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Preface

Applications of the tensegrity concept in civil engineering

are still quite innovative. However, the interest of architects

and engineers in its practical application has recently been

growing. Consequently, it seems to be important. This book

is a compact and coherent contribution that enables an

understanding of the behavior of these unusual systems

under constant and time-varying external loads. In addition,

in tensegrity structures, periodical changing of loads over

time can cause unstable vibrations.

This book enables a proper understanding of the

tensegrity structures. It contains both theoretical

background and examples. First, a geometrically non-linear

model and the methods used to evaluate the behavior of

tensegrity structures are explained. Next, a broad spectrum

of different planar and spatial design solutions is

considered. The book is very logically organized, in line with

its down-to-earth subject, beginning with the simplest two-

dimensional structure, for which solutions can be presented

in explicit form, and ending with more complex tensegrity

structures used in civil engineering such as domes, towers,

and plates.

Chapter 1, the ‘Introduction’, provides an overview of the

fundamental concepts associated with tensegrity systems.

The text begins with an overview of the concept’s inception

and progresses to its implementation in civil engineering. It

provides comprehensive explanations of the standard

applications, including the use of tensegrity principles in the

construction of domes, towers/booms, and double-layer



grids. Additionally, it presents a concise overview of existing

research in this field, highlighting the types of problems that

will be addressed in greater detail in subsequent chapters. It

should be noted that this chapter does not include any

mathematical descriptions, which will be discussed in more

detail in the subsequent chapters.

Chapter 2, ‘Mathematical Model of Tensegrity Element’,

presents a geometrically non-linear model of the tensegrity

element. The mathematical description is presented step by

step for the benefit of the reader, who is less familiar with

the solid mechanics. Above all, this section is primarily

intended to familiarize the reader with the notation adopted

throughout this book. The majority of developments have

been carried out using the simple matrix-vector notation.

Only an introduction needs tensor notation to explain the

non-linear theory of elasticity. The mathematical model

proposed in this chapter is sufficient for qualitative and

quantitative analysis of both planar and spatial lattice

structures, including tensegrity structures, in in a

geometrically nonlinear and physically linear context. It is

thus possible to design tensegrity structures using their

unique properties, which allow the control of static and

dynamic parameters. The defined matrices of initially

prestressed tensegrity elements were used in the

calculation procedure based on the finite element method.

The calculation module was developed in Mathematica

environment, which simplified operations through its built-in

functions and commands.

Chapter 3, ‘Assessment of Tensegrity Structures –

Theory’, presents the basic assumptions adopted in

consideration and a mathematical description of the

methods used to evaluate the behavior of tensegrity

structures. It is divided into four sections, i.e., qualitative

analysis, static analysis, dynamic analysis, and dynamic

stability analysis. The analyses are explained in detail and

their flowcharts are presented. The equations were used to



build the calculation procedure written in the Mathematica

environment. The program makes it possible to freely define

the geometry of the structure, material parameters and

loads, and then identification of the self-stress state and

track the behavior of selected static, geometric, and

dynamic parameters in the function of initial prestress. The

calculation procedure includes the analysis of geometrically

non-linear truss systems and allows for the full analysis at

any initial prestress level. The algebraic system of non-

linear equations was solved by implementing the Newton-

Raphson method. This is the mathematical background for

the fourth chapter, which contains examples.

Chapter 4, ‘Assessment of Tensegrity Structures –

Examples’, presents a comprehensive approach that

includes a complete qualitative and quantitative static and

dynamic assessment of tensegrity structures. The

considerations are organized, consistent with its practical

focus. First, to illustrate the behavior of structures

characterized by self-stress states and infinitesimal

mechanisms, the simplest truss consisting of two elements

is considered. Although this structure is neither an ideal nor

a pure tensegrity, its behavior fully reflects the behavior of

tensegrity structures and makes it possible to determine the

impact of the initial prestress level on the static and

dynamic parameters in the explicit form contained in this

study. Next, the basic two-dimensional (2D) models and the

most popular three-dimensional (3D) tensegrity modules are

considered, i.e., Simplex and Quartex modules. The

presented 2D models can be used to create tensegrity

domes. In turn, the 3D models can be used to create towers

and double-layered tensegrity grids. The most common two

qualitatively different tensegrity domes, i.e., Geiger dome

and Levy dome are analyzed. Finally, the behavior of towers

and double-layered grids built with Simplex and Quartex

modules is compared.



The model proposed in the book is sufficient for

qualitative and quantitative analysis of both planar and

spatial tensegrity structures. It is thus possible to design

these structures and use their unique properties to control

static and dynamic parameters. Moreover, understanding

the behavior of tensegrity structures enables

unconventional applications. The tensegrity concept can be

used in the design of complex and intelligent structures with

self-control, self-diagnosis, self-repair, and active control.

New and future potential applications can make use of

tensegrity-inspired metamaterials with their exceptional

mechanical properties. The book offers a comprehensive

approach that includes a complete qualitative and

quantitative static and dynamic evaluation, including an

assessment of the effect of initial prestress on the

distribution of unstable areas.

This book is structured step by step and is designed for

everyone interested in tensegrity systems, from beginners

to those who want to deepen their knowledge of the

parametric analysis of tensegrity structures.
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1 Introduction

DOI: 10.1201/9781003534419-1

NOT​E

Names introduced by the author are italicized.

1.1 FROM ART TO STRUCTURAL

ENGINEERING

Tensegrity is a term derived from the English language as a

compound of two words: ‘tension’ and ‘integrity’. The term

describes systems composed only of compressed (struts,

rods, bars) and tensed elements (cables). These

components are assembled in a self-balanced way, which

means that there is an equilibrium stress state among struts

and cables under zero external loads (the initial prestress).

That configuration of internal forces is called a ‘self-stress

state’. This feature is independent of the structure’s

geometrical and mechanical characteristics. It only depends

on the configuration of the structural elements.

The idea of tensegrity is a relatively new structural

concept, whose first patents date back to the 1960s of the

20th century. It is an interesting example of an idea that has

penetrated from the world of art to the world of science. The

concept of tensegrity originated in the trend of

Constructivism, an artistic direction that emerged in Russia

in 1913. In opposition to other avant-garde directions, in

Constructivism the form of the work was limited to the use

of simple geometric elements, i.e., the circle, the rectangle,

https://doi.org/10.1201/9781003534419-1


and the straight line. The first tensegrity systems were

found in arts (Snelson, 2013). Currently, due to their

universality and simplicity of the elements, it is possible to

use tensegrity ideas in many fields, from micro- to

macroscale. Tensegrity models can be used to describe the

mechanical behavior of living cells subjected to

environmental changes (Khunsaraki et al., 2021; Voloshin,

2020), in biomedicine (biotensegrity) (Brandao Mendes,

2021; Chai Lian et al., 2020; Jung et al., 2021), in

mechanical engineering (Dong et al., 2021; Wang and Post,

2021), or as a new material called metamaterial (Al

Sabouni-Zawadzka, 2020, 2022; Al Sabouni-Zawadzka and

Gilewski, 2018, 2019; Hrazmi et al., 2021; Intrigila et al.,

2022; Micheletti et al., 2023; Vangelatos et al., 2020).

An application of the tensegrity concept in civil

engineering is still quite innovative, and the interest of

architects and engineers in the practical application of this

solution is recently growing: ‘Tensegrity: from Art to

Structural Engineering’ (Motro, 2012). In the last years,

numerous projects and implementations of the tensegrity

idea have been created. The attractiveness of tensegrity

structures arises from the designers’ striving for originality

and innovation. Despite these systems being made from the

simplest possible elements, this idea produces structures

that are very atypical yet visually appealing. It should also

be noted that the geometric form of tensegrity is closely

related to the achievement of a suitable arrangement of

forces in the structure, allowing these systems to maintain

stability with the lowest possible number of elements used.

Therefore, they are considered one of the most optimal

systems. Additionally, the unique nature of tensegrity

characterized by specific mechanical and mathematical

properties distinguishes them from conventional systems.

From a mechanical point of view, the most interesting for all

are tensegrity structures characterized by the occurrence of

infinitesimal mechanisms. This is the second immanent



feature of tensegrity structures. In the absence of initial

prestress, such systems are unstable, i.e., geometrically

variable. The stabilization occurs only after the introduction

of initial prestress. The stiffness of structures depends on

the initial prestress level, and its modification allows for

controlling the static and dynamic parameters. These

tensegrity systems offer many advantages over

conventional structural systems. They have higher load-

bearing capacity than conventional structures with the same

mass and occupy less space, and it is easy to change their

geometrical configuration due to the presence of the

mechanisms. Additionally, the possibility of controlling the

behavior of the structure throughout the adjustment of the

initial prestress-level forces of the structure is very

promising. The tensegrity concept can be used in the design

of deployable and intelligent structures with self-control,

self-diagnosis, self-repair, and active control (Adam and

Smith, 2006, 2007, 2008; Djouadi et al., 1998; Gilewski and

Al Sabouni-Zawadzka, 2015; Hrazmi et al., 2021; Masic and

Skelton, 2002; Skelton and de Oliviera, 2009, 2010; Veuve

et al., 2015, 2017; Zhang L.Y. et al., 2022).

These applications take advantage of the unique

mechanical and mathematical properties of tensegrity

systems. Unfortunately, it should be noted that in the

literature, the word ‘tensegrity’ is often used inaccurately.

This term is often used to describe structures that do not

contain tensegrity features. Lack of understanding of what

tensegrity systems are makes it impossible to distinguish

them from conventional cable–strut systems. For this

reason, the identification of the self-stress states and

infinitesimal mechanisms is a key problem in the design

process of tensegrity structures, especially in the case of

civil engineering.

1.2 BEGINNING OF TENSEGRITY IDEA



The precursor of the tensegrity idea was Latvian

constructivist artist Karl Ioganson (1890–1929). In 1921

during an exhibition held in Moscow, Ioganson presented a

sculpture named ‘Gleichgewichtkonstruktion’ (gleichgewicht

– equilibrium, konstruktion – construction) (Burkhardt, 2008;

Gengnagel, 2002; Gough, 1998, 2005; Wroldsen, 2007). This

structure was fully deformable and consisted of three struts

(thick line), seven tensioned cables (thin line), and one

freely hanging cable serving to change the configuration of

the system while maintaining its equilibrium (Figure 1.1a).

This sculpture is considered to be the first proto-tensegrity

structure (Emmerich, 1988). Emmerich added that this

configuration was very similar to the proto-system invented

by him in 1964 with three struts and nine cables. However,

the absence of prestress, which is one of the characteristics

of tensegrity systems, does not allow Ioganson‘s ‘sculpture-

structure’ to be considered the first of this type of structure.

Another of Ioganson’s artworks of special interest is a

structure made of three wooden struts (thick line) forming a

right-angled spatial construction cross-interconnected with

nine cables (thin line) (Figure 1.1b). A detailed description of

constructivism and Ioganson’s works can be found in Gough

(2005).

FIGURE 1.1 Reconstruction of sculptures of

Karl Ioganson: (a) Gleichgewichtkonstruktion;

based on (Gengnagel, 2002), (b) spatial



construction 1920–21; based on (Gough,

1998), and (c) spatial construction 1920–21;

based on (Gough, 1998).⏎

FIGURE 1.2 Dome patterns: (a) Ribbed dome,

(b) Schwedler dome, and (c) Lamella-Kiewitt

dome.

Ioganson’s work consisted of searching for new

construction forms. Although he did not develop his ideas in

the field of engineering structures, he predicted these

possibilities: ‘From painting to sculpture, from sculpture to

construction, from construction to technology and invention

– this is my chosen path, and will surely be the ultimate goal

of every revolutionary artist’. His sculptures are not

tensegrity; however, Gough presented a tensegrity prism

(Figure 1.1c) made of three struts (thick line) and nine

cables (thin line). He claimed that the prism was a modern

reconstruction of Ioganson’s sculpture (Gough, 1998, 2005).

This structure looks like the simplest early tensegrity

module, which was independently patented by the

aforementioned French architect David Georges Emmerich

(1925–1996) (Emmerich, 1964) and two Americans –

architect Richard Buckminster Fuller (1895–1983) (Fuller,

1962) and sculptor Kenneth Snelson (1927–2016) (Snelson,



1965), who was Fuller’s student. These three authors are

considered the creators of tensegrity systems.

The term tensegrity was coined by Fuller in 1955, and he

first patented the definition of tensegrity (Fuller, 1962).

Fuller described tensegrity systems as ‘islands of

compression in a sea of tension’. Three years later, Snelson

patented the system, which he called ‘Continuous Tension,

Discontinuous Compression Structures’ (Snelson, 1965). The

more precise definition was patented by Emmerich (1964).

He added the condition of self-stress state: tensegrity

structures consist of rods mounted in such a way that the

struts remain physically isolated in a continuous set of

cables. All these elements must be in close proximity to one

another and interconnected by tensional prestress. No

external supports or anchors are required. It makes the

structure as strong as a self-supporting structure, hence the

name self-stress state. In the following years, all three

authors continued to work on tensegrity systems. Fuller and

Emmerich developed their ideas in architecture, while

Snelson (1996, 2013) focused on his artistic work. A detailed

description of the work of Fuller, Emmerich, and Snelson can

be found among others in the works of Motro (1992, 2003,

2011) and Gomez-Jauregui (2004, 2009). In turn,

compilations and overviews of the applications of tensegrity

structures in all fields (architecture, engineering,

construction, robotics, space, etc.) from 1921 to the present

day are presented in the paper (Gomez-Jauregui et al.,

2023).

1.3 DEFINITIONS OF TENSEGRITY

SYSTEMS

The idea of tensegrity was first described about 60 years

ago, but no precise and general definition has been agreed

upon so far. This thereby paves the way for confusion and



misuse of the term in technical applications. The term is

often used for trusses that have little to do with the

tensegrity principle as defined by the creators of this idea.

The first patented definitions by creators of tensegrity

systems are very general. In the 60 years since the first

tensegrity structures were patented, there have been

attempts to modify and refine the first definitions. The most

widely accepted definition of tensegrity is formulated by

Pugh (1976), in which he combines the two previous

statements: ‘A tensegrity system is established when a set

of discontinuous compression components interacts with a

set of continuous tensile components to define a stable

volume in space’. This definition was narrowed by Motro

(1992, 2003). Motro distinguished two different concepts –

‘patent based’ and the ‘extended’ definition. The first

definition is:

Tensegrity systems are spatial reticulate systems

in a state of self-stress. All their elements have a

straight middle fibre and are of equivalent size.

Tensioned elements have no rigidity in

compression and constitute a continuous set.

Compressed elements constitute a discontinuous

set. Each node receives one and only one

compressed element.

In turn, the ‘extended’ definition has some common points

with Pugh’s definition but has additional factors: ‘the

compressed elements are included inside the continuous set

in tension, and the system has self-equilibrium stability’.

Hanaor (1994) describes tensegrity structures as ‘internally

prestressed, free-standing pin-jointed networks, in which the

cables or tendons are tensioned against a system of bars or

struts’. A broader interpretation is proposed by Miura and

Pellegrino (Tibert, 2002; Tibert and Pellegrino, 2003) who



classify tensegrity as ‘any structure realized from cables

and struts, to which a state of prestress is imposed that

imparts tension to all cables’. A narrower interpretation, also

by Miura and Pellegrino, adds to the above definition of the

notion that ‘as well as imparting tension to all cables, the

state of prestress serves the purpose of stabilizing the

structure, thus providing first-order stiffness to its

infinitesimal mechanisms’. Wang (1998) defines tensegrity

structures as ‘Self-stressed equilibrium cable networks in

which a continuous system of cables (tendons) are stressed

against a discontinuous system of struts; or structures

composed of tensegrity simplexes’. Zhang and Ohsaki (

2015), based on existing definitions, describe characteristics

of a tensegrity structure as follows:

(1) The structure is free-standing, without any

support. (2) The structural members are straight.

(3) There are only two different types of

structural members: struts carrying compression

and cables carrying tension. (4) The struts do not

contact with each other at their ends.

Skelton et al. (Masic and Skelton, 2002, 2004; Skelton et al.,

2001a, 2001b, 2002a, 2002b; Skelton and de Oliviera, 2009;

Williamson et al., 2003a, 2003b) take a different approach.

They introduce the concept of tensegrity configuration:

‘Configuration forms a tensegrity configuration if the given

configuration can be stabilized by some set of internal

tensile members, i.e., connected between the rigid bodies’.

Additionally, they defined the classes of structural systems:

‘A tensegrity configuration that has no contacts between its

right bodies is a class 1 tensegrity system, and a tensegrity

system with as many as k right bodies contact is a class k

tensegrity system’.



Corresponding to Skelton’s Class-k tensegrity structure,

Bieniek (2009a, 2009b, 2011, 2012, 2015a, 2015b, 2016,

2017) and Bieniek et al. (2019) suggested assuming new

Class-Theta (Θ) tensegrity systems. Each of the proposed

tensegrity systems possesses an exterior and interior set of

tension elements (cables), which are never connected to

each other. The compressive elements (struts) always lie

between these two sets of cables. Bieniek distinguished two

subclasses within Class-Theta tensegrity systems. The first

subclass includes tensegrity module with a single interior

tendon. Alternatively, the second subclass includes

tensegrity module comprising a disconnected set of

compressed elements that are joined with an exterior and

interior set of tension components simultaneously.

Moored and Bart-Smith (2009) subsequently proposed the

term ‘clustered tensegrity’ to denote a particular class of

tensegrity structures having sliding or continuous cables. A

clustered tensegrity is defined to ‘be a tensegrity structure

where at least two cable elements are grouped together to

become a single element. Each group of individual cables

that are combined into one continuous cable is then called a

cable-element cluster’.

The different approach to definition is based on the

characteristic features of tensegrity structures closely

related to their benefits, which distinguish them from

conventional cable–strut structures:

the tensegrity structure is a truss (TT);

there is a self-stress state understood as the system of self-equilibrated

normal forces, which satisfies homogeneous equations of equilibrium; this

feature is independent of the structure’s geometrical and mechanical

characteristics, and it only relies on the configuration of the elements of

structures (SS);

tensile elements have no stiffness in compression, which means they are

cables (TC);

there is an infinitesimal mechanism or mechanisms stiffened by the self-

stress state (IM);



the set of compressed components (struts) is contained within the

continuous net of cables (IN);

the struts do not touch each other and form a discontinuous set (DS).

The first definition based on the characteristic features of

tensegrity structures was proposed by Gilewski et al.

(2016a, 2016b) and Obara et al. (2019). The characteristics

mentioned earlier are used to classify structures as ‘pure

tensegrity’ or ‘structures with tensegrity features’. ‘Pure

tensegrity’ is represented by a structure that has all of the

six features. It means a pure tensegrity structure is a truss

in which there is an infinitesimal mechanism stiffened by a

self-stress state. Additionally, components in compression

create a discontinuous system inside a continuous system of

components in tension, which have no compressive rigidity.

In turn, ‘structures with tensegrity features’ include a wider

range of systems in which some properties of tensegrity can

be ignored. Structures assigned to this group fulfill three

obligatory criteria, such as TT, SS, and TC, and have at least

one of the features: IM, DS, or IN. That classification was

revised by Obara (2019a) and extended to four classes. For

a detailed description, see Section 3.3.2 of Chapter 3.

1.4 ADVANTAGES AND

DISADVANTAGES OF TENSEGRITY

STRUCTURES

Tensegrity structures have many advantages that

distinguish them from typical cable–strut structures (Skelton

et al., 2001b):

tensegrity structures are efficient – by increasing the use of tensile

elements, maximum strength can be achieved with minimum weight;

tensegrity structures are collapsible and economical – compressed

elements are not connected or connected by hinges; this solution allows



them to be moved, disassembled, and folded into a compact volume,

which in turn saves on transportation and crew costs of assembly;

tensegrity structures are more reliable – greater structural reliability can be

expected by using axially tensed or compressed elements; the modeling is

more precise than with elements that deform in two or three directions; the

tensed elements form a continuous network, while compression elements

do not connect, so their work is local, which means that the stays are not

subjected to large buckling loads;

tensegrity structures can be easily tuned and repaired – the infinitesimal

mechanisms make it possible to control the stiffness, which depends on the

state of self-tension stabilizing the structure;

tensegrity structures enable control and improvement of static and

dynamic properties of structures.

In addition to these undeniable advantages, the

disadvantages should also be noted. They are related to the

problems that occur in both the design and construction

processes. At the design stage, the problem is:

modeling of structural behavior should take into account aspects such as

effects of geometric nonlinearity, friction at nodes, execution tolerances,

operation of the structure at the erection stage, etc;

complicated analysis of structures due to large displacement gradients,

susceptibility to the effects of dynamic loads, and the need to analyze the

various phases of assembly;

design of connections, which are a key element of all spatial structures,

plays a special role in the case of tensegrity structures; connections must

be lightweight and made with high accuracy, since tensegrity structures

are very sensitive to any inaccuracies and changes in geometry.

In turn, during the construction process, the problem is:

complicated, multi-phase assembly;

costly and tedious in construction details;

difficult prestressing program (cable tension programming);

execution of connections;

anchoring of tendons;

adherence to the designed geometry of the structure.

These disadvantages limit the applicability of tensegrity

structures as load-bearing structures for engineering



structures, but in recent years, interest in this type of

construction has grown tremendously.

1.5 TENSEGRITY STRUCTURES IN

CIVIL ENGINEERING

Attempts to apply tensegrity structures in civil engineering

go back to the origins of the idea itself. In recent years,

there has been a growing interest in these applications. This

includes both standard (domes, towers, booms, bridges,

footbridges, and double-layer grids) and non-standard

(deployable and intelligent structures) solutions. This growth

is due to an increase in both design and execution

capabilities. This is related to the development of advanced

computational techniques and the development of

construction technologies and materials (Wang et al., 2024).

In this book, the standard application is described in

detail, i.e., the use of tensegrity ideas for the construction of

domes, towers, booms, and double-layer grids. The detailed

description of the mechanics of tensegrity systems allows

for understanding the behavior of these unusual structures.

It should be mentioned that tensegrity structures can be

used in the construction of bridges and footbridges (Bel

Hadj Ali et al., 2010; Feron et al., 2019; Kasprzak, 2014;

Korkmaz et al., 2010, 2011a, 2011b; Metodieva, 2014;

Micheletti, 2005, 2012; Pleşcan et al., 2018; Rhode-

Barbarigos et al., 2009; Rhode-Barbarigos, Bel Hadj Ali et

al., 2010; Rhode-Barbarigos, Jain et al., 2010, 2012; Veuve

et al., 2015, 2017).

1.5.1 Cable–Strut Domes

Domes are one of the oldest covers used in civil

engineering. These structures have been known since 27

BCE, i.e., since the Romans used stone blows to cover their

palaces. In modern times, concrete or steel is used to build



domes. The most popular ones are steel domes, which are

lighter than other conventional forms. These kinds of

structures are the best solution for long-span roofs. Steel

domes can be divided into standard (traditional domes) and

non-standard ones (conventional cable–strut domes and

tensegrity cable–strut domes).

The standard domes are built with rods assembled in

single-layer or double-layer grids. Depending on the

arrangement of the rods, the structures can be divided into

several groups (dome patterns). The most common are four

of them, i.e., Ribbed dome (Figure 1.2a) (Alpatov et al.,

2016; Jeleniewicz et al., 2024; Zabojszcza et al., 2021);

Schwedler dome - devised by Schwedler in 1863 (Figure

1.2b) (Radoń et al., 2020, 2023; Manguri et al., 2024;

Xiaoyang et al., 2010) Lamella-Kiewitt dome devised by

Zollinger in 1908 and adapted by Kiewitt (Figure 1.2c)

(Dudzik and Potrzeszcz-Sut, 2021; Potrzeszcz-Sut, 2020;

Potrzeszcz-Sut and Dudzik, 2022; Xiaoyang et al., 2010;

Zabojszcza and Radoń, 2019, 2020; Zhang et al., 2019). It

should be noted that Kiewitt adapted the Lamella system to

be used in larger, circular dome structures, and he patented

this design in 1959 (Kiewitt, 1959). This system was used,

among others, to create non-standard solutions (tensegrity

cable–strut domes), namely the cable–strut Kiewitt domes

(Chen et al., 2023; Ma et al., 2018; Mottahedin and Keyvani,

2023; Yuan et al., 2007; Zhang and Feng, 2017). The

tensegrity cable–strut domes are structurally effective in

long-span roofs. They are made by uniformly distributed

load-bearing structures, which are fixed by the

circumference-clamping ring. Although these systems are

rod-like structures, some specific mechanical and

mathematical properties distinguish them from conventional

cable–strut domes. These structures are characterized by a

system of internal forces, which holds the struts and cables

in stable equilibrium under zero external loads.



The first tensegrity cable–strut dome was proposed and

patented in 1988 by Geiger (1988); The main principle

behind Geiger’s dome is that all tension is achieved through

the roof structure by means of tensed cables and

discontinuous compressed struts. The original structure

consisted of radial trusses with tensed and compressed

elements. This type of roof has low-profile configurations

that reduce wind lift, uneven snow settling, and use less

material to cover the roof. One of the main advantages of

this structure is that its weight per square meter does not

change with increasing span. This solution was used on the

roof of the Olympic Gymnastics Hall in Seoul. The roof with a

120-m span consists of radially arranged flat girders

(Rastorfer, 1988).

From the beginning of the idea to the present day, new

topologies based on the original patent have been created.

There are four different design solutions called ‘Geiger

domes’:

regular Geiger dome type B (Figure 1.3a) – dome according to Geiger

patent; load-bearing girders are connected by a ring (Albertin et al., 2012;

Biondini et al., 2011; Chen et al., 2022, 2023; Ding et al., 2018; Fu, 2006;

Jiang et al., 2019; Kłosowska, 2018; Malerba et al., 2012; Mottahedin and

Keyvani, 2023; Qin et al., 2023; Yuan et al., 2007; Zhang and Feng, 2017);

regular Geiger dome type A (Figure 1.3b) – load-bearing girders are

connected by a strut (Ma et al., 2018; Wu et al., 2018, 2020);

modified Geiger dome type B (Figure 1.3c) – the modification of the Geiger

patent by adding additional cables connecting the top nodes; load-bearing

girders are connected by a ring (Zhang and Feng, 2017);

modified Geiger dome type A (Figure 1.3d) – modified Geiger patent with

load-bearing girders connected by a strut (Atig et al., 2017; Kim and Sin,

2014; Kim et al., 2001).



FIGURE 1.3 Variants of the Geiger domes: (a)

regular Geiger dome type B; based on (Yuan

et al., 2007), (b) regular Geiger dome type A;

based on (Ma et al., 2018), (c) modified Geiger

dome type B; based on (Zhang and Feng,

2017), and (d) modified Geiger dome type A;

based on (Atig et al., 2017).⏎

After the appearance of the Geiger dome, many

researchers presented their ideas of cable structures, i.e.,

Terry (1996), Wang (1998), Rębielak (2000), Kawaguchi et

al. (1999), and Levy (1989). The last idea is the second,

after the Geiger dome, most common tensegrity dome. The

Levy dome, unlike the Geiger dome, is a triangular structure

where cables and struts are not in the same plane. Levy’s

idea was used to build a stadium cover in Atlanta (Georgia

Dome) in the United States in 1992 (Gerardo and Levy,

1992). This is an example of one of the largest dome in the

world. The dome was built on an elliptical plan, with



dimensions of 227 × 185 m and an area of 37,200 m². The

Georgia Dome was referred to as the first Hypar-tensegrity

dome

Two different design solutions called ‘Levy domes’ can be

found in the literature:

Levy dome type B (Figure 1.4a) – load-bearing girders are connected by a

ring (Chen and Feng, 2012a; Ding et al., 2021; Ma et al., 2020; Yuan et al.,

2007; Zhang et al., 2007);

Levy dome type A (Figure 1.4b) – load-bearing girders are connected by a

strut (Chen et al., 2020; Kmet and Mojdis, 2014; Ma et al., 2018; Yuan et

al., 2007; Sun and Xiao, 2021; Zhang et al., 2018; Zhang et al., 2023).

FIGURE 1.4 Variants of the Levy domes: (a)

Levy dome type B; based on (Ma et al., 2020),

(b) Levy dome type A; based on (Chen et al.,

2020).

Practical application of tensegrity domes requires a

thorough examination of static and dynamic properties, as

well as the overall behavior of the structure. Most of the

research to date focuses on layout design (Rębielak, 2000;

Yuan et al., 2007) or shape optimization (Chen et al., 2023;

Kawaguchi et al., 1999; Mottahedin and Keyvani, 2023;

Zhang and Feng, 2017). A smaller number of studies

focused on the static parameters of tensegrity structures.



Due to the unconventional shape and unique features of

tensegrity domes, parametric analysis considering the effect

of initial prestress on behavior is very important. The effect

of initial prestress on the mechanical properties, i.e.,

displacements and stiffness, was investigated (Ding et al.,

2018; Chen et al., 2022; Fu, 2006; Kmet and Mojdis, 2014;

Obara, 2019a; Shen et al., 2021; Sun and Xiao, 2021; Wu et

al., 2018, 2020; Yan et al., 2019). Moreover, the dynamic

response to changes in initial prestress was presented (Atig

et al., 2017; Chen and Feng, 2012a; Kim and Sin, 2014; Ma

et al., 2020; Obara, 2019a; Qin et al., 2023; Sun and Xiao,

2021; Volokh et al., 2003). A detailed description and

parametric analysis of tensegrity Geiger and Levy domes

were presented (Obara and Solovei, 2023, 2024; Obara et

al., 2023a, 2023b, 2024).

Some other interesting unusual tensegrity domes are

membrane roofs supported by two tensegrity modules

called White Rhino (Gilewski et al., 2017; Gomez-Jauregui et

al., 2023; Kawaguchi et al., 2011) and prototypes of knit

tensegrity shells composed of an elastic membrane and

bamboo struts (Gupta et al., 2020).

1.5.2 Towers and Booms

Tensegrity towers and booms (beam-like structures) are

built by linearly connecting the basic three-dimensional

tensegrity modules (units). The units can be connected

node-to-node (Ashwear et al., 2016; Bel Hadj Ali et al., 2021;

Kan et al., 2018; Safaei et al., 2013; Schlaich, 2004; Skelton

and de Oliveira, 2010; Snelson, 2013) or strut-to-cable (Lee

and Choong, 2018; Masic and Skelton, 2004; Mochocki,

2022; Snelson, 2013; Safaei et al., 2013; Xu and Luo, 2011).

Dozens of tensegrity modules can be found in the literature.

These range from the simplest, patented in 1960 (see

Section 1.2) to complex forms, the search for which is the

subject of many works. The simplest modules are regular



prisms with a triangular base, constructed from three struts.

Tensegrity structures can also be based on other regular

prisms with any number of struts. It is also possible to

create modules inscribed in a truncated cone. Such

structures are classified as so-called cylindrical systems.

The construction of tensegrity modules can also be based

on truncated Platonic solids (regular polyhedra) or

Archimedean solids (semi-formal polyhedra) – spherical

systems. It should be noted that the geometry of tensegrity

is not always identical to the corresponding solids, since

they would not then be in a stable configuration if they were

identical, the structure would not be in a stable

configuration The first catalog of tensegrity systems was

created by Pugh (1976). He described three basic patterns

of structural configurations: rhombic (diamond-pattern

systems), circumferential, and zigzag (oblique). In the

rhombic pattern, each strut is on the longer diagonal axis of

a rhombus composed of cables. A circumferential tensegrity

system is characterized by circuits formed by the struts. A

zigzag tensegrity system, on the other hand, is one in which

a total of three noncollinear cables lie between the two ends

of each strut (Bieniek, 2012; Gomez-Jauregui, 2004). A

description of the simplest spatial tensegrity structures,

their mathematical models, and methods for designing

complex structures is presented in Burkhardt (2008).

The simplest modules (basic 3D modules) are diamond-

pattern systems consisting of:

twelve elements, i.e., three struts (thick line) and nine cables (thin line)

(Figure 1.5a, b), known as: elementary equilibrium, three-bar unit/module,

three-strut T-prism, T-3 unit, three-strut simplex, triplex, triangular prism

tensegrity structures, trigonal tensegrity prism, Simplex module (Aloui et

al., 2019; Ashwear et al., 2016; Chen and Feng, 2012a; Chen and Qin,

2024; Emmerich, 1964; Estrada et al., 2006; Fuller, 1962; Gilewski and Al

Sabouni-Zawadzka, 2020; Gilewski et al., 2015, 2017; Intrigila et al., 2022;

Małyszko, 2016, 2017; Małyszko and Rutkiewicz, 2019, 2020; Małyszko et



al., 2018; Mochocki, 2022; Rutkiewicz, 2023; Safaei et al., 2013; Skelton

and de Oliveira, 2010; Snelson, 1965; Zhang L.Y. et al., 2014, 2018);

sixteen elements, i.e., 4 struts (thick line) and 12 cables (thin line) (Figure

1.5c, d), known as: quadrangular prismatic tensegrity, quadrangular

cylindrical tensegrity structure, basic Quadruplex module, quadruplex, 4-

strut Simplex, four-bar module, Quartex module (Al Sabouni-Zawadzka et

al., 2024; Estrada et al., 2006; Faroughi and Lee, 2014; Gilewski and Al

Sabouni-Zawadzka, 2021; Intrigila et al., 2022; Kebiche et al., 1999; Liu

and Paulino, 2019; Mochocki, 2022; Oliveto and Sivaselvan, 2011; Safaei et

al., 2013; Shekastehband et al., 2012; Tran and Lee, 2010a; Zhang L.Y. et

al., 2018, 2022).

FIGURE 1.5 Simplest tensegrity modules: (a)

regular Simplex module, (b) modified Simplex

module, (c) regular Quartex module, and (d)

modified Quartex module.⏎

There are two versions of the basic 3D modules

mentioned earlier, i.e., regular and modified. In the first

case, the top surface is like the bottom one (Figure 1.5a, c),

whereas in the second, the top surface is inscribed into the

bottom one (Figure 1.5b, d). The modification makes it easy

to combine single module into multi-module structures.



The most popular in use are towers/booms built with units

connected node-to-node built with:

regular Simplex modules (Figure 1.6a, b) (Al Sabouni-Zawadzka, 2016;

Ashwear et al., 2016; Cao et al., 2024; Gilewski, Kłosowska et al., 2019;

Kłosowska, 2018; Małyszko and Rutkiewicz, 2019; Mochocki, 2022; Pinaud

et al., 2004; Rutkiewicz, 2023, 2024; Safaei et al., 2013; Schlaich, 2004;

Skelton and de Oliveira, 2009, 2010; Snelson, 2013; Wang and Senatore,

2020; Yildiz and Lesieutre, 2022; Zawadzki and Al Sabouni-Zawadzka,

2020);

modified Simplex modules (Figure 1.6b) (Obara and Tomasik, 2023c,

2023d);

regular Quartex modules (Figure 1.6c) (Mochocki, 2022);

modified Quartex modules (Figure 1.6d) (Bel Hadj Ali et al., 2021; Kan et

al., 2018; Safaei et al., 2013).

A detailed description and parametric analysis of towers

built with Simplex and/or Quartex modules were presented

(Mochocki, 2022; Mochocki and Obara, 2021; Obara and

Tomasik, 2023c, 2023d).

FIGURE 1.6 Models of tensegrity towers built

with three: (a) regularSimplex modules (b)

modified Simplex modules (c) regular Quartex

modules, (d) modified Quartex modules.

Examples of existing towers are the Zig-Zag Tower

(Snelson, 2013), the Warnow Tower (Kłosowska et al., 2018;



Kłosowska, 2018; Schlaich, 2004), and the Needle Tower

(Snelson, 2013). They are built with Simplex modules. The

first tower is, in truth, a Snelson’s model built in 1997 with a

height of 1.16 m; however, the second tower measured 49.2

m high. The Warnow Tower was built in 2003 for the opening

of the International Garden Exhibition in Rostock, Germany.

The tower was designed by Mike Schlaich. The structure

consists of six modules, each 8.3 m in height. A module was

composed of three steel-tube compression members, three

heavy-duty diagonal cables, and three thin horizontal

cables. Each stacked prism, in turn, was rotated by 30°. To

increase the height further, architects added a stainless

steel needle suspended from the top prism, extending the

tower by 12.5 m. The tower was founded on a concrete base

and foundation piles with a diameter of 8 m. In turn, the

third tower was built in 1969 in the Kröller-Müller Museum in

Otterlo, the Netherlands. The tower measures 30 m high

and modules were connected strut-to-cable, which results in

an unusual pattern of twisted stars when looking at the

tower from below.

1.5.3 Double-Layer Grids

One of the applications of the tensegrity principle in civil

engineering is double-layer grids. Double-layer tensegrity

grids are built by planar connection of the basic three-

dimensional tensegrity modules. Adjacent modules can be

connected in a contiguous configuration (struts are

connected to each other) or a non-contiguous configuration

(maintaining a discontinuous arrangement of compressed

elements). Modules can be connected edge-to-edge, node-

to-node, or strut-to-cable. Generally, the elements of a

double-layer grid are organized into two parallel planes,

which are connected by vertical and diagonal elements. In

the horizontal projection, the elements are arranged in a

regular pattern. In view of the double-layer grid



construction, they are called ‘tensegrity plate-like

structures’, ‘tensegrity plates’, and ‘tensegrity plate strips’.

Due to this, tensegrity double-layer grids can be analyzed

using a discrete model or continuum model (Al Sabouni-

Zawadzka, 2016; Al Sabouni-Zawadzka and Gilewski, 2016;

Al Sabouni-Zawadzka et al., 2016; Gilewski, Obara et al.,

2019; Obara, 2019b, 2019c; Obara and Tomasik, 2023b).

The first double-layer tensegrity grids were constructed

by Emmerich. In the patent (Emmerich, 1964), Emmerich

proposed a structure consisting of modified Simplex

modules with node-to-node connections. In turn, the first

experimental model was created by Kono and Kunieda

(1996, 1997a, 1997b) and Kono et al. (1997). It was built

with 33 modified Simplex modules. The span of the

structure was 9 m, and its area was 80 m
2
. The research

conducted by the Japanese team finally resulted in the

granting of a patent in 2001 (Kono and Kunieda, 2001). An

analysis of double-layer tensegrity grids composed of

regular Simplex modules was carried out by Olejnikova

(Olejnikova, 2012) and others (Gilewski and Al Sabouni-

Zawadzka, 2015; Gomez-Jauregui et al., 2011, 2012, 2013;

Wang, 1998, 1999, 2004, 2012; Wang and Li, 2003a, 2003b,

2005; Wang and Liu, 1996). For example, a model of double-

layer tensegrity grids built with 24 modified Simplex

modules is shown in Figure 1.7. A detailed description and

parametric analysis of double-layer tensegrity grids built

with regular and/or modified Simplex modules were

presented (Obara and Tomasik, 2021; Tomasik, 2023;

Tomasik and Obara, 2021, 2023).



FIGURE 1.7 Model of double-layer tensegrity

grids built with 24 modified Simplex modules:

(a) 3D view, (b) plan view.⏎

The second most popular module used to build double-

layer tensegrity grids is the Quartex module. Square bases,

due to their perpendicular arrangement, allow relatively

easy construction of structures. The connection of the

modules does not require additional components, and the

cables of the lower bases are common to adjacent modules.

The first structure built with connected edge-to-edge

modified Quartex modules was proposed by Emmerich

(Emmerich, 1964). An analysis of double-layer tensegrity

grids composed of modified Quartex modules was carried

out Olejnikova (Olejnikova, 2012), Al Sabouni-Zawadzka and

Gilewski (Al Sabouni-Zawadzka and Gilewski, 2016), and

others (Averseng, 2005; Faroughi and Lee, 2014, 2015;

Faroughi et al., 2015; Gilewski et al., 2019; Gomez-Jauregui

et al., 2012, 2013; Kan et al., 2018; Kono et al., 1999;

Metrouni et al., 2024; Oliveto and Sivaselvan, 2011; Quirant

et al., 2003; Shekastehband et al., 2011, 2012; Tran and

Lee, 2010b; Wang, 1998). For example, a model of double-

layer tensegrity grids built with 25 modified Quartex

modules is shown in Figure 1.8. A detailed description and

parametric analysis of double-layer tensegrity grids built



with regular and/or modified Quartex modules were

presented (Gilewski, Kłosowska et al., 2019; Obara, 2019a;

Obara and Tomasik, 2020, 2021a, 2023a, 2023b).

FIGURE 1.8 Model of double-layer tensegrity

grids built with 25 modified Quartex modules:

(a) 3D view, (b) plan view.

The most famous and the most spectacular example of a

double-layer tensegrity grid was the Blur Building pavilion

(Crawfordt, 2015; Gilewski et al., 2016b; Kłosowska, 2018),

created as a temporary structure for Expo 2012 in

Switzerland. The form is based on the work of Buckminster

Fuller. Elizabeth Diller and Ricardo Scofidio were the creators

of the architectural project. The structure measured 300 ft

in width, 200 ft deep, and 75 ft high. The double-layer

tensegrity grid was also used as the roofing of a bank annex

patio in Athens (Liapi and Kim, 2009). A similar construction

is used as the roofing of the exhibition pavilion in Patras,

Greece (Liapi and Kim, 2009).

Other suggestions for the application of tensegrity

double-layer grids in real engineering constructions can be

found, for example, as a curved tensegrity vault (Liapi and

Kim, 2003; Falk, 2006), a tensegrity platform (Hrazmi et al.,



2021), and as a tensegrity building facade (Kabošová et al.,

2019; Miranda et al., 2020).

1.6 BRIEF REVIEW OF THE

LITERATURE

The subject of tensegrity systems is very popular and

continues explored. It is impossible to review all of the

papers. However, based on the known literature (including

our own chapters), six main subject areas are identified:

form-finding methods;

optimization algorithms;

shape control methods;

impulse loads;

parametric analysis;

dynamic stability analysis.

The first area is concerned with the search for

geometrical stable self-balancing configuration. It means

looking for a configuration of elements at which there is a

stable self-stress state in the structure. The form-finding

methods will be described in Section 3.2.1.

The second area focuses on the optimization of tensegrity

structures. The optimization focuses on looking for the new

topologies to achieve desired performance criteria, such as

the level of stiffness. The algorithms that change the shape

of the structures are proposed (Albertin et al., 2012;

Ashwear et al., 2016; Bel Hadj Ali et al., 2010; Biondini et

al., 2011; Caluwaerts and Carbajal, 2015; Dong et al., 2021;

Feron et al., 2019; Lee S. and Lee J., 2014; Lu et al., 2010;

Liu and Paulino, 2019; Masic and Skelton, 2004, 2006;

Mottahedin and Keyvani, 2023; Sultan et al., 2002; Xiaoyang

et al., 2010; Yildiz and Lesieutre, 2022; Zhang and Feng,

2017).



The most important research on the analysis of tensegrity

structures focuses mainly on the third area, i.e., on the

control of the shape of the structure under the influence of

external forces. The search for the force–displacement

relationship can be carried out by examining the damping

and frequency of vibrations and by examining the change in

geometry. Control methods are divided into passive and

active (Ashwear et al., 2016; Averseng et al., 2005; Bel Hadj

Ali and Smith, 2010; Domer et al., 2003; Faroughi and Lee,

2015; Faroughi et al., 2015; Fraternali et al., 2012; Kan et

al., 2018; Manguri et al., 2024; Oliveto and Sivaselvan,

2011; Skelton, 2005, 2006; Skelton et al., 2001a; Wroldsen,

2007; Veuve et al., 2017; Zhang et al., 2023).

The fourth area is concerned with the impact of impulsive

loading on the behavior of the structure. It is a very

important subject. The purpose of the analysis was to

determine critical dynamic loads in order to compare them

with critical static loads. Parameters such as impulsive load

duration, prestress level, damping coefficients, and support

conditions were considered. The analysis was performed

with and without the initial prestress (Atig et al., 2017;

Fabbrocino and Carpentieri, 2017; Małyszko et al., 2018;

Nagase and Skelton, 2014; Rimoli, 2018; Shekastehband

and Ayoubi, 2019).

The fifth area focuses on the influence of the initial

prestress level on the static and dynamic properties of

structures (Angellier et al., 2013; Ashwear et al., 2016; Bel

Hadj Ali and Smith, 2010; Chen and Feng, 2012b; Fu, 2006;

Gilewski and Al Sabouni-Zawadzka, 2015; Gilewski et al.,

2017; Gilewski Kłosowska et al., 2019; Hanaor, 1991;

Hanaor and Liao, 1991; Kasprzak, 2014; Kłosowska, 2018;

Kłosowska et al., 2018; Małyszko and Rutkiewicz, 2019,

2020; Małyszko, 2016; Małyszko et al., 2018; Mochocki and

Obara, 2021; Murakami, 2001a, 2001b; Ashwear and

Eriksson, 2014, 2015; Murakami and Nishimura, 2001a,

2001b, 2001c; Obara, 2019a, 2019b, 2019c; Obara and



Solovei, 2023, 2024; Obara and Tomasik, 2021a, 2021b,

2023a, 2023b, 2023c; Obara et al., 2023a, 2024;

Oppenheim and Williams, 2001).

The sixth area is concerned with the influence of the

initial prestress level on the unstable regions. In comparison

to the abundant literature on the abovementioned areas,

the dynamic stability analysis has been developed slightly

(Obara, 2019a; Obara and Solovei, 2024; Obara and

Tomasik, 2023d).



1.7 CHAPTER SUMMARY

The literature analysis shows that the majority of studies

focus on tensegrity design, the search for stable forms,

optimization algorithms, methods for controlling the shape

of tensegrity structures under external loads, and their

practical applications. However, parametric analysis,

including the influence of the initial prestress on the static,

stability, and dynamic properties of tensegrity structures, is

the subject of much less work. In addition, these works

relate to specific solutions. There is a lack of monographic

studies that concisely describe the behavior of the full

spectrum of tensegrity structures. The studies known to the

author lack the analysis of dynamic stability understood in

terms of the Bolotin approach (Bolotin, 1956), except three

works (Obara, 2019a; Obara and Solovei, 2024; Obara and

Tomasik, 2023d). This problem is often confused with the

issues of impulse loads.

Dynamic stability analysis leads to the determination of

parametric resonance areas (unstable regions), which risk a

structure’s durability. From the point of view of the physical

interpretation of the phenomenon of dynamic instability, if

the load parameters are within the defined limits of unstable

regions, the structure experiences vibrations with increasing

amplitude. There is abundant literature on parametric

vibrations that essentially defines all the basic issues (see

Section 3.5). Nevertheless, tensegrities are a special

example of structures. Unlike conventional cable–strut

frameworks, tensegrity structures are characterized by a

system of internal forces that hold the elements in stable

equilibrium (the initial prestress). The main purpose of this

book is to explore the extent to which initial prestress

affects the distribution of unstable regions in tensegrity

structures.



The book contains both theoretical background and

examples. First, a geometrically non-linear model and

methods used to evaluate the behavior of tensegrity

structures are explained. Next, a broad spectrum of different

planar and spatial design solutions is considered. The book

combines theoretical background with practical examples. It

begins with a simple two-dimensional structure, whose

solutions can be explicitly presented, and progresses to

more complex three-dimensional tensegrity structures used

in civil engineering, such as domes, towers, and plates.

REFERENCES

Adam, B., Smith, I.F.C. (2006). Learning, self-diagnosis and

multi-objective control of an active tensegrity structure,

Advances in Engineering Structures, Mechanics &

Construction 140, 439–448.

Adam, B., Smith, I.F.C. (2007). Self-diagnosis and self-

repair of an active tensegrity structure, Journal of

Structural Engineering 133(12), 1752–1761.

Adam, B., Smith, I.F.C. (2008). Active tensegrity: A control

framework for an adaptive civil – engineering structure,

Computers & Structures 86, 2215–2223.

Albertin, A., Malerba, P.G., Pollini, N., Quagliaroli, M.

(2012). Genetic algorithms in the optimization of cable

systems, Newsletter EnginSoft 9(1), 30–33.

Aloui, O., Flores, J., Orden, D., Rhode-Barbarigos, L. (2019).

Cellular morphogenesis of three-dimensional tensegrity

structures, Computer Methods in Applied Mechanics

and Engineering 346, 85–108, doi:

10.1016/j.cma.2018.10.048.

Alpatov, V.Y., Veremeenko, O.Y., Sakharov, A.A., Shirokov,

V.S. (2016). Trial design of a dome roof for an church,

MATEC Web Conference 86, 02015, doi:

10.1051/matecconf/20168602015.

http://doi.org/10.1016/j.cma.2018.10.048
http://doi.org/10.1051/matecconf/20168602015


Al Sabouni-Zawadzka, A. (2016). A study of the feasibility

of using the smart structures in bridge construction (in

Polish), Ph. D. Thesis, Publishing House of the Warsaw

University of Technology, Warsaw, Poland.

Al Sabouni-Zawadzka, A. (2020). Extreme mechanical

properties of regular tensegrity unit cells in 3D lattice

metamaterials, Materials 13(21), 4845, doi:

org/10.3390/ma13214845.

Al Sabouni-Zawadzka, A. (2022). High performance

tensegrity-inspired metamaterials and structures (1st

Edition), CRC Press, Taylor & Francis Group, Boca Raton,

London, New York, doi: 10.1201/9781003343202.

Al Sabouni-Zawadzka, A., Gilewski, W. (2016). On

orthotropic properties of tensegrity structures, Procedia

Engineering 153, 887–894.

Al Sabouni-Zawadzka, A., Gilewski, W. (2018). Smart

metamaterial based on the simplex tensegrity pattern,

Materials 11(5), 673, doi: 10.3390/ma11050673.

Al Sabouni-Zawadzka, A., Gilewski, W. (2019). Soft and

stiff simplex tensegrity lattices as extreme smart

metamaterials, Materials 12(1), 187, doi:

10.3390/ma12010187.

Al Sabouni-Zawadzka, A., Gilewski, W. Charandabi, R.N.,

Zawadzki, A. (2024). Stability of tensegrity-inspired

structures fabricated through additive manufacturing,

Composite Structures, 118377, doi:

10.1016/j.compstruct.2024.118377.

Al Sabouni-Zawadzka, A., Kłosowska, J., Obara, P.,

Gilewski, W. (2016). Continuum model of orthotropic

tensegrity plate-like structures with self-stress included,

Engineering Transactions 64(4), 501–508.

Angellier, N., Dubé, J.F., Quirant, J., Crosnier, B. (2013).

Behavior of a double-layer tensegrity grid under static

loading: Identification of self-stress level, Journal of

Structural Engineering 139(6), 1075–1081, doi:

10.1061/(ASCE)ST.1943-541X.0000710.

http://doi.org/10.3390/ma13214845
http://doi.org/10.1201/9781003343202
http://doi.org/10.3390/ma11050673
http://doi.org/10.3390/ma12010187
http://doi.org/10.1016/j.compstruct.2024.118377
http://doi.org/10.1061/(ASCE)ST.1943-541X.0000710


Ashwear, N., Eriksson, A. (2014). Natural frequencies

describe the pre-stress in tensegrity structures,

Computer and Structur 138(1), 162–171.

Ashwear, N., Eriksson, A. (2015). Influence of temperature

on the vibration properties of tensegrity structures,

International Journal of Mechanical Sciences 99, 237–

250.

Ashwear, N., Tamadapu, G., Eriksson, A. (2016).

Optimization of modular tensegrity structures for high

stiffness and frequency separation requirements,

International Journal of Solids and Structures 80, 297–

309, doi: 10.1016/j.ijsolstr.2015.11.017.

Atig, M., El Ouni, M.H., Kahla, N.B. (2017). Dynamic

stability analysis of tensegrity systems, European

Journal of Environmental and Civil Engineering 23(6),

675–692.

Averseng, J., Dube, J.F., Crosnier, B., Motro, R. (2005).

Active control of a tensegrity plane grid, Proceedings of

the 44th IEEE Conference on Decision and Control, and

the European Control Conference 2005, Seville, Spain,

12–15 December, 6830–6834.

Bel Hadj Ali, N., Kan, Z., Peng, H., Rhode-Barbarigos, L.

(2021). On static analysis of tensile structures with

sliding cables: The frictional sliding case, Engineering

with Computers 37, 1429–1442, doi: 10.1007/s00366-

019-00893-z.

Bel Hadj Ali, N., Rhode-Barbarigos, L., Pascual, A.A., Smith,

I.F.C. (2010). Design optimization and dynamic analysis

of a tensegrity-based footbridge, Engineering

Structures 32(11), 3650–3659, doi:

10.1016/j.engstruct.2010.08.009.

Bel Hadj Ali, N., Smith, I.F.C. (2010). Dynamic behavior

and vibration control of a tensegrity structure,

International Journal of Solids and Structures 47(9),

1285–1296, doi: 10.1016/j.ijsolstr.2010.01.012.

http://doi.org/10.1016/j.ijsolstr.2015.11.017
http://doi.org/10.1007/s00366-019-00893-z
http://doi.org/10.1016/j.engstruct.2010.08.009
http://doi.org/10.1016/j.ijsolstr.2010.01.012


Bieniek, Z. (2009a). A review of the tensegrity systems,

symmetry: Art and science, The Journal of the

International Society for the Interdisciplinary Study of

Symmetry, Special Issue for the Conference of ISIS

Symmetry Wrocław and Cracow, Poland, Lugosi G.,

Nagy D. (Eds.), 14–19 September 2009, 1–4, 48–51.

Bieniek, Z. (2009b). Space-filling tetrahedra, symmetry:

Art and science, The Journal of the International Society

for the Interdisciplinary Study of Symmetry, Special

Issue for the Conference of ISIS Symmetry Wrocław –

Kraków, Poland, Lugosi G., Nagy D. (Eds.), 14–19

September 2009, 1–4, 44–47.

Bieniek, Z. (2011). Chosen ideas of geometrical shaping of

modular tensegrity structures, Structural Engineers

World Congress: Como, Italy, Congress paper on CD.

Bieniek, Z. (2012). Tensegrity – integrating tension in

architectural systems (in Polish), Publishing House of

the Rzeszów University of Technology, Rzeszów, Poland.

Bieniek, Z. (2015a). A mathematical model of the Class

Theta tetrahedral tensegrity module, Proceedings of

Lightweight Structures in Civil Engineering –

Contemporary Problems, XXI LSCE, Local Seminar of

IASS Polish Chapter, Tarczewski R., Bieniek Z. (Eds.),

Rzeszów University of Technology, 9–16.

Bieniek, Z. (2015b). Examples of cable-bar modular

structures based on the Class-Theta tensegrity systems,

Journal of Civil Engineering and Architecture 9, 1452–

1462.

Bieniek, Z. (2016). Self-equilibrium geometry of the class-

theta tetrahedral tensegrity module, Engineering

Transactions 64(4), 441–448.

Bieniek, Z. (2017). The self-equilibrium problem of the

Class-Theta tetrahedral tensegrity module, Composites

Part B: Engineering 115, 21–29, doi:

10.1016/j.compositesb.2016.10.054.

http://doi.org/10.1016/j.compositesb.2016.10.054


Bieniek, Z., Mascolo, I., Amendola, A., Micheletti, A.,

Luciano, R., Fraternali, F. (2019). Computational

prediction of the stability of tensegrity structures,

Proceedings of the COMPDYN 2019 – 7th ECCOMAS

Thematic Conference on Computational Methods in

Structural Dynamics and Earthquake Engineering,

Crete, Greece, 24–26 June 2019, doi:

10.7712/120119.7065.18375.

Biondini, F., Malerba, P.G., Quagliaroli, M. (2011).

Structural optimization of cable systems by genetic

algorithms, Proceedings of the 2011 World Congress on

Advances in Structural Engineering and Mechanics

(ASEM'11+), Seoul, Korea, 18–22 September.

Blur Building, https://dsrny.com/project/blur-building

(accessed 05 September 2020).

Bolotin, V.V. (1956). Dynamic stability of elastic systems

(in Russian), Gostekhizdat, Moscow, Russia.

Brandao Mendes, A.N. (2021). Nonlinear mechanics of

bioinspired tensegrity systems, Ph. D. Thesis, Rio de

Janeiro, Brazil.

Burkhardt, R.W. Jr. (2008). A practical guide to tensegrity

design, http://bobwb.Tripod.com (accessed 05

September 2020).

Caluwaerts, K., Carbajal, J.P. (2015). Energy conserving

constant shape optimization of tensegrity structures,

International Journal of Solids and Structures 58, 117–

127.

Cao, Z., Luo, A., Liu, H., Feng, Y. (2024). A novel torque

application method for tensegrity structures, Mechanics

Based Design of Structures and Machines, 1–22, doi:

10.1080/15397734.2024.2309531.

Chai Lian, O., Kok Keong, C., Nishimura, T., Jae-Yeol, K.

(2020). Form-finding of spine inspired biotensegrity

model, Applied, Sciences 10(18), 6344, doi:

10.3390/app10186344.

http://doi.org/10.7712/120119.7065.18375
https://dsrny.com/project/blur-building
http://bobwb.tripod.com/
http://doi.org/10.1080/15397734.2024.2309531
http://doi.org/10.3390/app10186344


Chen, L., Huang, K., Liu, Y., Zeng, Y., Li, Z., Zhou, Y., Dong,

S. (2023). Optimisation of cable dome structure design

for progressive collapse resistance, Applied, Sciences

13(4), 2086, doi: 10.3390/app13042086.

Chen, L., Li, Z., Liu, Y., Huang, K., Zeng, Y., Zhou, Y., Dong,

S. (2022). Analysis and evaluation of the progressive

collapse behaviour of a cable dome structure, Buildings

12, 1700, doi: 10.3390/buildings12101700.

Chen, M., Qin, J. (2024). Form-finding and physical

property predictions of tensegrity structures using deep

neural networks, doi: 10.13140/RG.2.2.31645.32480.

Chen, Y., Feng, J. (2012a). Generalized eigenvalue analysis

of symmetric prestressed structures using group

theory, Journal of Computing in Civil Engineering 26(4),

488–497.

Chen, Y., Feng, J. (2012b). Initial prestress distribution and

natural vibration analysis of tensegrity structures based

on group theory, International Journal of Structural

Stability and Dynamics 12(2), 213–231.

Chen, Y., Yan, J., Feng, J., Sereh, P. (2020). A hybrid

symmetry–PSO approach to finding the self-equilibrium

configurations of prestressable pin-jointed assemblies,

Acta Mechanica 231(4), 1485–1501, doi:

10.1007/s00707-019-02586-6.

Crawfordt, L. (2015). Transgender architectonics: The

shape of change in modernist space, Routledge,

London, UK.

Ding, M., Luo, B., Ding, S., Shen, Y., Huang, L. (2021).

Experimental investigation and numerical simulation of

a levy hinged-beam cable dome, Buildings 11(3), 110,

doi: 10.3390/buildings11030110.

Ding, M., Luo, B., Pan, J., Guo, Z. (2018). Experimental

study and comparative analysis of a geiger-type ridge-

beam cable dome structure, International Journal of

Civil Engineering 16, 1739–1755, doi: 10.1007/s40999-

018-0331-y.

http://doi.org/10.3390/app13042086
http://doi.org/10.3390/buildings12101700
http://doi.org/10.13140/RG.2.2.31645.32480
http://doi.org/10.1007/s00707-019-02586-6
http://doi.org/10.3390/buildings11030110
http://doi.org/10.1007/s40999-018-0331-y


Djouadi, S., Motro, R., Pons, J.C., Crosnier, B. (1998).

Active control of tensegrity systems, Journal of

Aerospace Engineering 11(2), 37–44.

Domer, B., Raphael, B., Shea, K., Smith, I.F.C. (2003). A

study of two stochastic search methods for structural

control, Journal of Computing in Civil Engineering 17(3),

132–141, doi: 10.1061/(ASCE)0887-

3801(2003)17:3(132).

Dong, Y., Ding, J., Wang, C., Liu, X. (2021). Kinematics

analysis and optimization of a 3-DOF planar tensegrity

manipulator under workspace constraint, Machines

9(11), 256, doi: 10.3390/machines9110256.

Dudzik, A., Potrzeszcz-Sut, B. (2021). Hybrid approach to

the first order reliability method in the reliability

analysis of a spatial structure, Applied, Sciences 11(2),

648, doi: org/10.3390/app11020648

Emmerich, D.G. (1964). Construction de reseaux

autotendants, Paris, French Patent No 1.377.290.

Emmerich, D.G. (1988). Structures tendues et

autotendante, Paris, France.

Estrada, G.G., Bungartz, H.J., Mohrdieck, C. (2006).

Numerical form-finding of tensegrity structures,

International Journal of Solids and Structures 43, 6855–

6868.

Fabbrocino, F., Carpentieri, G. (2017). Three-dimensional

modeling of wave dynamics of tensegrity lattices,

Composite Structures 173, 9–16, doi:

10.1016/j.compstruct.2017.03.102.

Falk, A. (2006). Architectural and structural development

of plate tensegrity, Proceedings of the International

Association for Shell and Spatial Structures 2006

Symposium, Beijing, China, 16–19 October.

Faroughi, S., Lee, J. (2014). Geometrical nonlinear analysis

of tensegrity based on a co-rotational method,

Advances in Structural Engineering 17(1), 41–51.

http://doi.org/10.1061/(ASCE)0887-3801(2003)17:3(132
http://doi.org/10.3390/machines9110256
http://doi.org/10.3390/app11020648
http://doi.org/10.1016/j.compstruct.2017.03.102


Faroughi, S., Lee, J. (2015). Analysis of tensegrity

structures subject to dynamic loading using a Newmark

approach, Journal of Building Engineering 2, 1–8, doi:

10.1016/j.jobe.2015.03.005.

Faroughi, S., Khodaparast, H.H., Friswell, M.I. (2015). Non-

linear dynamic analysis of tensegrity structures using a

co-rotational method, International Journal of Non-

Linear Mechanics 69, 55–65.

Feron, J., Boucher, L., Denoël, V., Latteur, P. (2019).

Optimization of footbridges composed of prismatic

tensegrity modules, Journal of Bridge Engineering

24(12), doi: 10.1061/(ASCE)BE.1943-–5592.00014

Fraternali, F., Senatore, L., Daraio, C. (2012). Solitary

waves on tensegrity lattices, Journal of the Mechanics

and Physics of Solids 60(6), 1137–1144.

Fu, F. (2006). Non-linear static analysis and design of

Tensegrity domes, Steel and Composite Structures 6(5),

417–433.

Fuller, R.B. (1962). Tensile-integrity structures, New York,

United States Patent No 3.063.521.

Geiger, D.H. (1988). Roof structure, New York, United

States Patent No 4.736.553.

Gengnagel, C. (2002). Arbeitsblätter “tensegrity” Fakultät

für Architektur, Technische Universität München,

Munich.

Gerardo, C., Levy, M.P. (1992). Analysis of the Georgia

dome cable roof, Proceedings of Eighth Conference of

Computing in Civil Engineering and Georgraphic

Information Systems Symp., ASCE, Reston, VA.

Gilewski, W., Al Sabouni-Zawadzka, A. (2015). On possible

applications of smart structures controlled by self-

stress,Archives of Civil and Mechanical Engineering

15(2), 469–478, doi: 10.1016/j.acme.2014.08.006.

Gilewski, W., Al Sabouni-Zawadzka, A. (2020). Equivalent

mechanical properties of tensegrity truss structures

with self-stress included, European Journal of Mechanics

http://doi.org/10.1016/j.jobe.2015.03.005
http://doi.org/10.1061/(ASCE)BE.1943
http://doi.org/10.1016/j.acme.2014.08.006


- A/Solids 83, 103998, doi:

10.1016/j.euromechsol.2020.103998.

Gilewski, W., Al Sabouni-Zawadzka, A. (2021). Towards

recognition of scale effects in a solid model of lattices

with tensegrity-inspired microstructure, Solids 2, 50–59,

doi: 10.3390/solids2010002.

Gilewski, W., Kłosowska, J., Obara, P. (2015). Application of

singular value decomposition to qualitative analysis of

trusses and tensegrity structures (in Polish), ACTA

Scientarum Polonarum, Serie Architectura 14(3), 3–20.

Gilewski, W., Kłosowska, J., Obara, P. (2016a). Form finding

of tensegrity structures via singular value

decomposition of compatibility matrix, Advances in

Mechanics: Theoretical, Computational and

Interdisciplinary Issues, 191–195.

Gilewski, W., Kłosowska, J., Obara, P. (2016b). Verification

of tensegrity properties of kono structure and blur

building, Procedia Engineering 153, 173–179, doi:

10.1016/j.proeng.2016.08.099.

Gilewski, W., Kłosowska, J., Obara, P. (2017). The influence

of self-stress on the behaviour of a tensegrity-like real

structure, Proceedings of MATEC Web of Conferences

117, 00079, XXVI R-S-P Seminar 2017, Theoretical

Foundation of Civil Engineering, doi:

10.1051/matecconf/20171170007.

Gilewski, W., Kłosowska, J., Obara, P. (2019). Parametric

analysis of some tensegrity structures, MATEC Web of

Conferences 262, 10003, doi:

10.1051/matecconf/201926210003.

Gilewski, W., Obara, P., Al Sabouni-Zawadzka, A. (2019).

2D Theory of shell-like tensegrity structures, Recent

Developments in the Theory of Shells, part of the book

series: Advanced Structured Materials 110, 271–283,

Springer.

Gomez-Jauregui, V. (2004). Tensegrity structures and their

application to architecture, Master Thesis, School of

http://doi.org/10.1016/j.euromechsol.2020.103998
http://doi.org/10.3390/solids2010002
http://doi.org/10.1016/j.proeng.2016.08.099
http://doi.org/10.1051/matecconf/20171170007
http://doi.org/10.1051/matecconf/201926210003


Architecture Queen’s University Belfast, Belfast, Ireland.

Gomez-Jauregui, V. (2009). Controversial origins of

tensegrity, Proceedings of the International Association

for Shell and Spatial Structures (IASS) Symposium

2009, Valencia, A. Domingo, C. Lazaro (eds), Evolution

and Trends in Design, Analysis and Construction of Shell

and Spatial Structures, 28 September – 2 October 2009,

Universidad Politechnica de Valencia, 1642–1652.

Gómez-Jáuregui, V., Arias, R., Otero, C., Manchado, C.

(2012). Novel technique for obtaining double-layer

tensegrity grids, International Journal of Space

Structures 27 (2–3), 155–166, doi: 10.1260/0266-

3511.27.2-3.155.

Gomez-Jauregui, V., Carrillo-Rodriguez, A., Manchado, C.,

Lastra-Gonzalez, P. (2023). Tensegrity applications to

architecture, engineering and robotics: A review,

Applied, Sciences 13(15), 8669, doi:

10.3390/app13158669.

Gomez-Jauregui, V., Manchado, C., Otero, C. (2013).

Comparison between new families of double-layer

tensegrity, grids, Proceedings of the First Conference

Transformables 2013, In the Honor of Emilio Perez

Piñero 18th–20th September 2013, School of

Architecture Seville, Spain, EDITORIAL STARBOOKS,

Felix Escrig and Jose Sanchez (eds.), 201–206.

Gómez-Jáuregui, V., Otero, C., Arias, R., Manchado, C.

(2011). New configurations for double-layer tensegrity

grids, Proceeding of Conference: Structural Engineers

World Congress.

Gough, M. (1998). In the laboratory of constructivism: Karl

Ioganson’s cold structures, Journal STORage 84, 90–

117.

Gough, M. (2005). T, University of California Press,

Berkeley.

Gupta, S.S., Tan, Y.Y., Chia, Z.P., Pambudi, C.P., Quek, H.,

Yogiaman, C., Tracy, K.J. (2020). Prototyping knit

http://doi.org/10.1260/0266-3511.27.2-3.155
http://doi.org/10.3390/app13158669


tensegrity shells: A design-to-fabrication workflow, SN

Applied Science 2, 1062.

Hanaor, A. (1991). Double‐layer tensegrity grids: Static

load response. Part II: Experimental study, Journal of

Structural Engineering 117(6), 1675–1684, doi:

10.1061/(ASCE)0733-9445(1991)117:6(1675).

Hanaor, A. (1994). Geometrically rigid double-layer

tensegrity grids, International Journal of Space

Structures 9(4), 227–238.

Hanaor, A., Liao, M.-K. (1991). Double‐layer tensegrity

grids: Static load response. Part I: Analytical study,

Journal of Structural Engineering 117(6), 1660–1674,

doi: 10.1061/(ASCE)0733-9445(1991)117:6(1660).

Hrazmi, I., Averseng, J., Quirant, J., Jamin, F. (2021).

Deployable double layer tensegrity grid platforms for

sea accessibility, Engineering Structures 231, 111706.

Intrigila, C., Micheletti, A., Nodargi, N.A., Artioli, E.,

Bisegna, P. (2022). Fabrication and experimental

characterisation of a bistable tensegrity-like unit for

lattice metamaterials, Additive Manufacturing 57,

102946, doi: 10.1016/j.addma.2022.102946.

Jeleniewicz, K., Jaworski, J., Żółtowski, M. , Uziębło, I.,

Stefańska, A., Dixit, S. (2024). Steel ribbed dome

structural performance with different node connections

and bracing system, Scientific Reports 14, 14013, doi:

10.1038/s41598-024-64811-0.

Jiang, Z., Liu, X., Shi, K., Zhang, Z. (2019). Catenary

equation-based approach for force finding of cable

domes, International Journal of Steel Research 19(1),

283–292, doi: 10.1007/s13296-018-0117-8.

Jung, E., Ly, V., Cheney, C., Cessna, N., Ngo, M.L., Castro,

D., Teodorescu, M. (2021). Design, construction and

validation of a proof of concept flexible–rigid

mechanism emulating human leg behavior, Applied,

Sciences 11(19), 9351, doi: 10.3390/app11199351.

http://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1675
http://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1660
http://doi.org/10.1016/j.addma.2022.102946
http://doi.org/10.1038/s41598-024-64811-0
http://doi.org/10.1007/s13296-018-0117-8
http://doi.org/10.3390/app11199351


Kabošová, L., Kormaníková, E., Kmet, S., Katunský, D.

(2019). Shape-changing tensegrity-membrane building

skin, Proceedings of the 4th International Scientific

Conference Structural and Physical Aspects of

Construction Engineering (SPACE 2019), Strbske Pleso,

Slovakia, 13–15 November.

Kan, Z., Peng, H., Chen, B., Zhong, W. (2018). Nonlinear

dynamic and deployment analysis of clustered

tensegrity structures using a positional formulation

FEM, Composite Structures 187, 241–258.

Kasprzak, A. (2014). Assessing the feasibility of using

tensegrity structures in bridge construction (in Polish),

Ph. D. Thesis, Publishing House of the Warsaw

University of Technology, Warsaw, Poland.

Kawaguchi, K., Ohya, S., Vormus, S. (2011). Long-term

monitoring of white Rhino, building with tensegrity

skeletons, Proceedings of 35th Annual Symposium of

IABSE / 52nd Annual Symposium of IASS / 6th

International Conference on Space Structures: Taller,

Longer, Lighter – Meeting growing demand with limited

resources, London, United Kingdom, September.

Kawaguchi, M., Tatemichi I., Chen, P.S. (1999). Optimum

shapes of a cable dome structure, Engineering

Structures 21(8), 719–725, doi: 10.1016/S0141-

0296(98)00026-1.

Kebiche, K., Kazi-Aoual, M.N., Motro, R. (1999).

Geometrical non-linear analysis of tensegrity systems,

Engineering Structures 21(9), 864–876.

Khunsaraki, G.M., Oscuii, H.N., Voloshin, A. (2021). Study

of the mechanical behavior of subcellular organelles

using a 3D finite element model of the tensegrity

structure, Applied, Sciences 11(1), 249, doi:

10.3390/app11010249.

Kiewitt, G. (1959). Roof structure, United States Patent No

2.908.236.

http://doi.org/10.1016/S0141-0296(98)00026-1
http://doi.org/10.3390/app11010249


https://patentimages.storage.googleapis.com/bc/c9/cc/

3b4b42bf32a7ea/US2908236.pdf

Kim, S.-D., Kim, H.S., Baek, I.S. (2001). Effects by bracing

reinforcement on the instability phenomenon of cable

domes, Journal of the Korean Association for Spatial

Structures 1(2), 75–83.

Kim, S.-D., Sin, I.-A. (2014). A comparative analysis of

dynamic instability characteristic of Geiger-typed cable

dome structures by load condition, Journal of the

Korean Association for Spatial Structures, Korean

Association for Spatial Structures 14(1), 85–91, doi:

10.9712/KASS.2014.14.1.085.

Kłosowska, J. (2018). Assessing the feasibility of using

tensegrity construction in cubic construction (in Polish),

PhD Thesis, Publishing House of the Kielce University of

Technology, Kielce, Poland.

Kłosowska, J., Obara, P., Gilewski, W. (2018). Self-stress

control of real civil engineering tensegrity structures,

AIP Conference Proceedings, 150004, doi:

10.1063/1.5019157.

Kmet, S., Mojdis, M. (2014). Adaptive cable dome, Journal

of Structural Engineering 14(9), 04014225.

Kono, Y., Choong, K.K., Shimada, T., Kunieda, H. (1999). An

experimental investigation of a type of double-layer

tensegrity grids, Journal of the International Association

for Shell and Spatial Structures 40(130), 103–111.

Kono, Y., Kunieda, H. (1996). Tensegrity grids transformed

from double-layer space grids, Proceedings of

Conceptual Design of Structures, IASS, Stuttgart, 293–

300.

Kono, Y., Kunieda, H. (1997a). A class of double-layer

tensegrity grid domes, Singapore, 455–463.

Kono, Y., Kunieda, H. (1997b). Experimental study on static

load responses of double layer tensegrity grids, Journal

of Structural and Construction Engineering AIJ 502, 93–

97.

https://patentimages.storage.googleapis.com/bc/c9/cc/3b4b42bf32a7ea/US2908236.pdf
http://doi.org/10.9712/KASS.2014.14.1.085
http://doi.org/10.1063/1.5019157


Kono, Y., Kunieda, H. (2001). Frame structure and method

for forming the same, United States Patent No

6.192.644.B1. https://doi.org/10.3130/aijs.62.73_3

Kono, Y., Kunieda, H., Shimada, T. (1997). Form-finding of

double-layer tensegrity grids with multiple states of

self-stress, Journal of Structural and Construction

Engineering AIJ 62(501), 73–76.

Korkmaz, S., Bel Hadj Ali, N., Smith, I.F.C. (2010). Self-

repair of a tensegrity pedestrian bridge through

grouped actuation, Proceedings of the International

Conference on Computing in Civil and Building

Engineering.

Korkmaz, S., Bel Hadj Ali, N., Smith, I.F.C. (2011a).

Configuration of control system for damage tolerance of

a tensegrity bridge, Advanced Engineering Informatics

26, 145–155.

Korkmaz, S., Bel Hadj Ali, N., Smith, I.F.C. (2011b).

Determining control strategies for damage tolerance of

an active tensegrity structure, Engineering Structures

33, 1930–1939.

Lee, S.W., Choong, K.K. (2018). Form-finding of four-stage

tensegrity mast, International Journal of Civil

Engineering and Technology 9(7), 1425–1434.

Lee, S.W., Lee, J. (2014). Optimum self-stress design of

cable–strut structures using frequency constraints,

International Journal of Mechanical Sciences 89, 462–

469.

Levy, M.P. (1989). Hypar-tensegrity dome, Proceedings of

International Symposium on Sports Architecture,

Beijing, China: 157–162.

Liapi, K., Kim, J. (2003). A parametric approach to the

design of a tensegrity vaulted dome for an ephemeral

structure for the 2004 olympics Proceedings of the the

2003 Annual Conference of the Association for

Computer Aided Design in Architecture, Indianapolis,

USA, 24–27 October, 301–309.

https://doi.org/10.3130/aijs.62.73_3


Liapi, K., Kim, J. (2009). Tensegrity structures of helical

shape: A parametric approach, Proceedings of the

Conference on Computation: The New Realm of

Architectural Design, Istanbul, Turkey, 16–19

September, 53–58.

Liu, K., Paulino, G.H. (2019). Tensegrity topology

optimization by force maximization on arbitraryground

structures, Structural and Multidisciplinary Optimization

59, 2041–2062, doi: 0.1007/s00158-018-2172-3.

Lu, X., Chen, S., Zhao, X., Lu, X. (2010). Lectotype

optimization Of single-layer steel reticulated dome

based On BP neural network method, Proceedings of

2010 Seventh International Conference on Fuzzy

Systems and Knowledge Discovery 5, 2100–2104.

Malerba, P.G., Patelli, M., Quagliaroli, M. (2012). An

extended force density method for the form finding of

cable systems with new forms, Structural Engineering

and Mechanics 42(2), 191–210.

Małyszko, L. (2016). Static response of axially loaded

tensegrity prism—example of using proprietary

programming language, in Małyszko, L., Tarczewski, R.,

eds., Lightweight structures in civil engineering:

Contemporary problems XXII, University of Warmia and

Mazur, Olsztyn, Poland, 43–48.

Małyszko, L. (2017). Design of tensegrity modules with

UHMWPE cables based on experiments and nonlinear

behaviour, in Gołębiowska, I., Dutkiewicz, M., eds.,

Lightweight structures in civil engineering:

Contemporary problems XXIII, UTP University of Science

and Technology: Bydgoszcz, Poland, 25–30.

Ma, Q., Ohsaki, M., Chen, Z., Yan, X. (2018). Step-by-step

unbalanced force iteration method for cable-strut

structure with irregular shape, Engineering Structures

177, 331–344, doi: 10.1016/j.engstruct.2018.09.081.

Ma, S., Chen, M., Yuan, X., Skelton, R.E. (2020). Design

and analysis of deployable clustered tensegrity cable

http://doi.org/10.1016/j.engstruct.2018.09.081


domes, Proceedings of the IASS Annual Symposium

2020/21 and the 7th International Conference on

Spatial Structures.

Małyszko, L., Rutkiewicz, A. (2019). The concept of use

tensegrity modules in steel tower constructions (in

Polish), Inżynieria i Budownictwo 75(7–8), 331–334.

Małyszko, L., Rutkiewicz, A. (2020). Response of a

tensegrity simplex in experimental tests of a modal

hammer at different self-stress levels, Applied, Sciences

10(23), 8733, doi: 10.3390/app10238733.

Małyszko, L., Rutkiewicz, A., Bilko, P. (2018). Dynamic

response of a tensegrity simplex in impact hammer

tests, in Kamiński, M., Szafran, J., eds., Lightweight

structures in civil engineering: Contemporary problems

XXIV, Łódź University of Technology, Łódź, Poland, 69–

75.

Manguri, A., Saeed, N, Kazemi, F., Asgarkhani, N.,

Jankowski, R. (2024). The effect of minimum actuation

limit in shape control of a single-layer dome frame,

Eurasian Journal of Science and Engineering 10(1), 77–

88.

Masic, M., Skelton, R.E. (2002). Deployable plates made

from stable-element class 1 tensegrity, A.M.R.

McGowan, ed., Proceedings of SPIE 4698, 220–230.

Masic, M., Skelton, R.E. (2004). Optimization of class 2

tensegrity towers, Proceedings of SPIE’s 11th Annual

International Symposium on Smart Structures and

Materials, San Diego, CA.

Masic, M., Skelton, R.E. (2006). Selection of prestress for

optimal dynamic/control performance of tensegrity

structures, International Journal of Solids and Structures

43, 2110–2125.

Metodieva, I.Y. (2014). Potential applications of tensegrity

structures to bridge construction, Proceedings of

Second International Conference on Traffic and

Transport Engineering, Belgrade, 583–589.

http://doi.org/10.3390/app10238733


Metrouni, T., Khellaf, N., Kebiche, (2024). K. Non-linear

behavior of double-layered grids, Slovak Journal of Civil

Engineering 32(1), 10–17, doi: 0.2478/sjce-2024-0002.

Micheletti, A. (2005). Modular tensegrity structures: The

Tor Vergata footbridge Proceedings of the 2nd

International Conference on Footbridges, Venice, Italy.

Micheletti, A. (2012). Modular tensegrity structures: The

Tor Vergata footbridge, Mechanics, Models and Methods

in Civil Engineering LNACM 61, 375–384.

Micheletti, A., Santos, F. A., Guest, S. (2023). Prestrain-

induced bistability in the design of tensegrity unitsfor

mechanical metamaterials, Applied, Physics Letters

123, 121702, doi: 10.1063/5.0160023.

Miranda, R., Babilio, E., Peña, D., Santos, F., Fraternali, F.

(2020). Mechanics of energy harvesters based on

tensegrity solar facades,; IOP Publishing, Bristol.

Mochocki, W. (2022). Static-strength analysis of lattice

towers in a probabilistic approach (in Polish), Ph. D.

Thesis, Publishing House of the Kielce University of

Technology, Kielce, Poland.

Mochocki, W., Obara, P. (2021). Reliability analysis of

tensegrity towers in a system approach, Modern Trends

in Research on Steel, Aluminium and Composite

Structures, Routledge, ISBN: 978-0-367-67637-7.

Moored, K.W., Bart–Smith, H. (2009). Investigation of

clustered actuation in tensegrity structures,

International Journal of Solids and Structures 46(17),

3272–3281, doi: 10.1016/j.ijsolstr.2009.04.026.

Motro, R. (1992). Tensegrity systems: the state of the art,

International Journal of Space Structures 7(2), 75–83,

doi: 10.1177/026635119200700201.

Motro, R. (2003). Tensegrity: Structural systems for the

future, Kogan Page, London, UK.

Motro, R. (2011). Tension structures in fifty years of

progress for shell and spatial structures, IASS Jubilee

Book, Multi-Sciences 14.

http://doi.org/10.1063/5.0160023
http://doi.org/10.1016/j.ijsolstr.2009.04.026
http://doi.org/10.1177/026635119200700201


Motro, R. (2012). Tensegrity: From art to structural

engineering, Proceedings of IASS-APCS Symposium,

May, Seoul, Sout Korea.

Mottahedin, A., Keyvani, J. (2023). Optimum design of

cable domes using enhanced colliding bodies

optimization algorithm with the substructuring method,

Iranian Journal of Science and Technology, Transactions

of Civil Engineering 47, 2571–2580, doi:

10.1007/s40996-022-01030-5.

Murakami, H. (2001a). Static and dynamic analyses of

tensegrity structures. Part 1. Nonlinear equations of

motion, International Journal of Solids and Structures

38(20), 3599–3613, doi: 10.1016/S0020-

7683(00)00232-8.

Murakami, H. (2001b). Static and dynamic analyses of

tensegrity structures. Part 2. Quasi-static analysis,

International Journal of Solids and Structures 38(20),

3615–3629, doi: 10.1016/S0020-7683(00)00233-X.

Murakami, H., Nishimura, Y. (2001a). Static and dynamic

characterization of regular truncated icosahedral and

dodecahedral tensegrity modules, International Journal

of Solids and Structures 38(50–51), 9359–9381, doi:

10.1016/S0020-7683(01)00030-0.

Murakami, H., Nishimura, Y. (2001b). Initial shape finding

and modal analyses of cyclic right-cylindrical tensegrity

modules, Computers & Structures 79(9), 891–917, doi:

10.1016/S0045-7949(00)00196-6.

Murakami, H., Nishimura, Y. (2001c). Static and dynamic

characterization of some tensegrity modules, Journal of

Applied Mechanics 68(1), 19–27, doi:

10.1115/1.1331058.

Nagase, K., Skelton, R.E. (2014). Network and vector

forms of tensegrity system dynamics, Mechanics

Research Communications 59, 14–25, doi:

10.1016/j.mechrescom.2014.03.007.

http://doi.org/10.1007/s40996-022-01030-5
http://doi.org/10.1016/S0020-7683(00)00232-8
http://doi.org/10.1016/S0020-7683(00)00233-X
http://doi.org/10.1016/S0020-7683(01)00030-0
http://doi.org/10.1016/S0045-7949(00)00196-6
http://doi.org/10.1115/1.1331058
http://doi.org/10.1016/j.mechrescom.2014.03.007


Obara, P. (2019a). Dynamic and dynamic stability of

tensegrity structures (in Polish), Publishing House of the

Kielce University of Technology, Kielce, Poland.

Obara, P. (2019b). Analysis of orthotropic tensegrity plate

strips using a continuum two-dimensional model,

MATEC Web of Conferences 262, 10010, doi:

10.1051/matecconf/201926210010.

Obara, P. (2019c). Application of linear six-parameter shell

theory to the analysis of orthotropic tensegrity plate-

like structures, Journal of Theoretical and Applied

Mechanics 57(1), 167–178, doi: 10.15632/jtam-

pl.57.1.167.

Obara, P., Kłosowska, J., Gilewski, W. (2019). Truth and

myths about 2D tensegrity trusses, Applied Sciences

9(1), 179, doi: 10.3390/app9010179.

Obara, P., Solovei, M. (2023). Assessment of the impact of

the number of girders on the dynamic behaviour of

Geiger dome, Archives of Civil Engineering 69(3), 597–

611, doi: 10.24425/ace.2023.146100.

Obara, P., Solovei, M. (2024). Influence of the initial

prestress level on the distribution of regions of dynamic

instability of geiger domes, Applied Sciences 14(17):

7512, doi: 10.3390/app14177512.

Obara, P., Solovei, M., Tomasik, J. (2023a). Qualitative and

quantitative analysis of tensegrity steel domes, Bulletin

of Polish Academy of Sciences 71(1), 1–8, doi:

10.24425/bpasts.2023.144574.

Obara, P., Solovei, M., Tomasik, J. (2023b). Genetic

algorithm via other methods for determination self-

stress states of tensegrity domes, Applied Sciences

13(9), 5267, doi: 10.3390/app13095267.

Obara, P., Tomasik, J. (2020). Parametric analysis of

tensegrity plate-like structures: Part 1—qualitative

analysis, Applied Sciences 10(20), 7042, doi:

10.3390/app10207042.

http://doi.org/10.1051/matecconf/201926210010
http://doi.org/10.15632/jtam-pl.57.1.167
http://doi.org/10.3390/app9010179
http://doi.org/10.24425/ace.2023.146100
http://doi.org/10.3390/app14177512
http://doi.org/10.24425/bpasts.2023.144574
http://doi.org/10.3390/app13095267
http://doi.org/10.3390/app10207042


Obara, P., Tomasik, J. (2021a). Parametric analysis of

tensegrity plate-like structures: Part 2—quantitative

analysis, Applied Sciences 11(2), 602, doi:

10.3390/app11020602.

Obara, P., Tomasik, J. (2021b). Active control of stiffness of

tensegrity plate-like structures built with simplex

modules, Materials 14(24), 7888, doi:

10.3390/ma14247888.

Obara, P., Tomasik, J. (2023a). Influence of the support

conditions on dynamic response of tensegrity grids built

with Quartex modules, Archives of Civil Engineering

69(3), 629–644, doi: 10.24425/ace.2023.146102.

Obara, P., Tomasik, J. (2023b). Validation of the continuum

orthotropic model of tensegrity beam-like and plate-like

structures, Archives of Mechanics 75(3), 249–269, doi:

10.24423/aom.4182.

Obara, P., Tomasik, J. (2023c). Dynamic stability of

tensegrity structures – Part I: The time-independent

external load, Materials 16(2), 580, doi:

10.3390/ma16020580.

Obara, P., Tomasik, J. (2023d). Dynamic stability of

tensegrity structures – Part II: The periodic external

load, Materials 16(13), 4564, doi:

10.3390/ma16134564.

Obara, P., Tomasik, J., Solovei, M. (2024). Parametric

dynamic analysis of tensegrity cable-strut domes,

Journal of Theoretical and Applied Mechanics 62(2),

253–267 doi: 10.15632/jtam-pl/183833.

Olejnikova, T. (2012). Double layer tensegrity grids, Acta

Polytechnica Hungarica 9(5), 95–106.

Oliveto, N.D., Sivaselvan, M.V. (2011). Dynamic analysis of

tensegrity structures using a complementary

framework, Computers and Structures 89(23), 2471–

2483, doi: 10.1016/j.compstruc.2011.06.003.

Oppenheim, I.J., Williams, W.O. (2001). Vibration of an

elastic tensegrity structure, European Journal of

http://doi.org/10.3390/app11020602
http://doi.org/10.3390/ma14247888
http://doi.org/10.24425/ace.2023.146102
http://doi.org/10.24423/aom.4182
http://doi.org/10.3390/ma16020580
http://doi.org/10.3390/ma16134564
http://doi.org/10.15632/jtam-pl/183833
http://doi.org/10.1016/j.compstruc.2011.06.003


Mechanics and Solids 20(6), 1023–1031, doi:

10.1016/S0997-7538(01)01181-0.

Pinaud, J.-P., Solari, S., Skelton, R.E. (2004). Deployment of

a class 2 tensegrity boom, Proceedings of SPIE – The

International Society for Optical Engineering.

Pleşcan, C., Conţiu, M., Dósa, A. (2018). A study of a

tensegrity structure for a footbridge, IOP Conference

Series: Materials Science and Engineering 399, 012044,

doi: 10.1088/1757-899X/399/1/012044.

Potrzeszcz-Sut, B. (2020). Reliability analysis of shell truss

structure by hybrid Monte Carlo method, Journal of

Theoretical and Applied Mechanics 58(2), 469–482, doi:

10.15632/Jtam-Pl/118886.

Potrzeszcz-Sut, B., Dudzik, A. (2022). Three methods in

reliability assessment of engineering structure,

International Journal of Engineering and Advanced

Technology 11(3), 114–118.

Pugh, A. (1976). An introduction to tensegrity, University

of California Press: Berkeley, USA.

Qin, W., Gao, H., Xi, Z., Feng, P., Li, Y. (2023). Shaking table

experimental investigations on dynamic characteristics

of CFRP cable dome, Engineering Structures 281,

115748, doi: 10.1016/j.engstruct.2023.115748.

Quirant, J., Kazi-Aoual, M.N., Motro, R. (2003). Designing

tensegrity systems: The case of a double layer grid,

Engineering Structures 25(9), 1121–1130.

Radoń, U., Zabójszcza, P., Opatowicz, D. (2020).

Assesment of the effect of wind load on the load

capacity of a single-layer bar dome, Buildings 10(179),

1–27, doi: 10.3390/buildings10100179.

Radoń, U., Zabojszcza, P., Sokol, M. (2023). The influence

of dome geometry on the results of modal and buckling

analysis, Applied Sciences 13(4), 2729, doi:

10.3390/app13042729.

Rastorfer, D. (1988). Structural gymnastic for the

olympics, Architectural Record, September.

http://doi.org/10.1016/S0997-7538(01)01181-0
http://doi.org/10.1088/1757-899X/399/1/012044
http://doi.org/10.15632/Jtam-Pl/118886
http://doi.org/10.1016/j.engstruct.2023.115748
http://doi.org/10.3390/buildings10100179
http://doi.org/10.3390/app13042729


Rębielak, J. (2000). Special forms of structural system

proposed for cable domes III, C.A. Brebbia & F.P. Escrig

(Editors), WIT Press, www.witpress.com, ISBN 1-85312-

817-1.

Rhode-Barbarigos, L., Bel Hadj Ali, N., Motro, R., Smith,

I.F.C. (2009). Tensegrity modules for pedestrian bridges,

Proceedings of the International Association for Shell

and Spatial Structures (IASS) Symposium 2009:

Evolution and Trends in Design, Analysis and

Construction of Shell and Spatial Structures, 28

September–2 October 2009, Universidad Politecnica

Valencia, Spain, Domingo A., Lazaro C. (eds.).

Rhode-Barbarigos, L., Bel Hadj Ali, N., Motro, R., Smith,

I.F.C. (2010). Designing tensegrity modules for

pedestrian bridges, Engineering Structures 32(4), 1158–

1167, doi: 10.1016/j.engstruct.2009.12.042.

Rhode-Barbarigos, L., Jain, H., Kripakaran, P., Smith, I.F.C.

(2010). Design of tensegrity structures using

parametric analysis and stochastic search, Engineering

with Computers 26(2), 193–203.

Rhode-Barbarigos, L., Motro, R., Smith, I.F.C. (2012). A

transformable tensegrity-ring footbridge, Proceedings of

IASS-APCS Symposium, Seoul, Korea.

Rimoli, J.J. (2018). A reduced-order model for the dynamic

and post-buckling behavior of tensegrity structures,

Mechanics of Materials 116, 146–157, doi:

10.1016/j.mechmat.2017.01.009.

Rutkiewicz, A. (2023). Experimental and numerical studies

of tensegrity structures in tower design (in Polish), PhD

Thesis, Publishing House of the Warsaw University of

Technology, Warsaw, Poland.

Rutkiewicz, A. (2024). Tensegrity simplex column analysis

with different support conditions, Engineering

Structures 317, 118655, doi:

/10.1016/j.engstruct.2024.118655.

http://www.witpress.com/
http://doi.org/10.1016/j.engstruct.2009.12.042
http://doi.org/10.1016/j.mechmat.2017.01.009
http://doi.org/10.1016/j.engstruct.2024.118655


Safaei, S.D., Eriksson, A., Micheletti, A., Tibert, G. (2013).

Study of various tensegrity modules as building blocks

for slender booms, International Journal of Space

Structures 28(1), 41–52, doi: 10.1260/0266-

3511.28.1.41.

Schlaich, M. (2004). The messeturm in rostock: A

tensegrity tower, Journal of the International

Association for Shell and Spatial Structures IASS

45(145), 93–98.

Shekastehband, B., Abedi, K., Chenaghlou, M.R. (2011).

Sensitivity analysis of tensegrity systems die to

member loss, Journal of Constructional Steel Research

67(9), 1325–1340.

Shekastehband, B., Abedi, K., Dianat, N., Chenaghlou, M.R.

(2012). Experimental and numerical studies on the

collapse behavior of tensegrity systems considering

cable rupture and strut collapse with snap-through,

International Journal of Non-Linear Mechanics 47(7),

751–768.

Shekastehband, B., Ayoubi, M. (2019). Nonlinear dynamic

instability behavior of tensegrity grids subjected to

impulsive loads, Thin-Walled Structures 136, 1–15.

Shen, X., Zhang, Q., Lee, D.S.H., Cai, J., Feng, J. (2021).

Static behavior of a retractable suspen-dome structure,

Symmetry 13(7), 1105.

Skelton, R.E. (2005). Dynamics and control of tensegrity

systems, Proceedings of IUTAM Symposium on Vibration

Control of Nonlinear Mechanisms and Structures,

Springer, 309–318.

Skelton, R.E. (2006). Dynamics of tensegrity systems:

Compact forms, Proceedings of 45th IEEE Conference

on Decision and Control, 2276–2281.

Skelton, R.E., Adhikari, R., Pinaud, J.P., Chan, W., Helton,

J.W. (2001b). An introduction to the mechanics of

tensegrity structures, Proceedings of the 40th IEEE

http://doi.org/10.1260/0266-3511.28.1.41


Conference on Decision and Control, Orlando, FL,

December, 4254–4258.

Skelton, R.E., de Oliveira, M.C. (2009). Tensegrity systems,

Springer: London, UK.

Skelton, R.E., Helton, J.W., Adhikari, R., Pinaud, J.P., Chan,

W. (2002a). An introduction to the mechanics of

tensegrity structures, in Handbook of mechanical

systems design (Chapter 17), CRC Press, Boca Raton.

Skelton, R.E., de Oliveira, M.C. (2010). Optimal complexity

of deployable compressive structures, Journal of the

Franklin Institute 347, 228–256.

Skelton, R.E., Pinaud, J.P., Mingori, D.L. (2001a). Dynamics

of the shell class of tensegrity structures, Journal of the

Franklin Institute 338, 255–320.

Skelton, R.E., Williamson, D., Han, J.H. (2002b).

Equilibrium conditions of a class 1 tensegrity structures,

Advances in the Astronautical Sciences Spaceflight

Mechanics 112, 02–177, 927–950.

Snelson, K. (1965). Continuous tension, discontinuous

compression structures, New York, United States Patent

No 3.169.611.

Snelson, K. (1996). Snelson on the tensegrity invention,

International Journal of Space Structures 11(1–2), 43–

48, doi: 10.1177/026635119601-2.

Snelson, K. (2013). Art and ideas, New York, US.

Sultan, C., Corless, M., Skelton, R. (2002). Linear dynamics

of tensegrity structures, Engineering Structures 24(6),

671–685, doi: 10.1016/S0141-0296(01)00130-4.

Sun, G., Xiao, S. (2021). Test and numerical investigation

mechanical behavior of cable dome, International

Journal of Steel Structures 21(4), 1502–1514.

Terry, W.L. (1996). Tension braced , United States Patent

No 5.502.928.

Tibert, A.G. (2002). Deployable tensegrity structures for

space applications, PhD Thesis, Royal Institute of

Technology, Stockholm, Sweden.

http://doi.org/10.1177/026635119601-2
http://doi.org/10.1016/S0141-0296(01)00130-4


Tibert, A.G., Pellegrino, S. (2003). Deployable tensegrity

masts, Proceedings of 44th AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics and Materials

Conference and Exhibit, Norfolk, VA, US.

Tomasik, J. (2023). Parametric analysis of double-layer

tensegrity girds – discrete and continual model (in

Polish), PhD Thesis, Publishing House of the Kielce

University of Technology, Kielce, Poland.

Tomasik, J., Obara, P. (2021). Impact of the self-stress

state on the static properties of double-layered

tensegrity grids, Modern Trends in Research on Steel,

Aluminium and Composite Structures, Routledge, ISBN:

978-0-367-67637-7.

Tomasik, J., Obara, P. (2023). The application of the

immanent tensegrity properties to control the behavior

of double-layered grids, Archives of Civil Engineering

69(1), 131–145, doi: 10.24425/ace.2023.144164.

Tran, H.C., Lee, J. (2010a). Initial self-stress design of

tensegrity grid structures, Computers & Structures

88(9–10), 558–566, doi:

10.1016/j.compstruc.2010.01.011.

Tran, H.C., Lee, J. (2010b). Self-stress design of tensegrity

gird structures with exostresses, International Journal of

Solids and Structures 47(20), 2660–2671, doi:

10.1016/j.ijsolstr.2010.05.020.

Vangelatos, Z., Micheletti, A., Grigoropoulos, C.P.,

Fraternali, F. (2020). Design and testing of bistable

lattices with tensegrity architecture and nanoscale

features fabricated by multiphoton lithography,

Nanomaterials 10(4), 652, doi: 10.3390/nano10040652.

Veuve, N., Dalil Safaei, S., Smith, I.F.C. (2015).

Deployment of a tensegrity footbridge, Journal of

Structural Engineering 141(11), 04015021.

Veuve, N., Sychterz, A.C., Smith, I.F.C. (2017). Adaptive

control of a deployable tensegrity structure,

Engineering Structures 152(1), 14–23.

http://doi.org/10.24425/ace.2023.144164
http://doi.org/10.1016/j.compstruc.2010.01.011
http://doi.org/10.1016/j.ijsolstr.2010.05.020
http://doi.org/10.3390/nano10040652


Volokh, K.Y., Vilnay, O., Averbuh, I. (2003). Dynamics of

cable structures, Journal of Engineering Mechanics

129(2), 175–180, doi: 10.1061/(ASCE)0733-

9399(2003)129:2(175).

Voloshin, A. (2020). Migration of the 3T3 cell with a

lamellipodium on various stiffness substrates—

tensegrity model, Applied Sciences 10(19), 6644, doi:

10.3390/app10196644.

Wang, B.B. (1998). Cable-strut systems: Part I – tensegrity,

Journal of Constructional Steel Research 45(3), 281–

289, doi: 10.1016/S0143-974X(97)00075-8.

Wang, B.B. (1999). Simplexes in tensegrity systems,

Journal of the International Association for Shell and

Spatial Structures 40(129), 57–64.

Wang, B.B. (2004). Free-standing tension structures: From

tensegrity systems to cable-strut systems, CRC Press,

New York.

Wang, B.B. (2012). Realizing cable-strut systems,

International Journal of Architectural Technology 42(1),

42–53.

Wang, B.B., Li, Y. (2003a). Novel cable-strut grids made of

prisms: Part I. Basic theory and design, Journal of the

International Association for Shell and Spatial

Structures 44(142), 93–108.

Wang, B.B., Li, Y. (2003b). Novel cable-strut grids made of

prisms: Part II. Deployable and architectural studies,

Journal of the International Association for Shell and

Spatial Structures 44(142), 109–125.

Wang, B.B., Li, Y. (2005). Cable-strut systems of non-

contiguous strut configurations - Morphological study,

Journal of the International Association for Shell and

Spatial Structures 46(147), 23–39.

Wang, B.B., Liu, X.L. (1996). Integral-tension research in

double-layer tensegrity grids, International Journal of

Space Structures 11(4), 349–355.

http://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(175
http://doi.org/10.3390/app10196644
http://doi.org/10.1016/S0143-974X(97)00075-8


Wang, T., Post, M.A. (2021). A symmetric three degree of

freedom tensegrity mechanism with dual operation

modes for robot actuation, Biomimetics 6(2), 30, doi:

10.3390/biomimetics6020030.

Wang, W., Guo, Q., Li, J. (2024). Characterization,

applications and new technologies of civil engineering

materials and structures, Materials 17, 2058, doi:

10.3390/ma17092058

Wang, Y., Senatore, G. (2020). Extended integrated force

method for the analysis of prestress-stable statically

and kinematically indeterminate structures,

International Journal of Solids and Structures 202, 798–

815, doi: 10.1016/j.ijsolstr.2020.05.029.

Williamson, D., Skelton, R.E., Han, J.H. (2003a).

Equilibrium conditions of a tensegrity structure,

International Journal of Solids and Structures 40(23),

6347–6367, doi: 10.1016/S0020-7683(03)00400-1.

Williamson, D., Skelton, R.E., Han, J.H. (2003b).

Equilibrium conditions of class 1 tensegrity structures,

Revue Francaise de Genie 7, 291–310.

Wroldsen, A.S. (2007). Modelling and control of tensegrity

structures, Ph.D. Thesis, Department of Marine

Technology, Norwegian University of Science and

Technology, Trondheim, Norway.

Wu, X., Deng, H., Zhu, D. (2018). Determination of target

modes for monitoring the stiffness of cable domes

considering random pretension deviations, Journal of

Engineering Mechanics 144(2), 04017178, doi:

10.1016/j.jcsr.2018.10.022.

Wu, X., Xu, S., Ma, J., Miao, F. (2020). Measuring full static

displacements of cable domes based only on limited

tested locations, Applied Mathematical Modeling 77(2),

1054–1064, doi: 10.1016/j.apm.2019.08.018.

Xiaoyang, L., Chen, S., Lu, X. (2010). Lectotype

optimization of single-layer steel reticulated dome

based on BP neural network method, Seventh

http://doi.org/10.3390/biomimetics6020030
http://doi.org/10.3390/ma17092058
http://doi.org/10.1016/j.ijsolstr.2020.05.029
http://doi.org/10.1016/S0020-7683(03)00400-1
http://doi.org/10.1016/j.jcsr.2018.10.022
http://doi.org/10.1016/j.apm.2019.08.018


International Conference on Fuzzy Systems and

Knowledge Discovery 5, 2100–2104.

Xu, X., Luo, Y. (2011). Multistable tensegrity structures,

Journal of Structural Engineering 137(1), 117–123, doi:

10.1061/(ASCE)ST.1943-541X.0000281.

Yan, X., Yang, Y., Chen, Z., Ma, Q. (2019). Mechanical

properties of a hybrid cable dome under non-uniform

snow distribution, Journal of Constructional Steel

Research 153, 519–532, doi:

10.1016/j.jcsr.2018.10.022.

Yildiz, K., Lesieutre, G.A. (2022). Sizing and prestress

optimization of Class–2 tensegrity structures for space

boom applications, Engineering with Computers 38,

1451–1464, doi: 10.1007/s00366-020-01111-x.

Yuan, X., Chen, L., Dong, S. (2007). Prestress design of

cable domes with new forms, International Journal of

Solids and Structures 44(9), 2773–2782, doi:

10.1016/j.ijsolstr.2006.08.026.

Zabojszcza, P., Radoń, U. (2019). The impact of node

location imperfections on the reliability of single-layer

steel domes, Applied Sciences 9(13), 2742, doi:

10.3390/app9132742.

Zabojszcza, P., Radoń, U. (2020). Stability analysis of the

single-layer dome in probabilistic description by the

Monte Carlo method, Journal of Theoretical and Applied

Mechanics 58(2), 425–436, doi: 10.15632/jtam-

pl/118950.

Zabojszcza, P., Radoń, U., Szaniec, W. (2021). Probabilistic

approach to limit states of a steel dome, Materials

14(19), 5528, doi: 10.3390/ma14195528.

Zawadzki, A., Al Sabouni-Zawadzka, A. (2020). In search of

lightweight deployable tensegrity columns, Applied

Sciences 10(23), 8676, doi: 10.3390/app10238676.

Zhang, P., Feng, J. (2017). Initial prestress design and

optimization of tensegrity systems based on symmetry

and stiffness, International Journal of Solids and

http://doi.org/10.1061/(ASCE)ST.1943-541X.0000281
http://doi.org/10.1016/j.jcsr.2018.10.022
http://doi.org/10.1007/s00366-020-01111-x
http://doi.org/10.1016/j.ijsolstr.2006.08.026
http://doi.org/10.3390/app9132742
http://doi.org/10.15632/jtam-pl/118950
http://doi.org/10.3390/ma14195528
http://doi.org/10.3390/app10238676


Structures 106–107, 68–90, doi:

10.1016/j.ijsolstr.2016.11.030.

Zhang, H., Lu, J., Lu, M., Li, N. (2023). Active control

experiments on a Levy cable dome, Engineering

Structures 278, 115450, doi:

10.1016/j.engstruct.2022.115450.

Zhang, J.Y., Ohsaki, M. (2015). Tensegrity structures: Form,

stability, and symmetry, Springer, Japan.

Zhang, L., Chen, W., Dong, S. (2007). Initial pre-stress

finding procedure and structural performance research

for Levy cable dome based on linear adjustment theory,

Journal of Zhejiang University SCIENCE A 8(9): 1366–

1372.

Zhang, L.Y., Li, Y., Cao, Y.-P., Feng, X.Q. (2014). Stiffness

matrix based form-finding method of tensegrity

structures, Engineering Structures 58, 36–48, doi:

10.1016/j.engstruct.2013.10.014.

Zhang, L.Y., Zhu, S.-X., Li, S.-X., Xu, G.-K. (2018). Analytical

form-finding of tensegrities using determinant of force-

density matrix, Composite Structures 189, 87–98, doi:

10.1016/j.compstruct.2018.01.054.

Zhang, L.Y. Zheng, Y.,Yin, X., Zhang, S., Li, H.-Q., Xu, G.-K.

(2022). A tensegrity-based morphing module for

assembling various deployable structures, Mechanism

and Machine Theory 173, 104870, doi:

10.1016/j.mechmachtheory.2022.104870.

Zhang, M., Liu, Y.-P., Yu, Z.-X., Parke, G. (2019). Study of

seismic resistance of Kiewit-8 dome considering key

structural design parameters, Advanced Steel

Construction 15(4), 386–397, doi:

10.18057/IJASC.2019.15.4.9.

http://doi.org/10.1016/j.ijsolstr.2016.11.030
http://doi.org/10.1016/j.engstruct.2022.115450
http://doi.org/10.1016/j.engstruct.2013.10.014
http://doi.org/10.1016/j.compstruct.2018.01.054
http://doi.org/10.1016/j.mechmachtheory.2022.104870
http://doi.org/10.18057/IJASC.2019.15.4.9


2 Mathematical Model of Tensegrity

Element

DOI: 10.1201/9781003534419-2

NOT​E

In mathematical description, the following are assumed: i, j, k, l = 1, 2, 3.

2.1 INTRODUCTION

Tensegrity structures are spatial trusses that consist of tensed cables (which do not have

compression rigidity) and struts. These elements are assembled in a self-balanced way,

which means that there is an equilibrium stress state among struts and cables (the initial

prestress) under zero external loads. The second important feature of these systems is the

occurrence of infinitesimal mechanism (or mechanisms), which describes local geometric

variability in the range of small displacements. Note, in contrast, a finite mechanism (rigid

body motion) refers to motions that do not change the distance between any pair of nodes.

The specificity of tensegrity systems lies in the fact that the initial prestress stabilizes the

existing infinitesimal mechanisms. Another specific property of these systems is the size of

the displacements, which can be large even with small deformations.

To describe the behavior of tensegrity structures, a geometrically non-linear model of

elements, in which there are large gradients of displacements but small strain gradients, is

adopted (Bathe, 1996; Crisfield, 1991; de Borst, 1999; de Borst et al., 2012; Fung, 1969;

Timoshenko and Goodier, 1962). Owing to the specificity of these systems, additionally, the

condition of initial stresses (Argyris and Scharpf, 1972), related to the introduction of the

self-stress state, is taken into account (Faroughi and Lee, 2014; Kebiche et al., 1999; Motro,

1984; Obara, 2019; Pagitz and Tur, 2009; Tran and Lee, 2011).

A solid elastic body covering an area B0 in the initial configuration 
0C (the undeformed

configuration) is considered. The area is a subset of the three-dimensional Euclidean space

R2
 (Figure 2.1). The following designations are adopted in the description of the initial

configuration: B0 – inside area, ∂B0 – boundary area (∂B0u– with known displacements,

∂B0p – with known loads), ρ0 – density, f0 – mass forces, ρ0f0 – volume forces, and p0 –

surface forces. The actual configuration 
1C (the deformed configuration) is described

without subscript, respectively.

FIGURE 2.1 Initial and actual configurations of an elastic body.⏎
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(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

As a basis for formulating the equations, the partially non-linear theory of elasticity in

the Total Lagrangian – TL (Lagrange’s stationary description) approach is adopted. The

spatial coordinates x in the actual configuration at the moment t1 (1C) are expressed by

the material coordinates X in the initial configuration at the moment t0 (0C):

x = x(X, t) ⇒ xi = xi(Xj, t)

The Cartesian coordinate system xi ≡ Xi is assumed. The displacement of any point

P(x) of the deformed body is described as

u = x − X ⇒ ui(X) = xi − Xi

2.1.1 Local Formulation of the Boundary Problem

The state of deformation in the actual configuration, related to the initial configuration, is

described by the symmetric (Eij = Eji for i ≠ j) Green–Lagrange strain tensor

Eij(X) =
1

2
[

∂ui

∂Xj

+
∂uj

∂Xi

+
∂uk

∂Xi

∂uk

∂Xj

];X ∈ B0.

Assuming large displacement gradients, the actual configuration 
1C is fundamentally

different from the initial configuration 
0C. The elementary area ∂A0 in the 

0C
configuration changes when moving to the 

1C configuration. The stress state is determined

on the unknown configuration of the deformed body. The quantity describing the stress

state is the first or the second Pioli–Kirchhoff stress tensor. A consequence of adopting

Lagrange’s stationary description (TL) is the use of the second, symmetric, Pioli–Kirchhoff

tensor

Skl = J
∂Xk

∂xi

∂Xl

∂xj

σij; J = det(
∂xi

∂Xj

),

where σij is the Cauchy stress tensor describing the measure of internal interactions

in the actual configuration and J  is the Jacobian transformation. In turn, assuming the

material is linear and elastic, the constitutive relationships between deformations (2.3) and

stresses (2.4) are described as

Skl = CklijEij,

where Cklij is the material constants tensor. Taking into account the equality of the

resultant volumetric forces in the initial and actual configurations

∫
B0

(ρ0f0i)dB0 = ∫
B

(ρfi)dB,

the equilibrium equations in Lagrange’s stationary description are as follows:

∂

∂Xk

[Skl(δil +
∂ui

∂Xl

)] + ρ0f0i = 0; δil = { ,
δil = 0 if i ≠ l

δil = 1 if i = l



(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

where δil is the Kronecker delta.

In solving the boundary problem, the equilibrium equations (2.7) need to be

supplemented with static and/or geometric boundary conditions. Assuming the

conservative nature of the loads

∫
∂B0p

p0id(∂B0) = ∫
∂Bp

pid(∂B),

the static boundary conditions take the following form:

p0i − Sjl(δil +
∂ui

∂Xl

)v0j = 0,

where v0j is the normal vector of the boundary area ∂B0p. On the other hand, the

geometrical boundary conditions are known in the boundary area ∂B0u:

ui(X) = ûi;X ∈ ∂B0u,

where ûi is the known displacement.

2.1.2 Global Formulation of the Boundary Problem

The global boundary problem can be formulated using the principle of virtual work or the

principle of stationary total potential energy. In the first approach, the forces p0i distributed

on the area ∂B0p and the volumetric forces ρ0f0i in the area B0, make on the virtual

displacements δui work equals to the internal energy (work of the stress Sij on the virtual

strain δEij):

∫
B0

[δEijSij]dB0 = ∫
∂B0p

[δuip0i]d(∂B0p) + ∫
B0

[δui(ρ0f0i)]dB0.

In the second approach, a conservative system is in a state equilibrium if the first

variation of the potential energy is zero and the second variation of the potential energy is

positively defined:

δEp = 0 and δ2Ep > 0.

Equation (2.12)1 is the principle of stationary total potential energy and leads to the

determination of the equilibrium equations, in which there is a secant stiffness matrix. On

the other hand, calculating the second variation of potential energy, we obtain a tangent

stiffness matrix, with condition (2.12)2 implying its positive determinacy (the matrix is

symmetric and its leading principal minors are positive).

The total potential energy

Ep = Es − Lp



(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

consists of the elastic strain potential energy Es and the external load potential Lp,

respectively:

Es =
1

2
∫
B0

[EijSij]dB0,

Lp = ∫
∂B0p

[uip0i]d(∂B0p) + ∫
B0

[ui(ρ0f0i)]dB0.

2.2 GEOMETRICAL NON-LINEAR MODEL OF FINITE

TENSEGRITY ELEMENT

The finite tensegrity element is a modified truss element. The modification refers to the

inclusion of the initial stress σ0 in the initial configuration. Assuming the axial load, both

the strain and stress tensors reduce to only one component. The strain state tensor (2.3) is

described by the elongation of the element

ε = E11; E11 =
∂u1

∂X1
+

1

2
[(

∂u1

∂X1
)

2

+ (
∂u2

∂X1
)

2

+ (
∂u3

∂X1
)

2

],

whereas the stress state tensor (2.4) is described by normal stress with part of an

initial stress σ0:

σ = S11; S11 = Eε + σ0

where E is the Young modulus.

Taking into account the dimensionless variable ξ = X1/l0, the strain field (2.15) can be

expressed as

ε = Lu +
1

2
gTg,

where

L =
1

l0
[ ]

is the differential operator matrix,

u = [ui]
T

is the displacement field, and

g =
1

l0
[
dui

dξ
]
T

d
dξ 0 0



(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

is the vector of displacement field gradients.

In the following sections, the static and dynamic equilibrium equations will be derived for

a space finite tensegrity element. An undeformed configuration (initial) 
0C and two

deformed configurations (actual) 
tC and 

t+ΔtC (Figure 2.2) are considered. In the initial

configuration, the cross-sectional area and the length are relatively A0 and l0, whereas in

the actual configurations they are A and l, respectively. It should be noted that the

inclusion of the initial stress σ0 in the initial configuration results in an axial force in the

tensegrity element

FIGURE 2.2 Space finite tensegrity element.⏎

S = A0σ0

To build the static equilibrium equation, the non-incremental and incremental

versions of the equations will be formulated. The principle of stationary total potential

energy (2.12) and the principle of virtual work (2.11) will be used, respectively. In turn, to

formulate the dynamic equilibrium equation, the principle of virtual work (2.11) will be

used, in which gravity forces are included.

2.2.1 Secant Stiffness Matrix

The static equilibrium equation in the non-incremental version is formulated in the actual

configuration at the moment (tC). The finite tensegrity element is described by the vector

of nodal coordinates 
tqe and corresponding to it the vector of nodal forces 

tQe
:

tqe = [ ]
T

, tQe = [ ]
T

The displacement field (2.19) at the moment t

tue = N e(ξ)tqe

is approximated by the linear shape functions

N e(ξ) = .

q1
i q2

i Q1
i Q2

i

⎡⎢⎣1 − ξ 0 0 ξ 0 0

0 1 − ξ 0 0 ξ 0

0 0 1 − ξ 0 0 ξ

⎤⎥⎦



(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

The approximation (2.23) leads to obtaining the vector of displacement field gradients

(2.20) at the moment t

tge = Γ e tqe,

where

Γ e =
1

l0
.

Introducing an elongation matrix

Be
0 = LN e(ξ)

(2.18)and(2.24)

Be
0 =

1

l0
[ ],

and a linear displacement-dependent matrix

Be
1 = (tqe)

T
(Γ e)TΓ e

(2.22)1and(2.26)

Be
1 =

1

l20
[ ],

where Δui
= q2

i − q1
i , the strain field (2.17) at the moment t can be expressed as

tεe=[Be
0+

1

2
Be

1]
tqe.

In turn, the constitutive relationship (2.16) is as follows:

tσe = Etεe + σe
0

The total potential energy (2.13) in the actual configuration at the moment t (tC) is

given by

Ep =
1

2
∫
V0

[(tεe)(tσe)]dV0 − (tqe)
T

(tQe).

Taking into account the geometrical (2.29) and constitutive (2.30) relationships, the

potential energy (2.31) can be expressed as

Ep = (tqe)
T
[

1

2
K e

L +
1

2
K e

G(S) +
1

4
K e

u1 +
1

8
K e

u2]
tqe + (tqe)

T
(F e

0 − tQe),

where

⎡⎢⎣−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1

⎤⎥⎦−→ −1 0 0 1 0 0

−→ −Δu1
−Δu2

−Δu3
Δu1

Δu2
Δu3



(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

K e
L = EA0l0(Be

0)TBe
0

(2.27)
K e

L =
EA0

l0
[ ]

is the linear stiffness matrix,

K e
G(S) = Sl0(Γ e)TΓ e

(2.26)
K e

G(S) =
S

l0
[ ]

is the geometrical stiffness matrix (the initial stress matrix),

K e
u1 = EA0l0[(Be

0)TBe
1 + (Be

1)TBe
0]

(2.27) and (2.28)
K e

u1 =
EA0

l20
[ ]

is the first part of the non-linear stiffness matrix,

K e
u2 = EA0l0(Be

1)TBe
1

(2.28)

K e
u2 =

EA0

l30
[ ]

is the second part of the non-linear stiffness matrix,

F e
0 = Sl0B

e
0

(2.27)
F e

0 = S[ ]

is the vector of internal forces arising from the initial stresses. In formulas (2.33)–

(2.37), the following matrices are included:

IF0 = , I = , I0 = ,

I1 = , I2 =

The principle of stationary total potential energy (2.12) results in the non-incremental

static equilibrium equation of the tensegrity element

K e
S(tqe)tqe = tQe − F e

0

where

K e
S(q) = K e

L + K e
G(S) + K e

N ,NL(q)

is the secant matrix consisting of the linear part K e
L (2.33), quasi-linear parts caused

by the initial stress K e
G(S) (2.34), and of the non-linear stiffness matrix

−→
I0 −I0

−I0 I0

−→
I −I

−I I

−→
I1 −I1

−I1 I1

−→
I2 −I2

−I2 I2

−→
−IF0

IF0

⎡⎢⎣1

0

0

⎤⎥⎦ ⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦ ⎡⎢⎣1 0 0

0 0 0

0 0 0

⎤⎥⎦⎡⎢⎣2Δu1
Δu2

Δu3

Δu2
0 0

Δu3
0 0

⎤⎥⎦ ⎡⎢⎣ (Δu1)
2

Δu1Δu2 Δu1Δu3

Δu1Δu2 (Δu2)
2

Δu2Δu3

Δu1Δu3 Δu2Δu3 (Δu3)
2

⎤⎥⎦



(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

K e
N ,NL(q) =

1

2
(K e

u2 + K e
N ,u1)

with the matrix (2.36) and the non-symmetric part

K e
N ,u1 =

EA0

l20
[ ]; IN1 = .

The equilibrium equation (2.39) takes into account the axial force S (2.21) caused by

the initial stress, σ0, which is the most important feature of tensegrity structures.

2.2.2 Tangent Stiffness Matrix

The static equilibrium equation in the incremental version is formulated in the actual

configuration at the moment t + Δt (t+ΔtC). The finite tensegrity element is described by

the vector of nodal coordinates 
t+Δtqe and corresponding to it the vector of nodal forces

t+ΔtQe:

t+Δtqe = tqe + Δqe, t+ΔtQe = tQe + ΔQe

where Δqe = [ ]
T

 and ΔQe = [ ]
T

 are the vectors of

displacement increments and nodal force increments, respectively. The displacement field

(2.19) at the moment t + Δt

t+Δtue = tue + Δue

is expressed by the displacement field increments

Δue = N eΔqe

approximated by the linear shape functions (2.24). The strain field (2.17) at the

moment t + Δt can be expressed as

t+Δtεe = LN e(t+Δtqe) +
1

2
(t+Δtge)

T

(t+Δtge),

where 
t+Δtge = tge + Δge is the vector of displacement field gradients (2.20) at the

moment t + Δt, while Δge = Γ eΔqe is the vector of displacement field gradient

increments. It should be noted that the strain fields can also be described as

t+Δtεe = tεe + Δεe

which leads to obtain the strain field increment

IN1 −IN1

−IN1 IN1

⎡⎢⎣3Δu1 Δu2 Δu3

2Δu2 0 0

2Δu3 0 0

⎤⎥⎦Δq1
i Δq2

i ΔQ1
i ΔQ2

i



(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

Δεe = t+Δtεe − tεe

Using the formulas (2.29) and (2.46), the strain field increments (2.48) take the form:

Δεe = [Be
0 + Be

1 +
1

2
Be

2]Δqe,

where

Be
2 = (Δqe)T (Γ e)TΓ e

(2.26)

Be
2 =

1

l20
[ ],

where Δui = Δq2
i − Δq1

i . In turn, the constitutive relationship (2.16) is as follows:

t+Δtσe = tσe + Δσe

where Δσe = EΔεe is the stress field increment.

The principle of virtual work (2.11) in the actual configuration at the moment t + Δt
(t+ΔtC) is given by

∫
V0

[δ(t+Δtεe)(
t+Δtσe)]dV0 = [δ(t+Δtqe)]

T

(t+ΔtQe).

At the moment t, both displacement and strain are constant, so the variation of these

quantities is zero:

δ(tqe) = 0, δ(tεe) = 0

while the variation of strain increments (2.48) from the moment t to t + Δt equals

δΔεe = [Be
0 + Be

1 + Be
2]δΔqe

By substituting variations (2.53) and (2.54) into Equation (2.52), taking into account

relations (2.43) and (2.51), the incremental static equilibrium equation of the finite

tensegrity element is obtained:

A0l0[Be
0 + Be

1 + Be
2]T[tσe + E(Be

0 + Be
1 +

1

2
Be

2)Δqe] = tQe + ΔQe.

After neglecting the non-linear parts due to the displacement increment Δqe,
Equation (2.55) can be written in the form:

⏐↓− dΔu1

dξ
− dΔu2

dξ
− dΔu3

dξ
dΔu1

dξ
dΔu2

dξ
dΔu3

dξ



(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

K e
T (q)Δqe = Re + ΔQe

where

K e
T (q) = K e

L + K e
G(S) + K e

GN(N) + K e
NL(q)

is the tangential stiffness matrix composed of the linear part K e
L (2.33), two quasi-

linear parts, i.e., the part caused by the initial prestress K e
G(S) (2.34) and the part caused

by axial forcesN , which results from external loads

K e
GN(N) =

N

l0
[ ];N = EA0(tεe),

and on the non-linear part

K e
NL(q) = K e

u1 + K e
u2

which is the symmetric displacement stiffness matrix consisting of the matrices

(2.35) and (2.36).

In turn, Re
 in (2.56) is the residual force vector

Re = tQe − F e

depends on the vector of nodal forces 
tQe and on the inertial force vector

F e = (S + N)l0[Be
0 + Be

1]T ⇒ F e = (S + N)[ ]; IF1 = .

Because the initial configuration is not deformed, the axial force N  (2.58)2 is not a

real force. It is the component of the second symmetric Piola–Kirchhoff stress tensor,

whereas` the real force is defined on the basis of the Cauchy tensor as

N ′ = N
l

l0
.

2.2.3 Consistent Mass Matrix

In static equilibrium equations, the assumption was made that the finite tensegrity element

is weightless. Taking into account the motion of an element, the forces of gravity and the

causes of motion are considered, i.e., mass forces and resistance to motion as time

variables. The dynamic equilibrium equation can be described using the principle of virtual

work (2.11) supplemented by the forces of inertia ρ0üi (damping forces are omitted)

I −I

−I I

−IF1

IF1

⎡⎢⎣1 +
Δu1

l0

Δu2

l0

Δu3

l0

⎤⎥⎦



(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

∫
B0

[δEijSij]dB0 = ∫
∂B0p

[δui(p0i)]d(∂B0p) + ∫
B0

[δui(ρ0f0i − ρ0üi)]dB0.

Equation (2.63) in the actual configuration at the moment t (tC) is expressed as

where p(ξ, t) is the load vector and f0(ξ, t) is the mass forces vector. In the actual

configuration at the moment (tC), the finite tensegrity element is described by the vector

of nodal coordinates and corresponding the vector of nodal forces (2.22), depending on

time: 
tqe = tqe(t) and 

tQe = tQe(t). It leads to the displacement field (2.19) being a

function of two variables and approximated by the linear shape functions (2.24):

tue(ξ, t) = N e(ξ)tqe(t).

Due to this, the acceleration field is expressed as

tüe(ξ, t) = N e(ξ) tq̈e(t)

Substituting the geometrical (2.29) and constitutive (2.30) relationships into Equation

(2.64), taking into account the approximations (2.65) and (2.66), and relation (2.53), the

equation of undamped motion of the finite tensegrity element is obtained:

M e tq̈e(t) + K e
S
tqe(t) = P e(t) − F e

0

where

M e = ∫
V0

ρ0[N e(ξ)]TN e(ξ)dV0

(2.24)

M e =
ρ0A0l0

6
[ ]

is the consistent mass matrix, and

P e(t) = ∫
V0

ρ0[N e(ξ)]Tf0(ξ, t)dV0 + tQe(t)

is the load vector.

It should be noted that the equation of motion (2.67) can also be derived using

Hamilton’s principle (Fung, 1969), Lagrange’s equation (Langer, 1980; Gomuliński and

Witkowski, 1993), or directly from d’Alembert’s principle (Langer, 1980). The choice of the

∫
V0

δ(tεe)(tσe)dV0 = ∫
A

[δ(tue|
(ξ, t))]

T

p(ξ, t)dA+

+ ∫
V0

[δ(tue|
(ξ, t))]

T

ρ0[f0(ξ, t) − tüe|
(ξ, t)]dV0,

−→
2I I

I 2I



(2.70)

(2.71)

principle of virtual work was dictated by the consequence of the description used in the

book.

2.2.4 Transformation to Global Coordinate System

The matrices described above relate to the local coordinate system (X1,X2,X3)
associated with the initial configuration of the element. Analysis of a structure as a set of

elements and nodes requires relating them to the global coordinate system (x, y, z). The

transformation of geometric qe = qe(X1,X2,X3) and static Qe = Qe(X1,X2,X3)

parameters from the local to the global system, i.e., q e = q e(x, y, z), Q e = Q e(x, y, z), is

done according to Figure 2.3 and is expressed as

FIGURE 2.3 Transformation from the local (X
1
, X

2
, X

3
) to global (x, y, z)

coordinate system.⏎

qe = T eq e,Qe = T eQ e

with

T e = [ ];T1 =

where

cosα =
√L2

ex + L2
ey

Le
, sinα =

Lez

Le
, cosβ =

Lex

√L2
ex + L2

ey

, sinβ =
Ley

√L2
ex + L2

ey

,

Lex = x2 − x1, Ley = y2 − y1, Lez = z2 − z1.

Knowledge of the transformation laws of geometric and static parameters (2.70) allows

us to determine the transformations of the stiffness matrix K e
 and vectors F e

 of an

element from the local to the global coordinate system, respectively:

K e = (T e)TK eT e,

¯̄̄̄

¯̄

T1 0

0 T1

⎡⎢⎣ cosα cosβ cosα sinβ sinα

− sinβ cosβ 0

− sinα cosβ − sinα sinβ cosα

⎤⎥⎦¯



(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

F e = (T e)TF e

It should be noted that the mass matrix does not depend on the coordinate system,

i.e., M e = M e
. In turn, the row dimensionless elongation matrix

Be = l0B
e
0

where the matrix Be
0 is defined by formula (2.27), is transformed according to the

formula

B e = BeT e

and finally is expressed as

B e = [ ] ∈ R
1×6,

where

cx =
Lex

Le

, cy =
Ley

Le

, cz =
Lez

Le

are the directional cosines.

¯

¯

¯

−̄cx −cy −cz cx cy cz



2.3 CHAPTER SUMMARY

The mathematical model proposed in this chapter is sufficient for qualitative and

quantitative analyses of both planar and spatial lattice structures, including tensegrity

structures, in the geometrically non-linear and physically linear domains. It is thus possible

to design tensegrity structures using their unique properties, which allow the control of

static and dynamic parameters.

The defined matrices of initially prestressed tensegrity elements were used in the

calculation procedure based on the finite element method. The calculation module was

written in the Mathematica environment, owing to which operations were simplified by

using functions and commands implemented there.
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3 Assessment of Tensegrity Structures –

Theory

DOI: 10.1201/9781003534419-3

3.1 INTRODUCTION

The complete analysis of tensegrity structures is a two-stage process. The first stage

involves identifying self-stress states and infinitesimal mechanisms (qualitative analysis).

The qualitative analysis is is crucial for understanding the unique properties of tensegrity

systems, which, in certaincases, allow for the control of both, in certaincases, allow for the

control of both static and dynamic parameters. The second stage focuses on the behavior

of tensegritiy structures under external loads (quantitative analysis), which includes static,

dynamic, and dynamic stability analysis. In classical lattice structures, quantitative analysis

is typically conducted under the assumption of small displacements, employing a linear

geometric model. However, this approach is unsuitable for tensegrity structures. The quasi-

linear model (second-order theory) is also inadequate. Both approaches fail to account for

a critical feature of the tensegrity structure – stiffening under the influence of external load.

In tensegrity structures, external loads cause displacements in accordance with the form of

the infinitesimal mechanism, causes additional prestress of the structure – tensile forces

increase in the cables, and compressive forces increase in the struts. In such cases, the

initial response is insufficient to predict the behavior of the structure. Therefore, a more

appropriate approach is needed, one that assumes large displacements, as described by

third-order theory.

3.2 MODEL OF TENSEGRITY STRUCTURE

The tensegrity structure is modeled using the finite element formalism (Bathe, 1996;

Szmelter, 1980; Zienkiewicz and Taylor, 2000). This structure is an n-element spatial truss (

e = 1, 2, … ,n) with mdegrees of freedom described by a displacement vector as

described in the global coordinate system (x, y, z)

q = [ ]T ∈ R
m×1

and loaded by forces applied at the nodes

P = [ ]T ∈ R
m×1

The components of the structure are modeled as the space finite tensegrity elements

e of Young’s modulus Ee, density ρe, cross-sectional area Ae, and length Le (Figure 3.1).

The elements are described by the matrices defined in Section 2.2, i.e.:

q1 q2 … qm

P1 P2 … Pm

https://doi.org/10.1201/9781003534419-3
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(3.4)

(3.5)

(3.6)

FIGURE 3.1 Global degrees of freedom of a space finite tensegrity

element.⏎

elongation matrix Be
 (2.74);

stiffness matrices K e
:

linear stiffness matrix K e
L (2.33);

geometrical stiffness matrices: K e
G(S) (2.34), K e

GN(N) (2.58);

non-linear stiffness matrices: K e
u1 (2.35), K e

u2 (2.36), K e
N ,u1 (2.42);

consistent mass matrix M e
 (2.68).

After transformations of (2.72), (2.73), and (2.75) to the global coordinate system (x, y, z)
and aggregation, the structural matrices are determined. The aggregation is made by using

the Boolean matrix (the connectivity matrix) C e ∈ R
6×m

. It is assumed that the number of

global degrees of freedom of each element qi(i = 1 ÷ 6) corresponds to the number of

global nodes of elements n1,n2, as shown in Figure 3.1. Consequently, the non-zero

elements of C e
 can be expressed as C iqi = 1. Transformation and aggregation of element

matrices lead to the elongation matrix B, stiffness matrices K (including all forms

mentioned above, i.e., linear, geometric, and non-linear), and mass matrix M, respectively:

B = [ ]
T

∈ R
n×m,

K =

n

∑
i=1

(C e)TK eC e ∈ R
m×m,

M =

n

∑
i=1

(C e)TM eC e ∈ R
m×m,

where B e
, K e

 are the transformed matrices (the mass matrix does not depend on the

coordinate system, i.e., M e = M e
). In turn, the elasticity of the structure is described by a

matrix

E = diag[ ] ∈ R
n×n.

In the qualitative and quantitative analyses, the following assumptions are made:

tensegrity structures are prestressed; this means that no cable is loose (the effect of overhang on the effective

modulus of elasticity has been neglected);

tensegrity members are straight and connected by nodes, which are pin-joints;

there are two types of elements in a prestressed structure, i.e., struts, which are responsible for carrying

compressive prestress and cables, which are responsible for carrying tensile prestress;

there are two types of nodes, i.e., fixed (supported) nodes, which cannot have any displacements even when

subjected to external loads, and free nodes, the displacements of which are not constrained;

support is established and scleronomic;

external loads are conservative and are applied at the nodes;

member failure, such as yielding or buckling, is not considered;

self-weight is transferred to nodes as point loads; hence, non-axial stresses in the tensegrity members are

neglected;

material is assumed to be linear, elastic, continuous, homogeneous, and isotropic;

large displacement gradients are possible;

B 1C 1 B 2C 2 … BnC n

E1A1

L1

E2A2

L2
… EnAn

Ln



in all design situations, the initial prestress level is high enough that only tension occurs in the cables – the problem

is considered physically linear;

in static considerations, elements are assumed to be weightless;

in dynamic considerations the effect of damping is ignored.

The analyses of the behavior of tensegrity structures are divided into four sections:

qualitative analysis – identification of self-stress states and infinitesimal mechanisms, and correct classifications of

structure;

static analysis – quantitative assessment of the static behavior of structures under time-independent external loads;

dynamic analysis – parametric analysis determining the influence of initial prestress on dynamic properties,

including the frequency and forms of vibrations;

dynamic stability analysis – determination of the resonance frequency of periodic loads and unstable regions as a

function of initial prestress.

3.3 QUALITATIVE ANALYSIS

Qualitative analysis is required to determine the immanent features such as infinitesimal

mechanisms and self-equilibrated systems of longitudinal forces (self-stress states) that

stabilize mechanisms. Self-stress states may also occur in geometrically invariable

structures. Tensegrity features are independent of external loads as well as the geometrical

and mechanical characteristics of the structure. In the absence of externally applied loads,

tensegrity as a type of form-active structure requires a self-balancing configuration which is

determined through a process called ‘form-finding’.

Over the past decades, many research efforts have been devoted to searching for

effective form-finding methods. A literature review has revealed a wide variety of form-

finding methods, which are continuously being refined and improved.

3.3.1 The Most Popular Form-Finding Methods

Most methods require the initial topology of the structure to search for the correct form of

tensegrity, whereas information about the initial configuration is unnecessary. A

comprehensive review of presented existing methods for tensegrity structures is included

(Harichandran and Yamini Sreevalli, 2016; Juan and Tur, 2008; Kasprzak, 2014; Sultan,

2009; Tibert and Pellegrino, 2003; Veenendaal and Block, 2012). Generally, the form-

finding methods can be divided into three groups:

1. kinematical methods – methods involving minimizing the length of cables

while maintaining a constant length, or maximizing the length of struts until a

maximum is reached, or maximizing the length of the struts at a constant

length of the cables:

analytical solution – consists of parameterizing the functions that determine the pre-assumed coordinates of

the nodes, and then minimizing or maximizing the length of the selected elements (Connelly and Terrel, 1995;

Gilewski and Kasprzak, 2013; Kener, 1976; Pellegrino and Calladine, 1986);

nonlinear programing – consists of solving a multi-parameter minimization problem, with imposed constraints,

using computer techniques (Pellegrino, 1986);

dynamic relaxation – consists of searching for a stable configuration of tensegrity using the kinetic energy

(Baudriller et al., 2006; Barnes, 1999; Motro, 1984; Skelton and de Oliveira, 2009).

2. static methods – methods consist of finding the configuration of elements

with equilibrium forces at each unloaded node:

analytical solutions (Connelly and Terrel, 1995; Kenner, 1976; Zhang Q. et al., 2020);

force density method – the most widely used and modified method; the main assumption is the linearization of

the equilibrium equations at the node; the biggest difficulty is the need to assume the value of the force

density at the beginning of the process (Cai et al., 2018; Cao et al., 2024; Linkwitz, 1999; Luo and Lu, 2006;



Masic et al., 2005; Schek, 1974; Wang Y. et al., 2021; Xu et al., 2018; Zhang and Ohsaki, 2015; Zhang L.Y. et al.,

2018);

energy optimization – consists of searching for the minimum of the potential energy of a prestressed structure

(Connelly, 1993; Connelly and Back, 1998, Skelton et al., 2002);

reduced coordinates method – consists of defining the geometry of the structure and determining the

equilibrium matrix in a symbolic way (Sultan et al., 1999; Skelton et al., 2001).

3. methods combining kinematic and static approaches (Masic et al., 2005;

Zhang and Oshaki, 2006).

A specific approach to form-finding in tensegrity structures involves numerical methods.

These methods automate the process of finding the right form based on selected

approaches presented above. These procedures employ a variety of optimization

techniques (Estrada et al., 2006; Koohestani, 2013; Koohestani and Guest, 2013; Michelleti

and Wiliams, 2007; Pagitz and Tur, 2009; Tran and Lee, 2007, 2010a, 2010b, 2011; Wang K.

et al., 2021; Zang and Ohsaki, 2006; Zhang P. et al., 2021). An interesting form-finding

method was proposed by Li et al., who used a stochastic approach based on the Monte

Carlo method (Li et al., 2010).

In recent years, in the process of searching for a stable configuration of tensegrity

structures, evolutionary optimization techniques have been increasingly used. These

methods look for better solutions, modeling their operation on mechanisms occurring

during natural evolution. One of the optimization techniques is the genetic algorithm. This

algorithm, inspired by the process of natural selection and genetics, was first presented by

Holland (Holland, 1975). In the case of tensegrity, the genetic algorithm is mostly used as a

form-finding method for regular (Jo et al., 2004; Koohestani, 2012; Lee et al., 2017; Obara

et al., 2023; Paul et al., 2005; Yamamoto et al., 2011) and irregular (Ma et al., 2019; Uzun,

2016; Xu and Luo, 2010) structures. To predict the geometric configurations and physical

properties (nodal coordinates, member forces, and natural frequencies) of any tensegrity

structures in equilibrium states, a neural network can also be used (Chen and Qin, 2024;

Sun et al., 2022).

Among the methods mentioned, some have been adapted from other fields to civil

engineering, as well as those developed specifically for the mechanics of tensegrity. These

methods are usually complex and time-consuming but often fail to address all the

distinctive characteristics of tensegrity structures. These methods are employed to

determine the initial equilibrium configuration and to shape the overall structural geometry.

In turn, when the geometry is known, a spectral analysis of truss matrices is the simplest

approach to identifying the distinctive characteristics of tensegrity structures. There are

two kinds of methods:

spectral analysis of the stiffness matrix with the effect of self-equilibrated forces – this method leads to determine

the self-stress states and mechanisms and allows determination of what kind of mechanisms they are – finite or

infinitesimal (Obara, 2019; Obara and Tomasik, 2021);

singular value decomposition of the elongation matrix or the equilibrium matrix – this method leads to determine

the self-stress states and mechanisms but does not allow determination of what kind of mechanisms they are

(Calladine, 1982; Gilewski, et al., 2015; Kłosowska, 2018; Kłosowska et al., 2018; Murakami, 2001b; Murakami and

Nishimura, 2001a; Obara, 2019; Obara and Tomasik, 2020; Pellegrino, 1990, 1993; Pellegrino and Calladine, 1986;

Rahami et al., 2013; Tomasik, 2023; Tran and Lee, 2010b; Zhang Q. et al., 2021).

3.3.2 Distinctive Characteristics of Tensegrity Structures

The distinctive characteristics of tensegrity structures are intimately associated with the

advantages that set them apart from conventional cable–strut structures. There are six

features, which can be enumerated as follows:

TT – tensegrity is a truss;

SS – there is a self-stress state (self-equilibrated system of internal forces);

TC – tensile elements are cables;

IM – there is an infinitesimal mechanism;



IN – the set of struts is contained within the continuous net of cables;

DS – the struts form a discontinuous set.

In accordance with the mentioned features, four distinct classes are distinguished (Table

3.1):

TABLE 3.1 Tensegrity Classification⏎

Characteristic featuresTensegrity classes TT TC SS IM IN DS

ideal tensegrity + + + + + + +

pure tensegrity + + + + + + –

structures with tensegrity features of class 1 + + + – + –/+ –

structures with tensegrity features of class 2 + + + –/+ – + –

– +

ideal tensegrity – structures that meet all features (TT, SS, IM, TC, DS, IN) and all self-stress states (including the

superposed one) must identify the appropriate normal forces in the structural elements (cables must be in tension

and struts must be in compression) and ensure the stability of the structure;

pure tensegrity – structures satisfy the first five requirements, i.e., TT, SS, IM, TC, DS, and all self-stress states

identify the appropriate normal forces in the structural elements and ensure the stability of the structure;

structure with tensegrity features of class 1 – structures meet the conditions of the first four features (TT, SS, IM, TC)

and at least one self-stress state identifies the appropriate normal forces in the structural elements and ensures the

stability of the structure;

structure with tensegrity features of class 2 – structures meet only the three requirements, i.e., TT, SS, and TC, and

either feature IN or DS; additionally, at least one self-stress state identifies the appropriate normal forces in the

structural elements and ensures the stability of the structure.

Idealtensegrity and pure tensegrity practically do not existin civil engineering. However,

they serve as the basis for creating structures with tensegrity features. The classification of

structures with tensegrity features into two classes is based on the significance of the

influence of infinitesimal mechanisms’ influence on structural behavior. The distinctiveness

of tensegrity structures lies in the self-stress state stabilizing existing infinitesimal

mechanisms. For structures with mechanisms, adjusting the level of prestress allows for

controlling both static and dynamic properties.

The proposed classification systematizes and precisely defines tensegrity structures,

minimizing the misuse of the term to refer to structures that are not them. Moreover, such

systematization in engineering practice facilitates the analysis and design of tensegritiy

structures. This approach accounts for the distinct behavior of tensegrity structures under

external loads. In the case of deployable structures, the ability to control their behavior is

particularly critical. From the point of view of structural mechanics, one of the most

important tensegrity features is the mechanism. Self-stress states play a crucial role in

stabilizing infinitesimal mechanisms, highlighting the distinctiveness of tensegrity

structures.

3.3.3 Identification of Distinctive Characteristics of Tensegrity Structures

Identifying immanent features, such as self-stress states and mechanisms, relies on

analyzing the properties of the elongation matrix. Singular value decomposition (SVD) is

employed (Golub and Kahan, 1965; Klema, 1980; Long, 1983; Stewart, 1998; Strang,

1993). This decomposition expresses a matrix as the product of a square unitary matrix, a

rectangular diagonal matrix with real non-negative coefficients, and the Hermitian

conjugate of the unitary matrix. The coefficients of the diagonal matrix are known as the

singular values (also referred to as principal or special values) of the decomposed matrix.

When a given matrix has real coefficients, the unitary matrices become orthonormal, and

Hermite coupling becomes transpose.

Applying the singular value decomposition, the elongation matrix B (3.3) can be

represented as a product of three matrices



(3.7)

(3.a)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

B = YZXT

with certain properties described below.

NOT​E

Due to the fact that all calculations are made using the procedure written in the

Mathematica environment, with functions and commands implemented there, it should

be noted that decomposition (3.7) can be done using the following command:

{Y ,Z,X} = N[SingularValueDecomposition[B]]

The matrix Y ∈ R
n×n

 in (3.7) is orthogonal, and the columns are the eigenvectors of the eigenproblem

(BBT − μI)y = 0

which solutions can be expressed as

BBT = [YHY T ] ∈ R
n×n,

where

H = diag[ ] ∈ R
n×n

Y = [ ] ∈ R
n×n

are matrices of eigenvalues and eigenvectors, respectively. The solution of the eigenproblem (3.8) leads to the identification of the self-

stress state or states. There is no self-equilibrated system of internal forces if all eigenvalues (3.10) are positive. Zero eigenvalues (μi = 0) are

related to the non-zero solutions of homogeneous equations called self-stress states, or more precisely, self-equilibrated normal forces that

satisfy homogeneous equations of equilibrium. The self-stress states can be considered as the eigenvectors in (3.11) related to zero eigenvalues

yi(μi = 0).

The matrix X ∈ R
m×m

 in (3.7) is also orthogonal, and the columns are the eigenvectors of the following

eigenproblem:

(BTB − γI)x = 0,

which solutions can be expressed as

BTB = [XLXT ] ∈ R
m×m,

where

L = diag[ ] ∈ R
m×m,

X = [ ] ∈ R
m×m

are matrices of eigenvalues and eigenvectors, respectively. The solution of the eigenproblem (3.12) leads to

the identification of the mechanism of geometric variation of the structure. The eigenvalues (3.14) describe the

energy states of the structure, while the eigenvectors (3.15) describe the nature of deformation. There is no motion

when all eigenvalues are positively defined in the structure. However, zero eigenvalues (γi = 0) are related to the

mechanisms, which can be considered as the eigenvectors in (3.15) related to zero eigenvalues xi(γi = 0).

The matrix Z ∈ R
n×m

 in (3.7) is a rectangular diagonal matrix. The elements of this matrix are the square roots of

the eigenvalues of both eigenproblem (3.8) and (3.12). It should be noted that the eigenvalue matrices (3.10) and

(3.14) are dependent on the matrix Z as follows:

H = ZZT ∈ R
n×nandL = ZTZ ∈ R

m×m

The abovementioned considerations prove that knowledge of the dimensionless

elongation matrix B (3.3) is sufficient to identify the self-stress states and mechanisms.

However, this information is not complete from a mechanical point of view. First, the

vectors yi(μi = 0) identified from the eigenproblem (3.8) do not always identify the

μ1 μ2 … μn

y1 y1 … yn

γ1 γ2 … γm

x1 x2 … xm



(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

appropriate normal forces in the structural elements (cables must be in tension and struts

must be in compression). Second, the vectors xi(γi = 0) identified from the eigenproblem

(3.12) do not identify whether the mechanisms are infinitesimal or finite. Third, the SVD

decomposition (3.7) does not check the stability of the structure. These three problems are

solved by the spectral analysis of the stiffness matrix with the effect of self-equilibrated

forces:

[KL + KG(S) − oI]z = 0

where KL is the linear stiffness matrix and KG(S) is the geometric stiffness matrix

(prestress matrix), depending on the self-equilibrated forces in elements

S = ySS ∈ R
n×1,

where yS is the vector of the self-stress state yS = yi(μi = 0), identified by solving

the eigenproblem (3.8), and S is the initial prestress level. The vector yS is dimensionless

and independent of the structure’s geometrical and mechanical characteristics. It only

relies on the configuration of the elements. In turn, the initial prestress levelS is unique for

each system and depends on the geometrical and mechanical characteristics of the

structure and external loads. However, in order to perform the spectral analysis (3.17), the

initial prestress level can be assumed as S = 1.

Full solutions to the eigenproblem (3.17) can be expressed in the condensed form

KL + KG(S) = [ΛOΛT ] ∈ R
m×m

where

O = diag[ ] ∈ R
m×m,

Λ = [ ] ∈ R
m×m

are matrices of eigenvalues and eigenvectors, respectively. There are three

possibilities of obtained eigenvalues (3.20):

if all eigenvalues are positive numbers, the structure is stable; this means the self-stress states identify the

appropriate normal forces in the structural elements and stabilize mechanisms, i.e., the mechanisms are

infinitesimal;

zero eigenvalues are related to finite mechanisms;

if there are any negative eigenvalues the structure is unstable.

NOT​E

1. In the case of complex structures used in civil engineering, solutions to the

eigenproblem (3.8) lead to obtaining more than one self-stress state. These

self-equilibrated normal forces satisfy the homogeneous equations of

equilibrium, but they do not always identify the type of element correctly.

Usually, only the superposition of all the self-stress states gives the

expected results. Such is the case with tensegrity domes. In turn, in the

case of tensegrity structures built by connecting the basic three-

dimensional tensegrity modules, i.e., towers/booms and double-layer girds,

o1 ο2 … on

z1 z2 … zn



(3.b)

(3.c)

the superposition of all self-stress states leads to obtaining the self-stress

states for the single module, including common elements.

2. The linear stiffness matrix KL can be built according to aggregation (3.4)

or directly by using the elongation matrix B (3.3) and the elasticity matrix

E (3.6):

KL = BTEB

3. It can be noted, if the unit elasticity matrix E ≡ I is considered, the

linear stiffness matrix (3.b) will be of the form

KL = BTB

This means that the identification of the mechanism can be carried out

this spectral analysis of matrix (3.c) – see Equation (3.12).

4. The spectral analysis of the stiffness matrix (3.17) can be performed using

the matrix (3.c). However, this is not always appropriate. Inclusion of

material and geometrical characteristics is recommended in this analysis.

Qualitative analysis of tensegrity truss (TT) identifies self-stress states (SS) and

infinitesimal mechanisms (IM). In turn, the identified self-stress state defines the other

distinctive characteristics of the tensegrity structure, i.e., TC (tensile elements are cables),

IN (the set of struts is contained within the continuous net of cables), and DS (the struts

form a discontinuous set). Thus, this analysis ensures accurate classification. The

qualitative analysis process is summarized in the flowchart shown in Figure 3.2. If multiple

self-stress states are identified, spectral analysis of the stiffness matrix must be performed

for each. For ideal tensegrity and pure tensegrity, all self-stress states must be appropriate

– ensuring correct identification of normal forces in structural elements and guaranteeing

structural stability. Conversely, for structures with tensegrity features, at least one self-

stress state must be appropriate and provide structural stability. The flowchart of

classification summary is shown in Figure 3.3.



FIGURE 3.2 Flowchart of qualitative analysis.⏎

FIGURE 3.3 Flowchart of classification summary.⏎

Qualitative assessment is the first step in the analysis of tensegrity structures. Next, the

quantitative assessment can be carried out. It includes static, dynamic, and stability-

dynamic analysis. However, independent of this kind of analysis, a very important aspect is

the determination of the prestress range, i.e., the minimum and maximum levels of the

initial prestress. The initial prestress level in each structure is unique and depends on

design assumptions and external loads:

the minimum prestress level Smin is related to the appropriate distribution of normal forces in the elements of

the structure; i.e., the cables must be tensioned and the struts must be compressed. The external load can cause a

different distribution of normal forces, and this can be corrected by the introduction of the proper initial prestress

level;



(3.22)

(3.23)

the maximum prestress level Smax is related to the load-bearing capacity of the most stressed elements, i.e., on

the effort of the structure

Wmax=
Nmax

NRd
,

where Nmax is a maximum normal force and NRd is a load-bearing capacity. The

flowchart for the determination of the prestress range is shown in Figure 3.4.

FIGURE 3.4 Flowchart for the determination of the prestress range: (a)

the minimum prestress level S
min

 and (b) the maximum prestress level

S
max

. ⏎

3.4 STATIC ANALYSIS

Static analysis involves studying the behavior of a structure under time-independent

external loads P = P(t = 0). The equilibrium equation can be formulated in non-

incremental and incremental versions, as in the case of a single finite tensegrity element

(see Sections 2.2.1 and 2.2.2). The principle of stationary total potential energy (2.12) and

the principle of virtual work (2.11) are used, respectively.

The static equilibrium equation in the non-incremental version is formulated in the actual

configuration at the moment (tC). The principle of stationary total potential energy (2.12)

results in the equation

KSq = P ,

where

KS = [KL + KG(S) + KN ,NL(q)]



(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

is the secant matrix, while

KN ,NL(q) = [
1

2
(KN ,u1 + Ku2)]

is the non-linear displacement stiffness matrix with the non-symmetric part KN ,u1.

In turn, the equilibrium equation in the incremental version is formulated in the actual

configuration at the moment t + Δt (t+ΔtC). The principle of virtual work (2.11) leads to

the obtained equation.

KTΔq = ΔP + R

where Δq ∈ R
m×1

 is the vector of displacement increments, ΔP ∈ R
m×1

 is the

vector of load increments, R ∈ R
m×1

 is the residual force vector, and

KT = [KL + KG(S) + KGN(P) + KNL(q)]

is the tangential stiffness matrix. The matrix (3.27) consists of the linear and

geometric stiffness matrices, as in the secant stiffness matrix (3.24); however, the non-

linear part consists of the symmetric displacement stiffness matrix

KNL(q) = [Ku1 + Ku2]

and the geometric stiffness matrix KGN(P) depending on the longitudinal forces,

which results from external loads. The calculations of this matrix are carried out in four

steps:

Step 1 – determination of the displacements from the non-linear system of equilibrium equations (3.23).

Step 2 – determination of the deformation of the element in the actual configuration:

ε =
1

2

(La
e)2 − (Le)

2

(Le)
2

,

where La
e  is the length of the element in the actual configuration:

La
e = √(Δu2)

2 + (Δu3)
2 + (Le + Δu1)

2,

where Δui
= q2

i − q1
i (i = 1, 2, 3) are the displacement increments between nodes of

elements.

Step 3 – determination of the real normal force in the element on the basis of the Cauchy tensor (2.62):

Ne = EeAeε√1 + 2ε.

Step 4 – determination of the geometric stiffness matrix KGN(P) depending on the longitudinal forces Ne,

which results from external load P.

NOT​E



(3.d)

(3.e)

(3.f)

(3.32)

Longitudinal forces N  depend only on the external loads → N ≡ N(P); however, the

total longitudinal forces depend on the external loads P and the initial prestress level

S → N ≡ N(P + S).

It should be noted that the residual force vector R in (3.26) results from the aggregation.

In equilibrium, it is equal to zero (R = 0), whereas in a process of iteration, a norm R is the

‘distance’ from the equilibrium state. The iterative process converges if R → 0.

To solve the system of non-linear equations (3.23) and (3.26), numerical iterative or

incremental-iterative techniques should be used (Bathe, 1996; Crisfield, 1991, de Borst,

1999; de Borst et al., 2012; Rakowski and Kasprzyk, 2005; Szmelter, 1980). In this book,

the Newton–Raphson method is applied (Rakowski and Kasprzyk, 2005).

NOT​E

In the quasi-linear analysis, the secant matrix (3.24) equals the tangential stiffness

matrix (3.27):

KS(q) ≡ KT (q) = KL + KG(S),

and the static equilibrium equations (3.23) and (3.26) take the following form:

[KL + KG(S)]q = P

To solve the system of quasi-linear equations (3.e), the Gaussian elimination method

is applied. In this case, the stiffness depends only on the linear part KL and on the initial

prestress KG(S). Omitting the initial prestress leads to a linear equation

KLq = P

In the case of tensegrity structures, the static assessment is a parametric assessment of

the influence of the initial prestress level S on static parameters, i.e., the displacements,

normal forces, and effort of the structure. To illustrate the influence of external loads on

stiffening, two approaches are taken into consideration, i.e., the quasi-linear approach

(second-order theory) (3.d) and the non-linear approach (third-order theory) (3.23) or

(3.26). Additionally, to measure stiffening, a global stiffness parameter (GSP) is proposed.

This dimensionless parameter measures the influence of the initial prestress level on the

total stiffness of the structure at a given load. It represents the ratio of two strain energies

measured at the minimum and i-th levels of initial prestress:

GSP =
[q(Smin)]TKS(Smin)q(Smin)

[q(Si)]TKS(Si)q(Si)
,

where KS(Smin) and q(Smin) are a secant stiffness matrix and a displacement

vector at a minimum initial prestress level, and KS(Si) and q(Si) at the i-th prestress

level, respectively. Each time the initial prestress level changes, the stability of the

structure is verified using the spectral analysis of the secant matrix (3.24):

[KS − oI]z = 0.



(3.33)

(3.34)

(3.35)

(3.36)

If all eigenvalues are positive numbers (oi > 0), the secant stiffness matrix is

positively defined, which means the structure is stable. The static analysis process is

summarized in the flowchart shown in Figure 3.5.

FIGURE 3.5 Flowchart of static analysis: (a) quasi-linear analysis and (b)

non-linear analysis.⏎

3.5 DYNAMIC ANALYSIS

Dynamic analysis, considered in this book, involves studying the influence of the initial

prestress level on the frequency and forms of vibrations. The dynamic response is studied

by modal analysis (Ashwear and Eriksson, 2014; Ashwear et al., 2016; Bel Hadj Ali and

Smith, 2010; Bel Hadj Ali et al., 2010; Chen and Feng, 2012a, 2012b; Faroughi et al., 2015;

Gilewski and Kasprzak, 2013; Gilewski et al., 2019; Kan et al., 2018; Murakami, 2001a;

Murakami and Nishimura, 2001a, 2001b; Rimoli, 2018; Safaei et al., 2013).

The quasi-linear dynamic model can be effectively employed instead of a complete non-

linear model. The principle of virtual work (2.64) in the actual configuration at the moment

(tC), with off load, leads to the equation of undamped natural motion of the tensegrity

structure:

Mq̈(t) + [KL + KG(S)]q(t) = O

where q̈ ∈ R
m×1

 is the acceleration vector. Taking into account the harmonic motion,

q(t) = a sin(ωt),

where a ∈ R
m×1

 is the amplitude vector and ω is the circular frequency of vibrations,

Equation (3.34) is written as:

[KL + KG(S) − ω2M]a = 0.



(3.37)

(3.38)

Modal analysis (3.36) leads to the determination of the natural circular frequency of

vibration. It should be noted that for a tensegrity structure characterized by mechanisms,

the omission of the influence of initial prestress (S = 0) in (3.36) leads to zero frequencies.

These zero values correspond to the vibration patterns that implement the mechanisms. In

such cases, taking into account the influence of prestress forces S, there are three

possibilities:

if eigenvalues of the spectral analysis (3.36) are positive numbers, the prestress forces S stabilize the structure, it

means the mechanisms are infinitesimal;

if the eigenvalues still remain zero, then the related mechanisms are finite;

if the eigenvalues are negative numbers, the structure is unstable.

Due to the fact that modal analysis allows for the identification of mechanisms, it can also

be used as a form-finding method (Gilewski and Kasprzak, 2013).

Taking into account that the external loads stiffen the tensegrity structure, the influence

of the time-independent external load P on the frequencies is considered. The load is

treated as the initial disturbance of the equilibrium state, i.e., as the imposition of the

initial conditions. Hence, the frequencies are called free, and they are determined by modal

analysis, taking into account the geometric stiffness matrix depending on longitudinal

forces, which results from external loads KGN(P):

[KL + KG(S) + KGN(P) − Ω2M]a = 0

Modal analyses (3.36) and (3.37) lead to the determination of the natural frequency

fi(0), and the free frequency fi(P), respectively, corresponding to the circular frequency

of vibration ωi = ωi(0) or Ωi = Ωi(P):

fi(0) =
ωi

2π
, fi(P) =

Ωi

2π
.

The dynamic analysis process is summarized in the flowchart shown in Figure 3.6.

FIGURE 3.6 Flowchart of dynamic analysis: (a) natural frequency and (b)

free frequency.⏎



(3.39)

(3.40)

3.6 DYNAMIC STABILITY ANALYSIS

Stability is the ability of a system to remain in the configuration formed under a given load.

This is directly related to the type of equilibrium. The equilibrium of a deformed

configuration can be stable or unstable. When equilibrium is considered as a special type of

motion, studying stability becomes equivalent to studying motion stability. In other words,

if a system is tilted out of equilibrium and the cause that caused this tilting is removed,

then motion in this system will be initiated. If this motion occurs around the equilibrium

with limited (non-increasing) amplitudes, the equilibrium is considered stable. If, on the

other hand, when tilted and left to itself, the system shows an increase in displacement

(monotonic or fluctuating), that is, its motion will be unstable, then the equilibrium is

unstable. The study and assessment of the stability of system motion caused by various

types of excitation is called dynamic stability.

The criterion of dynamic stability, in its most general form, was formulated by Lyapunov

(Lyapunov stability) (La Salle et al., 1962; Lefschetz and La Salle, 1966; Lyapunov, 1892)

and in a slightly different form by Lagrange (Cunningham, 1958; Gomuliński and Witkowski,

1993). The differences in the two formulations mentioned are, in fact, of little importance.

In both cases, the stability of the system is equated with the study of the stability of

motion. Stable motion – characterized by non-increasing amplitudes over time – indicates

the stability of the preceding equilibrium and, consequently, the system’s stability. For the

study of stability under static loads, the motion must be initiated by the introduction of

small perturbations of the displacement state. In such cases, the dynamic criterion yields

results consistent with energy and static criteria, making its application optional.

The situation is different if stability refers to a system subjected to periodic dynamic

loads. In such cases, the system is not in static equilibrium but exhibits motion. Assuming a

system has scleronomic constraints, its motion is an oscillation around the static

equilibrium. If a small perturbation induces a new motion with limited solutions, the original

motion is static. The instability of the induced motion means the instability of the original

motion. This scenario exemplifies dynamic instability or parametric resonance. Unstable

motions pose a risk to the structural durability.

Dynamic stability, or, to put it in Bolotin’s terms, ‘dynamic instability’ (Bolotin, 1999),

leads to the determination of resonance frequencies of periodic excitations and to the

determination of Ince–Strutt maps with stable and unstable regions (parametric resonance

regions). From the point of view of the physical interpretation of the phenomenon of

dynamic instability, if the load parameters are within the defined limits of instability, the

structure experiences vibrations with increasing amplitude. The most widespread and

applicable to technical issues is the analysis of parametric resonance regions at a force

P(t) = P + PtΦ(t),

where P is the constant value of the periodic force, Pt is the amplitude of the periodic

force, and Φ(t) is a periodic function. The unstable regions are on frequency

Ω =
Ωi

k
or Ω =

Ωi ± Ωj

2k
; k = 1, 2, … ; i ≠ j,

where Ωi and Ωj are free frequencies of structures loaded with a constant part of the

load P. In the first case, there are periodic resonances, while in the second, combined

resonances. From a technical point of view, the most important are the main unstable

regions, i.e., first-order periodic resonances (at k = 1). The Ince–Strutt maps are obtained

by solving the non-linear parametric equations of motion (Mathieu equations) (Mathieu,

1868). Stable regions correspond to finite solutions of the equations, while unstable regions

correspond to solutions that increase indefinitely in time (Cunningham, 1958).



(3.41)

(3.42)

The stability charts of the Mathieu equations published in the literature are usually

calculated using various methods, i.e., the harmonic balance method (Bolotin, 1956, 1999;

Bolotin et al., 1965; Briseghella et al., 1998; Gomuliński and Witkowski, 1993; Jani and

Chakraborty, 2021; Kruszewski, 1959; Langer, 1980; Misiak and Stachura, 2010; Obara and

Gilewski, 2016; Pomaro and Majorana, 2021; Volmir, 1963; Ziemba, 1959), perturbation

method (small parameter method, Poincaré method) (Awrejcewicz and Andrianov, 2000;

Chau, 2018; Cunningham, 1958; Garus et al., 2023; Obara and Gilewski, 2016), Galerkin

method (Pomaro and Majorana, 2021; Yang et al., 2010; Zhang Q.C et al., 2021), multiscale

methods (Lee et al., 1998), averaging method (Yang et al., 2010), discrete singular

convolution (Song et al., 2016), homotopy perturbation method (Ghomeshi Bozorg and

Keshmiri, 2013; Liao, 2013), and adomian decomposition method (Keskin, 2019).

There is abundant literature on parametric vibrations, which essentially defines all the

basic issues (Bigoni and Kirillov, 2019; Bolotin, 1956, 1999; Bolotin et al., 1965;

Chmielewski and Zębaty, 1998; Cunningham, 1958; Gomuliński and Witkowski, 1993;

Kruszewski, 1959; Langer, 1980; Simitses, 1990; Volmir, 1963; Wei-Chau, 2006; Ziemba,

1959; Życzkowski, 1988). Dynamic instability in elastic structures remains a compelling

area of analytical, numerical, and experimental research, with many unresolved

challenges. A survey of selected topics of current research interest concerning the dynamic

instability of elastic structures is presented (Mascolo, 2019). Mascolo has compiled the

most important recent developments and international trends and described any possible

future challenges with the most popular methods.

This book serves as a supplementary resource to contemporary monographs on the

dynamic stability of structures. The study investigates the behavior of tensegrity systems.

These structures feature an additional parameter – initial prestress level S, which affects

the shape and range of unstable regions. Multiple unstable regions exist, with the first

(main) region being the most significant. The study specifically examines how the initial

prestress level influences this primary unstable region.

Structural instability problems typically involve nonlinear challenges, addressed through

iterative or incremental-iterative analysis of large displacement gradients. However, in the

case of dynamic instability analysis, the nature of motion is studied. A quasi-linear

approach is sufficient to determine the conditions under which the motion is of an unsteady

nature, with solutions that increase indefinitely with time. Admittedly, the determination of

the magnitude of the amplitudes of these oscillations can only be obtained from non-linear

vibration equations. However, without knowing the magnitude of the amplitudes, the quasi-

linear theory gives a sufficiently complete and accurate view of the issue of instability. Due

to this, the boundaries of the stable and unstable regions (Ince–Strutt maps) are

determined by the periodic solutions of the equation of motion with the geometrical

stiffness matrices KG(S) and KGN(P) and the periodic load P(t) (3.39):

Mq̈(t) + [KL + KG(S) + P(t)KGN(P)]q(t) = 0.

The differential equation with time-varying coefficients (3.41) is called a Hill equation

(Bolotin, 1956, 1999; Bolotin et al., 1965; Briseghella et al., 1998; Langer, 1980;

Gomuliński and Witkowski, 1993; Misiak and Stachura, 2010; Obara and Gilewski, 2016).

Taking the special case in which the periodic function is harmonic with frequency θ

Φ(t) = cos(θt); θ =
2π

T
,

Equation (3.41) takes a Mathieu equation form:

Mq̈(t) + [K + KGN(P)]q(t) + υcos(θt)KGN(P)q(t) = 0,



(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

where

K = KL + KG(S), υ =
Pt

P
,

and the matrix KGN(P) depends on the longitudinal forces that result from the

constant value P of the periodic force. This matrix is calculated using the algorithm

presented in Section 3.4. In turn, the matrix K  includes stiffening by the initial prestress

forces S.

The problem of dynamic instability analysis leads to determining the conditions under

which the motion equation (3.43) has non-zero solutions. To solve these non-linear

equations, the most common approximate methods are used, i.e., the harmonic balance

method and the small parameter method. Both of these methods are based on the analysis

of the solution of a particular system of differential equations arising from Floquet’s theory

(Bolotin, 1956; Gomulinski and Witkowski, 1993).

3.6.1 Harmonic Balance Method

The harmonic balance method (HBM) can be used to obtain first, second, third, etc.,

resonance regions. Using this method, it is assumed that Equation (3.43) is solved as a

Fourier series with period 2T to obtain odd regions and with period T to obtain even

regions. Because the first region is the subject of consideration, the Fourier series with

period 2T is used:

q(t) =

∞

∑
k=1,3,5

(aksin
kθt

2
+ bkcos

kθt

2
),

where ak and bk are constant coefficients. Substituting the Fourier series (3.45) and

the acceleration of the displacement (3.45)

q̈(t) = −

∞

∑
k=1,3,5

k2θ2

4
(aksin

kθt

2
+ bkcos

kθt

2
)

into (3.43), and using trigonometric formulas:

cos(θt)sin
kθt

2
=

1

2
sin

(2 + k)θt

2
−

1

2
sin

(2 − k)θt

2
,

cos(θt)cos
kθt

2
=

1

2
cos

(2 + k)θt

2
+

1

2
cos

(2 − k)θt

2
,

an infinite linear combination of trigonometric functions is obtained

A1sin
θt

2
+ B1cos

θt

2
+ A3sin

3θt

2
+ B3cos

3θt

2
+ A5sin

5θt

2
+ ⋯ = 0,

where Ai and Bi are coefficients arising after balancing the terms with appropriate

harmonics:

A1 = C1a1 − Da1 + Da3,B1 = C1b1 + Db1 + Db3,



(3.49)

(3.50)

(3.g)

(3.51)

(3.53)

A3 = Da1 + C3a3 + Da5,B3 = Db1 + C3b3 + Db5,

A5 = Da3 + C5a5 + Da7,B5 = Db3 + C5b5 + Db7

where

D =
1

2
υKGN(P),Ck = K + KGN(P) −

k2θ2

4
M; k = 1, 3, 5, … .

NOT​E

The dependencies (3.47) are formulated by knowing trigonometric formulas:

2 cos
α + β

2
sin

α − β

2
= sinα − sinβ

2 cos
α + β

2
cos

α − β

2
= cosα + cosβ

where

α =
(2 + k)θt

2
, β =

(2 − k)θt

2
.

The fulfillment of Equation (3.48) for each t leads to the following condition:

A1 = B1 = A3 = B3 = A5 = ⋯ = 0.

Equation (3.51) results in the linear separated homogeneous systems with infinite

equations and unknown coefficients ak and bk. Non-zero solutions of the obtained

homogeneous systems consequently lead to obtain conditional equation for a solution with

period 2T

det

(3.52)

Equation (3.52) leads to obtaining the first, third, fifth, etc., resonance regions.

Considering the determinant of the first degree of (3.52),

det{KL + KG(S) + (1 ∓
1

2
υ)KGN(P) − π2η2M} = 0; η =

θ

2π
,

the boundaries of the first (main) resonance regions with the first approximation in

the plane of parameters η (the resonance frequency (Hz)) and υ (the pulsatility index (-))

K + KGN(P) ∓ 1
2 υKGN(P) − θ2

4 M 1
2 υKGN(P)

1
2 υKGN(P) K + KGN(P) − 9θ2

4 M

0 1
2 υKGN(P)

⋯ ⋯



(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

are obtained.

3.6.2 Small Parameter Method

Using the small parameter method (SPM), a modal transformation is used. The

displacement vector q(t) is expressed in terms of the principal (modal) coordinates

r(t) ∈ R
m×1

:

q(t) = V r(t),

where

V = [ ] ∈ R
m×m

is the modal transformation matrix composed of M-orthonormal eigenvectors αkak.

Eigenvectors are multiplied by a parameter

αk = √
m0

ma
; ma = aTkMak; k = 1, 2, … ,

where m0 = 1 is the parameter expressed in unit mass and ak is the eigenvector

related to the frequency Ωk. A modal transformation matrix fulfills the following conditions:

V TMV = m0I,

V T[K + KGN(P)]V = m0Ω
2

where Ω2 = diag[ ] ∈ R
m×m

 is the diagonal matrix of the

squared frequencies determined from Equation (3.37). The modal transformation matrix

(3.55) is needed to obtain the M-orthonormal geometric stiffness matrix

K
*
GN(P) = V TKGN(P)V .

It should be noted that, due to the fact that K
*
GN  is not a diagonal matrix, the modal

transformation of the equation of motion (3.43) did not cause a separation of equations.

Nevertheless, the properties of the transformation matrix (3.57) make the expressions

outside the diagonal of the matrix small relative to those located on the diagonal. The

approximate nature of the considerations authorizes the treatment of the matrix (3.58) as

the matrix with dominant diagonal terms

K
*
GN(P) = diag[ ].

The equation of motion (3.43) in modal coordinates (3.54) takes the following form:

r̈(t) + [Ω2 +
υ

m0
K

*
GN(P)cos(θt)]r(t) = 0.

The modal coordinate transformation, including the dependence (3.58), decouples

the coupled set of equations of motion so they can be solved using the single Mathieu

differential equation

α1a1 α2a2 ⋯ αmam

Ω2
1 Ω2

2 ⋯ Ω2
m

K
*
GN1 K

*
GN2 ⋯ K

*
GNm



(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

r̈k(t) + Ω2
k [1 + 2υGkcos(θt)]rk(t) = 0; k = 1, 2, …

where

υGk =
υK

*
GNk(P)

2m0Ω
2
k

is the pulsatility index. Equation (3.61) is true for any form of vibrations, so the

parameter k can be omitted in the next consideration. Due to this, the pulsatility index

(3.62) can be written as

υG =
υK

*
GN1

2m0Ω
2
0

,

where K
*
GN1 is the first part of the M-orthonormal geometric stiffness matrix (3.59)

and Ω0 is the first free frequency, including the static component P of the periodic force.

In the following considerations, the pulsatility index (3.63) is treated as small. Therefore,

the solutions of Equation (3.61) and the square of the frequency Ω
2
 are represented as

power series with respect to this small parameter:

r(t) = r0(t) + υGr1(t) + υ2
Gr2(t) + ...

Ω2(υG) = Ω2
0 (υG) + υGΩ

2
1 (υG) + υ2

GΩ
2
2 (υG) + ...

Substituting (3.64) and (3.65) into (3.61) and omitting higher-order terms gives the

infinite recursive sequence of differential equations with constant coefficients:

υ0
G : r̈0 + Ω2

0r0 = 0,

υ1
G : r̈1 + Ω2

0r1 = −Ω2
1r0 − 2Ω2

0r0cos(θt),

υ2
G : r̈2 + Ω2

0r2 = −Ω2
2r0 − Ω2

1r1 − 2[Ω2
1r0 + Ω2

0r1]cos(θt)

Taking into account the solution of the homogeneous differential equation (3.66)1:

r0 = A0cos(Ω0t) + B0sin(Ω0t)

assuming that the frequency of the periodic force is twice the frequency of oscillation

θ = 2Ω0 and using known trigonometric formulas:

2 cos(Ω0t) cos(2Ω0t) = cos(3Ω0t) + cos(Ω0t),

2 sin(Ω0t) cos(2Ω0t) = sin(3Ω0t) − sin(Ω0t),

the first-order approximation (3.66)2 is obtained

r̈1 + Ω2
0r1 = −A0(Ω2

0 + Ω2
1)cos(Ω0t) + B0(Ω2

0 − Ω2
1)sin(Ω0t)

−Ω2
0 [A0cos(3Ω0t) + B0sin(3Ω0t)].



(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

Solution of (3.69) is the function

r1 = A1cos(Ω0t) + B1sin(Ω0t) + r1S

where

is the particular integral. The first two terms of (3.71) are secular terms that

determine the unstable nature of the solution. If we eliminate one of them, the classic

border solution, consisting of periodic functions and one secular term, is obtained. This

elimination is realized by assuming

Ω2
0 ± Ω2

1 = 0 → Ω2
1 = ±Ω2

0

Including the condition (3.72), the square of the frequency (3.65) is represented as

Ω2 = Ω2
0 ± υGΩ

2
0 .

Assuming θ = 2Ω results in the following formula for the first resonance frequency:

η =
Ω0

π
√1 ± υG.

Based on (3.74), the first (main) unstable regions with the first approximation in the

plane of parameters η and υG can be determined.

In summary, the boundaries of the main unstable regions can be obtained based on

Equation (3.53) obtained using the harmonic balance method (HBM) or on the simple

formula (3.74) obtained using the small parameter method (SPM). The main purpose is to

determine the influence of the initial prestress level S on the shape and range of unstable

regions Aη(Si). For quantitative assessment, a nondimensional parameter is introduced

λ =
Aη(Si)

Aη(Smin)
,

which expresses the ratio of the area of the unstable region at the i-th level of initial

prestress Aη(Si) to the area of the unstable region at the minimum initial prestress level

Aη(Smin). This parameter measures the changes in areas of unstable regions as the initial

prestress level increases. The range of the parameter λ is defined as a value between 1

and 0. In the case of λ = 1, there is potential for the excitation of unstable motion, whereas

in the case of λ = 0, such a risk is absent. Additionally, from the perspective of structural

durability, the character of change in the parameter with growth the initial prestress level

is important. The best solution is when the parameter λ decreases exponentially as the

initial prestress level increases.

The dynamic stability analysis process is summarized in the flowchart shown in Figure

3.7.

r1S = −
A0(Ω2

0 +Ω2
1)

2Ω0
tsin(Ω0t) +

B0(Ω2
0 −Ω2

1)
2Ω0

tcos(Ω0t)

+ A0

8 cos(3Ω0t) + B0

8 sin(3Ω0t)



FIGURE 3.7 Flowchart of dynamic stability analysis: (a) harmonic balance

method and (b) small parameter method.⏎



3.7 CHAPTER SUMMARY

This chapter provides the theoretical foundation for the final chapter. The qualitative,

static, dynamic, and dynamic stability analyses are explained in detail. The presented

equations were used to build the calculation procedure written in the Mathematica

environment. The nonlinear algebraic system was solved using the Newton–Raphson

method. The process begins by calculating the nodal displacement using second-order

theory. At this point, only the linear system of equations needs to be solved (in this case,

the existing Mathematica toolbox was used). Next, the obtained vector of nodal

displacements is used in the first iteration in order to find the results according to the third-

order theory. The program continues to iterate until the specified precision is achieved or

the maximum number of iterations is exceeded. If the solution is not found, the user must

increase the number of iterations or change the initial vector of displacements, for

example, by changing the initial prestress level.

The calculation procedure includes the analysis of geometrically non-linear truss systems

and allows for the full analysis at any initial prestress level. The program allows flexible

definition of structural geometry, material parameters, and loads. It also identifies the self-

stress state and tracks the behavior of selected static, geometric, and dynamic parameters

in relation to initial prestress levels.
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4 Assessment of Tensegrity Structures –

Examples

DOI: 10.1201/9781003534419-4

NOT​E

1. Names introduced by the author are italicized.

2. The equations are based on theoretical background presented in Chapter 3.

3. In the considered examples, the literature analyzing similar structures is

presented.

4.1 INTRODUCTION

Literature analysis (see Section 1.6) shows that the vast majority of works and

monographs look at tensegrity design, search for stable forms, optimization algorithms,

and methods of controlling the shape of tensegrity structures under the influence of

external loads and then discuss the use of these structures. Against this background, the

parametric analysis that assesses the impact of the initial prestress on the static and

dynamic properties of tensegrity structures is the subject of incomparably less works. In

addition, these works relate to specific solutions. There are several monographs on

tensegrity in world literature, but they present the issue in a completely different way than

this book.

Generally, tensegrity is understood in many ways. This term is often improperly used for

structures that have some, but not necessarily key tensegrity properties. The concept of

this book leads to a proper understanding of the unique nature of tensegrity structures

characterized by specific mechanical and mathematical properties. Based on the

theoretical background presented in Chapter 3, a broad spectrum of different planar and

spatial design solutions is considered. This monographic study describes in a compact

manner the behavior of the structures.

Section 4.2 is intended for beginners interested in tensegrity systems. The chapter is

written step-by-step, referring to the theoretical considerations presented in Chapter 3.

This approach makes it easier to understand both the mathematical description and the

behavior of the structures. The following chapters contain examples, from the simplest to

the most advanced tensegrity structures or structures with tensegrity features. Each

example poses one or more questions for a better understanding of the properties of

tensegrity. A qualitative and quantitative assessment is carried out for each structure. The

analysis consisted of four stages:

qualitative analysis;

quantitative analysis:

static analysis;

dynamic analysis;

dynamic stability analysis.

Qualitative analysis determines the characteristic features of tensegrity structures. This

assessment leads to a correct classification into one of the four groups (Table 3.1). Such

systematization facilitates the analysis and design because it is a consequence of the

https://doi.org/10.1201/9781003534419-4


different behavior of tensegrity structures under the influence of external loads. The

immanent features, like the infinitesimal mechanisms and self-equilibrated systems of

longitudinal forces that stabilize mechanisms, are identified. In this process, singular value

decomposition of the elongation matrix (3.7) and spectral analysis of the stiffness matrix,

considering the effect of self-equilibrated forces (3.17) are employed. For selected two-

dimensional (2D) n-element structures with m degrees of freedom, considerations are

presented in detail; the following matrices are determined:

B ∈ R
n×m

 (3.3) – non-dimensional elongation matrix;

Y ∈ R
n×n

 (3.11), Z ∈ R
n×m

, X ∈ R
m×m

 (3.15) – matrices of singular value decomposition of the elongation

matrix; dependence between the matrices Y , Z, X (3.16);

H ∈ R
n×n

 (3.10) – eigenvalues of the matrix BBT
;

yS ∈ R
n×1

 – eigenvector of BBT
 corresponding to the zero eigenvalue μi = 0 in the matrix H, which is

responsible for the existence of the self-stress state;

L ∈ R
m×m

 (3.14) – eigenvalues of matrix BTB;

xS ∈ R
m×1

 – eigenvector of BTB corresponding to the zero eigenvalue γi = 0 in the matrix L, which is

responsible for the existence of the mechanism;

KL ∈ R
m×m

 – linear stiffness matrix;

S = ySS ∈ R
n×1

 (3.18) – self-equilibrated longitudinal forces, where S is the initial prestress level;

KG(S) ∈ R
m×m

 – geometric stiffness matrix depending on the self-equilibrated longitudinal forces S;

O ∈ R
m×1

 (3.20) – eigenvalues of the stiffness matrix with the self-equilibrated longitudinal forces [KL + KG(S)]
(3.19).

In other cases, the number of identified mechanisms and self-stress states and the values

of the self-stress state are shown. These values are normalized in such a way that the

minimum compressed force in struts is equal to N = −1. In the figures, struts are marked

with thick lines, while cables with thin lines. These normalized values are included in the

quantitative assessment, which contains a static, dynamic, and dynamic stability analysis.

The existence of self-stress states and mechanisms does not depend on geometric and

material properties; however, the spectral analysis of the stiffness matrix (3.17) does.

Moreover, the quantitative assessment also depends. In order to be able to evaluate the

behavior of different structures and make a comparative analysis, calculations are made

assuming specific material and geometric constants. It is assumed that the structures are

made of steel with the Young modulus E = 210GPa and the density ρ = 7860kg/m3
. The

Halfen DETAN Rod System is used. The material and geometric characteristics are

presented in Table 4.1. The load-bearing capacity is calculated by taking into account a

partial factor for structural resistance. In the case of struts (made of cold-finished circular

hollow section), it depends on the length l (Table 4.2).

TABLE 4.1 Material and Geometric Characteristics of Elements⏎

Elements Steel Diameter Thickness Cross-sectional area Moment of inertia Load-bearing capacity

ϕ (mm) t (mm) A (m
2
) I (m

4
) NRd (kN)

Cables S460N 20.0 – 3.14⋅10
–4

7.85⋅10
–9 110.2

Struts S355J2 76.1 2.9 6.67⋅10
–4

4.47⋅10
–7 N

b,Rd
(l)

TABLE 4.2 Load-Bearing Capacity

of Struts N
b,Rd

 (l)⏎

l (m) 0.6 1.0 1.333 1.4 1.5 1.645 2.3 4.2

N
b,Rd

 (l) (kN) 224 198.9 175.4 170.5 163.0 152.1 107.1 41.9

Static analysis leads to study the behavior of structures under time-independent

external load P = P(t = 0). The assessment of the influence of initial prestress level S on

static parameters is analyzed, i.e.:



qi – displacements;

Ncable – longitudinal forces in cables;

Nstrut – longitudinal forces in struts;

Wmax (3.22) – effort of the structure;

GSP  (3.32) – global stiffness parameter.

The calculations are carried out using the second-order theory (3.e) and third-order theory

(3.23). The first and very important aspect of the analysis is the determination of the

prestress range:

Smin – minimum prestress level is related to the appropriate distribution of longitudinal forces in the elements of

the structure caused by external loads; assuming a minimum prestress level of Smin = 0 means that the external

load causes an appropriate distribution of longitudinal forces in the elements of the structure, i.e., the cables are

tensioned and the struts are compressed;

Smax – maximum prestress level is related to the load-bearing capacity of the most stressed elements; in the study,

a value of Smax is estimated with the effort of the structure at Wmax < 1.

Dynamic analysis leads to the determination of the influence of initial prestress level S
on vibration frequencies (3.38), i.e.:

fi(0) = fi(P = 0) – natural frequencies calculated using the modal analysis (3.36);

fi(P) – free frequencies depend on the time-independent external loads P = P(t = 0) and calculated using the

modal analysis (3.37).

Dynamic stability analysis leads to study the behavior of structures under periodic force

P(t) = P + Ptcos(θt), where P  is the constant component, Pt is the amplitude, and θ is

the frequency of the periodic force. The pulsatility index υ = Pt/P  varying within the

following limits υ ∈ ⟨0; 0.75P⟩ is taken into account. Based on Equation (3.53) or (3.74),

the influence of initial prestress S on the following parameters is analyzed:

ηi – resonance frequency depends on the pulsatility index υ;

Aηi – main unstable regions in the plane of a resonance frequency η and pulsatility index υ;

λ (3.75) – dimensionless parameter, which measures changes in the area of the unstable regions, i.e., the effect of

the initial prestress level S.

4.2 SIMPLEST TWO-ELEMENT STRUCTURE

The simplest possible structure is considered first (Gilewski et al., 2015; Kasprzak, 2014;

Luo and Lu, 2006; Obara, 2019; Obara and Tomasik, 2023c, 2023d; Motro, 1992; Tibert,

2002; Volokh et al., 2003; Zhang, 2007). It is a truss consisting of two elements (n = 2)
with length l and stiffness EA. It is characterized by two degrees of freedom (m = 2)
(Figure 4.1a). The displacement vector (3.1) and elasticity matrix (3.6) are as follows:

FIGURE 4.1 Two-element structure: (a) geometry, (b) scheme of loading

regime, and (c) elongation row matrices for elements.⏎



(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

q = [ ] ∈ R
2×1,E =

EA

l
[ ] ∈ R

2×2.

Both qualitative and quantitative analyses are presented in detail. In the quantitative

considerations, the behavior under external load is considered. A force P  applied to the

second node in the vertical direction is taken into account (Figure 4.1b). Three values of

load are considered, i.e.,P = {1kN, 3kN, 5kN}. Material and geometric characteristics are

assumed according to Table 4.1. The length of elements l = 1m is assumed. In this case,

the minimum level of initial prestress does not depend on external loads, so Smin = 0 is

assumed. In turn, the maximum level of initial prestress for such data equals

Smax = 70kN and corresponds to the effort of the structure (3.22) equal to Wmax = 0.85.

Assuming geometric and mechanical characteristics, the values of prestressing forces S
are much lower than the longitudinal stiffness EA:

Smax = 0.07MN ≪ EA = 66MN.

Purpose of the Consideration

Determination of the influence of the initial prestress level S on static and dynamic

parameters, including the influence on unstable regions, in an explicit manner.

4.2.1 Qualitative Analysis

The elongation matrix of structure (3.3) B ∈ R
2×2

 depends on the elongation row matrices

for elements (Figure 4.1c):

B = [ ] = [ ].

The singular value decomposition (3.7) of the matrix (4.2) leads do obtain the

following matrices Y ∈ R
2×2

, Z ∈ R
2×2, X ∈ R

2×2
:

Y = ,Z = [ ],X = [ ].

Because the matrix Z (4.2)2 is square, according to dependence (3.16), the matrices

H ∈ R
2×2

 and L ∈ R
2×2

 are the same:

H = diag[ ], L = diag[ ].

The zero eigenvalue in the matrix H (4.4)1 (μ2 = 0) is related to the existence of one

self-stress state considered as an eigenvector related to the zero eigenvalue – the second

column of the matrix Y  (4.3)1:

yS = y2(μ2 = 0) =
normalized

yS = [ ].

q1

q2

1 0

0 1

B 1C 1

B 2C 2

¯

¯

1 0

−1 0

⎡

⎣

√2
2

√2
2

− √2
2

√2
2

⎤

⎦

√2 0

0 0

1 0

0 1

2 0 2 0

⎡

⎣

√2
2

√2
2

⎤

⎦
−→

1

1



(4.6)

(4.7)

(4.8)

In turn, the zero eigenvalue in the matrix L (4.4)2 (γ2 = 0) is related to the existence of

one mechanism (Figure 4.2a) considered as an eigenvector related to the zero eigenvalue –

the second column of the matrix X (4.3)3 (Figure 4.2a):

FIGURE 4.2 Two-element structure: (a) infinitesimal mechanism and (b)

actual configuration.⏎

xS = x2(γ2 = 0) = [ ].

In order to identify whether the mechanism (4.6) is infinitesimal or finite, the spectral

analysis of the stiffness matrix (3.17) should be carried out.

In non-linear analysis, the stiffness matrix consists of the linear KL, geometric KG(S),

and non-linear KN ,NL(q) parts. All matrices are built in accordance with finite element

method rules (3.4). It should be noted that the geometric stiffness matrix depends on the

self-equilibrated forces S (3.18), which are defined due to the existence of the self-stress

state vector (4.5) – S = [ ]T . Therefore, the stiffness matrices take the following form:

KL =
2EA

l
[ ],KG(S) =

2S

l
[ ],KN ,NL(q) =

EA

l3
[ ].

However, in the spectral analysis (3.17), the stiffness matrix consists of two parts, i.e.,

the linear stiffness matrix (4.7)1 and geometric stiffness matrix (4.7)2. The eigenvalues of

this matrix are as follows:

o1 =
2(EA + S)

l
, o2 =

2S

l
.

The first value (4.8)1 depends on both the longitudinal stiffnessEA and the

prestressing forces S. The longitudinal stiffness is always positive; however, the

prestressing forces S can be any number. Due to this, from the mathematical point of view,

three cases would be occurred:

if (EA + S) < 0 – the eigenvalue (4.8)1 is negative;

if (EA + S) = 0 – the eigenvalue (4.8)1 is equal to zero;

if (EA + S) > 0 – the eigenvalue (4.8)1 is positive.

For real structures, the values of prestressing forces S are much lower than the

longitudinal stiffness (S ≪ EA), thus the first value (4.8)1 is always a positive number.

However, this proves the spectral analysis of the stiffness matrix (3.19) needs to be

performed including material and geometric characteristics.

In turn the second value (4.8)2 depends only on the value of force S:

if S < 0 (elements are compressed) – the eigenvalue (4.8)2 is negative and the structure is unstable;

0

1

S S

1 0

0 0

1 0

0 1

q2
1 q1q2

q1q2 q2
2



(4.9)

(4.10)

(4.11)

(4.12)

if S = 0 – the eigenvalue (4.8)2 is equal to zero, which corresponds to the finite mechanism;

if S > 0 (elements are tensioned) – the eigenvalue (4.8)2 is positive and the structure is stable; it means the self-

stress states stabilize the mechanism, i.e., the mechanism is infinitesimal.

The stable structure (S > 0) is characterized by four tensegrity features. It is a truss (TT )

with tensile elements that have no rigidity in compression (TC) and in which there is one

self-stress state (SS) that stabilizes one infinitesimal mechanism (IM). The features (

IN−the set of struts is contained within the continuous net of cables) and (DS − the

struts form a discontinuous set) cannot be met because there are no struts. According to

the tensegrity classification (Table 3.1), this is a structure with tensegrity features of class

1.

Despite the fact that this structure is not tensegrity, its behavior fully reflects the

behavior of ideal tensegrity and pure tensegrity structures. A common feature of these

three classes of structures is the infinitesimal mechanism stabilized by the self-stress state.

In the following considerations, the behavior under external load is considered, which is

responsible for displacements consistent with an infinitesimal mechanism.

4.2.2 Static Analysis

The non-linear equation of a static equilibrium (3.23) for a considered truss is as follows:

{
2EA

l
[ ]+

2S

l
[ ]+

EA

l3
[ ]}[ ] = [ ].

Due to the symmetry of the structure and load, the displacement q1 is zero. Taking to

simplify the notation q = −q2, the equation (4.9) takes the following form:

[S + N(P)]q =
Pl

2
,

where

N(P) =
EA

2
(
q

l
)

2

is a longitudinal force caused by the load P . For a considered structure, it is possible

to obtain the formula for longitudinal forces N(P + S) generated jointly by the external

load P  and prestress forces S. It can be simply determined by the static equilibrium of

second
 
node in the actual configuration (Figure 4.2b):

N(P + S) =
P

2 sinα
; sinα =

q

√l2 + q2
.

The application of non-linear theory (third-order theory) takes into account the

stiffening of the structure under the influence of an external load. The considered force

stabilizes the mechanism. In the absence of initial prestress (S = 0kN), Equation (4.10)

results in the calculation of the displacement

q(S = 0) =
3√ P

EA
l.

1 0

0 0

1 0

0 1

q2
1 q1q2

q1q2 q2
2

q1

q2

0

−P



(4.13)

(4.14)

In turn, if the influence of non-linear is neglected (N(P) = 0), the solution of

Equation (4.10) results in the calculation of the displacement

q =
Pl

2S
,

which increase to infinity in the absence of initial prestress (S = 0).

The influence of the initial prestress level S on the displacement q is shown in Figure

4.3a. The displacement is calculated using the second-order theory (4.14) and third-order

theory (4.10), marked as II and III, respectively. The stiffness of the considered structure is

not only conditioned on the geometry and material characteristics, but also on the initial

prestress level S, which stabilizes the infinitesimal mechanisms, and on the external load

P . With the increase of prestressing forces, the differences between the calculations made

according to the second-order (II) and third-order (III) theories are decreasing. The

influence of non-linearity is most significant at low values of initial prestress forces.

Thereby, with lower values of the load, the initial prestress has a higher impact on the total

rigidity of the structure, and the differences between the displacements obtained using the

second- and third-order theory at P = 1kN are smaller than those at P = 5kN.

FIGURE 4.3 Influence of the initial prestress level S on the: (a)

displacement q and (b) longitudinal force N. ⏎

In turn, Figure 4.3b shows the change in the value of longitudinal forces caused by loads

(4.11) and the longitudinal forces generated jointly by the load and prestress forces (4.12),

marked as (P) and (P + S), respectively. The external load prestresses the structure;

additional tensile forces are generated in the cables. However, after introducing the initial

prestress, the longitudinal forces from the external load N(P) successively decrease and

thus its influence on the displacement decreases.

In considered structure, there is only one non-zero displacement, so the assessment of

the behavior of this displacement (local assessment) is also an assessment of the behavior

of the entire structure (global assessment). In the case of structures with many degrees of

freedom, it is not possible to trace all displacements for objective reasons. Therefore, a

global stiffness parameter GSP  (3.32) that helps to assess the influence of the initial

prestress on the total rigidity of the structure at a given load is proposed. In the case of the

analyzed structure, the nature of changes in the GSP  can be expressed explicitly as

GSP =
q(0)

q(Si)
.



(4.15)

(4.16)

(4.17)

The influence of initial prestress level S on the GSP  parameter is presented in Figure 4.4a.

At the maximum level Smax = 70kN for the value of external force P = 1kN, the GSP
parameter is 2.2 times higher than for the value P = 5kN. This confirms the previous

conclusions. With lower external load, the initial prestress values have a higher impact on

the overall stiffness of the structure. Additionally, due to the effect of the initial prestress

on the longitudinal forces, the effort of structure Wmax (3.22) is also monitored (Figure

4.4b). In this case, as in the case of the stiffness, the influence of the initial prestress

decreases as the load increases.

FIGURE 4.4 Influence of the initial prestress level S on the: (a) global

stiffness parameter GSP and (b) effort of structure W
max

. ⏎

4.2.3 Dynamic Analysis

The dynamic response is studied by modal analysis (3.37). The mass matrix in the

considered case takes the following form:

M =
2ρAl

3
[ ].

Taking into account, as before, the simplification q = −q2 (the considered force P
makes the displacement q1 equal to zero) and the dependence (4.11), the equation of

motion (3.37) takes the following form:

{
2EA

l
[ ]+

2S

l
[ ]+

N(P)

l
[ ]− Ω2 2ρAl

3
[ ]}[ ] = [ ].

The non–trivial solution of equation (4.16) leads to the determination of the two

frequencies

f1 =
1

2π
√

3[S + N(P)]

ρAl2
, f2 =

1

2π
√

3(EA + S)

ρAl2
,

and corresponding to them the vibration modes (Figure 4.5a, b):

1 0

0 1

1 0

0 0

1 0

0 1

0 0

0 1

1 0

0 1

q1

q2

0

0



(4.18)

(4.19)

FIGURE 4.5 Vibration modes: (a) first mode (4.18)
1
, and (b) second mode

(4.18)
2
. Influence of the initial prestress level S on the: (c) first frequency

(4.17)
1
 and (d) second frequency (4.17)

2
.⏎

a1(f1) = [ ], a2(f2) = [ ]

NOT​E

The first vibration mode (4.18)1 describes the infinitesimal mechanism (4.6).

The first frequency (4.17)1 depends on both the initial prestress level S and the

longitudinal force caused by the loadN(P) (4.11). However, the influence of the prestress

diminishes with the rise in the load value. The external load P  prestresses the structure.

Additional tensile forces are generated in the cables and the initial dynamic response at

S = 0 corresponds to the values of the natural frequency f1(0) at the following prestress

levels: S(P = 1kN) = 20.20kN, S(P = 3kN) = 42.11kN, and S(P = 5kN) = 59.12kN.

In turn, considering the natural frequency obtained from (4.17)1 for P = 0

f1(0) =
1

2π
√

3S

ρAl2
,

it can be seen that it is highly dependent on the initial prestress level S:

if S < 0 (elements are compressed) – the frequency (4.19) is an imaginary number, which means the structure is

unstable;

if S = 0 – the frequency (4.19) is equal to zero which corresponds to the infinitesimal mechanism, described by the

vibration mode (4.18)1;

if S > 0 (elements are tensioned) – the frequency (4.19) is positive and increases proportionally to the square root

of the prestressing amplitude.

The influence of initial prestress level S on the first frequency is shown in Figure 4.5c.

The second frequency (4.17)2 behaves quite differently. First, this frequency does not

depend on the longitudinal force caused by the loadN(P). This means that the second

0

1

1

0



(4.20)

(4.21)

(4.22)

(4.23)

natural frequency and the free frequency are the same: f2 = f2(0) = f2(P). Second, the

influence of initial prestress S is negligible because the values of prestress forces S are

much lower than the longitudinal stiffness (Smax ≪ EA). In the absence of prestress

(S = 0), it is f2 = 1424.9 Hz, and at Smax = 70kN, it is f2 = 1425.6Hz; the relative

difference is equal 0.05%. In summary, the second vibration frequency does not depend on

both changes in the level of prestress and the impact of external loads (Figure 4.5d).

4.2.4 Dynamic Stability Analysis

In dynamic stability analysis a periodic character of force is taken into account. Resonance

frequencies are determined using the harmonic balance method (3.53) and the small

parameter method (3.74).

4.2.4.1 Harmonic Balance Method

Due to that, the displacement q1 is zero and taking into account the simplification q = −q2
, Equation (3.53) takes the following form:

det{
2EA

l
[ ]+

2S

l
[ ]+ (1 ±

1

2
υ)

N(P)

l
[ ]− η2 2π2ρAl

3
[ ]} = 0.

Solution of Equation (4.20) leads to obtain two resonance frequencies:

η1 =
1

π
√

3[S + (1 ± 1
2 υ)N(P)]

ρAl2
, η2 =

1

π
√

3(EA + S)

ρAl2
.

The first resonant frequency (4.21)1 depend on both the initial prestress level S and

the longitudinal force caused by the loadN(P) (4.11). Taking into account the time-

independent load (Pt = 0 → υ = 0), this frequency is twice the free frequency (4.17)1 –

η1 = 2f1. In turn, the second-resonant frequency (4.21)2, as the free second frequency

(4.17)2, does not depend on longitudinal force caused by the loadN(P) and the initial

prestress S (S ≪ EA). Additionally, it is twice the free second frequency – η2 = 2f2.

4.2.4.2Small Parameter Method

Using the small parameter method, according to the algorithm, first the normalized

dimensionless parameters (3.56) are calculated

α1 = α2 = √
3m0

2ρAl
,

and the modal transformation matrix composed of M-orthonormal eigenvectors

(3.55) is build

V = [ ].

Next, the geometric stiffness matrix (3.58) is formulated

1 0

0 0

1 0

0 1

0 0

0 1

1 0

0 1

0 α2

α1 0



(4.24)

(4.25)

(4.26)

KGN =
N(P)

l
[ ]

K
*
GN=V TKGNV

K
*
GN = .

Generally, the geometric stiffness matrix K
*
GN  is not a diagonal matrix. However, in

this case it is. The pulsatility index (3.63) takes the following form:

υG =
3

2

υN(P)

ρAl2Ω2
0

and based on the formula (3.74), taking into account the first free vibration

frequency including static component of periodic force P  (4.17)1 → Ω0 = 2πf1, the

formula on first resonance frequency is obtained:

η1 =
1

π
√

3[S + (1 ± 1
2 υ)N(P)]

ρAl2
.

It should be noted that both methods, i.e., HBM and SPM, result in the same formula

for the first resonance frequency: (4.21)1 ≡ (4.26). Based on this, the boundaries of the

first unstable region in the plane of parameters η and υ can be determined. Using the HBM

method, the independence of the second frequency from the load and the initial prestress

was proven (4.21)2. It means that only one main unstable region can be identified. This is

because the structure is characterized by one infinitesimal mechanism.

The influence of the initial prestress level S and load on the main unstable region is

shown. Three values of the constant part of periodic force are taken into account, i.e.,

P = {1kN, 3kN, 5kN}. For example, Figure 4.6 shows the boundaries for three cases of

initial prestress level, i.e., Smin = 0kN, S = 30kN, and Smax = 70kN. These boundary

values are between the dynamic stability and instability zones. As can be seen,

independent of the value of prestress, the range of regions mostly depends on the load.

The greater the load, the greater the region. At the same time, the higher the load, the

higher the frequency. The introduction of prestress (Figure 4.6b, c) causes a decrease in

the range of unstable regions and an increase in resonant frequencies. The initial prestress

level has a greater influence on the range of the unstable regions when lower loads are

applied. For example, in the case of P = 1kN, introducing the Smax = 70kN results in an

overlapping of the boundaries of unstable region (Figure 4.6c).

FIGURE 4.6 Limits of the main unstable region: (a) S = 0 kN, (b) S = kN,

and (c) S = 70 kN.⏎
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To better compare the influence of the initial prestress level S and the load, Figure 4.7a

shows the areas of unstable regions Aη(S). Different behavior is observed depending on

the value of the load. In the case of P = 1kN, the chart is almost an exponential function.

In turn, in the cases of P = 3kN and P = 5kN, the charts behave similarly. Comparing the

load P = 5kN with P = 1kN, the area of the unstable regions is larger by 1.7 (at

S = 0kN), 3.0 (at S = 30kN), and 8.9 (at S = 70kN) times. In turn, comparing the load

P = 5kN with P = 3kN, the area of the unstable regions is larger by 1.2 (at S = 0kN),

1.3 (at S = 30kN), and 1.7 (at S = 70kN) times.

FIGURE 4.7 Influence of the initial prestress level S on the: (a) area of

unstable regions A
η
(S) and (b) range of unstable regions λ. ⏎

To measure the changes in the area of the unstable regions, the dimensionless

parameter λ (3.75) is calculated (Figure 4.7b). In the case of the load P = 1kN, the

parameter λ is equal: λ = 0.88 (at S = 10kN), λ = 0.7 (at S = 30kN), and λ = 0.12 (at

S = 70kN), which means that the unstable regions are, respectively, 12%, 30%, and 88%
smaller than those at the absence of the initial prestress (S = 0kN). In turn, in the case of

the load P = 5kN, the unstable regions for the prestress levels assumed as previous is

lower by 3% (λ = 0.97), 8% (λ = 0.92), and 38% (λ = 0.62), respectively. As can be

seen, load causes a different character of change in the parameter λ with a growth in the

initial prestress level. For P = 1kN, the parameter λ decreases almost exponentially; in

turn, for P = 5kN, it is a polynomial of second degree.

4.2.5 Chapter Summary

The chapter is intended for beginners interested in tensegrity systems. Despite the fact

that the analyzed two-element truss is not a tensegrity (this is only a structure with

tensegrity features of class 1), its behavior fully reflects the behavior of tensegrity

structures. This is because the structure is characterized by two immanent features of

tensegrity systems, i.e., self-stress state and infinitesimal mechanism. This example makes

it easier to understand the behavior of tensegrity structures due to its simplicity. For such a

simple structure, it is possible to determine the impact of the initial prestress level S on

the static and dynamic parameters in explicit forms. The considerations serve as an

explanation of the use of the non-linear analysis of tensegrity systems that stiffen under

the application of the external load.

In addition, it is easily proven that both the harmonic balance method and the small

parameter method give the same results.

4.3SIX-ELEMENT TRUSS (X-TRUSS)



(4.27)

The concept of tensegrity is understood in many ways. This term is often improperly used

for structures that have some, but not necessarily the key tensegrity properties. This idea

is misused in reference to both mathematical models and completed engineering

structures. To explain the sense of the proposed classification (Table 3.1), the behavior of a

truss with six elements (n = 6) (Figure 4.8a) is considered. For this truss, the self-stress

state can be simply determined by the static equilibrium of nodes (Figure 4.8b):

FIGURE 4.8 Six-element truss: (a) geometry and (b) static equilibrium of

nodes (the self-stress state).⏎

yS = [ ]
T

.

It can be seen that static equilibrium also exists for forces opposite to (4.27). For this

reason, two variants of the type of element are taken into account:

the structure with two struts (X-truss) (Figure 4.9a);

the structure with four struts (Figure 4.9b).

FIGURE 4.9 Six-element truss with: (a) two struts (X-truss) and (b) four

struts.⏎

The qualitative analysis is performed for unsupported and supported trusses. The

considerations are presented in detail. In turn, the quantitative analysis includes the

behavior of the supported X-truss (Figure 4.9a). The values of the self-stress state are

taken according to the vector (4.27). Material and geometric characteristics are assumed

according to Table 4.1. Taken into account the dimension a = 1m means the length of the

struts is l = 1.4m with a load-bearing capacity of Nb,Rd = 170.5kN (Table 4.2). The truss

is loaded by one force applied to second
 
node. Two cases of direction are considered, i.e.,

the vertical Py = P  and horizontal Px = P  (Figure 4.10a). In order to illustrate the

influence of external loads on the behavior of a structure, three values of load are taken

into account, i.e., P = {1 kN, 5 kN, 10 kN}. For both cases of load, the maximum

prestress level is assumed to be Smax = 130kN, and corresponds to the effort of the

structure (3.16) equal to Wmax = 0.91. In turn, the minimum prestress level depends on

the load. For vertical load Py, it is equal to Smin = 0, which means an external load causes

an appropriate distribution of longitudinal forces (Figure 4.10b). In the case of the

√2
2

√2
2

√2
2

√2
2 −1 −1



(4.28)

horizontal load Px, it does not (Figure 4.10c). In order to obtain a proper distribution of

longitudinal forces, the structure must be compressed with a minimum prestress level

Smin > 0.3535 Px.

FIGURE 4.10X-truss: (a) scheme of loading regime; longitudinal forces

caused by the load: (b) P
y
 = P, and (c) P

x
 = P.⏎

Purpose of Consideration

Answer the following questions:

1. What is the difference between a finite and an infinitesimal mechanism?

2. Does the self-stress state depend on support?

3. How does the structure behave without the infinitesimal mechanism?

4. Is the term ‘tensegrity’ always used justifiably?

4.3.1 Qualitative Analysis

4.3.1.1 Unsupported Six-Element Truss

An unsupported truss is characterized by eight degrees of freedom (m = 8)
q = [ ]T . The elongation matrix of structures (3.3) B ∈ R

6×8

takes the form:

B = .

The singular value decomposition (3.7) of the matrix (4.28) leads to obtain the

following matrices Y ∈ R
6×6

, Z ∈ R
6×8

, X ∈ R
8×8

:

Y = ,

q1 q2 q3 q4 q5 q6 q7 q8

⎡⎢⎣ 0 −1 0 1 0 0 0 0

0 0 −1 0 1 0 0 0

0 0 0 0 0 1 0 −1

−1 0 0 0 0 0 1 0

0 0 −0.707 0.707 0 0 0.707 −0.707

−0.707 −0.707 0 0 0.707 0.707 0 0

⎤⎥⎦⎡⎢⎣ 0.35 0 0.87 0 0 0.3535

0.35 0.3 −0.29 −0.76 −0.07 0.3535

0.35 −0.78 −0.29 0.15 −0.21 0.3535

0.35 0.47 −0.29 0.60 0.28 0.3535

0.5 −0.21 0 −0.14 0.66 −0.5

0.5 0.21 0 0.14 −0.66 −0.5

⎤⎥⎦



(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

Z = ,

X = .

According to dependence (3.16), the matrices H ∈ R
6×6

 and L ∈ R
8×8

 are as

follows:

H = diag[ ],L = diag[ ]

The zero eigenvalue in the matrix H (4.32)1 (μ6 = 0)is related to the existence of

one self-stress state considered as an eigenvector related to the zero eigenvalue – the

sixth column of the matrix Y  (4.29):

y6(μ6 = 0) = [ ]T .

The vector (4.33) is a normalized vector (4.27) determined by the static equilibrium

of nodes (Figure 4.8b).

In turn, there are three zero eigenvalues in the matrix L(4.32)2 (γ6 = γ7 = γ8 = 0),

which means three mechanisms are identified. These mechanisms are considered as

eigenvectors related to the zero eigenvalues – the sixth, seventh, and eighth columns of

matrix X (4.31):

x6(γ6 = 0) = [ ]T

x7(γ7 = 0) = [ ]T

x8(γ8 = 0) = [ ]T

In order to identify whether the mechanisms (4.34) are infinitesimal or finite, the

spectral analysis of the stiffness matrix (3.17) should be applied. The linear stiffness matrix

with the unit elasticity matrix E ≡ I is considered. In turn, the geometric stiffness matrix

can be built due to the existence of the self-stress state vector (4.27), and the spectral

analysis leads to obtaining the following eigenvalues:

⎡⎢⎣ 2 0 0 0 0 0 0 0

0 1.41 0 0 0 0 0 0

0 0 1.41 0 0 0 0 0

0 0 0 1.41 0 0 0 0

0 0 0 0 1.41 0 0 0

0 0 0 0 0 0 0 0

⎤⎥⎦⎡⎢⎣−0.35 −0.44 0.2 −0.5 0.13 0.51 −0.33 0.04

−0.35 −0.1 −0.61 −0.07 0.33 0.11 0.57 0.18

−0.35 −0.11 0.2 0.61 −0.28 0.43 0.25 −0.36

0.35 −0.1 0.61 −0.07 0.33 0.11 0.57 0.18

0.35 0.31 −0.2 −0.46 −0.38 0.43 0.25 −0.36

0.35 −0.44 −0.2 0.18 −0.48 0.19 −0.01 0.58

0.35 0.23 −0.2 0.35 0.53 0.51 −0.33 0.04

−0.35 0.65 0.2 −0.04 −0.18 0.19 −0.01 0.58

⎤⎥⎦4 2 2 2 2 0 4 2 2 2 2 0 0 0

0.3535 0.3535 0.3535 0.3535 −0.5 −0.5

0.51 0.11 0.43 0.11 0.43 0.19 0.51 0.19

−0.33 0.57 0.25 0.57 0.25 −0.01 −0.33 −0.01

0.04 0.18 −0.36 0.18 −0.36 0.58 0.04 0.58



(4.35)

(4.36)

(4.37)

O = diag[ ].

Three zero eigenvalues in (4.35) mean the mechanisms are finite; a distance

between any pair of nodes does no change (Figure 4.11).

FIGURE 4.11 Finite mechanisms of unsupported six-element truss (4.34):

(a) x
6
, (b) x

7
, and (c) x

8
.⏎

4.3.1.2 Supported Six-Element Truss

A supported truss is characterized by five degrees of freedom (m = 5)
q = [ ]T . The elongation matrix of structures (3.3) takes the form

B ∈ R
6×5

:

B =

The singular value decomposition (3.7) of the matrix (4.36) leads to obtain the

following matrices Y ∈ R
6×6

, Z ∈ R
6×5

, X ∈ R
5×5

:

Y = ,

Z = ,

3.41 3.41 3.41 2.83 0.59 0 0 0

q3 q4 q5 q6 q7

⎡⎢⎣ 0 1 0 0 0

−1 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−0.707 0.707 0 0 0.707

0 0 0.707 0.707 0

⎤⎥⎦⎡⎢⎣ −0.21 0.35 −0.25 −0.71 −0.38 −0.3535

−0.69 −0.35 0.52 0 0.05 −0.3535

−0.11 −0.35 −0.69 0 0.51 −0.3535

−0.21 0.35 −0.25 0.71 −0.38 −0.3535

−0.57 0.5 −0.12 0 0.4 0.5

−0.30 −0.5 −0.35 0 −0.54 0.5

⎤⎥⎦⎡⎢⎣ 1.7 0 0 0 0

0 1.41 0 0 0

0 0 1.16 0 0

0 0 0 1 0

0 0 0 0 0.51

0 0 0 0 0

⎤⎥⎦



(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.42a)

X = .

According to dependence (3.16), the matrices H ∈ R
6×6

 and L ∈ R
5×5

 are,

respectively,

H = diag[ ], L = diag[ ]

The zero eigenvalue in the matrix H (4.40)1 (μ6 = 0) is related to the existence of

one self-stress state considered as an eigenvector related to the zero eigenvalue – the

sixth column of the matrix Y  (4.37):

y6(μ6 = 0) = [ ]T .

At this point, it should be noted that the vector (4.41) is opposite to the vector

(4.33). From the mathematical point of view, it does not matter. Equilibrium occurs, and

the self-stress state does not depend on the support. However, from the physical point of

view, the truss can be built with two struts and four cables (4.33) (Figure 4.9a) or with four

struts and two cables (4.41) (Figure 4.9b).

In turn, the absence of a zero eigenvalue in the matrix L (4.40)2 means that no

mechanism has been identified. Despite the fact that there is no mechanism, the stability

of structures should be checked. As before, the linear stiffness matrix with the unit

elasticity matrix E ≡ I is considered. The spectral analysis of the stiffness matrix (3.17)

leads to obtain two different solutions depending on the self-stress vector:

y6(4.33)
yields

O = diag[ ],

y6(4.41)
yields

O = diag[ ].

The obtained results mean that in the case of a truss with four struts (4.42)1,

prestressing forces are balanced with stiffness (see the qualitative analysis for two-

element structure, Equation (4.8)1, the case – (EA + S) = 0). It is not true. Assuming the

unit elasticity matrix E ≡ I does not include the correct stiffness of the structure. If the

material and geometric characteristics are included, the spectral analysis (3.17) leads to

obtaining positive eigenvalues:

y6(4.32)
yields

O = diag[ ]*105,

y6(4.41)
yields

O = diag[ ]*105,

which means that a supported truss is stable independently of the number of struts.

4.3.1.3 Conclusion

⎡⎢⎣ 0.64 0 −0.37 0 −0.67

−0.35 0.5 −0.29 −0.71 −0.19

−0.53 −0.5 0.23 0 −0.64

−0.19 −0.5 −0.8 0 0.26

−0.36 0.5 −0.28 0.71 −0.19

⎤⎥⎦2.89 2 1.35 1 0.25 0 2.89 2 1.35 1 0.25

−0.3535 −0.3535 −0.3535 −0.3535 0.5 0.5

−→ 3.17 2.87 1.71 0.54 0.25

−→ 2.62 1.71 0.38 0.29 0

−→ 2.3 1.6 0.9 0.6 0.2

−→ 3.1 1.9 1.6 1.4 0.2



The structure with two struts (Figure 4.9a) is characterized by four tensegrity features. It is

a truss (TT ) with a set of struts contained within the continuous net of tensile elements (

IN) that have no rigidity in compression (TC) and in which there is one self-stress state (

SS). According to the tensegrity classification (Table 3.1), due to a lack of mechanism, it is

a structure with tensegrity features of class 2. This truss is the most popular structure in

the literature, usually referred to as ‘the simplest 2D tensegrity structure’, called Snelson’s

X tensegrity module (Ashwear and Eriksson, 2014; Ashwear et al., 2016; Cai et al., 2018;

Connelly and Back, 1998; Lee, 2012; Masic and Skelton, 2002; Moored and Bart–Smith,

2009; Moored et al., 2011; Pełczyński and Gilewski, 2018; Pagitz and Tur, 2009; Pugh,

1976; Skelton and de Oliveira, 2009, 2010; Skelton et al., 2001a, 2001b, 2002; Tibert,

2002; Tibert and Pellegrino, 2003; Tran and Lee, 2010a, 2010b, 2010c; Williamson et al.,

2003a, 2003b; Xu et al., 2018; Zhang, 2007; Zhang and Ohsaki, 2007; Zhang L.Y. et al.,

2014).

In turn, the structure with four struts (Figure 4.9b) is characterized only by three

tensegrity features. It is the truss (TT ) with tensile elements that have no rigidity in

compression (TC) and in which there is one self-stress state (SS). This means that it

cannot be classified into any group. It is a non-tensegrity structure.

4.3.2 Static Analysis

The X-truss is a structure with tensegrity features of class 2, it means that it is devoid of

mechanisms. The global stiffness parameter (3.32) is equal to GSP = 1, independent of

the value and direction of the load and the initial prestress level S. In this case, the

second-order theory is sufficient for the calculation. The load-bearing characteristics are

shown in Tables 4.3 and 4.4, respectively for the load Py and Px. The displacements are

insensitive to the change in the prestress level (e.g., the displacements according to the

direction of load are shown). Only longitudinal forces N  and the effort of the structure

Wmax are changed. These quantities are linearly dependent on the initial prestress level,

because the longitudinal forces caused by load P  are independent of the value of

prestress. In Figure 4.12, the value of longitudinal forces arising from loads (marked as (P))

and the longitudinal forces generated jointly by the load and prestress forces (marked as

(P+S)) are shown.

TABLE 4.3 Strength Characteristics of the X-truss Loaded

by the Force P
y
 ⏎

S(kN) Type of Element Py = 1k Py = 5kN Py = 10 kN

Wmax (–) qy (mm) Wmax (–) qy (mm) Wmax (–) qy (mm)

0 Cables 0.01 –0.13 0.04 –0.06 0.08 –0.128

Struts 0.00 0.01 0.01

70 Cables 0.46 –0.13 0.49 –0.06 0.53 –0.128

Struts 0.41 0.42 0.42

130 Cables 0.84 –0.13 0.87 –0.06 0.91 –0.128

Struts 0.76 0.77 0.77

TABLE 4.4 Strength Characteristics of the X-truss Loaded by the Force

P
x
 ⏎

S(kN) Type of element Px = 1 kN(Smin = 1 kN) Px = 5 kN(Smin = 4 kN) Px = 10 kN(Smin = 8 kN)

Wmax (–) qx (mm) Wmax (–) qx (mm) Wmax (–) qx (mm)

S
min

Cables 0.01 0.025 0.05 0.125 0.10 0.249

Struts 0.00 0.04 0.09

70 Cables 0.45 0.025 0.47 0.125 0.49 0.249

Struts 0.41 0.43 0.45

130 Cables 0.84 0.025 0.86 0.125 0.88 0.249

Struts 0.77 0.78 0.80



FIGURE 4.12 Influence of the initial prestress level S on the longitudinal

force N: (a) caused by the force P
y
 and (b) caused by the force P

x
. ⏎

4.3.3 Dynamic Analysis

The static assessment showed insensitivity to a change in the level of initial prestress S.

The same is true in the dynamic assessment (Table 4.5). Independent of the initial

prestress level, the natural frequency f(0) and free frequencyf(P) are constant; the

relative increase is 0.06% for all frequencies. Additionally, the free frequencies do not

depend on the load. This means that the natural frequency and the free frequency are the

same.

TABLE 4.5 Natural and Free Frequency of the X-Truss

⏎

S(kN) f1 (0)(Hz) f2 (0)(Hz) P = 1 kN P = 5 kN P = 10 kN

f1 (Hz) f2 (Hz) f1 (Hz) f2 (Hz) f1 (Hz) f2 (Hz)

S
min

317.0 644.3 317.0 644.3 317.0 644.3 317.0 644.3

130 317.2 644.7 317.2 644.7 317.2 644.7 317.2 644.7

Since the X-truss does not have a mechanism (is geometrically invariant), it is possible

to perform modal analyze in the Autodesk Robot Structural Analysis. This example allows

us to verify the calculation procedure written in the Mathematica environment. Assuming

comparable geometric characteristics of the struts (the Halfen DETAN Rod System is not

included in the program), i.e., the diameter ϕ = 70[mm] and thickness t = 3.2[mm], the

following frequencies were obtained:f1 = 318.14[Hz] and f2 = 649.04[Hz]. The maximum

relative difference of 0.7% results from the difference in cross-sectional areas. In the case

of the assumed struts, it is equal to A = 6.72 ⋅ 10−4[m2] and is 0.7% smaller.

4.3.4 Dynamic Stability Analysis

As previous analysis, the dynamic stability assessment showed insensitivity to the change

in the level of initial prestress S (Table 4.6). Independent of the initial prestress level, the



resonance frequency f(0) and free frequency f(P) are constant; the relative increase is

0.08% for all frequencies. Additionally, the resonance frequencies do not depend on the

load.

TABLE 4.6 First- and Second-Resonance

Frequencies of the X-Truss ⏎

S(kN) P = 1 kN P = 5 kN P = 10 kN

η1 (Hz) η2 (Hz) η1 (Hz) η2 (Hz) η1 (Hz) η2 (Hz)

S
min

634.0 1288.5 634.0 1288.5 634.0 1288.5

130 634.5 1289.5 634.5 1289.5 634.5 1289.5

4.3.5 Chapter Summary

The chapter considers a simple and very popular example in the literature, the so-called

Snelson’s X tensegrity module. The behavior of structures characterized by only one of the

two immanent features of tensegrity systems, i.e., the self-stress state, is shown. These

considerations explain the proposed classification, in particular, the differences between a

structure with tensegrity features of class 2 and a structure with tensegrity features of

class 1 (see 4.2). Additionally, the differences between a finite and an infinitesimal

mechanism are explained. For clarity, the summary is presented as the answers to the

questions posed at the beginning of the consideration.

1. What is the difference between a finite and an infinitesimal mechanism?

The occurrence of a mechanism characterizes a geometrically variable structure. It means

that the occurrence of displacements is not necessarily associated with the appearance of

the generation of internal forces. Mechanisms can be finite (rigid body movements) or

infinitely small (infinitesimal). Finite mechanisms refer to movements that do not change

the distance between any pair of nodes (Figure 4.9). Infinitesimal mechanisms, on the

other hand, describe local geometric variation in the range of small displacements (Figure

4.1c). These mechanisms are stabilized by introducing the initial prestress. It should be

noted that a mechanism is an eigenvalue of a structure.

2. Does the self-stress state depend on support?

In the case of X-truss, the self-stress state does not depend on support. However,

sometimes struts have been replaced by the supports (see Sections 4.2.1, 4.4.1, and

4.6.1).

3. How does the structure behave without the infinitesimal mechanism?

In the case of a structure without the infinitesimal mechanism, the initial prestress has no

effect on displacements, stiffness (GSP ), natural, free, and resonance frequencies. Only

longitudinal forces linearly changed according to the initial prestress introduced. Due to

this, the effort of the structure Wmax has also changed. Therefore, the question arises:

what is the point of introducing an initial prestress in a structure without the infinitesimal

mechanism? In these cases, it is necessary to obtain a proper distribution of the

longitudinal forces. This means that for structures without mechanisms, the minimum

prestress level Smin should be introduced.

4. Is the term ‘tensegrity’ always used justifiably?

In general, the term ‘tensegrity’ is often misused in the literature, and these structures are

not related to true tensegrity, which is characterized by special features distinguishing



them from conventional systems (Obara et al., 2019). From the architectural aspect, the

possibility of creating new forms of ‘islands of compression in a sea of tension’ is the most

important. This means that the most important thing is to find a self-balancing

configuration of systems (form-finding). However, from a mechanical point of view, the

most interesting are structures characterized by the occurrence of infinitesimal

mechanisms. Of course, these systems have to be additionally characterized by the self-

equilibrated systems of longitudinal forces (self-stress states), which stabilize mechanisms.

When teaching structural mechanics, it is said that building structures cannot be

geometrically variable. The uniqueness of tensegrity structures is that geometric variability

is their great advantage. Mechanisms in tensegrity structures allow control of their static

and dynamic properties. This control is achieved by changing the level of initial prestress,

i.e., the system of self-balancing internal forces.

The proposed classification systematizes and precisely defines tensegrity structures,

minimizing the misuse of the term to refer to structures that are not them. Additionally, in

engineering practice, such systematization facilitates the analysis and design of

tensegrities. It is a consequence of the different behavior of structures under the influence

of external loads.

Some examples of two-dimensional structures, which in the literature are referred to as

tensegrity structures, are shown in Figure 4.13. The analysis, based on the tensegrity

classification (Table 3.1), showed that in some cases, the term ‘tensegrity’ is used

unjustifiably. The structure shown in Figure 4.13a (Zhang J.Y. et al., 2009, 2010) has only

one characteristic feature, which is that it is a truss (TT ). Three next trusses are

characterized additionally by the existence of the self-stress state (SS), i.e., Figure 4.13b

(Lee, 2012), Figure 4.13c (Lee, 2012; Michelettand and Cadoni, 2011; Paul et al., 2005;

Pugh, 1976), and Figure 4.13d (Paul et al., 2005; Pugh, 1976; Zhang, 2007). However, none

of these trusses can be referred to as tensegrity due to the absence of the other

characteristic features.

FIGURE 4.13 Truss: (a)–(d) non-tensegrity structures, (e)–(f) structures

with tensegrity features of class 2, and (g)–(j) ideal tensegrity. ⏎

The structures shown in Figure 4.13e (De Jager and Skelton, 2006; Masic and Skelton,

2002, 2006; Masic et al., 2005, 2006; Zhang J.Y. et al., 2010) and in Figure 4.13f (Micheletti,

2008) have four characteristic features: they are trusses (TT ) with a self-stress state (SS),

built with cables (TC), and the set of struts is contained within the continuous net of

cables (IN). It means they are structures with tensegrity features of class 2.



Ideal tensegrity structures, characterized by all characteristic features occurring, are

shown in Figures 4.13g–j: Figure 4.13g (Cai et al., 2018; Estrada et al., 2006; Lee, 2012;

Micheletti, 2008; Pugh, 1976; Tibert, 2002; Tibert and Pellegrino, 2003; Tran and Lee,

2010a, 2011a, 2011b, 2011c; Volokh, 2003; Xu et al., 2018; Zhang J.Y. et al., 2006; Zhang

L.Y. et al., 2014, 2018), Figure 4.13h (Michelettand and Cadoni, 2011; Pugh, 1976; Paul et

al., 2005; Zhang, 2007; Zhang L.Y. et al., 2014), Figure 4.13i (Lee, 2012; Zhang L.Y. et al.,

2018), and Figure 4.13j (Kasprzak, 2014; Koohestani and Guest, 2013; Motro, 2003; Zhang

L.Y. et al., 2014, 2018).

4.4 BASIC 2D TENSEGRITY MODELS

The basic two-dimensional (2D) models contain trusses, which can be used to create

tensegrity Geiger domes. Two variants of connecting in the center of the span are

considered, i.e., girders connected by a strut (type A) and by cables (type B). The

qualitative analysis is performed for two basic models (A-0 and B-0) and their extensions.

The extended models are created by adding repetitive levels consisting of two struts and

five cables. The number after a letter means a number of additional levels, i.e., A-1 and B-

1 – one additional level is added, A-2 and B-2 – two additional levels. Six models are

analyzed, i.e.:

Geiger truss type A-0 (Figure 4.14a);

Geiger truss type B-0 (Figure 4.14b);

Geiger truss type A-1 (Figure 4.15a);

Geiger truss type A-2 (Figure 4.15c);

Geiger truss type B-1 (Figure 4.15b);

Geiger truss type B-2 (Figure 4.15d).

FIGURE 4.14 Basic two-dimensional models: (a) Geiger truss type A-0

and (b) Geiger truss type B-0. ⏎

FIGURE 4.15 Extended Geiger truss type: (a) A-1, (b) B-1, (c) A-2, and (d)

B-2. ⏎



(4.43)

(4.44)

For the Geiger truss type A-0 and type B-0, the considerations are presented in detail. In

turn, for the extended Geiger truss only the results of the analysis are presented. The

formulas for longitudinal self-stress forces are derived. In turn, the quantitative analysis

includes the behavior of the Geiger truss type B-0. Material and geometric characteristics

are assumed according to Table 4.1. In this case, an attempt is made to analyze the

behavior of the structure, in which the load-bearing capacity of the struts is much lower

than that of the cables. For this purpose, the dimension a = 2.1m is assumed (the length

of the struts is l = 4.2m, and their load-bearing capacity is Nb,Rd = 41.9 kN (Table 4.2). In

order to illustrate the influence of external loads on the behavior of a structure, two types

of load are considered, i.e., symmetrical load (two forces applied to the second and third

nodes) and asymmetrical load (one force applied to the second node). Three values of load

are taken into account, i.e., P = {1kN, 5kN, 10kN}. The range of initial prestress depends

on the case of the load:

in the case of symmetrical load, the maximum prestress level is assumed to be Smax = 35kN, and corresponds to

the effort of the structure (3.22) equal to Wmax = 0.94, whereas the minimum level depends on the value of load;

in order to obtain a proper distribution of longitudinal forces, the structure must be compressed with a minimum

prestress level Smin > 0.56 P ;

in the case of asymmetrical load, the maximum prestress level is assumed to be Smax = 20kN, and corresponds

to the effort of the structure (3.22) equal to Wmax = 0.96, whereas the minimum level is equal to Smin = 0,

which means an external load causes an appropriate distribution of longitudinal forces.

Purpose of the Consideration

This section presents basic tensegrity trusses that can be used to create Geiger domes,

addressing the following questions:

1. Is it possible to derive formulas for self-equilibrium forces (self-stress state)?

2. How does the structure behave when the load causes the displacements that

are incompatible with an infinitesimal mechanism?

3. How does the structure behave when the load causes the displacements that

are comapatibble with an infinitesimal mechanism?

4. How does the structure behave when the load capacity of the struts is much

smaller than the load capacity of the cables?

4.4.1 Qualitative Analysis

4.4.1.1Geiger Truss Type A-0

The Geiger truss type A-0 (Figure 4.14a) is a truss with five elements (n = 5) and with four

degrees of freedom (m = 4) q = [ ]T ∈ R
4×1

 (Chan and Skelton, 2002;

Ohsaki and Zhang, 2006; Malerba et al., 2012). In this case, the elongation matrix is

rectangular B ∈ R
5×4

; hence, the matrices H ∈ R
5×5

 and L ∈ R
4×4

 are, respectively

H = diag[ ],L = diag[ ]

The zero eigenvalue in the matrix H (4.43)1 (μ5 = 0) is related to the existence of

one self-stress state

y5(μ5 = 0) = [ ]
T

.

The absence of a zero value in the matrix L (4.43)2 means that there is no

mechanism. The eigenvalues of the stiffness matrix (3.19)

q3 q4 q7 q8

3 1 1 1 0 3 1 1 1

√2
2

√2
2

√2
2

√2
2 −1



(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

O = diag[ ]

are positive, which means, the structure is stable.

The Geiger truss type A-0 is characterized by five tensegrity features. It is a truss (TT )

with a set of discontinuous set of struts (DS) contained within the continuous net of tensile

elements (IN) that have no rigidity in compression (TC) and in which there is one self-

stress state (SS). According to the tensegrity classification (Table 3.1), due to a lack of

mechanism, it is a structure with tensegrity features of class 2.

4.4.1.2Geiger Truss Type B-0

The Geiger truss type B-0 (Figure 4.14b) is a truss with eight elements (n = 8) and with

eight degrees of freedom (m = 8) q = [ ]T ∈ R
8×1

(Zhang, 2007; Zhang et al., 2006; Chen and Feng, 2012a; Xu et al., 2018). In this case, the

elongation matrix is square B ∈ R
8×8

 and the matrices H ∈ R
8×8

 and L ∈ R
8×8

 are the

same

H ≡ L = diag[ ]

The zero eigenvalue in the matrix (4.46) is related to the existence of one self-stress

state

y8(μ8 = 0) = [ ]
T

and one mechanism

x8(γ8 = 0) =
√2

4
[ ]T

The eigenvalues of the stiffness matrix (3.19) are positive:

O = diag[ ],

it means the structure is stable, and that, in turn, means the self-stress state

stabilizes the mechanism, i.e., the mechanism is infinitesimal (describes the local

geometrical variability).

The Geiger truss type B-0 is characterized by all six tensegrity features. It is a truss (TT )

with a set of discontinuous set of struts (DS) contained within the continuous net of tensile

elements (IN) that have no rigidity in compression (TC). In this structure, there is one

self-stress state (SS) that stabilizes one infinitesimal mechanism (IM). According to the

tensegrity classification (Table 3.1), this is an ideal tensegrity. It is worth noting at this

point the similarity between the Geiger truss type B-0 (Figure 4.14b) and the tensegrity

structure shown in Figure 4.13g. In the case of the Geiger truss, the horizontal strut has

been replaced by the supports.

4.4.1.3Extended Geiger Trusses

For extended Geiger trusses ( Figures 4.15), the results of the qualitative analysis are

shown in Table 4.7. Generally, the number of mechanisms can be determined by Maxwell’s

formula (Maxwell, 1864). However, due to repeatability of Geiger trusses, it is possible to

determine the number of mechanisms (nm) as a function of the number of struts (ns). In

turn, regardless of the type of models, there is one self-stress state. All eigenvalues of the

stiffness matrix (3.19) are positive. This means the self-stress state identifies the

2 1 1 0.42

q3 q4 q5 q6 q9 q10 q11 q12

3 2.62 2.61 2 1 0.38 0.38 0

√2 √2 √2 √2 1 1 −1 −1

1 −1 1 1 −1 −1 −1 1

2.54 2.23 2.10 1.45 1.12 0.47 0.47 0.16



appropriate normal forces in the structural elements and stabilizes mechanisms, i.e., the

mechanisms are infinitesimal. It should be noted that results obtained can be used for

models with any additional levels i (i ∈ N), i.e., Geiger trusses types A-3, B-3, A-4, B-5,

etc.

TABLE 4.7 Results of the Qualitative Analysis of the Geiger Trusses ⏎

Type of Truss No. of Classification

Nodes Elements d.o.f Struts Mechanisms Self-Stress States

(nn) (n) (m) (ns) (nm) (nss)

Geiger trusses type A

A-0 4 5 4 1 0 1 structure with tensegrity features of class 2

A-1 8 12 12 3 1 1 ideal tensegrity

A-2 12 19 20 5 2 1

A-3 16 26 28 7 3 1

A-i 2i + 1 ns−1
2

1

Geiger trusses type B

B-0 6 8 8 2 1 1 ideal tensegrity

B-1 10 15 16 4 2 1

B-2 14 22 24 6 3 1

B-3 18 29 32 8 4 1

B-i 2i + 2
ns
2

1

Extended Geiger trusses exhibit all six tensegrity features. They are trusses (TT ) with a

set of discontinuous struts (DS) contained within the continuous net of tensile elements (

IN) that have no rigidity in compression (TC). In these structures, there is one self-stress

state (SS) that stabilizes all infinitesimal mechanisms (IM), ensuring their stability.

According to the tensegrity classification (Table 3.1), these structures represent ideal

tensegrity.

4.4.1.4 Formulas for Self-Equilibrium Forces (Self-Stress State) for Geiger

Trusses

In the case of basic 2D tensegrity models, the self-stress states (4.44) and (4.47) can be

simply determined by the static equilibrium of nodes. Furthermore, it is also possible for all

extended models, since they are feature by one self-stress state. In Figure 4.16, the

geometry of the models with two additional levels is presented. Struts are marked as S1,

S2, and S3, whereas the cables are separated on diagonally (1, 2, 3, 4, 5, 6) and

horizontally (C1, C2, C4, C6). Various angles of diagonal cables are taken into account.

These models can be extended by adding additional repeatable elements. The formulas for

longitudinal self-stress forces are presented in Table 4.8. These formulas depend on the

type of model and the angle of inclination of the diagonal cables of truss.

FIGURE 4.16Geiger truss type: (a) A-2 and (b) B-2. ⏎



TABLE 4.8 Formulas for Self-Equilibrium Forces

(Self-Stress State) for the Geiger Trusses ⏎

Geiger Trusses Type A Geiger Trusses Type B

N1 = const. ; i ∈ N+

struts:

NS1 = −2N1 sin(α1)   NS1 = −N1 sin(α1)

NSi+1 = −N2(i+1) sin(α2(i+1))

diagonal cables:

N2i = N2i−1
sin(α2i−1)
sin(α2i)

   N2i+1 =
N2i−1 cos(α2i−1)+N2i cos(α2i)

cos(α2i+1)

horizontal cables:

NC2(i+1) = N2(i+1) cos(α2(i+1))
NC1 = N1 cos(α1)NC2 = N2 cos(α2)

Geiger trusses types A-2 and B-2 will be used to create small-scale Geiger domes

(Section 4.6). Due to this, sample coordinates (Table 4.9) and angles of diagonal cables

(Table 4.10) are adopted. The trusses’ span is 12 m, and their height is 3.25 m. Next,

based on these formulas shown in Table 4.8, the self-stress state states are calculated

(Table 4.11). In addition, Table 4.11 shows the self-stress state states for all the models

considered in this chapter (the coordinates shown in Table 4.9 are taken into account). For

Geiger trusses type A-2 and type B-2, the infinitesimal mechanisms are shown in Figure

4.17.

TABLE 4.9 Coordinates of

Geiger Trusses Types A-2 and

B-2 ⏎

No. of Node 1 2 3 4 5 6 7

type A-2 x (m) 0.0 0.0 2.0 2.0 4.0 4.0 6.0

type B-2 0.5 0.5

type A-2, B-2 z (m) 2.1 1.5 1.85 0.45 1.15 –1.15 0.0

TABLE 4.10 Angles of

Diagonal Cables α
i
 of

Geiger Trusses Types A-2

and B-2 ⏎

α1 α2 α3 α4 α5 α6

type A-2 sin (α
i
) 0.1240 0.1724 0.3303 0.4985

type B-2 0.1644 0.2272

type A-2 cos (α
i
) 0.9923 0.9850 0.9438 0.8669

type B-2 0.9864 0.9738

TABLE 4.11 Values of Self-stress

State y
s
 for the Geiger Trusses ⏎

Geiger Trusses Type A Geiger Trusses Type B

A-0 A-1 A-2 B-0 B-1 B-2

ys(–) ys(–)

S
1

–1.0000 –0.4167 –0.1268 –1.0000 –0.2778 –0.0845

S
2

– –1.0000 –0.3043 – –1.0000 –0.3043

S
3

– – –1.0000 – – –1.0000

1 4.0311 1.6796 0.5112 6.0827 1.6896 0.5142

2 2.9006 1.2086 0.3678 4.4014 1.2226 0.3721

3 – 3.0271 0.9213 – 3.0271 0.9213



Geiger Trusses Type A Geiger Trusses Type B

A-0 A-1 A-2 B-0 B-1 B-2

ys(–) ys(–)

4 – 3.0271 0.9213 – 3.0271 0.9213

5 – – 2.0061 – – 2.0061

6 – – 2.0061 – – 2.0061

C
1

– 0.5072 0.5072 0.5072

C
2

– 0.3623 0.3623 0.3623

C
4

– 2.8571 0.8696 – 2.8571 0.8696

C
6

– – 1.7391 – – 1.7391

FIGURE 4.17 Infinitesimal mechanisms for the Geiger truss type: (a) A-2

and (b) B-2. ⏎

4.4.2 Static Analysis

The static analysis includes the behavior of the Geiger truss type B-0. The values of the

self-stress state are assumed according to the vector (4.47) (Figure 4.18a). A considered

truss is a structure with tensegrity features of class 1 with one infinitesimal mechanism

(4.48) (Figure 4.18b). However, the behavior of this truss depends mainly on the load. More

precisely, on whether the load causes displacements that are compatible or incompatible

with the mechanism. To explain, the displacements q3 and q4 are calculated. In the case of

the mechanism, the corresponding components of the eigenvector describing the

deformation x8(γ8 = 0) (4.48) are opposite and equal: x3 = √2/4 and x4 = −√2/4. In

the case of the symmetric load, the displacements are incompatible with the mechanism

(Table 4.12) they have the same sign and differ in value. In turn, in the case of the

asymmetric load, the displacements are compatible with the infinitesimal mechanisms

(slight differences in values are due to numerical approximations) (Table 4.13).

FIGURE 4.18Geiger truss type B: (a) self-stress state (4.47), (b)

infinitesimal mechanism (4.48), and (c) longitudinal forces caused by

symmetrical load.⏎

TABLE 4.12 Strength Characteristics of the Symmetrically Loaded Geiger

Truss Type B-0 ⏎



S(kN) Type of Element P = 1 kN(Smin = 1 kN) P = 5 kN(Smin = 3 kN) P = 10 kN(Smin = 6 kN)

Wmax (–) q3(mm) q4(mm) Wmax (–) q3(mm) q4(mm) Wmax (–) q3(mm) q4(mm)

S
min

Cables 0.01 –0.01 –0.06 0.07 –0.05 –0.30 0.13 –0.09 –0.59

Struts 0.03 0.12 0.25

20 Cables 0.26 –0.01 –0.06 0.28 –0.05 –0.30 0.31 –0.09 –0.59

Struts 0.49 0.53 0.58

35 Cables 0.45 –0.01 –0.06 0.48 –0.05 –0.30 0.50 –0.09 –0.59

Struts 0.84 0.89 0.94

TABLE 4.13 Strength Characteristics of the Asymmetrically Loaded Geiger

Truss Type B-0 ⏎

S(kN) Type of Element P = 1 kN P = 5 kN P = 10 kN

Wmax (–) q3(mm) q4(mm) Wmax (–) q3(mm) q4(mm) Wmax (–) q3(mm) q4(mm)

0 Cables 0.08 31.45 –31.43 0.23 54.50 –54.51 0.37 69.22 –69.31

Struts 0.15 0.46 0.76

10 Cables 0.15 15.57 –15.53 0.28 43.66 –43.71 0.42 60.45 –60.57

Struts 0.28 0.56 0.85

20 Cables 0.26 8.76 –8.78 0.36 33.98 –34.05 0.48 52.04 –52.18

Struts 0.50 0.69 0.96

Note that the symmetrical load does not result in the correct distribution of longitudinal

forces in elements (Figure 4.18c). Only the introduction of the initial prestress above

Smin > 0.56 P  leads to the correct distribution. This type of load causes displacements

that are incompatible with the mechanism.

The behavior of a symmetrically loaded structure is the same as the behavior of the X-

truss (see Section 4.3.2). The displacements and stiffness are insensitive to the change in

the level of initial prestress. The global stiffness parameter (3.32) is constant and equal to

GSP = 1. The effort of the structure Wmax is linearly dependent on the prestress, just like

longitudinal forces caused jointly by the load and prestress forces N(P+S) (Figure 4.19),

and the longitudinal forces caused by the load N(P) are independent of the value of the

initial prestress.

FIGURE 4.19 Symmetrical load. Influence of the initial prestress level S

on the longitudinal force N: (a) in struts and (b) in cables.⏎

The behavior of an asymmetrically loaded structure is completely different and similar to

that of the simplest two-element structure (see Section 4.2.2). The influence on the

longitudinal forces N  is shown in Figure 4.20. Displacement values calculated using

second-order theory (II) in the absence of prestress increase to infinity (Figure 4.21), which

is due to the singularity of the stiffness matrix. In this case, the effect of non-linearity (III)

on displacements is significant. This is due to the possibility of maximum prestress, which,



due to the bearing capacity, is at a low level. Additionally, the others static parameters

mostly depend on the initial prestress level, i.e., the global stiffness parameter GSP
(Figure 4.22a), the effort of structure Wmax (Figure 4.22b). The influence of the initial

prestress level on stiffness, as in the case of two-element structure, is greater at lower

loads. At the maximum of the initial prestress level Smax = 20kN for the value of external

force P = 1kN, parameter GSP  is 2.7 times higher than for the value P = 10kN. In the

case of effort of structure, as in the case of the stiffness, the influence of the initial

prestress decreases as the load increases.

FIGURE 4.20 Asymmetrical load. Influence of the initial prestress level S

on the longitudinal force: (a) in struts and (b) in cables.⏎

FIGURE 4.21 Asymmetrical load. Influence of the initial prestress level S

on the: (a) displacement q
3
 and (b) displacement q

4.
 ⏎



FIGURE 4.22 Asymmetrical load. Influence of the initial prestress level S

on the: (a) global stiffness parameter GSP and (b) effort of structure

W
max

. ⏎

4.4.3 Dynamic Analysis

The dynamic analysis included calculations of the natural vibrations f(0) and the free

vibrations of structure loaded with time-independent force f(P). The maximum prestress

level is assumed as S = 20kN to compare behavior of structure under different load. Since

a one infinitesimal mechanism has been identified, only the first natural frequency

depends on the initial prestress level (Figure 4.23). The influence is significant. In the

absence of prestress (S = 0), this frequency is zero, and after the introduction of prestress

it increases, e.g., for S = 20kN, it is f1(0) = 5.55 Hz. In turn, the free frequency depends

on the type of load:

FIGURE 4.23 Influence of the initial prestress level S on the first

frequency: (a) symmetrical load and (b) asymmetrical load.⏎

in the case of symmetrical load (Figure 4.23a), the free frequencies are lower than the natural about 2%, 10%, and

21% for S = 6kN and 0.5%, 3%, and 6% for S = 20kN, respectively, for the cases P = 1kN, P = 5kN, and

P = 10kN,

in the case of asymmetrical load (Figure 4.23b), the free frequencies are higher than the natural about 19%, 76%,

and 116% for S = 6kN and 0.9%, 14%, and 31% for S = 20kN, respectively for the cases P = 1kN,

P = 5kN, and P = 10kN; the external load prestresses the structure; additional forces are generated in the

elements and the initial dynamic response at S = 0 corresponds to the values of the natural frequency at the

following prestress levels: S(P = 1kN) ≈ 6kN, S(P = 5kN) ≈ 16kN, and S(P = 10kN) ≈ 26kN.

The second frequency f2 is practically insensitive to both changes in the level of prestress

and the effects of external loads (Table 4.14). The maximum relative difference is equal

0.08%.

TABLE 4.14 Second Natural and Free

Frequencies of the Geiger Truss Type B-0 ⏎

S(kN) Type of Load f2(P = 0)(Hz) P = 1 kN P = 5 kN P = 10 kN

f2(P)(Hz)

6 Symm. 120.16 120.17 120.16 120.16

35 120.21 120.26 120.21 120.20

6 Asym. 120.16 120.17 120.21 120.24

20 120.21 120.21 120.23 120.26

4.4.4 Dynamic Stability Analysis



The influence of the initial prestress level S and load on the main unstable region is shown.

Three values of constant part of periodic force are taken into account, i.e.,

P = {1kN, 5kN, 10kN}. The symmetrical and asymmetrical loads are considered.

Resonance frequencies are determined using the harmonic balance method. The Geiger

truss type B-0 is characterized by one infinitesimal mechanism. Due to this, one main

unstable region is obtained.

The main unstable region is shown in Figures 4.24 and 4.25. To compare the behavior of

truss under different loads, the boundaries for three cases of initial prestress level are

presented, i.e.,Smin, S ≈ 0.5Smax, and Smax. In the case of symmetrical load (Figure

4.24), only for P = 10kN resonance frequency depends on the prestress. However, an

increase in prestress reduces the unstable region. The behavior of the truss under

asymmetrical load (Figure 4.25) is completely different and resembles that of the simplest

two-element structure (see Section 4.2.4). The same conclusions can be drawn.

Independently on the value of prestress, the range of regions mostly depends on the load.

The greater the load, the greater the region. The introduction of prestress (Figures 4.25b

and 4.25c) causes decreasing the range of unstable regions decreases, and resonant

frequencies increase. The initial prestress level has a greater influence on the range of the

unstable regions when lower loads are applied. For example, in the case of P = 1kN
introducing the Smax = 20kN results in an overlapping of the boundaries of unstable

region (Figure 4.25c).

FIGURE 4.24 Limits of the main unstable regions for the case of

symmetrical load: (a) S = 6 kN, (b) S = 18 kN, and (c) S = 35 kN.⏎

FIGURE 4.25 Limits of the main unstable regions for the case of

asymmetrical load: (a) S = 0 kN, (b) S = 10 kN, and (c) S = 20 kN.⏎

To better compare the influence of the initial prestress level and the load, Figures 4.26a

and 4.27a show the areas of unstable regions Aη(S). In turn, to measure the changes in

the area of the unstable regions, the dimensionless parameter λ (3.75) is calculated



(Figures 4.26b and 4.27b). In the case of the symmetrical load (Figure 4.26), the areas of

unstable regions are small, and changes in the area practically do not depend on the load.

At the maximum initial prestress level, the unstable regions are about 60% less than at the

minimum prestress level. In the case of the asymmetrical load (Figure 4.27), on the other

hand, changes in the area depend on the load. At the maximum initial prestress level, the

unstable regions are 90%, 40%, and 20% smaller than at the minimum prestress level,

respectively, for P = 1kN, P = 5kN, and P = 10kN. As can be seen, the load causes a

different character of change in the parameter λ with growth the initial prestress level. For

P = 1kN, the parameter λ decreases almost exponentially; in turn, for P = 5kN and

P = 10kN, it is a polynomial of second degree.

FIGURE 4.26 Symmetrical load. Influence of the initial prestress level S

on the: (a) area of unstable regions A
η
(S) and (b) range of unstable

regions λ. ⏎

FIGURE 4.27 Asymmetrical load. Influence of the initial prestress level S

on the: (a) area of unstable regions A
η
(S) and (b) range of unstable

regions λ.⏎

The second-resonance frequency η2does not depend on both changes in the level of

prestress and external loads (Table 4.15). Additionally, it is twice the free second frequency

– η2 = 2f2.

TABLE 4.15 Second-Resonance

Frequency of the Geiger Truss Type B-0

⏎



S(kN) Type of Load P = 10 kN P = 20 kN P = 30 kN

η2 (Hz) (ν = 0 ÷ 0.75)

6 Symm. 240.33 240.33 240.33

35 240.51 240.51 240.51

6 Asym. 240.33 240.40 240.46

20 240.42 240.48 240.55

4.4.5 Chapter Summary

This chapter discusses two-dimensional structures, which can be used to create tensegrity

Geiger domes. For clarity, the summary is presented as the answers to the questions

posed at the beginning of the consideration

1. Is it possible to derive formulas for self-equilibrium forces (self-stress state)?

In the case of basic 2D tensegrity models, the self-stress states can be simply determined

by the static equilibrium of nodes. Due to the repetitive nature of the models, the

considerations can be generalized to any extended versions of these models.

2. How does the structure behave when the load causes the displacements that

are incompatible with an infinitesimal mechanism?

The behavior of structure under load, which causes displacements incompatible with an

infinitesimal mechanism, is similar to the behavior of the X-truss (see Sections 4.3.2–4.3.4).

The displacements and unaffected by changes in the of initial prestress level. The global

stiffness parameter is constant and the effort of the structure is linearly dependent on the

prestress. The dynamic parameters, i.e., natural, free, and resonance frequencies, are also

independent of the value of the initial prestress.

3. How does the structure behave when the load causes the displacements that

are compatible with an infinitesimal mechanism?

The behavior of a structure under load, which causes displacements incompatible with an

infinitesimal mechanism, is similar to that of the simplest two-element structure (see

Sections 4.2.2–4.2.4). All static parameters are dependent on the initial prestress. In the

case of dynamic parameters, the number of frequencies depending on prestress is equal to

the number of infinitesimal mechanisms. The influence of the initial prestress level on

behavior, as in the case of two-element structure, is greater at lower loads.

4. How does the structure behave when the load capacity of the struts is much

smaller than the load capacity of the cables?

In the case where the load capacity of the struts is much lower than that of the cables, the

effect of non-linearity is significant. This means a greater influence of the load value on the

behavior of the structure. This is due to the possibility of maximum prestressing, which is

at a low level due to the load-bearing capacity of the struts. In such cases, the parameter λ

does not approach zero. This, in turn, results in the occurrence of unstable motion, which is

independent of the initial prestress level.

4.5 BASIC 3D TENSEGRITY MODULES

The simplest diamond-pattern systems with three and four struts are considered. Two

versions of the modules are taken into account, i.e., regular and modified (see Section



1.5.2). This means four basic 3D tensegrity modules are analyzed, i.e.:

regular Simplex module (Figure 4.28a);

modified Simplex module (Figure 4.28b);

regular Quartex module (Figure 4.29a);

modified Quartex module (Figure 4.29b).

FIGURE 4.28Simplex module: (a) regular and (b) modified. ⏎

FIGURE 4.29Quartex module: (a) regular and (b) modified. ⏎

The coordinates of the nodes are shown in Tables 4.16 and 4.17. The qualitative analysis

is performed for unsupported and supported modules. Only the results of the analysis are

presented. In turn, the quantitative analysis includes the behavior of supported modules.

Material and geometric characteristics are assumed according to Table 4.1. The dimension

a = 1m is taken into account. The length of the struts and the load-bearing capacity Nb,Rd

(Table 4.2) depend on the type of module:



TABLE 4.16 Coordinates of the Simplex

Module Nodes⏎

No. of Node 1 2 3 4 5 6

regular x 0.5a –0.5a 0 0.5774a –0.2887a –0.2887a

modified 0.3333a –0.1667a –0.1667a

regular y –0.2887a –0.2887a 0.5774a 0 –0.5a 0.5a

modified –0.2887a 0.2887a

regular z 0 0 0 a a a

modified

TABLE 4.17 Coordinates of the Quartex

Module Nodes⏎

No. of Node 1 2 3 4 5 6 7 8

regular x –0.5a 0.5a 0.5a –0.5a –0.7071a 0 0.7071a 0

modified –0.5a 0.5a

regular y –0.5a –0.5a 0.5a 0.5a 0 –0.7071a 0 0.7071a

modified –0.5a 0.5a

regular z 0 0 0 a a a a a

modified

regular Simplex module: l = 1.5m, Nb,Rd = 163.0kN;

modified Simplex module:l = 1.333m, Nb,Rd = 175.4kN;

regular Quartex module: l = 1.645m,Nb,Rd = 152.1kN;

modified Quartex module: l = 1.5m,Nb,Rd = 163.0kN.

The modules are loaded by one force applied to fifth
 
node in z-direction. In order to

illustrate the influence of external loads on the behavior of modules, three values of load

are taken into account, i.e., P = {10kN, 20kN, 30kN}. The minimum prestress level is

equal to Smin = 0, which means an external load causes an appropriate distribution of

longitudinal forces. In turn, the maximum prestress level is assumed to be Smax = 110kN
and corresponds to the effort of the structure (3.22) equal to Wmax = 0.91.

Purpose of Consideration

Presentation of the basic tensegrity modules, which can be used to create towers and

double-layered grids. Additionally, the analysis is comparative in nature. It leads to

answers to the following questions:

1. How does the modification affect the behavior of modules?

2. Which type of module is more sensitive to the risk of excitation vibrations?

4.5.1 Qualitative Analysis

The results of the qualitative analysis are shown in Table 4.18. Unsupported Simplex and

Quartex modules are characterized by 18 (m = 18) and 24 (m = 24) degrees of freedom,

respectively. One self-stress state was identified for the modules. The values of

eigenvectors yS are shown in Figures 4.30 and 4.31. The cables are marked in red, green,

and blue, whereas the struts are black. The different colors of cables correspond to the

different values of the self-stress state. The Simplex module features seven mechanisms,

while the Quartex module features nine. The spectral analysis of the stiffness matrix (3.17)

leads to obtaining six zero eigenvalues independently of the type of module. It means the

six identified mechanisms are finite (rigid movements). In order to eliminate rigid

movements, support conditions have been added. The six and eight blocked degrees of

freedom are considered, i.e., q1, q3, q5, q6, q8, q9, and

q1, q3, q5, q6, q7, q9, q11, q12, for the Simplex and Quartex modules, respectively.

Supported modules were characterized by one self-stress state (the same as for the



unsupported modules) and one mechanism realized by the displacements of the top nodes

(Figures 4.32 and 4.33). All eigenvalues of the stiffness matrix (3.19) are positive. This

means the self-stress state identifies the appropriate normal forces in the structural

elements and stabilizes mechanisms, i.e., the mechanisms are infinitesimal.

TABLE 4.18 Results of the Qualitative Analysis of the Basic 3D

Tensegrity Modules⏎

Type of Module No. of Classification

Nodes Elements d.o.f Mechanisms Self-Stress States

(nn) (n) (m) (nm) (nss)

Unsupported

Simplex 6 12 18 7 1 6 rigid movements

Quartex 8 16 24 9 1

Supported

Simplex 6 12 12 1 1 ideal tensegrity

Quartex 8 16 16 1 1

FIGURE 4.30 Normalized self-stress state y
s
(–) of the Simplex modules:

(a) regular and (b) modified. ⏎

FIGURE 4.31 Normalized self-stress state y
s
(–) of the Quartex modules:

(a) regular and (b) modified. ⏎



FIGURE 4.32 Infinitesimal mechanism of the supported Simplex

modules: (a) regular and (b) modified. ⏎

FIGURE 4.33 Infinitesimal mechanism of the supported Quartex

modules: (a) regular and (b) modified.⏎

The supported basic 3D tensegrity modules are characterized by all six tensegrity

features. They are trusses (TT ) with a set of discontinuous set of struts (DS) contained

within the continuous net of tensile elements (IN) that have no rigidity in compression (

TC). In these structures, there is one self-stress state (SS) that stabilizes one infinitesimal

mechanism (IM). According to the tensegrity classification (Table 3.1), the supported

basic 3D tensegrity modules are ideal tensegrity.

4.5.2 Static Analysis

4.5.2.1 Simplex Modules

The values of the self-stress state yS are assumed according to Figure 4.30. Comparing the

behavior of the Simplex regular and modified modules, it can be said that better results

are obtained in the second case. The displacements of the loaded node obtained for the



regular module (Figure 4.34a) are about 63% for S = 0 and 90% for S = 110kN higher

than for the modified module (Figure 4.34b). However, the difference between the

displacements obtained for two different values of load is the same for both modules. For

example, in the case of the minimal level of prestress, the difference for P = 10kN and

P = 20kN is about 21%, while the difference for P = 20kN and P = 30kN is about 13%.

In turn, in the case of the maximum level of prestress, the differences are about 97% and

46%, respectively. With the increase in initial prestress, the displacements become lower

for both models.

FIGURE 4.34 Influence of the initial prestress level S on the

displacement q
15

: (a) regular Simplex module and (b) modified Simplex

module.⏎

Additionally, differences between the calculations made according to the second-order

(II) and third-order (III) order theory are higher for the regular module. The influence of

non-linearity is most significant at low values of initial prestress forces for both modules.

Thereby, with lower values of the load, the initial prestress has a higher impact on the total

rigidity of the structure, and the differences between the displacements obtained using the

second and third-order theory at P = 10kN are smaller than at P = 20kN and P = 30kN.

The external load prestresses the structure; however, after introducing the initial prestress,

the longitudinal forces from the external load N(P) successively decrease (Figure 4.35),

and thus its influence on the displacement decreases. In the case of the modified module,

at a higher initial prestress level, the load values have less significance.



FIGURE 4.35 Influence of the initial prestress level S on the longitudinal

force N: (a) regular Simplex module and (b) modified Simplex module.⏎

It can also be observed that with the increment of the initial prestress, the modified

module becomes slightly more susceptible to the increase in load level. With the increase

in load, the impact of the prestress initial level on the stiffness of the structure is more

significant (Figure 4.36). More beneficial values of the parameter GSP  are obtained for the

modified module. At the maximum level of initial prestress, the parameter GSP  for the

modified module is 1.1, 0.8, and 0.6 times higher than for the regular module,

respectively, for P = 10kN, P = 20kN, and P = 30kN.

FIGURE 4.36 Influence of the initial prestress level S on the global

stiffness parameter GSP: (a) regular Simplex module and (b) modified

Simplex module.⏎

On the other hand, the effort of struts and cables in the case of regular module (Figure

4.37a) behaves in the same way. In the case of the modified module (Figure 4.37b), the

effort of the cables is on average about 26% higher than the effort of the struts. The



difference between the efforts increases with the increment of the prestress level and the

rise of the load level.

FIGURE 4.37 Influence of the initial prestress level S on the effort of

structure W
max

: (a) regular Simplex module and (b) modified Simplex

module. ⏎

4.5.2.2 Quartex Modules

The values of the self-stress state yS are assumed according to Figure 4.31. Comparing the

behavior of the Quartex regular and modified modules, the same conclusions can be drawn

as for the Simplex modules. However, the differences are smaller. The displacements of

the loaded node, obtained for the regular module (Figure 4.38a) are about 39% for S = 0

and 50% for S = 110 kN higher than for the modified module (Figure 4.38b). The difference

between the displacements obtained for two different values of load in the case of the

minimal level of prestress is about 30% for P = 10 kN and P = 20 kN and 17% for P = 20

kN and P = 30 kN. In turn, in the case of the maximum level of prestress, the differences

are about 93% and 43%, respectively. With the increase in initial prestress, the

displacements become lower for both models. Differences between the calculations made

according to the second-order (II) and third-order (III) theories are also higher for the

regular module. However, unlike the Simplex module, both solutions of the Quartex

module are sensitive to load values independently of the initial prestress level.

FIGURE 4.38 Influence of the initial prestress level S on the

displacement q
15

: (a) regular Quartex module and (b) modified Quartex

module. ⏎



The influence of initial prestress level on longitudinal forces (Figure 4.39) is the same as

in Simplex modules. However, the values are higher, and moreover, so are the

displacement values. The stiffness of the Quartex modules (Figure 4.40) is lower than that

of the Simplex modules. More beneficial values of the parameter GSP  are obtained for the

modified module. This parameter is 1.1 times higher than that of the regular module,

regardless of the initial prestress level, as well as the value of the load.

FIGURE 4.39 Influence of the initial prestress level S on the longitudinal

force N: (a) regular Quartex module and (b) modified Quartex module. ⏎

FIGURE 4.40 Influence of the initial prestress level S on the global

stiffness parameter GSP: (a) regular Quartex module and (b) modified

Quartex module. ⏎

A different behavior, compared to Simplex modules, can be observed in the case of the

effort of structures. The most strained are the struts for regular Quartex modules (Figure

4.41a). This is due to the lowest load-bearing capacity of these struts (Nb,Rd = 152.1 kN).

In the case of the modified module ( Figure 4.41b), the effort of the cables is on average



about 10% higher than the effort of the struts. The difference between the efforts is

practically independent of the initial prestress level and load.

FIGURE 4.41 Influence of the initial prestress level S on the effort of

structure W
max

: (a) regular Quartex module and (b) modified Quartex

module. ⏎

4.5.3 Dynamic Analysis

The dynamic analysis included calculations of the natural vibrations f(0) and the free

vibrations of structure loaded with time-independent force f(P). Since a one infinitesimal

mechanism has been identified for all modules, only the first natural frequency depends on

the initial prestress level. The influence is significant. In the absence of prestress (S = 0),

this frequency is zero, and after the introduction of prestress it increases to:

24.8 Hz for regular Simplex module (Figure 4.42a);

37.8 Hz for modified Simplex module (Figure 4.42b);

18.5 Hz for regular Quartex module (Figure 4.43a);

24.8 Hz for modified Quartex module (Figure 4.43b).

FIGURE 4.42 Influence of initial prestress level S on the first frequency:

(a) regular Simplex module and (b) modified Simplex module. ⏎



FIGURE 4.43 Influence of initial prestress level S on the first frequency:

(a) regular Quartex module and (b) modified Quartex module. ⏎

It is very interesting that the first natural frequency for the regular Simplex module is

almost the same as for the modified Quartex module. Slight differences exist in the case of

the first free frequency. For the modified Quartex module this frequency is higher about

6% − 2% in depending on the initial prestress level – from Smin = 0 to Smax = 110kN.

As in the case of the two-element structure (see Section 4.2.3) and the Geiger truss type

B-0 (see Section 4.4.3), the first free frequency depends on the type of load (Figures 4.42

and 4.43). Due to the load prestresses the structure, this frequency in the absence of

prestress (S = 0) is not zero. The higher the load, the higher the frequency. With increase

of the initial prestress level, the first free frequency values converge to the first natural

frequency. The second frequency f2 is practically insensitive to both changes in the level of

prestress and the effects of external loads (Table 4.19). The maximum relative difference is

equal 0.2% (modified Quartex module).

TABLE 4.19 Second Natural and Free

Frequencies of the Basic 3D Tensegrity Modules⏎

S(kN) Type of Module f2 (0) (Hz) P = 10 kN P = 20 kN P = 30 kN

f2 (P) (Hz)

Simplex modules

0 regular 128.61 128.64 128.66 128.67

110 128.85 128.83 128.82 128.82

0 modified 152.61 152.63 152.64 152.65

110 152.78 152.78 152.77 152.76

Quartex modules

0 regular 136.61 136.65 136.66 136.67

110 136.89 136.85 136.83 136.82

0 modified 193.74 193.81 193.84 193.85

110 194.14 194.11 194.09 194.08

4.5.4 Dynamic Stability Analysis

The influence of the initial prestress level S and load on the main unstable region is shown.

Three values of constant part of periodic force are taken into account, i.e.,

P = {10kN, 20kN, 30kN}. The all modules are characterized by one infinitesimal

mechanism. Due to this, one main unstable region is obtained. The boundaries for three

cases of initial prestress level are shown, i.e.,Smin = 0, S = 50kN, and Smax = 110kN.

4.5.4.1 Simplex Modules

The main unstable regions are shown in Figures 4.44 and 4.45. In brief, the behavior of

regular module (Figure 4.44) is comparable with the modified module (Figure 4.45). First,



the higher the load, the larger the region. Second, the introduction of prestress reduces the

range of unstable regions and increases resonant frequencies. However, to better compare

the influence of the initial prestress level and the load, the areas of unstable regions Aη(S)
(Figure 4.46a) and the dimensionless parameter λ (3.75) (Figure 4.46b) are shown. As can

be seen, the areas of unstable regions are larger for the modified module. However, for

this type of module, reducing unstable regions is faster. For example, at S = 50kN the

unstable regions are smaller than at the minimum prestress level about:

FIGURE 4.44 Limits of the main unstable regions for the regular Simplex

module: (a) S = 0 kN, (b) S = 50 kN, and (c) S = 110 kN.⏎

FIGURE 4.45 Limits of the main unstable regions for the modified

Simplex module: (a) S = 0 kN, (b) S = 50 kN, and (c) S = 110 kN.⏎

FIGURE 4.46Simplex modules. Influence of the initial prestress level S on

the: (a) area of unstable regions A
η
(S) and (b) range of unstable regions

λ. ⏎



66%, 40%, and 28% for the regular Simplex module;

75%, 50%, and 37% for the modified Simplex module,

respectively, for P = 10kN, P = 20kN, and P = 30kN.

4.5.4.2 Quartex Modules

The main unstable regions for regular module are shown in Figure 4.47, in turn for the

modified module in Figure 4.48. The conclusions are the same as in the case of Simplex

modules. The higher the load, the larger the region, and the higher the initial prestress

level, the smaller the unstable regions. The areas of unstable regions Aη(S) are larger for

the modified module (Figure 4.49a) and for this type of module, reducing unstable regions

is faster (Figure 4.49b). For example, at S = 50kN the unstable regions are smaller than at

the minimum prestress level about:

FIGURE 4.47 Limits of the main unstable regions for the regular Quartex

module: (a) S = 0 kN, (b) S = 50 kN, and (c) S = 110 kN.⏎

FIGURE 4.48 Limits of the main unstable regions for the modified

Quartex module: (a) S = 0 kN, (b) S = 50 kN, and (c) S = 110 kN.⏎



FIGURE 4.49Quartex modules. Influence of the initial prestress level S on

the: (a) area of unstable regions A
η
(S) and (b) range of unstable regions

λ. ⏎

52%, 30%, and 21% for the regular Quartex module;

59%, 35%, and 24% for the modified Quartex module,

respectively, for P = 10kN, P = 20kN, and P = 30kN.

Comparing Quartex modules with Simplex modules, it can be seen that the modification

in the case of Simplex modules has a greater influence on the range of unstable regions.

The second-resonance frequency η2does not depend on both changes in the level of

prestress and external loads (Table 4.20). Additionally, it is twice the free second frequency

– η2 = 2f2 (see Table 4.19). The maximum relative difference is equal 0.2% (modified

Quartex module).

TABLE 4.20 Second-Resonant

Frequency of the Basic 3D Tensegrity

Modules⏎

S(kN) Type of Module P = 10 kN P = 20 kN P = 30 kN

η2 (Hz) (ν = 0 ÷ 0.75)

Simplex modules

0 regular 257.29 257.32 257.34

110 257.67 257.65 257.64

0 modified 305.27 305.28 305.30

110 305.56 305.54 305.53

Quartex modules

0 regular 273.31 273.33 273.33

110 273.71 273.67 273.64

0 modified 387.63 387.68 387.71

110 388.22 388.19 388.17

4.5.5 Chapter Summary

This chapter discusses two basic three-dimensional modules in two versions, i.e., regular

and modified. These modules can be used to create two types of structures, depending on

how they are connected. A linear connection leads to the creation of towers and booms

(beam-like structures), while a planar connection leads to double-layer tensegrity grids

(plate-like structures). Modified modules are easier to combine into multi-module

structures. Comparative nature of analysis leads to answers to the questions posed at the

beginning of the consideration.



1. How does the modification affect the behavior of modules?

Qualitatively, the modification makes no difference. However, quantitatively, there is a

difference. Static analysis shows that modified modules are stiffer than regular ones. This

would suggest that this solution is better, but the dynamic stability analysis leads to the

opposite conclusion.

It should be noted that the first natural frequency of the regular Simplex module is

almost identical to that of the modified Quartex module.

2. Which type of module is more sensitive to the risk of excitation vibrations?

Modified modules are sensitive to the risk of excitation vibrations. The modification in the

case of Simplex modules has a greater influence on the range of unstable regions than in

the case of Quartex modules.

NOTE

1. The circumferential cables C
3
 and C

5
 are only in the modified Geiger

domes.⏎

4.6 TENSEGRITY DOMES

The two most well-known and completely different cable-strut domes are considered, i.e.,

Geiger dome and Levy dome. The differences are in both geometry and tensegrity

classification. The domes are built with load-bearing girders distributed radially, rotated by

angle γ with respect to the axis z in the center of the span. The girders base on Geiger

truss types A-2 and B-2. This means two variants of connecting in the center of the span

are considered, i.e., girders connected by a strut (type A) (Figure 4.50a) and by a ring (type

B) (Figure 4.50b). Element designations are the same as in 2D models (see Section 4.4).

Struts are marked as S1, S2, and S3, whereas the cables are separated on diagonally (1, 2,

3, 4, 5, 6) and circumferential (C1, C2, C3, C4, C5,C6)
 1 

. In the case of Geiger domes, the

load-bearing girder is flat, which results in all struts being in a line. In contrast, in the case

of Levy domes, the girder is spatial, which results in the relocation of strut S3. The small-

scale steel domes are analyzed. The domes’ diameter is 12 m, and their height is 3.25 m.

The coordinates of the leading load-bearing girders are given in Table 4.21. The

coordinates of the subsequent girders are determined according to the variables polar as:

x = ri cos γ and y = ri sin γ (i = 0, 1, 2, 3). The following radii are assumed: r0 = 0.5 m,

r1 = 2.0 m, r2 = 4.0 m, and r3 = 6.0 m.



FIGURE 4.50 Load-bearing girders: (a) type A-2 and (b) type B-2. ⏎

TABLE 4.21 Coordinates of the

Load-Bearing Girder Nodes⏎

No. of Node 1 2 3 4 5 6 7

Geiger girders

type A-2 x (m) 0.0 0.0 2.0 2.0 4.0 4.0 6.0

type B-2 0.5 0.5

type A-2, B-2 y (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

type A-2, B-2 z (m) 2.1 1.5 1.85 0.45 1.15 –1.15 0.0

Levy girders

type A-2 x (m) 0.0 0.0 2.0 2.0 4 cos γ
2 4 cos γ

2
6.0

type B-2 0.5 0.5

type A-2, B-2 y (m) 0.0 0.0 0.0 0.0 4 sin γ
2 4 sin γ

2
0.0

type A-2, B-2 z (m) 2.1 1.5 1.85 0.45 1.15 –1.15 0.0

The number of load-bearing girders (ng) used in the construction of the domes can be

arbitrary. In addition, two design solutions are being considered for the Geiger domes, i.e.,

a dome according to Geiger’s patent (regular dome) and a modification of the Geiger

patent by adding additional circumferential cables (C3 and C5) connecting the top nodes

(modified dome). Consequently, all design solutions known from the literature (see Section

1.5.1) are analyzed:

regular Geiger dome type A-2 (Figure 4.51a);

regular Geiger dome type B-2 (Figure 4.51b);

modified Geiger dome type A-2 (Figure 4.52a);

modified Geiger dome type B-2 (Figure 4.52b);

Levy dome type A-2 (Figure 4.53a);

Levy dome type B-2 (Figure 4.53b).

FIGURE 4.51Regular Geiger dome with six load-bearing girders: (a) type

A-2 and (b) type B-2. ⏎



FIGURE 4.52Modified Geiger dome with six load-bearing girders: (a) type

A-2 and (b) type B-2.⏎

FIGURE 4.53Levy dome with six load-bearing girders: (a) type A-2 and

(b) type B-2.⏎

The domes are supported at each external node of the lower section. Three translational

degrees of freedom have been taken away (in figures marked by a cuboid). This type of

support corresponds to a circumferential clamping ring.

The qualitative analysis is performed for domes with different numbers of load-bearing

girders (ng). The 6, 8, 10, and 12 girders are taken into account (ng = {6, 8, 10, 12}). Only

the results of the analysis are presented. In turn, the quantitative analysis includes the

behavior of domes with six load-bearing girders (ng = 6). Material and geometric



characteristics are assumed according to Table 4.1. The struts were divided into three

groups according to length l and load-bearing capacity NRd (Table 4.2):

S1 group: l = 0.6m and NRd = 224.3kN;

S2 group: l = 1.4 m and NRd = 170.5kN;

S3 group: l = 2.3 m and NRd = 107.1kN.

The domes are loaded by force P = 5kN applied to one node in z-direction. The analysis is

cognitive in nature. The assumed load is sufficient to evaluate the behavior of domes

under exceptional loads. To compare the response to an external disturbance, load is

applied successively in the first, third, and fifth
 
nodes (see Figure 4.50). The minimum

prestress level Smin is calculated individually for each dome for each variant of load

applications (Table 4.22). In turn, the same maximum prestress level Smax = 50kN was

adopted to compare the behavior of all domes. This value corresponds to the maximum

effort of the structure (3.22) equal to Wmax = 0.93 (for Geiger domes). As can be seen, in

the case of the Levy dome type B-2 with load applied in the first
 
and third

 
nodes, the

minimum prestress level is equal to the maximum one, Smin = Smax.

TABLE 4.22 Values of the Minimum

Prestress Level S
min

 for Domes⏎

Type of Dome Force P = 5 kN applied to:

First
 
node Third node Fifth node

Smin (kN)

regular Geiger dome type A-2 8 22 24

regular Geiger dome type B-2 2

modified Geiger dome type A-2 11 34 36

modified Geiger dome type B-2 41 26 2

Levy dome type A-2 18 42 5

Levy dome type B-2 50 50 12

Purpose of the Consideration

In the previous chapters the simple structures have been described in detail. Based on

the results and conclusions obtained, several questions about the domes under

consideration arise:

1. Is it possible to derive formulas for self-equilibrium forces (self-stress state)?

2. How does the modification of Geiger patent (regular Geiger dome type B-2)

affect the behavior of Geiger domes?

3. Which solution of Geiger domes is best in terms of its ability to control static

and dynamic parameters?

4. Whether the number of infinitesimal mechanisms affects the behavior of

Geiger domes?

5. Whether the upper section type matter in the case of Levy dome?

6. The behavior of which type of Levy dome is possible to control?

7. Is it possible to controlling the occurrence of infinitesimal mechanisms by

changing the number of load-bearing girders?

8. How does the initial prestress level influence the natural frequencies

correlated with the infinitesimal mechanisms?

9. Is the number of natural frequencies depending on the prestressing equal to

the number of infinitesimal mechanisms?

10. Whether the number of load-bearing girders impacts the natural frequencies

corresponding to the infinitesimal mechanisms?



4.6.1 Qualitative Analysis

4.6.1.1 Regular Geiger Domes

The results of the qualitative analysis of regular Geiger domes are shown in Table 4.23. The

number of mechanisms depends on type of load-bearing girder. In the case of girder type

A-2, it is possible to determine the number of mechanisms (nm) as a function of the

number of struts (ns). For the case of girder type B-2, on the other hand, as a function of

the number of cables (n − ns). In turn, only one self-stress state is identified

independently on type of girder. All eigenvalues of the stiffness matrix (3.19) are positive.

This means the self-stress state identifies the appropriate normal forces in the structural

elements and stabilizes mechanisms, i.e., the mechanisms are infinitesimal.

TABLE 4.23 Results of the Qualitative Analysis of the Regular

Geiger Domes ⏎

No. of Classification

Girders Nodes Elements d.o.f Struts Mechanisms Self-stress states

(ng) (nn) (n) (m) (ns) (nm) (nss)

regular Geiger domes type A-2

6 32 61 78 13 18 1 ideal tensegrity

8 42 81 102 17 22 1

10 52 101 126 21 26 1

12 62 121 150 25 30 1

ns−1
2

ns + 5 1

regular Geiger domes type B-2

6 42 78 108 18 31 1 ideal tensegrity

8 56 104 144 24 41 1

10 70 130 180 30 51 1

12 84 156 216 36 61 1

ns
3

n−ns
2 + 1 1

The regular Geiger domes are characterized by all six tensegrity features. They are

trusses (TT ) with a set of discontinuous set of struts (DS) contained within the continuous

net of tensile elements (IN) that have no rigidity in compression (TC). In these

structures, there is one self-stress state (SS) that stabilizes all infinitesimal mechanisms (

IM). According to the tensegrity classification (Table 3.1), the regular Geiger domes are

ideal tensegrity.

It should be noted that, due to the regular Geiger domes consist of basic 2D tensegrity

models (see Section 4.4.1), the formulas for self-equilibrium forces are possible to derive

(Table 4.24). These formulas depend on the type of load-bearing girders, the angle of

inclination of the diagonal cables of gird αi (see Figure 4.16), and additionally on the angle

β (2β is the angle between circumferential cables). Taking into account the coordinates of

the Geiger girders (Table 4.21), the values on the self-stress forces yS are shown in Tables

4.25.

TABLE 4.24 Formulas for Self-Equilibrium

Forces (Self-Stress State) for the Regular Geiger

Domes ⏎

Regular Geiger Domes Type A-2 Regular Geiger Domes Type B-2

N1 = const. ; i ∈ N+

struts:

NS1 = −ng ⋅ N1 sin(α1) NS1 = −N1 sin(α1)

NSi+1 = −N2(i+1) sin(α2(i+1))

diagonal cables:



Regular Geiger Domes Type A-2 Regular Geiger Domes Type B-2

N2i = N2i−1
sin(α2i−1)
sin(α2i)

 N2i+1 = N2i−1 cos(α2i−1)+N2i cos(α2i)
cos(α2i+1)

circumferential cables:

NC2(i+1)
= 0.5N2(i+1)

cos(α2(i+1))
cos(β)

NC1 = 0.5N1
cos(α1)
cos(β)

 NC2 = 0.5N2
cos(α2)
cos(β)

TABLE 4.25 Values of Self-Stress State y
s
 of the

Regular Geiger Domes ⏎

el. Regular Geiger Domes Type A-2 Regular Geiger Domes Type B-2

ng = 6 ng = 8 ng = 10 ng = 12 ng = 6 ng = 8 ng = 10 ng = 12

ys(–) ys(–)

S
1

–0.3804 –0.5072 –0.6341 –0.7609 –0.0845

S
2

–0.3043 –0.3043

S
3

–1.0000 –1.0000

1 0.5112 0.5142

2 0.3678 0.3721

3 0.9213 0.9213

4

5 2.0061 2.0061

6

C
1

– 0.5072 0.6627 0.8207 0.9799

C
2

– 0.3623 0.4734 0.5862 0.6999

C
4

0.8696 1.1361 1.4070 1.6799 0.8696 1.1361 1.4070 1.6799

C
6

1.7391 2.2723 2.8140 3.3597 1.7391 2.2723 2.8140 3.3597

4.6.1.2 Modified Geiger Domes

The results of the qualitative analysis of modified Geiger domes are shown in Table 4.26.

Generally, the modification leads to the reduction of the number of infinitesimal

mechanisms. In the case of domes type A, independently on the type and on the number

of load-bearing girders, eight mechanisms are identified, whereas for domes type B, the

number of mechanisms depends on the number of struts. In turn, the number of self-stress

states does not depend on the number of load-bearing girders and on type, it always

equals three. Since neither of the three states correctly identifies the type of elements, a

superimposed self-stress state is necessary (Table 4.27). If the superposed self-stress state

is taken into account, all eigenvalues of the stiffness matrix (3.19) are positive. This means

the self-stress state identifies the appropriate normal forces in the structural elements and

stabilizes mechanisms, i.e., the mechanisms are infinitesimal.

TABLE 4.26 Results of the Qualitative Analysis of the Modified Geiger

Domes ⏎

No. of Classification

Girders Nodes Elements d.o.f Struts Mechanisms Self-Stress States

(ng) (nn) (n) (m) (ns) (nm) (nss)

modified Geiger domes type A-2

6 32 73 78 13 8 3 structures with tensegrity features of class 1

8 42 97 102 17 8 3

10 52 121 126 21 8 3

12 62 145 150 25 8 3

ns−1
2

8 3

modified Geiger domes type B-2



No. of Classification

Girders Nodes Elements d.o.f Struts Mechanisms Self-Stress States

(ng) (nn) (n) (m) (ns) (nm) (nss)

6 42 90 108 18 21 3 structures with tensegrity features of class 1

8 56 120 144 24 27 3

10 70 150 180 30 33 3

12 84 180 216 36 39 3

ns
3 ns + 3 3

TABLE 4.27 Values of Self-Stress State y
s
 of the

Modified Geiger Dome ⏎

el. Modified Geiger Domes Type A-2 Modified Geiger Domes Type B-2

ng = 6 ng = 8 ng = 10 ng = 12 ng = 6 ng = 8 ng = 10 ng = 12

ys(–) ys(–)

S
1 –0.2277 –0.3036 –0.3795 –0.4554 –0.0506

S
2

–0.2646 –0.2646

S
3

–1.0000 –1.0000

1 0.3060 0.3076

2 0.2201 0.2225

3 0.8010 0.8010

4

5 2.0061 2.0061

6

C
1

– 0.3034 0.3964 0.4909 0.5862

C
2

– 0.2167 0.2830 0.3505 0.4185

C
3

0.2356 0.3078 0.3812 0.4551 0.2356 0.3078 0.3812 0.4551

C
4

0.7560 0.9877 1.2233 1.4606 0.7560 0.9877 1.2233 1.4606

C
5

0.2270 0.2968 0.3676 0.4389 0.2270 0.2968 0.3676 0.4389

C
6

1.7391 2.2720 2.8139 3.3597 1.7391 2.2720 2.8139 3.3597

The modified Geiger domes are characterized by all six tensegrity features. They are

trusses (TT ) with a set of discontinuous set of struts (DS) contained within the continuous

net of tensile elements (IN) that have no rigidity in compression (TC). In these

structures, there is superposed self-stress state (SS) that stabilizes all infinitesimal

mechanisms (IM). According to the tensegrity classification (Table 3.1), although the

modified domes meet all tensegrity features, the necessity of superposition of the self-

stress states classified them into structures with tensegrity of class 1.

4.6.1.3 Levy Domes

The results of the qualitative analysis of Levy domes are shown in Tables 4.28. These

structures completely differ from Geiger domes. In the case of domes type A-2, there are

no mechanisms and in the case of domes type B-2, there is only one mechanism,

regardless of the number of load-bearing girders. In turn, there are a lot of self-stress

states for all domes. In the case of grids type A-2, the number of self-stress states is a

function of the number of struts (ns). In turn, in the case of type B-2, is a function of the

number of struts (ns) and the number of girders (ng). Since neither of the states correctly

identifies the type of elements, a superimposed self-stress state is necessary (Table 4.29).

If the superposed self-stress state is taken into account, all eigenvalues of the stiffness

matrix (3.19) are positive. This means the self-stress state identifies the appropriate

normal forces in the structural elements and, in the case of Levy domes type B-2, stabilizes

mechanism, i.e., the mechanism is infinitesimal.

TABLE 4.28 Results of the Qualitative Analysis of the Levy Domes ⏎



No. of Classification

Girders Nodes Elements d.o.f Struts Mechanisms Self-Stress States

(ng) (nn) (n) (m) (ns) (nm) (nss)

Levy domes type A-2

6 32 85 78 13 0 7 structures with tensegrity features of class 2

8 42 113 102 17 0 11

10 52 141 126 21 0 15

12 62 169 150 25 0 19

ns−1
2

0 ns – 6

Levy domes type B-2

6 42 114 108 18 1 7 structures with tensegrity features of class 1

8 56 152 144 24 1 9

10 70 190 180 30 1 11

12 84 228 216 36 1 13

ns
3

1 ns – 2ng + 1

TABLE 4.29 Values of Self-Stress State y
s
 of the

Levy Domes ⏎

el. Levy Domes Type A-2 Levy Domes Type B-2

ng = 6 ng = 8 ng = 10 ng = 12 ng = 6 ng = 8 ng = 10 ng = 12

ys(–) ys(–)

S
1

–0.147 –0.308 –0.465 –0.616 –0.031 –0.050 –0.061 –0.068

S
2

–0.161 –0.218 –0.248 –0.264 –0.161 –0.218 –0.248 –0.264

S
3

–1.000 –1.000

1 0.197 0.311 0.375 0.414 0.100 0.157 0.189 0.209

2 0.142 0.224 0.270 0.298 0.073 0.114 0.137 0.151

3 0.295 0.372 0.406 0.424 0.295 0.372 0.406 0.424

4

5 1.491 1.303 1.204 1.147 1.491 1.303 1.204 1.147

6

C
1

– 0.154 0.353 0.554 0.748

C
2

– 0.109 0.252 0.396 0.534

C
4

0.336 0.691 1.032 1.359 0.336 0.691 1.032 1.359

C
6

1.040 1.753 2.401 3.016 1.040 1.753 2.401 3.016

The Levy domes type A-2 are characterized by four tensegrity features. They are trusses

(TT ) with the discontinuous system of compression elements (DS) included inside the set

of elements in tension (IN), that have no rigidity in compression (TC). According to the

tensegrity classification (Table 3.1), due to the lack of mechanisms, these domes are

structures with tensegrity features of class 2. In turn, although the Levy domes type B-2

meet all tensegrity features, the necessity of superposition of the self-stress states

classified them into structures with tensegrity of class 1.

It should be noted that the mechanism of Levy domes type B-2 is related only to the

upper open section (Figure 4.54). The type of mechanism differs from in the case of the

Geiger domes which are related to the entire structure. For example, in Figure 4.55, the

infinitesimal mechanisms for modified Geiger dome type A-2 with six load-bearing girders

are shown.



FIGURE 4.54 Infinitesimal mechanisms for the Levy dome type B-2: (a)

ng = 6, (b) ng = 8, (c) ng = 10, and (d) ng = 12.⏎

FIGURE 4.55 Infinitesimal mechanisms for the modified Geiger dome

type A-2. ⏎

4.6.2 Static Analysis

4.6.2.1 Geiger Domes

The static analysis includes the behavior of the Geiger domes with six load-bearing girders

(ng = 6). The values of the self-stress state yS are assumed according to Tables 4.25 and

4.27 for regular and modified domes, respectively. To compare the behavior of different

solutions, the global stiffness parameter GSP  and the effort of structure Wmax (for cables)

are shown in Figure 4.56. As can be seen, the behavior mostly depend on type of solution

and on the point of application of the load.

FIGURE 4.56 Results of static analysis for the Geiger domes.⏎

In the case of domes type A-2 (Figures 4.56a, 4.56b), a load applied to the first
 
node

(blue color) causes displacements that are incompatible with the mechanism. The behavior



of domes is the same as the behavior of the X-truss (see Section 4.3.2). The global

stiffness parameter (3.32) is constant and equal to GSP = 1, in turn the effort of the

structure Wmax is linearly dependent on the prestress. When the exceptional load is

applied in the third
 
(green color) and fifth

 
(red color) nodes, there is an increase in

stiffness, but it is small compared to Geiger’s patent (Figure 4.56c). The linear nature of

changes in the effort of the structure Wmax means a negligible influence of prestress on

the behavior of domes. This is due to the value of the minimum prestress level and, more

specifically, the small range of prestress changes.

In the case of regular Geiger dome type B-2 (Geiger patent) (Figure 4.56c), the minimum

prestress level does not depend on the type of load application. In addition, the value of

them is small (Smin = 2kN). As can be seen, this dome behave completely different than

the domes type A-2. The influence of initial prestress is large. At the maximum level of

initial prestress, the parameter GSP  for the regular Geiger dome type B-2 is 2.1 and 2.6
times higher than for the regular Geiger dome type A-2, for the load applied in the third

and fifth
 
nodes, respectively. On the other hand, when compared with the modified Geiger

dome type A-2, the differences are larger, and the parameter GSP  is 3.1 and 3.8 times

higher, respectively.

In turn, the modification of Geiger patent by added additional circumferential cables

(Figure 4.56d) leads to an increase the value of the minimum prestress level and to

decrease the influence of prestress on behavior of dome. Only, in the case of load applied

in the fifth
 
node, the modified Geiger dome type B-2 behave as the regular Geiger dome

type B-2.

4.6.2.2 Levy Domes

The static analysis includes the behavior of the domes with six load-bearing girders (

ng = 6). The values of the self-stress state yS are assumed according to Table 4.29. The

results of analysis for are shown in Table 4.30. In the case of the Levy dome type B-2, the

analysis is notable only for the load applied to the fifth
 
node. This is due to the fact that the

level of the minimum prestress level is equal to the maximum one, Smin = Smax.

However, in all cases, the influence of the initial prestress on the static parameters is

negligible, even for dome with infinitesimal mechanism (dome type B-2). The mechanism

has a local character, related only to the upper open section.

TABLE 4.30 Results of Static Analysis for the Levy Domes ⏎

S(kN) Typeof Element Force P = 5 kN applied to:

First
 
node Third node Fifth node Fifth node

Wmax(–) GSP(–) Wmax(–) GSP(–) Wmax(–) GSP(–) Wmax(–) GSP(–)

dome type A-2 dome type B-2

Smin = 18 kN Smin = 42 kN Smin = 5 kN Smin = 12 kN

S
min

Cables 0.25 1.0 0.61 1.0 0.10 1.0 0.18 1.0

Struts 0.16 0.41 0.05 0.11

50 Cables 0.68 1.0 0.72 1.0 0.71 1.0 0.69 1.0

Struts 0.46 0.49 0.47 0.47

4.6.3 Dynamic Analysis

4.6.3.1 Geiger Domes

Static analysis has shown that, from the point of view of the ability to control static

parameters, the best solution is the regular Geiger dome type B-2. In order to check the

dynamic behavior of domes, the natural frequencies are calculated. First, the behavior of

the Geiger domes with six load-bearing girders (ng = 6) is analyzed. Next, the influence of

the number of girders on the behavior is considered.



4.6.3.2 Geiger Domes with Six Load-Bearing Girders

Figure 4.57 presents the results of the analysis for the Geiger domes with six load-bearing

girders. The influence of the initial prestress level on the first f1 and last natural frequency

fnm, correlated with infinitesimal mechanisms, is shown. In the absence of prestress, these

frequencies are zero, and the corresponding vibration modes implement the mechanisms.

For example, Figure 4.58 shows the modified Geiger dome type A-2 is showed (compare

with Figure 4.55). Interestingly, there are eight different forms of vibration but six different

frequencies (f2 = f3 and f5 = f6). In the case of other domes, it is the same.

FIGURE 4.57 Influence of the initial prestress S on the natural

frequencies for Geiger domes. ⏎

FIGURE 4.58 Forms of vibration for the modified Geiger dome type A-2

(values of frequencies for S
max

).⏎

After the introduction of prestress, the considered frequencies increase nonlinearly. The

range of changes mainly depends on the kind of dome, which means, on the number of

infinitesimal mechanisms. The level of the first frequency f1 is similar for each considered

dome f1 = 5.1 Hz ÷ 6.5 Hz for Smax, while differs for the frequency fnm. It should be



noted that between frequencies f1 and fnm there are several, a dozen, or several dozen

frequencies depending on prestress. The number of them are equal to the number of

infinitesimal mechanisms. For this reason, the regular Geiger dome type B-2 is the most

sensitive to dynamic parameter control.

A study of the next frequencies fnm+i showed that in the case of dome type B-2, they do

not depend on the prestress (Figure 4.57c, d). They are equal to f32 = 42Hz and

f22 = 41Hz for regular and modified domes, respectively. Nevertheless, it is different for

the Geiger domes type A-2. In this case, three additional frequencies depend on prestress

(Figure 4.57a, b). In the absence of prestress, they are non-zero, and the dependence on

prestress is almost linear. The additional natural frequencies characterized by a little

sensitivity to the change in the initial prestress level, comparing to the natural frequencies

correlated to the infinitesimal mechanisms. Independent of prestress is the fourth next

frequency, i.e., f22 = 44Hz and f12 = 43Hz for regular and modified domes, respectively.

As can be seen, the values of frequencies independent on prestress for all domes are at

the same level.

4.6.3.3 Geiger Domes with Different Numbers of Load-Bearing Girders

Figure 4.59 presents the results of dynamic analysis for domes with a different number of

load-bearing girders (ng), i.e., ng = {6, 8, 10, 12}. The influence of the initial prestress

level on the first f1 (dotted line) and the last correlated with infinitesimal mechanisms fnm
(continuous line) natural frequencies is shown. The level of frequency f1 is similar for each

considered dome, independently of the number of girders. In turn, frequency fnm depends

on the type of dome and is more sensitive to the changes in prestressing.

FIGURE 4.59 The first f
1
 and last f

nm
 natural frequencies correlated with

infinitesimal mechanisms (nm) for domes with different numbers of load-

bearing girders (ng).⏎

In the case of regular Geiger dome type A-2 (Figure 4.59a), the increasing number of

load-bearing girders is not affecting the frequencies fnm. There is the same range of

changes, despite the number of mechanisms is differ. It means that frequency f18 for a
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dome with 6 girders is equal to frequency f30 for a dome with 12 girders. The same is true

for the modified Geiger dome type A-2 (Figure 4.59b), however, in this case, the number of

mechanisms is constant and equal tonm = 8. It is a completely different for the domes

type B-2 (Figures 4.59c, 4.59d). An increase in the number of load-bearing girders results

in the increase in the value of the frequency fnm.

In addition, it should be noted that the Geiger domes type A-2 are the specific

structures. A study of the next frequencies fnm+i showed that for these structures, there

are additional frequencies depending on prestress (fadd). The number of them depends on

the number of load-bearing girders (ng). Thus the total frequencies depending on prestress

(ftotal) is equal:

ftotal = fnm + fadd; fadd = (ng − 3)

In the absence of prestress, the frequencies fadd are non-zero and linearly

dependent on prestress. However, they are characterized by a low sensitivity to the

change in the initial prestress level compared to the natural frequencies correlated with

the infinitesimal mechanisms. The next frequencies (ftotal+1) are independent of the

prestress for all domes, and they are at the same level (Table 4.31). In the case of the

Geiger domes type B-2, the number of frequencies depending on prestress is equal to the

number of infinitesimal mechanisms(ftotal = fnm).

TABLE 4.31 First Natural Frequencies of the

Geiger Domes Independent on the Initial

Prestress Level S (f
total + 1

)⏎

No. of Girders(ng) Regular Geiger Domes Modified Geiger Domes

nm i S nm i S

0 50 kN 0 50 kN

fi (Hz) fi (Hz)

type A-2

6 18 (22) 44.2 44.4 8 (12) 42.6 42.7

8 22 (28) 44.4 44.7 (14) 43.1 43.3

10 26 (34) 44.5 44.7 (16) 43.4 43.6

12 30 (40) 44.4 44.7 (18) 43.5 43.7

type B-2

6 31 (32) 41.9 42.1 21 (22) 40.7 40.9

8 41 (42) 42.0 42.2 27 (28) 41.2 41.4

10 51 (52) 41.9 42.1 33 (34) 41.3 41.5

12 61 (62) 41.6 41.8 39 (40) 41.3 41.5

4.6.3.4 Levy Domes with Different Numbers of Load-Bearing Girders

Static analysis has shown, that the initial prestress level S does not influence on the

behavior of the Levy domes. In order to check the dynamic response of domes, the

influence of the number of girders (ng = {6, 8, 10, 12}) on the behavior is considered.

Figure 4.60 presents the results of dynamic analysis for the domes without infinitesimal

mechanisms, i.e., Levy domes type A-2. Three first frequencies are shown. Independently

on the number of load-bearing girders, the dependences are linear and almost constant,

especially for domes with a small number of girders. In the case of the first frequency, with

the growth of the prestress fromSmin to Smax, it increased by 6.4% (ng = 6), 6% (ng = 8),

7% (ng = 10), and 8.3% (ng = 12). In turn, the third frequency increased only by 0.4% (

ng = 6), 3.5% (ng = 8), 5.1% (ng = 10), and 6.4% (ng = 12). Comparing all results, we

can say that due to the lack of mechanisms, the natural frequencies are practically not

affected by the initial prestress level, independent of the number of load-bearing girders.
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FIGURE 4.60 Influence of the initial prestress level S on the natural

frequency for the Levy domes type A-2: (a) ng = 6, (b) ng = 8, (c) ng =

10, and (d) ng = 12.⏎

Figure 4.61 presents the results of dynamic analysis for the domes with one infinitesimal

mechanism, independently on the number of load-bearing girders, i.e., Levy domes type B-

2. In the absence of prestress, the first natural frequency f1 is zero, and the corresponding

mode of vibration implements the mechanism. After the introduction of prestress, this

frequency increase non-linearly. The range of changes mainly depends on the number of

load-bearing girders. Additionally, as in the case of the Geiger domes type A-2, for these

domes, there are additional frequencies depending on prestress (fadd). The number of

them depends on the number of load-bearing girder (ng). Thus the total frequencies

depending on prestress (ftotal) is equal:

FIGURE 4.61 Influence of the initial prestress S on the natural

frequencies for the Levy domes type B-2: (a) ng = 6, (b) ng = 8, (c) ng =

10, and (d) ng = 12.⏎

ftotal = 1 + fadd; fadd = (ng − 4)

The first frequency corresponding to the infinitesimal mechanism f1, the additional

dependent of prestress fadd, and the first independent of prestress ftotal+1ones are shown.

In the absence of prestress, the additional frequencies, unlike to frequency corresponding

to the mechanism, are not zero and the character of dependence on the prestress depends

on the number of girders. Increasing the number of girders results in a greater sensitivity

to a change in prestress. For example, the second frequency, with the growth of the

prestress fromSmin to Smax, varies from 12.95 Hz to 19.24 Hz (ng = 6), 6.93 Hz to

28.88 Hz (ng = 8), 3.58 Hz to 40.55 Hz (ng = 10), and 2.07 Hz to 52.29 Hz (ng = 12).

This means, the frequency value increased by 0.5% (ng = 6), 3% (ng = 8), 10% (ng = 10



), and 24% (ng = 12). In turn, the value of the first independent frequency is on the similar

level ftotal+1 = 18.4 Hz ÷ 23.9 Hz.

4.6.4 Dynamic Stability Analysis

The static and dynamic analysis showed that the Geiger domes type B-2 are the most

sensitive to the influence of the initial prestress level. Due to this the unstable regions are

determined for two variants of these domes, i.e., regular and modified. Domes with six

load-bearing girders are considered.

The regular Geiger dome type B-2 is characterized by 31 infinitesimal mechanisms. Due

to this, 31 main unstable regions should be determined, however only four selected

regions are shown. These regions correspond to the following resonance frequencies:η1,

η10, η20, and η31 (Figure 4.62). Three cases of initial prestress, i.e., Smin = 2kN, S = 10kN
, and S = 25kN, are considered. The area of unstable regions is larger at higher

frequencies. The increasing of prestress reduces the range of unstable regions and

increases resonant frequencies.

FIGURE 4.62 Limits of the selected four main unstable regions of the

regular Geiger dome type B-2: (a) S
min

 = 2 kN, (b) S = 10 kN, and (c) S =

25 kN.⏎

The modified Geiger dome type B-2 behaves the same way. This dome characterizes by

21 infinitesimal mechanisms, therefore 21 main unstable regions should be determined. To

comparison the behavior of both domes, Figure 4.63 presents the regions correspond to

the following resonance frequencies:η1, η7, η14, and η21. The same levels of initial

prestress are considered. In the case of a modified dome resonance frequencies η are

lower, and unstable regions for the same level of initial prestress S are smaller than for the

regular dome.

FIGURE 4.63 Limits of the selected four main unstable regions of the

modified Geiger dome type B-2: (a) S
min

 = 2 kN, (b) S = 10 kN, and (c) S



= 25 kN.⏎

To better compare the behavior of domes, the influence of initial prestress S on the area

of unstable regions Aη(S) is shown in Figure 4.64a. As can be seen, at low values of initial

prestress forces (S ∈ ⟨2kN; 25kN⟩), the area of the unstable regions for the regular dome

(continuous line) is greater than those for the modified dome (dashed line). For example,

for the minimum prestress level Smin = 2kN, the areas of the unstable region

corresponding to the first and last resonance frequencies are larger by 14% and 47%,

respectively. However, further compression significantly narrows the unstable areas, and

the area sizes are similar for both domes.

FIGURE 4.64 Influence of the initial prestress level S on the: (a) area of

unstable regions A
η
 and (b) range of unstable regions λ. ⏎

The influence of the initial prestress level S on the distribution and range of unstable

regions is measured by the nondimensional parameter λ (3.29) (Figure 4.64b). In the case

of the regular dome (continuous line), as the initial prestress level increases, the changes

in the range of areas are greater. For example, for S = 15kN, the areas are smaller by

about 53% than the areas at the minimum prestress level, while in the case of the

modified dome (dashed line), they are about45% smaller. As can be seen, the changes in

the range of unstable regions corresponding to almost all resonance frequencies are

comparable for both domes, except for the first region (this region corresponds to the first

resonance frequencyη1). In this case, the parameter λ decreases as the initial prestress

level increases for both domes, and at the maximum level is λ = 0.02 and λ = 0.04,

respectively (the unstable region decreases by 98% and 96%).

As has been noted, the unstable regions are the greatest for the minimum prestress

level Smin = 2kN. In this case, if all the main unstable regions were determined, i.e., 31

for the regular and 21 for the modified dome, the regions would overlap. For example, in

Figure 4.65, the limits of all the main unstable regions of the regular and modified domes

in the case of minimal prestress level are shown (the black line marks the rest of the

regions, except for those selected: η1, η10, η20, and η31 for the regular dome and η1, η7,

η14, η21 for the modified dome).



FIGURE 4.65 Limits of all main unstable regions in the case of minimal

prestress level S
min

 = 2 kN: (a) regular Geiger dome type B-2 and (b)

modified Geiger dome type B-2.⏎

It should be noted that the next resonance frequencies (like natural frequencies), i.e.,

η > η31 and η > η21, for regular and modified domes, respectively, are independent of

pulsatility index υ (η(υ = 0 ÷ 0.75) = const. ) and on the initial prestress level S (Table

4.32). The relative increase is less than 3% for all frequencies. These resonance

frequencies are twice as high as the free frequencies.

TABLE 4.32 Next Resonance

Frequencies of the Geiger Domes

Type B-2 ⏎

Regular Dome Modified Dome

ηi (Hz) (ν = 0 ÷ 0.75)

η32 η33 η34 η35 η22 η23 η24 η25

S
min

 = 2 kN 83.8 180.4 180.9 180.9 81.5 143.9 144.0 169.3

S
max

 = 50 kN 84.2 181.3 181.3 181.3 81.8 144.4 144.4 170.0

4.6.5 Chapter Summary

This chapter discusses the two most popular tensegrity domes, i.e., Geiger and Levy

domes. These structures are very different in their behavior. Comparative nature of

analysis leads to answers to the questions posed at the beginning of the consideration.

1. Is it possible to derive formulas for self-equilibrium forces (self-stress state)?

Only formulas for self-equilibrium forces have been derived for regular Geiger domes. This

is due to the fact that these domes consist of basic 2D tensegrity models. These formulas

can be used for any number of load-bearing girders.

2. How does the modification of Geiger patent (regular Geiger dome type B-2)

affect the behavior of Geiger domes?

From both qualitative and quantitative points of view, the modification of Geiger patent

matters. The influence of the modification on the number of immanent features of

tensegrity structures. Additionally, for modified Geiger domes, it is impossible to obtain

formulas for self-stress state. In turn, assessing the behavior of the domes, each

modification result in an increase in the minimum prestress level. As a result, the range of

prestress is reduced.



3. Which solution of Geiger domes is best in terms of its ability to control static

and dynamic parameters?

The Geiger patent (regular Geiger dome type B-2) is the best solution in terms of its ability

to control static and dynamic parameters. Any modification leads to reduced controllability.

4. Whether the number of infinitesimal mechanisms affects the behavior of

Geiger domes?

The number of infinitesimal mechanisms affects the behavior of Geiger domes. More

mechanisms mean more parameters to control. The number of mechanisms depends on

the design solutions.

5. Whether the upper section type matter in the case of Levy dome?

In the case of the Levy dome, the type of upper section is important in the qualitative

analysis. In the case of domes with a strut in the upper section (dome type A-2), there are

no mechanisms. On the other hand, in the case of domes with a ring in the upper section

(domes type B-2), there is only one mechanism, regardless of the number of load-bearing

girders. In the quantitative analysis, however, the type of upper section is virtually

irrelevant. The mechanism in the domes type B-2 has a local character, related only to the

open upper section. Irrespective of the type of the upper section, the influence of the initial

prestress on the static and dynamic parameters is negligible.

6. The behavior of which type of Levy dome is possible to control?

Control of static parameters is impossible regardless of the type of Levy dome. On the

other hand, dynamic parameters can be controlled on domes type B-2.

7. Is it possible to controlling the occurrence of infinitesimal mechanisms by

changing the number of load-bearing girders?

It is possible to control the occurrence of mechanisms by changing the number of load-

bearing girders is possible for some domes. The number of load-bearing girders affects the

number of infinitesimal mechanisms in the cases of regular Geiger domes and modified

Geiger domes type B-2. In the cases of modified Geiger dome type A-2 and Levy domes

type B-2, the number of infinitesimal mechanisms is constant, independent of the number

of load-bearing girders.

8. How does the initial prestress level influence the natural frequencies

correlated with the infinitesimal mechanisms?

In the case of S = 0 the natural frequencies correlated with the infinitesimal mechanisms

are zero, and after introducing an initial prestress they increase in a nonlinear way. The

impact is greater with a lower level of prestress.

In the case of Geiger domes, the initial prestress level has a large influence on the

natural frequencies correlated with the infinitesimal mechanisms. The range of changes

depends mainly on the type of dome and the number of load-bearing girders. The greater

the number of load-bearing girders, the greater the number of infinitesimal mechanisms

(except for the modified dome type A-2, which has a constant number of infinitesimal

mechanisms regardless of the number of load-bearing girders). The greater the number of

infinitesimal mechanisms, the greater the influence of the initial prestress level on the

natural frequencies.



On the other hand, in the case of Levy domes, the initial prestress level has an influence

only on the domes type B-2 with one mechanism, regardless of the number of load-bearing

girders. The range of changes mainly depends on the number of girders. The greater the

number of girders, the greater the influence of the initial prestress level on the first natural

frequency.

9. Is the number of natural frequencies depending on the prestressing equal to

the number of infinitesimal mechanisms?

For the Geiger domes type B-2, the number of natural frequencies depending on the

prestressing equals to the number of infinitesimal mechanisms. On the other hand, in the

case of Geiger domes type A-2 and Levy domes type B-2, not only the frequencies

correlated with the infinitesimal mechanisms depend on the prestress. There are additional

frequencies that depend on prestress. The number of them, and the sensitivity on the

initial prestress changes, depends on the number of load-bearing girders.

10. Whether the number of load-bearing girders impacts the natural frequencies

corresponding to the infinitesimal mechanisms?

The number of load-bearing girders impacts the natural frequencies corresponding to the

infinitesimal mechanisms in the case of Geiger domes type B.

More results of the parametric analysis of Geiger and Levy domes are available in the

following publications (Obara and Solovei, 2023, 2024; Obara et al., 2023a, 2023b, 2024).

4.7 TENSEGRITY TOWERS

Tensegrity towers built with the modified basic three-dimensional tensegrity modules

(units) considered in Section 4.5 are analyzed, i.e., modified Simplex module and modified

Quartex module. The units are connected node-to-node. The Simplex modules could only

be connected in one way, whereas the Quartex modules could be connected in two ways.

This means three types of towers are analyzed. In Figure 4.66, the four-unit towers are

shown:



FIGURE 4.66 Tensegrity towers built with four modules: (a) Simplex

tower, (b) Quartex tower type A, and (c) Quartex tower type B. ⏎

Simplex tower (Figure 4.66a);

Quartex tower type A – the struts overlap in a plan view (Figure 4.66b);

Quartex tower type B – the struts form a star (Figure 4.66c).

Towers built with u-units (u = {2, 3, 4, 5, 6}) are considered. The bottom units are

supported. The support eliminates rigid movements, which means six and eight blocked

degrees of freedom are considered for the Simplex and Quartex modules, respectively (see

Section 4.5). The towers are loaded with a force P = 5kN applied to one top node in z-

direction. The minimum prestress level depends on the number of units. The value

Smin = 5kN is taken into account to compare the behavior of towers. In turn, the

maximum prestress level is assumed to be Smax = 110kN, and corresponds to the effort

of the structure (3.22) equal to Wmax = 0.91.

Purpose of the Consideration

The analysis is comparative in nature, leading to answers to the following questions:

1. Is it possible to control the occurrence of mechanisms by changing the

number of modules?

2. How the number of modules affects global stiffness parameter GSP?

3. Does the method of connecting the Quartex modules matter?

4. Which towers are more sensitive to the changes in the initial prestress level?

5. How does the initial prestress level influence the natural frequencies

correlated with the infinitesimal mechanisms?

6. Is the number of natural frequencies depending on the prestressing equal to

the number of infinitesimal mechanisms?

7. Whether the number of units impacts the natural frequencies corresponding

to the infinitesimal mechanisms?

4.7.1 Qualitative Analysis

The results of the qualitative analysis are shown in Table 4.33. Regardless of the type of

modules, the structures behave in the same way. The number of self-stress states and

infinitesimal mechanisms equal the number of units. None of the self-stress states correctly

identify the type of element (i.e., which is a strut and what is a cable). In all cases, the

superposition of self-stress states leads to obtaining the self-stress states for the single

modules (Figures 4.30b and 4.31b), including common elements. If the superposed self-

stress state is taken into account, all eigenvalues of the stiffness matrix (3.19) are positive.

This means the self-stress state identifies the appropriate normal forces in the structural

elements and stabilizes the mechanisms, i.e., the mechanisms are infinitesimal.

TABLE 4.33 Results of the Qualitative Analysis of Tensegrity Towers⏎

No. of Classification

Units Nodes Elements d.o.f Struts Mechanisms Self-Stress States

(u) (nn) (n) (m) (ns) (nm) (nss)

Simplex towers

2 9 21 21 6 2 2 structures with tensegrity features of class 1

3 12 30 30 9 3 3

4 15 39 39 12 4 4

5 18 48 48 15 5 5

6 21 57 57 18 6 6

u u u

Quartex towers



No. of Classification

Units Nodes Elements d.o.f Struts Mechanisms Self-Stress States

(u) (nn) (n) (m) (ns) (nm) (nss)

2 12 28 28 8 2 2 structures with tensegrity features of class 1

3 16 40 40 12 3 3

4 20 52 52 16 4 4

5 24 64 64 20 5 5

6 28 76 76 24 6 6

u u u

The towers are characterized by four tensegrity features. They are trusses (TT ) with

tensile elements that have no rigidity in compression (TC) and in which there is one

superposed self-stress state (SS) that stabilizes all infinitesimal mechanisms (IM). The

features (IN−the set of struts is contained within the continuous net of cables) and (

DS − the struts form a discontinuous set) cannot be met because of the method of

connecting modules. According to the tensegrity classification (Table 3.1), the towers are

structures with tensegrity features of class 1.

4.7.2 Static Analysis

The static analysis includes the influence of the initial prestress level and external load on

the rigidity of the structures. Additionally, the influence of the number of units is

considered. To compare the behavior of different solutions, the global stiffness parameter

GSP  and the effort of structure Wmax (for cables) are shown in Figure 4.67. The

continuous line describes the behavior of towers built with an odd number of units, while

the dashed line describes towers built with an even number of units.

FIGURE 4.67 Results of static analysis for the tensegrity towers.⏎

The Simplex towers built with odd numbers of units are the stiffest of all (Figure 4.67a).

Interestingly, the stiffness does not depend on the number of units. At the maximum level

of initial prestress, the parameter GSP  is average 1.3 times higher than for Quartex



towers. In the case of towers built with an even number of units, the stiffness also does not

depend on the number of units but is smaller. It is equal to 0.87 of the stiffness of towers

built with an odd number of units. In turn, the stiffness of Quartex towers (Figures 4.67b

and 4.67c) depends on the number of units. Quartex towers type B are more sensitive. For

both types of Quartex towers, the stiffest is the tower built with five units, while the

weakest the tower built with four units.

Like in the previous examples, the influence of non-linearity is most significant at low

values of initial prestress forces. The non-linear nature of the stiffness function is for initial

prestress forces in the range ofS ∈ ⟨5kN; 25kN⟩ for the Simplex towers and

S ∈ ⟨5kN; 40kN⟩ for the Quartex towers.

The number of units has practically no influence on the effort of structure. At the same

initial prestress level, the Quartex towers type A are the most stressed.

4.7.3 Dynamic Analysis

In order to check the dynamic behavior of towers, the natural f = f(0) and free f(P)
frequencies are calculated. The impact of the number of units (u) is taken into account.

First, the natural frequencies correlated with infinitesimal mechanisms fnm = fnm(P = 0)
are determined. Next, the additional prestress-dependent frequencies are presented. At

the end, the dynamic response of towers affected by external loads is considered. The free

frequencies of structures loaded with time-independent force are measured. The three-unit

towers are considered.

4.7.3.1 Natural Frequencies of Towers Correlated with Infinitesimal Mechanisms

The first example concerns the influence of the initial prestress level Sand the number of

units (u) on natural frequencies fi correlated with infinitesimal mechanisms (

i = {1, 2, … ,nm}). It should be noted that the number of infinitesimal mechanisms

equals the number of units (nm = u). Considered frequencies are zero in the absence of

prestress and increase when the initial prestress is applied. Figure 4.68 presents the first

f1 (dashed line) and the last fnm (continuous line) frequencies correlated with the

infinitesimal mechanisms are presented. The range of changes mainly depends on the

number and type of units used to create the towers.

FIGURE 4.68 Natural frequencies f
1
 and f

nm
: (a) Simplex towers, (b)

Quartex towers type A, and (c) Quartex towers type B. ⏎

The first frequency f1 is the most sensitive to the change in the number of units. Its

value decreases by 25%, 45%, 54%, and 62% as the number of units increases for

Simplex towers (Figure 4.68a) and Quartex towers type A (Figure 4.68b). In the case of

Quartex towers type B (Figure 4.68c), differences are higher by two percentage points.



Comparing the behavior of the way of connecting the Quartex modules, the first

frequencies f1of towers type B are lower by about 10% then those of towers type A.

In turn, the last frequency fnm is less sensitive. For Simplex towers built with 3–6 units,

the frequency fnm does not depend on the number of units at all. This means that the third

frequency of three-unit towers is the same as the fourth, fifth, and sixth frequencies of

towers built with four, five, and six units. Only the second frequency of a two-unit tower

differs. It is lower, and the difference increases as the initial prestress level S increases. For

example, at the maximum level, the difference equals 3.86 Hz. The Quartex towers behave

differently. The number of units influences the values of the frequency fnm, but to a much

lesser extent than in the case of the frequency f1. Additionally, the obtained results

confirm that the way of connecting the Quartex modules is important. For the towers with

star-forming struts (Quartex towers type B), the frequencies fnm for Smax are about 1.3
times higher than for the towers with struts overlapping in a plan view (Quartex towers

type A).

Summary: (1) the frequency fnm is more sensitive to prestress than the frequency f1.

For example, the value of the sixth frequency of a six-unit tower varies from 0 to 40.35 Hz
for a Simplex tower, from 0 to 26.61 Hz for Quartex tower type A, and from 0 to 31.60 Hz
for Quartex tower type B. (2) the natural frequencies of Simplex towers are higher than

those of Quartex towers. At the maximum level of initial prestress, the first frequencies f1
of Simplex towers are 1.3 times higher than for Quartex towers type B and 1.2 times

higher than for Quartex towers type A, while the frequencies fnm are 1.5 and 1.3 times

higher, respectively.

4.7.3.2 Additional Prestress-Dependent Natural Frequencies of Towers

Considerations of tensegrity domes showed a typical behavior with additional frequencies

depending on prestress were determined. The same is true for tensegrity towers. The rule

stating that ‘the number of natural frequencies, depending on the prestressing, is equal to

the number of infinitesimal mechanisms’ holds true only for all Simplex towers and

Quartex towers built with two units.

In Figure 4.69, the next two frequencies, i.e., fnm+1 (continuous line) and fnm+2 (dotted

line), are shown. For Simplex towers (Figure 4.69a), these frequencies are constant

independently of the number of units. It should also be noted that these frequencies are

the same for towers built with 3–6 units. Only for two-unit tower the frequency fnm+2 is 7%
times higher than fnm+1. In turn, for Quartex towers (Figures 4.69b and 4.69c), these

frequencies do not depend on prestress only in the case of two-unit towers. For towers

built with 3–6 units, there is one additional prestress-dependent frequency fnm+1. In the

absence of initial prestress (S = 0), the frequency fnm+1 is not zero, and its values vary

with the change in prestress. Interesting is a frequency function, which is changed from

linear for three-unit towers to non-linear for towers built with 4–6 units. The sensitivity

grows with the number of units. For example, for six-unit towers, the frequency, with the

growth of the prestress fromSmin to Smax, varies from 1.81 Hz to 20.62 Hz for Quartex

towers type A and 1.68 Hz to 20.61 Hz for Quartex towers type B. As can be seen, the

differences between towers are not significant.



FIGURE 4.69 Natural frequencies f
nm+1

 and f
nm+2

: (a) Simplex towers, (b)

Quartex towers type A, and (c) Quartex towers type B. ⏎

On the other hand, the frequency fnm+2, like the next ones, does not depend on the

initial prestress level S. The relative increase between f(Smin) and f(Smax) is less than

1%. In Table 4.34, the frequencies fnm+3 and fnm+4 are shown. The frequencies are not

sensitive to prestressing, except for the two-unit Quartex towers. In this case, the

frequency fnm+3 is not constant, but the relative increase is equal to only 3.7% and 4.5%
for towers types A and B, respectively. However, the next frequencies fnm+4 do not depend

on the initial prestress level.

TABLE 4.34 Natural Frequencies f
nm+3

 and f
nm+4

 of

Tensegrity Towers⏎

No. of Units(u) Simplex Towers Quartex Towers Type A Quartex Towers Type B

S = 0 S = 110 kN S = 0 S = 110 kN S = 0 S = 110 kN

fnm+3 (Hz)

2 167.7 167.9 75.3 78.1 66.3 69.4

3 136.5 136.7 29.3 29.4 30.2 30.4

4 95.7 95.9 16.3 16.3 17.4 17.5

5 65.8 65.9 10.8 10.9 11.6 11.6

6 46.4 46.5 7.5 7.5 8.1 8.1

f
nm+4

 (Hz)

2 249.8 250.1 219.1 219.5 223.5 223.8

3 185.2 185.4 156.1 156.4 162.3 162.5

4 105.9 106.1 89.6 89.8 101.5 101.7

5 69.2 69.3 62.9 63.1 68.6 68.7

6 47.9 48.0 44.5 44.6 48.6 48.7

4.7.3.3 Free Frequencies of Three-Unit Towers

Three-unit towers are characterized by three infinitesimal mechanisms. However, taking

into account the conclusions from the previous considerations, five successive frequencies

are shown in Figure 4.70. The external load prestresses the structures, and the free

frequencies at Smin = 5kN are higher than natural frequencies. The impact of loads is

greater at lower levels of initial prestress, and as the prestress increases, the free

frequencies approach to the natural frequencies. Convergence depends on the frequency;

the higher the frequency, the slower the convergence, while at S = 60kN (Wmax ≈ 0.5),

regardless of frequency number, the impact of loads is negligible.



FIGURE 4.70 Free frequencies of three-unit towers: (a) Simplex tower,

(b) Quartex tower type A, (c) Quartex tower type B. ⏎

The Quartex tower type B (Figure 4.70c) behaves similarly to the Simplex tower (Figure

4.70a); for these structures, the second frequency (i = 2) is closer to the third frequency (

i = 3) than to the first frequency. While while for the Quartex tower type A (Figure 4.70b),

the second frequency is closer to the first frequency (i = 1). As with of natural frequencies,

in the case of Quartex towers the fourth frequency (i = 4) is additionally dependent on

prestress. In turn, the fifth frequency (i = 5) is not sensitive to prestress, and is almost

identical to that of the Simplex tower. As in the case of natural frequencies, in the case of

Quartex towers the fourth frequency (i = 4) is additionally dependent on the prestress.

4.7.4 Dynamic Stability Analysis

The static and dynamic analyses showed that the Simplex towers are more sensitive to the

changes in the level of prestress than the Quartex towers. Additionally, results confirm that

the way of connecting the Quartex modules is important. However, the influence of

prestressing is most significant at low values of initial prestress forces. The same

conclusions can be drawn for resonance frequencies. To illustrate this, the dynamic

response of towers affected by external periodical loads is considered. The unstable

regions are determined for the three-unit towers. In Figures 4.71–4.73, the limits of the

main unstable regions are shown. The results for three cases of initial prestress are

presented, i.e., Smin = 5kN (Wmax ≈ 0.14 ÷ 0.22), S = 20kN (Wmax ≈ 0.21 ÷ 0.28) and

S = 50kN (Wmax ≈ 0.42 ÷ 0.48).

In the case of the Simplex tower, three main unstable regions are determined,

corresponding to three resonant load frequencies: η1 (first region), η2 (second region), and

η3 (third region) (Figure 4.71). As can be seen, the area of unstable regions increase with

an increase in the pulsatility index υ, and it is larger at higher frequencies. Additionally, it

should be noted that in the case of minimum prestress level Smin = 5kN, the second and

third regions are located close. This is related to the fact that the second free frequency is

closer to the third frequency. As in the previous examples, as the level of initial prestress S
increases, the resonant frequencies increase and the range of instability areas decreases.



FIGURE 4.71 Limits of the main unstable regions for the Simplex tower:

(a) S = 5 kN, (b) S = 20 kN, and (c) S = 50 kN.⏎

In the case of Quartex towers (Figures 4.72 and 4.73), as there are four prestress-

dependent frequencies, four main unstable regions are determined. The behavior is similar

to behavior of the Simplex tower. The resonant frequencies share the greatest similarity

between the Quartex tower type B (Figure 4.73) and the Simplex tower (as for free

frequencies). Comparing the locations of the unstable regions, the second and the third

regions are placed close to each other and partially overlap for lower levels of the initial

prestress. This behavior poses a risk for the structure. It increases the probability that the

resonant frequency will occur. For the Quartex tower type A (Figure 4.72), regions do not

coincide. This means that this solution is safer.

FIGURE 4.72 Limits of the main unstable regions for the Quartex tower

type A: (a) S = 5 kN, (b) S = 20 kN, and (c) S = 50 kN.⏎

FIGURE 4.73 Limits of the main unstable regions for the Quartex tower

type B : (a) S = 5 kN, (b) S = 20 kN, and (c) S = 50 kN.⏎



To compare the behavior of towers, the influence of initial prestress S on the area of

unstable regions Aη is shown in Figure 4.74. The areas are similar for the Simplex tower

(Figure 4.74a) and Quartex tower type B (Figure 4.74c). To measure the changes in the

area of the unstable regions, the nondimensional parameter λ (3.75) is also calculated

(Figure 4.75). The change in the range of areas in the unstable regions correlated to

infinitesimal mechanisms (the first, second, and third regions) is comparable in all cases

(graphs overlap). At low values of initial prestress forces, the range of the three main

unstable regions changes only slightly for example, at S = 10kN, the parameter λ is equal

to λ = 0.85 for the Simplex tower and λ = 0.91 for the Quartex towers. This means that

the unstable regions are 15% and 9% smaller than the regions at the minimum level of

initial prestress (Smin = 5kN). However, further prestress significantly narrows the

unstable regions. At S = 60kN, the regions decrease by 95% and 99% (λ = 0.05 and

λ = 0.1). This means that the boundaries of instability practically coincide, and the risk of

the excitation of motion with increasing amplitudes decreases.

FIGURE 4.74 Influence of the initial prestress level S on the area of

unstable regions A
η
(S): (a) Simplex tower, (b) Quartex tower type A, and

(c) Quartex tower type B. ⏎

FIGURE 4.75 Influence of the initial prestress level S on the range of

unstable regions λ: (a) Simplex tower, (b) Quartex tower type A, and (c)

Quartex tower type B. ⏎

In turn, the unstable region correlated with the additional prestress-dependent natural

frequency (the fourth region) behaves differently. On the one hand, the area is smaller

(Figures 4.74c and 4.74d) than the second and third regions. On the other hand, the

magnitude of the change is slower than in the previous regions (Figures 4.75c and 4.75d).

At S = 10kN, the parameter λ is equal to λ = 0.95, and at S = 60kN, it is equal to

λ = 0.22.



The next resonance frequencies (like natural frequencies), i.e., η > η3 and η > η4, for

the Simplex tower and for the Quartex towers, respectively, are independent of pulsatility

index υ (η(υ = 0 ÷ 0.75) = const. )and on the initial prestress level S (Table 4.35). The

relative increase is less than 3% for all frequencies. These resonance frequencies are twice

as high as the free frequencies.

TABLE 4.35 Next Resonance Frequencies of the

Tensegrity Towers⏎

Simplex Tower Quartex Tower Type A Quartex Tower Type B

ηi (Hz) (ν = 0 ÷ 0.75)

η4 η5 η5

S
min

 = 5 kN 60.85 58.60 60.46

S
max

 = 110 kN 62.69 58.73 60.78

4.7.5 Chapter Summary

This chapter discusses tensegrity towers constructed using the modified Simplex and

Quartex modules. The influence of the type of support on the behavior is considered. The

comparative nature of analysis leads to answers to the questions posed at the beginning of

the discussion.

1. Is it possible to control the occurrence of infinitesimal mechanisms by

changing the number of modules?

The occurrence of infinitesimal mechanisms can be controlled by changing the number of

modules. The number of mechanisms equals the number of modules.

2. How the number of modules affects global stiffness parameter GSP?

The influence of the number of modules on the stiffness (GSP ) depends on the type of

modules. Generally, towers built with an odd numbers of modules are the stiffest of all.

Comparing towers, the stiffest is the Simplex towers.

3. Does the method of connecting the Quartex modules matter?

The method of connecting the Quartex modules is very important. Towers with star-forming

struts (Quartex towers type B) are stiffer than the towers with overlapping struts in the

plan view (Quartex towers type A). The frequencies are higher (except for the first

frequency, which are almost the same). Furthermore, the dynamic stability analysis shows

that the probability of the resonance frequency occurring is higher for Quartex towers type

B.

4. Which towers are more sensitive to the changes in the initial prestress level?

More sensitive to the changes in the initial prestress level are the Simplex tower. However,

Quartex tower type B behaves similarly to the Simplex tower.

5. How does the initial prestress level influence the natural frequencies

correlated with the infinitesimal mechanisms?

In the case of S = 0, the natural frequencies correlated with the infinitesimal mechanisms

are zero, and after introducing an initial prestress, they increase in a nonlinear way. The



impact is greater at lower level of prestress. If several mechanisms are identified, higher

frequencies are more susceptible to changes in the initial prestress.

6. Is the number of natural frequencies depending on the prestressing equal to

the number of infinitesimal mechanisms?

For the Simplex towers, the number of natural frequencies depending on the prestressing

equals the number of infinitesimal mechanisms. This is also true in the case of Quartex

towers constructed with two units. In other cases, there is one additional prestress-

dependent frequency. In the absence of initial prestress, this frequency is non-zero, and its

values vary with change in prestress. The sensitivity to the prestress grows with the

number of units.

7. Whether the number of units impacts the natural frequencies corresponding

to the infinitesimal mechanisms?

The number of modules impacts the natural frequencies corresponding to the infinitesimal

mechanisms in of towers cases.

Additional results of the parametric analysis of tensegrity towers built with Simplex and

Quartex modules are available in the following publications (Mochocki and Obara, 2021;

Obara, 2019a; Obara and Tomasik, 2023c, 2023d).

4.8 DOUBLE-LAYERED TENSEGRITY GRIDS

Double-layered tensegrity grids (plates) constructed with the modified basic three-

dimensional tensegrity modules (units) considered in Section 4.5 are analyzed, namely, the

modified Simplex module and the modified Quartex module. Two small-sized plates are

taken considered, namely, small-sized plates:

six-unit Simplex plate (MS-6) (Figure 4.76a);

four-unit Quartex plate (MQ-4) (Figure 4.77a).

FIGURE 4.76 Six-unit Simplex plate: (a) 3D view and (b) scheme of

support.⏎

FIGURE 4.77 Four-unit Quartex plate: (a) 3D view and (b) scheme of

support.⏎



The plates are supported at the bottom nodes of the structure. The influence of the type

of support on the behavior is considered. Three static schemes are considered (Figures

4.76b and 4.77b).

The considered models are subjected by concentrated forces P = 1kN applied to all top

nodes in z-direction. The minimum prestress level, Smin = 2kN, is considered to compare

the behavior of plates. In turn, the maximum prestress level is assumed to be

Smax = 60kN, which corresponds to the effort of the structure (3.22), equal to

Wmax = 0.91.

Purpose of the Consideration

The analysis is of a comparative in nature, leading to answers to the following questions:

1. Is it possible to control the occurrence of mechanisms by changing the

support conditions of the tensegrity plate?

2. Which plate model is the stiffest?

3. Which plate is more sensitive to changes in the initial prestress level?

4. Is the number of natural frequencies depending on the prestressing equal to

the number of infinitesimal mechanisms?

4.8.1 Qualitative Analysis

The results of the qualitative analysis are shown in Table 4.36. In the case of the six-unit

Simplex plate, there is one infinitesimal mechanism, regardless of the model (Figure 4.78).

The forms of mechanism are different depending on the model. However, in all cases, the

mechanisms are realized by in-plane displacements of the top nodes. Out-of-plane

displacements of the upper nodes are significantly smaller (almost negligible). Only the

bottom unsupported node moves significantly out-of-plane relative to the lower nodes. In

turn, for the four-unit Quartex plate, the number of mechanisms depends on the model.

Thus, the MQ-4-A model is characterized by one mechanism, the MQ-4-B by two

mechanisms, and the MQ-4-C model by three mechanisms (Figure 4.79). The forms of the

mechanisms vary from model to model, but both in-plane and out-of-plane displacements

of the top nodes are comparable.

TABLE 4.36 Results of the Qualitative Analysis of the Tensegrity Plates⏎

Name of Plate No. of Classification

Units Nodes Elem. d.o.f Mechanisms Self-Stress States

(u) (nn) (n) (m) (nm) (nss)

Simplex plates

MS-6-A 6 19 60 39 1 22 structures with tensegrity features of class 1

MS-6-B 48 1 13

MS-6-C 45 1 16

Quartex plates

MQ-4-A 4 21 56 39 1 18 structures with tensegrity features of class 1

MQ-4-B 45 2 13

MQ-4-C 45 3 14



FIGURE 4.78 Infinitesimal mechanisms of the six-unit Simplex plates: (a)

MS-6-A, (b) MS-6-B, and (c) MS-6-C. ⏎

FIGURE 4.79 Infinitesimal mechanisms of the four-unit Quartex plates:

(a) MQ-4-A, (b) MQ-4-B, and (c) MQ-4-C4 ⏎

The number of a second immanent feature of tensegrity, i.e., the self-stress states,

depends significantly on the model considered. There are dozen or more self-stress states.

However, none of the self-stress states correctly identify the type of element (i.e., what is a

strut and what is a cable). In all cases, the superposition of self-stress states leads to

obtaining the self-stress states for the single modules (Figures 4.30b and 4.31b), including

common elements. If the superposed self-stress state is taken into account, all eigenvalues

of the stiffness matrix (3.19) are positive. This means the self-stress state identifies the

appropriate normal forces in the structural elements and stabilizes mechanisms, i.e., the

mechanisms are infinitesimal.

The plates exhibit four tensegrity features. They are trusses (TT ) with tensile elements

that have no rigidity in compression (TC) and in which there is one superposed self-stress

state (SS) that stabilizes all infinitesimal mechanisms (IM). The features (IN−the set of

struts is contained within the continuous net of cables) and (DS − the struts form a



discontinuous set) cannot be met because of the method of connecting modules.

According to the tensegrity classification (Table 3.1), plates are structures with tensegrity

features of class 1.

4.8.2 Static Analysis

The static analysis concerns the influence of the initial prestress level and external load on

structural rigidity. To compare the behavior of different solutions, the global stiffness

parameter GSP  and the effort of structure Wmax (for cables) are shown in Figure 4.80.

FIGURE 4.80 Results of static analysis for the tensegrity plates.⏎

The plates built with Simplex modules are stiffer than plates built with Quartex modules.

At the maximum level of initial prestress, the GSP  parameter is on average three times

higher. The simply supported model (MS-6-A) is the stiffest one. However, it should be

noted that for Simplex plates, the GSP parameter exhibits a different functional behavior.

In “normal’ cases, that is, when the behavior of the structure depends on the initial

prestress level, it should be an exponential function. The large values of the GSP
parameter are due to the fact that the denominator of this parameter is close to zero

([q(Si)]TKS(Si)q(Si) ≈ 0). This means that the Simplex plates are not sensitive to the

prestress. Consequently, this means that the load causes displacements that are

incompatible with an infinitesimal mechanism. This conclusion confirms the effort of the

structure Wmax, which is linearly dependent on the prestress.

In the case of Quartex plates, the stiffest is model supported on two opposite edges

(MQ-4-B), while the direction of support is important. The parameter GSP  is 1.4 times

higher for the MQ-4-B model than for the MQ-4-C model. The Quartex plates are sensitive

to the prestress. The influence of the initial prestress level depends on the model.

4.8.3 Dynamic Analysis



In order to check the dynamic behavior of tensegrity plates, the natural f(0) and free f(P)
frequencies are calculated. The Simplex plates are characterized by one infinitesimal

mechanism, and only the first natural frequency depends on the initial prestress level

(Figure 4.81). This frequency (continuous line) is the same for all models. The way of

support does not influence the value of frequency but influences the vibrations. The forms

of vibration realize mechanisms (Figure 4.78). In the case of free frequencies (dotted line),

the first also depends on the prestress, while it is almost equal to the natural ones. This is

further evidence that the load causes displacements that are incompatible with an

infinitesimal mechanism (see Figure 4.23a).

FIGURE 4.81 Influence the initial prestress level S on frequencies of the

six-unit Simplex plates: (a) MS-6-A, (b) MS-6-B, and (c) MS-6-C. ⏎

In the case of Quartex plates, both the value of frequencies (Figure 4.82) and form of

vibrations (Figure 4.79) depend on the way of support. The MQ-4-A plate is characterized

by one infinitesimal mechanism and only the first natural and free frequencies depend on

the initial prestress level (Figure 4.82a). In turn, the MQ-4-B plate is characterized by two

infinitesimal mechanisms, thus, the first and second natural and free frequencies depend

on prestress (Figure 4.82b). Consequently, in the case of MQ-4-C plate with three

mechanisms, three frequencies depend on prestress (Figure 4.82c). As can be seen, the

last frequencies correlated with mechanisms are the same for all models. In turn, free

frequencies behave as in the case of single modules. For a small value of the initial

prestress level, they are much higher than the natural frequencies. With an increase in the

initial prestress level, the free frequency values converge to the first natural frequency.

There is one exception. The first free frequency of the MQ-4-B plate behaves as the

frequency for the Simplex plates.

FIGURE 4.82 Influence the initial prestress level S on frequencies of the

four-unit Quartex plates: (a) MQ-4-A, (b) MQ-4-B, and (c) MQ-4-C. ⏎



The tensegrity plates built with modified Simplex and Quartex modules behave like

single modules, i.e., the number of natural frequencies, depending on the prestressing, is

equal to the number of infinitesimal mechanisms. Next natural and free frequencies (

fnm+i = fnm+i(0) = fnm+i = (P)) are independent on the initial prestress level S. In

Table 4.37 the frequencies fnm+1 are shown. The relative increase between f(Smin) and

f(Smax) is less than 1%.

TABLE 4.37 First Natural

Frequencies of Tensegrity (f
nm+1

)

Plates Independent on the Initial

Prestress Level S ⏎

Simplex Plates Quartex Plates

Model nm S Model nm S

2 kN 60 kN 2 kN 60 kN

fnm+1 (Hz) fnm+1 (Hz)

MS-6-A 1 150.48 151.94 MQ-4-A 1 171.09 171.77

MS-6-B 1 137.42 138.60 MQ-4-B 2 162.63 163.11

MS-6-C 1 131.37 132.21 MQ-4-C 3 88.52 89.04

4.8.4 Dynamic Stability Analysis

The influence of the initial prestress level S and load on the main unstable region is shown.

The values of constant part of periodic force are taken into account as P = 1kN. The

forces are applied to all top nodes in z-direction. The boundaries for one case of initial

prestress level are shown, i.e.,Smin = 2kN.
In the case of Simplex plates, one main unstable region is obtained (Figure 4.83).

However, the unstable region does not depend on the mode, and they are not large. Taking

into account the changes of the initial prestress level, the areas of unstable regionsAη(S)

and the dimensionless parameter λ (3.75) are shown in Figure 4.84. The dynamic stability

analysis confirms the previous conclusions, the initial prestress level does not influence the

behavior of the Simplex plates.

FIGURE 4.83 Limits of the main unstable regions of the six-unit Simplex

plates for S
min

 = 2 kN: (a) MS-6-A, (b) MS-6-B, and (c) MS-6-C. ⏎



FIGURE 4.84 Influence of the initial prestress level S on the six-unit

Simplex plates: (a) area of unstable regions A
η
 and (b) range of unstable

regions λ. ⏎

In the case of Quartex plates, the number of main unstable region depends on type of

model. For plate characterized by one infinitesimal mechanism (MQ-4-A), one main

unstable region is obtained (Figure 4.85a). Consequently for plate characterized by two

mechanisms (MQ-4-B) and by three mechanisms (MQ-4-C), two (Figure 4.85b) and three

(Figure 4.85c) main unstable regions are obtained, respectively. As can be see, the higher

risk of occurring excitation vibrations is in the case of MQ-4-C model. To better compare

the behavior of models, the influence of initial prestressS on the area of unstable regions

Aη(S) is shown in Figure 4.86. Taking into account fact that fist unstable region (first

region) for the MQ-4-B model is practically insensitive on the prestress, this is the best

solution of support. This is also confirmed by parameter λ (3.75), which measures the

range of unstable regions (Figure 4.87).

FIGURE 4.85 Limits of the main unstable regions of the four-unit Quartex

plates for S
min

 = 2 kN: (a) MQ-4-A, (b) MQ-4-B, and (c) MQ-4-C. ⏎



FIGURE 4.86 Influence of the initial prestress level S on the area of

unstable regions A
η
(S) for the four-unit Quartex plates: (a) MQ-4-A, (b)

MQ-4-B, and (c) MQ-4-C. ⏎

FIGURE 4.87 Influence of the initial prestress level S on the range of

unstable regions λ for the four-unit Quartex plates: (a) MQ-4-A, (b) MQ-4-

B, and (c) MQ-4-.C ⏎

The next resonance frequencies (like natural frequencies), i.e., η > ηnm are independent

of pulsatility index υ (η(υ = 0 ÷ 0.75) = const. )and on the initial prestress level S (Table

4.38). The relative increase is less than 1% for all frequencies. These resonance

frequencies are twice as high as the free frequencies.

TABLE 4.38 Next Resonance Frequencies of the

Tensegrity Plates⏎

Simplex Plates Quartex Plates

Model nm S Model nm S

2 kN 60 kN 2 kN 60 kN

ηnm+1 (Hz)(ν = 0 ÷ 0.75) ηnm+1 (Hz)(ν = 0 ÷ 0.75)

MS-6-A 1 301.02 303.85 MQ-4-A 1 342.45 343.53

MS-6-B 1 274.86 277.16 MQ-4-B 2 325.39 326.22

MS-6-C 1 262.75 264.39 MQ-4-C 3 177.50 178.14

4.8.5 Chapter Summary

This chapter discusses double-layer tensegrity grids (plates) built with the modified

Simplex and Quartex modules. The influence of the way of support on the behavior is

considered. Comparative nature of analysis leads to answers to the questions posed at the

beginning of the consideration.



1. Is it possible to control the occurrence of mechanisms by changing the

support conditions of the tensegrity plate?

Controlling the occurrence of mechanisms is possible by changing the support conditions

of the tensegrity plate.

2. Which plate model is the stiffest?

The Simplex plate, which supports all external bottom nodes, is the stiffest.

3. Which plate is more sensitive to changes in the initial prestress level?

The Simplex plates are not sensitive to the prestress. This is because the load causes

displacements that are incompatible with infinitesimal mechanisms. The Quartex plates, on

the other hand, are sensitive to the prestress. The MQ-4-C model characterized by the

three infinitesimal mechanisms, is more sensitive to the changes.

4. Is the number of natural frequencies depending on the prestressing equal to

the number of infinitesimal mechanisms?

The tensegrity plates built with modified Simplex and Quartex modules behave

independently, like single modules, i.e., the number of natural frequencies, depending on

the prestressing, is equal to the number of infinitesimal mechanisms.

More results of the parametric analysis of double-layered tensegrity grids built with

Simplex and Quartex modules are available in the following publications (Obara 2019a,

2019b, 2019c; Obara and Tomasik, 2020, 2021a, 2021b, 2023a, 2023b).
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dynamic stability (instability), 67–76

static, 61–65
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Bar, see Strut

Blur Building, 14

Boolean matrix, 49

Cable, 1, 5

Cable–strut dome, 8

Cauchy stress tensor, 34

Circular frequency of vibration, 66

Circumferential pattern, 11

Compressed element, see Strut

Consistent mass matrix, 44, 49

Constructivism, 1

Continuous tension, 3

Deployable structure, 2

Diamond-pattern system, 11

Discontinuous compression structure, 3

Dome, 8

Effort of the structure, 58

Elasticity matrix, 50

Elongation matrix, 38, 49

Footbridge, 7

Form-finding method, 16, 51–53
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free, 66

natural, 66

resonance, 75

Geiger dome, 9–10

Geometrically

non-linear model, 32, 35

variable system, 2

Geometrical stiffness matrix, 39, 56

Global stiffness parameter (GSP), 64

Green–Lagrange strain tensor, 33

Harmonic balance method (HBM), 70–72

Hill equation, 69

Ideal tensegrity, 53

Impulse load, 17

Ince–Strutt map, 68

Infinitesimal mechanism, 5, 32

Initial

configuration, 32

force vector, 42

prestress, 1

stress, 35

Integrity, 1

Intelligent structure, 2

Jacobian transformation, 34

Kronecker delta, 34

Lagrange’s stationary description, 32

Lamella-Kiewitt dome, 8

Levy dome, 10

Linear

displacement-dependent matrix, 38

stiffness matrix, 38, 56
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Mathieu equation, 68
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Needle Tower, 13

Newton–Raphson method, 63, 76

Non-linear

analysis, 63
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Oblique pattern, 11

Optimization algorithms, 16

Parametric analysis, 17

Parametric resonance region, see Ince–Strutt map

Pioli–Kirchhoff stress tensor, 33

Prestress level

maximum, 58

minimum, 58

Principle of

stationary total potential energy, 34

virtual work, 34

Pure tensegrity, 6, 53

Qualitative analysis, 48, 50

Quantitative analysis, 48

Quartex module, 12

Quasi-linear analysis, 63

Range of unstable region, 75

Real force, 43, 63

Residual force vector, 42

Rhombic pattern, see diamond-pattern systems

Ribbed dome, 8

Rod, see Strut

Schwedler dome, 8

Secant stiffness matrix, 39, 64

Second-order theory, see Quasi-linear analysis

Self-

balanced, 1, 32

control, 2
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equilibrated forces, 5

repair, 2



stress state, 1–2

Shape control method, 16

Simplex module, 12

Single-layer grid, 8

Singular value decomposition (SVD), 54–56

Small parameter method (SPM), 72–75

Solid elastic body, 32

Stability charts, see Ince–Strutt map

Structures with tensegrity features, 6

of class 1, 53

of class 2, 53–54

Strut, 5

Tangent stiffness matrix, 42

Tensegrity

beam-like structure, 11

boom, 11

classification, 53–54

double-layer grid, 14

element, 49

module (unit), 11

plate-like structure (plate, plate strips), 14

structure, 6, 32

system, 4

tower, 13–14

Tensile element, see Cable

Third-order theory, see Non-linear, analysis

Undeformed configuration, see Initial, configuration

Unstable region, see Ince–Strutt map

Vector of internal forces, 39

Warnow Tower, 13

Zigzag pattern, see Oblique pattern

Zig-Zag Tower, 13
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