are ranked based on their performance.

FREVO is implemented in the Java programming language and follows
the object-oriented programming paradigm for encapsulating components.
Each component is defined by an abstract class, standardizing the interfaces
between parts such as for example agent representation, simulation and
optimization algorithm. Therefore, new components can be used in a
setting with existing components completing the overall system. Creating
a component is guided by a built-in component generator, which helps the
software developer generate the required code framework in the context of the
class hierarchy. FREVO is released under an open source license, supporting
the sharing of research ideas and technical solutions. The source code is freely
available.1

The FREVO GUI guides a user step by step through the configuration
process. This is done by selecting a component for each task of the evolution
process. A single configuration of components is called a FREVO session. Such
sessions and the results of the optimization process can be exported and saved
for import for later use.

Problem Definition

The problem definition in FREVO defines the parts related to the task to be
achieved, including the environment and the interaction possibilities of the
agents, but not the implementation or optimization of the behaviors. The
problem definition thus consists of the formulation of a goal, the simulation
model, and the interaction interface for the agents within the simulation.
In the case of CPS systems, the interaction interface models the behavior
of sensors and actuators, and the environment is implemented as a physical
simulation model. Candidate controller representations are linked to sensors
and actuators, with each sensor serving as input and each actuator as output.

The problem definition also implements an objective function and the
means for evaluating the values of the objective function in the course of
one or multiple simulation runs. Thus, the fitness assessment typically occurs
in the phenotype space, where the behavior in the simulated environment is
observed. The genotype, which refers to the implementation of a controller,
typically cannot be assessed without executing it in a simulation. The
objective function then guides the heuristic optimization process in finding
the optimal candidate representation.

There are two problem definition types: AbstractSingleProblem evolves
a CPS candidate for cooperative task execution in a swarm setup,

1FREVO Github: https://github.com/smartgrids­aau/Frevo [Online; accessed: 05-
February­2025].

https://github.com/smartgrids-aau/frevo

60 Engineering Swarms of Cyber-Physical Systems

while AbstractMultiProblem involves evolving and evaluating multiple
representations against each other, suitable for competitive multi­agent
systems. The former applies to homogeneous multi­agent systems, ranking
candidates by fitness, while the latter suits competitive systems, with fitness
evaluated relative to other agents. Tournament algorithms rank candidate
pools, as seen in scenarios like soccer games: To determine the best team
among several soccer teams, the teams play each other until a tournament
winner is determined. An example of a soccer team use case, where two teams
compete against each other in an evaluation, is presented in [111].

Developing a new problem definition involves defining the interface
between sensor inputs, actuator outputs, and candidate representation;
implementing simulation for evaluation; and calculating fitness based on
performance measures, all guided by predefined system interfaces. Given
existing components, developers can focus on implementing new problems
without concern for representation, optimization, or ranking components.
Complex simulations can leverage external simulators from model libraries
or custom interfaces as detailed in Section 4.6.4.

Candidate Representation

The candidate representation models the internal structure of the CPS
controller. It is a generic structure that is evolvable, for instance, an Artificial
Neural Network (ANN). It encodes the behavior of the CPSs, including
reactive behavior to stimuli via the sensors. A candidate representation, when
viewed together with the problem definition, represents a possible solution
to the given problem. Every representation must define the genetic operators
such as mutation, crossover and selection. For supporting the user in analyzing
the representation, different output formats can be implemented. Typically,
the representation is derived from the AbstractRepresentation class and is
common among all agents. For heterogeneous multi­agent problems, one can
choose the bulk representation to evaluate a set of candidates with distinct
representations.

Currently, FREVO supports the following representations:

• Fully­meshed net : This is a recurrent ANN with a fully meshed
architecture providing mutual connections between any two neurons.
Throughout evolution, both the biases of the neurons and the connection
weights undergo alterations. During run­time, this network has some
memory due to possibilities of feedback loops.

• Three­layered net : This is a feed­forward, non­recurrent ANN
incorporating one hidden layer. The biases of the neurons and the
connection weights evolve similarly. Unlike the fully meshed ANN, this
architecture is tailored for simpler problems, substantially reducing the
search space.

61 Engineering Swarm Behavior

• NEAT : In this model, the ANN adapts by evolving the connectivity
between neurons, following the NeuroEvolution of Augmenting
Topologies (NEAT) method introduced in [363].

• HebNet : Incorporating Hebbian learning, this recurrent, fully intercon-
nected ANN endows synapses with plasticity enabling real­time learning.
In this setup, both plasticity and initial weights are evolved with
Hebbian learning occuring during the simulation runs.

• Simple bulk representation: This is a combination of multiple
representations as described above.

Optimization Method

The optimization method aims to find the candidate representation
that maximizes fitness, as the problem definition specifies. It employs
genetic operators from the candidate representation to generate new
candidates in each generation, replacing the least effective candidates. This
iterative heuristic search progressively produces candidates with improved
performance. The search continues until a termination criterion specified
within the optimization method is met. Examples of termination criteria
include reaching a maximum number of generations or consecutive generations
without fitness improvement.

The optimization methods currently offered by FREVO are as follows:

• Random search: A baseline comparison technique in which randomly
generated candidates replace those with low fitness.

• NNGA: This is an Evolutionary Algorithm (EA) that maximizes the
population diversity. It supports multiple populations and several
ranking algorithms. It is based on the Neural Network Genetic
Algorithm (NNGA) described in [100]. It is well­suited for evolving any
type of representation.

• GASpecies: This is an EA that classifies candidates into species.
Species are determined by a similarity function defined in the candidate
representation. Within each species, candidates share the same fitness
value.

• CEA2D : It is a cellular EA that arranges all candidates on a 2D torus
surface. Genetic operations are executed in a local context, resulting
in improved diversity and slower convergence compared to traditional
evolutionary algorithms.

• Novelty search: This is an EA that prioritizes behavioral diversity over
fitness. Its implementation is based on rtNEAT in [362].

• Novelty species : This is an EA that rewards behavioral diversity across
different species.

62 Engineering Swarms of Cyber-Physical Systems

Ranking Algorithm

The ranking algorithm sorts candidate representations based on their
performance, i.e., fitness value. The ranking algorithm is also responsible for
parallelization to decrease the overall simulation time of the optimization
process by deciding which evaluations can run in parallel on a multi­threaded
system. Problems where the fitness of a candidate can be obtained directly by
a simulation run require a so­called absolute ranking. Two types of absolute
rankings are currently implemented in FREVO:

• Absolute ranking : A ranking algorithm that sorts candidates by the
fitness value returned from the problem component. It supports multi-
threading to decrease the time needed for optimization.

• Novelty ranking : A ranking algorithm that sorts candidates based on
their novelty in the behavioral space.

In contrast, problems that necessitate pairwise evaluations between the
candidates follow the structure of an AbstractMultiProblem. For this type, a
full tournament ranking and a ranking based on the Swiss system are provided.
The Swiss system, inspired from chess tournaments, can provide a ranking
with fewer comparisons at the cost of ranking accuracy [99].

4.6.2 Graphical User Interface

The GUI of FREVO provides a convenient means to assess an evolutionary
design process component swiftly, showcasing the underlying modular
architecture (see Figure 4.7). This visual representation illustrates FREVO’s
GUI, where an example problem has been evolved, with the “Select Problem
Component” window displayed.

The top­left “Configure Session” panel facilitates session configuration by
guiding users through selecting a problem, optimization algorithm, candidate
representation, and ranking method step by step. This streamlined process
expedites the testing of new components. Each selection prompts a new
window for configuration, with options for fine­tuning parameters.

Below, the “Control” panel enables users to initiate, halt, or reset the
optimization process. Progress can be tracked in real­time through the
“Statistics” panel on the right and the “Console” panel below. The “Statistics”
panel presents graphs illustrating the evolution of fitness and diversity
across generations, while the “Console” panel displays output from active
components. Upon completion of optimization, results can be accessed from
the panel on the left that let’s the user inspect the latest generation. Here,
users can save or replay the results for further analysis. Clicking “Replay”
allows a closer examination of each candidate representation from the last
generation, including visualization of resulting behavior in simulation.

The top menu provides options for saving and restoring previous
sessions and managing components, including the “Component Creator”.

63 Engineering Swarm Behavior

Figure 4.7: Screenshot of the FREVO GUI showing the evolution of an example
problem.

This tool automates skeleton code generation, aiding software developers in
implementing new components for the model library.

4.6.3 Workflow

When executing FREVO with existing components, initiating optimization
requires just a few clicks. First, users select the desired problem, followed by
the optimization method, candidate representation, and ranking algorithm.
Optimization continues after clicking the play button until the selected
termination criterion is met. The statistics panel displays two graphs: One
depicting the best fitness value of each generation and another showing the
diversity in each generation (refer to Figure 4.7).

The component creator in the top menu can be utilized to model a new
problem. A code skeleton is generated after selecting the component type,
name, package, and description. This code is placed in a subdirectory of the
components directory in FREVO, accompanied by comments guiding further
implementation (see Figure 4.8). Additionally, an XML file named after the
component is created, allowing the definition of configuration parameters,
sensor inputs, and actuator outputs for the CPS.

The primary task involves implementing the evaluateCandidate method,
where the candidate representation is evaluated through simulation, either

⏎

64 Engineering Swarms of Cyber-Physical Systems

Figure 4.8: Screenshot of the source code skeleton of a newly created problem.

directly within FREVO or by invoking an external simulator. Consequently,
the environment and CPS must be implemented. Sensor inputs of the CPS are
passed to the getOutput method of the candidate representation, which returns
the actuator output(s). A suitable performance measure is then implemented
to compute the fitness value of the simulation run.

Once a component’s implementation is complete, it needs to be compiled
and automatically loaded upon FREVO launch. The new component then
appears in the component selection window, enabling the aforementioned
workflow. This process remains consistent when creating other components,
with the generated code skeleton and implementation tailored to their specific
requirements.

4.6.4 External Simulators

External simulators are used in domain-specific simulations. To achieve this,
the evaluateCandidate function of the problem component must invoke the
simulator and provide the candidate representation (i.e., the CPS controller).
Consequently, the simulator must incorporate the exact representation to
enable FREVO to evolve an optimal solution. This can be accomplished
through two approaches: In a compact way through code generation that
is then run in the simulation, or in a modular fashion, by transmitting only
the inputs and outputs between FREVO and the simulation.

In the compact approach, the simulator’s code needs to be recompiled
with the newly created representation in each generation. Subsequently, the
simulator is executed directly from FREVO, returning the fitness value for
optimization. This method is preferable for CPSs lacking file system or
network communication capabilities.

Alternatively, the modular approach entails implementing the simulation
after achieving the desired candidate representation. In each generation, the
parameters defining the representation are then transmitted to the simulator,
either through files or network communication. The actions performed by

⏎

65 Engineering Swarm Behavior

individual CPSs within the simulator are fully determined by the candidate
representation, whose parameters are evolved by FREVO. FREVO executes
the simulator, which logs the performance measure into a log file. Upon
completion of the simulation, the corresponding fitness value is computed
by the evaluateCandidate method.

4.7 Why Evolutionary Optimization Needs

Simulation

In this chapter, we have explored the design of self­organizing systems
through evolutionary methods, focusing specifically on swarm robotics. We
introduce the FREVO framework, which leverages evolutionary optimization
to address challenges in decision­making and hardware­software co­design.
FREVO is a modular component­based system that can be adapted for
various applications. Its components are categorized to facilitate simulation,
representation of candidates, optimization methods, and algorithm ranking.
The system includes a user­friendly GUI for configuring sessions, selecting
components, and executing the optimization processes.

Typically, evolutionary approaches rely on assessing the value of a fitness
or cost function for a given implementation. This often involves conducting
experiments where swarm members interact within an environment similar to
their intended operational context, collaborating to solve typical problems.
However, fitness values typically are obtained by post­experiment analysis,
which in turn demands reinforcement learning techniques capable of handling
delayed rewards. While theoretically feasible with real hardware, the practical
constraints of conducting thousands of experiments can be prohibitively
cumbersome. The challenges include not only the logistical issues of
experimentation but also the substantial costs associated with deploying a
large number of capable swarm robots, especially when such robots are not
mass­produced. Consequently, simulation becomes an indispensable tool in
swarm engineering.

In the upcoming chapter, we will explore the pivotal role of simulation in
the development and analysis of swarm robotics and cyber­physical systems.
We will examine why simulation is an essential tool for advancing our
understanding of swarm dynamics and overcoming the practical challenges
associated with real­world testing, which can be complex, costly, and
logistically demanding. The chapter will provide a comprehensive overview
of different swarm simulation techniques, including agent­based models and
multi­agent systems. We will review a range of simulation tools and platforms,
focusing on their capabilities, advantages, and limitations. Emphasis will be
placed on the practical aspects of using these tools, such as cost efficiency and
the ability to handle large­scale swarm scenarios in a time­efficient manner,
making them especially valuable for researchers with limited resources. We
will also address the inherent challenges of swarm simulation, including

66 Engineering Swarms of Cyber-Physical Systems

the limitations in modeling accuracy and the difficulties in replicating real­
world conditions. The discussion will cover how simulation integrates with
hardware development to validate results and how emerging technologies, like
AI and machine learning, are transforming the landscape of swarm simulation.
Through this exploration, we aim to shed light on how simulation can
effectively complement physical experiments, offering insights and solutions
for designing, testing, and optimizing swarm systems. We will highlight both
the benefits and drawbacks of simulation platforms, drawing on examples such
as the bio­inspired swarm aggregation mechanism BEECLUST and its various
simulations across different frameworks. By understanding these dynamics,
researchers can better navigate the complexities of swarm robotics and cyber­
physical systems, ultimately advancing the field with more innovative and
cost­effective approaches.

Chapter 5

Simulating Swarms of
Cyber-Physical Systems

Real­world implementation and evaluation of a swarm robotics scenario that
often requires a huge number of robots is very complex, costly, and requires
large settings. Therefore, simulation platforms for swarm systems are a very
popular and efficient choice for a research project in an early stage. This
motivated researchers to develop many swarm simulation platforms that
successfully replicated the bio­inspired mechanisms of swarm robotics. These
simulation frameworks, predominantly open­source, have enabled several
research groups, even those with limited budgets, to conduct swarm studies
involving a large number of robots.

There are many benefits and drawbacks in using simulation software
instead of a real­world robotic platform. The main advantage is the cost
efficiency of the simulation platforms that are mostly designed for open­
source operating systems (OS) such as Linux. Although their speed and
performance are limited to the host system performance, they can implement
complex swarm tasks in a low­cost, time­efficient manner. Additionally,
simulation software offers various benefits that make them an ideal choice
for early career researchers and students, such as the ability to share code
and experimental configurations with other researchers. This process allows
to easily maximize the replicability of research works. The biggest drawback
in using simulation software is the poor modeling and reduced abstraction
that introduces inaccuracy when simulating large numbers of robots in a
swarm scenario. Even internal and external conditions are hard to model
and often present a poor environment for virtual swarm robotics platforms.
Additionally, there are many uncertainties and complexities at various levels,
from individual behavior to collective behavior. Consequently, the results
obtained from simulation software often do not align with the outcomes
observed in real­world­robot experiments.

68 Engineering Swarms of Cyber-Physical Systems

Table 5.1: List of simulation platforms commonly used for swarm robotics.

Simulation Platform Operating System (OS) Level Open­source Application 2D/3D
AirSim [348] Linux/Win Physics Yes Generic 3D
ARGoS [290] Linux/Mac Physics Yes Swarm 2D & 3D
BeeGround [229] Linux/Mac/Win Physics Yes Swarm 2D & 3D
Gazebo [209] Linux/Mac/Win Physics Yes Generic 3D
Kilombo [179] Linux Abstract Yes Swarm 2D
MASON [236] Linux/Mac/Win Abstract Yes Generic 2D & 3D
MESA [239] Linux/Win Abstract Yes Generic 2D
NetLogo [382] Linux/Win Abstract Yes Generic 2D
OpenHRP [190] Linux/Win Physics Yes Generic 3D
PyCX [324] Linux/Win Abstract Yes Generic 2D
SCRIMMAGE [81] Linux/Mac Physics Yes Generic 3D
Stage [392] Linux/Mac Physics Yes Swarm 2D
Swarm­sim [60] Linux/Mac/Win Abstract Yes Swarm 2D & 3D
USARSim [56] Linux/Mac/Win Physics Yes Generic 2D & 3D
V­rep [315] Linux/Mac/Win Physics No Generic 3D
Webots [246] Linux/Mac/Win Physics Yes Generic 3D

As an example for the extensive work on the implementation of a
robotic swarm scenario, the bio­inspired swarm aggregation mechanism,
BEECLUST [327], has been simulated numerous times with different settings
in various simulation frameworks. These setting include pheromone­based
aggregation in PyCX simulator [23], a study of swarm interaction in
NetLogo software [37], fuzzy­based decision making in Stage [22], aggregation
in a complex environment in BeeGround [401], and a source exploration
scenario in Webots [11]. However, while these studies implemented the same
bio­inspired aggregation behavior, they did not consider the honeybees’
diversity (behavioral and physical heterogeneities). Hence, they did not
replicate similar results observed from real­life honeybee and real­robot swarm
experiments [374, 329] as this abstraction level was already too high. Similar
limitations were also seen in other swarm algorithms, such as flocking.

Table 5.1 lists some of the popular softwares that have been created for
the usage of simulating CPS swarm scenarios and applications. Simulation
softwares can model agents at various complexity levels, ranging from abstract
simulators like PyCX and NetLogo that do not represent the physical
properties of real robots, to physics­based realistic simulators like ARGoS
and Gazebo which consider all the physical parameters of a mobile robot.
The reality level of the simulator directly relies on the PC’s processing
power. Nowadays, high­performance PCs allow us to implement large swarm
experiments with physics­based simulation very close to reality.

5.1 Simulation Requirements

The main reason for using simulation software instead of real robots is to
have a cost­effective approach to investigate new ideas in a time­efficient
manner. While a trade­off exists between the precision of implementation and
associated costs, the consensus among researchers is that in the initial phases

⏎

69 Simulating Swarms of Cyber-Physical Systems

of a project involving swarm scenarios, simulations represent the optimal
approach. As a result, simulation software for CPS swarms are becoming
increasingly popular among small and large research labs. Therefore, to
perform a reliable swarm experiment in simulation, the utilized simulation
platform must have the following criteria:

1. It must support a fully decentralized process in which each robot
can have its own control system and parameters locally. It is very
important that each robot in the simulation platform operates in
a decentralized manner with its own internal controller. Although
having a central controller can simplify the implementation of a swarm
experiment, replicating this setup in a real­world scenario would be
complex especially when dealing with a large number of robots or when
robots are deployed over vast distances such as 100s of kilometers apart.

2. It should consider the physical properties of a real­world robotic
platform as much as possible, including aspects such as motors and
gears, friction, mass, power consumption, and more. Nonetheless, it is
crucial to bear in mind that the ultimate objective is to deploy swarm
behaviors in real­world scenarios, resolving human problems effectively
in the practical application phase. Therefore, a realistic simulation of a
swarm system will allow us to replicate the behaviors of the swarm on
real robots with minimum effort.

3. It should replicate the physical properties of the real­world environ-
ment, such as light, shadow, color, and texture. Similarly to the previous
case a simulation must be capable of handling environmental conditions
and replicating physical properties as closely as possible to real­world
conditions.

4. The simulated sensors must be realistic enough to model various
physical measurements such as velocity, force, position in 2D and 3D,
and heading angle. However, the real­world implementations always
include some level of false data due to noise in the sensory system. Hence,
it is instructive to consider this noise incorporating both systematic and
random errors.

5. It should support long­term autonomy and provide enough memory
and processing power so that a swarm can converge to a stable state.
This is also important when we implement the swarm behavior using
real robots that need to work hours and hours before recharging their
batteries or transferring recorded data to an external storage facility.

6. Last but not the least, the simulator must support open­source
development so that researchers can customize it to fit their applications.
Commercialized simulation software that lacks support for open­source
development will not serve as a versatile platform for everyone, from
early career researchers to established researchers.

70 Engineering Swarms of Cyber-Physical Systems

A CPS swarm simulator must follow these essential criteria to enable a
reliable swarm experiment and be an attractive simulation platform that
maximizes replicability. However, the significance of each criterion depends
on the type of simulation output being planned. For example, in using a
simulator to act as a 3D space containing particles like robots acting as gas
molecules, the physical consideration is limited to molecules’ properties rather
than defining motors and gears. Therefore, we first need to define whether we
go for an abstract or a physics­based simulation software.

5.2 Abstract Simulation

Abstract simulation tools, also known as kinematic­based or particle­based
simulations, are powerful tools for the conceptual investigation of swarm
behaviors. However, these simulation platforms do not consider the physical
properties of the systems; hence, they allocate entire processing power on
executing inter­agent interactions in a very large­size swarm. One of the early
swarm simulation examples was Boids model developed by Reynolds [311].
The swarm flocking was achieved through three behaviors: I.e., collision
avoidance, velocity matching, and flock centering. These behaviors were
implemented with the assumption that individual agents have access to
the distances and directions of their local neighbors. Other related studies
proposed mathematical models describing the collective motion of the swarm,
such as the model proposed by Vicsek et al. [394]. In a very interesting work
by Schmickl et al. [328], they used an abstract simulation to show a fascinating
behavior of a life­like system. They simulated thousands of particles in tens of
thousands of simulation runs to show emerging patterns of artificial cell life
cycles. In this kind of simulation, each agent is a particle in a 2D or 3D space
that freely roams and interacts with others. Parameters such as linear and
angular velocities, radius of sensing, size of the agent, basic dynamic model,
and more, are yet to be considered in the experiments. In another study,
Ferrante et al. [116] introduced a self­propelled collective motion mechanism
using a two­dimensional active elastic sheet (AES) model to simulate swarm
agents as particles using an abstract simulation. This type of particle­based
setting was also used to model interaction networks for collective motion [386].
The AES model was adopted in other studies and several extensions of
the model with optimization approaches were implemented using abstract
simulations [28, 26].

Abstract simulation is extensively utilized to explore control engineering
mechanisms implemented at a theoretical level. These studies are typically
conducted using general programming platforms such as MATLAB® . For
example, in [172], a swarm coordination protocol was investigated considering
the non­linearity of the agents’ dynamics, which mainly focused on the design
of a robust control system for robotic swarms. In another study focused on the
robotic shepherding task [171], an abstract simulation of sheep and dogs was
developed considering the real dynamics of shepherding dogs to the sheep. The

71 Simulating Swarms of Cyber-Physical Systems

Figure 5.1: Example of a shepherding scenario in an abstract simulation. The
positions of the dogs are shown with blue diamonds and the sheep with red circles.
The target point is marked by a red star. At the beginning, the dogs were scattered
around the target area. From 25 to 40 seconds, the sheep were guided towards the
goal. After 40 seconds, one group of sheep had arrived and the dogs began to assist
the other flock. At 50 seconds, the two flocks of sheep were combined into one large
herd and the herding task was completed.

simulation output offered valuable insights before the actual implementation
of the robotic system. Figure 5.1 illustrates the shepherding control strategy
and the agents’ trajectories in an abstract simulation. Similar implementation
of the theoretical swarm system was also utilized in several research works
including, formation control [409, 408, 410].

Many studies opt for abstract simulation due to the ease of implementing
swarm systems in this environment. In this chapter, we introduce
an open­source abstract simulation framework programmed in NetLogo,
SwarmFabSim [390].

5.2.1 SwarmFabSim: A NetLogo Implementation

NetLogo is a popular agent­based simulation platform widely utilized for
simulation of self­organized systems in research and education [404]. It is
a freely available tool that boasts extensive documentation and is actively
maintained, ensuring a robust and stable code base. NetLogo provides users
with numerous extensions, further expanding its functionality and versatility
for various simulation purposes. The simulation software is widely recognized
for its extensive use in educational settings, particularly for teaching agent­
based modeling and complex systems. However, it is important to note that
NetLogo is not limited to educational purposes only. It has demonstrated its
maturity as a platform capable of conducting simulations involving several

⏎

72 Engineering Swarms of Cyber-Physical Systems

thousand agents in a reasonable computing time. This has been confirmed
through studies such as those by Railsback et al. [303] and [302], which
emphasize the platform’s ability to handle large­scale simulations effectively.
For our own performance results we refer the reader to Umlauft et al. [390].
The NetLogo homepage proudly showcases a vast collection of over 3000
research papers published in the last decade that have employed NetLogo
as their simulation platform of choice. This extensive list is a testament
to the widespread adoption and credibility of NetLogo within the scientific
community for conducting a diverse range of simulations and research studies.

NetLogo provides researchers and modelers with an interactive user
interface, enabling them to easily prototype and experiment with their
models. Its user­friendly interface allows for intuitive visualization of model
behavior and dynamics, facilitating the exploration and analysis of simulation
results. Moreover, NetLogo offers a powerful feature called BehaviorSpace,
which enables the configuration of batch simulations. Researchers can define
multiple parameter settings and specify the desired number of replications
to be run. BehaviorSpace automates the simulation runs, collecting and
logging the results to files for further analysis. This capability allows efficient
exploration of different scenarios, sensitivity analysis, and statistical analysis
of simulation results. The log files generated by NetLogo simulations can be
easily postprocessed using various tools, including popular statistical analysis
software such as R or spreadsheet applications such as Excel. Researchers
have the flexibility to choose their preferred tool for statistical evaluation,
data visualization, and further analysis.

Furthermore, NetLogo supports direct integration with other programming
languages, such as Python. This allows researchers to take advantage of the
capabilities of Python libraries and tools for data manipulation, analysis, and
visualization. The seamless integration between NetLogo and Python [151]
or R [381] allows the use of advanced statistical methods, machine learning
algorithms, and custom analysis pipelines to gain deeper insights from
simulation results. Overall, the combination of NetLogo’s log files and its
interoperability with other programming languages provides researchers with
a comprehensive toolkit for analyzing and interpreting simulation outputs in
a flexible and customizable manner.

In NetLogo, simulations are time­based and operate on a discrete scale
using ticks. Agents in the simulation are categorized into different types, called
“breeds”, and these agents can interact with each other in various ways. These
interactions can occur through direct proximity to a two­dimensional plane
of patches, through connections defined by a network topology, or indirectly
through the use of residual information in the environment.

We implemented the SwarmFabSim simulation framework in NetLogo
implementing the use case and the modeling approach for swarms in
production plants as described in Section 3.2. This framework supports
dispatching and scheduling modes, single­lot oriented and batch machines,
and an arbitrary number of machine and lot types. SwarmFabSim is a
modular system comprising multiple code modules that communicate through

73 Simulating Swarms of Cyber-Physical Systems

Figure 5.2: SwarmFabSim: Screenshot of the user interface. ⏎

a callback architecture. The user interface, as depicted in Figure 5.2, along
with the configuration files, enables users to interact and customize the
SwarmFabSim framework to align with their specific requirements of the
fabrication model.

The simulation scenario is defined using a set of plain text configuration
files:

META contains the names of MFILE, RFILE, and LFILE config files. This
file bundles the associated config files together. The name of the META
config file to be used is set through the “config fname” input field on
the UI or the BehaviorSpace settings.

MFILE is a configuration file that encompasses the machine definitions
within the simulation scenario. For each machine type, denoted as m,
this file specifies various attributes:

• Process ID: It determines the specific process, represented by P m ,
that the machine can perform.

74 Engineering Swarms of Cyber-Physical Systems

• Number of Machines: It denotes the total count of machines
available for this particular type.

• Processing Time: It indicates the time required for the machine to
complete a single task.

• Batch Size: This parameter defines the number of lots that can be
processed as a batch. If the batch size is set to one, the machine
operates in a single­lot orientation.

• Maximum Waiting Time: For a batch machine, this value indicates
the longest time the machine will wait for a batch to be filled before
starting the process.

RFILE serves as a repository for all production recipes, denoted as Rt, which
are utilized for manufacturing various lot types t. These recipes are
essentially straightforward lists that outline the sequential process steps,
represented by P m, in the specific order they need to be executed.

LFILE specifies the production quantities for each lot type t based on their
corresponding recipe Rt . It defines the number of lots that should be
produced for each specific lot type, indicating the desired quantity of
output according to the prescribed recipe.

The callback architecture depicted in Figure 5.3 is implemented through
the API defined in the file hooks.nls. The main code invokes a hook
function contained in hooks.nls whenever an algorithm has the potential
to perform an action. Subsequently, the corresponding algorithm function
is invoked from the hook function, enabling the desired functionality to be
executed. In order to install an algorithm, you need to provide a file named
“algorithm­name.nls” that implements the algorithm based on the hook API.
Additionally, you should add the algorithm to the UI chooser labeled as

Figure 5.3: SwarmFabSim architecture [390]. ⏎

75 Simulating Swarms of Cyber-Physical Systems

“algorithm” to make it accessible for selection. Furthermore, the algorithm
functions should be incorporated into the appropriate hook functions within
the hooks.nls file for callback purposes. It is also possible for algorithms to
utilize helper functions available in the “helper-api.nls” file to streamline their
implementation and enhance their functionality. These helper functions offer
additional functionality and can be leveraged by algorithms to facilitate their
operations.

The reader is considered to be aware that while our approach draws
inspiration from semiconductor manufacturing, it can be easily adapted to
other industries that employ flexible job-shop scheduling. This adaptability
is achieved by modifying the configuration files that define the specific
parameters of the given industry setting.

The complete NetLogo source code of SwarmFabSim, along with a
collection of configuration files, is openly accessible in a dedicated GitHub
repository [389]. Users can freely explore, utilize, and contribute to the
development of SwarmFabSim through this open-source platform.

5.3 Physics-based Simulation

Physics-based simulation considers (all) the physical parameters of a robot
and the surrounding environment. This type of simulation requires higher
processing power; hence, a simulation task becomes more complex when the
population of the swarm is increased. Many simulation platforms support
physics-based simulation, as mentioned in Table 5.1. ARGoS1 and Webots2

are two successful platforms that are widely used for swarm robotics
applications. They generate realistic outputs for multi-robot experiments by
implementing robot and robot-to-robot physical contact. The main drawback
of using the physics-based simulation for large swarm experiments is the
computational complexity and limitations resulting from the memory size
and processors of the host computer. Although this limits the implementation
of large population experiments, there are programming techniques that
reduce the issue, e.g., deactivating visualization of experiments. There
are many successful implementations of swarm behaviors using physics-
based simulation, such as task allocation [48], self-adaptive communication
strategy [119], cooperative navigation [95] and swarm controller design [124]
in ARGoS; collision-free flocking [29] and formation control [169] in Webots;
aggregation [22] and foraging [2] in Stage; and swarm navigation and collision
avoidance [264, 309] in Gazebo.

Most simulation software contains a comprehensive list of libraries for
commonly used robots; hence, we can easily select a robot from the list and
use it. Figure 5.4 illustrates an example of mobile robots available on the
Webots platform. Furthermore, most simulation platforms allow us to define
a new robot and import the robot’s mechanical design, sensory system, and

1ARGos website: https://www.argos-sim.info/[Online; accessed: 19-December-2024].
2Cyberbotics website: https://cyberbotics.com/[Online; accessed: 19-December-2024].

https://www.argos-sim.info/
https://cyberbotics.com/

76 Engineering Swarms of Cyber-Physical Systems

Figure 5.4: Physics-based models of some of the available robot libraries in Webots
software; (left) large and (right) small mobile robots.

physical properties. For example, in [11], a simulated Mona robot model was
developed and used to implement an exploration scenario in a swarm system
(see Figure 5.5). In this example, infrared sensors, DC motors, LEDs, and
power systems were virtualized and modeled in the simulation.

(a) (b)

Figure 5.5: (a) Mona, an open-source, cost-effective robot designed for swarm
robotics [17], and (b) a virtual model of Mona in Webots [11]. ⏎

Another example of importing a new robot into the Webots software
is shown in Figure 5.6(b). The Colias micro-robot, widely used for swarm
robotic research, is modeled with great detail. The model is equipped with an
RGB camera, three IR proximity sensors, and a power system similar to the
one developed for the real robot. The detailed model shown in Figure 5.6(c)
is mainly for presentation purposes; therefore, the simulator’s visualization
function must be deactivated if we need to run experiments with a larger
number of robots (> 25 robots) on a standard desktop computer.

Physics-based simulations are increasingly used in more complex
decentralized swarm systems. Typically they are is used in the form of a
feasibility study before the swarm controller is tested with real-world robots.
For example, in Hu et al. [169], a framework for a fault-tolerant Search

⏎

77 Simulating Swarms of Cyber-Physical Systems

(a) (b) (c)

Figure 5.6: (a) Colias, an open-source micro-robot developed for swarm robotic
applications [19], (b) a virtual model of Colias in Webots and (c) a detailed CAD
model of Colias.

& Rescue mission was built with a heterogeneous swarm system. They
implemented a complex controller to steer the flock and an autonomous
game-theoretic decision-making algorithm. It is obvious that developing such
a complex system with a communication network and heavy computation
directly on real robots is very challenging. Therefore, the physics-based
simulation, in particular Webots, was chosen to test the proposed system
by simplifying communication networks and tracking the system using a
central observer. Figure 5.7 illustrates the scenario proposed in the Webots
simulation. Other similar studies on formation control of multi-agent systems
were presented in McCord et al. [241] and in Rekabi et al. [308] that simulated
large multi-UAV systems in Gazebo. There are many more examples of
multi-robot systems tested in physics-based simulations prior to real-robot
implementations. In Aranda et al. [14], a formation control of a multi-UAV was
simulated in Cobaye software [396], also a physics-based simulator. Another
study in Baumann and Martinoli [30] proposed a modular framework for
the navigation of a multi-robot system. The framework was implemented
in Webots and the swarm robotics platform Khepera-IV. Moreover, for a
multi-robot path planning system in a robotic manufacturing scenario, an
optimal sequential task allocation was proposed in Brown et al. [47] which
was simulated in Webots as well.

Another research direction in CPS swarms involves multi-vehicle and
connected vehicle platoons. Recently, numerous studies have focused on the
control challenges of multi-vehicle systems. These strategies are predominantly
tested using physics-based simulations. For instance, vehicle fleet target
tracking [352] has been simulated in CARLA [93], model predictive
control [400] simulated in Prescan/Matlab/V2X, and Unreal Engine [128] has
been utilized to simulate overtaking [413] and adaptive cruise control [415] in
multi-vehicle systems. Figure 5.9 shows examples of multi-vehicle experiments
using physics-based simulations.

Moreover, physics-based simulation are widely used for machine learning
in swarm systems. Training a model using deep reinforcement learning is a
time-consuming process. The system needs to run for thousands of iterations

⏎

78 Engineering Swarms of Cyber-Physical Systems

t = 0 s

Rescuers Lost robot

Virtual target

(a)

t = 10 s

(b)

t = 20 s

(c)

t = 30 s

(d)

t = 40 s

(e)

t = 50 s

(f)

Figure 5.7: The Search & Rescue mission began at t = 0 s. Ten seconds later,
rescuers were on their way to the virtual target. At t = 30 s, they had formed a
pentagon around the target. By t = 40 s, the lost robot had been contained and was
being guided home. Unfortunately, two of the rescuers (marked by White crosses)
had stopped working due to an unexpected fault. At t = 50 s, the remaining rescuers
had created a new triangular formation to guide the lost robot back to the starting
point [169]. ⏎

Figure 5.8: (a) The system architecture delineating the proposed human-swarm
Interaction utilizing Omnipotent Virtual Giant, as detailed in Jang et al. [178].
Experimental validation showcasing (b) the relocation of holographic objects of
robots and (c) the subsequent movement of real robots towards these relocated
objects. Dashed arrows indicate the remaining trajectory to the target objects.

to train a good model. Therefore, developing models for swarm systems

using real robots can be very difficult and almost impossible due to the

autonomy time of the robotic platforms and their limitations in processing

and memory units. Researchers tend to use physics-based simulation to

train the model before they transfer it to real robots. As an illustration,

79 Simulating Swarms of Cyber-Physical Systems

Figure 5.9: Screenshots of simulation examples of multi-vehicle simulations using
(a) Unreal Engine [414]and (b) Webots [168]. ⏎

Hu et al. [170] established an autonomous exploration task employing a
multi-robot system. In this scenario, a model was trained through deep
reinforcement learning within the Gazebo simulation environment. Figure 5.10
illustrates the training phase that has been done in Gazebo and real robot
experiments with TurtleBot3 robots. A similar study proposed a collective
navigation and obstacle avoidance system based on a federated reinforcement
learning approach [268]. It was implemented with real robots, TurtleBot2,
after the model was developed in Gazebo. In another study, a collision
avoidance approach was developed in which robots were trained using deep
reinforcement learning in Stage simulation [108]. A decentralized scenario with
individual robots that generate paths considering a limited sensory system
was investigated. There are many successful examples of using physics-based
simulation for robotic swarm systems, such as human-swarm interaction to
train artificial neural networks [75] and obstacle avoidance of robot swarms
using a trained artificial pheromone system [265, 264].

(a)

(b)

80 Engineering Swarms of Cyber-Physical Systems

Figure 5.10: (a) Gazebo environment for training and (b) real-world experiment
using three TurtleBot3 Waffle Pi mobile robots [170]. ⏎

Physics­based simulations are also combined with real robots in the
development of mixed­reality missions. In these settings, a larger population
is usually developed in a simulation software, and a few of these robots
represent real robots in a real­world setting. A recent work of Jang et
al. [178] presents an interesting implementation of a mixed­reality human­
swarm interaction where real robots are deployed in the presence of virtual
robots in a bespoke developed Unity­based simulation platform. A human
operator supervises a swarm by interacting with simulated robots [139]. An
additional instance of mixed­reality human­swarm interaction is demonstrated
in Patel et al. [284, 283], enabling human interaction with the swarm at both
environmental and swarm levels.

(a)

(b)

81 Simulating Swarms of Cyber-Physical Systems

5.3.1 BeeGround: A Simulation Platform

BeeGround [229] is an open­source simulation platform developed on the
Unity Development Engine [127]. The main purpose of developing BeeGround
was to make a fast and reliable swarm simulation accessible for everyone,
with the capability of simulating swarm scenarios from a very abstract level
to advanced detailed physical models. This allows researchers to increase
and tune the level of modeling as needed. With Unity’s physics engine and
design interface, a plug­and­play package was developed, allowing researchers
to implement a swarm scenario and environments of varying sizes, obstacle
placements, and swarm populations to develop desired swarm controllers.
Different sensors and other modules can be easily added or removed. The
actuation mechanism can be altered, or the agent can be swapped out entirely.
In addition, Unity supports TensorFlow 2.0 integration that expands the
application of BeeGround for machine learning in swarm robotic systems.
Figure 5.11 shows a swarm scenario developed using the BeeGround platform
implementing a cue­based aggregation with a large swarm of Mona robots.

Before starting a simulation, we can customize the swarm’s behavioral and
physical parameters. We start by setting up an area where the size, shape,
and presence of obstacles can be defined to create a variety of scenarios. For
example, when using the cue­based bio­inspired algorithm, BEECLUST, an
additional heat map can be loaded that is used by the agents to reference the
temperature conditions within a region. The swarm parameters provide users
with the capability to define key aspects such as population size, initial agent
positions within the arena, and various kinematic constraints. Furthermore,
integration packages for ROS­Unity facilitate the incorporation of well­
established ROS projects into Unity, allowing for the seamless publication
and subscription to topics between the two platforms. Detailed programming
in Unity is not expounded upon here, given the extensive library of learning
resources within the development engine and the availability of an active
community for assistance and comprehension. Instead, we provide an overview
of the components necessary to start and operate BeeGround.

Robot Modeling: Unity Engine scripts have two main components that form
the basis of the robot’s controller: A start function and an update function.
The start function is analogous to the initialization phase of the robot and is
executed at the start of the simulation. The update function is similar to a
while loop and is continually executed throughout the simulation. The robot’s
behavior is determined within this update function.

We can define a robot by either importing a standard Unified Robotic
Description Format (URDF) file or constructing one within the Unity
Environment. Rigid body components can be added to the robot, which will
be affected by the physics engine. This allows for the application of forces,
torques, and collisions within the engine’s fixed update function. Joints can
also be implemented, which enables the creation of wheels and robotic limbs.
Moreover, sensors such as cameras and range finders can be created using the
tools provided by the Unity development engine.

82 Engineering Swarms of Cyber-Physical Systems

Arena Configuration: The initial step in configuring the arena is to specify
its size in standard units. BeeGround will then create a walled­off area with the
given dimensions. Afterwards, the user can input an occupancy grid to place a
cubic unit of obstacles in the environment. Furthermore, Unity provides other
assets that can be used to create more intricate obstacles if desired.
Swarm Parameters: Bees, which are models of robots, can be created
from the beginning with adjustable parameters, ranging from abstract to
physics­based simulation. Instead of the Bee agent, custom robot models can
be used for swarm generation. Furthermore, BeeGround allows the swarm
population and placement to be specified, thus enabling some extraordinary
testing scenarios.
Simulation Parameters: For ease of use, the length of a simulation and the
number of repetitions can be specified in this section. Additionally, the speed
of the simulation can be adjusted while it is running. This feature offers great
versatility for running extended experiments with multiple repetitions that
are necessary for statistically analyzing the outcomes.
Bio­inspired­specific Parameters: The environmental conditions, such as
humidity, temperature, light, and more are essential for bio­inspired swarm
robotics scenarios. To create a realistic simulation platform for robotics swarm
applications, these environmental properties must be incorporated into the
simulator. For example, a heat map was included in Wang et al. [401] to test
the honeybee aggregation algorithm in a complex environment. This heat map
was made up of an array of temperatures that the agents used as a reference
for their waiting times. We can use multiple layers of these arrays to introduce
environmental properties from different sources and models.

We can also create dynamic models of the environmental conditions that
vary over the course of an experiment. These environmental characteristics
can interact with the robots, for example, to create a bio­inspired pheromone
communication system. To log swarm experiments, we record various
parameters of the agents, such as position and orientation, every second
to observe the behavior of the swarm over time. The output logs can be
tailored to the user’s requirements, as other parameters, such as velocities
and rotations, are accessible through the Unity interface.

As previously mentioned, faster simulations can be achieved by reducing
or deactivating the physics, although this comes at the cost of accuracy.
This allows us to simulate swarm behaviors with thousands of robots, as
illustrated in Figure 5.12. This capability of running experiments with very
large swarm populations opens up new research directions that have not been
explored before. For example, in Kiszli and Arvin [207], a bio­inspired cue­
based aggregation was studied with a large swarm robotic system. It was found
that the original goal of BEECLUST aggregation could not be generalized as
a result of a barricade effect observed from experiments with large swarms.

83 Simulating Swarms of Cyber-Physical Systems

Figure 5.11: BeeGround UI featuring arena with a gradient cue with a large
size swarm. The Object Hierarchy provides an overview of all the elements in the
environment, such as robots, walls, obstacles, and cues. The Simulation Display
is a graphical representation of the simulation. The Configuration Window allows
users to adjust the settings for the BeeGround simulation, including the agents and
their behavioral parameters. The Asset/Model Folders is a library of all the assets
related to the simulation. Finally, the Console/Debug Log Window tracks all errors
or debugging information that occur during the simulation [229].

Figure 5.12: An example of BEECLUST aggregation in the BeeGround with 1000
robots in an environment with a single gradient cue (from [229]).

⏎

⏎

Chapter 6

Swarm Robotic Platforms

Numerous robots have been developed for use as swarm robotic platforms,
such as Spiderino [181] and Colias [19], each tailored for a particular task
mimicking bio­inspired behaviors and scenarios. Additionally, various general­
purpose mobile robots like e­puck [249] and Thymio [250], have been widely
employed in robotic swarm applications. Swarm robotic platforms typically
share common features such as small size, low­cost and a preference for open­
source hardware and software. Furthermore, it is crucial to have versatile
robots that are easy to program and modular, enabling the re­utilization of
robots in multi­purpose tasks. We will examine the fundamental capabilities
and explore the basic functionalities of a swarm robotic platform chosen for
swarm applications.

6.1 Sensors

To interact with the environment and other robots, a reliable sensory system is
essential for a swarm robotic system. Standard sensors such as short­ and long­
range IR and ultrasonic proximity sensors, as well as low­resolution cameras,
are commonly used. Long­range IR sensors are especially popular because
of their simplicity, as they operate by driving a photodiode to transmit and
reading IR values from a phototransistor as a receiver. These sensors enable
robots to identify other members of the swarm and distinguish themselves and
others, from obstacles or other elements in the environment. This capability
is important for the localization of the swarm [233]. The range of these
sensors can vary from 10 cm to a few meters, depending on the IR radiance
intercity (measured in mW/sr, milliwatts per steradian). Reflected IR from
obstacles, such as walls or other objects follows the fundamental principles of

85 Swarm Robotic Platforms

electromagnetic radiation and can be mathematically modeled as,

α cos θ
s(x, θ) = + β, (6.1)

x2

where s(x, θ) represents the recorded value from the sensor, with x denoting
the distance of the obstacle from the sensor, and θ indicating the angle
of incidence with the surface. The variables α and β encompass various
parameters, including the reflectivity coefficient, the output power of emitted
IR, the sensitivity of the sensor, and the ambient light effect. These parameters
are typically estimated empirically. Consequently, white and dark surfaces
exhibit different ratios of reflection and absorption of IR radiations. This
distinction is a critical consideration when devising an experimental setup
for a swarm system. In swarm robotics, understanding the surrounding
environment is a crucial requirement for a robot. They need to detect
neighboring robots before an interaction starts; hence, several sensors are
placed around a robot. As an example, Figure 6.1 illustrates the sensory
reading of the Colias micro-robot that detected another robot in front. The
varying intensity of the IR readings from multiple receivers enables the robot
to estimate the relative position and orientation of neighboring robots using
the following equation:

 ns

ϕ = atan











ŝi sin(γi)
i=1
ns

ŝi cos(γi)
i=1










, (6.2)

where ϕ is the estimated bearing of a neighbor, ns is the number of sensors
used by the robot, γi is the angular distance of the ith sensor with respect
to the robot’s head, and ŝi is the IR intensity received by the sensor i. By
employing simple data analysis on the robot’s microcontroller, the robot can
detect neighboring robots and estimate their position and bearing.

In addition to IR proximity sensors, existing swarm robotic platforms are
also equipped with various off-the-shelf sensors, They have been used as cue
markers which measure, which measure ambient light illumination have been
particularly popular. They have been used as cue markers in in honeybee
aggregation [329] and to simulate pheromone trails in ant-like exploration [18].
The more sophisticated version can also read RGB colors (as shown in
Figure 6.2), which facilitates implementing multi-layer pheromone systems, as
demonstrated by Liu et al. [231]. More details about the pheromone system
and its implementation for swarm robotics will be discussed later in this
chapter.

6.2 Actuators

Swarm robotic platforms employ various types of actuation mechanisms
that have been used to actuate swarm robotic platforms. For instance,

86 Engineering Swarms of Cyber-Physical Systems

Figure 6.1: An example of a swarm robotic platform, equipped with six IR sensors,
where Robot A receives IR from Robot B that has a 0◦ orientation (from [19]).

Figure 6.2: An example of a multi-layer pheromone system (from [231]).

Spiderino [181] uses six legs for walking on the floor, Kilobots [316] move
on smooth surfaces by vibrating their three legs, UAVs in the CoCoRo
project [330] used thrusters for underwater swimming, and drones in
Crazyswarm [293] use propellers for flight. However, due to their simplicity
of control, wheeled robots are the most common actuation mechanism in
swarm robotics. There are also hybrid mechanisms such as tracks and wheels
developed by Mondada et al. [252], so called treels, that make navigation
simpler and smoother.

In terms of wheeled robots, there are various types of wheels
configurations such as differential drive (two and four wheels), car­type
steering, omnidirectional and synchronous drive, among others. Due to the
mechanical and control simplicity of the two­wheel robots, many swarm

⏎

⏎

87 Swarm Robotic Platforms

robotic platforms have two wheels with a differential drive steering mechanism,
which controls the trajectory of the robot by controlling the left and right
wheel independently.

6.3 Communication

There are various types of communication used for swarm robotic platforms,
direct communications using, e.g., IR, Wi­Fi, Bluetooth as communication
technology to send specific messages, and implicit communication, commu-
nication over the environment, for example, pheromone­based. The direct
form of communications is implemented by: (i) One­to­one, where a robot can
directly talk to another robot and share information, (ii) one­to­many, where a
robot can broadcast its messages to many individuals (leader to followers), (iii)
many­to­one, where several robots communicate with an individual (followers
to leader), and (iv) many­to­many, where swarm members communicate with
each other without having a priority between them. As passing messages are
always very specific to the underlying communication technology, we will focus
on stigmergic, pheromone­based communication in the next section.

6.3.1 Pheromone-based Communication

Pheromones are a chemical substance that are detected by members of the
same species, causing them to act in a certain way [194]. These substances
play a vital role in facilitating communication among a diverse array of
organisms, ranging from yeast and insects to mammals. Vertebrates have been
discovered to use pheromone­based communication. Research has revealed
that humans can experience physiological and psychological reactions due to
chemosignals [263]. Many animals rely on pheromones as their main form of
communication, but, to the best of our knowledge and the swarm perspective,
social insects make the most out of this method. Pheromones enable extensive
communication among a group of insects, creating a shared memory­like
effect. Moreover, the utilization of pheromones serves to optimize the collective
behavior of social insect groups. For instance, ants employ pheromones and
feedback systems to efficiently locate the shortest route from their nest to a
food source.

As an example of pheromone­based communication in social insects,
Monomorium pharaonis called Pharaoh’s ants, which are usually found in
human habitats, use multiple types of pheromones that are important for
their foraging behavior in dynamic and competitive environments [177]. For
example, they generate a complex combination of pheromone trails between
the food source and the nest using three distinct types of pheromones (i) non-
volatile attractive pheromones, (ii) volatile attractive pheromones, and (iii)
repellent pheromones. In another example, bumblebees, Bombus hortorum,
leave chemical cues on flowers that allow detection and avoidance of recently
depleted flowers [103]. Similarly, chemical cues enhance the efficiency of bee

88 Engineering Swarms of Cyber-Physical Systems

colonies’ foraging behaviors, as they prevent meaningless visits to depleted
flowers. Another type of pheromones in nature are queen pheromones that
characterize the queen and other members, which are essential to maintain
the colony. For example, if the queen fails for any reason, including viruses
and pesticides, the secretion of the queen pheromone in the colony decreases,
causing the colony to collapse [365].

Pheromones in Robotics

Pheromone­based communication is one of the bio­inspired communication
mechanisms widely used in swarm robotics. It requires a simple capability
for an individual robot since it only needs local sensing. Additionally, the
environment plays the role of memory; hence, individuals only need to have
limited local memory. Moreover, we can optimize the performance of a swarm
system using a combination of multiple types of pheromones and feedback
mechanisms. And, most importantly, the system is fully decentralized without
requiring a central control.

One of the first works inspired by pheromone communication was
introduced by Russell [318]. This work used cinnamon camphora, known
as Camphor, as the implementation of trail pheromones for trail
following behaviors for robotic systems, which embodied odor release and
detection functionalities. It showed the applicability of pheromone­based
communication in robotic systems. In another research work [125], they used
ethanol to simulate a pheromone for the robotic system.

Furthermore, numerous studies have suggested robotic systems that
leverage Radio­Frequency Identification (RFID) tags as a medium for
pheromonal communication [7, 159, 202]. RFID tags were attached to the
floor where the robots operate. The tags store data transmitted by the
robots passing above and eliciting the corresponding behavior depending on
its nature. This principle works like pheromones in nature. Recent studies
have involved virtual environments in implementing artificial pheromones for
the communication of swarm robotic systems. As an illustration, Campo
et al. [54] introduced a mechanism for path selection in a foraging robot
swarm employing virtual ants. In this approach, robots engaged in local
transmission and reception of messages. Although this work implemented
virtual pheromones only within robots, the other works created a virtual
map to mark the deposited pheromones accessible to all robots [307, 317].
The robots are outfitted with virtual sensors, accessing shared virtual
environments among all robots, which incorporate overhead tracking and
control. There are many interesting implementations of artificial pheromone
communications, for instance, Kilogrid [391] developed for Kilobot micro­
robot, Phormica [321] implemented with e­puck. Several researchers have
implemented pheromone­based communications by various means. Garnier
et al. [131] simulated pheromones by projecting light from a ceiling mounted
video projector.

89 Swarm Robotic Platforms

Figure 6.3: On the left is the Colias micro-robot and on the right is the Colias
bottom board, featuring pheromone sensing capability. Various modules of Colias
include A) main processor, B) IR proximity sensors, C) digital camera, D) micro-
motors with gearhead, E) 22 mm wheels, F) pheromone detectors (light intensity
sensors), G) battery recharging unit, H) main switch, and J) ISP programming port
(from [266]).

COSΦ is an open-source artificial pheromone system for swarm robotics
that uses light-based pheromone trails [18]. The utilization of an LCD screen
served as the arena for robots to engage with pheromones, visually represented
as illuminated spots on the screen. Through a tracking system facilitated by a
camera positioned above the arena, the system continually updated the robots’
position, orientation, and ID, generating virtual pheromones in response.
COSΦ offers several advantages: (i) It boasts a notably high resolution
for pheromone implementation in comparison to other approaches, (ii) its
highly flexible nature allows for the implementation of diverse environments,
including variations in pheromone trail thickness, evaporation rate, and
diffusion, and (iii) it employs a cost-effective configuration featuring a basic
digital camera [212]. A flat LCD screen enhances the accessibility for a wide
range of researchers. The Colias microrobot [19], shown in Figure 6.3, was
deployed for the implementation of artificial pheromone communication. It
has been extended in several studies [267, 231, 266] to include diffusion, wind
effect, multi-layer pheromones, which are phenomena almost ever present in
nature. Figure 6.4 illustrates a cue-based aggregation scenario in the presence
of pheromones implemented by an artificial pheromone communication.

Artificial Pheromone System

The artificial pheromone system COSΦ comprises two integral components: A
pheromone system and a tracking system. The pheromone system calculates
and displays the pheromone on a flat LCD screen that is placed horizontally,
representing the environment in which the robots are operating [18]. The
tracking system tracks the robots and sends their data to the pheromone
system [212]. An example of an artificial pheromone environment with real-
world mobile robots is shown in Figure 6.5.

⏎

90 Engineering Swarms of Cyber-Physical Systems

Figure 6.4: The first row presents sample experiments conducted without diffusion
and with fast cue speed, devoid of pheromone injection. In contrast, the second
row illustrates sample experiments conducted with diffusion and fast cue speed,
incorporating pheromone injection, captured at time instances t = 0 s, t = 100 s,
and t = 200 s from left to right (from [266]).

The pheromone system models multiple types of artificial pheromones
and their interactions simultaneously. The brightness of a grayscale image
is represented as I1, which is a two-dimensional matrix with the size of
the resolution of the LCD screen. It is determined by Φ, which is a two-
dimensional matrix of the same size as I that represents the intensity of
the pheromone. Each element of I is equivalent to the brightness of the
corresponding pixel. The brightness of the image at position (x, y), I(x, y),
is expressed with

n

I(x, y) = ciΦi(x, y). (6.3)
i=1

The intensity of the ith pheromone at position (x, y) is represented by
Φi(x, y), and ci is the influence of the ith pheromone on the screen. I(x, y)
is calculated by multiplying Φi(x, y) and ci and summing them up, which
means that n pheromones can be overlapped. To illustrate how the model
works, the combination of three different pheromones with different effects on
the screen can be displayed on a single-pixel after the calculation of I(x, y)
using Equation 6.3.

During the operation of the system, the amount of pheromones released
on the screen is continuously adjusted at discrete intervals. The intensity of
the modified pheromone is expressed with

k+1 grad k ln(2)
Φi (x, y) =− u · Φi (x, y)− Φ k

e i (x, y)
iΦ (6.4)

grad k+ κi∇ Φi (x, y) + ιi(x, y).

In the given expression, Φk+1
i (x, y) denotes the intensity of the ith

pheromone at discrete time k + 1, while Φk
i (x, y) represents the intensity

1Bold font parameters in this section indicate two-dimensional vector.

⏎

91 Swarm Robotic Platforms

Figure 6.5: The experimental setup employed for the pheromone system in Na et
al. [266] encompasses a PC dedicated to tracking robots and generating pheromones,
a digital camera for monitoring robot positions, a horizontally positioned 42” LCD
screen, an aluminum frame encircling the arena, and the presence of Colias mobile
robots.

grad kof the ith pheromone at discrete time k. The quantity Φ (x, y) is ai

two­dimensional vector describing the gradient of pheromone intensity at
the position (x, y) and is defined mathematically by Equation 6.5. The
symbol u signifies the velocity vector responsible for linearly shifting the
pheromone across the arena. The term eiΦ governs the evaporation rate
of the ith pheromone and is characterized by its half­life, κi denotes the
diffusion constant of the ith pheromone, and ιi(x, y) corresponds to a newly
injected pheromone at the position (x, y) on the screen. The spatio­temporal
development pheromone intensity model is derived from a simplified version
of the Navier­Stokes equation, representing the fluid flow model.

grad k Φi
k(x + 1, y) − Φi

k(x − 1, y)
Φ (x, y) = i+i 2 (6.5)

Φ k(x, y + 1) − Φ k(x, y − 1)i i j.
2

By recalculating Equation 6.4 for each value of (x, y), it is possible to compute
new pheromone intensities from their prior states, which consequently
determine the new pixel values of the grayscale image displayed on the screen.

The parameters on the right­hand side of Equation 6.4 can be
divided into two categories: Environmental effects and pheromone injection.
Environmental effects, such as evaporation rate eΦ, diffusion constant κ,
and velocity vector u (where i is omitted to generalize), have a constant
influence on the pheromone released in the arena while the system is running.
In contrast, the injection of pheromone ι(x, y) only affects the intensity of

⏎

92 Engineering Swarms of Cyber-Physical Systems

pheromone in the arena when certain conditions are met, such as when robots
stop. Under these conditions, the pheromone is injected in a circular shape
with a given intensity. The injection of pheromone ιi(x, y) is defined as

{

√

sΦ, if (x− xr)2 + (y − yr)2 ≤ lΦ/2
ιi(x, y) = (6.6)

0, otherwise

where (xr, yr) respectively represent coordinates of a robot and (x, y) the
position of the pheromones in the arena, sΦ is the intensity of injected
pheromone at a time, and lΦ is the diameter of injected pheromone. In a
circle with a diameter of lΦ, where the center of the circle is positioned at the
robot’s coordinates (xr, yr), pheromone is uniformly injected at a rate of sΦ.

Environmental Effects on Pheromones

The versatility of the system is enhanced by environmental effects, which
enable it to replicate realistic conditions that influence the spread of
pheromones in the environment over time.

Evaporation is the transformation of a liquid’s surface into a gas. Volatile
chemicals, such as pheromones, evaporate as well. In various studies on the
kinetic properties of pheromones, the half-life of the pheromone is used as a
measure [398]. This is the amount of time it takes for the pheromone to reduce
by half, denoted as eiΦ in Equation 6.4.

Diffusion is the process by which molecules move from a region of higher
concentration to a region of lower concentration. Incorporating diffusion
into the pheromone system is essential for realism, as the diffusion of
pheromones significantly influences swarm behavior. Therefore, instead of
using the mathematical definition of diffusion, κi ▽

2 Φi(x, y), Gaussian blur
is employed to simulate diffusion. This approach has the benefit of being able
to replicate faster diffusion with fewer computational resources. The intensity
of pheromone at the position (x, y) after application of the Gaussian blur is
given by

Φk+1
()

i
(x, y) = ω ∗Φk

i
(x, y) =

a

b (6.7)
ω(s, t)Φk

i
(x− s, y − t),

s=−a t=−b

where Φk+1
i (x, y) is the intensity of the ith pheromone at the discrete time

k+1, Φk
i (x, y) is the intensity of the ith pheromone at the discrete time k and

ω is a two dimensional kernel matrix with a size of (2a+1)× (2b+1) defined
as

1 2 2x +y

ω(x, y) = e− 22σ , w ∈ ×
πσ2

R
2a+1 2b+1, (6.8)

2

where σ is a standard deviation of the Gaussian distribution of the kernel
matrix. Equation 6.8 indicates that the elements of ω are determined by

93 Swarm Robotic Platforms

the Gaussian distribution. This blur technique is advantageous due to its
computational efficiency, as well as its capacity to provide more intuitive
control of the diffusion rate and area. Integrating Gaussian blur into the
pheromone system aligns with diffusion properties for two key reasons in the
context of our study: (i) Gaussian blur results in a decrease in the higher
intensity of pheromone and an increase in the lower intensity, and (ii) the total
pheromone quantity remains constant following each computational step.

Pheromone Shift changes the position of the released pheromone in real
and dynamic settings. Advection, which is the movement of any fluid, such as
air, that carries pheromone from one place to another, is a natural cause of this
shift. The flow of the released pheromone in the same direction is represented
by u · ∇Φ(x, y). The two­dimensional velocity vector is expressed with

∂Φi(x, y) ∂Φi(x, y)
u · ∇Φi(x, y) = ux · + uy · , (6.9)

∂x ∂y

where ux, uy respectively represents the speed along x­axis and y­axis.
The use of pheromones in swarm systems as a communication mechanism

offers scalability of collective behaviors without the need for direct
communication between agents. For example, a single ant and a large swarm
of ants can use the same pheromone trail to forage without increasing
communication costs. This technique has found application in diverse research
domains, including optimization [87], vehicle routing [361], and robotics [54,
391, 321, 266]. However, there are still some challenges to overcome before
pheromone­based communication can be widely adopted, such as designing
controllers for individual agents that can maximize the performance of the
entire swarm [91].

Swarm robotic systems that employ pheromone­based communication
demonstrate advanced collective behaviors suitable for real­world applications.
For example, in Alfeo et al. [7], a vehicle swarm effectively manages waste
in a simulated urban setting, surpassing traditional methods. Furthermore,
pheromone­based communication is proposed as an optimal solution to
manage large­scale autonomous vehicle traffic with a focus on avoiding
collisions [265]. Such systems have also been adapted for urban construction
scenarios [9]. Beyond these studies, numerous other practical applications of
pheromone­based communication are emerging, where complex coordination
of large­scale swarm robotic systems are required.

6.4 Swarm Robotic Research Platforms

The collective behavior of a swarm emerges from interactions between simple
robots that simultaneously has an indirect relationship with the behavior of
each individual robot of the swarm. It is observed that a simple modification
of an individual’s behavior (such as velocity and sensitivity) could result in a
significant positive or negative impact on the collective behavior of the swarm

94 Engineering Swarms of Cyber-Physical Systems

system. These can happen due to both hardware and software heterogeneity.
The robotic platforms developed for a swarm system must be able to reliably
imitate swarm behaviors which are mainly found in nature, such as birds
flocking [385] and honeybees aggregation [329]. The robots must be designed
with a compact size allowing implementation of large­scale swarm behaviors in
the laboratory settings at low cost. To implement a variety of swarm behaviors
on the individual robots, the design of the the robotic platform mechatronics
must be versatile up to a specific level to (i) simplify replication and (ii) ensure
platform homogeneity.

In the subsequent sections, we present a compilation of swarm robotic
platforms utilized in research and education (refer to Table 6.1). These
platforms have been specifically designed for swarm robotics applications
or are commonly employed to implement swarm behaviors. The table is
structured as follows: Entries are categorized based on the environment in
which they operate, terrestrial, aerial, aquatic, and/or space. Each entry
includes information on the type of application, the project or product name,
the robot type, the swarm size (typically reflecting the number of robots
used in the referenced evaluation), and the fundamental swarm behaviors
corresponding to the definitions outlined in Section 4.1. We differentiate
between various types of swarm robotic platforms including UGV, UAV,
Unmanned Surface Vehicle (USV), or Unmanned Underwater Vehicle (UUV).
The table and the explanation is an updated and extended version from
Schranz et al. [337]. Be aware that other, probably more sophisticated
robotic research platforms exist, which are not included. In this table
and corresponding sections we focus only on platforms developed with the
intention of using them in swarm robotic applications, specifically for research
and education.

6.4.1 Terrestrial

The probably best known swarm of robots is the Kilobots swarm [316].
Kilobots have a diameter of only 33 mm, they move with the help of vibration
motors, and the communication is implemented with IR light mounted on the
bottom of the robot to reflect off the ground. Their most famous application
is self­assembling, where they form different shapes using 1,024 Kilobots [412].
The Kilobot is available open­source2 or commercially at K­Team3 .

Another widely used swarm robotic platform is Jasmine. Also this
plattform is available open­source4. It was mainly built for large­scale swarm
robotic experiments, where each robot is equipped with a set of sensors
for touch, proximity, distance, and color. A similar aim regarding large­
scale swarms was also actively pursued with the swarm robotic platform
Alice [55]. A bunch of additional sensors, such as linear cameras extend the

2Kilobot website: http://www.kilobotics.com/ [Online; accessed 26­March­2023].
3K­Team website: https://www.k­team.com/ [Online; accessed 26­March­2023].
4Jasmine website: http://www.swarmrobot.org/ [Online; accessed 26­March­2023].

http://www.kilobotics.com/
https://www.k-team.com/
http://www.swarmrobot.org/

95 Swarm Robotic Platforms

basic capabilities. A series of research platforms building upon each other is
given with AMiR [20], Colias [19] (open­source5 and commercially6 available),
and Mona [24] (open­source7 and commercially8 available). The platform R­
One [242] is also designed for usage as a swarm robotic platform. As a support
for close to swarm intelligence experiments it uses a camera tracking system for
ground­truth localization and a server­side located software connecting all the
pieces. The Elisa­3 swarm robotic platform, open­source and commercially9

available, uses an Arduino microcontroller, including a large variety of sensors
including eight IR proximity sensors, three­axis accelerometer, and four
ground sensors. The swarm robotic platform has the capability to recharge
autonomously using a charging station. The communication in the swarm is
performed either via IR or radio. The Khepera IV [355] is designed for any
indoor lab application. The technical features including a Linux core, color
camera, WLAN, Bluetooth, USB Host, accelerometer, gyroscope, microphone,
loudspeaker, three top RGB LEDs, and improved odometry makes this swarm
robotic platform a compact and complete research platform for swarms in
different scenarios. The Khepera IV is commercially available at K­Team10 .
The GRITSbot [288] is the open­source11 swarm robotic platform used in
the Robotarium12 at Georgia Tech, Atlanta. The Robotarium is a physical
environment that provides remote access to a large swarm of robots. Scholars,
researchers and anybody interested in this topic can upload code to run
experiments remotely. Coming with features like automatic registration of
robots with a server, autonomous charging, wireless code upload to the robots,
and automatic sensor calibration makes the Robotarium attractive for remote
research experiments. The swarm robotic platforms in the Robotarium use
wheeled locomotion and are equipped with a set of different sensors, for
example, distance and light sensors.

The e­puck robot [249], together with its successor e­puck2, represent an
educational and research robot designed to ease programming and control of
a robot’s behaviors. It uses diverse sensors, such as IR proximity sensors, a
CMOS camera, and a microphone. The e­puck is available open­source13 or

5Colias open source website: https://github.com/Farshad­Arvin/Mona­Platform/
blob/master/Mona­Test.ino [Online; accessed 26­March­2023].

6Colias commercial website: http://www.visomorphic.com/ [Online; accessed 26­March-
2023].

7Mona open source website: https://github.com/MonaRobot [Online; accessed 26-
March­2023].

8Mona commercial website: https://ice9robotics.co.uk/ [Online; accessed 26­March-
2023].

9Elisa­3 website: https://www.gctronic.com/doc/index.php/Elisa­3 [Online; accessed
26­March­2023].

10K­Team website: https://www.k­team.com/ [Online; accessed 26­March­2023].
11GRITSbot website: https://github.com/robotarium/gritsbot_2 [Online; accessed 26-

March­2023].
12Robotarium website: https://www.robotarium.gatech.edu/ [Online; accessed 26-

March­2023].
13e­puck open source website: http://www.e­puck.org/ [Online; accessed 26­March-

2023].

https://github.com/farshad-arvin/mona-platform/blob/master/Mona-Test.ino
http://www.visomorphic.com/
https://github.com/monarobot
https://ice9robotics.co.uk/
https://www.gctronic.com/doc/index.php/elisa-3
https://www.k-team.com/
https://github.com/robotarium/gritsbot_2
https://www.robotarium.gatech.edu/
http://www.e-puck.org/
https://github.com/farshad-arvin/mona-platform/blob/master/Mona-Test.ino

96 Engineering Swarms of Cyber-Physical Systems

commercially at GCtronic14. An extension of the e­puck presents the Xpuck.
It has additional aggregated raw processing power (as used in modern mobile
system­on­chip devices) of two teraflops on board. Thus, higher­individual
robot computation can be achieved, for instance, image processing using
the ArUco Marker tracking [187]. The Thymio II robot [312] is built on
understanding of programming and robotic concepts by using a wide range
of sensors, e.g., temperature, IR distance, accelerometer, and microphone.
It supports both, visual and text­based programming using Blocky. The
Thymio II is available both open­source and commercially15. Another platform
for open­source16 swarm robotics development for education and research
purposes is called Pheeno [406]. Custom modules allow the adaption of the
platform according to the user’s needs. Using IR sensors, it interacts with the
environment. The Spiderino platform [181] is a six­legged open­source17 robot
with spider­like locomotion. The basis forms a hexpod toy that is additionally
enhanced with a PCB on top. This Printed Circuit Board (PCB) includes an
Arduino microcontroller, a WLAN module, and several reflective IR sensors
to allow robot control.

In the project I­Swarm (Intelligent Small­World Autonomous Robots for
Micro­manipulation) the goal is to develop micro robots to form a swarm. The
robot has a small size of only 3 × 3 × 3 mm3, it is battery­free powered with
solar energy, uses vibration motors to perform locomotion, and IR transceivers
for communication [347]. The goal was to build a swarm of 1000 robots [347].
The robot’s prototypes are exhibited in the technical museum in Munich,
Germany.

The idea behind the open­source swarm robotics platform Zooids18

is different: It handles both the interaction among the robots and the
display/interaction to human operators. Thus, it offers a new class of human­
computer interfaces. The control of the swarm is performed through light
patterns projected from the top using an overhead projector [223]. The APIS19

(Adaptable Platform for Interactive Swarm) has multiple components: The
swarm robotic platforms, the test environment for the swarm including the
necessary infrastructure, and the simulation framework [82]. The focus is on
experiments related to human­swarm interaction. For such interactions, the
robotic platforms are equipped with an additional OLED display and a buzzer.
The Wanda [201] platform follows a special composition that could be used,
for instance, to clean up the environment with a swarm. In addition, the
authors implemented a robot­specific tool chain from design, simulation to

14e­puck commercial website: https://www.gctronic.com/e­puck.php [Online; accessed
26­March­2023].

15Thymio website: https://www.thymio.org [Online; accessed 26­March­2023].
16Pheeno website: https://discourse.ros.org/t/pheeno­a­low­cost­ros­compatible-

swarm­robotic­platform/2698 [Online; accessed 26­March­2023].
17Spiderino website: https://spiderino.nes.aau.at [Online; accessed 26­March­2023].
18Zooids website: https://github.com/ShapeLab/SwarmUI [Online; accessed 26­March-

2023].
19APIS website: https://github.com/wvu­irl/reu­swarm­ros (software only) [Online;

accessed 26­March­2023].

https://www.gctronic.com/e-puck.php
https://www.thymio.org
https://discourse.ros.org/t/pheeno-a-low-cost-ros-compatibles-warm-robotic-platform/2698
https://spiderino.nes.aau.at
https://github.com/shapelab/swarmui
https://github.com/wvu-irl/reu-swarm-ros
https://discourse.ros.org/t/pheeno-a-low-cost-ros-compatibles-warm-robotic-platform/2698

97 Swarm Robotic Platforms

deployment. Another wheeled robot is the Mechalino, that will be available
open­source under Github20. Mechalino is a robot built from 3D­printed and
commercial­off­the­shelf components. It is small and low­cost, but also very
modular concept, allowing for extending the platform with extra sensors,
actuators or computational capabilities if needed.

In the swarm logistics domain the authors in Jones et al. [186] built the
DOT, a swarm robotic platform that is remotely accessible and comes with
a complete toolchain to develop, simulate, and deploy code on the platform.
In addition, to 5G and multiple cameras, it comes with a lifting platform
on top. The WsBot [230] is another experimental platform for Industry 4.0
applications with a wireless charge system. It is manly designed with forklifts
to achieve intelligent behaviors individually or in groups, where all agents are
interconnected over Wi­Fi. The Milli­Robot [167] is equipped with magnetic
hardware with up to 288 degrees of freedom and is proposed for general
swarm robotic research activities. The authors introduce random dithering
and argue to achieve a 100% success rate (i.e., no deadlocking). Another
swarm robotic platform is the mROBerTO 2.0 [106] limited in size equipped
with a locomotion mechanism that utilizes stepper motors to foucs on complex
trajectories. This allows the robot to micro­step down to 1/32 of a full step.

The Droplet [208] is a swarm robotic platform for teaching and research.
The spherical robot is able to organize and cluster into complex shapes with
its neighbors. They use vibration motors for their locomotion. A specialty
is that the robotic platforms charge and communicate via a powered floor
that is equipped with alternating stripes of positive charge and ground. It
is available as an open­source project21 . The Swarm­bots [253, 149] can
assemble themselves to different geometric 3D shapes. The robots are built by
a number of simpler, insect­like robots that use relatively cheap components
(the design is open­source22). These robots can perform self­assembly and
self­organization to adapt to the current situation in their environment. This
assembling capability allows the robots in swarm formation to transport
objects that would be too heavy for an individual robot. The follow­up
project of the Swarm­bots is the Swarmanoid project. This project counts
as the very first attempt to study the integration of design, development, and
control of a swarm of heterogeneous, open­source23 swarm robotic platforms.
The swarm in the Swarmanoid project presents three different types of
autonomous robots, each equipped with various sensors: i) Eye­bots are
UAVs that have the ability to attach to an indoor ceiling, ii) hand­bots
are UGVs that are able to climb, and iii) foot­bots are UGVs that have
a self­assembling capability [89]. The ARGroHBotS [277] is another swarm
robotic platform where the user can adjust parts of the hardware (mainly

20Mechalino Github page: https://github.com/smartgrids­aau/Mechalino_Arena [On-
line; accessed 26­March­2023].

21Droplet website: https://code.google.com/archive/p/cu­droplet/ [Online; accessed
26­March­2023].

22Swarm­bots website: http://www.swarm­bots.org/ [Online; accessed 26­March­2023].
23Swarmanoid website: http://www.swarmanoid.org/ [Online; accessed 26­March­2023].

https://github.com/smartgrids-aau/mechalino_arena
https://code.google.com/archive/p/cu-droplet/
http://www.swarm-bots.org/
http://www.swarmanoid.org/

98 Engineering Swarms of Cyber-Physical Systems

3D printed pieces) to set it up for specific implementations. Additionally,
the platforms allow remote access. The Termes robots [286] use modular
blocks and create large structures without communication or GPS localization.
They utilize the concept of stigmergy that is inspired by the way living
termites build their nests. The Termes robots themselves have the abilities
to climb and carry blocks to create these structures in unstructured, rough
environments. Symbrion and Replicator [199] are two sibling projects, that
develop autonomous swarm robotic platforms. They can be used as single
entities or can be physically connected to form special patterns. The main
goal of these projects was to focus on the possibility to achieve evolvability
of robot organisms. PolyBots [96] are self­reconfigurable robots. They have
various types of locomotion options and object manipulation modules that
are interchangeable to form a number of shapes, for example, an earthworm
type to slither through obstacles, or a spider to stride over hilly terrain. These
robots find application especially in unknown environments or multiple task
challenges. Further modular robots that allow self­configuration with similar
robotic technologies include M­TRAN [261], M­TRAN II [217] and M­TRAN

24III [218] (available as open­source project), ATRON [46], CONRO [57],
Sambot [403], Molecube [429], Puzzlebot [420], to name a few25 .

Finally, a remarkable new field of the application of swarm robotic
platforms is the acoustic swarm [176] that creates speech zones representing a
self­distributing wireless microphone array. In their experiments the authors
showed that their swarm is able to localize and separate three to five
concurrent speech sources without the usage of external infrastructure (such
as a camera system).

6.4.2 Aerial

There are already multiple miniature UAVs available that form a good basis
for research in aerial swarm robotic systems. A comprehensive overview of such
small­scale UAVs can be found in Cai et al. [50] and Swetha et al. [373]. Off­
the­shelf Micro Air Vehicles (MAVs) are available in a wide range of models
and are widely used in the gaming industry, and other businesses for video
and photography. Unfortunately, their flight controllers are typically closed so
that we cannot develop and test custom algorithms (e.g., Qualcomm Flight
Pro26, DJI M10027). A UAV that is designed specifically for usage in swarms
is the MAV presented by Roberts et al. [313]. These UAVs are equipped with
three rate gyroscopes, three accelerometers, one ultrasonic sensor, and four
IR sensors. It has been co­developed in the Swarmanoid project [89]. In the

24M­TRAN website: https://www.wevolver.com/wevolver.staff/m­tran [Online; ac-
cessed 26­March­2023].

25For a full list, the reader is referred to https://en.wikipedia.org/wiki/
Self­reconfiguring_modular_robot [Online; accessed 26­March­2023].

26Qualcomm Flight Pro website: https://www.lantronix.com/products/
qualcomm­flight­pro­development­kit/ [Online; accessed 26­March­2023].

27DJI M100 website: https://www.dji.com/at/matrice100/info\#specs [Online; ac-
cessed 26­March­2023].

https://www.wevolver.com/wevolver.staff/m-tran
https://en.wikipedia.org/wiki/Self-reconfiguring_modular_robot
https://www.lantronix.com/products/qualcomm-flight-pro-development-kit/
https://www.dji.com/at/matrice100/info\#specs
https://en.wikipedia.org/wiki/Self-reconfiguring_modular_robot
https://www.lantronix.com/products/qualcomm-flight-pro-development-kit/

99 Swarm Robotic Platforms

Distributed Flight Array [280] each UAV makes up a module of a larger array,
but has only a single rotor. The individual modules are able to self­assemble
to form a multi­rotor system, where all vehicles must cooperate constantly
for a coordinated flight. To achieve this behavior, they exchange information
among each other and, using the neighbor’s information, they adjust local
parameters. The Crazyflies, available both open­source and commercially28 ,
are used to realize a swarm of UAVs indoors. They are equipped with multiple
sensors, e.g., accelerometer, gyroscope, magnetometer, and a high precision
pressure sensor [293]. They have quite a low weight of 27 g that reduces danger
for humans during the experiments. For the localization the Crazyflies need
an external tracking system such as OptiTrack29. Another indoor swarm can
be build with the FINken­III [158]30 and its predecessors. They are equipped
with optical flow, IR distance, and a tower of four sonar ranging sensors.

6.4.3 Aquatic

In the CoCoRo (Collective Cognitive Robotics) project [330] a huge swarm
of 41 heterogeneous UUVs has been developed. For the experiments they
use three types of vehicles: A base station USV, an exploration UUV, and a
UUV for relaying information between the base station and the explorers.
Communication is achieved using sonar and electric fields. The primary
envisioned applications include environmental monitoring, assessing water
pollution and evaluating the effects of global warming. The UUV Monsun [278]
uses two different types of communication: An acoustic underwater modem
for information exchange and a camera to recognize and follow other
swarm members. The CORATAM (Control of Aquatic Drones for Maritime
Tasks) [62] project develops swarms of USVs for future environmental
monitoring, sea life localization, and sea border patrolling. The USV platforms
are available open­source31 and execute swarm algorithms generated using
evolutionary computation [94]. Another project is concentrating on the
development of indoor USVs specifically the microUSV [146] which measures
just 23 cm in length. They are still in the early stages and are currently
capable of following waypoints. Nevertheless, indoor USVs for swarm robotics
application are really necessary to perform behavioral deployment and
research at low cost.

28bitcraze Crazyflies website: https://www.bitcraze.io/crazyflie­2­1/ [Online; ac-
cessed 26­March­2023].

29Optitrack website: https://optitrack.com/ [Online; accessed 26­March­2023].
30FINken website: https://www.ci.ovgu.de/SwarmLab/Robots/FINkens.html [Online;

accessed 26­March­2023].
31CORATAM website: http://biomachineslab.com/projects/

control­of­aquatic­drones­for­maritime­tasks­coratam/ [Online; accessed 26-
March­2023].

https://www.bitcraze.io/crazyflie-2-1/
https://optitrack.com/
https://www.ci.ovgu.de/swarmlab/robots/finkens.html
http://biomachineslab.com/projects/control-of-aquatic-drones-for-maritime-tasks-coratam/
http://biomachineslab.com/projects/control-of-aquatic-drones-for-maritime-tasks-coratam/

100 Engineering Swarms of Cyber-Physical Systems

6.4.4 Outer Space

The NASA developed the Swarmies32 for space exploration. The main goal
is to collect material samples such as water, ice, or useful minerals on Mars.
This application is referred to as in­situ resource utilization. Simultaneously,
NASA launched a swarmathon33 to motivate students in the development
of swarm algorithms based on ant foraging. In the experiments 20 Swarmies
can travel a linear distance of 42 km in 8 hours. This is the same distance
that was covered by Mars rover Opportunity in 11 years. Another innovative
project was accepted by the NASA Innovative Advanced Concepts program,
namely the Marsbees [192]. Their objective is to enhance Mars exploration
using flying swarm robotic platforms. They have the size of a bumblebee and
self­explore the environment. The Mars rover Opportunity serves as base and
charging station.

6.5 Project: How to Build your own

Swarm Robot

6.5.1 A Robot with Legs: Spiderino

The Spiderino robot is an example of a legged robot that is aimed at swarm
robotic experiments and educational purposes. Two major challenges for
building a swarm robot, cost and size, are particularly difficult to master
when it comes to legged robots. For instance, if a leg is equipped with two
servo motors, one for lifting the leg and the other for moving it forward or
backward, a robot with six legs would require several servo motors to operate
and control. One possibility would be reducing the number of legs, but that
would complicate the movement and possibly require extra sensors for the
control system. For example, biped walkers require sensory systems to keep
balance while moving over unknown ground. When aiming at a system which
is statically stable at all stages of their stride, at least four legs are required.
A quadruped following this principle would lift only one leg at a time and
select the sequence of movements so that the center of gravity is always
above the area spanned by the feet on the ground. Turtles are frequently
mentioned as an example of a gait that maintains static stability. However, in
reality, a turtle’s stride can also include phases where the body is supported
only by two diagonally opposite legs [6, 428]. For a sixed­legged robot, an
effective gait involves lifting three legs at a time while maintaining stability
with the other three legs. This approach allows for faster movement compared
to the statically stable one­leg­at­a­time gait used by quadrupes. Therefore,
the challenge remains: How can we design the mechanics in a cost­efficient
and compact way.

32Swarmies website: https://www.nasa.gov/content/meet­the­swarmies­robotics-
answer­to­bugs [Online; accessed 26­March­2023].

33Swarathon website: https://swarmathon.cs.unm.edu/ [Online; accessed 26­March-
2023].

https://www.nasa.gov/content/meet-the-swarmies-robotics-answer-to-bugs
https://swarmathon.cs.unm.edu/
https://www.nasa.gov/content/meet-the-swarmies-robotics-answer-to-bugs

101 Swarm Robotic Platforms

Table 6.1: Classification of research platforms for swarm robotics (adapted from
Schranz et al. [337]). ⏎

Environ-
ment

Application Project/ Product
Name

Robot
Type

No. of
Robots

Basic Swarm Behaviors Availability

Terres-
trial

Research
and
Education

Kilobots

UGV

1024 [316] pattern formation, coordinated motion open-source,
commercial

Jasmine 60 [198]

aggregation, collective exploration,
coordinated motion, task allocation,
collective perception, self-healing
(partially), human-swarm interaction
(Zooids, APIS)

open-source

n.a.

open-source,
commercial
n.a.
open-source,
commercial
commercial
open-source

open-source,
commercial
n.a.
open-source,
commercial

open-source

n.a.
open-source

n.a.

open-source

n.a.
open-source

n.a.
n.a.

Alice 20 [132]
AMiR 6 [21]
Colias 14 [19]
Mona 30 [17]
R-One n.a.
Elisa-3 38 [137]

Khepera IV 10 [289]
GRITSbot 100 [287]
E-Puck 16 [8]

Xpuck 16 [187]
Thymio II 8 [387]

Pheeno 4 [405]
Spiderino n.a.
I-Swarm n.a.
Zooids 32 [223]
APIS 6 [82]
Wanda 11 [200]
Mechalino 4

DOTS 20 [186]
WsBot 2 [230]
Milli-Robot 16 [167]
mROBerTo n.a.
Droplet n.a.

aggregation, self-assembly, object
clustering and assembly, collective
exploration, coordinated motion,
collective transport (partially),
collective perception

open-source

open-source

n.a.

open-source

n.a.

open-source

Swarm-bot 35 [149]
Swarmanoid n.a.
ARGroHBots 15 [277]
Termes 5 [286]
Symbrion and
Replicator

n.a.

PolyBot 32 [96]
M-Tran III 24 [218]
ATRON 7 [46]
CONRO 8 [57]
Sambot 15 [407]
Molecube 8 [429] pattern formation, self-assembly,

self-reproduction Puzzle Bot 9 [420]
Acoustic Swarm 5 [176] collective exploration, coordinated mo-

tion, collective perception
open-source

Aerial

MAV

UAV

n.a. n.a. n.a.Distributed
Flight Array

9 [279] self-assembly, coordinated motion

Crazyflie 2.1 49 [293] aggregation, collective exploration,
coordinated motion, collective
localization, collective perception

open-source,
commercial
n.a.FINken-III n.a.

Aquatic
Environ-
mental
Monitoring

CoCoRo UUV
41 [330] aggregation, collective exploration,

collective localization, task allocation
n.a.

open-source

open-source

Monsun n.a.
CORATAM USV

12 [94]
microUSV 4 [146]

Outer
Space

Space
Exploration

Swarmies UGV 201 collective exploration, collective local-
ization

n.a.

Marsbee UAV 3 [192] collective exploration, coordinated mo-
tion, task allocation

102 Engineering Swarms of Cyber-Physical Systems

Figure 6.6: Spiderino robot (left) and its components.

In the case of the Spiderino robot, the control system has been put atop an
existing system that comes form a Hexbug Spider toy model (see Figure 6.6).
The Hexbug Spider toy is a remote controlled plastic toy featuring six legs
being controlled by two motors, one for moving the robot forward or backward
and the other for turning the robot. A smart mechanical design enables the
robot to move by lifting three legs at a time in the direction the robot’s head
is facing. The toy, being mass-produced, comes at a retail price between 15
and 30 e, making the system economically attractive even if the parts for the
remote control are removed and not used in the robot.

To build your own Spiderino robot, follow these steps:

Electronics: The PCB file of Spiderino is available for download at the
Spiderino website35. The main board is a two-layer, circular board of 80 mm
diameter. The top layer contains most of the components, including

• Socket for Arduino Pro Mini.

• Connector for an ESP8266 WiFi Module.

• Socket for motor driver (POLOLU Motor DRV-DRV8835).

• Three-way power switch.

• Three-pin configuration jumper.

• 5 resistors and 2 LEDs, both in 1206 SMD format.

35Spiderino website: https://spiderino.nes.aau.at/index.php/downloads/[Online;
accessed26-March-2023].

⏎

https://spiderino.nes.aau.at/index.php/downloads/

103 Swarm Robotic Platforms

Connecting the WiFi module is optional since the robot can also be
programmed through a USB cable and is capable of operating without a WiFi
connection.

The bottom layer of the PCB includes 6 connectors for sensor boards and
connectors for the two DC motors.

The sensor board is a very small 10 by 10 mm 2­layer PCB that connects
through four pins to the main board. Two pins are used for GND and VCC,
while the other two pins contain a digital I/O and an analog input. The board
can fit different sensors. The current sensor boards have an optical CNY70
distance sensor that points radially outward from the robot. Up to six sensor
boards can be fit onto the robot, but it is also possible to have a configuration
with fewer sensors.

Mechanical structure: In addition to the PCB, a Hexbug Spider toy robot
and two 3D­printed adapters are required. The toy’s main body has to be
separated from its head containing the IR remote control interface since
control will be implemented through the PCB. The main board is connected
through screws to a 3D­printed adapter board that holds the battery and
contains a cut­out for the motor cables. This part is glued to another conical
adapter that fits the lower part of a Hexbug Spider toy robot, which contains
the motors and provides a mechanism for coordinated leg actuation.

Programming: The robot’s control program has to be uploaded to the
Arduino Pro Mini. The Pro Mini can be programmed with Arduino IDE
(available for Windows, Linux, and MacOS systems) in C or Atmel assembly
language. The C­language API consists of functions for controlling the
robots’ motion and reading the sensors. Its implementation is documented
in the technical documentation available for download at the Spiderino
webpage[180].

6.5.2 A Wheeled Robot: Mona

Mona wheeled robot [17] is an open­source miniature robot that was mainly
developed for long­term swarm robotics applications. It was first tested for
a Perpetual Robot Swarm [24] system that aimed to develop a low­power
robotic system with extremely long autonomy time, over weeks or months.
Mona is an autonomous mobile robot with five proximity sensors, utilizes
an AVR microcontroller as its main controller and can be programmed by
popular Arduino IDE. The Mona robot has been commercialized36 however
it is still an open­source platform.

Two off­the­shelf DC motors with direct reduction gears were used as the
main actuator. As shown in the architecture of the robot in Figure 6.7, a
symmetrical differential driven configuration is used to control the robot’s

36Mona robot commercial website: https://ice9robotics.co.uk/ [Online; accessed 26-
March­2023].

https://ice9robotics.co.uk/

104 Engineering Swarms of Cyber-Physical Systems

Figure 6.7: (left) Mona robot main platform. (right) The architecture of the basic
platform [17].

Figure 6.8: The Mona main-board and various sub-modules.

motion with two motors. The robot’s wheelbase is 80 mm with 28 mm
wheel diameters. The rotational speed of each motor is independently
controlled through a pulse-width modulation channel of the controller, which
is connected to a H-bridge motor driver.

⏎

⏎

105 Swarm Robotic Platforms

To build your own Mona robot, one has to consider three crucial steps:

Electronics: The PCB file of the Mona is available online37. It is a two-layer
PCB and most of the components are on the top board. The main board has
six functions (as shown in Figure 6.8) including: (1) The main controller that
is an ATMEGA328, (2) communication connectors supporting RS232, serial
peripheral interface, I2C (Inter-Integrated Circuit) and ISP, (3) IR proximity
sensors, (4) motor driver and feedback link from motor encoders, (5) USB
port and asynchronous serial data module used for programming the robot
with Arduino, and (6) 3.7 V LiPo battery and the charging unit.

Mechanical structure: The main PCB also acts as the chassis of the robot,
so motors, battery and all mechanical components sit on the main-board. This
makes the assembly and controlling of the robot easier. In terms of mechanical
structure, there are two parts—wheels and motor brackets—that must be 3D
printed. The CAD design of the parts is also shared at the Mona GitHub.

Programming: The robot is compatible with most of the open-source
programming platforms. Although the architecture of the robot enables
programming Mona with any Arduino-based platforms via a USB cable, any
programming language that is available for the AVR µCs, including C, C++,
Java, Pascal, Basic, and Assembly can also be used for programming the
robot. Hence, any software platform and IDE that support ISP can be used
for programming the robot.

The latest version of the Mona robot was equipped with an ESP32
micro-controller providing additional functionality such as WiFi, Bluetooth
and RGB LEDs. There are various available examples of robotic modules
used for undergraduate engineering students. It includes a library (Mona.h),
several examples for controlling motors and an autonomous obstacle avoidance
scenario available at: https://github.com/MonaRobot/Mona-Arduino.

6.5.3 Another Wheeled Robot: Mechalino

The design of Mechalino is guided by the requirements for

• A low-cost robot (around 150 e per robot) so that a swarm of these
robots is still affordable,

• Using wheels with good grip and stepper motors to have accurate
movement control,

• Having a mostly cylindrical body in order to avoid getting stuck on
edges,

37Mona Test Github: https://github.com/Farshad-Arvin/Mona-
Platform/blob/master/Mona-Test.ino [Online; accessed 26-March-2023].

https://github.com/monarobot/mona-arduino
https://github.com/Farshad-arvin/Mona-Platform/blob/master/Mona-Test.ino
https://github.com/Farshad-arvin/Mona-Platform/blob/master/Mona-Test.ino

106 Engineering Swarms of Cyber-Physical Systems

Figure 6.9: Mechalino components: Chassis, wheel, axle, mainboard, battery.

• Providing an area on top for adding a marker that can be detected by
an overhead camera.

While still reasonably priced, Mechalino is designed to support ROS and
provide the processing power for running more elaborated algorithms and
evaluations onboard. It is equipped with a STM32F4 Microcontroller Unit
(MCU). The software and hardware design is available under an open­source
license38 . For easy reproducibility of the hardware, the design aims to use
standard components in combination with parts that are easily producible
via 3D printing. Figure 6.9 shows the main components of a Mechalino robot.
The assembled prototype is shown in Figure 6.10. The color markers on top
allow for the accurate detection of the position and orientation of the robot
from an overhead camera. The robot has a low center of gravity, facilitating
precise movement. On the hand hand, the low ground clearance requires to
operate the robot on a smooth surface. Mechalino is still under development
and is being continuously improved.

To build your own Mechalino robot, follow these steps:

Electronics: The PCB file is available for download at the Mechalino
webpage. The two­layer PCB fits the microcontroller, an ESP8266, a GY-
521 gyroscope/acceleration sensor, two driving circuits for the left and the
right motor and distance sensors.

38Mechalino website: https://github.com/smartgrids-aau/Mechalino_Arena [Online;
accessed 26-March-2023].

⏎

https://github.com/smartgrids-aau/mechalino_arena

107 Swarm Robotic Platforms

Figure 6.10: Assembled Mechalino with ArUco marker on top.

Mechanical structure: The main body features a 3D-printed chassis with
cut-outs for the motors and the battery. At the top, there are screw holes for
attaching the main board, also allowing for a possible second-layer processing
board. The wheels are pressureless standard rubber wheels from a model shop.
A 3D-printed sleeve ensures a snug fit to the stepper motor axles.

Programming: The robot can be programmed in C++ and in ROS using
MicroPython39 . A hardware abstraction layer needs to be uploaded onto
the STM32F4, which is available at the project page. Programming is done
through a cable, while the ESP8266 is utilized for communication at runtime.

39MicroPython website: https://micropython.org/ [Online; accessed 24-December-2024].

⏎

https://micropython.org/

Chapter 7

Open Challenges and
Outlook

As applications become more complex, there are specific challenges that
need to be addressed. Traditional technical solutions involve creating a final
product that includes numerous components and sub­components. Each of
these components has a significant size and complexity of its own and
must interact with other components to provide their services in a specified
manner. Even minor changes to a component’s services or interface could
potentially disrupt the entire system’s functionality. Existing examples have
shown potential for using swarm­based approaches in engineering in order to
address issues that come with the growing complexity of systems via a self­
organizing approach. In addition, technical applications become more complex
due to an increasing number of networked components being involved on
both sides, the environment and the technical solution. The previous chapters
have introduced several examples showing how swarm­based approaches can
be successfully employed in such an environment. However, these examples
might just mark the beginning of using swarm systems as a new paradigm for
designing and operating systems. The complexity of applications in terms of
functionality, components, and dependencies among these components will
rise further, which means that we can expect the existing challenges to
grow, as well in their importance. To face these challenges, new methods,
techniques, and approaches need to be developed. By successfully solving
these challenges, integrating swarm­based approaches to overcome existing
technological boundaries will be a promising direction to explore and increase
the efficiency of technical applications. The following sections are adapted and
extended from Schranz et al. [333].

109 Open Challenges and Outlook

7.1 Challenges in Swarms of CPSs

As already discussed in Section 1.2, the modeling, design and control
challenges for CPS swarms become even more difficult as the autonomy
of individual components must be combined with explicit attention to
interdependencies and coordination, interoperability, distributed control and
emergence of behaviors. Swarm intelligence can bring potential advantages in
terms of adaptability, robustness, and scalability to systems. However, several
research challenges remain, especially when it comes to particular applications.
For example, applying swarm intelligence to the physical domain, aka CPSs.
In this domain, the limitations of embedded systems have to be considered, as
well as an incomplete knowledge of the state of the physical world. Addressing
these challenges not only helps to overcome current limitations but also paves
the way for future applications of swarm systems in various fields.

7.1.1 Challenges Deriving CPS and Swarm Properties

Today’s technical systems are usually predictable and controllable. For
example, entering a target temperature in an oven causes the expected
reaction, namely that the oven heats up to the set temperature and maintains
this temperature. In swarm systems, these properties are often not directly
given, since such a system is characterized by local rules, interactions and
thus the emergence of the global system goal from the bottom up. A control
input for a swarm system is, therefore neither easy to realize, nor is it
guaranteed that the result of an input is easily predictable. In the design of
CPS systems, the question of predictions, for instance, about the next system
state, movement, or information, has a direct impact on the ability to give the
system certain configurations, such as manipulating parameters, controlling
individual movements, or assigning specific tasks. Thus, in addition to the
issues of predictability and controllability, any parameter setting, even if only
slightly adjusted, can significantly affect the behavior and dynamics of an
intelligent swarm system. In particular, for a CPS swarm system, predicting
such effects is difficult because modeling of the physical parts of the system
is usually subject to uncertainty [333].

In recent years, there have been several research works addressing these
topics, in particular related to network science [135] and the observability
of complex systems [232]. Many systems are characterized by a number of
parameters, numerical and structural, whose effects on the resulting dynamics
in a complex system can often be extreme, leading to phase transitions [360,
76, 42], self­organized criticality [402] and deterministic chaotic behaviors [369,
423].

In CPS swarms, these parameter effects come from several sources that
are typically hard to model, including environmental effects such as weather,
earthquakes, the (partially) unpredictable behavior of humans, or any other
random disturbance coming from the real world. The difficulty lies in creating

110 Engineering Swarms of Cyber-Physical Systems

precise models for timely adaptation to exhibit the desired robustness to the
dynamics of the environment [34]. Therefore, swarm­intelligent systems may
instead find limited use in life­critical applications such as the control of an
airplane—a clear definition of the possible behaviors of the system cannot be
provided in a CPS swarm system.

Literature reports several works on the analysis of formal models
for optimization or decision­making scenarios. They mostly use the Ant
Colony Optimization (ACO) and the PSO models in combination with
optimization problems and analyze stability and convergence properties.
The analyzed scenarios often rely on constrained models, such as simplified
algorithms or additional assumptions [65]. Examples include using a random
dynamical system, for PSO [105], Lyapunov stability analysis [188], or
deriving graphical parameters from dynamical systems theory [383]). In
many practical applications, ACO and PSO models become too complex
for complete theoretical analysis [333]. Typically, performance analysis is
done via empirical procedures, possibly restricted on the assumption of
defined theoretical properties [333]. Examples of such an approach involve
using a specifically designed objective function for convergence analysis of a
PSO approach [66], reviewing self­adaptive PSO algorithms related to stable
points in parameter selection [154], parameter optimization studies [422],
running numerical tests and results using test matrices associating multi­
target tracking and measurement [44], and applying experimental analysis
of how particular design choices affect the quality and the shape of the Pareto
front approximations generated in multi­objective ACO [235].

In contrast to swarm intelligence systems in general, a formal model
of CPS swarms to evaluate predictability and controllability is much more
sensitive. In CPS swarms, we do not only consider the swarm itself, but also
the different performance objectives, metrics, constraints, requirements, and
disturbances coming from the real­world problem scenario. In addition to
that, we have the cyber (behaviors and interactions) and physical (hardware-
related) characteristics of each individual CPS. This means that each variation
of the CPS, its behaviors, the scenario they operate impose a new set of
configurations and thus, challenges in practice. This makes it difficult to
abstract general properties and reuse results across different scenarios [333].

Nevertheless, with extensive mathematical abstractions it is possible to
identify and analyze a basic set of swarm behaviors, including, foraging [58,
136, 95, 162], coverage [424, 338, 237, 69], aggregation and pattern
formation [134, 13, 136], and cooperative tracking [424, 142, 340] (see
Section 1.1.1 and Section 4.1 for more details); an extensive, and well­discussed
list of swarm behaviors can be found in Brambilla et al. [45], Bayindir [31],
and Schranz et al. [332].

7.1.2 Challenges Designing the Local Rules

The design of swarm intelligence often follows a bottom­up approach,
where the desired global behavior is implicitly determined by defining local

111 Open Challenges and Outlook

interaction rules. This requires solving an inverse problem using heuristics to
guide the design of the local rules. In swarm intelligence scenarios that are
not tied to a physical scenario, for instance, generic optimization applications
of swarm intelligence [301], the definition of heuristics that lead to a desired
global behavior is easy because they are predetermined by the optimization
goal.

However, in embodied swarm applications, such as CPS swarms, this
task is much more complex due to the multi­layered, uncertain and hardly
predictable structure of the environment. Therefore, most of the work in
this direction is devoted to the automatic synthesis of behavioral and
interaction rules for swarm robots. In Fehervari and Elmenreich [111],
artificial evolutionary techniques (provided by FREVO [359]; see Section 4.5
for more details) are used to generate neural controllers for homogeneous
robot soccer teams. In Gomes et al. [144] they apply novelty seeking to
generate neural controllers for homogeneous robot swarms. Ferrante et al. [115]
generate controllers for robots by combining the use of an evolutionary
approach with a formal language. In Lopes et al. [234], supervisory control
theory, a formal language based on a discrete­event representation of the
system, is used to automatically generate controllers with built­in proofs
and wider reusability in different robotic systems. Similarly, in Francesca et
al. [124], the automatic design of robot swarm control software is achieved by
generating a probabilistic finite state machine resulting from an optimization
process that maximizes a task­specific objective function. Furthermore, in
Tuci et al. [384], different evolutionary approaches are used to generate
task assignment mechanisms that efficiently adapt robot behavior to the
environment.

In general, these approaches, even if exemplified in a specific application
case, can be extended to other domains. For example, adapting an algorithm
from autonomous ground robots to autonomous aerial vehicles should be
possible after considering additional constraints (aerial vehicles cannot easily
bump into each other without damage) and degrees of freedom (height
as a third dimension). All of these works, among others, mark valuable
contributions to the automatic generation of rules that can be reused or
expanded for the more general case of CPSs. However, it is important to
acknowledge that these approaches have only been validated in relatively
simple scenarios and have been applied exclusively to homogeneous swarms.
As a result, these methods need to be better equipped to handle the
complexities of heterogeneous swarms in CPSs.

Furthermore, these methods face challenges when dealing with large
and complex search spaces, leading to what is commonly known as the
dimensionality curse. Consequently, current automatic generation systems
may not be feasible for systematic use when synthesizing complex behaviors
required by CPS swarms. It is worth noting that a convergence between model­
checking methods [64] for general CPSs and automatic rule synthesis and
verification in physical swarms will be necessary to provide guarantees in
both the design and control stages of CPS swarms. Such a combination would

112 Engineering Swarms of Cyber-Physical Systems

ensure a systematic and reliable approach to address the challenges associated
with CPS swarm systems.

7.1.3 Real-World Deployment Challenges

To date, most of the work implemented and tested on physical swarms
has focused on swarm robotic research platforms. These works typically
involve small, simple robots with basic sensors and limited data exchange
capabilities. Although they exhibit interesting self­organizing behaviors, they
serve mainly as test demonstrations and are difficult to scale for real­
world applications. Their reliability, predictability, and efficiency need to
be reevaluated when the same approach is to be applied to complex tasks
in realistic environments. In contrast, contemporary technological advances
have produced impressive individual CPS and robotic systems. Examples
include self­driving cars developed by companies such as Uber and Google,
remarkably stable quadrupedal robots such as Boston Dynamics’ Spot, and
advanced humanoid robots such as Boston Dynamics’ Atlas, Hanson Robotics’
Sophia, and Honda’s Asimo. These systems are highly complex mechanically,
algorithmically, and behaviorally. Compared to these cutting­edge examples,
the tasks performed by current swarms of robots seem rudimentary. The
question arises whether swarm robotics or specifically CPS swarms, can
progress from being study objects to becoming systems producing real­world
systems that can reliably perform useful tasks.

This transition may require a move away from overly simplified robot
models and controls toward designs that achieve a better balance between
simplicity and the ability to perform complex tasks effectively and reliably.
It could entail transitioning from minimal resource usage and restricted
information exchange to a more extensive utilization of sensor data and
enhanced information sharing. Intel’s Shooting Star [310] drone swarm
provides an illustrative example in this regard. During the opening ceremony
of the 2018 Winter Olympics, Intel orchestrated an impressive aerial show
with 1218 drones. Although labeled as a swarm, the system is not really
swarm intelligent; it operates as a partially distributed system with a central
controller. Individual drones follow pre­computed trajectory scripts and rely
on a precise external positioning system for navigation. The main idea is
that to effectively perform real­world tasks, it might be essential to abandon
overly restrictive assumptions and adopt a pragmatic, balanced approach
by combining bottom­up swarm intelligence design with top­down methods
whenever feasible.

Another significant challenge associated with the implementation of
real swarm systems is the maintenance of such systems throughout their
operational lifetime. As discussed in previous research [97], although they are
swarm systems, complex technical systems that must operate reliably over a
long period of time will require maintenance to ensure uninterrupted service. It
remains an open question whether maintaining a swarm system with its unique
characteristics will be more accessible or more challenging than traditionally

113 Open Challenges and Outlook

designed technical applications. In essence, maintaining a system composed
of numerous autonomous components will be a challenging task. However,
multiple components within the system can also provide opportunities for
internal monitoring and troubleshooting. A relevant example is given in
Christensen et al. [63], where failed robots are promptly detected and isolated
from the swarm of robots, demonstrating the potential for addressing problems
within the system itself.

7.1.4 How to Address the Challenges

In order to enhance the potential for formal analysis and promote the
systematic reuse of results in swarm intelligence, it is advantageous to
position swarm intelligence within the wider framework of complex systems
and network science. This approach allows the adoption of sophisticated
mathematical and modeling tools commonly used in the study of complex
systems, which can help characterize properties such as evolution over time,
stability, and structural/topological aspects. The focus on structural and
topological properties has recently gained significant attention, as information
flow plays a crucial role in self­organization and emergence [143, 79].

In addition, it is vital to identify the relationship between swarm
intelligence and the fields of game theory and multi­agent systems [351].
Although this connection has yet to be adequately explored, exploiting
insights from game theory and adopting mechanism design approaches can
provide viable alternatives for generating interaction rules and analyzing the
formal properties of swarm intelligence systems. Concepts such as equilibrium
in game theory and interaction rule design through mechanism design [272, 41]
present promising avenues for automatic rule generation. Given the current
limitations of CPS swarms, it is expected that the study of physical swarms
should align more closely with the multi­agent systems field while focusing
on self­organizing behavior and scalability. The distinction between swarms
and decentralized multi­agent systems is not always clearly defined. A recent
survey of multi­robot systems [70] shows that the properties required for
distributed control algorithms include locality of sensing and communications,
scalability, security, contingency, and task­oriented considerations, similar
to those addressed in research on swarm robotics [31]. This suggests that
the differences between the two concepts are often semantic rather than
substantive, with considerable overlap between them (for more details refer
to the discussion in Section 1.1.3).

7.2 Future Trends and Directions

As pointed out in the introduction, there is a growing presence of complex
dynamic systems that are increasingly collective and connected. These systems
may be cyber or physical or, more generally, both, constituting a cyber­
physical system. Given the nature and characteristics of these systems, swarm

114 Engineering Swarms of Cyber-Physical Systems

intelligence will play an essential role in addressing the upcoming challenges.
Given the vast solution possibilities and diverse challenges, new swarm models
may be needed, and new fields of application will open up. In the following, we
discuss where these new models might come from for inspiration and in what
kinds of future applications swarm intelligence will prove to be a relevant tool.
Finally, we outline general open research topics on CPS swarms.

7.2.1 Future Inspirations

Until today, most swarm intelligence models and algorithms have been
inspired by social interactions within animal groups and animal societies [281].
Such observations are expected to remain a constant source of inspiration for
new swarm intelligence models. However, we can also expand the range of
potential inspiration models to include organic, inorganic, and social systems
with similar fundamental properties. We can identify essential microscopic
behaviors and local interaction rules by reducing these models to the
key functional elements required in most swarm intelligence models. These
microscopic interactions generate self­organizing behavior as an emergent
feature at the macroscopic level.

One challenge is to build and extract abstract models from natural
sources of inspiration. This includes exploring decentralized and time­efficient
techniques from the specific scenarios studied in different research disciplines.
Secondly, these models need to be used to build new models and address the
problem complexity of real­world CPS applications.

The following sections illustrate specific areas that can provide new ideas
for swarm intelligence model development. In some cases, a model has already
been used as inspiration for swarm intelligence development. However, their
potential to inspire swarm intelligence systems has yet to be fully exploited, so
even an example known to have inspired swarm intelligence algorithms could
be used to make new and potentially (more) disruptive contributions.

Biology

Animal societies have been the primary source of inspiration in swarm
intelligence. Researchers and swarm intelligence practitioners have drawn
inspiration primarily from cooperative animal societies, largely ignoring
predator­prey systems and other conflicting scenarios [281]. However, to
address cyber threats and the interaction among multiple, potentially
competing CPSs, it is necessary to study non­collaborative systems. Research
in population dynamics [174], game theory [351], and evolutionary game
theory [322] has provided applicable models and ideas for the development
of novel swarm intelligence systems. A promising approach involves the
integration of autonomous robots into existing animal societies. Successful
integration has been demonstrated with honeybees, fish, cockroaches, and
cows [251, 326, 399]. This emerging field offers the potential to create a
bio­hybrid system, or social cyborg, that combines the unique capabilities

115 Open Challenges and Outlook

of robots and animals in a mutually beneficial and symbiotic way.
(Programmable) Bacteria serve as an inspiration for current and future
research in various fields, including social intelligence. Their foraging [281] and
collective decision­making abilities have allowed them to thrive and spread in
challenging environments, making them a subject of interest for researchers
seeking to develop new methods for solving complex problems [350]. In
addition to their natural abilities, bacteria can also be programmed through
genetic engineering techniques, providing opportunities for precise control
and manipulation of their behavior [184]. For example, bacteria can be
programmed to produce specific proteins or enzymes or respond to certain
environmental signals. One exciting application of programmed bacteria is in
the field of medicine. Recent research has shown that a swarm of magnetically­
guided bacteria can be used to deliver drugs directly to tumors within the
body, potentially improving the efficacy of cancer treatments [113]. This
approach offers a promising alternative to traditional drug delivery methods,
which can have harmful side effects and may not effectively target cancer cells.

Chemistry and Physics

Molecular networks have been studied across various fields [191], particularly
for modeling complex diseases such as cancer and schizophrenia [147]. In
these networks, nodes represent molecules like genes, RNA, and proteins; the
edges represent their relationships. These network structures could inspire
the design of complex interactions between agents in a swarm, as they
exhibit outstanding properties such as scalability and resilience. For instance,
the physiological interaction network of a single cell comprises thousands
of chemical reactions that alter the concentration levels of hundreds or
thousands of chemical components. Despite the enormous complexity and
size of these networks, they exhibit quick and flexible dynamics while
staying within precisely controlled bounds, thereby ensuring the survival
of the organism. The properties of molecular and bacterial networks,
characterized by their flexibility, robustness, scalability, and emergent
complexity resulting from simple interactions, share remarkable similarities
with the desired characteristics of swarm intelligence. Conducting laboratory
experiments under controlled conditions provides an opportunity to study
the characteristics of these networks. Because of the relatively small scale, a
study can be conducted, for instance, on a few microliters of fluid in a cuvette
or a small agar plate on a laboratory desk. Thus, these networks present
ideal subjects for systematic exploration to provide valuable inspiration for
developing future swarm intelligence algorithms.

Nanonetworks refer to a set of nanomachines that are interconnected and
have various capabilities such as computation, data storage, sensing, and
actuation. The research on nanonetworks has focused primarily on their
non­traditional communication types, such as electromagnetic or molecular
communication [3]. In particular, molecular communication between cells

116 Engineering Swarms of Cyber-Physical Systems

using synthesis, transformation, emission, propagation, and reception of
molecules has the potential to inspire swarm intelligence [4]. One of the
main advantages of molecular communication is its ability to function in
environments that are not conducive to electromagnetic signals, such as inside
the human body. This makes it a promising avenue for designing swarm
intelligence systems operating in similar environments, such as healthcare or
environmental monitoring applications. Moreover, molecular communication
offers a high degree of security and privacy due to the localized nature of
the communication. Nanonetworks have already been successfully employed
in biomedical applications such as drug delivery, in­vivo sensing, and
monitoring glucose levels for diabetes patients. They have also been used in
environmental applications such as pollution monitoring. Therefore, the study
of nanonetworks and their communication mechanisms could serve as a rich
source of inspiration for the design of future swarm intelligence algorithms. By
leveraging the capabilities of nanonetworks, swarm intelligence systems could
potentially achieve higher efficiency, scalability, and robustness in a wide range
of applications.

Human Cognition

Humans also employ self­organizing strategies to interact with each other to
solve various tasks [213, 215, 109], such as the collective patterns observed
in crowd dynamics. Experimental studies have been conducted to identify
corresponding behavioral rules, such as investigations of pedestrian behavior
in single avoidance tasks [258]. In a study by Tavakoli et al. [377], they
observed the coordination abilities of humans with limited perception in an
environmentally distributed environment. This first experiment aimed to learn
human­inspired behavior before formal strategies, potentially adaptable to
CPS swarms, were developed. Surprisingly, compared to the multitude of
algorithms derived from (eu)social animals, very little research has focused
on extracting behaviors from human groups or societies to convert them into
swarm intelligence algorithms [282]. This is unexpected since humans, being
the creators of advanced and complex societies and cultures, are a readily
available source of inspiration, easily accessible through natural language
communication.

Interdisciplinary Approaches

The swarm­like concept of active matter consists of numerous individual
agents following simple rules, resulting in collective behaviors and movements.
Active matter combines representations from various disciplines, such as
biology, physics, computer graphics, and robotics. A well­studied model in
this domain is the self­propelled particle model proposed by Vicsek et al. [394]
in 1995. This model has been extended to simulate various realistic systems,
including self­replicating morphogenesis, in which swarms form structures that
create new similar structures [328].

117 Open Challenges and Outlook

The researchers described collective motion in active solids and crystals,
applying elasticity­based mechanisms to achieve self­organization [117, 116].
These models can be adapted to study the collective movement of CPS
swarms, such as pattern formation or morphogenesis. They offer robustness to
heterogeneity, which can be derived analytically and is particularly suitable
for CPSs.

7.2.2 Promising Future Applications

Although the current implementation of swarm intelligence in real­world
scenarios remains limited, we recognize the vast potential for its application
in a wide range of practical situations. As Bonabeau and Meyer have pointed
out, the possibilities for swarm intelligence application are limited only by our
imagination [40]. This statement strongly supports our hypothesis, stated in
the introduction, regarding the ubiquitous presence of swarm intelligence in
meeting the challenges of an increasingly interconnected world.

Swarm intelligence has already been successful in various complex opti-
mization scenarios in the form of algorithms such as ACO [84] and PSO [197],
where swarm members encode individual solution candidates. However,
physically embedded swarm algorithms have seen limited applications so
far, with most engineering solutions following more traditional top­down or
centralized approaches.

We expect that swarm intelligence will increasingly find applications in
real­world scenarios where a top­down approach lacks sufficient information,
a centralized approach is computationally infeasible, or real­time constraints
impede the ability to find optimal solutions. These situations often arise in
complex CPSs or scenarios without existing infrastructure, where the need
is to provide ad­hoc working solutions without the ability to first establish
an infrastructure framework (e.g., in disaster scenarios [78]). Furthermore, we
foresee significant potential for swarm applications when transitioning from
well­defined environments such as planned factories or warehouses to more
complex environments such as traffic systems, urban environments, social
networks, extreme/hostile environments, or uncharted territories.

Looking ahead, we consider the next frontier for swarm intelligence in
CPS swarms. In this regard, we highlight specific application scenarios that
are currently (partially) unattainable but have the potential to take full
advantage of swarm characteristics. Much research already exists, many of
which await system integration to meet future application requirements. In
the following examples, we describe the intended application of CPS swarms,
outline their swarm characteristics, and identify areas of research that require
further investigation to achieve the desired applications, where the term “CPS
swarm” can be understood as an umbrella term.

118 Engineering Swarms of Cyber-Physical Systems

Autonomous Driving and Smart Traffic

Autonomous driving is a prominent and much discussed topic, presenting
various computational challenges in dynamic environments requiring real­
time processing capabilities. This is where the concept of swarm intelligence
becomes relevant: Thousands of cars, each with different levels of autonomy,
as well as the road infrastructure, collaborate to find common solutions.
Applying a swarm model to autonomous cars and infrastructure in an
intelligent traffic management system offers several benefits, including reduced
traffic congestion, coordinated creation of emergency lanes, improved traffic
flow, and reduced carbon emissions. One potential application is swarm
or fleet navigation, incorporating information from other swarm members,
infrastructure, and the dynamic environment.

Modeling networked autonomous cars and smart infrastructure as a swarm
is both feasible and beneficial for several reasons:

1. Each CPS can retrieve and evaluate information locally, following local
rules.

2. Local information can be exchanged between CPSs to form a global or
swarm­level perspective.

3. The infrastructure is relatively known in advance or subject to slight
dynamics, such as accidents or construction sites.

A central traffic management system would have difficulty coordinating and
managing each CPS participating in the traffic. At the same time, individual
CPSs may cooperate locally, potentially leading to emergent behaviors.

While transportation logistics already makes extensive use of ant­
and bee­inspired algorithms for route optimization [255, 421, 306, 426,
346], the concept of smart traffic remains relatively unexplored. However,
the media frequently talks about swarms of autonomous cars and
smart infrastructure [126, 339, 168], indicating the growing interest in
such applications. However, implementing these swarms requires careful
consideration, especially in terms of management. Questions arise, such as:
What motivates CPSs to form a swarm? What common features, properties,
or sensor data should CPSs share? How do CPSs join or leave a swarm?
What decision­making processes should prioritize local driver goals, swarm
goals, or global smart traffic goals? What is the optimal number of CPSs
needed to form and benefit from a swarm? Integrating the data obtained
from the infrastructure into the autonomous car swarm could further improve
the decision­making process to achieve the above goals.

The technology to realize CPS swarms in smart traffic partially
exists today. Local retrieval and evaluation of sensor data in cars is
already common practice, and efforts are underway to develop standardized
communication protocols for vehicle­to­vehicle and vehicle­to­infrastructure
communication, collectively called Vehicle to Everything (V2X) [59]. V2X
involves communication between cars and smart infrastructure integrating

119 Open Challenges and Outlook

physical elements like streets, cameras, traffic lights with digital infrastructure
like sensors and communication networks. Communication technologies such
as 5G [12] and Ultra­Wideband [152] offer high levels of security, low latency,
and high data rates, enabling self­location and real­time data exchange
between CPSs. These advances enable a swarm of autonomous cars to share
and react to real­time local information, adapting to dynamic situations. For
example, in Ulbrich et al. [388], the authors describe a swarm behavior module
that selects and summarizes sensor data and performs trajectory planning for
an autonomous car. In Li et al. [227], they develop swarm­intelligence­based
local rules to enable the efficient operation of interconnected autonomous cars
on arterials.

Honda’s SAFE SWARMTM concept is an example of improving traffic
by using information from vehicles in front, including onboard sensors,
systems, and V2X [256] communication. Implementing an efficient and
effective intelligent traffic system would likely require a complete redesign
of the existing architecture for real­time data collection, processing, and
analysis. In addition to the swarm system, a central Traffic Management
System (TMS) could be implemented to fulfill several supporting roles. First,
the TMS would function as a data submission system, ensuring that local
event information is available to all other cars so they can plan their routes
accordingly. Second, the TMS would provide an overview of global traffic
situations by integrating and merging information about individual road
swarms. This would provide a global understanding of traffic conditions and
facilitate more effective decision­making. The data exchange process between
cars and the TMS can be further enhanced by incorporating information from
the intelligent road infrastructure. By integrating data from sensors embedded
in the infrastructure, such as traffic lights or cameras, the overall system can
gather more complete and accurate information about road conditions. In
summary, the development of an intelligent traffic system would involve not
only the implementation of a swarm system for autonomous cars but also
the implementation of a central TMS. This would require a new architecture
for real­time data collection, processing, and analysis. By incorporating
information from both the vehicles and the smart road infrastructure, the
system can achieve higher levels of efficiency and effectiveness in managing
traffic flows.

Emergency Response

The presence of professional first responder teams in emergency situations
is critical to saving lives and restoring essential services. Traditional first
responder teams consist of police, military, firefighters, and rescue units
from civil protection agencies. However, the use of CPSs swarms can greatly
enhance and facilitate emergency response activities. These CPS swarms,
including different types of robots such as all­terrain or flying robots [78, 325],
can work collaboratively with human teams, creating a heterogeneous, multi­
human CPS swarm. These mixed teams can effectively handle accidents at

120 Engineering Swarms of Cyber-Physical Systems

industrial or power plants, as well as environmental disasters such as wildfires,
floods, storms and earthquakes. CPS agents within the swarm have the
potential to navigate destroyed or inhospitable environments more efficiently
and safely than humans. They can collect multi­sensor data, coordinate with
human team members, focus on areas of interest like potential survivors,
remove obstacles, restore structures and save lives. In essence, a CPS swarm
can serve as a dynamic and distributed augmented sensor­actuator system,
providing invaluable support to human first responders in effectively and
efficiently conducting their missions.

Joint teaming with CPS swarms is feasible under several conditions:
(i) Each individual swarm member can operate under local rules and is
independent of the fixed infrastructure. (ii) The infrastructure is often
disrupted, with blocked or unstable paths, making it a dynamic environment.
(iii) Individual information can be exchanged between swarm members, other
swarms and local control stations. (iv) A dynamic ad­hoc communication
infrastructure is established to replace the pre­existing infrastructure that may
no longer be available. This allows for intra­ and inter­swarm communication,
as well as communication between the swarm and control centers. (v) High­
level decision making can be done in the control centers, balancing local
autonomy with system­level decision making. (vi) Swarm members and human
teammates can interact and exchange information transparently at the local
level. (vii) Cooperative and collaborative behaviors are encouraged at the
individual level to enable effective behaviors to emerge at the global level.

To effectively deploy mixed teams (heterogeneous swarms) in real­world
scenarios, substantial progress is still needed, particularly in autonomous
decision­making, data exchange and fusion, and operation in complex and
unexplored environments. Research efforts are underway to address these
challenges in heterogeneous swarms, such as those involving drones and ground
rovers working together to provide first aid or guide victims to emergency
exits. For example, Saez­Pons et al. [319] developed an autonomous robot
swarm for SAR applications. They used social potential fields to generate
formations and navigate while maintaining them. Although several other
projects in this area [80, 238, 372], none have yet produced applicable results
for real­world missions. The design and deployment of a heterogeneous swarm
for such missions involve various open questions, including determining the
number, type, and initial location of robots [71].

In the context of human interaction in mixed teams, it is essential to design
intuitive and seamless methods for multimodal dialogue and data exchange
between humans and CPS. This requires developing user­friendly interfaces
and controls [148, 314, 216, 92]. Infrastructure, including communication
networks, is often destroyed in emergency response applications, such as post­
earthquake scenarios. Therefore, new relaying concepts are needed to enable
the CPS swarm to create its own communication network. For example,
Hauert et al. [156] developed a swarm of autonomous micro aerial vehicles
capable of deploying and managing an ad­hoc Wi­Fi network. Furthermore,
the highly coordinated and collaborative nature of the swarm members is

121 Open Challenges and Outlook

crucial in the disrupted environment. This coordination can be achieved by
exchanging status updates or, if bandwidth permits, by sharing complete
images and detected points of interest. It is important to develop compact
image processing algorithms that align with local processing capabilities.

Environmental Monitoring

Monitoring Earth’s threatened ecosystems is an emerging application for
large­scale autonomous CPS swarms. These swarms can function as active
sensor networks that adapt based on previously collected and assessed habitat
data. This enables monitoring points of interest with greater accuracy,
achieved by increasing the density of CPSs or improving the frequency of
measurements at specific locations.

Supporting environmental monitoring through CPS swarms is feasible
due to several factors: (i) Each individual swarm member operates under
local rules, facilitating autonomous behavior. (ii) Information exchange occurs
between CPSs to determine new collective behaviors. (iii) The natural
environment being monitored is generally unknown and subject to dynamic
and unpredictable events. (iv) Environment monitoring is intended to avoid
disruption from external intruders, emphasizing the need for a high degree
of autonomy. (v) Cooperation among individual swarm members leads to
emergent behavior, enabling achieving monitoring objectives.

Swarms are well suited to operate in unexpected environments and
can compensate for the loss or failure of swarm members. Therefore, this
technology is an ideal candidate for long­term autonomous operation [83]
during unpredictable events in unknown environments. For environmental
monitoring, lightweight and efficient communication protocols between
CPS [331] are especially appropriate. Excessive communication can disrupt
the natural communication network of the ecosystem. Minimizing CPS
communication and actions preserves the undisturbed nature of the
environment, making it easier to analyze authentic natural behavior and
processes. Therefore, adopting a principle such as “act only when necessary,
but do so intelligently and gently” aligns with the behavioral optimization
found in natural organisms. In addition, light and efficient communication
protocols contribute to energy conservation. Since these swarms are typically
deployed for months or even years to monitor ecosystems, smart energy
consumption must align with the observation time.

A CPS swarm designed for environmental monitoring can consist of
actively moving agents, allowing them to perform a crucial task at the
termination of the monitoring process: Self­removal of the swarm from
ecosystems in an environmentally friendly and sustainable manner, ensuring
no harm is done. Several research projects are known to have successfully
used real robots for environmental monitoring, including subCULTron [380],
CORATAM [94], and CoCoRo [330].

122 Engineering Swarms of Cyber-Physical Systems

Electric Energy Grids

Electric energy grids are highly complex interconnected systems and, there-
fore, prime candidates for swarm­based solutions. Venayagamoorthy [393]
identifies several application areas where computational intelligence can be
used in electric power grids, such as algorithms for energy and power flow
management, voltage and reactive power control, dynamic load forecasting,
and vehicle­to­grid integration. Although swarm algorithms are not explicitly
mentioned as examples, many of these coordination tasks might benefit
from swarm intelligence approaches. In addition to using swarm­based
optimization algorithms such as PSO, there are approaches that directly
model a portion of the electric power grid as a swarm. For example,
Elmenreich et al. [102] present an example of coordinating homes in a
neighborhood using a swarm­like approach to demand management. This
approach uses geographic proximity to ensure fairness among consumers
in the neighborhood. Steber et al. [364] describe a virtual mass storage
system consisting of distributed battery energy storage units installed in
homes with rooftop photovoltaic systems. Another example is the SmartGRID
concept presented in Huang et al. [173], which proposes a decentralized and
interoperable grid scheduling framework using a swarm­intelligent approach.
Ramachandran et al. [304] proposes a hybrid swarm­immune­based auction
system to coordinate generation and consumption in a smart microgrid. Black
electrification using microgrids is another application that integrates small
off­grid systems into an interconnected microgrid, as discussed in Kirchhoff et
al. [205]. This approach, known as black­based electrification, is particularly
relevant for rural, underdeveloped areas [220, 260].

The consideration of using CPS swarms to model electric power networks is
compelling for several reasons: (i) The increasing use of distributed renewable
energy sources is leading to more decentralized systems. (ii) Renewable
energy sources such as solar PV and wind power cannot easily adjust their
output to meet higher demand, making centralized control challenging. (iii)
Electrification of transportation leads to increased electricity consumption
by numerous individual consumers. These factors require a transition from
centralized control of a few manageable power plants to a self­organized,
swarm­like system in which generators, storage, and consumers interconnect
in a distributed manner.

Practical deployment of CPS swarm models in real power grids requires
significant research progress. Given the critical nature of electric power grids
as essential infrastructure, validation and testing of such systems prior to
deployment is a frequent requirement and an open question with respect
to the current state of the art. Without validation and testing before
deployment, implementing new control strategies, even in a small part of
the system, can cause oscillations and affect the stability of the overall
system [141]. Addressing this challenge may involve simulation at a granularity
and accuracy so that the reality gap is neglicible [257] or the application of
CPS swarm models within smart microgrids [357]. Smart microgrids provide

123 Open Challenges and Outlook

an environment large enough to benefit from a swarm­based approach while
being isolated from the national grid, reducing potential risks.

Space Missions

Space missions offer tempting opportunities to use swarm­based CPS
approaches. One compelling application is the inspection of communication
satellites, where swarms can be used to assess hull damage and ensure
optimal performance. In addition, coordinated swarms can be instrumental in
addressing the space debris issue by performing disposal operations. Another
interesting concept involves using a cluster of reflective spheres to measure
the gravitational force of asteroids in our solar system. These missions involve
exploring water, raw materials, and potential life on planets and exoplanets,
which serve as potential precursors to human colonization efforts.

Key features required for these missions include low­cost performance
and fault tolerance, which can be achieved by using large CPS swarms that
operate autonomously in unknown environments [368]. Establishing reliable
communication channels to relay the data collected by the swarm back to
Earth is crucial. For example, the Marsbees concept [219] envisages using
the Mars rover as a base and recharging station for these autonomous
CPS swarms. The Japan Aerospace Exploration Agency is taking this idea
further by envisaging swarms of autonomous machines to prepare the ground,
excavate and build facilities for astronauts on the Moon and Mars [419].
The first real­world tests were related to networking and communication in
different spheres including Nodes [51], Proba­3 [291], and KickSat [204].

The feasibility of using CPS swarms for such visionary applications stems
from several factors: (i) Each individual CPS operates based on local rules,
which allows for autonomous behavior. (ii) Local information is exchanged
between the CPS and stations on Earth, potentially using relay stations
in planetary orbits. (iii) These deployment scenarios involve dynamic and
unknown environments with no prior knowledge of the infrastructure. (iv)
Centralized control is impractical due to the significant time delays between
swarm operation and human intervention. (v) Successful achievement of
mission objectives requires effective cooperation between individual swarm
members.

Currently, the above missions still rely heavily on costly ground control
for their operations. However, the ultimate vision is establishing autonomous
satellite formations, as human intervention causes communication delays and
associated costs. Formations are closely linked to the motion of spacecraft,
which is influenced by factors such as gravity, solar radiation pressure, and
atmospheric drag, causing deviations from the motion patterns observed
on Earth [77]. The development of motion models becomes crucial for the
guidance, navigation, and control of these formations. When direct exploration
of planetary surfaces becomes feasible, autonomous swarms can be used.
However, challenges remain related to transportation to the planet, launch
procedures, navigation, ground surveying, and data retrieval. Factors such as

124 Engineering Swarms of Cyber-Physical Systems

planet­specific temperatures, ground conditions, and gravity must be carefully
considered during these operations.

Medical Applications

The field of medicine has shown a growing interest in using swarms to solve
complex problems, such as cancer treatment. In healthcare, nanoparticles are
important because they can leak out of blood vessels and go to their target
sites. Nanoparticles play a key role in healthcare as they can penetrate blood
vessels and target specific sites in the body. Although these particles are too
small to be individually programmed, they can be prepared for swarm­based
applications by changes to their coating, charge, or size. Suppose a group of
nanoparticles exhibits swarming behavior. In that case, they have the potential
to navigate to target cancer cells, carry a healing coating, be activated by
external stimuli, and effectively destroy target tissues. Unlike other drugs
that are dispersed throughout tissues, a swarm of nanoparticles has greater
intelligence and can target diseased tissue more precisely.

Several factors support the use of nanoparticle swarms in medical
applications: (i) Each individual nanoparticle operates based on local rules,
which allows for autonomous behavior. (ii) Local information is exchanged
between nanoparticles and possibly with an external monitoring station
outside the body. (iii) In such scenarios, there is no existing infrastructure. (iv)
The environment is a human or animal body, which is partly unknown and
highly dynamic. (v) Achieving the desired goals requires cooperation between
individual nanoparticles, leading to emergent behavior.

However, some fundamental questions remain unanswered when it comes
to designing a swarm of nanoparticles for cancer therapy. For example, how to
establish communication between individual swarm members, between swarm
members and the environment, and between the swarm and the outside
world? In addition, the implementation of swarm characteristics related to
complexity, local intelligence, and local processing poses challenges. The
swarm system must be simple, reconfigurable, cost­effective, scalable, and
verifiable. Addressing these issues could provide insights into implementing
more complex tasks such as optimization, computation, decision­making,
construction, self­assembly, and collective movement within the swarm.

This vision of cancer treatment based on nanoparticle swarms is still in
its early stages. However, it raises the question of whether other medical
applications could be realized by injecting the swarm into the human
body. Further research is needed to fully understand the possibilities and
implications of this exciting medical frontier.

Human Networks

Human organizations and social networks, powered by Web 2.0 (defined as
the transition from static websites to dynamic user­generated content and
social media), represent collective systems. The swarm­like nature of social

125 Open Challenges and Outlook

networks becomes apparent when a large number of individuals interact and
communicate locally, shaping global behavioral patterns such as online trends
and the popularization of products or ideas.

In this context, swarm intelligence methodologies can be applied to study
such systems from a swarm point of view. Human networks communicating
over the Internet come with the advantage to provdie vast amount of
available online data sources. Analytical prediction and evaluation through
simulation can help to predict and potentially control the behavior of other
complex systems. Furthermore, swarm intelligence could find a direct practical
application within human networks in two main ways: As an integral part of
the network itself and as a physical service that can be used, traded, and
negotiated by the network. We already use different types of digital assistants
like Alexa [299], Siri [16], Cortana [166]) in our daily lives, which can be
seen as some of the most advanced examples of CPSs in the real world.
They communicate with people via text or speech, have full connectivity,
are often mobile, perform computations to facilitate precise interactions with
people, and exhibit proactive behavior such as suggesting or reminding tasks.
With continuous advances, these digital assistants are becoming increasingly
autonomous and capable of decision­making, adaptation, and lifelong learning.
In the future, we can envisage the delegation of many tasks to these digital
partners, allowing them to work on our behalf 24/7. When we reach this
stage, the digital ‘society of us’ will parallel our physical society, among other
things, performing information searches, making connections, and engaging
in commerce.

The CPS swarm approach provides a framework for managing large­
scale systems consisting of billions of agents. This approach offers several
advantages: (i) Agents in a swarm act autonomously and are guided by a
set of behavioral rules that reflect the personality traits and preferences of
their human counterparts. (ii) Agents cooperate locally based on the concepts
of a dynamic social neighborhood, while exchanging and sharing global
information. (iii) The environments in which agents operate, including the
emerging Web 3.0 and the physical world, which are highly dynamic, difficult
to predict, and inherently parallel and distributed. (iv) Digital assistants,
a form of CPS swarm, are designed to provide services based on gathered
information. In a swarm of digital assistants, there is a constant exchange of
information, searching, negotiation and trading between members. (v) Each
agent in the swarm is inherently selfish and represents the preferences of its
human double. However, with appropriate rules of interaction, socially aware
patterns can emerge globally.

There are many practical applications for CPS swarms of digital assistants.
For example, with appropriate consent and privacy protection, the continuous
exchange of information between digital assistants can enable the tracking
of physical locations. This capability could play a key role in scenarios
such as epidemic tracking, where potential exposures can be identified and
containment measures automatically implemented. In emergency situations,
swarm assistants can take advantage of real­time information sharing to guide

126 Engineering Swarms of Cyber-Physical Systems

the safe escape of individuals in a crowd, allowing for the emergence of
a collective escape plan. Another possible application is coming from the
circulation of fake news on social networks that presents a serious problem.
Cooperation between different web miners working for different entities is
often limited, which hinders the collection of comprehensive information and
effective inference. Using a collaborative CPS swarm, a large amount of
information can be collected in parallel, shared among members, and used
for coordinated analysis and inference, allowing for more effective detection
of fake news. Looking to the future, CPS swarms of digital assistants could
work together to find, negotiate and trade with other CPS swarms operating
directly in the physical world. This multi­level interaction between CPS
swarms opens up new possibilities for service provision and the resolution of
complex tasks. In addition, sensing as a service is a growing business approach
in IoT, where users pay for data collected by specific sensors. This concept can
be extended to swarms of CPSs, allowing them to offer sensing and actuation
services in different locations. Members of the digital swarm can then find and
negotiate the use and cost of available CPS resources for specific tasks, sharing
experiences and collaborating with each other. This creates a complex society
of CPS swarms interacting at multiple levels. Blockchain technology, known
for its decentralized and distributed nature, will play a fundamental role in
enabling secure transactions and building trust between swarm members.

In summary, CPS swarm approaches provide a powerful framework for
managing large­scale systems, and digital assistants serve as conspicuous
examples of CPS swarms. The potential applications of CPS swarms are
diverse, ranging from tracking epidemics and responding to emergencies, to
combating fake news and creating complex societies of interacting swarms.

7.2.3 Research Challenges

As swarm intelligence is still a relatively young topic, several crucial open
research questions remain. In the previous subsections, we discussed domain­
specific topics related to specific innovative applications. However, it is
essential to note that many other application­specific research questions
are not mentioned here. These issues are highly dependent on the specific
context of the application. Additionally, there are general themes in swarm
systems that are independent of the domain or application. We will use
the example of CPS swarms to illustrate these themes. A swarm of
CPSs faces several requirements that need to be addressed. These include
designing, programming, and implementing highly distributed and connected
digital technologies embedded in a wide range of devices. In addition,
designing increasingly autonomous physical systems with diverse dynamics is
challenging while meeting several critical constraints. In addition, addressing
systems of systems with a high degree of autonomy is key to ensure scalability,
adaptability, robustness, complexity management, safety, and security, and
establishing trust between people and swarms. In order to provide an overview
of open research topics in swarm systems, we group general topics into the

127 Open Challenges and Outlook

following categories. It is important to note that these categories address only
a subset of the general topics, as a discussion of all the underlying details
would be beyond the scope of this book.

Modeling

Creating models from natural or other sources of inspiration is an important
topic in the research community. As mentioned in Section 7.2.1, many
untapped sources of inspiration can still be explored. This research area also
includes fine­tuning application­specific parameters for existing algorithms.
In addition, algorithmic topics cover scalability, degree of control, degree of
convergence, and the delicate balance between exploitation and exploration
[418]. Furthermore, combining different sources of inspiration can be used
to solve complex modern problems with self­organizing capabilities. The key
idea is to adapt the application­specific swarm intelligence algorithms to fit
the underlying problem definition.

Design

As swarms of CPS continue to proliferate in different application contexts
and experience increasing acceptance, the challenge of designing systems that
can efficiently achieve predefined goals while remaining flexible, reliable, and
adaptable to changing conditions is becoming increasingly daunting.

The design of the next generation CPS must address multiple broad
challenges, as described by Isaac et al. [67]. These challenges include:
(i) Integration of complex, heterogeneous large systems, (ii) Interaction
between people and systems, (iii) Dealing with uncertainty, (iv) Measuring
and validating system performance, (v) Enriching systems with learning
capabilities and (vi) System design.

From a fundamental point of view, individual theories provide formal
descriptions of different aspects of CPS design, covering physical, technical,
organizational, and human­system interaction aspects. However, these
disciplines are not fully integrated into a single system theory. In other
words, while methodologies, representations, and tools exist to address specific
aspects of CPS design, there is still an open challenge in providing support
for the complete design life cycle. In addition, a formal design methodology
must include a process that iteratively revisits and refines micro­level behavior
and bridges the gap between local and global behavior. Although Brambilla
et al. [45] describe behavior­based design and automated design methods for
CPS swarms, there is currently no implemented toolchain that can map these
design processes. One possible approach to address this gap is the CPSwarm
workbench [25], which integrates several tools to guide CPS swarm designers
through the entire lifecycle, covering the design, optimization, simulation, and
deployment phases.

128 Engineering Swarms of Cyber-Physical Systems

Validation and Verification

Verification and validation in CPS swarms cover a wide range of systems
and systems of systems, including hardware, software, information, processes,
personnel, and facilities. It is crucial to explore robust methodologies for
validating swarm behavior in CPSs. Whenever possible, it is important to
define detailed standardized KPIs, scenarios, test areas, and benchmarks to
ensure the reusability of measurement methodologies. The results obtained
from verification and validation activities should feed back into the design
specifications, model definitions, and validation.

Human in the Loop

Enabling human interactions with swarm systems [269, 210] offers many
advantages, as CPSs can leverage humans’ cognitive and sensory­motor
capabilities. In contrast, humans can use CPSs in closed­loop interactions
as augmented external sensor­actuator systems. Nevertheless, the design
and implementation of such mixed­initiative systems [182] present scientific
and technological challenges. These challenges encompass various aspects,
including the physical performance of two­way interactions (between single
CPSs or swarms of CPSs and humans), the presentation of the complex state
of the distributed CPS to humans, and the dissemination of information
or commands from humans to humans and CPS swarms. Considerable
research has been devoted to the development of bi­directional interaction and
dialogue interfaces and modalities, exploring the use of various multimodal
interfaces [148, 49, 270, 185] for proximal interaction with swarms.

However, allowing direct interaction of human operators within a swarm
system introduces new potential risks. The presence of humans can negatively
impact the security, safety, stability, and reliability of the system response if
they act irresponsibly or maliciously. These aspects have not received much
attention to date but will become major concerns in the near future, especially
with respect to security and privacy at all levels.

Bibliography

[1] Russ Abbott. Emergence explained: Abstractions: Getting epiphenom-
ena to do real work. Complexity, 12(1):13–26, October 2006.

[2] Faisul Arif Ahmad, Abd Rahman Ramli, Khairulmizam Samsudin, and
Shaiful Jahari Hashim. Optimization of power utilization in multimobile
robot foraging behavior inspired by honeybees system. The Scientific
World Journal, 2014, 2014.

[3] Ian F. Akyildiz, Josep M. Jornet, and Massimiliano Pierobon.
Nanonetworks: A new frontier in communications. Communications of
the ACM, 54(11):84–89, 2011.

[4] Ian F. Akyildiz, Massimiliano Pierobon, Sasitharan Balasubramaniam,
and Yevgeni Koucheryavy. The internet of bio­nano things. IEEE
Communications Magazine, 53(3):32–40, 2015.

[5] Sergey Alatartsev, Vera Mersheeva, Marcus Augustine, and Frank
Ortmeier. On optimizing a sequence of robotic tasks. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 217–223, 2013.

[6] R. McNeill Alexander. Gaits of mammals and turtles. Journal of the
Robotics Society of Japan, 11(3):314–319, 1993.

[7] Antonio Luca Alfeo, Eduardo Castello Ferrer, Yago Lizarribar Carrillo,
Arnaud Grignard, Luis Alonso Pastor, Dylan T. Sleeper, Mario G.C.A.
Cimino, Bruno Lepri, Gigliola Vaglini, Kent Larson, Marco Dorigo, and
Alex Sandy Pentland. Urban swarms: A new approach for autonomous
waste management. IEEE International Conference on Robotics and
Automation, 2019­May:4233–4240, 2019.

[8] Muhanad H Mohammed Alkilabi, Aparajit Narayan, and Elio Tuci.
Cooperative Object Transport With a Swarm of e­puck Robots:
Robustness and Scalability of Evolved Collective Strategies. Swarm
Intelligence, 11(3­4):185–209, 2017.

[9] Michael Allwright, Navneet Bhalla, Haitham El­faham, Anthony
Antoun, Carlo Pinciroli, and Marco Dorigo. Srocs: Leveraging stigmergy

130 Engineering Swarms of Cyber-Physical Systems

on a multi­robot construction platform for unknown environments.
In Swarm Intelligence: 9th International Conference, ANTS 2014,
Brussels, Belgium, September 10­12, 2014. Proceedings 9, pages 158–
169. Springer, 2014.

[10] Lee Altenberg. Advances in genetic programming. In Kenneth E.
Kinnear, Jr., editor, The Evolution of Evolvability in Genetic
Programming, chapter 3, pages 47–74. MIT Press, Cambridge, MA,
USA, 1994.

[11] Arash Sadeghi Amjadi, Mohsen Raoufi, Ali Emre Turgut, George
Broughton, Tomáš Krajńık, and Farshad Arvin. Cooperative pollution
source exploration and cleanup with a bio­inspired swarm robot
aggregation. In International Conference on Collaborative Computing:
Networking, Applications and Worksharing, pages 469–481. Springer,
2020.

[12] Jeffrey G Andrews, Stefano Buzzi, Wan Choi, Stephen V Hanly, Angel
Lozano, Anthony CK Soong, and Jianzhong Charlie Zhang. What will
5g be? IEEE Journal on Selected Areas in Communications, 32(6):1065–
1082, 2014.

[13] Gianluca Antonelli, Filippo Arrichiello, and Stefano Chiaverini.
Flocking for multi­robot systems via the null­space­based behavioral
control. Swarm Intelligence, 4(1):1–37, 2009.

[14] Miguel Aranda, Gonzalo López­Nicolás, Carlos Sagüés, and Youcef
Mezouar. Formation control of mobile robots using multiple aerial
cameras. IEEE Transactions on Robotics, 31(4):1064–1071, 2015.

[15] Vincent Arnould, Laurent Balmelli, Ian Bailey, James Baker, Cory
Bialowas, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray
Cantor, Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis,
Marilyn Escue, Sanford Friedenthal, Eran Gery, Hal Hamilton, Dwayne
Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low, Robert
Long, Kumar Marimuthu, Alan Moore, Véronique Normand, Salah
Obeid, Eldad Palachi, David Price, Bran Selic, Chris Sibbald, Joseph
Skipper, Rick Steiner, Robert Thompson, Jim U’Ren, Tim Weilkiens,
Thomas Weigert, and Brian Willard. Systems modeling language
(SysML) version 1.5. Standard, Object Management Group (OMG),
May 2017.

[16] Jacob Aron. How innovative is Apple’s new voice assistant, Siri? New

Scientist, 212(2836):24, 2011.

[17] Farshad Arvin, Jose Espinosa, Benjamin Bird, Andrew West, Simon
Watson, and Barry Lennox. Mona: An Affordable Open­source Mobile
Robot for Education and Research. Journal of Intelligent & Robotic
Systems, 94(3­4):761–775, 2019.

Bibliography 131

[18] Farshad Arvin, Tomáš Krajńık, Ali Emre Turgut, and Shigang Yue.
COSΦ: artificial pheromone system for robotic swarms research. In
IEEE/RSJ international conference on intelligent robots and systems
(IROS), pages 407–412, 2015.

[19] Farshad Arvin, John Murray, Chun Zhang, and Shigang Yue. Colias:
An Autonomous Micro Robot for Swarm Robotic Applications.
International Journal of Advanced Robotic Systems, 11(7):113, 2014.

[20] Farshad Arvin, Khairulmizam Samsudin, and Abdul Rahman Ramli.
Development of a Miniature Robot for SwarmRobotic Application.
International Journal of Computer and Electrical Engineering, 1(4):436,
2009.

[21] Farshad Arvin, Khairulmizam Samsudin, Abdul Rahman Ramli, and
Masoud Bekravi. Imitation of Honeybee Aggregation with Collective
Behavior of Swarm Robots. International Journal of Computational
Intelligence Systems, 4(4):739–748, 2011.

[22] Farshad Arvin, Ali Emre Turgut, Farhad Bazyari, Kutluk Bilge Arikan,
Nicola Bellotto, and Shigang Yue. Cue­based aggregation with a
mobile robot swarm: A novel fuzzy­based method. Adaptive Behavior,
22(3):189–206, 2014.

[23] Farshad Arvin, Ali Emre Turgut, Tomáš Krajńık, Salar Rahimi,
Ilkin Ege Okay, Shigang Yue, Simon Watson, and Barry Lennox. ϕclust:
Pheromone­based aggregation for robotic swarms. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 4288–4294. IEEE, 2018.

[24] Farshad Arvin, Simon Watson, Ali Emre Turgut, Jose Espinosa, Tomáš
Krajńık, and Barry Lennox. Perpetual Robot Swarm: Long­term
Autonomy of Mobile Robots Using on­the­fly Inductive Charging.
Journal of Intelligent & Robotic Systems, pages 1–18, 2017.

[25] Alessandra Bagnato, Regina Krisztina B́ıró, Dario Bonino, Claudio
Pastrone, Wilfried Elmenreich, René Reiners, Melanie Schranz, and
Edin Arnautovic. Designing swarms of cyber­physical systems: The
H2020 CPSwarm project. In Proceedings of the Computing Frontiers
Conference, pages 305–312, 2017.

[26] Mazen Bahaidarah, Fatemeh Rekabi Bana, Ali Emre Turgut, Ognjen
Marjanovic, and Farshad Arvin. Optimization of a self­organized
collective motion in a robotic swarm. In International Conference on
Swarm Intelligence, pages 341–349. Springer, 2022.

[27] Mazen Bahaidarah, Ognjen Marjanovic, Fatemeh Rekabi­Bana, and
Farshad Arvin. An optimised robot swarm flocking with genetic
algorithm. In Proceedings of the IEEE International Conference on
Mechatronics and Automation, pages 1823–1828, 2023.

132 Engineering Swarms of Cyber-Physical Systems

[28] Mazen Bahaidarah, Fatemeh Rekabi­Bana, Ognjen Marjanovic, and
Farshad Arvin. Swarm flocking using optimisation for a self­organised
collective motion. Swarm and Evolutionary Computation, page 101491,
2024.

[29] Zhe Ban, Junyan Hu, Barry Lennox, and Farshad Arvin. Self­organised
collision­free flocking mechanism in heterogeneous robot swarms. Mobile
Networks and Applications, pages 1–11, 2021.

[30] Cyrill Baumann and Alcherio Martinoli. A modular functional
framework for the design and evaluation of multi­robot navigation.
Robotics and Autonomous Systems, 144:103849, 2021.

[31] Levent Bayindir. A review of swarm robotics tasks. Neurocomputing,
172:292–321, 2016.

[32] Levent Bayindir and Erol Şahin. A review of studies in swarm
robotics. Turkish Journal of Electrical Engineering & Computer
Sciences, 15(2):115–147, 2007.

[33] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic
systems. In Proceedings of the NATO Advanced Workshop on Robots
and Biological Systems, pages 703–712, 1989.

[34] Amel Bennaceur, Carlo Ghezzi, Kenji Tei, Timo Kehrer, Danny Weyns,
Radu Calinescu, Schahram Dustdar, Zhenjiang Hu, Shinichi Honiden,
Fuyuki Ishikawa, Zhi Jin, Jeffrey Kramer, Marin Litoiu, Michele Loreti,
Gabriel Moreno, Hausi Muller, Laura Nenzi, Bashar Nuseibeh, Liliana
Pasquale, Wolfgang Reisig, Heinz Schmidt, Christos Tsigkanos, and
Haiyan Zhao. Modelling and analysing resilient cyber­physical systems.
In Proceedings of the International Symposium on Software Engineering
for Adaptive and Self­Managing Systems, pages 70–76. IEEE, 2019.

[35] S Binitha, S Siva Sathya, et al. A Survey of Bio Inspired Optimization
Algorithms. International Journal of Soft Computing and Engineering,
2(2):137–151, 2012.

[36] Christian Blum and Xiaodong Li. Swarm Intelligence in Optimization.
In Christian Blum and Daniel Merkle, editors, Swarm Intelligence:
Introduction and Applications. Springer, 2008.

[37] Michael Bodi, Ronald Thenius, Martina Szopek, Thomas Schmickl, and
Karl Crailsheim. Interaction of robot swarms using the honeybee­
inspired control algorithm beeclust. Mathematical and Computer
Modelling of Dynamical Systems, 18(1):87–100, 2012.

[38] Eric Bonabeau. Editor’s introduction: stigmergy. Artificial Life,
5(2):95–96, 1999.

Bibliography 133

[39] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. Oxford university press, 1999.

[40] Eric Bonabeau and Christopher Meyer. Swarm intelligence: A whole
new way to think about business. Harvard Business Review, 79(5):106–
115, 2001.

[41] Tilman Börgers. An Introduction to the Theory of Mechanism Design.
Oxford University Press, 2015.

[42] Terry Bossomaier, Lionel Barnett, and Michael Harré. Information and
phase transitions in socio­economic systems. Complex Adaptive Systems
Modeling, 1(1):9, 2013.

[43] Laszlo Böszörmenyi, Manfred del Fabro, Marian Kogler, Mathias Lux,
O. Marques, and Anita Sobe. Innovative Directions in Self­organized
Distributed Multimedia Systems. Multimedia Tools and Applications,
Springer, 51(2):525–553, 2011.

¨ [44] Ali Onder Bozdoğan, Asım Egemen Yilmaz, and Murat Efa.
Performance analysis of swarm optimization approaches for the
generalized assignment problem in multi­target tracking applications.
Turkish Journal of Electrical Engineering and Computer Sciences,
18(6):1059–1078, 2010.

[45] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco
Dorigo. Swarm robotics: A review from the swarm engineering
perspective. Swarm Intelligence, 7(1):1–41, 2013.

[46] David Brandt, David Johan Christensen, and Henrik Hautop Lund.
ATRON robots: Versatility from Self­reconfigurable Modules. In
Proceedings of the International Conference on Mechatronics and
Automation, pages 26–32, 2007.

[47] Kyle Brown, Oriana Peltzer, Martin A Sehr, Mac Schwager, and Mykel J
Kochenderfer. Optimal sequential task assignment and path finding
for multi­agent robotic assembly planning. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 441–447. IEEE,
2020.

[48] Arne Brutschy, Giovanni Pini, Carlo Pinciroli, Mauro Birattari,
and Marco Dorigo. Self­organized task allocation to sequentially
interdependent tasks in swarm robotics. Autonomous agents and multi­
agent systems, 28(1):101–125, 2014.

[49] Jonathan Cacace, Riccardo Caccavale, Alberto Finzi, and Vincenzo
Lippiello. Attentional multimodal interface for multi­drone search in the
alps. In Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, pages 1178–1183, 2016.

134 Engineering Swarms of Cyber-Physical Systems

[50] Guowei Cai, Jorge Dias, and Lakmal Seneviratne. A Survey of
Small­Scale Unmanned Aerial Vehicles: Recent Advances and Future
Development Trends. Unmanned Systems, 2(2):175–199, 2014.

[51] Sonja Caldwell. Nodes – network & operation demonstration satel-
lite. https://www.nasa.gov/centers/ames/engineering/projects/
nodes.html, 2015. [Online; accessed 9­July­2019].

[52] Scott Camazine. Self­organization in biological systems. Princeton
University Press, 2003.

[53] Scott Camazine, Nigel R. Franks, James Sneyd, Eric Bonabeau, Jean­
Louis Deneubourg, and Guy Theraula. Self­Organization in Biological
Systems. Princeton University Press, 2001.

´ [54] Alexandre Campo, Alvaro Gutiérrez, Shervin Nouyan, Carlo Pinciroli,
Valentin Longchamp, Simon Garnier, and Marco Dorigo. Artificial
pheromone for path selection by a foraging swarm of robots. Biological
Cybernetics, 103(5):339–352, 2010.

[55] Gilles Caprari, Patrick Balmer, Ralph Piguet, and Roland Siegwart.
The Autonomous Micro Robot “Alice”: A Platform for Scientific
and Commercial Applications. In Proceedings of the International
Symposium on Micromechatronics and Human Science.­Creation of New
Industry­(Cat. No. 98TH8388), pages 231–235. IEEE, 1998.

[56] Stefano Carpin, Mike Lewis, Jijun Wang, Stephen Balakirsky, and Chris
Scrapper. Usarsim: a robot simulator for research and education.
In Proceedings 2007 IEEE International Conference on Robotics and
Automation, pages 1400–1405. IEEE, 2007.

[57] Andres Castano, Alberto Behar, and Peter M Will. The Conro Modules
for Reconfigurable Robots. IEEE/ASME transactions on mechatronics,
7(4):403–409, 2002.

[58] Eduardo Castello, Tomoyuki Yamamoto, Fabio Dalla Libera, Wenguo
Liu, Alan F. T. Winfield, Yutaka Nakamura, and Hiroshi Ishiguro.
Adaptive foraging for simulated and real robotic swarms: The dynamical
response threshold approach. Swarm Intelligence, 10(1):1–31, 2016.

[59] Shanzhi Chen, Jinling Hu, Yan Shi, Ying Peng, Jiayi Fang, Rui Zhao,
and Li Zhao. Vehicle­to­everything (v2x) services supported by lte­based
systems and 5g. IEEE Communications Standards Magazine, 1(2):70–
76, 2017.

[60] Ahmad Reza Cheraghi, Karol Actun, Sahdia Shahzad, and Kalman
Graffi. Swarm­sim: A 2d & 3d simulation core for swarm agents. In
2020 3rd International Conference on Intelligent Robotic and Control
Engineering (IRCE), pages 1–10. IEEE, 2020.

https://www.nasa.gov/centers/ames/engineering/projects/nodes.html
https://www.nasa.gov/centers/ames/engineering/projects/nodes.html

Bibliography 135

[61] Chafika Chettaoui, Franck Delaplace, Pierre Lescanne, Mun’delanji
Vestergaard, and René Vestergaard. Rewriting game theory as a
foundation for state­based models of gene regulation. In International
Conference on Computational Methods in Systems Biology, pages 257–
270. Springer, 2006.

[62] Anders Lyhne Christensen, Sancho Oliveira, Octavian Postolache,
Maria João de Oliveira, Susana Sargento, Pedro Santana, Lúıs Nunes,
Fernando J. Velez, Pedro Sebastião, Vasco Costa, Miguel Duarte,
Jorge C. Gomes, Tiago Rodrigues, and Fernando Silva. Design of
Communication and Control for Swarms of Aquatic Surface Drones.
In Proceedings of the International Conference on Agents and Artificial
Intelligence, pages 548–555, 2015.

[63] Anders Lyhne Christensen, Rehan O’Grady, and Marco Dorigo. From
fireflies to fault­tolerant swarms of robots. Transactions on Evolutionary
Computation, 13(4):754–766, August 2009.

[64] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors. Handbook of model checking. Springer, 2016.

[65] Christopher W. Cleghorn. Particle Swarm Optimization: Empirical and
Theoretical Stability Analysis. PhD thesis, Department of Computer
Science, University of Pretoria, South­Africa, 2017.

[66] Christopher W. Cleghorn and Andries P. Engelbrecht. Particle swarm
variants: Standardized convergence analysis. Swarm Intelligence, 9(2–
3):177–203, 2015.

[67] Isaac Cohen, David Corman, Jim Davis, Himanshu Khurana, Pieter J.
Mosterman, and Stormo Lonny Prasad Venkatesh. Strategic
opportunities for 21st century cyber­physical systems. Technical report,
NSF, Steering Committee for Foundations in Innovation for Cyber­
Physical Systems, 2012.

[68] Steve Cook, Conrad Bock, Pete Rivett, Tom Rutt, Ed Seidewitz, Bran
Selic, and Doug Tolbert. Unified modeling language (UML) version
2.5.1. Standard, Object Management Group (OMG), December 2017.

[69] Nikolaus Correll and Alcherio Martinoli. Robust distributed coverage
using a swarm of miniature robots. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 379–384,
2007.

[70] Jorge Cortés and Magnus Egerstedt. Coordinated control of multi­robot
systems: A survey. SICE Journal of Control, Measurement, and System
Integration, 10(6):495–503, 2017.

136 Engineering Swarms of Cyber-Physical Systems

[71] Micael S. Couceiro, Carlos M. Figueiredo, David Portugal, Rui P. Rocha,
and Nuno M. F. Ferreira. Initial deployment of a robotic team -
a hierarchical approach under communication constraints verified on
low­cost platforms. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4614–4619, 2012.

[72] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In
Formal Models and Semantics, pages 193–242. Elsevier, 1990.

[73] Iain D Couzin, Jens Krause, Richard James, Graeme D Ruxton, and
Nigel R Franks. Collective memory and spatial sorting in animal groups.
Journal of theoretical biology, 218(1):1–11, 2002.

[74] Felipe Cucker and Cristián Huepe. Flocking with informed agents.
Mathematics in Action, 1(1):1–25, 2008.

[75] Renan da Silva Tchilian, Ubirajara Franco Moreno, and Mariana Netto.
Assisted teleoperation for a human­swarm interaction system. In 3rd
IFAC Workshop on Cyber­Physical & Human Systems CPHS, pages
602–607, 2020.

[76] Christopher Dabrowski. Catastrophic event phenomena in communica-
tion networks: A survey. Computer Science Review, 18:10–45, 2015.

[77] Simone D’Amico, Marco Pavone, Shailendhar Saraf, Abdulaziz
Alhussien, Turki Al­Saud, Sasha Buchman, Robert Byer, and Charbel
Farhat. Miniaturized autonomous distributed space system for future
science and exploration. In Proceedings of the International Workshop
on Satellite Constellations and Formation Flying, pages 1–20, 2015.

[78] Kai Daniel, Bjoern Dusza, Andreas Lewandowski, and Christian
Wietfeld. Airshield: A system­of­systems muav remote sensing
architecture for disaster response. In Proceedings of the 3rd Annual
IEEE Systems Conference, pages 196–200. IEEE, 2009.

[79] Christian Darabos, Mario Giacobini, and Marco Tomassini. Perfor-
mance and robustness of cellular automata computation on irregular
networks. Advances in Complex Systems, 10(supp01):85–110, 2007.

[80] Geert De Cubber, Daniela Doroftei, Daniel Serrano, Keshav Chinta-
mani, Rui Sabino, and Stephane Ourevitch. The EU­ICARUS project:
Developing assistive robotic tools for search and rescue operations. In
Proceedings of the IEEE International Symposium on Safety, Security,
and Rescue Robotics, pages 1–4, 2013.

[81] Kevin DeMarco, Eric Squires, Michael Day, and Charles Pippin.
Simulating collaborative robots in a massive multi­agent game
environment (scrimmage). In Distributed Autonomous Robotic Systems,
pages 283–297. Springer, 2019.

Bibliography 137

[82] Neel Dhanaraj, Nathan Hewitt, Casey Edmonds­Estes, Rachel Jarman,
J. Seo, Henry Gunner, Alexandra Hatfield, Tucker Johnson, Lunet
Yifru, Julietta Maffeo, Guilherme Pereira, Jason Gross, and Yu Gu.
Adaptable platform for interactive swarm robotics (APIS): A human­
swarm interaction research testbed. In Proceedings of the 19th
International Conference on Advanced Robotics, pages 720–726, 2019.

[83] Elisa Donati, Godfried J van Vuuren, Katsuaki Tanaka, Donato
Romano, Thomas Schmickl, and Cesare Stefanini. amussels: Diving
and anchoring in a new bio­inspired under­actuated robot class for
long­term environmental exploration and monitoring. In Proceedings of
the Conference Towards Autonomous Robotic Systems, pages 300–314.
Springer, 2017.

[84] Marco Dorigo and Mauro Birattari. Ant colony optimization. In
Encyclopedia of machine learning, pages 36–39. Springer, 2011.

[85] Marco Dorigo, Mauro Birattari, and Manuele Brambilla. Swarm
robotics. Scholarpedia, 9(1):1463, 2014.

[86] Marco Dorigo, Mauro Birattari, et al. Swarm intelligence. Scholarpedia,
2(9):1462, 2007.

[87] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony
optimization. IEEE computational intelligence magazine, 1(4):28–39,
2006.

[88] Marco Dorigo, Mauro Birattari, and Thomas Stützle. Ant colony opti-
mization: A computational intelligence technique. IEEE Computational
Intelligence Magazine, 1(4):28–39, 2006.

[89] Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco
Mondada, Stefano Nolfi, Tarek Baaboura, Mauro Birattari, Michael
Bonani, Manuele Brambilla, Arne Brutschy, et al. Swarmanoid: A
Novel Concept for the Study of Heterogeneous Robotic Swarms. IEEE
Robotics & Automation Magazine, 20(4):60–71, 2013.

[90] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. A
Bradford Book, The MIT Press, 2004.

[91] Marco Dorigo, Guy Theraulaz, and Vito Trianni. Reflections on the
future of swarm robotics. Science robotics, 5(49), December 2020.

[92] Barzin Doroodgar, Maurizio Ficocelli, Babak Mobedi, and Goldie Nejat.
The search for survivors: Cooperative human­robot interaction in search
and rescue environments using semi­autonomous robots. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 2858–2863, 2010.

138 Engineering Swarms of Cyber-Physical Systems

[93] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. In Conference
on robot learning, pages 1–16. PMLR, 2017.

[94] Miguel Duarte, Vasco Costa, Jorge Gomes, Tiago Rodrigues, Fernando
Silva, Sancho Moura Oliveira, and Anders Lyhne Christensen. Evolution
of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.
PloS one, 11(3):25, 2016.

[95] Frederick Ducatelle, Gianni A Di Caro, Alexander Förster, Michael
Bonani, Marco Dorigo, Stéphane Magnenat, Francesco Mondada, Rehan
O’Grady, Carlo Pinciroli, Philippe Rétornaz, et al. Cooperative
navigation in robotic swarms. Swarm Intelligence, 8(1):1–33, 2014.

[96] David Duff, Mark Yim, and Kimon Roufas. Evolution of Polybot: A
Modular Reconfigurable Robot. In Proceedings of the Harmonic Drive
Intelligent Symposium, 2001.

[97] Wilfried Elmenreich and Hermann de Meer. Self­organizing networked
systems for technical applications: A discussion on open issues. In
Proceedings of the 3rd International Workshop on Self­Organizing
Systems, pages 1–9. Springer, 2008.

[98] Wilfried Elmenreich, Raissa D’Souza, Christian Bettstetter, and
Hermann de Meer. A survey of models and design methods for self­
organizing networked systems. In Proceedings of the 4th International
Workshop on Self­Organizing Systems, volume LNCS 5918, page 37–49.
Springer, 2009.

[99] Wilfried Elmenreich, Tobias Ibounig, and Istvan Fehervari. Robustness
versus Performance in Sorting and Tournament Algorithms. Acta
Polytecnica, 6(5):7–18, 2009.

[100] Wilfried Elmenreich and Gernot Klingler. Genetic Evolution of a Neural
Network for the Autonomous Control of a Four­Wheeled Robot. In
Proceedings of the 6th Mexican International Conference on Artificial
Intelligence ­ Special Session (MICAI), pages 396–406, 2007.

[101] Wilfried Elmenreich, Alexander Schnabl, and Melanie Schranz. An
artificial hormone­based algorithm for production scheduling from the
bottom­up. In Proceedings of the 13th International Conference on
Agents and Artificial Intelligence. SciTePress, 2021.

[102] Wilfried Elmenreich and Stefan Schuster. Demand response by
decentralized device control based on voltage level. In Proceedings of
the 7th International Workshop on Self­Organizing Systems, pages 186–
189. Springer Verlag, 2013.

[103] Thomas Eltz. Tracing pollinator footprints on natural flowers. Journal
of Chemical Ecology, 32:907–915, 2006.

Bibliography 139

[104] Sebastian Engell, Radoslav Paulen, Michel A Reniers, Christian
Sonntag, and Haydn Thompson. Core research and innovation areas in
cyber­physical systems of systems. In Proceedings of the International
Workshop on Design, Modeling, and Evaluation of Cyber Physical
Systems, pages 40–55. Springer, 2015.

[105] Adam Erskine, Thomas Joyce, and J. Michael Herrmann. Stochastic
stability of particle swarm optimisation. Swarm Intelligence, 11(3):295–
315, 2017.

[106] Kasra Eshaghi, Yuchen Li, Zendai Kashino, Goldie Nejat, and Beno
Benhabib. mroberto 2.0 – an autonomous millirobot with enhanced
locomotion for swarm robotics. IEEE Robotics and Automation Letters,
5(2):962–969, 2020.

[107] Hadi Eskandar, Ali Sadollah, Ardeshir Bahreininejad, and Mohd Hamdi.
Water cycle algorithm – a novel metaheuristic optimization method for
solving constrained engineering optimization problems. Computers &
Structures, 110:151–166, 2012.

[108] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan. Distributed multi­
robot collision avoidance via deep reinforcement learning for navigation
in complex scenarios. The International Journal of Robotics Research,
39(7):856–892, 2020.

[109] Jolyon J Faria, John RG Dyer, Colin R Tosh, and Jens Krause.
Leadership and social information use in human crowds. Animal
Behaviour, 79(4):895 – 901, 2010.

[110] B. G. Farley and W. Clark. Simulation of self­organizing systems
by digital computer. Transactions of the IRE Professional Group on
Information Theory, 4(4):76–84, 1954.

[111] István Fehérvári and Wilfried Elmenreich. Evolving neural network
controllers for a team of self­organizing robots. Journal of Robotics,
2010.

[112] István Fehérvári and Wilfried Elmenreich. Evolution as a tool to design
self­organizing systems. In Proceedings of the IFIP 7th International
Workshop on Self­Organizing Systems, pages 139–144, 2013.

[113] Ouajdi Felfoul, Mahmood Mohammadi, Samira Taherkhani, Dominic
De Lanauze, Yong Zhong Xu, Dumitru Loghin, Sherief Essa, Sylwia
Jancik, Daniel Houle, Michel Lafleur, et al. Magneto­aerotactic bacteria
deliver drug­containing nanoliposomes to tumour hypoxic regions.
Nature Nanotechnology, 11(11), 7 p., 2016.

[114] Jean­Claude Fernandez, Laurent Mounier, and Cyril Pachon. A model­
based approach for robustness testing. In IFIP International Conference
on Testing of Communicating Systems, pages 333–348. Springer, 2005.

140 Engineering Swarms of Cyber-Physical Systems

[115] Eliseo Ferrante, Edgar Duéñez Guzmán, Ali Emre Turgut, and Tom
Wenseleers. Geswarm: Grammatical evolution for the automatic
synthesis of collective behaviors in swarm robotics. In Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation,
pages 17–24, 2013.

[116] Eliseo Ferrante, Ali Emre Turgut, Marco Dorigo, and Cristian Huepe.
Collective motion dynamics of active solids and active crystals. New
Journal of Physics, 15(9):095011, 2013.

[117] Eliseo Ferrante, Ali Emre Turgut, Marco Dorigo, and Cristián Huepe.
Elasticity­driven collective motion in active solids and active crystals.
arXiv preprint arXiv:1301.2620, 2013.

[118] Eliseo Ferrante, Ali Emre Turgut, Cristián Huepe, Alessandro Stranieri,
Carlo Pinciroli, and Marco Dorigo. Self­organized flocking with a mobile
robot swarm: a novel motion control method. Adaptive Behavior,
20(6):460–477, 2012.

[119] Eliseo Ferrante, Ali Emre Turgut, Alessandro Stranieri, Carlo Pinciroli,
Mauro Birattari, and Marco Dorigo. A self­adaptive communication
strategy for flocking in stationary and non­stationary environments:
complete data. Supplementary information http://iridia. ulb. ac.
be/supp/IridiaSupp2011­025/. Accessed, 6, 2013.

[120] Stanley Fields. Phermone response in yeast. Trends in Biochemical
Sciences, 15(7):270–273, 1990.

[121] Apache Flink. https://flink.apache.org/. [Online; accessed 8-
August­2024].

[122] Dario Floreano and Claudio Mattiussi. Bio­Inspired Artificial
Intelligence: Theories, Methods, and Technologies. MIT Press, 2008.

[123] National Science Foundation. Cyber Physical Systems. https://www.
nsf.gov/funding/pgm_summ.jsp?pims_id=503286. [Online; accessed
15­March­2018].

[124] Gianpiero Francesca, Manuele Brambilla, Arne Brutschy, Vito Trianni,
and Mauro Birattari. Automode: A novel approach to the automatic
design of control software for robot swarms. Swarm Intelligence,
8(2):89–112, 2014.

[125] Ryusuke Fujisawa, Shigeto Dobata, Ken Sugawara, and Fumitoshi
Matsuno. Designing pheromone communication in swarm robotics:
Group foraging behavior mediated by chemical substance. Swarm
Intelligence, 8(3):227–246, 2014.

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
http://iridia.ulb.ac.be/supp/IridiaSupp2011-025/
https://flink.apache.org/
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
http://iridia.ulb.ac.be/supp/IridiaSupp2011-025/

Bibliography 141

[126] David Furlonger. Swarm intelligence: From smart cars to smart
traffic, BusinessLIVE, August 2017. https://
www.businesslive.co.za/bd/life/motoring/ 2017-08-14-swarm-
intelligence-from-smart-cars-to-smart-traffic, 2017. [Online;
accessed 27­September­2019].

[127] Epic Games. Unity Technologies. Unity. Available at:
https://unity.com/de [Accessed: 26 March 2023].

[128] Epic Games. Unreal Engine. https://www.unrealengine.com/, 2024.
[Online; accessed 23­March­2023].

[129] X. Z. Gao, V. Govindasamy, H. Xu, K. Wang, and K. Zenger. Harmony
search method: Theory and applications. Computational Intelligence
and Neuroscience, 258491, April 2015.

[130] Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of
flowshop and jobshop scheduling. Mathematics of Operations Research,
1(2):117–129, 1976.

[131] Simon Garnier, Jacques Gautrais, and Guy Theraulaz. The biological
principles of swarm intelligence. Swarm Intelligence, 1(1):3–31, 2007.

[132] Simon Garnier, Christian Jost, Jacques Gautrais, Masoud Asadpour,
Gilles Caprari, Raphaël Jeanson, Anne Grimal, and Guy Theraulaz.
The Embodiment of Cockroach Aggregation Behavior in a Group of
Micro­robots. Artificial life, 14(4):387–408, 2008.

[133] Simon Garnier, Faben Tache, Maud Combe, Anne Grimal, and Guy
Theraulaz. Alice in pheromone land: An experimental setup for the
study of ant­like robots. In 2007 IEEE Swarm Intelligence Symposium,
pages 37–44. IEEE, 2007.

[134] Andrea Gasparri, Giuseppe Oriolo, Attilio Priolo, and Giovanni Ulivi.
A swarm aggregation algorithm for multi­robot systems based on local
interaction. In Proceedings of the IEEE International Conference on
Control Applications, pages 1497–1502, 2012.

[135] Alexander J. Gates and Luis M. Rocha. Control of complex networks
requires both structure and dynamics. Nature, Scientific Reports,
6(24456), 2016.

[136] Veysel Gazi and Kevin M. Passino. Stability analysis of social foraging
swarms. IEEE Transactions on Systems, Man, and Cybernetics: Part
B, 34(1):539–557, 2004.

[137] GCtronic Sagl. Elisa­3 robots ­ 38 units with obstacle avoidance. https:
//www.youtube.com/watch?v=WDxfIFhpm1g, 2014. [Online; accessed
30­January­2020].

http://www.businesslive.co.za/bd/life/motoring/2017-08-14-swarm-intelligence-from-smart-cars-to-smart-traffic
https://unity.com/de
https://www.unrealengine.com/
https://www.youtube.com/watch?v=WDxfIFhpm1g
http://www.businesslive.co.za/bd/life/motoring/2017-08-14-swarm-intelligence-from-smart-cars-to-smart-traffic
https://www.youtube.com/watch?v=WDxfIFhpm1g
http://www.businesslive.co.za/bd/life/motoring/2017-08-14-swarm-intelligence-from-smart-cars-to-smart-traffic

142 Engineering Swarms of Cyber-Physical Systems

[138] Hwaiu Geng, editor. Semiconductor Manufacturing Handbook. McGraw­
Hill Education, 2018.

[139] Edd Gent. Ever dream of controlling robot swarms?
This new virtual reality headset could help. Science,
2019. https://www.science.org/content/article/

ever-dream-controlling-robot-swarms-new-virtual-reality-

headset-could-help ,[Online; accessed 21­December­2023].

[140] Carlos Gershenson. Design and control of self­organizing systems. CopIt
Arxives, 2007.

[141] Mohammadreza Ghorbaniparvar. Survey on forced oscillations in power
system. Journal of Modern Power Systems and Clean Energy, 5:671–
682, June 2017.

[142] S. N. Givigi and H. M. Schwartz. A game theoretic approach to swarm
robotics. Applied Bionics and Biomechanics, 3(3):131–142, 2006.

[143] Alan Godoy, Pedro Tabacof, and Fernando J. Von Zuben. The role of
the interaction network in the emergence of diversity of behavior. PLoS
ONE, 12(2):e0172073, 2017.

[144] Jorge Gomes, Paulo Urbano, and Anders Lyhne Christensen. Evolution
of swarm robotics systems with novelty search. Swarm Intelligence,
7(2):115–144, 2013.

[145] David Green, Aldeida Aleti, and Julian Garcia. The nature of nature:
Why nature­inspired algorithms work. In Srikanta Patnaik, Xin­She
Yang, and Kazumi Nakamatsu, editors, Nature­Inspired Computing and
Optimization: Theory and Applications, pages 1–27. Springer, 2017.

[146] Calvin Gregory and Andrew Vardy. microUSV:A low­cost platform for
indoor marine swarm robotics research. HardwareX, 7:e00105, 2020.

[147] Kay S. Grennan, Chao Chen, Elliot S. Gershon, and Chunyu Liu.
Molecular network analysis enhances understanding of the biology of
mental disorders. Bioessays, 36(6):606–616, 2014.

[148] Boris Gromov, Luca Gambardella, and Gianni A. Di Caro. Wearable
multi­modal interface for human multi­robot interaction. In Proceedings
of the 14th IEEE International Symposium on Safety, Security, and
Rescue Robotics, pages 240–245, 2016.

[149] Roderich Groß, Michael Bonani, Francesco Mondada, and Marco
Dorigo. Autonomous Self­Assembly in Swarm­Bots. IEEE Transactions
on Robotics, 22(6):1115–1130, 2006.

[150] D. Grossman, I. S. Aranson, and E. Ben Jacob. Emergence of agent
swarm migration and vortex formation through inelastic collisions. New
Journal of Physics, 10(2):023036, 2008.

https://www.science.org/content/article/ever-dream-controlling-robot-swarms-new-virtual-reality-headset-could-help
https://www.science.org/content/article/ever-dream-controlling-robot-swarms-new-virtual-reality-headset-could-help
https://www.science.org/content/article/ever-dream-controlling-robot-swarms-new-virtual-reality-headset-could-help

Bibliography 143

[151] Chathika Gunaratne and Ivan Garibay. NL4Py: Agent­based modeling
in Python with parallelizable NetLogo workspaces. SoftwareX,
16:100801, 2021.

[152] Kexin Guo, Zhirong Qiu, Cunxiao Miao, Abdul Hanif Zaini, Chun­Lin
Chen, Wei Meng, and Lihua Xie. Ultra­wideband­based localization for
quadcopter navigation. Unmanned Systems, 4(01):23–34, 2016.

[153] Heiko Hamann. Swarm robotics: A formal approach. Springer, 2018.

[154] Kyle Robert Harrison, Andries P. Engelbrecht, and Beatrice M.
Ombuki­Berman. Self­adaptive particle swarm optimization: A review
and analysis of convergence. Swarm Intelligence, 12(3):187–226, 2018.

[155] Aboul Ella Hassanien and Eid Alamry. Swarm Intelligence: Principles,
Advances, and Applications. CRC Press, 2015.

[156] Sabine Hauert, Jean­Christophe Zufferey, and Dario Floreano. Evolved
swarming without positioning information: An application in aerial
communication relay. Autonomous Robots, 26(1):21–32, 2009.

[157] Apache HBase. https://hbase.apache.org/. [Online; accessed 8-
August­2024].

[158] Anni Heckert. Entwicklung eines dynamischen Modells und Parameter-
schätzung für den FINken 3 Quadkopter. Bachelor’s thesis, Fakultät für
Elektrotechnik und Informationstechnik, Otto­von­Guericke­Universitat
Magdeburg, 2016.

[159] Herianto and D. Kurabayashi. Realization of an artificial pheromone
system in random data carriers using rfid tags for autonomous
navigation. In 2009 IEEE International Conference on Robotics and
Automation, pages 2288–2293, May 2009.

[160] Francis Heylighen. The science of self­organization and adaptivity. The
Encyclopedia of Life Support Systems, 5(3):253–280, 2001.

[161] Francis Heylighen. Complexity and self­organization, 2008.

[162] Nicholas R. Hoff, Amelia Sagoff, Robert J. Wood, and Radhika
Nagpal. Two foraging algorithms for robot swarms using only local
communication. In Proceedings of the IEEE International Conference
on Robotics and Biomimetics, pages 123–130, 2010.

[163] John Henry Holland et al. Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control, and
artificial intelligence. MIT press, 1992.

[164] Richard Holzer and Hermann De Meer. On modeling of self­organizing
systems. In Proceedings of the 2nd International Conference on
Autonomic Computing and Communication Systems, pages 1–6, 2008.

https://hbase.apache.org/

144 Engineering Swarms of Cyber-Physical Systems

[165] Richard Holzer and Hermann De Meer. Quantitative modeling of self­
organizing properties. In International Workshop on Self­Organizing
Systems, pages 149–161. Springer, 2009.

[166] Matthew B Hoy. Alexa, siri, cortana, and more: An introduction to voice
assistants. Medical Reference Services Quarterly, 37(1):81–88, 2018.

[167] Allen Hsu, Huihua Zhao, Martin Gaudreault, Annjoe Wong Foy, and
Ron Pelrine. Magnetic milli­robot swarm platform: A safety barrier
certificate enabled, low­cost test bed. IEEE Robotics and Automation
Letters, 5(2):2913–2920, 2020.

[168] Junyan Hu, Parijat Bhowmick, Farshad Arvin, Alexander Lanzon, and
Barry Lennox. Cooperative control of heterogeneous connected vehicle
platoons: An adaptive leader­following approach. IEEE Robotics and
Automation Letters, 5(2):977–984, 2020.

[169] Junyan Hu, Parijat Bhowmick, Inmo Jang, Farshad Arvin, and
Alexander Lanzon. A decentralized cluster formation containment
framework for multirobot systems. IEEE Transactions on Robotics,
2021.

[170] Junyan Hu, Hanlin Niu, Joaquin Carrasco, Barry Lennox, and Farshad
Arvin. Voronoi­based multi­robot autonomous exploration in unknown
environments via deep reinforcement learning. IEEE Transactions on
Vehicular Technology, 69(12):14413–14423, 2020.

[171] Junyan Hu, Ali Emre Turgut, Tomáš Krajńık, Barry Lennox, and
Farshad Arvin. Occlusion­based coordination protocol design for
autonomous robotic shepherding tasks. IEEE Transactions on Cognitive
and Developmental Systems, 2020.

[172] Junyan Hu, Ali Emre Turgut, Barry Lennox, and Farshad Arvin. Robust
formation coordination of robot swarms with nonlinear dynamics and
unknown disturbances: Design and experiments. IEEE Transactions on
Circuits and Systems II: Express Briefs, 2021.

[173] Ye Huang, Amos Brocco, Pierre Kuonen, Michèle Courant, and
Béat Hirsbrunner. Smartgrid: A fully decentralized grid scheduling
framework supported by swarm intelligence. In Proceedings of the 7th
International Conference on Grid and Cooperative Computing, pages
160–168, 2008.

[174] Mimmo Iannelli and Andrea Pugliese. An Introduction to Mathematical
Population Dynamics: A long the trail of Volterra and Lotka. Springer,
2014.

[175] Infineon Technologies AG. https://www.infineon.com/. [Online;
accessed 22­March­2024].

https://www.infineon.com/

Bibliography 145

[176] Malek Itani, Tuochao Chen, Takuya Yoshioka, and Shyamnath
Gollakota. Creating speech zones with self­distributing acoustic swarms.
Nature Communications, 14(1):5684, 2023.

[177] Duncan E. Jackson and Francis L.W. Ratnieks. Communication in ants.
Current Biology, 16(15):R570 – R574, 2006.

[178] Inmo Jang, Junyan Hu, Farshad Arvin, Joaquin Carrasco, and Barry
Lennox. Omnipotent virtual giant for remote human–swarm interaction.
In 2021 30th IEEE International Conference on Robot & Human
Interactive Communication (RO­MAN), pages 488–494. IEEE, 2021.

[179] Fredrik Jansson, Matthew Hartley, Martin Hinsch, Ivica Slavkov, Noemı́
Carranza, Tjelvar SG Olsson, Roland M Dries, Johanna H Grönqvist,
Athanasius FM Marée, James Sharpe, et al. Kilombo: a kilobot
simulator to enable effective research in swarm robotics. arXiv preprint
arXiv:1511.04285, 2015.

[180] Midhat Jdeed, Arthur Pitman, and Wilfried Elmenreich. Spiderino ­ a
low cost robot for swarm research and educational purposes, technical
documentation. Technical report, Institute of Networked and Embedded
Systems, Alpen­Adria­Universität Klagenfurt, Austria, 2018.

[181] Midhat Jdeed, Sergii Zhevzhyk, Florian Steinkellner, and Wilfried
Elmenreich. Spiderino: A low­cost Robot for Swarm Research and
Educational Purposes. In Proceedings of the 13th Workshop on
Intelligent Solutions in Embedded Systems, pages 35–39, 2017.

[182] Shu Jiang and Ronald C Arkin. Mixed­initiative human­robot
interaction: Definition, taxonomy, and survey. In Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics,
pages 954–961, 2015.

[183] Yaochu Jin and Jurgen Branke. Evolutionary optimization in
uncertain environments­a survey. IEEE Transactions on Evolutionary
Computation, 9(3):303–317, 2005.

[184] Martin Jinek, Krzysztof Chylinski, Ines Fonfara, Michael Hauer,
Jennifer A. Doudna, and Emmanuelle Charpentier. A programmable
dual­RNA­guided DNA endonuclease in adaptive bacterial immunity.
Science, 337(6096):816–821, 2012.

[185] Geraint Jones, Nadia Berthouze, Roman Bielski, and Simon Julier.
Towards a situated, multimodal interface for multiple UAV control.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1739–1744, 2010.

[186] Simon Jones, Emma Milner, Mahesh Sooriyabandara, and Sabine
Hauert. Dots: An open testbed for industrial swarm robotic solutions.
arXiv preprint arXiv:2203.13809, 2022.

146 Engineering Swarms of Cyber-Physical Systems

[187] Simon Jones, Matthew Studley, Sabine Hauert, and Alan Frank Thomas
Winfield. A two Teraflop Swarm. Frontiers in Robotics and AI, 5:11,
2018.

[188] Visakan Kadirkamanathan, Kirusnapillai Selvarajah, and Peter J.
Fleming. Stability analysis of the particle dynamics in particle swarm
optimizer. IEEE Transactions on Evolutionary Computation, 10(3),
2006.

[189] Apache Kafka. https://kafka.apache.org. [Online; accessed 8-
August­2024].

[190] Fumio Kanehiro, Hirohisa Hirukawa, and Shuuji Kajita. Openhrp: Open
architecture humanoid robotics platform. The International Journal of
Robotics Research, 23(2):155–165, 2004.

[191] Minoru Kanehisa, Susumu Goto, Miho Furumichi, Mao Tanabe, and
Mika Hirakawa. KEGG for representation and analysis of molecular
networks involving diseases and drugs. Nucleic Acids Research,
38(suppl 1):D355–D360, 2010.

[192] Chang­Kwon Kang. Marsbee ­ Swarm of Flapping Wing Flyers for
Enhanced Mars Exploration. https://www.nasa.gov/directorates/
spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_
Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration, 2018.
[Online; accessed 05­September­2019].

[193] Akbar Karimi, Hadi Nobahari, and Patrick Siarry. Continuous
ant colony system and tabu search algorithms hybridized for global
minimization of continuous multi­minima functions. Computational
Optimization and Applications, 45(3):639–661, 2010.

[194] P. Karlson and M Lüscher. ‘Pheromones’: A New Term for a Class of
Biologically Active Substances. Nature, 183:55–56, 1959.

[195] Michael N. Katehakis and Arthur F. Veinott. The multi­armed bandit
problem: Decomposition and computation. Mathematics of Operations
Research, 12(2):262–268, 1987.

[196] Ali Kaveh and Neda Farhoudi. A new optimization method: Dolphin
echolocation. Advances in Engineering Software, 59:53–70, 2013.

[197] James Kennedy and Russell C. Eberhart. Particle swarm optimization.
In Proceedings of the IEEE International Conference on Neural
Networks, pages 1942–1948, 1995.

[198] Serge Kernbach, Dagmar Häbe, Olga Kernbach, Ronald Thenius,
Gerald Radspieler, Toshifumi Kimura, and Thomas Schmickl. Adaptive
Collective Decision­making in Limited Robot Swarms without Commu-
nication. The International Journal of Robotics Research, 32(1):35–55,
2013.

https://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration
https://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration
https://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration
https://kafka.apache.org

Bibliography 147

[199] Serge Kernbach, Eugen Meister, Florian Schlachter, Kristof Jebens,
Marc Szymanski, Jens Liedke, Davide Laneri, Lutz Winkler, Thomas
Schmickl, Ronald Thenius, et al. Symbiotic Robot Organisms:
REPLICATOR and SYMBRION Projects. In Proceedings of the 8th
Workshop on Performance Metrics for Intelligent Systems, pages 62–
69, 2008.

[200] Alexander Kettler. Cleaning up with a Swarm of Robots. https://
www.youtube.com/watch?v=FqMP_AIkDj8, 2012. [Online; accessed 05-
February­2020].

[201] Alexander Kettler, Marc Szymanski, and Heinz Wörn. The Wanda
Robot and its Development System for Swarm Algorithms. In Advances
in Autonomous Mini Robots, pages 133–146. Springer, 2012.

[202] Ali Abdul Khaliq and Alessandro Saffiotti. Stigmergy at work: Planning
and navigation for a service robot on an rfid floor. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages
1085–1092, May 2015.

[203] Elnaz Khatmi, Wilfried Elmenreich, Kristina Wogatai, Melanie Schranz,
Martina Umlauft, Walter Laure, and Andreas Wuttei. Swarm
intelligence layer to control autonomous agents (SWILT). In Proceedings
of the Research Project Showcase at Software Technologies: Applications
and Foundations (STAF­RPS19), 2019.

[204] Kicksat. Kicksat: A tiny open source spacecraft project. https://
kicksat.github.io/. [Online; accessed 9­July­2019].

[205] Hannes Kirchhoff, Noara Kebir, Kirsten Neumann, Peter W. Heller, and
Kai Strunz. Developing mutual success factors and their application to
swarm electrification: microgrids with 100 % renewable energies in the
Global South and Germany. Journal of Cleaner Production, 128:190–
200, 2016.

[206] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization
by simulated annealing. In Readings in Computer Vision, pages 606–
615. Elsevier, 1987.

[207] Zalan Kiszli, Seongin Na, and Farshad Arvin. Toward a Myriad Robot
Swarm Aggregation. In 7th International Conference on Control and
Robotics Engineering. IEEE, 2022.

[208] John Klingner, Anshul Kanakia, Nicholas Farrow, Dustin Reishus, and
Nikolaus Correll. A Stick­slip Omnidirectional Powertrain for low­
cost Swarm Robotics: Mechanism, Calibration, and Control. IEEE
International Conference on Intelligent Robots and Systems, pages 846–
851, 2014.

https://
https://kicksat.github.io
https://kicksat.github.io
www.youtube.com/watch?v=FqMP_AIkDj8

148 Engineering Swarms of Cyber-Physical Systems

[209] Nathan Koenig and Andrew Howard. Design and use paradigms for
gazebo, an open­source multi­robot simulator. In 2004 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS)(IEEE
Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

[210] Andreas Kolling, Phillip Walker, Nilanian Chakraborty, Katia Sycara,
and Michael Lewis. Human interaction with robot swarms: A survey.
IEEE Transactions on Human­Machine Systems, 46(1):9–26, 2016.

[211] Shigeru Kondo and Takashi Miura. Reaction­diffusion model as a
framework for understanding biological pattern formation. science,
329(5999):1616–1620, 2010.

[212] Tomáš Krajńık, Mat́ıas Nitsche, Jan Faigl, Petr Vaněk, Martin Saska,
Libor Přeučil, Tom Duckett, and Marta Mejail. A practical multirobot
localization system. Journal of Intelligent & Robotic Systems, 76(3-
4):539–562, 2014.

[213] Jens Krause, Graeme D Ruxton, and Stefan Krause. Swarm intelligence
in animals and humans. Trends in Ecology & Evolution, 25(1):28 – 34,
2010.

[214] Jonas Krause, Jelson Cordeiro, Rafael Stubs Parpinelli, and Heitor Sil-
verio Lopes. A Survey of Swarm Algorithms Applied to Discrete
Optimization. In Xin­She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein
Gandomi, and Mehmet Karamanoglu, editors, Swarm Intelligence and
Bio­Inspired Computation, pages 169–191. Elsevier, 2013.

[215] Stefan Krause, Richard James, Jolyon J Faria, Graeme D Ruxton, and
Jens Krause. Swarm intelligence in humans: Diversity can trump ability.
Animal Behaviour, 81(5):941 – 948, 2011.

[216] Geert­Jan M Kruijff, M Jańıček, Shanker Keshavdas, Benoit Larochelle,
Hendrik Zender, Nanja JJM Smets, Tina Mioch, Mark A Neerincx,
Jurriaan Van Diggelen, Francis Colas, et al. Experience in system design
for human­robot teaming in urban search and rescue. In Field and
Service Robotics, pages 111–125, 2014.

[217] Haruhisa Kurokawa, Akiya Kamimura, Eiichi Yoshida, Kohji Tomita,
Shigeru Kokaji, and Satoshi Murata. M­TRAN II: Metamorphosis from
a Four­legged Walker to a Caterpillar. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 3,
pages 2454–2459, 2003.

[218] Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, Shigeru Kokaji,
Takashi Hasuo, and Satoshi Murata. Distributed Self­reconfiguration of
M­TRAN III Modular Robotic System. The International Journal of
Robotics Research, 27(3­4):373–386, 2008.

Bibliography 149

[219] Chang kwon Kang. Marsbee: Swarm of flapping wing flyers for enhanced
Mars exploration. https://www.nasa.gov/directorates/spacetech/
niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_
Flyers_for_Enhanced_Mars_Exploration, 2018. [Online; accessed
9­July­2019].

[220] George Kyriakarakos and George Papadakis. Multispecies Swarm
Electrification for Rural Areas of the Developing World. Applied
Sciences, 9(19):3992, 2019.

[221] Jean­Claude Laprie. From dependability to resilience. In 38th
IEEE/IFIP Int. Conf. On dependable systems and networks, pages G8–
G9, 2008.

[222] Eugene L Lawler, Jan Karel Lenstra, Alexander HG Rinnooy Kan,
and David B Shmoys. Sequencing and scheduling: Algorithms and
complexity. Handbooks in Operations Research and Management
Science, 4:445–522, 1993.

[223] Mathieu Le Goc, Lawrence H Kim, Ali Parsaei, Jean­Daniel Fekete,
Pierre Dragicevic, and Sean Follmer. Zooids: Building Blocks for Swarm
User Interfaces. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, pages 97–109, 2016.

[224] Edward A Lee. Cyber physical systems: Design challenges. In
Proceedings of the 11th IEEE International Symposium on Object
Oriented Real­Time Distributed Computing, pages 363–369, 2008.

[225] Edward A. Lee. The past, present and future of cyber­physical systems:
A focus on models. Transactions on Cyber­Physical Systems, 1(1):3:1–
3:26, February 2017.

[226] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded
systems: A cyber­physical systems approach. MIT Press, 2016.

[227] Lin Li, Ruochen Hao, Wanjing Ma, Xinzhou Qi, and Chenxue Diao.
Swarm intelligence based algorithm for management of autonomous
vehicles on arterials. Technical report, SAE, 2018.

[228] Shimin Li, Huiling Chen, Mingjing Wang, Ali Asghar Heidari, and
Seyedali Mirjalili. Slime mould algorithm: A new method for stochastic
optimization. Future Generation Computer Systems, 111:300–323, 2020.

[229] Sean Lim, Shiyi Wang, Barry Lennox, and Farshad Arvin. Beeground-
an open­source simulation platform for large­scale swarm robotics
applications. In 2021 7th International Conference on Automation,
Robotics and Applications (ICARA), pages 75–79. IEEE, 2021.

https://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration
https://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration
https://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration

150 Engineering Swarms of Cyber-Physical Systems

[230] Marcelo A. Limeira, Luis Piardi, Vivian Cremer Kalempa,
André Schneider de Oliveira, and Paulo Leitão. Wsbot: A tiny,
low­cost swarm robot for experimentation on industry 4.0. In
2019 Latin American Robotics Symposium (LARS), 2019 Brazilian
Symposium on Robotics (SBR) and 2019 Workshop on Robotics in
Education (WRE), pages 293–298, 2019.

[231] Tian Liu, Xuelong Sun, Cheng Hu, Qinbing Fu, and Shigang Yue.
A multiple pheromone communication system for swarm intelligence.
IEEE Access, 9:148721–148737, 2021.

[232] Yang­Yu Liu, Jean­Jacques Slotine, and Albert­László Barabási.
Observability of complex systems. Proceedings of the National Academy
of Sciences, 110(7):2460–2465, 2013.

[233] Zheyu Liu, Craig West, Barry Lennox, and Farshad Arvin. Local
bearing estimation for a swarm of low­cost miniature robots. Sensors,
20(11):3308, 2020.

[234] Yuri K. Lopes, Stefan M. Trenkwalder, André B. Leal, Tony J. Dodd,
and Roderich Groß. Supervisory control theory applied to swarm
robotics. Swarm Intelligence, 10(1):65–97, 2016.

[235] Manuel López­Ibáñez and Thomas Stützle. An experimental analysis
of design choices of multi­objective ant colony optimization algorithms.
Swarm Intelligence, 6(3):207–232, 2012.

[236] Sean Luke, Claudio Cioffi­Revilla, Liviu Panait, and Keith Sullivan.
MASON: A new multi­agent simulation toolkit. In Proceedings of the
2004 SwarmFest Workshop, pages 316–327, Ann Arbor, Michigan, USA,
May 2004.

[237] Arun Mahadev, Dominik Krupke, Sandor P. Fekete, and Aaron T.
Becker. Mapping and coverage with a particle swarm controlled
by uniform inputs. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1097–1104, 2017.

[238] Lorenzo Marconi, Claudio Melchiorri, Michael Beetz, Dejan Pangercic,
Roland Siegwart, Stefan Leutenegger, Raffaella Carloni, Stefano
Stramigioli, Herman Bruyninckx, Patrick Doherty, et al. The SHERPA
project: Smart collaboration between humans and ground­aerial robots
for improving rescuing activities in alpine environments. In Proceedings
of the IEEE International Symposium on Safety, Security, and Rescue
Robotics, pages 1–4, 2012.

[239] David Masad and Jacqueline Kazil. Mesa: an agent­based modeling
framework. In 14th PYTHON in Science Conference, volume 2015,
pages 53–60. Citeseer, 2015.

Bibliography 151

[240] Ralf Mayet, Jonathan Roberz, Thomas Schmickl, and Karl Crailsheim.
Antbots: A feasible visual emulation of pheromone trails for swarm
robots. In Proceedings of the International Conference on Swarm
Intelligence, pages 84–94. Springer, 2010.

[241] Cassandra McCord, Jorge Pena Queralta, Tuan Nguyen Gia, and Tomi
Westerlund. Distributed progressive formation control for multi­agent
systems: 2d and 3d deployment of uavs in ros/gazebo with rotors. In
2019 European Conference on Mobile Robots (ECMR), pages 1–6. IEEE,
2019.

[242] James McLurkin, Andrew J Lynch, Scott Rixner, Thomas W Barr,
Alvin Chou, Kathleen Foster, and Siegfried Bilstein. A low­cost Multi­
robot System for Research, Teaching, and Outreach. In Distributed
Autonomous Robotic Systems, pages 597–609. Springer, 2013.

[243] Andrew McNabb, Matthew Gardner, and Kevin Seppi. An exploration
of topologies and communication in large particle swarms. In
Proceedings of the IEEE Congress on Evolutionary Computation, pages
712–719, 2009.

[244] Andreas M Menzel and Takao Ohta. Soft deformable self­propelled
particles. EPL (Europhysics Letters), 99(5):58001, 2012.

[245] Vera Mersheeva. UAV Routing Problem for Area Monitoring in a
´ Disaster Situation. Ph.d. dissertation, Universit ’at Klagenfurt, 2015.

Dissertation.

[246] Olivier Michel. Cyberbotics ltd. webots™: professional mobile robot
simulation. International Journal of Advanced Robotic Systems, 1(1):5,
2004.

[247] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey
wolf optimizer. Advances in engineering software, 69:46–61, 2014.

[248] Melanie Mitchell. Complexity: A guided tour. Oxford University Press,
2009.

[249] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh,
Christopher Cianci, Adam Klaptocz, Stephane Magnenat, Jean­
Christophe Zufferey, Dario Floreano, and Alcherio Martinoli. The e­
puck, a robot designed for education in engineering. In Proceedings of
the 9th conference on autonomous robot systems and competitions, pages
59–65, 2009.

[250] Francesco Mondada, Michael Bonani, Fanny Riedo, Manon Briod, Léa
Pereyre, Philippe Rétornaz, and Stéphane Magnenat. Bringing robotics
to formal education: The thymio open­source hardware robot. IEEE
Robotics & Automation Magazine, 24(1):77–85, 2017.

152 Engineering Swarms of Cyber-Physical Systems

[251] Francesco Mondada, Alcherio Martinoli, Nicolaus Correll, Alexey
Gribovskiy, José Ignacio Halloy, Roland Siegwart, and Jean­Louis
Deneubourg. A general methodology for the control of mixed natural­
artificial societies. Handbook of Collective Robotics, pages 399–428, 2011.

[252] Francesco Mondada, Giovanni C Pettinaro, Andre Guignard, Ivo W
Kwee, Dario Floreano, Jean­Louis Deneubourg, Stefano Nolfi,
Luca Maria Gambardella, and Marco Dorigo. Swarm­bot: A new
distributed robotic concept. Autonomous robots, 17(2­3):193–221, 2004.

[253] Francesco Mondada, Giovanni Cosimo Pettinaro, Ivo W Kwee, André
Guignard, Luca Maria Gambardella, Dario Floreano, Stefano Nolfi,
Jean­Louis Deneubourg, and Marco Dorigo. SWARM­BOT: A Swarm
of Autonomous Mobile Robots with Self­assembling Capabilities.
Technical report, ETH­Zürich, 2002.

[254] MongoDB. https://www.mongodb.com/. [Online; accessed 8­August-
2024].

[255] Roberto Montemanni, Luca Maria Gambardella, Andrea Emilio Rizzoli,
and Alberto V Donati. Ant colony system for a dynamic vehicle routing
problem. Journal of Combinatorial Optimization, 10(4):327–343, 2005.

[256] Honda Motor. Safe swarm. https://global.honda/innovation/CES/
2019/safe_swarm.html, 2019. [Online; accessed 01­October­2019].

[257] Jean­Baptiste Mouret and Konstantinos Chatzilygeroudis. 20 years
of reality gap: a few thoughts about simulators in evolutionary
robotics. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1121–1124. ACM, 2017. DOI:
10.1145/3067695.3082052.

[258] Mehdi Moussäıd, Dirk Helbing, Simon Garnier, Anders Johansson,
Maud Combe, and Guy Theraulaz. Experimental study of the
behavioural mechanisms underlying self­organization in human crowds.
Proceedings of the Royal Society of London B: Biological Sciences,
276(1668):2755–2762, 2009.

[259] Ahmad Mozaffari, Alireza Fathi, and Saeed Behzadipour. The great
salmon run: A novel bio­inspired algorithm for artificial system design
and optimisation. International Journal of Bio­Inspired Computation,
4(5):286–301, 2012.

[260] Rolex Muceka, Tonny Kukeera, Yunus Alokore, Kebir Noara, and
Sebastian Groh. Integrating a Solar PV System with a Household Based
Backup Generator for Hybrid Swarm Electrification: A Case Study
of Nigeria. In Africa­EU Renewable Energy Research and Innovation
Symposium 2018 (RERIS 2018), pages 43–58. Springer, Cham, 2018.

https://www.mongodb.com/
https://global.honda/innovation/ces/2019/safe_swarm.html
https://global.honda/innovation/ces/2019/safe_swarm.html
https://doi.org/10.1145/3067695.3082052

Bibliography 153

[261] Satoshi Murata, Eiichi Yoshida, Akiya Kamimura, Haruhisa Kurokawa,
Kohji Tomita, and Shigeru Kokaji. M­TRAN: Self­reconfigurable
Modular Robotic System. IEEE/ASME Transactions on Mechatronics,
7(4):431–441, 2002.

[262] Robin R. Murphy, Satoshi Tadokoro, Daniele Nardi, Adam Jacoff,
Paolo Fiorini, Howie Choset, and Aydan M. Erkmen. Search and
rescue robotics. In B. Siciliano and O. Khatib, editors, Springer
Handbook of Robotics, pages 1151–1173. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[263] Smiljana Mutic, Yvonne F. Brünner, Rea Rodriguez­Raecke, Martin
Wiesmann, and Jessica Freiherr. Chemosensory danger detection in
the human brain: Body odor communicating aggression modulates
limbic system activation. Neuropsychologia, 99(September 2016):187–
198, 2017.

[264] Seongin Na, Hanlin Niu, Barry Lennox, and Farshad Arvin. Universal
artificial pheromone framework with deep reinforcement learning for
robotic systems. In 6th International Conference on Control and
Robotics Engineering (ICCRE), pages 28–32. IEEE, 2021.

[265] Seongin Na, Hanlin Niu, Barry Lennox, and Farshad Arvin. Bio­inspired
collision avoidance in swarm systems via deep reinforcement learning.
IEEE Transactions on Vehicular Technology, 2022.

[266] Seongin Na, Yiping Qiu, Ali E Turgut, Jǐŕı Ulrich, Tomáš Krajńık,
Shigang Yue, Barry Lennox, and Farshad Arvin. Bio­inspired artificial
pheromone system for swarm robotics applications. Adaptive Behavior,
29(4):395–415, 2021.

[267] Seongin Na, Mohsen Raoufi, Ali Emre Turgut, Tomáš Krajńık, and
Farshad Arvin. Extended artificial pheromone system for swarm robotic
applications. In Artificial Life Conference Proceedings, pages 608–
615. MIT Press One Rogers Street, Cambridge, MA 02142­1209, USA
journals­info . . . , 2019.

[268] Seongin Na, Tomáš Rouček, Jǐŕı Ulrich, Jan Pikman, Tom s Krajńık,
Barry Lennox, and Farshad Arvin. Federated reinforcement learning for
collective navigation of robotic swarms. IEEE Transactions on Cognitive
and Developmental Systems, 2023.

[269] Jawad Nagi. Symbiotic interaction between humans and robot
swarms. PhD thesis, Department of Informatics, University of Lugano,
Switzerland, 2016.

[270] Jawad Nagi, Alessandro Giusti, Luca Gambardella, and Gianni A. Di
Caro. Human­swarm interaction using spatial gestures. In Proceedings
of the 27th IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3834–3841, 2014.

154 Engineering Swarms of Cyber-Physical Systems

[271] Changjoo Nam and Dylan A. Shell. Assignment algorithms for modeling
resource contention in multirobot task allocation. IEEE Transactions
on Automation Science and Engineering, 12(3):889–900, 2015.

[272] Yadati Narahari, Dinesh Garg, Ramasuri Narayanam, and Hastagiri
Prakash. Game theoretic problems in network economics and mechanism
design solutions. Springer, 2009.

[273] Mark EJ Newman. The structure and function of complex networks.
SIAM review, 45(2):167–256, 2003.

[274] Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim
Woodcock, and Jan Peleska. Systems of systems engineering: Basic
concepts, model­based techniques, and research directions. ACM
Computing Surveys, 48(2), Sep 2015.

[275] Martin A. Nowak, Corina E. Tarnita, and Edward O. Wilson. The
evolution of eusociality. Nature, 466(7310):1057–1062, Aug 2010.

[276] Olusegun Olorunda and Andries P. Engelbrecht. Measuring explo-
ration/exploitation in particle swarms using swarm diversity. In 2008
IEEE Congress on Evolutionary Computation (IEEE World Congress
on Computational Intelligence), pages 1128–1134, 2008.

[277] Nestor I. Ospina, Eduardo Mojica­Nava, Luis G. Jaimes, and
Juan M. Calderón. Argrohbots: An affordable and replicable ground
homogeneous robot swarm testbed. IFAC­PapersOnLine, 54(13):256–
261, 2021.

[278] Christoph Osterloh, Thilo Pionteck, and Erik Maehle. MONSUN II: A
small and Inexpensive AUV for Underwater Swarms. In Proceedings of
the 7th German Conference on Robotics, pages 1–6, 2012.

[279] Raymond Oung. The Distributed Flight Array: Summary. https://
www.youtube.com/watch?v=fcradVE9uts, 2013. [Online; accessed 30-
January­2020].

[280] Raymond Oung and Raffaello D’Andrea. The Distributed Flight Array.
Mechatronics, 21(6):908–917, 2011.

[281] Rafael S. Parpinelli and Heitor S. Lopes. New inspirations in
swarm intelligence: A survey. International Journal of Bio­Inspired
Computation, 3(1):1–16, 2011.

[282] Rafael S Parpinelli and Heitor S Lopes. New inspirations in
swarm intelligence: A survey. International Journal of Bio­Inspired
Computation, 3(1):1–16, 2011.

https://
www.youtube.com/watch?v=fcradVE9uts

Bibliography 155

[283] Jayam Patel and Carlo Pinciroli. Improving human performance using
mixed granularity of control in multi­human multi­robot interaction.
In 2020 29th IEEE International Conference on Robot and Human
Interactive Communication (RO­MAN), pages 1135–1142. IEEE, 2020.

[284] Jayam Patel, Yicong Xu, and Carlo Pinciroli. Mixed­granularity human­
swarm interaction. In 2019 International Conference on Robotics and
Automation (ICRA), pages 1059–1065. IEEE, 2019.

[285] David Payton, Mike Daily, Regina Estowski, Mike Howard, and Craig
Lee. Pheromone robotics. Autonomous Robots, 11(3):319–324, 2001.

[286] Kirstin Hagelskjaer Petersen, Radhika Nagpal, and Justin K Werfel.
Termes: An Autonomous Robotic System for Three­dimensional
Collective Construction. Robotics: science and systems VII, 2011.

[287] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames,
Eric Feron, and Magnus Egerstedt. The robotarium: A remotely
accessible swarm robotics research testbed. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 1699–1706.
IEEE, 2017.

[288] Daniel Pickem, Myron Lee, and Magnus Egerstedt. The GRITSBot
in its Natural Habitat – a Multi­robot Testbed. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages
4062–4067, 2015.

[289] Carlo Pinciroli and Giovanni Beltrame. Swarm­oriented Programming
of Distributed Robot Networks. Computer, 49(12):32–41, 2016.

[290] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne
Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni
Di Caro, Frederick Ducatelle, et al. Argos: a modular, parallel, multi­
engine simulator for multi­robot systems. Swarm intelligence, 6(4):271–
295, 2012.

[291] G. Porter. Models of Proba­3 designs. http://www.esa.int/
spaceinimages/Images/2016/05/Models_of_Proba-3_designs,
2016. [Online; accessed 9­July­2019].

[292] Christian Prehofer and Christian Bettstetter. Self­organization in
communication networks: principles and design paradigms. IEEE
Communications Magazine, 43(7):78–85, 2005.

[293] James A. Preiss, Wolfgang Hönig, Gaurav S. Sukhatme, and Nora
Ayanian. Crazyswarm: A large Nano­quadcopter Swarm. In Proceedings
of the International Conference on Robotics and Automation, pages
3299–3304, 2017. Software available at https://github.com/
USC-ACTLab/crazyswarm.

https://github.com/USC-ACTLab/crazyswarm
http://www.esa.int/spaceinimages/Images/2016/05/Models_of_Proba-3_designs
http://www.esa.int/spaceinimages/Images/2016/05/Models_of_Proba-3_designs
https://github.com/USC-ACTLab/crazyswarm

156 Engineering Swarms of Cyber-Physical Systems

[294] George Preti, Charles J. Wysocki, Kurt T. Barnhart, Steven J.
Sondheimer, and James J. Leyden. Male Axillary Extracts Contain
Pheromones that Affect Pulsatile Secretion of Luteinizing Hormone and
Mood in Women Recipients1. Biology of Reproduction, 68(6):2107–2113,
06 2003.

[295] CPSwarm H2020 project. CPSwarm Modeler. https://github.
com/cpswarm/modelio-cpswarm-modeler, 2019. [Online; accessed 23-
March­2023].

[296] CPSwarm H2020 project. CPSwarm Code Generator. https://
github.com/cpswarm/code-generator, 2020. [Online; accessed 23-
March­2023].

[297] CPSwarm H2020 project. CPSwarm Communication Library. https:
//github.com/cpswarm/swarmio, 2022. [Online; accessed 23­March-
2023].

[298] Przemyslaw Prusinkiewicz, Mitra Shirmohammadi, and Faramarz
Samavati. L­systems in geometric modeling. International Journal of
Foundations of Computer Science, 23(01):133–146, 2012.

[299] Amanda Purington, Jessie G Taft, Shruti Sannon, Natalya N Bazarova,
and Samuel Hardman Taylor. Alexa is my new bff: Social roles, user
satisfaction, and personification of the amazon echo. In Proceedings
of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, pages 2853–2859, 2017.

[300] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS:
an open­source robot operating system. In Proceedings of the ICRA
Workshop on Open Source Software in Robotics, May 2009.

[301] Deepak Rai and Kirti Tyagi. Bio­inspired optimization techniques:
a critical comparative study. ACM SIGSOFT Software Engineering
Notes, 38(4):1–7, 2013.

[302] Steven Railsback, Daniel Ayllón, Uta Berger, Volker Grimm, Steven
Lytinen, Colin Sheppard, and Jan Christoph Thiele. Improving
execution speed of models implemented in netlogo. Journal of Artificial
Societies and Social Simulation, 2017.

[303] Steven F Railsback and Volker Grimm. Agent­based and individual­
based modeling: a practical introduction. Princeton university press,
''2nd'' edition, 2019.

[304] Bhuvaneswari Ramachandran, Sanjeev K. Srivastava, Chris S. Edring-
ton, and David A. Cartes. An intelligent auction scheme for smart
grid market using a hybrid immune algorithm. IEEE Transactions on
Industrial Electronics, 58(10):4603–4612, 2011.

https:////github.com/cpswarm/swarmio
https://github.com/cpswarm/modelio-cpswarm-modeler
https://github.com/cpswarm/code-generator
https://github.com/cpswarm/code-generator
https://github.com/cpswarm/modelio-cpswarm-modeler
https:////github.com/cpswarm/swarmio

,

Bibliography 157

[305] Mohsen Raoufi, Ali Emre Turgut, and Farshad Arvin. Self­organized
collective motion with a simulated real robot swarm. In Proceedings
of the Annual Conference Towards Autonomous Robotic Systems, pages
263–274. Springer, 2019.

[306] Martin Reed, Aliki Yiannakou, and Roxanne Evering. An ant colony
algorithm for the multi­compartment vehicle routing problem. Applied
Soft Computing, 15:169–176, 2014.

[307] Andreagiovanni Reina, Alexander Cope, Eleftherios Nikolaidis, James
Marshall, and Chelsea Sabo. Ark: Augmented reality for kilobots. IEEE
Robotics and Automation Letters, PP:1–1, 05 2017.

[308] Fatemeh Rekabi, Farzad A Shirazi, Mohammad Jafar Sadigh, and
Mahmood Saadat. Distributed output feedback nonlinear h∞ formation
control algorithm for heterogeneous aerial robotic teams. Robotics and
Autonomous Systems, 136:103689, 2021.

[309] Fatemeh Rekabi­Bana, Junyan Hu, Tomáš Krajńık, and Farshad Arvin.
Unified robust path planning and optimal trajectory generation for
efficient 3d area coverage of quadrotor uavs. IEEE Transactions on
Intelligent Transportation Systems, 2023.

[310] Intel Corporation. Intel drone light show breaks
guinness world records title at olympic winter games
pyeongchang. https://newsroom.intel.com/news-releases/
intel-drone-light-show-breaks-guinness-world-records-title-

olympic-winter-games-pyeongchang-2018/ 2018. [Online; accessed
30­September­2019].

[311] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, pages 25–34, 1987.

[312] Fanny Riedo, Morgane Chevalier, Stéphane Magnenat, and Francesco
Mondada. Thymio II, a Robot that Grows Wiser with Children. In
Proceedings of the IEEE Workshop on Advanced Robotics and its Social
Impacts, pages 187–193, 2013.

[313] James F. Roberts, Timothy S. Stirling, Jean­Christophe Zufferey, and
Dario Floreano. Quadrotor Using Minimal Sensing For Autonomous
Indoor Flight. In Proceedings of the European Micro Air Vehicle
Conference and Flight Competition, 2007.

[314] Rui P Rocha, David Portugal, Micael Couceiro, Filipe Araújo, Paulo
Menezes, and Jorge Lobo. The CHOPIN project: Cooperation between
human and robotic teams in catastrophic incidents. In Proceedings
of the IEEE International Symposium on Safety, Security, and Rescue
Robotics, pages 1–4, 2013.

https://newsroom.intel.com/news-releases/intel-drone-light-show-breaks-guinness-world-records-title-olympic-winter-games-pyeongchang-2018/
https://newsroom.intel.com/news-releases/intel-drone-light-show-breaks-guinness-world-records-title-olympic-winter-games-pyeongchang-2018/
https://newsroom.intel.com/news-releases/intel-drone-light-show-breaks-guinness-world-records-title-olympic-winter-games-pyeongchang-2018/

158 Engineering Swarms of Cyber-Physical Systems

[315] Eric Rohmer, Surya PN Singh, and Marc Freese. V­rep: A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1321–1326. IEEE,
2013.

[316] Michael Rubenstein, Christian Ahler, Nick Hoff, Adrian Cabrera, and
Radhika Nagpal. Kilobot: A low cost Robot with Scalable Operations
Designed for Collective Behaviors. Robotics and Autonomous Systems
(Elsevier), 62(7):966–975, 2014.

[317] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A
low cost scalable robot system for collective behaviors. In 2012 IEEE
International Conference on Robotics and Automation, pages 3293–
3298, May 2012.

[318] Ray A. Russell. Ant trails ­ an example for robots to follow?
In Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), volume 4, pages 2698–2703 vol.4,
May 1999.

[319] Joan Saez­Pons, Lyuba Alboul, Jacques Penders, and Leo Nomdedeu.
Multi­robot team formation control in the GUARDIANS project.
Industrial Robot: An International Journal, 37(4):372–383, 2010.

[320] Erol Şahin. Swarm robotics: From sources of inspiration to domains of
application. In Proceedings of the International Workshop on Swarm
Robotics, pages 10–20, 2004.

[321] Muhammad Salman, David Garzón Ramos, Ken Hasselmann, and
Mauro Birattari. Phormica: Photochromic pheromone release and
detection system for stigmergic coordination in robot swarms. Frontiers
in Robotics and AI, 7:195, 2020.

[322] William H. Sandholm. Population Games and Evolutionary Dynamics.
MIT Press, 2010.

[323] Hiroki Sayama. Morphologies of self­organizing swarms in 3d swarm
chemistry. In Proceedings of the 14th Annual Conference on Genetic
and Evolutionary Computation, pages 577–584. ACM, 2012.

[324] Hiroki Sayama. PyCX: A python­based simulation code repository
for complex systems education. Complex Adaptive Systems Modeling,
1(1):1–10, 2013.

[325] Jürgen Scherer, Saeed Yahyanejad, Samira Hayat, Evsen Yanmaz,
Torsten Andre, Asif Khan, Vladimir Vukadinovic, Christian Bettstetter,
Hermann Hellwagner, and Bernhard Rinner. An autonomous multi­uav
system for search and rescue. In Proceedings of the First Workshop on
Micro Aerial Vehicle Networks, Systems, and Applications for Civilian
Use, pages 33–38, 2015.

Bibliography 159

[326] Thomas Schmickl, Stjepan Bogdan, Lúıs Correia, Serge Kernbach,
Francesco Mondada, Michael Bodi, Alexey Gribovskiy, Sibylle Hahsh-
old, Damjan Miklic, Martina Szopek, et al. Assisi: Mixing animals
with robots in a hybrid society. In Proceedings of the Conference on
Biomimetic and Biohybrid Systems, pages 441–443, 2013.

[327] Thomas Schmickl and Heiko Hamann. Beeclust: A swarm algorithm
derived from honeybees. In Yang Xiao, editor, Bio­inspired Computing
and Networking, pages 95–137. CRC Press, 2011.

[328] Thomas Schmickl, Martin Stefanec, and Karl Crailsheim. How a life­like
system emerges from a simplistic particle motion law. Scientific reports,
6(1):1–15, 2016.

[329] Thomas Schmickl, Ronald Thenius, Christoph Möslinger, Gerald
Radspieler, Serge Kernbach, and Karl Crailsheim. Get in touch:
Cooperative decision making based on robot­to­robot collisions.
Autonomous Agents and Multi­Agent Systems, 18(1):133–155, 2008.

[330] Thomas Schmickl, Ronald Thenius, Christoph Moslinger, Jon Timmis,
Andy Tyrrell, Mark Read, James Hilder, Jose Halloy, Alexandre Campo,
Cesare Stefanini, et al. Cocoro ­ the self­aware underwater swarm.
In Proceedings of the 5th IEEE Conference on Self­Adaptive and Self­
Organizing Systems Workshops, pages 120–126, 2011.

[331] Thomas Schmickl, Franz Wotawa, Ronald Thenius, and Joshua Cherian
Varughese. Fstaxis algorithm: Bio­inspired emergent gradient taxis. In
Proceedings of the Artificial Life Conference 2016 13, pages 330–337.
MIT Press, 2016.

[332] Melanie Schranz, Alessandra Bagnato, Etienne Brosse, and Wilfried
Elemenreich. Modelling a CPS swarm system: A simple case study.
In Proceedings of the International Conference on Model­Driven
Engineering and Software Development (MODELSWARD), pages 615–
624. SciTePress, January 2018.

[333] Melanie Schranz, Gianni A Di Caro, Thomas Schmickl, Wilfried
Elmenreich, Farshad Arvin, Ahmet Şekercioğlu, and Micha Sende.
Swarm intelligence and cyber­physical systems: Concepts, challenges
and future trends. Swarm and Evolutionary Computation, 60:100762,
2020.

[334] Melanie Schranz, Kseniia Harshina, Peter Forgacs, and Fred Buining.
Agent­based modeling in the edge continuum using swarm intelligence.
In Proceedings of the 16th International Conference on Agents and
Artificial Intelligence. SciTePress, 2024.

[335] Melanie Schranz, Micha Sende, Alessandra Bagnato, and Etienne
Brosse. Modeling swarm intelligence algorithms for cps swarms. Ada
User Journal, 40(3):169–177, September 2019.

160 Engineering Swarms of Cyber-Physical Systems

[336] Melanie Schranz, Martina Umlauft, and Wilfriedi Elmenreich. Bottom­
up job shop scheduling with swarm intelligence in large production
plants. In Proceedings of the 11th International Conference on
Simulation and Modeling Methodologies, Technologies and Applications
­ SIMULTECH. SciTePress, July 2021.

[337] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried
Elmenreich. Swarm robotic behaviors and current applications.
Frontiers in Robotics and AI, 7:36, 2020.

[338] Adam M. Schroeder and Manish Kumar. Design of decentralized
chemotactic control law for area coverage using swarm of mobile robots.
In Proceedings of the American Control Conference, pages 4317–4322,
2016.

[339] Israel’s Homeland Security. Fish swarm – model for energy­saving
autonomous vehicle swarm. https://i-hls.com/archives/84280,
2018. [Online; accessed 30­September­2019].

[340] Madhubhashi Senanayake, Ilankaikone Senthooran, Jan Carlo Barca,
Hoam Chung, Joarder Kamruzzaman, and Manzur Murshed. Search
and tracking algorithms for swarms of robots: A survey. Robotics and
Autonomous Systems, 75:422–434, 2016.

[341] Micha Sende. swarm behaviors. https://wiki.ros.org/swarm_
behaviors, 2019. [Online; accessed 23­March­2023].

[342] Micha Sende. swarm functions. https://wiki.ros.org/swarm_
functions, 2019. [Online; accessed 23­March­2023].

[343] Micha Sende. CPSwarm Hardware Functions. https://github.
com/cpswarm/hardware_functions, 2023. [Online; accessed 23­March-
2023].

[344] Micha Sende. Sensing and Actuation. https://github.com/cpswarm/
sensing_actuation, 2023. [Online; accessed 23­March­2023].

[345] Micha Sende, Melanie Schranz, , Gianluca Prato, Etienne Brosse, Omar
Morando, and Martina Umlauft. Engineering swarms of cyber­physical
systems with the cpswarm workbench. Journal of Intelligent & Robotic
Systems, 102(83):18, 2021.

[346] Sebastian Senge and Horst F Wedde. Bee­inpired road traffic control
as an example of swarm intelligence in cyber­physical systems. In
Proceedings of the 38th Euromicro Conference on Software Engineering
and Advanced Applications, pages 258–265. IEEE, 2012.

[347] Jörg Seyfried, Marc Szymanski, Natalie Bender, Ramon Estaña, Michael
Thiel, and Heinz Wörn. The I­SWARM Project: Intelligent Small World
Autonomous Robots for Micro­manipulation. In Proceedings of the
International Workshop on Swarm Robotics, pages 70–83, 2004.

https://github.com/cpswarm/sensing_actuation
https://i-hls.com/archives/84280
https://wiki.ros.org/swarm_https://wiki.ros.org/swarm_behaviors
https://wiki.ros.org/swarm_https://wiki.ros.org/swarm_
https://wiki.ros.org/swarm_functions
https://github.com/cpswarm/hardware_functions
https://wiki.ros.org/swarm_https://wiki.ros.org/swarm_behaviors
https://wiki.ros.org/swarm_functions
https://github.com/cpswarm/hardware_functions
https://github.com/cpswarm/sensing_actuation

Bibliography 161

[348] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:
High­fidelity visual and physical simulation for autonomous vehicles. In
Field and Service Robotics, 2017.

[349] Hamed Shah­Hosseini. Principal components analysis by the
galaxy­based search algorithm: A novel metaheuristic for continuous
optimisation. International Journal of Computational Science and
Engineering, 6(1­2):132–140, 2011.

[350] Adi Shklarsh, Gil Ariel, Elad Schneidman, and Eshel Ben­Jacob.
Smart swarms of bacteria­inspired agents with performance adaptable
interactions. PLoS Computational Biology, 7(9):1–11, 2011.

[351] Yoav Shoham and Kevin Leyton­Brown. Multiagent systems:
algorithmic, game­theoretic, and logical foundations. Cambridge
University Press, 2008.

[352] Ola Shorinwa, Javier Yu, Trevor Halsted, Alex Koufos, and Mac
Schwager. Distributed multi­target tracking for autonomous vehicle
fleets. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 3495–3501. IEEE, 2020.

[353] Abdul A Siddiqi and Simon M Lucas. A comparison of matrix
rewriting versus direct encoding for evolving neural networks. In
1998 IEEE International Conference on Evolutionary Computation
Proceedings. IEEE World Congress on Computational Intelligence (Cat.
No. 98TH8360), pages 392–397. IEEE, 1998.

[354] Jennifer Simonjan, Stefano Ricardo Probst, and Melanie Schranz.
Inducing defenders to mislead an attacking uav swarm. In Proceedings
of the 42nd IEEE International Conference on Distributed Computing
Systems Workshops, pages 278–283, 2022.

[355] Jorge M Soares, Inaki Navarro, and Alcherio Martinoli. The Khepera
IV Mobile Robot: Performance Evaluation, Sensory Data and Software
Toolbox. In Proceedings of the 2nd Iberian Robotics Conference, pages
767–781, 2016.

[356] Anita Sobe. Self­organizing Multimedia Delivery. Phd thesis, Alpen­
Adria Universität Klagenfurt, 2012.

[357] Anita Sobe and Wilfried Elmenreich. Smart microgrids: Overview and
outlook. In Proceedings of the ITG INFORMATIK Workshop on Smart
Grids, Braunschweig, Germany, September 2012.

[358] Anita Sobe, Wilfried Elmenreich, Tibor Szkaliczki, and Laszlo
Böszörmenyi. SEAHORSE: Generalizing an artificial hormone system
algorithm to a middleware for search and delivery of information units.
Computer Networks, 80:124–142, 2015.

162 Engineering Swarms of Cyber-Physical Systems

[359] Anita Sobe, Istvan Fehérvári, and Wilfried Elmenreich. FREVO: A
tool for evolving and evaluating self­organizing systems. In Proceedings
of the 1st International Workshop on Evaluation for Self­Adaptive and
Self­Organizing Systems, pages 105–110, 2012.

[360] Ricard V. Solé, Susanna C. Manrubia, Bartolo Luque, Jordi Delgado,
and Jordi Bascompte. Phase transitions and complex systems: Simple,
nonlinear models capture complex systems at the edge of chaos.
Complexity, 1(4):13–26, 1996.

[361] Kian Lun Soon, Joanne Mun­Yee Lim, and Rajendran Parthiban.
Coordinated traffic light control in cooperative green vehicle routing
for pheromone­based multi­agent systems. Applied Soft Computing,
81:105486, 2019.

[362] Kenneth Stanley. rtNEAT C++. https://nn.cs.utexas.edu/
?rtNEAT, 2006. [Online; accessed 23­March­2023].

[363] Kenneth O. Stanley and Risto Miikkulainen. Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computation, 10(2):99–
127, 2002.

[364] David Steber, Peter Bazan, and Reinhard German. Swarm ­ increasing
households’ internal pv consumption and offering primary control power
with distributed batteries. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 9424, pages 3–11. Springer Verlag,
2015.

[365] Nathalie Steinhauer, Kelly Kulhanek, Karina Antúnez, Hannelie
Human, Panuwan Chantawannakul, Marie­Pierre Chauzat, and Dennis
van Engelsdorp. Drivers of colony losses. Current Opinion in Insect
Science, 26:142 – 148, 2018.

[366] John D Sterman. System dynamics modeling: tools for learning in a
complex world. California management review, 43(4):8–25, 2001.

[367] Apache Storm. https://storm.apache.org/. [Online; accessed 8-
August­2024].

[368] Daniel P Stormont. Robot swarms for planetary exploration. In
Proceedings of the 4th International Conference and Exposition on
Robotics for Challenging Situations and Environments, pages 347–352,
2000.

[369] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications
to Physics, Biology, Chemistry, and Engineering. Studies in
Nonlinearity. Avalon Publishing, 2014.

https://storm.apache.org/
https://nn.cs.utexas.edu/?rtNEAT
https://nn.cs.utexas.edu/?rtNEAT

Bibliography 163

[370] Daniel Strömbom, Mattias Siljestam, Jinha Park, and David JT
Sumpter. The shape and dynamics of local attraction. The European
Physical Journal Special Topics, 224(17):3311–3323, 2015.

[371] Gerald Jay Sussman. Building robust systems an essay. Massachusetts
Institute of Technology, 2007.

[372] Project SWARMIX: Synergistic interactions in swarms of heterogeneous
agents (2011­2014). http://www.swarmix.org/. [Online; accessed 14-
August­2019].

[373] S. Swetha, R. Anandan, and K. Kalaivani. An Investigation of
Micro Aerial Vehicles (µAV). International Journal of Engineering &
Technology, 7(2.31):174–177, 2018.

[374] Martina Szopek, Thomas Schmickl, Ronald Thenius, Gerald Radspieler,
and Karl Crailsheim. Dynamics of collective decision making of
honeybees in complex temperature fields. PloS one, 8(10):e76250, 2013.

[375] Kenichi Tamura and Keiichiro Yasuda. Spiral dynamics inspired
optimization. Journal of Advanced Computational Intelligence and
Intelligent Informatics, 15(8):1116–1122, 2011.

[376] Ying Tan and Yuanchun Zhu. Fireworks algorithm for optimization.
In Proceedings of the International Conference on Swarm Intelligence,
pages 355–364. Springer, 2010.

[377] Arash Tavakoli, Haig Nalbandian, and Nora Ayanian. Crowdsourced
coordination through online games. In Proceedings of the 11th
ACM/IEEE International Conference on Human­Robot Interaction,
pages 527–528, 2016.

[378] TensorFlow. https://www.tensorflow.org/. [Online; accessed 8-
August­2024].

[379] Erich C. Teppan. Dispatching rules revisited – a large scale job shop
scheduling experiment. In Proceedings of the IEEE Symposium Series
on Computational Intelligence, pages 561–568, 2018.

[380] Ronald Thenius, Daniel Moser, Joshua Cherian Varughese, Serge
Kernbach, Igor Kuksin, Olga Kernbach, Elena Kuksina, Nikola
Mǐsković, Stjepan Bogdan, Tamara Petrović, et al. subCULTron­
Cultural Development as a Tool in Underwater Robotics. In Proceedings
of the Artificial Life and Intelligent Agents Symposium, pages 27–41.
Springer, 2016.

[381] Jan C Thiele. R marries NetLogo: introduction to the RNetLogo
package. Journal of Statistical Software, 58:1–41, 2014.

http://www.swarmix.org/
https://www.tensorflow.org/

164 Engineering Swarms of Cyber-Physical Systems

[382] Seth Tisue and Uri Wilensky. Netlogo: A simple environment for
modeling complexity. In International conference on complex systems,
volume 21, pages 16–21. Boston, MA, 2004.

[383] Ioan C. Trelea. The particle swarm optimization algorithm: Convergence
analysis and parameter selection. Information Processing Letters,
85(6):317–325, 2003.

[384] Elio Tuci and Alexandre Rabérin. On the design of generalist strategies
for swarms of simulated robots engaged in a task­allocation scenario.
Swarm Intelligence, 9(4):267–290, 2015.

[385] Ali E Turgut, Hande Ç elikkanat, Fatih Gökçe, and Erol Şahin. Self­
organized flocking in mobile robot swarms. Swarm Intelligence, 2:97–
120, 2008.

[386] Ali Emre Turgut, ˙ Ilkin Ege Okay, Eliseo Ferrante, and Ihsan Caner Boz, ˙

Cristián Huepe. Interaction network effects on position­and velocity­
based models of collective motion. Journal of the Royal Society
Interface, 17(169):20200165, 2020.

[387] Alan M. Turing. The chemical basis of morphogenesis. Philosophical
Transactions of the Royal Society of London. Series B, Biological
Sciences, 237(641):37–72, 1952.

[388] Fritz Ulbrich, Simon Sebastian Rotter, and Raul Rojas. Adapting to
the traffic swarm: Swarm behaviour for autonomous cars. In Ying
Tan, editor, Handbook of Research on Design, Control, and Modeling
of Swarm Robotics, chapter 10, pages 263–285. IGI Global, 2016.

[389] Martina Umlauft. Swarm Fab Simulation. https://swarmfabsim.
github.io, 2023. [Online; accessed 23­March­2023].

[390] Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich. Swarm­
FabSim: A simulation framework for bottom­up optimization in
flexible job­shop scheduling using Netlogo. In Proceedings of
the 12th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications ­ SIMULTECH, pages
271–279. SciTePress, July 2022.

[391] Gabriele Valentini, Anthony Antoun, Marco Trabattoni, Bernát
Wiandt, Yasumasa Tamura, Etienne Hocquard, Vito Trianni, and Marco
Dorigo. Kilogrid: a novel experimental environment for the kilobot
robot. Swarm Intelligence, 12(3):245–266, Sep 2018.

[392] Richard Vaughan. Massively multi­robot simulation in stage. Swarm
intelligence, 2(2­4):189–208, 2008.

https://swarmfabsim.github.io
https://swarmfabsim.github.io

Bibliography 165

[393] Ganesh K Venayagamoorthy. Potentials and promises of computational
intelligence for smart grids. In 2009 IEEE Power & Energy Society
General Meeting, pages 1–6. IEEE, 2009.

[394] Tamás Vicsek, András Czirók, Eshel Ben­Jacob, Inon Cohen, and Ofer
Shochet. Novel type of phase transition in a system of self­driven
particles. Physical Review Letters, 75(6):1226–1229, 1995.

[395] Tamás Vicsek and Anna Zafeiris. Collective motion. Physics reports,
517(3­4):71–140, 2012.

[396] 4D Virtualiz. https://www.4d-virtualiz.com/en/, 2024. [Online;
accessed 23­March­2023].

[397] Alessandra Vitanza, Paolo Rossetti, Francesco Mondada, and Vito
Trianni. Robot Swarms as an Educational Tool: The Thymio’s Way.
International Journal of Advanced Robotic Systems, 16(1), 2019.

[398] Richard G Vogt, Lynn M Riddiford, and Glenn D Prestwich. Kinetic
properties of a sex pheromone­degrading enzyme: the sensillar esterase
of antheraea polyphemus. Proceedings of the National Academy of
Sciences, 82(24):8827–8831, 1985.

[399] Mostafa Wahby, Mary Katherine Heinrich, Daniel Nicolas Hofstadler,
Ewald Neufeld, Igor Kuksin, Payam Zahadat, Thomas Schmickl, Phil
Ayres, and Heiko Hamann. Autonomously shaping natural climbing
plants: A bio­hybrid approach. Open Science, 5(10):180296, 2018.

[400] Pangwei Wang, Hui Deng, Juan Zhang, Li Wang, Mingfang Zhang, and
Yongfu Li. Model predictive control for connected vehicle platoon under
switching communication topology. IEEE Transactions on Intelligent
Transportation Systems, 2021.

[401] Shiyi Wang, Ali E Turgut, Thomas Schmickl, Barry Lennox, and
Farshad Arvin. Investigation of cue­based aggregation behaviour in
complex environments. In International Conference on Collaborative
Computing: Networking, Applications and Worksharing, pages 18–36.
Springer, 2020.

[402] Nicholas W. Watkins, Gunnar Pruessner, Sandra C. Chapman,
Norma B. Crosby, and Henrik J. Jensen. 25 years of self­organized
criticality: Concepts and controversies. Space Science Reviews, 198(1):3–
44, 2016.

[403] Hongxing Wei, Yingpeng Cai, Haiyuan Li, Dezhong Li, and Tianmiao
Wang. Sambot: A Self­assembly Modular Robot for Swarm Robot.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 66–71. IEEE, 2010.

https://www.4d-virtualiz.com/en/

166 Engineering Swarms of Cyber-Physical Systems

[404] Uri Wilensky. Netlogo, 1999. http://ccl.northwestern.edu/
netlogo/.

[405] Sean Wilson, Aurélie Buffin, Stephen C Pratt, and Spring Berman.
Multi­robot Replication of Ant Collective Towing Behaviours. Royal
Society open science, 5(10):180409, 2018.

[406] Sean Wilson, Ruben Gameros, Michael Sheely, Matthew Lin, Kathryn
Dover, Robert Gevorkyan, Matt Haberland, Andrea Bertozzi, and
Spring Berman. Pheeno, a Versatile Swarm robotic Research and
Education Platform. IEEE Robotics and Automation Letters, 1(2):884–
891, 2016.

[407] Wayne H. Wolf. Hardware­software co­design of embedded systems.
Proceedings of the IEEE, 82(7):967–989, 1994.

[408] Kefan Wu, Junyan Hu, Zhengtao Ding, and Farshad Arvin. Distributed
bearing­only formation control for heterogeneous nonlinear multi­robot
systems. IFAC­PapersOnLine, 56(2):3447–3452, 2023.

[409] Kefan Wu, Junyan Hu, Zhengtao Ding, and Farshad Arvin. Finite­time
fault­tolerant formation control for distributed multi­vehicle networks
with bearing measurements. IEEE Transactions on Automation Science
and Engineering, 2023.

[410] Kefan Wu, Junyan Hu, Zhenhong Li, Zhengtao Ding, and Farshad
Arvin. Distributed collision­free bearing coordination of multi­uav
systems with actuator faults and time delays. IEEE Transactions on
Intelligent Transportation Systems, 2024.

[411] Tristram D. Wyatt. Pheromones and Animal Behavior: Chemical
Signals and Signatures. Cambridge University Press, 2014.

[412] Wyss Institute. Programmable Robot Swarms. https://wyss.
harvard.edu/technology/programmable-robot-swarms/, 2017. [On-
line; accessed 06­November­2019].

[413] Songtao Xie, Junyan Hu, Parijat Bhowmick, Zhengtao Ding, and
Farshad Arvin. Distributed motion planning for safe autonomous vehicle
overtaking via artificial potential field. IEEE Transactions on Intelligent
Transportation Systems, 23(11):21531–21547, 2022.

[414] Songtao Xie, Junyan Hu, Zhengtao Ding, and Farshad Arvin. Collabo-
rative overtaking of multi­vehicle systems in dynamic environments: A
distributed artificial potential field approach. In 2021 20th International
Conference on Advanced Robotics (ICAR), pages 873–878. IEEE, 2021.

[415] Songtao Xie, Junyan Hu, Zhengtao Ding, and Farshad Arvin.
Cooperative adaptive cruise control for connected autonomous vehicles
using spring damping energy model. IEEE Transactions on Vehicular
Technology, 2022.

http://ccl.northwestern.edu/netlogo/
https://wyss.harvard.edu/technology/programmable-robot-swarms/
http://ccl.northwestern.edu/netlogo/
https://wyss.harvard.edu/technology/programmable-robot-swarms/

Bibliography 167

[416] Xin­She Yang. Flower pollination algorithm for global optimization.
In Proceedings of the International Conference on Unconventional
Computing and Natural Computation, pages 240–249, 2012.

[417] Xin­She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi,
and Mehmet Karamanoglu. Swarm Intelligence and Bio­inspired
Computation: Theory and Applications. Elsevier, 2013.

[418] Xin­She Yang, Suash Deb, Yu­Xin Zhao, Simon Fong, and Xingshi He.
Swarm intelligence: Past, present and future. Soft Computing, pages
1–11, 2017.

[419] Shoji Yano. Kajima to develop automated
construction machinery for building on Mars,
Moon. https://asia.nikkei.com/Tech-Science/Tech/
Kajima-to-develop-automated-construction-machinery-for-
building-on-Mars-moon, 2016. [Online; accessed 9­July­2019].

[420] Sha Yi, Zeynep Temel, and Katia Sycara. Puzzlebots: Physical coupling
of robot swarms. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 8742–8748, 2021.

[421] Bin Yu, Zhong­Zhen Yang, and Baozhen Yao. An improved ant
colony optimization for vehicle routing problem. European Journal of
Operational Research, 196(1):171–176, 2009.

[422] Zhi Yuan, Marco A. Montes de Oca, Mauro Birattari, and Thomas
Stützle. Continuous optimization algorithms for tuning real and integer
parameters of swarm intelligence algorithms. Swarm Intelligence,
6(1):49–75, 2012.

[423] Xizhe Zang, Sajid Iqbal, Yanhe Zhu, Xinyu Liu, and Jie Zhao.
Applications of chaotic dynamics in robotics. International Journal of
Advanced Robotic Systems, 13(2), 60 p., 2016.

[424] Fangbo Zhang, Andrea L. Bertozzi, Karthik Elamvazhuthi, and Spring
Berman. Performance bounds on spatial coverage tasks by stochastic
robotic swarms. IEEE Transactions on Automatic Control, 63(6):1473–
1488, 2018.

[425] Guohui Zhang, Xinyu Shao, Peigen Li, and Liang Gao. An
effective hybrid particle swarm optimization algorithm for multi­
objective flexible job­shop scheduling problem. Computers & Industrial
Engineering, 56(4):1309–1318, 2009.

[426] Yuan Zhang, Yu Yuan, and Kejing Lu. E­commerce information system
data analytics by advanced aco for asymmetric capacitated vehicle
delivery routing. Information Systems and e­Business Management,
pages 1–19, 2019.

https://asia.nikkei.com/tech-science/tech/Kajima-to-develop-automated-construction-machinery-for-building-on-Mars-moon
https://asia.nikkei.com/tech-science/tech/Kajima-to-develop-automated-construction-machinery-for-building-on-Mars-moon
https://asia.nikkei.com/tech-science/tech/Kajima-to-develop-automated-construction-machinery-for-building-on-Mars-moon

168 Engineering Swarms of Cyber-Physical Systems

[427] Yating Zheng, Cristián Huepe, and Zhangang Han. Experimental
capabilities and limitations of a position­based control algorithm for
swarm robotics. Adaptive Behavior, 30(1):19–35, 2022.

[428] George R. Zug. Walk pattern analysis of cryptodiran turtle gaits.
Animal Behaviour, 20(3):439–443, 1972.

[429] Victor Zykov, Efstathios Mytilinaios, Mark Desnoyer, and Hod Lipson.
Evolved and Designed Self­Reproducing Modular Robotics. IEEE
Transactions on Robotics, 23(2):308–319, 2007.

C

Index

A

Actuators 4, 8, 27, 28, 30–32, 43, 59, 60,

63, 64, 85, 97, 103, 120, 128

Adaptability 3, 7, 44, 45, 54, 75, 109, 126

Agent-based models 41, 65

B

BeeGround 68, 81–83

Collective motion 46, 47, 49, 70, 117

Cyber-physical systems 1, 8, 20, 54, 65, 67

D

Distributed control 8, 109, 113

E

Emergence 2, 6, 8, 11, 12, 109, 113, 126

Emergent behavior 6, 10, 24, 31, 41, 118,

121, 124

Evolutionary algorithms 61

Evolutionary optimization 31, 57, 58, 65

Exploration vs. Exploitation 10, 18, 19, 29,

44, 45, 50, 51, 66, 68, 72, 76, 79, 85,

99–101, 115, 123, 127

F

Feedback loops 12, 60

FREVO 58–65, 111

M

Micro-macro dynamics 12

Modular design 18

Multi-agent systems 6, 7, 60, 65, 77, 113

N

NetLogo 56, 68, 71, 72, 75

P

Pheromone communication 14, 82, 88, 89

Physics-based simulation 68, 70, 75–80, 82

R

Real-World deployment 112

S

Scalability 2, 3, 7, 11–13, 18, 27, 54, 93,

109, 113, 115, 116, 126, 127

Sensors 3, 4, 8, 9, 27–29, 31, 32, 43, 56,

58–60, 63, 64, 69, 76, 81, 84–86, 88, 89,

94–100, 103, 105, 106, 112, 118–121,

126, 128

Swarm behavior 1–3, 5, 10, 12, 20, 27–31,

33, 35–37, 43–45, 51, 69, 70, 75, 82, 92,

94, 101, 110, 119, 128

Swarm challenges 8, 12, 13, 22, 24, 38, 43,

46, 56, 65, 93, 100, 108–114, 117, 118,

120, 123, 124, 128

170 Engineering Swarms of Cyber-Physical Systems

Swarm intelligence 1–10, 12, 38, 41, 95, Swarm simulation 65–67, 70, 81

System abstraction 20

T

Terrestrial robots 94

109–119, 122, 125–127

Swarm modeling 10, 11, 20, 22, 27, 28, 43,

71, 72, 81, 109, 113, 118, 127

Swarm robotics 2, 8, 13, 46, 47, 65–68,

75–77, 82, 85, 86, 88, 89, 94, 96, 99,

101, 103, 112, 113

	Cover
	Title Page
	Copyright Page
	Preface
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1. Swarm Intelligence in Cyber-Physical Systems
	1.1 Basic Terminology
	1.1.1 Swarm-Intelligent Behavior
	1.1.2 A Taxonomy on Biologically-Inspired Swarm Intelligence Algorithms
	1.1.3 Multi-Agent vs. Swarm Systems

	1.2 Motivation to Engineer Swarm Intelligence for CPSs

	2. Principles of Swarm Intelligence
	2.1 Micro and Macro Level
	2.2 Emergence
	2.3 Feedback
	2.4 Scalability
	2.5 Adaptivity
	2.6 Robustness
	2.7 Communication
	2.8 Superlinearity
	2.9 Exploration and Exploitation

	3. Modeling Swarms of Cyber-Physical Systems
	3.1 Modeling Principles
	3.1.1 Challenges

	3.2 Use Case: Models in the Production Plant
	3.2.1 Swarm Member Candidates
	3.2.2 Network Model

	3.3 Use Case: Models in Search and Rescue Applications
	3.3.1 Model-Driven Engineering of CPS Swarms
	3.3.2 Hardware Modeling
	3.3.3 Behavior Modeling
	3.3.4 Code Generation
	3.3.5 Modeling on the Example of the SAR Use Case

	3.4 Use Case: Models in Edge Computing
	3.4.1 Modeling Agents in the Edge Continuum
	3.4.2 Challenges in Modeling Agents for EMDCs

	4. Engineering Swarm Behavior
	4.1 Basic CPS Swarm Behavior
	4.2 Use Case: Collective Motion
	4.3 Use Case: Strategies to Mislead UAV Swarms
	4.4 Use Case: The Principle of Hormones for Production Plants
	4.5 Design Behaviors using the Concept of Evolution
	4.6 Framework for Evolutionary Design
	4.6.1 Architecture
	4.6.2 Graphical User Interface
	4.6.3 Workflow
	4.6.4 External Simulators

	4.7 Why Evolutionary Optimization Needs Simulation

	5. Simulating Swarms of Cyber-Physical Systems
	5.1 Simulation Requirements
	5.2 Abstract Simulation
	5.2.1 SwarmFabSim: A NetLogo Implementation

	5.3 Physics-based Simulation
	5.3.1 BeeGround: A Simulation Platform

	6. Swarm Robotic Platforms
	6.1 Sensors
	6.2 Actuators
	6.3 Communication
	6.3.1 Pheromone-based Communication

	6.4 Swarm Robotic Research Platforms
	6.4.1 Terrestrial
	6.4.2 Aerial
	6.4.3 Aquatic
	6.4.4 Outer Space

	6.5 Project: How to Build your own Swarm Robot
	6.5.1 A Robot with Legs: Spiderino
	6.5.2 A Wheeled Robot: Mona
	6.5.3 Another Wheeled Robot: Mechalino

	7. Open Challenges and Outlook
	7.1 Challenges in Swarms of CPSs
	7.1.1 Challenges Deriving CPS and Swarm Properties
	7.1.2 Challenges Designing the Local Rules
	7.1.3 Real-World Deployment Challenges
	7.1.4 How to Address the Challenges

	7.2 Future Trends and Directions
	7.2.1 Future Inspirations
	7.2.2 Promising Future Applications
	7.2.3 Research Challenges

	Bibliography
	Index

